WorldWideScience

Sample records for ceramic composites prepared

  1. Conductive ceramic composition and method of preparation

    Science.gov (United States)

    Smith, J.L.; Kucera, E.H.

    1991-04-16

    A ceramic anode composition is formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The anode is prepared as a non-stoichiometric crystalline structure by reaction and conditioning in a hydrogen gas cover containing minor proportions of carbon dioxide and water vapor. The structure exhibits a single phase and substantially enhanced electrical conductivity over that of the corresponding stoichiometric structure. Unexpectedly, such oxides and oxygenates are found to be stable in the reducing anode fuel gas of a molten carbonate fuel cell. 4 figures.

  2. Preparation of Ceramic Composite Pipes Through Paste Extrusion

    Institute of Scientific and Technical Information of China (English)

    Zhongchun Chen; Takenobu Takeda; Keisuke Kikuchi

    2000-01-01

    An experimental investigation was carried out in order to prepare ceramic composite pipes used for tubular solid oxide fuel cells by using a multi-billet extrusion technique. Particular emphasis was given to the forming possibility and extrusion behavior of a two-layer pipe consisting of NiO-YSZ(PSZ) (anode) and YSZ (electrolyte). It is shown that the extrusion pressure and binder content required decrease with increasing the fraction of nickel oxide in the anode layers. The porosity in the anode layers depends on the binder content in pastes. It is feasible to prepare anode/electrolyte composite pipes by means of co-extrusion of different pastes.Furthermore, it is possible to obtain sound sintered pipes even under pressureless sintering conditions.

  3. Preparation and Easy-Cleaning Property of Rare Earth Composite Ceramic

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Rare earth and far-infrared mineral composite materials were added to ceramic glazes to prepare easy-cleaning ceramic. The morphology of easy-cleaning ceramic was observed by SEM. The influence of easy-cleaning ceramic on water surface tension and contact angles of water were investigated. Through calculation of ceramic surface free energy and observation of oil drop on ceramic surface in water, the easy-cleaning mechanism of rare earth composite ceramic was studied. It is found that the rare earth composite ceramic can make water surface tension decrease. The surface free energy and the polar component of rare earth composite ceramic are increased. The rare earth composite ceramics have the easy-cleaning property.

  4. Preparation and Microstructure of Glass-ceramics and Ceramic Composite Materials

    Institute of Scientific and Technical Information of China (English)

    HE Feng; XIE Junlin; HAN Da

    2008-01-01

    The technology and microstructure of glass-ceramics and ceramic composite materials were studied.A suitable ceramic body was chosen on the basis of the sintering temperature of CaO-Al2O3-SiO2 system glass-ceramics.According to the expansion coefficient of the ceramic body,that of CaO-Al2O3-SiO2 system glass-ceramics was adjusted.a-wollastonite was found present as the major crystalline phase in glass-ceramic.The CaO-Al2O3-SiO2 system glass-ceramic layer and ceramic body could be sintered together by adjusting the sintering period.The compositions of glass-ceramic layer and ceramic body diffuse mutually at 1100℃.resulting in an interface between them.To achieve good sintered properties of glass-ceramics and the chosen ceramic body,at least a four-hour sintering time is used.

  5. Preparation of Machinable Y-TZP/LaPO4 Composite Ceramics by Liquid Precursor Infiltration

    Institute of Scientific and Technical Information of China (English)

    周振君; 杨正方; 袁启明; 李秀华

    2002-01-01

    A machinable Y-TZP/LaPO4 composite ceramic was prepared by infiltrating LaPO4 liquid precursor into Y-TZP porous ceramic. Sintered Y-TZP ceramic preformed with 35% (volume fraction) open pore volume was made by adding graphite (30%, volume fraction). The Y-TZP/LaPO4 composite ceramics containing different LaPO4 contents were obtained by infiltration and pyrolysis cycles. The machinability and mechanical properties of materials were investigated. The results show that the machinable Y-TZP/LaPO4 composite ceramics containing 2.3% to 7.5% (volume fraction) LaPO4 has good machinability as well as outstanding mechanical properties.

  6. Physical Properties of Ceramic Product prepared Sago Waste and Clay Composite

    OpenAIRE

    ARIPIN; Tani, S.; Mitsudo, S; Saito, T.; IDEHARA, T

    2009-01-01

    In Indonesia, the sago processing industry generates every year huge amount of sago waste, and converting tbis waste into a useful material is possible. lo the present study, physical properties of sago waste and clay composite sample were investigated in order to study the feasibility of reuse this sample as raw material in the producing of ceramics. Firstly, the chemical composition of the sample was characterized. The sample was prepared, milled at time range from 6 to 48 h, and sintered a...

  7. Preparation and Photocatalytic Property of TiO2/Diatomite-Based Porous Ceramics Composite Materials

    Directory of Open Access Journals (Sweden)

    Shuilin Zheng

    2012-01-01

    Full Text Available The diatomite-based porous ceramics was made by low-temperature sintering. Then the nano-TiO2/diatomite-based porous ceramics composite materials were prepared by hydrolysis deposition method with titanium tetrachloride as the precursor of TiO2 and diatomite-based porous as the supporting body of the nano-TiO2. The structure and microscopic appearance of nano-TiO2/diatomite-based porous ceramics composite materials was characterized by XRD and SEM. The photocatalytic property of the composite was investigated by the degradation of malachite green. Results showed that, after calcination at 550°C, TiO2 thin film loaded on the diatomite-based porous ceramics is anatase TiO2 and average grain size of TiO2 is about 10 nm. The degradation ratio of the composite for 5 mg/L malachite green solution reached 86.2% after irradiation for 6 h under ultraviolet.

  8. The preparation of dental glass-ceramic composites with controlled fraction of leucite crystals

    Directory of Open Access Journals (Sweden)

    Martina Mrázová

    2008-06-01

    Full Text Available This work is dealing with synthesis of leucite powder, which can be used for the preparation of dental glassceramic composites by subsequent thermal treatment. Newly developed procedure is based on preparation of dental raw material as a mixture of two separate compounds: the crystalline leucite powder prepared at relatively low temperature and a commercial matrix powder.Hydrothermal synthesis of tetragonal leucite particles (KAlSi2O6 with the average size of about 3 μm was developed in our laboratory. The leucite dental raw material was prepared by mixing of 20 wt.% of synthetic tetragonal leucite with commercial matrix. Dental composites were prepared from the dental raw material by uniaxial pressing and firing up to 960°C. Dilatometric measurements confirmed that the coefficient of thermal expansion increased by 32% when 20 wt.% of the tetragonal leucite was added into the basic matrix. In addition, it was showed that the synthesized leucite powder was suitable for the preparation of leucite composites with controlled coefficient of thermal expansion. High value of the thermal expansion coefficient enables application of prepared composite in metal-ceramics restorations.

  9. Preparation and properties of yttria doped tetragonal zirconia polycrystal/Sr-doped barium hexaferrite ceramic composites

    International Nuclear Information System (INIS)

    Highlights: • The 3Y-TZP/Sr-doped barium ferrite composites were prepared. • The saturation magnetization was improved by 15% with Sr-doping. • The dispersion coefficient p could reflect the microscopic lattice variation. • The composite with x = 0.5 had the maximum fracture toughness of 8.3 MPa m1/2. - Abstract: The effects of substitution of Ba2+ by Sr2+ on the magnetic property of barium ferrite and addition barium ferrite secondary phase to the 3 mol% yttria-doped tetragonal zirconia polycrystal (3Y-TZP) matrix on the mechanical property of composites were investigated. The Sr-doped barium ferrite (Ba1−xSrxFe12O19, x = 0, 0.25, 0.50 and 0.75) was synthesized by solid-state reaction in advance. Then 3Y-TZP/20 wt% Sr-doped barium ferrite composites were prepared by means of conventional ceramic method. It was found that a moderate amount of Sr added to barium ferrite could boost the saturation magnetization by 15% compared with the composites without Sr-doping. Besides, the composite with x = 0.50 possessed the best mechanical properties, such as 11.5 GPa for Vickers hardness and 8.3 MPa m1/2 for fracture toughness, respectively. It was demonstrated that magnetic and mechanical properties of the composites could be harmonized by the incorporation of barium ferrite secondary phase

  10. A study of ceramic-lined composite steel pipes prepared by SHS centrifugal-thermite process

    OpenAIRE

    Li Yuxin; Jiang Letao; Lu Qing; Bai Peikang; Liu Bin; Wang Jianhong

    2016-01-01

    Al2O3 ceramic-lined steel pipe was produced by self-propagating high-temperature synthesis centrifugal thermite process (SHS C-T process) from Fe2O3 and Al as the raw materials. The composition, phase separation and microstructures were investigated. The result showed the ceramic lined pipe is composed of the three main layers of various compositions, which were subsequently determined to be Fe layer, the transition layer and the ceramic layer. Fe layer is ...

  11. Characterization of Ceramic Composite-Membranes Prepared by ORMOSIL Coating Sol

    Institute of Scientific and Technical Information of China (English)

    Goo-Dae Kim; Tae-Bong Kim

    2004-01-01

    Sol-gel methods offer many advantages over conventional slip-casting, including the ability to produce ceramic membranes. They are purer, more homogeneous, more reactive and contain a wider variety of compositions. We produced ormosil sol using sol-gel process under different molecular weight of polymer species [polyethylene glycol (PEG) ] in total system [Tetraethyl ortho silicate(TEOS)-polyethylene glycol (PEG)]. The properties of as-prepared ormosil sol such as,viscosity, gelation time were characterized. Also, the ceramic membrane was prepared by dip-coating with synthetic sol and its micro-structure was observed by scanning electron microscopy. The permeability and rejection efficiency of membrane for oil/water emulsion were evaluated as cross-flow apparatus. The ormosil sol coated Membrane is easily formed by steric effect of polymer and it improves flux efficiency because infiltration into porous support decreased. Its flux efficiency is elevated about 200(1/m2·h) compared with colloidal sol coated membrane at point of five minutes from starting test.

  12. Preparation and properties of yttria doped tetragonal zirconia polycrystal/Sr-doped barium hexaferrite ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shanshan; Zhang, Chao; Guo, Ruisong, E-mail: rsguo@tju.edu.cn; Liu, Lan; Yang, Yuexia; Li, Kehang

    2015-03-15

    Highlights: • The 3Y-TZP/Sr-doped barium ferrite composites were prepared. • The saturation magnetization was improved by 15% with Sr-doping. • The dispersion coefficient p could reflect the microscopic lattice variation. • The composite with x = 0.5 had the maximum fracture toughness of 8.3 MPa m{sup 1/2}. - Abstract: The effects of substitution of Ba{sup 2+} by Sr{sup 2+} on the magnetic property of barium ferrite and addition barium ferrite secondary phase to the 3 mol% yttria-doped tetragonal zirconia polycrystal (3Y-TZP) matrix on the mechanical property of composites were investigated. The Sr-doped barium ferrite (Ba{sub 1−x}Sr{sub x}Fe{sub 12}O{sub 19}, x = 0, 0.25, 0.50 and 0.75) was synthesized by solid-state reaction in advance. Then 3Y-TZP/20 wt% Sr-doped barium ferrite composites were prepared by means of conventional ceramic method. It was found that a moderate amount of Sr added to barium ferrite could boost the saturation magnetization by 15% compared with the composites without Sr-doping. Besides, the composite with x = 0.50 possessed the best mechanical properties, such as 11.5 GPa for Vickers hardness and 8.3 MPa m{sup 1/2} for fracture toughness, respectively. It was demonstrated that magnetic and mechanical properties of the composites could be harmonized by the incorporation of barium ferrite secondary phase.

  13. A study of ceramic-lined composite steel pipes prepared by SHS centrifugal-thermite process

    Directory of Open Access Journals (Sweden)

    Li Yuxin

    2016-01-01

    Full Text Available Al2O3 ceramic-lined steel pipe was produced by self-propagating high-temperature synthesis centrifugal thermite process (SHS C-T process from Fe2O3 and Al as the raw materials. The composition, phase separation and microstructures were investigated. The result showed the ceramic lined pipe is composed of the three main layers of various compositions, which were subsequently determined to be Fe layer, the transition layer and the ceramic layer. Fe layer is composed of austenite and ferrite, the transition layer consisted of Al2O3 ceramic and Fe, the ceramic layer consisted of the dendritic-shaped Al2O3 and the spinel-shaped structured FeAl2O4.

  14. Preparation of Aluminum Metal Matrix Composite with Novel In situ Ceramic Composite Particulates, Developed from Waste Colliery Shale Material

    Science.gov (United States)

    Venkata Siva, S. B.; Sahoo, K. L.; Ganguly, R. I.; Dash, R. R.; Singh, S. K.; Satpathy, B. K.; Srinivasarao, G.

    2013-08-01

    A novel method is adapted to prepare an in situ ceramic composite from waste colliery shale (CS) material. Heat treatment of the shale material, in a plasma reactor and/or in a high temperature furnace at 1673 K (1400 °C) under high vacuum (10-6 Torr), has enabled in situ conversion of SiO2 to SiC in the vicinity of carbon and Al2O3 present in the shale material. The composite has the chemical constituents, SiC-Al2O3-C, as established by XRD/EDX analysis. Particle sizes of the composite range between 50 nm and 200 μm. The shape of the particles vary, presumably rod to spherical shape, distributed preferably in the region of grain boundaries. The CS composite so produced is added to aluminum melt to produce Al-CS composite (12 vol. pct). For comparison of properties, the aluminum metal matrix composite (AMCs) is made with Al2O3 particulates (15 vol. pct) with size <200 μm. The heat-treated Al-CS composite has shown better mechanical properties compared to the Al-Al2O3 composite. The ductility and toughness of the Al-CS composite are greater than that of the Al-Al2O3 composite. Fractographs revealed fine sheared dimples in the Al-CS composite, whereas the same of the Al-Al2O3 composite showed an appearance of cleavage-type facets. Abrasion and frictional behavior of both the composites have been compared. The findings lead to the conclusion that the in situ composite developed from the colliery shale waste material has a good future for its use in AMCs.

  15. A method for preparing composite diffusion coating alloy on ceramic surface

    Institute of Scientific and Technical Information of China (English)

    Zhang Hongxia; Wang Wenxian; Chen Shaoping; Wei Yinghui

    2008-01-01

    Metallization of the ceramic surfaces of Si3N4 and Al2O3 was carried out in a composite diffusion coating vacuum furnace using a Ti-Cu composite target. The experimental process and influencing factors were discussed. Optical microscope (OM), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), X-ray diffusion (XRD) and sound emissive scratch test (SEST) were applied to evaluate the alloy layer formed on the ceramic surface. It was indicated that the diffusion coating alloy layer contained Cu, Ti, Fe, Al and Si etc. XRD result indicated that the diffusion coating alloy layer was composed of CuTi2, Cu, Si2Ti and CuTi, Al2TiO5, Ti3O5. It was found that the diffusion coating alloy layer got bonded with ceramic well, and no spallation occurred under the maximum load of 100N. Deposited Si3N4 ceramic was welded with Q235 and the joining quality was examined. Robust joint was formed between Si3N4 ceramic/Q235. This present method has advantages in high efficiency and low cost and provides a new approach for producing ceramic and metal bond.

  16. Continuous Fiber Ceramic Composites

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-09-01

    Fiber-reinforced ceramic composites demonstrate the high-temperature stability of ceramics--with an increased fracture toughness resulting from the fiber reinforcement of the composite. The material optimization performed under the continuous fiber ceramic composites (CFCC) included a series of systematic optimizations. The overall goals were to define the processing window, to increase the robustinous of the process, to increase process yield while reducing costs, and to define the complexity of parts that could be fabricated.

  17. Preparation and characterization of calcium phosphate ceramics and composites as bone substitutes

    Science.gov (United States)

    Zhang, Xing

    Marine CaCO3 skeletons have tailored architectures created by nature, which give them structural support and other functions. For example, seashells have dense lamellar structures, while coral, cuttlebone and sea urchin spines have interconnected porous structures. In our experiments, seashells, coral and cuttlebone were hydrothermally converted to hydroxyapatite (HAP), and sea urchin spines were converted to Mg-substituted tricalcium phosphate (beta-TCMP), while maintaining their original structures. Partially converted shell samples have mechanical strength, which is close to that of compact human bone. After implantation of converted shell and spine samples in rat femoral defects for 6 weeks, there was newly formed bone growth up to and around the implants. Some new bone was found to migrate through the pores of converted spine samples and grow inward. These results show good bioactivity and osteoconductivity of the implants, indicating the converted shell and spine samples can be used as bone defect fillers. Calcium phosphate powders were prepared through different synthesis methods. Micro-size HAP rods were synthesized by hydrothermal method through a nucleation-growth mechanism. On the other hand, HAP particles, which have good crystallinity, were prepared by wet precipitation with further hydrothermal treatment. beta-TCP or beta-TCMP powders were prepared by a two-step process: wet precipitation of apatitic tricalcium phosphate ('precursor') and calcination of the precursor at 800°C for 3 hours. beta-TCMP or beta-TCP powders were also prepared by solid-state reactions from CaHPO4 and CaCO 3 with/without MgO. Biphasic calcium phosphate, which is mixture of HAP and beta-TCP, can be prepared though mechanical mixing of HAP and beta-TCP powders synthesized as above. Dense beta-TCP and beta-TCMP ceramics can be produced by pressing green bodies at 100MPa and further sintering above 1100°C for 2 hours. beta-TCMP ceramics ˜99.4% relative dense were prepared by

  18. Preparation and properties of nano-composite ceramic coating by thermo chemical reaction method

    Institute of Scientific and Technical Information of China (English)

    MA Zhuang; SUN Fang-hong; LI Zhi-chao

    2007-01-01

    Nano-composite ceramic coating was fabricated on Q235 steel through thermo chemical reaction method. Structure of the coating was analyzed and the properties were tested. The results show that a few of new ceramic phases, such as MgAl2O4, ZnAl2O4,Al2SiO5, Ni3Fe and Fe3Al, are formed on the coating during the process of solidifying at 600 ℃. The ceramic coating is dense and the high bonding strength is obtained. The average bonding strength between the coating and matrix could be 14.22 MPa. The acid resistance of the coating increase by 8.8 times, the alkali resistance by 4.1 times, the salt resistance by 10.3 times, and the wear resistance by 2.39 times.

  19. Preparation of pH-responsive ceramic composite membranes by grafting acrylic acid onto a-alumina membranes

    Institute of Scientific and Technical Information of China (English)

    YANG LianLi; ZHAO YiJiang; ZHOU ShouYong; LI MeiSheng; CHEN Yan; XING WeiHong

    2009-01-01

    A pH-responsive ceramic composite membrane was prepared by chemical graft polymerization of acrylic acid (AA) onto the KH-570 modified a-alumina membrane. The influence of monomer concentration on the gating characteristics of the pH-responsive membrane was investigated. The FT-IR spectrum, contact angle and water filtration rate of the membrane were measured. The monomer concentration was found to have a remarkable effect on the pH-response coefficient and the water filtration rate. In addition, the grafted membrane exhibited fast and reversible response to the pH change in the external solution.

  20. Reduced leakage current and improved ferroelectricity in magneto-electric composite ceramics prepared with microwave assisted radiant hybrid sintering

    Directory of Open Access Journals (Sweden)

    Sanjay Kumar Upadhyay

    2015-04-01

    Full Text Available Structural, electrical and magnetic properties of magneto-electric composite ceramics viz., 0.9 BaTi0.95Sn0.05O3 (BTSO- 0.1 Ni0.8Zn0.2Fe2O4 (NZFO prepared with microwave assisted radiant hybrid sintering (MARH are reported. Phase purity and isovalent substitution of Ti4+ by Sn4+ of the samples is confirmed from x-ray diffraction and 119Sn Mossbauer measurements respectively. Significant suppression of leakage current and improvement of ferroelectricity is observed for the composites prepared with MARH. The observed results are explained in terms of uniform dispersion of ferrite (NZFO phase in the ferroelectric (BTSO matrix as evidenced from back-scattered scanning electron micrographs.

  1. Reduced leakage current and improved ferroelectricity in magneto-electric composite ceramics prepared with microwave assisted radiant hybrid sintering

    Science.gov (United States)

    Upadhyay, Sanjay Kumar; Reddy, V. Raghavendra; Gupta, S. M.; Chauhan, N.; Gupta, Ajay

    2015-04-01

    Structural, electrical and magnetic properties of magneto-electric composite ceramics viz., 0.9 BaTi0.95Sn0.05O3 (BTSO)- 0.1 Ni0.8Zn0.2Fe2O4 (NZFO) prepared with microwave assisted radiant hybrid sintering (MARH) are reported. Phase purity and isovalent substitution of Ti4+ by Sn4+ of the samples is confirmed from x-ray diffraction and 119Sn Mossbauer measurements respectively. Significant suppression of leakage current and improvement of ferroelectricity is observed for the composites prepared with MARH. The observed results are explained in terms of uniform dispersion of ferrite (NZFO) phase in the ferroelectric (BTSO) matrix as evidenced from back-scattered scanning electron micrographs.

  2. Reduced leakage current and improved ferroelectricity in magneto-electric composite ceramics prepared with microwave assisted radiant hybrid sintering

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Sanjay Kumar; Reddy, V. Raghavendra, E-mail: varimalla@yahoo.com, E-mail: vrreddy.ugcdaecsr@nic.in [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001 (India); Gupta, S. M. [Ceramic Laboratory, Laser Materials Development and Devices Division, RRCAT, Indore 452013 (India); Chauhan, N. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Gupta, Ajay [Amity Center for Spintronic Materials, Amity University, Noida 201313 (India)

    2015-04-15

    Structural, electrical and magnetic properties of magneto-electric composite ceramics viz., 0.9 BaTi{sub 0.95}Sn{sub 0.05}O{sub 3} (BTSO)- 0.1 Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4} (NZFO) prepared with microwave assisted radiant hybrid sintering (MARH) are reported. Phase purity and isovalent substitution of Ti{sup 4+} by Sn{sup 4+} of the samples is confirmed from x-ray diffraction and {sup 119}Sn Mossbauer measurements respectively. Significant suppression of leakage current and improvement of ferroelectricity is observed for the composites prepared with MARH. The observed results are explained in terms of uniform dispersion of ferrite (NZFO) phase in the ferroelectric (BTSO) matrix as evidenced from back-scattered scanning electron micrographs.

  3. Strength and toughness of ceramic-metal composites prepared by reactive hot pressing

    Energy Technology Data Exchange (ETDEWEB)

    ELLERBY,DONALD T.; LOEHMAN,RONALD E.; FAHRENHOLTZ,WILLIAM G.

    2000-03-10

    Metal-reinforced Al{sub 2}0{sub 3}-matrix composites were prepared using reactive hot pressing. The volume fraction of the reinforcing phase was controlled by the stoichiometry of the particular displacement reaction used. Dense Al{sub 2}0{sub 3}-Ni and Al{sub 2}O{sub 3}-Nb composites were fabricated using this technique. The best combination of strength, 610 MPa, and toughness, 12 MPam{sup 1/2}, was found for the Al{sub 2}O{sub 3}-Ni composites. Indentation cracks and fracture surfaces showed evidence of ductile deformation of the Ni phase. The Al{sub 2}O{sub 3}-Nb composites had high strength, but the toughness was lower than expected due to the poor bonding between the Nb and A1{sub 2}0{sub 3}phases.

  4. Ceramic Composite Thin Films

    Science.gov (United States)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  5. Electrostatic Assembly Preparation of High-Toughness Zirconium Diboride-Based Ceramic Composites with Enhanced Thermal Shock Resistance Performance.

    Science.gov (United States)

    Zhang, Baoxi; Zhang, Xinghong; Hong, Changqing; Qiu, Yunfeng; Zhang, Jia; Han, Jiecai; Hu, PingAn

    2016-05-11

    The central problem of using ceramic as a structural material is its brittleness, which associated with rigid covalent or ionic bonds. Whiskers or fibers of strong ceramics such as silicon carbide (SiC) or silicon nitride (Si3N4) are widely embedded in a ceramic matrix to improve the strength and toughness. The incorporation of these insulating fillers can impede the thermal flow in ceramic matrix, thus decrease its thermal shock resistance that is required in some practical applications. Here we demonstrate that the toughness and thermal shock resistance of zirconium diboride (ZrB2)/SiC composites can be improved simultaneously by introducing graphene into composites via electrostatic assembly and subsequent sintering treatment. The incorporated graphene creates weak interfaces of grain boundaries (GBs) and optimal thermal conductance paths inside composites. In comparison to pristine ZrB2-SiC composites, the toughness of (2.0%) ZrB2-SiC/graphene composites exhibited a 61% increasing (from 4.3 to 6.93 MPa·m(1/2)) after spark plasma sintering (SPS); the retained strength after thermal shock increased as high as 74.8% at 400 °C and 304.4% at 500 °C. Present work presents an important guideline for producing high-toughness ceramic-based composites with enhanced thermal shock properties.

  6. Preparation and characteristics of porous ceramics

    Institute of Scientific and Technical Information of China (English)

    Dongmei SHAO; Peiping ZHANG; Liyan MA; Juanjuan LIU

    2007-01-01

    Pyrophyllite is always used for making porous ceramics. In order to design the preparation technics of porous ceramics with pyrophyllite reasonably we must know the classifications, characteristics, properties and applications of porous ceramics. The classification and characteristics of porous ceramics are reviewed in this article; and several common preparations with their advantages and disadvantages are also introduced. The authors discussed the problems existing in researching and developing process for porous ceramics, and forecasted the development prospect of porous ceramics.

  7. Preparation of Fe-Al Intermetallic / TiC-Al2O3 Ceramic Composites from Ilmenite by SHS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Fe-Al intermetallic/TiC-Al2O3 ceramic composites were successfully prepared by self-propagating high-temperature synthesis (SHS) from natural ilmenite, aluminium and carbon as the raw materials. The effects of carbon sources, preheating time and heat treatment temperature on synthesis process and products were investigated in detail, and the reaction process of the FeTiO3-Al-C system was also discussed.It is shown that the temperature and velocity of the combustion wave are higher when graphite is used as the carbon source, which can reflect the effect of the carbon source structure on the combustion synthesis;Prolonging the preheating time or heat treatment temperature is beneficial to the formation of the ordered intermetallics; The temperature and velocity of the combustion wave arc improved, but the disordered alloys are difficult to eliminate with the preheating time prolonged. The compound powders mainly containing ordered Fe3Al intermetallic can be prepared through heat treatment at 750 ℃.

  8. A novel BN–MAS system composite ceramics with greatly improved mechanical properties prepared by low temperature hot-pressing

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Delong; Yang, Zhihua, E-mail: zhyang@hit.edu.cn; Duan, Xiaoming; Liang, Bin; Li, Qian; Jia, Dechang, E-mail: dcjia@hit.edu.cn; Zhou, Yu

    2015-05-01

    A novel composite ceramics with excellent mechanical properties was fabricated by means of low temperature hot-pressing using hexagonal boron nitride (h-BN) and magnesium aluminum silicate (MAS) as raw materials. The influences of starting MAS content on the microstructural evolution and mechanical properties of the composites were investigated. The results indicate that the effective enhancement of relative density of composites has been achieved, which shows that MAS is an effective liquid-phase sintering aid during the hot-pressing. MAS also can improve the structural ordering of h-BN flakes. On the other hand, h-BN exhibits significant inhibiting effect on the crystallization of α-Cordierite. Furthermore, h-BN flakes with layered structure can play a role in strengthening the MAS matrix. So h-BN and MAS are considered to be co-enhanced by each other, resulting in better sintering ability and the mechanical properties of composite ceramics are better than that of both h-BN and MAS. Composite ceramics incorporated with 50 wt% MAS exhibits the highest bending strength and fracture toughness of 213±25 MPa and 2.49±0.35 MPa m{sup 1/2}, respectively.

  9. Preparation of Al2O3-SiO2-TiO2-ZrO2 Composite Ceramic Membranes by Sol-Gel Method

    Institute of Scientific and Technical Information of China (English)

    WU Jianfeng; BAI Zhanliang; XU Xiaohong; ZHANG Ying

    2005-01-01

    Al2O3-SiO2-TiO2-ZrO2 supported membranes were prepared by Sol-Gel method. These composite ceramic membranes are level, even and no macro crack. There exist several crystalline phases such as Al2O3, TiO2(anatase), Al2SiO5, and ZrO2 in these membranes. Changing the molar ratio of Al∶Si∶Ti∶Zr,the kinds and content of crystal phases of composite membranes could be different, which may lead to a variety of microstructure of membranes. The surface nanoscale topography and microstructure of membranes were investigated by XRD,SEM,AFM,EPMA. The effects of additives and heat treatments on the surface nanoscale topography and microstructure of composite ceramic membranes were also analyzed.

  10. Ceramic veneers with minimum preparation

    OpenAIRE

    da Cunha, Leonardo Fernandes; Reis, Rachelle; Santana, Lino; Romanini, Jose Carlos; Carvalho, Ricardo Marins; Furuse, Adilson Yoshio

    2013-01-01

    The aim of this article is to describe the possibility of improving dental esthetics with low-thickness glass ceramics without major tooth preparation for patients with small to moderate anterior dental wear and little discoloration. For this purpose, a carefully defined treatment planning and a good communication between the clinician and the dental technician helped to maximize enamel preservation, and offered a good treatment option. Moreover, besides restoring esthetics, the restorative t...

  11. Preparation techniques for ceramic waste form powder

    International Nuclear Information System (INIS)

    The electrometallurgical treatment of spent nuclear fuels result in a chloride waste salt requiring geologic disposal. Argonne National Laboratory (ANL) is developing ceramic waste forms which can incorporate this waste. Currently, zeolite- or sodalite-glass composites are produced by hot isostatic pressing (HIP) techniques. Powder preparations include dehydration of the raw zeolite powders, hot blending of these zeolite powders and secondary additives. Various approaches are being pursued to achieve adequate mixing, and the resulting powders have been HIPed and characterized for leach resistance, phase equilibria, and physical integrity

  12. DC conductivity of silicon nitride based carbon-ceramic composites

    Directory of Open Access Journals (Sweden)

    B. Fényi

    2007-12-01

    Full Text Available The silicon nitride ceramics are usually known as strongly refractory and enduring materials and have typical electrically insulating properties. If the reinforcing phase of ceramic composite (that is mainly put in the material to improve mechanical properties is a good electrical conductor, it is worth to investigate the composite in electrical aspect. In this work carbon nanotubes, black-carbon and graphite were added to the basic silicon nitride ceramic and the electrical conductivity of the prepared carbon-ceramic composites was determined. The conductivity of the ceramic composites with different type and concentration of the carbon additives was observed by applying four point DC resistance measurements. Insulator and conductor composites in a wide conductivity range can be produced depending on the type and quantity of the additives. The additive types as well as the sintering parameters have influence on the basic electrical properties of the conductor composites.

  13. Colloidal forming of metal/ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Herencia, A.J.; Gutierrez, C.A.; Millan, A.J.; Nieto, M.I.; Moreno, R. [Inst. de Ceramica y Vidrio, Madrid (Spain)

    2002-07-01

    Metal/Ceramic composites have very attractive properties as either structural or electronic materials. For certain applications, complex microstructures and shapes are required. Colloidal processing of ceramics has proved to provide better properties and allows to obtain near net complex shaped parts. However colloidal processing has not received a similar attention in powder metallurgy. This work deals with the colloidal approach to the forming of metallic and metal/ceramic composites in an aqueous medium. Rheological behavior of concentrated pure nickel, nickel/alumina and nickel/zirconia suspensions is studied and optimized for obtaining flat surfaces or near net shaped parts by tape casting and gel casting respectively. In each case the influence of the processing additives (acrylic binders for tape casting and carrageenans for gel casting) on the rheological behavior of the slurries is determined. Pure nickel and nickel/ceramic composites with different compositions have been prepared. Static and dynamic sintering studies were performed at different conditions in order to control the porosity and microstructure of the final bodies, which were characterized by optical microscopy. (orig.)

  14. 注凝成型制备莫来石-钛酸铝复相陶瓷%PREPARATION OF MULLITE-ALUMINIUM TITANATE CERAMIC COMPOSITES VIA GELCASTING

    Institute of Scientific and Technical Information of China (English)

    陆洪彬; 陈建华; 冯春霞; 焦宝祥; 孟祥康

    2009-01-01

    The mullite-aluminium titanate (MAT) ceramic composites were prepared via the gelcasting or dry pressing processes us- ing industrial mullite and aluminium titanate (Al2TiO5) powders with different mass ratios, that titanate was synthesized by doping the bi-component additive of 10% (in mole, the same below) MgO and 15% SiO2 relative to Al2O3. Effects of the bi-component additive on the phase composition and thermal stabilization of aluminium titanate powder were analyzed by X-ray diffraction and the micro- structures of MAT ceramic composites were characterized by scanning electron microscopy. The effects of aluminium titanate content on the bending strength and average thermal expansion coefficient (room temperature-1000 ℃) of the MAT ceramic composites pre- pared by dry pressing or gelcasting shaping processes were also investigated. The results show that the bi-component additive of MgO and SiO2 can promote the formation of Al2TiO5 and enhance its thermal stabilization. The MAT ceramic composites prepared by gel- casting process obtain more homogenous structure and higher bending strength than that prepared by dry pressing process. The MAT ceramic composite prepared by gelcasting process and containing 10% (mass fraction) Al2TiO5 has the maximum bending strength of 110.05 MPa.%引入10%(摩尔分数,相对于A12O3,下同)MgO和15%SiO2双组分添加剂合成了钛酸铝粉体.采用不同质量比的钛酸铝粉体和工业莫来石,用干压和注凝成型工艺制备了莫来石-钛酸铝(mullite-aluminium titanate,MAT)复相陶瓷.用X射线衍射分析了双组分添加剂对钛酸铝相组成和热稳定性的影响.通过扫描电镜表征了MAT复相陶瓷的微结构.研究了钛酸铝含量对采用于压、注凝2种成型工艺制备的MAT复相陶瓷的弯曲强度和平均热膨胀系数(室温~1 000℃)的影响.结果表明:MgO和SiO2双组分添加剂促进了钛酸铝的形成,增强了钛酸铝的热稳定性.通过注凝成型制备

  15. Glass, Ceramics, and Composites

    International Nuclear Information System (INIS)

    Many studies of plutonium in glass and ceramics have taken place in the thirty years covered by this book. These studies have led to a substantial understanding, arising from fundamental research of actinides in solids and research and development in three technical fields: immobilization of the high level wastes (HLW) from commercial nuclear power plants and processing of nuclear weapons materials, environmental restoration in the nuclear weapons complex and, most recently, the immobilization of weapons-grade plutonium as a result of disarmament activities

  16. Preparation of In2O3-Sr2RuErO6 Composite Ceramics by the Spark Plasma Sintering and Their Thermoelectric Performance

    Institute of Scientific and Technical Information of China (English)

    Bo Cheng; Yuanhua Lin; Jinle Lan; Yong Liu; Cewen Nan

    2011-01-01

    In1.94Zn0.03Ge0.03O3 and Sr2RuErO6 composite ceramics have been prepared by the spark plasma sintering (SPS) technique. Microstructure studies show that the Sr2RuErO6 phases are randomly dispersed in the ln1.94Zn0.03Ge0.03O3 matrix. The results show that the Seebeck coefficient increases with increasing the amount of Sr2RuErO6, while the thermal conductivity of the composite samples is lower than that of the In1.94Zn0.03Ge0.03O3 ceramic. The thermal conductivity of the 7 vol.% Sr2RuErO6 sample can decrease to 2.15 W·m-1·K-1 at 973 K, and the evaluated maximum ZT value is 0.23 for 3 vol.% Sr2RuErO6 samples at 973 K, which makes them promising materials for the thermoelectric devices.

  17. Ceramic matrix composite article and process of fabricating a ceramic matrix composite article

    Science.gov (United States)

    Cairo, Ronald Robert; DiMascio, Paul Stephen; Parolini, Jason Robert

    2016-01-12

    A ceramic matrix composite article and a process of fabricating a ceramic matrix composite are disclosed. The ceramic matrix composite article includes a matrix distribution pattern formed by a manifold and ceramic matrix composite plies laid up on the matrix distribution pattern, includes the manifold, or a combination thereof. The manifold includes one or more matrix distribution channels operably connected to a delivery interface, the delivery interface configured for providing matrix material to one or more of the ceramic matrix composite plies. The process includes providing the manifold, forming the matrix distribution pattern by transporting the matrix material through the manifold, and contacting the ceramic matrix composite plies with the matrix material.

  18. Nanoscale multilayered and porous carbide interphases prepared by pressure-pulsed reactive chemical vapor deposition for ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, S., E-mail: jacques@lcts.u-bordeaux1.fr [LCTS, University of Bordeaux 1, CNRS, Herakles-Safran, CEA, 3 allee de la Boetie, F-33600 Pessac (France); Jouanny, I.; Ledain, O.; Maillé, L.; Weisbecker, P. [LCTS, University of Bordeaux 1, CNRS, Herakles-Safran, CEA, 3 allee de la Boetie, F-33600 Pessac (France)

    2013-06-15

    In Ceramic Matrix Composites (CMCs) reinforced by continuous fibers, a good toughness is achieved by adding a thin film called “interphase” between the fiber and the brittle matrix, which acts as a mechanical fuse by deflecting the matrix cracks. Pyrocarbon (PyC), with or without carbide sub-layers, is typically the material of choice to fulfill this role. The aim of this work was to study PyC-free nanoscale multilayered carbide coatings as interphases for CMCs. Nanoscale multilayered (SiC–TiC){sub n} interphases were deposited by pressure-Pulsed Chemical Vapor Deposition (P-CVD) on single filament Hi-Nicalon fibers and embedded in a SiC matrix sheath. The thicknesses of the carbide interphase sub-layers could be made as low as a few nanometers as evidenced by scanning and transmission electron microscopy. By using the P-ReactiveCVD method (P-RCVD), in which the TiC growth involves consumption of SiC, it was not only possible to obtain multilayered (SiC–TiC){sub n} films but also TiC films with a porous multilayered microstructure as a result of the Kirkendall effect. The porosity in the TiC sequences was found to be enhanced when some PyC was added to SiC prior to total RCVD consumption. Because the porosity volume fraction was still not high enough, the role of mechanical fuse of the interphases could not be evidenced from the tensile curves, which remained fully linear even when chemical attack of the fiber surface was avoided.

  19. Preparation and characterization of TiO2 and Si-doped octacalcium phosphate composite coatings on zirconia ceramics (Y-TZP) for dental implant applications

    Science.gov (United States)

    Bao, Lei; Liu, Jingxiao; Shi, Fei; Jiang, Yanyan; Liu, Guishan

    2014-01-01

    In order to prevent the low temperature degradation and improve the bioactivity of zirconia ceramic implants, TiO2 and Si-doped octacalcium phosphate composite coating was prepared on zirconia substrate. The preventive effect on low temperature degradation and surface morphology of the TiO2 layer were studied. Meanwhile, the structure and property changes of the bioactive coating after doping Si were discussed. The results indicate that the dense TiO2 layer, in spite of some microcracks, inhibited the direct contact of the water vapor with the sample's surface and thus prevented the low temperature degradation of zirconia substrates. The acceleration aging test shows that the ratio of the monoclinic phase transition decreased from 10% for the original zirconia substrate to 4% for the TiO2-coated substrate. As to the Si-doped octacalcium phosphate coating prepared by biomimetic method, the main phase composition of the coating was octacalcium phosphate. The morphology of the coating was lamellar-like, and the surface was uniform and continuous with no cracks being observed. It is suggested that Si was added into the coating both through substituting for PO43- and doping as NaSiO3.

  20. Tantalum-Based Ceramics for Refractory Composites

    Science.gov (United States)

    Stewart, David A.; Leiser, Daniel; DiFiore, Robert; Kalvala, Victor

    2006-01-01

    A family of tantalum-based ceramics has been invented as ingredients of high-temperature composite insulating tiles. These materials are suitable for coating and/or permeating the outer layers of rigid porous (foam-like or fibrous) ceramic substrates to (1) render the resulting composite ceramic tiles impervious to hot gases and (2) enable the tiles to survive high heat fluxes at temperatures that can exceed 3,000 F ( 1,600 C).

  1. Intermetallic bonded ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Plucknett, K.P.; Tiegs, T.N.; Alexander, K.B.; Becher, P.F.; Schneibel, J.H.; Waters, S.B.; Menchhofer, P.A. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1995-07-01

    A range of carbide and oxide-based cermets have been developed utilizing ductile nickel aluminide (Ni{sub 3}Al) alloy binder phases. Some of these, notably materials based upon tungsten and titanium carbides (WC and TiC respectively), offer potential as alternatives to the cermets which use cobalt binders (i.e. WC/Co). Samples have been prepared by blending commercially available Ni{sub 3}Al alloy powders with the desired ceramic phases, followed by hot-pressing. Alumina (Al{sub 2}O{sub 3}) matrix materials have also been prepared by pressurized molten alloy infiltration. The microstructure, flexure strength and fracture toughness of selected materials are discussed.

  2. Preparation of glass-ceramic materials from granitic rocks waste

    OpenAIRE

    Gamal A. Khater

    2012-01-01

    Crystallisation of glasses based on the diopside-anorthite eutectic system, containing increased amount (10–50 wt.%) of wollastonite based on granite quarries waste, was investigated for the preparation of cheap technical glass-ceramic materials. Granite quarries waste consisted of about 52 wt.% of the batch constituents depending on composition. The granite quarries waste composition was sometimes modified by adding other ingredients such as dolomite, limestone and Al2O3. Batches were melted...

  3. Marginal Adaptation of Indirect Composite, Glass-Ceramic Inlays and Direct Composite: An In Vitro Evaluation

    OpenAIRE

    Mahboub, F.; Zarrati, S.

    2010-01-01

    Objective: This experimental in vitro study compared marginal adaptation of indirect composite, glass-ceramic inlays and direct composite. Materials and Methods: Seventy-five recently extracted human molars were randomly divided into three groups (n=25) and mesio-occluso-distal cavities with the same dimensions were prepared in the teeth. Indirect composite and glass-ceramic inlays were fabricated following manufacturer’s instructions and the marginal gap was measured by a stereomicroscope at...

  4. Preparation and properties of dental zirconia ceramics

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Y2O3-stabilized tetragonal zireonia polyerystalline (Y-TZP) ceramics with high-performance were prepared for dental application by use of the micro-emulsion and two-step sintering method.The crystal phase,morphology,and microstructure of the reaction products were characterized by X-ray diffraction (XRD),scanning electron microscopy (SEM),and transmission electron microscopy (TEM).XRD results show that the ceramics mainly consist of tetragonal zirconia.Physical and mechanical properties test results show that the bending strength,fracture toughness,and the density of full sintered Y-TZP ceramics are llS0 MPa,5.53 crown machined with this material by CAD/CAM system exhibits a verisimilitude configuration and the material's expansion coefficient well matches that of the glaze.These results further indicate that the product can be used as a promising new ceramic material

  5. Influence of the A/B nonstoichiometry, composition modifiers, and preparation methods on properties of Li- and Ta-modified (K,Na)NbO3 ceramics

    Science.gov (United States)

    Morozov, Maxim I.; Hoffmann, Michael J.; Benkert, Katrin; Schuh, Carsten

    2012-12-01

    Properties of Li- and Ta- modified (K,Na)NbO3 piezoceramics with the base composition near the orthorhombic-tetragonal phase boundary have been investigated with respect to variation of temperature, stoichiometry, compositional homogeneity, atmosphere of thermal treatment, and dopants (Ba, Mn). Although the influence of the most of the abovementioned factors has already been reported in the literature, the paper focuses on several aspects of the composition—property relationships that still remain controversial or poorly elucidated. In particular, we show that improvement of compositional homogeniety in these ceramics emphasizes the instability of piezoelectric response with respect to variation of temperature in the vicinity of the orthorhombic-tetragonal phase transition. Ba dopant is shown to suppress conductivity in ceramics sintered in air, though it makes conductivity more sensitive to variation of the oxygen partial pressure. Mn dopant is shown to suppress conductivity and strongly reduce the influence of the oxygen partial pressure on conductivity of the ceramics. Finally, we show that chemical modifications to the ceramic composition, such as Mn dopant or variation of nonstoichiometry affect the piezoelectric response mainly by the shift of the orthorhombic-tetragonal phase transition temperature.

  6. Low-Cost Preparation of Boron Nitride Ceramic Powders

    Institute of Scientific and Technical Information of China (English)

    LI Duan; ZHANG Changrui; LI Bin; CAO Feng; WANG Siqing; LIU Kun; FANG Zhenyu

    2012-01-01

    The amorphous boron nitride ceramic powders were prepared at 750-950 ℃ by the lowcost urea route,and the effects of preparation temperatures,molar ratios of the raw materials and oxidation treatment on the composition,structure and surface morphology of the products were investigated through FTIR,XRD and SEM.The results show that the products ceramize and crystallize gradually with the increase of the temperature.When the molar ratio and reaction temperature are 3:2 and 850 ℃,respectively,the products have high purity,compact structure and nice shape.The oxidation treatment at 450 ℃ will not impair the composition and structure of boron nitfide but effectively remove the impurities.

  7. Effect of Rare Earth Phosphate Composite Materials on Cleanout Oil-Dirty Property of Ceramics

    Institute of Scientific and Technical Information of China (English)

    Liang Jinsheng; Zhang Jin; Liang Guangchuan; Wang Lijuan; Li Guosheng; Meng Junping; Pan Yanfen

    2004-01-01

    The ceramics with cleaning easily up oil-dirty property were prepared by doping enamel slurry with rare earth elements phosphate composite materials, and then the influence mechanisms of rare earth elements phosphate composite materials on the cleaning easily up oil-dirty property of ceramic were studied by testing the surface tension and contact angle of water, latex stability inside of ceramic product. Results that the ceramic doped enamel slurry with rare earth phosphate composite materials can reduce obviously the surface tension and contact angle of water, and make latex more stable, and so the ceramics possess excellent cleanout oil-dirty property.

  8. Preparation and Structure of Rainbow Piezoelectric Ceramics

    Institute of Scientific and Technical Information of China (English)

    SHEN Xing

    2003-01-01

    Rainbow piezoelectric ceramics are a new type of stress-biased, oxide-reduced composite ferroelectric ceramics, which have a special dome structure. The have shown excellent properties such as ultra-high displacement under an applied electric field and enhanced load-bearing capability. In this article, their manufacture,structures and properties were discussed in detail by combining experiments and theory analysis. The resuts show that the optimal conditions for producing Rainbow samples from PLZT ceramics were determined to be 900℃ for 1 to 1.5 hours. A number of different phases have been found in the reduced layer of Rainbow ceramics by XRD analyses . The phases found include metallic lead and other oxide phases , such cs PbO , ZrO2 and TiO2 . The original PLZT phase was not observed. The reduced layer was transgranularly fractured while the unreduced ceramic was intergranularly fractured. Two kinds of fracture types can be seen at the interface , which denotes the different degrees of reduction. It is shown that the Pb grains ( about 0.2 μm ) constitute a continuous phase in the reduced layer, which accounts for the good electrical condnctivity.

  9. Glass/Ceramic Composites for Sealing Solid Oxide Fuel Cells

    Science.gov (United States)

    Bansal, Narottam P.; Choi, Sung R.

    2007-01-01

    A family of glass/ceramic composite materials has been investigated for use as sealants in planar solid oxide fuel cells. These materials are modified versions of a barium calcium aluminosilicate glass developed previously for the same purpose. The composition of the glass in mole percentages is 35BaO + 15CaO + 5Al2O3 + 10B2O3 + 35SiO2. The glass seal was found to be susceptible to cracking during thermal cycling of the fuel cells. The goal in formulating the glass/ ceramic composite materials was to (1) retain the physical and chemical advantages that led to the prior selection of the barium calcium aluminosilicate glass as the sealant while (2) increasing strength and fracture toughness so as to reduce the tendency toward cracking. Each of the composite formulations consists of the glass plus either of two ceramic reinforcements in a proportion between 0 and 30 mole percent. One of the ceramic reinforcements consists of alumina platelets; the other one consists of particles of yttria-stabilized zirconia wherein the yttria content is 3 mole percent (3YSZ). In preparation for experiments, panels of the glass/ceramic composites were hot-pressed and machined into test bars.

  10. Structural and impedance characterization of ceramics prepared from NPK fertilizer

    Directory of Open Access Journals (Sweden)

    Diouma Kobor

    2015-06-01

    Full Text Available One of the main objectives of this work was to study the possibilities of valorising the phosphates through the development of a conductive ceramics using NPK fertilizer as a precursor. Phosphorus based powders were synthesized using solid state technique from NPK fertilizer, lithium chloride and iron chloride at different temperatures up to 900 °C and ceramic samples were prepared by the powder pressing and sintering at 1100 °C. XRD spectra of the calcined powders show various sharp peaks indicating a relatively high degree of crystallinity and presence of different crystalline phases, such as: phosphorus based crystalline compounds (AlPO4 and LiFePO4, ferrite (Fe3O4 and DyFeO3, CaSO4 and K3DyCl6. The prepared phosphorus based ceramics showed very interesting electrical and dielectric properties. Thus, in the future the obtained ceramics could find application in electronic or energy storage devices. However, further investigations are necessary to understand the exact chemical composition and structural characteristics of this material, to better understand the origin of the obtained electrical and dielectric behaviour.

  11. Effect of Microstructure of Composite Powders on Microstructure and Properties of Microwave Sintered Alumina Matrix Ceramics

    Institute of Scientific and Technical Information of China (English)

    Hanmin Bian; Yong Yang; You Wang; Wei Tian; Haifu Jiang; Zhijuan Hu; Weimin Yu

    2013-01-01

    Two kinds of different structured alumina-titania composite powders were used to prepare alumina matrix ceramics by microwave sintering.One was powder mixture of alumina and titania at a micron-submicron level,in which fused-and-crushed alumina particles (micrometers) was clad with submicron-sized titania.The other was powder mixture of alumina and titania at nanometer-nanometer level,in which nano-sized alumina and nano-sized titania particles were homogeneously mixed by ball-milling and spray dried to prepare spherical alumina-titania composite powders.The effect of the microstructure of composite powders on microstructure and properties of microwave sintered alumina matrix ceramics were investigated.Nano-sized composite (NC) powder showed enhanced sintering behavior compared with micro-sized composite (MC) powders.The asprepared NC ceramic had much denser,finer and more homogenous microstructure than MC ceramic.The mechanical properties of NC ceramic were significantly higher than that of MC ceramic,e.g.the flexural strength,Vickers hardness and fracture toughness of NC ceramic were 85.3%,130.3% and 25.7% higher than that of MC ceramic,respectively.The improved mechanical properties of NC ceramic compared with that of MC ceramic were attributed to the enhanced densification and the finer and more homogeneous microstruc.ture through the use of the nanostructured composite powders.

  12. Metallic and intermetallic-bonded ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Plucknett, K.P.; Tiegs, T.N.; Alexander, K.B. [Oak Ridge National Laboratory, TN (United States)] [and others

    1995-05-01

    The purpose of this task is to establish a framework for the development and fabrication of metallic-phase-reinforced ceramic matrix composites with improved fracture toughness and damage resistance. The incorporation of metallic phases that plastically deform in the crack tip region, and thus dissipate strain energy, will result in an increase in the fracture toughness of the composite as compared to the monolithic ceramic. It is intended that these reinforced ceramic matrix composites will be used over a temperature range from 20{degrees}C to 800-1200{degrees}C for advanced applications in the industrial sector. In order to systematically develop these materials, a combination of experimental and theoretical studies must be undertaken.

  13. Engineering of silicon-based ceramic fibers: Novel SiTaC(O) ceramic fibers prepared from polytantalosilane

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Z., E-mail: xiezhengfang@163.com [State Key Laboratory of Advanced Ceramic Fibers and Composites, National University of Defense Technology, Changsha 410073 (China); Cao, S.; Wang, J. [State Key Laboratory of Advanced Ceramic Fibers and Composites, National University of Defense Technology, Changsha 410073 (China); Yan, X. [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Bernard, S., E-mail: Samuel.Bernard@univ-lyon1.fr [Laboratoire des Multimateriaux et Interfaces (UMR CNRS 5615), Universite de Lyon, Universite Lyon1, 43 bd du 11 Novembre 1918, 69622 Villeurbanne Cedex (France); Miele, P. [Laboratoire des Multimateriaux et Interfaces (UMR CNRS 5615), Universite de Lyon, Universite Lyon1, 43 bd du 11 Novembre 1918, 69622 Villeurbanne Cedex (France)

    2010-10-15

    Research highlights: {yields} This paper reports the preparation and characterization of a novel variety of silicon-based ceramic fibers. {yields} In the present paper, we provide a detailed picture of the preparation process of SiTaC(O) ceramic fibers from a polytantalosilane. {yields} We have fully characterized the polymer by FT-IR, NMR, chemical composition, GPC and TGA as well as the chemical composition, the structure, the texture, and the mechanical properties of the ceramic fibers by XPS, SEM, X-ray diffraction (XRD), and mechanical tests. - Abstract: A novel variety of silicon-based ceramic fibers has been prepared from a preceramic organosilicon polymers called polytantalocarbosilane (PTaCS). This melt-spinnable polymer has been synthesized by thermally induced reactions between tantalum (V) tetraethoxyacetylacetonate (Ta(Acac)(OEt){sub 4}) and polysilacarbosilane (PSCS). The polymer in which [-Si-C-]{sub n} chains are crosslinked via Ta-containing bridges as identified by infrared spectroscopy, XPS and NMR, is decomposed in high ceramic yield (76%) and can be spun in the molten state into fibers to be cured in air then pyrolyzed in flowing nitrogen at 1200 deg. C into amorphous SiTaC(O) fibers. Complete characterization of this new generation of silicon-based ceramic fibers was made based on mechanical tests, XRD and SEM. These fibers exhibit relatively good mechanical properties and excellent high-temperature stability with good oxidation resistance.

  14. Metal-Matrix/Hollow-Ceramic-Sphere Composites

    Science.gov (United States)

    Baker, Dean M.

    2011-01-01

    A family of metal/ceramic composite materials has been developed that are relatively inexpensive, lightweight alternatives to structural materials that are typified by beryllium, aluminum, and graphite/epoxy composites. These metal/ceramic composites were originally intended to replace beryllium (which is toxic and expensive) as a structural material for lightweight mirrors for aerospace applications. These materials also have potential utility in automotive and many other terrestrial applications in which there are requirements for lightweight materials that have high strengths and other tailorable properties as described below. The ceramic component of a material in this family consists of hollow ceramic spheres that have been formulated to be lightweight (0.5 g/cm3) and have high crush strength [40.80 ksi (.276.552 MPa)]. The hollow spheres are coated with a metal to enhance a specific performance . such as shielding against radiation (cosmic rays or x rays) or against electromagnetic interference at radio and lower frequencies, or a material to reduce the coefficient of thermal expansion (CTE) of the final composite material, and/or materials to mitigate any mismatch between the spheres and the matrix metal. Because of the high crush strength of the spheres, the initial composite workpiece can be forged or extruded into a high-strength part. The total time taken in processing from the raw ingredients to a finished part is typically 10 to 14 days depending on machining required.

  15. Glasses, ceramics, and composites from lunar materials

    Science.gov (United States)

    Beall, George H.

    1992-01-01

    A variety of useful silicate materials can be synthesized from lunar rocks and soils. The simplest to manufacture are glasses and glass-ceramics. Glass fibers can be drawn from a variety of basaltic glasses. Glass articles formed from titania-rich basalts are capable of fine-grained internal crystallization, with resulting strength and abrasion resistance allowing their wide application in construction. Specialty glass-ceramics and fiber-reinforced composites would rely on chemical separation of magnesium silicates and aluminosilicates as well as oxides titania and alumina. Polycrystalline enstatite with induced lamellar twinning has high fracture toughness, while cordierite glass-ceramics combine excellent thermal shock resistance with high flexural strengths. If sapphire or rutile whiskers can be made, composites of even better mechanical properties are envisioned.

  16. Compositional Design of Dielectric, Ferroelectric and Piezoelectric Properties of (K, NaNbO3 and (Ba, Na(Ti, NbO3 Based Ceramics Prepared by Different Sintering Routes

    Directory of Open Access Journals (Sweden)

    José A. Eiras

    2016-03-01

    Full Text Available Lead free piezoelectric materials are being intensively investigated in order to substitute lead based ones, commonly used in many different applications. Among the most promising lead-free materials are those with modified NaNbO3, such as (K, NaNbO3 (KNN and (Ba, Na(Ti, NbO3 (BTNN families. From a ceramic processing point of view, high density single phase KNN and BTNN ceramics are very difficult to sinter due to the volatility of the alkaline elements, the narrow sintering temperature range and the anomalous grain growth. In this work, Spark Plasma Sintering (SPS and high-energy ball milling (HEBM, following heat treatments (calcining and sintering, in oxidative (O2 atmosphere have been used to prepare single phase highly densified KNN (“pure” and Cu2+ or Li1+ doped, with theoretical densities ρth > 97% and BTNN ceramics (ρth - 90%, respectively. Using BTTN ceramics with a P4mm perovskite-like structure, we showed that by increasing the NaNbO3 content, the ferroelectric properties change from having a relaxor effect to an almost “normal” ferroelectric character, while the tetragonality and grain size increase and the shear piezoelectric coefficients (k15, g15 and d15 improve. For KNN ceramics, the results reveal that the values for remanent polarization as well as for most of the coercive field are quite similar among all compositions. These facts evidenced that Cu2+ may be incorporated into the A and/or B sites of the perovskite structure, having both hardening and softening effects.

  17. Preparation of glass-ceramic materials from granitic rocks waste

    Directory of Open Access Journals (Sweden)

    Gamal A. Khater

    2012-06-01

    Full Text Available Crystallisation of glasses based on the diopside-anorthite eutectic system, containing increased amount (10–50 wt.% of wollastonite based on granite quarries waste, was investigated for the preparation of cheap technical glass-ceramic materials. Granite quarries waste consisted of about 52 wt.% of the batch constituents depending on composition. The granite quarries waste composition was sometimes modified by adding other ingredients such as dolomite, limestone and Al2O3. Batches were melted and then casted into glass, which was then subjected to heat-treatment to induce crystallisation. The resulting glass-ceramic materials (heat-treated at 1000 °C for 3 h were mainly composed of diopside, anorthite, wollastonite and mullite. With increasing temperature (to 1050 °C for 3 h, diopside and anorthite transformed into akermanite and mullite. It has been found that increasing the content of the diopside-anorthite eutectic in the batch constituents, resulted in increased bulk crystallisation. Samples were characterised with different techniques including differential thermal analysis, polarizing microscope, X-ray diffraction and indentation microhardness testing. The obtained glass-ceramic materials possess very high hardness, indicating high abrasion resistance, making them suitable for many applications under aggressive mechanical conditions.

  18. Cupric Hexacyanoferrate Nanoparticle Modified Carbon Ceramic Composite Electrodes

    Institute of Scientific and Technical Information of China (English)

    WANG,Peng(王鹏); ZHU,Guo-Yi(朱果逸)

    2002-01-01

    Graphite powder-supported cupric hexacyanoferrate (CuHCF)nanoparticles were dispersed into methyltrimethoxysilane-based gels to produce a conducting carbon ceramic composite, which was used as electrode material to fabricate surface-renewable CuHCF-modified electrodes. Electrochemical behavior of the CuHCF-modified carbon ceramic composite electrodes was characterized using cyclic and square-wave voitammetry.Cyclic voltammograms at various scan rates indicated that peak currents were surface-confined at low scan rates. In the presence of glutathione, a clear electrocatalytic response was observed at the CuHCF-modified composite electrodes. In addition, the electrodes exhibited a distinct advantage of reproducible surface-renewal by simple mechanical polishing on emery paper, as well as ease of preparation, and good chemical and mechanical stability in a flowing stream.

  19. Cupric Hexacyanoferrate Nanoparticle Modified Carbon Ceramic Composite Electrodes

    Institute of Scientific and Technical Information of China (English)

    WANG,Peng; ZHU,Guo-Yi

    2002-01-01

    Graphite powder-supported cupric hexacyanoferrate(CuHCF) nanoparticles were dispersed into methyltrimethoxysilane-based gels to produce a conducting carbon ceramic composite,which was used as electrode materials to fabricate surface-renewable CuHCF-modified electrodes.Electrochemical behavior of the CuHCF-modified carbon ceramic composite electrodes was characterized using cyclic and square-wave voltammetry. Cyclinc voltammograms at various scan rates indicated that peak currents were suface-confined at low scan rates.In the presence of glutathione,a clear electrocatalytic response was observed at the CuHCF-modified composite electrodes.In addition,the electrodes exhibited a distinct advantage of reproducible surface-renewal by simple mechanical polishing on emery paper,as well as ease of preparation,and good chemical and mechanical stability in a flowing stream.

  20. Thermodynamic Investigation of Synthesizaing Metastable β—Sialon—Alon Composite Ceramic

    Institute of Scientific and Technical Information of China (English)

    HUANGXiangdong; LIWenchao; 等

    1999-01-01

    Based on its thermodynamic analysis ,β-Sialon-Alon metastable composite ceramic has been prepared by hot pressing sintering,XRD results indicate that the product of hot pressing singering is indeed Sialon-Alon metastable omposite ceramic ,which is in accordance with thermodynamic analysis

  1. Manufacturing of superconductive silver/ceramic composites

    DEFF Research Database (Denmark)

    Seifi, Behrouz; Bech, Jakob Ilsted; Eriksen, Morten;

    2000-01-01

    Manufacturing of superconducting metal/ceramic composites is a rather new discipline within materials forming processes. High Temperature SuperConductors, HTSC, are manufactured applying the Oxide-Powder-In-Tube process, OPIT. A ceramic powder containing lead, calcium, bismuth, strontium......, and copper oxides is inserted into a silver tube and reduced by multi-step drawing. These single-filaments are packed in a new silver tube thus forming a multi-filament containing e.g. 37 single-filaments, which is subsequently reduced by drawing and rolling to tapes approximately 0.2 mm thick by 3 mm wide...

  2. KNN–NTK composite lead-free piezoelectric ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, T., E-mail: ta-matsuoka@mg.ngkntk.co.jp; Kozuka, H.; Kitamura, K.; Yamada, H.; Kurahashi, T.; Yamazaki, M.; Ohbayashi, K. [NGK SPARK PLUG Co., Ltd., 2808 Iwasaki, Komaki, Aichi 485-8510 (Japan)

    2014-10-21

    A (K,Na)NbO₃-based lead-free piezoelectric ceramic was successfully densified. It exhibited an enhanced electromechanical coupling factor of kₚ=0.52, a piezoelectric constant d₃₃=252 pC/N, and a frequency constant Nₚ=3170 Hz m because of the incorporation of an elaborate secondary phase composed primarily of KTiNbO₅. The ceramic's nominal composition was 0.92K₀.₄₂Na₀.₄₄Ca₀.₀₄Li₀.₀₂Nb₀.₈₅O₃–0.047K₀.₈₅Ti₀.₈₅Nb₁.₁₅O₅–0.023BaZrO₃ –0.0017Co₃O₄–0.002Fe₂O₃–0.005ZnO, abbreviated herein as KNN–NTK composite. The KNN–NTK ceramic exhibited a dense microstructure with few microvoids which significantly degraded its piezoelectric properties. Elemental maps recorded using transmission electron microscopy with energy-dispersive X-ray spectroscopy (TEM–EDS) revealed regions of high concentrations of Co and Zn inside the NTK phase. In addition, X-ray diffraction patterns confirmed that a small portion of the NTK phase was converted into K₂(Ti,Nb,Co,Zn)₆O₁₃ or CoZnTiO₄ by a possible reaction between Co and Zn solutes and the NTK phase during a programmed sintering schedule. TEM studies also clarified a distortion around the KNN/NTK interfaces. Such an NTK phase filled voids between KNN particles, resulting in an improved chemical stability of the KNN ceramic. The manufacturing process was subsequently scaled to 100 kg per batch for granulated ceramic powder using a spray-drying technique. The properties of the KNN–NTK composite ceramic produced using the scaled-up method were confirmed to be identical to those of the ceramic prepared by conventional solid-state reaction sintering. Consequently, slight changes in the NTK phase composition and the distortion around the KNN/NTK interfaces affected the KNN–NTK composite ceramic's piezoelectric characteristics.

  3. Processing and Characterization of Multiphase Ceramic Composites

    Science.gov (United States)

    Men, Danju

    Multiphase ceramic composites structure design has advantages for many applications. It is not only an effective way of limiting grain growth which allows for fine-grain size superplasticity at elevated temperatures, but also a combination of various desirable properties can be obtained from different phases, which otherwise cannot be found in one single phase material. The goal of this research is to select, design and optimize multiphase ceramic systems for mainly two purposes: shape forming and inert matrix nuclear fuel. These ceramic composites feature the machinability of monazite (LaPO 4) due to weak interfacial bonding with other oxides, the superplasticity of 3 mol% tetragonal zirconia (3Y-TZP), and the high hardness and strength of Al2O3 and MgAl2O4. These materials were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Mechanical behavior at room temperature was characterized for the elastic modulus, hardness and fracture toughness. They were fabricated and demonstrated to have deformation rates in the superplastic range of at high temperatures and easy machinability at room temperature using conventional tools. An issue with conventional nuclear fuel, UO2, is its very low thermal conductivity that causes high central temperatures, which can lead to melting and cracking during reactor operation. The solution can be found in multiphase ceramic composites, by combining nuclear fuel particles in a heat conducting phase with high thermal conductivity and other phases that absorb fission byproducts while maintaining good radiation stability. In the current research, proposed multiphase ceramic composite materials were designed and radiation damage was characterized by scanning and transmission electron microscopy (TEM). Gold irradiation was used to represent the primary knock-on atoms damage caused by neutrons. Xenon irradiation was used to represent the fission product damage. Magnetoplumbite, was the most susceptible to

  4. Continuous Fiber Ceramic Composites (CFCC)

    Energy Technology Data Exchange (ETDEWEB)

    R. A. Wagner

    2002-12-18

    This report summarizes work to develop CFCC's for various applications in the Industries of the Future (IOF) and power generation areas. Performance requirements range from relatively modest for hot gas filters to severe for turbine combustor liners and infrared burners. The McDermott Technology Inc. (MTI) CFCC program focused on oxide/oxide composite systems because they are known to be stable in the application environments of interest. The work is broadly focused on dense and porous composite systems depending on the specific application. Dense composites were targeted at corrosion resistant components, molten aluminum handling components and gas turbine combustor liners. The development work on dense composites led to significant advances in fiber coatings for oxide fibers and matrix densification. Additionally, a one-step fabrication process was developed to produce low cost composite components. The program also supported key developments in advanced oxide fibers that resulted in an improved version of Nextel 610 fiber (commercially available as Nextel 650) and significant progress in the development of a YAG/alumina fiber. Porous composite development focused on the vacuum winding process used to produce hot gas filters and infrared burner components.

