WorldWideScience

Sample records for ceramic coatings

  1. Ceramic electrolyte coating and methods

    Science.gov (United States)

    Seabaugh, Matthew M.; Swartz, Scott L.; Dawson, William J.; McCormick, Buddy E.

    2007-08-28

    Aqueous coating slurries useful in depositing a dense coating of a ceramic electrolyte material (e.g., yttrium-stabilized zirconia) onto a porous substrate of a ceramic electrode material (e.g., lanthanum strontium manganite or nickel/zirconia) and processes for preparing an aqueous suspension of a ceramic electrolyte material and an aqueous spray coating slurry including a ceramic electrolyte material. The invention also includes processes for depositing an aqueous spray coating slurry including a ceramic electrolyte material onto pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

  2. Nano-Ceramic Coated Plastics

    Science.gov (United States)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (nano-ceramic coatings (TiO2, ZnO) on plastic materials (silicone, Teflon, PET, etc.) that can possess both photocatalytic oxide properties and flexible plastic properties. Processing cost is low and it does not require any expensive equipment investment. Processing can be scalable to current manufacturing infrastructure.

  3. Ceramic coating on ceramic with metallic bond coating

    Science.gov (United States)

    Kishitake, K.; Era, H.; Otsubo, F.; Sonoda, T.

    1997-09-01

    The change in structure and adhesion strength of the interface by heating in air has been investigated for a plasma- sprayed alumina coating on a ceramic substrate with a 50Ni- 50Cr alloy bond coating. A veined structure composed of NiO, NiCr 2O4, and NiAl2O4 oxides grew from the bond coating into cracks or pores in the top coating and the alumina substrate after heating at 1273 K for 20 h in air. The NiAl2O4 spinel may have formed by the oxidization of nickel, which subsequently reacted with the alumina coating or the substrate. The mechanism of the penetration of the spinel oxides into the cracks or pores is not clear. The adhesion strength of the coating is increased to about 15 MPa after heating at 1273 K for 20 h in air, compared to an as- sprayed coating strength of only 1.5 MPa.

  4. Ceramic with zircon coating

    Science.gov (United States)

    Wang, Hongyu (Inventor)

    2003-01-01

    An article comprises a silicon-containing substrate and a zircon coating. The article can comprise a silicon carbide/silicon (SiC/Si) substrate, a zircon (ZrSiO.sub.4) intermediate coating and an external environmental/thermal barrier coating.

  5. Applications of sol gel ceramic coatings

    International Nuclear Information System (INIS)

    The sol gel method is a chemical technique in which polycrystalline ceramic films are fabricated from a solution of organometallic precursors. The technique is attractive for many industrial applications because it is a simple (films are processed in air), flexible (can be used to coat complex geometries) and cost effective (does not require expensive equipment) process. In addition, dense, high quality coatings can be achieved at much lower temperatures than is generally required for sintering bulk ceramics. In this paper the conventional sol gel method and the new datec process are reviewed and potential applications of sol gel coatings in automotive, aerospace, petrochemical, nuclear and electronic industries are discussed. (orig.)

  6. High-temperature corrosion resistance of ceramics and ceramic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, P.F.

    1996-06-01

    Ceramics and ceramic composites offer the potential to operate fossil energy systems at the higher temperatures necessary for improved energy efficiency and better environmental control. However, because many fossil fuel-derived processes contain sulfur, chlorine, and carbon, as well as oxygen, degradation from high-temperature corrosion and environmental effects arising from reactions of solids with gases and condensable products is a common life-determining factor in operating systems. Ceramic-based products are not immune to such degradation; adequate corrosion resistance must be assured to exploit the technical and economic potential of such materials. This is normally accomplished by using stable, sound oxides that exist in their bulk form, that naturally grow as surface layers upon exposure to an oxidizing environment, or that are deposited as a coating on a susceptible material. It is therefore important to examine the critical issues with respect to more environmental stability of ceramics that have the potential to be corrosion resistant in particular fossil environments. Key aspects include not only chemical compatibility, but the influence of the environment on the mechanical behavior of the ceramic materials. In addition, for coatings, the mechanical reliability of the ceramic is a key issue in that an otherwise corrosion-resistant surface layer must remain sound and adherent in order to provide protection to the underlying substrate. The purpose of this work is to support the development of advanced ceramics and ceramic composites for applications in fossil environments by examining critical issues related to high-temperature corrosion resistance. More specifically, the overall objective of this task is to examine the chemical compatibility and reliability of potentially corrosion-resistant ceramics being developed as protective overcoats and/or structural materials as parts of other work elements funded by the AR&TD Program.

  7. Hollow sphere ceramic particles for abradable coatings

    International Nuclear Information System (INIS)

    A hollow sphere ceramic flame spray powder is disclosed. The desired constituents are first formed into agglomerated particles in a spray drier. Then the agglomerated particles are introduced into a plasma flame which is adjusted so that the particles collected are substantially hollow. The hollow sphere ceramic particles are suitable for flame spraying a porous and abradable coating. The hollow particles may be selected from the group consisting of zirconium oxide and magnesium zirconate

  8. Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rajendra Bordia

    2009-07-31

    The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-fired environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and

  9. Coating of ceramic powders by chemical vapor deposition techniques (CVD)

    International Nuclear Information System (INIS)

    New ceramic materials with selected advanced properties can be designed by coating of ceramic powders prior to sintering. By variation of the core and coating material a large number of various powders and ceramic materials can be produced. Powders which react with the binder phase during sintering can be coated with stable materials. Thermal expansion of the ceramic materials can be adjusted by varying the coating thickness (ratio core/layer). Electrical and wear resistant properties can be optimized for electrical contacts. A fluidized bed reactor will be designed which allow the deposition of various coatings on ceramic powders. (author)

  10. Multilayer ultra-high-temperature ceramic coatings

    Science.gov (United States)

    Loehman, Ronald E.; Corral, Erica L.

    2012-03-20

    A coated carbon-carbon composite material with multiple ceramic layers to provide oxidation protection from ultra-high-temperatures, where if the carbon-carbon composite material is uninhibited with B.sub.4C particles, then the first layer on the composite material is selected from ZrB.sub.2 and HfB.sub.2, onto which is coated a layer of SiC coated and if the carbon-carbon composite material is inhibited with B.sub.4C particles, then protection can be achieved with a layer of SiC and a layer of either ZrB.sub.2 and HfB.sub.2 in any order.

  11. Environmental Barrier Coatings for Ceramics and Ceramic Composites

    Science.gov (United States)

    Lee, Kang N.; Fox, Dennis; Eldridge, Jeffrey; Robinson, R. Craig; Bansal, Narottam

    2004-01-01

    One key factor that limits the performance of current gas turbine engines is the temperature capability of hot section structural components. Silicon-based ceramics, such as SiC/SiC composites and monolithic Si3N4, are leading candidates to replace superalloy hot section components in the next generation gas turbine engines due to their excellent high temperature properties. A major stumbling block to realizing Si-based ceramic hot section components is the recession of Si-based ceramics in combustion environments due to the volatilization of silica scale by water vapor. An external environmental barrier coating (EBC) is the most promising approach to preventing the recession. Current EBCs are based on silicon, mullite (3A12O3-2SiO2) and BSAS (barium strontium aluminum silicate with celsian structure). Volatility of BSAS, BSAS-silica chemical reaction, and low melting point of silicon limit the durability and temperature capability of current EBCs. Research is underway to develop EBCs with longer life and enhanced temperature capability. Understanding key issues affecting the performance of current EBCs is necessary for successful development of advanced EBCs. These issues include stress, chemical compatibility, adherence, and water vapor stability. Factors that affect stress are thermal expansion mismatch, phase stability, chemical stability, elastic modulus, etc. The current understanding on these issues will be discussed.

  12. Corrosion resistance of phosphated steels with plasma sprayed ceramic coatings

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Mastný, L.; Pokorný, P.

    Zagreb: Croatian Metallurgical Society (CMS), 2014 - (Mamuzić, I.). s. 401 ISBN N. [International Symposium of Croatian Metallurgical Society SHMD 2014/11./. 22.06.2014-26.06.2014, Šibenik] Institutional support: RVO:61389021 Keywords : steel phosphating * phosphate coatings * plasma spraying * ceramic coatings * corrosion resistance * bond strength of coatings Subject RIV: CA - Inorganic Chemistry

  13. Hardness and electrochemical behavior of ceramic coatings on Inconel

    Directory of Open Access Journals (Sweden)

    C. SUJAYA

    2012-03-01

    Full Text Available Thin films of ceramic materials like alumina and silicon carbide are deposited on Inconel substrate by pulsed laser deposition technique using Q-switched Nd: YAG laser. Deposited films are characterized using UV-visible spectrophotometry and X-ray diffraction. Composite microhardness of ceramic coated Inconel system is measured using Knoop indenter and its film hardness is separated using a mathematical model based on area-law of mixture. It is then compared with values obtained using nanoindentation method. Film hardness of the ceramic coating is found to be high compared to the substrates. Corrosion behavior of substrates after ceramic coating is studied in 3.5% NaCl solution by potentiodynamic polarization and electrochemical impedance spectroscopy measurements. The Nyquist and the Bode plots obtained from the EIS data are fitted by appropriate equivalent circuits. The pore resistance, the charge transfer resistance, the coating capacitance and the double layer capacitance of the coatings are obtained from the equivalent circuit. Experimental results show an increase in corrosion resistance of Inconel after ceramic coating. Alumina coated Inconel showed higher corrosion resistance than silicon carbide coated Inconel. After the corrosion testing, the surface topography of the uncoated and the coated systems are examined by scanning electron microscopy.

  14. Spin coating of passive electroactive ceramic devices

    International Nuclear Information System (INIS)

    This thesis reports an extensive body of research undertaken to provide information relating to the potential integration of several passive electronic components, namely, multilayer ceramic capacitors (MLCC), ferrite inductors and thick film resistors. The specific materials concerned are barium-titanate based dielectrics, a ferrite inductor paste and a ruthenium-based resistor paste. The central objective is to investigate the potential for spin coating of standard and modified slip/paste formulations for use in the production of well defined layers of the dielectric and ferrite materials. Aspects of this technology, which might restrict co-deposition of these systems, have been addressed. In addition, their potential integration with ruthenium oxide resistor films has been explored. Layers of the main materials, obtained by standard commercial processing methods of screen printing and doctor blading, have been used for direct comparison. Extensive characterisation has been carried out on the materials in the powder form, both before and after thermal processing. These data then act as a benchmark for the key materials properties in their subsequent analysis in thin film layer form. The analytical techniques used include: Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Analysis (EDX), X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS). Characterisation of the barium titanate based dielectric ceramic and ferrite inductor paste materials as powders before and after thermal processing in the range 150, 500, 850 and 1150 deg C indicates a high carbon content in the surface region. By comparison, spin coated layers of each of these systems on alumina substrates before and after heating in the same temperature range as that used for the residual powders, showed a marked decrease in the carbon content in the surface region. In addition, deposition of the dielectric onto a ferrite surface which itself had been

  15. CVD COATING OF CERAMIC LAYERS ON CERAMIC CUTTING TOOL MATERIALS

    OpenAIRE

    Porat, R.

    1991-01-01

    When forming cutting tool materials based on ceramic components, one must take into considration the combination of wear resistance and mechanical properties which can withstand unfavorable cutting conditions at the same time maintaining high strength and fracture toughness. Ceramic cutting tools which are designed for machining at high cutting speeds and which have high strength and fracture toughness can be formed by applying a thin layer of ceramic materials on the substrate in order to in...

  16. Ceramic thermal barrier coatings for electric utility gas turbine engines

    Science.gov (United States)

    Miller, R. A.

    1986-01-01

    Research and development into thermal barrier coatings for electric utility gas turbine engines is reviewed critically. The type of coating systems developed for aircraft applications are found to be preferred for clear fuel electric utility applications. These coating systems consists of a layer of plasma sprayed zirconia-yttria ceramic over a layer of MCrAly bond coat. They are not recommended for use when molten salts are presented. Efforts to understand coating degradation in dirty environments and to develop corrosion resistant thermal barrier coatings are discussed.

  17. Reactivity of ceramic coating materials with uranium and uranium trichlorid

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Ho; Cho, Choon Ho; Lee, Yoon Sang; Lee, Han Soo; Kim, Jeong Guk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    Uranium and uranium alloys are typically induction melted in graphite crucibles under a vacuum. The graphite crucible is used for the manufacturing of uranium ingots in the casting equipment. But, due to the chemical reactivity of uranium and most alloying elements with carbon, a protective ceramic coating is generally applied to the crucibles. In this study, to investigate the most suitable ceramic coating material applied to graphite melting crucibles and ingot moldsused in the melting and casting of uranium in the casting equipment, firstly, the thermodynamic analysis was performed by using HSC software to investigate the reactivity between uranium and several ceramic materials and the experiments on the reaction of ceramic coated crucibles in molten uranium were carried out at 1300 .deg. C

  18. Reactivity of ceramic coating materials with uranium and uranium trichlorid

    International Nuclear Information System (INIS)

    Uranium and uranium alloys are typically induction melted in graphite crucibles under a vacuum. The graphite crucible is used for the manufacturing of uranium ingots in the casting equipment. But, due to the chemical reactivity of uranium and most alloying elements with carbon, a protective ceramic coating is generally applied to the crucibles. In this study, to investigate the most suitable ceramic coating material applied to graphite melting crucibles and ingot moldsused in the melting and casting of uranium in the casting equipment, firstly, the thermodynamic analysis was performed by using HSC software to investigate the reactivity between uranium and several ceramic materials and the experiments on the reaction of ceramic coated crucibles in molten uranium were carried out at 1300 .deg. C

  19. Electrodeposition of nanostructured Nickel-Ceramic composite coatings: A review

    OpenAIRE

    Ahmad, Yahia H.; Mohamed, Adel M.A.

    2014-01-01

    This review presents a recent literature on electrochemically prepared nickel-ceramic nanocomposites coatings. These nanostructured coatings exhibit remarkable enhanced corrosion resistance and microhardness which are of interest for applications in diverse fields. In this review article significant attention is paid to the mechanisms of metal-particle electrocodeposition and different parameters affecting the electrodeposition process. Different techniques used in characterization of these c...

  20. Finite Element Analysis of Ceramic Coatings under Spherical Indentation with Metallic Interlayer: Part Ⅰ Uncracked Coatings

    Institute of Scientific and Technical Information of China (English)

    Minh-Quy LE; Seock-Sam KIM

    2006-01-01

    Spherical indentation of ceramic coatings with metallic interlayer was performed by means of axisymmetric finite element analysis (FEA). Two typical ceramic coatings with relatively high and low elastic modulus deposited on aluminum alloy and carbon steel were considered. Various combinations of indenter radius-coating thickness ratios and interlayer thickness-coating thickness ratios were used in the modeling. The effects of the interlayer, the coating and the substrate on the indentation behavior, such as the radial stress distribution along the coating surface as well as the coating interface, and the plastic deformation zone evolution in the substrate were investigated in connection with the above mentioned ratios. The coating cracking dominant modes were also discussed within the context of the peak tensile stresses on the coating surface and on the coating interface.

  1. Superhydrophobic Ceramic Coatings by Solution Precursor Plasma Spray

    OpenAIRE

    Yuxuan Cai; Coyle, Thomas W.; Gisele Azimi; Javad Mostaghimi

    2016-01-01

    This work presents a novel coating technique to manufacture ceramic superhydrophobic coatings rapidly and economically. A rare earth oxide (REO) was selected as the coating material due to its hydrophobic nature, chemical inertness, high temperature stability, and good mechanical properties, and deposited on stainless steel substrates by solution precursor plasma spray (SPPS). The effects of various spraying conditions including standoff distance, torch power, number of torch passes, types of...

  2. Facility for continuous CVD coating of ceramic fibers

    Science.gov (United States)

    Moore, Arthur W.

    1992-01-01

    An inductively heated CVD furnace of pilot-plant scale, whose hot zone is 150 mm in diameter x 300 mm in length, has been adapted for continuous coating of ceramic yarns. Coatings at very low pressures are possible in this facility due to the fact that the entire apparatus, including yarn feeding and collecting equipment, is under vacuum. SiC yarn has been coated with 0.1-0.2 microns of BN at yarn speeds of 60 cm/min; a 500-m spool; was coated in about 14 hrs. Coating capacity was tripled by adding pulleys to allow three yarn passes through the furnace.

  3. Superhydrophobic Ceramic Coatings by Solution Precursor Plasma Spray

    Science.gov (United States)

    Cai, Yuxuan; Coyle, Thomas W.; Azimi, Gisele; Mostaghimi, Javad

    2016-04-01

    This work presents a novel coating technique to manufacture ceramic superhydrophobic coatings rapidly and economically. A rare earth oxide (REO) was selected as the coating material due to its hydrophobic nature, chemical inertness, high temperature stability, and good mechanical properties, and deposited on stainless steel substrates by solution precursor plasma spray (SPPS). The effects of various spraying conditions including standoff distance, torch power, number of torch passes, types of solvent and plasma velocity were investigated. The as-sprayed coating demonstrated a hierarchically structured surface topography, which closely resembles superhydrophobic surfaces found in nature. The water contact angle on the SPPS superhydrophobic coating was up to 65% higher than on smooth REO surfaces.

  4. Tribological Behaviour of the Ceramic Coating Formed on Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    CHEN Fei; ZHOU Hai; CHEN Qiang; GE Yuanjing; LV Fanxiu

    2007-01-01

    Micro-arc oxidation is a recently developed surface treatment technology under anodic oxidation. Through micro-arc oxidation, a ceramic coating is directly formed on the surface of magnesium alloy, by which its surface property is significantly improved. In this paper, a dense ceramic oxide coating was prepared on an AZ31 magnesium alloy by micro-arc oxidation in a NaOH-Na2SiO3-NaB4O7-(NaPO3)6 electrolytic solution. Micro-structure, surface morphology and phase composition were analysed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The tribological behavior of the micro-arc oxidation ceramic coating under dry sliding against GCrl5 steel was evaluated on a ball-on-disc test rig. The results showed that the AZ31 alloy was characterized by adhesion wear and scuffing under dry sliding against the steel, while the surface micro-arc oxidation ceramic coating experienced much abated adhesion wear and scuffing under the same testing conditions. The micro-arc oxidation ceramic coating showed good friction-reducing and fair antiwear ability in dry sliding against the steel.

  5. Ballistic performance of polyurea-coated armor grade ceramic tiles

    Science.gov (United States)

    Samiee, Ahsan; Isaacs, Jon; Nemat-Nasser, Sia

    2010-04-01

    The use of ceramics as energy absorbents has been studied by many researchers and some improvements in the ballistic performance of ceramic tiles have been made by coating them with different classes of materials (e.g. E-glass/epoxy, carbon-fiber/epoxy, etc.). Using ceramics for energy absorbing applications leads to a significant weight reduction of the system. Therefore, any modification to the ceramic configuration in the system which leads to more energy absorption with the same or less areal density is significant. On the other hand, polyurea has been proved to be an excellent energy dissipating agent in many applications. Inspired by this, we are studying the effect of coating ceramics with polyurea and other materials, on the energy absorption and ballistic performance of the resulting ceramic-based composites. In this study, we investigate the effect of polyurea on ballistic efficiency of ceramic tiles. To this end, we have performed a set of penetration tests on polyurea-ceramic composites. In our experiments, a high velocity projectile is propelled to impact and perforate the ceramic-polyurea composite. The velocity and mass of the projectile are measured before and after the penetration. The change in the kinetic energy of the projectile is evaluated and compared for different polyurea-ceramic configurations (e.g., polyurea on front face, polyurea on back face, polyurea between two ceramic tiles, etc.). The experimental results suggest that polyurea is not as effective as other restraining materials such as E-glass/epoxy and carbon-fiber/epoxy.

  6. Development and Fatigue Testing of Ceramic Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dong-Ming; Choi, Sung R.; Miller, Robert A.

    2004-01-01

    Ceramic thermal barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. Durability of the coating systems remains a critical issue with the ever-increasing temperature requirements. Thermal conductivity increase and coating degradation due to sintering and phase changes are known to be detrimental to coating performance. There is a need to characterize the coating thermal fatigue behavior and temperature limit, in order to potentially take full advantage of the current coating capability. In this study, thermal conductivity and cyclic fatigue behaviors of plasma-sprayed ZrO2-8wt%Y2O3 thermal barrier coatings were evaluated under high temperature, large thermal gradient and thermal cycling conditions. The coating degradation and failure processes were assessed by real-time monitoring of the coating thermal conductivity under the test conditions. The ceramic coating crack initiation and propagation driving forces and failure modes under the cyclic thermal loads will be discussed in light of the high temperature mechanical fatigue and fracture testing results.

  7. High-Temperature ceramic coatings with geopolymeric binders

    OpenAIRE

    Medri, Valentina; Fabbri, Samanta; Sobalik, Z.; Vaccari, Angelo; Bellosi, Alida

    2009-01-01

    High-temperature (HT) resistant coatings represent an updating subject of high industrial interest on account of their relevant applications (turbines, engines, aeronautic, ecc.). While many HT resistant products are known, not simple appears to satisfy the requirement of their high and stable adhesion on the support. The aim of this work was to develop novel HT resistant ceramic coatings based on silicon carbide and/or zirconium oxide, using geopolymeric resins as binders. Geopolymers show m...

  8. Summary of workshop on ceramic composite interface coatings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    Commercialization of fiber-reinforced composites has been limited because of the stability of the interface coatings that control the mechanical properties of the composites. Typical materials are currently manufactured with pyrolytic carbon interface coatings that perform well in inert atmospheres or when stresses are kept very low (<70 MPa). Unfortunately, carbon coatings are not stable at high temperatures in air or oxidizing conditions which results in degradation of the mechanical properties of the composites. The problem of oxidation resistant interface coatings is not unique to the Fossil Program. Such coatings are also a concern to the United States Air Force, the Continuous Fiber-reinforced Ceramic Composites Program, the Fusion Energy Materials Program, and to the European Community. This workshop was organized to compare and discuss the need for and development of oxidation-resistant interface coatings in each of these programs.

  9. Bond strength of plasma sprayed ceramic coatings on phosphate steels

    Czech Academy of Sciences Publication Activity Database

    Pokorný, P.; Mastný, L.; Sýkora, V.; Pala, Zdeněk; Brožek, Vlastimil

    2015-01-01

    Roč. 54, č. 2 (2015), s. 411-414. ISSN 0543-5846 R&D Projects: GA ČR(CZ) GAP108/12/1872 Institutional support: RVO:61389021 Keywords : phosphating * plasma spraying * ceramic coatings * corrosion * bond strength Subject RIV: CA - Inorganic Chemistry Impact factor: 0.959, year: 2014

  10. Polymer Coating for Immobilizing Soluble Ions in a Phosphate Ceramic Product

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Dileep; Wagh, Arun S.; Patel, Kartikey D.

    1999-05-05

    A polymer coating is applied to the surface of a phosphate ceramic composite to effectively immobilize soluble salt anions encapsulated within the phosphate ceramic composite. The polymer coating is made from ceramic materials, including at least one inorganic metal compound, that wet and adhere to the surface structure of the phosphate ceramic composite, thereby isolating the soluble salt anions from the environment and ensuring long-term integrity of the phosphate ceramic composite.

  11. Oxidation-resistant interfacial coatings for continuous fiber ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.; Besmann, T.M.; Bleier, A. [Oak Ridge National Lab., TN (United States); Shanmugham, S.; Liaw, P.K. [Univ. of Tennessee, Knoxville, TN (United States)

    1995-08-01

    Continuous fiber ceramic composites mechanical behavior are influenced by the bonding characteristics between the fiber and the matrix. Finite modeling studies suggest that a low-modulus interfacial coating material will be effective in reducing the residual thermal stresses that are generated upon cooling from processing temperatures. Nicalon{trademark}/SiC composites with carbon, alumina and mullite interfacial coatings were fabricated with the SiC matrix deposited using a forced-flow, thermal gradient chemical vapor infiltration process. Composites with mullite interfacial coatings exhibited considerable fiber pull-out even after oxidation and have potential as a composite system.

  12. Hierarchical Formation of Intrasplat Cracks in Thermal Spray Ceramic Coatings

    Science.gov (United States)

    Chen, Lin; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2016-06-01

    Intrasplat cracks, an essential feature of thermally sprayed ceramic coatings, play important roles in determining coating properties. However, final intrasplat crack patterns are always considered to be disordered and irregular, resulting from random cracking during splat cooling, since the detailed formation process of intrasplat cracks has scarcely been considered. In the present study, the primary formation mechanism for intrasplat cracking was explored based on both experimental observations and mechanical analysis. The results show that the intrasplat crack pattern in thermally sprayed ceramic splats presents a hierarchical structure with four sides and six neighbors, indicating that intrasplat crack patterns arise from successive domain divisions due to sequential cracking during splat cooling. The driving forces for intrasplat cracking are discussed, and the experimental data quantitatively agree well with theoretical results. This will provide insight for further coating structure designs and tailoring by tuning of intrasplat cracks.

  13. Potential assisted fabrication of metal-ceramic composite coatings

    International Nuclear Information System (INIS)

    A possibility to produce uniform metal-ceramic composite coatings with a high content of ceramic particles up to 60 vol.% will be presented in this study. This method includes a combination of electrophoretic deposition and electrolytic deposition by several steps. A yttria-stabilized zirconia coating (Tosoh TZ-8Y) was first electrophoretically deposited on a ferritic steel plate and then sintered by 1100 C to an open porous layer. In the next step nickel was electrodeposited into the pores of the layer. By a final annealing step it was possible to improve the bonding of the composit coating on the substrate by diffusion of the metal components. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  14. Plasma sprayed cylinder lining coatings : Factors affecting the amount of ceramics in plasma sprayed cylinder lining coatings

    OpenAIRE

    Antonsson Nilsson, Hermina; Jarnerud, Tova

    2015-01-01

    Scania uses powder plasma spray technology to coat their cylinder linings. The powder used contains stainless steel and ceramics. In order for the properties of the coating to reach the quality demands, it has to have a certain amount of pores and ceramics in it. Despite the process being strictly controlled the coating has proven to exhibit differences in composition. Process parameters for each coated lining are logged and as part of Scania’s quality control, samples of the coating are freq...

  15. Polymer derived ceramic composites as environmental barrier coatings on steel

    Science.gov (United States)

    Torrey, Jessica D.

    Polymer derived ceramics have shown promise as a novel way to process low-dimensional ceramics such as fibers and coatings. They offer advantages over traditional ceramic processing routes including lower pyrolysis temperatures and the ability to employ polymeric processing techniques. The main drawback to preceramic polymers is that they undergo a shrinkage during pyrolysis that can be greater than 50-volume%. One way to overcome this shrinkage is to add filler particles, usually elemental or binary metals, which will expand upon reaction with the pyrolysis atmosphere, thereby compensating for the shrinkage of the polymer. The aim of this study is to develop a polymer derived ceramic composite coating on steel as a barrier to oxidation and carburization, while concurrently gaining insight as to the fundamental mechanisms for compositional and microstructural evolution within the system. A systematic approach to selecting the preceramic polymer and expansion agents was taken. Six commercially available poly(silsesquioxane) polymers and a polysiloxane were studied. Several metals and an intermetallic were considered as potential expansion agents. The most desirable polymer/expansion agent combination was achieved with poly(hydridomethylsiloxane) as the matrix and titanium disilicide as the filler. Processing parameters have been optimized and a relationship derived to predict final coating thickness based on slurry viscosity and dip coating withdrawal speed. Microstructural analysis reveals an amorphous composite coating of oxidized filler particles in a silica matrix. A diffusion layer is visible at the coating-steel interface, indicating good bonding. The optimized coatings are ˜18mum thick, have some residual porosity and a density of 2.57g/cm3. A systematic study of the phase transformations and microstructural changes in the coating and its components during pyrolysis in air is also presented. The system evolves from a polymer filled with a binary metal at

  16. Ceramic coatings on package lids for radiation protection

    International Nuclear Information System (INIS)

    A study was conducted to determine the feasibility of coating gold plated kovar lids with colloidally bonded aluminum oxide. Radiation that is incident on a gold plated lid generates a large number of photoelectrons. These electrons can enhance the damage to microelectronic devices and circuits (ICs). The primary purpose of the coating is to stop the electrons emitted from the lid that would otherwise increase the damage to the IC. A coating system consisting of ∼95 wt % alumina (0.5 μm particles) and ∼5 wt % colloidal silica (10 nm particles) was developed. The coating was applied to the lids as an aqueous suspension which was then dried to form a porous coating. Coating processing conditions were optimized so that crack-free, uniform coatings with the required thickness (∼80 μm) could be consistently produced. Preliminary data have indicated that the coated lid can be attached to the IC package using current belt furnace sealing procedures. The adhesion and mechanical integrity of the coatings were evaluated by submitting coated lids to centrifuge and shock testing. Selected coatings successfully withstood the shock test and 85% were undamaged after being subjected to an acceleration of 30,000 g's. Several types of radiation tests were performed to determine the effectiveness of the coating to stop electron penetration. Evaluation testing included gamma dose enhancement and X- ray induced photocurrent enhancement. The results for lids with coatings 80 or 150 μm thick were compared with results for uncoated kovar and ceramic lids. 6 refs., 6 figs

  17. Advanced Environmental Barrier Coatings Development for Si-Based Ceramics

    Science.gov (United States)

    Zhu, Dong-Ming; Choi, R. Sung; Robinson, Raymond C.; Lee, Kang N.; Bhatt, Ramakrishna T.; Miller, Robert A.

    2005-01-01

    Advanced environmental barrier coating concepts based on multi-component HfO2 (ZrO2) and modified mullite systems are developed for monolithic Si3N4 and SiC/SiC ceramic matrix composite (CMC) applications. Comprehensive testing approaches were established using the water vapor cyclic furnace, high pressure burner rig and laser heat flux steam rig to evaluate the coating water vapor stability, cyclic durability, radiation and erosion resistance under simulated engine environments. Test results demonstrated the feasibility and durability of the environmental barrier coating systems for 2700 to 3000 F monolithic Si3N4 and SiC/SiC CMC component applications. The high-temperature-capable environmental barrier coating systems are being further developed and optimized in collaboration with engine companies for advanced turbine engine applications.

  18. Environmental Barrier Coatings for Silicon-Based Ceramics

    Science.gov (United States)

    Lee, Kang N.; Fox, Dennis S.; Robinson, Raymond C.; Bansal, Narottam P.

    2001-01-01

    Silicon-based ceramics, such as SiC fiber-reinforced SiC (SiC/SiC ceramic matrix composites (CMC) and monolithic silicon nitride (Si3N4), are prime candidates for hot section structural components of next generation gas turbine engines. Silicon-based ceramics, however, suffer from rapid surface recession in combustion environments due to volatilization of the silica scale via reaction with water vapor, a major product of combustion. Therefore, application of silicon-based ceramic components in the hot section of advanced gas turbine engines requires development of a reliable method to protect the ceramic from environmental attack. An external environmental barrier coating (EBC) is considered a logical approach to achieve protection and CP long-term stability. The first generation EBC consisted of two layers, mullite (3Al2O3-2SiO2) bond coat and yttria-stabilized zirconia (YSZ, ZrO2-8 Wt.% Y2O3) top coat. Second generation EBCs, with substantially improved performance compared with the first generation EBC, were developed in the NASA High Speed Research-Enabling Propulsion Materials (HSR-EPM) Program. The first generation EBC consisted of two layers, mullite (3Al2O3-2SiO2) bond coat and yttria-stabilized zirconia (YSZ, ZrO2-8 wt.% Y2O3) top coat. Second generation EBCs, with substantially improved performance compared with the first generation EBC, were developed in the NASA High Speed Research-Enabling Propulsion Materials (HSR-EPM) Program (5). They consist of three layers, a silicon first bond coat, a mullite or a mullite + BSAS (BaO(1-x)-SrO(x)-Al2O3-2SiO2) second bond coat, and a BSAS top coat. The EPM EBCs were applied on SiC/SiC CMC combustor liners in three Solar Turbines (San Diego, CA) Centaur 50s gas turbine engines. The combined operation of the three engines has accumulated over 24,000 hours without failure (approximately 1,250 C maximum combustor liner temperature), with the engine in Texaco, Bakersfield, CA, accumulating about 14,000 hours. As the

  19. Spin coating of passive electroactive ceramic devices

    CERN Document Server

    Carson, E

    2001-01-01

    ferrite inductor paste materials as powders before and after thermal processing in the range 150, 500, 850 and 1150 deg C indicates a high carbon content in the surface region. By comparison, spin coated layers of each of these systems on alumina substrates before and after heating in the same temperature range as that used for the residual powders, showed a marked decrease in the carbon content in the surface region. In addition, deposition of the dielectric onto a ferrite surface which itself had been spin coated on alumina indicated no merging of the different layers. Thermal processing of this bi-layer system up to 850 deg C provides evidence that there may be some channelling of the bismuth photoelectrons through suitably sized pores in the dielectric layer. The commercial doctor blading method has also been used to produce dielectric layers and these are shown to be somewhat different to those produced by spin coating. In particular, the doctor bladed material contains more carbonaceous material in the ...

  20. Ceramic wash-coat for catalyst support

    Science.gov (United States)

    Kulkarni, Anand A.; Subramanian, Ramesh; Sabol, Stephen M.

    2012-08-14

    A wash-coat (16) for use as a support for an active catalyst species (18) and a catalytic combustor component (10) incorporating such wash-coat. The wash-coat is a solid solution of alumina or alumina-based material (Al.sub.2O.sub.3-0-3 wt % La.sub.2O.sub.3) and a further oxide exhibiting a coefficient of thermal expansion that is lower than that exhibited by alumina. The further oxide may be silicon dioxide (2-30 wt % SiO.sub.2), zirconia silicate (2-30 wt % ZrSiO.sub.4), neodymium oxide (0-4 wt %), titania (Al.sub.2O.sub.3-3-40% TiO.sub.2) or alumina-based magnesium aluminate spinel (Al.sub.2O.sub.3-25 wt % MgO) in various embodiments. The active catalyst species may be palladium and a second metal in a concentration of 10-50% of the concentration of the palladium.

  1. Hot isostatic pressing of plasma sprayed ceramic coating

    International Nuclear Information System (INIS)

    Post-spray treatment of atmospheric pressure plasma sprayed alumina, calcia and yttria-stabilised zirconia coatings was performed on a hot isostatic press (HIP) furnace. The three major variables in HIP: temperature, pressure and time, were varied during the experiments. The coatings were placed inside a steel capsule and compacted with fine yttria stabilised zirconia powder (45-80 μm). The temperature was varied between 1200-1300 deg C while pressures of 100-200 MPa were applied. Examination of the HIPed coatings was carried out using optical microscopy and scanning electron microscopy with EDAX. The porosity level in the coatings was determined by an image analyser while phase analysis was done using X-ray diffraction. The results showed that HIP can effectively reduce the porosity level in the coatings to between ∼0.01-0.1% from initial values of 2-4%. More importantly, the cracks in the coatings were 'healed' after HIP. Hardness was found to improve particularly for the zirconia coatings, from an initial value of ∼ 700 VHN to 1300 VHN. For the alumina coatings, the hardness improved to 1900 VHN from an initial value of 1100 VHN. The HIP treatment also altered the microstructure of the coatings. In the as-sprayed state, alumina consists of the typical columnar type of lamellae layers; this, however, was converted to a grain type structure after HIP. These initial results showed that HIP can effectively improve the physical properties of plasma sprayed ceramic coatings. 7 refs., 2 tabs., 3 figs

  2. Development of adherent ceramic coatings to reduce contact stress damage of ceramics. Final report: DOE/ORNL Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    Wayne, S.F.; Selverian, J.H.; O`Neil, D. [GTE Labs., Inc., Waltham, MA (United States)

    1992-11-01

    Strongly adherent coatings were deposited on reaction bonded Si{sub 3}N{sub 4} (RBSN), sintered SiC (SSC), and HIP`ed Si{sub 3}N{sub 4} (HSN) and using a newly developed chemical vapor deposition (CVD) process. Performance of the coating was assessed by oxidation, strength and contact stress testing. A new method was developed to experimentally determine the strength and Weibull modulus of thin brittle films on ceramic substrates. A significant portion of the study was devoted to numerical modeling of the coatings in order to understand the contributions of residual stress as different coating materials and thicknesses were combined. Coating designs were further analyzed by simulating the crack growth behavior in multilayer films while accounting for the interface fracture mechanics. This work has shown that the Al{sub 2}0{sub 3+}ZrO{sub 2} composite coating developed in this program can provide resistance to oxidation and contact stress. Commercial application of the composite coating has been successfully demonstrated by useof the Al{sub 2}0{sub 3+}ZrO{sub 2} composite as a protective coating on a Si{sub 3}N{sub 4} cutting tool.

  3. Development of adherent ceramic coatings to reduce contact stress damage of ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wayne, S.F.; Selverian, J.H.; O' Neil, D. (GTE Labs., Inc., Waltham, MA (United States))

    1992-11-01

    Strongly adherent coatings were deposited on reaction bonded Si[sub 3]N[sub 4] (RBSN), sintered SiC (SSC), and HIP'ed Si[sub 3]N[sub 4] (HSN) and using a newly developed chemical vapor deposition (CVD) process. Performance of the coating was assessed by oxidation, strength and contact stress testing. A new method was developed to experimentally determine the strength and Weibull modulus of thin brittle films on ceramic substrates. A significant portion of the study was devoted to numerical modeling of the coatings in order to understand the contributions of residual stress as different coating materials and thicknesses were combined. Coating designs were further analyzed by simulating the crack growth behavior in multilayer films while accounting for the interface fracture mechanics. This work has shown that the Al[sub 2]0[sub 3+]ZrO[sub 2] composite coating developed in this program can provide resistance to oxidation and contact stress. Commercial application of the composite coating has been successfully demonstrated by useof the Al[sub 2]0[sub 3+]ZrO[sub 2] composite as a protective coating on a Si[sub 3]N[sub 4] cutting tool.

  4. Current Issues with Environmental Barrier Coatings for Ceramics and Ceramic Composites

    Science.gov (United States)

    Lee, Kang N.

    2004-01-01

    The environmental barrier coating (EBC) for SiC/SiC ceramic matrix composites and Si3N4 ceramics is an emerging field as the application of silicon-based ceramics in the gas turbine engine hot section is on the horizon, both for aero and industrial gas turbines. EBC is an enabling technology for silicon-based ceramics because these materials without an EBC cannot be used in combustion environments due to rapid surface recession. Significant progress in EBC development has been made during the last decade through various government-sponsored programs. Current EBCs are based on silicon, mullite (3Al2O3-2SiO2) and BSAS (barium strontium aluminum silicate with celsian structure). Volatility of BSAS, BSAS-silica chemical reaction, and low melting point of silicon limit temperature capability of current EBCs to about 1350 C for long-term applications. There is a need for higher temperature EBCs as the temperature capability of silicon-based ceramics continue to increase. Therefore, research is underway to develop EBCs with improved temperature capability compared to current EBCs. The current status and issues with the advanced EBC development efforts will be discussed.

  5. Fire resistance properties of ceramic wool fiber reinforced intumescent coatings

    International Nuclear Information System (INIS)

    This research studied the effects of varied weight percentage and length of ceramic wool fiber (CWF) reinforcement to fire retardant performance of epoxy-based intumescent coating. Ten formulations were developed using ammonium polyphosphate (APP), expandable graphite (EG), melamine (MEL) and boric acid (BA). The mixing was conducted in two stages; powdered materials were grinded in Rocklabs mortar grinder and epoxy-mixed using Caframo mixer at low speed mixing. The samples were applied on mild steel substrate and exposed to 500°C heat inside Carbolite electric furnace. The char expansion and its physical properties were observed. Scanning electron microscopy (SEM) analyses were conducted to inspect the fiber dispersion, fiber condition and the cell structure of both coatings and chars produced. Thermogravimetric analyses (TGA) were conducted to study the thermal properties of the coating such as degradation temperature and residual weight. Fire retardant performance was determined by measuring backside temperature of substrate in 1-hour, 1000°C Bunsen burner test according to UL 1709 fire regime. The results showed that intumescent coating reinforced with CWF produced better fire resistance performance. When compared to unreinforced coating, formulation S6-15 significantly reduced steel temperature at approximately 34.7% to around 175°C. However, higher fiber weight percentage had slightly decreased fire retardant performance of the coating

  6. Microstructures and Composition of Ceramic Coatings on Aluminum Produced by Micro-Arc Oxidation

    Institute of Scientific and Technical Information of China (English)

    SHEN De-jiu; WANG Yu-lin; GU Wei-chao; XING Guang-zhong

    2004-01-01

    Microstructures and phase composition of the ceramic coatings formed on pure aluminum by heteropolar pulsed current ceramic synthesizing system for different periods were investigated by X-ray diffraction (XRD) and scanning electronic microscopy (SEM). Results show that the amount of the discharge channels in the ceramic coating sminish while the aperture largen in the micro-arc oxidation process, and the surface of the ceramic coatingmelted and solidified in the process.XRD studies of ceramic coatings deposited for different time show that these coatings consist mainly of α-Al2 O3, γ-Al2 O3 , θ-Al2 O3 and a little amorphous phase, and phase composition of compact and porous ceramic coatings don' t have much difference but have a little change of the content of α-Al2 O3 and amorphous phase.

  7. Structure and Properties Characterization of Ceramic Coatings Produced on Steel Using a Combined Technique

    Institute of Scientific and Technical Information of China (English)

    SHENDe-jiu; WANGYu-lin; GUWei-chao; XINGGuang-zhong

    2004-01-01

    Metallurgically bonded ceramic coatings were prepared on a steel surface with a combined method of arc spraying and micro-arc oxidation for the first time. Coatings were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Point and line distribution of elements of the ceramic coatings were determined using energy dispersive spectroscopy (EDS). Coatings abrasive wear resistance, corrosion resistance and hot impact property were assessed respectively. The property test results show that metallurgically bonded ceramic coatings were formed on aluminum coatings and the ceramic coatings is mainly composed of α-Al2O3, γ-Al2O3, θ-Al2O3 and a little amorphous. The coatings possess excellent abrasive wear, corrosion and hot shock resistance, which can in part be attributed to the gradual distribution of different phases from surface to the substrate.

  8. Structure and Properties Characterization of Ceramic Coatings Produced on Steel Using a Combined Technique

    Institute of Scientific and Technical Information of China (English)

    SHEN De-jiu; WANG Yu-lin; GU Wei-chao; XING Guang-zhong

    2004-01-01

    Metallurgically bonded ceramic coatings were prepared on a steel surface with a combined method of arc spraying and micro-arc oxidation for the first time. Coatings were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Point and line distribution of elements of the ceramic coatings were determined using energy dispersive spectroscopy (EDS). Coatings abrasive wear resistance, corrosion resistance and hot impact property were assessed respectively. The property test results show that metallurgically bonded ceramic coatings were formed on aluminum coatings and the ceramic coatings is mainly composed of α-Al2O3、γ-Al2O3、θ-Al2O3 and a little amorphous. The coatings possess excellent abrasive wear, corrosion and hot shock resistance, which can in part be attributed to the gradual distribution of different phases from surface to the substrate.

  9. Tribological performance of ceramic coatings deposited on metal surfaces for micro-bearing biomedical applications

    International Nuclear Information System (INIS)

    Modification of metal materials by means of ceramic coating deposition is an effective way of forming alternative bearing surfaces. Ceramic AlN, Al2O3 and nanocomposite oxynitride coatings are widely used as protective coatings against wear, diffusion and corrosion. The enhancement of the mechanical properties, such as hardness parameters, effective Young's modulus, toughness, elastic recovery and wear resistance of the coatings, is very important for the tribological performance of the next generation of ceramic-coated ball bearing devices.

  10. Development of a thin film vitreous bond based composite ceramic coating for corrosion and abrasion services

    International Nuclear Information System (INIS)

    IPC has been involved with the Alberta Research Council in developing a vitreous bond (VB) - based composite ceramic fluoropolymer coating technology. Compared to the present state of the art which is based on a hard discontinuous phase (ceramic particles) suspended in a soft continuous matrix (fluoropolymer mix) the novelty of our approach consists of designing a composite system in which both the ceramic and the fluoropolymer phases are continuous. The ceramic matrix will provide the strength and the erosion resistance for the fluoropolymer matrix even at high temperatures. The ceramic formulation employed is not affected by temperatures up to 500 oF while the fluoropolymer matrix provides a corrosion protection seal for the ceramic matrix. The inherent flexibility of the polymer matrix will protect against brittle fractures that may develop by handling or impact. Therefore the composite coating is able to withstand the deformation of the substrate without chipping or disbanding. The fluoropolymer matrix also provides dry lubrication properties further enhancing the erosion resistance of the ceramic phase. The thickness of the coating is very thin, in the 25 to 100 micron range. In summary, the coating technology is able to provide the following features: Corrosion protection levels similar to those of fluoropolymer coatings; Erosion resistance similar to that of ceramic coatings; Price comparable to that of polymer coatings; Exceptional wear resistance properties; and Capability for coating complicated shapes internally or externally or both. This paper will discuss the theory and development of this new technology and the resultant coating and potential properties. (author)

  11. Materials characteristics of uncoated/ceramic-coated implant materials.

    Science.gov (United States)

    Lacefield, W R

    1999-06-01

    In this paper, the biocompatibility of dental implant materials is discussed in the context of both the mechanical characteristics of the materials and the type of surface presented to the surrounding tissues. The proper functioning of the implant depends on whether it possesses the strength necessary to withstand loading within the expected range, with other properties such as elongation being of importance in some instances. A suitable modulus of elasticity may be of major importance in situations when optimum load transmission from the implant into the surrounding bone is key to the successful functioning of the device. Dental implants present a wide range of surfaces to the surrounding tissues based on surface composition, texture, charge energy, and cleanliness (sterility). Metallic implants are characterized by protective oxide layers, but ion release is still common with these materials, and is a function of passivation state, composition, and corrosion potential. An effective surface treatment for titanium appears to be passivation or anodization in a suitable solution prior to implantation. Inert ceramic surfaces exhibit minimal ion release, but are similar to metals in that they do not form a high energy bond to the surrounding bone. Some of the newly developed dental implant alloys such as titanium alloys, which contain zirconium and niobium, and high-strength ceramics such as zirconia may offer some advantages (such as lower modulus of elasticity) over the conventional materials. Calcium phosphate ceramic coatings are commonly used to convert metallic surfaces into a more bioactive state and typically cause faster bone apposition. There is a wide range of ceramic coatings containing calcium and phosphorus, with the primary difference in many of these materials being in the rate of ion release. Although their long-term success rate is unknown, the calcium phosphate surfaces seem to have a higher potential for attachment of osteoinductive agents than do

  12. Development of nondestructive evaluation methods for ceramic coatings

    International Nuclear Information System (INIS)

    Various nondestructive evaluation (NDE) technologies are being developed to study the use of ceramic coatings on components in the hot-gas path of advanced low-emission gas-fired turbines. The types of ceramic coatings include thermal barrier coatings (TBCs) and environmental barrier coatings (EBCs). TBCs are under development for vanes, blades, and combustor liners to allow hotter gas-path temperatures, and EBCs are under development to reduce environmental damage to high-temperature components made of ceramic matrix composites. The NDE methods will be used to (a) provide data to assess the reliability of new coating application processes, (b) identify defective components that could cause unscheduled outages, (c) track growth rates of defects during component use in engines, and (d) allow rational judgment for replace/repair/re-use decisions regarding components. Advances in TBC application, both electron beam-physical vapor deposition (EB-PVD) and air plasma spraying (APS), are allowing higher temperatures in the hot-gas path. However, as TBCs become ''prime reliant,'' their condition at scheduled or unscheduled outages must be known. NDE methods are under development to assess the condition of the TBC for pre-spall conditions. EB-PVD test samples with up to 70 thermal cycles have been studied by a newly developed method involving polarized laser back-scatter NDE. Results suggest a correlation between the NDE laser data and the TBC/bond-coat topography. This finding is important because several theories directed toward understanding the pre-spall condition suggest that the topography in the thermally grown oxide layer changes significantly as a function of the number of thermal cycles. Tests have also been conducted with this NDE method on APS TBCs. Results suggest that the pre-spall condition is detected for these coatings. One-sided, high-speed thermal imaging also has shown promise for NDE of APS coatings. Testing of SiC/SiC composites for combustor liners

  13. Thermal shock behavior of toughened gadolinium zirconate/YSZ double-ceramic-layered thermal barrier coating

    International Nuclear Information System (INIS)

    Highlights: • Gd2Zr2O7/YSZ DCL thermal barrier coating was designed and fabricated. • The Gd2Zr2O7 top ceramic layer was toughened by addition of nanostructured 3YSZ. • Remarkable improvement in thermal shock resistance of the DCL coating was achieved. - Abstract: Double-ceramic-layered (DCL) thermal barrier coating system comprising of toughened Gadolinium zirconate (Gd2Zr2O7, GZ) as the top ceramic layer and 4.5 mol% Y2O3 partially-stabilized ZrO2 (4.5YSZ) as the bottom ceramic layer was fabricated by plasma spraying and thermal shock behavior of the DCL coating was investigated. The GZ top ceramic layer was toughened by addition of nanostructured 3 mol% Y2O3 partially-stabilized ZrO2 (3YSZ) to improve fracture toughness of the matrix. The thermal shock resistance of the DCL coating was enhanced significantly compared to that of single-ceramic-layered (SCL) GZ-3YSZ composite coating, which is believed to be primarily attributed to the two factors: (i) the increase in fracture toughness of the top ceramic layer by incorporating nanostructured YSZ particles and (ii) the improvement in strain tolerance through the utilization of 4.5YSZ as the bottom ceramic layer. In addition, the failure mechanisms are mainly attributed to the still low fracture toughness of the top ceramic layer and oxidation of the bond-coat

  14. Preparation of Metallurgical Ceramic Coatings on Steel Using a Combined Technique

    Institute of Scientific and Technical Information of China (English)

    SHEN De-jiu; WANG Yu-lin; GU Wei-chao; XING Guang-zhong

    2004-01-01

    Micro-arc oxidation (MAO) is a novel surface technique for producing ceramic coatings on valve metals and their alloys. But this promising technique can not be used to steel directly. In this paper metallurgically wedded ceramic coatings was prepared on steel surface with a combined method of arc spraying and microarc oxidation for the first time. The results show that, adhesive strength of the arc spraying aluminum coatings to steel substrate was enhanced after induction remelting, and a metallurgically wedded region was formed between arc spraying coatings and steel substrate. After MAO, ceramic coatings was formed on aluminum coatings, and the ceramic coatings is mainly composed of α-Al2 O3 ,γ-Al2 O3 , θ-Al2 O3 and a little amorphous phase.

  15. Structural ceramic coatings in composite microtruss cellular materials

    Energy Technology Data Exchange (ETDEWEB)

    Bele, E.; Bouwhuis, B.A.; Codd, C. [Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario (Canada); Hibbard, G.D., E-mail: glenn.hibbard@utoronto.ca [Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario (Canada)

    2011-09-15

    Graphical abstract: The compressive strength increase per unit sleeve thickness of Al cores reinforced with Al{sub 2}O{sub 3} sleeves is lower than the corresponding strength increase when the same cores are reinforced with nanocrystalline Ni (n-Ni) sleeves (left). However, because anodizing is a transformative surface treatment, the Al{sub 2}O{sub 3} coating was able to achieve this performance increase with little overall weight penalty (right). Display Omitted Highlights: {yields} A new type of metal/ceramic microtruss cellular composite has been created. {yields} Reinforcing sleeves of Al{sub 2}O{sub 3} were deposited on low density Al microtruss cores. {yields} Significant compressive strength increases were seen at virtually no weight penalty. {yields} Failure mechanisms were studied by electron microscopy and finite element analysis. {yields} Buckling, sleeve wrinkling, and coating fracture dictated the compressive strength. - Abstract: In the present study, anodizing was used to produce Al{sub 2}O{sub 3} coatings in a conventional 3003 aluminum alloy microtruss core; a 38.5 {mu}m thick anodic coating provided a 143% increase in compressive strength. Finite-element analyses were used to illustrate the dependence of the compressive strength and failure mechanism on the thickness of the anodic coating. At low thicknesses the microtruss strength is dictated by global bucking of the internal struts. However, at higher thicknesses the compressive strength is controlled by coating fracture and local deformation in the hinge region of the struts. Regardless of the failure mechanism, the compressive strength of the composite microtruss increased with increasing anodic coating thickness, with very little corresponding weight penalty.

  16. Structural ceramic coatings in composite microtruss cellular materials

    International Nuclear Information System (INIS)

    Graphical abstract: The compressive strength increase per unit sleeve thickness of Al cores reinforced with Al2O3 sleeves is lower than the corresponding strength increase when the same cores are reinforced with nanocrystalline Ni (n-Ni) sleeves (left). However, because anodizing is a transformative surface treatment, the Al2O3 coating was able to achieve this performance increase with little overall weight penalty (right). Display Omitted Highlights: → A new type of metal/ceramic microtruss cellular composite has been created. → Reinforcing sleeves of Al2O3 were deposited on low density Al microtruss cores. → Significant compressive strength increases were seen at virtually no weight penalty. → Failure mechanisms were studied by electron microscopy and finite element analysis. → Buckling, sleeve wrinkling, and coating fracture dictated the compressive strength. - Abstract: In the present study, anodizing was used to produce Al2O3 coatings in a conventional 3003 aluminum alloy microtruss core; a 38.5 μm thick anodic coating provided a 143% increase in compressive strength. Finite-element analyses were used to illustrate the dependence of the compressive strength and failure mechanism on the thickness of the anodic coating. At low thicknesses the microtruss strength is dictated by global bucking of the internal struts. However, at higher thicknesses the compressive strength is controlled by coating fracture and local deformation in the hinge region of the struts. Regardless of the failure mechanism, the compressive strength of the composite microtruss increased with increasing anodic coating thickness, with very little corresponding weight penalty.

  17. Processing and optimization of functional ceramic coatings and inorganic nanomaterials

    Science.gov (United States)

    Nyutu, Edward Kennedy G.

    Processing of functional inorganic materials including zero (0-D) dimensional (e.g. nanoparticles), 1-D (nanorods, nanofibers), and 2-D (films/coating) structures is of fundamental and technological interest. This research will have two major sections. The first part of section one focuses on the deposition of silicon dioxide onto a pre-deposited molybdenum disilicide coating on molybdenum substrates for both high (>1000 °C) and moderate (500-600 °C) temperature oxidation protection. Chemical vapor deposition (CVD/MOCVD) techniques will be utilized to deposit the metal suicide and oxide coatings. The focus of this study will be to establish optimum deposition conditions and evaluate the metal oxide coating as oxidation - thermal barriers for Mo substrates under both isothermal (static) and cyclic oxidation conditions. The second part of this section will involve a systematic evaluation of a boron nitride (BN) interface coating prepared by chemical vapor deposition. Ceramic matrix composites (CMCs) are prospective candidates for high (>1000 °C) temperature applications and fiber- matrix interfaces are the dominant design parameters in ceramic matrix composites (CMCs). An important goal of the study is to determine a set of process parameters, which would define a boron nitride (BN) interface coating by a chemical vapor deposition (CVD) process with respect to coating. In the first part of the second section, we will investigate a new approach to synthesize ultrafine metal oxides that combines microwave heating and an in-situ ultrasonic mixing of two or more liquid precursors with a tubular flow reactor. Different metal oxides such as nickel ferrite and zinc aluminate spinels will be studied. The synthesis of metal oxides were investigated in order to study the effects of the nozzle and microwave (INM process) on the purity, composition, and particle size of the resulting powders. The second part of this research section involves a study of microwave frequency

  18. Manufacturing technologies for nanocomposite ceramic structural materials and coatings

    International Nuclear Information System (INIS)

    The new material class of ceramic nanocomposites, containing at least one phase in nanometric dimension, has achieved special interest in previous years. While earlier research was focused on materials science and microstructural details in laboratory scale the subject of developing suitable manufacturing technologies in technical scale is the challenge for the manufacturing engineer. The same high-performance features which make the nanocomposite materials so interesting in their properties are absolutely detrimental if it comes to production of these materials. Extreme hardness, toughness and abrasion resistance make the state of the art cutting-and-machining operations extremely cost intensive so that, from a manufacturing point of view, true near-net-shape manufacturing is mandatory to accomplish reasonable cost targets. Ceramic feedstocks with both, high solid content to reduce shrinkage and warping and stable processing conditions are required to accomplish this aim of near-net-shape processing. Stable and reproducible processing conditions, e.g. favourable rheological properties for injection moulding are essentials for the manufacturing engineer. These prerequisites of ceramic production technologies cannot be reached with pure nanopowders in the 10-20 nm range but materials with a micro-nano architecture can fulfill these requirements, using a mixture of a submicron-sized matrix in the 100-200 nm range and smaller nanosized additives in <20% content which contribute the desired functionality. By using these micro-nanocomposites near-net-shape ceramic forming technologies such as injection moulding, gel casting and slip casting have been developed which lead to high-performance materials at affordable production cost. Advanced surface technologies include nanoceramic coatings made by thermokinetic deposition processes. Modern ceramic processing, i.e. spray drying leads to fine granulated nanopowders with appropriate flowability for subsequent APS plasma or

  19. Film Coating Process Research and Characterization of TiN Coated Racetrack-type Ceramic Pipe

    OpenAIRE

    Wang, Jie; Xu, Yanhui; Zhang, Bo; Wei, Wei; FAN, LE; Pei, Xiangtao; Hong, Yuanzhi; Wang, Yong

    2015-01-01

    TiN film was coated on the internal face of racetrack-type ceramic pipe by three different methods: radio-frequency sputtering, DC sputtering and DC magnetron sputtering. The deposition rates of TiN film under different coating methods were compared. According to the AFM, SEM, XPS test results,these properties were analyzed, such as TiN film roughness and surface morphology. At the same time, the deposition rates were studied under two types' cathode, Ti wires and Ti plate. According to the S...

  20. Film Coating Process Research and Characterization of TiN Coated Racetrack-type Ceramic Pipe

    CERN Document Server

    Wang, Jie; Zhang, Bo; Wei, Wei; Fan, Le; Pei, Xiangtao; Hong, Yuanzhi; Wang, Yong

    2015-01-01

    TiN film was coated on the internal face of racetrack-type ceramic pipe by three different methods: radio-frequency sputtering, DC sputtering and DC magnetron sputtering. The deposition rates of TiN film under different coating methods were compared. According to the AFM, SEM, XPS test results,these properties were analyzed, such as TiN film roughness and surface morphology. At the same time, the deposition rates were studied under two types' cathode, Ti wires and Ti plate. According to the SEM test results, Ti plate cathode can improve the TiN/Ti film deposition rate obviously.

  1. Adhesion of ceramic coating on thin and smooth metal substrate: A novel approach with a nano-structured ceramic interlayer

    International Nuclear Information System (INIS)

    The adhesion of plasma-sprayed coating is, to a large extent, controlled by the cleanness and roughness of the surface on which the coating is deposited. So, most of the plasma spray procedures involve surface pretreatment by grit-blasting to adapt the roughness of the surface to the size of the impacting particles. This preparation process brings about compressive stresses that make it inappropriate for thin substrates. The present works aim to elaborate a thick ceramic coating (about 0.5 mm thick) on a thin metal substrate (1 mm thick) with a smooth surface (Ra of about 0.4 μm). The coating system is intended for use in a Generation-IV nuclear energy system. It must exhibit a good adhesion between the ceramic topcoat and the smooth metal substrate to meet the specifications of the application. Our approach consisted of depositing the ceramic topcoat by air plasma spraying on a few micrometers thick ceramic layer made by suspension plasma spraying. This nano-structured layer played the role of a bond coat for the topcoat and made it possible to deposit it on the as-received substrate. The adhesion of the nano-structured layer was measured by the Vickers indentation cracking technique and that of the ceramic duplex coating system by tensile test. (authors)

  2. Bioactive glass–ceramic coating for enhancing the in vitro corrosion resistance of biodegradable Mg alloy

    International Nuclear Information System (INIS)

    Highlights: ► Sol–gel derived 45S5 glass–ceramic coating was prepared on Mg alloy substrate. ► The corrosion resistance of glass–ceramic coated Mg alloy was markedly improved. ► The corrosion behavior of the coated sample varied due to the cracking of coating. - Abstract: In this work, a bioactive 45S5 glass–ceramic coating was synthesized on magnesium (Mg) alloy substrate by using a sol–gel dip-coating method, to improve the initial corrosion resistance of AZ31 Mg alloy. The surface morphology and phase composition of the glass–ceramic coating were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The coating composed of amorphous phase and crystalline phase Na2Ca2Si3O9, with the thickness of ∼1.0 μm, exhibited a uniform and crack-free surface morphology. The corrosion behavior of the uncoated and coated Mg alloy substrates was investigated by the electrochemical measurements and immersion tests in simulated body fluid (SBF). Potentiodynamic polarization tests recorded an increase of potential (Ecorr) form −1.60 V to −1.48 V, and a reduction of corrosion current density (icorr) from 4.48 μA cm−2 to 0.16 μA cm−2, due to the protection provided by the glass–ceramic coating. Immersion tests also showed the markedly improved corrosion resistance of the coated sample over the immersion period of 7 days. Moreover, after 14 days of immersion in SBF, the corrosion resistance of the coated sample declined due to the cracking of the glass–ceramic coating, which was confirmed by electrochemical impedance spectroscopy (EIS) analysis. The results suggested that the 45S5 glass–ceramic coated Mg alloy could provide a suitable corrosion behavior for use as degradable implants.

  3. Multilayer ceramic coating for impeding corrosion of sintered NdFeB magnets

    Institute of Scientific and Technical Information of China (English)

    A.Ali; A.Ahmad; K.M.Deen

    2009-01-01

    Sintered NdFeB magnets have complex microstructure that makes them susceptible to corrosion in active environments.The current paper evaluated the anticorrosion characteristics of multilayer titanium nitride ceramic coating applied through cathodic arc physical vapour deposition(CAPVD) for protection of sintered NdFeB permanent magnets.The performance of ceramic coating was compared to the electrodeposited nickel coating having a copper interlayer.Electrochemical impedance spectroscopy(EIS) and cyclic polar...

  4. Raman microscopic studies of PVD deposited hard ceramic coatings

    International Nuclear Information System (INIS)

    PVD hard ceramic coatings grown via the combined cathodic arc/unbalance magnetron deposition process were studied using Raman microscopy. Characteristic spectra from binary, multicomponent, multilayered and superlattice coatings were acquired to gain knowledge of the solid-state physics associated with Raman scattering from polycrystalline PVD coatings and to compile a comprehensive spectral database. Defect-induced first order scattering mechanisms were observed which gave rise to two pronounced groups of bands related to the acoustical (150- 300cm-1) and optical (400-7 50cm-1) parts of the phonon spectrum. Evidence was gathered to support the theory that the optic modes were mainly due to the vibrations of the lighter elements and the acoustic modes due to the vibrations of the heavier elements within the lattice. A study into the deformation and disordering on the Raman spectral bands of PVD coatings was performed. TiAIN and TiZrN coatings were intentionally damaged via scratching methods. These scratches were then analysed by Raman mapping, both across and along, and a detailed spectral interpretation performed. Band broadening occurred which was related to 'phonon relaxation mechanisms' as a direct result of the breaking up of coating grains resulting in a larger proportion of grain boundaries per-unit-volume. A direct correlation of the amount of damage with band width was observed. Band shifts were also found to occur which were due to the stresses caused by the scratching process. These shifts were found to be the largest at the edges of scratches. The Raman mapping of 'droplets', a defect inherent to PVD deposition processes, found that higher compressive stresses and large amounts of disorder occurred for coating growth onto droplets. Strategies designed to evaluate the ability of Raman microscopy to monitor the extent of real wear on cutting tools were evaluated. The removal of a coating layer and subsequent detection of a base layer proved successful

  5. Ceramic coatings for HTR graphitic structures - tests and experiments with SiC-coated graphitic specimens

    International Nuclear Information System (INIS)

    Graphite materials are used in high temperature reactors (HTRs) for fuel elements and core structures. In the AVR and in the THTR it was successfully demonstrated that especially the spherical fuel elements showed excellent behaviour during normal operation and accident conditions. Improvements are possible as part of efforts to achieve catastrophe-free nuclear technology. In case of a massive ingress of air or steam into the primary circuit of an HTR, it is possible, if no active steps are taken, that serious corrosion of graphitic structures can occur. For corrosion protection it is appropriate to provide these structures with ceramic (SiC) coatings. These coatings were produced by chemical vapour deposition and by the slip coating method. The coated graphitic specimens, spheres (without nuclear material) and other samples, were tested in many experiments, undergoing tests for corrosion, mechanics and irradiation. The results of these tests show that the SiC coatings applied to many graphites are corrosion-resistant and mechanically safe. For some coated graphitic spheres the post-irradiation experiments showed good corrosion properties at temperatures in the region of 750 deg C. For one material the corrosion resistance was good even for temperatures up to 1400 deg C (1600 deg C). Furthermore, alternative forms of coated spheres, consisting of screwed half-shells, have already been tested successfully in corrosion and irradiation experiments. (authors)

  6. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants.