  5. Mechanical properties of alumina-zirconia composites for ceramic abutments

    Directory of Open Access Journals (Sweden)

    Maria Cecilia Corrêa de Sá e Benevides de Moraes

    2004-12-01

    Full Text Available The need for new materials to substitute injured or damaged parts of the human body has led scientists of different areas to investigate bioceramics since the 70's, when other materials in use started to show rejection problems. Ceramics show some advantages like being the material that best mimics the bone tissue, although present low toughness when compared with the metallic materials. As patients have become more and more demanding regarding esthetic and biocompatibility aspects of their dental restorations, ceramic material has become a main object of scientific interest especially from the material point of view. The alumina-zirconia composites are one of the relatively good and promising candidate for biomaterials application, due to biocompatibility and their mechanical properties that combines high flexural strength with a high toughness. The aim of the present work is to analyze the mechanical properties of these composites, where Y-TZP zirconia content was varied from 5 to 80 wt.% These systems can achieve a flexural strength 93 % and fracture toughness 29 % superior when compared to the pure alumina ceramics. These results showed that ceramic abutments components can be prepared for prosthetic rehabilitations with dental implants.

  6. Reinforcing and toughening alumina/titania ceramic composites with nano-dopants from nanostructured composite powders

    International Nuclear Information System (INIS)

    Nanostructured alumina/titania composite powders were prepared using nanosized alumina and titania doped with nanosized zirconia and ceria through ball-milling, spray drying and heat treating. The nanostructured reconstituted powders were then cool isostatic pressed and pressureless sintered into bulk ceramic composites. The phase constitution and microstructures of as-prepared ceramic composites were characterized by using X-ray diffractometer and scanning electron microscope. The mechanical properties of the ceramic composites were evaluated by Vickers hardness test, flexural strength test and fracture toughness test. The effects of nano-dopants and sintering temperatures on the microstructures and mechanical properties of the composites were investigated. It was found that nano-dopants had the effects of lowering sintering temperature, accelerating densification, reinforcing and toughening the composites. The maximum flexural strength, fracture toughness and Vickers hardness of the composites with nano-dopants were 51, 20 and 56% higher than that of the composites without nano-dopants. The reinforcing and toughening mechanisms are discussed in detail.

  7. Effect of Rare Earth Composite Ceramic Materials on Oil Combustion of Oil-Burning Boiler

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The rare earth composite ceramic materials were prepared using rare earths and far infrared natural mineral. The effects of the as-prepared ceramic materials on the oil consumption and air pollutants emissions of oil-burning boiler were investigated. The results show that the composite ceramic materials can radiate higher intensity of far infrared. The molecular movement is strengthened and the chemical bonds of the molecules are easily ruptured when the diesel oil is dealt with the composite materials. The oil-saving rate of the RBS·VH-1.5 boiler dealt with the rare earth composite ceramic materials is 3.49%, and the reducing rates of CO and NO in the exhaust gas are 25.4% and 9.7%, respectively.

  8. Preparation and Chiral Selectivity of BSA-Modified Ceramic Membrane

    Institute of Scientific and Technical Information of China (English)

    Cai Lian SU; Rong Ji DAI; Bin TONG; Yu Lin DENG

    2006-01-01

    An affinity-transport system, containing porous ceramic membranes bound with bovine serum albumin (BSA) was used for chiral separation of racemic tryptophan. The preparation of BSA modified ceramic membrane included three steps. Firstly, the membrane was modified with amino group using silanization with an amino silane. Secondly, the amino group modified membrane was bound with aldehyde group using gluteraldehyde. Finally, BSA was covalently bound on the surface of the ceramic membrane. Efficient separation of racemic tryptophan was carried out by performing permeation cell experiments, with BSA modified, porous ceramic membranes.

  9. Transport properties of ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L. [Georgia Inst. of Technology, Atlanta, GA (United States)

    1995-08-01

    This project involves experimental and modeling investigation of the transport properties of chemical vapor infiltration (CVI) preforms and densified composites, with particular emphasis on gas permeability and mass diffusivity. The results of this work will be useful both for on-going CVI process development and for evaluation and optimization of composite materials for fossil energy applications. With preforms made with 500 filaments/tow Nicalon at 40 vol% fiber loading, permeability values are similar for square-weave cloth layup and 3-D weave at low density. At greater densification the 3-D weave permeability is lower and approaches zero with significantly more closed porosity than the cloth layup. For filament wound preforms we were unable to make reliable measurements with the available materials. A model for gas transport in these materials utilizes percolation theory concepts. The ultimate achievable density is related to the closing of a continuous gas path through the preform. As the density approaches this limit the gas permeability and diffusivity vanish exponentially. The value of this limit is controlled primarily by the preform fiber architecture. The observed difference between the cloth layup and 3-D weave materials is due to the larger pores at tow crossing points found in the 3-D weave.

  10. Preparation of Machinable Bioactive Glass-ceramics by Sol-gel Method

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The purpose of this research was to prepare machinable bioactive glass-ceramics by sol-gel method. A multi-component composite sol with great uniformity and stability was first prepared by a 2-step method.The composite sol was then transformed into gel by aging under different temperatures. The gel was dried finally by super critically drying method and sintered to obtain the machinable bioactive glass-ceramics. Effect of thermal treatment on crystallization of the glass-ceramics was investigated by X-ray diffraction (XRD) analysis. Microstructure of the glass-ceramics was observed by Scanning Electron Microscopy (SEM) and the mechanism of machinability was discussed. Phlogopite and hydroxylapatite were identified as main crystal phases by XRD analysis under thermal treatment at 750 ℃ and 950 ℃ for 1.5 h separately. The relative bulk density could achieve 99%under 1050 ℃ for 4 h. Microstructure of the glass-ceramics showed that the randomly distributed phlogopite and hydroxylapatite phases were favorable to the machinability of the glass-ceramics. A mean bending strength of about 160-180 MPa and a fracture toughness parameter KIC of about 2.1-2.3 were determined for the glass-ceramics.

  11. Transport properties of ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L.; Hablutzel, N. [Georgia Institute of Technology, Atlanta, GA (United States)

    1996-08-01

    Instrumentation and procedures have been completed for measurement of gas permeability and mass diffusivity of fiber preforms and porous materials. Results are reported for composites reinforced with Nicalon fiber in cloth lay-up and 3-D weave and with Nextel fiber in multi-layer braid. Measured permeability values range from near 100 to less than 0.1 darcies. Mass diffusivity is reported as a structure factor relating the diffusion through the porous material to that in free space. This measure is independent of the diffusing species and depends only on the pore structure of the material. Measurements are compared to predictions of a node-bond model for gas transport. Model parameters adjusted to match measured transport properties relate to physical microstructure features of the different architectures. Combination of this transport model with the CVI process model offers a predictive method to evaluate the densification behavior of various fiber preforms.

  12. Polymer/Ceramic Composite Membranes and Their Application in Pervaporation Process

    Institute of Scientific and Technical Information of China (English)

    刘公平; 卫旺; 金万勤; 徐南平

    2012-01-01

    Pervaporation (PV), as an environmental friendly and energy-saving separation technology, has been received increasing attention in recent years. This article reviews the preparation and application of macroporous ceramic-supported polymer composite pervaporation membranes. The separation materials of polymer/ceramic composite membranes presented here include hydrophobic polydimethylsiloxane (PDMS) and hydrophilic poly(vinyl alcohol) (PVA), chitosan (CS) and polyelectrolytes. The effects of ceramic support treatment, polymer solution properties, interfacial adhesion and incorporating or blending modification on the membrane structure and PV performance are discussed. Two in-situ characterization methods developed for polymer/ceramic composite membranes are also covered in the discussio.n. The.applications of these composite_membranesi_n_ pervaporation process are summarized as well, which contain the bio-fuels recovery, gasoline desulfuration and PV coupled process using PDMS/ceramic composite membrane, and dehydration of alcohols and esters using ceramic-supported PVA or PVA-CS composite membrane. Finally, a brief conclusion remark on polymer/ceramic composite mem- branes is given and possible future research is outlined.

  13. Dielectric properties of BST/MZO ceramic composites

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Ba0.6Sr0.4TiO3/Mg1-xZnxO (MZO, x = 0, 0.05, 0.10, 0.15 and 0.20) ceramic composites were prepared by traditional ceramic processing. The crystal structure, fracture surface morphology, and dielectric properties were investigated. The samples with x = 0, 0.05 and 0.10 exhibited favorable sintering behavior, and homogeneous diphase microstructure was obtained. Nevertheless, the microstructure of the samples with x = 0.15 and 0.20 was inhomogeneous and abnormal grain growth could be observed, and the abnormal grain growth induced the degradation of dielectric strength. The sample with x = 0.10 has relatively low dielectric loss (1.26×10-3) and the optimal FOM value (about 174).

  14. Dielectric properties of BST/MZO ceramic composites

    Institute of Scientific and Technical Information of China (English)

    GUI JianDong; WANG Yi; DONG GuiXia; DU Jun

    2009-01-01

    Ba0.6Sr0.4TiO3/Mg1-xZnxO (MZO, x = 0, 0.05, 0.10, 0.15 and 0.20) ceramic composites were prepared by traditional ceramic processing. The crystal structure, fracture surface morphology, and dielectric properties were investigated. The samples with x = 0, 0.05 and 0.10 exhibited favorable sintering be-havior, and homogeneous diphase microstructure was obtained. Nevertheless, the microstructure of the samples with x = 0.15 and 0.20 was inhomogeneous and abnormal grain growth could be observed, and the abnormal grain growth induced the degradation of dielectric strength. The sample with x = 0.10 has relatively low dielectric loss (1.26×10-3) and the optimal FOM value (about 174).

  15. [Preparation of porous ceramics based on waste ceramics and its Ni2+ adsorption characteristics].

    Science.gov (United States)

    Zhang, Yong-Li; Wang, Cheng-Zhi; Shi, Ce; Shang, Ling-Ling; Ma, Rui; Dong, Wan-Li

    2013-07-01

    The preparation conditions of porous ceramics were determined by SEM, XRD and FT-IR characterizations as well as the nickel removal ability of porous ceramics to be: the mass fraction w of sesbania powder doped was 4%, and the calcination temperature was 800 degrees C. SEM and pore structure characterization illustrated that calcination caused changes in the structure and morphology of waste ceramics. With the increase of calcination temperature, the specific surface area and pore volume decreased, while the aperture increased. EDS analyses showed that the main elements of both the original waste porcelain powder and the porous ceramics were Si, Al and O. The SEM, XRD and FT-IR characterization of porous ceramics illustrated that the structure of porous ceramics was stable before and after adsorption. The series of experiments of Ni2+ adsorption using these porous ceramics showed that when the dosage of porous ceramics was 10 g x L(-1), the adsorption time was 60 min, the pH value was 6.32, and the concentration of nickel-containing wastewater was below 100 mg x L(-1), the Ni2+ removal of wastewater reached 89.7%. Besides, the porous ceramics showed higher removal efficiency on nickel in the wastewater. The Ni(2+)-containing wastewater was processed by the porous ceramics prepared, and the adsorption dynamics and adsorption isotherms of Ni2+ in wastewater by porous ceramics were investigated. The research results showed that the Ni2+ adsorption process of porous ceramics was in accordance with the quasi second-order kinetic model (R2 = 0.999 9), with Q(e) of 9.09 mg x g(-1). The adsorption process can be described by the Freundlich equation and Langmuir equation, and when the temperature increased from 20 degrees C to 40 degrees C, the maximum adsorption capacity Q(m) increased from 14.49 mg x g(-1) to 15.38 mg x g(-1).

  16. Characterization of CVI densification of ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L.; Stock, S.R.; Lee, S. [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-05-01

    Ceramic matrix composites promise higher operating temperature and better thermodynamic efficiency in many enregy conversion systems. In particular, composites fabricated by the chemical vapor infiltration (CVI) process have excellent mechanical properties and, using the forced flow-thermal gradient variation, good processing economics in small scale demonstrations. Scale-up to larger, more complex shapes requires understanding of gas flow through the fiber preform and of the relationship between fiber architecture and densification behavior. This understanding is needed for design of preforms for optimum infiltration. The objective of this research is to observe the deposition of matrix material in the pores of a ceramic fiber preform at various stages of the CVI process. These observations allow us to relate local deposition rates in various regions of the composite to the connectivity of the surrounding network of porosity and to better model the relationship between gas transport and fiber architecture in CVI preforms. Our observation of the CVI process utilizes high resolution X-ray tomographic microscopy (XTM) in collaboration with Dr. John Kinney at Lawrence Livermore National Laboratory with repeated imaging of a small preform specimens after various processing times. We use these images to determine geometry and dimensions of channels between and through layers in cloth lay-up preform during CVI densification and relate these to a transport model.

  17. Development of high-density ceramic composites for ballistic applications

    International Nuclear Information System (INIS)

    The application of ceramic composites for ballistic application has been generally developed with ceramics of low density, between 2.5 and 4.5 g/cm2. These materials have offered good performance in defeating small-caliber penetrators, but can suffer time-dependent degradation effects when thicker ceramic tiles are needed to defeat modem, longer, heavy metal penetrators that erode rather than break up. This paper addresses the ongoing development, fabrication procedures, analysis, and ballistic evaluation of thinner, denser ceramics for use in armor applications. Nuclear Metals Incorporated (NMI) developed a process for the manufacture of depleted uranium (DU) ceramics. Samples of the ceramics have been supplied to the US Army Research Laboratory (ARL) as part of an unfunded cooperative study agreement. The fabrication processes used, characterization of the ceramic, and a ballistic comparison between the DU-based ceramic with baseline Al2O3 will be presented

  18. Mechanochemically synthesized kalsilite based bioactive glass-ceramic composite for dental vaneering

    Science.gov (United States)

    Kumar, Pattem Hemanth; Singh, Vinay Kumar; Kumar, Pradeep

    2015-08-01

    Kalsilite glass-ceramic composites have been prepared by a mechanochemical synthesis process for dental veneering application. The aim of the present study is to prepare bioactive kalsilite composite material for application in tissue attachment and sealing of the marginal gap between fixed prosthesis and tooth. Mechanochemical synthesis is used for the preparation of microfine kalsilite glass-ceramic. Low temperature frit and bioglass have been prepared using the traditional quench method. Thermal, microstructural and bioactive properties of the composite material have been examined. The feasibility of the kalsilite to be coated on the base commercial opaque as well as the bioactive behavior of the coated specimen has been confirmed. This study indicates that the prepared kalsilite-based composites show similar structural, morphological and bioactive behavior to that of commercial VITA VMK95 Dentin 1M2.

  19. Al2O3增强ZrO2陶瓷的制备及性能研究%Preparation and Mechanical Behavior of ZrO2/Al2O3 Ceramic Composites

    Institute of Scientific and Technical Information of China (English)

    余明清; 范仕刚; 孙淑珍; 雷家珩

    2001-01-01

    In this paper, ZrO2/Al2O3 ceramic composites were prepared with Al2O3 powder made by thermal decomposition and (Y,Ce)-ZrO2 by coprecipitation as raw materials by means of appropriate technique.It was found that the grain growth of zirconia was inhibited with the introduction of alumina,which resulted in higher strength and toughness of the ceramics.When the addition of alumina was 30wt%,the bending strength and fracture toughness of the composites were 986MPa and 13.7MPa*m1/2 respectively.The mechanical property was improved by the dispersion toughening of alumina grain and the phase transformation toughening of zirconia.%本文采用热分解法制备Al2O3微粉、化学共沉淀法制备(Y,Ce)—ZrO2超细粉,通过适当工艺制备出ZrO2/Al2O3复合陶瓷。经研究发现,添加Al2O3,可抑制ZrO2晶粒的长大,提高基体的强度和韧性。当Al2O3含量达到30%(质量分数)时,复合陶瓷的抗弯强度为986MPa,断裂韧性为13.7MPa*m1/2。材料性能的提高可归结为Al2O3颗粒的弥散增韧和ZrO2陶瓷的相变增韧叠加作用的结果。

  20. Investigation of properties and performance of ceramic composite components

    Energy Technology Data Exchange (ETDEWEB)

    Stinchcomb, W.W.; Reifsnider, K.L.; Dunyak, T.J. (Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Engineering Science and Mechanics)

    1992-06-15

    The objective of the work reported herein is to develop an understanding of the mechanical behavior of advanced ceramic composites subjected to elevated temperature and dynamic (cyclic) loading, to develop a test system and test methods to obtain the properties and performance information required to design engineering components made from ceramic composite materials, and to provide critical and comprehensive evaluations of such materials to material synthesizers and developers to support and enhance progress in ceramic composite material development. The accomplishments of the investigation include the design, development, and demonstration of a high temperature, biaxial mechanical test facility for ceramic composite tubes and the development and validation of a performance simulation model (MRLife) for ceramic composites.

  1. Fundamental alloy design of oxide ceramics and their composites

    Energy Technology Data Exchange (ETDEWEB)

    Chen, I.W.

    1992-01-01

    The main research was on microstructural development of oxide ceramics. Projects were completed and the publications given. Abstracts are given on: Reactive CeO[sub 2]powders by homogeneous precipitation, SiC whisker-reinforced lithium aluminosilicate composite, solute drag on grain boundary in ionic solids (space charge effect), in-situ alumina/aluminate platelet composites, exaggerated texture and grain growth of superplastic silicon nitride (SiAlON), hot extrusion of ceramics, control of grain boundary pinning in Al[sub 2]O[sub 3]/ZrO[sub 2] composites with Ce[sup 3+]/Ce[sup 4+] doping, superplastic forming of ceramic composites, computer simulation of final stage sintering (model, kinetics, microstructure, effect of initial pore size), development of superplastic structural ceramics, and superplastic flow of two-phase ceramics containing rigid inclusions (zirconia/mullite composites). A proposed research program is outlined: materials, solute drag, densification and coarsening, and grain boundary electrical behavior.

  2. Fracture toughness of advanced alumina ceramics and alumina matrix composites used for cutting tool edges

    Directory of Open Access Journals (Sweden)

    M. Szutkowska

    2012-10-01

    Full Text Available Purpose: Specific characteristics in fracture toughness measurements of advanced alumina ceramics and alumina matrix composites with particular reference to α-Al2O3, Al2O3-ZrO2, Al2O3-ZrO2-TiC and Al2O3-Ti(C,N has been presented.Design/methodology/approach: The present study reports fracture toughness obtained by means of the conventional method and direct measurements of the Vickers crack length (DCM method of selected tool ceramics based on alumina: pure alumina, alumina-zirconia composite with unstabilized and stabilized zirconia, alumina–zirconia composite with addition of TiC and alumina–nitride-carbide titanium composite with 2wt% of zirconia. Specimens were prepared from submicro-scale trade powders. Vicker’s hardness (HV1, fracture toughness (KIC at room temperature, the indentation fracture toughness, Young’s modulus and apparent density were also evaluated. The microstructure was observed by means of scanning electron microscopy (SEM.Findings: The lowest value of KIC is revealed by pure alumina ceramics. The addition of (10 wt% unstabilized zirconia to alumina or a small amount (5 wt% of TiC to alumina–zirconia composite improve fracture toughness of these ceramics in comparison to alumina ceramics. Alumina ceramics and alumina-zirconia ceramics reveal the pronounced character of R-curve because of an increasing dependence on crack growth resistance with crack extension as opposed to the titanium carbide-nitride reinforced composite based on alumina. R-curve has not been observed for this composite.Practical implications: The results show the method of fracture toughness improvement of alumina tool ceramics.Originality/value: Taking into account the values of fracture toughness a rational use of existing ceramic tools should be expected.

  3. Continuous fiber ceramic matrix composites for heat engine components

    Science.gov (United States)

    Tripp, David E.

    1988-01-01

    High strength at elevated temperatures, low density, resistance to wear, and abundance of nonstrategic raw materials make structural ceramics attractive for advanced heat engine applications. Unfortunately, ceramics have a low fracture toughness and fail catastrophically because of overload, impact, and contact stresses. Ceramic matrix composites provide the means to achieve improved fracture toughness while retaining desirable characteristics, such as high strength and low density. Materials scientists and engineers are trying to develop the ideal fibers and matrices to achieve the optimum ceramic matrix composite properties. A need exists for the development of failure models for the design of ceramic matrix composite heat engine components. Phenomenological failure models are currently the most frequently used in industry, but they are deterministic and do not adequately describe ceramic matrix composite behavior. Semi-empirical models were proposed, which relate the failure of notched composite laminates to the stress a characteristic distance away from the notch. Shear lag models describe composite failure modes at the micromechanics level. The enhanced matrix cracking stress occurs at the same applied stress level predicted by the two models of steady state cracking. Finally, statistical models take into consideration the distribution in composite failure strength. The intent is to develop these models into computer algorithms for the failure analysis of ceramic matrix composites under monotonically increasing loads. The algorithms will be included in a postprocessor to general purpose finite element programs.

  4. Glass-ceramic composition for hermetic seals

    Science.gov (United States)

    Ballard, Jr., Clifford P.

    1979-01-01

    The invention relates to a glass-ceramic composition having a high fracture strength adaptable for hermetically sealing to chromium bearing iron or nickel base alloys at temperatures of between about 950.degree. C to about 1100.degree. C to form a hermetically sealed insulator body, comprising from about 55 to about 65 weight percent SiO.sub.2, from about 0 to about 5 weight percent Al.sub.2 O.sub.3, from about 6 to about 11 weight % Li.sub.2 O, from about 25 to about 32 weight percent BaO, from about 0.5 to about 1.0 weight percent CoO and from about 1.5 to about 3.5 weight percent P.sub.2 O.sub.5.

  5. Preparation, Characterization and Performance of Conch Ceramics Added With Shell

    Directory of Open Access Journals (Sweden)

    Wang Qingyu

    2016-01-01

    Full Text Available The conch ceramics bodies with different ratios were prepared by compression moulding technology using shell, kaolin, and calcium oxide etc. as the raw materials, and then calcined at the high temperature to obtain the conch ceramics. The effects of raw material ratios and calcination temperatures on the performance of conch ceramics were investigated by rotational viscometer, vernier caliper, digital display whiteness meter, thermal analyzer, and Fourier transform infrared spectrometer(FT-IR. The results indicated that the viscosity, line shrinkage rate, and whiteness of the conch ceramics were 1.29 Pa·s, 17.9%, and 54.1%, respectively, when the content of the shell powder was 20 wt% and kaolin was 65 wt%. The density of the conch ceramics was the largest (3.8 g/cm3 when calcination temperature was 1200 °C. The results of FT-IR spectrum showed that the addition of the shell powders changed the structure of the ceramic body, which improved the performance of the conch ceramics.

  6. Thermal Performance of Ablative/ Ceramic Composite

    Directory of Open Access Journals (Sweden)

    Adriana STEFAN

    2014-12-01

    Full Text Available A hybrid thermal protection system for atmospheric earth re-entry based on ablative materials on top of ceramic matrix composites is investigated for the protection of the metallic structure in oxidative and high temperature environment of the space vehicles. The paper focuses on the joints of ablative material (carbon fiber based CALCARB® or cork based NORCOAT TM and Ceramic Matrix Composite (CMC material (carbon fibers embedded in silicon carbide matrix, Cf/SiC, SICARBON TM or C/C-SiC using commercial high temperature inorganic adhesives. To study the thermal performance of the bonded materials the joints were tested under thermal shock at the QTS facility. For carrying out the test, the sample is mounted into a holder and transferred from outside the oven at room temperature, inside the oven at the set testing temperature (1100°C, at a heating rate that was determined during the calibration stage. The dwell time at the test temperature is up to 2 min at 1100ºC at an increasing rate of temperature up to ~ 9,5°C/s. Evaluating the atmospheric re-entry real conditions we found that the most suited cooling method is the natural cooling in air environment as the materials re-entering the Earth atmosphere are subjected to similar conditions. The average weigh loss was calculated for all the samples from one set, without differentiating the adhesive used as the weight loss is due to the ablative material consumption that is the same in all the samples and is up to 2%. The thermal shock test proves that, thermally, all joints behaved similarly, the two parts withstanding the test successfully and the assembly maintaining its integrity.

  7. Recent trend and problems of whisker reinforced composite ceramics. Whisker fukugo ceramics no genjo to kadai

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Wonseung; Hayashi, K. (The Univ. of Tokyo, Tokyo (Japan). Inst. of Industrial Science)

    1994-03-01

    The maximum purpose of the whisker composite is to overcome a brittleness of the ceramics and to raise a reliability. In order to do so, it is required that a toughening mechanism by the whisker should be investigated, and that an addition effect of the whisker should be exhibited to be the maximum by an improvement of the process. For the sake of using the composite ceramics as the high temperature structural materials in a wide range, in addition, besides the mechanical properties such as a fracture toughness (K[sub IC]) and a flexural strength (FS), the various properties such as a resistance to oxidation, fatigue strength, creep strength, thermal shock resistance, wear and abrasion resistance and so forth are necessary to be investigated. Because the kinds of whisker used, kind and quantity of the sintering auxiliary, preparation condition, evaluation method of K[sub IC] and FS and so forth are currently different depending on the researchers, and moreover the test procedure, specimen dimension and test condition are often different even in the same evaluation method, the mutual comparison of data are rather difficult. By achieving the furthermore toughening, by establishing the design technology and complex molding technology, by reducing the price drastically and so forth, an expansion of their application is expected. 115 refs., 9 figs., 4 tabs.

  8. Preparation and Corrosion Resistance of Rare Earth Ceramic Film on AZ91 Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    Xu Yue; Guo Yuandong; Li Yingjie

    2004-01-01

    With the purpose of improving corrosion resistance and solving environmental pollution caused by traditional protective technique, rare earth ceramic film on AZ91 magnesium alloy was prepared by dip coating process, and technical parameters of preparation were defmed. Microstructure and composition of the film were studied and corrosion resistance was evaluated as well. The results show that rare earth ceramic film is uniform,dense, with strong cohesion and intact coverage. The film is mainly made up of CeO2 and MgCeO3. The results of corrosion experiments approve that the film acts as a barrier to isolate the contact of the substrate with corrosion media and decreas corrosion rate. Polarization curve of the coated sample shiftes to positive potential obvito 2.7 × 104 Ω. These facts indicate that rare earth ceramic film could effectively improve corrosion resistance of AZ91 magnesium alloy.

  9. Uses of Advanced Ceramic Composites in the Thermal Protection Systems of Future Space Vehicles

    Science.gov (United States)

    Rasky, Daniel J.

    1994-01-01

    Current ceramic composites being developed and characterized for use in the thermal protection systems (TPS) of future space vehicles are reviewed. The composites discussed include new tough, low density ceramic insulation's, both rigid and flexible; ultra-high temperature ceramic composites; nano-ceramics; as well as new hybrid ceramic/metallic and ceramic/organic systems. Application and advantage of these new composites to the thermal protection systems of future reusable access to space vehicles and small spacecraft is reviewed.

  10. Support Services for Ceramic Fiber-Ceramic Matrix Composites

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, J.P.

    2000-06-06

    Structural and functional materials used in solid- and liquid-fueled energy systems are subject to gas- and condensed-phase corrosion and erosion by entrained particles. For a given material, its temperature and the composition of the corrodents determine the corrosion rates, while gas flow conditions and particle aerodynamic diameters determine erosion rates. Because there are several mechanisms by which corrodents deposit on a surface, the corrodent composition depends not only on the composition of the fuel, but also on the temperature of the material and the size range of the particles being deposited. In general, it is difficult to simulate under controlled laboratory conditions all of the possible corrosion and erosion mechanisms to which a material may be exposed in an energy system. Therefore, with funding from the Advanced Research Materials Program, the University of North Dakota Energy & Environmental Research Center (EERC) is coordinating with NCC Engineering and the National Energy Technology Laboratory (NETL) to provide researchers with no-cost opportunities to expose materials in pilot-scale systems to conditions of corrosion and erosion similar to those occurring in commercial power systems. The EERC has two pilot-scale solid-fuel systems available for exposure of materials coupons. The slagging furnace system (SFS) was built under the DOE Combustion 2000 Program as a testing facility for advanced heat exchanger subsystems. It is a 2.5-MMBtu/hr (2.6 x 10{sup 6} kJ/hr) solid-fuel combustion system with exit temperatures of 2700 to 2900 F to ensure that the ash in the main combustor is molten and flowing. Sample coupons may be exposed in the system either within the slagging zone or near the convective air heater at 1800 F (980 C). In addition, a pilot-scale entrained-bed gasifier system known as the transport reactor development unit (TRDU) is available. Also operating at approximately 2.5 MMBtu/hr (2.6 x 10{sup 6} kJ/hr), it is a pressurized unit

  11. Thermal, mechanical and electrical properties of polyanaline based ceramic nano-composites

    Science.gov (United States)

    Sohail, M.; Khan, M. S.; Khattak, N. S.

    2016-08-01

    Micro/nanohybrid materials have vast applications due to their great potentialities in the field of nanoscience and nanotechnology. Herein we report an investigation on the fabrication and physicochemical characterization of ceramic (Fe0.01La0.01Al0.5Zn0.98O) and hybrid ceramic-polyaniline nano-composits. Ceramic nano-particles were prepared by sol-gel technique while optimizing the molar ratios of the constituent's metal nitrates. The prepared inorganic particles were then embedded in the polymer matrix via one-pot blending method. The prepared ceramic particles and their composites with polyaniline were analysed under FT- IR, SEM and TGA. The presence of some chemical species was observed at the interface of the compositing materials. TGA analysis showed the thermal stability of the composite material. Frequency dependent dielectric properties were analysed and it was found that conducting polyaniline has an additional effect on the electrical behaviour of the composite. Rheology study showed enhanced mechanical properties of composite material as compared to their constituting counterparts.

  12. Preparation of porous hydroxyapatite ceramics with starch additives

    Institute of Scientific and Technical Information of China (English)

    YANG Lei; NING Xiao-shan; CHEN Ke-xin; XIAO Qun-fang; ZHOU He-ping

    2005-01-01

    Porous ceramics prepared from nano-sized hydroxyapatite powders by adding water soluble starch and insoluble starch were investigated. The results show that small pores of several micrometers or less can be produced by adding water soluble starch as a pore former. Two kinds of starch have different pore forming mechanisms. The permeability of the porous ceramics can be greatly improved by adding the insoluble starch to channel the small pores rather than solely using water soluble starch. The control of permeability can be achieved by adjusting the content ratio of water soluble starch to insoluble starch. Strength tests show the ceramics have rather high strength. Therefore a kind of porous filtering material with small pores, controllable permeability and good strength can be prepared by using starch additives.

  13. Preparation of biomorphic SiC ceramic by carbothermal reduction of oak wood charcoal

    Energy Technology Data Exchange (ETDEWEB)

    Qian Junmin; Wang Jiping; Jin Zhihao

    2004-04-25

    Highly porous silicon carbide (SiC) ceramic with woodlike microstructure has been prepared at 1400-1600 deg. C by carbothermal reduction reaction of charcoal/silica composites in static argon atmosphere. These composites were fabricated by infiltrating silica sol into a porous biocarbon template from oak wood using a vacuum/pressure infiltration process. The morphology of resulting porous SiC ceramic, as well as the conversion mechanism of wood to porous SiC ceramic, have been investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques. Experimental results show that the biomorphic cellular morphology of oak wood charcoal is remained in the porous SiC ceramic with high precision that consists of {beta}-SiC with traces of {alpha}-SiC. Silica in the charcoal/silica composites exists in the cellular pores in form of fibers and rods. The SiC strut material is formed by gas-solid reaction between SiO (g) and C (s) during the charcoal-to-ceramic conversion. The densification of SiC strut material may occur at moderate temperatures and holding time.

  14. Tailoring of unipolar strain in lead-free piezoelectrics using the ceramic/ceramic composite approach

    Energy Technology Data Exchange (ETDEWEB)

    Khansur, Neamul H.; Daniels, John E. [School of Materials Science and Engineering, University of New South Wales, NSW 2052 (Australia); Groh, Claudia; Jo, Wook; Webber, Kyle G. [Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt (Germany); Reinhard, Christina [Diamond Light Source, Beamline I12 JEEP, Didcot, Oxfordshire OX11 0DE (United Kingdom); Kimpton, Justin A. [The Australian Synchrotron, Clayton, Victoria 3168 (Australia)

    2014-03-28

    The electric-field-induced strain response mechanism in a polycrystalline ceramic/ceramic composite of relaxor and ferroelectric materials has been studied using in situ high-energy x-ray diffraction. The addition of ferroelectric phase material in the relaxor matrix has produced a system where a small volume fraction behaves independently of the bulk under an applied electric field. Inter- and intra-grain models of the strain mechanism in the composite material consistent with the diffraction data have been proposed. The results show that such ceramic/ceramic composite microstructure has the potential for tailoring properties of future piezoelectric materials over a wider range than is possible in uniform compositions.

  15. Preparation and Properties of Orthogonal Piezoelectric Composite Materials

    Institute of Scientific and Technical Information of China (English)

    Liu Jun; Lu Ying; Zhang Xingguo; Shen Yi; Chen Chun

    2004-01-01

    . PZT piezoelectric ceramic with La2O3, SrCO3, BaO and Sb2O5 was prepared. It has high value of the piezoelectric strain constant d33 ( -681 PC/N) and high value of-d33/d31 (2.65). Orthogonal piezoelectric composite materials was designed and prepared by PZT, DAD- 40 electric conductive adhesive and E51 epoxy resin. The OPCM shows obvious orthogonal anisotropy. The matching property of the interface between piezoelectric ceramic and polymer of OPCM relies on the defects of interface. The proper conductive mid-layer could improve the matching property of the interface.

  16. Design Concepts for Cooled Ceramic Matrix Composite Turbine Vanes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The work proposed herein is to demonstrate that the higher temperature capabilities of Ceramic Matrix Composites (CMC) can be fully utilized to reduce emissions and...

  17. Preparation and microwave properties of Y-type magnetoplumbite microcrystalline glass ceramic with the composition 0.5(Ba{sub 2}Zn{sub Z}Co{sub 2-Z}Fe{sub 12}O{sub 22}).0.5SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.; Yao, X.; Zhang, L. [High Temperature Ceramics Inst., Zhengzhou Univ., Henan (China)

    2002-02-01

    The citrate sol-gel synthesis technique was used to prepared Ba{sub 2}Zn{sub Z}Co{sub 2-Z}Fe{sub 12}O{sub 22}/SiO{sub 2} microcrystalline glass ceramic with Z=2.0,1.6,1.2, and 0.8. Several methods such as X-ray diffractometry, scanning electron microscopy and HP vector network analyzer were used to obtain detailed information on the crystallography and magnetic properties of Ba{sub 2}Zn{sub Z}Co{sub 2-Z}Fe{sub 12}O{sub 22}/SiO{sub 2} microcrystalline glass ceramic. The correlation of the formation of Ba{sub 2}Zn{sub Z}Co{sub 2-Z}Fe{sub 12}O{sub 22}/SiO{sub 2} microcrystalline glass ceramic with thermal treatment was studied. The complex dielectric constant and complex permeability of microcrystalline glass ceramic-paraffin wax composites were measured by the transmission/reflection coaxial line method in the range from 100MHz to 6 GHz. The effects of composition, annealing temperature and measuring frequency on complex permittivity and permeability of Ba{sub 2}Zn{sub Z}Co{sub 2-Z}Fe{sub 12}O{sub 22}/SiO{sub 2} microcrystalline glass ceramic were also investigated. (orig.)

  18. Temperature Rise during Resin Composite Polymerization under Different Ceramic Restorations

    OpenAIRE

    Yondem, Isa; Altintas, Subutay Han; Usumez, Aslihan

    2011-01-01

    Objectives: The purpose of this study was to measure temperature increase induced by various light polymerizing units during resin composite polymerization beneath one of three types of ceramic restorations. Methods: The resin composite (Variolink II) was polymerized between one of three different ceramic specimens (zirconium oxide, lithium disilicate, feldspathic) (diameter 5 mm, height 2 mm) and a dentin disc (diameter 5 mm, height 1 mm) with a conventional halogen light, a high intensity h...

  19. Improved Internal Reference Oxygen Sensors with Composite Ceramic Electrodes

    DEFF Research Database (Denmark)

    Hu, Qiang; Jacobsen, Torben; Hansen, Karin Vels;

    2012-01-01

    Potentiometric oxygen sensors with an internal reference electrode, which uses the equilibrium pO2 of the binary mixture of Ni/NiO as the reference, are demonstrated. The cells employ Pt or composite ceramics as the sensing electrode. The cells are fabricated by a flexible and potentially low cost...... performance are highly reproducible. The composite ceramics, based on strontium doped manganite and yttria doped zirconia, are proven superior over Pt to serve as the electrode material....

  20. Transparent ceramics and methods of preparation thereof

    Science.gov (United States)

    Hollingsworth, Joel P.; Kuntz, Joshua D.; Seeley, Zachary M.; Soules, Thomas F.

    2012-12-25

    A method for forming a transparent ceramic preform in one embodiment includes forming a suspension of oxide particles in a solvent, wherein the suspension includes a dispersant, with the proviso that the suspension does not include a gelling agent; and uniformly curing the suspension for forming a preform of gelled suspension. A method according to another embodiment includes creating a mixture of inorganic particles, a solvent and a dispersant, the inorganic particles having a mean diameter of less than about 2000 nm; agitating the mixture; adding the mixture to a mold; and curing the mixture in the mold for gelling the mixture, with the proviso that no gelling agent is added to the mixture.

  1. Thixoforming of SiC ceramic matrix composites in pseudo-semi-solid state

    Institute of Scientific and Technical Information of China (English)

    CHENG Yuan-sheng; LUO Shou-jing; DU Zhi-ming

    2005-01-01

    A new forming process, ceramic matrix composites thixoforming in pseudo-semi-solid state, was proposed based on powder metallurgy technology combined with the semi-solid metal forming process. The satellite angle-frames were prepared by this technology with Alp and SiCp materials mixed with different volume fractions. It is proved that it is feasible for the forming of the ceramic matrix composites by this technology through metallographic analyses and tensile tests. The results also show that the microstructures of samples are homogeneous and they have high hardness and certain plasticity.

  2. Experimental 511 W Composite Nd:YAG Ceramic Laser

    Institute of Scientific and Technical Information of China (English)

    LI Hai-Feng; XU De-Gang; YANG Yang; WANG Yu-Ye; ZHOU Rui; ZHANG Tie-Li; ZHAO Xin; WANG Peng; YAO Jian-Quan

    2005-01-01

    @@ We demonstrate a 511 W laser diode pumped composite Nd:YAG ceramic laser. The optical pumping system is consisted of five laser diode stacked arrays arranged in a pentagonal shape around the ceramic rod whose size is φ6.35×144mm. When the pumping power is 1600W, the cw laser output up to 511 W at 1064nm can be obtained with a linear plano-plano cavity, and the optical-to-optical efficiency is 31.9%. To our knowledge, this is the highest value of laser output by using a newly invented composite Nd:YAG ceramic rod as the gain medium.

  3. Preparation of Crack-free 3Y-TZP/Al2O3 Composite Ceramic Fiber by Electrolysis-sol-gel Method

    Institute of Scientific and Technical Information of China (English)

    LI Jian-jun; JIAO Xiu-ling; CHEN Dai-rong

    2007-01-01

    Polycrystalline 3Y-TZP/Al2O3 tetragonal zirconia fiber was obtained by the pyrolysis of gel fibers using zirconium oxychloride octahydrate(ZOC) as the raw material. The spinnable zirconia sol was prepared by electrolyzing the zirconium oxychloride octahydrate (ZOC) solution in the presence of acetic acid and sugar( sucrose, glucrose or fructose),in which the molar ratios of CH3COOH/ZOC and sugar/ZOC were 1.0-4.0 and 0.2-0.4, respectively. The prepared tetragonal zirconia fibers sintered at different temperatures showed smooth and crack-free surfaces with diameters of 5-10 μm. The addition of Al2O3 enhanced the sintering process and prevented the crystals from growing.Thermogravimetric analysis(TG), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope(SEM) techniques were used to characterize the prepared fibers.

  4. Mechanical properties of ceramic composite tubes

    Energy Technology Data Exchange (ETDEWEB)

    Curtin, W.A.; Oleksuk, L.L.; Reifsnider, K.L. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States); Stinton, D.P. [Oak Ridge National Lab., TN (United States)

    1995-08-01

    Results of axial tension tests on SiC/SiC tubular ceramic composite components fabricated by a forced-M technique are presented. Axial elastic modulus measurements on a number of tubes show that the Young`s modulus varies along the length of the tube, with occasional very stiff or very soft regions. Tests to failure on a few tubes show the initiation of non-linear stress-strain behavior to be in the range of 3-9 ksi, followed by extensive non-linear deformation up to failure. For one tube, the failure stress obtained was 20.1 ksi, but the strains to failure at various axial locations varies from 0.19%to 0.24%. The correlation between modulus and proportional limit is considered within the ACK matrix cracking theory and within a model in which matrix cracking between fiber tows occurs, both modified to account for matrix porosity. The crack size required to cause stress concentrations large enough to cause failure at the observed strength is considered. Predictions for both matrix cracking and strength suggest that the current generation of tubes are controlled by microstructural defects.

  5. Preparation and Characteristic of Glass-Ceramics with Super Low Thermal Expansion Coefficient

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The preparation technics of glass-ceramics with super low coefficient of thermal expansion containing β-quartz solid solution as a main crystal phase based on the glass in the system Li2O-Al2O3-SiO2 was introduced. The composition of base glass, technics of melting and heat treatment effecting on characteristic of glass-ceramics was described. Specimens were prepared by melting, anneal and controlled two steps heat treatment. Crystal phase, microstructure and elementary distributing were studied by using XRD, SEM and EDS respectively. Prepared specimens show excellent transparency and super low thermal expansion coefficient of 2×10-8 ·K-1, which reaches international advanced level.

  6. Marginal Adaptation of Indirect Composite, Glass-Ceramic Inlays and Direct Composite: An In Vitro Evaluation

    Directory of Open Access Journals (Sweden)

    F. Mahboub

    2010-06-01

    Full Text Available Objective: This experimental in vitro study compared marginal adaptation of indirect composite, glass-ceramic inlays and direct composite.Materials and Methods: Seventy-five recently extracted human molars were randomly divided into three groups (n=25 and mesio-occluso-distal cavities with the same dimensions were prepared in the teeth. Indirect composite and glass-ceramic inlays were fabricatedfollowing manufacturer's instructions and the marginal gap was measured by a stereomicroscope at magnification 40× before cementation. After cementation of inlays and restoring the third group by direct composite, all the specimens were thermocycled and the marginal gaps were measured exactly as previously described. Repeated measure ANOVA and post-hoc Tukey test were used for pairwise comparison of occlusal, proximal, and gingival marginal gaps in each group. One-way ANOVA and post-hoc Tukey test wereused for comparison of mean marginal gap in the three groups and for comparison of marginal gap before and after cementation in inlays, paired T-test was used.Results: The marginal gap of direct composite (19.96 μm was significantly lower than that of indirect composite inlay (48.47 μm, which in itself was significantly lower than that of glass-ceramic inlay (60.96 μm. In all the restorations, marginal gap in the gingival margin was significantly higher than occlusal and proximal margins. The marginal gap of inlays did not change after cementation and thermocycling.Conclusion: This study indicated that the marginal gaps of the evaluated restorations are less than 100 μm, which is clinically acceptable.

  7. Study on Microstructure of Alumina Based Rare Earth Ceramic Composite

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Analysis techniques such as SEM, TEM and EDAX were used to investigate the microstructure of rare earth reinforced Al2O3/(W, Ti)C ceramic composite. Chemical and physical compatibility of the composite was analyzed and interfacial microstructure was studied in detail. It is found that both Al2O3 and (W, Ti)C phases are interlaced with each other to form the skeleton structure in the composite. A small amount of pores and glass phases are observed inside the material which will inevitably influence the physical and mechanical property of the composite. Thermal residual stresses resulted from thermal expansion mismatch can then lead to the emergence of dislocations and microcracks. Interfaces and boundaries of different types are found to exist inside the Al2O3/(W, Ti)C rare earth ceramic composite, which is concerned with the addition of rare earth element and the extent of solid solution of ceramic phases.

  8. Alumina matrix ceramic-nickel composites formed by centrifugal slip casting

    Directory of Open Access Journals (Sweden)

    Justyna Zygmuntowicz

    2015-12-01

    Full Text Available The paper is focused on the possibility of fabricating the alumina matrix ceramic-nickel composites with gradient concentration of metal particles. Centrifugal slip casting method was chosen for the composite fabrication. This method allows fabrication of the graded distribution of nickel particles in the hollow cylinder composites. The horizontal rotation axis was applied. The samples were characterized by XRD, SEM and quantitative description of the microstructure. The macroscopic as well as SEM observations of the prepared composites confirmed the gradient concentration of Ni particles in the composite materials. The application of the centrifugal slip casting method allows for the graded distribution of metal particles in the samples.

  9. Actively Cooled Ceramic Composite Nozzle Material Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase I Project demonstrated the capability of the Pyrowave? manufacturing process to produce fiber-reinforced ceramics (FRCs) with integral metal features,...

  10. Ceramic Supported PDMS and PEGDA Composite Membranes for CO2 Separation

    Institute of Scientific and Technical Information of China (English)

    LIU Sainan; LIU Gongping; WEI Wang; XIANGLI Fenjuan; JIN Wanqin

    2013-01-01

    Composite membranes have attracted increasing attentions owing to their potential applications for CO2 separation.In this work,ceramic supported polydimethylsiloxane (PDMS) and poly (ethylene glycol) diacrylate (PEGDA) composite membranes were prepared.The microstructure and physicochemical properties of the composite membranes were characterized.Preparation conditions were systematically optimized.The gas separation performance of the as-prepared membranes was studied by pure gas and binary gas permeation measurement of CO2,N2 and H2.Experiments showed that PDMS,as silicone rubber,exhibited larger permeance and lower separation factors.Conversely,PEGDA composite membrane presented smaller gas permeance but higher ideal selectivity for CO2/N2.Compared to the performance of those membranes using polymeric supports or freestanding membranes,the two kinds of ceramic supported composite membranes exhibited higher gas permeance and acceptable selectivity.Therefore,the ceramic supported composite membrane can be expected as a candidate for CO2 separation from light gases.

  11. Compound transparent ceramics and methods of preparation thereof

    Science.gov (United States)

    Hollingsworth, Joel P.; Kuntz, Joshua D.; Soules, Thomas F.; Landingham, Richard L.

    2012-12-11

    According to one embodiment, a method for forming a composite transparent ceramic preform includes forming a first suspension of oxide particles in a first solvent which includes a first dispersant but does not include a gelling agent, adding the first suspension to a first mold of a desired shape, and uniformly curing the first suspension in the first mold until stable. The method also includes forming a second suspension of oxide particles in a second solvent which includes a second dispersant but does not include a gelling agent, adding the second suspension to the stable first suspension in a second mold of a desired shape encompassing the first suspension and the second suspension, and uniformly curing the second suspension in the second mold until stable. Other methods for forming a composite transparent ceramic preform are also described according to several other embodiments. Structures are also disclosed.

  12. Tribology of ceramics and composites materials science perspective

    CERN Document Server

    Basu, Bikramjit

    2011-01-01

    This book helps students and practicing scientists alike understand that a comprehensive knowledge about the friction and wear properties of advanced materials is essential to further design and development of new materials. With important introductory chapters on the fundamentals, processing, and applications of tribology, the book then examines in detail the nature and properties of materials, the friction and wear of structural ceramics, bioceramics, biocomposites, and nanoceramics, as well as lightweight composites and the friction and wear of ceramics in a cryogenic environment.

  13. Continuous Fiber Ceramic Composite (CFCC) Program: Gaseous Nitridation

    Energy Technology Data Exchange (ETDEWEB)

    R. Suplinskas G. DiBona; W. Grant

    2001-10-29

    Textron has developed a mature process for the fabrication of continuous fiber ceramic composite (CFCC) tubes for application in the aluminum processing and casting industry. The major milestones in this project are System Composition; Matrix Formulation; Preform Fabrication; Nitridation; Material Characterization; Component Evaluation

  14. Biomorphous SiC ceramics prepared from cork oak as precursor

    Science.gov (United States)

    Yukhymchuk, V. O.; Kiselov, V. S.; Valakh, M. Ya.; Tryus, M. P.; Skoryk, M. A.; Rozhin, A. G.; Kulinich, S. A.; Belyaev, A. E.

    2016-04-01

    Porous ceramic materials of SiC were synthesized from carbon matrices obtained via pyrolysis of natural cork as precursor. We propose a method for the fabrication of complex-shaped porous ceramic hardware consisting of separate parts prepared from natural cork. It is demonstrated that the thickness of the carbon-matrix walls can be increased through their impregnation with Bakelite phenolic glue solution followed by pyrolysis. This decreases the material's porosity and can be used as a way to modify its mechanical and thermal characteristics. Both the carbon matrices (resulted from the pyrolysis step) and the resultant SiC ceramics are shown to be pseudomorphous to the structure of initial cork. Depending on the synthesis temperature, 3C-SiC, 6H-SiC, or a mixture of these polytypes, could be obtained. By varying the mass ratio of initial carbon and silicon components, stoichiometric SiC or SiC:C:Si, SiC:C, and SiC:Si ceramics could be produced. The structure, as well as chemical and phase composition of the prepared materials were studied by means of Raman spectroscopy and scanning electron microscopy.

  15. Preparation and microstructure analysis of Fe-doped PbTiO3 ceramic

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Fe-doped PbTiO3 (PT) powder and bulk materials were prepared successfully by sol-gel technique and a subsequent sintering process using Fe (C5H5)2 as a dopant agent.The effects of pH and temperature on the Fe-doped PT system were investigated.Thermogravimetry/differential thermal analysis (TG/DTA),X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to analyze the composition and the microstructure of the PT ceramics.The results indicated that the thermal decomposition ofxerogel included three stages:volatilization of adsorption water and organic composition,oxygenolysis of n-butyl and acetate,and transformation of the crystalline phase.Well-stabilized collosol and gel could be obtained at 60℃ and pH = 4.5.It was found that PbTiO3,PbFe2O4,and TiO2 crystalline appeared in the Fe-doped PT system when the mass fraction of the dopant Fe was 0.03%.Furthermore,from STM analysis,it could be seen that the grain size of doped PT ceramics was homogeneous and about 1-2 μm,and the pore of the PT ceramic was small.As a result,the PT ceramic had high tightness.

  16. Preparation and microwave dielectric properties of Li{sub 3}(Mg{sub 0.92}Zn{sub 0.08}){sub 2}NbO{sub 6}–Ba{sub 3}(VO{sub 4}){sub 2} composite ceramics for LTCC applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tianwen; Zuo, Ruzhong, E-mail: piezolab@hfut.edu.cn; Zhang, Chen

    2015-08-15

    Highlights: • Microwave properties of ϵ{sub r} ∼ 16.3, Q × f ∼ 50,084 GHz and τ{sub f} ∼ 1.5 ppm/°C are achieved. • The τ{sub f} value of the LMZN ceramic can be adjusted to near zero by adding BV. • The LMZN–BV composite ceramic can be well sintered at a relatively low temperature. • The composite ceramic has a good chemical compatibility with Ag electrode. - Abstract: In this work, the (1 − x)Li{sub 3}(Mg{sub 0.92}Zn{sub 0.08}){sub 2}NbO{sub 6}–xBa{sub 3}(VO{sub 4}){sub 2} (x = 0.1–0.35) ceramics were prepared via a conventional solid state reaction route. The phase composition, microstructure and microwave dielectric properties were investigated by an X-ray diffractometer (XRD), a scanning electron microscope and a network analyzer. The XRD results indicated that the Li{sub 3}(Mg{sub 0.92}Zn{sub 0.08}){sub 2}NbO{sub 6} and Ba{sub 3}(VO{sub 4}){sub 2} phases could well coexist without forming any secondary phases. The dielectric constant (ϵ{sub r}) and quality factor (Q × f) values of the Li{sub 3}(Mg{sub 0.92}Zn{sub 0.08}){sub 2}NbO{sub 6} ceramic decreased with the addition of Ba{sub 3}(VO{sub 4}){sub 2} phase, however its temperature coefficient of resonant frequency (τ{sub f}) value was improved significantly. Excellent microwave dielectric properties of ϵ{sub r} ∼ 16.3, Q × f ∼ 50,084 GHz (at 8.64 GHz) and τ{sub f} ∼ 1.5 ppm/°C were achieved for the x = 0.3 sample when sintered at 950 °C for 4 h. The chemical compatibility with Ag electrode indicated that the 0.7Li{sub 3}(Mg{sub 0.92}Zn{sub 0.08}){sub 2}NbO{sub 6}–0.3Ba{sub 3}(VO{sub 4}){sub 2} composite ceramic would be a promising material for the low temperature cofired ceramic applications.

  17. Fracture Behavior of Alumina-based Prismatic Ceramic Composites

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The fracture toughness and fracture work of Al2O3/SiC prismatic ceramic composites was evaluated in this paper, which showed the fracture energy was improved greatly. Based on the observation for crack propagation and fracture morphology, the fracture behavior of the prismatic composites was analyzed. In the bending test, the composites displayed a non-catastrophic behavior and a graceful failure with reasonable load-carrying capability.

  18. High efficiency tantalum-based ceramic composite structures

    Science.gov (United States)

    Stewart, David A. (Inventor); Leiser, Daniel B. (Inventor); DiFiore, Robert R. (Inventor); Katvala, Victor W. (Inventor)

    2010-01-01

    Tantalum-based ceramics are suitable for use in thermal protection systems. These composite structures have high efficiency surfaces (low catalytic efficiency and high emittance), thereby reducing heat flux to a spacecraft during planetary re-entry. These ceramics contain tantalum disilicide, molybdenum disilicide and borosilicate glass. The components are milled, along with a processing aid, then applied to a surface of a porous substrate, such as a fibrous silica or carbon substrate. Following application, the coating is then sintered on the substrate. The composite structure is substantially impervious to hot gas penetration and capable of surviving high heat fluxes at temperatures approaching 3000.degree. F. and above.

  19. A bulk metal/ceramic composite material with a cellular structure

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhankui; YAO Kefu; LI Jingfeng

    2006-01-01

    A bulk metal/ceramic composite material with a honeycomb-like micro-cell structure has been prepared by sintering the spherical Al90Mn9Ce1 alloy powders clad by Al2O3 nano-powder with the spark plasma sintering (SPS) technique. The as-prepared material consists of Al90Mn9Ce1 alloy cell and closed Al2O3 ceramic cell wall. The diameter of the cells is about 20―40 μm, while a thickness of the cell wall is about 1―2 μm. The ultimate compressive strength of the as-sintered materials is about 514 MPa, while its fracture strain is up to about 0.65 %. This composite material might possess good anti-corrosion, thermal endurance and other potential properties due to its unique microstructure. The result shows that the Al90Mn9Ce1/Al2O3 composite powders can be sintered by spark plasma sintering technique despite the large difference in their sintering temperature. This work offers a way of designing and preparing metal/ceramic composite material with functional property.

  20. INTELLIGENT MATERIALS BASED ON CERAMIC COMPOSITES

    OpenAIRE

    Maximov, Y.; Merzlikin, V.; Sidorov, O.; Suttugin, V.

    2010-01-01

    The paper examines the possibility to design intellectual materials based on film composites. Ferroelectric composites are offered to use as the film composites. The authors discuss ferroelectric composites of different structures. Sensors and intellectual materials on the basis of the obtained composites are considered.

  1. PREPARATION OF Al₂O₃-CaAl₁₂O₁₉-ZrO₂ COMPOSITE CERAMIC MATERIAL BY THE HYDRATION AND SINTERING OF Ca₇ZrAl₆O₁₈-REACTIVE ALUMINA MIXTURE

    Directory of Open Access Journals (Sweden)

    Dominika Madej

    2016-03-01

    Full Text Available Ceramic material of composition belonging to the Al₂O₃-CaAl₁₂O₁₉-ZrO₂ compatibility field was obtained as a result of hydration and sintering of the mixture of Al₂O₃ and Ca₇ZrAl₆O₁₈ powders. The hydrated Al₂O₃- Ca₇ZrAl₆O₁₈ mixture products were studied by XRD, DTA-TG-EGA and FT-IR after 14 days of curing and hydration at 50°C. C₃AH₆, Al(OH₃ and CaZrO₃ compounds were formed upon hydration. CaZrO₃ and the lime-rich calcium aluminates formed as transient phases during hydration and dehydration processes were converted to CA6 and ZrO₂ in the presence of an excess of Al₂O₃ during sintering at 1500°C. The Al₂O₃-based dense refractory composite material was investigated by XRD, FT-IR, SEM-EDS and mercury porosimetry. The sintered ceramic microstructure consists of a homogeneous distribution of zirconia grains in an alumina matrix reinforced with the calcium hexaaluminate phase. The presence of Al₂O₃, CaAl₁₂O₁₉ and ZrO₂ in the synthesized material was confirmed by XRD and FT-IR techniques. By applying the mercury intrusion porosimetry technique, the heterogeneous pore size distribution of the refractory composite material was determined.

  2. Formation and corrosion of a 410 SS/ceramic composite

    Science.gov (United States)

    Chen, X.; Ebert, W. L.; Indacochea, J. E.

    2016-11-01

    This study addressed the possible use of alloy/ceramic composite waste forms to immobilize metallic and oxide waste streams generated during the electrochemical reprocessing of spent reactor fuel using a single waste form. A representative composite material was made to evaluate the microstructure and corrosion behavior at alloy/ceramic interfaces by reacting 410 stainless steel with Zr, Mo, and a mixture of lanthanide oxides. Essentially all of the available Zr reacted with lanthanide oxides to generate lanthanide zirconates, which combined with the unreacted lanthanide oxides to form a porous ceramic network that filled with alloy to produce a composite puck. Alloy present in excess of the pore volume of the ceramic generated a metal bead on top of the puck. The alloys in the composite and forming the bead were both mixtures of martensite grains and ferrite grains bearing carbide precipitates; FeCrMo intermetallic phases also precipitated at ferrite grain boundaries within the composite puck. Micrometer-thick regions of ferrite surrounding the carbides were sensitized and corroded preferentially in electrochemical tests. The lanthanide oxides dissolved chemically, but the lanthanide zirconates did not dissolve and are suitable host phases. The presence of oxide phases did not affect corrosion of the neighboring alloy phases.

  3. Coal Fly Ash Ceramics: Preparation, Characterization, and Use in the Hydrolysis of Sucrose

    Directory of Open Access Journals (Sweden)

    Ricardo Pires dos Santos

    2014-01-01

    Full Text Available Coal ash is a byproduct of mineral coal combustion in thermal power plants. This residue is responsible for many environmental problems because it pollutes soil, water, and air. Thus, it is important to find ways to reuse it. In this study, coal fly ash, obtained from the Presidente Médici Thermal Power Plant, was utilized in the preparation of ceramic supports for the immobilization of the enzyme invertase and subsequent hydrolysis of sucrose. Coal fly ash supports were prepared at several compaction pressures (63.66–318.30 MPa and sintered at 1200°C for 4 h. Mineralogical composition (by X-ray diffraction and surface area were studied. The ceramic prepared with 318.30 MPa presented the highest surface area (35 m2/g and amount of immobilized enzyme per g of support (76.6 mg/g. In assays involving sucrose inversion, it showed a high degree of hydrolysis (around 81% even after nine reuses and 30 days’ storage. Therefore, coal fly ash ceramics were demonstrated to be a promising biotechnological alternative as an immobilization support for the hydrolysis of sucrose.

  4. Preparation and characterization of porous Si3N4 ceramics prepared by compression molding and slip casting methods

    Indian Academy of Sciences (India)

    Yu Fangli; Wang Huanrui; Bai Yu; Yang Jianfeng

    2010-10-01

    Porous silicon nitride (Si3N4) ceramics were fabricated by compression molding and slip casting methods using petroleum coke as pore forming agent, and Y2O3–Al2O3 as sintering additives. Microstructure, mechanical properties and gas permeability of porous Si3N4 ceramics were investigated. The mechanical properties and microstructure of porous Si3N4 ceramics prepared by compression molding were better than those which were prepared by slip casting method, whereas slip casting method is suitable for the preparation of porous Si3N4 ceramics with higher porosity and excellent gas permeability.

  5. Alumina ceramics prepared with new pore-forming agents

    Directory of Open Access Journals (Sweden)

    Zuzana Živcová

    2008-06-01

    Full Text Available Porous ceramics have a wide range of applications at all length scales, ranging from fi ltration membranes and catalyst supports to biomaterials (scaffolds for bone ingrowths and thermally or acoustically insulating bulk materials or coating layers. Organic pore-forming agents (PFAs of biological origin can be used to control porosity, pore size and pore shape. This work concerns the characterization and testing of several less common pore-forming agents (lycopodium, coffee, fl our and semolina, poppy seed, which are of potential interest from the viewpoint of size, shape or availability. The performance of these new PFAs is compared to that of starch, which has become a rather popular PFA for ceramics during the last decade. The PFAs investigated in this work are in the size range from 5 μm (rice starch to approximately 1 mm (poppy seed, all with more or less isometric shape. The burnout behavior of PFAs is studied by thermal analysis, i.e. thermogravimetry and differential thermal analysis. For the preparation of porous alumina ceramics from alumina suspensions containing PFAs traditional slip casting (into plaster molds and starch consolidation casting (using metal molds are used in this work. The resulting microstructures are investigated using optical microscopy, combined with image analysis, as well as other methods (Archimedes method of double-weighing in water, mercury intrusion porosimetry.

  6. Self-Assembling, Flexible, Pre-Ceramic Composite Preforms

    Science.gov (United States)

    Jaskowiak, Martha H.; Eckel, Andrew J.; Gorican, Daniel

    2009-01-01

    In this innovation, light weight, high temperature, compact aerospace structures with increased design options are made possible by using self-assembling, flexible, pre-ceramic composite materials. These materials are comprised of either ceramic or carbon fiber performs, which are infiltrated with polymer precursors that convert to ceramics upon thermal exposure. The preform architecture can vary from chopped fibers formed into blankets or felt, to continuous fibers formed into a variety of 2D or 3D weaves or braids. The matrix material can also vary considerably. For demonstration purposes, a 2D carbon weave was infiltrated with a SiC polymer precursor. The green or unfired material is fabricated into its final shape while it is still pliable. It is then folded or rolled into a much more compact shape, which will occupy a smaller space. With this approach, the part remains as one continuous piece, rather than being fabricated as multiple sections, which would require numerous seals for eventual component use. The infiltrated preform can then be deployed in-situ. The component can be assembled into its final shape by taking advantage of the elasticity of the material, which permits the structure to unfold and spring into its final form under its own stored energy. The pre-ceramic composites are converted to ceramics and rigidized immediately after deployment. The final ceramic composite yields a high-temperature, high-strength material suitable for a variety of aerospace structures. The flexibility of the material, combined with its high-temperature structural capacity after rigidization, leads to a less complex component design with an increased temperature range. The collapsibility of these structures allows for larger components to be designed and used, and also offers the potential for increased vehicle performance. For the case of collapsible nozzle extensions, a larger nozzle, and thus a larger nozzle exit plane, is possible because interference with

  7. Preparation of TEM samples for hard ceramic powders.

    Science.gov (United States)

    Xu, Qiang; Kumar, Vikas; de Kruijff, Tom; Jansen, Jacob; Zandbergen, Henny W

    2008-12-01

    It is challenging to prepare a good sample for high-resolution electron microscopy of polycrystalline ceramic powders containing hard particles or particles with a strong preferential cleavage. Here we demonstrate that embedding the particles in a Cu matrix in a pressed pellet allows for straightforward conventional ion milling. The method is applied to powders of Mg10Ir19B16 and Na0.5CoO2 to show its feasibility, whereby transmission electron microscopy (TEM) samples with crystalline areas thinner than 10 nm can be obtained easily. PMID:18722061

  8. Preparation of TEM samples for hard ceramic powders

    International Nuclear Information System (INIS)

    It is challenging to prepare a good sample for high-resolution electron microscopy of polycrystalline ceramic powders containing hard particles or particles with a strong preferential cleavage. Here we demonstrate that embedding the particles in a Cu matrix in a pressed pellet allows for straightforward conventional ion milling. The method is applied to powders of Mg10Ir19B16 and Na0.5CoO2 to show its feasibility, whereby transmission electron microscopy (TEM) samples with crystalline areas thinner than 10 nm can be obtained easily.

  9. Preparation of TEM samples for hard ceramic powders

    Energy Technology Data Exchange (ETDEWEB)

    Xu Qiang [National Centre for HREM, Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Lorentzweg 1, Delft (Netherlands)], E-mail: q.xu@tudelft.nl; Kumar, Vikas [National Centre for HREM, Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Lorentzweg 1, Delft (Netherlands)], E-mail: V.Kumar@tudelft.nl; Kruijff, Tom de [National Centre for HREM, Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Lorentzweg 1, Delft (Netherlands)], E-mail: t.r.dekruijff@tudelft.nl; Jansen, Jacob [National Centre for HREM, Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Lorentzweg 1, Delft (Netherlands)], E-mail: joukj@hrem.nano.tudelft.nl; Zandbergen, Henny W. [National Centre for HREM, Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Lorentzweg 1, Delft (Netherlands)], E-mail: h.w.zandbergen@tudelft.nl

    2008-12-15

    It is challenging to prepare a good sample for high-resolution electron microscopy of polycrystalline ceramic powders containing hard particles or particles with a strong preferential cleavage. Here we demonstrate that embedding the particles in a Cu matrix in a pressed pellet allows for straightforward conventional ion milling. The method is applied to powders of Mg{sub 10}Ir{sub 19}B{sub 16} and Na{sub 0.5}CoO{sub 2} to show its feasibility, whereby transmission electron microscopy (TEM) samples with crystalline areas thinner than 10 nm can be obtained easily.

  10. Assessment of damage in ceramics and ceramic matrix composites using ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Rokhlin, S.I.; Chu, Y.C. [Ohio State Univ., Columbus, OH (United States). Dept. of Welding Engineering; Baaklini, G.Y. [NASA Lewis Research Center, Cleveland, OH (United States)

    1995-07-01

    This paper addresses the application of ultrasonic methods to damage assessment in ceramics and ceramic matrix composites. It focuses on damage caused by thermal shock and oxidation at elevated temperatures. The damage-induced changes in elastic constant and elastic anisotropy are determined by measuring the velocities of ultrasonic waves in different propagation directions within the sample. Thermal shock damage measurement is performed in ceramic samples of reaction bonded silicon nitride (RBSN) and aluminum oxide. Thermal shock treatment from different temperatures up to 1,000 C is applied to produce the microcracks. Both surface and bulk ultrasonic wave methods are used to correlate the change of elastic constants to microstructural degradation and to determine the change in elastic anisotropy induced by microcrack damage. Oxidation damage is studied in silicon carbide fiber/reaction bonded silicon nitride matrix (SCS-6/RBSN) composites. The oxidation is done by exposing the samples in a flowing oxygen environment at elevated temperatures, up to 1,400 C, for 100 hours. Significant changes of ultrasonic velocities were observed for composites before and after oxidation. The elastic constants of the composites were determined from the measured velocity data. The Young`s modulus in the fiber direction as obtained from ultrasonic measurements decreases significantly at 600 C but retains its original value at temperatures above 1,200 C. This agrees well with the results of destructive tests by other authors. The transverse longitudinal and shear moduli obtained from ultrasonic measurements decrease continually until 1,200 C. The results of this work show that the damage-induced anisotropy in both ceramics and ceramic matrix composites can be determined successfully by ultrasonic methods. This suggests the possibility of assessing damage severity using ultrasonic techniques.

  11. Preparation of BN/SiO2 ceramics by PIP method

    Institute of Scientific and Technical Information of China (English)

    WANG Jing; WEN Guang-wu; MENG Qing-chang

    2005-01-01

    The precursor infiltration and pyrolysis(PIP) method for preparation of BN/SiO2 composites was used to improve mechanical properties, dielectric properties and feasibility of high temperature dielectric parts with large dimensions and complex shapes. In the processing procedure, the porous BN ceramic matrix was first successfully prepared by compacting the mixed powders of B and BN and then sintering them at a certain temperature under normal pressure of N2.The polycarbosilane(PCS) solution was vacuum infiltrated into porous BN ceramics at the room temperature and then at 800 ℃ in the air to depolimerize out amorphous SiO2, and sintered further at 1 300 ℃ in N2 to get BN/SiO2 composites. The microstructure of materials was studied by means of X-ray diffraction and electron probe micro analysis. The thermo-decomposition mechanism of PCS was investigated by a TG-DTA and infrared (IR) spectrum analysis. The flexural strengths were measured by the three-point bending method. The dielectric constant and the loss tangent were measured by the wave-guide method. The results show BN/SiO2 composites were fabricated. The obtained composites posses a flexural strength of 61.9693.31 MPa, the dielectric constant in the range of 3.503.78 and the order of magnitude of the loss tangent at 10-3, which are good for the high temperature dielectric parts with large size and complex shapes.

  12. Recent advances in the field of ceramic fibers and ceramic matrix composites

    Science.gov (United States)

    Naslain, R.

    2005-03-01

    Progress achieved during the last decade in the field of ceramic fibers and related ceramic matrix composites is reviewed. Both SiC-based and alumina-based fine fibers have been improved in terms of thermal stability and creep resistance with temperature limit of about 1400 and 1200 ° C, respectively. Two concepts for achieving damage-tolerant ceramic matrix composites have been identified : (i) that of non-oxide composites with a dense matrix in which matrix cracks formed under load are deflected and arrested in a weak fiber coating referred to as the interphase and (ii) that of all-oxide composites with a highly porous matrix with no need of any fiber coating. The lifetime under load of non-oxide composites in oxidizing atmospheres, is improved through the use of multilayered self-healing interphases and matrices deposited from gaseous precursors by chemical vapor infiltration (CVI). Lifetime ranging from 1000 to 10,000 hours at 1200 ° C under cyclic loading in air are foreseen. Alumina-based composites although attractive for long term exposures in oxidizing atmospheres up to ≈1200 ° C, are still experimental materials.

  13. Influence of Composite Phosphate Inorganic Antibacterial Materials Containing Rare Earth on Activated Water Property of Ceramics

    Institute of Scientific and Technical Information of China (English)

    梁金生; 梁广川; 祁洪飞; 吴子钊; 冀志江; 金宗哲

    2004-01-01

    Antibacterial ceramic was prepared by doping enamel slurry with composite phosphate inorganic antibacterial materials containing rare earth (inorganic antibacterial additives), and then the mechanisms for activating water and improving seed germinative property were tested by nuclear magnetic resonance (NMR) and the method of testing oxygen dissolved in activated water. Results show that the half peak width of 17O-NMR for tap water activated by the antibacterial ceramic drops from 115.36 to 99.15 Hz, and oxygen concentrations of activated water increase by 20%, germinate rate of horsebean and earthnut seeds increases by 12.5% and 7.5%, respectively. Therefore antibacterial ceramic doped enamel slurry with inorganic antibacterial additives containing rare earth can reduce the volume of clusters of water molecules, improve activation of tap water, and promote plant seeds germinate.

  14. Fatigue and frictional heating in ceramic matrix composites

    DEFF Research Database (Denmark)

    Jacobsen, T.K.; Sørensen, B.F.; Brøndsted, P.

    1997-01-01

    This paper describes an experimental technique for monitoring the damage evolution in ceramic matrix composites during cyclic testing. The damage is related to heat dissipation, which may be measured as radiated heat from the surface of the test specimen. In the present experimental set-up an iso...

  15. Composite definition features using the eastern ornament in ceramic tiles

    OpenAIRE

    Uss, V. F.; National Aviation University, Kyiv, Ukraine; Sahno, K. S.; National Aviation University, Kyiv

    2013-01-01

    This paper was asked a series of questions for the study of composition of the artistic shaping of ceramic tile with oriental ornaments and how to use in interior design. Particular attention is paid to individual elements of ornament and use them in areas such as kitchens, bathrooms, hookah area, cafe and more.

  16. Rapid Prototyping of Continuous Fiber Reinforced Ceramic Matrix Composites

    Science.gov (United States)

    Vaidyanathan, R.; Green, C.; Phillips, T.; Cipriani, R.; Yarlagadda, S.; Gillespie, J. W., Jr.; Effinger, M.; Cooper, K. C.

    2003-01-01

    For ceramics to be used as structural components in high temperature applications, their fracture toughness is improved by embedding continuous ceramic fibers. Ceramic matrix composite (CMC) materials allow increasing the overall operating temperature, raising the temperature safety margins, avoiding the need for cooling, and improving the damping capacity, while reducing the weight at the same time. They also need to be reliable and available in large quantities as well. In this paper, an innovative rapid prototyping technique to fabricate continuous fiber reinforced ceramic matrix composites is described. The process is simple, robust and will be widely applicable to a number of high temperature material systems. This technique was originally developed at the University of Delaware Center for Composite Materials (UD-CCM) for rapid fabrication of polymer matrix composites by a technique called automated tow placement or ATP. The results of mechanical properties and microstructural characterization are presented, together with examples of complex shapes and parts. It is believed that the process will be able to create complex shaped parts at an order of magnitude lower cost than current chemical vapor infiltration (CVI) and polymer impregnation and pyrolysis (PIP) processes.

  17. Testing and Characterizing of Continuous Fiber Ceramic Composites

    Science.gov (United States)

    Lowden, Richard M.; Moore, Karren L.; Tortorelli, Pete F.; Lara-Curzio, Edgar

    1996-01-01

    Understanding interfacial microstructural evolution during environmental testing and use is critical to the development of stable continuous fiber ceramic composites (CFCC's) for their use in 'corrosive' environments. The use of advanced characterization techniques is required to track subtle microstructural changes. These techniques must be coordinated with other CFCC tasks to completely evaluate their interfacial behavior.

  18. Preparation of Zeolite X Membranes on Porous Ceramic Substrates with Zeolite Seeds

    Institute of Scientific and Technical Information of China (English)

    Zhongqiang Xu; Qingling Chen; Guanzhong Lu

    2002-01-01

    Zeolite X membranes were investigated by in-situ hydrothermal synthesis on porous ceramic tubes precoated with zeolite X seeds or precursor amorphous aluminosilicate, and porous α-Al2O3 ceramic tubes with a pore size of 50 200 nm were employed as supports. Zeolite X crystals were synthesized by the classic method and mixed into deionized water as a slurry with a concentration of 0.2 0.5wt%, having a range of crystal sizes from 0.2 to 2μm. Crystal seeds were pressed into the pores near the inner surface of the ceramic tubes, and crystallization took place at 95℃ for 24-96 h. It was also investigated that Boehmite sol added with zeolite X seeds was precoated on ceramic supports to form a layer of γ-Al2O3 by heating, and hydrothermal crystallization could then take place to prepare the zeolite membranes on the composite ceramic tubes. The crystal species were characterized by XRD, and the morphology of the supports subjected to crystallization was characterized by SEM. The composite zeolite membranes have zeolitic top-layers with a thickness of 10-25 μm, and zeolite crystals can be intruded into pores of the supports as deeply as 100μm. The experimental results indicate that the precoating of zeolitic seeds on supports is beneficial to crystallization by shortening the synthesis time and improving the membrane strength. The resulting zeolite X membrane shows permselectivity to tri-n-butylamine((C4H9)3N) over perfluro-tributyl-amine ((C4Fg)3N), and a permeance ratio of 57 for ((C4Hg)3N to (C4F9)3N could be reached at 350℃. Permeances of BZ, EB and TIPB through the zeolite membrane were also measured and were found to slightly increase with temperature.

  19. Preparation of Neodymium-Doped Yttrium Aluminum Garnet Transparent Ceramics by Homogeneous Precipitation Method

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Neodymium doped-yttrium aluminum garnet (Nd: YAG) transparent polycrystalline ceramics already become substitutes of single crystals because they are provided with easy fabrication, low cost, large size, highly doped concentration, high heat conductivity, mass fabrication, multi-layers and multi-functions. The Nd: YAG precursor powders with loosely dispersed, slightly agglomerated, super fine and YAG cubic crystal phase were synthesized at 1100 ℃ by the hocal stabilizer, TEOS as sintering additive. The Nd:YAG transparent ceramics were prepared after being vacuum sintered at 1700 ℃ for 5 h. The Nd:YAG ceramic materials were characterized by the TG-DTA, XRD, FT-IR, TEM, FEG-ESEM and FT-PL. The results show that the crystallization temperature of YAG is 850 ℃ and the intermediate crystal phase YAP forming during the heat treatment transforms to YAG cubic crystal phase at 1050 ℃. The lasing wavelength of (Nd0.01Y0.99)3Al5O12 transparent ceramics is 1.065 μm and there exists a slight red-shift compared to the single crystal with the same chemical composition. The optical transmittance is 45% in the visible light and 58% in the near infrared light and the optical transmittance descends with the decreasing the wavelength.

  20. Silicone Resin Applications for Ceramic Precursors and Composites

    Directory of Open Access Journals (Sweden)

    Masaki Narisawa

    2010-06-01

    Full Text Available This article reviews the applications of silicone resins as ceramic precursors. The historical background of silicone synthesis chemistry is introduced to explain the production costs and supply availability of various silicones. Thermal degradation processes of silicones are classified in terms of the main chain structure and cyclic oligomer expulsion process, which determine the resulting ceramic yield and the chemical composition. The high temperature decomposition of Si-O-C beyond 1,400 °C in an inert atmosphere and formation of a protective silica layer on material surfaces beyond 1,200 °C in an oxidative atmosphere are discussed from the viewpoints of the wide chemical composition of the Si-O-C materials. Applications of the resins for binding agents, as starting materials for porous ceramics, matrix sources with impregnation, fiber spinning and ceramic adhesions are introduced. The recent development of the process of filler or cross-linking agent additions to resin compounds is also introduced. Such resin compounds are useful for obtaining thick coatings, MEMS parts and bulk ceramics, which are difficult to obtain by pyrolysis of simple organometallic precursors without additives.

  1. Experimental Investigation on Active Cooling for Ceramic Matrix Composite

    Institute of Scientific and Technical Information of China (English)

    PENG Li-na; HE Guo-qiang; LIU Pei-jin

    2009-01-01

    Compared with conventional materials, the active cooling ceramic matrix composite used in ramjet or scramjet makes their structures lighter in mass and better in performance. In this paper, an active and a passive cooling refractory composite specimens are designed and tested with an experimental facility composed of multilayer smale scale cooling penel which consists of a water cooling system and a ceramic matrix composite specimen, and a gas generator used for providing lower and higher transfer rate gases to simulate the temperatures in combustion chamber of ramjst. The active cooling specimen can continuously suffer high surface temperature of 2 000K for 30s and that of 3 000 K for 9.3 s, respectively. The experiment results show that the active cooling composite structure is available for high-temperature condition in ramjet.

  2. Calculation of thermal stresses in glass-ceramic composites

    OpenAIRE

    Ganghoffer, Jean-François

    2015-01-01

    Opto-electronics make intensive use of composite materials based on amorphous materials, which can be considered as smart materials since they are capable of high performances in their final state. Particularly, glass-ceramic composites involved in welding operations for microelectronics applications are subjected to important thermal stresses during their production, which can deteriorate their properties at room temperature, until the failure stage is reached. It is then essential to be abl...

  3. Parametric Study Of A Ceramic-Fiber/Metal-Matrix Composite

    Science.gov (United States)

    Murthy, P. L. N.; Hopkins, D. A.; Chamis, C. C.

    1992-01-01

    Report describes computer-model parametric study of effects of degradation of constituent materials upon mechanical properties of ceramic-fiber/metal-matrix composite material. Contributes to understanding of weakening effects of large changes in temperature and mechanical stresses in fabrication and use. Concerned mainly with influences of in situ fiber and matrix properties upon behavior of composite. Particular attention given to influence of in situ matrix strength and influence of interphase degradation.

  4. Processing and Material Characterization of Continuous Basalt Fiber Reinforced Ceramic Matrix Composites Using Polymer Derived Ceramics.

    Science.gov (United States)

    Cox, Sarah B.

    2014-01-01

    The need for high performance vehicles in the aerospace industry requires materials which can withstand high loads and high temperatures. New developments in launch pads and infrastructure must also be made to handle this intense environment with lightweight, reusable, structural materials. By using more functional materials, better performance can be seen in the launch environment, and launch vehicle designs which have not been previously used can be considered. The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer matrix composites can be used for temperatures up to 260C. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in the composites. In this study, continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. The oxyacetylene torch testing and three point bend testing have been performed on test panels and the test results are presented.

  5. Oxidation-resistant interfacial coatings for continuous fiber ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.; Besmann, T.M.; Bleier, A. [Oak Ridge National Lab., TN (United States); Shanmugham, S.; Liaw, P.K. [Univ. of Tennessee, Knoxville, TN (United States)

    1995-08-01

    Continuous fiber ceramic composites mechanical behavior are influenced by the bonding characteristics between the fiber and the matrix. Finite modeling studies suggest that a low-modulus interfacial coating material will be effective in reducing the residual thermal stresses that are generated upon cooling from processing temperatures. Nicalon{trademark}/SiC composites with carbon, alumina and mullite interfacial coatings were fabricated with the SiC matrix deposited using a forced-flow, thermal gradient chemical vapor infiltration process. Composites with mullite interfacial coatings exhibited considerable fiber pull-out even after oxidation and have potential as a composite system.

  6. Combustion Synthesis of h-BN-SiC Ceramic Composites

    Institute of Scientific and Technical Information of China (English)

    LI Hong-bo; ZHENG Yong-ting; ZHOU Li-juan; HAN Jie-cai

    2006-01-01

    The feasibility was demonstrated to fabricate h-BN-SiC ceramics through combustion synthesis of the mixture of boron carbide and silicon powders under 100 MPa nitrogen pressure. The mass fraction of BN and SiC in the combustion products were found to be 72 % and 28 % respectively. The thermodynamics of the synthesis reaction and the adiabatic combustion temperature were calculated on the theoretical ground. The bending strengths of the ceramics were measured to be 65.2 MPa at room temperature and 55 MPa at 1350 ℃. The phase composition and microstructure of the combustion products were identified by X-ray diffraction (XRD) and scanning electron microscopy (SEM).

  7. Ceramic nanotubes for polymer composites with stable anticorrosion properties

    Science.gov (United States)

    Fakhrullin, R. F.; Tursunbayeva, A.; Portnov, V. S.; L'vov, Yu. M.

    2014-12-01

    The use of natural halloysite clay tubes 50 nm in diameter as nanocontainers for loading, storing, and slowly releasing organic corrosion inhibitors is described. Loaded nanotubes can be mixed well with many polymers and dyes in amounts of 5-10 wt % to form a ceramic framework (which increases the strength of halloysite composites by 30-50%), increase the adhesion of these coatings to metals, and allow for the slow release of corrosion inhibitors in defects of coatings. A significant improvement of protective anticorrosion properties of polyacryl and polyurethane coatings containing ceramic nanotubes loaded with benzotriazole and hydroxyquinoline is demonstrated.

  8. Phase composition of murataite ceramics for excess weapons plutonium immobilization

    Science.gov (United States)

    Sobolev, I. A.; Stefanovsky, S. V.; Myasoedov, B. F.; Kullako, Y. M.; Yudintsev, S. V.

    2000-07-01

    Among the host phases for actinides immobilization, murataite (cubic, space group Fm3m) with the general formula A4B2C7O22-x (A=Ca, Mn, Na, Ln, An; B=Mn, Ti, Zr, AnIV; C=Ti, Al, Fe; 0ceramics in detail has shown occurrence of several murataite varieties with three-, five-, and eight-fold fluorite unit cells. [1-3] The goal of the present step of work is to study an effect of waste elements on phase composition of murataite ceramic and isomorphic capacity of waste elements.

  9. Current Issues with Environmental Barrier Coatings for Ceramics and Ceramic Composites

    Science.gov (United States)

    Lee, Kang N.

    2004-01-01

    The environmental barrier coating (EBC) for SiC/SiC ceramic matrix composites and Si3N4 ceramics is an emerging field as the application of silicon-based ceramics in the gas turbine engine hot section is on the horizon, both for aero and industrial gas turbines. EBC is an enabling technology for silicon-based ceramics because these materials without an EBC cannot be used in combustion environments due to rapid surface recession. Significant progress in EBC development has been made during the last decade through various government-sponsored programs. Current EBCs are based on silicon, mullite (3Al2O3-2SiO2) and BSAS (barium strontium aluminum silicate with celsian structure). Volatility of BSAS, BSAS-silica chemical reaction, and low melting point of silicon limit temperature capability of current EBCs to about 1350 C for long-term applications. There is a need for higher temperature EBCs as the temperature capability of silicon-based ceramics continue to increase. Therefore, research is underway to develop EBCs with improved temperature capability compared to current EBCs. The current status and issues with the advanced EBC development efforts will be discussed.

  10. Preparation of plutonium-bearing ceramics via mechanically activated precursor

    Science.gov (United States)

    Chizhevskaya, S. V.; Stefanovsky, S. V.

    2000-07-01

    The problem of excess weapons plutonium disposition is suggested to be solved by means of its incorporation in stable ceramics with high chemical durability and radiation resistivity. The most promising host phases for plutonium as well as uranium and neutron poisons (gadolinium, hafnium) are zirconolite, pyrochlore, zircon, zirconia [1,2], and murataite [3]. Their production requires high temperatures and a fine-grained homogeneous precursor to reach final waste form with high quality and low leachability. Currently various routes to homogeneous products preparation such as sol-gel technology, wet-milling, and grinding in a ball or planetary mill are used. The best result demonstrates sol-gel technology but this route is very complicated. An alternative technology for preparation of ceramic precursors is the treatment of the oxide batch with high mechanical energy [4]. Such a treatment produces combination of mechanical (fine milling with formation of various defects, homogenization) and chemical (split bonds with formation of active centers—free radicals, ion-radicals, etc.) effects resulting in higher reactivity of the activated batch.

  11. The effect of various primers on shear bond strength of zirconia ceramic and resin composite

    Directory of Open Access Journals (Sweden)

    Sasiwimol Sanohkan

    2013-01-01

    Full Text Available Aims: To determine the in vitro shear bond strengths (SBS of zirconia ceramic to resin composite after various primer treatments. Materials and Methods: Forty zirconia ceramic (Zeno, Wieland Dental specimens (10 mm in diameter and 2 mm thick were prepared, sandblasted with 50 μm alumina, and divided into four groups (n = 10. Three experimental groups were surface treated with three primers; CP (RelyX Ceramic Primer, 3M ESPE, AP (Alloy Primer, Kuraray Medical, and MP (Monobond Plus, Ivoclar Vivadent AG. One group was not treated and served as the control. All specimens were bonded to a resin composite (Filtek Supreme XT, 3M ESPE cylinder with an adhesive system (Adper Scotchbond Multi-Purpose Plus Adhesive, 3M ESPE and then stored in 100% humidity at 37°C for 24 h before SBS testing in a universal testing machine. Mean SBS (MPa were analyzed with one-way analysis of variance (ANOVA and the Tukey′s Honestly Significant Difference (HSD test (α = 0.05. Results: Group AP yielded the highest mean and standard deviation (SD value of SBS (16.8 ± 2.5 MPa and Group C presented the lowest mean and SD value (15.4 ± 1.6 MPa. The SBS did not differ significantly among the groups (P = 0.079. Conclusions: Within the limitations of this study, the SBS values between zirconia ceramic to resin composite using various primers and untreated surface were not significantly different.

  12. Dielectric, Electromagnetic Interference Shielding and Absorption Properties of Si3N4-PyC Composite Ceramics

    Institute of Scientific and Technical Information of China (English)

    Xuan Hao; Xiaowei Yin; Litong Zhang; Laifei Cheng

    2013-01-01

    Pyrolytic carbon (PyC) was infiltrated into silicon nitride (Si3N4) ceramics by precursor infiltration and pyrolysis (PIP) of phenolic resin,and Ni nanoparticles were added into the phenolic resin to change the electric conductivity of Si3N4-PyC composite ceramics.Dielectric permittivity,electromagnetic interference (EMI)shielding and absorption properties of Si3N4-PγC composite ceramics were studied as a function of Ni content at 8.2-12.4 GHz (X-band).When Ni nanoparticles were added into phenolic resin,the electric conductivity of the prepared composite ceramics decreased with increasing Ni content,which was attributed to the decrease of graphitization degree of PyC.The decrease in electric conductivity led to the decrease in both permittivity and EMI shielding effectiveness.Since too high permittivity is harmful to the impendence match and results in the strong reflection,the electromagnetic wave absorption property of Si3N4-PyC composite ceramics increases with increasing Ni content.When the content of Ni nanoparticles added into phenolic resin was 2 wt%,the composite ceramics possessed the lowest electric conductivity and displayed the most excellent absorption property with a minimum reflection loss as low as-28.9 dB.

  13. Broadband dielectric response of AlN ceramic composites

    Directory of Open Access Journals (Sweden)

    Iryna V. Brodnikovska

    2014-03-01

    Full Text Available Aluminium nitride (AlN is considered as a substrate material for microelectronic applications. AlN ceramic composites with different amount of TiO2 (up to 4 vol.% were obtained using hot pressing at different sintering temperature from 1700 to 1900 °C. It was shown that milling of the raw AlN powder has strongly influence on sintering and improves densification. Broadband dielectric spectroscopy was used as a nondestructive method for monitoring of the ceramic microstructures. TiO2 additive affects the key properties of AlN ceramics. Thus, porosity of 0.1 %, dielectric permeability of σ = 9.7 and dielectric loss tangent of tanδ = 1.3·10-3 can be achieved if up to 2 vol.% TiO2 is added.

  14. Assessment of damage in ceramics and ceramic matrix composites using ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Y.C.; Baaklini, G.Y.; Rokhlin, S.I.

    1993-05-01

    This paper addresses the application of ultrasonic sensing to damage assessment in ceramics and ceramic matrix composites. It focuses on damage caused by thermal shock or oxidation at elevated temperatures, which often results in elastic anisotropy. This damaged-induced anisotropy is determined by measuring the velocities of ultrasonic waves in different propagation directions. Thermal shock damage is assessed in ceramic samples of reaction bonded silicon nitride (RBSN). Thermal shock treatment from different temperatures up to 1000 C is applied to produce the microcracks. Results indicate that most microcracks produced by thermal shock are located near sample surfaces. Ultrasonic measurements using the surface wave method are found to correlate well with measurements of degradation of mechanical properties obtained independently by other authors using destructive methods. Oxidation damage is assessed in silicon carbide fiber/reaction bonded silicon nitride matrix (SCS-6/RBSN) composites. The oxidation is done by exposing the samples in a flowing oxygen environment at elevated temperatures, up to 1400 C, for 100 hr. The Youngs' modulus in the fiber direction as obtained from ultrasonic measurements decreases significantly at 600 C but retains its original value at temperatures above 1200 C. This agrees well with the results of destructive tests by other authors. On the other hand, the transverse moduli obtained from ultrasonic measurements decrease continually until 1200 C. Measurements on the shear stiffnesses show behavior similar to the transverse moduli. The results of this work show that the damage-induced anisotropy in both ceramics and ceramic matrix composites can be determined successfully by ultrasonic methods. This suggests the possibility of assessing damage severity using ultrasonic techniques.

  15. Assessment of damage in ceramics and ceramic matrix composites using ultrasonic techniques

    Science.gov (United States)

    Chu, Y. C.; Baaklini, G. Y.; Rokhlin, S.I.

    1993-01-01

    This paper addresses the application of ultrasonic sensing to damage assessment in ceramics and ceramic matrix composites. It focuses on damage caused by thermal shock or oxidation at elevated temperatures, which often results in elastic anisotropy. This damaged-induced anisotropy is determined by measuring the velocities of ultrasonic waves in different propagation directions. Thermal shock damage is assessed in ceramic samples of reaction bonded silicon nitride (RBSN). Thermal shock treatment from different temperatures up to 1000 C is applied to produce the microcracks. Results indicate that most microcracks produced by thermal shock are located near sample surfaces. Ultrasonic measurements using the surface wave method are found to correlate well with measurements of degradation of mechanical properties obtained independently by other authors using destructive methods. Oxidation damage is assessed in silicon carbide fiber/reaction bonded silicon nitride matrix (SCS-6/RBSN) composites. The oxidation is done by exposing the samples in a flowing oxygen environment at elevated temperatures, up to 1400 C, for 100 hr. The Youngs' modulus in the fiber direction as obtained from ultrasonic measurements decreases significantly at 600 C but retains its original value at temperatures above 1200 C. This agrees well with the results of destructive tests by other authors. On the other hand, the transverse moduli obtained from ultrasonic measurements decrease continually until 1200 C. Measurements on the shear stiffnesses show behavior similar to the transverse moduli. The results of this work show that the damage-induced anisotropy in both ceramics and ceramic matrix composites can be determined successfully by ultrasonic methods. This suggests the possibility of assessing damage severity using ultrasonic techniques.

  16. Investigation of properties and performance of ceramic composite components. Final report on Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Curtin, W.A.; Reifsnider, K.L.; Oleksuk, L.L.S.; Stinchcomb, W.W. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)

    1994-10-31

    The purpose of Phase 2 of the Investigation of Properties and Performance of Ceramic Composite Components has been to build on and extend the work completed during Phase 1 to further advance the transition from properties of ceramic composite materials to performance of ceramic composite components used in fossil energy environments. The specific tasks of Phase 2 were: (1) develop and validate reliable and accurate high temperature, biaxial mechanical tests methods for structural ceramic composite components; (2) test and evaluate ceramic composite components, specifically tubes; (3) characterize long-term, mechanical performance of ceramic composite tubes at high temperatures; (4) develop a fundamental understanding of the mechanical degradation and performance limitations of ceramic composite components under service conditions; (5) develop predictive models for damage tolerance and reliability; and (6) relate component performance to microstructure and, thereby, provide feedback to the associated process-development effort, to improve performance. Accomplishments for each task are given.

  17. Dielectric properties of the BaTi0.85Zr 0.15O3 ceramics prepared by different techniques

    Directory of Open Access Journals (Sweden)

    Lavinia Petronela Curecheriu

    2008-12-01

    Full Text Available Three different processing routes, i.e. the classical solid state reaction technique the sol-precipitation method and the oxalate route, were employed for preparing BaTi0.85Zr0.15O3 ceramics. The dielectric properties of these ceramics are comparatively analyzed. The obtained results show that the dielectric properties of these ceramics, even having the same composition, are highly sensitive to the preparation route, causing differences in the microstructures and in the local electrical inhomogeneity, thus, causing complicated dielectric relaxation phenomena.

  18. Processing–structure–property relations of chemically bonded phosphate ceramic composites

    Indian Academy of Sciences (India)

    H A Colorado; C Hiel; H T Hahn

    2011-07-01

    Mechanical properties and microstructures of a chemically bonded phosphate ceramic (CBPC) and its composite with 1.0 wt% graphite nanoplatelets (GNPs) reinforcement have been investigated. Microstructure was identified by using optical and scanning electron microscopes, X-ray tomography, and X-ray diffraction. In addition, weight loss of the resin at room temperature was studied. The microstructure characterization shows that CBPC is itself a composite with several crystalline (wollastonite and brushite) and amorphous phases. SEM and micro tomography show a homogeneous distribution of crystalline phases. Bending and compression strength of the CBPC was improved by reducing bubbles via preparation in vacuum.

  19. Development of ceramic composites from mixture of alumina and ceramic precursor polymer poly (silsesquioxane))

    International Nuclear Information System (INIS)

    Processing of ceramics materials, by polymer precursors pyrolysis, has been intensively researched over the past decades, due to advantages that this path provides, such as: lower temperature process compared to conventional techniques; structure control at molecular level; synthesis possibility of a wide range of ceramic compounds; obtaining parts with dimensions of the final product etc. The active filler controlled polymer pyrolysis (AFCOP) process, enables the synthesis of ceramic composites, by reaction between added filler (oxides, metals, intermetallic etc.) and solid and gaseous products, from polymer decomposition. In this study, based on this process, samples of alumina, with addition of 10 and 20 mass% of poly silsesquioxane polymer precursor, were manufactured. These samples were pyrolyzed at 900 degree C and thermal treated at temperatures of 1100, 1300 and 1500 degree C. The samples were characterized for bulk density, porosity and hardness, after each stage of thermal treatment. Structural transformations were analyzed by X-ray diffraction, scanning electron microscopy and infrared spectroscopy. Samples treated until 1300 degree C resulted in composites of alumina and silicon oxycarbide, while those treated at 1500 degree C, formed composites of mullite and alumina. The samples with 20% of polymer added started to density around 800 degree C and high retraction rate was observed at 1400 degree C. (author)

  20. Ultra high strain properties of lanthanum substituted PZT electro-ceramics prepared via mechanical activation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ajeet, E-mail: jkajeet@yahoo.co.in [Ceramics and Composites Group, Defence Metallurgical Research Laboratory, Hyderabad 500058 (India); School of Physics, University of Hyderabad, Hyderabad 500046 (India); Bhanu Prasad, V.V., E-mail: bhanu@dmrl.drdo.in [Ceramics and Composites Group, Defence Metallurgical Research Laboratory, Hyderabad 500058 (India); James Raju, K.C., E-mail: kcjrsp@yahoo.com [School of Physics, University of Hyderabad, Hyderabad 500046 (India); James, A.R., E-mail: james@dmrl.drdo.in [Ceramics and Composites Group, Defence Metallurgical Research Laboratory, Hyderabad 500058 (India)

    2014-06-25

    Highlights: • PLZT comparable with PMN–PT and their hot-pressed counterparts synthesized. • HEM applied for ceramic preparation at reduced sintering temperature. • Strain value (0.27%) comparable to previous reported values for PLZT 8/60/40. • The electric field induced (strain) hysteresis loss was also found to be very less. - Abstract: Substitution of lanthanum at the A sites of perovskite lead zirconate titanate ceramics shows an improvement in the structural and electrical properties. (Pb{sub 0.92}La{sub 0.08})(Zr{sub 0.60}Ti{sub 0.40})O{sub 3} (PLZT 8/60/40) was prepared using high energy mechano-chemical milling. The effect of milling on the microstructure and electrical properties of PLZT 8/60/40 has been studied. X-ray diffraction shows the phase formation after milling itself. TEM was used to measure the particle size. The SEM image of the sintered pellet shows a dense microstructure and the average grain size was found to be <1.5 μm. Electrical properties of the ceramics were characterized. Piezoelectric charge coefficient (d{sub 33}) was found to be 561 pC/N. Resonance studies were performed on poled ceramics and the electromechanical coupling factor was calculated by the resonance method. The PLZT 8/60/40 composition showed a well saturated and uniform P–E hysteresis loop with remanent polarization (P{sub r}) of 33.29 μC/cm{sup 2} and a coercive field (E{sub c}) of 10.57 kV/cm. Electric field induced strain (S–E loop) shows a value of ∼0.27% with minimum loss.

  1. Effect of sintering atmosphere on composition and properties of NiFe2O4 ceramic

    Institute of Scientific and Technical Information of China (English)

    田忠良; 张腾; 刘恺; 赖延清; 李劼

    2015-01-01

    NiFe2O4 ceramics were prepared in different sintering atmospheres. The phase compositions, microstructures and mechanical properties were studied. The results show that the stoichiometric compound NiFe2O4 cannot be obtained in vacuum or atmospheres with oxygen contents of 2×10−5, 2×10−4 and 2×10−3, respectively. All the samples sintered in above-mentioned atmospheres contain phases of NiFe2O4 and NiO. With increasing oxygen content, NiFe2O4 content in the ceramic increases, while NiO content appears a contrary trend. In vacuum, NiFe2O4 ceramic has average grain size of 3.94μm, and bending strength of 85.12 MPa. The changes of the phase composition and mechanical properties of NiFe2O4 based cermets are mainly caused by the alteration of their properties of NiFe2O4 ceramic.

  2. NANOSTRUCTURED CERAMICS AND COMPOSITES FOR REFRACTORY APPLICATIONS IN COAL GASIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Paul Brown

    2005-01-31

    A class of ceramics, capable of exhibiting low coefficients of thermal expansion and catalytic properties was investigated. Investigations were directed towards nanoengineering of NZP ceramics and NZP-based composites by chemical means by controlling their compositions and processing variables. NaZr{sub 2}(PO{sub 4}){sub 3} (NZP) was synthesized by combining water-soluble precursors leading to the precipitation of a gel that was dried, calcined, pressed into pellets, then fired at 850 C. Without chemical additives, the resulting ceramic comprised pores ranging in size from approximately 25 to 50 nm and a surface area of about 30m{sup 2}/g. Hydroxyapatite, which has a needle-like morphology, was mechanically mixed with the calcined gel to template NZP crystallization. What resulted was a coarsening of the pore structure and a decrease in surface area. When copper nitrate was added to the solution during synthesis, the resulting ceramic underwent shrinkage upon firing as well as an increase in strength. HAp and copper additions combined resulted in 40% volume shrinkage and a doubling of the tensile strength to 16MPa. A very different type of porosity was achieved when silica was partly substituted for phosphorous in the NZP structure. Na{sub 3}Zr{sub 2}(Si{sub 2}P)O{sub 12} (NASCION) was synthesized in the same manner as NZP, but the fired ceramic possessed a reticulated pore structure comprising large cavities ranging in size from 5 to 50 {micro}m. The NASCION ceramic either shrank or expanded upon firing depending on when the silica was added during synthesis. When the silica precursor (amorphous, precipitated silica) was added before the calcining step, the pressed pellets expanded during firing, whereas they shrank when the silica was added after the gel was calcined. The observed dilation increased with increasing calcining temperature and particle size, up to 26%. The contraction of the ceramic when fired increased with increasing calcining temperature and a

  3. Additive Manufacturing of SiC Based Ceramics and Ceramic Matrix Composites

    Science.gov (United States)

    Halbig, Michael Charles; Singh, Mrityunjay

    2015-01-01

    Silicon carbide (SiC) ceramics and SiC fiber reinforcedSiC ceramic matrix composites (SiCSiC CMCs) offer high payoff as replacements for metals in turbine engine applications due to their lighter weight, higher temperature capability, and lower cooling requirements. Additive manufacturing approaches can offer game changing technologies for the quick and low cost fabrication of parts with much greater design freedom and geometric complexity. Four approaches for developing these materials are presented. The first two utilize low cost 3D printers. The first uses pre-ceramic pastes developed as feed materials which are converted to SiC after firing. The second uses wood containing filament to print a carbonaceous preform which is infiltrated with a pre-ceramic polymer and converted to SiC. The other two approaches pursue the AM of CMCs. The first is binder jet SiC powder processing in collaboration with rp+m (Rapid Prototyping+Manufacturing). Processing optimization was pursued through SiC powder blending, infiltration with and without SiC nano powder loading, and integration of nanofibers into the powder bed. The second approach was laminated object manufacturing (LOM) in which fiber prepregs and laminates are cut to shape by a laser and stacked to form the desired part. Scanning electron microscopy was conducted on materials from all approaches with select approaches also characterized with XRD, TGA, and bend testing.

  4. FRACTURAL PROCESS AND TOUGHENING MECHANISM OF LAMINATED CERAMIC COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the model of multi-layer beam and the assumption of micro-inhomogeneity of material, the 3D fractural characteristics of laminated ceramic composites have been studied with numerical simulation. Under three-point bending load, crack initiation, coalescence, propagation, tuning off in the weak interface and final rupture have been simulated. The spatial distribution and evolution process of acoustic emission are also presented in the paper. The simulation verifies the primary mechanism of the weak interface inducing the crack to expand along there and absorbing the fractural energy. The disciplinary significance of the effect of strength and properties of material on the toughness and strength of laminated ceramic composites is, therefore,discussed in this paper.

  5. Mechanical properties of silver matrix composites reinfroced with ceramic particles

    Directory of Open Access Journals (Sweden)

    J. Śleziona

    2006-04-01

    Full Text Available Purpose: Silver, silver alloys, as well as silver matrix based composites have been well known and applied in the electrotechnical and electronics industry for several decades. For many applications in electrotechnology, including electric contacts and brushes, unreinforced sliver alloys do not meet the requirements concerning mainly durability and wear resistance, first of all to tribological and electroerosive wear. These wear processes may be prevented by introducing to silver reinforcement particles and alloys. The target of the research included basic mechanical properties determination of the silver matrix composites reinforced with ceramic particles, manufactured with the use of suspension methods.Design/methodology/approach: In the presented paper the authors demonstrate possibilities of manufacturing of silver matrix composites on the way of casting technology utilization.Findings: The results of the research prove that applied suspension technology, based on introducing of agglomerated foundry alloy which is the carrier for reinforcement particles (SiC lub Al2O3 allows to produce in an effective and, what is important, in an economically attractive way, sliver alloys based composites.Research limitations/implications: The researches on the structure of manufactured composites and their mechanical properties that are presented in the paper prove the possibilities of mechanical mixing technology application for producing mechanical and stable connection between silver matrix and ceramic particles of aluminium oxide and silicon carbide.Originality/value: The manufacturing of this type of composites is based most of all on the utilization of powder metallurgy techniques. However the obtained results of the research prove that there is a possibility of silver matrix composites forming in the casting and plastic working processes. Extrusion process carried out in the hydraulic press KOBO has its favourably influence on ceramic reinforcement

  6. Ceramic-metal composite formation by reactive metal penetration

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E.; Ewsuk, K.G. [Sandia National Labs., Albuquerque, NM (United States); Fahrenholtz, W.G. [New Mexico Univ., Albuquerque, NM (United States). Advanced Materials Lab.; Lakshman, B.B. [Sandia National Labs., Albuquerque, NM (United States)

    1996-11-01

    Ceramic-metal composites can be made to near-net-shape by reactive penetration of dense ceramic preforms by molten metals. Reactive metal penetration is driven by a strongly negative Gibbs energy for reaction. For Al, the general form of the reaction is (x+2) Al + (3/y) MO[sub y] yields Al[sub 2]O[sub 3] + M[sub 3/y]Al[sub x], where MO[sub y] is an oxide that is wet by molten Al. In low PO[sub 2] atmospheres and at temperatures above about 900 degrees C, molten Al reduces mullite to produce Al[sub 2]O[sub 3] and Si. The Al/mullite reaction has a delta G[sub r] degree(927 degrees C) of -338 per mole of mullite and, for fully dense mullite, the theoretical volume change on reaction is less than 1%. Experiments with commercial mullite containing a silicate grain boundary phase average less than 2% volume change on reaction. In the Al/mullite system, reactive metal penetration produces a fine-grained alumina skeleton with an interspersed metal phase. With > or =15 vol.% excess aluminum, mutually interpenetrating ceramic-metal composites are produced. Properties measurements show that ceramic-metal composites produced by reactive metal penetration of mullite by Al have a Young`s modulus and hardness similar to that of Al[sub 2]O[sub 3], with improved fracture toughness. Other compositions also are candidates for in- situ reaction synthesis, but they exhibit differences in reaction kinetics, most probably due to different wetting behavior.

  7. Calcium phosphate-based ceramic and composite materials for medicine

    International Nuclear Information System (INIS)

    The topical problems in chemistry and technology of materials based on calcium phosphates aimed at both the replacement of damaged bone tissue and its regeneration are discussed. Specific features of the synthesis of nanocrystalline powders and the fabrication of ceramic implants are described. Advances in the development of porous scaffolds from resorbable and osteoconductive calcium phosphates and of hybrid composites that form the basis of bone tissue engineering are considered.

  8. Stereological characterization of crack path transitions in ceramic matrix composites

    Indian Academy of Sciences (India)

    Parag Bhargava; B R Patterson

    2001-04-01

    All ceramic composites involve a mismatch in physical properties the extent of which differs from one composite to another. Mismatch in thermal expansion ( ) and elastic modulus (E) is known to produce stresses that influence the path of a propagating crack. Thus, the relative effect of thermal and elastic mismatch on the crack path is expected to change with change in stress intensity. We propose that the crack path in ceramic composites should undergo a transition with the crack being strongly influenced by the thermal mismatch stresses at low stress intensity and elastic mismatch stresses at high stress intensities. Thus, a material in use under different applications each with its own loading conditions is expected to exhibit different crack propagation tendencies which may be reflected in the – characteristics of the composite material. In the present work several model composites with different combinations of thermal and elastic mismatch have been considered. Cracks propagating at different sub-critical stress intensities (velocities) were generated by a novel indentation technique. Each indentation was performed at a constant displacement rate and a peak load. A range of displacement rates were used to produce cracks propagating at different velocities. The indentations were made using a Vickers indentor fitted in a universal mechanical testing machine. The crack paths in composites were quantified by stereological technique and the proposed theory was verified.

  9. Preparation of High Performance Green Alumina Ceramic Balls by Roller Production Waste

    Institute of Scientific and Technical Information of China (English)

    ZHONG Lianyun; WU Bolin; ZHANG Lianmeng; ZHANG Guifang

    2008-01-01

    To reuse roller waste as a raw material of high performance green ceramic balls,three kinds of white alumina ceramic balls whose wear resistance were 2-3 times of the best high alumina ceramic ball with90% Al2O3 were prepared,and the Al2O3 content of the prepared balls was 75%.It is found that the effect of calcia and magnesia on the wear resistance of ceramic balls is contrast to the accepted one: the wear rate of the ceramic balls prepared in CaO-Al2O3-SiO2 system is the lowest and the wear rate of the ceramic balls prepared in MgO-Al2O3-SiO2 is the highest.The main crystal phase of the ceramic ball is mullite and corundum.The ceramic ball granular is uniform and fine with 4-5 um average size.The pore diameter is about 2 um.The wear way of the ceramic balls is mainly transcrystalline fracture.

  10. Recent developments in transparent spinel ceramic and composite windows

    Science.gov (United States)

    Bayya, Shyam; Villalobos, Guillermo; Kim, Woohong; Sanghera, Jas; Chin, Geoff; Hunt, Michael; Sadowski, Bryan; Miklos, Fritz; Aggarwal, Ishwar

    2013-09-01

    The U.S. Naval Research Laboratory has pioneered the development of sintering processes for making highly transparent optical ceramics. For example, we have demonstrated the fabrication of record low absorption loss spinel as an exit window for High Energy Laser systems and rare earth doped Y2O3 and Lu2O3 for solid-state ceramic lasers. We have also developed thick spinel windows for submarine photonic masts and predicted the performance of an imaging system using testing and modeling. More recently, we have developed a novel approach of hot pressing where a transparent ceramic is produced in the net shape without requiring post polishing. This technology will result in significant cost savings associated with polishing the final optical element. We are also developing motheye structures on spinel surface to provide rugged anti-reflective solutions. We had earlier identified a Barium GalloGermanate (BGG) glass with matching index and expansion coefficient to spinel. We had demonstrated fabrication of a laminated dome for the Joint Air to Ground Missile (JAGM) program and the technology was transitioned to industry. We have pushed this technology further by developing a BGG glass - spinel ceramic transparent micro-composite, which can be processed well below spinel sintering temperatures. To address the relatively lower strength of BGG glass compared with spinel, we developed an ion-exchange process and achieved strengths up to 450 MPa. This paper gives a summary of our recent findings.

  11. Carbon–ceramic composites for enzyme immobilization

    OpenAIRE

    Lathouder, Karen de; Lozano Castelló, Dolores; Linares Solano, Ángel; Wallin, Sten A.; Kapteijn, Freek; Moulijn, Jacob

    2006-01-01

    Tunable carbon nanofiber-coated monoliths as carriers for enzyme adsorption are presented. Carbon-nanofibers (CNFs) were grown on monoliths with different microstructure. ‘‘Classical’’ cordierite monoliths were compared to novel acicular mullite (ACM) monoliths, with a more open wall structure. This open structure allows for a higher CNF-loading without affecting the open structure of the monoliths. The composites were used as a carrier for lactase from Aspergillus oryzae. ACM monoli...

  12. Magnetic Resonance Imaging of Gel-cast Ceramic Composites

    Science.gov (United States)

    Dieckman, S. L.; Balss, K. M.; Waterfield, L. G.; Jendrzejczyk, J. A.; Raptis, A. C.

    1997-01-16

    Magnetic resonance imaging (MRI) techniques are being employed to aid in the development of advanced near-net-shape gel-cast ceramic composites. MRI is a unique nondestructive evaluation tool that provides information on both the chemical and physical properties of materials. In this effort, MRI imaging was performed to monitor the drying of porous green-state alumina - methacrylamide-N.N`-methylene bisacrylamide (MAM-MBAM) polymerized composite specimens. Studies were performed on several specimens as a function of humidity and time. The mass and shrinkage of the specimens were also monitored and correlated with the water content.

  13. Ceramic compositional analysis in archaeological perspective

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, R.L.; Rands, R.L.; Holley, G.R.

    1980-01-01

    The primary significance of compositional analysis in archaeology lies on the spatial dimension, in distinguishing products made by locally or regionally-based groups. If compositional analysis is to be carried beyond the descriptive recording of similarities and differences, the resource procurement zone (and its geographical relationship to inferred places of manufacture) is a basic operational concept (Rands and Bishop 1980). A zonal concept is clearly indicated in the case of pottery, which frequently is derived from raw materials, clay and temper, that do not necessarily coincide in their place of procurement. Moreover, depending on geomorphological and geochemical variables, these materials may show considerable homogeneity over a fairly extended area. On the other hand, unless there is strong, selective patterning in the exploitation of resources, great heterogeneity within a restricted region may result in fragmented procurement zones that are difficult to equate with the products of specific manufacturing centers. Under favorable circumstances, however, it appears that methods of compositional analysis are approaching the point at which microzones of limited geographical extent can be recognized and assigned heuristically useful boundaries.

  14. Exposure of Ceramics and Ceramic Matrix Composites in Simulated and Actual Combustor Environments

    Energy Technology Data Exchange (ETDEWEB)

    Brentnall, W.D.; Ferber, M.K.; Keiser, j.R.; Miriyala, N.; More, K.L.; Price, J.R.; Tortorelli, P.F.; Walker, L.R.

    1999-06-07

    A high-temperature, high-pressure, tube furnace has been used to evaluate the long term stability of different monolithic ceramic and ceramic matrix composite materials in a simulated combustor environment. All of the tests have been run at 150 psia, 1204 degrees C, and 15% steam in incremental 500 h runs. The major advantage of this system is the high sample throughput; >20 samples can be exposed in each tube at the same time under similar exposure conditions. Microstructural evaluations of the samples were conducted after each 500 h exposure to characterize the extent of surface damage, to calculate surface recession rates, and to determine degradation mechanisms for the different materials. The validity of this exposure rig for simulating real combustor environments was established by comparing materials exposed in the test rig and combustor liner materials exposed for similar times in an actual gas turbine combustor under commercial operating conditions.

  15. Toughening and strengthening of ceramics composite through microstructural refinement

    Science.gov (United States)

    Anggraini, Lydia; Isonishi, Kazuo; Ameyama, Kei

    2016-04-01

    Silicon carbide with 50 mass% zirconia ceramic matrix composites were processed by mechanical milling (MM) followed by spark plasma sintering (SPS). By controlling the parameters of MM and SPS, an ultra-fine ZrO2 grain was homogeneously dispersed and refined on the surface of a fine SiC powder, forming a harmonic microstructure. The mechanical properties and the densification behavior of the SiC-ZrO2 composites were investigated. The effects of the milling time on the microstructure and on the mechanical properties of the composite are discussed. The results indicate that the composite mechanically milled for 144 ks and sintered at 1773 K had the highest relative density of 98 %, along with a fracture toughness of 10.7 MPa.m1/2 and a bending strength of 1128 MPa. These superior mechanical properties were influenced by the microstructure characteristics such as the homogeneous grain dispersion. Thus, the microstructural refinement forming harmonic dispersion can be considered a remarkable design tool for improving the mechanical properties of SiC-ZrO2, as well as other ceramic composite materials.

  16. Evaluation of internal adaptation in ceramic and composite resin inlays by silicon replica technique.

    Science.gov (United States)

    Karakaya, S; Sengun, A; Ozer, F

    2005-06-01

    This study was aimed at investigating the internal adaptation of a ceramic (Ceramco II) and two composite resin inlay materials (SureFil and 3M Filtek Z 250) using silicon replica technique as an indicator. Forty-five standard mesial-occlusal-distal (MOD) cavities were prepared into brass moulds by using computer numerically controlled system. Inlays were prepared according to manufacturers' instructions with indirect methods. Replicas of the prepared cavities and inlays were produced with a polyvinyl siloxane material (Elite H-D). The spaces between inlays and cavities were filled by different coloured light-body polyvinyl siloxane material. Two parallel slices (mesio-distally) were obtained from the replicas with a sharp blade. Different coloured polyvinyl siloxane material thickness between cavity and inlay was measured at seven points (mesial, occlusal and distal). The data were evaluated with anova and Tukey's honestly significantly different (HSD) statistical tests. In the SureFil and Ceramco II groups, the sizes of the contraction gaps at mesial and distal gingival floors were greater than that of the occlusal marginal walls. In comparison of gap formation at occlusal regions, while the 3M composite group showed highest gap values (204.33 +/- 75.45 microm), the Ceramco II group revealed the lowest (141.17 +/- 23.66 microm) (P 0.05). In conclusion, our results showed that ceramic inlays did not confer any big advantage for internal adaptation over the composite inlays.

  17. SHS/PHIP of ceramic composites using ilmenite concentrate

    Energy Technology Data Exchange (ETDEWEB)

    Kholghy, M. [Yerevan State University and Isfahan University of Technology, Dept. of Materials Eng (Iran, Islamic Republic of); Kharatyan, S. [Yerevan State University, Yerevan, A. Manukyan str. 1, AM-0025 (Armenia); Edris, H., E-mail: h-edris@cc.iut.ac.i [Isfahan University of Technology, Dept. of Materials Eng. Isfahan, 8415683111 (Iran, Islamic Republic of)

    2010-07-23

    Self-propagating high-temperature synthesis (SHS) process in the mixture of ilmenite, boron carbide and aluminum combined with a pseudo hot isostatic pressing (PHIP) is used in this research to produce a compact multi-ceramic composite Al{sub 2}O{sub 3}/TiB{sub 2}/TiC with Fe as a binder. Several tests were performed to identify the optimum partial weight percent of the ilmenite, boron carbide and aluminum to produce a suitable amount of each components of the product. On the other hand, a number of tests were performed to measure the delay time, optimum compaction time and optimum compaction force to produce a compact high toughness samples. The results of phase analysis using XRD tests and microstructure using SEM and EDS show that the product is a multi-ceramic composite of the Al{sub 2}O{sub 3}/TiB{sub 2}/TiC with Fe as a binder. It was shown that there are no primary reactants in the product. In this work, the combustion characteristics (combustion wave propagation velocity and temperature) of the process, as well as density and hardness of the combustion product were measured. The fracture toughness of the product was measured using Vickers indenter and Brazilian test. This shows that the samples have a high toughness in comparison to conventional ceramics.

  18. Neural network applied to elemental archaeological Marajoara ceramic compositions

    Energy Technology Data Exchange (ETDEWEB)

    Toyota, Rosimeiri G.; Munita, Casimiro S., E-mail: rosimeiritoy@yahoo.com.b, E-mail: camunita@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Boscarioli, Clodis, E-mail: boscarioli@gmail.co [Universidade Estadual do Oeste do Parana, Cascavel, PR (Brazil). Centro de Ciencias Exatas e Tecnologicas. Colegiado de Informatica; Hernandez, Emilio D.M., E-mail: boscarioli@gmail.co [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica; Neves, Eduardo G.; Demartini, Celia C., E-mail: eduardo@pq.cnpq.b [Museu de Arqueologia e Etnologia (MAE/USP), Sao Paulo, SP (Brazil)

    2009-07-01

    In the last decades several analytical techniques have been used in archaeological ceramics studies. However, instrumental neutron activation analysis, INAA, employing gamma-ray spectrometry seems to be the most suitable technique because it is a simple analytical method in its purely instrumental form. The purpose of this work was to determine the concentration of Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Na, Nd, Rb, Sb, Sc, Sm, Ta, Tb, Th, U, Yb, and Zn in 160 original marajoara ceramic fragments by INAA. Marajoara ceramics culture was sophisticated and well developed. This culture reached its peak during the V and XIV centuries in Marajo Island located on the Amazon River delta area in Brazil. The purpose of the quantitative data was to identify compositionally homogeneous groups within the database. Having this in mind, the data set was first converted to base-10 logarithms to compensate for the differences in magnitude between major elements and trace elements, and also to yield a closer to normal distribution for several trace elements. After that, the data were analyzed using the Mahalanobis distance and using the lambda Wilks as critical value to identify the outliers. The similarities among the samples were studied by means of cluster analysis, principal components analysis and discriminant analysis. Additional confirmation of these groups was made by using elemental concentration bivariate plots. The results showed that there were two very well defined groups in the data set. In addition, the database was studied using artificial neural network with unsupervised learning strategy known as self-organizing maps to classify the marajoara ceramics. The experiments carried out showed that self-organizing maps artificial neural network is capable of discriminating ceramic fragments like multivariate statistical methods, and, again the results showed that the database was formed by two groups. (author)

  19. Neural network applied to elemental archaeological Marajoara ceramic compositions

    International Nuclear Information System (INIS)

    In the last decades several analytical techniques have been used in archaeological ceramics studies. However, instrumental neutron activation analysis, INAA, employing gamma-ray spectrometry seems to be the most suitable technique because it is a simple analytical method in its purely instrumental form. The purpose of this work was to determine the concentration of Ce, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Na, Nd, Rb, Sb, Sc, Sm, Ta, Tb, Th, U, Yb, and Zn in 160 original marajoara ceramic fragments by INAA. Marajoara ceramics culture was sophisticated and well developed. This culture reached its peak during the V and XIV centuries in Marajo Island located on the Amazon River delta area in Brazil. The purpose of the quantitative data was to identify compositionally homogeneous groups within the database. Having this in mind, the data set was first converted to base-10 logarithms to compensate for the differences in magnitude between major elements and trace elements, and also to yield a closer to normal distribution for several trace elements. After that, the data were analyzed using the Mahalanobis distance and using the lambda Wilks as critical value to identify the outliers. The similarities among the samples were studied by means of cluster analysis, principal components analysis and discriminant analysis. Additional confirmation of these groups was made by using elemental concentration bivariate plots. The results showed that there were two very well defined groups in the data set. In addition, the database was studied using artificial neural network with unsupervised learning strategy known as self-organizing maps to classify the marajoara ceramics. The experiments carried out showed that self-organizing maps artificial neural network is capable of discriminating ceramic fragments like multivariate statistical methods, and, again the results showed that the database was formed by two groups. (author)

  20. Summary of workshop on ceramic composite interface coatings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    Commercialization of fiber-reinforced composites has been limited because of the stability of the interface coatings that control the mechanical properties of the composites. Typical materials are currently manufactured with pyrolytic carbon interface coatings that perform well in inert atmospheres or when stresses are kept very low (<70 MPa). Unfortunately, carbon coatings are not stable at high temperatures in air or oxidizing conditions which results in degradation of the mechanical properties of the composites. The problem of oxidation resistant interface coatings is not unique to the Fossil Program. Such coatings are also a concern to the United States Air Force, the Continuous Fiber-reinforced Ceramic Composites Program, the Fusion Energy Materials Program, and to the European Community. This workshop was organized to compare and discuss the need for and development of oxidation-resistant interface coatings in each of these programs.

  1. Nondestructive evaluation of a ceramic matrix composite material

    Science.gov (United States)

    Grosskopf, Paul P.; Duke, John C., Jr.

    1992-01-01

    Monolithic ceramic materials have proven their usefulness in many applications, yet, their potential for critical structural applications is limited because of their sensitivity to small imperfections. To overcome this extreme sensitivity to small imperfections, ceramic matrix composite materials have been developed that have the ability to withstand some distributed damage. A borosilicate glass reinforced with several layers of silicon-carbide fiber mat has been studied. Four-point flexure and tension tests were performed not only to determine some of the material properties, but also to initiate a controlled amount of damage within each specimen. Acousto-ultrasonic (AU) measurements were performed periodically during mechanical testing. This paper will compare the AU results to the mechanical test results and data from other nondestructive methods including acoustic emission monitoring and X-ray radiography. It was found that the AU measurements were sensitive to the damage that had developed within the material.

  2. Wear and Reactivity Studies of Melt infiltrated Ceramic Matrix Composite

    Science.gov (United States)

    Jarmon, David C.; Ojard, Greg; Brewer, David N.

    2013-01-01

    As interest grows in the use of ceramic matrix composites (CMCs) for critical gas turbine engine components, the effects of the CMCs interaction with the adjoining structure needs to be understood. A series of CMC/material couples were wear tested in a custom elevated temperature test rig and tested as diffusion couples, to identify interactions. Specifically, melt infiltrated silicon carbide/silicon carbide (MI SiC/SiC) CMC was tested in combination with a nickel-based super alloy, Waspaloy, a thermal barrier coating, Yttria Stabilized Zirconia (YSZ), and a monolithic ceramic, silicon nitride (Si3N4). To make the tests more representative of actual hardware, the surface of the CMC was kept in the as-received state (not machined) with the full surface features/roughness present. Test results include: scanning electron microscope characterization of the surfaces, micro-structural characterization, and microprobe analysis.

  3. Design Concepts for Cooled Ceramic Matrix Composite Turbine Vanes

    Science.gov (United States)

    Boyle, Robert

    2014-01-01

    This project demonstrated that higher temperature capabilities of ceramic matrix composites (CMCs) can be used to reduce emissions and improve fuel consumption in gas turbine engines. The work involved closely coupling aerothermal and structural analyses for the first-stage vane of a high-pressure turbine (HPT). These vanes are actively cooled, typically using film cooling. Ceramic materials have structural and thermal properties different from conventional metals used for the first-stage HPT vane. This project identified vane configurations that satisfy CMC structural strength and life constraints while maintaining vane aerodynamic efficiency and reducing vane cooling to improve engine performance and reduce emissions. The project examined modifications to vane internal configurations to achieve the desired objectives. Thermal and pressure stresses are equally important, and both were analyzed using an ANSYS® structural analysis. Three-dimensional fluid and heat transfer analyses were used to determine vane aerodynamic performance and heat load distributions.

  4. Resin composite or ceramic inlays/onlays in posterior permanent teeth : a review of the literature

    OpenAIRE

    Breistrand, Joakim Lund; Juliussen, Øyvind

    2011-01-01

    Objective: To compare the clinical survival and long-term costs of extensive composite restorations to ceramic inlays and onlays. The hypothesis was that ceramic inlays and onlays can be more tooth substance saving and long-term economic for the patient than composite restorations. Methods: The dental literature, predominantly since 1990, was reviewed for prospective clinical studies of longevity of ceramic inlays/onlays and direct composite restorations in permanent posterior teeth. Only ...

  5. Advanced ceramic matrix composite materials for current and future propulsion technology applications

    Science.gov (United States)

    Schmidt, S.; Beyer, S.; Knabe, H.; Immich, H.; Meistring, R.; Gessler, A.

    2004-08-01

    Current rocket engines, due to their method of construction, the materials used and the extreme loads to which they are subjected, feature a limited number of load cycles. Various technology programmes in Europe are concerned, besides developing reliable and rugged, low cost, throwaway equipment, with preparing for future reusable propulsion technologies. One of the key roles for realizing reusable engine components is the use of modern and innovative materials. One of the key technologies which concern various engine manufacturers worldwide is the development of fibre-reinforced ceramics—ceramic matrix composites. The advantages for the developers are obvious—the low specific weight, the high specific strength over a large temperature range, and their great damage tolerance compared to monolithic ceramics make this material class extremely interesting as a construction material. Over the past years, the Astrium company (formerly DASA) has, together with various partners, worked intensively on developing components for hypersonic engines and liquid rocket propulsion systems. In the year 2000, various hot-firing tests with subscale (scale 1:5) and full-scale nozzle extensions were conducted. In this year, a further decisive milestone was achieved in the sector of small thrusters, and long-term tests served to demonstrate the extraordinary stability of the C/SiC material. Besides developing and testing radiation-cooled nozzle components and small-thruster combustion chambers, Astrium worked on the preliminary development of actively cooled structures for future reusable propulsion systems. In order to get one step nearer to this objective, the development of a new fibre composite was commenced within the framework of a regionally sponsored programme. The objective here is to create multidirectional (3D) textile structures combined with a cost-effective infiltration process. Besides material and process development, the project also encompasses the development of

  6. Ablation Property of Ceramics/Carbon Fibers/Resin Novel Super-hybrid Composite

    Institute of Scientific and Technical Information of China (English)

    Jun QIU; Xiaoming CAO; Chong TIAN; Jinsong ZHANG

    2005-01-01

    A novel super-hybrid composite (NSHC) is prepared with three-dimension reticulated SiC ceramic (3DRC), high performance carbon fibers and modified phenolic resin (BPR) in this paper. Ablation performance of super-hybrid composite is studied. The results show that the NSHC has less linear ablation rate compared with pure BPR and CF/BPR composite, for example, its linear ablation rate is 50% of CF/BPR at the same fiber content. Mass ablation rate of the NSHC is slightly lower than that of pure BPR and CF/BPR composite because of their difference in the density. Scanning electron microscopic analysis indicates that 3DRC can increase anti-erosion capacity of materials because its special reticulated structure can control the deformation of materials and strengthen the stability of integral structure.

  7. Colloidal processing of Fe-based metal ceramic composites with high content of ceramic reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Escribano, J. A.; Ferrari, B.; Alvaredo, P.; Gordo, E.; Sanchez-Herencia, A. J.

    2013-07-01

    Major difficulties of processing metal-matrix composites by means of conventional powder metallurgy techniques are the lack of dispersion of the phases within the final microstructure. In this work, processing through colloidal techniques of the Fe-based metal-matrix composites, with a high content of a ceramic reinforcement (Ti(C,N) ), is presented for the first time in the literature. The colloidal approach allows a higher control of the powders packing and a better homogenization of phases since powders are mixed in a liquid medium. The chemical stability of Fe in aqueous medium determines the dispersion conditions of the mixture. The Fe slurries were formulated by optimising their zeta potential and their rheology, in order to shape bulk pieces by slip-casting. Preliminary results demonstrate the viability of this procedure, also opening new paths to the microstructural design of fully sintered Fe-based hard metal, with 50 vol. % of Ti(C,N) in its composition. (Author)

  8. Colloidal processing of Fe-based metal ceramic composites with high content of ceramic reinforcement

    International Nuclear Information System (INIS)

    Major difficulties of processing metal-matrix composites by means of conventional powder metallurgy techniques are the lack of dispersion of the phases within the final microstructure. In this work, processing through colloidal techniques of the Fe-based metal-matrix composites, with a high content of a ceramic reinforcement (Ti(C,N) ), is presented for the first time in the literature. The colloidal approach allows a higher control of the powders packing and a better homogenization of phases since powders are mixed in a liquid medium. The chemical stability of Fe in aqueous medium determines the dispersion conditions of the mixture. The Fe slurries were formulated by optimising their zeta potential and their rheology, in order to shape bulk pieces by slip-casting. Preliminary results demonstrate the viability of this procedure, also opening new paths to the microstructural design of fully sintered Fe-based hard metal, with 50 vol. % of Ti(C,N) in its composition. (Author)

  9. Fracture toughness and reliability in high-temperature structural ceramics and composites: Prospects and challenges for the 21st Century

    Indian Academy of Sciences (India)

    Sunil Dutta

    2001-04-01

    The importance of high fracture toughness and reliability in Si3N4, and SiC-based structural ceramics and ceramic matrix composites is reviewed. The potential of these ceramics and ceramic matrix composites for high temperature applications in defence and aerospace applications such as gas turbine engines, radomes, and other energy conversion hardware have been well recognized. Numerous investigations were pursued to improve fracture toughness and reliability by incorporating various reinforcements such as particulate-, whisker-, and continuous fibre into Si3N4 and SiC matrices. All toughening mechanisms, e.g. crack deflection, crack branching, crack bridging, etc essentially redistribute stresses at the crack tip and increase the energy needed to propagate a crack through the composite material, thereby resulting in improved fracture toughness and reliability. Because of flaw insensitivity, continuous fibre reinforced ceramic composite (CFCC) was found to have the highest potential for higher operating temperature and longer service conditions. However, the ceramic fibres should display sufficient high temperature strength and creep resistance at service temperatures above 1000°C. The greatest challenge to date is the development of high quality ceramic fibres with associate coatings able to maintain their high strength in oxidizing environment at high temperature. In the area of processing, critical issues are preparation of optimum matrix precursors, precursor infiltration into fibre array, and matrix densification at a temperature, where grain crystallization and fibre degradation do not occur. A broad scope of effort is required for improved processing and properties with a better understanding of all candidate composite systems.