    Science.gov (United States)

    Gryshkov, Oleksandr; Klyui, Nickolai I; Temchenko, Volodymyr P; Kyselov, Vitalii S; Chatterjee, Anamika; Belyaev, Alexander E; Lauterboeck, Lothar; Iarmolenko, Dmytro; Glasmacher, Birgit

    2016-11-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO2) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. PMID:27524006

  7. PVD and CVD gradient coatings on sintered carbides and sialon tool ceramics

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2010-12-01

    Full Text Available Purpose: The main objective of the work is to investigate the structure and properties of multilayer gradient coatings produced in PVD and CVD processes on sintered carbides and on sialon ceramics, and to define the influence of the properties of the coatings such as microhardness, adhesion, thickness and size of grains on the applicable properties of cutting edges covered by such coatings.Design/methodology/approach: The investigation studies pertaining to the following have been carried out: the structures of the substrates and coatings with the application of transmission electron microscopy; the structure and topography of coating surfaces with the use of electron scanning microscopy; chemical composition of the coatings using the GDOES and EDS methods; phase composition of the coatings using X-ray diffraction and grazing incident X-ray diffraction technique (GIXRD; grain size of the investigated coatings using Scherrer’s method; properties of the coatings including thickness, microhardness, adhesion and roughness; properties of the operating coatings in cutting trials. The models of artificial neural networks have been worked out which involve the dependencies between the durability of the cutting edge and properties of the coatings.Findings: Good adhesion of the coatings to the substrate from sintered carbides is connected with the diffusive mixing of the components of the coating and substrate. In the case of PVD coatings obtained on sialon ceramics, the highest adhesion to the substrate (Lc=53-112 N has been demonstrated by the coatings containing the AlN phase of the hexagonal lattice having the same type of atomic (covalence bond in the coating as in the ceramic substrate. The damage mechanism of the investigated coatings depends to a high degree on their adhesion to the substrate. The durability of cutting edges covered by the investigated coatings depends principally on the adhesion of the coatings to the substrate, and to a lesser

  8. In situ fabrication of blue ceramic coatings on wrought Al Alloy 2024 by plasma electrolytic oxidation

    International Nuclear Information System (INIS)

    In situ formation of ceramic coatings on 2024 Al alloy with a blue color was successfully achieved using a plasma electrolytic oxidation process working at atmospheric pressure. This novel blue ceramic coating overcomes the shortcomings of surface treatments resulting from conventional dyeing processes by depositing organic dyes into the porous structure of anodic film, which has poor resistance to abrasion and rapid fading when exposed to sunlight. X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy were employed to characterize the microstructure of the blue ceramic coating. The fabricated ceramic coating was composed of CoAl2O4, α-Al2O3, and γ-Al2O3. By controlling the working parameters, the distribution of the CoAl2O4 phase on the surface can be adjusted, and plays a key role in the appearance of the coating. Electrochemical testing, thermal cycling method, and pin-on-disk sliding wear testing were employed to evaluate corrosion, thermal cycling, and wear resistance of the ceramic coatings. The results indicate that the blue ceramic coating has a similar polarization resistance to that of conventional anodic film and can significantly enhance the corrosion resistance of aluminum alloy. There are no destructive horizontal cracks observed within the blue ceramic coating when subjected to 120 times of thermal cycling, which heats the samples up to 573 K and followed by submersion in water at room temperature for 10 min. Compared with the aluminum substrate as well as a conventional anodic film coated aluminum sample, the wear resistance of the blue ceramic coating coated sample was significantly increased while the coefficient of friction was decreased from 0.34 to 0.14.

  9. In situ fabrication of blue ceramic coatings on wrought Al Alloy 2024 by plasma electrolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhijiang; Nie Xueyuan; Hu, Henry; Hussein, Riyad O. [Department of Mechanical, Automotive and Materials Engineering, University of Windsor, Windsor, Ontario N9B 3P4 (Canada)

    2012-03-15

    In situ formation of ceramic coatings on 2024 Al alloy with a blue color was successfully achieved using a plasma electrolytic oxidation process working at atmospheric pressure. This novel blue ceramic coating overcomes the shortcomings of surface treatments resulting from conventional dyeing processes by depositing organic dyes into the porous structure of anodic film, which has poor resistance to abrasion and rapid fading when exposed to sunlight. X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy were employed to characterize the microstructure of the blue ceramic coating. The fabricated ceramic coating was composed of CoAl{sub 2}O{sub 4}, {alpha}-Al{sub 2}O{sub 3}, and {gamma}-Al{sub 2}O{sub 3.} By controlling the working parameters, the distribution of the CoAl{sub 2}O{sub 4} phase on the surface can be adjusted, and plays a key role in the appearance of the coating. Electrochemical testing, thermal cycling method, and pin-on-disk sliding wear testing were employed to evaluate corrosion, thermal cycling, and wear resistance of the ceramic coatings. The results indicate that the blue ceramic coating has a similar polarization resistance to that of conventional anodic film and can significantly enhance the corrosion resistance of aluminum alloy. There are no destructive horizontal cracks observed within the blue ceramic coating when subjected to 120 times of thermal cycling, which heats the samples up to 573 K and followed by submersion in water at room temperature for 10 min. Compared with the aluminum substrate as well as a conventional anodic film coated aluminum sample, the wear resistance of the blue ceramic coating coated sample was significantly increased while the coefficient of friction was decreased from 0.34 to 0.14.

  10. Preparation of boron nitride (BN) coatings onto different substrates using the polymer derived ceramics (PDCs) approach.

    OpenAIRE

    Termoss, Hussein

    2009-01-01

    The aim of this work was to prepare boron nitride coatings onto different substrates using the Polymers Derived Ceramics (PDCs) approach. In that way, BN coatings were obtained onto graphite, pure silica and metal especially titanium. The first part of this thesis was to study parameters (of the solution used and of the dip-coating process), to obtain the best coatings in terms of morphology, cristallinity and chemical composition. The second part was dedicated to BN coatings obtained onto me...

  11. Technical note - Plasma-sprayed ceramic thermal barrier coatings for smooth intermetallic alloys

    Science.gov (United States)

    Miller, R. A.; Doychak, J.

    1992-01-01

    A new approach for plasma spray deposition of ceramic thermal barrier coatings directly to smooth substrates is described. Ceramic thermal barrier coatings were directly applied to substrates that had been coated with low-pressure plasma sprayed NiCrAlY bond coats and then centerless ground to simulate a smooth oxidation-resistant substrate. As the high-temperature oxidation behavior of NiAl+Zr is superior to that of MCrALY alloy, the bond coat is not required for oxidation resistance.

  12. PVD and CVD coating systems on oxide tool ceramics

    OpenAIRE

    J. Mikuła; L.A. Dobrzański

    2007-01-01

    Purpose: Investigation of structure and properties of the Al2O3 based Al2O3+ZrO2, Al2O3+TiC and Al2O3+SiC(w) type based oxide tool ceramics coated with the anti-wear mono- and multilayers of the TiN, TiAIN, TiN+TiAlSiN+TiN, TiN+multiAiAlSiN+TiN and TiN+TiAlSiN+AlSiTiN types in the cathode arc evaporation CAE-PVD and with the multilayers of the TiCN+TiN and TiN+Al2O3 types obtained in the chemical deposition from the gas phase CVD process.Design/me...

  13. Ceramic coating effect on liner metal temperatures of film-cooled annular combustor

    Science.gov (United States)

    Claus, R. W.; Wear, J. D.; Liebert, C. H.

    1979-01-01

    An experimental and analytical investigation was conducted to determine the effect of a ceramic coating on the average metal temperatures of full annular, film cooled combustion chamber liner. The investigation was conducted at pressures from 0.50 to 0.062. At all test conditions, experimental results indicate that application of a ceramic coating will result in significantly lower wall temperatures. In a simplified heat transfer analysis, agreement between experimental and calculated liner temperatures was achieved. Simulated spalling of a small portion of the ceramic coating resulted in only small increases in liner temperature because of the thermal conduction of heat from the hotter, uncoated liner metal.

  14. Corrosion Resistance of Plasma Sprayed Ceramic CompositeCoatings on Q235 Substrate

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The corrosion resistance of SiO2/Al2O3, TiO2/Al2O3 and (SiO2+TiO2)/Al2O3 ceramic composite coatings on Q235 substrate fabricated by means of plasma spraying was investigated. The results show that Al2O3+13 wt pct TiO2 ceramic coating has the highest density, the lowest connected porosity and the best corrosion resistance. The corrosion mechanism of Q235 with ceramic coating has also been studied.

  15. Element Analysis of Ceramic Coatings under Spherical Indentation with Metallic Interlayer:Part Ⅱ Ring Crack

    Institute of Scientific and Technical Information of China (English)

    Minh-Quy LE; Seock-Sam KIM

    2006-01-01

    Spherical indentation of ceramic coatings with metallic interlayer was performed by means of axisymmetric finite element analysis(FEA). Two typical ceramic coatings with relatively high and low elastic modulus deposited on aluminum alloy and carbon steel were considered. The fracture mechanics of the ceramic coatings mechanisms due to occurrence of surface ring cracks extending traverse the coating thickness under spherical indentation are investigated within the framework of linear fracture mechanics. The J-integral associated to such cracks was computed. The evolution of J-integral vs the crack length and the indentation depth was studied. The effects of the interlayer, the coating and the substrate on the J-integral evolution were discussed. The results show that a suitable metallic interlayer can improve the fracture resistance of the coating systems under the same indentation conditions through reducing the J-integral.

  16. Wear resistance of ceramic coating on AZ91 magnesium alloy by micro-arc oxidation

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hui; LIU Zheng; CHEN Li-jia; CHEN Ji; HAN Zhong

    2006-01-01

    The ceramic coating formed on AZ91 magnesium alloy by micro-arc oxidation (MAO) was characterized. The results show that the ceramic coating(3.4-23 μm in thickness)on the surface of AZ91 alloy was attained under different micro-arc oxidation treatment conditions, which consist mainly of MgO, Mg2SiO4 and MgSiO3 phases. Nano-hardness in a cross-sectional specimen was determined by nano-indentation experiment. The MAO coatings exhibit higher hardness than the substrate. Dry sliding wear tests for the MAO coatings and AZ91 alloy were also carried out using an oscillating friction and wear tester in a ball-on-disc contact configuration. The wear resistance of the MAO coatings is improved respectively under different treatment time as a result of different structures of ceramic coatings formed on AZ91 alloy.

  17. Corrosion behavior of plasma sprayed ceramic and metallic coatings on carbon steel in simulated seawater

    International Nuclear Information System (INIS)

    Highlights: • Plasma sprayed Ni60 coating can provide corrosion protect for the substrate. • Depositing ceramic coatings on metallic coating can improve the corrosion resistance. • The corrosion resistance of Al2O3 coating was better than that of ZrO2 coating. • The porosity had direct effect on the corrosion rate of the plasma sprayed coatings. • The top layer and the bond layer were treated as one coating in the EIS tests. - Abstract: Al2O3, ZrO2 and Ni60 coatings were produced on carbon steels by plasma spray. Ni60 was used as the bond coat in all the cases. The microstructure of these coatings was analyzed by scanning electron microscopy (SEM). The corrosion behavior of the plasma spray coated samples as well as uncoated samples was evaluated by open circuit potential (OCP) measurements, potentiodynamic polarization tests, and electrochemical impedance spectroscopy (EIS) in simulated seawater. The results showed that Ni60 coating protected carbon steels against the corrosion and plasma spraying ceramic powders on metallic coating improved the corrosion resistance of the coatings further. The corrosion resistance of the Al2O3 coating was superior to that of the ZrO2 coating due to the relatively few defects in Al2O3 coating

  18. Study on Metal Microfilter Coated with Ceramics by Using Plasma Thermal Spray Method

    International Nuclear Information System (INIS)

    This research was performed on a microfilter made of a hybrid material (ceramic + metal) that was coated with ceramics on the metal-filter surface by using the thermal spray method. The ceramic powders used were Al2O3+40TiO2 powder with a particle size of 20 μm and Al2O3 (98%+)powder with a particle size of 45 μm. The metal filters were filter-grade 20 μm, 30 μm, and 50 μm sintered metal powder filters (SIKA-R 20 IS, 30 IS, 50 IS: Sinter Metals Filters) and filter-grade 75 μm sintered mesh filter with five layers. Ceramic-coated filters that were coated using the thermal spray method had a great influence on powder material, particle size, and coating thickness. However, these filters showed a fine performance when used as micro-filters

  19. Low-Cost Innovative Hi-Temp Fiber Coating Process for Advanced Ceramic Matrix Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MATECH GSM (MG) proposes 1) to demonstrate a low-cost innovative Hi-Temp Si-doped in-situ BN fiber coating process for advanced ceramic matrix composites in order...

  20. Ceramic plasma-sprayed coating of melting crucibles for casting metal fuel slugs

    International Nuclear Information System (INIS)

    Thermal cycling and melt reaction studies of ceramic coatings plasma-sprayed on Nb substrates were carried out to evaluate the performance of barrier coatings for metallic fuel casting applications. Thermal cycling tests of the ceramic plasma-sprayed coatings to 1450 °C showed that HfN, TiC, ZrC, and Y2O3 coating had good cycling characteristics with few interconnected cracks even after 20 cycles. Interaction studies by 1550 °C melt dipping tests of the plasma-sprayed coatings also indicated that HfN and Y2O3 do not form significant reaction layer between U–20 wt.% Zr melt and the coating layer. Plasma-sprayed Y2O3 coating exhibited the most promising characteristics among HfN, TiC, ZrC, and Y2O3 coating

  1. Structure and properties of multicomponent coatings deposited onto sialon tool ceramics

    Directory of Open Access Journals (Sweden)

    D. Pakuła

    2011-11-01

    Full Text Available Purpose: The aim of this paper is to investigate structure, mechanical and functional properties of sialon tool ceramics with wear resistant multicomponent coatings deposited with PVD method.Design/methodology/approach: The structural investigation includes the metallographic analysis on the scanning electron microscope. Examinations of the chemical compositions of the deposited coatings were carried out using the X-ray energy dispersive spectrograph EDS, and glow-discharge optical emission spectroscope GDOS. The investigation includes also analysis of the mechanical and functional properties of the material: microhardness tests of the deposited coatings, surface roughness tests, evaluation of the adhesion of the deposited coatings and tribological test made with the „pin-on-disk”.Findings: Deposition of the multicomponent coatings with the PVD method, on tools made from sialon’s ceramics, results in the increase of mechanical properties in comparison with uncoated tool materials, deciding thus the improvement of their working properties.Practical implications: The multicomponent coating carried out on multi point inserts (made on sintered sialon’s ceramics can be used in the pro-ecological dry cutting processes without using cutting fluids. However, application of this coating to cover sialon ceramics demands still both elaborating and improvement adhesion to substrates in order to introduce these to industrial applications.Originality/value: The paper presents some researches of multicomponent coatings deposited by PVD method on sialon tool ceramics.

  2. Plasma sprayed ceramic thermal barrier coating for NiAl-based intermetallic alloys

    Science.gov (United States)

    Miller, Robert A. (Inventor); Doychak, Joseph (Inventor)

    1994-01-01

    A thermal barrier coating system consists of two layers of a zirconia-yttria ceramic. The first layer is applied by low pressure plasma spraying. The second layer is applied by conventional atmospheric pressure plasma spraying. This facilitates the attachment of a durable thermally insulating ceramic coating directly to the surface of a highly oxidation resistant NiAl-based intermetallic alloy after the alloy has been preoxidized to promote the formation of a desirable Al2O3 scale.

  3. Implantable devices having ceramic coating applied via an atomic layer deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xinhua; Weimer, Alan W.; Bryant, Stephanie J.

    2016-03-08

    Substrates coated with films of a ceramic material such as aluminum oxides and titanium oxides are biocompatible, and can be used in a variety of applications in which they are implanted in a living body. The substrate is preferably a porous polymer, and may be biodegradable. An important application for the ceramic-coated substrates is as a tissue engineering scaffold for forming artificial tissue.

  4. Properties of Ti(B,N) coatings deposited onto cemented carbides and sialon tool ceramics

    OpenAIRE

    M. Pancielejko; K. Gołombek; M. Staszuk; L.A. Dobrzański

    2010-01-01

    Purpose: The aim of this paper was to investigate mechanical properties both of sintered carbides WC-Co type and sialon tool ceramics with wear resistance ternary coatings Ti(B,N) type deposited by the cathodic arc evaporation process (CAE-PVD).Design/methodology/approach: The microhardness tests of coatings were made using the ultra microhardness tester. The grain size of investigated coatings was determined by the Scherrer method. Tests of the coatings adhesion to a substrate material were ...

  5. Glass and glass–ceramic coatings, versatile materials for industrial and engineering applications

    Indian Academy of Sciences (India)

    Amitava Majumdar; Sunirmal Jana

    2001-02-01

    Among various coating systems for industrial and engineering applications, glass and glass–ceramic coatings have advantages of chemical inertness, high temperature stability and superior mechanical properties such as abrasion, impact etc as compared to other coating materials applied by thermal spraying in its different forms viz. PVD, CVD, plasma, etc. Besides imparting required functional properties such as heat, abrasion and corrosion resistance to suit particular end use requirements, the glass and glass–ceramic coatings in general also provide good adherence, defect free surface and refractoriness. Systematic studies covering the basic science of glass and glass–ceramic coatings, the functional properties required for a particular end-use along with the various fields of application have been reviewed in this paper.

  6. Stability of aqueous nano-ceramic coatings with two different dispersants

    Institute of Scientific and Technical Information of China (English)

    夏长清; 古一; 曾凡浩

    2003-01-01

    The effects of sodium carboxymethyl cellulose and sodium citrate as dispersants on nano-ceramic aqueous suspension were examined by the measurements of ζ-potential and the sedimentation test. The results show that proper addition of sodium carboxymethyl cellulose or sodium citrate into nano-ceramic coating, exhibits an enhanced dispersion and stability compared with the coating without dispersants. The negative ζ-potential of the particles in the nano-coating increases with the increase of pH value of the coating, and the curve of ζ-pH moves to lower pH range when the dispersants are added into the coating. To ensure that the coating has not only good stability and dispersibility but also no corrosivity to substrate alloy, adding 1.00% sodium citrate into coating with pH value of 7-8 is preferable to adding sodium carboxymethyl cellulose.

  7. Growth regularity of ceramic coatings formed by microarc oxidation on Al-Cu-Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Xue, W.; Deng, Z.; Chen, R.; Zhang, T. [Beijing Normal Univ., BJ (China). Inst. of Low Energy Nuclear Physics

    2000-08-22

    Growth regularity of ceramic coatings formed on Al-Cu-Mg alloy by microarc oxidation was investigated, and the formation mechanism of coatings was discussed. After oxidation of several hours with linear growth, the growth rate of coatings decreases gradually. During the early stage, the sample geometrical dimension increases with oxidation. However, when the ceramic oxide coating reaches a certain thickness, the sample geometrical dimension will no longer increase although the total coating thickness keeps increasing. The oxide coatings contain a loose layer and a compact layer. The loose layer is formed first. After several hours, the compact layer begins to grow towards the Al substrate while the thickness of the loose layer changes little. The thickness of the compact layer can finally reach over 75% of the total coating thickness. After the surface loose layer is ground off, the sample dimension is approximately the same size as the sample before the treatment. (orig.)

  8. Characteristics of Plasma-Sprayed Ceramic Coatings and Their Engineering Application

    Institute of Scientific and Technical Information of China (English)

    DENG Hua-ling; ZHANG Zhong-wen; WU Jun

    2004-01-01

    The microstructure, porosity, microhardness and adhesive strength of three plasma- sprayed ceramic coatings (Al2 O3, Cr2 O3 and Cr3 C2 + NiCr) were tested. The wear resistance of the coatings was characterized through sand blasting test. The results showed that the erosion resistance of Cr2 O3 coating was better than Al2 O3 and Cr3 C2 + NiCr coatings'.Through depositing the coating on the surface of boiler overheater tubes and on the surface of baffle- wall of carrying- coal grain blower to test its anti- erosion performance after a period of running, it was confirmed that the coatings present excellent wear resistance. Accordingly, it also demonstrates that ceramic coating has a promising prospects in surface protection in thermal power stations.

  9. Abrasion, erosion and scuffing resistance of carbide and oxide ceramic thermal sprayed coatings for different applications

    Science.gov (United States)

    Barbezat, G.; Nicoll, A. R.; Sickinger, A.

    1993-04-01

    In the area of antiwear coatings, carbide-containing coatings and oxide ceramic coatings are applied using different thermal spray processes in the form of individual layers. In many industries these coatings have become technically significant on components where wear and friction can cause critical damage in the form of abrasion, erosion and scuffing together with corrosion. Carbide-containing and ceramic coatings have been produced with different thermal spray processes for the determination of abrasive, adhesive and erosive wear resistance. Two types of abrasion test, namely an adhesion wear test and an erosion test in water at a high velocity, were used for the characterization of wear resistance under different conditions. The coatings were also characterized with regard to microstructure, composition and fracture toughness. The influence of the thermal spraying process parameters on the microstructure is presented together with the influence of the microstructure on the behavior of the coatings under simulated service conditions.

  10. An investigation of ceramic coating growth mechanisms in plasma electrolytic oxidation (PEO) processing

    International Nuclear Information System (INIS)

    To further our understanding of the plasma electrolytic oxidation (PEO) process, and to aid in the optimization of the process, it is important to identify the mechanisms of coating formation. In the present work, coatings up to 110 μm thick were produced on an AJ62 Mg-alloy substrate using the PEO process. Optical emission spectroscopy (OES) was employed to follow the microdischarges and substrate and electrolyte elements present in the plasma discharge during the coating growth, and to determine plasma electron temperatures. During PEO processing of magnesium, some of the metal cations are transferred outwards from the substrate and react with anions to form ceramic coatings. Also, due to the high electric field in the discharge channels, oxygen anions transfer toward the magnesium substrate and react with Mg2+ cations to form a ceramic coating. In PEO process, the ceramic coating grows inwards to the alloy substrate and outwards to the coating surface simultaneously. The total coating thickness variation compared with the geometrical dimensions of the uncoated and coated samples were investigated. For the coating growth, there are three simultaneous processes taking place, namely the electrochemical reactions, the plasma chemical reactions and thermal diffusion. Oxygen diffusion occurring during PEO processing is discussed in terms of coating growth mechanisms

  11. Glass-ceramic joining and coating of SiC/SiC for fusion applications

    International Nuclear Information System (INIS)

    The aim of this work is the joining and the coating of SiC/SiC composites by a simple, pressureless, low cost technique. A calcia-alumina glass-ceramic was chosen as joining and coating material, because its thermal and thermomechanical properties can be tailored by changing the composition, it does not contain boron oxide (incompatible with fusion applications) and it has high characteristic temperatures (softening point at about 1400 C). Furthermore, the absence of silica makes this glass-ceramic compatible with ceramic breeder materials (i.e. lithium-silicates, -alluminates or -zirconates). Coatings and joints were successfully obtained with Hi-Nicalon fiber-reinforced CVI silicon carbide matrix composite. Mechanical shear strength tests were performed on joined samples and the compatibility with a ceramic breeder material was examined. (orig.)

  12. Properties of Ti(B,N coatings deposited onto cemented carbides and sialon tool ceramics

    Directory of Open Access Journals (Sweden)

    M. Pancielejko

    2010-07-01

    Full Text Available Purpose: The aim of this paper was to investigate mechanical properties both of sintered carbides WC-Co type and sialon tool ceramics with wear resistance ternary coatings Ti(B,N type deposited by the cathodic arc evaporation process (CAE-PVD.Design/methodology/approach: The microhardness tests of coatings were made using the ultra microhardness tester. The grain size of investigated coatings was determined by the Scherrer method. Tests of the coatings adhesion to a substrate material were made using the scratch test. There was investigated the roughness of both uncoated and coated surface multi-point inserts. Wear mechanism observations, after the scratch test, were carried out by the scanning electron microscope with EDS attachment.Findings: This paper presents that studied PVD coatings deposited on sintered carbides and sialon tool ceramics have an effect on increasing hardness surface of tools. Moreover, the results achieved after the investigation shown that a coating obtaining on tool ceramics has bigger grains and a smaller adhesion to substrate rather than a coating on sintered carbides. Furthermore, the investigations were shown that both single and double-sided delamination was a principal defect mechanism during the scratch test.Practical implications: The gradient Ti(B,N coating carried out on multi point inserts (made on sintered carbides WC-Co type can be used in the pro-ecological dry cutting processes without using cutting fluids. However, application of this coating to cover sialon ceramics demands still both elaborating and improvement adhesion to substrates in order to introduce these to industrial applications.Originality/value: The paper presents some researches of gradient Ti(B,N nanocrystaline coatings deposited by CAE-PVD method on sintered carbides and sialon tool ceramics.

  13. Deformation Behavior of Nanostructured Ceramic Coatings Deposited by Thermal Plasma Spray

    Institute of Scientific and Technical Information of China (English)

    Xianliang JIANG; Eric Jordan; Leon Shaw; Maurice Gell

    2004-01-01

    Al2O3-13 wt pct TiO2 coating deposited by direct current plasma spray consists of nanostructured region and microlamellae. Bend test shows that the ceramic coating can sustain some deformation without sudden failure. The deformation is achieved through the movement of nano-particles in the nanostructured region under tensile stress.

  14. Bioactive glass-ceramic coating for enhancing the in vitro corrosion resistance of biodegradable Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ye Xinyu [Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); Cai Shu, E-mail: caishu@tju.edu.cn [Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); Dou Ying [Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); Xu Guohua [Shanghai Changzheng Hospital, Shanghai 200003 (China); Huang Kai; Ren Mengguo; Wang Xuexin [Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Sol-gel derived 45S5 glass-ceramic coating was prepared on Mg alloy substrate. Black-Right-Pointing-Pointer The corrosion resistance of glass-ceramic coated Mg alloy was markedly improved. Black-Right-Pointing-Pointer The corrosion behavior of the coated sample varied due to the cracking of coating. - Abstract: In this work, a bioactive 45S5 glass-ceramic coating was synthesized on magnesium (Mg) alloy substrate by using a sol-gel dip-coating method, to improve the initial corrosion resistance of AZ31 Mg alloy. The surface morphology and phase composition of the glass-ceramic coating were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The coating composed of amorphous phase and crystalline phase Na{sub 2}Ca{sub 2}Si{sub 3}O{sub 9}, with the thickness of {approx}1.0 {mu}m, exhibited a uniform and crack-free surface morphology. The corrosion behavior of the uncoated and coated Mg alloy substrates was investigated by the electrochemical measurements and immersion tests in simulated body fluid (SBF). Potentiodynamic polarization tests recorded an increase of potential (E{sub corr}) form -1.60 V to -1.48 V, and a reduction of corrosion current density (i{sub corr}) from 4.48 {mu}A cm{sup -2} to 0.16 {mu}A cm{sup -2}, due to the protection provided by the glass-ceramic coating. Immersion tests also showed the markedly improved corrosion resistance of the coated sample over the immersion period of 7 days. Moreover, after 14 days of immersion in SBF, the corrosion resistance of the coated sample declined due to the cracking of the glass-ceramic coating, which was confirmed by electrochemical impedance spectroscopy (EIS) analysis. The results suggested that the 45S5 glass-ceramic coated Mg alloy could provide a suitable corrosion behavior for use as degradable implants.

  15. An investigation on bonding interface microstructure of ceramic coating prepared on AZ91D by evaporated pattern casting technique

    OpenAIRE

    Fan Zitian; Dong Xuanpu; Chen Dongfeng

    2011-01-01

    PbO-ZnO-Na2O ceramic coating was fabricated on the AZ91D Mg-alloy substrate surface by using of evaporated pattern casting (EPC) process. The ceramic coating was characterized through scanning electron microscopy (SEM) observation, energy dispersive X-ray spectrometer (EDS) and so on. The research was emphasized on the formation process of ceramic coating and the interface bonding conditions between ceramic coating and the substrate. Results show that the glass powder (PbO-ZnO-Na2O) melts whe...

  16. Fractal and multifractal characteristics of CVD coatings deposited onto the nitride tool ceramics

    OpenAIRE

    W. Kwaśny; D. Pakuła; Woźniak, M.; L.A. Dobrzański

    2007-01-01

    Purpose: The goal of this work is the fractal and multifractal characteristics of the TiN+Al2O3 and Al2O3+TiNcoatings obtained in the CVD process on the Si3N4 tool ceramics substrate.Design/methodology/approach: The investigations were carried out of the multi-edge inserts from the Si3N4nitride tool ceramics uncoated and coated with the TiN+Al2O3 and Al2O3+TiN coatings deposited in the CVDprocess. Determining the fractal dimension and the multifractal analysis of the examined coatings were ma...

  17. Bone-bonding behavior under load-bearing conditions of an alumina ceramic implant incorporating beads coated with glass-ceramic containing apatite and wollastonite.

    Science.gov (United States)

    Li, Z L; Kitsugi, T; Yamamuro, T; Chang, Y S; Senaha, Y; Takagi, H; Nakamura, T; Oka, M

    1995-09-01

    Alumina ceramic with a porous surface coated with glass-ceramic containing apatite and wollastonite (AW-GC) was implanted in a state of press-fit under load-bearing conditions in the femoral condylus of the mongrel dog and compared with a non-glass-ceramic-coated alumina ceramic. A trapezoid alumina ceramic implant (7 x 10 x 5 mm) with a lateral recess (0.9 mm deep) coated with alumina ceramic beads (mean diameter, 750 microns) in a single layer was prepared. The alumina ceramic beads were bonded to the alumina ceramic substratum using an identical alumina binder. The thickness of coating was 10-50 microns (mean, 30 microns). The surface of the beads and the substratum of the alumina implant were coated with AW-GC. A pull-out test and histologic examination were performed at 4, 8, and 24 weeks after implantation. The interfacial shear load was significantly increased from 8 to 24 weeks in both groups. The shear load of the glass-ceramic-coated implant was significantly greater than that of the noncoated implant at every stage. The interface shear load of the noncoated implant was 12.13 +/- 2.76 kg at 4 weeks, 13.92 +/- 4.18 kg at 8 weeks, and 24.17 +/- 5.17 kg at 24 weeks after implantation. The interface shear load of the glass-ceramic-coated implant was 17.96 +/- 2.81 kg at 4 weeks, 24.92 +/- 9.87 kg at 8 weeks, and 34.83 +/- 4.12 kg at 24 weeks after implantation. Histologic examination showed more ingrown bone tissue in the glass-ceramic-coated implants. It is suggested that AW-GC stimulated the bone ingrowth.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8567706

  18. Nanostructured bioactive glass-ceramic coatings deposited by the liquid precursor plasma spraying process

    International Nuclear Information System (INIS)

    Bioactive glass-ceramic coatings have great potential in dental and orthopedic medical implant applications, due to its excellent bioactivity, biocompatibility and osteoinductivity. However, most of the coating preparation techniques either produce only thin thickness coatings or require tedious preparation steps. In this study, a new attempt was made to deposit bioactive glass-ceramic coatings on titanium substrates by the liquid precursor plasma spraying (LPPS) process. Tetraethyl orthosilicate, triethyl phosphate, calcium nitrate and sodium nitrate solutions were mixed together to form a suspension after hydrolysis, and the liquid suspension was used as the feedstock for plasma spraying of P2O5-Na2O-CaO-SiO2 bioactive glass-ceramic coatings. The in vitro bioactivities of the as-deposited coatings were evaluated by soaking the samples in simulated body fluid (SBF) for 4 h, 1, 2, 4, 7, 14, and 21 days, respectively. The as-deposited coating and its microstructure evolution behavior under SBF soaking were systematically analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), inductively coupled plasma (ICP), and Fourier transform infrared (FTIR) spectroscopy. The results showed that P2O5-Na2O-CaO-SiO2 bioactive glass-ceramic coatings with nanostructure had been successfully synthesized by the LPPS technique and the synthesized coatings showed quick formation of a nanostructured HCA layer after being soaked in SBF. Overall, our results indicate that the LPPS process is an effective and simple method to synthesize nanostructured bioactive glass-ceramic coatings with good in vitro bioactivity.

  19. Nanostructured bioactive glass-ceramic coatings deposited by the liquid precursor plasma spraying process

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Yanfeng; Song Lei; Liu Xiaoguang; Huang Yi; Huang Tao; Wu Yao; Chen Jiyong [National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road Chengdu, Sichuan 610064 (China); Wu Fang, E-mail: fwu@scu.edu.cn [National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road Chengdu, Sichuan 610064 (China)

    2011-01-01

    Bioactive glass-ceramic coatings have great potential in dental and orthopedic medical implant applications, due to its excellent bioactivity, biocompatibility and osteoinductivity. However, most of the coating preparation techniques either produce only thin thickness coatings or require tedious preparation steps. In this study, a new attempt was made to deposit bioactive glass-ceramic coatings on titanium substrates by the liquid precursor plasma spraying (LPPS) process. Tetraethyl orthosilicate, triethyl phosphate, calcium nitrate and sodium nitrate solutions were mixed together to form a suspension after hydrolysis, and the liquid suspension was used as the feedstock for plasma spraying of P{sub 2}O{sub 5}-Na{sub 2}O-CaO-SiO{sub 2} bioactive glass-ceramic coatings. The in vitro bioactivities of the as-deposited coatings were evaluated by soaking the samples in simulated body fluid (SBF) for 4 h, 1, 2, 4, 7, 14, and 21 days, respectively. The as-deposited coating and its microstructure evolution behavior under SBF soaking were systematically analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), inductively coupled plasma (ICP), and Fourier transform infrared (FTIR) spectroscopy. The results showed that P{sub 2}O{sub 5}-Na{sub 2}O-CaO-SiO{sub 2} bioactive glass-ceramic coatings with nanostructure had been successfully synthesized by the LPPS technique and the synthesized coatings showed quick formation of a nanostructured HCA layer after being soaked in SBF. Overall, our results indicate that the LPPS process is an effective and simple method to synthesize nanostructured bioactive glass-ceramic coatings with good in vitro bioactivity.