  10. Alumina/Phenolphthalein Polyetherketone Ceramic Composite Polypropylene Separator Film for Lithium Ion Power Batteries

    International Nuclear Information System (INIS)

    Highlights: • PEK-C (Tg: ∼230 °C) was used as binder to prepare ceramic coated composite PP separator. • The composite PP separator was stable and showed low thermal shrinkage in the electrolyte solvent. • The composite PP separator was helpful for high current density discharge. • The composite PP separator improved the safety performance of the coin cells. - Abstract: One way to obtain the lithium ion power battery with better safety performance was to increase the thermal shrinkage resistance of the separator at higher temperature. Phenolphthalein polyetherketone (PEK-C) is a polymer that can withstand high temperature to about 230 °C. Here, we developed a new Al2O3 coated composite polypropylene (PP) separator with PEK-C as binder. The coating layer was formed on the surface of the PP separator and both ceramic particles and binder did not infiltrated into the separator along the thickness direction. The composite separator with 4 μm coating layer provided balanced permeability and thermal shrinkage properties. The composite separator was stable at the electrochemical window for lithium ion battery. The coin cells with composite separator showed better charge/discharge performance than that of the cells with the PP separator. It seemed that the composite separator was helpful for high current density discharge. Also, the battery safety performance test had verified that the Al2O3 coated composite separator with PEK-C as binder had truly improved the safety performance of the coin cells. So, the newly developed Al2O3 coated composite PP separator was a promising safety product for lithium ion power batteries with high energy density

  11. Durable, High Thermal Conductivity Melt Infiltrated Ceramic Composites for Turbine Engine Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Durable, creep-resistant ceramic composites are necessary to meet the increased operating temperatures targeted for advanced turbine engines. Higher operating...

  12. Glass-ceramic frits for porcelain stoneware bodies: effects on sintering, phase composition and technological properties

    OpenAIRE

    Zanelli, Chiara; Baldi, Giovanni; Dondi, Michele; Ercolani, Giampaolo; Guarini, Guia; Raimondo, Maria Rosa

    2008-01-01

    In the present work, the effects of glass-ceramic frits (10wt%) added to a porcelain stoneware body in replacement of non-plastic raw materials, were evaluated simulating the tile-making process. Each glass-ceramic frit plays its own peculiar effect on the compositional properties and only some precursors behave as real glass ceramic materials. The positive influence of glass-ceramic precursors in promoting the sintering stands out when temperature onset densification and sintering rate are c...

  13. Integration Science and Technology of Silicon-Based Ceramics and Composites:Technical Challenges and Opportunities

    Science.gov (United States)

    Singh, M.

    2013-01-01

    Ceramic integration technologies enable hierarchical design and manufacturing of intricate ceramic and composite parts starting with geometrically simpler units that are subsequently joined to themselves and/or to metals to create components with progressively higher levels of complexity and functionality. However, for the development of robust and reliable integrated systems with optimum performance for high temperature applications, detailed understanding of various thermochemical and thermomechanical factors is critical. Different technical approaches are required for the integration of ceramic to ceramic and ceramic to metal systems. Active metal brazing, in particular, is a simple and cost-effective method to integrate ceramic to metallic components. Active braze alloys usually contain a reactive filler metal (e.g., Ti, Cr, V, Hf etc) that promotes wettability and spreading by inducing chemical reactions with the ceramics and composites. In this presentation, various examples of brazing of silicon nitride to themselves and to metallic systems are presented. Other examples of joining of ceramic composites (C/SiC and SiC/SiC) using ceramic interlayers and the resulting microstructures are also presented. Thermomechanical characterization of joints is presented for both types of systems. In addition, various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Potential opportunities and need for the development of innovative design philosophies, approaches, and integrated system testing under simulated application conditions will also be presented.

  14. Composites (CFCCs) for low cost energy and cleaner environment. Continuous fiber ceramic composites program

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    For many industrial applications, materials are desired which combine light weight, high temperature strength, and stability in corrosive environments. Among competing materials, ceramics are noteworthy candidates for such applications. The use of ceramics is often constrained, however, by brittleness; i.e., low toughness. Ceramic composites are being developed to overcome this limitation. With recent advances in ceramic fiber technology, it is possible to design a composite material based on continuous ceramic fibers embedded in a ceramic matrix. The use of ceramic composites in industrial applications will result in reduced fuel consumption, but will also prevent airborne pollution (principally NO, SO{sub x}, CO{sub 2}, and particulates), and economically benefit the end user through energy and environmental savings and increased competitiveness. Industry will also benefit through increased productivity and consumers will benefit through lower energy and environmental costs and a cleaner environment. The development and use of CFCCs could become an important factor in the international competitiveness of U.S. industry. CFCCs will be a critical enabling material in the design and engineering of advanced components, systems, and processes. If CFCC technology is developed outside the United States, domestic users of these materials may be forced to rely on foreign suppliers of the products fabricated from CFCCs, as well as the materials themselves. Foreign countries, including Japan and France, have embarked on government-supported CFCC development efforts. With the market for CFCC products expected to be a $10 billion dollar market by 2010, CFCC development will be important for the competitiveness of U.S. industry and for retaining and creating jobs for U.S. citizens. This document summarizes the potential energy, environmental, and economic benefits that CFCCs will have for the U.S. economy and particularly for the industrial sector.

  15. New toughening concepts for ceramic composites from rigid natural materials.

    Science.gov (United States)

    Mayer, George

    2011-07-01

    The mechanisms underlying the toughening in rigid natural composites exhibited by the concentric cylindrical composites of spicules of hexactinellid sponges, and by the nacre (brick-and-mortar) structure of mollusks such as Haliotis rufescens (red abalone), as well as the crossed-lamellar structure of Strombus gigas (queen conch) show commonalities in the manner in which toughening takes place. It is proposed that crack diversion, a new kind of crack bridging, resulting in retardation of delamination, creation of new surface areas, and other energy-dissipating mechanisms occur in both natural systems. However, these are generally different from the toughening mechanisms that are utilized for other classes of structural materials. Complementary to those mechanisms found in rigid natural ceramic/organic composites, special architectures and thin viscoelastic organic layers have been found to play controlling roles in energy dissipation in these structures. PMID:21565715

  16. Optimization of dispersing agents for preparing YAG transparent ceramics

    Institute of Scientific and Technical Information of China (English)

    BA Xuewei; LI Jiang; PAN Yubai; LIU Jing; JIANG Benxue; LIU Wenbin; KOU Huamin

    2013-01-01

    The suspensions of the powder mixture of yttria and alumina were prepared by the aqueous tape casting method.Rodia DP270,Dolapix CE64,citric acid and Dammonium 3008 were used as dispersing agents.The morphologies of the powders and the fiacture surface of the green body were observed by scanning electron microscopy (SEM).The zeta potential test was employed to characterize the surface charge states of different suspensions.The dispersion of the suspensions was analyzed by the rheological tests and the sedimentation experiments.The results indicated that the yttria and alumina powder mixtures were well dispersed by the dispersing agents.The rheological curves showed shear thinning behavior.The most efficient dispersing agent was Dammonium 3008.The optimum usage of Dammonium 3008 was 1.0 wt.%.The green body was dense and no interface between the adjacent layers was found.The in-line transmittance of the as-sintered YAG ceramic was higher than 80% between 400 and 1100 nm.

  17. Melt Infiltrated Ceramic Composites (Hipercomp) for Gas Turbine Engine Applications

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Corman; Krishan Luthra

    2005-09-30

    This report covers work performed under the Continuous Fiber Ceramic Composites (CFCC) program by GE Global Research and its partners from 1994 through 2005. The processing of prepreg-derived, melt infiltrated (MI) composite systems based on monofilament and multifilament tow SiC fibers is described. Extensive mechanical and environmental exposure characterizations were performed on these systems, as well as on competing Ceramic Matrix Composite (CMC) systems. Although current monofilament SiC fibers have inherent oxidative stability limitations due to their carbon surface coatings, the MI CMC system based on multifilament tow (Hi-Nicalon ) proved to have excellent mechanical, thermal and time-dependent properties. The materials database generated from the material testing was used to design turbine hot gas path components, namely the shroud and combustor liner, utilizing the CMC materials. The feasibility of using such MI CMC materials in gas turbine engines was demonstrated via combustion rig testing of turbine shrouds and combustor liners, and through field engine tests of shrouds in a 2MW engine for >1000 hours. A unique combustion test facility was also developed that allowed coupons of the CMC materials to be exposed to high-pressure, high-velocity combustion gas environments for times up to {approx}4000 hours.

  18. Analytical Micromechanics Modeling Technique Developed for Ceramic Matrix Composites Analysis

    Science.gov (United States)

    Min, James B.

    2005-01-01

    Ceramic matrix composites (CMCs) promise many advantages for next-generation aerospace propulsion systems. Specifically, carbon-reinforced silicon carbide (C/SiC) CMCs enable higher operational temperatures and provide potential component weight savings by virtue of their high specific strength. These attributes may provide systemwide benefits. Higher operating temperatures lessen or eliminate the need for cooling, thereby reducing both fuel consumption and the complex hardware and plumbing required for heat management. This, in turn, lowers system weight, size, and complexity, while improving efficiency, reliability, and service life, resulting in overall lower operating costs.

  19. Analysis of Damage in a Ceramic Matrix Composite

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Talreja, Ramesh

    1993-01-01

    Mechanisms of damage and the associated mechanical response are stud ied for a unidirectionally fiber-reinforced ceramic matrix composite subjected to uniaxial tensile loading parallel to fibers. A multi-stage development of damage is identified, and for each stage the governing mechanisms are...... discussed. For distributed matrix micro cracking a continuum damage model is used as the basis for describing the associated stress-strain behavior. A simplified analysis of frictional sliding at the fiber/matrix inter face is made to elucidate its effect on the stress-strain response....

  20. Fabrication Routes for Continuous Fiber-Reinforced Ceramic Composites (CFCC)

    Science.gov (United States)

    DiCarlo, James A.; Bansal, Narottam P.

    1998-01-01

    The primary approaches used for fabrication of continuous fiber-reinforced ceramic composite (CFCC) components have been reviewed. The CFCC fabrication issues related to fiber, interface, and matrix have been analyzed. The capabilities, advantages and limitations of the five matrix-infiltration routes have been compared and discussed. Today, the best fabrication route for the CFCC end-user is not clear and compromises need to be made depending on the details of the CFCC application. However, with time, this problem should be reduced as research continues to develop advanced CFCC constituents and fabrication routes.

  1. Effect of CaO doping on mechanical properties and thermal shock resistance of 10NiO-NiFe2O4 composite ceramics

    Institute of Scientific and Technical Information of China (English)

    LAI Yan-qing; ZHANG Yong; ZHANG Gang; TIAN Zhong-liang; LI Jie

    2008-01-01

    The CaO doped 10NiO-NiFe2O4 composite ceramics were prepared by the cold isostatic pressing-sintering process, and the effects of CaO content on the phase composition, mechanical property and thermal shock resistance of 10NiO-NiFe2O4 composite ceramics were studied. The results show that the samples mainly consist of NiO and NiFe2O4 when content of CaO is less than4%(mass fraction), bending strength increases obviously by CaO doping. Bending strength of the samples doped with 2% CaO is above 185 Mpa, but that of the samples without CaO is only 60 Mpa. Fracture toughness is improved obviously by CaO doping, the undoped ceramics. CaO doping is bad to thermal shock resistance of 10NiO-NiFe2O4 composite ceramics.

  2. The mechanical properties and microstructure of the bionic alloy-ceramic laminated composite

    International Nuclear Information System (INIS)

    Highlights: → The bionic alloy-ceramic laminated composite was fabricated by EB-PVD. → Mechanical properties and microstructure of laminated composite were investigated. → Laminated composite was heat treated in order to improve the tensile strength. -- Abstract: In the present work, the bionic alloy-ceramic laminated composite was fabricated by electron beam-physical vapor deposition method. The ingots of Ni-20Co-12Cr-4Al (wt.%) and ZrO2-8 mol%Y2O3 were used as the sources of the alloy layer and ceramic layer, respectively. The laminated composite was generally destroyed within the ceramic layer when the interlaminar strength was determined, which revealed that the excellent interface bonding between the ceramic layer and the alloy layer. The obvious diffusion interfaces between the ceramic and alloy layers were readily detected, which was favorable to the mechanical properties of the laminated composite. In the heat treatment process, the diffusion of the flaws within the ceramic layer and/or alloy layer to the interface between the ceramic layer and alloy layer was easier compared with the occurrence of interlaminar diffusion. It was confirmed by the X-ray diffractometer that the reaction of the ceramic layer with alloy layer was simple physical diffusion. The tensile strength of the laminated composite increased first and then decreased as the heat treatment time increased, which was attributed to the mutual reaction of the increase in the relative density with the formation of the flaws located at the interface.

  3. Preparation and studies on surface modifications of calcium-silico-phosphate ferrimagnetic glass-ceramics in simulated body fluid

    International Nuclear Information System (INIS)

    The structure and magnetic behaviour of 34SiO2-(45 - x) CaO-16P2O5-4.5 MgO-0.5 CaF2 - x Fe2O3 (where x = 5, 10, 15, 20 wt.%) glasses have been investigated. Ferrimagnetic glass-ceramics are prepared by melt quench followed by controlled crystallization. The surface modification and dissolution behaviour of these glass-ceramics in simulated body fluid (SBF) have also been studied. Phase formation and magnetic behaviour have been studied using XRD and SQUID magnetometer. The room temperature Moessbauer study has been done to monitor the local environment around Fe cations and valence state of Fe ions. X-ray photoelectron spectroscopy (XPS) was used to study the surface modification in glass-ceramics when immersed in simulated body fluid. Formation of bioactive layer in SBF has been ascertained using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The SBF solutions were analyzed using an absorption spectrophotometer. The magnetic measurements indicated that all these glasses possess paramagnetic character and the [Fe2+/Fe3+] ions ratio depends on the composition of glass and varied with Fe2O3 concentration in glass matrix. In glass-ceramics saturation magnetization increases with increase in amount of Fe2O3. The nanostructure of hematite and magnetite is formed in the glass-ceramics with 15 and 20 wt.% Fe2O3, which is responsible for the magnetic property of these glass-ceramics. Introduction of Fe2O3 induces several modifications at the glass-ceramics surface when immersed in SBF solution and thereby affecting the surface dissolution and the formation of the bioactive layer.

  4. Relaxor behavior of Ba(ZrxTi1-x)O3 ceramics prepared by sol-gel process

    International Nuclear Information System (INIS)

    (Ba(ZrxTi1-x)O3; BZT) ceramic powders with various compositions (0 ≤ x ≤ 0.25) were prepared by sol -gel process. As-prepared powders were sintered at different temperatures. X-ray diffraction analysis confirms the phase purity of the powders sintered at 1400 deg C. From SEM analysis, decrease of grain size with the increase of Zr concentration was observed attributed to the slow diffusion characteristics of Zr. Frequency and temperature dependent dielectric studies showed a decrease of Curie temperature and increase of diffuse phase transition behavior with increase in Zr concentration. (author)

  5. Low Temperature Preparation and Cold Manufacturing Techniques for Femoral Head of Al2O3 Ceramic

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The hip joint femoral head prosthesis was prepared using the Al2O3 material, which was synthesized by high purity alumina micro-powder and Mg- Zr- Y composite additives, the cold manufacturing techniques of lathe turning, grade polishing and the matching size correction of the sintered femoral head were studied. The results showed, after being pressed under 200 MPa cold isostatic pressure and being pre-sintered at 1 150 ℃, the biscuit' s strength can meet the demands of lathe turning; After being grade polished by SiC micro-powder and diamond abrading agent and being size corrected by special instruments, the femoral head prosthesis of Al2O3 ceramic has good surface degree of finish and articulates tightly with femoral handle.

  6. Preparation for femur prosthesis of ceramic-metal combination artificial hip joint

    Institute of Scientific and Technical Information of China (English)

    王欣宇; 李世普; 陈晓明; 贺建华

    2002-01-01

    Al2O3 material was synthesized by using high purity alumina micro-powder and Mg-Zr-Y composite additives at temperature of 1600℃, which had good mechanics property of 416MPa bending strength and 5.46MPa*m1/2 fracture toughness. Femur head prosthesis of hip joint was prepared by using this material; Ti alloy femur handle was sprayed bioactive hydroxyapatite (HA) by plasma on surface, which improves the chemistry stability and biocompatibility of Ti alloy; ceramic-metal combination artificial hip joint femur prosthesis was made by combining Al2O3 femur head with Ti alloy femur handle, so the manufacturing process is improved and the property and application flexibility are advanced.

  7. Sliding wear resistance of metal matrix composite layers prepared by high power laser

    NARCIS (Netherlands)

    Ocelik, Vaclav; Matthews, D; de Hosson, Jeff

    2005-01-01

    Two laser surface engineering techniques, Laser Cladding and Laser Melt Injection (LMI), were used to prepare three different metal matrix composite layers with a thickness of about 1 mm and approximately 25-30% volume fraction of ceramic particles. SiC/Al-8Si, WC/Ti-6Al-4V and TiB2/Ti-6Al-4V layers

  8. Factors Affecting Fiber Design and Selection for Advanced Ceramic Composites

    Science.gov (United States)

    DiCarlo, James A.

    1998-01-01

    Structural Ceramic Matrix Composites (CMC) have the potential for application in the hot sections of a variety of advanced propulsion and power systems. It is therefore necessary to have a general understanding of the key properties of CMC and Reinforcing Fibers. This need is complicated by the wide variety of application conditions and structural requirements for which CMC's will be used, and the proprietary concerns of the design engineers. CMC's, to be successful, must display properties which are competitive with the currently used high temperature structural materials: (i.e., Iron and Nickel based superalloys, tough monolithic ceramics, and carbon/carbon composites.) Structural CMC offers several areas of competition: (1) performance, (i.e., strength and strength retention, creep resistance, and thermal conductivity), (2) reliability (i.e., environmental durability, and damage tolerance) and (3) processing (i.e., capability for varying sizes and shapes, and cost effective fabrication). The presentation further discusses, and illustrates with fiber and CMC data the key fiber properties and processes which strongly affect each CMC area of competition. The presentation further discusses the current knowledge of the important factors which control the key fiber properties. A design guidelines for the optimum fiber characteristics is developed, and the currently available fibers are compared against those guidelines.

  9. Synthesis of TiN/AlON composite ceramics

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The synthesis process of TiN/AlON composite ceramics was studied, the thermodynamics, mechanical properties and microstructures of TiN/AlON have also been investigated. The TiN/AlON composite ceramics has been synthesized by both hot-pressing and pressureless sintering. The characterizations of the material synthesized were analyzed with XRD (X-ray diffraction) and TEM (transmission electronic microscope). The density and toughness strength of TiN/AlON are 3.57 g/cm3 and 4.74 MPa@ m1/2, respectively. The bending strength was measured at both room temperature and high temperatures and the results are 399 MPa (room temperature), 406 MPa (1 073 K), 417 MPa (1 273 K) and 323 MPa (1 573 K). Pattern Recognition (PR) and Artificial Neural Network (ANN) were used to optimize the parameters and to predict the expected values. A proper parameter for pressureless sintering of TiN/AlON has been obtained and testified, the parameters are temperature (1978 K), AlN / (AlN + Al2O3) ratio (0.22), MgO (4.7%) and TiO2 (7.2%).

  10. Piezoelectric ceramic fibers for active fiber composites: a comparative study

    Science.gov (United States)

    Kornmann, Xavier; Huber, Christian; Elsener, Hans-Rudolf

    2003-08-01

    The morphology and the free strain performances of three different piezoelectric ceramic fibers used for the manufacture of active fiber composites (AFCs) have been investigated. The morphology of the fibers has a direct influence on the manufacture of the AFCs. Fibers with non-uniform diameters are more difficult to contact with the interdigitated electrodes and can be the cause of irreparable damages in AFCs. An indirect method requiring the use of a simple analytical model is proposed to evaluate the free strain of active fiber composites. This indirect method presents a relatively good agreement with direct free strain measurements performed with strain gages glued on both sides of an AFC. The results show a systematic difference of ca. 20 % between the indirect and the direct methods. However, the indirect method did not permit to see differences of piezoelectric performance between the types of fibers.

  11. Laser Machining of Melt Infiltrated Ceramic Matrix Composite

    Science.gov (United States)

    Jarmon, D. C.; Ojard, G.; Brewer, D.

    2012-01-01

    As interest grows in considering the use of ceramic matrix composites for critical components, the effects of different machining techniques, and the resulting machined surfaces, on strength need to be understood. This work presents the characterization of a Melt Infiltrated SiC/SiC composite material system machined by different methods. While a range of machining approaches were initially considered, only diamond grinding and laser machining were investigated on a series of tensile coupons. The coupons were tested for residual tensile strength, after a stressed steam exposure cycle. The data clearly differentiated the laser machined coupons as having better capability for the samples tested. These results, along with micro-structural characterization, will be presented.

  12. Modeling oxidation damage of continuous fiber reinforced ceramic matrix composites

    Institute of Scientific and Technical Information of China (English)

    Cheng-Peng Yang; Gui-Qiong Jiao; Bo Wang

    2011-01-01

    For fiber reinforced ceramic matrix composites (CMCs), oxidation of the constituents is a very important damage type for high temperature applications. During the oxidizing process, the pyrolytic carbon interphase gradually recesses from the crack site in the axial direction of the fiber into the interior of the material. Carbon fiber usually presents notch-like or local neck-shrink oxidation phenomenon, causing strength degradation. But, the reason for SiC fiber degradation is the flaw growth mechanism on its surface. A micromechanical model based on the above mechanisms was established to simulate the mechanical properties of CMCs after high temperature oxidation. The statistic and shearlag theory were applied and the calculation expressions for retained tensile modulus and strength were deduced, respectively. Meanwhile, the interphase recession and fiber strength degradation were considered. And then, the model was validated by application to a C/SiC composite.

  13. Ceramic Composite Mechanical Fastener System for High-Temperature Structural Assemblies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Under Phase I, the feasibility of a novel thermal stress-free ceramic composite mechanical fastener system suitable for assembly of high-temperature composite...

  14. Large enhancement of the electrocaloric effect in PLZT ceramics prepared by hot-pressing

    Science.gov (United States)

    Zhang, Guangzu; Chen, Zhibiao; Fan, Baoyan; Liu, Jianguo; Chen, Mo; Shen, Meng; Liu, Pin; Zeng, Yike; Jiang, Shenglin; Wang, Qing

    2016-06-01

    In this contribution, we demonstrate the optimization of the microstructures of the Pb0.85La0.1(Zr0.65Ti0.35)O3 (PLZT) relaxor ferroelectric ceramics and subsequent enhancements in their polarization and electrical resistivity by using a hot-pressing process. The resulting superior breakdown strength of hot-pressed PLZT enables the application of high electric field to induce a giant electrocaloric effect, in which the adiabatic change of temperature (ΔT) and the isothermal change of entropy (ΔS) are around 2 times greater than those of the samples prepared by the conventional sintering approach using muffle furnace. Moreover, the addition of extra PbO to make up the loss of Pb in the high-temperature sintering leads to the further improvements in the phase composition and electrical properties of PLZT, due to inhibition of the pyrochlore phase formation. The relationship among the sintering conditions, the content of excess PbO, and the microstructure as well as the electrical characteristics of PLZT have been investigated in a systematic manner. This work provides a facile approach to enhanced electrocaloric effect in bulk ceramics.

  15. Large enhancement of the electrocaloric effect in PLZT ceramics prepared by hot-pressing

    Directory of Open Access Journals (Sweden)

    Guangzu Zhang

    2016-06-01

    Full Text Available In this contribution, we demonstrate the optimization of the microstructures of the Pb0.85La0.1(Zr0.65Ti0.35O3 (PLZT relaxor ferroelectric ceramics and subsequent enhancements in their polarization and electrical resistivity by using a hot-pressing process. The resulting superior breakdown strength of hot-pressed PLZT enables the application of high electric field to induce a giant electrocaloric effect, in which the adiabatic change of temperature (ΔT and the isothermal change of entropy (ΔS are around 2 times greater than those of the samples prepared by the conventional sintering approach using muffle furnace. Moreover, the addition of extra PbO to make up the loss of Pb in the high-temperature sintering leads to the further improvements in the phase composition and electrical properties of PLZT, due to inhibition of the pyrochlore phase formation. The relationship among the sintering conditions, the content of excess PbO, and the microstructure as well as the electrical characteristics of PLZT have been investigated in a systematic manner. This work provides a facile approach to enhanced electrocaloric effect in bulk ceramics.

  16. ELASTIC BEHAVIOR ANALYSIS OF 3D ANGLE-INTERLOCK WOVEN CERAMIC COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Chang Yanjun; Jiao Guiqiong; Wang Bo; Liu Wei

    2006-01-01

    A micromechanical model for elastic behavior analysis of angle-interlock woven ceramic composites is proposed in this paper. This model takes into account the actual fabric structure by considering the fiber undulation and continuity in space, the cavities between adjacent yarns and the actual cross-section geometry of the yarn. Based on the laminate theory, the elastic properties of 3D angle-interlock woven ceramic composites are predicted. Different numbers of interlaced wefts have almost the same elastic moduli. The thickness of ceramic matrix has little effect on elastic moduli. When the undulation ratio increases longitudinal modulus decreases and the other Young's moduli increase. Good agreement between theoretical predictions and experimental results demonstrates the feasibility of the proposed model in analyzing the elastic properties of3D angle-interlock woven ceramic composites. The results of this paper verify the fact that the method of analyzing polyester matrix composites is suitable for woven ceramic composites.

  17. Influence of Composition on Properties of Medium Temperature Sintering (Ba, Sr)TiO3 Series Capacitor Ceramics

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The influence of the composition (Yb2O3, MgO, CeO2, Li2CO3) on the dielectric properties of medium temperature sintering (Ba,Sr)TiO3(BST) series capacitor ceramics was investigated by means of conventional technology process and orthogonal design experiments. The major secondary influencing factors and the influencing tendency of various factor′s levels for the dielectric properties of BST ceramics were obtained. The optimum formula for maximum dielectric constant (ε) and for minimum dielectric loss (tanδ) was obtained under the experimental conditions. The BST ceramics with optimum comprehensive properties was obtained by means of orthogonal design experiments, with the sintering temperature at 1200 ℃, the dielectric constant 5239, the dielectric loss 0.0097, withstand electric voltage over 6 MV·m-1, capacitance temperature changing rate (ΔC/C) -75.67%, and suited for Y5V character. The mechanism of the influence of various components on the dielectric properties of medium temperature sintering BST ceramics was studied, thus providing the basis for preparation of multilayer capacitor ceramics and single-chip capacitor ceramics.

  18. Preparation and characterization of photo chromic effect for ceramic tiles

    International Nuclear Information System (INIS)

    Ceramic tile industry is developing due to the technological researches in scientific area and new tiles which are not only a traditional ceramic also have many multiple functionalities have been marketed nowadays. These tiles like photo catalytic, photovoltaic, antibacterial and etc. improve the quality of life and provide lots of benefits such as self cleaning, energy production, climate control. The goal of this study was to enhance the photo chromic function on ceramic tiles which is the attitude of changing color in a reversible way by electromagnetic radiation and widely used in many areas because of its aesthetic and also functional properties. High response time of photo chromic features of ceramic tiles have been achieved by employing of polymeric gel with additives of photoactive dye onto the ceramic surface. Photo chromic layer with a thickness of approximately 45- 50 μm was performed by using spray coating technique which provided homogeneous deposition on surface. Photo chromic ceramic tiles with high photo chromic activity such as reversibly color change between ΔE= 0.29 and 26.31 were obtained successfully. The photo chromic performance properties and coloring-bleaching mechanisms were analyzed by spectrophotometer. The microstructures of coatings were investigated both by stereo microscopy and scanning electron microscopy (SEM). (Author) 13 ref.s

  19. Preparation and Luminescence of Er3+ Doped Oxyfluoride Glass Ceramics Containing LaF3 Nanocrystals

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Er3+ doped transparent oxyfluoride glass ceramics containing LaF3 nanocrystals were prepared and the up-con-version and near infrared luminescence behavior of Er3+ in glasses and glass ceramics were investigated. With increasing heat-treating time and temperature, the size (varied from 0 to 19 nm) and crystallinity (varied from 0 to 47%) of LaF3 nanocrystals in the glass ceramics are increased. The up-conversion luminescence intensity of Er3+ ions in the glass ceramics is much stronger than that in the glasses and increased significantly with increasing heat-treating time and temperature. The near infrared emission of Er3+ ions in the glass ceramics is found to be similar to that in the glasses.

  20. Fracture toughness of zirconia ceramic crowns made by feather-edge tooth preparation design

    Directory of Open Access Journals (Sweden)

    Mirković Nemanja

    2012-01-01

    Full Text Available Background/Aim. Fracture toughness determines functional crown strenght and prevents damages on ceramics during mastication. There is a lack of relevant literature data about fracture toughness of crowns made by feather-edge preparation. Mechanical testing of ceramic samples is supposed to show if feather-edge tooth preparation is a successful method for making ceramic crowns without any risk of reduction of their mechanical properties. This research was done to establish effects of feather-edge tooth preparation on fracture toughness of single zirconia ceramic crowns. Methods. The research was performed as an experimental study. Sixty (60 ceramic crowns were made on non-carious extracted human premolars. Thirty (30 crowns were made on the basis of feather-edge preparation (experimental group I. The group II included 30 crowns made on 1 mm rounded shoulder. Crowns fabrication was executed on a copy mill production system “Zirkonzahn” (Zirkonzahn GMBH, Gais, Germany. The spherical compression test was used to determine fracture toughness, using 6 mm diameter ceramic ball. Fracture load for damaging ceramic crown was recorded on a universal testing machine - Zwick, type 1464, with the speed of 0.05 mm/min. Results. The results of this research introduced significant differences between fracture toughness of ceramic samples in every examined group. However, fracture toughness of crowns from both group was above 2 000 N, what was double beyond a recommended value. The mean value of fracture toughness in the feather-edge group was 2 090 N, and in shoulder group it was 2 214 N. Conclusion. This research showed a high fracture toughness of zirconia crowns made on feather-edge preparation. The examined crowns showed a fracture resistance at a sufficient distance in relation to the minimum values of functional loads. Further research of functional loads of these crown is necessary, as well as research of marginal adaptation of cemented crowns and

  1. Flexural Strength of Preheated Resin Composites and Bonding Properties to Glass-Ceramic and Dentin

    Directory of Open Access Journals (Sweden)

    Matthias Richard Kramer

    2016-01-01

    Full Text Available To test the impact of preheating (25, 37, 54, or 68 °C of TetricEvoCeram (TEC, FiltekSupremeXT (FSXT, and Venus (V on flexural strength (FS, shear bond strength (SBS and interfacial tension (IFT. FS was tested with TEC and FSXT. For SBS, glass-ceramic and human dentin substrate were fabricated and luted with the preheated resin composite (RC. SBSs of 1500 thermal cycled specimens were measured. For IFT, glass slides covered with the non-polymerized RC were prepared and contact angles were measured. Data were analyzed using 2/1-way ANOVA with Scheffé-test, and t-test (p < 0.05. Preheated TEC (37–68 °C showed higher FS compared to the control-group (25 °C (p < 0.001. FSXT presented higher FS than TEC (p < 0.001. For SBS to dentin higher values for FSXT than TEC were found. The preheating temperature showed no impact on SBS to dentin. SBS to glass-ceramic revealed a positive influence of temperature for TEC 25–68 °C (p = 0.015. TEC showed higher values than V and FSXT (p < 0.001. IFT values increased with the preheating temperature. A significant difference could be observed in every RC group between 25 and 68 °C (p < 0.001.

  2. Luting of CAD/CAM ceramic inlays: direct composite versus dual-cure luting cement.

    Science.gov (United States)

    Kameyama, Atsushi; Bonroy, Kim; Elsen, Caroline; Lührs, Anne-Katrin; Suyama, Yuji; Peumans, Marleen; Van Meerbeek, Bart; De Munck, Jan

    2015-01-01

    The aim of this study was to investigate bonding effectiveness in direct restorations. A two-step self-etch adhesive and a light-cure resin composite was compared with luting with a conventional dual-cure resin cement and a two-step etch and rinse adhesive. Class-I box-type cavities were prepared. Identical ceramic inlays were designed and fabricated with a computer-aided design/computer-aided manufacturing (CAD/CAM) device. The inlays were seated with Clearfil SE Bond/Clearfil AP-X (Kuraray Medical) or ExciTE F DSC/Variolink II (Ivoclar Vivadent), each by two operators (five teeth per group). The inlays were stored in water for one week at 37°C, whereafter micro-tensile bond strength testing was conducted. The micro-tensile bond strength of the direct composite was significantly higher than that from conventional luting, and was independent of the operator (P<0.0001). Pre-testing failures were only observed with the conventional method. High-power light-curing of a direct composite may be a viable alternative to luting lithium disilicate glass-ceramic CAD/CAM restorations. PMID:26407114

  3. Luting of CAD/CAM ceramic inlays: direct composite versus dual-cure luting cement.

    Science.gov (United States)

    Kameyama, Atsushi; Bonroy, Kim; Elsen, Caroline; Lührs, Anne-Katrin; Suyama, Yuji; Peumans, Marleen; Van Meerbeek, Bart; De Munck, Jan

    2015-01-01

    The aim of this study was to investigate bonding effectiveness in direct restorations. A two-step self-etch adhesive and a light-cure resin composite was compared with luting with a conventional dual-cure resin cement and a two-step etch and rinse adhesive. Class-I box-type cavities were prepared. Identical ceramic inlays were designed and fabricated with a computer-aided design/computer-aided manufacturing (CAD/CAM) device. The inlays were seated with Clearfil SE Bond/Clearfil AP-X (Kuraray Medical) or ExciTE F DSC/Variolink II (Ivoclar Vivadent), each by two operators (five teeth per group). The inlays were stored in water for one week at 37°C, whereafter micro-tensile bond strength testing was conducted. The micro-tensile bond strength of the direct composite was significantly higher than that from conventional luting, and was independent of the operator (P<0.0001). Pre-testing failures were only observed with the conventional method. High-power light-curing of a direct composite may be a viable alternative to luting lithium disilicate glass-ceramic CAD/CAM restorations.

  4. Ultrasonic assessment of interfacial oxidation damage in ceramic matrix composites

    Science.gov (United States)

    Chu, Y. C.; Rokhlin, S. I.; Baaklini, G. Y.

    1993-01-01

    A new approach to characterizing oxidation damage in ceramic matrix composites using ultrasonic techniques is proposed. In this approach, the elastic constants of the composite are determined nondestructively by measuring the angular dependence of both longitudinal and transverse wave velocities. A micromechanical model for composites with anisotropic constituents is used to find the anisotropic properties of an effective fiber, which is a combination of the fiber and the interface. Interfacial properties are extracted from the properties of this effective fiber by analyzing the difference between effective and actual fiber properties. Unidirectional /0/28 SiC/Si3N4 composites with 30 percent fiber volume fraction and 30 percent matrix porosity are used. The samples are exposed in a flowing oxygen environment at elevated temperatures, up to 1400 C, for 100 hours and then measured by ultrasonic methods at room temperature. The Young's modulus in the fiber direction of the sample oxidized at 600 C decreased significantly but it was unchanged for samples oxidized at temperatures above 1200 C. The transverse moduli obtained from ultrasonic measurements decrease continuously up to 1200 C. The shear stiffnesses show behavior similar to the transverse moduli. The effective elastic moduli of the interfacial carbon coating are determined from the experimental data, and their change due to thermal oxidation is discussed.

  5. 15th annual conference on composites and advanced ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Baaklini, G.Y.; Bhatt, R.T.

    1991-01-01

    The room-temperature tensile testing of silicon carbide fiber reinforced reaction-bonded silicon nitride (SiC/RBSN) composite specimens was monitored by using in-situ x ray film radiography. Radiographic evaluation before, during, and after loading provided data on the effect of preexisting volume flaws (high density impurities, and local density variations) on the fracture behavior of composites. Results from (0)1, (0)3, (0)5, and (0)8 composite specimens, showed that x ray film radiography can monitor damage accumulations during tensile loading. Matrix cracking, fiber-matrix debonding, and fiber pullout were imaged throughout the tensile loading history of the specimens. Further, in-situ film radiography was found to be a helpful and practical technique for estimating interfacial shear strength between the SiC fiber and the RBSN matrix by the matrix crack spacing method. It is concluded that pretest, in-situ, and post-test radiography can provide for a greater understanding of ceramic matrix composite mechanical behavior, a verification of related experimental procedures, and a validation and development of related analytical models.

  6. Design Concepts for Cooled Ceramic Composite Turbine Vane

    Science.gov (United States)

    Boyle, Robert J.; Parikh, Ankur H.; Nagpal, VInod K.

    2015-01-01

    The objective of this work was to develop design concepts for a cooled ceramic vane to be used in the first stage of the High Pressure Turbine(HPT). To insure that the design concepts were relevant to the gas turbine industry needs, Honeywell International Inc. was subcontracted to provide technical guidance for this work. The work performed under this contract can be divided into three broad categories. The first was an analysis of the cycle benefits arising from the higher temperature capability of Ceramic Matrix Composite(CMC) compared with conventional metallic vane materials. The second category was a series of structural analyses for variations in the internal configuration of first stage vane for the High Pressure Turbine(HPT) of a CF6 class commercial airline engine. The third category was analysis for a radial cooled turbine vanes for use in turboshaft engine applications. The size, shape and internal configuration of the turboshaft engine vanes were selected to investigate a cooling concept appropriate to small CMC vanes.

  7. Method of preparing porous, rigid ceramic separators for an electrochemical cell. [Patent application

    Science.gov (United States)

    Bandyopadhyay, G.; Dusek, J.T.

    Porous, rigid separators for electrochemical cells are prepared by first calcining particles of ceramic material at temperatures above about 1200/sup 0/C for a sufficient period of time to reduce the sinterability of the particles. A ceramic powder that has not been calcined is blended with the original powder to control the porosity of the completed separator. The ceramic blend is then pressed into a sheet of the desired shape and sintered at a temperature somewhat lower than the calcination temperature. Separator sheets of about 1 to 2.5 mm thickness and 30 to 70% porosity can be prepared by this technique. Ceramics such as yttria, magnesium oxide, and magnesium-aluminium oxide have advantageously been used to form separators by this method.

  8. Ceramic-lined compound copper pipe prepared by SHS process

    Institute of Scientific and Technical Information of China (English)

    FU Han-guang; JIANG Zhi-qiang; ZHANG Xiao-hong

    2004-01-01

    Self-propagating high-temperature synthesis(SHS) is a new kind of material synthesis technique, and has characteristics with respect to low energy consumption, short synthetizing time, high production quantity, high product purity and no environmental pollution. When SHS combines with centrifugal casting, ceramic-lined compound copper pipe(CLCCP) can be produced, the inner surface of copper pipe can produce ceramic coatings having good wear and corrosion resistance. In order to increase the densification degree, combining strength and toughness of ceramic layer, the effects of additives such as SiO2, CrO3, Na2B4O7 and ZrO2 are researched, adding SiO2 and CrO3 in thermite, the densification degree of ceramic layer increases, adding Na2 B4 O7 in thermite can increase combining strength, adding ZrO2 in thermite can increase the toughness of ceramic layer. CLCCP is used in tubular billet crystallizer, having excellent service effects and decreasing the production cost of tubular billet.

  9. Improved C/SiC Ceramic Composites Made Using PIP

    Science.gov (United States)

    Easler, Timothy

    2007-01-01

    Improved carbon-fiber-reinforced SiC ceramic-matrix composite (C/SiC CMC) materials, suitable for fabrication of thick-section structural components, are producible by use of a combination of raw materials and processing conditions different from such combinations used in the prior art. In comparison with prior C/SiC CMC materials, these materials have more nearly uniform density, less porosity, and greater strength. The majority of raw-material/processing-condition combinations used in the prior art involve the use of chemical vapor infiltration (CVI) for densifying the matrix. In contrast, in synthesizing a material of the present type, one uses a combination of infiltration with, and pyrolysis of, a preceramic polymer [polymer infiltration followed by pyrolysis (PIP)]. PIP processing is performed in repeated, tailored cycles of infiltration followed by pyrolysis. Densification by PIP processing takes less time and costs less than does densification by CVI. When one of these improved materials was tested by exposure to a high-temperature, inert-gas environment that caused prior C/SiC CMCs to lose strength, this material did not lose strength. (Information on the temperature and exposure time was not available at the time of writing this article.) A material of the present improved type consists, more specifically, of (1) carbon fibers coated with an engineered fiber/matrix interface material and (2) a ceramic matrix, containing SiC, derived from a pre-ceramic polymer with ceramic powder additions. The enhancements of properties of these materials relative to those of prior C/SiC CMC materials are attributable largely to engineering of the fiber/ matrix interfacial material and the densification process. The synthesis of a material of this type includes processing at an elevated temperature to a low level of open porosity. The approach followed in this processing allows one to fabricate not only simple plates but also more complexly shaped parts. The carbon fiber

  10. Lithium ceramics: sol-gel preparation and tritium release; Ceramiques lithiees: elaboration sol-gel et relachement du tritium

    Energy Technology Data Exchange (ETDEWEB)

    Renoult, O.

    1994-04-01

    Ceramics based on lithium aluminate (LiA1O{sub 2}), lithium zirconate (Li{sub 2}ZrO{sub 3}) and lithium titanate (Li{sub 2}TiO{sub 3}) are candidates as tritium breeder blanket materials for forthcoming nuclear fusion reactors. Lithium silico-aluminate Li{sub 4+x}A1{sub 4-3x}Si{sub 2x}O{sub 8} (0 {<=} x {<=} 0,25) powders were synthetized from alkoxyde-hydroxyde sol-gel route. By direct sintering at 850-1100 deg C (without prior calcination), ceramics with controlled stoichiometry and homogenous microstructure were obtained. We have also prepared, using a comparable method, Li{sub 2}Zr{sub 1-x}Ti{sub x}O{sub 3} (x = 0, x = 0,1 et x = 1) materials. All these ceramics, with different microstructures and compositions, have been tested in out-of-reactor experiments. Concerning lithium aluminate microporous ceramics, the silicon substitution leads to a significant improvement of the tritrium release. Classical models taking into account independent surface mechanisms are not able to describe correctly the observed tritium release kinetics. We show, using a simple model, that the release kinetics is in fact limited by an intergranular diffusion followed by a desorption. The delay in tritium release, which occurs when the ceramic compacity increases, is explained in terms of an enhancement of the ionic T{sup +} diffusion path length. The energy required for desorption includes a leading term independent of hydrogen contained in the sweep gas. This term is attributed to the limiting recombination step of T{sup +} in molecular species HTO. For similar microstructures, the facility of tritium release for the different studied materials is explained by three properties: the crystal structure of the ceramic, the acidity of oxides and finally the presence of electronic non-stoichiometric defects. (author). 89 refs., 50 figs., 2 tabs., 1 annexe.

  11. The Influence of the Particle Size on the Adhesion Between Ceramic Particles and Metal Matrix in MMC Composites

    Science.gov (United States)

    Jarzabek, Dariusz M.; Chmielewski, Marcin; Dulnik, Judyta; Strojny-Nedza, Agata

    2016-08-01

    This study investigated the influence of the particle size on the adhesion force between ceramic particles and metal matrix in ceramic-reinforced metal matrix composites. The Cu-Al2O3 composites with 5 vol.% of ceramic phase were prepared by a powder metallurgy process. Alumina oxide powder as an electrocorundum (Al2O3) powder with different particle sizes, i.e., fine powder powder of 180 µm was used as a reinforcement. Microstructural investigations included analyses using scanning electron microscopy with an integrated EDS microanalysis system and transmission microscopy. In order to measure the adhesion force (interface strength), we prepared the microwires made of the investigated materials and carried out the experiments with the use of the self-made tensile tester. We have observed that the interface strength is higher for the sample with coarse particles and is equal to 74 ± 4 MPa and it is equal to 68 ± 3 MPa for the sample with fine ceramic particles.

  12. The influence of glass composition on crystalline phase stability in glass-ceramic wasteforms

    Energy Technology Data Exchange (ETDEWEB)

    Maddrell, Ewan, E-mail: ewan.r.maddrell@nnl.co.uk [National Nuclear Laboratory, Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom); Thornber, Stephanie; Hyatt, Neil C. [Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom)

    2015-01-15

    Highlights: • Crystalline phase formation shown to depend on glass matrix composition. • Zirconolite forms as the sole crystalline phase only for most aluminous glasses. • Thermodynamics indicate that low silica activity glasses stabilise zirconolite. - Abstract: Zirconolite glass-ceramic wasteforms were prepared using a suite of Na{sub 2}O–Al{sub 2}O{sub 3}–B{sub 2}O{sub 3}–SiO{sub 2} glass matrices with variable Al:B ratios. Zirconolite was the dominant crystalline phase only for the most alumina rich glass compositions. As the Al:B ratio decreased zirconolite was replaced by sphene, zircon and rutile. Thermodynamic data were used to calculate a silica activity in the glass melt below which zirconolite is the favoured crystalline phase. The concept of the crystalline reference state of glass melts is then utilised to provide a physical basis for why silica activity varies with the Al:B ratio.

  13. Characterisation of some Clays Used for Whiteware Ceramics I. Mineralogical composition

    Directory of Open Access Journals (Sweden)

    Marcel Benea

    2002-04-01

    Full Text Available In order to obtain a semiquantitative mineralogical composition of raw materials used for whiteware ceramics, four different clay types were analysed by X-ray diffraction. Studies were carried out by using a combination of analyses of the bulk sample, and of the fine fraction. Using a well-established pre-treatment methodology (use of chemicals, ultrasonic treatment, dispersion procedures, clay mineral concentration by centrifugation and sedimentation, oriented and random powder preparation, cation saturation, expansion/dehydration methods, 12 X-ray diffractometer traces were obtained from each sample. Based on these informations it was possible to establish the qualitative mineralogical composition, and also a semiquantitative one using peak intensities and peak area corrected by various factors. Scanning electron microscopy was also used in order to illustrate the identified mineral phases.

  14. Microstructures and Composition of Ceramic Coatings on Aluminum Produced by Micro-Arc Oxidation

    Institute of Scientific and Technical Information of China (English)

    SHEN De-jiu; WANG Yu-lin; GU Wei-chao; XING Guang-zhong

    2004-01-01

    Microstructures and phase composition of the ceramic coatings formed on pure aluminum by heteropolar pulsed current ceramic synthesizing system for different periods were investigated by X-ray diffraction (XRD) and scanning electronic microscopy (SEM). Results show that the amount of the discharge channels in the ceramic coating sminish while the aperture largen in the micro-arc oxidation process, and the surface of the ceramic coatingmelted and solidified in the process.XRD studies of ceramic coatings deposited for different time show that these coatings consist mainly of α-Al2 O3, γ-Al2 O3 , θ-Al2 O3 and a little amorphous phase, and phase composition of compact and porous ceramic coatings don' t have much difference but have a little change of the content of α-Al2 O3 and amorphous phase.

  15. Nondestructive damage evaluation in ceramic matrix composites for aerospace applications.

    Science.gov (United States)

    Dassios, Konstantinos G; Kordatos, Evangelos Z; Aggelis, Dimitrios G; Matikas, Theodore E

    2013-01-01

    Infrared thermography (IRT) and acoustic emission (AE) are the two major nondestructive methodologies for evaluating damage in ceramic matrix composites (CMCs) for aerospace applications. The two techniques are applied herein to assess and monitor damage formation and evolution in a SiC-fiber reinforced CMC loaded under cyclic and fatigue loading. The paper explains how IRT and AE can be used for the assessment of the material's performance under fatigue. IRT and AE parameters are specifically used for the characterization of the complex damage mechanisms that occur during CMC fracture, and they enable the identification of the micromechanical processes that control material failure, mainly crack formation and propagation. Additionally, these nondestructive parameters help in early prediction of the residual life of the material and in establishing the fatigue limit of materials rapidly and accurately.

  16. Preparation and Application of New Porous Environmental Ceramics Filter Medium

    Institute of Scientific and Technical Information of China (English)

    LI Meng; WU Jianfeng; JIN Jianhua; LIU Xinming

    2005-01-01

    A new kind of environmental ceramics medium which was made of industrial solid wastes discharged by Shandong Alum Corporation has been used in the process of drinking water treatment. New techniques were introduced to ensure its remarkable advantages such as high porosity and strength. The results of practical application show that this sort of filter medium has shorter filtration run, shorter mature period and higher filter deposit capability compared with traditional sand filter medium. Moreover, up to 25%- 30% of the daily running costs are expected to be reduced by using this ceramics medium.

  17. Continuous fiber ceramic composites for energy related applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-07

    The US Department of Energy has established the Continuous Fiber Ceramic Composites (CFCC) program to develop technology for the manufacture of CFCC`s for use in industrial applications where a reduction in energy usage or emissions could be realized. As part of this program, the Dow Chemical Company explored the manufacture of a fiber reinforced/self reinforced silicon nitride for use in industrial chemical processing. In Dow`s program, CFCC manufacturing technology was developed around traditional, cost effective, tape casting routes. Formulations were developed and coupled with unique processing procedures which enabled the manufacture of tubular green laminates of the dimension needed for the application. An evaluation of the effect of various fibers and fiber coatings on the properties of a fiber reinforced composites was also conducted. Results indicated that fiber coatings could provide composites exhibiting non-catastrophic failure and substantially improved toughness. However, an evaluation of these materials in industrial process environments showed that the material system chosen by Dow did not provide the required performance improvements to make replacement of current metallic components with CFCC components economically viable.

  18. Structure recognition from high resolution images of ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Ushizima, Daniela; Perciano, Talita; Krishnan, Harinarayan; Loring, Burlen; Bale, Hrishikesh; Parkinson, Dilworth; Sethian, James

    2015-01-05

    Fibers provide exceptional strength-to-weight ratio capabilities when woven into ceramic composites, transforming them into materials with exceptional resistance to high temperature, and high strength combined with improved fracture toughness. Microcracks are inevitable when the material is under strain, which can be imaged using synchrotron X-ray computed micro-tomography (mu-CT) for assessment of material mechanical toughness variation. An important part of this analysis is to recognize fibrillar features. This paper presents algorithms for detecting and quantifying composite cracks and fiber breaks from high-resolution image stacks. First, we propose recognition algorithms to identify the different structures of the composite, including matrix cracks and fibers breaks. Second, we introduce our package F3D for fast filtering of large 3D imagery, implemented in OpenCL to take advantage of graphic cards. Results show that our algorithms automatically identify micro-damage and that the GPU-based implementation introduced here takes minutes, being 17x faster than similar tools on a typical image file.

  19. Mechanical Properties of a new Dental all-ceramic Material-zirconia Toughened Nanometer-ceramic Composite

    Institute of Scientific and Technical Information of China (English)

    CHAI Feng; XU Ling; CHAO Yong-lie; LIAO Yun-mao; ZHAO Yi-min

    2003-01-01

    Objectives:All-ceramic dental restorations are attractive to the dental community because of their advantages.But they're also challenged by relatively low flexural strength and intrinsic poor resistance to fracture.This paper aims to investigate mechanical properties of a new dental all-ceramic material, i.e. zirconia toughened nanometer-ceramic composite (α-Al2O3/nZrO2).Methods:α-Al2O3/nZrO2 ceramics powder (W) was processed with combined methods of chemical co-precipitation method and ball milling. Scanning electron microscopy (SEM)was used to determine the particle size distribution and to characterize the particle morphology of the powders. Four kinds of powders with different ZrO2 content (5wt%, 10wt%, 15wt% and 20wt%) were prepared by using α-Al2O3 powder to dilute the higher ZrO2 content powder (W). The ceramic matrix compacts were made by slip-casting technique and sintering to 1 200~1 600 ℃. The flexural strength and the fracture toughness of the matrix materials were measured via three-point bending test and single-edge notch beam methods, respectively.Results:1) The particle distribution of the Al2O3/nZrO2 powder ranged from 0.02~3.0 μm, with the superfine particles almost accounting for 20%;2) There is a significant difference of flexural strength (P<0.05) between the groups with 1 450 ℃ and 1 600 ℃ sintering temperature and 1 200 ℃;3) There is a significant difference of flexural strength (P<0.05) between different zirconia volume fraction groups with the same sintering temperature, the ceramic matrix samples with higher nZrO2 (W) content had much better mechanical properties than those of pure α-Al2O3 ceramics.Conclusions:The studied nanometer α-Al2O3/nZrO2 powder was homogeously distributed within the matrix and had reasonable powder-size gradation to improve mechanical properties of ceramics.%目的:口腔全瓷修复体以其独特优越性受到医患青睐,但脆性问题一直限制其应用范围及使用可靠性.本研

  20. Preparation of MgF2 Translucent Ceramic by Hot Pressing Sintering

    Institute of Scientific and Technical Information of China (English)

    PENG Minhong; CAO Weiping; SONG Jinhong

    2015-01-01

    The aim of this work was to prepare MgF2 translucent ceramic by using nanopowders as raw materials and to study its properties.The MgF2 nanopowders were prepared using chemical precipitation and the translucent ceramics were fabricated by hot-pressing sintering in a vacuum environment. X-ray diffraction analysis showed that the powders were homogeneous with an average particles size about 13 nm. By comparing the results of transmission electron microscopy, it could be concluded that the porous structure of precursor powders could be improved by calcination. The SEM images of MgF2 indicated that the as-prepared ceramics were well densified at 900℃. The photo of the ceramic sample showed that high translucence is a main breakthrough in the ifeld of MgF2 materials preparation. For the translucent ceramic sample sintered at 900℃, the Vickers hardness and density were 5.55 GPa and 98.74%, respectively, and its highest transmittance with thickness of 1mm reached 87% in the wavelength from 2.5 µm to 10 µm, all which made it advantageous to be a kind of infrared windows and dome materials.

  1. Influence of Alumina Addition on the Optical Property of Zirconia/Alumina Composite Dental Ceramics

    Institute of Scientific and Technical Information of China (English)

    JIANG Li; LIAO Yunmao; LI Wei; WAN Qianbing; ZHAO Yongqi

    2011-01-01

    The influence of various alumina additions on the optical property of zirconia/alumina composite ceramics was investigated.The relative sintered densities,transmittances,color and the microstructure of the composite ceramics were studied.The experimental results showed that the relative sintered densities and transmittances decreased with alumina addition.The lightness increased obviously but the chroma change was small.Pure zirconia nanopowders sintered densely could obtain the relatively high transmittance,while the transmittance and the lightness of slight addition changed significantly.The zirconia/alumina composite ceramics with alumina addition less than 7.5wt% could achieve the relatively stable and reliable optical properties.

  2. Preparation of high performance ceramic tiles using waste tile granules and ceramic polishing powder

    Institute of Scientific and Technical Information of China (English)

    WANG Gong-xun; SU Da-gen

    2008-01-01

    This paper presents an innovative approach to reusing waste tile granules (TG) and ceramic polishing powder (PP) to produce high performance ceramic tiles. We studied formulations each with a TG mass fraction of 25.0% and a different PP mass fraction between 1.0% and 7.0%. The formulations included a small amount of borax additive of a mass fracton between 0.2%and 1.2%. The effects of these industrial by-products on compressive strength, water absorption and microstructure of the new ceramic tiles were investigated. The results indicate that the compressive strength decreases and water absorption increases when TG with a mass fraction of 25.0% are added. Improvement of the compressive strength may be achieved when TG (up to 25.0%)and PP (up to 2.0%) are both used at the same time. In particular, the compressive strength improvement can be maximized and water absorption reduced when a borax additive of up to 0.5% is used as a flux. Scanning electron microscopy reveals that a certain amount of fine PP granules and a high content of fluxing oxides from borax avail the formation of glassy phase that fills up the pores in the new ceramic tiles, resulting in a dense product with high compressive strength and low water absorption.

  3. Lightweight Ceramic Composition of Carbon Silicon Oxygen and Boron

    Science.gov (United States)

    Leiser, Daniel B. (Inventor); Hsu, Ming-Ta (Inventor); Chen, Timothy S. (Inventor)

    1997-01-01

    Lightweight, monolithic ceramics resistant to oxidation in air at high temperatures are made by impregnating a porous carbon preform with a sol which contains a mixture of tetraethoxysilane, dimethyldiethoxysilane and trimethyl borate. The sol is gelled and dried on the carbon preform to form a ceramic precursor. The precursor is pyrolyzed in an inert atmosphere to form the ceramic which is made of carbon, silicon, oxygen and boron. The carbon of the preform reacts with the dried gel during the pyrolysis to form a component of the resulting ceramic. The ceramic is of the same size, shape and form as the carbon precursor. Thus, using a porous, fibrous carbon precursor, such as a carbon felt, results in a porous, fibrous ceramic. Ceramics of the invention are useful as lightweight tiles for a reentry spacecraft.

  4. The Fabrication and Characterization of PCL/Rice Husk Derived Bioactive Glass-Ceramic Composite Scaffolds

    Directory of Open Access Journals (Sweden)

    Farnaz Naghizadeh

    2014-01-01

    Full Text Available The present study was conducted to fabricate a 3D scaffold using polycaprolactone (PCL and silicate based bioactive glass-ceramic (R-SBgC. Different concentrations of R-SBgC prepared from rice husk ash (RHA were combined with PCL to fabricate a composite scaffold using thermally induced phase separation (TIPS method. The products were then characterized using SEM and EDX. The results demonstrated that R-SBgC in PCL matrix produced a bioactive material which has highly porous structure with interconnected porosities. There appears to be a relationship between the increase in R-SBgC concentration and increased material density and compressive modulus; however, increasing R-SBgC concentration result in reduced scaffold porosity. In conclusion, it is possible to fabricate a PCL/bioactive glass-ceramic composite from processed rice husk. Varying the R-SBgC concentrations can control the properties of this material, which is useful in the development of the ideal scaffold intended for use as a bone substitute in nonload bearing sites.

  5. Synthesis, biocompatibility and mechanical properties of ZrO2-Al2O3 ceramics composites.

    Science.gov (United States)

    Nevarez-Rascon, Alfredo; González-Lopez, Santiago; Acosta-Torres, Laura Susana; Nevarez-Rascon, Martina Margarita; Orrantia-Borunda, Erasmo

    2016-01-01

    This study evaluated cell viability, microhardness and flexural strength of two ceramic composites systems (ZA and AZ), pure alumina and zirconia. There were prepared homogeneous mixtures of 78wt%Al2O3+20wt%3Y-TZP+2wt%Al2O3w (AZ) and 80wt%3YTZP+18wt%Al2O3+2wt%Al2O3w (ZA), as well as 3Y-TZP (Z), pure Al2O3 (A) and commercial monolithic 3Y-TZP (Zc). Also mouse fibroblast cells 3T3-L1 and a MTT test was carried out at 24, 48 and 72 h. The surfaces were observed with SEM and the microhardness and three-point flexural strength values were estimated. The absolute microhardness values were: A>AZ>Z>Zc>ZA. Flexural strength of Zc, Z, and ZA were around double than AZ and A. All groups showed high biocompatibility trough cell viability values at 24, 48 and 72 h. Factors like grain shape, grain size and homogeneous or heterogeneous grain distributions may play an important role in physical, mechanical and biological properties of the ceramic composites. PMID:27251994

  6. Numerical Homogenization of Protective Ceramic Composite Layers using the Hybrid Finite-Discrete Element Methods

    Directory of Open Access Journals (Sweden)

    Zainorizuan Mohd Jaini

    2013-12-01

    Full Text Available Innovative technologies have resulted in more effective ceramic composite as high rate loading-resistance and protective layer. The ceramic composite layer consists of ceramic frontal plate that bonded by softer-strong reinforced polymer network, consequently gains the heterogeneous condition. These materials serve specific purposes of defeating high rate loading and maintaining the structural integrity of the layer. Further due to the lack of a constituent material and tedious problem in heterogonous material modelling, a numerical homogenization is employed to analyse the isotropic material properties of ceramic composite layer in homogenous manner. The objective of this study is to derive a constitutive law of the ceramic composite using the multi-scale analysis. Two-dimensional symmetric macrostructure of the ceramic composite was numerically modelled using the hybrid finite-discrete element method to investigate the effective material properties and strength profile. The macrostructure was modelled as brittle material with nonlinear material properties. The finite element method is incorporated with a Rankine-Rotating Crack approach and discrete element to model the fracture onset. The prescribed uniaxial and biaxial loadings were imposed along the free boundaries to create different deformations. Due to crack initiation on the macrostructure, the averaged stresses were calculated to plot the stress-strain curves and the effective yield stress surface. From the multi-scale analysis, the rate-dependency of Mohr-Coulomb constitutive law was derived for the ceramic composite layer.

  7. Mechanical properties of dense to porous alumina/lanthanum hexaaluminate composite ceramics

    International Nuclear Information System (INIS)

    For development of new composite materials based on lanthanum hexaaluminate and alumina ceramics, a better understanding of the microstructure-properties relationship is essential. In this paper, attention was focused on the evaluation of mechanical properties of lanthanum hexaaluminate/alumina particulate composite. It was found out that the lanthanum hexaaluminate content plays a critical role in determination of the microstructure and mechanical properties of the composite ceramics. In situ formation of plate-like lanthanum hexaaluminate in the ceramic matrix was accompanied with formation of pores so that the microstructure shifted from dense to porous. Increasing the lanthanum hexaaluminate content up to a certain value enhanced the fracture toughness, increased the hardness, and increased the elastic modulus of the composite materials. Further increase in the lanthanum hexaaluminate content degraded the hardness as well as the elastic modulus of composite ceramics. The influence of lanthanum hexaaluminate on mechanical properties was described by means of microstructure, porosity, and intrinsic characteristics of lanthanum hexaaluminate.

  8. Dynamic pyroelectric response of composite based on ferroelectric copolymer of poly(vinylidene fluoride-trifluoroethylene) and ferroelectric ceramics of barium lead zirconate titanate

    Energy Technology Data Exchange (ETDEWEB)

    Solnyshkin, A.V. [Tver State University, Department of Condensed Matter Physics, Tver (Russian Federation); National Research University ' ' MIET' ' , Department of Intellectual Technical Systems, Zelenograd, Moscow (Russian Federation); Morsakov, I.M.; Bogomolov, A.A. [Tver State University, Department of Condensed Matter Physics, Tver (Russian Federation); Belov, A.N.; Vorobiev, M.I.; Shevyakov, V.I.; Silibin, M.V. [National Research University ' ' MIET' ' , Department of Intellectual Technical Systems, Zelenograd, Moscow (Russian Federation); Shvartsman, V.V. [University of Duisburg-Essen, Institute for Materials Science, Essen (Germany)

    2015-10-15

    In this work, pyroelectric properties of composite films on the basis of poly(vinylidene fluoride-trifluoroethylene) copolymer with a various level of ferroelectric ceramics inclusions of barium lead zirconate titanate solid solution were investigated by the dynamic method. The composite films were prepared by the solvent cast method. The unusual spike-like dynamic response with a quasi-stationary component was observed. It is supposed that composite films may be effectively used for pyroelectric applications. (orig.)

  9. Bond strength durability of a resin composite on a reinforced ceramic using various repair systems

    NARCIS (Netherlands)

    Ozcan, Mutlu; Valandro, Luiz Felipe; Amaral, Regina; Leite, Fabiola; Bottino, Marco Antonio

    2009-01-01

    Objectives. This study compared the durability of repair bond strength of a resin composite to a reinforced ceramic after three repair systems. Methods. Alumina-reinforced feldspathic ceramic blocks (Vitadur-alpha(R)) (N=30) were randomly divided into three groups according to the repair method: PR-

  10. Minimal compliance design for metal–ceramic composites with lamellar microstructures

    DEFF Research Database (Denmark)

    Piat, R.; Sinchuk, Y.; Vasoya, M.;

    2011-01-01

    . Micromechanical models are applied for the calculation of the effective elastic properties of the composites. Optimized local lamella orientations and ceramic contents are calculated, and the difference between the initial (specimen with constant ceramic content and orientation) and the optimized designs...

  11. Preparation and Kinetics of Thermal Decomposition of Silver Peroxide Decorated Diatomite-Based Porous Ceramic Composite%AgO修饰硅藻土基多孔陶瓷复合材料的制备及热分解非等温动力学

    Institute of Scientific and Technical Information of China (English)

    冯拉俊; 沈文宁; 冯慧; 郭美娟

    2011-01-01

    Silver peroxide decorated diatomite-based porous ceramic composite was prepared by chemical oxidation method using potassium persulfate as oxidant and characterized by X-ray diffraction, X-ray photo electron spectroscopy and mercury injection apparatus. The process and kinetic behavior of thermal decomposition of the composite prepared were studied by means of thermogravimetry and linear temperature theory. The results show that the silver peroxide decorated diatomite-based porous ceramic composite prepared has crystal structure and is mainly made up of tetragonal christobalite and monoclinic silver peroxide. And the average pore diameter, median pore diameter, apparent density and porosity of the composite are 3.862 |xm, 0.354 μm, 1.794 g-mL-1 and 57.985% respectively. Silver peroxide in the composite decomposes at 158 °C along with the formation of silver oxide followed by decomposing into silver at higher temperature. The mechanism of decomposition reaction is random nucleation and subsequent growth (Al), and the apparent activation energy and reaction frequency factor are 136.94 kJ-mol-1 and 2.48 xl014 s-1, respectively. Compared with reference silver peroxide powders, the thermal stability of silver peroxide in the composite rises.%采用化学氧化法,以过硫酸钾为氧化剂制备了AgO修饰硅藻土基多孔陶瓷复合材料,用XRD、XPS、压汞仪对制备的复合材料进行表征,借助热重法和线性升温理论对复合材料的热分解过程和热分解动力学进行研究.结果表明,AgO修饰硅藻土基多孔陶瓷复合材料具有晶体结构,主要由正方晶系方石英和单斜晶系AgO组成;复合材料平均孔直径为3.862 μm,中值孔直径为0.354 μm,表观密度为1.794 g·mL-1,孔隙率为57.985%;复合材料中AgO的分解分两步,在158℃开始分解成Ag2O,更高温度时进一步分解成Ag;AgO分解服从核生成和核成长机理,其表观活化能为136.94 kJ·mol-1,反应频率因子为2.48×1014 s

  12. Preparation of Metallurgical Ceramic Coatings on Steel Using a Combined Technique

    Institute of Scientific and Technical Information of China (English)

    SHEN De-jiu; WANG Yu-lin; GU Wei-chao; XING Guang-zhong

    2004-01-01

    Micro-arc oxidation (MAO) is a novel surface technique for producing ceramic coatings on valve metals and their alloys. But this promising technique can not be used to steel directly. In this paper metallurgically wedded ceramic coatings was prepared on steel surface with a combined method of arc spraying and microarc oxidation for the first time. The results show that, adhesive strength of the arc spraying aluminum coatings to steel substrate was enhanced after induction remelting, and a metallurgically wedded region was formed between arc spraying coatings and steel substrate. After MAO, ceramic coatings was formed on aluminum coatings, and the ceramic coatings is mainly composed of α-Al2 O3 ,γ-Al2 O3 , θ-Al2 O3 and a little amorphous phase.

  13. Dielectric and Ferroelectric Behavior of Bismuth-Doped Barium Titanate Ceramic Prepared by Microwave Sintering

    Science.gov (United States)

    Mahapatra, A.; Parida, S.; Sarangi, S.; Badapanda, T.

    2015-08-01

    Bismuth-doped barium titanate ceramics with the general formula Ba1- x Bi2 x/3TiO3 ( x = 0.0, 0.01, 0.025, 0.05) have been prepared by the solid state reaction technique. The phase formation and structural property of all compositions have been studied by x-ray diffraction (XRD) pattern and Rietveld refinement. XRD pattern reports the single phase tetragonal crystal system with space group of P4mm. All compositions have been sintered at 1100°C in a microwave furnace for 30 min. The variation of dielectric constant with respect to temperature and frequency was studied and it was found that the dielectric constant decreases whereas transition temperature increased with the increase in Bi content. The diffusivity parameter was calculated by the modified Curie-Weiss law and the diffusivity increased with the increase in Bi content. The ferroelectric property was studied by the P-E hysteresis loop and it was observed that the saturation polarization decreased, but the coercive field increased with Bi content. The optical band gap was calculated from UV-Visible spectroscopy and found to decrease with Bi content.

  14. Synthesis of nanosized powders for preparing ceramic membranes

    International Nuclear Information System (INIS)

    Magnesium-stabilized zirconia have been synthesized by a chemical route. The aim of this work is to obtain powders with suitable chemical and physical properties to be used as ceramic membranes for nanofiltration. The coprecipitation technique with an azeotropic distillation step has been employed for this purpose. Several powder characterization techniques have been utilized. The main results show that nanosized powders with high a degree of purity, high chemical homogeneity and elevated reactivity have been obtained. (orig.)

  15. Preparation and properties of highly porous, biomorphic YSZ ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Rambo, C.R.; Cao, J.; Sieber, H

    2004-10-15

    Highly porous, biomorphic YSZ (yttria-stabilized zirconia) ceramics were manufactured by infiltration of zirconium-oxychloride (ZrOCl{sub 2}{center_dot}8H{sub 2}O) sol into biological template structures derived from rattan and pine wood. 3-5 mol% yttrium nitrate (Y(NO{sub 3}){sub 3}{center_dot}5H{sub 2}O) was added to the sol to stabilize the tetragonal ZrO{sub 2} phase. After vacuum-assisted infiltration, the specimens were pyrolysed at 800 deg. C in N{sub 2} atmosphere. Repeated infiltrations and subsequent annealing in air at temperatures up to 1550 deg. C yields the burn out of the biocarbon template and resulted in the formation of biomorphous YSZ ceramics, which maintained the microstructural features of the biological preform. Depending on the type of the biological template as well as the processing parameters, biomorphic ZrO{sub 2} ceramics with an unidirected pore morphology and a large variety of microstructures can be obtained.

  16. Effects of α-Al2O3 Nanoadditive on the Properties of Ceramic Coatings Prepared in Borate Electrolyte by Micro-Arc Oxidation

    Science.gov (United States)

    Li, H. X.; Zhu, H. H.; Wu, X.; Ji, Z. G.

    2012-08-01

    Ceramic coatings have been synthesized on 6063 aluminum alloy by micro-arc oxidation (MAO) technique in the solution of Na2B4O7 electrolyte with and without α-Al2O3 nanoadditive. Effects of α-Al2O3 nanoadditive on the phase composition, micro-structure, micro-hardness, adhesion and wear resistance of the prepared ceramic coatings have been investigated in this paper. The phase composition and microstructure of the MAO coatings were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDX) analyses, respectively. Micro-hardness, adhesion and tribological and wear tests were also performed. The results showed that the α-Al2O3 nanoadditive doped in the electrolyte had great influence on the structural and mechanical properties of the ceramic coatings.

  17. RELATIONSHIP BETWEEN POWDER COMPOSITION AND SINGLE SCREW EXTRUSION FOR MANUFACTURING RELIABLE RANDOM CERAMIC PACKED BED ACCORDING STATISTICAL APPROACH

    Directory of Open Access Journals (Sweden)

    Amin Salem

    2016-03-01

    Full Text Available The present investigation provides a detailed relationship between the powder composition and reliability of random ceramic beds. This evaluation is important due to standing in the liquid-gas contactors as well as predicting lifetime. It is still unclear whether the normal distribution is the most suitable function for estimation of failure. By developing the application of ceramic beds in the chemical plants, a special attention has been paid in screening strength distributions. To achieve this goal, an experimental-theoretical study was presented on compressive strength distribution. The powder compositions were prepared according to the statistical response surface methodology and then were formed by a single screw extrusion as Raschig rings. The compressive strength of specimens was measured to evaluate the strength data sets by normal and Weibull distributions. The results were analyzed by the Akaike information criterion and the Anderson-Darling test. The accuracy of distributions in prediction fracture was discussed.

  18. Reaction hot-pressing and property-composition relationships of modified sialon - boron nitride hetero-modulus ceramics

    Science.gov (United States)

    Wang, Y.; Shabalin, I. L.; Zhang, L.; Zhdanov, V. B.

    2011-10-01

    Hetero-modulus ceramics (HMC) present the combination of a ceramic matrix with inclusions of a dispersed phase with considerably lower values of Young's modulus, resulting in a material with significantly advanced properties. Densified '-Si6-xAlxOxN8-x based HMC materials, with various volume contents of low-modulus α-BN phase and modifiers such as TiN or ZrO2 in sialon matrix, were prepared by high-temperature reaction hot-pressing in nitrogen atmosphere. The pristine blend composition for reaction hot-pressing consisted of mixed fine powders of Si, Al, B, Ti nitrides and Al, Zr oxides. Statistical design of 25-2 fractional factorial and third-order simplex-grid types was used for the experimental studies to estimate the effects of some technological factors on the densification of hot-pressed products and the property-composition relationships of modified HMC materials.

  19. Preparation and Microstructure of Porous ZrB2 Ceramics Using Reactive Spark Plasma Sintering Method

    Institute of Scientific and Technical Information of China (English)

    YUAN Huiping; LI Junguo; SHEN Qiang; ZHANG Lianmeng

    2015-01-01

    Zirconium oxide (ZrO2) and boron carbide (B4C) were added to ZrB2 raw powders to prepare ZrB2 porous ceramics by reactive spark plasma sintering (RSPS). The reactions between ZrO2 and B4C which produce ZrB2 and gas (such as CO and B2O3) result in pore formation. X-Ray Diffraction results indicated that the products phase was ZrB2 and the reaction was completed after the RSPS process. The porosity could be controlled by changing the ratio of synthesized ZrB2 to raw ZrB2 powders. The porosity of porous ceramics with 20 wt% and 40 wt% synthsized ZrB2 are 0.185 and 0.222, respectivly. And dense ZrB2-SiC ceramic with a porosity of 0.057 was prepared under the same conditions for comparison. The pores were homogeneously distributed within the microstructure of the porous ceramics. The results indicate a promising method for preparing porous ZrB2-based ceramics.

  20. Preparation of biomorphic silicon carbide–mullite ceramics using molten salt synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei, E-mail: wwchem@126.com [Department of Chemical Engineering, College of Environment Science and Engineering, Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang’an University, 126# Yanta Road, Xi' an 710054, Shaanxi (China); Hou, Guangya [College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014 (China); Wang, Boya; Deng, Shunxi [Department of Chemical Engineering, College of Environment Science and Engineering, Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas, Ministry of Education, Chang’an University, 126# Yanta Road, Xi' an 710054, Shaanxi (China)

    2014-09-15

    Biomorphic silicon carbide–mullite ceramics were prepared from beech wood using liquid Si infiltration and molten salts synthesis. The resulting mullite whiskers coating, as well as the growth mechanism in molten Al{sub 2}(SO{sub 4}){sub 3}–Na{sub 2}SO{sub 4} environment, have been investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR) techniques. The biomorphic SiC ceramics derived from the beech wood template have coarse pore walls consisting of β-SiC grains with diameters ranging from 5 μm to 20 μm. After the molten salts reactions between biomorphic SiC substrate and mixture molten salts (Al{sub 2}(SO{sub 4}){sub 3}–Na{sub 2}SO{sub 4}), porous Silicon carbide–mullite ceramics with cilia-like microstructure were obtained. This unique structure has potential application in hot gases filters. An oxidation–dissolution cycle was proposed to explain the mullite whiskers growth in molten salts environment. - Graphical abstract: Biomorphic silicon carbide–mullite ceramics with cilia-like microstructure prepared from beech wood using liquid Si infiltration (LSI) and molten salts reactions (MSR) processes. Mullite whiskers with nanometer-sized diameters and micrometer-sized lengths grow on the surface of SiC substrate, and the biomorphic silicon carbide–mullite ceramics inherit the porous microstructure originated from biomorphic SiC ceramics and beech wood. The mullite whiskers grow on the pores' surface of biomorphic SiC to form cilia-like surface, and this special structure can be used for hot gases filter. - Highlights: • Biomorphic silicon carbide–mullite ceramics were prepared. • An oxidation–dissolution mechanism was proposed to explain the coating formation. • The unique structure has potential application in hot gases filter.

  1. Improved Foreign Object Damage Performance for 3D Woven Ceramic Matrix Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — As the power density of advanced engines increases, the need for new materials that are capable of higher operating temperatures, such as ceramic matrix composites...

  2. Ceramic Composite Mechanical Fastener System for High-Temperature Structural Assemblies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hot structures fabricated from ceramic composite materials are an attractive design option for components of future high-speed aircraft, re-entry vehicles and...

  3. Low-Cost Innovative Hi-Temp Fiber Coating Process for Advanced Ceramic Matrix Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MATECH GSM (MG) proposes 1) to demonstrate a low-cost innovative Hi-Temp Si-doped in-situ BN fiber coating process for advanced ceramic matrix composites in order...

  4. Improved Foreign Object Damage Performance for 2D Woven Ceramic Matrix Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — As the power density of advanced engines increases, the need for new materials that are capable of higher operating temperatures, such as ceramic matrix composites...

  5. Mechanical properties of dispersed ceramic nanoparticles in polymer composites for orthopedic applications

    Directory of Open Access Journals (Sweden)

    Huinan Liu

    2010-04-01

    Full Text Available Huinan Liu, Thomas J WebsterDivision of Engineering, Brown University, Providence, RI, USAAbstract: Ceramic/polymer composites have been considered as third-generation orthopedic biomaterials due to their ability to closely match properties (such as surface, chemistry, biological, and mechanical of natural bone. It has already been shown that the addition of nanophase compared with conventional (or micron-scale ceramics to polymers enhances bone cell functions. However, in order to fully take advantage of the promising nanometer size effects that nanoceramics can provide when added to polymers, it is critical to uniformly disperse them in a polymer matrix. This is critical since ceramic nanoparticles inherently have a strong tendency to form larger agglomerates in a polymer matrix which may compromise their properties. Therefore, in this study, model ceramic nanoparticles, specifically titania and hydroxyapatite (HA, were dispersed in a model polymer (PLGA, poly-lactic-co-glycolic acid using high-power ultrasonic energy. The mechanical properties of the resulting PLGA composites with well-dispersed ceramic (either titania or HA nanoparticles were investigated and compared with composites with agglomerated ceramic nanoparticles. Results demonstrated that well-dispersed ceramic nanoparticles (titania or HA in PLGA improved mechanical properties compared with agglomerated ceramic nanoparticles even though the weight percentage of the ceramics was the same. Specifically, well-dispersed nanoceramics in PLGA enhanced the tensile modulus, tensile strength at yield, ultimate tensile strength, and compressive modulus compared with the more agglomerated nanoceramics in PLGA. In summary, supplemented by previous studies that demonstrated greater osteoblast (bone-forming cell functions on well-dispersed nanophase ceramics in polymers, the present study demonstrated that the combination of PLGA with well-dispersed nanoceramics enhanced mechanical properties

  6. An Investigation of Reliability Models for Ceramic Matrix Composites and their Implementation into Finite Element Codes

    Science.gov (United States)

    Duffy, Stephen F.

    1998-01-01

    The development of modeling approaches for the failure analysis of ceramic-based material systems used in high temperature environments was the primary objective of this research effort. These materials have the potential to support many key engineering technologies related to the design of aeropropulsion systems. Monolithic ceramics exhibit a number of useful properties such as retention of strength at high temperatures, chemical inertness, and low density. However, the use of monolithic ceramics has been limited by their inherent brittleness and a large variation in strength. This behavior has motivated material scientists to reinforce the monolithic material with a ceramic fiber. The addition of a second ceramic phase with an optimized interface increases toughness and marginally increases strength. The primary purpose of the fiber is to arrest crack growth, not to increase strength. The material systems of interest in this research effort were laminated ceramic matrix composites, as well as two- and three- dimensional fabric reinforced ceramic composites. These emerging composite systems can compete with metals in many demanding applications. However, the ongoing metamorphosis of ceramic composite material systems, and the lack of standardized design data has in the past tended to minimize research efforts related to structural analysis. Many structural components fabricated from ceramic matrix composites (CMC) have been designed by "trial and error." The justification for this approach lies in the fact that during the initial developmental phases for a material system fabrication issues are paramount. Emphasis is placed on demonstrating feasibility rather than fully understanding the processes controlling mechanical behavior. This is understandable during periods of rapid improvements in material properties for any composite system. But to avoid the ad hoc approach, the analytical methods developed under this effort can be used to develop rational structural

  7. Preparation of β-silicon carbide sintered ceramics

    International Nuclear Information System (INIS)

    Current status of research and problems involving β-SiC ceramics in Japan is summarized, focusing on microstructural changes during sintering. SiC has been studied extensively for the past three decades for technical purposes, but generalized research such as on the detailed mechanism of the sintering process has not yet been fully discussed. This paper describes research on SiC for structural materials, and in addition, the issues related to activating SiC industries are discussed based on experimental results. (orig.)

  8. Process description and plant design for preparing ceramic high-level waste forms

    International Nuclear Information System (INIS)

    The ceramics process flow diagram has been simplified and upgraded to utilize only two major processing steps - fluid-bed calcination and hot isostatic press consolidating. Full-scale fluid-bed calcination has been used at INEL to calcine high-level waste for 18 y; and a second-generation calciner, a fully remotely operated and maintained calciner that meets ALARA guidelines, started calcining high-level waste in 1982. Full-scale hot isostatic consolidation has been used by DOE and commercial enterprises to consolidate radioactive components and to encapsulate spent fuel elements for several years. With further development aimed at process integration and parametric optimization, the operating knowledge of full-scale demonstration of the key process steps should be rapidly adaptable to scale-up of the ceramic process to full plant size. Process flowsheets used to prepare ceramic and glass waste forms from defense and commercial high-level liquid waste are described. Preliminary layouts of process flow diagrams in a high-level processing canyon were prepared and used to estimate the preliminary cost of the plant to fabricate both waste forms. The estimated costs for using both options were compared for total waste management costs of SRP high-level liquid waste. Using our design, for both the ceramic and glass plant, capital and operating costs are essentially the same for both defense and commercial wastes, but total waste management costs are calculated to be significantly less for defense wastes using the ceramic option. It is concluded from this and other studies that the ceramic form may offer important advantages over glass in leach resistance, waste loading, density, and process flexibility. Preliminary economic calculations indicate that ceramics must be considered a leading candidate for the form to immobilize high-level wastes

  9. Process description and plant design for preparing ceramic high-level waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Grantham, L.F.; McKisson, R.L.; Guon, J.; Flintoff, J.F.; McKenzie, D.E.

    1983-02-25

    The ceramics process flow diagram has been simplified and upgraded to utilize only two major processing steps - fluid-bed calcination and hot isostatic press consolidating. Full-scale fluid-bed calcination has been used at INEL to calcine high-level waste for 18 y; and a second-generation calciner, a fully remotely operated and maintained calciner that meets ALARA guidelines, started calcining high-level waste in 1982. Full-scale hot isostatic consolidation has been used by DOE and commercial enterprises to consolidate radioactive components and to encapsulate spent fuel elements for several years. With further development aimed at process integration and parametric optimization, the operating knowledge of full-scale demonstration of the key process steps should be rapidly adaptable to scale-up of the ceramic process to full plant size. Process flowsheets used to prepare ceramic and glass waste forms from defense and commercial high-level liquid waste are described. Preliminary layouts of process flow diagrams in a high-level processing canyon were prepared and used to estimate the preliminary cost of the plant to fabricate both waste forms. The estimated costs for using both options were compared for total waste management costs of SRP high-level liquid waste. Using our design, for both the ceramic and glass plant, capital and operating costs are essentially the same for both defense and commercial wastes, but total waste management costs are calculated to be significantly less for defense wastes using the ceramic option. It is concluded from this and other studies that the ceramic form may offer important advantages over glass in leach resistance, waste loading, density, and process flexibility. Preliminary economic calculations indicate that ceramics must be considered a leading candidate for the form to immobilize high-level wastes.

  10. Polymer-ceramic Monolithic In-Needle Extraction (MINE) device: Preparation and examination of drug affinity.

    Science.gov (United States)

    Pietrzyńska, Monika; Tomczak, Rafał; Jezierska, Katarzyna; Voelkel, Adam; Jampílek, Josef

    2016-11-01

    Polymer-ceramic materials were placed in the in-needle device. Polymer-ceramic Monolithic In-Needle Extraction (MINE) device is an extraction device used in sample preparation step but, on the other hand, it can be a tool for examination of interactions between potential antiresorptive drugs and bones. MINE device was used as tool for determination of bisphosphonate affinity to hydroxyapatite. Spectra of prepared materials containing different proportion of the ceramic part were performed with the use of Fourier transform infrared spectroscopy. The extraction of sodium risedronate as standard compound from simulated body fluids was carried out by pumping liquid samples through the MINE device. The amount of sodium risedronate in solutions was examined using UV-VIS spectroscopy. The sorption results of sodium risedronate obtained for monolithic materials containing different amount of hydroxyapatite were compared to the values determined for pure (bulk) hydroxyapatite. Sorption capacity for polymer-ceramic materials placed in the in-needle extraction device was about 0.39mg of sodium risedronate. The complete desorption process was carried out at the level over 95% using various eluents. The results of sorption-desorption experiments allow to deduce on the affinity of sodium risedronate to the ceramic part of sorbent (hydroxyapatite). PMID:27523998

  11. Advanced Measurements of Silicon Carbide Ceramic Matrix Composites

    Energy Technology Data Exchange (ETDEWEB)

    Farhad Farzbod; Stephen J. Reese; Zilong Hua; Marat Khafizov; David H. Hurley

    2012-08-01

    Silicon carbide (SiC) is being considered as a fuel cladding material for accident tolerant fuel under the Light Water Reactor Sustainability (LWRS) Program sponsored by the Nuclear Energy Division of the Department of Energy. Silicon carbide has many potential advantages over traditional zirconium based cladding systems. These include high melting point, low susceptibility to corrosion, and low degradation of mechanical properties under neutron irradiation. In addition, ceramic matrix composites (CMCs) made from SiC have high mechanical toughness enabling these materials to withstand thermal and mechanical shock loading. However, many of the fundamental mechanical and thermal properties of SiC CMCs depend strongly on the fabrication process. As a result, extrapolating current materials science databases for these materials to nuclear applications is not possible. The “Advanced Measurements” work package under the LWRS fuels pathway is tasked with the development of measurement techniques that can characterize fundamental thermal and mechanical properties of SiC CMCs. An emphasis is being placed on development of characterization tools that can used for examination of fresh as well as irradiated samples. The work discuss in this report can be divided into two broad categories. The first involves the development of laser ultrasonic techniques to measure the elastic and yield properties and the second involves the development of laser-based techniques to measurement thermal transport properties. Emphasis has been placed on understanding the anisotropic and heterogeneous nature of SiC CMCs in regards to thermal and mechanical properties. The material properties characterized within this work package will be used as validation of advanced materials physics models of SiC CMCs developed under the LWRS fuels pathway. In addition, it is envisioned that similar measurement techniques can be used to provide process control and quality assurance as well as measurement of

  12. Modeling and simulation of continuous fiber-reinforced ceramic composites

    Science.gov (United States)

    Bheemreddy, Venkata

    Finite element modeling framework based on cohesive damage modeling, constitutive material behavior using user-material subroutines, and extended finite element method (XFEM), are developed for studying the failure behavior of continuous fiber-reinforced ceramic matrix composites (CFCCs) by the example of a silicon carbide matrix reinforced with silicon carbide fiber (SiC/SiCf) composite. This work deals with developing comprehensive numerical models for three problems: (1) fiber/matrix interface debonding and fiber pull-out, (2) mechanical behavior of a CFCC using a representative volume element (RVE) approach, and (3) microstructure image-based modeling of a CFCC using object oriented finite element analysis (OOF). Load versus displacement behavior during a fiber pull-out event was investigated using a cohesive damage model and an artificial neural network model. Mechanical behavior of a CFCC was investigated using a statistically equivalent RVE. A three-step procedure was developed for generating a randomized fiber distribution. Elastic properties and damage behavior of a CFCC were analyzed using the developed RVE models. Scattering of strength distribution in CFCCs was taken into account using a Weibull probability law. A multi-scale modeling framework was developed for evaluating the fracture behavior of a CFCC as a function of microstructural attributes. A finite element mesh of the microstructure was generated using an OOF tool. XFEM was used to study crack propagation in the microstructure and the fracture behavior was analyzed. The work performed provides a valuable procedure for developing a multi-scale framework for comprehensive damage study of CFCCs.

  13. Structural ceramic coatings in composite microtruss cellular materials

    International Nuclear Information System (INIS)

    Graphical abstract: The compressive strength increase per unit sleeve thickness of Al cores reinforced with Al2O3 sleeves is lower than the corresponding strength increase when the same cores are reinforced with nanocrystalline Ni (n-Ni) sleeves (left). However, because anodizing is a transformative surface treatment, the Al2O3 coating was able to achieve this performance increase with little overall weight penalty (right). Display Omitted Highlights: → A new type of metal/ceramic microtruss cellular composite has been created. → Reinforcing sleeves of Al2O3 were deposited on low density Al microtruss cores. → Significant compressive strength increases were seen at virtually no weight penalty. → Failure mechanisms were studied by electron microscopy and finite element analysis. → Buckling, sleeve wrinkling, and coating fracture dictated the compressive strength. - Abstract: In the present study, anodizing was used to produce Al2O3 coatings in a conventional 3003 aluminum alloy microtruss core; a 38.5 μm thick anodic coating provided a 143% increase in compressive strength. Finite-element analyses were used to illustrate the dependence of the compressive strength and failure mechanism on the thickness of the anodic coating. At low thicknesses the microtruss strength is dictated by global bucking of the internal struts. However, at higher thicknesses the compressive strength is controlled by coating fracture and local deformation in the hinge region of the struts. Regardless of the failure mechanism, the compressive strength of the composite microtruss increased with increasing anodic coating thickness, with very little corresponding weight penalty.

  14. Characterization of composite materials based on cement-ceramic powder blended binder

    Science.gov (United States)

    Kulovaná, Tereza; Pavlík, Zbyšek

    2016-06-01

    Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO2 emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzed by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.

  15. High temperature deformation of ZrB2-SiC-AlN ceramic composite

    International Nuclear Information System (INIS)

    ZrB2 ceramic composites are powerful candidates for use in ultra-high temperature structural materials given their strength under high temperatures, superb ablation resistance, and good oxidation resistance. Unfortunately, ZrB2 ceramic composites are difficult to deform due to inherent brittle property, which impedes large-scale application. High temperature deformation of ZrB2-SiC-AlN ceramic composite at 1900 deg. C with inert gas protection is investigated using deep drawing technique. The deformation behavior under biaxial stress and the microstructure characteristics are analyzed using scanning electron microscopy (SEM) along with energy dispersive spectroscopy (EDS). The results indicate that the fine grain ZrB2-SiC-AlN ceramic composites have excellent high temperature deformation property at 1900 deg. C. The effects of inducting AlN into ZrB2-SiC ceramic and punch rate on high temperature deformation are discussed. The deformation mechanism of ceramic composites is proposed correspondingly.

  16. Fabrication and Performances of 1-3-2 Piezoelectric Ceramic/Polymer Composite

    Institute of Scientific and Technical Information of China (English)

    Likun Wang; Guang Li; Hongliang Du; Lei Qin; Shuxiang Li

    2006-01-01

    A novel 1-3-2 piezoelectric composite has been developed, which consists of piezoelectric ceramic plate and 1-3 piezoelectric composite. The composite was fabricated by dicing PZT ceramic along mutual perpendicular two directions and then filling epoxy into grooves. The piezoelectric and electromechanical properties of the novel composite were determined.The results show a coefficient d33 of 405 pC/N, a vibration displacement of 113.5 pm, an acoustic impendence of 13.3 Mraly,a bandwidth of 12 kHz and a thickness electromechanical coupling coefficient of 0.56.

  17. STUDY OF CERAMIC TILE PREPARATION WITH HIGH CONTENT OF CINDER%高掺量煤渣制备陶瓷釉面砖的研究

    Institute of Scientific and Technical Information of China (English)

    程小苏; 陈倩

    2011-01-01

    Ceramic glazed tile was prepared by low temperature biscuit fire and high temperature glost fire using cinder from a ceramic factory' coal gasifier as the ceramic raw material. The phase composition and microstructure of ceramic glazed tile were analyzed by testing strength, water absorption, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effects of Albite and Black Talc to strength of ceramic body were discussed. When the content of cinder was 50%, the strength of ceramic tile was more than 35Mpa.%以煤气发生炉的煤渣为主要原料,辅以钠长石和黑滑石等其他原料,经低温素烧、高温釉烧的二次烧结工艺在辊道窑烧制成陶瓷釉面砖.测试其强度和吸水率,并采用X射线衍射(XRD)仪和扫描电子显微镜(SEM)分析了煤渣陶瓷釉面砖的物相组成及微观结构,探讨了配方中钠长石和黑滑石含量对陶瓷坯体强度的影响,制备出的陶瓷釉面砖强度大于35Mpa,且煤渣利用量可达50%.

  18. Fabrication and properties of yttria, ceria doped zirconia-aluminia ceramic composites

    International Nuclear Information System (INIS)

    At present, zirconia-based ceramics are gaining popularity in dentistry, particularly in fixed prosthodontics. clinically, it is important that ceramic restorations reproduce the translucency and color of natural teeth. Zirconia based ceramics is a high performance material with excellent biocompatibility and mechanical properties, which suggest its suitability for posterior fixed partial dentures. Y2O3-stabilized tetragonal zirconia polycrystalline (YTZ/Al2O3) and CeO2-stabilized tetragonal zirconia polycrystalline (CZA) ceramics with high-performance were prepared for dental application by use the wet chemical route, consolidated by cold isostatic pressing, and two-step sintering method. Physical and mechanical properties test results show that the bending strength, fracture toughness, and the density of full sintered ceramics suggest that the material is relatively suitable for dental restoration.

  19. Preparation and Drug-release Behavior of β-TCP Ceramics Drug Carrier in vitro

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qihuan; YAN Xin; YAN Yuhua; DAI Honglian; JIANG Xin; LI Shipu

    2012-01-01

    β-TCP ceramics drug carrier was first prepared and characterized.SEM showed that β-TCP carrier was in porous amorphous structure with diameters around 10 μm.The physical properties including apparent porosity,volume-weight,tensile strength and the permeability were measured and the results indicated those properties fit the clinical usage of β-TCP drug carrier.Furthermore,drug release experiment in vitro showed that the carrier could prolong drug release in simulated body fluid which provides basis for the clinical use of β-TCP ceramics as drug carrier.

  20. Comparative Study of Dielectric and Magnetic Properties of Selected 3D Reticulated Ceramics and Their Same Composition Ceramic Disks

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    3-dimensional reticulated ceramics (3DRCs) and their same composition ceramic disks(SCCDs) were fabricated by sol-gel method, with the composition of SrO.6Fe2O3(30%), SiC(35%) and TiO2(35%), sintered at 1200℃ in N2.The dielectric and magnetic parameters of such 3DRCs and their SCCDs were measured respectively in a temperature range from room temperature to 800℃ and in a frequency range from 2.6 GHz to 18 GHz. The results showed that the dielectric and magnetic loss of 3DRCs were obviously larger than those of their SCCDs in a wide range of temperature and the whole range of measuring frequency. The increase of dielectric loss of 3DRCs was much higher than that of magnetic loss compared to their SCCDs, which was found due to the 3D net structure extrinsic characteristics.

  1. Influence of proximal box elevation on the marginal quality and fracture behavior of root-filled molars restored with CAD/CAM ceramic or composite onlays

    OpenAIRE

    Ilgenstein, Irina; Zitzmann, Nicola U.; Bühler, Julia; Wegehaupt, Florian J; Attin, Thomas; WEIGER, Roland; Krastl, Gabriel

    2015-01-01

    OBJECTIVES This study investigated the influence of proximal box elevation (PBE) with composite resin when applied to deep proximal defects in root-filled molars with mesio-occluso-distal (MOD) cavities, which were subsequently restored with computer-aided designed/computer-aided manufacturing (CAD/CAM) ceramic or composite restorations. MATERIALS AND METHOD Root canal treatment was performed on 48 human mandibular molars. Standardized MOD cavities were prepared with the distal box located...

  2. Development of Ceramic Fibers for Reinforcement in Composite Materials

    Science.gov (United States)

    Gates, L. E.; Lent, W. E.; Teague, W. T.

    1961-01-01

    the. testing apparatus for single fiber tensile strength increased the precision. of tests conducted on nine fibers. The highest mean tensile strength, a value of 295,000 pounds per square inch, was obtained with R-141 fibers. Treatment of R-74 fibers with anhydrous Linde A-1100 silane finish improved its mean fiber tensile strength by 25 percent. The lapse of time after fiber formation had no measurable effect on tensile strength. A static heating test conducted with various high melting fibers indicated that Fiberfrax and R-108 underwent no significant changes in bulk volume or resiliency on exposure to 2750 degrees Fahrenheit (1510 degrees Centigrade) in an oxidizing atmosphere. For fiber-resin composition fabrication, ten fiber materials were selected on the bases of high fiber yield, fusion temperature, and type of composition. Fiberfrax, a commercial ceramic fiber, was included for comparison. A new, more effective method of removing pellets from blown fibers was developed. The de-pelletized fibers were treated with a silane finish and felted into ten-inch diameter felts prior to resin impregnation. Composites containing 30 percent by weight of CTL 91-LD phenolic resin were molded under high pressure from the impregnated felts and post-cured to achieve optimum properties. Flexural strength, flexural modules of elasticity, and punch shear strength tests were conducted on the composite specimens. The highest average flexural strength obtained was 19,958 pounds per square inch with the R-74-fiber-resin composite. This compares very favorably with the military specification of 13,000 pounds per square inch flexural strength for randomly oriented fiber reinforced composites. The highest punch shear strength (11,509 pounds per square inch) was obtained with the R-89 fiber-resin composite. The effects of anhydrous fiber finishes on composite strength were not clearly indicated. Plasma arc tests at a heat flux of 550 British Thermal Units per square foot per second on

  3. The effect of different surface treatments on repair of CAD/CAM hybrid ceramic with resin composite

    Directory of Open Access Journals (Sweden)

    Özlem Acar

    2016-08-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the shear bond strength of novel hybrid ceramic material repaired with a composite resin. MATERIALS and METHOD: CAD/CAM hybrid ceramic (VITA Enamic specimens were prepared. The bonding surface was abraded with 600, 800 and 1200 grit SiC papers, and treated with air abrasion of 50 µm alumina particles. The specimens were assigned to four groups (n=12. G1: etching with 34% phosphoric acid + bonding with Adper Single Bond 2, G2: etching with 8% hydrofluoric acid + silane application + bonding with Adper Single Bond 2, G3: etching with 34% phosphoric acid + bonding with Single Bond Universal, G4: etching with 8% hydrofluoric acid + silane application + bonding with Single Bond Universal. Composite resin was build up on pretreated specimens and light-polymerized. The specimens were thermocycled 1000 times between 5±2 °C and 55±2 °C. Shear bond strength test was done by using a universal testing machine at a 1 mm/min crosshead speed. Data were statistically analyzed with One Way ANOVA and post-hoc Tukey HSD tests. Results: Comparison of the shear bond strength among groups revealed statistically significant differences (p<0.05. No statistically significant difference was found between G1 and G3 (p=0.591. Statistically significant differences were found between G1 and G2 (p=0.024, and G1 and G4 (p=0.013. Adhesive failure was observed in all groups. Conclusion: Hydrofluoric acid etching reduced the composite resin to hybrid ceramic shear bond strength. Etching with phosphoric acid followed by bonding with Adper Single Bond 2 or Single Bond Universal positively influenced the bond strength of composite resin to hybrid ceramic.

  4. Cross-sectional AEM preparation technique for ceramic-coated WC-Co cutting tools.

    Science.gov (United States)

    Ostreicher, K; Sung, C

    1993-04-15

    The preparation of cross-sectional specimens for AEM studies of materials such as ceramic coated tungsten carbide presents some unique problems. Pieces joined by the use of epoxides often separate at the interface between the WC and ceramic coating during the initial mechanical grinding and subsequent thinning process as a result of the vibration and physical strain placed on the sample. These problems have been overcome through the use of a preparation process which essentially encapsulates the sample within the confines of an epoxy filled quartz tube. This preparation process has allowed for facile AEM cross-sectional analysis of TiN/TiCN coatings on WC-Co substrates, and has revealed two distinct grain morphologies within the TiCN coating. PMID:8490235

  5. EFFECTIVE ELASTIC PROPERTIES OF ALUMINA-ZIRCONIA COMPOSITE CERAMICS - PART 4. TENSILE MODULUS OF POROUS ALUMINA AND ZIRCONIA

    Directory of Open Access Journals (Sweden)

    W. Pabst

    2004-12-01

    Full Text Available In this fourth paper of a series on the effective elastic properties of alumina-zirconia composite ceramics the influence of porosity on the effective tensile modulus of alumina and zirconia ceramics is discussed. The examples investigated are alumina and zirconia ceramics prepared from submicron powders by starch consolidation casting using two different types of starch, potato starch (median size D50 =47.2 µm and corn starch (median size D50 =13.7 µm. The dependence of effective tensile moduli E, on the porosity f, measured for porosities in the ranges of approx. 19-55 vol.% and 10-42 vol.% for alumina and zirconia, respectively, using a resonant frequency technique, was evaluated by fitting with various model relations, including newly developed ones. A detailed comparison of the fitting results suggests the superiority of the new relation E/E0 = (1 - f·(1 - f/fC, developed by the authors (with the tensile modulus of the dense ceramic material E0 and the critical porosity fC, over most other existing fit models. Only for special purposes and well-behaved data sets the recently proposed exponential relation E/E0 = exp [-Bf/(1 - f] and the well-known Phani-Niyogi relation E/E0 = (1 - f/fCN might be preferable.

  6. Preparation and Properties of Polyaniline Composite Films

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qing-hua

    2002-01-01

    Polyaniline (PAn) was synthesized by chemical oxidation polymerization. The conductive polymer doped by camphor sulfonic acid (CSA) and a matrix polymer,polyamide- 66, polyamide - 1010 or polyamide- 11, were dissolved in m-cresol and the blend solution was cast in a glass and dried for preparing polyaniline composite films.Conductivity was from 10 -6 to 10 0Ω-1·cm-1 with different weight fraction of PAn-CSA. The crystallizttion of the films was studied by means of differential scanning calorimeter (DSC). The treatment of the composite films in different pH value solution would result in decrease of conductivity, especially in an alkaline solution.

  7. Economical Fabrication of Thick-Section Ceramic Matrix Composites

    Science.gov (United States)

    Babcock, Jason; Ramachandran, Gautham; Williams, Brian; Benander, Robert

    2010-01-01

    A method was developed for producing thick-section [>2 in. (approx.5 cm)], continuous fiber-reinforced ceramic matrix composites (CMCs). Ultramet-modified fiber interface coating and melt infiltration processing, developed previously for thin-section components, were used for the fabrication of CMCs that were an order of magnitude greater in thickness [up to 2.5 in. (approx.6.4 cm)]. Melt processing first involves infiltration of a fiber preform with the desired interface coating, and then with carbon to partially densify the preform. A molten refractory metal is then infiltrated and reacts with the excess carbon to form the carbide matrix without damaging the fiber reinforcement. Infiltration occurs from the inside out as the molten metal fills virtually all the available void space. Densification to thick-section components required modification of the conventional process conditions, and the means by which the large amount of molten metal is introduced into the fiber preform. Modification of the low-temperature, ultraviolet-enhanced chemical vapor deposition process used to apply interface coatings to the fiber preform was also required to accommodate the high preform thickness. The thick-section CMC processing developed in this work proved to be invaluable for component development, fabrication, and testing in two complementary efforts. In a project for the Army, involving SiC/SiC blisk development, nominally 0.8 in. thick x 8 in. diameter (approx. 2 cm thick x 20 cm diameter) components were successfully infiltrated. Blisk hubs were machined using diamond-embedded cutting tools and successfully spin-tested. Good ply uniformity and extremely low residual porosity (41 ksi (approx. 283 MPa) flexural strength.

  8. Improvement of thermal conductivity of ceramic matrix composites for 4. generation nuclear reactors

    International Nuclear Information System (INIS)

    This study deals with thermal conductivity improvement of SiCf/SiC ceramic matrix composites materials to be used as cladding material in 4. generation nuclear reactor. The purpose of the study is to develop a composite for which both the temperature and irradiation effect is less pronounced on thermal conductivity of material than for SiC. This material will be used as matrix in CMC with SiC fibers. Some TiC-SiC composites with different SiC volume contents were prepared by spark plasma sintering (SPS). The sintering process enables to fabricate specimens very fast, with a very fine microstructure and without any sintering aids. Neutron irradiation has been simulated using heavy ions, at room temperature and at 500 C. Evolution of the thermal properties of irradiated materials is measured using modulated photothermal IR radiometry experiment and was related to structural evolution as function of dose and temperature. It appears that such approach is reliable to evaluate TiC potentiality as matrix in CMC. Finally, CMC with TiC matrix and SiC fibers were fabricated and both mechanical and thermal properties were measured and compare to SiCf/SiC CMC. (author)

  9. Preparation of Ni/Cu composite nanowires

    Directory of Open Access Journals (Sweden)

    Hu Wang

    2015-06-01

    Full Text Available Ni/Cu composite nanowires were synthesized in an aqueous solution for the first time. The synthetic process consisted of two steps. Firstly, pure nickel nanowires were prepared through chemical reduction in solution under a magnetic field. Secondly, copper was reduced on the surface of the nickel nanowires, during which Ni/Cu composite nanowires with an average length of 80 µm and diameter of about 200 nm were synthesized. The products were characterized by XRD, SEM and TEM. The method has notable advantages: It is template-free, inexpensive, easy-to-operate, and it only needs a short reaction time, which makes it suitable for large-scale preparation.

  10. Synthesis and microstructure analysis of composite Nd: YAG/YAG transparent ceramics

    Institute of Scientific and Technical Information of China (English)

    Benxue Jiang; Tongde Huang; Yusong Wu; Wenbin Liu; Yubai Pan

    2009-01-01

    Transparent Nd:YAG/YAG composite ceramics are synthesized by solid-state reaction method using highpurity Y2O3,Al2O3,and Nd2O3 powders as raw materials.The mixed powder compacts are sintered at 1780 ℃ for 10 h under vacuum and annealed at 1450 ℃ for 20 h in air.The Nd:YAG/YAG ceramics exhibit a pore free structure with an average grain size of about 30 μm.The microstructure of the Nd:YAG/YAG composite transparent ceramics is studied and there is no interface between Nd:YAG and YAG ceramics.The Nd ion distribution in one grain is also studied,which shows that there is no segregation of Nd ions as in Nd:YAG crystals.

  11. Phase composition and structure of grain boundary of oversintered Y3Al5O12 ceramics

    Institute of Scientific and Technical Information of China (English)

    LI Chang-qing; ZUO Hong-bo; HAN Jie-cai; ZHANG Ming-fu; MENG Song-he; YAO Tai

    2006-01-01

    Phase composition and microstructures of grain boundary of oversintered yttrium aluminum garnet (Y3Al5O12, YAG) ceramics by vacuum sintering at 1 850 ℃ were investigated. For synthesizing YAG, grain boundary is a key factor for YAG ceramics. The morphology of grain boundary was observed by SEM, TEM and its composition was analyzed by EDS. It is identified that the grain boundary is composed of α-Al2O3 and yttrium aluminum perovskite (YAP, YAlO3) eutectics. At the edge of YAG crystal grain, YAG phase is decomposed into perovskite YAP and α-Al2O3 during high temperature sintering. Due to refractive indexes of YAP and α-Al2O3 phases in wide grain boundary are different from those of YAG, the transmittance of oversintered YAG ceramics is lower than that of YAG ceramics sintered at 1 750 ℃.

  12. A novel biomimetic approach to the design of high-performance ceramic/metal composites

    Energy Technology Data Exchange (ETDEWEB)

    Launey, Maximilien E.; Munch, Etienne; Alsem, Daan Hein; Saiz, Eduardo; Tomsia, Antoni P.; Ritchie, Robert O.

    2009-08-01

    The prospect of extending natural biological design to develop new synthetic ceramic-metal composite materials is examined. Using ice-templating of ceramic suspensions and subsequent metal infiltration, we demonstrate that the concept of ordered hierarchical design can be applied to create fine-scale laminated ceramic-metal (bulk) composites that are inexpensive, lightweight and display exceptional damage-tolerance properties. Specifically, Al{sub 2}O{sub 3}/Al-Si laminates with ceramic contents up to approximately 40 vol% and with lamellae thicknesses down to 10 {micro}m were processed and characterized. These structures achieve an excellent fracture toughness of 40 MPa{radical}m at a tensile strength of approximately 300 MPa. Salient toughening mechanisms are described together with further toughening strategies.

  13. Thermal shock resistance of ceramic fibre composites characterized by non-destructive methods

    Directory of Open Access Journals (Sweden)

    M. Dimitrijević

    2008-12-01

    Full Text Available Alumina based ceramic fibres and alumina based ceramic were used to produce composite material. Behaviour of composite ceramics after thermal shock treatments was investigated. Thermal shock of the samples was evaluated using water quench test. Surface deterioration level of samples was monitored by image analysis before and after a number of quenching cycles. Ultrasonic measurements were done on samples after quench tests. Dynamic Young modulus of elasticity and strength degradation were calculated using measured values of ultrasonic velocities. Strengths deterioration was calculated using the non-destructive measurements and correlated to degradation of surface area and number of quenches. The addition of small amount of ceramic fibres improves the strengths and diminishes the loss of mechanical properties of samples during thermal shock experiments.

  14. In-situ Formation of Reinforcement Phases in Ultra High Temperature Ceramic Composites

    Science.gov (United States)

    Stackpoole, Margaret M (Inventor); Gasch, Matthew J (Inventor); Olson, Michael W (Inventor); Hamby, Ian W. (Inventor); Johnson, Sylvia M (Inventor)

    2013-01-01

    A tough ultra-high temperature ceramic (UHTC) composite comprises grains of UHTC matrix material, such as HfB.sub.2, ZrB.sub.2 or other metal boride, carbide, nitride, etc., surrounded by a uniform distribution of acicular high aspect ratio reinforcement ceramic rods or whiskers, such as of SiC, is formed from uniformly mixing a powder of the UHTC material and a pre-ceramic polymer selected to form the desired reinforcement species, then thermally consolidating the mixture by hot pressing. The acicular reinforcement rods may make up from 5 to 30 vol % of the resulting microstructure.

  15. Corrosion Resistance of Plasma Sprayed Ceramic CompositeCoatings on Q235 Substrate

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The corrosion resistance of SiO2/Al2O3, TiO2/Al2O3 and (SiO2+TiO2)/Al2O3 ceramic composite coatings on Q235 substrate fabricated by means of plasma spraying was investigated. The results show that Al2O3+13 wt pct TiO2 ceramic coating has the highest density, the lowest connected porosity and the best corrosion resistance. The corrosion mechanism of Q235 with ceramic coating has also been studied.

  16. Transmission Electron Microscopy Specimen Preparation Method for Multiphase Porous Functional Ceramics

    DEFF Research Database (Denmark)

    Zhang, Wei; Kuhn, Luise Theil; Jørgensen, Peter Stanley;

    2013-01-01

    An optimum method is proposed to prepare thin foil transmission electron microscopy (TEM) lamellae of multiphase porous functional ceramics: prefilling the pore space of these materials with an epoxy resin prior to focused ion beam milling. Several advantages of epoxy impregnation are demonstrated...... by successful preparation of TEM specimens that maintain the structural integrity of the entire lamella. Feasibility of the TEM alignment procedure is demonstrated, and ideal TEM analyses are illustrated on solid oxide fuel cell and solid oxide electrolysis cell materials. Some potential drawbacks of the TEM...... specimen preparation method are listed for other samples....

  17. Cervical end preparation design on collarless metal ceramic crown to the decrease of bacterial colony

    Directory of Open Access Journals (Sweden)

    Edy Machmud

    2010-09-01

    Full Text Available Background: Cervical end preparation design is an important procedure in fixed partial denture. If the cervical end preparation design is inadequate, dental plaque will easily be formed and this may indicate the beginning of periodontal disease. Purpose: This study was aimed to analyze the effect of cervical end preparation design on collarless metal ceramic crown towards the decrease of bacterium colony number. Methods: This study was quasi-experimental study applying pre and post test on a control group involving 48 subjects with shoulder, bevel shoulder, and deep chamfer cervical end preparation. The bacterium colonies were examined on the 1st, 7th, and 21st days after the insertion of collarless metal ceramic crown. Results: The study showed that bacterium colony increased significantly in deep chamfer and bevel shoulder preparation design between the treatment group and the control group (p<0.05. In shoulder preparation there was not significant different between the treatment group and the control group (p>0.05. Conclusion: Compared to the bevel shoulder and deep chamfer, shoulder design is the best design for collarless metal ceramic crown restoration.Latar belakang: Desain preparasi tepi servikal merupakan suatu tahap yang sangat menentukan dalam pembuatan gigi tiruan cekat. Apabila desain preparasi tepi servikal tidak adekuat dapat menyebabkan pembentukan plak gigi pada daerah tersebut. Keadaan ini merupakan tahap awal terjadinya penyakit periodontal. Tujuan: Untuk menganalisis pengaruh desain preparasi tepi servikal yang dibuat pada mahkota collarless metal ceramic untuk mengurangi jumlah bakterium koloni. Metode: Penelitian ini adalah penelitian eksperimental semu dengan metode pre and post test dan kelompok kontrol terhadap 48 subyek penelitian. Dilakukan preparasi gigi dan pembuatan akhiran preparasi tepi servikal shoulder, bevel shoulder, dan deep chamfer pada subyek penelitian. Pemeriksaan koloni bakteri dilakukan pada hari ke-1

  18. Computational Simulation of Continuous Fiber-Reinforced Ceramic Matrix Composites Behavior

    Science.gov (United States)

    Murthy, Pappu L. N.; Chamis, Christos C.; Mital, Subodh K.

    1996-01-01

    This report describes a methodology which predicts the behavior of ceramic matrix composites and has been incorporated in the computational tool CEMCAN (CEramic Matrix Composite ANalyzer). The approach combines micromechanics with a unique fiber substructuring concept. In this new concept, the conventional unit cell (the smallest representative volume element of the composite) of the micromechanics approach is modified by substructuring it into several slices and developing the micromechanics-based equations at the slice level. The methodology also takes into account nonlinear ceramic matrix composite (CMC) behavior due to temperature and the fracture initiation and progression. Important features of the approach and its effectiveness are described by using selected examples. Comparisons of predictions and limited experimental data are also provided.

  19. Research on toughening mechanisms of alumina matrix ceramic composite materials improved by rare earth additive

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xihua; LIU Changxia; LI Musen; ZHANG Jianhua

    2008-01-01

    Mixed rare earth elements were incorporated into alumina ceramic materials. Hot-pressing was used to fabricate alumina matrix composites in nitrogen atmosphere protection. Microstructures and mechanical properties of the composites were tested. It was indicated that the bending strength and fracture toughness of alumina matrix ceramic composites sintered at 1550℃ and 28 Mpa for 30 min were improved evidently. Besides mixed rare earth elements acting as a toughening phase, AlTiC master alloys were also added in as sintering assistants, which could prompt the formation of transient liquid phase, and thus nitrides of rare earth elements were produced. All of the above were beneficial for improving the mechanical properties of alumina matrix ceramic composites.

  20. Bioactive glass-ceramic coatings prepared by pulsed laser deposition from RKKP targets (sol-gel vs melt-processing route)

    Energy Technology Data Exchange (ETDEWEB)

    Rau, J.V., E-mail: giulietta.rau@ism.cnr.it [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome (Italy); Teghil, R. [Universita della Basilicata, Dipartimento di Chimica ' A.M. Tamburro' , Via dell' Ateneo Lucano, 10-85100 Potenza (Italy); CNR-IMIP U.O.S. di Potenza, Zona Industriale di Tito scalo (PZ) (Italy); Fosca, M. [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome (Italy); Universita di Roma ' La Sapienza' , Dipartimento di Chimica, Piazzale Aldo Moro, 5-00185 Rome (Italy); De Bonis, A. [Universita della Basilicata, Dipartimento di Chimica ' A.M. Tamburro' , Via dell' Ateneo Lucano, 10-85100 Potenza (Italy); CNR-IMIP U.O.S. di Potenza, Zona Industriale di Tito scalo (PZ) (Italy); Cacciotti, I.; Bianco, A. [Universita di Roma ' Tor Vergata' , Dipartimento di Ingegneria Industriale, UR INSTM ' Roma Tor Vergata' , Via del Politecnico, 1-00133 Rome (Italy); Albertini, V. Rossi [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome (Italy); Caminiti, R. [Universita di Roma ' La Sapienza' , Dipartimento di Chimica, Piazzale Aldo Moro, 5-00185 Rome (Italy); Ravaglioli, A. [Parco Torricelli delle Arti e delle Scienze, Via Granarolo, 64-48018 Faenza (Ra) (Italy)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Bioactive glass-ceramic coatings for bone tissue repair and regeneration. Black-Right-Pointing-Pointer Pulsed Lased Deposition allowed congruent transfer of target composition to coating. Black-Right-Pointing-Pointer Target was prepared by sol-gel process suitable for compositional tailoring. Black-Right-Pointing-Pointer Titanium, widely used for orthopaedics and dental implants, was used as substrate. Black-Right-Pointing-Pointer The physico-chemical properties of the prepared coatings are reported. -- Abstract: The deposition of innovative glass-ceramic composition (i.e. RKKP) coatings by Pulsed Lased Deposition (PLD) technique is reported. RKKP was synthesised following two methodologies: melt-processing and sol-gel, the latter being particularly suitable to tailor the compositional range. The PLD advantage with respect to other deposition techniques is the congruent transfer of the target composition to the coating. The physico-chemical properties of films were investigated by Scanning Electron and Atomic Force Microscopies, Fourier Transform Infrared Spectroscopy, Angular and Energy Dispersive X-ray Diffraction, and Vickers microhardness. The deposition performed at 12 J/cm{sup 2} and 500 Degree-Sign C allows to prepare crystalline films with the composition that replicates rather well that of the initial targets. The 0.6 {mu}m thin melt-processing RKKP films, possessing the hardness of 25 GPa, and the 4.3 {mu}m thick sol-gel films with the hardness of 17 GPa were obtained.

  1. Mechanical properties of dispersed ceramic nanoparticles in polymer composites for orthopedic applications

    OpenAIRE

    Webster, Thomas

    2010-01-01

    Huinan Liu, Thomas J WebsterDivision of Engineering, Brown University, Providence, RI, USAAbstract: Ceramic/polymer composites have been considered as third-generation orthopedic biomaterials due to their ability to closely match properties (such as surface, chemistry, biological, and mechanical) of natural bone. It has already been shown that the addition of nanophase compared with conventional (or micron-scale) ceramics to polymers enhances bone cell functions. However, in order to fully ta...

  2. A mechanical model for surface layer formation on self-lubricating ceramic composites

    NARCIS (Netherlands)

    Song, Jiupeng; Valefi, Mahdiar; Rooij, de Matthijn; Schipper, Dirk J.

    2010-01-01

    To predict the thickness of a self-lubricating layer on the contact surface of ceramic composite material containing a soft phase during dry sliding test, a mechanical model was built to calculate the material transfer of the soft second phase in the composite to the surface. The tribological test,

  3. Novel hard compositions and methods of preparation

    Science.gov (United States)

    Sheinberg, Haskell

    1983-08-23

    Novel very hard compositions of matter are prepared by using in all embodiments only a minor amount of a particular carbide (or materials which can form the carbide in situ when subjected to heat and pressure); and no strategic cobalt is needed. Under a particular range of conditions, densified compositions of matter of the invention are prepared having hardnesses on the Rockwell A test substantially equal to the hardness of pure tungsten carbide and to two of the hardest commercial cobalt-bonded tungsten carbides. Alternately, other compositions of the invention which have slightly lower hardnesses than those described above in one embodiment also possess the advantage of requiring no tungsten and in another embodiment possess the advantage of having a good fracture toughness value. Photomicrographs show that the shapes of the grains of the alloy mixture with which the minor amount of carbide (or carbide-formers) is mixed are radically altered from large, rounded to small, very angular by the addition of the carbide. Superiority of one of these hard compositions of matter over cobalt-bonded tungsten carbide for ultra-high pressure anvil applications was demonstrated.

  4. Composition analysis of medieval ceramics by laser-induced breakdown spectroscopy (LIBS)

    Science.gov (United States)

    Genc Oztoprak, B.; Sinmaz, M. A.; Tülek, F.

    2016-05-01

    Laser-induced breakdown spectroscopy (LIBS) technique is expected to be one of the most preferred techniques in archaeology research since it does not disrupt the structural and chemical form of archaeological samples, and it is considered virtually nondestructive analysis method. In this work, LIBS is used for analyses of glaze, paint, and clay of medieval ceramics collected from East Plain Cilicia, Osmaniye Province during archaeological survey. Transparent glazed and colour-painted ceramics of the Islam and Byzantine pottery traditions are analysed to detect distinctive and common features of the chemical compositions of their glazes. The spectral lines of Islamic and Byzantine glazes indicate that their structures are same. However, strontium (Sr) is determined in the transparent glaze of Islamic ceramics. Elemental composition and homogeneity of paint on one of the sample are determined by LIBS analysis. Colour changes are related with composition differences of the paint content in the archaeological ceramic. In addition, the clay classification of archaeological ceramics taken from the Yapılıpınar mounds, Taşlıhöyük mounds, and Örenşehir ancient sites is done using PCA and PLS-DA chemometric techniques. According to the results of the classification, Yapılıpınar mounds terracotta ceramics differ from those of Taşlıhöyük and Örenşehir ancient sites.

  5. MAX Phase Modified SiC Composites for Ceramic-Metal Hybrid Cladding Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yang-Il; Kim, Sun-Han; Park, Dong-Jun; Park, Jeong-Hwan; Park, Jeong-Yong; Kim, Hyun-Gil; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    A metal-ceramic hybrid cladding consists of an inner zirconium tube, and an outer SiC fiber-matrix SiC ceramic composite with surface coating as shown in Fig. 1 (left-hand side). The inner zirconium allows the matrix to remain fully sealed even if the ceramic matrix cracks through. The outer SiC composite can increase the safety margin by taking the merits of the SiC itself. In addition, the outermost layer prevents the dissolution of SiC during normal operation. On the other hand, a ceramic-metal hybrid cladding consists of an outer zirconium tube, and an inner SiC ceramic composite as shown in Fig. 1 (right-hand side). The outer zirconium protects the fuel rod from a corrosion during reactor operation, as in the present fuel claddings. The inner SiC composite, additionally, is designed to resist the severe oxidation under a postulated accident condition of a high-temperature steam environment. Reaction-bonded SiC was fabricated by modifying the matrix as the MAX phase. The formation of Ti{sub 3}SiC{sub 2} was investigated depending on the compositions of the preform and melt. In most cases, TiSi{sub 2} was the preferential phase because of its lowest melting point in the Ti-Si-C system. The evidence of Ti{sub 3}SiC{sub 2} was the connection with the pressurizing.

  6. Tailored ceramic consolidation forms for ICPP waste compositions

    International Nuclear Information System (INIS)

    This paper reports a polyphase tailored ceramic developed for the consolidation of simulated ICPP (Idaho Chemical Processing Plant)-type high Zr content high-level waste (HLW) calcines. The ceramic is specifically designed to provide chemically stable host phases for each species present in the HLW and to maximize waste volume reduction through high loadings and form density. The ceramic is designed for a 73 wt% waste loading with a density of 3.35 ± 0.05 (g/cm3). The major phase in the ceramic is a high-silica glass, which contains the neutron poison boron as well as the majority of the nonrefractory species in the waste. The primary crystalline phases are calcium fluoride, calcium-yttrium stabilized cubic zirconia, a hexagonal apatite type silicate containing the plutonium simulant Ce, and a Cd metal phase. Minor phases include zircon, zirconolite, and a sphene-type. Leaching testing and microscopic analysis shows the ceramic form to be chemically durable, with only the glass phase showing any detectable dissolution in deionized water at 90 degrees C

  7. Ballistic Impact Response of Ceramic-Faced Aramid Laminated Composites Against 7.62 mm Armour Piercing Projectiles

    Directory of Open Access Journals (Sweden)

    Nityananda Nayak

    2013-07-01

    Full Text Available Ballistic impact response of ceramic- composite armor, consisting of zirconia toughened alumina (ZTA ceramic front and aramid laminated composite as backing, against 7.62 mm armor piercing (AP projectiles has been studied. Two types of backing composite laminates i.e. Twaron-epoxy and Twaron-polypropylene (PP of 10 mm and 15 mm thickness were used with a ceramic face of 4mm thick ZTA. The ceramic- faced and the stand alone composite laminates were subjected to ballistic impact of steel core 7.62 mm AP projectiles with varying impact velocities and their V50 ballistic limit (BL was determined. A sharp rise in BL was observed due to addition of ceramic front layer as compared to stand alone ones. The impact energy was absorbed during penetration primarily by fracture of ceramic, deformation and fracture of projectile and elastic-plastic deformation of flexible backing composite layer. The breaking of ceramic tiles were only limited to impact area and did not spread to whole surface and projectile shattering above BL and blunting on impact below BL was observed. The ceramic- faced composites showed higher BL with Twaron-PP as backing than Twaron-epoxy laminate of same thickness. This combination of ceramic-composite laminates exhibited better multi-hit resistance capability; ideal for light weight armor.Defence Science Journal, 2013, 63(4, pp.369-375, DOI:http://dx.doi.org/10.14429/dsj.63.2616

  8. Characterization and thermal performance of nitrate mixture/SiC ceramic honeycomb composite phase change materials for thermal energy storage

    International Nuclear Information System (INIS)

    The composite phase change material (PCM) comprised of the nitrate mixture KNO3/NaNO3 (50:50 mol%) and SiC ceramic honeycomb (SCH) was prepared by vacuum infiltration. The SEM (scanning electron microscope) images indicated that the nitrate mixture was dispersed and embedded in the porous structures of the SiC wall. The DSC (differential scanning calorimeter) results showed that the melting and freezing temperatures of composite PCM shifted slightly compared with those of pure PCM, and the melting and freezing latent heats of composite PCM were 72.8 J/g and 70.3 J/g, respectively. The thermal performances of the pure PCM and the composite PCMs with different mass fractions of SCH were experimentally investigated. The results showed that the heat storage and release rates increased with the increase of the mass fraction of SCH in the composite PCM. In comparison with the pure PCM, the heat storage and release time of the composite PCM with 30 wt% SCH were reduced by 52.8% and 58.3%, respectively. - Highlights: • Nitrate mixture/SCH composite PCM was prepared by vacuum infiltration. • PCM was embedded and dispersed in the porous structure of SiC wall. • SCH induced slight shift of the melting and freezing temperature of PCM. • The heat storage and release rates of PCM were improved by SCH

  9. Sintering densification and properties of Al2O3/PSZ(3Y) ceramic composites

    Institute of Scientific and Technical Information of China (English)

    马伟民; 修稚萌; 闻雷; 孙旭东; 铁维麟

    2004-01-01

    The content of partially stabilized zirconia has remarkable influence on densification and mechanical properties of Al2 O3/PSZ(3Y) ceramic composites. When 15%PSZ(3Y) is added to Al2 O3, after vacuum sintering for 2h at 1 550 ℃, the fracture toughness and bending strength of the Al2O3/PSZ(3Y) ceramic composite reaches 8.2properties was investigated. The change of rn-ZrO2 and t-ZrO2 phases content before and after fracture was measured by X-ray diffraction quantitative phase analysis. It is confirmed that improvement in bending strength and fracture toughness of the Al2O3/PSZ(3Y) ceramic composite is due to the phase transformation toughening mechanism of PSZ(3Y).

  10. Characterization and Properties of Micro-arc Composite Ceramic Coatings on Magnesium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Long; Jiang, Bailing; Ge, Yanfeng; Nyberg, Eric A.; Liu, Ming

    2013-05-21

    Magnesium alloys are of growing interest for many industrial applications due to their favorable strength-to-weight ratio and excellent cast ability. However, one of the limiting factors in the use of magnesium on production vehicles is its poor corrosion resistance. Micro-arc Composite Ceramic (MCC) coatings on AZ91D magnesium alloys were prepared in combination with Micro-arc Oxidation (MAO) and electrophoresis technologies. The microstructure, corrosion resistance, abrasion resistance, stone impact resistance, thermal shock resistance and adhesion of MCC coating were studied, respectively. The surface and cross-section morphologies of MAO and MCC coating showed that the outer organic coating filled the holes on the surface of the MAO coating. It acted as a shelter on the MAO coating surface when the MCC coatings were exposed to corrosive environments. The corrosion resistance of the MCC coating was characterized by a copper-accelerated acetic acid salt spray test. The testing results showed that the creep back from scribe lines was less than 1mm and completely fit the evaluation standard. The composite structure of the MCC coating vastly improved the corrosion resistance of Mg alloys. According to testing standards, the resistance to abrasion, stone impact resistance, thermal shock resistance and adhesion of MCC coatings completely met the evaluation standard requirements. The MCC coated AZ91D magnesium alloys possessed excellent properties; this is a promising corrosion and wear resistance surface treatment technology on magnesium alloys for production vehicles.

  11. Preparation and properties of CaO-Al2O3-SiO2 glass-ceramics by sintered frits particle from mining wastes

    Directory of Open Access Journals (Sweden)

    He F.

    2014-01-01

    Full Text Available The paper reports on some experimental results obtained from the production of glass-ceramics containing gold tailings powder (GTP. Frits particle sintered technology was used to prepare glass ceramic products. SiO2, CaO, ZnO, BaO and B2O3 were selected to adjust the composition of the glass. Based on the results of differential thermal analysis (DTA, the nucleation and crystallization temperature of parent glass samples with different schedule were identified, respectively. X-ray diffraction (XRD analysis of the produced glass-ceramics materials revealed that the main crystalline phase was β-wollastonite. With the increasing of CaO content, the intensity of crystal diffractive peaks also increases. The formation of β-wollastonite crystal could be accelerated by the increasing of CaO. The glass-ceramics with fine microstructure showed better physical, mechanical properties and chemical resistance. Overall results indicated that it was a feasible attempt to produce glass-ceramics for building and decorative materials from waste materials. The amount of GTP used in the glass batches was more than 65 wt% of the whole raw.

  12. Geometrically nonlinear bending analysis of Metal-Ceramic composite beams under thermomechanical loading

    Science.gov (United States)

    Torabizadeh, Mohammad Amin

    2013-07-01

    A new method is developed to derive equilibrium equations of Metal-Ceramic beams based on first order shear deformation plate theory which is named first order shear deformation beam theory2(FSDBT2). Equilibrium equations obtained from conventional method (FSDBT1) is compared with FSDBT2 and the case of cylindrical bending of Metal-Ceramic composite plates for non-linear thermomechanical deformations and various loadings and boundary conditions. These equations are solved by using three different methods (analytical, perturbation technique and finite element solution). The through-thickness variation of the volume fraction of the ceramic phase in a Metal-Ceramic beam is assumed to be given by a power-law type function. The non-linear strain-displacement relations in the von-Kármán sense are used to study the effect of geometric non-linearity. Also, four other representative averaging estimation methods, the linear rule, Mori-Tanaka, Self-Consistent and Wakashima-Tsukamoto schemes, by comparing with the power-law type function are also investigated. Temperature distribution through the thickness of the beams in thermal loadings is obtained by solving the one-dimensional heat transfer equation. Finally it is concluded that for Metal-Ceramic composites, these two theories result in identical static responses. Also the displacement field and equilibrium equations in the case of cylindrical bending of Metal-Ceramic plates are the same as those supposed in FSDBT2.

  13. An investigation of the element composition of superconducting ceramics by neutron activation and radiography methods

    International Nuclear Information System (INIS)

    The neutron activation methods for determining the general composition and distribution of the main components in HTSC ceramics were developed. The conditions for the reduction of the analysis error were discussed. The dependences of the oxygen content and superconducting parameters of single-phase and polyphase yttrium ceramics on the regime of heat treatment in air were investigated. Variation in the oxygen content was found to have a nonmonotone character, depending on the temperature of quenching and annealing. Correlation between the character of the superconducting transition and the oxygen content was observed. During the heat treatment, reversible structural phase transitions proceed in the single-phase ceramics in the polyphase ceramics, the recrystallization processes occur, which result in homogenization of its structure

  14. Chemical composition and morphology of oxidic ceramics at filtration of steel deoxidised by aluminium

    Directory of Open Access Journals (Sweden)

    J. Bažan

    2009-10-01

    Full Text Available Composition and morphology of filter ceramics were investigated during filtration of steel deoxidised by aluminium. Filtration was realized with use of filters based on oxidic ceramics Cr2O3, TiO2, SiO2, ZrO2, Al2O3, 3Al2O3•2SiO2 and MgO•Al2O3. It was established that change of interphase (coating occurs during filtration of steel on the surface of capillaries of ceramics, where content of basic oxidic component decreases. Loss of oxidic component in the coating is replaced by increase of oxides of manganese and iron and it is great extent inversely proportional to the value of Gibbs’ energy of oxide, which forms this initial basis of ceramics.

  15. Optimization of calcium phosphate fine ceramic powders preparation

    Science.gov (United States)

    Sezanova, K.; Tepavitcharova, S.; Rabadjieva, D.; Gergulova, R.; Ilieva, R.

    2013-12-01

    The effect of biomimetic synthesis method, reaction medium and further precursor treatments on the chemical and phase composition, crystal size and morphology of calcium phosphates was examined. Nanosized calcium phosphate precursors were biomimetically precipitated by the method of continuous precipitation in three types of reaction media at pH 8: (i) SBF as an inorganic electrolyte system; (ii) organic (glycerine) modified SBF (volume ratio of 1:1); (iii) polymer (10 g/l xanthan gum or 10 g/l guar gum) modified SBF (volume ratio of 1:1). After maturation (24 h) the samples were lyophilized, calcinated at 300°C for 3 hours, and washed with water, followed by new gelation, lyophilization and step-wise (200, 400, 600, 800, and 1000°C, each for 3 hours) sintering. The reaction medium influenced the chemical composition and particle size but not the morphology of the calcium phosphate powders. In all studied cases bi-phase calcium phosphate fine powders with well-shaped spherical grains, consisting of β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) with a Ca/P ratio of 1.3 - 1.6 were obtained. The SBF modifiers decreased the particle size of the product in the sequence guar gum ˜ xanthan gum < glycerin < SBF medium.