  20. Nanostructured bioactive glass-ceramic coatings deposited by the liquid precursor plasma spraying process

    Science.gov (United States)

    Xiao, Yanfeng; Song, Lei; Liu, Xiaoguang; Huang, Yi; Huang, Tao; Wu, Yao; Chen, Jiyong; Wu, Fang

    2011-01-01

    Bioactive glass-ceramic coatings have great potential in dental and orthopedic medical implant applications, due to its excellent bioactivity, biocompatibility and osteoinductivity. However, most of the coating preparation techniques either produce only thin thickness coatings or require tedious preparation steps. In this study, a new attempt was made to deposit bioactive glass-ceramic coatings on titanium substrates by the liquid precursor plasma spraying (LPPS) process. Tetraethyl orthosilicate, triethyl phosphate, calcium nitrate and sodium nitrate solutions were mixed together to form a suspension after hydrolysis, and the liquid suspension was used as the feedstock for plasma spraying of P 2O 5-Na 2O-CaO-SiO 2 bioactive glass-ceramic coatings. The in vitro bioactivities of the as-deposited coatings were evaluated by soaking the samples in simulated body fluid (SBF) for 4 h, 1, 2, 4, 7, 14, and 21 days, respectively. The as-deposited coating and its microstructure evolution behavior under SBF soaking were systematically analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), inductively coupled plasma (ICP), and Fourier transform infrared (FTIR) spectroscopy. The results showed that P 2O 5-Na 2O-CaO-SiO 2 bioactive glass-ceramic coatings with nanostructure had been successfully synthesized by the LPPS technique and the synthesized coatings showed quick formation of a nanostructured HCA layer after being soaked in SBF. Overall, our results indicate that the LPPS process is an effective and simple method to synthesize nanostructured bioactive glass-ceramic coatings with good in vitro bioactivity.

  1. Preparation technology and anti-corrosion performances of black ceramic coatings formed by micro-arc oxidation on aluminum alloys

    Institute of Scientific and Technical Information of China (English)

    CHEN Ling; HAN Jing; YU Shengxue

    2006-01-01

    In order to prepare ornamental and anti-corrosive coating on aluminum alloys, preparation technology of black micro-arc ceramic coatings on Al alloys in silicate based electrolyte was studied.The influence of content of Na2WO4 and combination additive in solution on the performance of black ceramic coatings was studied; the anticorrosion performances of black ceramic coatings were evaluated through whole-immersion test and electrochemical method in 3.5% NaCl solution at different pH value; SEM and XRD were used to analyze the surface morphology and phase constitutes of the black ceramic coatings.Experimental results indicated that, without combination additives, with the increasing of Na2WO4 content in the electrolyte, ceramic coating became darker and thicker, but the color was not black; after adding combination additive, the coating turned to be black; the black ceramic coating was multi-hole form in surface.There was a small quantity of tungsten existing in the black ceramic coating beside α-Al2O3 phase and β-Al2O3 phase.And aluminum alloy with black ceramic coating exhibited excellent anti-corrosion property in acid, basic and neutral 3.5% NaCl solution.

  2. Structure of TiBN coatings deposited onto cemented carbides and sialon tool ceramics

    OpenAIRE

    L.A. Dobrzański; M. Staszuk; J. Konieczny; W. Kwaśny; M. Pawlyta

    2009-01-01

    Purpose: The aim of this paper was investigated structure of sintered carbides WC-Co type and sialon tool ceramics with wear resistance ternary coatings TiBN type deposited by cathodes arc evaporation process (CAE-PVD).Design/methodology/approach: Observation of fracture and topography studied coatings were done by scanning electron microscope. Chemical composition was determine by energy dispersive spectrometry (EDS) method. Thin foils of substrates and coatings by transmission electron micr...

  3. Corrosion protection of SiC-based ceramics with CVD mullite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Auger, M.L.; Sarin, V.K. [Boston Univ., MA (United States). Dept. of Mfg. Engineering

    1997-12-01

    For the first time, crystalline mullite coatings have been chemically vapor deposited on SiC substrates to enhance its corrosion and oxidation resistance. Thermodynamic and kinetic considerations have been utilized to produce mullite coatings with a variety of growth rates, compositions, and morphologies. The flexibility of processing can be exploited to produce coated ceramics with properties tailored to specific applications and varied corrosive environments.

  4. PVD and CVD gradient coatings on sintered carbides and sialon tool ceramics

    OpenAIRE

    L.A. Dobrzański; M. Staszuk

    2010-01-01

    Purpose: The main objective of the work is to investigate the structure and properties of multilayer gradient coatings produced in PVD and CVD processes on sintered carbides and on sialon ceramics, and to define the influence of the properties of the coatings such as microhardness, adhesion, thickness and size of grains on the applicable properties of cutting edges covered by such coatings.Design/methodology/approach: The investigation studies pertaining to the following have been carried ou...

  5. Chemical solution deposition of functional ceramic coatings using ink-jet printing

    OpenAIRE

    De Keukeleere, Katrien; Pollefeyt, Glenn; Feys, Jonas; De Roo, Jonathan; Rijckaert, Hannes; Lommens, Petra; Van Driessche, Isabel

    2015-01-01

    This paper discusses the development of environmentally-friendly precursor inks suited for ink-jet printing of functional ceramic coatings. We synthesized superconducting materials, SrTiO3 thin films for coated conductor applications and transparent TiO2 photocatalytic coatings. Here, we discuss all aspects of ink formulation, including the stabilization of metal ions, nanoparticle inks or combination of both. This demands the investigation and determination of the inks rheological parameters...

  6. Surface modification of sialon ceramics and cemented carbides by PVD coating deposition

    OpenAIRE

    L.A. Dobrzański; M. Staszuk

    2011-01-01

    Purpose: The paper includes investigation results of structures and mechanical properties of coatings deposited by the physical vapor deposition (PVD) techniques onto both sialon tool ceramics and sintered carbides. The paper includes two kinds of coating materials, isomorphic containg phases with TiN and AlN.Design/methodology/approach: In the paper were presented some observations of coating structures, before carried out in the scanning electron microscope. Phases composition analysis was ...

  7. Investigation of PVD coatings deposited on the Si3N4 and sialon tool ceramics

    OpenAIRE

    D. Pakuła; L.A. Dobrzański; Kriz, A; M. Staszuk

    2010-01-01

    Purpose: The paper presents investigation results of the structure and properties of the coatings deposited by cathodic arc evaporation - physical vapour deposition (CAE-PVD) techniques on the Si3N4 and sialon tool ceramics. The Ti(B,N), Ti(C,N), (Ti,Zr)N and (Ti,Al)N coatings were investigated.Design/methodology/approach: The structural investigation includes the metallographic analysis on the scanning electron microscope. Examinations of the chemical compositions of the deposited coatings w...

  8. Plasma-Sprayed Ceramic Coatings for Barrier Applications Against Molten Uranium Corrosion

    Science.gov (United States)

    Ananthapadmanabhan, P. V.; Chakravarthy, Y.; Chaturvedi, Vandana; Thiyagarajan, T. K.; Pragatheeswaran, A.

    2015-07-01

    Ceramic coatings are applied on engineering components for protecting them from large thermal load and hot corrosion. Choices of coating material for protection against hot corrosion by uranium are few, because of its high reactivity. Yttrium oxide has a high melting temperature and is inert towards uranium. Therefore, yttrium oxide coatings are effective as a barrier against hot corrosion by uranium and its alloys. This paper gives a summary of the developmental work on plasma-sprayed yttria coatings for corrosion barrier applications against molten uranium. Results show that plasma-sprayed yttria coatings offer a long-term solution to hot corrosion problems.

  9. Application of magnetron sputtering for producing bioactive ceramic coatings on implant materials

    Indian Academy of Sciences (India)

    J Z Shi; C Z Chen; H J Yu; S J Zhang

    2008-11-01

    Radio frequency (RF) magnetron sputtering is a versatile deposition technique that can produce thin, uniform, dense calcium phosphate coatings. In this paper, principle and character of magnetron sputtering is introduced, and development of the hydroxyapatite and its composite coatings application is reviewed. In addition, influence of heat treatment on magnetron sputtered coatings is discussed. The heat treated coatings have been shown to exhibit bioactive behaviour both in vivo and in vitro. At last, the future application of the bioactive ceramic coating deposited by magnetron sputtering is mentioned.

  10. Inelastic constitutive equation of plasma-sprayed ceramic thermal barrier coatings

    Institute of Scientific and Technical Information of China (English)

    Masayuki ARAI

    2011-01-01

    Ceramic thermal barrier coatings (TBCs) are a very important technology for protecting the hot parts of gas turbines (GTs) from a high-temperature environment. The coating stress generated in the operation of GTs brings cracking and peeling damage to the TBCs. Thus, it is necessary to evaluate precisely such coating stress in a TBC system. We have obtained a stress-strain curve for a freestanding ceramic coat specimen peeled from a TBC coated substrate by conducting the bending test. The test results have revealed that the ceramic coating deforms nonlinearly with the applied loading. In this study, an inelastic constitutive equation for the ceramic thermal barrier coatings deposited by APS is developed. The obtained results are as follows: (1) the micromechanics-based constitutive equation was formulated with micro crack density formed at splat boundary, and (2) it was shown that the numerical results for a nonlinearly deformed beam simulated by the developed constitutive equation agreed with the experimental results obtained by cantilever bending tests.

  11. A method for preparing composite diffusion coating alloy on ceramic surface

    Institute of Scientific and Technical Information of China (English)

    Zhang Hongxia; Wang Wenxian; Chen Shaoping; Wei Yinghui

    2008-01-01

    Metallization of the ceramic surfaces of Si3N4 and Al2O3 was carried out in a composite diffusion coating vacuum furnace using a Ti-Cu composite target. The experimental process and influencing factors were discussed. Optical microscope (OM), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), X-ray diffusion (XRD) and sound emissive scratch test (SEST) were applied to evaluate the alloy layer formed on the ceramic surface. It was indicated that the diffusion coating alloy layer contained Cu, Ti, Fe, Al and Si etc. XRD result indicated that the diffusion coating alloy layer was composed of CuTi2, Cu, Si2Ti and CuTi, Al2TiO5, Ti3O5. It was found that the diffusion coating alloy layer got bonded with ceramic well, and no spallation occurred under the maximum load of 100N. Deposited Si3N4 ceramic was welded with Q235 and the joining quality was examined. Robust joint was formed between Si3N4 ceramic/Q235. This present method has advantages in high efficiency and low cost and provides a new approach for producing ceramic and metal bond.

  12. Structure of TiBN coatings deposited onto cemented carbides and sialon tool ceramics

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2009-07-01

    Full Text Available Purpose: The aim of this paper was investigated structure of sintered carbides WC-Co type and sialon tool ceramics with wear resistance ternary coatings TiBN type deposited by cathodes arc evaporation process (CAE-PVD.Design/methodology/approach: Observation of fracture and topography studied coatings were done by scanning electron microscope. Chemical composition was determine by energy dispersive spectrometry (EDS method. Thin foils of substrates and coatings by transmission electron microscopy (TEM was done. Phases composition analysis carried out by XRD and GIXRD method.Findings: The investigated PVD gradient coatings deposited by CAE-PVD method are demonstrating fine-grained structure. The TiN, TiB and TiB2 phases were found in coatings and β-Si3N4 phase was found in sialon tool ceramics. Coating onto sialon tool ceramics reveal shallow pinhole while coating onto cemented carbide is without discontinuity.Research limitations/implications: In the future investigations will progress for mechanical properties, e.g. roughness, microhardness, adhesion strength and operating properties.Originality/value: In this work the influence of parameters deposited coatings by CAE-PVD technique on structure and phases composition the ternary TiBN gradient coatings were investigated.

  13. Computational analysis of damage and failure evolution in ceramic coatings under thermal loading

    International Nuclear Information System (INIS)

    Ceramic coatings on metallic substrates greatly improve the performance of various structures (gas turbines, aircraft engines, etc.) and also widen their functional applications, serving as thermal barriers and/or wear-resistant coatings. Ceramic coatings are characterized by randomness in distribution of pores, anisotropy of thermoelastic properties and their change with distance from a substrate. These factors, together with a mismatch in coefficients of thermal expansion of coatings and substrates, can cause damage evolution and failure initiation even under purely thermal loading in the absence of external mechanical loads. Microstructure of ceramic coatings greatly affects parameters of transition to macroscopic failure initiation and development. Damage evolution processes in ceramics can be studied using a numerical model based on ideas of continuum damage mechanics (CDM) developed in. This approach incorporates a thermodynamically based CDM-model of damage in alumina and an account for spatial randomness in material properties (initial porosity) linked with manufacturing of ceramic materials. It allows an adequate description of high-temperature loading and of size effect in alumina. This model is applied to analyses of damage evolution in alumina thermal barriers on a titan substrate under conditions of thermal loading by means of the original modeling scheme and advanced finite element analysis. The specific type of microstructure of alumina coatings is integrated into numerical modeling in terms of the random distribution of initial porosity. Two different levels of simulations are exploited: (a) macroscopic for analysis of general thermomechanical processes in the coating-substrate system under various conditions and (b) microscopic for analysis of local processes in the direct vicinity of pores in alumina. Effects of different types of microstructure (determined by modification of manufacturing processes for coatings) on damage evolution and quality of

  14. Microstructures and Mechanical Properties of Ceramic/Metal Gradient Thermal Barrier Coatings

    Institute of Scientific and Technical Information of China (English)

    XIAO Jin-sheng; JIANG Bing; LIU Jie; HUANG Shi-yong

    2003-01-01

    The ceramic/metal gradient thermal barrier coatings (CMGTBCs) which combined the conceptions of thermal barrier coatings ( TBG ) and functional gradient materials ( FGMs ) are investigated. The structure model studied in this paper is a general model which includes four different layers: pure ceramic layer , ceramic/metal gradient layer, pure metal layer, and substrate layer. The microstructures of gradient layer have different ceramics and metal volume fraction profile along with the direction of thickness. The profile function used to describe the gradient microstructures can be expressed in power-law or polynomial expression. The mechanical properties of CMGTBCs are obtained by means of microscopic mechanics. As special cases, the interactive solutions are given by Mori- Tanaka method, and the non- interactive solutions by dilute solution. The Young's modulus calculated by these methods are compared with those by other methods , e g, the rule of mixtures.

  15. Zirconia-coated carbonyl-iron-particle-based magnetorheological fluid for polishing optical glasses and ceramics

    International Nuclear Information System (INIS)

    We report on magnetorheological finishing (MRF) spotting experiments performed on glasses and ceramics using a zirconia-coated carbonyl-iron (CI)-particle-based magnetorheological (MR) fluid. The zirconia-coated magnetic CI particles were prepared via sol-gel synthesis in kilogram quantities. The coating layer was ∼50-100 nm thick, faceted in surface structure, and well adhered. Coated particles showed long-term stability against aqueous corrosion. ''Free'' nanocrystalline zirconia polishing abrasives were cogenerated in the coating process, resulting in an abrasive-charged powder for MRF. A viable MR fluid was prepared simply by adding water. Spot polishing tests were performed on a variety of optical glasses and ceramics over a period of nearly three weeks with no signs of MR fluid degradation or corrosion. Stable material removal rates and smooth surfaces inside spots were obtained.

  16. Zirconia-coated carbonyl-iron-particle-based magnetorheological fluid for polishing optical glasses and ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Shafrir, Shai N.; Romanofsky, Henry J.; Skarlinski, Michael; Wang, Mimi; Miao, Chunlin; Salzman, Sivan; Chartier, Taylor; Mici, Joni; Lambropoulos, John C.; Shen Rui; Yang Hong; Jacobs, Stephen D.

    2009-12-10

    We report on magnetorheological finishing (MRF) spotting experiments performed on glasses and ceramics using a zirconia-coated carbonyl-iron (CI)-particle-based magnetorheological (MR) fluid. The zirconia-coated magnetic CI particles were prepared via sol-gel synthesis in kilogram quantities. The coating layer was {approx}50-100 nm thick, faceted in surface structure, and well adhered. Coated particles showed long-term stability against aqueous corrosion. ''Free'' nanocrystalline zirconia polishing abrasives were cogenerated in the coating process, resulting in an abrasive-charged powder for MRF. A viable MR fluid was prepared simply by adding water. Spot polishing tests were performed on a variety of optical glasses and ceramics over a period of nearly three weeks with no signs of MR fluid degradation or corrosion. Stable material removal rates and smooth surfaces inside spots were obtained.

  17. Corrosion behavior of mesoporous bioglass-ceramic coated magnesium alloy under applied forces.

    Science.gov (United States)

    Zhang, Feiyang; Cai, Shu; Xu, Guohua; Shen, Sibo; Li, Yan; Zhang, Min; Wu, Xiaodong

    2016-03-01

    In order to research the corrosion behavior of bioglass-ceramic coated magnesium alloys under applied forces, mesoporous 45S5 bioactive glass-ceramic (45S5 MBGC) coatings were successfully prepared on AZ31 substrates using a sol-gel dip-coating technique followed by a heat treatment at the temperature of 400°C. In this work, corrosion behavior of the coated samples under applied forces was characterized by electrochemical tests and immersion tests in simulated body fluid. Results showed that the glass-ceramic coatings lost the protective effects to the magnesium substrate in a short time when the applied compressive stress was greater than 25MPa, and no crystallized apatite was formed on the surface due to the high Mg(2+) releasing and the peeling off of the coatings. Whereas, under low applied forces, apatite deposition and crystallization on the coating surface repaired cracks to some extent, thus improving the corrosion resistance of the coated magnesium during the long-term immersion period. PMID:26703229

  18. Development of metal-coated ceramic anodes for molten carbonate fuel cells. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Khandkar, A.C.; Elangovan, S.; Marianowski, L.G.

    1990-03-01

    This report documents the developmental efforts on metal coating of various ceramic substrates (LiAlO{sub 2}, SrTiO{sub 3}, and LiFeO{sub 2}) and the critical issues associated with fabricating anodes using metal-coated LiAlO{sub 2} substrates. Electroless Ni and Cu coating technology was developed to achieve complete metal coverage on LiAlO{sub 2} powder substrates. Metal coated SrTiO{sub 3} powders were fabricated into anodes by a process identical to that reported in the GE literature. Microstructural examination revealed that the grains of the ceramic had fused together, with the metal having dewetted from the surface of the ceramic. Alternate substrates that might allow for better wetting of the metal on the ceramic such as LiFeO{sub 2} and Li{sub 2}MnO{sub 3} were identified. Cu/Ni-coated (50:50 mol ratio, 50 w/o metal loading) LiFeO{sub 2} anodes were optimized to meet the MCFC anode specifications. Metal-coated gamma-LiAlO{sub 2} substrates were also developed. By using suitable chemical surface modification methods, the gamma-UAlO{sub 2} substrate surface may be modified to allow a stable metal coated anode to be fabricated. Creep testing of the metal coated ceramic anodes were conducted at IGT. It was determined that the predominant creep mechanism is due to particle rearrangement. The anode porosity, and mean pore size had significant effect on the creep of the anode. Lower porosity and pore size consistent with performance criteria are desired to reduce creep. Lower metal loading with uniformity of coverage will result in lower creep behavior of the anode. Of the two substrates evaluated, LiFeO{sub 2} in general exhibited lower creep which was attributed to superior metal adhesion.

  19. Development of metal-coated ceramic anodes for molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Khandkar, A.C.; Elangovan, S.; Marianowski, L.G.

    1990-03-01

    This report documents the developmental efforts on metal coating of various ceramic substrates (LiAlO{sub 2}, SrTiO{sub 3}, and LiFeO{sub 2}) and the critical issues associated with fabricating anodes using metal-coated LiAlO{sub 2} substrates. Electroless Ni and Cu coating technology was developed to achieve complete metal coverage on LiAlO{sub 2} powder substrates. Metal coated SrTiO{sub 3} powders were fabricated into anodes by a process identical to that reported in the GE literature. Microstructural examination revealed that the grains of the ceramic had fused together, with the metal having dewetted from the surface of the ceramic. Alternate substrates that might allow for better wetting of the metal on the ceramic such as LiFeO{sub 2} and Li{sub 2}MnO{sub 3} were identified. Cu/Ni-coated (50:50 mol ratio, 50 w/o metal loading) LiFeO{sub 2} anodes were optimized to meet the MCFC anode specifications. Metal-coated gamma-LiAlO{sub 2} substrates were also developed. By using suitable chemical surface modification methods, the gamma-UAlO{sub 2} substrate surface may be modified to allow a stable metal coated anode to be fabricated. Creep testing of the metal coated ceramic anodes were conducted at IGT. It was determined that the predominant creep mechanism is due to particle rearrangement. The anode porosity, and mean pore size had significant effect on the creep of the anode. Lower porosity and pore size consistent with performance criteria are desired to reduce creep. Lower metal loading with uniformity of coverage will result in lower creep behavior of the anode. Of the two substrates evaluated, LiFeO{sub 2} in general exhibited lower creep which was attributed to superior metal adhesion.

  20. Study on aluminum phosphate binder and related Al2O3-SiC ceramic coating

    International Nuclear Information System (INIS)

    Refractory and wear-resistant Al2O3-SiC ceramic coatings have been fabricated on A3 steel using alumina (Al2O3), silicon carbide (SiC), aluminum phosphate binder (inorganic binder), and other additives as starting materials. The powder X-ray diffraction (XRD), thermogravimetric analysis/differential thermal analysis (TG/DTA), and scanning electron microscopy (SEM) techniques are applied to investigate the chemical compositions of the in-house synthesized aluminum phosphate binder and the morphologies of the fabricated ceramic coatings after abrasion test. The XRD results indicate that monoaluminum phosphate (Al(H2PO4)3) is the most effective binding phase in the synthesized aluminum phosphate binder. The TG/DTA analysis shows that two phase transformations occur at 100.7 and 217.7 deg. C when the synthesized aluminum phosphate binder is heated in a range 60-1000 deg. C and the binder after heat treatment is a mixture of several phases. The wear test results show that the wear durability of the A3 steel covered with Al2O3-SiC ceramic coatings is about two times that of the uncoated A3 steel. The results also indicate that the wear properties of Al2O3-SiC ceramic coatings are dependent on fabrication conditions such as the weight ratio of ceramics (Al2O3 and SiC) to the binder (RCB), the distribution of particle size of ceramics, the density of the aluminum phosphate binder, and the Al/P atomic ratio in the aluminum phosphate binder. Upon the above results, optimal fabrication conditions for achieving good wear resistance of Al2O3-SiC ceramic coatings are suggested in this paper

  1. Finite Element Analysis of Thermal Stresses in Ceramic/Metal Gradient Thermal Barrier Coatings

    Institute of Scientific and Technical Information of China (English)

    MING Pingshun; XIAO Jinsheng; LIU Jie; ZHOU Xiaoqin

    2005-01-01

    This paper studied the thermal stresses of ceramic/metal gradient thermal barrier coating which combines the conceptions of ceramic thermal barrier coating (TBC) and functionally gradient material (FGM). Thermal stresses and residual thermal stresses were calculated by an ANSYS finite element analysis software. Negative thermal expansion coefficient method was proposed and element birth and death method was applied to analyze the residual thermal stresses which have non-uniform initial temperature field. The numerical results show a good agreement with the analytical results and the experimental results.

  2. Thermomechanical and Environmental Durability of Environmental Barrier Coated Ceramic Matrix Composites Under Thermal Gradients

    Science.gov (United States)

    Zhu, Dongming; Bhatt, Ramakrishna T.; Harder, Bryan

    2016-01-01

    This paper presents the developments of thermo-mechanical testing approaches and durability performance of environmental barrier coatings (EBCs) and EBC coated SiCSiC ceramic matrix composites (CMCs). Critical testing aspects of the CMCs will be described, including state of the art instrumentations such as temperature, thermal gradient, and full field strain measurements; materials thermal conductivity evolutions and thermal stress resistance; NDE methods; thermo-mechanical stress and environment interactions associated damage accumulations. Examples are also given for testing ceramic matrix composite sub-elements and small airfoils to help better understand the critical and complex CMC and EBC properties in engine relevant testing environments.

  3. Study on the efficiency of ceramic coating for avoiding oxidation in carbon refractories

    International Nuclear Information System (INIS)

    A ceramic coating made of sodium phosphossilicate and clay was developed to the protection of refractories against carbon oxidation during the pre-heating of siderurgical equipment. This search has the objective of comparing the refractory behaviour with and without coating, according to temperature, time and atmosphere. The results show that the coating is more efficient at higher temperatures. An important point is that the efficiency is smaller after long thermal is that the efficiency is smaller after long thermal treatments and at very aggressive conditions. In spite of this the oxidation is still smaller than in refractory without coating. (author)

  4. Polymer-Derived Ceramics as Innovative Oxidation Barrier Coatings for Mo-Si-B Alloys

    Science.gov (United States)

    Hasemann, Georg; Baumann, Torben; Dieck, Sebastian; Rannabauer, Stefan; Krüger, Manja

    2015-04-01

    A preceramic polymer precursor, perhydropolysilazane, is used to investigate its function as a new type of oxidation barrier coating on Mo-Si-B alloys. After dip-coating and pyrolysis at 1073 K (800 °C), dense and well-adhering SiON ceramic coatings could be achieved, which were investigated by SEM and cyclic oxidation tests at 1073 K and 1373 K (800 °C and 1100 °C). The coating is promising in reducing the mass loss during the initial stage of oxidation exposure at 1373 K (1100 °C) significantly.

  5. Development of ceramic coatings for metallic components in supercritical water-cooled reactors

    International Nuclear Information System (INIS)

    A series of ceramic coatings have been prepared by spray pyrolysis processes on P91 substrates. Primary results show that coatings obtaining with different coating compositions and procedures can reduce the weight gain of P91 samples by factors of two to ten for exposure times up to 500 hours in deaerated supercritical water at 500oC and 25 MPa. Results also show that the weigh gain of a P91 sample with Al2O3 coating is about nine times less that that of uncoated P91 after exposures for 400 hours in thermally deaerated supercritical water at 650 oC and 25 MPa. These results indicate that the Al2O3 coating shows promise for preventing oxidation of P91 alloy under supercritical water conditions. Ceramic coatings on Zircaloy substrates have also been prepared using a plasma electrolytic oxidation process. After 400 hours of testing in SCW at 500 oC, the samples with ceramic coatings show improved corrosion resistance compared to the bare Zircaloy substrates. (author)

  6. Structure and tensile/wear properties of microarc oxidation ceramic coatings on aluminium alloy

    Institute of Scientific and Technical Information of China (English)

    魏同波; 阎逢元; 刘维民; 田军

    2004-01-01

    Thick and hard ceramic coatings were prepared on the Al-Cu-Mg alloy by microarc oxidation in alkali-silicate electrolytic solution. The thickness and microhardness of the oxide coatings were measured. The influence of current density on the growth rate of the coating was examined. The microstructure and phase composition of the coatings were investigated by means of scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. Moreover, the tensile strength of the Al alloy before and after microarc oxidation treatment were tested,and the fractography and morphology of the oxide coatings were observed using scanning electron microscope. It is found that the current density considerably influences the growth rate of the microarc oxidation coatings. The oxide coating is mainly composed of α-Al2 O3 and γ-Al2 O3, while high content of Si is observed in the superficial layer of the coating. The cross-section microhardness of 120 μm thick coating reaches the maximum at distance of 35 μm from the substrate/coating interface. The tensile strength and elongation of the coated Al alloy significantly decrease with increasing coating thickness. The microarc oxidation coatings greatly improve the wear resistance of Al alloy,but have high friction coefficient which changes in the range of 0.7 - 0.8. Under grease lubricating, friction coefficient is only 0.15 and wear loss is less than 1/10 of the loss under dry friction.

  7. Fractal and multifractal characteristics of the PVD and CVD coatings deposited onto compound tool ceramics

    OpenAIRE

    W. Kwaśny; J. Mikuła

    2012-01-01

    Purpose: The goal of this work is the fractal and multifractal characteristics of the TiN and TiN+multiTiAlSiN+TiN coatings obtained in the PVD process, and of the TiN+Al2O3 coating obtained in the CVD process on the Al2O3+TiC oxide tool ceramics substrate.Design/methodology/approach: The investigations were carried out of the multi-edge inserts from the Al2O3+TiC oxide tool ceramics uncoated and coated with the TiN and TiN+multiTiAlSiN+TiN coatings deposited in the cathode arc evaporation CA...

  8. Fractal and multifractal characteristics of coatings deposited on pure oxide ceramics

    OpenAIRE

    W. Kwaśny; J. Mikuła; L.A. Dobrzański

    2006-01-01

    Purpose: The goal of this work is the fractal and multifractal characteristics of the TiN and TiN+multiTiAlSiN+TiN coatings obtained in the PVD process, and of the TiN+Al2O3 coating obtained in the CVD process on the Al2O3+ZrO2 oxide tool ceramics substrate.Design/methodology/approach: The investigations were carried out of the multi-edge inserts from the Al2O3+ ZrO2 oxide tool ceramics uncoated and coated with the TiN and TiN+multiTiAlSiN+TiN coatings deposited in the cathode arc evaporation...

  9. Cross-sectional AEM preparation technique for ceramic-coated WC-Co cutting tools.

    Science.gov (United States)

    Ostreicher, K; Sung, C

    1993-04-15

    The preparation of cross-sectional specimens for AEM studies of materials such as ceramic coated tungsten carbide presents some unique problems. Pieces joined by the use of epoxides often separate at the interface between the WC and ceramic coating during the initial mechanical grinding and subsequent thinning process as a result of the vibration and physical strain placed on the sample. These problems have been overcome through the use of a preparation process which essentially encapsulates the sample within the confines of an epoxy filled quartz tube. This preparation process has allowed for facile AEM cross-sectional analysis of TiN/TiCN coatings on WC-Co substrates, and has revealed two distinct grain morphologies within the TiCN coating. PMID:8490235

  10. Key Durability Issues with Mullite-Based Environmental Barrier Coatings for Si-Based Ceramics

    Science.gov (United States)

    Lee, Kang N.

    2000-01-01

    Plasma-sprayed mullite (3Al2O3.2SiO2) and mullite/yttria-stabilized-zirconia (YSZ) dual layer coatings have been developed to protect silicon -based ceramics from environmental attack. Mullite-based coating systems show excellent durability in air. However, in combustion environments, corrosive species such as molten salt or water vapor penetrate through cracks in the coating and attack the Si-based ceramics along the interface. Thus the modification of the coating system for enhanced crack-resistance is necessary for long-term durability in combustion environments. Other key durability issues include interfacial contamination and coating/substrate bonding. Interfacial contamination leads to enhanced oxidation and interfacial pore formation, while a weak coating/substrate bonding leads to rapid attack of the interface by corrosive species, both of which can cause a premature failure of the coating. Interfacial contamination can be minimized by limiting impurities in coating and substrate materials. The interface may be modified to improve the coating/substrate bond.

  11. Metal-ceramic composite coatings obtained by new thermal spray technologies: Cold Gas Spray (CGS) and its wear resistance

    International Nuclear Information System (INIS)

    In this paper, composite coatings composed by an aluminum bronze metal matrix and a hard ceramic alumina phase obtained by cold spray technique were obtained in order to increase the tribological properties of the pure bronze coatings. The different processes that occur during the coating formation (hardening of the metal particles, fragmentation of the ceramic particles, shot peening on the metal substrate, etc) are described and their effects on the coating properties are studied. Wear tests consisting on Ball-on-Disk tests, abrasion Rubber Wheel tests and erosion tests as well as microhardness and adhesion tests are carried out and the results are correlated with the ceramic phase content of the coatings. It can be concluded that the hard ceramic phase increases the tribological properties with relation of the initial bronze coating. Finally, main wear mechanisms during the tribological tests are described. (Author) 21 refs.

  12. Investigation of PVD coatings deposited on the Si3N4 and sialon tool ceramics

    Directory of Open Access Journals (Sweden)

    D. Pakuła

    2010-11-01

    Full Text Available Purpose: The paper presents investigation results of the structure and properties of the coatings deposited by cathodic arc evaporation - physical vapour deposition (CAE-PVD techniques on the Si3N4 and sialon tool ceramics. The Ti(B,N, Ti(C,N, (Ti,ZrN and (Ti,AlN coatings were investigated.Design/methodology/approach: The structural investigation includes the metallographic analysis on the scanning electron microscope. Examinations of the chemical compositions of the deposited coatings were carried out using the X-ray energy dispersive spectrograph EDS and using the X-ray diffractometer. The investigation includes also analysis of the mechanical and functional properties of the material: microhardness tests of the deposited coatings, surface roughness tests, evaluation of the adhesion of the deposited coatings.Findings: Deposition of the multicomponent gradient coatings with the PVD method, based on the B, Al and Zr solid secondary solution in the TiN titanium nitride, isomorphous with the alternating pure titanium nitride TiN, on tools made from nitride ceramics and sialon’s ceramics, results in the increase of mechanical properties in comparison with uncoated tool materials, deciding thus the improvement of their working properties.Research limitations/implications: Ti(B,N, Ti(C,N, (Ti,ZrN and (Ti,AlN multicomponent and gradient coatings can be applied for cutting ceramic tools.Originality/value: Comparison of the wide range of modern sintered tool materials with wide unique set of PVD coatings.