  16. Failure of Ceramic Composites in Non-Uniform Stress Fields

    Science.gov (United States)

    Rajan, Varun P.

    Continuous-fiber ceramic matrix composites (CMCs) are of interest as hot-section components in gas turbine engines due to their refractoriness and low density relative to metallic alloys. In service, CMCs will be subjected to spatially inhomogeneous temperature and stress fields. Robust tools that enable prediction of deformation and fracture under these conditions are therefore required for component design and analysis. Such tools are presently lacking. The present work helps to address this deficiency by developing models for CMC mechanical behavior at two length scales: that of the constituents and that of the components. Problems of interest are further divided into two categories: '1-D loadings,' in which the stresses are aligned with the fiber axes, and '2-D loadings,' in which the stress state is more general. For the former class of problems, the major outstanding issue is material fracture, not deformation. A fracture criterion based on the attainment of a global load maximum is developed, which yields results for pure bending of CMCs in reasonable agreement with available experimental data. For the latter class of problems, the understanding of both the micro-scale and macro-scale behavior is relatively immature. An approach based upon analysis of a unit cell (a single fiber surrounded by a matrix jacket) is pursued. Stress fields in the constituents of the composite are estimated using analytical models, the accuracy of which is confirmed using finite element analysis. As part of a fracture mechanics analysis, these fields enable estimation of the steady-state matrix cracking stress for arbitrary in-plane loading of a unidirectional ply. While insightful at the micro-scale, unit cell models are difficult to extend to coarser scales. Instead, material deformation is typically predicted using phenomenological constitutive models. One such model for CMC laminates is investigated and found to predict material instability where none should exist. Remedies to

  17. Oxidation of O'-SiAlON-ZrO2 Composite Ceramics

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The oxidation kinetics of O'-SiAlON-ZrO2 composite ceramics in the temperature range of 1373-1773K has been studied. The oxidation experiments with powder and plates of O'-SiAlON-ZrO2 composite ceramics in air have been carried out. The overall activation energy of oxidation reaction is 263.69 kJ / mol. The products and structures of O'-SiAlON-ZrO2 oxidation layer have been analysed by XRD (X-ray diffraction), SEM (scanning electron microscope) and AFM (atomic force microscope).

  18. Characterization of silicon-silicon carbide ceramic derived from carbon-carbon silicon carbide composites

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Vijay K. [Indian Institute of Technology, Varanasi (India). Dept. of Mechanical Engineering; Krenkel, Walter [Univ. of Bayreuth (Germany). Dept. of Ceramic Materials Engineering

    2013-04-15

    The main objective of the present work is to process porous silicon - silicon carbide (Si - SiC) ceramic by the oxidation of carboncarbon silicon carbide (C/C - SiC) composites. Phase studies are performed on the oxidized porous composite to examine the changes due to the high temperature oxidation. Further, various characterization techniques are performed on Si- SiC ceramics in order to study the material's microstructure. The effects of various parameters such as fiber alignment (twill weave and short/chopped fiber) and phenolic resin type (resol and novolak) are characterized.

  19. Thermomechanical and Environmental Durability of Environmental Barrier Coated Ceramic Matrix Composites Under Thermal Gradients

    Science.gov (United States)

    Zhu, Dongming; Bhatt, Ramakrishna T.; Harder, Bryan

    2016-01-01

    This paper presents the developments of thermo-mechanical testing approaches and durability performance of environmental barrier coatings (EBCs) and EBC coated SiCSiC ceramic matrix composites (CMCs). Critical testing aspects of the CMCs will be described, including state of the art instrumentations such as temperature, thermal gradient, and full field strain measurements; materials thermal conductivity evolutions and thermal stress resistance; NDE methods; thermo-mechanical stress and environment interactions associated damage accumulations. Examples are also given for testing ceramic matrix composite sub-elements and small airfoils to help better understand the critical and complex CMC and EBC properties in engine relevant testing environments.

  20. Phase Stability and Thermal Conductivity of Composite Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Benkel, Samantha; Zhu, Dongming

    2011-01-01

    Advanced environmental barrier coatings are being developed to protect SiC/SiC ceramic matrix composites in harsh combustion environments. The current coating development emphasis has been placed on the significantly improved cyclic durability and combustion environment stability in high-heat-flux and high velocity gas turbine engine environments. Environmental barrier coating systems based on hafnia (HfO2) and ytterbium silicate, HfO2-Si nano-composite bond coat systems have been processed and their stability and thermal conductivity behavior have been evaluated in simulated turbine environments. The incorporation of Silicon Carbide Nanotubes (SiCNT) into high stability (HfO2) and/or HfO2-silicon composite bond coats, along with ZrO2, HfO2 and rare earth silicate composite top coat systems, showed promise as excellent environmental barriers to protect the SiC/SiC ceramic matrix composites.

  1. All- Ceramic Crown Preparation and the Remained wall Thickness of the Pulp Chamber

    Directory of Open Access Journals (Sweden)

    Mohammadzadeh Akhlaghi N.

    2012-12-01

    Full Text Available tatement of Problem: A minimally invasive method of preparation is essential to prevent tooth structure weakening and pulp irritation; especially for mandibular anterior single-tooth all-ceramic crowns. According to many investigations, one of the most important reasons of pulp injury caused by tooth preparation for different restorative procedures is reduced “remained wall thickness” (RWT. In order to protect the pulp from irritation, it is necessary to maintain a 0.5 mm of RWT.Purpose: The purpose of the present study was to evaluate the effect of all-ceramic crown preparation on pulp chamber RWT of mandibular incisors.Materials and Method: Mesiodistal and buccolingual initial images of 24 ex-tracted mandibular incisors were provided. The pulp chamber initial wall thick-nesses of buccal, lingual and proximal surfaces of cervical, 1and 2 mm above the cervical areas and also the incisal surfaces of incisal sections were measured using digital radiography and Photoshop software. After all-ceramic crown preparation, images were provided at the same initial positions. The initial and remained pulp chamber wall thicknesses were statistically evaluated and analyzed by ANOVA, paired t-test and a post hoc Tukey test.Results: Repeated measures ANOVA showed that the mean of pre- or post-preparation wall thicknesses were not significantly different for each surface at the three horizontal levels (p> 0.05. However, there were significant differences between the surfaces for each section. Comparison of pre- and post-preparation wall thicknesses revealed significant differences (p< 0.05. Proximal surfaces of cervical sections had the least RWT (0.42±0.12.Conclusion: According to the results of the present study, the least amount of initial and remained wall thicknesses of pulp chamber were related to the proximal surfaces, particularly in cervical areas. Therefore a reduction of preparation to 0.7 mm is suggested to prevent future pulp injury for

  2. Randomized Clinical Trial of Indirect Resin Composite and Ceramic Veneers : Up to 3-year Follow-up

    NARCIS (Netherlands)

    Gresnigt, Marco M. M.; Kalk, Warner; Ozcan, Mutlu

    2013-01-01

    Purpose: This randomized controlled split-mouth clinical trial evaluated the short-term survival rate of indirect resin composite and ceramic laminate veneers. Materials and Methods: A total of 10 patients (mean age: 48.6 years) received 46 indirect resin composite (Estenia; n = 23) and ceramic lami

  3. Preparation of Biomorphic SiC/C Ceramics from Pine Wood via Supercritical Ethanol Infiltration

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Biomorphic (wood derived) carbide ceramics with an overall composition in the SiC/C was produced by supercritical ethanol infiltration of low viscosity tetraethylorthosilicate/supercritical ethanol into biologically derived carbon templates (CB-templates) and in situ hydrolysis into Si(OH)4-gel, the Si(OH)4-gel was calcined at 1400℃ to promote the polycondensation of Si(OH)4-gel into SiO2-phase and then carbonthermal reduction of the SiO2 with the biocarbon template into highly porous, biomorphic SiC/C ceramics. The phases and morphology conversion mechanism of resulting porous SiC/C ceramics have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). Experimental results showed that the biomorphic cellular morphology of pinewood charcoal was remained in the porous SiC/C ceramic with high precision that consisted of β-SiC with minority of α-SiC and the remain free carbon existed in amorphous phase.

  4. Cross flow ultrafiltration of Cr (VI) using MCM-41, MCM-48 and Faujasite (FAU) zeolite-ceramic composite membranes.

    Science.gov (United States)

    Basumatary, Ashim Kumar; Kumar, R Vinoth; Ghoshal, Aloke Kumar; Pugazhenthi, G

    2016-06-01

    This work describes the removal of Cr (VI) from aqueous solution in cross flow mode using MCM-41, MCM-48 and FAU zeolite membranes prepared on circular shaped porous ceramic support. Ceramic support was manufactured using locally available clay materials via a facile uni-axial compaction method followed by sintering process. A hydrothermal technique was employed for the deposition of zeolites on the ceramic support. The porosity of ceramic support (47%) is reduced by the formation of MCM-41 (23%), MCM-48 (22%) and FAU (33%) zeolite layers. The pore size of the MCM-41, MCM-48 and FAU membrane is found to be 0.173, 0.142, and 0.153 μm, respectively, which is lower than that of the support (1.0 μm). Cross flow ultrafiltration experiments of Cr (VI) were conducted at five different applied pressures (69-345 kPa) and three cross flow rates (1.11 × 10(-7) - 2.22 × 10(-7) m(3)/s). The filtration studies inferred that the performance of the fabricated zeolite composite membranes is optimum at the maximum applied pressure (345 kPa) and the highest rejection is obtained with the lowest cross flow rate (1.11 × 10(-7) m(3)/s) for all three zeolite membrane. The permeate flux of MCM-41, MCM-48 and FAU zeolite composite membranes are almost remained constant in the entire duration of the separation process. The highest removal of 82% is shown by FAU membrane, while MCM-41 and MCM-48 display 75% and 77% of Cr (VI) removal, respectively for the initial feed concentration of 1000 ppm with natural pH of the solution at an applied pressure of 345 kPa. PMID:27031807

  5. Preparation technology and anti-corrosion performances of black ceramic coatings formed by micro-arc oxidation on aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    CHEN Ling; HAN Jing; YU Shengxue

    2006-01-01

    In order to prepare ornamental and anti-corrosive coating on aluminum alloys, preparation technology of black micro-arc ceramic coatings on Al alloys in silicate based electrolyte was studied.The influence of content of Na2WO4 and combination additive in solution on the performance of black ceramic coatings was studied; the anticorrosion performances of black ceramic coatings were evaluated through whole-immersion test and electrochemical method in 3.5% NaCl solution at different pH value; SEM and XRD were used to analyze the surface morphology and phase constitutes of the black ceramic coatings.Experimental results indicated that, without combination additives, with the increasing of Na2WO4 content in the electrolyte, ceramic coating became darker and thicker, but the color was not black; after adding combination additive, the coating turned to be black; the black ceramic coating was multi-hole form in surface.There was a small quantity of tungsten existing in the black ceramic coating beside α-Al2O3 phase and β-Al2O3 phase.And aluminum alloy with black ceramic coating exhibited excellent anti-corrosion property in acid, basic and neutral 3.5% NaCl solution.

  6. Ion sputtering erosion mechanisms of h-BN composite ceramics with textured microstructures

    International Nuclear Information System (INIS)

    Highlights: • Textured h-BN ceramics were made by hot press sintering using mullite as additives. • Sintering pressures play important role on ions sputtering resistance properties. • Textured microstructures lead to various surface morphologies by ion sputtering. • Sputtering erosion mechanisms include B–N bonds breaking and BN layers delamination. - Abstract: Since the hexagonal boron nitride (h-BN) grain shows typical lamellar structures, textured materials can be obtained by arranging h-BN grains along one direction. In this work, textured h-BN composite ceramics with the c-axis orientation arranged along the pressure direction are manufactured by hot-press sintering using mullite as the sintering additive. The results show that sintering pressures not only play a major role in the density and the textured degrees of composite ceramics, but also influence Xe ion erosion resistance performances. After Xe ion sputtering, compositions of both h-BN and mullite stay stable, while the elemental compositions have changed due to the so-called “preferential sputtering”. Sputtered surfaces along different orientations show diverse morphologies attributed to the textured microstructures. The erosion mechanisms of h-BN grains during Xe ion sputtering are breaking of B–N bonds and delamination of BN layers. While the mass loss of composite ceramics is due to the erosion of h-BN grains and mullite coupled with partial detachment of h-BN grains from the surface

  7. Process for preparing composite articles from composite fiber blends

    Science.gov (United States)

    McMahon, Paul E. (Inventor); Chung, Tai-Shung (Inventor); Ying, Lincoln (Inventor)

    1989-01-01

    A composite article is prepared by forming a continuous tow of continuous carbon fibers, forming a continuous tow of thermoplastic polymer fibers, uniformly and continuously spreading the thermoplastic polymer fibers to a selected width, uniformly and continuously spreading the carbon fiber tow to a width that is essentially the same as the selected width for the thermoplastic polymer fiber tow, intermixing the tows intimately, uniformly and continuously, in a relatively tension-free state, continuously withdrawing the intermixed tow and applying the tow to a mold and heating the tow.

  8. Preparation and tribological behavior of Ni-graphene composite coating under room temperature

    Science.gov (United States)

    Chen, Juanjuan; Li, Jianliang; Xiong, Dangsheng; He, Yong; Ji, Yujuan; Qin, Yongkun

    2016-01-01

    In this paper, Ni-graphene composite coatings with different graphene addition amounts were prepared on 45 steel disk by using dipulse composite electrodeposition technology. Meanwhile, the influence of plating time, bath temperature and load on friction and wear of the coating was studied. The tribological behavior of composite coating was tested against a Si3N4 ceramic ball under dry condition. Cross-sectional morphologies showed that Ni-graphene coating was successfully coated on the substrate with an average thickness of 85 ± 5 μm. XRD analysis concluded that with the increase of addition amount of graphene, the average crystallite size of coating decreased. EDS analyses and Raman spectra proved the presence of graphene. Friction coefficient of composite coating decreased with the increase of graphene addition amounts, while the hardness increased. Meanwhile, the wear resistance of composite coating improved. The optimum experimental conditions were obtained.

  9. Comparison of shear bond strengths of conventional orthodontic composite and nano-ceramic restorative composite: An in vitro study

    Directory of Open Access Journals (Sweden)

    Namit Nagar

    2013-01-01

    Full Text Available Objectives: To compare the shear bond strength of a nano-ceramic restorative composite Ceram-X MonoTM♦, a restorative resin with the traditional orthodontic composite Transbond XTTM† and to evaluate the site of bond failure using Adhesive Remnant Index. Materials and Methods: Sixty extracted human premolars were divided into two groups of 30 each. Stainless steel brackets were bonded using Transbond XTTM† (Group I and Ceram-X MonoTM♦ (Group II according to manufacturer′s protocol. Shear bond strength was measured on Universal testing machine at crosshead speed of 1 mm/minute. Adhesive Remnant Index scores were assigned to debonded brackets of each group. Data was analyzed using unpaired ′t′ test and Chi square test. Results: The mean shear bond strength of Group I (Transbond XTTM† was 12.89 MPa ± 2.19 and that of Group II (Ceram-X MonoTM was 7.29 MPa ± 1.76. Unpaired ′t′ test revealed statistically significant differences amongst the shear bond strength of the samples measured. Chi-square test revealed statistically insignificant differences amongst the ARI scores of the samples measured. Conclusions: Ceram-X MonoTM♦ had a lesser mean shear bond strength when compared to Transbond XTTM† which was statistically significant difference. However, the mean shear bond of Ceram X Mono was within the clinically acceptable range for bonding. Ceram-X MonoTM† and Transbond XTTM† showed cohesive fracture of adhesive in 72.6% and 66.6% of the specimens, respectively.

  10. Preparation of composite electroheat carbon film

    Institute of Scientific and Technical Information of China (English)

    XIA Jin-tong; TU Chuan-jun; LI Yan; HU Li-min; DENG Jiu-hua

    2005-01-01

    A kind of conductive and heating unit, which can reach a high surface electroheat temperature at a low voltage, was developed in view of the traditional electroheat coating which has a low surface electroheat temperature and an insufficient heat resistance of its binder. The coating molded electroheat carbon film(CMECF) was prepared by carbonizing the coating which was prepared by adding modified resin into flake graphite and carbon fiber, coating molded onto the surface of the heat resisting matrix after dried, while the hot pressing molded electroheat thick carbon film(HPMETCF) was prepared by carbonizing the bodies whose powders were hot pressing molded directly.The surface and inner microstructure of the carbon film was characterized and analyzed by SEM and DSC/TG, while electroheat property was tested by voltage-current volume resistivity tester and electrical parameter tester. The results show that, close-packed carbon network configuration is formed within the composite electroheat carbon film film after anti-oxidizable treatment reaches a higher surface electroheat temperature than that of the existing electroheat coatings at a low voltage, and has excellent electroheat property, high thermal efficiency as well as stable physicochemical property. It is found that, at room temperature(19± 2 ℃) and 22 V for 5 min, the surface electroheat temperature of the self-produced CMECF (mfiller/mresin = 1. 8/1) reaches 112 ℃ while HPMETCF (mfiller/mresin = 3. 6/1) reaches 265 ℃.

  11. Effect of Nano-ZrO2 on Microstructure and Thermal Shock Behaviour of Al2O3/SiC Composite Ceramics Used in Solar Thermal Power

    Institute of Scientific and Technical Information of China (English)

    XU Xiaohong; JIAO Guohao; WU Jianfeng; LENG Guanghui; FANG Binzheng; ZHAO Fang

    2011-01-01

    The Al2O3-ZrO2(3Y)-SiC composite ceramics used in solar thermal power were prepared by micrometric Al2O3, nano-ZrO2 and SiC powders under the condition of pressureless sintering. The bulk density and bending strength of samples with 10vol% nano-ZrO2 sintered at 1480 ℃were 3.222 g/cm3 and 160.4 MPa, respectively. The bending strength of samples after 7 times thermal shock tests (quenching from 1000 C to 25 ℃ in air medium) is 132.0 MPa, loss rate of bending strength is only 17%. The effect of nano-ZrO2 content on the microstructure and performance of A12O3-ZrO2(3Y)-SiC composite ceramic was investigated. The experimental results show that the bending strength of samples with above 10vol% nano-ZrO2 content has decreased, because the volume expansion resulting from t-ZrO2 to m-ZrO2 phase transformation is excessive; Adding proper nano-ZrO2 would be contributed to improve the thermal shock resistance of the composite ceramics.The Al2O3-ZrO2(3Y)-SiC composite ceramic has promising potential application in solar thermal power.

  12. Degradation behavior of n-MAO/EPD bio-ceramic composite coatings on magnesium alloy in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ying, E-mail: yxiong@zjut.edu.cn [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Lu, Chao [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Wang, Chao; Song, Renguo [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China)

    2015-03-15

    Highlights: • A bio-ceramic n-MAO/EPD coating was prepared by combined MAO and EPD technique. • The precipitates of Ca/P compound are formed on the surface samples during immersion. • The n-MAO/EPD coating with HA dense structure has a favorable anti-corrosion effect. • Two degradation mechanism models for the n-MAO and n-MAO/EPD coating were proposed. - Abstract: The bio-ceramic composite coatings have been fabricated on ZK60 magnesium (Mg) alloy to improve its bio-corrosion resistance in a simulated body fluid (SBF). Firstly, micro-arc oxidation coatings (n-MAO coating) with the addition of zirconium oxide (ZrO{sub 2}) and cerium oxide (CeO{sub 2}) nano-particles were prepared by MAO technique on ZK60Mg alloy in alkaline electrolyte. Secondly, nano-hydroxyapatite (HA) was deposited on the surface of n-MAO coatings by using electrophoretic deposition (EPD) technique. The degradation behavior of the coated samples was investigated by means of immersion tests and electrochemical impedance spectroscopy (EIS) in the SBF at 36.5 ± 0.5 °C. The variation of phase composition, surface and cross-section morphology of coatings at different immersion stages were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results showed that the precipitation layer with biological activity formed on the surface of coated samples during the SBF immersion, which can inhibit Mg alloys from degrading effectively. The n-MAO/EPD composite coating with HA dense structure has a favorable anti-corrosion effect compared to the n-MAO coating. Degradation mechanism model of the corrosion process at different corrosion stages for two kinds of coatings were proposed. The long-term corrosion protection of the n-MAO/EPD composite coating was governed significantly by the synergistic effect of phase composition stability and micro structural integrity.

  13. Students’ evaluation of preclinical simulation for all ceramic preparation (In Faculty of Dentistry Universiti Kebangsaan Malaysia

    Directory of Open Access Journals (Sweden)

    Natasya Ahmad Tarib

    2008-06-01

    Full Text Available The purpose of the study is to evaluate all ceramic crown (ACC preparations those were made by dental undergraduate students during the preclinical sessions. 104 plastic teeth were prepared by 4th year dental undergraduates during the preclinical session for ACC crown examined. The teeth were placed on the frasaco arches and were mounted in the frasaco head. The preparations were examined for the tapering, presence of undercuts, incisal and cingulum reductions as well as preparation of shoulder margin. Preparations were examined using hand instruments and visual. The sample size was 92 plastic teeth. Most of the preparations were acceptable with acceptable placement and types of margins, adequate axial and incisal reductions and acceptable tapered of the axial walls. On the other hand, most of the teeth showed absence of cingulum wall. Most of the crowns prepared by the students were acceptable. It showed that they understood the principles of crown preparation. Cingulum wall preparation has to be given greater emphasis as it is important in the retention and resistance of the restoration.

  14. Preparation and characterization of transparent, photoluminescent MgAl2O4:Eu2+ ceramics

    International Nuclear Information System (INIS)

    The influence of 0.1 mol-% Eu2+ doping in a transparent MgAl2O4 ceramic on the optical properties has been investigated. The goal was to prepare first an Eu3+-doped spinel by a conventional sintering process for a transparent ceramic followed by a reductive densification step yielding an Eu2+-doped product. Commercially available spinel powder was doped with 0.1 mol-% europium using a nitrate salt and afterwards compacted into green bodies. In the following process the specimens were pre-sintered and post-densified using hot isostatic pressing (HIP) in an argon atmosphere. The transparency of the disks was measured optically using UV/Vis and fluorescence spectroscopy. After optimization of the sintering conditions the resulting Eu2+-doped spinel showed a transparency of 77.4 % and a conversion of the UV light with a wavelength of 260 nm into blue light with a wavelength of 450 nm. (orig.)

  15. Preparation of Lanthanum-Doped Pb(Zr,Ti)O3 Ceramics Sheets by Tape Casting

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The physical and electrical properties of lanthanum doped Pb(Zr,Ti)O3 ceramic sheets (PLZT) which were prepared by tape casting method were carried out. Tape casting of lanthanum modified PZT was performed using commercial cellulose acetate binders and poly(ethylene glycol) plasticizers in ethanol solvent. Tapes from these slips were casted on a polymer substrate. The PLZT green tapes were stacked for 5 units and sintered in air at 1050℃ for 1 h with heating rate 5℃/min. SEM micrographs show that the tape is dense (90.26% of theoretical density) and rather uniform with grain size of approximately 1.1 ? m. The dielectric permittivity and loss tangent of PLZT ceramics as a function of temperature at 1 kHz suggest that the compounds exhibit a phase transition of diffuse type. The transition temperature (Tm) and piezoelectric coefficient (d33) were 110℃ and 117 pC/N, respectively.

  16. Dielectric Properties of La2O3 Doped Composite (PbxSr1−xTiO3 Borosilicate Glass Ceramic

    Directory of Open Access Journals (Sweden)

    C. R. Gautam

    2013-01-01

    Full Text Available Ferroelectric (PbxSr1−xTiO3 (PST perovskite phase has been crystallized in borosilicate glassy matrix with a suitable choice of composition and heat treatment schedule. La2O3 is a donor dopant for PST and can make it semiconducting. Dispersion of semiconducting perovskite phase in insulating glassy matrix in glass-ceramic samples may lead to the formation of space charge polarization around crystal-glass interface, leading to a high value of effective dielectric constant, εr. Therefore, with the aim of the developing glass ceramics with high dielectric constant, glasses in the system 64[(PbxSr1−xO·TiO2]-25[2SiO2·B2O3]-5[K2O]-5[BaO]-1[La2O3] have been prepared (0.5≤x≤1. It is found that the addition of La2O3 strongly affected the crystallization and dielectric behavior of glass-ceramic with PST perovskite phase. All glass ceramic samples show a diffuse broad Curie peak in their εr versus T plots. Curie peak temperature, Tc, depends on compositions of the glass-ceramic samples as well as frequency of measurements.

  17. Influence of surface preparation on fracture load of resin composite-based repairs

    Science.gov (United States)

    Mateos-Palacios, Rocío; Román-Rodríguez, Juan-Luis; Solá-Ruíz, María-Fernanda; Fons-Font, Antonio

    2015-01-01

    The purpose of the present study is to evaluate the fracture load of composite-based repairs to fractured zirconium oxide (Z) crowns and to ceramic-fused-to-metal (CM) crowns, comparing different mechanical surface preparation methods. A total of 75 crowns were repaired; samples then underwent dynamic loading and thermocycling. Final fracture load values for failure of the repaired crowns were measured and the type of fracture registered. Group I: CM: Surface preparation with a diamond bur + 9.5% Hydrofluoric Acid (HF) etching; Group II): CM: air-particle (Al2O3) + 9.5% HF; Group III: CM: Silica coating (SiO2); Group IV): Z: air-particle (Al2O3) + HF 9.5%; Group V) Z: Silica coating (SiO2). Of the three CM groups, Group I (CM-diamond bur) showed the highest mean failure value, with significant difference in comparison with Group III (CM-silica coating). For the zirconia groups, the highest value was obtained by Group V (silica coating). Key words:Crown, ceramic-fused-to-metal, zirconia, resin-composite, ceramic covering. PMID:25810848

  18. Influence of surface preparation on fracture load of resin composite-based repairs.

    Science.gov (United States)

    Agustín-Panadero, Rubén; Mateos-Palacios, Rocío; Román-Rodríguez, Juan-Luis; Solá-Ruíz, María-Fernanda; Fons-Font, Antonio

    2015-02-01

    The purpose of the present study is to evaluate the fracture load of composite-based repairs to fractured zirconium oxide (Z) crowns and to ceramic-fused-to-metal (CM) crowns, comparing different mechanical surface preparation methods. A total of 75 crowns were repaired; samples then underwent dynamic loading and thermocycling. Final fracture load values for failure of the repaired crowns were measured and the type of fracture registered. Group I: CM: Surface preparation with a diamond bur + 9.5% Hydrofluoric Acid (HF) etching; Group II): CM: air-particle (Al2O3) + 9.5% HF; Group III: CM: Silica coating (SiO2); Group IV): Z: air-particle (Al2O3) + HF 9.5%; Group V) Z: Silica coating (SiO2). Of the three CM groups, Group I (CM-diamond bur) showed the highest mean failure value, with significant difference in comparison with Group III (CM-silica coating). For the zirconia groups, the highest value was obtained by Group V (silica coating). Key words:Crown, ceramic-fused-to-metal, zirconia, resin-composite, ceramic covering.

  19. Glass matrix composite material prepared with waste foundry sand

    Directory of Open Access Journals (Sweden)

    ZHANG Zhao-shu

    2006-11-01

    Full Text Available The technology of glass matrix of the composite material manufactured through a sintering process and using waste foundry sand and waste glass as the main raw materials was studied. The effects of technological factors on the performance of this material were studied. The results showed that this composite material is formed with glass as matrix, core particulate as strengthening material, it has the performance of glass and ceramics, and could be used to substitute for stone.

  20. Glass matrix composite material prepared with waste foundry sand

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhao-shu; XIA Ju-pei; ZHU Xiao-qin; LIU Fan; HE Mao-yun

    2006-01-01

    The technology of glass matrix of the composite material manufactured through a sintering process and using waste foundry sand and waste glass as the main raw materials was studied. The effects of technological factors on the performance of this material were studied. The results showed that this composite material is formed with glass as matrix, core particulate as strengthening material, it has the performance of glass and ceramics, and could be used to substitute for stone.

  1. SiC nanowires reinforced MAS joint of SiC coated carbon/carbon composites to LAS glass ceramics

    International Nuclear Information System (INIS)

    Graphical abstract: Schematic cross-section images of the samples with SiC nanowires and assembly sequence for the raw materials through the process of the hot-pressing method. Highlights: ► The SiC nanowires were firstly used as porous layer in the middle of the joint. ► The shear strength of the joint with SiC nanowires was largely improved. ► A new mode of fracture was proposed. - Abstract: In order to improve the shear strength of the joints of carbon/carbon (C/C) composites to lithium aluminum silicate (LAS) glass ceramics, SiC coating and magnesium aluminum silicate (MAS) glass ceramics were used as transition layer and middle layer, respectively, and high quality SiC nanowires were applied as the reinforcement materials in MAS. The SiC nanowires reinforced MAS joint of SiC coated C/C composites to LAS glass ceramics was prepared by a three-step technique of pack cementation, CVD and hot-pressing. The microstructures of the as-prepared joints were characterized by SEM and EDS, and the shear strength of the joints was also examined. The shear strength of the SiC–MAS joint increased from 24.0 ± 2.0 MPa to 35.5 ± 5.5 MPa after adding SiC nanowires in MAS. The load decreases in step-style but not perpendicularly after the maximum value, which demonstrates good toughness of the joint with SiC nanowire porous layer.

  2. Wear and friction of nanostructured zirconia and alumina ceramics and composites

    NARCIS (Netherlands)

    Kerkwijk, Bas

    1999-01-01

    The work described in this thesis is about wear and friction of zirconia and alumina ceramics and composites of zirconia and alumina. Tribological properties are system properties that can only be studied for given combinations of materials and operating conditions. The tribological properties of ce

  3. Formation mechanism and characteristics of lanthanum-doped BaTiO{sub 3} powders and ceramics prepared by the sol–gel process

    Energy Technology Data Exchange (ETDEWEB)

    Ianculescu, Adelina Carmen [Department of Oxide Materials Science and Engineering, Politehnica University of Bucharest, 17 Gh. Polizu, 011061 Bucharest (Romania); Vasilescu, Catalina Andreea, E-mail: katyvasilescu85@yahoo.com [Department of Oxide Materials Science and Engineering, Politehnica University of Bucharest, 17 Gh. Polizu, 011061 Bucharest (Romania); National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG54, 077125 Magurele (Romania); Crisan, Maria; Raileanu, Malina [Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Vasile, Bogdan Stefan; Calugaru, Mihai [Department of Oxide Materials Science and Engineering, Politehnica University of Bucharest, 17 Gh. Polizu, 011061 Bucharest (Romania); Crisan, Dorel; Dragan, Nicolae [Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Curecheriu, Lavinia; Mitoseriu, Liliana [Department of Physics, Al. I. Cuza University of Iasi, Blvd. Carol I 11, 700506 Iasi (Romania)

    2015-08-15

    Pure and lanthanum-doped barium titanate nanopowders described by two different formulae, as Ba{sub 1−x}La{sub x}TiO{sub 3}, for lower La concentrations (0 ≤ x ≤ 0.005) and Ba{sub 1−x}La{sub x}Ti{sub 1−x/4}O{sub 3} for higher La concentration (x = 0.025) were prepared by an alkoxide sol–gel method. Single phase compositions were obtained after annealing at 900 °C for 2 h, in air. The increase of the lanthanum content causes structural and morphological changes in the oxide powders, including the evolution of the unit cell from tetragonal toward a cubic symmetry, the particle size decrease and a higher aggregation tendency. SEM investigations of the ceramics sintered at 1300 °C for 4 h indicate significant changes of the microstructural features (strong decrease of the average grain size and increase of the intergranular porosity) with the raise of La amount. Lanthanum addition to barium titanate prepared by sol–gel induces a more significant shift of the Curie temperature toward lower values, than that one reported in literature for ceramics of similar compositions, but processed by the conventional solid state method. The compositions with smaller La amount (x ≤ 0.005) show semiconducting properties at room temperature and high relative dielectric permittivity values, while the undoped ceramics and those doped with higher La content (x = 0.025) are good dielectrics. The ceramic with x = 0.025 exhibits acceptable low losses, a very diffuse ferroelectric–paraelectric transition and Curie temperature closed to the room temperature, being thus susceptible for high tunability applications. - Highlights: • Ba{sub 1−x}La{sub x}TiO{sub 3} (x ≤ 0.005) and Ba{sub 1−x}La{sub x}Ti{sub 1−x/4}O{sub 3} (x = 0.025) were prepared by sol–gel. • Ceramics with x < 0.5 exhibit semiconductor and high dielectric properties. • Ceramic with x = 0.025 exhibits acceptable low losses and diffuse phase transition.

  4. The structure and dielectric tunable properties of preferred oriented BST ceramics prepared by templated grain growth method

    International Nuclear Information System (INIS)

    In this work, textured barium strontium titanate ceramics with a high degree of preferred orientation were prepared by templated grain growth technique. The structure and dielectric tunable properties of textured BST ceramic were investigated. A high degree of fiber texture was achieved using oriented SrTiO3 as template particles in fine-grained BST matrix. The dielectric tunability of textured BST ceramic were significantly increased compared to random oriented ceramic. Furthermore the P-E curve of textured BST ceramic presented a more visible hysteresis loop. Combined with origin of the tunability, these effects could be interpreted on the base of both hardening mechanism of soft mode and polar nano-region mechanism

  5. Effect of Annealing on Ferroelectric Properties of Nanometre BaTiO3 Ceramics Prepared by High Pressure Sintering Method

    Institute of Scientific and Technical Information of China (English)

    LI Peng-Fei; JIN Chang-Qing; XIAO Chang-Jiang; WANG Feng-Ping; WANG Xiao-Hui; LI Long-Tu

    2007-01-01

    @@ Dense nanocrystalline BaTiO3 ceramics with a grain size of 50nm are prepared under 6 GPa at 1273K using a high pressure sintering method. The sintered bulk is uniform and the relative density is above 97%. We anneal the ceramic samples in oxygen with various temperatures and for different times without apparent grain growth. After the annealing, several broadened peaks can be observed at about 378K by dielectric measurements. However,these peaks are very different from those of coarser-grained ceramics. It is indicated that both the elimination of oxygen vacancies and the release of residual stresses caused by high pressure greatly improve the overall ferroelectric properties of BaTiO3 ceramics. The observation of nearly linear polarization hysteresis loop after anneal provides the solid evidence of ferroelectricity in these nano-sized BaTiO3 ceramics.

  6. High resolution energy loss research: Si compound ceramics and composites. [1990 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, R W; Lin, S H

    1990-12-31

    This report discusses proposed work on silicon compound ceramics and composites. High resolution composition and structure analysis of interfaces in ceramic and metal matrix composites and certain grain boundaries in silicon and its interfaces with oxides and nitrides is proposed. Composition and bonding analysis will be done with high spatial resolution (20 Angstroms or better) parallel electron energy loss spectroscopy using a field emission analytical electron microscope. Structural analysis will be done at the 1.8 Angstrom resolution level at 200kV by HREM. Theoretical electron energy loss cross section computations will be used to interpret electronic structure of these materials. Both self-consistent field MO and multiple scattering computational methods are being done and evaluated.

  7. Processing and characterization of pure cordierite and zirconia-doped cordierite ceramic composite by precipitation technique

    Indian Academy of Sciences (India)

    M Senthil Kumar; A Elaya Perumal; T R Vijayaram; Govindan Senguttuvan

    2015-06-01

    Pure cordierite and cordierite–ZrO2 composite (5–20 wt%) ceramics for various stoichiometric compositions were synthesized from standard raw materials by a novel precipitation technique. The analytical techniques such as X-ray diffraction, simultaneous thermogravimetric and differential thermal analysis, Fourier transform infrared spectroscopy, scanning electron microscopy and bulk density were employed to evaluate the properties and microstructure. Results show that the ceramic composites consist of cordierite and zircon phases. The cordierite–zirconia (20 wt%) increased the fracture toughness value from 3.38 to 3.94 MPa, which is mainly due to martensitic transformation present in zirconia. The flexural strength of composite was found to increase from 126.46 to 297.62 MPa. The thermal expansion coefficients of cordierite and cordierite–zirconia (20 wt%) were 4.08 × 10−6 and 4.42 × 10−6 ° C−1 which may be due to the addition of zirconia.

  8. Mechanical behavior and properties of fiber reinforced ceramic matrix composites for high temperature use

    Institute of Scientific and Technical Information of China (English)

    Chongdu Cho; Qiang Pan; Sangkyo Lee

    2007-01-01

    Ceramics can keep their mechanical characteristics up to 2 000℃ or higher.In this paper,A model to predict ultimate strength of continuous fiber-reinforced brittle matrix composites is developed.A statistical theory for the strength of a uni-axially fiber-reinforced brittle matrix composite is presented.Also a semi-empirical frictional heating method for estimating in-situ interfacial shear in fiber-reinforced ceramic matrix composites was improved.Local uneven fiber packing variation as well as uneven micro-damage during fatigue can be expected to have effects on the composites:generation of frictional heating,thermal gradients,and residual stresses around local fiber breaks.This study examined those engineering interests by the finite element method.

  9. Comparison of Reactive and Non-Reactive Spark Plasma Sintering Routes for the Fabrication of Monolithic and Composite Ultra High Temperature Ceramics (UHTC Materials

    Directory of Open Access Journals (Sweden)

    Roberto Orrù

    2013-04-01

    Full Text Available A wider utilization of ultra high temperature ceramics (UHTC materials strongly depends on the availability of efficient techniques for their fabrication as dense bodies. Based on recent results reported in the literature, it is possible to state that Spark Plasma Sintering (SPS technology offers a useful contribution in this direction. Along these lines, the use of two different SPS-based processing routes for the preparation of massive UHTCs is examined in this work. One method, the so-called reactive SPS (R-SPS, consists of the synthesis and densification of the material in a single step. Alternatively, the ceramic powders are first synthesized by Self-propagating High-temperature Synthesis (SHS and then sintered by SPS. The obtained results evidenced that R-SPS method is preferable for the preparation of dense monolithic products, while the sintering of SHS powders requires relatively milder conditions when considering binary composites. The different kinetic mechanisms involved during R-SPS of the monolithic and composite systems, i.e., combustion-like or gradual solid-diffusion, respectively, provides a possible explanation. An important role is also played by the SHS process, particularly for the preparation of composite powders, since stronger interfaces are established between the ceramic constituents formed in situ, thus favoring diffusion processes during the subsequent SPS step.

  10. Allylhydridopolycarbosilane (AHPCS) as matrix resin for C/SiC ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Sreeja, R. [Ceramic Matrix Products Division, Propellants and Special Chemicals Group, PCM Entity, Vikram Sarabhai Space Center, Thiruvananthapuram 695022 (India); Swaminathan, B., E-mail: swami1423@gmail.co [Ceramic Matrix Products Division, Propellants and Special Chemicals Group, PCM Entity, Vikram Sarabhai Space Center, Thiruvananthapuram 695022 (India); Painuly, Anil; Sebastian, T.V.; Packirisamy, S. [Ceramic Matrix Products Division, Propellants and Special Chemicals Group, PCM Entity, Vikram Sarabhai Space Center, Thiruvananthapuram 695022 (India)

    2010-04-15

    In present study, partially allyl-substituted hydridopolycarbosilane (5 mol% allyl) [AHPCS] has been characterized by spectral techniques and thermal analysis. The DSC studies show that, the polymer is self-cross-linking at lower temperatures without any incorporation of cross-linking agents. The spectral and thermal characterizations carried out at different processing stages indicate the possibility of extensive structural rearrangement accompanied by the loss of hydrogen and other reactions of C and Si containing species resulting in the conversion of the branched chain segment into a 3D SiC network structure. AHPCS gave ceramic residue of 72% and 70% at 900 and 1500 deg. C respectively in argon atmosphere. XRD pattern of 1500 deg. C heat-treated AHPCS, indicates the formation of silicon carbide with the particle size of 3-4 nm. AHPCS was used as matrix resin for the preparation of C/SiC composite without any interfacial coating over the T-300 carbon fabric reinforcement. Flexural strength value of 74-86 MPa for C/SiC specimen with density of 1.7 g/cm{sup 3} was obtained after four infiltration and pyrolysis cycles.

  11. Colloidal processing of Fe-based metalceramic composites with high content of ceramic reinforcement

    OpenAIRE

    Escribano, J.A.; Ferrari, Begoña; Alvaredo Olmos, Paula; Gordo Odériz, Elena; Sánchez-Herencia, A. J.

    2013-01-01

    Major difficulties of processing metal-matrix composites by means of conventional powder metallurgy techniques are the lack of dispersion of the phases within the final microstructure. In this work, processing through colloidal techniques of the Fe-based metal-matrix composites, with a high content of a ceramic reinforcement (Ti(C,N) ), is presented for the first time in the literature. The colloidal approach allows a higher control of the powders packing and a better homogenization of phases...

  12. Hot-Pressed BN-AlN Ceramic Composites of High Thermal Conductivity

    Science.gov (United States)

    Kanai, Takao; Tanemoto, Kei; Kubo, Hiroshi

    1990-04-01

    Hexagonal boron nitride-aluminum nitride (75-25 wt%) ceramic composites are synthesized by uniaxial hot pressing. High thermal conductivity, 247 W/(m\\cdotK), is attained for the perpendicular direction of the hot-pressing axis of the sintered body, by optimizing the amount of added sintering aid, calcium carbide. The composites have remarkable anisotropy with respect to structure and thermal conductivity. The revelation mechanism of high thermal conductivity is discussed.

  13. Low pressure hot pressing of B4C matrix ceramic composites improved by Al2O3 and TiC additives

    International Nuclear Information System (INIS)

    B4C matrix ceramic composites toughened by Al2O3 and TiC were prepared by low pressure hot pressing. The relative density, Vickers hardness, fracture toughness and flexural strength of the new fabricated composites were measured. Microstructure observations of the fracture surfaces and the indentation cracks of the B4C matrix ceramic composites were analyzed, and an X-ray diffraction phase analysis was performed. The experiment results showed that chemical reactions took place during the low pressure hot pressing process and resulted in the B4C/Al2O3/TiB2 composite. The densification rate of the B4C matrix ceramic composites was enhanced and the mechanical properties were improved via the introduction of Al2O3 and TiC additives. The Vickers hardness, fracture toughness and flexural strength of the composite with the addition of 4.7 wt.% Al2O3 and 10 wt.% TiC were 24.8 GPa, 4.8 MPa m1/2 and 445 MPa, respectively.

  14. Preparation and Characterization of Bioactive Composites of Pcl/bioactive Fillers

    Science.gov (United States)

    Li, Ying; Cheah, Chi Mun; Chang, Hengky; Loh, Leonard; Kum, Adeline

    A variety of bioactive composites have been invested over the last two decades as substitute materials for diseased or damaged tissues in the human body. In this paper, bioactive composites were prepared using polycaprolactone (PCL) and hydroxyapatite (HA). The influence of micro-sized and nano-sized HA on composite properties was investigated. The nano-HA was prepared by wet chemical co-precipitation reaction method. Studies of biocomposite specimen morphology were performed by Field-emission scanning electron microscopy (SEM). XRD (X-Ray Diffraction) and DSC (Differential scanning calorimetry) were used to assess the crystal structure of HA and thermal properties of the composites, respectively. The synthesized nano-HA is found to be of high purity HA structure. The relationship between composition, structure and properties was studied. Different methods to prepare uniform composites were tried, and the outcome of this work suggests that by proper manipulation of biodegradable polymers and bioactive ceramics through material design, bioactive composites with controlled properties might be achievable.

  15. Additive Manufacturing of Reactive In Situ Zr Based Ultra-High Temperature Ceramic Composites

    Science.gov (United States)

    Sahasrabudhe, Himanshu; Bandyopadhyay, Amit

    2016-03-01

    Reactive in situ multi-material additive manufacturing of ZrB2-based ultra-high-temperature ceramics in a Zr metal matrix was demonstrated using LENS™. Sound metallurgical bonding was achieved between the Zr metal and Zr-BN composites with Ti6Al4V substrate. Though the feedstock Zr power had α phase, LENS™ processing of the Zr powder and Zr-BN premix powder mixture led to the formation of some β phase of Zr. Microstructure of the Zr-BN composite showed primary grains of zirconium diboride phase in zirconium metal matrix. The presence of ZrB2 ceramic phase was confirmed by X-ray diffraction (XRD) analysis. Hardness of pure Zr was measured as 280 ± 12 HV and, by increasing the BN content in the feedstock, the hardness was found to increase. In Zr-5%BN composite, the hardness was 421 ± 10 HV and the same for Zr-10%BN composite was 562 ± 10 HV. It is envisioned that such multi-materials additive manufacturing will enable products in the future that cannot be manufactured using traditional approaches particularly in the areas of high-temperature metal-ceramic composites with compositional and functional gradation.

  16. Low Cost Fabrication of Silicon Carbide Based Ceramics and Fiber Reinforced Composites

    Science.gov (United States)

    Singh, M.; Levine, S. R.

    1995-01-01

    A low cost processing technique called reaction forming for the fabrication of near-net and complex shaped components of silicon carbide based ceramics and composites is presented. This process consists of the production of a microporous carbon preform and subsequent infiltration with liquid silicon or silicon-refractory metal alloys. The microporous preforms are made by the pyrolysis of a polymerized resin mixture with very good control of pore volume and pore size thereby yielding materials with tailorable microstructure and composition. Mechanical properties (elastic modulus, flexural strength, and fracture toughness) of reaction-formed silicon carbide ceramics are presented. This processing approach is suitable for various kinds of reinforcements such as whiskers, particulates, fibers (tows, weaves, and filaments), and 3-D architectures. This approach has also been used to fabricate continuous silicon carbide fiber reinforced ceramic composites (CFCC's) with silicon carbide based matrices. Strong and tough composites with tailorable matrix microstructure and composition have been obtained. Microstructure and thermomechanical properties of a silicon carbide (SCS-6) fiber reinforced reaction-formed silicon carbide matrix composites are discussed.

  17. Electrical Response of Cement-Based Piezoelectric Ceramic Composites under Mechanical Loadings

    Directory of Open Access Journals (Sweden)

    Biqin Dong

    2011-01-01

    Full Text Available Electrical responses of cement-based piezoelectric ceramic composites under mechanical loadings are studied. A simple high order model is presented to explain the nonlinear phenomena, which is found in the electrical response of the composites under large mechanical loadings. For general situation, this nonlinear piezoelectric effect is quite small, and the composite is suitable for dynamic mechanical sensor as holding high static stability. The experimental results are consistent with the relationship quite well. The study shows that cement-based piezoelectric composite is suitable for potential application as dynamic mechanical sensor with excellent dynamic response and high static stability.

  18. Thin Film Heat Flux Sensor Development for Ceramic Matrix Composite (CMC) Systems

    Science.gov (United States)

    Wrbanek, John D.; Fralick, Gustave C.; Hunter, Gary W.; Zhu, Dongming; Laster, Kimala L.; Gonzalez, Jose M.; Gregory, Otto J.

    2010-01-01

    The NASA Glenn Research Center (GRC) has an on-going effort for developing high temperature thin film sensors for advanced turbine engine components. Stable, high temperature thin film ceramic thermocouples have been demonstrated in the lab, and novel methods of fabricating sensors have been developed. To fabricate thin film heat flux sensors for Ceramic Matrix Composite (CMC) systems, the rough and porous nature of the CMC system posed a significant challenge for patterning the fine features required. The status of the effort to develop thin film heat flux sensors specifically for use on silicon carbide (SiC) CMC systems with these new technologies is described.

  19. Preparation and characterization of the ZrO2: MgO ceramic compound

    International Nuclear Information System (INIS)

    Zirconium oxide (ZrO2); magnesium oxide (MgO) and zirconia-magnesia (ZrO2: MgO) ceramic specimens have been prepared by the precipitation and coprecipitation chemical methods. Some of the process parameters, pH and temperature, have been studied. The qualitative as well as the quantitative results are in good agreement with the results reported in scientific journals. The details of the experimental procedures and the phase analysis of the calcined samples will be described. (author)

  20. High-Temperature, Lightweight, Self-Healing Ceramic Composites for Aircraft Engine Applications

    Science.gov (United States)

    Raj, Sai V.; Bhatt, Ramkrishna

    2013-01-01

    The use of reliable, high-temperature, lightweight materials in the manufacture of aircraft engines is expected to result in lower fossil and biofuel consumption, thereby leading to cost savings and lower carbon emissions due to air travel. Although nickel-based superalloy blades and vanes have been successfully used in aircraft engines for several decades, there has been an increased effort to develop high-temperature, lightweight, creep-resistant substitute materials under various NASA programs over the last two decades. As a result, there has been a great deal of interest in developing SiC/SiC ceramic matrix composites (CMCs) due to their higher damage tolerance compared to monolithic ceramics. Current-generation SiC/SiC ceramic matrix composites rely almost entirely on the SiC fibers to carry the load, owing to the premature cracking of the matrix during loading. Thus, the high-temperature usefulness of these CMCs falls well below their theoretical capabilities. The objective of this work is to develop a new class of high-temperature, lightweight, self-healing, SiC fiber-reinforced, engineered matrix ceramic composites.

  1. Effects of single pulse energy on the properties of ceramic coating prepared by micro-arc oxidation on Ti alloy

    Science.gov (United States)

    Wang, Jun-Hua; Wang, Jin; Lu, Yan; Du, Mao-Hua; Han, Fu-Zhu

    2015-01-01

    The effects of single pulse energy on the properties of ceramic coating fabricated on a Ti-6Al-4V alloy via micro-arc oxidation (MAO) in aqueous solutions containing aluminate, phosphate, and some additives are investigated. The thickness, micro-hardness, surface and cross-sectional morphology, surface roughness, and compositions of the ceramic coating are studied using eddy current thickness meter, micro-hardness tester, JB-4C Precision Surface roughness meter, scanning electron microscopy (SEM) and X-ray diffraction (XRD). Single pulse energy remarkably influences the ceramic coating properties. The accumulative time of impulse width is an important parameter in the scientific and rational measurement of the film forming law of ceramic coating. The ceramic coating thickness approximately linearly increases with the cumulative time of impulse width. Larger impulse width resulted in higher single pulse energy, film forming rates and thicker ceramic coating thickness. The sizes of oxide particles, micro-pores and micro-cracks slightly increase with impulse width and single pulse energy. The main surface conversion products generated during MAO process in aqueous solutions containing aluminate are rutile TiO2, anatase TiO2, and a large amount of Al2TiO5. The effects of single pulse energy on the micro-hardness and phase composition of ceramic coating are not as evident as those of frequency and duty cycle.

  2. The selection of phase composition of silicon nitride ceramics for shaping with the use of EDM machining

    Directory of Open Access Journals (Sweden)

    P. Putyra

    2011-09-01

    Full Text Available Purpose: The purpose of this study is the selection of phase composition of Si3N4 matrix ceramics with the addition of conducting phases so as to make shaping of those materials possible by means of electro discharge machining (EDM. Silicon nitride matrix materials with the addition of oxide phases (Al2O3, MgO, ZrO2 and conducting phases (TiB2, TiN were sintered by the method of SPS (Spark Plasma Sintering. Additionally the effect of oxide phases on silicon nitride sintering capacity, the value of electric resistance of nitride ceramics depending on the addition of a conducting phase and the effect of sintering parameters on selected features of produced materials were determined.Design/methodology/approach: Materials were sintered with the use of a SPS device marked with FCT-HP D 5. Apparent density ρp was measured by the hydrostatic method. Hardness was determined by the Vicker’s method at the load of 980.7 mN with the use of a Future Tech Corp digital hardness tester FM7. For the purpose of those tests a surface was prepared with the use of a Struers cutting grinder ACUTOM. Measurements of Young’s modulus for sintered samples were carried out using a ultrasonic method of transverse and longitudinal wave speed measurement with the use of a Panametrics Epoch III detector. Resistance measurement was done with the use of Wheatstone and Thomson technical bridges.Findings: The addition of titanium nitride had no effect on the reduction of electric resistance of Si3N4 matrix ceramics. The lack of electric conductivity of those materials is the result of used additions influencing sintering capacity, mainly magnesium oxide. Si3N4 matrix materials with the addition of titanium diboride are characterised by low electrical resistance with high physical and mechanical features maintained. Electric conductivity of those materials and the initial electro discharge cutting attempts prove that it is possible to shape Si3N4 matrix ceramic materials with

  3. Preparation and characterization of polyphase ceramic for fixation of actinides and fission products

    International Nuclear Information System (INIS)

    Two basic crystalline phases, a fluorite type, calcia stabilized zirconia, and a magnetoplumbite type, CaAl12O19, have been studied for incorporating the full range of waste compositions in to polyphase ceramic forms. The phase assemblage provides crystalline host phases, with stable mineral analogues, for many radionuclides in the waste. Fluorite is considered to be suitable host phase for the fixation of actinides and lanthanides. Magnetoplumbite-like structure can accommodate a wide range of elements with various charges and ionic radii. These kinds of compounds, in addition, present good chemical inertia. (author)

  4. Enhancement of biodegradation and osseointegration of poly(ε-caprolactone)/calcium phosphate ceramic composite screws for osteofixation using calcium sulfate.

    Science.gov (United States)

    Wu, Chang-Chin; Hsu, Li-Ho; Tsai, Yuh-Feng; Sumi, Shoichiro; Yang, Kai-Chiang

    2016-04-01

    Internal fixation devices, which can stabilize and realign fractured bone, are widely used in fracture management. In this paper, a biodegradable composite fixator, composed of poly(ε-caprolactone), calcium phosphate ceramic and calcium sulfate (PCL/CPC/CS), is developed. The composition of CS, which has a high dissolution rate, was expected to create a porous structure to improve osteofixation to the composite fixator. PCL, PCL/CPC, and PCL/CPC/CS samples were prepared and their physical properties were characterized in vitro. In vivo performance of the composite screws was verified in the distal femurs of rabbits. Results showed that the PCL/CPC/CS composite had a higher compressive strength (28.55 ± 3.32 MPa) in comparison with that of PCL (20.64 ± 1.81 MPa) (p enhanced apatite formation of the PCL/CPC composite screw. This osteoconductive PCL/CPC/CS is a good candidate material for internal fixation devices. PMID:27041468

  5. Mechanical behavior of ceramic composite hot-gas filters after exposure to severe environments

    Energy Technology Data Exchange (ETDEWEB)

    Pysher, D.J.; Weaver, B.L.; Smith, R.G. [Ceramic Technology Center, St. Paul, MN (United States)] [and others

    1995-08-01

    A novel type of hot-gas filter based on a ceramic fiber reinforced ceramic matrix has been developed, as reported at previous Fossil Energy Materials Conferences, through research activities at Oak Ridge National Laboratory (ORNL) and at the 3M Company. Simulated testing has been done at the Westinghouse Science and Technology Center. This filter technology has been extended to full size, 60 mm OD by 1.5 meter long candle filters and a commercially viable process for producing the filters has been developed filters are undergoing testing and demonstration use throughout the world for applications in pressurized fluidized-bed combustion (PFBC) and integrated gasification combined cycle (IGCC) plants. Demonstration tests of this ceramic composite filter along with other filters are in progress at the Tidd PFBC plant Mechanical tests were performed on the 3 M brand Ceramic Composite Candle Filter after exposure to various corrosive environments in order to assess its ability to function as a hot gas filter in coal-fired applications. Due to the different construction of ceramic composite filters and the thin composite wall versus the typical thick-walled monolithic filter, standard mechanical property tests had to be refined or modified to accurately determine the filters properties. These tests and filter property results will be described Longitudinal tensile and diametral O-ring compression tests were performed on as-produced candle filters as well as on filters which had been exposed to various environments. The exposures were for 1000 hrs at 850{degrees}C in wet air, in wet air containing Na{sub 2}CO{sub 3}, and in wet air containing NaCl. In addition, a filter which bad been coated with ash (Old Grimethorpe) was exposed to wet air at 850{degrees}C for 1000 hours.

  6. Joining of SiC ceramics and SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Rabin, B.H. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-08-01

    This project has successfully developed a practical and reliable method for fabricating SiC ceramic-ceramic joints. This joining method has the potential to facilitate the use of SiC-based ceramics in a variety of elevated temperature fossil energy applications. The technique is based on a reaction bonding approach that provides joint interlayers compatible with SiC, and excellent joint mechanical properties at temperatures exceeding 1000{degrees}C. Recent efforts have focused on transferring the joining technology to industry. Several industrial partners have been identified and collaborative research projects are in progress. Investigations are focusing on applying the joining method to sintered a-SiC and fiber-reinforced SiC/SiC composites for use in applications such as heat exchangers, radiant burners and gas turbine components.

  7. Joining of SiC ceramics and SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Rabin, B.H. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1996-08-01

    This project has successfully developed a practical and reliable method for fabricating SiC ceramic-ceramic joints. This joining method will permit the use of SiC-based ceramics in a variety of elevated temperature fossil energy applications. The technique is based on a reaction bonding approach that provides joint interlayers compatible with SiC, and excellent joint mechanical properties at temperatures exceeding 1000{degrees}C. Recent emphasis has been given to technology transfer activities, and several collaborative research efforts are in progress. Investigations are focusing on applying the joining method to sintered {alpha}-SiC and fiber-reinforced SiC/SiC composites for use in applications such as heat exchangers, radiant burners and gas turbine components.

  8. 三维打印结合化学气相渗透制备Si3N4-SiC复相陶瓷%Si3N4-SiC Composite Ceramic Prepared by Three Dimensional Printing and Chemical Vapor Infiltration

    Institute of Scientific and Technical Information of China (English)

    封立运; 殷小玮; 李向明

    2012-01-01

    采用三维打印(3DP)技术成型Si3N4多孔陶瓷并结合化学气相渗透( CVI) SiC制备了Si3N4-SiC复相陶瓷.研究了烧结工艺对3DP Si3N4陶瓷线收缩率和孔隙率的影响.结果表明,3DP Si3N4坯体经热解除碳后再烧结,可以获得较小的线收缩率(<6%)及较大的气孔率(77.5%).对其进行CVI SiC近尺寸强化,研究了Si3N4-SiC复相陶瓷的抗弯强度随SiC体积分数的变化规律.%Porous Si3N4 ceramics are formed by three-dimensional printing, SiC is subsequently introduced into the porous Si3N4 for consolidation by chemical vapor infiltration, thus Si3N4-SiC composite ceramics is formed. The influence of sintering process on the linear shrinkages and porosity of the 3DP Si3N4 is investigated. The sintered Si3N4 ceramics gets the smaller linear shrinkages (<6%), and bigger porosity (77.5%) after pyrolysis. Consolidation by CVI is made to these samples without changing their dimensions, the variation of the bending strength of the Si3N4-SiC composite with the volume fraction of CVI SiC is investigated.

  9. Fibre-matrix bond strength studies of glass, ceramic, and metal matrix composites

    Science.gov (United States)

    Grande, D. H.; Mandell, J. F.; Hong, K. C. C.

    1988-01-01

    An indentation test technique for compressively loading the ends of individual fibers to produce debonding has been applied to metal, glass, and glass-ceramic matrix composites; bond strength values at debond initiation are calculated using a finite-element model. Results are correlated with composite longitudinal and interlaminar shear behavior for carbon and Nicalon fiber-reinforced glasses and glass-ceramics including the effects of matrix modifications, processing conditions, and high-temperature oxidation embrittlement. The data indicate that significant bonding to improve off-axis and shear properties can be tolerated before the longitudinal behavior becomes brittle. Residual stress and other mechanical bonding effects are important, but improved analyses and multiaxial interfacial failure criteria are needed to adequately interpret bond strength data in terms of composite performance.

  10. Fiber reinforced superalloys, ceramics, and refractory metals, and directionally solidified eutectics (heat-resistant composites)

    International Nuclear Information System (INIS)

    High-temperature composites have been shown to have excellent elevated-temperature tensile and stress-rupture strengths and specific strengths. Tungsten alloy fiber reinforced superalloys have been demonstrated to have stress rupture strengths at 20000F superior to superalloys and sufficient impact resistance for gas turbines. Recently developed tungsten alloy fibers should permit production of composites with use-temperatures (gas turbine blades, vanes) as high as 24000F. Their main problem is associated with the direction and perfection of growth of strong whiskers or lamina in irregularly shaped components. Artificially made whisker composites are believed to warrant serious consideration. Use-temperatures of refractory metal matrix composites can be as much as 25000F for Nb matrix composites and over 30000F for W matrix composites. Ceramic matrix composites with use-temperatures ranging from 18000F to over 30000F are possibilities. Stationary, large, turbines for power generation may make use of refractory fiber/superalloy matrix, ceramic matrix, and coated refractory matrix composites. Such an application may capitalize on the high-temperature strength and high use-temperatures of the composites, which, in turn, will enhance engine performance. (127 references, 62 fig, 22 tables) (U.S.)

  11. DIELECTRIC AND PYROELECTRIC PROPERTIES OF THE COMPOSITES OF FERROELECTRIC CERAMIC AND POLY(VINYL CHLORIDE

    Directory of Open Access Journals (Sweden)

    M.Olszowy

    2003-01-01

    Full Text Available The dielectric and pyroelectric properties of lead zirconate titanate/poly(vinyl chloride [PZT/PVC] and barium titanate/poly(vinyl chloride [BaTiO3/ PVC] composites were studied. Flexible composites were fabricated in the thin films form (200-400 μm by hot-pressed method. Powders of PZT or BaTiO3 in the shape of ≤ 75 μm ceramics particles were dispersed in a PVC matrix, providing composites with 0-3} connectivity. Distribution of the ceramic particles in the polymer phase was examined by scanning electron microscopy. The analysis of the thermally stimulated currents (TSC have also been done. The changes of dielectric and pyroelectric data on composites with different contents of ceramics up to 40% volume were investigated. The dielectric constants were measured in the frequency range from 600 Hz to 6 MHz at room temperature. The pyroelectric coefficient for BaTiO3/PVC composite at 343 K is about 35 μC/m2K which is higher than that of β-PVDF (10 μC/m2 K.

  12. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites

    International Nuclear Information System (INIS)

    Since the discovery of carbon nanotubes (CNTs), commonly referred to as ultimate reinforcement, the main purpose for fabricating CNT–ceramic matrix composites has been mainly to improve the fracture toughness and strength of the ceramic matrix materials. However, there have been many studies reporting marginal improvements or even the degradation of mechanical properties. On the other hand, those studies claiming noticeable toughening measured using indentation, which is an indirect/unreliable characterization method, have not demonstrated the responsible mechanisms applicable to the nanoscale, flexible CNTs; instead, those studies proposed those classical methods applicable to microscale fiber/whisker reinforced ceramics without showing any convincing evidence of load transfer to the CNTs. Therefore, the ability of CNTs to directly improve the macroscopic mechanical properties of structural ceramics has been strongly questioned and debated in the last ten years. In order to properly discuss the reinforcing ability (and possible mechanisms) of CNTs in a ceramic host material, there are three fundamental questions to our knowledge at both the nanoscale and macroscale levels that need to be addressed: (1) does the intrinsic load-bearing ability of CNTs change when embedded in a ceramic host matrix?; (2) when there is an intimate atomic-level interface without any chemical reaction with the matrix, could one expect any load transfer to the CNTs along with effective load bearing by them during crack propagation?; and (3) considering their nanometer-scale dimensions, flexibility and radial softness, are the CNTs able to improve the mechanical properties of the host ceramic matrix at the macroscale when individually, intimately and uniformly dispersed? If so, how? Also, what is the effect of CNT concentration in such a defect-free composite system? Here, we briefly review the recent studies addressing the above fundamental questions. In particular, we discuss the new

  13. Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites

    Science.gov (United States)

    Estili, Mehdi; Sakka, Yoshio

    2014-12-01

    Since the discovery of carbon nanotubes (CNTs), commonly referred to as ultimate reinforcement, the main purpose for fabricating CNT-ceramic matrix composites has been mainly to improve the fracture toughness and strength of the ceramic matrix materials. However, there have been many studies reporting marginal improvements or even the degradation of mechanical properties. On the other hand, those studies claiming noticeable toughening measured using indentation, which is an indirect/unreliable characterization method, have not demonstrated the responsible mechanisms applicable to the nanoscale, flexible CNTs; instead, those studies proposed those classical methods applicable to microscale fiber/whisker reinforced ceramics without showing any convincing evidence of load transfer to the CNTs. Therefore, the ability of CNTs to directly improve the macroscopic mechanical properties of structural ceramics has been strongly questioned and debated in the last ten years. In order to properly discuss the reinforcing ability (and possible mechanisms) of CNTs in a ceramic host material, there are three fundamental questions to our knowledge at both the nanoscale and macroscale levels that need to be addressed: (1) does the intrinsic load-bearing ability of CNTs change when embedded in a ceramic host matrix?; (2) when there is an intimate atomic-level interface without any chemical reaction with the matrix, could one expect any load transfer to the CNTs along with effective load bearing by them during crack propagation?; and (3) considering their nanometer-scale dimensions, flexibility and radial softness, are the CNTs able to improve the mechanical properties of the host ceramic matrix at the macroscale when individually, intimately and uniformly dispersed? If so, how? Also, what is the effect of CNT concentration in such a defect-free composite system? Here, we briefly review the recent studies addressing the above fundamental questions. In particular, we discuss the new

  14. Analysis of nanostructure and nanochemistry by ASAXS: Accessing phase composition of oxyfluoride glass ceramics doped with Er3+/Yb3+

    Science.gov (United States)

    Haas, Sylvio; Hoell, Armin; Wurth, Roman; Rüssel, Christian; Boesecke, Peter; Vainio, Ulla

    2010-05-01

    Here, we describe the analysis of the nanostructure and average chemical compositions of each phase present in an oxyfluoride glass ceramic, which is composed of fluoride nanocrystals and an oxide glass matrix. The overall composition of the oxyfluoride glass ceramic as prepared is 21.1%SiO26.5%B2O37.0%Al2O321.0%PbF214.3%CdF211.0%YbF30.5%ErF311.0%PbO7.6%CdO(mole%) . Nanocrystals begin to grow at temperatures above the glass transformation temperature at 678 K as observed by x-ray diffraction. We report results from anomalous small-angle x-ray scattering taken at energies of x-ray absorption edges of Er, Yb, Pb, and Cd. By nonlinear regression of the scattering curves obtained from different edges simultaneously, the nanocrystals were found to be describable as polydisperse spheroids. The length of the smaller axis was found to be 6.4±1.4nm while the larger axis was found to be 17.7±3.9nm . By analyzing the scattering contrast as a function of the x-ray energy we found cadmium only in the glass matrix.