  13. Structure and mechanical properties of PVD gradient coatings deposited onto tool steels and sialon tool ceramics

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2009-11-01

    Full Text Available Purpose: The paper presents investigation results of the structure and mechanical properties of gradient coatings deposited by cathodic arc evaporation - physical vapour deposition (CAE-PVD techniques onto the X40CrMoV5-1 hot work tool steel, HS6-5-2 high speed steel and SiAlON tool ceramics. The Ti(C,N, (Ti,AlN and (Al,Si,Cr N coatings were investigated.Design/methodology/approach: Microstructure was characterised using scanning and transmission electron microscopy. The phase composition of the investigated coatings was determined by means of the X-ray diffractometer. The chemical concentration changes of the coating components, and the substrate material were evaluated in virtue of tests carried out in the GDOS spectrometer. Tests of the coatings’ adhesion to the substrate material were made using the scratch test method.Findings: It was found out that the structure of the PVD coatings deposited onto all substrates is composed of fine crystallites. The investigations made by use of the glow discharge optical emission spectrometer indicate to the existence of the transition zone between the substrate material and the coating. The results show that all coatings present good adhesion. The critical load LC2, which is in the range 35-90 N, depends on the coating type and substrate. Good adhesion of the coatings deposited to the substrate should be connected with the existence of the transition zone. All the coatings are demonstrated by high hardness.Research limitations/implications: Ti(C,N, (Ti,AlN and (Al,Si,Cr N gradient coatings can be applied for cutting tools and hot working tools.Originality/value: Working out and testing PVD coatings obtained by tool ceramic and tool steels is a special future of development direction in a domain of thin coatings.

  14. Enhancement of Functional Ceramic Coating Performance by Gas Tunnel Type Plasma Spraying

    Science.gov (United States)

    Kobayashi, Akira

    2016-02-01

    A high-precision plasma system has been pursued for advanced thermal processing. The gas tunnel type plasma jet device developed by the author exhibits high energy density and also high efficiency. Among its various applications is the plasma spraying of ceramics such as Al2O3 and ZrO2. The performance of these ceramic coatings is superior to conventional ones. Properties such as the mechanical and chemical properties of the zirconia coatings were reported in previous studies. In this study, the enhancement of the performance of functional ceramic coatings by the gas tunnel type plasma spraying method was carried out using different powders. Results show that the alumina/zirconia composite system exhibited improvements of mechanical properties and corrosion resistance. The alumina/zirconia composite coating has the potential for use as a high functionally graded thermal barrier coating. Another application of the gas tunnel type plasma is for surface modification of metals. As an example, TiN films were formed in 5 s and, thick TiN coatings were easily obtained by gas tunnel type plasma reactive spraying.

  15. In-situ measurement of elastic modulus for ceramic top-coat at high temperature

    Institute of Scientific and Technical Information of China (English)

    齐红宇; 周立柱; 马海全; 杨晓光; 李旭

    2008-01-01

    The ceramic thermal barrier coatings (TBCs) play an increasingly important in advanced gas turbine engines because of their ability to further increase the engine operating temperature and reduce the cooling, thus help achieve future engine low emission, high efficiency and improve the reliability goals. Currently, there are two different processes such as the plasma spraying (PS) and the electron beam-physical vapor deposition (EB-PVD) techniques. The PS coating was selected to test the elastic modulus. Using the nanoindentation and resonant frequency method, the mechanical properties of ceramic top-coat were measured in-situ. According to the theory of the resonant frequency and composite beam, the testing system was set up including the hardware and software. The results show that the accurate characterization of the elastic properties of TBCs is important for stress-strain analysis and failure prediction. The TBCs systems are multi-layer material system. It is difficult to measure the elastic modulus of top-coat by tensile method. The testing data is scatter by nanoindentation method because of the microstructure of the ceramic top-coat. The elastic modulus of the top-coat between 20?1 150 ℃ is obtained. The elastic modulus is from 2 to 70 GPa at room temperature. The elastic modulus changes from 62.5 GPa to 18.6 GPa when the temperature increases from 20 ℃ to 1 150 ℃.

  16. Growth of PEO ceramic coatings on AA 2024-T3 aluminium alloy

    Science.gov (United States)

    Forero Sotomonte, S.; Blanco Pinzon, C.; García Vergara, S.

    2016-02-01

    The growth of PEO ceramic coatings on AA 2024-T3 aluminium alloy in an aqueous Na2SiO3 (10.5g/l), KOH (2.8g/l) solution at 310 and 400V for 500 and 710s, was investigated. The morphology, roughness and thickness of the coatings were determined by SEM, digital microscopy, XRD diffraction analysis and thickness measuring instrument. The results show that thicker coatings are produced with longer process times and high applied voltages. Due to the nature of the PEO process, the roughness of the surface coatings increases as the coating become thicker, due to the development of sparks. The coatings are porous, with a crater like morphology and they are mainly amorphous.

  17. Residual stresses and roughness after blasting of steel substrates for ceramic plasma sprayed coatings

    Czech Academy of Sciences Publication Activity Database

    Pala, Z.; Kolařík, K.; Mušálek, Radek; Ganev, N.

    Gabrovo: Technicheski universitet - Gabrovo, 2012. s. 117-122. ISBN N. ISSN 1313-230X Institutional research plan: CEZ:AV0Z20430508 Keywords : ceramic coatings * plasma spraying * roughness * residual stresses * adhesion * phase composition Subject RIV: JK - Corrosion ; Surface Treatment of Materials http://unitech.tugab.bg/

  18. Study on Metal Microfilter Coated with Ceramics by Using Plasma Thermal Spray Method

    Energy Technology Data Exchange (ETDEWEB)

    Song, In Gyu; Shin, Hyun Myung; Choi, Hae Woon [Keimyung University, Daegu (Korea, Republic of); Lee, Young Min [Korea Polytechincs VI, Daegu (Korea, Republic of)

    2011-09-15

    This research was performed on a microfilter made of a hybrid material (ceramic + metal) that was coated with ceramics on the metal-filter surface by using the thermal spray method. The ceramic powders used were Al{sub 2}O{sub 3}+40TiO{sub 2} powder with a particle size of 20 {mu}m and Al{sub 2}O{sub 3} (98%+)powder with a particle size of 45 {mu}m. The metal filters were filter-grade 20 {mu}m, 30 {mu}m, and 50 {mu}m sintered metal powder filters (SIKA-R 20 IS, 30 IS, 50 IS: Sinter Metals Filters) and filter-grade 75 {mu}m sintered mesh filter with five layers. Ceramic-coated filters that were coated using the thermal spray method had a great influence on powder material, particle size, and coating thickness. However, these filters showed a fine performance when used as micro-filters.

  19. Wet Slurry Abrasion Tests of Ceramic Coatings Deposited by Water-Stabilized Plasma Spraying

    Czech Academy of Sciences Publication Activity Database

    Nohava, Jiří

    2003-01-01

    Roč. 48, č. 2 (2003), s. 203-214. ISSN 0001-7043 R&D Projects: GA ČR GA106/01/0094 Institutional research plan: CEZ:AV0Z2043910 Keywords : plasma spraying, wear resistence, ceramic coating Subject RIV: BL - Plasma and Gas Discharge Physics

  20. Process engineering of ceramic composite coatings for fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Li, G.; Kim, H.; Chen, M.; Yang, Q.; Troczynski, T. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Metals and Materials Engineering

    2003-07-01

    Researchers at UBCeram at the Department of Metals and Materials Engineering at the University of British Columbia have developed a technology to chemically bond composite sol-gel (CB-CSG) coating onto metallic surfaces of complex or concave shapes. The process has been optimized for electrically resistive coatings and corrosion-resistant coatings. The CSG is sprayed onto metallic surfaces and is heat-treated at 300 degrees C to partially dehydrate the hydroxides. The CSG film is then chemically bonded through reaction of active alumina with metal phosphates, such as aluminium phosphate. A new chromate-free process is being developed to address the issue of coatings porosity. The electrodeposition technique involves polymer particles mixed with suspended fine alumina particles which are co-deposited by electrophoretic means or by electrocoagulation. The composite e-coatings have excellent mechanical properties and are being considered as a protective coating for various components of fuel cell systems. 9 refs., 7 figs.

  1. Coating Silicon-Based Ceramics With Durable Mullite

    Science.gov (United States)

    Miller, Robert A.; Jacobson, Nathan S.; Lee, Kang N.

    1996-01-01

    Improved plasma-spraying process deposits mullite on silicon carbide substrates. Prevents formation of amorphous mullite by maintaining high temperature of sprayed deposite to allow crystallization to occur. Deposited mullite adheres to substrate and exhibits little or no cracking during thermal cycling. Provides substantially greater resistance to oxidation in dry air and corrosion by molten salt. Process expected useful in depositing mullite on substrates made of other silicon-based ceramics and other ceramic substrates having coefficients of thermal expansion similar to those of mullite.

  2. Salt spray corrosion test of micro-plasma oxidation ceramic coatings on Ti alloy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Ceramic coatings were prepared on Ti-6Al-4V alloy in NaAlO2 solution by micro-plasma oxidation (MPO). The salt spray teste of tne coated samples and the substrates were carried out in a salt spray test machine. The phase composition and surface morphology of the coatings were investigated by XRD and SEM. Severe corrosion occurred on the substrate surface, while there were no obvious corrosion phenomena on the coated samples. The coatings were composed of Al2TiO5 and a little α-Al2O3 and rutile TiO2, and the salt spray test did not change the composition of the coatings. The weight loss rate of the coatings decreased with increasing MPO time because of the increase in density and thickness of the coatings. The surface morphology of the coatings was influenced by salt spray corrosion test Among the coated samples, the coating prepared for 2 h has the best corrosion resistance under salt spray test.

  3. Characterization and Properties of Micro-arc Composite Ceramic Coatings on Magnesium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Long; Jiang, Bailing; Ge, Yanfeng; Nyberg, Eric A.; Liu, Ming

    2013-05-21

    Magnesium alloys are of growing interest for many industrial applications due to their favorable strength-to-weight ratio and excellent cast ability. However, one of the limiting factors in the use of magnesium on production vehicles is its poor corrosion resistance. Micro-arc Composite Ceramic (MCC) coatings on AZ91D magnesium alloys were prepared in combination with Micro-arc Oxidation (MAO) and electrophoresis technologies. The microstructure, corrosion resistance, abrasion resistance, stone impact resistance, thermal shock resistance and adhesion of MCC coating were studied, respectively. The surface and cross-section morphologies of MAO and MCC coating showed that the outer organic coating filled the holes on the surface of the MAO coating. It acted as a shelter on the MAO coating surface when the MCC coatings were exposed to corrosive environments. The corrosion resistance of the MCC coating was characterized by a copper-accelerated acetic acid salt spray test. The testing results showed that the creep back from scribe lines was less than 1mm and completely fit the evaluation standard. The composite structure of the MCC coating vastly improved the corrosion resistance of Mg alloys. According to testing standards, the resistance to abrasion, stone impact resistance, thermal shock resistance and adhesion of MCC coatings completely met the evaluation standard requirements. The MCC coated AZ91D magnesium alloys possessed excellent properties; this is a promising corrosion and wear resistance surface treatment technology on magnesium alloys for production vehicles.

  4. Interaction phenomena between ceramic coatings and liquid uranium alloys

    International Nuclear Information System (INIS)

    Owing to the high chemical reactivity of molten uranium alloys, the use of traditional graphite crucibles for casting fuel slugs for a sodium-cooled fast reactor (SFR) is problematic. Moreover, rare earth (RE) elements retained in the fuel slugs for an SFR, which are extracted from the spent fuel by pyro-processing, are more reactive than uranium melt. Therefore, in this study, Y2O3 single-layer coatings with thicknesses of approximately 50, 70, and 120 μm and double-layer coatings of TaC/Y2O3 and Y2O3/TaC were plasma-sprayed onto niobium substrates and tested for thermal shock resistance and compatibility against U-10 wt% Zr and U-10 wt% Zr-5 wt% RE melt. The Y2O3 single-layer coating, regardless of coating thickness, and the TaC/Y2O3 double-layer coating showed good contact at the interface between the coating and the niobium substrate, with no deterioration after the thermal cycling test. In the interaction studies, the single- and double-layer coatings showed good compatibility with the U-Zr melt. However, the Y2O3 coatings with thicknesses of approximately 50 and 70 μm showed severe penetration of the U-Zr-RE melt and reacted with the niobium substrate. The single-layer Y2O3 coating with a thickness of 120 μm and the double-layer TaC/Y2O3 coating exhibited the most promising performance among the candidate coatings. (author)

  5. Design and characterization of a carbon-nanotube-reinforced adhesive coating for piezoelectric ceramic discs

    International Nuclear Information System (INIS)

    The silver paste electrode of piezoelectric (PZT) ceramic discs has been shown to produce a weak interface bond between a bare PZT and its paste coating under a peeling force. In this work, an investigation was conducted to reinforce the bond with a high density array of oriented carbon nanotube nano-electrodes (CNTs-NEA), between a bare PZT ceramic and a metal substrate. The ensuing design and fabrication of a carbon-nanotube-coated piezoelectric disc (CPZT) is presented along with a study of the bondline integrity of a CPZT mounted on a hosting structure. The CPZT has its electrode silver paste coating replaced with a high density array of CNTs-NEA. Mechanical tests were performed to characterize the shear strength of the bondline between CPZT discs and the substrate. The test results were compared with shear strengths of the bondlines made of pure non-conductive adhesive and adhesive with randomly mixed CNTs. The comparison showed the oriented CNT coating on PZTs could significantly enhance the interfacial shear strength. Through the microscopic examination, it was evident that the ratio between the CNT length (Lc) and the bond thickness (H) significantly influenced the bond strength of CPZT discs. Three major interface microstructure types and their corresponding failure modes for specific Lc/H values were identified. The study also showed that failure did not occur along the interface between the PZT ceramic element and the CNT coating

  6. Nanocrystalline, superhard, ductile ceramic coatings for roller-cone bit bearings

    Energy Technology Data Exchange (ETDEWEB)

    Namavar, F.; Colter, P.; Karimy, H. [Spire Corp., Bedford, MA (United States)] [and others

    1997-12-31

    The established method for construction of roller bits utilizes carburized steel, frequently with inserted metal bearing surfaces. This construction provides the necessary surface hardness while maintaining other desirable properties in the core. Protective coatings are a logical development where enhanced hardness, wear resistance, corrosion resistance, and surface properties are required. The wear properties of geothermal roller-cone bit bearings could be further improved by application of protective ceramic hard coatings consisting of nanometer-sized crystallites. Nanocrystalline protective coatings provide the required combination of hardness and toughness which has not been available thus far using traditional ceramics having larger grains. Increased durability of roller-cone bit bearings will ultimately reduce the cost of drilling geothermal wells through increased durability.

  7. Durability of zirconia thermal-barrier ceramic coatings on air-cooled turbine blades in cyclic jet engine operation

    Science.gov (United States)

    Liebert, C. H.; Jacobs, R. E.; Stecura, S.; Morse, C. R.

    1976-01-01

    Thermal barrier ceramic coatings of stabilized zirconia over a bond coat of Ni Cr Al Y were tested for durability on air cooled turbine rotor blades in a research turbojet engine. Zirconia stabilized with either yttria, magnesia, or calcia was investigated. On the basis of durability and processing cost, the yttria stabilized zirconia was considered the best of the three coatings investigated.

  8. Formation and Characterization of Ceramic Nanocomposite Crystalline Coatings on Aluminium by Anodization

    Institute of Scientific and Technical Information of China (English)

    M.Mubarak Ali; V.Raj

    2013-01-01

    Ceramic nanocomposite coatings have been synthesized on aluminium by using lithium sulphate electrolyte with zirconium silicate additive by anodization.The effects of current density (CD) on microhardness,structure,composition and surface topography of the oxide layer formed at various CDs (0.1-0.25 A/cm2) have been studied.Crystalline coatings formed at 0.25 A/cm2 have been (width 95 nm) observed with a relatively uniform distribution confirmed by scanning electron microscopy.Additionally,the average microhardness value of ceramic nanocomposite coatings fabricated from lithium sulphate-zirconium silicate bath is approximately 8.5 times higher than that of the as-received aluminium.The surface statistics of the coatings is discussed in detail to explain the roughness and related parameters for better understanding.These observations demonstrate the importance of surface statistics in controlling the morphology of the coatings and its properties.From the X-ray diffraction investigations,it can be concluded that the formed nanocomposite coatings are crystalline in nature and that the crystallinity of the coatings decreases with increasing applied current density.

  9. Effects of single pulse energy on the properties of ceramic coating prepared by micro-arc oxidation on Ti alloy

    International Nuclear Information System (INIS)

    Highlights: • Single pulse energy remarkably influences the properties of ceramic coating prepared by MAO on Ti alloy. • The accumulative time of impulse width is an important parameter in the scientific and rational measurement of the film forming law of ceramic coating. • The ceramic coating thickness approximately linearly increases with the cumulative time of impulse width. • Larger impulse width resulted in higher single pulse energy, film forming rates and thicker ceramic coating thickness. • The effects of single pulse energy on the micro-hardness and phase composition of ceramic coating are not as evident as those of frequency and duty cycle. - Abstract: The effects of single pulse energy on the properties of ceramic coating fabricated on a Ti–6Al–4V alloy via micro-arc oxidation (MAO) in aqueous solutions containing aluminate, phosphate, and some additives are investigated. The thickness, micro-hardness, surface and cross-sectional morphology, surface roughness, and compositions of the ceramic coating are studied using eddy current thickness meter, micro-hardness tester, JB-4C Precision Surface roughness meter, scanning electron microscopy (SEM) and X-ray diffraction (XRD). Single pulse energy remarkably influences the ceramic coating properties. The accumulative time of impulse width is an important parameter in the scientific and rational measurement of the film forming law of ceramic coating. The ceramic coating thickness approximately linearly increases with the cumulative time of impulse width. Larger impulse width resulted in higher single pulse energy, film forming rates and thicker ceramic coating thickness. The sizes of oxide particles, micro-pores and micro-cracks slightly increase with impulse width and single pulse energy. The main surface conversion products generated during MAO process in aqueous solutions containing aluminate are rutile TiO2, anatase TiO2, and a large amount of Al2TiO5. The effects of single pulse energy on the

  10. Fractal and multifractal characteristics of coatings deposited on pure oxide ceramics

    Directory of Open Access Journals (Sweden)

    W. Kwaśny

    2006-04-01

    Full Text Available Purpose: The goal of this work is the fractal and multifractal characteristics of the TiN and TiN+multiTiAlSiN+TiN coatings obtained in the PVD process, and of the TiN+Al2O3 coating obtained in the CVD process on the Al2O3+ZrO2 oxide tool ceramics substrate.Design/methodology/approach: The investigations were carried out of the multi-edge inserts from the Al2O3+ ZrO2 oxide tool ceramics uncoated and coated with the TiN and TiN+multiTiAlSiN+TiN coatings deposited in the cathode arc evaporation CAE PVD process, as well as with the TiN+Al2O3 coating obtained in the CVD process. Determining the fractal dimension and the multifractal analysis of the examined coatings were made basing on measurements obtained from the AFM microscope, using the projective covering method.Findings: Investigations carried out confirm that the fractal dimension and parameters describing the multifractal spectrum shape may be used for characterizing and comparing surfaces of coatings obtained in the PVD and CVD processes and of the substrate material from the Al2O3+ZrO2 oxide tool ceramics.Research limitations/implications: Investigation or relationship between parameters describing the multifractal spectrum and physical properties of the examined materials calls for further analyses.Originality/value: Investigations carried out confirm that the fractal dimension and parameters describing the multifractal spectrum shape may be used for characterizing and comparing surfaces of coatings obtained in the PVD and CVD processes.

  11. Characterization of High-Velocity Single Particle Impacts on Plasma-Sprayed Ceramic Coatings

    Science.gov (United States)

    Kiilakoski, Jarkko; Lindroos, Matti; Apostol, Marian; Koivuluoto, Heli; Kuokkala, Veli-Tapani; Vuoristo, Petri

    2016-08-01

    High-velocity impact wear can have a significant effect on the lifetime of thermally sprayed coatings in multiple applications, e.g., in the process and paper industries. Plasma-sprayed oxide coatings, such as Cr2O3- and TiO2-based coatings, are often used in these industries in wear and corrosion applications. An experimental impact study was performed on thermally sprayed ceramic coatings using the High-Velocity Particle Impactor (HVPI) at oblique angles to investigate the damage, failure, and deformation of the coated structures. The impact site was characterized by profilometry, optical microscopy, and scanning electron microscopy (SEM). Furthermore, the connection between the microstructural details and impact behavior was studied in order to reveal the damage and failure characteristics at a more comprehensive level. Differences in the fracture behavior were found between the thermally sprayed Cr2O3 and TiO2 coatings, and a concept of critical impact energy is presented here. The superior cohesion of the TiO2 coating inhibited interlamellar cracking while the Cr2O3 coating suffered greater damage at high impact energies. The HVPI experiment has proven to be able to produce valuable information about the deformation behavior of coatings under high strain rates and could be utilized further in the development of wear-resistant coatings.

  12. Characterization of High-Velocity Single Particle Impacts on Plasma-Sprayed Ceramic Coatings

    Science.gov (United States)

    Kiilakoski, Jarkko; Lindroos, Matti; Apostol, Marian; Koivuluoto, Heli; Kuokkala, Veli-Tapani; Vuoristo, Petri

    2016-06-01

    High-velocity impact wear can have a significant effect on the lifetime of thermally sprayed coatings in multiple applications, e.g., in the process and paper industries. Plasma-sprayed oxide coatings, such as Cr2O3- and TiO2-based coatings, are often used in these industries in wear and corrosion applications. An experimental impact study was performed on thermally sprayed ceramic coatings using the High-Velocity Particle Impactor (HVPI) at oblique angles to investigate the damage, failure, and deformation of the coated structures. The impact site was characterized by profilometry, optical microscopy, and scanning electron microscopy (SEM). Furthermore, the connection between the microstructural details and impact behavior was studied in order to reveal the damage and failure characteristics at a more comprehensive level. Differences in the fracture behavior were found between the thermally sprayed Cr2O3 and TiO2 coatings, and a concept of critical impact energy is presented here. The superior cohesion of the TiO2 coating inhibited interlamellar cracking while the Cr2O3 coating suffered greater damage at high impact energies. The HVPI experiment has proven to be able to produce valuable information about the deformation behavior of coatings under high strain rates and could be utilized further in the development of wear-resistant coatings.

  13. Composite Coatings with Ceramic Matrix Including Nanomaterials as Solid Lubricants for Oil-Less Automotive Applications

    Directory of Open Access Journals (Sweden)

    Posmyk A.

    2016-06-01

    Full Text Available The paper presents the theoretical basis of manufacturing and chosen applications of composite coatings with ceramic matrix containing nanomaterials as a solid lubricant (AHC+NL. From a theoretical point of view, in order to reduce the friction coefficient of sliding contacts, two materials are required, i.e. one with a high hardness and the other with low shear strength. In case of composite coatings AHC+NL the matrix is a very hard and wear resistant anodic oxide coating (AHC whereas the solid lubricant used is the nanomaterial (NL featuring a low shear strength such as glassy carbon nanotubes (GC. Friction coefficient of cast iron GJL-350 sliding against the coating itself is much higher (0.18-0.22 than when it slides against a composite coating (0.08-0.14. It is possible to reduce the friction due to the presence of carbon nanotubes, or metal nanowires.

  14. Effect of electroless coating parameters and ceramic particle size on fabrication of a uniform Ni–P coating on SiC particles

    OpenAIRE

    Beigi Khosroshahi, N.; Azari Khosroshahi, R.; Taherzadeh Mousavian, R.; Brabazon, Dermot

    2014-01-01

    The formation of a uniform nickel phosphorous (Ni–P) electroless (EL) coating on micronsized SiC particles was investigated in this study. Metal coated ceramic particles could be used in applications including as the fabrication of cast metal matrix composites.Such ceramic particles have a better wettability in molten metal. In this work, the effects of EL coating parameters, SiC particle size and morphology on the coating uniformity and mechanical bonding at the SiC/Ni–P interface were studi...

  15. Comparative analysis of electrophysical properties of ceramic tantalum pentoxide coatings, deposited by electron beam evaporation and magnetron sputtering methods

    Science.gov (United States)

    Donkov, N.; Mateev, E.; Safonov, V.; Zykova, A.; Yakovin, S.; Kolesnikov, D.; Sudzhanskaya, I.; Goncharov, I.; Georgieva, V.

    2014-12-01

    Ta2O5 ceramic coatings have been deposited on glass substrates by e-beam evaporation and magnetron sputtering methods. For the magnetron sputtering process Ta target was used. X-ray diffraction measurements show that these coatings are amorphous. XPS survey spectra of the ceramic Ta2O5 coatings were obtained. All spectra consist of well-defined XPS lines of Ta 4f, 4d, 4p and 4s; O 1s; C 1s. Ta 4f doublets are typical for Ta2O5 coatings with two main peaks. Scanning electron microscopy and atomic force microscopy images of the e-beam evaporated and magnetron sputtered Ta2O5 ceramic coatings have revealed a relatively flat surface with no cracks. The dielectric properties of the tantalum pentoxide coatings have been investigated in the frequency range of 100 Hz to 1 MHz. The electrical behaviour of e-beam evaporated and magnetron sputtered Ta2O5 ceramic coatings have also been compared. The deposition process conditions principally effect the structure parameters and electrical properties of Ta2O5 ceramic coatings. The coatings deposited by different methods demonstrate the range of dielectric parameters due to the structural and stoichiometric composition changes

  16. Texture in Metallic and Ceramic Films and Coatings

    OpenAIRE

    Czerwinski, F; J. A. Szpunar

    1999-01-01

    The properties of films and coatings can be optimized for a variety of applications by modifying their texture. Understanding how the texture in thin films is formed and how it can be controlled during film growth process is one of the most important areas of texture research. Several examples were selected to illustrate how the texture in films and coatings is developed and to explain how various properties of films are affected by texture. In particular, texture development during electrode...

  17. Laser drilling of a superalloy coated with ceramic

    Science.gov (United States)

    Forget, P.; Jeandin, M.; Lechervy, P.; Varela, D.

    An Nd:YAG rod laser was used to drill small holes in conventional Hastelloy X sheets coated with yttria-stabilized zirconia plasma sprayed onto an MCrAlY bond coat, also deposited by conventional air plasma spraying. The effects of the principal laser parameters, such as pulse length, pulse rate, and power density are determined, and thermal models are developed. Coupled with the energy-matter balance, the models can be used to optimize the laser drilling parameters.

  18. Effect of nano-hydroxyapatite coating on the osteoinductivity of porous biphasic calcium phosphate ceramics

    Science.gov (United States)

    2014-01-01

    Background Porous biphasic calcium phosphate (BCP) ceramics exhibit good biocompatibility and bone conduction but are not inherently osteoinductive. To overcome this disadvantage, we coated conventional porous BCP ceramics with nano-hydroxyapatite (nHA). nHA was chosen as a coating material due to its high osteoinductive potential. Methods We used a hydrothermal deposition method to coat conventional porous BCP ceramics with nHA and assessed the effects of the coating on the physical and mechanical properties of the underlying BCP. Next, its effects on mesenchymal stem cell (MSC) attachment, proliferation, viability, and osteogenic differentiation were investigated. Results nHA formed a deposited layer on the BCP surface, and synthesized nHA had a rod-like shape with lengths ranging from ~50–200 nm and diameters from ~15–30 mm. The nHA coating did not significantly affect the density, porosity, flexural strength, or compressive strength of the underlying BCP (P > 0.1). Scanning electron microscopy showed MSC attachment to the scaffolds, with a healthy morphology and anchorage to nHA crystals via cytoplasmic processes. The densities of MSCs attached on BCP and nHA-coated BCP scaffolds were 62 ± 26 cells/mm2 and 63 ± 27 cells/mm2 (P > 0.1), respectively, after 1 day and 415 ± 62 cells/mm2 and 541 ± 35 cells/mm2 (P < 0.05) respectively, after 14 days. According to an MTT assay, MSC viability was higher on nHA-coated BCP scaffolds than on BCP scaffolds (P < 0.05). In addition, MSCs on nHA-coated BCP scaffolds produced more alkaline phosphatase, collagen type I, and osteocalcin than MSCs on BCP scaffolds (P < 0.05). Conclusions Our results demonstrate that BCP scaffolds coated with nHA were more conducive for MSC adhesion, proliferation, and osteogenic differentiation than conventional, uncoated BCP scaffolds, indicating that nHA coating can enhance the osteoinductive potential of BCP ceramics, making this material more

  19. The evaluation of integrity and elasticity of thermally sprayed ceramic coatings by ultrasonics

    Energy Technology Data Exchange (ETDEWEB)

    Kauppinen, P. [VTT Manufacturing Technology, Espoo (Finland). Materials and Structural Integrity

    1997-12-31

    Thermally sprayed ceramic coatings are widely used in industrial applications where the coated component is subject to, e.g. high thermal loads or mechanical wear. The mechanical properties of the coating are finally created in the coating process and the chemical composition of the powder used as raw material can only give some hints about the properties of the final coating. Several non-destructive testing techniques are available for the detection of defects in ceramic materials or for the evaluation of density and density variations. In addition to this, ultrasonic techniques can be used for quantitative evaluation of elastic properties of materials. This evaluation is based on the measurement of sound velocities of different wave modes in the material and is normally applied only to relatively simple-shaped specimens having parallel surfaces. Acoustic microscopy operating at very high (> 100 MHz) frequencies has been used to measure the sound velocities in homogeneous and thin coatings. With this type of equipment, reliable and accurate results have been achieved in laboratory measurements. A lot of development work has been carried out world-wide to develop the measurement techniques and acoustic lenses (transducers) used in acoustic microscopy. However, less attention has been paid on the development of techniques for industrial applications on-site. The present work was focused on the development of measurement techniques for industrial applications. A new type of large-aperture low-frequency transducer was designed and constructed for the measurement of sound velocities in thermally sprayed ceramic coatings. The major difference to the lenses used in acoustic microscopy is that in the new transducer no separate lens is needed for focusing the sound beam. The piezoelectric element in the new transducer is a plastic (PVDF)-film that can be shaped to create the required focus. The practical measurement of the sound velocity is based on a modification of the V

  20. Ceramic coated Y1 magnesium alloy surfaces by microarc oxidation process for marine applications

    Indian Academy of Sciences (India)

    V V Narulkar; S Prakash; K Chandra

    2007-08-01

    The magnesium alloys occupy an important place in marine applications, but their poor corrosion resistance, wear resistance, hardness and so on, have limited their application. To meet these defects, some techniques are developed. Microarc oxidation is a one such recently developed surface treatment technology under anodic oxidation in which ceramic coating is directly formed on the surface of magnesium alloy, by which its surface property is greatly improved. In this paper, a dense ceramic oxide coating, ∼ 20 m thick, was prepared on an Y1 magnesium alloy through microarc oxidation in a Na3SiO3–Na2WO4–KOH–Na2EDTA electrolytic solution. The property of corrosion resistance of ceramic coating was studied by CS300P electrochemistry–corrosion workstation, and the main impact factor of the corrosion resistance was also analysed. Microstructure and phase composition were analysed by SEM and XRD. The microhardness of the coating was also measured. The basic mechanism of microarc coating formation is explained in brief. The results show that the corrosion resistance property of microarc oxidation coating on the Y1 magnesium surface is superior to the original samples in the 3.5 wt% NaCl solutions. The microarc oxidation coating is relatively dense and uniform, mainly composed of MgO, MgAl2O4 and MgSiO3. The microhardness of the Y1 magnesium alloy surface attained 410 HV, which was much larger than that of the original Y1 magnesium alloy without microarc oxidation.

  1. Silicon nitride coating on titanium to enable titanium-ceramic bonding.

    Science.gov (United States)

    Wang, R R; Welsch, G E; Monteiro, O

    1999-08-01

    Failures that occur in titanium-ceramic restorations are of concern to clinicians. The formation of poorly adhering oxide on titanium at dental porcelain sintering temperatures causes adherence problems between titanium and porcelain, which is the main limiting factor in the fabrication of titanium-ceramic restorations. To overcome this problem a 1-microm thick Si3N4 coating was applied to a titanium surface using a plasma-immersion implantation and deposition method. Such a coating serves as an oxygen diffusion barrier on titanium during the porcelain firings. The protective coating was characterized in the as-deposited condition and after thermal cycling. Cross sections of Ti/Si3N4-porcelain interface regions were examined by various electron microscopy methods and by energy dispersive analysis of X-rays to study the Si3N4 film's effectiveness in preventing titanium oxidation and in forming a bond with porcelain. The experiments have shown that this Si3N4 coating enables significant improvement in Ti-ceramic bonding. PMID:10380005

  2. Applications in the Nuclear Industry for Thermal Spray Amorphous Metal and Ceramic Coatings

    International Nuclear Information System (INIS)

    Amorphous metal and ceramic thermal spray coatings have been developed that can be used to enhance the corrosion resistance of containers for the transportation, aging and disposal of spent nuclear fuel and high-level radioactive wastes. Iron-based amorphous metal formulations with chromium, molybdenum and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials, and their stability at high neutron doses, enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for container applications, though the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas atomized powders and applied as near full density, non-porous coatings with the high-velocity oxy-fuel process. This paper summarizes the performance of these coatings as corrosion-resistant barriers, and as neutron absorbers. Relevant corrosion models are also discussed, as well as a cost model to quantify the economic benefits possible with these new materials

  3. Fractal and multifractal characteristics of CVD coatings deposited onto the nitride tool ceramics

    Directory of Open Access Journals (Sweden)

    W. Kwaśny

    2007-01-01

    Full Text Available Purpose: The goal of this work is the fractal and multifractal characteristics of the TiN+Al2O3 and Al2O3+TiNcoatings obtained in the CVD process on the Si3N4 tool ceramics substrate.Design/methodology/approach: The investigations were carried out of the multi-edge inserts from the Si3N4nitride tool ceramics uncoated and coated with the TiN+Al2O3 and Al2O3+TiN coatings deposited in the CVDprocess. Determining the fractal dimension and the multifractal analysis of the examined coatings were madebasing on measurements obtained from the AFM microscope, using the projective covering method.Findings: Investigations carried out confirm that the fractal dimension and parameters describing themultifractal spectrum shape may be used for characterizing and comparing surfaces of coatings obtained inthe CVD processes and of the substrate material from the Si3N4 nitride tool ceramics.Research limitations/implications: Investigation or relationship between parameters describing the multifractalspectrum and physical properties of the examined materials calls for further analyses.Originality/value: Employment of multifractal geometry in materials engineering provides the opportunity to workout more complete, also quantitative, characteristics of properties of the investigated objects. Multifractal analysismakes it possible to characterise in the quantitative way the extent of irregularities of the analysed surface.

  4. Surface engineering glass-metal coatings designed for induction heating of ceramic components

    International Nuclear Information System (INIS)

    The term Surface Engineering is of relatively recent origin and use, however, the use of coatings and treatments to render surfaces of materials more suitable for certain application or environment is not new. With the advent of Vacuum Technology, Surface Engineering has gained a whole new impetus, whereby expensive materials with adequate mechanical, chemical and thermal properties are being coated or treated on their surfaces in order to achieve what is called as Surface Engineered materials. The present paper presents an overview of recent achievements in Surface Engineering and gives a detailed view of a specific application where glass-metal composite coatings were deposited on ceramic components in order to render them sensitive to induction heating. Sintered glaze coatings containing silver particles in appropriate concentration can be used for the induction heating of porcelain. Mixtures of glass ceramic powders with silver are used to prepare self-transfer patterns, which are deposited over porcelain. Several configurations of these coatings, which are aesthetic to start with, are employed and heating patterns are recorded. The microstructure of these coatings is discussed in relation to the heating ability by a classical household induction system. The results show that this technique is practical and commercially viable. (author)

  5. A new high temperature resistant glass–ceramic coating for gas turbine engine components

    Indian Academy of Sciences (India)

    Someswar Datta; Sumana Das

    2005-12-01

    A new high temperature and abrasion resistant glass–ceramic coating system (based on MgO–Al2O3–TiO2 and ZnO–Al2O3–SiO2 based glass systems) for gas turbine engine components has been developed. Thermal shock resistance, adherence at 90°-bend test and static oxidation resistance at the required working temperature (1000°C) for continuous service and abrasion resistance are evaluated using suitable standard methods. The coating materials and the resultant coatings are characterized using differential thermal analysis, differential thermogravimetric analysis, X-ray diffraction analysis, optical microscopy and scanning electron microscopy. The properties evaluated clearly showed the suitability of these coatings for protection of different hot zone components in different types of engines. XRD analysis of the coating materials and the resultant coatings showed presence of a number of microcrystalline phases. SEM micrographs indicate strong chemical bonding at the metal–ceramic interface. Optical micrographs showed smooth glossy impervious defect free surface finish.

  6. Surface engineering glass-metal coatings designed for induction heating of ceramic components

    International Nuclear Information System (INIS)

    The term Surface Engineering is of relatively recent origin and use, however, the use of coatings and treatments to render surfaces of materials more suitable for certain application or environment is not new. With the advent of Vacuum Technology, Surface Engineering has gained a whole new impetus, whereby expensive materials with adequate mechanical, chemical and thermal properties are being coated or treated on their surfaces in order to achieve what is called as Surface Engineered materials. The present paper presents an overview of recent achievements in Surface Engineering and gives a detailed view of a specific application where glass-metal composite coatings were deposited on ceramic components in order to render them sensitive to induction heating. Sintered glaze coatings containing silver particles in appropriate concentration can be used for the induction heating of porcelain. Mixtures of glass ceramic powders with silver are used to prepare self-transfer patterns, which are deposited over porcelain. Several configurations of these coatings, which are aesthetic to start with, are employed and heating patterns are recorded. The microstructure of these coatings is discussed in relation to the heating ability by a classical household induction system. The results show that this technique is practical and commercially viable

  7. Research and development on ceramic coatings for fusion reactor liquid blankets

    International Nuclear Information System (INIS)

    Fabrication and properties of three kinds of ceramic coatings for fusion reactor liquid blankets such as Cr2O3-SiO2, Al2O3 and Y2O3 are reviewed, focused on the activities in the University of Tokyo. A composite coating of SiO2 particles in a Cr2O3 matrix was prepared on the surface of SUS316 by the chemically densified method. It has very low tritium permeability, and it is quite effective as a tritium permeation barrier without the presence of molten Li17-Pb83 alloy. Alumina (Al2O3) coating was prepared on the surface of SUS316 by the hot-dipping and oxidation method. It showed very large corrosion-resistivity to Li17-Pb83 and very small tritium permeability. Yttria (Y2O3) coating was formed on the surface of SUS316 by the plasma-spraying method. It also has a possibility as a ceramic coating for liquid blankets if crack-free coating is made on the surface of piping materials. (author)

  8. Research and development on ceramic coatings for fusion reactor liquid blankets

    International Nuclear Information System (INIS)

    Fabrication and properties of three kinds of ceramic coatings for fusion reactor liquid blankets such as Cr2O3-SiO2, Al2O3 and Y2O3 are reviewed, focusing on the activities in the University of Tokyo. A composite coating of SiO2 particles in a Cr2O3 matrix was prepared on the surface of SUS316 by the chemically densified method. It has a very low tritium permeability and is quite effective as a tritium permeation barrier without the presence of the molten Li17-Pb83 alloy. An alumina (Al2O3) coating was prepared on the surface of SUS316 by the hot-dipping and oxidation method. It showed a very high corrosion-resistance to Li17-Pb83 and a very low tritium permeability. An yttria (Y2O3) coating was formed on the surface of SUS316 by the plasma-spraying method. The product has a poor compatibility with liquid lithium. However, since sintered Y2O3 is more resistant to degradation than plasma sprayed Y2O3, it may be possible to use Y2O3 as a ceramic coating for liquid blankets if crackfree coating is made on the surface of piping materials. (orig.)

  9. Additive manufacturing of Ti-Si-N ceramic coatings on titanium

    International Nuclear Information System (INIS)

    Highlights: • 3D Printing or additive manufacturing of hard Ti-Si-N based ceramics coating on Ti metal substrate. • Understanding of phase transformation as a function of compositional variation. • Evaluation of influence of processing parameters and composition on wear resistance. - Abstract: In this study, Laser Engineered Net Shaping (LENSTM) was employed towards Additive Manufacturing/3D Printing of Ti-Si-N coatings with three different Ti-Si ratios on commercially pure titanium (cp-Ti) substrate. Microstructural analysis, phase analysis using X-ray diffraction, wear resistance and hardness measurements were done on LENS™ processed 3D printed coatings. Coatings showed graded microstructures and in situ formed phases. Results showed that microstructural variations and phase changes influence coating's hardness and wear resistance directly. High hardness values were obtained from all samples’ top surface where the hardness of coatings can be ranked as 90% Ti-10% Si-N coating (2093.67 ± 144 HV0.2) > 100% Ti-N coating (1846 ± 68.5 HV0.2) > 75% Ti-25% Si-N coating (1375.3 ± 61.4 HV0.2). However, wear resistance was more dependent on inherent Si content, and samples with higher Si content showed better wear resistance

  10. Additive manufacturing of Ti-Si-N ceramic coatings on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanning; Sahasrabudhe, Himanshu; Bandyopadhyay, Amit, E-mail: amitband@wsu.edu

    2015-08-15

    Highlights: • 3D Printing or additive manufacturing of hard Ti-Si-N based ceramics coating on Ti metal substrate. • Understanding of phase transformation as a function of compositional variation. • Evaluation of influence of processing parameters and composition on wear resistance. - Abstract: In this study, Laser Engineered Net Shaping (LENS{sup TM}) was employed towards Additive Manufacturing/3D Printing of Ti-Si-N coatings with three different Ti-Si ratios on commercially pure titanium (cp-Ti) substrate. Microstructural analysis, phase analysis using X-ray diffraction, wear resistance and hardness measurements were done on LENS™ processed 3D printed coatings. Coatings showed graded microstructures and in situ formed phases. Results showed that microstructural variations and phase changes influence coating's hardness and wear resistance directly. High hardness values were obtained from all samples’ top surface where the hardness of coatings can be ranked as 90% Ti-10% Si-N coating (2093.67 ± 144 HV{sub 0.2}) > 100% Ti-N coating (1846 ± 68.5 HV{sub 0.2}) > 75% Ti-25% Si-N coating (1375.3 ± 61.4 HV{sub 0.2}). However, wear resistance was more dependent on inherent Si content, and samples with higher Si content showed better wear resistance.

  11. Influence of the PVD and CVD technologies on the residual macro- stresses and functional properties of the coated tool ceramics

    OpenAIRE

    L.A. Dobrzański; S. Skrzypek; D. Pakuła; J. Mikuła; A. Křiž

    2009-01-01

    Purpose: The goal of this work is to compare the macro-stresses as well as mechanical and functional properties of the PVD and CVD coatings deposited on oxide and nitride ceramics tool.Design/methodology/approach: In the paper the residual macro-stresses of PVD and CVD coatings deposited on tool ceramics substrates, measured with the application of the grazing angle X-ray diffraction geometry are compared in relation to the fundamental mechanical properties like hardness and adhesion.Findings...

  12. Effects of silica coating and silane surface conditioning on the bond strength of rebonded metal and ceramic brackets

    OpenAIRE

    Saadet Atsü; Bülent Çatalbaş; Ibrahim Erhan Gelgör

    2011-01-01

    OBJECTIVE: The aim of this study was to evaluate the effects of tribochemical silica coating and silane surface conditioning on the bond strength of rebonded metal and ceramic brackets. MATERIAL AND METHODS: Twenty debonded metal and 20 debonded ceramic brackets were randomly assigned to receive one of the following surface treatments (n=10 for each group): (1) sandblasting (control); (2) tribochemical silica coating combined with silane. Brackets were rebonded to the enamel surface on the la...

  13. Development of wear-resistant ceramic coatings for diesel engine components. Volume 1, Coating development and tribological testing: Final report: DOE/ORNL Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    Naylor, M.G.S. [Cummins Engine Co., Inc., Columbus, IN (United States)

    1992-06-01

    The tribological properties of a variety of advanced coating materials have been evaluated under conditions which simulate the piston ring -- cylinder liner environment near top ring reversal in a heavy duty diesel engine. Coated ``ring`` samples were tested against a conventional pearlitic grey cast iron liner material using a high temperature reciprocating wear test rig. Tests were run with a fresh CE/SF 15W40lubricant at 200 and 350{degrees}C, with a high-soot, engine-tested oil at 200{degrees}C and with no lubrication at 200{degrees}C. For lowest wear under boundary lubricated conditions, the most promising candidates to emerge from this study were high velocity oxy-fuel (HVOF) Cr{sub 3} C{sub 2} - 20% NiCr and WC - 12% Co cermets, low temperature arc vapor deposited (LTAVD) CrN and plasma sprayed chromium oxides. Also,plasma sprayed Cr{sub 2}O{sub 3} and A1{sub 2}O{sub 3}-ZrO{sub 2} materials were found to give excellent wear resistance in unlubricated tests and at extremely high temperatures (450{degrees}C) with a syntheticoil. All of these materials would offer substantial wear reductions compared to the conventional electroplated hard chromium ring facing and thermally sprayed metallic coatings, especially at high temperatures and with high-soot oils subjected to degradation in diesel environments. The LTAVD CrN coating provided the lowest lubricated wear rates of all the materials evaluated, but may be too thin (4 {mu}m) for use as a top ring facing. Most of the coatings evaluated showed higher wear rates with high-soot, engine-tested oil than with fresh oil, with increases of more than a factor of ten in some cases. Generally, metallic materials were found to be much more sensitive to soot/oil degradation than ceramic and cermet coatings. Thus, decreased ``soot sensitivity`` is a significant driving force for utilizing ceramic or cermet coatings in diesel engine wear applications.

  14. Calcium phosphate glass-ceramics for bioactive coating on a β-titanium alloy

    International Nuclear Information System (INIS)

    The formation of a porous coating is the decisive feature for the bio-compatibility of silica-free calcium phosphate glass ceramics on alloy surfaces like the β-Ti structured Ti-29Nb-13Ta-4.6Zr used in this work. The ceramic composition is highly important: 50CaO-40P2O5-7Na2O-3TiO2 glass powder produces a pore-free coating unable to bind hydroxyapatite, whereas 60CaO-30P2O5-7Na2O-3TiO2 glass incorporates pores from which a crystalline hydroxyapatite phase can grow over the surface from simulated body fluid (see Figure). (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  15. Mechanical and tribological characteristics of zirconium based ceramic coatings for micro-bearing application

    International Nuclear Information System (INIS)

    The application of metal materials with ceramic coatings is the effective way of alternative bearing surfaces formation. The oxide ZrO2, nitride ZrN and oxynitride ZrON coatings were deposited by magnetron sputtering method on stainless steel (AlSi 316) discs. The adhesion properties, hardness and elastic modulus were evaluated by standard methods. The surface parameters were observed by scanning electron microscopy (SEM). The chemical composition of the coatings was analyzed by energy dispersive X-ray (EDX) spectroscopy. Friction coefficients and wear resistance were measured in the tribological tests. Results show that the mechanical parameters increased in the case of oxynitride in comparison with oxide and nitride coatings.

  16. Glass-(nAg, nCu biocide coatings on ceramic oxide substrates.

    Directory of Open Access Journals (Sweden)

    Leticia Esteban-Tejeda

    Full Text Available The present work was focused on obtaining biocide coatings constituted by a glassy soda-lime matrix containing silver or copper nanoparticles on ceramic (alumina and zirconia based substrates. Both glassy coatings showed a high biocide activity against Gram-, Gram+ bacteria and yeast, reducing cell numbers more than three logarithms. Silver nanoparticles had a significantly higher biocide activity than copper nanoparticles, since the lixiviation levels required to reduce cell numbers more than 3 logarithms was of almost 1-2 µg/cm(2 in the case of silver nanoparticles, and 10-15 µg/cm(2 for the copper nanoparticles.

  17. Optimizing thickness of ceramic coatings on plastic components for orthopedic applications: A finite element analysis.

    Science.gov (United States)

    Marchiori, G; Lopomo, N; Boi, M; Berni, M; Bianchi, M; Gambardella, A; Visani, A; Russo, A; Marcacci, M

    2016-01-01

    Realizing hard ceramic coatings on the plastic component of a joint prosthesis can be strategic for the mechanical preservation of the whole implant and to extend its lifetime. Recently, thanks to the Plasma Pulsed Deposition (PPD) method, zirconia coatings on ultra-high molecular weight polyethylene (UHMWPE) substrates resulted in a feasible outcome. Focusing on both the highly specific requirements defined by the biomedical application and the effective possibilities given by the deposition method in the perspectives of technological transfer, it is mandatory to optimize the coating in terms of load bearing capacity. The main goal of this study was to identify through Finite Element Analysis (FEA) the optimal coating thickness that would be able to minimize UHMWPE strain, possible insurgence of cracks within the coating and stresses at coating-substrate interface. Simulations of nanoindentation and microindentation tests were specifically carried out. FEA findings demonstrated that, in general, thickening the zirconia coating strongly reduced the strains in the UHMWPE substrate, although the 1 μm thickness value was identified as critical for the presence of high stresses within the coating and at the interface with the substrate. Therefore, the optimal thickness resulted to be highly dependent on the specific loading condition and final applications. PMID:26478324

  18. Characterization of ceramic coatings fabricated on zirconium alloy by plasma electrolytic oxidation in silicate electrolyte

    International Nuclear Information System (INIS)

    Thick ceramic coatings were prepared on zirconium alloy by plasma electrolytic oxidation (PEO) in silicate electrolyte. Their microstructure and phase constituent were analyzed. The micromechanical properties of a thick coating are measured by nanoindentation method. The electrochemical corrosion behaviors of the coatings were evaluated by potentiodynamic polarization. The coating consists of the monoclinic ZrO2 and tetragonal ZrO2, but the tetragonal ZrO2 content is much lower than the monoclinic ZrO2 content. In the inner layer coating, the nanohardness and elastic modulus are much higher than that of the Zr substrate, and their maximum values reach 7.4 GPa and 170 GPa, respectively. However, the elastic modulus of the coating is lower than that of Zr substrate when the distance is far from the coating/Zr interface. After PEO treatment, the corrosion potential of zirconium alloy moves to a more positive potential, and the corrosion current density reduces several orders of magnitude. However, the corrosion current density increases again while the coating is very thick. PEO is an effective method to improve corrosion resistance of zirconium, especially for pitting attack.

  19. Study of the influence of ceramic thermal coating on the aircraft blade vibration

    Directory of Open Access Journals (Sweden)

    Daniel Dragomir-Stanciu

    2014-05-01

    Full Text Available The paper analyzes the influence of the ceramic layer on the vibration of the high pressure stage turbine blades in take-off transient conditions. As reference model, the high pressure stage blades of the Tumanski R13 jet engine were considered. The analyse was done using the Ansys 14.5. The vibration eigenmodes and eigenvalues for the blade with and without a ZrO2/3%Y2O3 deposited coating are compared.

  20. Composite Coatings of Alumina-based Ceramics and Stainless Steel Manufactured by Plasma Spraying

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Ageorges, H.; Neufuss, Karel; Zahálka, F.

    2009-01-01

    Roč. 15, č. 2 (2009), s. 108-114. ISSN 1392-1320 R&D Projects: GA AV ČR 1QS200430560 Institutional research plan: CEZ:AV0Z20430508 Keywords : Cermet * plasma spraying * microstructure * elastic modulus * wear resistance Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.299, year: 2009 http://internet.ktu.lt/en/science/journals/medz/medz0-97.html#Composite_Coatings_

  1. Synergistic effect between nano-ceramic lubricating additives and electroless deposited Ni-W-P coating

    Science.gov (United States)

    Chen, Min; Cheng, Wushan; Zhao, Zuxin; Huang, Xiaobo

    2013-01-01

    The major solving ways for the material wear are surface modification and lubrication. Currently, the researches at home and abroad are all limited to the single study of either nano-lubricating oil additive or electroless deposited coating. The surface coating has high hardness and high wear resistance, however, the friction reduction performance of the coating with high hardness is not good, the thickness of the coating is limited, and the coating can not regenerate after wearing. The nano-lubricating additives have good tribological performance and self-repair function, but under heavy load, the self-repair rate to the worn surface with the nano-additives is smaller than the wearing rate of the friction pair. To solve the above problems, the Ni-W-P alloy coating and deposition process with excellent anti-wear, and suitable for industrial application were developed, the optimum bath composition and process can be obtained by studying the influence of the bath composition, temperature and PH value to the deposition rate and the plating solution stability. The tribological properties as well as anti-wear and friction reduction mechanism of wear self-repair nano-ceramic lubricating additives are also studied. The ring-block abrasion testing machine and energy dispersive spectrometer are used to explore the internal relation between the coating and the nano-lubricating oil additives, and the tribology mechanism, to seek the synergetic effect between the two. The test results show that the wear resistance of Ni-W-P alloy coating (with heat treatment and in oil with nano-ceramic additives) has increased hundreds times than 45 steel as the metal substrate in basic oil, the friction reduction performance is improved. This research breaks through the bottleneck of previous separate research of the above-mentioned two methods, and explores the combination use of the two methods in industrial field.

  2. Laser Clad ZrO2-Y2O3 Ceramic/Ni-base Alloy Composite Coatings

    OpenAIRE

    Pei, Y.T.; Ouyang, J.H.; Lei, T.C.; Zhou, Y.

    1995-01-01

    A laser cladding technique was used to produce ZrO2-Y2O3 ceramic/Ni-base alloy composite coatings on stainless steel 4Cr13. The microstructure and hardness of the composite coatings are analyzed by XRD, SEM, EPMA, TEM and microhardness testing techniques. A stratification is observed in the laser clad zone. The upper region of the clad is a pure ZrO2 ceramic layer, and the lower region is an excellent transition layer of Ni-base alloy. The ZrO2 ceramic layer exhibits equiaxed grains and colum...

  3. Raman microscopic studies of PVD deposited hard ceramic coatings

    CERN Document Server

    Constable, C P

    2000-01-01

    GPa were deposited onto SS and HSS substrates. Subsequent Raman measurements found a correlation coefficient of 0.996 between Raman band position and stress (determined via XRD methods). In addition, there was also a similar correlation coefficient observed between hardness and Raman shift (cm sup - sup 1). The application of mechanical stresses on a TiAICrN coating via a stress rig was investigated and tensile and compressive shifts were observed. stresses caused by the scratching process. These shifts were found to be the largest at the edges of scratches. The Raman mapping of 'droplets', a defect inherent to PVD deposition processes, found that higher compressive stresses and large amounts of disorder occurred for coating growth onto droplets. Strategies designed to evaluate the ability of Raman microscopy to monitor the extent of real wear on cutting tools were evaluated. The removal of a coating layer and subsequent detection of a base layer proved successful. This was then expanded to real wear situatio...

  4. Characterization and wear- and corrosion-resistance of microarc oxidation ceramic coatings on aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wei Tongbo [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yan Fengyuan [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)]. E-mail: fyyan@ns.lzb.ac.cn; Tian Jun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2005-03-08

    Thick and hard ceramic coatings were prepared on Al-Cu-Mg alloy (2024 Al alloy) making use of microarc oxidation in an alkali-silicate electrolytic solution. The microstructure, phase composition, corrosion resistance friction and wear behaviors of the microarc oxidation coatings and the impact toughness of the impacted Al alloy blocks were investigated. Moreover, the corroded surfaces and the impacted surfaces and cross-sections of the microarc oxidation coatings were observed with a scanning electron microscope. The results show that the microarc oxidation coatings can be divided into a porous loose outer region consisting predominantly of {gamma}-Al{sub 2}O{sub 3} and Al-Si-O phase and a dense internal region consisting predominantly of {alpha}-Al{sub 2}O{sub 3}. They have excellent corrosion resistance, though the thicker coating shows somewhat poorer corrosion-resistance than the thinner one. The differences in the corrosion-resistance of the microarc oxidation coatings with different thicknesses are related to their different microstructures. The impact toughness of the Al alloy substrate is decreased after modification with the microarc oxidation coatings of extremely high hardness. This implies that the microarc oxidation coatings on the Al alloy substrate may not be suitable to impacting working condition. After abrasion away of the loose outer layer, the polished compact inner coatings possess excellent wear- and corrosion-resistance and strong adhesion to the substrate, and they show further significantly improved wear-resistance under the lubrication of a commercial 4838 lubricating oil. Namely, the friction coefficient and wear rate of the polished 100 {mu}m coating under the oil-lubricated-condition are reduced to be 1/10 and 1/1000 of that under dry sliding. The microarc oxidation coatings mainly composed of hard {alpha}-Al{sub 2}O{sub 3} could find promising application in preventing the corrosion and wear of Al alloy-based components.

  5. Property Evaluation and Damage Evolution of Environmental Barrier Coatings and Environmental Barrier Coated SiC/SiC Ceramic Matrix Composite Sub-Elements

    Science.gov (United States)

    Zhu, Dongming; Halbig, Michael; Jaskowiak, Martha; Hurst, Janet; Bhatt, Ram; Fox, Dennis S.

    2014-01-01

    This paper describes recent development of environmental barrier coatings on SiC/SiC ceramic matrix composites. The creep and fatigue behavior at aggressive long-term high temperature conditions have been evaluated and highlighted. Thermal conductivity and high thermal gradient cyclic durability of environmental barrier coatings have been evaluated. The damage accumulation and complex stress-strain behavior environmental barrier coatings on SiCSiC ceramic matrix composite turbine airfoil subelements during the thermal cyclic and fatigue testing of have been also reported.

  6. Ultra-hard ceramic coatings fabricated through microarc oxidation on aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu Hanhua [College of Physics, Jilin University, Changchun 130021 (China) and State Key Laboratory for Superhard Materials, Jilin University, Changchun 130012 (China)]. E-mail: wuhanhuacn@yahoo.com.cn; Wang Jianbo [State Key Laboratory for Superhard Materials, Jilin University, Changchun 130012 (China); Long Beiyu [College of Physics, Jilin University, Changchun 130021 (China); Long Beihong [State Key Laboratory for Superhard Materials, Jilin University, Changchun 130012 (China); Jin Zengsun [State Key Laboratory for Superhard Materials, Jilin University, Changchun 130012 (China); Naidan Wang [College of Physics, Jilin University, Changchun 130021 (China); Yu Fengrong [Key Laboratory of Metastable Materials, Yanshan University, Qinhuangdao 066004 (China); Bi Dongmei [College of Physics, Jilin University, Changchun 130021 (China)

    2005-12-15

    Ultra-hard ceramic coatings with microhardness of 2535 Hv have been synthesized on the Al alloy substrate by microarc oxidation (MAO) technique. The effects of anodic current density (j {sub a}) and the ratio of cathodic to anodic current density (j {sub c}/j {sub a}) on the mechanical and corrosion resistance properties of MAO coatings have been studied by microhardness and pitting corrosion tests, respectively. In addition, the phase composition and microstructure of the coatings were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results show that the coatings prepared at high anodic current density consist mainly of {alpha}-Al{sub 2}O{sub 3}, while those fabricated at low anodic current density are almost composed of {gamma}-Al{sub 2}O{sub 3}. Microhardness test shows that the coatings have high microhardness, and the highest one is found in the coating formed at j {sub a} = 15 A/dm{sup 2} and j {sub c}/j {sub a} = 0.7. Pitting corrosion test shows that the structure of coatings is strongly influenced by the varying j {sub c}/j {sub a}.

  7. Physical and Electromagnetic Properties of Customized Coatings for SNS Injection Ceramic Chambers and Extraction Ferrite Kickers

    CERN Document Server

    Hseuh Hsiao Chaun; He, Ping; Henderson, Stuart; Pai, Chien; Raparia, Deepak; Todd, Robert J; Wang, Lanfa; Wei, Jie; Weiss, Daniel; Yung Lee, Yong

    2005-01-01

    The inner surfaces of the 248 m SNS accumulator ring vacuum chambers are coated with ~100 nm of titanium nitride (TiN) to reduce the secondary electron yield (SEY) of the chamber walls. All the ring inner surfaces are made of stainless or inconel, except those of the injection and extraction kickers. Ceramic vacuum chambers are used for the 8 injection kickers to avoid shielding of a fast-changing kicker field and to reduce eddy current heating. The internal diameter was coated with Cu to reduce the beam coupling impedance and provide passage for beam image current, and a TiN overlayer to reduce SEY. The ferrite surfaces of the 14 extraction kicker modules were coated with TiN to reduce SEY. Customized masks were used to produce coating strips of 1 cm x 5 cm with 1 to 1.5 mm separation among the strips. The masks maximized the coated area to more than 80%, while minimizing the eddy current effect to the kicker rise time. The coating method, as well as the physical and electromagnetic properties of the coating...

  8. The ceramic coatings bonding under ultrasonic control; L'adherence des revetements ceramiques sous controle ultrasonore

    Energy Technology Data Exchange (ETDEWEB)

    Bossuat, B. [Cetim-Centre Technique des Industries Mecaniques, 30 - Senlis (France)

    2001-07-01

    The plasma spaying of ceramic coating is largely used in the nuclear and aeronautic industries. To control these coatings integrity destructive tests are today used. In correlation with the destructive tests, an ultrasonic testing has been developed. It is presented and discussed in this paper. (A.L.B.)

  9. Glass-ceramic coated Mg-Ca alloys for biomedical implant applications.

    Science.gov (United States)

    Rau, J V; Antoniac, I; Fosca, M; De Bonis, A; Blajan, A I; Cotrut, C; Graziani, V; Curcio, M; Cricenti, A; Niculescu, M; Ortenzi, M; Teghil, R

    2016-07-01

    Biodegradable metals and alloys are promising candidates for biomedical bone implant applications. However, due to the high rate of their biodegradation in human body environment, they should be coated with less reactive materials, such, for example, as bioactive glasses or glass-ceramics. Fort this scope, RKKP composition glass-ceramic coatings have been deposited on Mg-Ca(1.4wt%) alloy substrates by Pulsed Laser Deposition method, and their properties have been characterized by a number of techniques. The prepared coatings consist of hydroxyapatite and wollastonite phases, having composition close to that of the bulk target material used for depositions. The 100μm thick films are characterized by dense, compact and rough morphology. They are composed of a glassy matrix with various size (from micro- to nano-) granular inclusions. The average surface roughness is about 295±30nm due to the contribution of micrometric aggregates, while the roughness of the fine-texture particulates is approximately 47±4nm. The results of the electrochemical corrosion evaluation tests evidence that the RKKP coating improves the corrosion resistance of the Mg-Ca (1.4wt%) alloy in Simulated Body Fluid. PMID:27127065

  10. A mesomechanical analysis of the deformation and fracture in polycrystalline materials with ceramic porous coatings

    Science.gov (United States)

    Balokhonov, R. R.; Zinoviev, A. V.; Romanova, V. A.; Batukhtina, E. E.

    2015-10-01

    The special features inherent in the mesoscale mechanical behavior of a porous ceramic coating-steel substrate composite are investigated. Microstructure of the coated material is accounted for explicitly as initial conditions of a plane strain dynamic boundary-value problem solved by the finite difference method. Using a mechanical analogy method, a procedure for generating a uniform curvilinear finite difference computational mesh is developed to provide a more accurate description of the complex grain boundary geometry. A modified algorithm for generation of polycrystalline microstructure of the substrate is designed on the basis of the cellular automata method. The constitutive equations for a steel matrix incorporate an elastic-plastic model for a material subjected to isotropic hardening. The Hall-Petch relation is used to account for the effect of the grain size on the yield stress and strain hardening history. A brittle fracture model for a ceramic coating relying on the Huber criterion is employed. The model allows for crack nucleation in the regions of triaxial tension. The complex inhomogeneous stress and plastic strain patterns are shown to be due to the presence of interfaces of three types: coating-substrate interface, grain boundaries, and pore surfaces.

  11. Development of wear resistant ceramic coatings for diesel engine components

    Energy Technology Data Exchange (ETDEWEB)

    Haselkorn, M.H. (Caterpillar, Inc., Peoria, IL (United States))

    1992-04-01

    Improved fuel economy and a reduction of emissions can be achieved by insulation of the combustion chamber components to reduce heat rejection. However, insulating the combustion chamber components will also increase the operating temperature of the piston ring/cylinder liner interface from approximately 150{degree}C to over 300{degree}C. Existing ring/liner materials can not withstand these higher operating temperatures and for this reason, new materials need to be developed for this critical tribological interface. The overall goal of this program is the development of piston ring/cylinder liner material pairs which would be able to provide the required friction and wear properties at these more severe operating conditions. More specifically, this program first selected, and then evaluated, potential d/wear resistant coatings which could be applied to either piston rings an or cylinder liners and provide, at 350{degree}C under lubricated conditions, coefficients of friction below 0.1 and wear rates of less than 25 {times} lO{sup {minus}6} mm/hour. The processes selected for applying the candidate wear resistant coatings to piston rings and/or cylinder liners were plasma spraying, chemical vapor, physical vapor and low temperature arc vapor deposition techniques as well as enameling techniques.