  15. Analysis of nanostructure and nanochemistry by ASAXS: Accessing phase composition of oxyfluoride glass ceramics doped with Er3+/Yb3+

    International Nuclear Information System (INIS)

    Here, we describe the analysis of the nanostructure and average chemical compositions of each phase present in an oxyfluoride glass ceramic, which is composed of fluoride nanocrystals and an oxide glass matrix. The overall composition of the oxyfluoride glass ceramic as prepared is 21.1%SiO2 6.5%B2O3 7.0%Al2O3 21.0%PbF2 14.3%CdF2 11.0%YbF3 0.5%ErF3 11.0%PbO 7.6%CdO(mole %). Nanocrystals begin to grow at temperatures above the glass transformation temperature at 678 K as observed by x-ray diffraction. We report results from anomalous small-angle x-ray scattering taken at energies of x-ray absorption edges of Er, Yb, Pb, and Cd. By nonlinear regression of the scattering curves obtained from different edges simultaneously, the nanocrystals were found to be describable as polydisperse spheroids. The length of the smaller axis was found to be 6.4±1.4 nm while the larger axis was found to be 17.7±3.9 nm. By analyzing the scattering contrast as a function of the x-ray energy we found cadmium only in the glass matrix.

  16. Reaction hot-pressing and property-composition relationships of modified sialon - boron nitride hetero-modulus ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y; Shabalin, I L [Materials and Physics Research Centre, University of Salford, Salford, Greater Manchester, M5 4WT (United Kingdom); Zhang, L [Department of Ceramic and Glass Engineering, CICECO, University of Aveiro, Aveiro 3810-193 (Portugal); Zhdanov, V B, E-mail: i.shabalin@salford.ac.uk [Department of Less-Common Metals, Ural State Technical University, Yekaterinburg 620002 (Russian Federation)

    2011-10-29

    Hetero-modulus ceramics (HMC) present the combination of a ceramic matrix with inclusions of a dispersed phase with considerably lower values of Young's modulus, resulting in a material with significantly advanced properties. Densified '-Si{sub 6-x}Al{sub x}O{sub x}N{sub 8-x} based HMC materials, with various volume contents of low-modulus {alpha}-BN phase and modifiers such as TiN or ZrO{sub 2} in sialon matrix, were prepared by high-temperature reaction hot-pressing in nitrogen atmosphere. The pristine blend composition for reaction hot-pressing consisted of mixed fine powders of Si, Al, B, Ti nitrides and Al, Zr oxides. Statistical design of 2{sup 5-2} fractional factorial and third-order simplex-grid types was used for the experimental studies to estimate the effects of some technological factors on the densification of hot-pressed products and the property-composition relationships of modified HMC materials.

  17. Distribution Species Composition And Size Of Flying Fish Exocoetidae In The Ceram Sea

    Directory of Open Access Journals (Sweden)

    Friesland Tuapetel

    2015-03-01

    Full Text Available Abstract Ceram Sea is new resources area of catching flying fish. The purpose of study is to determine the species composition size and distribution of flying fish caught by drifting baits. Flying fish data collection was conducted in June until October 2013 in three locations i.e Kaimana East Ceram and Fak-Fak. There are three flying fish species collected namely Hirundichthys oxycephalus Torani Cypselurus poecilopterus Banggulung and Chellopogon abeia yellow wing. The results was showed that in Fak-Fak and Kaimana there are two types of fly fishing that H. oxycephalus andC. poecilopterus whereas in East Ceram found three types including H. oxycephalus C. poecilopterus and C. abeia. The dominant type of flying fish in three locations is H. oxycephalus. Flying fish has a variety size range of body size from 195.6 to 243.6 mm in Kaimana East Ceram range from 206.3 to 284.3 mm while Fak-Fak range from 187.1 to 243.1 mm. The result is expected to be a reference literature as basic data for the management and sustainable utilization of flyling fish in Ceram sea.

  18. Perspectives of SiC-Based Ceramic Composites and Their Applications to Fusion Reactors 6.Recent Research Activities regarding SiC-Based Ceramic Composites for Aerospace Applications

    Science.gov (United States)

    Ogasawara, Toshio

    In this article, the present and future prospects of the research and development regarding continuous SiC fiber reinforced ceramic matrix composites (CMCs) for aerospace applications are reviewed. These activities in Japan are described in term of their major applications, i.e. turbo fan engine components for aircrafts, rocket propulsion components, thermal protection system for future re-entry vehicles, thruster for satellites. It is suggested that high performance, affordable processing cost, and excellent reliability will be important factors in the practical use of CMCs in the future.

  19. Fibrous monoliths: Economic ceramic matrix composites from powders [Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rigali, Mark; Sutaria, Manish; Mulligan, Anthony; Creegan, Peter; Cipriani, Ron

    1999-05-26

    The project was to develop and perform pilot-scale production of fibrous monolith composites. The principal focus of the program was to develop damage-tolerant, wear-resistant tooling for petroleum drilling applications and generate a basic mechanical properties database on fibrous monolith composites.

  20. Ceramics reinforced metal base composite coatings produced by CO II laser cladding

    Science.gov (United States)

    Yang, Xichen; Wang, Yu; Yang, Nan

    2008-03-01

    Due to the excellent performance in high strength, anti-temperature and anti-wear, ceramics reinforced metal base composite material was used in some important fields of aircraft, aerospace, automobile and defense. The traditional bulk metal base composite materials are the expensive cost, which is limited in its industrial application. Development of laser coating of ceramics reinforced metal base composite is very interesting in economy. This paper is focused on three laser cladding ceramics coatings of SiC particle /Al matrix , Al IIO 3 powder/ Al matrix and WC + Co/mild steel matrix. Powder particle sizes are of 10-60μm. Chemical contents of aluminum matrix are of 3.8-4.0% Cu, 1.2-1.8% Mg, 0.3-0.99% Mn and balance Al. 5KW CO II laser, 5 axes CNC table, JKF-6 type powder feeder and co-axis feeder nozzle are used in laser cladding. Microstructure and performance of laser composite coatings have been respectively examined with OM,SEM and X-ray diffraction. Its results are as follows : Microstructures of 3C-,6H- and 5H- SiC particles + Al + Al 4SiC 4 + Si in SiC/Al composite, hexagonal α-Al IIO 3 + cubic γ-Al IIO 3 + f.c.c Al in Al IIO 3 powder/ Al composite and original WC particles + separated WC particles + eutectic WC + γ-Co solid solution + W IIC particles in WC + Co/steel coatings are respectively recognized. New microstructures of 5H-SiC in SiC/Al composite, cubic γ-Al IIO 3 in Al IIO 3 composite and W IIC in WC + Co/ steel composite by laser cladding have been respectively observed.

  1. Ceramic composites with a ductile Ni{sub 3}Al binder phase

    Energy Technology Data Exchange (ETDEWEB)

    Tiegs, T.N.; Alexander, K.B.; Plucknett, K.P.; Menchhofer, P.A.; Becher, P.F.; Waters, S.B.

    1995-06-01

    Composites using B-doped ductile Ni{sub 3}Al alloys were produced with both non-oxide (WC, TiC) and oxide (Al{sub 2}0{sub 3}) ceramic powders. Typical powder processing techniques were used to fabricate materials with ceramic contents from 0-95 vol. %. The microstructural morphology of the composites depends primarily on the wetting behavior between the alloys and the ceramic powders. The non-oxide ceramic powders wet well and the Ni{sub 3}Al alloys form a semi-continuous intergranular phase. On the other hand, the Ni{sub 3}Al alloys do not wet the oxide powders well and tend to form discrete ``islands`` of the metallic phase. Wetting in these materials can be improved by the addition of non-oxide particles, such as TiC. Results on the mechanical properties showed ambient temperature flexural strength similar to other Ni-based hardmetals. In contrast to the WC-Co materials, the flexural strength is retained to temperatures of at least 800 C. The fracture toughness and hardness were found to be equal or higher than comparable Co-based hardmetal systems. Initial corrosion tests showed excellent resistance to acid solutions.

  2. The effect of composition, processing conditions, and irradiation, on lattice defects in spinel ceramics

    Science.gov (United States)

    Bazilevskaya, T. A.; Gritsyna, V. T.; Orlinski, D. V.; Udalova, L. V.; Voitsenya, A. V.

    1998-03-01

    The lattice defects in pure spinel ceramics MgO· nAl 2O 3 were investigated as to their dependence on composition, temperature, and time duration of calcination in the course of synthesizing spinel powder. Defects were studied by optical methods measuring absorption and photo-, thermo-, and X-ray-stimulated luminescence. The variation of ceramic composition 0.98≤ n≤1.02 leads to the formation of different absorption bands: at n1 the band is at 620 nm (2.0 eV) with Δ E=0.5 eV; and at n=1 ceramics are transparent. In luminescence spectra, prominent bands were observed at 253, 370, and 520 nm. Variation of temperature of calcination in the range of 1150-1220°C; duration of calcination of 0.5-2.0 h; and irradiation with X-rays, electrons, and neutrons cause changes in the relative intensities of the absorption and luminescence bands, which makes identifying the nature of lattice defects in spinel ceramics possible.

  3. The effect of composition, processing conditions, and irradiation, on lattice defects in spinel ceramics

    International Nuclear Information System (INIS)

    The lattice defects in pure spinel ceramics MgO.nAl2O3 were investigated as to their dependence on composition, temperature, and time duration of calcination in the course of synthesizing spinel powder. Defects were studied by optical methods measuring absorption and photo-, thermo-, and X-ray-stimulated luminescence. The variation of ceramic composition 0.98≤n≤1.02 leads to the formation of different absorption bands: at n1 the band is at 620 nm (2.0 eV) with ΔE=0.5 eV; and at n=1 ceramics are transparent. In luminescence spectra, prominent bands were observed at 253, 370, and 520 nm. Variation of temperature of calcination in the range of 1150-1220 C; duration of calcination of 0.5-2.0 h; and irradiation with X-rays, electrons, and neutrons cause changes in the relative intensities of the absorption and luminescence bands, which makes identifying the nature of lattice defects in spinel ceramics possible. (orig.)

  4. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin, E-mail: leeam@dlut.edu.cn

    2015-04-15

    Highlights: • Glass ceramic composite is prepared from oil shale fly ash and MSWI bottom ash. • A novel method for the production of glass ceramic composite is presented. • It provides simple route and lower energy consumption in terms of recycling waste. • The vitrified slag can promote the sintering densification process of glass ceramic. • The performances of products decrease with the increase of oil shale fly ash content. - Abstract: Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2 h) showed the properties of density of 1.92 ± 0.05 g/cm{sup 3}, weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced

  5. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite

    International Nuclear Information System (INIS)

    Highlights: • Glass ceramic composite is prepared from oil shale fly ash and MSWI bottom ash. • A novel method for the production of glass ceramic composite is presented. • It provides simple route and lower energy consumption in terms of recycling waste. • The vitrified slag can promote the sintering densification process of glass ceramic. • The performances of products decrease with the increase of oil shale fly ash content. - Abstract: Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2 h) showed the properties of density of 1.92 ± 0.05 g/cm3, weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced compared

  6. Effect of Load Rate on Ultimate Tensile Strength of Ceramic Matrix Composites at Elevated Temperatures

    Science.gov (United States)

    Choi, Sung R.; Gyekenyesi, John P.

    2001-01-01

    The strengths of three continuous fiber-reinforced ceramic composites, including SiC/CAS-II, SiC/MAS-5 and SiC/SiC, were determined as a function of test rate in air at 1100 to 1200 C. All three composite materials exhibited a strong dependency of strength on test rate, similar to the behavior observed in many advanced monolithic ceramics at elevated temperatures. The application of the preloading technique as well as the prediction of life from one loading configuration (constant stress-rate) to another (constant stress loading) suggested that the overall macroscopic failure mechanism of the composites would be the one governed by a power-law type of damage evolution/accumulation, analogous to slow crack growth commonly observed in advanced monolithic ceramics. It was further found that constant stress-rate testing could be used as an alternative to life prediction test methodology even for composite materials, at least for short range of lifetimes and when ultimate strength is used as the failure criterion.

  7. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    Science.gov (United States)

    Cox, Sarah B.; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200C, beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.

  8. Oxidation resistance and mechanical properties of HfC nanowire-toughened ultra-high temperature ceramic coating for SiC-coated C/C composites

    Science.gov (United States)

    Ren, Jincui; Zhang, Yulei; Hu, Heng; Fei, Tian; Li, Hejun

    2016-01-01

    To improve the oxidation resistance of carbon/carbon (C/C) composites, a dense HfC nanowire-toughened ultra-high temperature ceramic multiphase coating was prepared on SiC-coated C/C composites by chemical vapor deposition (CVD) and pack cementation. The microstructure, mechanical and oxidation resistance properties of the coating were investigated. The results show that the HfC nanowires in the coating could suppress the cracking of the coating and then improve the toughness of the coating. The flexural property, thermal shock and isothermal oxidation resistance of the coating were all improved due to the incorporation of HfC nanowires.

  9. 陶瓷改性复合绝缘子材料的力学性能研究%Mechanical Properties of Composite Insulator Materials Modified by Ceramic

    Institute of Scientific and Technical Information of China (English)

    易春芳; 梁培松; 梁英; 刘云鹏

    2015-01-01

    In order to solve the treatment problem of a large number of retired ceramic insulator porcelain body every year, combining the advantages and chemical composition of ceramic insulators, we prepared a ceramic-modified composite insulator material using the powder of waste ceramic insulator porcelain body to modify silicone rubber. The effects of ceramic powder addition amount on the mechani-cal properties of the silicone rubber were studied by testing the tensile strength, tear strength, and hardness of the modified silicone rubber and SEM and Fourier transform infrared spectroscopy analysis. The results show that a proportion of the ceramic powder can replace part of aluminum hydroxide powder and fumed silica powder, and it can improve the mechanical properties of the silicone rubber significantly.%为解决每年大量退运陶瓷绝缘子的瓷体处理问题,结合陶瓷绝缘子的优点及其化学成分,利用废旧陶瓷绝缘子瓷体研磨成粉末后改性硅橡胶而制得陶瓷改性复合绝缘子材料,通过测试改性硅橡胶的拉伸强度、撕裂强度和硬度,并利用SEM电镜扫描及红外光谱进行分析,对比研究了陶瓷粉添加量对硅橡胶力学性能的影响。结果表明:一定比例的陶瓷粉可以替代部分氢氧化铝微粉和气相法白炭黑,且对硅橡胶的力学性能有明显的改善。

  10. Mechanical Behaviors of ZrO2-Al2O3 Ceramic Composites with Y2O3 as Stabilizer

    Institute of Scientific and Technical Information of China (English)

    Qiu Tai; Wang Yuchun; Shen Chun

    2005-01-01

    The ZrO2-Al2O3 ceramic composites were prepared by appropriate techniques with commercial ZrO2 and Al2O3 powders as raw materials and Y2O3 as stabilizer. The results indicate that with the introduction of Al2O3 into the ZrO2 matrix where the quantity of additive Y2O3 is 3.5% (mole fraction), the growth of ZrO2 grains is efficiently inhibited, which helps the ZrO2 grains exist in a metastable tetragonal manner; thus higher strength and toughness are acquired. When the content of alumina is 20% (mass fraction), the bending strength and fracture toughness of the composites are 676.7 MPa and 10 MPa·m1/2 respectively, the mechanical behaviors are close to those prepared with ZrO2 and Al2O3 powders synthesized through wet chemical approach. The mechanical behaviors of the composites are well improved owing to the dispersion toughening of alumina grains and phase transformation toughening of zirconia grains.

  11. Effect of ceramic thickness and composite bases on stress distribution of inlays--a finite element analysis.

    Science.gov (United States)

    Durand, Letícia Brandão; Guimarães, Jackeline Coutinho; Monteiro Junior, Sylvio; Baratieri, Luiz Narciso

    2015-01-01

    The purpose of this study was to determine the effect of cavity depth, ceramic thickness, and resin bases with different elastic modulus on von Mises stress patterns of ceramic inlays. Tridimensional geometric models were developed with SolidWorks image software. The differences between the models were: depth of pulpal wall, ceramic thickness, and presence of composite bases with different thickness and elastic modulus. The geometric models were constrained at the proximal surfaces and base of maxillary bone. A load of 100 N was applied. The stress distribution pattern was analyzed with von Mises stress diagrams. The maximum von Mises stress values ranged from 176 MPa to 263 MPa and varied among the 3D-models. The highest von Mises stress value was found on models with 1-mm-thick composite resin base and 1-mm-thick ceramic inlay. Intermediate values (249-250 MPa) occurred on models with 2-mm-thick composite resin base and 1-mm-thick ceramic inlay and 1-mm-thick composite resin base and 2-mm-thick ceramic inlay. The lowest values were observed on models restored exclusively with ceramic inlay (176 MPa to 182 MPa). It was found that thicker inlays distribute stress more favorably and bases with low elastic modulus increase stress concentrations on the internal surface of the ceramic inlay. The increase of ceramic thickness tends to present more favorable stress distribution, especially when bonded directly onto the cavity without the use of supporting materials. When the use of a composite base is required, composite resin with high elastic modulus and reduced thickness should be preferred. PMID:25831105

  12. Effect of ceramic thickness and composite bases on stress distribution of inlays--a finite element analysis.

    Science.gov (United States)

    Durand, Letícia Brandão; Guimarães, Jackeline Coutinho; Monteiro Junior, Sylvio; Baratieri, Luiz Narciso

    2015-01-01

    The purpose of this study was to determine the effect of cavity depth, ceramic thickness, and resin bases with different elastic modulus on von Mises stress patterns of ceramic inlays. Tridimensional geometric models were developed with SolidWorks image software. The differences between the models were: depth of pulpal wall, ceramic thickness, and presence of composite bases with different thickness and elastic modulus. The geometric models were constrained at the proximal surfaces and base of maxillary bone. A load of 100 N was applied. The stress distribution pattern was analyzed with von Mises stress diagrams. The maximum von Mises stress values ranged from 176 MPa to 263 MPa and varied among the 3D-models. The highest von Mises stress value was found on models with 1-mm-thick composite resin base and 1-mm-thick ceramic inlay. Intermediate values (249-250 MPa) occurred on models with 2-mm-thick composite resin base and 1-mm-thick ceramic inlay and 1-mm-thick composite resin base and 2-mm-thick ceramic inlay. The lowest values were observed on models restored exclusively with ceramic inlay (176 MPa to 182 MPa). It was found that thicker inlays distribute stress more favorably and bases with low elastic modulus increase stress concentrations on the internal surface of the ceramic inlay. The increase of ceramic thickness tends to present more favorable stress distribution, especially when bonded directly onto the cavity without the use of supporting materials. When the use of a composite base is required, composite resin with high elastic modulus and reduced thickness should be preferred.

  13. Preparation and characterization of PVC /ENR/CNTs Nano composites

    International Nuclear Information System (INIS)

    Poly (vinyl chloride), PVC/ epoxidized natural rubber blend, ENR/ carbon nano tubes, CNTs were prepared by using melt and solution blending methods. Addition of 2 phr of CNTs found to cause a drop in the tensile strength, Ts of the 50/ 50 PVC/ ENR blend. The nano composites prepared by the melt blending method exhibited higher values of Ts compared to the nano composites prepared by solution blending. Melt blending found to be an efficient method to prepare PVC/ ENR/ CNTs nano composites. (author)

  14. Approach to microstructure-behavior relationships for ceramic matrix composites reinforced by continuous fibers

    OpenAIRE

    Lamon Jacques

    2015-01-01

    Ceramic matrix composites (CMCs) reinforced with continuous fibers exhibit several features that differentiate them from homogeneous unreinforced materials. The microstructure consists of various distinct constituents: fibres, matrix, and fiber/matrix interfaces or interphases. Several entities at micro- and mesoscopic length scales can be defined depending on fiber arrangement. Furthermore, the CMCs contain flaw populations that govern matrix cracking and fiber failures. The paper describes ...

  15. Structure and Composition of Ba-W-Ti-O Ceramics Interface Regions Formed at Ultrasonic Vibration

    OpenAIRE

    Karban, O.; O. Kanunnikova; Khazanov, E.; E. Salamatov; Khasanov, O.; A. Taranov

    2012-01-01

    The study of Ba-W-Ti-O ceramics has shown that the structure and composition of their interface regions differ from those in the grain bulk owing to the diffusion of tungsten atoms to the grain surface during sintering. They are determined by the conditions of compacting of dry nanopowders (compaction pressure and power of ultrasonic action) and vary in a nonmonotonic way. Increasing the pressure during dry static compacting and exposure to ultrasound result in the formation of a complex stru...

  16. Preparation of Mordenite Composite Membranes with Seeding

    Institute of Scientific and Technical Information of China (English)

    Su Xiaohui; Li Gang; Lin Ruisen; Kikuchi Eiichi; Matsukata Masahiko

    2006-01-01

    Mordenite composite membranes were prepared by means of coating a porous α-alumina support with nanosized mordenite seeds followed by hydrothermal crystallization.A systematic investigation was performed on the influence of several factors such as ageing of the reaction mixture,alkalinity,salt addition and temperature on the formation of a mordenite membrane on the seeded support.The ageing of the reaction mixture reduces the growth rate of mordenite crystal along a-axis and b-axis but hardly influences the growth rate along c-axis.As a result,the boundaries between the surface crystals become a little larger with prolonging the period of ageing time.The growth rate of the mordenite crystal along individual axes increases first and then decreases with increasing concentration of sodium hydroxide.A higher alkalinity is unfavorable for the formation of a continuous mordenite membrane.The addition of salt in the reaction mixture has different effect on the growth rate of the mordenite crystal along each axis.With increasing the amount of salt,there was hardly influence on the growth rate along c-axis,whereas an obvious decline was observed in the growth rate along either a-axis or b-axis,which enlarges the boundaries between the surface crystals.The growth rate of the mordenite crystal increases more along c-axis than that along a-axis or b-axis with increasing temperature for hydrothermal crystallization.The use of a temperature as high as 473 K produces a membrane composed of bar-like crystals with larger boundaries.

  17. αTCP ceramic doped with dicalcium silicate for bone regeneration applications prepared by powder metallurgy method: in vitro and in vivo studies.

    Science.gov (United States)

    Velasquez, Pablo; Luklinska, Zofia B; Meseguer-Olmo, Luis; Mate-Sanchez de Val, Jose E; Delgado-Ruiz, Rafael A; Calvo-Guirado, Jose L; Ramirez-Fernandez, Ma P; de Aza, Piedad N

    2013-07-01

    This study reports on the in vitro and in vivo behavior of α-tricalcium phosphate (αTCP) and also αTCP doped with either 1.5 or 3.0 wt % of dicalcium silicate (C2 S). The ceramics were successfully prepared by powder metallurgy method combined with homogenization and heat treatment procedures. All materials were composed of a single-phase, αTCP in the case of a pure material, or solid solution of C2 S in αTCP for the doped αTCP, which were stable at room temperature. The ceramics were tested for bioactivity in simulated body fluid, cell culture medium containing adult mesenchymal stem cells of human origin, and in animals. Analytical scanning electron microscopy combined with chemical elemental analysis was used and Fourier transform infrared and conventional histology methods. The in vivo behavior of the ceramics matched the in vitro results, independently of the C2 S content in αTCP. Carbonated hydroxyapatite (CHA) layer was formed on the surface and within the inner parts of the specimens in all cases. A fully mineralized new bone growing in direct contact with the implants was found under the in vivo conditions. The bioactivity and biocompatibility of the implants increased with the C2 S content in αTCP. The C2 S doped ceramics also favoured a phase transformation of αTCP into CHA, important for full implant integration during the natural bone healing processes. αTCP ceramic doped with 3.0 wt % C2 S showed the best bioactive in vitro and in vivo properties of all the compositions and hence could be of interest in specific applications for bone restorative purposes.

  18. Review on preparation techniques of particle reinforced metal matrix composites

    Directory of Open Access Journals (Sweden)

    HAO Bin

    2006-02-01

    Full Text Available This paper reviews the investigation status of the techniques for preparation of metal matrix composites and the research outcomes achieved recently. The mechanisms, characteristics, application ranges and levels of development of these preparation techniques are analyzed. The advantages and the disadvantages of each technique are synthetically evaluated. Lastly, the future directions of research and the prospects for the preparation techniques of metal matrix composites are forecasted.

  19. The Increasing of Bentonite Quality as a Composite of B-3 Waste CeramicSolidification Process

    International Nuclear Information System (INIS)

    The ceramic composite from local material of bentonite Nanggulan wascarried out. The material were grinded, sieved to get through 100 mesh,rinsed with aquadest, dried at the temperature of 60 oC and putted in theexecutor, then were calcinate (physical activated) at 300 oC and chemicalactivated with NaCl 1.0 to 5.0 M. The activated bentonite were contacted withlead concentration of 150 to 500 ppm and then were dried at 60 oC.Bentonite-Pb which obtained was made to pellet by adding weak cullet withcomposition variation of bentonite-Pb to cullet = 20:80, 25:75, 30:70, 35:65,and 40:60%, and ignited on furnace at the the temperature of 850 oC, 900oC, and 1000 oC for composite ceramic production. The chemical compositionand mineral test for original local material and ceramic composite ofoptimization result were done by using AAS and X-ray diffraction, whereas theleaching test, pressure and porosity test were done only for ceramiccomposite. The experiment results were reported in this paper. (author)

  20. ON THE EFFECT OF NANO-PARTICLE CLUSTERING ON TOUGHENING OF NANO-COMPOSITE CERAMICS

    Institute of Scientific and Technical Information of China (English)

    董照旭; 方岱宁; 苏爱嘉

    2002-01-01

    In this paper, two and three-dimensional clustering models are developed to characterize the effect of nano-particle clustering on toughening of nanocomposite ceramics. It is found that crack pinning toughens the nano-composite ceramics because a higher stress intensity factor is needed for crack to propagate around or to pull-out the nano-particle. The nano-particle along the grain boundary steers the crack into the matrix grain due to the strong cohesion between the nanoparticle and the matrix. Since the fracture resistance of the grain boundary is lower than that of the grain lattice, the higher the probability of transgranular fracture induced by nano-particles, the tougher is the nano-composite. However, both crack pinning and transgranular fracture are affected by nano-particle clustering. Nanoparticle clustering, which increases with increasing volume fraction of nano-particles,leads to reduction of both the strength and toughness of the nano-composite ceramics. The larger the size of the clustered particle, and the more defects it contains, the easier it is for the crack to pass through the clustered particle, which means that the nano-particle clustering can reduce toughening induced by crack pinning and transgranular fracture. The theoretical prediction, based on the combination of the three mechanisms of nano-particles, is in agreement with the experimental data.

  1. Evaluation of a Variable-Impedance Ceramic Matrix Composite Acoustic Liner

    Science.gov (United States)

    Jones, M. G.; Watson, W. R.; Nark, D. M.; Howerton, B. M.

    2014-01-01

    As a result of significant progress in the reduction of fan and jet noise, there is growing concern regarding core noise. One method for achieving core noise reduction is via the use of acoustic liners. However, these liners must be constructed with materials suitable for high temperature environments and should be designed for optimum absorption of the broadband core noise spectrum. This paper presents results of tests conducted in the NASA Langley Liner Technology Facility to evaluate a variable-impedance ceramic matrix composite acoustic liner that offers the potential to achieve each of these goals. One concern is the porosity of the ceramic matrix composite material, and whether this might affect the predictability of liners constructed with this material. Comparisons between two variable-depth liners, one constructed with ceramic matrix composite material and the other constructed via stereolithography, are used to demonstrate this material porosity is not a concern. Also, some interesting observations are noted regarding the orientation of variable-depth liners. Finally, two propagation codes are validated via comparisons of predicted and measured acoustic pressure profiles for a variable-depth liner.

  2. 利用工业废料研制再生陶瓷初探%FUNDAMENTAL RESEARCH ON THE PREPARATION OF RECYCLING CERAMICS USING INDUSTRIAL WASTE

    Institute of Scientific and Technical Information of China (English)

    Nagae Hajime; Suzuki Kazuo; Sugiyama Toyohiko

    2005-01-01

    A technology for recycling industrial wastes as ceramic raw materials was studied for the purpose of attaining closed material circulation and a state of sustainable development. In this report, a development of recycling ceramics, including powder preparation, body preparation, forming, and firing technology, is described. A lowering of firing temperature and a decreasing of firing duration of the ceramics were also studied with the aim of protecting the environment and energy-saving.Many kinds of sintered composites were prepared from powders of industrial wastes, such as ceramic wastes, refuse glass, burned ash, waste clay, Sekidei (waste from alumina production), and coal ash. Physical properties of the sintered bodies were measured to investigate the adequate firing temperature for each composite. An addition of refuse glass to the composite was extremely effective in lowering the firing temperature. One of the practical ceramic bodies obtained in this study is a composite of 80-20% fine powder of ceramic waste, 20-80 % burned waste, and 30% refuse glass. The composite could be formed by dry pressing. After firing at 1100 degrees centigrade, the water absorption and bulk density of the composite were 9.9% and 2.52g/cm3, respectively. Fast firing was applicable to the composite.%为了材料的充分循环,实现可持续发展,研究人员对回收工业废料用做陶瓷原料的技术进行了探索.本文阐述了再生陶瓷的研发状况,介绍了其粉体制备、坯料、配方、成型和烧成工艺,同时还针对节能环保的要求,研究了降低烧成温度和缩短烧成周期的策略.回收废瓷粉、废玻璃粉、燃烧灰烬、废粘土、废赤泥(氧化铝工业废料)和粉煤灰等工业废渣,配成多种陶瓷坯料,并测试了各种坯料配方的物理特性,确定了每种配方的烧成温度.配方中添加废玻璃可以有效地降低烧成温度.研制出的一种再生陶瓷的可行性坯料配方是:80-20%废瓷粉,20

  3. Preparation and Properties of Graphene Straw Retardant Composites

    Directory of Open Access Journals (Sweden)

    Xiao Li-guang

    2016-01-01

    Full Text Available This article was prepared by spin-coating the evaporation process graphene oxide having a shell core structure GO/straw flame retardant composite materials, through the oxygen index apparatus and SEM measured the relationship between the flame retardant properties and the morphological structure of the flame retardant composite material, the experiment preparation process is simple, environmentally friendly non-toxic, and the resulting GO/straw flame retardant composite material having a high fire retardant properties.

  4. Noble Metal/Ceramic Composites in Flame Processes

    DEFF Research Database (Denmark)

    Schultz, Heiko; Madler, Lutz; Strobel, Reto;

    conditions influence the resulting noble metal particles size in those systems [1]. For every specific application the particle size and the metal/metal oxide interaction affect the performance of these nano-composite materials [2]. Recently, aerosol processes have been successfully used to produce platinum...

  5. Investigation of TaC–TaB2 ceramic composites

    Indian Academy of Sciences (India)

    Behzad Mehdikhani; Gholam Hossein Borhani; Saeed Reza Bakhshi; Hamid Reza Baharvandi

    2016-02-01

    The TaC–TaB2 composition was sintered by spark plasma (SPS) at 1900–2100°C and applied pressure of 30 MPa. TaC and 2–3 wt% B4C were used as starting powders. Densification process, phase evolution, microstructure and the mechanical properties of the composites were investigated. The results indicated that the TaC–TaB2 composition could be SPS to 97% of theoretical density in 10 min at 2100°C. Addition of B4C leads to an increase in the density sample from 76 to 97%. B4C nano-powder resists grain growth even at high temperature 2100°C. The formation of TaB2/carbon at TaC grain boundaries helps in pinning the grain boundary and inhibiting grain growth. The phase formation was associated with carbon and boron diffusion from the starting particles B4C to form TaB2 phases. TaC grain sizes decreased with increase in B4C concentration. Samples with 2.0 wt% B4C composition had highest flexure strength up to 520 MPa. The effect of B4C addition on hardness measured by microhardness has been studied. Hardness of samples containing 3.0 wt% B4C was 16.99 GPa.

  6. Synthesis of steel slag ceramics:chemical composition and crystalline phases of raw materials

    Institute of Scientific and Technical Information of China (English)

    Li-hua Zhao; Wei Wei; Hao Bai; Xu Zhang; Da-qiang Cang

    2015-01-01

    Two types of porcelain tiles with steel slag as the main raw material (steel slag ceramics) were synthesized based on the CaO–Al2O3–SiO2 and CaO–MgO–SiO2 systems, and their bending strengths up to 53.47 MPa and 99.84 MPa, respectively, were obtained. The presence of anorthite,α-quartz, magnetite, and pyroxene crystals (augite and diopside) in the steel slag ceramics were very different from the composition of traditional ceramics. X-ray diffraction (XRD) and electron probe X-ray microanalysis (EPMA) results illustrated that the addition of steel slag reduced the temperature of extensive liquid generation and further decreased the firing temperature. The considerable contents of glass-modifying oxide liquids with rather low viscosities at high temperature in the steel slag ceramic adobes promoted element diffusion and crystallization. The results of this study demonstrated a new approach for extensive and effective recycling of steel slag.

  7. Polyphase ceramic for consolidating nuclear waste compositions with high Zr-Cd-Na content

    International Nuclear Information System (INIS)

    The development of dense polyphase tailored ceramic forms for the immobilization of high-level nuclear wastes has been extended to an Idaho Chemical Processing Plant Fluorinel composition. The ceramic was designed to maximize waste loading and subsequent waste volume reduction without sacrificing chemical durability in aqueous environments. The ceramic, fabricated by hot isostatic pressing, consists of four main crystalline phases, calcium fluoride, zirconia, an apatite-structured solid-solution phase, and sphene. The form also contains a designed borosilicate glass phase, a Ni-Cd alloy, and a minor amount of crystalline zircon. The crystalline apatite solid-solution phase is the major host for incorporating the actinide simulants U, Ce, and Y, while the glass phase contains Cs and Sr. The calcium fluoride and sphene phases provide microstructural isolation of the radionuclide-containing phases. Since the glass and crystalline components of the ceramic are not phase compatible at all temperatures, the exact phase content is determined by the tailoring additives, consolidation temperature, and oxidation state control during processing

  8. Removal of phosphorus by the core-shell bio-ceramic/Zn-layered double hydroxides (LDHs) composites for municipal wastewater treatment in constructed rapid infiltration system.

    Science.gov (United States)

    Zhang, Xiangling; Guo, Lu; Huang, Hualing; Jiang, Yinghe; Li, Meng; Leng, Yujie

    2016-06-01

    Constructed rapid infiltration systems (CRIS) are a reasonable option for treating wastewater, owing to their simplicity, low cost and low energy consumption. Layered double hydroxides (LDHs), novel materials with high surface area and anion exchange capacity, faced the problem of the application in CRIS due to the powdered form. To overcome this shortcoming, Zn-LDHs (FeZn-LDHs, CoZn-LDHs, AlZn-LDHs) were prepared by co-precipitation method and in-situ coated on the surface of the natural bio-ceramic to synthesize the core-shell bio-ceramic/Zn-LDHs composites. Characterization by Scanning Electron Microscope (SEM) and X-ray Fluorescence Spectrometer (XRFS) indicated that the Zn-LDHs were successful loaded on the natural bio-ceramic. Column tests experiments indicated that the bio-ceramic/Zn-LDHs efficiently enhanced the removal performance of phosphorus. The efficiently removal rates of bio-ceramic/FeZn-LDHs were 71.58% for total phosphorous (TP), 74.91% for total dissolved phosphorous (TDP), 82.31% for soluble reactive phosphorous (SRP) and 67.58% for particulate phosphorus (PP). Compared with the natural bio-ceramic, the average removal rates were enhanced by 32.20% (TP), 41.33% (TDP), 49.06% (SRP) and 10.50% (PP), respectively. Adsorption data of phosphate were better described by the Freundlich model for the bio-ceramic/Zn-LDHs and natural bio-ceramic, except for the bio-ceramic/CoZn-LDHs. The maximum adsorption capacity of bio-ceramic/AlZn-LDHs (769.23 mg/kg) was 1.77 times of the natural bio-ceramic (434.78 mg/kg). The effective desorption of phosphate could achieve by using a mixed solution of 5 M NaCl + 0.1 M NaOH, it outperformed the natural bio-ceramic of 18.95% for FeZn-LDHs, 7.59% for CoZn-LDHs and 12.66% for AlZn-LDHs. The kinetic data of the bio-ceramic/Zn-LDHs were better described by the pseudo-second-order equation. Compared the removal amount of phosphate by the natural bio-ceramic, the physical effects were improved little, but the chemical

  9. Removal of phosphorus by the core-shell bio-ceramic/Zn-layered double hydroxides (LDHs) composites for municipal wastewater treatment in constructed rapid infiltration system.

    Science.gov (United States)

    Zhang, Xiangling; Guo, Lu; Huang, Hualing; Jiang, Yinghe; Li, Meng; Leng, Yujie

    2016-06-01

    Constructed rapid infiltration systems (CRIS) are a reasonable option for treating wastewater, owing to their simplicity, low cost and low energy consumption. Layered double hydroxides (LDHs), novel materials with high surface area and anion exchange capacity, faced the problem of the application in CRIS due to the powdered form. To overcome this shortcoming, Zn-LDHs (FeZn-LDHs, CoZn-LDHs, AlZn-LDHs) were prepared by co-precipitation method and in-situ coated on the surface of the natural bio-ceramic to synthesize the core-shell bio-ceramic/Zn-LDHs composites. Characterization by Scanning Electron Microscope (SEM) and X-ray Fluorescence Spectrometer (XRFS) indicated that the Zn-LDHs were successful loaded on the natural bio-ceramic. Column tests experiments indicated that the bio-ceramic/Zn-LDHs efficiently enhanced the removal performance of phosphorus. The efficiently removal rates of bio-ceramic/FeZn-LDHs were 71.58% for total phosphorous (TP), 74.91% for total dissolved phosphorous (TDP), 82.31% for soluble reactive phosphorous (SRP) and 67.58% for particulate phosphorus (PP). Compared with the natural bio-ceramic, the average removal rates were enhanced by 32.20% (TP), 41.33% (TDP), 49.06% (SRP) and 10.50% (PP), respectively. Adsorption data of phosphate were better described by the Freundlich model for the bio-ceramic/Zn-LDHs and natural bio-ceramic, except for the bio-ceramic/CoZn-LDHs. The maximum adsorption capacity of bio-ceramic/AlZn-LDHs (769.23 mg/kg) was 1.77 times of the natural bio-ceramic (434.78 mg/kg). The effective desorption of phosphate could achieve by using a mixed solution of 5 M NaCl + 0.1 M NaOH, it outperformed the natural bio-ceramic of 18.95% for FeZn-LDHs, 7.59% for CoZn-LDHs and 12.66% for AlZn-LDHs. The kinetic data of the bio-ceramic/Zn-LDHs were better described by the pseudo-second-order equation. Compared the removal amount of phosphate by the natural bio-ceramic, the physical effects were improved little, but the chemical

  10. Rugometric and microtopographic non-invasive inspection in dental-resin composites and zirconia ceramics

    Science.gov (United States)

    Fernández-Oliveras, Alicia; Costa, Manuel F. M.; Pecho, Oscar E.; Rubiño, Manuel; Pérez, María. M.

    2013-11-01

    Surface properties are essential for a complete characterization of biomaterials. In restorative dentistry, the study of the surface properties of materials meant to replace dental tissues in an irreversibly diseased tooth is important to avoid harmful changes in future treatments. We have experimentally analyzed the surface characterization parameters of two different types of dental-resin composites and pre-sintered and sintered zirconia ceramics. We studied two shades of both composite types and two sintered zirconia ceramics: colored and uncolored. Moreover, a surface treatment was applied to one specimen of each dental-resin. All the samples were submitted to rugometric and microtopographic non-invasive inspection with the MICROTOP.06.MFC laser microtopographer in order to gather meaningful statistical parameters such as the average roughness (Ra), the root-mean-square deviation (Rq), the skewness (Rsk), and the kurtosis of the surface height distribution (Rku). For a comparison of the different biomaterials, the uncertainties associated to the surface parameters were also determined. With respect to Ra and Rq, significant differences between the composite shades were found. Among the dental resins, the nanocomposite presented the highest values and, for the zirconia ceramics, the pre-sintered sample registered the lowest ones. The composite performance may have been due to cluster-formation variations. Except for the composites with the surface treatment, the sample surfaces had approximately a normal distribution of heights. The surface treatment applied to the composites increased the average roughness and moved the height distribution farther away from the normal distribution. The zirconia-sintering process resulted in higher average roughness without affecting the height distribution.

  11. Incorporation of zinc for fabrication of low-cost spinel-based composite ceramic membrane support to achieve its stabilization.

    Science.gov (United States)

    Li, Lingling; Dong, Xinfa; Dong, Yingchao; Zhu, Li; You, Sheng-Jie; Wang, Ya-Fen

    2015-04-28

    In order to reduce environment risk of zinc, a spinel-based porous membrane support was prepared by the high-temperature reaction of zinc and bauxite mineral. The phase evolution process, shrinkage, porosity, mechanical property, pore size distribution, gas permeation flux and microstructure were systematically studied. The XRD results, based on a Zn/Al stoichiometric composition of 1/2, show a formation of ZnAl2O4 structure starting from 1000°C and then accomplished at 1300°C. For spinel-based composite membrane, shrinkage and porosity are mainly influenced by a combination of an expansion induced by ZnAl2O4 formation and a general densification due to amorphous liquid SiO2. The highest porosity, as high as 44%, is observed in ZnAl4 membrane support among all the investigated compositions. Compared with pure bauxite (Al), ZnAl4 composite membrane support is reinforced by ZnAl2O4 phase and inter-locked mullite crystals, which is proved by the empirical strength-porosity relationships. Also, an increase in average pore diameter and gas flux can be observed in ZnAl4. A prolonged leaching experiment reveals the zinc can be successfully incorporated into ceramic membrane support via formation of ZnAl2O4, which has substantially better resistance toward acidic attack. PMID:25655422

  12. Glass and Glass-Ceramic Materials from Simulated Composition of Lunar and Martian Soils: Selected Properties and Potential Applications

    Science.gov (United States)

    Ray, C. S.; Sen, S.; Reis, S. T.; Kim, C. W.

    2005-01-01

    In-situ resource processing and utilization on planetary bodies is an important and integral part of NASA's space exploration program. Within this scope and context, our general effort is primarily aimed at developing glass and glass-ceramic type materials using lunar and martian soils, and exploring various applications of these materials for planetary surface operations. Our preliminary work to date have demonstrated that glasses can be successfully prepared from melts of the simulated composition of both lunar and martian soils, and the melts have a viscosity-temperature window appropriate for drawing continuous glass fibers. The glasses are shown to have the potential for immobilizing certain types of nuclear wastes without deteriorating their chemical durability and thermal stability. This has a direct impact on successfully and economically disposing nuclear waste generated from a nuclear power plant on a planetary surface. In addition, these materials display characteristics that can be manipulated using appropriate processing protocols to develop glassy or glass-ceramic magnets. Also discussed in this presentation are other potential applications along with a few selected thermal, chemical, and structural properties as evaluated up to this time for these materials.

  13. Process engineering of ceramic composite coatings for fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Li, G.; Kim, H.; Chen, M.; Yang, Q.; Troczynski, T. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Metals and Materials Engineering

    2003-07-01

    Researchers at UBCeram at the Department of Metals and Materials Engineering at the University of British Columbia have developed a technology to chemically bond composite sol-gel (CB-CSG) coating onto metallic surfaces of complex or concave shapes. The process has been optimized for electrically resistive coatings and corrosion-resistant coatings. The CSG is sprayed onto metallic surfaces and is heat-treated at 300 degrees C to partially dehydrate the hydroxides. The CSG film is then chemically bonded through reaction of active alumina with metal phosphates, such as aluminium phosphate. A new chromate-free process is being developed to address the issue of coatings porosity. The electrodeposition technique involves polymer particles mixed with suspended fine alumina particles which are co-deposited by electrophoretic means or by electrocoagulation. The composite e-coatings have excellent mechanical properties and are being considered as a protective coating for various components of fuel cell systems. 9 refs., 7 figs.

  14. Nanoporous Polymer-Ceramic Composite Electrolytes for Lithium Metal Batteries

    KAUST Repository

    Tu, Zhengyuan

    2013-09-16

    A nanoporous composite material that offers the unique combination of high room-temperature ionic conductivity and high mechanical modulus is reported. When used as the separator/electrolyte in lithium batteries employing metallic lithium as anode, the material displays unprecedented cycling stability and excellent ability to prevent premature cell failure by dendrite-induced short circuits © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Structures Formation on the Y-TZP-AI2O3 Ceramic Composites Surface

    Science.gov (United States)

    Kulkov, Sergei; Sevostyanova, Irina; Sablina, Tatiana; Buyakova, Svetlana; Pshenichnyy, Artem; Savchenko, Nickolai

    2016-07-01

    The paper discusses the structure of Y-TZP-Al2O3 ceramics produced from nanopowders and friction surface, wear resistance, friction coefficient of Y-TZP-AEO3 composites rubbed against a steel disk counterface at a pressure of 5 MPa in a range of sliding speeds from 0.2 to 47 m/s. Analysis by X-ray diffraction, scanning electron microscopy showed that the high wear resistance of Y-TZP-Al2O3 composites at high sliding speeds is due to high-temperature phase transitions and protective film formation on the friction surface.

  16. Characterization of Green-Emitting Translucent Zinc Oxide Ceramics Prepared Via Spark Plasma Sintering

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Mei [University of California; DeVito, David M [ORNL; Howe, Jane Y [ORNL; Yang, Xiaocheng [West Virginia University; Giles, Nancy C. [Air Force Institute of Technology; Neal, John S [ORNL; Munir, Zuhair [University of California

    2011-01-01

    Translucent, green-emitting zinc oxide (ZnO) bodies, 19 mm in diameter and 0.72 mm in thickness, have been prepared via spark plasma sintering method. The consolidation of ZnO powders was investigated over the temperature range of 550-1050 C and the pressure range of 55-530 MPa. Samples sintered at temperatures >850 C and pressures of {approx}120 MPa were translucent and had densities of {approx}100%. Samples sintered at 950 C and 130 MPa showed a higher maximum transmittance than the samples sintered at higher or lower temperatures or pressures, with an excellent in-line transmission of 70% in the IR region around 2330 nm. The dense ZnO ceramics exhibited a strong green emission and a weak ultraviolet emission, and the relative intensity of the green emission increased with increasing sintering temperature.

  17. PROCESSING AND CHARACTERIZATION OF TUBULAR CERAMIC SUPPORT FOR MICROFILTRATION MEMBRANE PREPARED FROM PYROPHYLLITE CLAY

    Directory of Open Access Journals (Sweden)

    Abedallah Talidi

    2011-09-01

    Full Text Available Tubular macroporous support for ceramic microfiltration membranes were prepared by extrusion followed by sintering of the low cost pyrophyllite clay. Clay powders mixed with some organic additives can be extruded to form a porous tubular support. The average pore size of the membrane is observed to increase from 5 µm to 10.8 µm when sintering temperature increase from 900 °C to 1200 °C. However, with the increase in temperature from 900 °C to 1200 °C, the support porosity is reduced from 47% to 30% and flexural strength is increased from 4 MPa to 17 MPa. The fabricated macro-porous supports are expected to have potential applications in the pre-treatment and also can be used like support for membranes of ultra-filtration.

  18. Characterization of Three-Dimensional Printed Composite Scaffolds Prepared with Different Fabrication Methods

    Directory of Open Access Journals (Sweden)

    Szlązak K.

    2016-06-01

    Full Text Available An optimal method for composites preparation as an input to rapid prototyping fabrication of scaffolds with potential application in osteochondral tissue engineering is still needed. Scaffolds in tissue engineering applications play a role of constructs providing appropriate mechanical support with defined porosity to assist regeneration of tissue. The aim of the presented study was to analyze the influence of composite fabrication methods on scaffolds mechanical properties. The evaluation was performed on polycaprolactone (PCL with 5 wt% beta-tricalcium phosphate (TCP scaffolds fabricated using fused deposition modeling (FDM. Three different methods of PCL-TCP composite preparation: solution casting, particles milling, extrusion and injection were used to provide material for scaffold fabrication. The obtained scaffolds were investigated by means of scanning electron microscope, x-ray micro computed tomography, thermal gravimetric analysis and static material testing machine. All of the scaffolds had the same geometry (cylinder, 4×6 mm and fiber orientation (0/60/120°. There were some differences in the TCP distribution and formation of the ceramic agglomerates in the scaffolds. They depended on fabrication method. The use of composites prepared by solution casting method resulted in scaffolds with the best combination of compressive strength (5.7±0.2 MPa and porosity (48.5±2.7 %, both within the range of trabecular bone.

  19. Preparation and characterization of novel glass–ceramic tile with microwave absorption properties from iron ore tailings

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Rui; Liao, SongYi [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Dai, ChangLu [Guangdong Bode Fine Building Material Co. Ltd., Foshan 528000 (China); Liu, YuChen; Chen, XiaoYu [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Zheng, Feng, E-mail: fzheng@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Phase diagrams and materials design center, Central South University, Changsha 410083 (China)

    2015-03-15

    A novel glass–ceramic tile consisting of one glass–ceramic layer (GC) attaining microwave absorption properties atop ceramic substrate was prepared through quench-heat treatment route derived from iron ore tailings (IOTs) and commercial raw materials (purity range 73–99%). X-ray diffraction (XRD), SEM, Energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), Physical property measurement system (PPMS) and Vector network analyzer (VNA) measurements were carried out to investigate phase, microstructure, magnetic and microwave absorption aspects of the glass–ceramic layer. Roughly 80.6±1.7 wt% borosilicate glass and 19.4±1.7 wt% spinel ferrite with chemical formula of (Zn{sup 2+}{sub 0.17}Fe{sup 3+}{sub 0.83})[Fe{sup 3+}{sub 1.17}Fe{sup 2+}{sub 0.06}Ni{sup 2+}{sub 0.77}]O{sub 4} were found among the tested samples. Absorption of Electromagnetic wave by 3 mm thick glass–ceramic layer at frequency of 2–18 GHz reached peak reflection loss (RL) of −17.61 dB (98.27% microwave absorption) at 10.31 GHz. Altering the thickness of the glass–ceramic layer can meet the requirements of different level of microwave absorption. - Highlights: • Iron ore tailings (IOTs) have been used as one of the main raw materials. • Glass–ceramic tile contains spinel ferrite has been prepared. • The cation distribution of the spinel ferrite has been calculated. • The intrinsic complex permeability and permittivity have been evaluated.

  20. Crystallization evolution, microstructure and properties of sewage sludge-based glass–ceramics prepared by microwave heating

    International Nuclear Information System (INIS)

    Highlights: ► A reactor is designed to prepare glass–ceramic from sewage sludge by microwave. ► Microwave process has reduced energy consumption for its low reaction temperature. ► Finer and uniform crystals are observed in microwave glass–ceramics. ► Improved properties of microwave glass–ceramics are found. ► We modeled the crystals growth in microwave field. - Abstract: A Microwave Melting Reactor (MMR) was designed in this study which improved the microwave adsorption of sewage sludge to prepare glass–ceramics. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were used for the study of crystallization behavior and microstructure of the developed glass–ceramics. DSC and XRD analysis revealed that crystallization of the nucleated specimen in the region of 900–1000 °C resulted in the formation of two crystalline phases: anorthite and wollastonite. When the crystallization temperature increased from 900 to 1000 °C, the tetragonal wollastonite grains were subjected to tensile microstresses, causing the cracking of crystal. Al ions substituted partially Si ions and occupied tetrahedral sites, giving rise to the formation of anorthite. The relationship between microwave irradiation and crystal growth was studied and the result indicated that the microwave selective heating suppressed the crystal growth, giving apparent improvements in the properties of the glass–ceramics. The glass–ceramics products exhibited bending strength of 86.5–93.4 MPa, Vickers microhardness of 6.12–6.54 GPa and thermal expansion coefficient of 5.29–5.75 × 10−6/°C. The best chemical durability in acid and alkali solutions was 1.32–1.61 and 0.41–0.58 mg/cm2, respectively, showing excellent durability in alkali solution.

  1. Preparation and characterization of novel glass–ceramic tile with microwave absorption properties from iron ore tailings

    International Nuclear Information System (INIS)

    A novel glass–ceramic tile consisting of one glass–ceramic layer (GC) attaining microwave absorption properties atop ceramic substrate was prepared through quench-heat treatment route derived from iron ore tailings (IOTs) and commercial raw materials (purity range 73–99%). X-ray diffraction (XRD), SEM, Energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), Physical property measurement system (PPMS) and Vector network analyzer (VNA) measurements were carried out to investigate phase, microstructure, magnetic and microwave absorption aspects of the glass–ceramic layer. Roughly 80.6±1.7 wt% borosilicate glass and 19.4±1.7 wt% spinel ferrite with chemical formula of (Zn2+0.17Fe3+0.83)[Fe3+1.17Fe2+0.06Ni2+0.77]O4 were found among the tested samples. Absorption of Electromagnetic wave by 3 mm thick glass–ceramic layer at frequency of 2–18 GHz reached peak reflection loss (RL) of −17.61 dB (98.27% microwave absorption) at 10.31 GHz. Altering the thickness of the glass–ceramic layer can meet the requirements of different level of microwave absorption. - Highlights: • Iron ore tailings (IOTs) have been used as one of the main raw materials. • Glass–ceramic tile contains spinel ferrite has been prepared. • The cation distribution of the spinel ferrite has been calculated. • The intrinsic complex permeability and permittivity have been evaluated

  2. Composite Eshelby model and domain band geometries of ferroelectric ceramics

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A method of composite Eshelby inclusion is proposed for aferroelectric grain with domain switching embedded in a polycrystalline ferroelectric matrix. The method quantifies the twinning structure due to spontaneous polarization, as well as the conventional and non-conventional domain structures after poling induced domain reorientation of 90 degree. The predicted parameters include the volume fraction, the thickness, and the surface inclination angle of switched domain plates. The domain wall energy for non-conventional domain structures is derived in terms of the arrays of misfit dislocations. The domain geometries predicted by the present work agree with the measured domain morphology near an indentation crack tip when subjected to lateral electric field.

  3. Preparation and Properties of Macroporous Silicon Nitride Ceramics by Gelcasting and Carbonthermal Reaction

    Institute of Scientific and Technical Information of China (English)

    Wen ZHANG; Hongjie WANG; Zhihao JIN

    2005-01-01

    Macroporous silicon nitride (Si3N4) ceramics with high strength, uniform structure and relatively high porosity were obtained by gelcasting and carbonthermal reaction in a two-step sintering technique. Microstructure and composition were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction(XRD). Open porosity, pore size distribution and basic mechanical performance were measured by Archimedes method,mercury intrusion porosimetry and three-point bending methods, respectively. SEM and TEM results revealed that pores were formed by elongated β-Si3N4. SADP measurement proved the formation of SiC particles. The SiC granules were beneficial for the formation of high ratio elongated β-Si3N4, and at proper amount, they also acted as reinforcement phase. Thermodynamic analysis indicated that the mechanisms of the reactions were mainly associated with liquid-solid reaction and gas-liquid reaction.

  4. Federal Aviation Administration (FAA airworthiness certification for ceramic matrix composite components in civil aircraft systems

    Directory of Open Access Journals (Sweden)

    Gonczy Stephen T.

    2015-01-01

    Full Text Available Ceramic matrix composites (CMCs are being designed and developed for engine and exhaust components in commercial aviation, because they offer higher temperature capabilities, weight savings, and improved durability compared to metals. The United States Federal Aviation Administration (FAA issues and enforces regulations and minimum standards covering the safe manufacture, operation, and maintenance of civil aircraft. As new materials, these ceramic composite components will have to meet the certification regulations of the FAA for “airworthiness”. The FAA certification process is defined in the Federal Aviation Regulations (Title 14 of the Code of Federal Regulations, FAA policy statements, orders, advisory circulars, technical standard orders, and FAA airworthiness directives. These regulations and documents provide the fundamental requirements and guidelines for design, testing, manufacture, quality assurance, registration, operation, inspection, maintenance, and repair of aircraft systems and parts. For metallic parts in aircraft, the FAA certification and compliance process is well-established for type and airworthiness certification, using ASTM and SAE standards, the MMPDS data handbook, and FAA advisory circulars. In a similar manner for polymer matrix composites (PMC, the PMC industry and the FAA have jointly developed and are refining parallel guidelines for polymer matrix composites (PMCs, using guidance in FAA circulars and the CMH-17 PMC handbook. These documents discuss design methods and codes, material testing, property data development, life/durability assessment, production processes, QA procedures, inspection methods, operational limits, and repairs for PMCs. For ceramic composites, the FAA and the CMC and aerospace community are working together (primarily through the CMH-17 CMC handbook to define and codify key design, production, and regulatory issues that have to be addressed in the certification of CMC components in

  5. Sintered glass ceramic composites from vitrified municipal solid waste bottom ashes.

    Science.gov (United States)

    Aloisi, Mirko; Karamanov, Alexander; Taglieri, Giuliana; Ferrante, Fabiola; Pelino, Mario

    2006-09-01

    A glass ceramic composite was obtained by sinter-crystallisation of vitrified municipal solid waste bottom ashes with the addition of various percentages of alumina waste. The sintering was investigated by differential dilatometry and the crystallisation of the glass particles by differential thermal analysis. The crystalline phases produced by the thermal treatment were identified by X-ray diffraction analysis. The sintering process was found to be affected by the alumina addition and inhibited by the beginning of the crystal-phase precipitation. Scanning electron microscopy was performed on the fractured sintered samples to observe the effect of the sintering. Young's modulus and the mechanical strength of the sintered glass ceramic and composites were determined at different heating rates. The application of high heating rate and the addition of alumina powder improved the mechanical properties. Compared to the sintered glass ceramic without additives, the bending strength and the Young's modulus obtained at 20 degrees C/min, increased by about 20% and 30%, respectively. PMID:16730889

  6. Sintered glass ceramic composites from vitrified municipal solid waste bottom ashes

    Energy Technology Data Exchange (ETDEWEB)

    Aloisi, Mirko [Department of Chemistry, Chemical Engineering and Materials, University of L' Aquila, Monteluco di Roio 67040 (Italy); Karamanov, Alexander [Department of Chemistry, Chemical Engineering and Materials, University of L' Aquila, Monteluco di Roio 67040 (Italy)]. E-mail: karama@ing.univaq.it; Taglieri, Giuliana [Department of Chemistry, Chemical Engineering and Materials, University of L' Aquila, Monteluco di Roio 67040 (Italy); Ferrante, Fabiola [Department of Chemistry, Chemical Engineering and Materials, University of L' Aquila, Monteluco di Roio 67040 (Italy); Pelino, Mario [Department of Chemistry, Chemical Engineering and Materials, University of L' Aquila, Monteluco di Roio 67040 (Italy)]. E-mail: pelino@ing.univaq.it

    2006-09-01

    A glass ceramic composite was obtained by sinter-crystallisation of vitrified municipal solid waste bottom ashes with the addition of various percentages of alumina waste. The sintering was investigated by differential dilatometry and the crystallisation of the glass particles by differential thermal analysis. The crystalline phases produced by the thermal treatment were identified by X-ray diffraction analysis. The sintering process was found to be affected by the alumina addition and inhibited by the beginning of the crystal-phase precipitation. Scanning electron microscopy was performed on the fractured sintered samples to observe the effect of the sintering. Young's modulus and the mechanical strength of the sintered glass ceramic and composites were determined at different heating rates. The application of high heating rate and the addition of alumina powder improved the mechanical properties. Compared to the sintered glass ceramic without additives, the bending strength and the Young's modulus obtained at 20 deg. C/min, increased by about 20% and 30%, respectively.

  7. X-ray microtomography of ceramic and metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Baaklini, G.Y.; Bhatt, R.T.; Eckel, A.J. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center; Engler, P.; Rauser, R.W. [Cleveland State Univ., OH (United States); Castelli, M.G. [NYMA, Inc., Cleveland, OH (United States)

    1995-09-01

    Capabilities and limitations of X-ray computed microtomography (CT) in characterizing relevant composite material issues as identified during manufacturing processes were investigated. Damage in engine subcomponents was evaluated and compared with damage detected in pedigreed coupon type specimens. The system used is a newly developed state-of-the-art X-ray computed tomography system capable of providing digital radiography, computed tomography, and computed laminography. CT was found viable for characterizing processing defects and coating effect in thermally shocked carbon fiber reinforced silicon carbide matrix (C/SiC) samples. CT results from mechanically tested silicon carbide fiber reinforced reaction bonded silicon nitride (SiC/RBSN) matrix sample were evaluated and compared to engine tested SiC/RBSN turbine vanes. Thermomechanically cycled SiC (SCS-6) fiber reinforced Timetal 21S samples showed viability of CT in detecting composite constituents and limitations of CT in detecting matrix and fiber cracking. Also an engineering analysis approach was proposed to continuously integrate nondestructive evaluation modalities in the design-manufacturing-prototyping cycle of engine components.

  8. Electric and Magnetic Properties of a New Ferrite-Ceramic Composite Material

    Institute of Scientific and Technical Information of China (English)

    张怀武; 石玉; 钟智勇

    2002-01-01

    We have investigated a new ferrite-ceramic composite material with inductive and capacitive properties fabricated by a solid-state reaction method. We analyse the effects of the composite mechanism and microstructure on the magnetic and electric properties. The results show that the new materials can be used not only as inductor materials, but also as capacitor materials in the wide frequency range of 1 kHz-1.8GHz. The real part of permeability of the composite material is between 10 and 5.6, the imaginary part of permeability is between 1.2 and 0.5, and the dielectric constant is about ten times larger than that of ordinary ferrite materials. It is suggested that the new composite materials will be widely used in anti-electromagnetic interference fields and radio frequency communication fields

  9. Novel ceramic fuel cell using non-ceria-based composites as electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Li, Song [Institute of Materials and Technology, Dalian Maritime University, Dalian 116026 (China); Department of Chemical Engineering and Technology, Royal Institute of Technology (KTH), S-10044 Stockholm (Sweden); Wang, Xiaodi [Department of Chemical Engineering and Technology, Royal Institute of Technology (KTH), S-10044 Stockholm (Sweden); College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 161041 (China); Zhu, Bin [Department of Chemical Engineering and Technology, Royal Institute of Technology (KTH), S-10044 Stockholm (Sweden)

    2007-12-15

    A novel concept of ceramic or solid oxide fuel cell (SOFC) based on non-ceria-salt-composites electrolyte has been investigated. The fuel cell using LiAlO{sub 2}-carbonate (LiNaCO{sub 3}) as electrolyte exhibits excellent performances, when we used hydrogen and air as fuel and oxidant respectively, instead of molten carbonate fuel cells (MCFCs) environment. The maximum output power density can reach 466 mW/cm{sup 2} at 650 C and the discharging current keeps constant. The ion transport mechanics of the ceramic fuel cell were discussed. In the H{sub 2}/air atmosphere, the new fuel cell function should be performed only by proton or oxygen ion conduction, which differs essentially from the MCFC function, in which the CO{sub 3}{sup 2-} conduction dominates process. (author)

  10. A parametric design of ceramic faced composite armor subject to air weapon threats

    Science.gov (United States)

    Guo, Y. N.; Sun, Q.

    2015-12-01

    By taking into consideration the two categories of military projectile threats to aircraft structures, an optimal layer configuration of ceramic faced composite armor was designed in this paper. Using numerical simulations and the same layer arrangement of ceramic, UHMWPE, and carbon fiber laminates, a parametric finite element model using LS-DYNA code was built. Several thickness combinations were analyzed in order to determine the final lightest configuration that is capable of supporting a high-speed impact load and HEI blast wave load, which implements a high anti-penetration design for aircraft armor. This configuration can be used to improve the anti-impact ability of aircraft structures as well as achieve a structure/function integration design that considers a lighter weight.

  11. Microwave joining of SiC ceramics and composites

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.; Silberglitt, R.; Tian, Y.L. [FM Technologies, Inc., Fairfax, VA (United States); Katz, J.D. [Los Alamos National Lab., NM (United States)

    1997-04-01

    Potential applications of SiC include components for advanced turbine engines, tube assemblies for radiant burners and petrochemical processing and heat exchangers for high efficiency electric power generation systems. Reliable methods for joining SiC are required in order to cost-effectively fabricate components for these applications from commercially available shapes and sizes. This manuscript reports the results of microwave joining experiments performed using two different types of SiC materials. The first were on reaction bonded SiC, and produced joints with fracture toughness equal to or greater than that of the base material over an extended range of joining temperatures. The second were on continuous fiber-reinforced SiC/SiC composite materials, which were successfully joined with a commercial active brazing alloy, as well as by using a polymer precursor.

  12. Effect of SiO2 on the Preparation and Properties of Pure Carbon Reaction Bonded Silicon Carbide Ceramics

    Institute of Scientific and Technical Information of China (English)

    WU Qi-de; GUO Bing-jian; YAN Yong-gao; ZHAO Xiu-jian; HONG Xiao-lin

    2004-01-01

    Effect of SiO2 content and sintering process on the composition and properties of Pure CarbonReaction Bonded Silicon Carbide (PCRBSC) ceramics prepared with C - SiO2 green body by infiltrating siliconwas presented. The infiltrating mechanism of C - SiO2 preform was also explored. The experimental results indicatethat the shaping pressure increases with the addition of SiO2 to the preform, and the pore size of the body turnedfiner and distributed in a narrower range, which is beneficial to decreasing the residual silicon content in the sin-tered materials and to avoiding shock off, thus increasing the conversion rate of SiC. SiO2 was deoxidized by car-bon at a high temperature and the gaseous SiO and CO produced are the main reason to the crack of the body atan elevated temperature. If the green body is deposited at 1800℃ in vacuum before infiltration crack will not beproduced in the preform and fully dense RBSC can be obtained. The ultimate material has the following properties:a density of3.05-3.12g/cm3 ,a strength of 580±32MPa and a hardness of (HRA)91-92.3.

  13. Ceramic Identity Contributes to Mechanical Properties and Osteoblast Behavior on Macroporous Composite Scaffolds

    Directory of Open Access Journals (Sweden)

    J. Kent Leach

    2012-05-01

    Full Text Available Implants formed of metals, bioceramics, or polymers may provide an alternative to autografts for treating large bone defects. However, limitations to each material motivate the examination of composites to capitalize on the beneficial aspects of individual components and to address the need for conferring bioactive behavior to the polymer matrix. We hypothesized that the inclusion of different bioceramics in a ceramic-polymer composite would alter the physical properties of the implant and the cellular osteogenic response. To test this, composite scaffolds formed from poly(lactide-co-glycolide (PLG and either hydroxyapatite (HA, β-tricalcium phosphate (TCP, or bioactive glass (Bioglass 45S®, BG were fabricated, and the physical properties of each scaffold were examined. We quantified cell proliferation by DNA content, osteogenic response of human osteoblasts (NHOsts to composite scaffolds by alkaline phosphatase (ALP activity, and changes in gene expression by qPCR. Compared to BG-PLG scaffolds, HA-PLG and TCP-PLG composite scaffolds possessed greater compressive moduli. NHOsts on BG-PLG substrates exhibited higher ALP activity than those on control, HA-, or TCP-PLG scaffolds after 21 days, and cells on composites exhibited a 3-fold increase in ALP activity between 7 and 21 days versus a minimal increase on control scaffolds. Compared to cells on PLG controls, RUNX2 expression in NHOsts on composite scaffolds was lower at both 7 and 21 days, while expression of genes encoding for bone matrix proteins (COL1A1 and SPARC was higher on BG-PLG scaffolds at both time points. These data demonstrate the importance of selecting a ceramic when fabricating composites applied for bone healing.

  14. Synthesis and ceramic processing of alumina and zirconia based composites infiltrated with glass phase for dental applications

    International Nuclear Information System (INIS)

    The interest for the use of ceramic materials for dental applications started due to the good aesthetic appearance promoted by the similarity to natural teeth. However, the fragility of traditional ceramics was a limitation for their use in stress conditions. The development of alumina and zirconia based materials, that associate aesthetic results, biocompatibility and good mechanical behaviour, makes possible the employment of ceramics for fabrication of dental restorations. The incorporation of vitreous phase in these ceramics is an alternative to minimize the ceramic retraction and to improve the adhesion to resin-based cements, necessary for the union of ceramic frameworks to the remaining dental structure. In the dentistry field, alumina and zirconia ceramic infiltrated with glassy phase are represented commercially by the In-Ceram systems. Considering that the improvement of powder's synthesis routes and of techniques of ceramic processing contributes for good performance of these materials, the goal of the present work is the study of processing conditions of alumina and/or 3 mol% yttria-stabilized zirconia ceramics infiltrated with aluminum borosilicate lanthanum glass. The powders, synthesized by hydroxide coprecipitation route, were pressed by uniaxial compaction and pre-sintered at temperature range between 950 and 1650 degree C in order to obtain porous ceramics bodies. Vitreous phase incorporation was performed by impregnation of aluminum borosilicate lanthanum powder, also prepared in this work, followed by heat treatment between 1200 and 1400 degree C .Ceramic powders were characterized by thermogravimetry, X-ray diffraction, scanning and transmission electron microscopy, gaseous adsorption (BET) and laser diffraction. Sinterability of alumina and /or stabilized zirconia green pellets was evaluated by dilatometry. Pre-sintered ceramics were characterized by apparent density measurements (Archimedes method), X-ray diffraction and scanning electron

  15. Ultrasonic evaluation of initiation and development of oxidation damage in ceramic-matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Y.C.; Lavrentyev, A.I.; Rokhlin, S.I. [Ohio State Univ., Columbus, OH (United States). Nondestructive Evaluation Program; Baaklini, G.Y.; Bhatt, R.T. [NASA Lewis Research Center, Cleveland, OH (United States)

    1995-07-01

    In this paper the authors report on the development of a method for ultrasonic nondestructive characterization of oxidation damage in ceramic-matrix composites. The method is based on ultrasonic measurement of elastic moduli of the composite, which are then used to determine the elastic moduli of the fiber-matrix interphase. Thus the interphasial damage may be estimated quantitatively. As a model system they used, to demonstrate applicability of the method, a unidirectional SiC-fiber-reinforced reaction-bonded silicon nitride matrix composite (SiC/RBSN). The composite samples were oxidized in flowing oxygen for 0.1, 1, 10, and 100 h at 600, 900, 1200, and 1400 C. The ultrasonic phase velocity in the composite was measured at room temperature before and after oxidation; the data were then used to find the composite moduli, which quantify the induced damage. significant changes in ultrasonic velocities and composite moduli, which quantify the induced damage. Significant changes in ultrasonic velocities and composite moduli were found as a result of oxidation. Fiber-matrix interphasial moduli were determined by multiphase micromechanical analysis. They found that oxidation of the carbon interphasial layer is the dominant mechanism in decreasing the elastic moduli of the composite. The critical exposure time for transition from the nondamaged to the damage state of different oxidation temperatures has been determined.

  16. The Effects of an Unexpected Ceramic Coating Phase at the Head of a Pipe on Joining and Postprocessing of a Ceramic-Lined Composite Pipe

    Science.gov (United States)

    Mahmoodian, R.; Rahbari, R. G.; Hamdi, M.; Hassan, M. A.; Sparham, Mahdi

    2013-01-01

    Produced ceramic-lined steel pipe using the self-propagating high-temperature synthesis (SHS) method has found uses in many applications. A SHS-centrifugal machine was designed to produce a ceramic-lined steel pipe from ferric oxide and aluminum powder (thermite mixture) under high centrifugal acceleration. The obtained products are expected to be Al2O3 ceramic in the innermost layer and a Fe layer in a region between the outer steel pipes. In the present work, specific regions of a pipe was particularly observed to investigate the stuck (dead) spaces at the pipe head because of its importance in further processes (joining, welding, etc.) which may affect the quality of the next operations. In this article, the product's composition, phase separation, microhardness, and surface finish were studied on three zones of the pipe.

  17. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility.

    Science.gov (United States)

    Verné, Enrica; Bruno, Matteo; Miola, Marta; Maina, Giovanni; Bianco, Carlotta; Cochis, Andrea; Rimondini, Lia

    2015-08-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO2-Na2O-CaO-P2O5-FeO-Fe2O3 and contains magnetite (Fe3O4) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite - HAp - layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. PMID:26042695

  18. High thermal behavior of a new glass ceramic developed from silica xerogel/SnO{sub 2} composite

    Energy Technology Data Exchange (ETDEWEB)

    Aripin, H., E-mail: aripin@unsil.ac.id [Faculty of Learning Teacher and Education Science, Siliwangi University, Jl. Siliwangi 24 Tasikmalaya 46115, West Java (Indonesia); Mitsudo, Seitaro, E-mail: mitsudo@fir.u-fukui.ac.jp [Research Center for Development of Far Infrared Region (FIR Center), University of Fukui, Bunkyo 3-9-1 Fukui 910-8507 (Japan); Sudiana, I. Nyoman, E-mail: sudiana75@yahoo.com [Departement Physics, Faculty of Mathematics and Natural Science, Haluoleo University, Kampus Bumi Tridharma Anduonohu, Kendari 93232 (Indonesia); Priatna, Edvin, E-mail: ujack05@yahoo.com [Department of Electrical Engineering, Faculty of Engineering, Siliwangi University, Tasikmalaya (Indonesia); Sabchevski, Svilen, E-mail: sabch@ie.bas.bg [Lab. Plasma Physics and Engineering, Institute of Electronics of the Bulgarian Academy of Sciences, 72 Tzarigradsko Shose Blvd., Sofia 1784 (Bulgaria)

    2016-02-08

    In this investigation, a new glass ceramics have been produced by mixing SnO{sub 2} and amorphous silica xerogel (ASX) extracted from sago waste ash. The composition has been prepared by adding 10 mol% of SnO{sub 2} into SX. The samples have been dry pressed and sintered in the temperature range between 800 °C and 1500 °C. The effects of temperature on the crystallization of silica xerogel after adding SnO{sub 2} and their relationship to bulk density have been studied. The crystallization process of the silica xerogel/SnO{sub 2} composite has been examined by an X-ray diffraction (XRD) and the bulk density has been characterized on the basis of the experimental data obtained using Archimedes′ principle. It has been found that an addition of SnO{sub 2} confers an appreciable effect on the grain and from the interpretation of XRD patterns allow one to explain the increase in the density by an increased crystallite size of SnO{sub 2} in the composite.

  19. High thermal behavior of a new glass ceramic developed from silica xerogel/SnO2 composite

    Science.gov (United States)

    Aripin, H.; Mitsudo, Seitaro; Sudiana, I. Nyoman; Priatna, Edvin; Sabchevski, Svilen

    2016-02-01

    In this investigation, a new glass ceramics have been produced by mixing SnO2 and amorphous silica xerogel (ASX) extracted from sago waste ash. The composition has been prepared by adding 10 mol% of SnO2 into SX. The samples have been dry pressed and sintered in the temperature range between 800 °C and 1500 °C. The effects of temperature on the crystallization of silica xerogel after adding SnO2 and their relationship to bulk density have been studied. The crystallization process of the silica xerogel/SnO2 composite has been examined by an X-ray diffraction (XRD) and the bulk density has been characterized on the basis of the experimental data obtained using Archimedes' principle. It has been found that an addition of SnO2 confers an appreciable effect on the grain and from the interpretation of XRD patterns allow one to explain the increase in the density by an increased crystallite size of SnO2 in the composite.

  20. High thermal behavior of a new glass ceramic developed from silica xerogel/SnO2 composite

    International Nuclear Information System (INIS)

    In this investigation, a new glass ceramics have been produced by mixing SnO2 and amorphous silica xerogel (ASX) extracted from sago waste ash. The composition has been prepared by adding 10 mol% of SnO2 into SX. The samples have been dry pressed and sintered in the temperature range between 800 °C and 1500 °C. The effects of temperature on the crystallization of silica xerogel after adding SnO2 and their relationship to bulk density have been studied. The crystallization process of the silica xerogel/SnO2 composite has been examined by an X-ray diffraction (XRD) and the bulk density has been characterized on the basis of the experimental data obtained using Archimedes′ principle. It has been found that an addition of SnO2 confers an appreciable effect on the grain and from the interpretation of XRD patterns allow one to explain the increase in the density by an increased crystallite size of SnO2 in the composite

  1. Preparation and properties of buckypaper-gold nanoparticle composites

    OpenAIRE

    GOUNKO, IOURI; BYRNE, MICHELE THERESE; HANLEY, CORMAC

    2010-01-01

    PUBLISHED Highly conductive buckypaper-gold nanoparticles composites have been prepared by the in situ electroless deposition of gold nanoparticles during the filtration that resulted in increases in conductivities of up to 684% at very low gold content.

  2. Quantitative fracture analysis of a biological ceramic composite

    Science.gov (United States)

    Hill, Thomas Jerald

    The purpose of this study was to analyze the improved mechanical properties of the Strombus gigas over non-biogenic aragonite (CaCO3) by controlling and analyzing the presence of the proteinaceous matrix and water. The specific objectives of this study were to (1) estimate the relative increase of mechanical properties from structure and proteinaceous interface of the Strombus gigas, (2) determine if ions in aqueous solution of stress redistribution from the presence of water was the primary mechanism in increasing work of fracture, (3) identify if water activates any viscoelastic effects from the proteinaceous matrix, and (4) identify if the fractal dimension can discern if toughening mechanisms are present in the complex composite. The Strombus gigas system was chosen for this study because it has demonstrated a 10000-fold increase in the amount of energy to cause failure over monoliths composed of the same basic material. It was concluded that the presence of the protein interface causes an order of magnitude increase in work of fracture, while water increases the work of fracture approximately two-fold over just the protein alone. The water appears to redistribute the stress throughout the structure lowering local stress distribution which was demonstrated by the use of stressing rates. Finally, the fractal dimension appears to be able to discern between some toughening mechanisms occurring in this material.

  3. Preparation of a novel composition-gradient thermosensitive gel

    OpenAIRE

    Tokuyama, Hideaki; Sasaki, Masahiro; Sakohara, Shuji

    2006-01-01

    The feasibility of a novel composition-gradient copolymer gel, in which the composition gradually changes with the distance, was examined. The slab-shaped copolymer gels of a thermosensitive primary component, N-isopropylacrylamide (NIPA) and an ionic secondary component, 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) or acrylic acid (AA), were prepared between two substrates of hydrophilic glass and hydrophobic polytetrafluoroethylene (Teflon). In the NIPA-co-AMPS gels, prepared at 40°C...

  4. Review on preparation techniques of particle reinforced metal matrix composites

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper reviews the investigation status of the techniques for preparation of metal matrix composites and the research outcomes achieved recently. The mechanisms, characteristics, application ranges and levels of development of these preparatior techniques are analyzed. The advantages and the disadvantages of each technique are synthetically evaluated. Lastly, the future directions of research and the prospects for the preparation techniques of metal matrix composites are forecasted.

  5. The diametral tensile strength and hydrostability of polymer-ceramic nano-composite (pcnc) material prototypes

    Science.gov (United States)

    Yepez, Johanna

    Statement of the problem: There is a weak connection between the filler and the resin matrix of dental composites caused primarily by hydrolysis of silane coupling agent, therefore, jeopardizing the mechanical properties of the dental restorations. Purpose: The purpose of this study was to compare the diametral tensile strength (DTS) of a nano-mechanically bonded polymer ceramic nano composite (pcnc) versus the chemically bonding prototype polymer ceramic nano composite (pcnc) fabricated by using hydrolytically stable interphase. Materials and Methods: Composites were made with 60wt % filler, 38% triethyleneglycol dimethacrylate (TEDGMA), 1% camphorquinone (CQ) and 1% 2-(dimethylamino) ethyl methacrylate (DMAEMA). Tests for DTS were performed using a universal testing machine. The disk-shaped specimens were loaded in compression between two supporting plates at a crosshead speed of 0.5 mm/min until fracture. The samples, measuring 3 mm in height and 6 mm in diameter, were produced in a round stainless steel (SS) mold. A total of 144 samples were created. Groups of 48 samples were made for each of three different fillers. Specimens were soaked in artificial saliva at 37° for four time periods, dry(t=0), 1 day, 7 days, 28 days). At the end of each soaking time DTS tests were performed. Results: There where statistically significant differences in the DTS between the filler groups and the soaking times (p=dental composites is a detrimental factor in the mechanical behavior. The silanation of the filler particles have a positive influence on the mechanical properties of dental composites but the hydrolysis of the silane coupling agent can dramatically reduce the average lifetime of dental composites.

  6. Damage analysis of the ceramic reinforced steel matrix composites sheets: experimental and numerical study

    Directory of Open Access Journals (Sweden)

    E. Bayraktar

    2011-11-01

    Full Text Available Purpose: of this paper reports damage analysis of TiB2 (ceramic particles reinforced steel matrix composite sheets. This new steel composite receives much attention as potential structural materials due to their high specific strength and stiffness. The goal of the research described in this paper is to study the usage of this new steel family in the manufacture of light structures.Design/methodology/approach: therefore in this study is focused to the titanium diboride TiB2 reinforced steel matrix composite sheets that they were characterized by optical and scanning electron microscopes after the mechanical tests carried out on the base metal and welded specimens under dynamic and static test conditions.Findings: The non homogeneity of the structure in this type of composites makes deeply complexity of their numerical and analytical modelling to predict their damage during the loading. For example, the interfaces essentially play a key role in determining mechanical and physical properties. For this reason, a Finite Element (FEM analysis is used for modelling to simulate the macroscopic behaviour of this material, taking into account the relevant microscopic scales.Practical implications: defined in this research is based on the impact dynamic behaviour of this steel sheets by using a special impact tensile test developed formerly that all details were published in this journal. This type of test gives more comprehensible information about special steel sheets (welded or base metal in case of dynamic crash conditions.Originality/value: The present research gives detail information on the new steel matrix composite sheets reinforced TiB2 ceramic particles. This new composite was developed by ARCELOR research group and impact dynamic behaviour and weldability of the welded parts and base metals from this composite steel are discussed here in order to give practical and useful solution for industrial applications.

  7. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Verné, Enrica, E-mail: enrica.verne@polito.it [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Bruno, Matteo [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Miola, Marta [Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, C. so Duca degli Abruzzi 24, 10129 Torino (Italy); Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Maina, Giovanni; Bianco, Carlotta [Traumatology Orthopedics and Occupational Medicine Dept., Università di Torino, Via G. Zuretti 29, 10126 Torino (Italy); Cochis, Andrea [Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Rimondini, Lia [Department of Health Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Via Solaroli 17, 28100 Novara (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via G. Giusti, 9, 50121 Firenze (Italy)

    2015-08-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO{sub 2}–Na{sub 2}O–CaO–P{sub 2}O{sub 5}–FeO–Fe{sub 2}O{sub 3} and contains magnetite (Fe{sub 3}O{sub 4}) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite – HAp – layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced. - Highlights: • An in vitro biological characterization was carried out on ferromagnetic and bioactive composite cements. • No release of iron was revealed in the physiological solution. • Bioactivity tests

  8. INFLUENCE OF REOXIDATION ON SILICA-CONTAINING BARIUM TITANATE CERAMICS FOR PTCR THERMISTORS PREPARED BY TAPE CASTING

    Directory of Open Access Journals (Sweden)

    Jianqiao Liu

    2016-03-01

    Full Text Available Silica-containing barium-rich BaTiO₃ ceramics for thermistors with a positive temperature coefficient of resistance are prepared by a tape-casting technique. The ceramics are sintered in a reducing atmosphere at low temperatures of 1175-1225°C. The influences of reoxidation are investigated after the reduced ceramics are reoxidized in air at 700-900°C. An anomalous correlation is illustrated between room temperature resistivity and reoxidation temperature. The anomaly results from the ferroelectricity rebuilding mechanism, which includes the spontaneous polarization theory and the ferroelectricity degradation caused by oxygen vacancies. The acceptor-state densities are estimated from the temperature-dependent resistivity. A critical temperature of 750-800°C is concluded for the grain boundary reoxidation.

  9. Preparation,Characterization and Dielectric Property of Sr5LaTi3Nb7O30 Ceramic

    Institute of Scientific and Technical Information of China (English)

    ZHUO Rong-hui; ZHANG Hui; YANG Jun-feng; HUANG Tao-hua; YUAN Run-zhang

    2004-01-01

    Sr5LaTi3Nb7O30 ceramic was prepared by the conventional high temperature solid-state reaction route. The sintered samples were characterized by X-ray diffraction, scanning electron microscopy (SEM), differential thermal calorimetry (DSC) and dielectric measurements.The results show Sr5LaTi3Nb7O30 belongs to paraelectric phase of filled tetragonal TB structure at room temperature, and undergoes a diffuse phase transition in the temperature range of -54-34 ℃.And Sr5LaTi3Nb7O30 ceramic shows a high dielectric constant of 479 with a low dielectric loss of 0.005 at 1MHz. In comparison with Ba-based ceramics with TB structure, the temperature coefficients of the dielectric constant (τε) is significantly reduced.

  10. Density variation and piezoelectric properties of Ba(Ti1−Sn)O3 ceramics prepared from nanocrystalline powders

    Indian Academy of Sciences (India)

    A K Nath; Nirmali Medhi

    2012-10-01

    Nanocrystalline powders of tin-doped barium titanate with different concentrations of tin have been synthesized by a combination of solid state reaction and high-energy ball milling. The average particle size of the milled powders as determined from TEM analysis was about 5.96 nm. Analysis of all the milled powders using X-ray diffraction method showed single phase perovskite structure. The density variation of the ceramics with sintering temperature has been studied by sintering the samples at different temperatures. Density variation results show that 1350°C is the optimum sintering temperature for tin-doped barium titanate ceramics. SEM micrographs show high density and increasing trend of grain size with increasing content of Sn. The ferroelectricity decreases with increasing concentration of Sn. The electromechanical coupling coefficient also decreases with increasing Sn content corroborating decreasing trend of ferroelectricity. The bipolar strain curves show piezoelectric properties of the prepared ceramics.

  11. Ionic liquid-facilitated preparation of lignocellulosic composites

    Science.gov (United States)

    Lignocellulosic composites (LCs) were prepared by partially dissolving cotton along with steam exploded Aspen wood and burlap fabric reinforcements utilizing an ionic liquid (IL) solvent. Two methods of preparation were employed. In the first method, a controlled amount of IL was added to preassembl...

  12. Effect of Static and Cyclic Loading on Ceramic Laminate Veneers Adhered to Teeth with and Without Aged Composite Restorations

    NARCIS (Netherlands)

    Gresnigt, Marco M. M.; Ozcan, Mutlu; Kalk, Warner; Galhano, Graziela

    2011-01-01

    Purpose: Existing composite restorations on teeth are often remade prior to the cementation of fixed dental prostheses. The aim of this study was to evaluate the effect of static and cyclic loading on ceramic laminate veneers adhered to aged resin composite restorations. Materials and Methods: Eight

  13. Preparation and Structural Analysis of Montmorillonite Composites

    Institute of Scientific and Technical Information of China (English)

    FU Guizhen; GONG Wenqi; LIU Gangwei

    2009-01-01

    Calcium montmorillonite from Liao-ning was organically intercalated by using cety1 trimethy1 ammonium bromide after it was treated with sodium carbonate.The optimal dosage of intercalating agent was tested.The organically intercalated montmorillonite composites were characterized by the methods of XRD,FTIR and DTA/TG.The results show that the intercalating ef-fect of the organically intercalated montmorillonite composite is the best when the amount of inter-calating agent reached 120%cation exchange capacity(CEC)

  14. Tauro: a ceramic composite structural material self-cooled Pb-17Li breeder blanket concept

    International Nuclear Information System (INIS)

    The use of a low-activation (LA) ceramic composite (CC) as structural material appears essential to demonstrate the potential of fusion power reactors for being inherently or, at least, passively safe. Tauro is a self-cooled Pb-17Li breeder blanket with a SiC/SiC composite as structure. This study determines the required improvements for existing industrial LA composites (mainly SiC/SiC) in order to render them acceptable for blanket operating conditions. 3D SiC/SiC CC, recently launched on the market, is a promising candidate. A preliminary evaluation of a possible joining technique for SiC/SiC is also described. (orig.)

  15. Porosity characterization of fiber-reinforced ceramic matrix composite using synchrotron X-ray computed tomography

    International Nuclear Information System (INIS)

    The pore structure and porosity of a continuous fiber reinforced ceramic matrix composite has been characterized using high-resolution synchrotron X-ray computed tomography (XCT). Segmentation of the reconstructed tomograph images reveals different types of pores within the composite, the inter-fiber bundle open pores displaying a 'node-bond' geometry, and the intra-fiber bundle isolated micropores showing a piping shape. The 3D morphology of the pores is resolved and each pore is labeled. The quantitative filtering of the pores measures a total porosity 8.9% for the composite, amid which there is about 7.1∼ 9.3% closed micropores

  16. Modeling of the mechanical behavior of fiber-reinforced ceramic composites using finite element method (FEM

    Directory of Open Access Journals (Sweden)

    Dimitrijević M.M.

    2014-01-01

    Full Text Available Modeling of the mechanical behavior of fiber-reinforced ceramic matrix composites (CMC is presented by the example of Al2O3 fibers in an alumina based matrix. The starting point of the modeling is a substructure (elementary cell which includes on a micromechanical scale the statistical properties of the fiber, matrix and fiber-matrix interface and their interactions. The numerical evaluation of the model is accomplished by means of the finite element method. The numerical results of calculating the elastic modulus of the composite dependance on the quantity of the fibers added and porosity was compared to experimental values of specimens having the same composition. [Projekat Ministarstva nauke Republike Srbije, br. ON174004 i TVH to project III45012

  17. Prediction of lifetime in static fatigue at high temperatures for ceramic matrix composites

    International Nuclear Information System (INIS)

    Previous works have shown that ceramic matrix composites are sensitive to delayed failure during fatigue in oxidizing environments. The phenomenon of slow crack growth has been deeply investigated on single fibers and multi-filament tows in previous papers. The present paper proposes a multiscale model of failure driven by slow crack growth in fibers, for 2D woven composites under a constant load. The model is based on the delayed failure of longitudinal tows. Additional phenomena involved in the failure of tows have been identified using fractographic examination of 2D woven SiC/SiC composite test specimens after fatigue tests at high temperatures. Stochastic features including random load sharing, fiber overloading, fiber characteristics and fiber arrangement within the tows have been introduced using appropriate density functions. Rupture time predictions are compared to experimental data. (authors)

  18. Composite Coatings with Ceramic Matrix Including Nanomaterials as Solid Lubricants for Oil-Less Automotive Applications

    Directory of Open Access Journals (Sweden)

    Posmyk A.

    2016-06-01

    Full Text Available The paper presents the theoretical basis of manufacturing and chosen applications of composite coatings with ceramic matrix containing nanomaterials as a solid lubricant (AHC+NL. From a theoretical point of view, in order to reduce the friction coefficient of sliding contacts, two materials are required, i.e. one with a high hardness and the other with low shear strength. In case of composite coatings AHC+NL the matrix is a very hard and wear resistant anodic oxide coating (AHC whereas the solid lubricant used is the nanomaterial (NL featuring a low shear strength such as glassy carbon nanotubes (GC. Friction coefficient of cast iron GJL-350 sliding against the coating itself is much higher (0.18-0.22 than when it slides against a composite coating (0.08-0.14. It is possible to reduce the friction due to the presence of carbon nanotubes, or metal nanowires.

  19. 新型溶胶-凝胶法制备Al2O3-ZrO2陶瓷涂层及其组织结构%Preparation of Al2O3-ZrO2 Composite Ceramic Coating by a New Sol-gel Method and It's Structure

    Institute of Scientific and Technical Information of China (English)

    张法碧; 李明伟; 秦祖军; 郭其新

    2011-01-01

    Alumina-zirconia ceramic coating was obtained on stainless steel by applying a new method: composite sol-gel coating process which means the technical of adding zirconia powder into alumina sol to form composite slurry.The organization, elements distribution, phase and chemical framework were studied. The coating by this method is thicker than that by the common one. The alumina sol has form a complex alumina network structure which covered zirconia. The process of composite slurry been sintered and densifyed to form such structure was been analyzed.%采用新型溶胶-凝胶法,即在氧化铝溶胶中引入氧化锆陶瓷粉末制成复合浆料,在不锈钢表面制备了Al2O3-ZrO2陶瓷涂层,对涂层的显微组织、成分分布、相组成以及化学结构进行了研究.研究结果表明:该方法制备的涂层,厚度大大高于普通溶胶-凝胶法制备的涂层,涂层中形成了一种复杂的氧化铝网络结构,氧化锆颗粒被包覆在其中.最后,分析了复合浆料经烧结、封孔致密化形成该涂层结构的过程.

  20. Continuous Fiber Ceramic Composite (CFCC) Program. Inventory of federally funded CFCC R&D projects

    Energy Technology Data Exchange (ETDEWEB)

    Richlen, S. [USDOE Assistant Secretary for Energy Efficiency and Renewable Energy, Washington, DC (United States). Office of Industrial Technologies; Caton, G.M.; Karnitz, M.A.; Cox, T.D. [Oak Ridge National Lab., TN (United States); Hong, W. [Institute for Defense Analyses, Alexandria, VA (United States)

    1993-05-01

    Continuous Fiber Ceramic Composites (CFCC) are a new class of materials that are lighter, stronger, more corrosion resistant, and capable of performing at elevated temperatures. This new type of material offers the potential to meet the demands of a variety of industrial, military, and aerospace applications. The Department of Energy Office of Industrial Technologies (OIT) has a new program on CFCCs for industrial applications and this program has requested an inventory of all federal projects on CFCCs that relate to their new program. The purpose of this project is to identify all other ongoing CFCC research to avoid redundancy in the OIT Program. The inventory will be used as a basis for coordinating with the other ongoing ceramic composite projects. The inventory is divided into two main parts. The first part is concerned with CFCC supporting technologies projects and is organized by the categories listed below. (1) Composite Design; (2) Materials Characterization; (3) Test Methods; (4) Non-Destructive Evaluation; (5) Environmental Effects; (6) Mechanical Properties; (7) Database Life Prediction; (8) Fracture/Damage; and (9) Joining. The second part has information on component development, fabrication, and fiber-related projects.

  1. "A New Class of Creep Resistant Oxide/Oxide Ceramic Matrix Composites"

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Mohit Jain, Dr. Ganesh Skandan, Prof. Roger Cannon, Rutgers University

    2007-03-30

    Despite recent progress in the development of SiC-SiC ceramic matrix composites (CMCs), their application in industrial gas turbines for distributed energy (DE) systems has been limited. The poor oxidation resistance of the non-oxide ceramics warrants the use of envrionmental barrier coatings (EBCs), which in turn lead to issues pertaining to life expectancy of the coatings. On the other hand, oxide/oxide CMCs are potential replacements, but their use has been limited until now due to the poor creep resistance at high temperatures, particularly above 1200 oC: the lack of a creep resistant matrix has been a major limiting factor. Using yttrium aluminum garnet (YAG) as the matrix material system, we have advanced the state-of-the-art in oxide/oxide CMCs by introducing innovations in both the structure and composition of the matrix material, thereby leading to high temperature matrix creep properties not achieved until now. An array of YAG-based powders with a unique set of particle characteristics were produced in-house and sintered to full density and compressive creep data was obtained. Aided in part by the composition and the microstructure, the creep rates were found to be two orders of magnitude smaller than the most creep resistant oxide fiber available commercially. Even after accounting for porosity and a smaller matrix grain size in a practical CMC component, the YAG-based matrix material was found to creep slower than the most creep resistant oxide fiber available commercially.

  2. Penetration of tungsten-alloy rods into composite ceramic targets: Experiments and 2-D simulations

    International Nuclear Information System (INIS)

    A series of terminal ballistics experiments, with scaled tungsten-alloy penetrators, was performed on composite targets consisting of ceramic tiles glued to thick steel backing plates. Tiles of silicon-carbide, aluminum nitride, titanium-dibroide and boron-carbide were 20-80 mm thick, and impact velocity was 1.7 km/s. 2-D numerical simulations, using the PISCES code, were performed in order to simulate these shots. It is shown that a simplified version of the Johnson-Holmquist failure model can account for the penetration depths of the rods but is not enough to capture the effect of lateral release waves on these penetrations

  3. Recycling of glass fibers from fiberglass polyester waste composite for manufacture glass-ceramic materials

    OpenAIRE

    López Gómez, Félix Antonio; Martín, M. Isabel; García Díaz, Irene; Rodríguez, O.; Alguacil, Francisco José; Romero, M.

    2012-01-01

    This work presents the feasibility of reusing a glass fiber resulting from the thermolysis and gasification of waste composites to obtain glass-ceramic tiles. Polyester fiberglass (PFG) waste was treated at 550˚C for 3 h in a 9.6 dm3 thermolytic reactor. This process yielded an oil (≈24 wt%), a gas (≈8 wt%) and a solid residue (≈68 wt%). After the polymer has been removed, the solid residue is heated in air to oxidize residual char and remove surface contamination. The cleaning fibers were co...

  4. FEAMAC/CARES Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix Composites

    Science.gov (United States)

    Nemeth, Noel; Bednarcyk, Brett; Pineda, Evan; Arnold, Steven; Mital, Subodh; Murthy, Pappu; Bhatt, Ramakrishna

    2016-01-01

    Reported here is a coupling of two NASA developed codes: CARES (Ceramics Analysis and Reliability Evaluation of Structures) with the MAC/GMC (Micromechanics Analysis Code/ Generalized Method of Cells) composite material analysis code. The resulting code is called FEAMAC/CARES and is constructed as an Abaqus finite element analysis UMAT (user defined material). Here we describe the FEAMAC/CARES code and an example problem (taken from the open literature) of a laminated CMC in off-axis loading is shown. FEAMAC/CARES performs stochastic-strength-based damage simulation response of a CMC under multiaxial loading using elastic stiffness reduction of the failed elements.

  5. Composite ceramic bone graft substitute in the treatment of locally aggressive benign bone tumours.

    OpenAIRE

    Schindler, O. S.; Cannon, S.R.; Briggs, T. W.; Blunn, G. W.

    2008-01-01

    PURPOSE: To report the use of a composite ceramic bone graft substitute containing calcium sulphate and hydroxyapatite (HA) in the treatment of large expansive osteolytic benign bone tumours. METHODS: 4 women and 9 men aged 8 to 49 (mean, 22) years with aneurysmal bone cysts (n=6) or giant cell tumours (n=7) in the epi- or meta-physeal areas of the lower limbs underwent curettage, phenolisation, and filling with bone graft substitute containing calcium sulphate and HA. The mean tumour size wa...

  6. Studying the sintering behavior of BeOx-SiC1-x Composite ceramic Material

    Science.gov (United States)

    Issa, Tarik Talib

    2011-12-01

    The sintering behavior for BeO-SiC compacts composite ceramic at different sintering temperatures in air were conducted, resulting data indicated that the percentage of SiC (Wt% 5) sintered at 800 C° lead to higher sintering density of (1.80 gm/cm3). The x-ray diffraction pattern analysis indicated nothing change concerning the crystal structure. Microstructure development has been studied as a function SiC content. Silicon carbide found to be suppressed the sinter ability of the matrix BeO powder.

  7. Damage Accumulation in Cyclically-Loaded Glass-Ceramic Matrix Composites Monitored by Acoustic Emission

    Science.gov (United States)

    Aggelis, D. G.; Dassios, K. G.; Kordatos, E. Z.; Matikas, T. E.

    2013-01-01

    Barium osumilite (BMAS) ceramic matrix composites reinforced with SiC-Tyranno fibers are tested in a cyclic loading protocol. Broadband acoustic emission (AE) sensors are used for monitoring the occurrence of different possible damage mechanisms. Improved use of AE indices is proposed by excluding low-severity signals based on waveform parameters, rather than only threshold criteria. The application of such improvements enhances the accuracy of the indices as accumulated damage descriptors. RA-value, duration, and signal energy follow the extension cycles indicating moments of maximum or minimum strain, while the frequency content of the AE signals proves very sensitive to the pull-out mechanism. PMID:24381524

  8. Class II direct composite resin restorations with beta-quartz glass-ceramic inserts.

    Science.gov (United States)

    Rada, R E

    1993-11-01

    With the increasing demand for esthetic posterior restorations, numerous techniques have been developed. The direct resin restoration has probably been used most extensively in Class II situations. Problems with Class II direct resin restorations include difficulty in developing proximal contact, occlusal wear, and polymerization shrinkage. Beta-quartz glass-ceramic inserts have been developed in an attempt to reduce the incidence of these potential problems. They can be placed in a one-appointment technique, are relatively inexpensive, and can readily be utilized by the clinician adept in placing Class II composite resin restorations.

  9. Nano-structured polymer composites and process for preparing same

    Science.gov (United States)

    Hillmyer, Marc; Chen, Liang

    2013-04-16

    A process for preparing a polymer composite that includes reacting (a) a multi-functional monomer and (b) a block copolymer comprising (i) a first block and (ii) a second block that includes a functional group capable of reacting with the multi-functional monomer, to form a crosslinked, nano-structured, bi-continuous composite. The composite includes a continuous matrix phase and a second continuous phase comprising the first block of the block copolymer.

  10. Preparation of Porous Mullite Composite by Microwave Sintering

    Institute of Scientific and Technical Information of China (English)

    FAN Bingbing; ZHANG Rui; SUN Bing; LI Xuqin; LI Chunguang

    2012-01-01

    Microwave sintering method was carried out to prepare porous mullite composite.An insulation structure based on hybrid heating mode was well designed with the wall of mullite and the aided heaters of SiC.The obtained samples were characterized by XRD analysis,apparent porosity detection,and bending strength measurement.SEM was used to observe the microstructure of the sample.It is found that the porous mullite composite could be prepared through the microwave sintering within 2 h at relatively low temperatures around 1000 ℃.The lasted samples show comparatively superior properties to the products prepared by conventional processing.

  11. PECULARITIES OF COMPOSITE POWDERS PLASMA SPRAYING PREPARED BY MECHANICAL ALLOYING

    OpenAIRE

    Kudinov, V.; Pekshev, P.; Tcherniakov, S.; Kondratenko, L.

    1990-01-01

    In the present paper the main advantages of mechanical alloying compared to the other methods of composite powders preparing are discussed from the point of view both of powder quality and structure and properties of sprayed coatings. As an example on the base of NiCr-ZrO2-, NiCr-Cr2C3-, W-Cu- compositions it is shown, that prepared powders are characterized by high particles composition homogeneity, fine disperse components distribution in particles volume, high values of bound strength and ...

  12. Preparation and characterization of rice husk/ferrite composites

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A novel ferrite composite using rice husk as substrate has been prepared via high temperature treatment under nitrogen atmosphere.The rice husk substrate consists of porous activated carbon and silica,where spinel ferrite particles with average diameter of 59 nm are distributed.The surface area of the composite is greater than 170 m~2 g~(-1) and the bulk density is less than 0.6 g cm~(-3).Inert atmosphere is indispensable for the synthesis of pure ferrite composites,while different preparation temperatur...

  13. Calcium phosphate/microgel composites for 3D powderbed printing of ceramic materials.

    Science.gov (United States)

    Birkholz, Mandy-Nicole; Agrawal, Garima; Bergmann, Christian; Schröder, Ricarda; Lechner, Sebastian J; Pich, Andrij; Fischer, Horst

    2016-06-01

    Composites of microgels and calcium phosphates are promising as drug delivery systems and basic components for bone substitute implants. In this study, we synthesized novel composite materials consisting of pure β-tricalcium phosphate and stimuli-responsive poly(N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate-co-vinylimidazole) microgels. The chemical composition, thermal properties and morphology for obtained composites were extensively characterized by Fourier transform infrared, X-ray photoelectron spectroscopy, IGAsorp moisture sorption analyzer, thermogravimetric analysis, granulometric analysis, ESEM, energy dispersive X-ray spectroscopy and TEM. Mechanical properties of the composites were evaluated by ball-on-three-balls test to determine the biaxial strength. Furthermore, initial 3D powderbed-based printing tests were conducted with spray-dried composites and diluted 2-propanol as a binder to evaluate a new binding concept for β-tricalcium phosphate-based granulates. The printed ceramic bodies were characterized before and after a sintering step by ESEM. The hypothesis that the microgels act as polymer adhesive agents by efficient chemical interactions with the β-tricalcium phosphate particles was confirmed. The obtained composites can be used for the development of new scaffolds. PMID:25870955

  14. Calcium phosphate/microgel composites for 3D powderbed printing of ceramic materials.

    Science.gov (United States)

    Birkholz, Mandy-Nicole; Agrawal, Garima; Bergmann, Christian; Schröder, Ricarda; Lechner, Sebastian J; Pich, Andrij; Fischer, Horst

    2016-06-01

    Composites of microgels and calcium phosphates are promising as drug delivery systems and basic components for bone substitute implants. In this study, we synthesized novel composite materials consisting of pure β-tricalcium phosphate and stimuli-responsive poly(N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate-co-vinylimidazole) microgels. The chemical composition, thermal properties and morphology for obtained composites were extensively characterized by Fourier transform infrared, X-ray photoelectron spectroscopy, IGAsorp moisture sorption analyzer, thermogravimetric analysis, granulometric analysis, ESEM, energy dispersive X-ray spectroscopy and TEM. Mechanical properties of the composites were evaluated by ball-on-three-balls test to determine the biaxial strength. Furthermore, initial 3D powderbed-based printing tests were conducted with spray-dried composites and diluted 2-propanol as a binder to evaluate a new binding concept for β-tricalcium phosphate-based granulates. The printed ceramic bodies were characterized before and after a sintering step by ESEM. The hypothesis that the microgels act as polymer adhesive agents by efficient chemical interactions with the β-tricalcium phosphate particles was confirmed. The obtained composites can be used for the development of new scaffolds.

  15. Micromechanics Fatigue Damage Analysis Modeling for Fabric Reinforced Ceramic Matrix Composites

    Science.gov (United States)

    Min, J. B.; Xue, D.; Shi, Y.

    2013-01-01

    A micromechanics analysis modeling method was developed to analyze the damage progression and fatigue failure of fabric reinforced composite structures, especially for the brittle ceramic matrix material composites. A repeating unit cell concept of fabric reinforced composites was used to represent the global composite structure. The thermal and mechanical properties of the repeating unit cell were considered as the same as those of the global composite structure. The three-phase micromechanics, the shear-lag, and the continuum fracture mechanics models were integrated with a statistical model in the repeating unit cell to predict the progressive damages and fatigue life of the composite structures. The global structure failure was defined as the loss of loading capability of the repeating unit cell, which depends on the stiffness reduction due to material slice failures and nonlinear material properties in the repeating unit cell. The present methodology is demonstrated with the analysis results evaluated through the experimental test performed with carbon fiber reinforced silicon carbide matrix plain weave composite specimens.

  16. A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing of Ceramic Composites. Part III; Additive Manufacturing and Characterization of Ceramic Composites

    Science.gov (United States)

    Halbig, Michael C.; Grady, Joseph E.; Singh, Mrityunjay; Ramsey, Jack; Patterson, Clark; Santelle, Tom

    2015-01-01

    This publication is the third part of a three part report of the project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing" funded by NASA Aeronautics Research Institute (NARI). The objective of this project was to conduct additive manufacturing to produce ceramic matrix composite materials and aircraft engine components by the binder jet process. Different SiC powders with median sizes ranging from 9.3 to 53.0 microns were investigated solely and in powder blends in order to maximize powder packing. Various infiltration approaches were investigated to include polycarbosilane (SMP-10), phenolic, and liquid silicon. Single infiltrations of SMP-10 and phenolic only slightly filled in the interior. When the SMP-10 was loaded with sub-micron sized SiC powders, the infiltrant gave a much better result of filling in the interior. Silicon carbide fibers were added to the powder bed to make ceramic matrix composite materials. Microscopy showed that the fibers were well distributed with no preferred orientation on the horizontal plane and fibers in the vertical plane were at angles as much as 45deg. Secondary infiltration steps were necessary to further densify the material. Two to three extra infiltration steps of SMP-10 increased the density by 0.20 to 0.55 g/cc. However, the highest densities achieved were 2.10 to 2.15 g/cc. Mechanical tests consisting of 4 point bend tests were conducted. Samples from the two CMC panels had higher strengths and strains to failure than the samples from the two nonfiber reinforced panels. The highest strengths were from Set N with 65 vol% fiber loading which had an average strength of 66 MPa. Analysis of the fracture surfaces did not reveal pullout of the reinforcing fibers. Blunt fiber failure suggested that there was not composite behavior. The binder jet additive manufacturing method was used to also demonstrate the fabrication of turbine engine vane components of two different designs and sizes. The

  17. Effects of magnetic field treatment on dielectric properties of CCTO@Ni/PVDF composite with low concentration of ceramic fillers

    International Nuclear Information System (INIS)

    Using melt mixing, we produced a ceramic/polymer composite with a matrix of polyvinylidene fluoride (PVDF) and a filler of 5 vol.% Ni-deposited CaCu3Ti4O12 core-shell ceramic particles (CCTO@Ni), and studied its prominent dielectric characteristics for the first. Its phase composition and morphology were analyzed by X-ray diffraction and scanning electron microscopy, respectively. After treating the composite films with various durations of a magnetic field treatment, we compared their dielectric properties. We found that the CCTO@Ni ceramic had a typical urchin-like core-shell structure, and that different durations of the magnetic field treatment produced different distributions of ceramic particles in the PVDF matrix. The dielectric permittivity of the untreated CCTO@Ni/PVDF composite was 20% higher than that of neat PVDF, and it had a low loss tangent. However, only the composite treated for 30 min in the magnetic field had an ultra-high dielectric permittivity of 1.41 × 104 at 10 Hz, three orders of magnitude higher than the untreated composite, which declined dramatically with increasing frequency, accompanied by an insulating-conducting phase transition and an increase in loss tangent. Our results demonstrate that changes in the dielectric properties of PVDF composites with magnetic field treatment are closely related to the percolation effect and interfacial polarization

  18. Effects of magnetic field treatment on dielectric properties of CCTO@Ni/PVDF composite with low concentration of ceramic fillers

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Q. G., E-mail: qgchi@hotmail.com, E-mail: empty-cy@l63.com [Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080 (China); State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049 (China); Gao, L. [Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080 (China); College of Electrical Engineering, Suihua University, Suihua 152061 (China); Wang, X.; Chen, Y., E-mail: qgchi@hotmail.com, E-mail: empty-cy@l63.com; Dong, J. F.; Cui, Y.; Lei, Q. Q. [Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080 (China)

    2015-11-15

    Using melt mixing, we produced a ceramic/polymer composite with a matrix of polyvinylidene fluoride (PVDF) and a filler of 5 vol.% Ni-deposited CaCu{sub 3}Ti{sub 4}O{sub 12} core-shell ceramic particles (CCTO@Ni), and studied its prominent dielectric characteristics for the first. Its phase composition and morphology were analyzed by X-ray diffraction and scanning electron microscopy, respectively. After treating the composite films with various durations of a magnetic field treatment, we compared their dielectric properties. We found that the CCTO@Ni ceramic had a typical urchin-like core-shell structure, and that different durations of the magnetic field treatment produced different distributions of ceramic particles in the PVDF matrix. The dielectric permittivity of the untreated CCTO@Ni/PVDF composite was 20% higher than that of neat PVDF, and it had a low loss tangent. However, only the composite treated for 30 min in the magnetic field had an ultra-high dielectric permittivity of 1.41 × 10{sup 4} at 10 Hz, three orders of magnitude higher than the untreated composite, which declined dramatically with increasing frequency, accompanied by an insulating-conducting phase transition and an increase in loss tangent. Our results demonstrate that changes in the dielectric properties of PVDF composites with magnetic field treatment are closely related to the percolation effect and interfacial polarization.

  19. (Al63Cu25Fe12)p/A356 aluminum alloy composites prepared by spray co-deposition

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-ping; XU Zhou

    2006-01-01

    A novel Al-based composite material (Al63Cu25Fe12)p/A356 was prepared by spray co-deposition. It is revealed that the reinforcement of Al63Cu25Fe12 quasicrystalline particles disperses uniformly in the composite with small crystalline grain structure of about 10 μm. The reaction between the Al63Cu25Fe12 quasicrystalline particle and the matrix metal is constrained or depressed because of the high cooling velocity in the process of spray co-deposition. Compared with the composite reinforced by non-continuous ceramics particle, the aging harden behavior of the composites of (Al63Cu25Fe12)p/A356 has outstanding characteristics with less time on aging peak happening and with higher hardening rate. The mechanical properties of the composites evidently enhance except plastic strain.

  20. Ultimate Tensile Strength as a Function of Test Rate for Various Ceramic Matrix Composites at Elevated Temperatures

    Science.gov (United States)

    Choi, Sung R.; Bansal, Narottam P.; Gyekenyesi, John P.

    2002-01-01

    Ultimate tensile strength of five different continuous fiber-reinforced ceramic composites, including SiC/BSAS (2D 2 types), SiC/MAS-5 (2D), SiC/SiC (2D enhanced), and C/SiC(2D) was determined as a function of test rate at I 100 to 1200 'C in air. All five composite materials exhibited a significant dependency of ultimate strength on test rate such that the ultimate strength decreased with decreasing test rate, similar to the behavior observed in many advanced monolithic ceramics at elevated temperatures. The application of the preloading technique as well as the prediction of life from one loading configuration (constant stress rate) to another (constant stress loading) for SiC/BSAS suggested that the overall macroscopic failure mechanism of the composites would be the one governed by a power-law type of damage evolution/accumulation, analogous to slow crack growth commonly observed in advanced monolithic ceramics.

  1. Microstructure and Corrosion Resistance of Cr7C3/γ-Fe Ceramal Composite Coating Fabricated by Plasma Cladding

    Institute of Scientific and Technical Information of China (English)

    LIU Junbo

    2007-01-01

    A new type in situ Cr7C3/γ-Fe ceramal composite coating was fabricated on substrate of hardened and tempered grade C steel by plasma cladding with Fe-Cr-C alloy powders. The ceramal composite coating has a rapidly solidified microstructure consisting of primary Cr7C3 and the Cr7C3/γ-Fe eutectics, and is metallurgically bonded to the degree C steel substrate. The corrosion resistances of the coating in water solutions of 0.5 mol/L H2SO4 and 3.5% NaCl were evaluated utilizing the electrochemical polarization corrosion-test method. Because of the inherent excellent corrosion-resisting properties of the constituting phase and the rapidly solidified homogeneous microstructure, the plasma clad ceramal composite coating exhibits excellent corrosion resistance in the water solutions of 0.5 mol/L H2SO4 and 3.5% NaCl.

  2. Fracture toughness determination of ceramic and resin-based dental composites.

    Science.gov (United States)

    Kvam, K

    1992-01-01

    A new method has been developed for Klc determinations of brittle materials with precracks introduced by indentations. A reference glass, five ceramic materials, and one resin-based composite were tested. Knoop hardness indentations were made with a load of 49 N in a line from edge to edge vertical to the long axis on one surface of four-point flexure bars, to make a continuous crack under the indentations. Five specimens of each material were fractured in a four-point bend test with the line of indentations placed in the zone of constant and maximum tensile stress. Separate unfractured specimens were ground and polished to expose and measure the preformed continuous crack. The mean of six crack-depth measurements was used together with the fracture load and the dimensions of the bend specimens to calculate the fracture toughness, Klc of each material. The determined Klc value (x +/- SD) for the reference glass was 0.81 +/- .24 MPa m1/2 and corresponds to previous studies. The resin-based composite material, Silux Plus, had a value of 1.04 +/- 0.14 MPa m1/2. The Klc values (MPa m1/2) were 0.94 +/- 0.31 for Dicor, 1.41 +/- 0.18 for Cerestore, 1.50 +/- 0.29 for NBK-1000, 1.60 +/- 0.17 for Vitadur-N and 2.14 +/- 0.14 for Hi-Ceram. Hi-Ceram had significantly higher Klc values than the other materials. The new method seemed to be of value in determining the fracture toughness of non-metallic dental materials. PMID:1550892

  3. Preparation of glasses and glass ceramics of heavy metal oxides containing silver: optical, structural and electrochemical properties

    Directory of Open Access Journals (Sweden)

    Bruna A. Bregadiolli

    2012-01-01

    Full Text Available Silver containing heavy metal oxide glasses and glass ceramics of the system WO3-SbPO4-PbO-AgCl with different AgCl contents have been prepared and their thermal, structural and optical properties characterized. Glass ceramics containing metallic silver nanoparticles have been prepared by annealing glass samples at temperatures above the glass transition and analyzed by transmission electron microscopy and energy dispersive X-ray microanalysis. The presence of the metallic clusters has been also confirmed by the observation of a surface plasmon resonance band in the visible range. Cyclic voltammetric measurements indicated the presence of metallic silver into the glasses, even before to perform the thermal treatment.

  4. MASBAL: A computer program for predicting the composition of nuclear waste glass produced by a slurry-fed ceramic melter

    Energy Technology Data Exchange (ETDEWEB)

    Reimus, P.W.

    1987-07-01

    This report is a user's manual for the MASBAL computer program. MASBAL's objectives are to predict the composition of nuclear waste glass produced by a slurry-fed ceramic melter based on a knowledge of process conditions; to generate simulated data that can be used to estimate the uncertainty in the predicted glass composition as a function of process uncertainties; and to generate simulated data that can be used to provide a measure of the inherent variability in the glass composition as a function of the inherent variability in the feed composition. These three capabilities are important to nuclear waste glass producers because there are constraints on the range of compositions that can be processed in a ceramic melter and on the range of compositions that will be acceptable for disposal in a geologic repository. MASBAL was developed specifically to simulate the operation of the West Valley Component Test system, a commercial-scale ceramic melter system that will process high-level nuclear wastes currently stored in underground tanks at the site of the Western New York Nuclear Services Center (near West Valley, New York). The program is flexible enough, however, to simulate any slurry-fed ceramic melter system. 4 refs., 16 figs., 5 tabs.

  5. MASBAL: A computer program for predicting the composition of nuclear waste glass produced by a slurry-fed ceramic melter

    International Nuclear Information System (INIS)

    This report is a user's manual for the MASBAL computer program. MASBAL's objectives are to predict the composition of nuclear waste glass produced by a slurry-fed ceramic melter based on a knowledge of process conditions; to generate simulated data that can be used to estimate the uncertainty in the predicted glass composition as a function of process uncertainties; and to generate simulated data that can be used to provide a measure of the inherent variability in the glass composition as a function of the inherent variability in the feed composition. These three capabilities are important to nuclear waste glass producers because there are constraints on the range of compositions that can be processed in a ceramic melter and on the range of compositions that will be acceptable for disposal in a geologic repository. MASBAL was developed specifically to simulate the operation of the West Valley Component Test system, a commercial-scale ceramic melter system that will process high-level nuclear wastes currently stored in underground tanks at the site of the Western New York Nuclear Services Center (near West Valley, New York). The program is flexible enough, however, to simulate any slurry-fed ceramic melter system. 4 refs., 16 figs., 5 tabs

  6. Toughening mechanism of lined Al2O3-ZrO2 multiphase ceramics in SHS composite pipes

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Hypoeutectic and hypereutectic Al2O3-ZrO2 multiphase ceramics-lined composite pipes were produced by using the gravitational separation self-propagate high-temperature synthesis (SHS) process.The microstructure of the ceramics was observed by means of SEM and EPMA.The fracture toughness of the multiphase ceramics was tested by using the Vickers indentation method.The ceramics is 15.23 Mpa.m1/2.The toughening mechanisms were systematically investigated by means of SEM and XRD.The results show that the bridging toughening mechanism, stress induced ZrO2 transformation toughening mechanism, and microcrack toughening mechanism are the predominant toughening mechanism.

  7. Preparation of Silver- and Zinc-Doped Mullite-Based Ceramics Showing Anti-Bacterial Biofilm Properties

    OpenAIRE

    Suhair Saleh; Mutasem O. Taha; Haddadin, Randa N.; Duá Marzooqa; Hamdallah Hodali

    2011-01-01

    Zinc- and silver-doped mullite ceramic discs were prepared and tested as potentially resistant materials against bacterial adhesion and biofilm formation. Elemental analysis and X-ray diffraction studies showed that zinc ions were incorporated in the structural framework of the mullite, while silver ions remained outside the mullite crystal lattice, which allowed their slow (0.02 ppm/24 hours) leaching into the surrounding aqueous environment. In agreement with this behavior, silver-doped mul...

  8. Synthesis of inorganic materials in a supercritical carbon dioxide medium. Application to ceramic cross-flow filtration membranes preparation

    International Nuclear Information System (INIS)

    Membrane separations, using cross-flow mineral ceramic membranes, allows fractionation of aqueous solutions due to the molecular sieve effect and electrostatic charges. To obtain a high selectivity, preparation of new selective ceramic membranes is necessary. We propose in this document two different routes to prepare such cross-flow tubular mineral membranes. In the first exposed method, a ceramic material is used, titanium dioxide, synthesized in supercritical carbon dioxide by the hydrolysis of an organometallic precursor of the oxide. The influence of operating parameters is similar to what is observed during a liquid-phase synthesis (sol-gel process), and leads us to control the size and texture of the prepared particles. This material is then used to prepare mineral membrane with a compressed layer process. The particles are mixed with organic components to form a liquid suspension. A layer is then deposited on the internal surface of a tubular porous support by slip-casting. The layer is then dried and compressed on the support before sintering. The obtained membranes arc in the ultrafiltration range. A second process has been developed in this work. It consists on the hydrolysis, in a supercritical CO2 medium, of a precursor of titanium dioxide infiltrated into the support. The obtained material is then both deposited on the support but also infiltrated into the porosity. This new method leads to obtain ultrafiltration membranes that retain molecules which molecular weight is round 4000 g.mol-1. Furthermore, we studied mass transfer mechanisms in cross-flow filtration of aqueous solutions. An electrostatic model, based on generalized Nernst-Planck equation that takes into account electrostatic interactions between solutes and the ceramic material, lead us to obtain a good correlation between experimental results and the numerical simulation. (author)

  9. Preparation and antimicrobial assay of ceramic brackets coated with TiO2 thin films

    Science.gov (United States)

    Cao, Shuai; Wang, Ye; Cao, Lin; Wang, Yu; Lin, Bingpeng; Lan, Wei

    2016-01-01

    Objective Different methods have been utilized to prevent enamel demineralization and other complications during orthodontic treatment. However, none of these methods can offer long-lasting and effective prevention of orthodontic complications or interventions after complications occur. Considering the photocatalytic effect of TiO2 on organic compounds, we hoped to synthesize a novel bracket with a TiO2 thin film to develop a photocatalytic antimicrobial effect. Methods The sol-gel dip coating method was used to prepare TiO2 thin films on ceramic bracket surfaces. Twenty groups of samples were composed according to the experimental parameters. Crystalline structure and surface morphology were characterized by X-ray diffraction and scanning electron microscopy, respectively; film thickness was examined with a surface ellipsometer. The photocatalytic properties under ultraviolet (UV) light irradiation were analyzed by evaluating the degradation ratio of methylene blue (MB) at a certain time. Antibacterial activities of selected thin films were also tested against Lactobacillus acidophilus and Candida albicans. Results Films with 5 coating layers annealed at 700℃ showed the greatest photocatalytic activity in terms of MB decomposition under UV light irradiation. TiO2 thin films with 5 coating layers annealed at 700℃ exhibited the greatest antimicrobial activity under UV-A light irradiation. Conclusions These results provide promising guidance in prevention of demineralization by increasing antimicrobial activities of film coated brackets. PMID:27226960

  10. Preparation,Electrochemical Behavior and Electrocatalytic Activity of a Copper Hexacyanoferrate Modified Ceramic Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    YU,Hao; ZHENG,Jian-Bin

    2007-01-01

    A copper hexacyanoferrate modified ceramic carbon electrode(CuHCF/CCE)had been prepared by two-step sol-gel technique and characterized using electrochemical methods.The resulting modified electrode showed a pair of well-defined surface waves in the potential range of 0.40 to 1.0 V with the formal potential of 0.682 V (vs.SCE)in 0.050 mol·dm-3 HOAc-NaOAc buffer containing 0.30 mol·dm-3 KCI.The charge transfer coefficient (α) and charge transfer rate constant(Ks)for the modified electrode were calculated.The electrocatalytic activity of this modified electrode to hydrazine was also investigated,and chronoamperometry was exploited to conveniently determine the diffusion coefficient(D)of hydrazine in solution and the catalytic rate constant(Kcat).Finally,hydrazine was determined with amperometry using the resulting modified electrode.The calibration plot for hydrazine determination was linear in 3.0×10-6-7.5×10-4 mol·dm-3 with the detection limit of 8.0×10-7 mol·dm-3.This modified electrode had some advantages over the modified film electrodes constructed by the conventional methods,such as renewable surface,good long-term stability,excellent catalytic activity and short response time to hydrazine.

  11. Surface properties of ceramic/metal composite materials for thermionic converter applications

    International Nuclear Information System (INIS)

    Ceramic/metal composite electrode materials are of interest for thermionic energy conversion (TEC) applications for several reasons. These materials consist of submicron metal fibers or islands in an oxide matrix and therefore provide a basis for fabricating finely structured electrodes, with projecting or recessed metallic regions for more efficient electron emission or collection. Furthermore, evaporation and surface diffusion of matrix oxides may provide oxygen enhancement of cesium adsorption and work function lowering at both the collecting and emitting electrode surfaces of the TEC. Finally, the high work function oxide matrix or oxide-metal interfaces may provide efficient surface ionization of cesium for space-charge reduction in the device. The authors are investigating two types of ceramic/metal composite materials. One type is a directionally solidified eutectic consisting of a bulk oxide matrix such as UO2 or stabilized ZrO2 with parallel metal fibers (W) running through the oxide being exposed at the surface by cutting perpendicular to the fiber direction. The second type of material, called a surface eutectic, consists of a refractory substrate (Mo) with a thin layer of deposited and segregated material (Mo-Cr2O3-A12O3) on the surface. The final configuration of this layer is an oxide matrix with metallic islands scattered throughout

  12. Magnetic field expulsion in superconducting granular ceramics and in polymer/superconductor composites

    Energy Technology Data Exchange (ETDEWEB)

    Benlhachemi, A. [Univ. de Toulon et du Var, La Garde (France). Lab. des Materiaux Multiphases et Interfaces]|[Lab. de Chimie des Solides, Faculte des Sciences, Univ. Ibnou Zohr, Agadir (Morocco); Fremy, M.A.; Breandon, C.; Tatarenko, H.; Gavarri, J.R. [Univ. de Toulon et du Var, La Garde (France). Lab. des Materiaux Multiphases et Interfaces; Benyaich, H. [Lab. de Chimie des Solides, Faculte des Sciences, Univ. Ibnou Zohr, Agadir (Morocco)

    1998-05-01

    The magnetic interaction between a permanent magnet and superconducting ceramics such as YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} and Bi{sub 1.6}Pb{sub 0.4}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub (10+} {sub de} {sub lta)} depend on the superconducting state of each phase and on the junctions between grains. In the case of polymer/superconductor composites, screening effects depend on the volume fraction of superconductor. Measurements of the evolution of the levitation force (F=A/d{sup {gamma}}) as a function of the interaction distance d are used to characterize the effective response of the ceramics or composites to the magnetic flux penetration. Some of the abnormal variations of the exponent {gamma} and of the term A (in F=A/d{sup {gamma}}) could be reinterpreted in terms of a change in superconducting regime. Other observed variations of {gamma} should be due to the variation of the effective field from the cylindrical magnet. (orig.) 19 refs.

  13. MAIN FACTORS IN PREPARATION OF ANTIBACTERIAL PARTICLES/PVC COMPOSITE

    Institute of Scientific and Technical Information of China (English)

    Xuehua Chen; Chunzhong Li; Ling Zhang; Shoufang Xu; Qiuling Zhou; Yihua Zhu; Xianzhang Qu

    2004-01-01

    Zirconium phosphate containing silver was chosen as antibacterial particles in preparing antibacterial particles/PVC composite. The effect of surface property of the antibacterial particles and of their filler content on the properties of antibacterial particles/PVC composite was studied. The effect of the interfacial compatibility on mechanical properties of the composite was also discussed. Experimental results showed that the antibacterial PVC composite had good antibacterial property, reaching almost 100% bacteriostatic level at an antibacterial powder filler content of 1.5 phr.

  14. Crystallization and dielectric properties of lead-free glass-ceramic composites with Gd_2O_3 addition

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Lead-free glass-ceramic composites in barium sodium niobate silica system with Gd2O3 addition were synthesized through melt-casting fol-lowed by controlled crystallization technique. Crystallization and dielectric properties of the Gd2O3 adding glass-ceramic composites were investigated. With the increase in the concentration of Gd2O3, the glass transition temperature and the crystallization temperature of the pre-cursor glass shift towards the higher temperature. The crystallization behavior that occurred ...

  15. Data on post irradiation experiments of heat resistant ceramic composite materials. PIE for 97M-13A

    International Nuclear Information System (INIS)

    The research on the radiation damage mechanism of heat resistant ceramic composite materials is one of the research subjects of the innovative basic research in the field of high temperature engineering, using the High Temperature engineering Test Reactor (HTTR). Three series of irradiation tests on the heat resistant ceramic composite materials, first to third irradiation test program, were carried out using the Japan Material Testing Reactor (JMTR). This is a summary report on the first irradiation test program; irradiation induced dimensional change, thermal expansion coefficient, X-ray diffraction and γ-ray spectrum are reported. (author)

  16. Data on post irradiation experiments of heat resistant ceramic composite materials. PIE for 97M-13A

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Shin-ichi; Ishihara, Masahiro; Souzawa, Shizuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Sekino, Hajime [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The research on the radiation damage mechanism of heat resistant ceramic composite materials is one of the research subjects of the innovative basic research in the field of high temperature engineering, using the High Temperature engineering Test Reactor (HTTR). Three series of irradiation tests on the heat resistant ceramic composite materials, first to third irradiation test program, were carried out using the Japan Material Testing Reactor (JMTR). This is a summary report on the first irradiation test program; irradiation induced dimensional change, thermal expansion coefficient, X-ray diffraction and {gamma}-ray spectrum are reported. (author)

  17. Physics-Based Design Tools for Lightweight Ceramic Composite Turbine Components with Durable Microstructures

    Science.gov (United States)

    DiCarlo, James A.

    2011-01-01

    Under the Supersonics Project of the NASA Fundamental Aeronautics Program, modeling and experimental efforts are underway to develop generic physics-based tools to better implement lightweight ceramic matrix composites into supersonic engine components and to assure sufficient durability for these components in the engine environment. These activities, which have a crosscutting aspect for other areas of the Fundamental Aero program, are focusing primarily on improving the multi-directional design strength and rupture strength of high-performance SiC/SiC composites by advanced fiber architecture design. This presentation discusses progress in tool development with particular focus on the use of 2.5D-woven architectures and state-of-the-art constituents for a generic un-cooled SiC/SiC low-pressure turbine blade.

  18. Low-Activation structural ceramic composites for fusion power reactors: materials development and main design issues

    International Nuclear Information System (INIS)

    This paper is devoted to the development of advanced Low-Activation Materials (LAMs) with favourable short-term activation characteristics for the use as structural materials in a fusion power reactor (in order to reduce the risk associated with a major accident, in particular those related with radio-isotopes release in the environment), and to try to approach the concept of an inherently safe reactor. LA Ceramics Composites (LACCs) are the most promising LAMs because of their relatively good thermo-mechanical properties. At present, SiC/SiC composite is the only LACC considered by the fusion community, and therefore is the one having the most complete data base. The preliminary design of a breeding blanket using SiC/SiC as structural material indicated that significant improvement of its thermal conductivity is required. (orig.)

  19. Effect of sintering temperatures on titanium matrix composites reinforced by ceramic particles

    Energy Technology Data Exchange (ETDEWEB)

    Romero, F.; Amigo, V.; Busquets, D.; Klyatskina, E. [Mechanical and Materials Engineering Department. Polytechnical University of Valencia, Valencia (Spain)

    2005-07-01

    Titanium and titanium composites have a potential use in aerospace and biotechnology industries, and nowadays in others like sports and fashion ones. In this work composite materials, based on titanium matrix reinforced with ceramic particles, have been developed. PM route is used to obtain compact and sintered samples. TiN and TiAl powders, are milled with Ti powder in different volumetric percentages in a ball mill. These mixtures are pressed in a uniaxial press and sintered in a vacuum furnace at different temperatures between 1180 to 1220 deg. C. Porosity of samples is analysed, before and after the sintering process, by Archimedes technique and by image analysis. Mechanical properties and the reinforcement particles influence in the titanium matrix are studied by flexion test in green and sintered states, and by hardness and microhardness tests. Complimentarily, a microstructural analysis is carried out by optical and electron microscopy, and the reactivity between the reinforce particles and titanium matrix are studied. (authors)

  20. Continuous fiber ceramic composite. Phase I final report, April 1992--April 1993

    Energy Technology Data Exchange (ETDEWEB)

    Goettler, R.W.

    1995-04-01

    Babcock and Wilcox assembled a team to develop the Continuous Fiber Ceramic Composite (CFCC) processing technology, identify the industrial applications, generate design and life prediction software, and to begin the necessary steps leading to full commercialization of CFCC components. Following is a summary of Phase I activities on this program. B&W has selected an oxide-oxide composite system for development and optimization in this program. This selection was based on the results of exposure tests in combustion environments typical of the boiler and heat exchanger applications. Aluminum oxide fiber is the selected reinforcement, and both aluminum oxide and zirconium oxide matrices were selected, based on their superior resistance to chemical attack in hostile industrial service.