  12. In situ formation of low friction ceramic coatings on carbon steel by plasma electrolytic oxidation in two types of electrolytes

    International Nuclear Information System (INIS)

    In situ formation of ceramic coatings on Q235 carbon steel was achieved by plasma electrolytic oxidation (PEO) in carbonate electrolyte and silicate electrolyte, respectively. The surface and cross-section morphology, phase and elemental composition of PEO coatings were examined by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS). The bond strength of the coating was determined using a direct pull-off test. The hardness as well as tribological properties of the ceramic coating was primarily studied. The results indicated that the coating obtained in carbonate electrolyte was Fe3O4, while the coating achieved from silicate electrolyte was proved to be amorphous. Both kinds of coatings showed coarse and porous surface. The Fe3O4 coatings obtained in carbonate electrolyte showed a high bonding strength to the substrate up to 20 ± 2 MPa and the value was 15 ± 2 MPa for the amorphous coatings obtained in carbonate electrolyte. The micro hardness of the amorphous coating and the Fe3O4 coating was 1001 Hv and 1413 Hv, respectively, which was more than two and three times as that of the Q235 alloy substrate (415 Hv). The friction coefficient exhibited by amorphous coating and Fe3O4 coating was 0.13 and 0.11, respectively, both lower than the uncoated Q235 substrate which ranged from 0.17 to 0.35.

  13. Processing-microstructure-properties relationships in small-particle plasma-sprayed ceramic coatings

    Science.gov (United States)

    Mawdsley, Jennifer Renee

    The objective of this study was to determine processing-microstructure-properties relationships for small-particle plasma-sprayed (SPPS) ceramic coatings. Plasma-sprayed yttria partially-stabilized zirconia (YSZ) coatings, which are used to protect superalloys from heat and the environment in turbine engines, and plasma-sprayed alumina coatings, which are being investigated as a potential replacement for chrome in corrosion protection applications, were fabricated using SPPS technology and their microstructure and pertinent properties were examined. The properties of plasma-sprayed YSZ and alumina coatings were investigated with designed experiments. The parameters varied include power, spray distance, total plasma gas flow, percent hydrogen in the plasma gas, injector angle, injector offset and carrier gas flow. The variations in thermal diffusivity, thermal conductivity, elastic modulus, and hardness for the YSZ SPPS coatings were found to correlate to the variations in density, which were related to the processing variables. It was found that surface roughness was related to the amount of splashing and debris associated with the single splats. In four-point bending strain tolerance and fatigue tests, the SPPS YSZ coatings showed very little acoustic emission activity, except in the case of tensile fatigue of a coating without network cracks. Small angle X-ray scattering experiments revealed that SPPS YSZ coatings have significantly less submicron intersplat porosity than conventional plasma-sprayed coatings, and that the pore and microcrack scattering area decreases with heat treatment due to the sintering of microcracks and small pores. The SPPS alumina coatings were optimized to produce a coating with excellent corrosion protection capabilities. It was found that the hardest SPPS alumina coatings did not provide the best corrosion protection due to unique porosity defect structures associated with surface bumps in the coatings. The surface bumps were

  14. Tribological properties of the PVD and CVD coatings deposited into the nitride tool ceramics

    OpenAIRE

    Dobrzański, Leszek A.; Pakula, Daniel; A. Křiž; Kopač, Janez; Soković, Mirko

    2015-01-01

    The tribological properties of the multi-layer PVD and CVD coatings deposited onto the Si3N4 nitride tool ceramics are compared in the paper in relation to the fundamental mechanical properties like hardness, adhesion. The inserts made from Si3N4 were multilayer coated in the PVD process with the TiN + multiTiAlSiN + TiN, TiN + TiAlSiN + TiN, and TiN + TiAlSiN + AlSiTiN coatings and in the CVD process with the TiC, Ti(C, N), Al2O3 and TiN. Additional investigations were carried out to compare...

  15. Microstructure and Corrosion Resistance of Cr7C3/γ-Fe Ceramal Composite Coating Fabricated by Plasma Cladding

    Institute of Scientific and Technical Information of China (English)

    LIU Junbo

    2007-01-01

    A new type in situ Cr7C3/γ-Fe ceramal composite coating was fabricated on substrate of hardened and tempered grade C steel by plasma cladding with Fe-Cr-C alloy powders. The ceramal composite coating has a rapidly solidified microstructure consisting of primary Cr7C3 and the Cr7C3/γ-Fe eutectics, and is metallurgically bonded to the degree C steel substrate. The corrosion resistances of the coating in water solutions of 0.5 mol/L H2SO4 and 3.5% NaCl were evaluated utilizing the electrochemical polarization corrosion-test method. Because of the inherent excellent corrosion-resisting properties of the constituting phase and the rapidly solidified homogeneous microstructure, the plasma clad ceramal composite coating exhibits excellent corrosion resistance in the water solutions of 0.5 mol/L H2SO4 and 3.5% NaCl.

  16. Phase Stability and Thermal Conductivity of Composite Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Benkel, Samantha; Zhu, Dongming

    2011-01-01

    Advanced environmental barrier coatings are being developed to protect SiC/SiC ceramic matrix composites in harsh combustion environments. The current coating development emphasis has been placed on the significantly improved cyclic durability and combustion environment stability in high-heat-flux and high velocity gas turbine engine environments. Environmental barrier coating systems based on hafnia (HfO2) and ytterbium silicate, HfO2-Si nano-composite bond coat systems have been processed and their stability and thermal conductivity behavior have been evaluated in simulated turbine environments. The incorporation of Silicon Carbide Nanotubes (SiCNT) into high stability (HfO2) and/or HfO2-silicon composite bond coats, along with ZrO2, HfO2 and rare earth silicate composite top coat systems, showed promise as excellent environmental barriers to protect the SiC/SiC ceramic matrix composites.

  17. Severe wear behaviour of alumina balls sliding against diamond ceramic coatings

    Indian Academy of Sciences (India)

    ANURADHA JANA; NANDADULAL DANDAPAT; MITUN DAS; VAMSI KRISHNA BALLA; SHIRSHENDU CHAKRABORTY; RAJNARAYAN SAHA; AWADESH KUMAR MALLIK

    2016-04-01

    At present alumina is themost widely used bio-ceramic material for implants.However, diamond surface offers very good solid lubricant for different machinery, equipment including biomedical implants (hip implants, knee implants, etc.), since the coefficient of friction (COF) of diamond is lower than alumina. In this tribological study, alumina ball was chosen as the counter body material to show better performance of the polycrystalline diamond (PCD) coatings in biomedical load-bearing applications.Wear and friction data were recorded for microwave plasma chemical vapour deposition (MWCVD) grown PCD coatings of four different types, out of which two sampleswere as-deposited coatings, one was chemo-mechanically polished and the other diamond sample was made free standing by wet-chemical etching of the silicon wafer. The coefficient of friction of the MWCVD grown PCD against Al$_2$O$_3$ ball under dry ambient condition was found in the range of 0.29–0.7, but in the presence of simulated body fluid, the COF reduces significantly, in the range of 0.03–0.36. The samples were then characterized by Raman spectroscopy for their quality, by coherence scanning profilometer for surface roughness and by electron microscopy for their microstructural properties. Alumina balls worn out ($14.2 \\times 10^{−1}$ mm$^3$) very rapidly with zero wear for diamond ceramic coatings. Since the generation of wear particle is the main problem for load-bearing prosthetic joints, it was concluded that the PCD material can potentially replace existing alumina bio-ceramic for their bettertribological properties.

  18. Ceramics reinforced metal base composite coatings produced by CO II laser cladding

    Science.gov (United States)

    Yang, Xichen; Wang, Yu; Yang, Nan

    2008-03-01

    Due to the excellent performance in high strength, anti-temperature and anti-wear, ceramics reinforced metal base composite material was used in some important fields of aircraft, aerospace, automobile and defense. The traditional bulk metal base composite materials are the expensive cost, which is limited in its industrial application. Development of laser coating of ceramics reinforced metal base composite is very interesting in economy. This paper is focused on three laser cladding ceramics coatings of SiC particle /Al matrix , Al IIO 3 powder/ Al matrix and WC + Co/mild steel matrix. Powder particle sizes are of 10-60μm. Chemical contents of aluminum matrix are of 3.8-4.0% Cu, 1.2-1.8% Mg, 0.3-0.99% Mn and balance Al. 5KW CO II laser, 5 axes CNC table, JKF-6 type powder feeder and co-axis feeder nozzle are used in laser cladding. Microstructure and performance of laser composite coatings have been respectively examined with OM,SEM and X-ray diffraction. Its results are as follows : Microstructures of 3C-,6H- and 5H- SiC particles + Al + Al 4SiC 4 + Si in SiC/Al composite, hexagonal α-Al IIO 3 + cubic γ-Al IIO 3 + f.c.c Al in Al IIO 3 powder/ Al composite and original WC particles + separated WC particles + eutectic WC + γ-Co solid solution + W IIC particles in WC + Co/steel coatings are respectively recognized. New microstructures of 5H-SiC in SiC/Al composite, cubic γ-Al IIO 3 in Al IIO 3 composite and W IIC in WC + Co/ steel composite by laser cladding have been respectively observed.

  19. Microstructure of thermal barrier coatings deposited by APS method with application of new type ceramic powders

    Directory of Open Access Journals (Sweden)

    M. Góral

    2012-12-01

    Full Text Available Purpose: The paper presents results of structural research into thermal barrier coatings obtained by the APS. For the base the Rene 80 alloy was used, whereas a MeCrAlY-type multicomponent alloy was used for an interlayer.Design/methodology/approach: Throughout the research an optic microscope as well as a scanning electron microscope were employed. Measurements of the formed structure’s porosity were taken.Findings: It has been observed that application of novelty ceramic powders allows for a possibility of forming thermal barrier coatings, which can be used for protecting of the combustion chamber’s surface as well as turbine’s blades in an aircraft engine.Research limitations/implications: Further research into resistance to oxidation of these coatings seems necessary for experimental determination of their actual work temperature.Practical implications: They can be successfully applied in automotive industry for coating of petrol or diesel engine’s components.Originality/value: Investigation into possible applications of two-layer and composite coatings, which may improve the work temperature of thermal barrier coatings, is feasible.

  20. The Effect of a Ceramic Coating on Zr Alloys in Terms of Corrosion

    International Nuclear Information System (INIS)

    It is very important to analyze fuel cladding mechanical properties. Polycarbosilane(PCS) is a special ceramic whose protection films inhibit oxidation chemical resistance and strength at high temperatures. The PCS coating was carried out under various reaction conditions. The results showed that the supercritical process tries to moderate oxidation conditions such as temperature, time, and solution amount. In this study, we used specimens of the types currently used in nuclear reactors(zry-4, zirlo), as well as their corresponding coating specimens (PCS, CrN and CrN + Tungsten), to conduct an oxidation analysis four type of conditions(water, LiOH, LiOH + Boron, and steam) over the course of a month. CrN coating layers were successfully formed with good protection on metal surface and without any defect. CrN coated specimen formed protective coating layers, inhibiting oxidized layers. However, both Zry-4 and Zirlo PCS coated specimens experience suddenly high oxidation rates in all kinds of conditions. As a result, the specimens supported the acceleration of oxidation by PCS

  1. Structural Characteristics of TiO2 Ceramic Coating by Micro-Plasma Oxidation

    Institute of Scientific and Technical Information of China (English)

    GAO Yu-zhou; ZHANG Hui-chen; WANG Liang; YAN Li

    2004-01-01

    TiO2 ceramic coatings with thickness of 20 μm were formed on the surface of pure titanium by micro-plasma oxidation. Their micro-structures were investigated by by using X-ray diffraction and their surface images were detected by using scan electronic microscope. There were three kinds of TiO2 coatings, pure anatase type TiO2 phase, mixed phases consisted of rutile type TiO2 phase and anatase type TiO2 phase, pure rutile type TiO2 phase. The coating surface with the pure anatase type TiO2 phase is rough, while the coating surface with the pure rutile type TiO2phase is smooth. The upper coating surface with the mixed type TiO2 phases is anatase type TiO2 structure and the subsurface of the TiO2 coating is rutile type TiO2structure.

  2. Thermal Conductivity and Water Vapor Stability of HfO2-based Ceramic Coating Materials

    Science.gov (United States)

    Zhu, Dongming; Fox, Dennis S.; Bansal, Narottam P.; Miller, Robert A.

    2004-01-01

    HfO2-Y2O3 and La2Zr2O7 are candidate thermal/environmental barrier coating materials for gas turbine ceramic matrix composite (CMC) combustor liner applications because of their relatively low thermal conductivity and high temperature capability. In this paper, thermal conductivity and high temperature phase stability of plasma-sprayed coatings and/or hot-pressed HfO2-5mol%Y2O3, HfO2- 15mol%Y2O3 and La2Zr2O7 were evaluated at temperatures up to 1700 C using a steady-state laser heat-flux technique. Sintering behavior of the plasma-sprayed coatings was determined by monitoring the thermal conductivity increases during a 20-hour test period at various temperatures. Durability and failure mechanisms of the HfO2-Y2O3 and La2Zr2O7 coatings on mullite/SiC Hexoloy or CMC substrates were investigated at 1650 C under thermal gradient cyclic conditions. Coating design and testing issues for the 1650 C thermaVenvironmenta1 barrier coating applications will also be discussed.

  3. Thermal Conductivity and Water Vapor Stability of Ceramic HfO2-Based Coating Materials

    Science.gov (United States)

    Zhu, Dong-Ming; Fox, Dennis S.; Bansal, Narottam P.; Miller, Robert A.

    2004-01-01

    HfO2-Y2O3 and La2Zr2O7 are candidate thermal/environmental barrier coating materials for gas turbine ceramic matrix composite (CMC) combustor liner applications because of their relatively low thermal conductivity and high temperature capability. In this paper, thermal conductivity and high temperature phase stability of plasma-sprayed coatings and/or hot-pressed HfO2-5mol%Y2O3, HfO2-15mol%Y2O3 and La2Zr2O7 were evaluated at temperatures up to 1700 C using a steady-state laser heat-flux technique. Sintering behavior of the plasma-sprayed coatings was determined by monitoring the thermal conductivity increases during a 20-hour test period at various temperatures. Durability and failure mechanisms of the HfO2-Y2O3 and La2Zr2O7 coatings on mullite/SiC Hexoloy or CMC substrates were investigated at 1650 C under thermal gradient cyclic conditions. Coating design and testing issues for the 1650 C thermal/environmental barrier coating applications will also be discussed.

  4. Effects of duty ratio at low frequency on growth mechanism of micro-plasma oxidation ceramic coatings on Ti alloy

    International Nuclear Information System (INIS)

    The aim of this work is to study the effects of duty ratio on the growth mechanism of the ceramic coatings on Ti-6Al-4V alloy prepared by pulsed single-polar MPO at 50 Hz in NaAlO2 solution. The phase composition of the coatings was studied by X-ray diffraction, and the morphology and the element distribution in the coating were examined through scanning electron microscopy and energy dispersive spectroscopy. The thickness of the coatings was measured by eddy current coating thickness gauge. The corrosion resistance of the coated samples was examined by linear sweep voltammetry technique in 3.5% NaCl solution. The changes of the duty ratio (D) of the anode process led to the changes of the mode of the spark discharge during the pulsed single-polar MPO process, which further influenced the structure and the morphology of the ceramic coatings. The coatings prepared at D = 10% were composed of a large amount of Al2TiO5 and a little γ-Al2O3 while the coatings prepared at D = 45% were mainly composed of α-Al2O3 and γ-Al2O3. The coating thickness and the roughness were both increased with the increasing D due to the formation of Al2O3. The formation of Al2TiO5 resulted from the spark discharge due to the breakdown of the oxide film, while the formation of Al2O3 resulted from the spark discharge due to the breakdown of the vapor envelope. The ceramic coatings improved the corrosion resistance of Ti-6Al-4V alloy. And the surface morphology and the coating thickness determined the corrosion resistance of the coated samples prepared at D = 45% was better than that of the coated samples prepared at D = 10%

  5. Characterization of Ceramic Composite-Membranes Prepared by ORMOSIL Coating Sol

    Institute of Scientific and Technical Information of China (English)

    Goo-Dae Kim; Tae-Bong Kim

    2004-01-01

    Sol-gel methods offer many advantages over conventional slip-casting, including the ability to produce ceramic membranes. They are purer, more homogeneous, more reactive and contain a wider variety of compositions. We produced ormosil sol using sol-gel process under different molecular weight of polymer species [polyethylene glycol (PEG) ] in total system [Tetraethyl ortho silicate(TEOS)-polyethylene glycol (PEG)]. The properties of as-prepared ormosil sol such as,viscosity, gelation time were characterized. Also, the ceramic membrane was prepared by dip-coating with synthetic sol and its micro-structure was observed by scanning electron microscopy. The permeability and rejection efficiency of membrane for oil/water emulsion were evaluated as cross-flow apparatus. The ormosil sol coated Membrane is easily formed by steric effect of polymer and it improves flux efficiency because infiltration into porous support decreased. Its flux efficiency is elevated about 200(1/m2·h) compared with colloidal sol coated membrane at point of five minutes from starting test.

  6. Plasma-Sprayed Refractory Oxide Coatings on Silicon-Base Ceramics

    Science.gov (United States)

    Tewari, Surendra

    1997-01-01

    Silicon-base ceramics are promising candidate materials for high temperature structural applications such as heat exchangers, gas turbines and advanced internal combustion engines. Composites based on these materials are leading candidates for combustor materials for HSCT gas turbine engines. These materials possess a combination of excellent physical and mechanical properties at high temperatures, for example, high strength, high toughness, high thermal shock resistance, high thermal conductivity, light weight and excellent oxidation resistance. However, environmental durability can be significantly reduced in certain conditions such as when molten salts, H2 or water vapor are present. The oxidation resistance of silicon-base materials is provided by SiO2 protective layer. Molten salt reacts with SiO2 and forms a mixture of SiO2 and liquid silicate at temperatures above 800C. Oxygen diffuses more easily through the chemically altered layer, resulting in a catastrophic degradation of the substrate. SiC and Si3N4 are not stable in pure H2 and decompose to silicon and gaseous species such as CH4, SiH, SiH4, N2, and NH3. Water vapor is known to slightly increase the oxidation rate of SiC and Si3N4. Refractory oxides such as alumina, yttria-stabilized zirconia, yttria and mullite (3Al2O3.2SiO2) possess excellent environmental durability in harsh conditions mentioned above. Therefore, refractory oxide coatings on silicon-base ceramics can substantially improve the environmental durability of these materials by acting as a chemical reaction barrier. These oxide coatings can also serve as a thermal barrier. The purpose of this research program has been to develop refractory oxide chemical/thermal barrier coatings on silicon-base ceramics to provide extended temperature range and lifetime to these materials in harsh environments.

  7. Spectral Emittance of Uncoated and Ceramic-Coated Inconel and Type 321 Stainless Steel

    Science.gov (United States)

    Richmond, Joseph C.; Stewart, James E.

    1959-01-01

    The normal spectral emittance of Inconel and type 321 stainless steel with different surface treatments was measured at temperatures of 900, 1,200, 1,500, and 1,800 F over a wavelength range of 1.5 to 15 microns. The measurements involved comparison of the radiant energy emitted by the heated specimen with that emitted by a comparison standard at the same temperature by means of a recording double-beam infrared spectrophotometer. The silicon carbide comparison standard had previously been calibrated against a laboratory black-body furnace. Surface treatments included electropolishing, sandblasting, electro-polishing followed by oxidation in air for 1/2 hour at 1,800 F, sandblasting followed by oxidation in air for 1/2 hour at 1,800 F, application of National Bureau of Standards coating A-418, and application of NBS ceramic coating N-143. The normal spectral emittance of both alloys in the electropolished condition was low and decreased very slightly with increasing wavelength while in the sandblasted condition it was somewhat higher and did not vary appreciably with wavelength. The oxidation treatment greatly increased the normal spectral emittance of both the electropolished and sandblasted type 321 stainless steel specimens and of the electropolished Inconel specimens and introduced some spectral selectivity into the curves. The oxidation increased the normal spectral emittance of the sandblasted Inconel specimens only moderately. Of the specimens to which a coating about 0.002 inch thick was applied, those coated with A-418 had higher emittance at all wavelengths than did those coated with N-143, and the coated specimens of Inconel had higher spectral emittance at all wavelengths than did the corresponding specimens of type 321 stainless steel. Both coatings were found to be partially transparent to the emitted energy at this thickness but essentially opaque at a thickness of 0.005 inch. Coated specimens with 0.005 inch or more of coating did not show the effect

  8. Friction and wear performance of HFCVD nanocrystalline diamond coated silicon nitride ceramics

    OpenAIRE

    Abreu, C. S.; M. Amaral; Fernandes, A. J. S.; Oliveira, F. J.; R.F. Silva; Gomes, J. R.

    2006-01-01

    Silicon nitride (Si3N4) ceramics were selected as substrates due to their thermal and chemical compatibility to diamond that ensure the adequate NCD adhesion for mechanical purposes. NCD deposition was performed by hot-filament chemical vapour method (HFCVD) using Ar/H2/CH4 gas mixtures. The tribological assessment of homologous pairs of NCD films was accomplished using reciprocating ball-on-flat tests using NCD coated Si3N4 plates and balls. The friction evolution is characterized by an init...

  9. Static tensile and tensile creep testing of four boron nitride coated ceramic fibers at elevated temperatures

    Science.gov (United States)

    Coguill, Scott L.; Adams, Donald F.; Zimmerman, Richard S.

    1989-01-01

    Six types of uncoated ceramic fibers were static tensile and tensile creep tested at various elevated temperatures. Three types of boron nitride coated fibers were also tested. Room temperature static tensile tests were initially performed on all fibers, at gage lengths of 1, 2, and 4 inches, to determine the magnitude of end effects from the gripping system used. Tests at one elevated temperature, at gage lengths of 8 and 10 inches, were also conducted, to determine end effects at elevated temperatures. Fiber cross sectional shapes and areas were determined using scanning electron microscopy. Creep testing was typically performed for 4 hours, in an air atmosphere.

  10. High temperature resistant cermet and ceramic compositions. [for thermal resistant insulators and refractory coatings

    Science.gov (United States)

    Phillips, W. M. (Inventor)

    1978-01-01

    High temperature oxidation resistance, high hardness and high abrasion and wear resistance are properties of cermet compositions particularly to provide high temperature resistant refractory coatings on metal substrates, for use as electrical insulation seals for thermionic converters. The compositions comprise a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride are also described.

  11. Growth characteristics of plasma electrolytic oxidation ceramic coatings on Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    The aim of this work is to discuss the growth characteristics of the ceramic coatings on Ti alloy by plasma electrolytic oxidation (PEO) technique. Ceramic coatings were prepared on Ti alloy by plasma electrolytic oxidation in different electrolyte solutions under different pulse modes. The composition and the structure of the coatings were investigated by X-ray diffraction and scanning electron microscopy (SEM), respectively. The amount of the dissolved titanium into the electrolytes during PEO process was measured by inductively coupled plasma-atomic emission spectrometer (ICP-AES). The structure and the composition of the coatings were related to the mode of the spark discharge during PEO process. (a) Under the pulsed single-polar mode: In Na3PO4 solution, the spark discharge was mainly due to the breakdown of the oxide film, and the coatings prepared were porous and mainly structured by the Ti from the substrate. In K4ZrF6-H3PO4 and NaAlO2-Na3PO4 solutions, the main mode of the spark discharge was the breakdown of the oxide film at the initial stage, and then changed into the breakdown of the vapor envelope, and the coatings were rough and thick, and mainly structured by the elements from the electrolyte. (b) Under the pulsed bi-polar mode in NaAlO2-Na3PO4 solution, the spark discharge may be mainly due to the breakdown of the oxide film, the coatings prepared were dense in inner layer and loose in outer layer, and structured by the elements from both the substrate and the electrolyte. Besides, the ICP-AES analyses showed that the amount of the dissolved titanium in the electrolyte during PEO process was more under the breakdown of the oxide film than under the breakdown of the vapor envelope, which was consistent with the changes of the structure of the coatings. Cathode pulse in the pulsed bi-polar mode increased the amount of the dissolved titanium in the electrolyte, compared with the pulsed single-polar one

  12. Environmental Coating Layer for the Metal-Ceramic Hybrid Fuel Cladding Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yangil; Kim, Sunhan; Park, Dongjun; Kim, Hyungil; Park, Jeongyong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The dissolution is much faster as the composition is off the stoichiometry. Since the SiC pre ceramic polymer impregnation results in excess oxygen or carbon in the composite matrix, the outer environmental barrier is indispensable to prevent the expected corrosion. Several candidates were considered as a surface coating material. Oxides such as ZrO{sub 2}, ZrO{sub 2}.Y{sub 2}O{sub 3}, SiO{sub 2}, Cr{sub 2}O{sub 3}, and Ta{sub 2}O{sub 5} are very stable in water. Also, the safety of fuel cladding against off-normal accidents could be increased, since the oxides can endure very high temperature. ZrO{sub 2} in a nuclear environment has been studied a lot since it is naturally formed on conventional fuel cladding tubes. In the case of SiO{sub 2}, the transformation of the crystal phase during irradiation was reported; however, their effect on the corrosion resistance was not investigated. Cr{sub 2}O{sub 3} and Ta{sub 2}O{sub 5} are quite good as a protective anti-corrosion layer, but inappropriate in terms of the neutron cross-section. A sol-gel based coating method and a synthesis of the precursor materials are being developed for the surface coating. Surface coating of of ZrO{sub 2} and ZrO{sub 2}.Y{sub 2}O{sub 3} on SiC was performed using a sol-gel dip coating method. Although the coated layer was impractical as a barrier of SiC dissolution, the preliminary test of coating materials can suggest the direction to further research.

  13. TEM analysis and wear resistance of the ceramic coatings on Q235 steel prepared by hybrid method of hot-dipping aluminum and plasma electrolytic oxidation

    International Nuclear Information System (INIS)

    Highlights: ► Transmission electron microscopy (TEM) was firstly used to analyze the phase composition of the ceramic coatings. ► The phase composition of the ceramic coatings is mainly amorphous phase and crystal Al2O3 oxides. ► The cross-section micro-hardness of the treated samples was investigated, the hardness of the ceramic coatings is about HV1300. ► The wear resistance of the PEO samples is about 3 times higher than that of the heat treated 45 steel. - Abstract: The hybrid method of PEO and hot-dipping aluminum (HDA) was employed to deposit composite ceramic coatings on the surface of Q235 steel. The composition of the composite coatings was investigated with X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The cross-section microstructure and micro-hardness of the treated specimens were investigated and analyzed with scanning electron microscopy (SEM) and microscopic hardness meter (MHM), respectively. The wear resistance of the ceramic coatings was investigated by a self-made rubbing wear testing machine. The results indicate that metallurgical bonding can be observed between the ceramic coatings and the steel substrate. There are many micro-pores and micro-cracks, which act as the discharge channels and result of quick and non-uniform cooling of melted sections in the plasma electrolytic oxidation ceramic coatings. The phase composition of the ceramic coatings is mainly composed of amorphous phase and crystal Al2O3 oxides. The crystal Al2O3 phase includes κ-Al2O3, θ-Al2O3 and β-Al2O3. The grain size of the κ-Al2O3 crystal is quite non-uniform. The hardness of the ceramic coatings is about HV1300 and 10 times higher than that of the Q235 substrate, which was favorable to the better wear resistance of the ceramic coatings.

  14. Removal of inclusions from molten aluminum with actively coated ceramic filters

    Institute of Scientific and Technical Information of China (English)

    周鸣; 倪红军; 疏达; 张为玉; 李克; 孙宝德; 王俊

    2003-01-01

    Molten aluminum (A001) was filtered by using ceramic foam filters coated with active enamel. Tensile test shows that the elongation of filtered sample is increased by 15.5%, but the tensile strength of the sample is almost the same as that of unfiltered one. The fracture cracks and dimples of filtered sample are fine and homogeneous according to SEM examination. In addition, metallographic observation shows that the filtered sample has very few inclusions of approximately 8 μm in diameter, but the unfiltered sample has some inclusions of approximately 60 μm in length and 20 μm in width. However, it is suggested that the active enamel coat can effectively capture the inclusions and dissolve them during filtering molten aluminum.

  15. Development of wear-resistant ceramic coatings for diesel engine components

    Energy Technology Data Exchange (ETDEWEB)

    Naylor, M.G.S. (Cummins Engine Co., Inc., Columbus, IN (United States))

    1992-06-01

    The tribological properties of a variety of advanced coating materials have been evaluated under conditions which simulate the piston ring -- cylinder liner environment near top ring reversal in a heavy duty diesel engine. Coated ring'' samples were tested against a conventional pearlitic grey cast iron liner material using a high temperature reciprocating wear test rig. Tests were run with a fresh CE/SF 15W40lubricant at 200 and 350{degrees}C, with a high-soot, engine-tested oil at 200{degrees}C and with no lubrication at 200{degrees}C. For lowest wear under boundary lubricated conditions, the most promising candidates to emerge from this study were high velocity oxy-fuel (HVOF) Cr{sub 3} C{sub 2} - 20% NiCr and WC - 12% Co cermets, low temperature arc vapor deposited (LTAVD) CrN and plasma sprayed chromium oxides. Also,plasma sprayed Cr{sub 2}O{sub 3} and A1{sub 2}O{sub 3}-ZrO{sub 2} materials were found to give excellent wear resistance in unlubricated tests and at extremely high temperatures (450{degrees}C) with a syntheticoil. All of these materials would offer substantial wear reductions compared to the conventional electroplated hard chromium ring facing and thermally sprayed metallic coatings, especially at high temperatures and with high-soot oils subjected to degradation in diesel environments. The LTAVD CrN coating provided the lowest lubricated wear rates of all the materials evaluated, but may be too thin (4 {mu}m) for use as a top ring facing. Most of the coatings evaluated showed higher wear rates with high-soot, engine-tested oil than with fresh oil, with increases of more than a factor of ten in some cases. Generally, metallic materials were found to be much more sensitive to soot/oil degradation than ceramic and cermet coatings. Thus, decreased soot sensitivity'' is a significant driving force for utilizing ceramic or cermet coatings in diesel engine wear applications.

  16. In Vitro and In Vivo Evaluation of Zinc-Modified Ca–Si-Based Ceramic Coating for Bone Implants

    OpenAIRE

    Yu, Jiangming; Li, Kai; Zheng, Xuebin; He, Dannong; Ye, Xiaojian; Wang, Meiyan

    2013-01-01

    The host response to calcium silicate ceramic coatings is not always favorable because of their high dissolution rates, leading to high pH within the surrounding physiological environment. Recently, a zinc-incorporated calcium silicate-based ceramic Ca2ZnSi2O7 coating, developed on a Ti-6Al-4V substrate using plasma-spray technology, was found to exhibit improved chemical stability and biocompatibility. This study aimed to investigate and compare the in vitro response of osteoblastic MC3T3-E1...

  17. An evaluation of the impact of surface coatings on the heat transfer in high temperature ceramic recuperators

    International Nuclear Information System (INIS)

    Engineering ceramics, particularly silicon carbide (SiC), are increasingly being used as materials in high temperature recuperators for preheating combustion air from furnace exhaust gases. As typical flue gases from these furnaces may contain sodium, potassium, halides, etc. that may attack SiC, protective coatings, such as alumina, zirconia, and others, have been investigated as a means of increasing the life and reliability of these SiC recuperators. This paper presents a study to determine the effect of coating properties, such as emissivity and thermal conductivity, on the heat transfer performance of these high temperature ceramic recuperators

  18. Ceramic thin films on plastics: a versatile transfer process for large area as well as patterned coating.

    Science.gov (United States)

    Kozuka, Hiromitsu; Fukui, Takafumi; Takahashi, Mitsuru; Uchiyama, Hiroaki; Tsuboi, Shohei

    2012-12-01

    A versatile technique for fabricating ceramic thin films on plastics has been proposed. The technique comprises (i) the deposition of a gel film by spin- or dip-coating on a silicon substrate coated beforehand with a release layer, (ii) the firing of the gel film into a ceramic film, and (iii) its transfer onto plastics by melting or softening the plastics surface. Reflective anatase and electrically conductive indium-tin-oxide (ITO) thin films were prepared on acrylic resin and polycarbonate substrates. Patterned ITO thin films could also be fabricated on plastics by using a mother silicon substrate with periodic grooves. PMID:23211312

  19. Mechanistic Study and Characterization of Cold-Sprayed Ultra-High Molecular Weight Polyethylene-Nano-ceramic Composite Coating

    Science.gov (United States)

    Ravi, Kesavan; Ichikawa, Yuji; Ogawa, Kazuhiro; Deplancke, Tiana; Lame, Olivier; Cavaille, Jean-Yves

    2016-01-01

    The cold spray deposition of ultra-high molecular weight polyethylene (UHMWPE) powder mixed with nano-alumina, fumed nano-alumina, and fumed nano-silica was attempted on two different substrates namely polypropylene and aluminum. The coatings with UHMWPE mixed with nano-alumina, fumed nano-alumina, and fumed nano-silica were very contrasting in terms of coating thickness. Nano-ceramic particles played an important role as a bridge bond between the UHMWPE particles. Gas temperature and pressure played an important role in the deposition. The differential scanning calorimetry results of the coatings showed that UHMWPE was melt-crystallized after the coating.

  20. The energy efficiency and environmental impacts in the ceramic industry: the case of ceramic coatings segment; A eficiencia energetica e os impactos na industria ceramica: o caso do segmento de revestimentos ceramicos

    Energy Technology Data Exchange (ETDEWEB)

    Berni, Mauro Donizeti [Universidade Estadual de Campinas (NIPE/UNICAMP), SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico], email: mauro_berni@yahoo.com.br; Bajay, Sergio Valdir [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Energia

    2010-07-01

    The Brazilian ceramic industry has great importance for the country, with a stake of more than 1.0% of GDP, or approximately $ 6 billion. The segment of ceramic coatings due to the higher revenues, production, employment, value of manufacturing and penetration in foreign markets, has been the highlight of the ceramic sector. Besides most representative in economic terms, the ceramic coatings segment presents with the largest final energy consumption and volume of emissions. This work shows the evolution of the final energy consumption of the ceramic sector, showing that the segment of ceramic coatings can be successful harnessing of potential energy conservation with reflections on the mitigation of greenhouse gas emissions. Therefore, the study evaluates: the process and energy sources; reducing impacts along the entire life cycle of products and the management actions providing a new corporate culture and social and environmental responsibility.

  1. On the effects of sealing treatment and micro-structural grading upon corrosion characteristics of plasma-sprayed ceramic coating

    International Nuclear Information System (INIS)

    Present authors have been investigating the corrosion characteristics of plasma-spray ceramic coated stainless steel through conducting various testing employing electrochemical methods. It was indicated that microcracks and micropores in ZrO2 top coated layer play important role as the path through which aqueous solution comes into inner layers. And, intense corrosion was recognized on the interface regions between the ZrO2 top coat and NiCrAlY undercoated layer. In some cases, this corrosion brought about peeling of the top coated layer. Therefore in this paper, to improve corrosion characteristics of plasma-sprayed ceramic coating in aqueous solution environment, sealing treatment and microstructural grading were conducted employing NiCrAlY and ZrO2 systems. Then, several investigations concerning corrosion characteristics of these plasma-sprayed ceramic coating system, were conducted from electro-chemical view points. As a result, it was recognized that microstructural graded coating shows little improvement in the corrosion properties. on the contrary, sealing treatment shows much improvement in corrosion characteristics especially in the case after heat treatment of 300 C for 2 hours was conducted

  2. Interfacial Bonding Strength of TiN Film Coated on Si3N4 Ceramic Substrate

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The fraction of TiN/Si3N4 in the cross section was observed with scanning electric microscope (SEM), and residual stresses of TiN coated on the surface of Si3N4 ceramic were measured with X-ray diffraction (XRD).The hardness of TiN film was measured, and bonding strength of TiN film coated on Si3N4 substrate was measured by scratching method. The formed mechanism of residual stress and the failure mechanism of the bonding interface in the film were analyzed, and the adhesion mechanism of TiN film was investigated preliminarily. The results show that residual stresses of TiN film are all behaved as compressive stress, and TiN film is represented smoothly with brittle fracture, which is closely bonded with Si3N4 substrate. TiN film has high hardness and bonding strength of about 500 MPa, which could satisfy usage requests of the surface of cutting Si3N4 ceramic.

  3. Development of a hard nano-structured multi-component ceramic coating by laser cladding

    International Nuclear Information System (INIS)

    The present paper reports laser-assisted synthesis of a multi-component ceramic composite coating consisting of aluminum oxide, titanium di-boride and titanium carbide (Al2O3-TiB2-TiC). A pre-placed powder mixture of aluminum (Al), titanium oxide (TiO2) and boron carbide (B4C) was made to undergo self-propagating high-temperature synthesis (SHS) by laser triggering. Laser subsequently effected cladding of the products of SHS on the substrate. The effect of laser scanning speed on the hardness, microstructure and phase composition of the composite coating was investigated. The coating exhibited an increase in hardness and a decrease in grain size with increase in laser scanning speed. A maximum micro-hardness of 2500 HV0.025 was obtained. X-ray diffraction (XRD) of the top surface of the coating revealed the presence of aluminum oxide (Al2O3), titanium di-boride (TiB2) and titanium carbide (TiC) along with some non-stoichiometric products of the Ti-Al-B-C-O system. Field emission gun scanning electron microscopy (FESEM) and high-resolution transmission electron microscopic (HRTEM) analysis revealed some nano-structured TiB2 and Al2O3, which are discussed in detail.

  4. Preparation and antimicrobial assay of ceramic brackets coated with TiO2 thin films

    Science.gov (United States)

    Cao, Shuai; Wang, Ye; Cao, Lin; Wang, Yu; Lin, Bingpeng; Lan, Wei

    2016-01-01

    Objective Different methods have been utilized to prevent enamel demineralization and other complications during orthodontic treatment. However, none of these methods can offer long-lasting and effective prevention of orthodontic complications or interventions after complications occur. Considering the photocatalytic effect of TiO2 on organic compounds, we hoped to synthesize a novel bracket with a TiO2 thin film to develop a photocatalytic antimicrobial effect. Methods The sol-gel dip coating method was used to prepare TiO2 thin films on ceramic bracket surfaces. Twenty groups of samples were composed according to the experimental parameters. Crystalline structure and surface morphology were characterized by X-ray diffraction and scanning electron microscopy, respectively; film thickness was examined with a surface ellipsometer. The photocatalytic properties under ultraviolet (UV) light irradiation were analyzed by evaluating the degradation ratio of methylene blue (MB) at a certain time. Antibacterial activities of selected thin films were also tested against Lactobacillus acidophilus and Candida albicans. Results Films with 5 coating layers annealed at 700℃ showed the greatest photocatalytic activity in terms of MB decomposition under UV light irradiation. TiO2 thin films with 5 coating layers annealed at 700℃ exhibited the greatest antimicrobial activity under UV-A light irradiation. Conclusions These results provide promising guidance in prevention of demineralization by increasing antimicrobial activities of film coated brackets. PMID:27226960

  5. Degradation behavior of n-MAO/EPD bio-ceramic composite coatings on magnesium alloy in simulated body fluid

    International Nuclear Information System (INIS)

    Highlights: • A bio-ceramic n-MAO/EPD coating was prepared by combined MAO and EPD technique. • The precipitates of Ca/P compound are formed on the surface samples during immersion. • The n-MAO/EPD coating with HA dense structure has a favorable anti-corrosion effect. • Two degradation mechanism models for the n-MAO and n-MAO/EPD coating were proposed. - Abstract: The bio-ceramic composite coatings have been fabricated on ZK60 magnesium (Mg) alloy to improve its bio-corrosion resistance in a simulated body fluid (SBF). Firstly, micro-arc oxidation coatings (n-MAO coating) with the addition of zirconium oxide (ZrO2) and cerium oxide (CeO2) nano-particles were prepared by MAO technique on ZK60Mg alloy in alkaline electrolyte. Secondly, nano-hydroxyapatite (HA) was deposited on the surface of n-MAO coatings by using electrophoretic deposition (EPD) technique. The degradation behavior of the coated samples was investigated by means of immersion tests and electrochemical impedance spectroscopy (EIS) in the SBF at 36.5 ± 0.5 °C. The variation of phase composition, surface and cross-section morphology of coatings at different immersion stages were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results showed that the precipitation layer with biological activity formed on the surface of coated samples during the SBF immersion, which can inhibit Mg alloys from degrading effectively. The n-MAO/EPD composite coating with HA dense structure has a favorable anti-corrosion effect compared to the n-MAO coating. Degradation mechanism model of the corrosion process at different corrosion stages for two kinds of coatings were proposed. The long-term corrosion protection of the n-MAO/EPD composite coating was governed significantly by the synergistic effect of phase composition stability and micro structural integrity

  6. Degradation behavior of n-MAO/EPD bio-ceramic composite coatings on magnesium alloy in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ying, E-mail: yxiong@zjut.edu.cn [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Lu, Chao [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Wang, Chao; Song, Renguo [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China)

    2015-03-15

    Highlights: • A bio-ceramic n-MAO/EPD coating was prepared by combined MAO and EPD technique. • The precipitates of Ca/P compound are formed on the surface samples during immersion. • The n-MAO/EPD coating with HA dense structure has a favorable anti-corrosion effect. • Two degradation mechanism models for the n-MAO and n-MAO/EPD coating were proposed. - Abstract: The bio-ceramic composite coatings have been fabricated on ZK60 magnesium (Mg) alloy to improve its bio-corrosion resistance in a simulated body fluid (SBF). Firstly, micro-arc oxidation coatings (n-MAO coating) with the addition of zirconium oxide (ZrO{sub 2}) and cerium oxide (CeO{sub 2}) nano-particles were prepared by MAO technique on ZK60Mg alloy in alkaline electrolyte. Secondly, nano-hydroxyapatite (HA) was deposited on the surface of n-MAO coatings by using electrophoretic deposition (EPD) technique. The degradation behavior of the coated samples was investigated by means of immersion tests and electrochemical impedance spectroscopy (EIS) in the SBF at 36.5 ± 0.5 °C. The variation of phase composition, surface and cross-section morphology of coatings at different immersion stages were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results showed that the precipitation layer with biological activity formed on the surface of coated samples during the SBF immersion, which can inhibit Mg alloys from degrading effectively. The n-MAO/EPD composite coating with HA dense structure has a favorable anti-corrosion effect compared to the n-MAO coating. Degradation mechanism model of the corrosion process at different corrosion stages for two kinds of coatings were proposed. The long-term corrosion protection of the n-MAO/EPD composite coating was governed significantly by the synergistic effect of phase composition stability and micro structural integrity.

  7. Acoustic emission analysis of Vickers indentation fracture of cermet and ceramic coatings

    International Nuclear Information System (INIS)

    The aim of this work was to develop an instrumented experimental methodology of quantitative material evaluation based on the acoustic emission (AE) monitoring of a dead-weight Vickers indentation. This was to assess the degree of cracking and hence the toughness of thermally sprayed coatings. AE data were acquired during indentation tests on samples of coatings of nominal thickness 250–325 µm at a variety of indentation loads ranging from 49 to 490 N. Measurements were carried out on five different carbide and ceramic coatings (HVOF as-sprayed WC-12%Co (JP5000 and JetKote), HIPed WC-12%Co (JetKote) and as-sprayed Al2O3 (APS/Metco and HVOF/theta-gun)). The raw AE signals recorded during indentation were analysed and the total surface crack length around the indent determined. The results showed that the total surface crack length measured gave fracture toughness (K1c) values which were consistent with the published literature for similar coatings but evaluated using the classical approach (Palmqvist/half-penny model). Hence, the total surface crack length criteria can be applied to ceramic and cermet coatings which may or may not exhibit fracture via radial cracks. The values of K1c measured were 3.4 ± 0.1 MPa m1/2 for high-velocity oxygen fuel (HVOF) (theta-gun) Al2O3, 4.6 ± 0.3 MPa m1/2 for as-sprayed HVOF (JetKote) WC-12%Co, 7.1±0.1 MPa m1/2 for as-sprayed HVOF (JP5000) WC-12%Co and 7.4 ± 0.2 MPa m1/2 for HIPed HVOF (JetKote) WC-12%Co coatings. The crack lengths were then calibrated against the AE response and correlation coefficients evaluated. The values of K1c measured using AE correlations were 3.3 MPa m1/2 for HVOF (theta-gun) Al2O3, 2.6 MPa m1/2 for APS (Metco) Al2O3, 2.5 MPa m1/2 for as-sprayed HVOF (JetKote) WC-12%Co, 6.3 MPa m1/2 for as-sprayed HVOF (JP5000) WC-12%Co and 8.6 MPa m1/2 for HIPed HVOF (JetKote) WC-12%Co coatings. It is concluded that within each category of coating type, AE can be used as a suitable surrogate for crack length

  8. Investigation of the structure and properties of PVD and CVD coatings deposited on the Si3N4 nitride ceramics

    OpenAIRE

    D. Pakuła; L.A. Dobrzański

    2007-01-01

    Purpose: Comprehensive structure and properties investigation results of the multilayer, multi-component, gradient PVD and CVD coatings developed on the Si3N4 nitride tool ceramics substrate are presented in the paper.Design/methodology/approach: The detailed results are presented of examinations carried out on the transmission and scanning electron microscopes, as well as of the mechanical properties and tribological tests of the investigated coatings.Findings: The research carr...

  9. Investigation of the structure and properties of PVD and CVD coatings deposited on the Si3N4 nitride ceramics

    Directory of Open Access Journals (Sweden)

    D. Pakuła

    2007-10-01

    Full Text Available Purpose: Comprehensive structure and properties investigation results of the multilayer, multi-component, gradient PVD and CVD coatings developed on the Si3N4 nitride tool ceramics substrate are presented in the paper.Design/methodology/approach: The detailed results are presented of examinations carried out on the transmission and scanning electron microscopes, as well as of the mechanical properties and tribological tests of the investigated coatings.Findings: The research carried out proved that depositing the hard, anti wear, multilayer coatings based on the Al2O3 and TiN layers onto the Si3N4 nitride tool ceramics with the PVD method results in obtaining better functional properties like extension of the cutting tool life, than in case of the uncoated nitride ceramics or coated with the PVD coatings and some CVD ones.Research limitations/implications: Pro-ecological dry cutting processes without the use of the cutting fluids and in the „Near-Net-Shape” technology.Originality/value: In the paper the research coatings deposited in the PVD and CVD methods on sintered tool materials carried out in order to improve the tool cutting properties.

  10. Creep Behavior of Hafnia and Ytterbium Silicate Environmental Barrier Coating Systems on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Fox, Dennis S.; Ghosn, Louis J.; Harder, Bryan

    2011-01-01

    Environmental barrier coatings will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability and stability of SiC/SiC ceramic matrix composite (CMC) engine components, thus improving the engine performance. In order to develop high performance, robust coating systems for engine components, appropriate test approaches simulating operating temperature gradient and stress environments for evaluating the critical coating properties must be established. In this paper, thermal gradient mechanical testing approaches for evaluating creep and fatigue behavior of environmental barrier coated SiC/SiC CMC systems will be described. The creep and fatigue behavior of Hafnia and ytterbium silicate environmental barrier coatings on SiC/SiC CMC systems will be reported in simulated environmental exposure conditions. The coating failure mechanisms will also be discussed under the heat flux and stress conditions.

  11. Cooling of gas turbines IX : cooling effects from use of ceramic coatings on water-cooled turbine blades

    Science.gov (United States)

    Brown, W Byron; Livingood, John N B

    1948-01-01

    The hottest part of a turbine blade is likely to be the trailing portion. When the blades are cooled and when water is used as the coolant, the cooling passages are placed as close as possible to the trailing edge in order to cool this portion. In some cases, however, the trailing portion of the blade is so narrow, for aerodynamic reasons, that water passages cannot be located very near the trailing edge. Because ceramic coatings offer the possibility of protection for the trailing part of such narrow blades, a theoretical study has been made of the cooling effect of a ceramic coating on: (1) the blade-metal temperature when the gas temperature is unchanged, and (2) the gas temperature when the metal temperature is unchanged. Comparison is also made between the changes in the blade or gas temperatures produced by ceramic coatings and the changes produced by moving the cooling passages nearer the trailing edge. This comparison was made to provide a standard for evaluating the gains obtainable with ceramic coatings as compared to those obtainable by constructing the turbine blade in such a manner that water passages could be located very near the trailing edge.

  12. Corrosion resistant coatings for SiC and Si{sub 3}N{sub 4} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Thierry; Shaokai Yang; J.J. Brown

    1998-09-01

    It is the goal of this program to (1) develop coatings for SiC and Si{sub 3}N{sub 4} that will enhance their performance as heat exchangers under coal combustion conditions and (2) to conduct an in-depth evaluation of the cause and severity of ceramic heat exchanger deterioration and failure under coal combustion conditions.

  13. Adhesive strength and structure of micro-arc oxidation ceramic coatings grown in-situ on LY12 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    WU Zhen-dong; JIANG Zhao-hua; YAO Zhong-ping

    2006-01-01

    The ceramic coatings containing zirconium dioxide were grown in-situ on LY12 aluminium alloy by micro-arc oxidation in mixed zirconate and phosphate solution. The phase composition and morphology of the coatings were studied by XRD and SEM.The adhesive strength of ceramic coatings was assessed by thermal shock test and tensile test. The results show that the coating is composed of m-ZrO2, t-ZrO2, and a little γ-Al2O3. Along the section of the coating, t-ZrO2 is more onboth sides than that in the middle, while m-ZrO2 is more in the middle than that on both sides. Meantime the coating is also composed of a dense layer and a loose layer. The coating has excellent thermal shock resistance under 550 ℃ and 600 ℃. And tensile tests show the adhesive strength of the dense layer of the coating with the substrate is more than 17.5 MPa.

  14. Development of Thermal Spraying and Coating Techniques by Using Thixotropic Slurries Including Metals and Ceramics Particles

    International Nuclear Information System (INIS)

    Thermal nanoparticles coating and microlines patterning were newly developed as novel technologies to fabricate fine ceramics layers and geometrical intermetallics patterns for mechanical properties modulations of practical alloys substrates. Nanometer sized alumina particles were dispersed into acrylic liquid resins, and the obtained slurries were sputtered by using compressed air jet. The slurry mists could blow into the arc plasma with argon gas spraying. On stainless steels substrates, the fine surface layers with high wear resistance were formed. In cross sectional microstructures of the coated layers, micromater sized cracks or pores were not observed. Subsequently, pure aluminum particles were dispersed into photo solidified acrylic resins, and the slurry was spread on the stainless steel substrates by using a mechanical knife blade. On the substrates, microline patterns with self similar fractal structures were drawn and fixed by using scanning of an ultra violet laser beam. The patterned pure metal particles were heated by the argon arc plasma spray assisting, and the intermetallics or alloys phases with high hardness were created through reaction diffusions. Microstructures in the coated layers and the patterned lines were observed by using a scanning electron microscopy.

  15. Chemical treatment and biomimetic coating evaluating in zirconia-alumina ceramics

    International Nuclear Information System (INIS)

    Ceramic materials, as alumina and zirconia have been explored along the years as biomaterials application. The bio inert nature has been stimulating the development of new alternatives, as chemical treatments to improve the biological application of these ceramics. The biomimetic process of bio inert ceramics for coating apatite is based on soaking the implant in a simulated body fluid, SBF, with ion concentrations nearly equal to those of human blood plasma. The bioactivity of the material is related with the formation of a layer constituted of hydroxyapatite low crystalline, similar to the biological apatite. The biocompatibility associated to the structural properties of the alumina and zirconia has been stimulating the clinical use of these materials, mainly in areas of larger mechanical requests, places not recommended for bioactive hydroxyapatite, for instance. In this work samples of alumina, zirconia doped with Yttria (3% mol) and composites of alumina and zirconia doped with Yttria (3% mol) were prepared by co-precipitation method, calcinate, sintered, chemically treated with solutions of acid phosphoric and sodium hydroxide and them immersed in 1.0 M and 1.5 M SBF. The calcinate powders were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), gas adsorption (BET) and laser diffraction. The XRD results indicate that the samples are low crystalline. It was observed for BET that the samples present high specific surface area. The results of laser diffraction and SEM showed that the powders are agglomerates. The sintered samples were analyzed by XRD, SEM and X-ray fluorescence (XRF). The phases quantified by Rietveld method were: cubic, tetragonal and monoclinic of the zirconia, besides the phase alpha of the alumina. The chemical treatment with phosphoric acid didn't present a tendency of larger apatite formation in relation to the samples no chemically treated. The treatment with sodium hydroxide provoked accentuated transformation of

  16. Effects of silica coating and silane surface conditioning on the bond strength of rebonded metal and ceramic brackets

    Directory of Open Access Journals (Sweden)

    Saadet Atsü

    2011-06-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the effects of tribochemical silica coating and silane surface conditioning on the bond strength of rebonded metal and ceramic brackets. MATERIAL AND METHODS: Twenty debonded metal and 20 debonded ceramic brackets were randomly assigned to receive one of the following surface treatments (n=10 for each group: (1 sandblasting (control; (2 tribochemical silica coating combined with silane. Brackets were rebonded to the enamel surface on the labial and lingual sides of premolars with a light-polymerized resin composite. All specimens were stored in distilled water for 1 week and then thermocycled (5,000 cycles between 5-55ºC. Shear bond strength values were measured using a universal testing machine. Student's t-test was used to compare the data (α=0.05. Failure mode was assessed using a stereomicroscope, and the treated and non-treated bracket surfaces were observed by scanning electron microscopy. RESULTS: Rebonded ceramic brackets treated with silica coating followed by silanization had significantly greater bond strength values (17.7±4.4 MPa than the sandblasting group (2.4±0.8 MPa, P<0.001. No significant difference was observed between the rebonded metal brackets treated with silica coating with silanization (15±3.9 MPa and the sandblasted brackets (13.6±3.9 MPa. Treated rebonded ceramic specimens primarily exhibited cohesive failure in resin and adhesive failure at the enamel-adhesive interface. CONCLUSIONS: In comparison to sandblasting, silica coating with aluminum trioxide particles followed by silanization resulted in higher bond strengths of rebonded ceramic brackets.

  17. Application of design of experiment on electrophoretic deposition of glass-ceramic coating materials from an aqueous bath

    Indian Academy of Sciences (India)

    Someswar Datta

    2000-04-01

    A process for application of abrasion- or corrosion-resistant glass-ceramic coating materials on metal substrate by electrophoretic deposition technique in an aqueous medium has been described. The effects of various process parameters, e.g. coating material concentration, time of deposition, applied current, pH of the suspension and concentration of the polymeric dispersant on the deposition efficiency have been studied. The process has been studied using a 23-factorial design technique of three independent variables; i.e. coating material concentration, applied current, and the time taken to achieve the best combination. The regression equation obtained explains the experimental results satisfactorily.

  18. Growth process and corrosion resistance of ceramic coatings of micro-arc oxidation on Mg-Gd-Y magnesium alloys

    Institute of Scientific and Technical Information of China (English)

    王萍; 李建平; 郭永春; 杨忠

    2010-01-01

    The regulation of ceramic coating formed by micro-arc oxidation on Mg-11Gd-1Y-0.5Zn (wt.%) magnesium alloys was investigated by scanning electron microscopy (SEM) and X-ray diffractometer (XRD). The relation of phase structure and corrosion resistance of MgO coating formed by micro-arc oxidation in different growth stages was analyzed. The results showed that the growth of coating accorded with linear regularity in the initial stage of micro-arc oxidation, which was the stage of anodic oxidation controlled ...

  19. Evaluation and Description of Friction between an Electro-Deposited Coating and a Ceramic Ball under Fretting Condition

    OpenAIRE

    Kyungmok Kim

    2015-01-01

    This article describes fretting behavior of zirconia and silicon nitride balls on an electro-deposited coating. Fretting tests are performed using a ball-on-flat configuration. The evolution of the kinetic friction coefficient is determined, along with slip ratio. Experimental results show that the steady-state friction coefficient between ceramic balls (Si3N4 and ZrO2) and an electro-deposited coating is about 0.06, lower than the value between AISI 52100 ball and the coating. After a stead...

  20. Development of ceramic-coated lithium particles for tritium production tests in high temperature engineering test reactor

    International Nuclear Information System (INIS)

    Ceramic-coated lithium particles (CCLP) are proposed for the tritium production tests in High Temperature Engineering Test Reactor (HTTR). The CCLP-production method and its tritium-retention as well as -release capability are mainly studied. The CCLP consists of a lithium compound kernel coated with ceramic layers. The kernel is made from lithium compound like LiAlO2. Ceramic materials like Al2O3 are used for the coating layers. The present study has made clear that tritium leakage from CCLP is less than 1% after 400-days-heating at 1,000K, and the tritium can be released completely in a short time by heating over 1,400K. From these characteristics, it is expected that the tritium can be well extracted from the CCLP by heating over 1,400K in the post irradiation test after irradiation under 1,000K in the HTTR. Furthermore, a good chemical stability between the kernel and coatings was confirmed through X-ray diffraction tests after heating of their powders. The mechanical integrity of coating layers for inner gas pressure in the CCLP was evaluated to be good on the basis of material data. (author)

  1. Development of the lithium fuel particles with ceramic coating for testing the tritium production in the HTTR reactor

    International Nuclear Information System (INIS)

    The method for obtained tritium by means of the lithium fuel particles with ceramic coating (LPCC), irradiated in the HTTR high-temperature gaseous reactor, and the results of tests on the hermeticity of such particles at the temperature of 1400 K are described. The basic characteristics of the LPCC with two coating layers and coefficients of the lithium diffusion in certain metals and ceramic materials are presented. The design for applying coatings on the LPCC by means of a pseudoliquified layer is described. The chemical stability and mechanical integrity of the LPCC were subjected to tests on their hermeticity at the temperature, expected in the irradiation zone. It is also shown, that 0.1 g of tritium may be obtained annually in one LPCC

  2. Heat Conduction in Ceramic Coatings: Relationship Between Microstructure and Effective Thermal Conductivity

    Science.gov (United States)

    Kachanov, Mark

    1998-01-01

    Analysis of the effective thermal conductivity of ceramic coatings and its relation to the microstructure continued. Results (obtained in Task 1) for the three-dimensional problem of heat conduction in a solid containing an inclusion (or, in particular, cavity - thermal insulator) of the ellipsoidal shape, were further advanced in the following two directions: (1) closed form expressions of H tensor have been derived for special cases of ellipsoidal cavity geometry: spheroid, crack-like spheroidal cavity and needle shaped spheroidal cavity; (2) these results for one cavity have been incorporated to construct heat energy potential for a solid with many spheroidal cavities (in the approximation of non-interacting defects). This problem constitutes a basic building block for further analyses.

  3. Microstructure and oxidation resistance of reactive plasma clad Cr7C3 /γ-Fe ceramic composite coating

    Institute of Scientific and Technical Information of China (English)

    Liu Junbo

    2007-01-01

    A new type oxidation resistance in situ Cr7C3/γ-Fe ceramic composite coating was fabricated on hardened and tempered grade C steel by reactive plasma clad with Fe-Cr-C alloy powders. The oxidation resistance of the ceramic composite coating was investigated under the test condition of 900℃ and 50 hours. The results indicate that the coating has a rapidly solidified microstructure consisting of blocky primary Cr7C3 and the inter-blocky Cr7C3/γ-Fe eutectics and is metallurgically bonded to the hardened and tempered grade C steel substrate. The high temperature oxidation resistance of the coating is up to 1.9 times higher than that of grade C steel. The oxidation kinetics curve of the coating is conforming to the parabolic-rate law equation. The excellent oxidation resistance of the coating is mainly attributed to the continuous oxide films which consist of Cr2O3 and Fe2O3. The continuous oxide films can prevent the inner part of the coating from being further oxidized.

  4. High temperature (salt melt) corrosion tests with ceramic-coated steel

    International Nuclear Information System (INIS)

    Thermal recycling of refuse in waste-to-energy plants reduces the problems connected to waste disposal, and is an alternative source of electric energy. However, the combustion process in waste incinerators results in a fast degradation of the steam-carrying superheater steel tubes by corrosive attack and abrasive wear. Higher firing temperatures are used to increase their efficiency but lead to higher corrosion rates. It is more economical to apply protective coatings on the superheater steel tubes than to replace the base material. In-situ tests were conducted in a waste-to-energy plant first in order to identify and quantify all involved corrosive elements. Laboratory scale experiments with salt melts were developed accordingly. The unprotected low-alloyed steel displayed substantial local corrosion. Corrosion was predominant along the grain boundaries of α-ferrite. The corrosion rate was further increased by FeCl3 and a mixture of HCL and FeCl3. Coatings based on pre-ceramic polymers with specific filler particles were engineered to protect superheater tubes. Tests proved their suitability to protect low-alloYed steel tubes from corrosive attack under conditions typical for superheaterS in waste incinerators, rendering higher firing temperatures in waste-to-energy plants possible. - Highlights: • Corrosion wall thickness losses of 400 μm/2 weeks occurred in a waste incinerator. • Abrasion is a major problem on superheater tubes in waste incinerators. • Laboratory salt melt tests can simulate metal corrosion in waste incinerators. • Corrosion protection coatings for steel (temperature: max. 530 °C) were developed. • Higher steam temperatures are possible in WIs with the developed coatings

  5. Effect of processing parameters on the cohesive strength of laser surface engineered ceramic coatings on aluminum alloys

    International Nuclear Information System (INIS)

    The mechanical performance of laser surface engineered ceramic composite (TiC/Al) coating on 2024 and 6061 Al alloy substrates has been evaluated using four-point bend test. The performance of the coating is expressed in terms of the cohesive strength of the coating. Load-displacement measurements carried out during the bend test helps to determine the load corresponding to crack initiation. This load required to initiate fracture in the coating provides a measure of the strength of the coating. A simplistic approach based on elementary beam theory and strength of material in conjunction with rule of mixture was adopted to calculate the cohesive strength of the composite coating. This approach is also further extended for attempts to evaluate apparent residual stress within the coating. Since process parameters exert a significant influence in controlling the end properties of the component, the effect of laser power and laser scan speed on the cohesive strength has also been investigated. It is observed that coatings with lower scan speeds have much higher cohesive strengths and they also seem to have good metallurgical bond with the substrate thus showing better mechanical behavior than the other high scan speeds used in this present study. The apparent residual stress in the coating appears to transform from compressive to tensile in nature with increasing laser scan speed eventually contributing to delamination of the coating

  6. Research of growth mechanism of ceramic coatings fabricated by micro-arc oxidation on magnesium alloys at high current mode

    Directory of Open Access Journals (Sweden)

    Wei-wei Chen

    2015-09-01

    Full Text Available Micro-arc oxidation (MAO coatings of ZK60 magnesium alloys were formed in a self-developed dual electrolyte composed of sodium silicate and phosphate at the high constant current of 1.8 A (15 A/dm2. The MAO process and growth mechanism were investigated by scanning electron microscopy (SEM coupled with an energy dispersive spectrometer (EDS, confocal laser scanning microscopy and X-ray diffraction (XRD. The results indicate that the growth process of MAO coating mainly goes through “forming → puncturing → rapid growth of micro-arc oxidation →large arc discharge → self-repairing”. The coating grows inward and outward at the same time in the initial stage, but outward growth of the coating is dominant later. Mg, Mg2SiO4 and MgO are the main phases of ceramic coating.

  7. Application scope for nano-ceramics in waste incineration plants. Anti-stick and anti-scale coatings; Anwendungsmoeglichkeiten fuer Nanokeramik im Muellheizkraftwerk. Antihaftbeschichtungen und Verzunderungsschutzschichten

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, F.; Novy, A. [ItN Nanovation AG, Saarbruecken (Germany)

    2007-07-01

    This paper offers an overview of the application scope and potential of ceramic coatings in power plants, especially waste incineration and waste-fired cogeneration plants. Since 2003 ceramic coatings produced by ItN under the brand name Nanocomp PP have been in use in more than 40 facilities (brown coal, hard coal, biomass and waste) on account of their ability to reduce slag and ash caking and minimise scale formation and wear. These water-based coatings are applied by spraying and then made to dry by ramping up the boiler or exposing them to the operating temperature of the coated component. They are generally suitable for most metal (steel etc.) surfaces and can also be used as a top coat on flame-sprayed, welded or enamelled surfaces. Nanocomp-coated heat exchanger tubes for boiler equipment are durably protected against caking and generally much easier to clean than without coating. On account of their capacity to prevent high-temperature corrosion and effectively inhibit scale formation Nanocomp coatings are particularly well suited for counteracting corrosion and scaling in waste treatment plants. Tubes subject to friction are protected against abrasion through the sacrificial wear of the ceramic coating, this prolonging their service life. Besides boiler equipment nano-ceramic coatings can also be used on steam-gas preheaters, air preheaters and electrofilter hoppers. In these areas with low temperature stress they primarily serve as anti-stick coatings. This helps to avoid baking and greatly facilitates cleaning.

  8. Effect of the Oxidation Time on Properties of Ceramic Coatings Produced on Ti-6Al-4V by Micro-Arc Oxidation

    Institute of Scientific and Technical Information of China (English)

    Zhaohua JIANG; Xuetong SUN; Yanping LI; Fuping WANG; Yandong LU

    2005-01-01

    Ceramic coatings were prepared on Ti-6AI-4V alloy using ac micro-arc oxidation (MAO) in silicate-hypophosphate solution. Growth regularity and formation mechanism of ceramic coatings were discussed. It was found that during the first stage the growth rate of coatings toward the external surface was larger than that toward substrate and then the coating began to grow mainly towards Ti alloy. When the total coating thickness reaches a certain value, it would no longer increase. In addition, the variations of the composition and microstructure of ceramic coatings according to the depositing time were also investigated with X-ray diffraction (XRD) and scanning electron microscope (SEM).The amount of rutile TiO2 gradually increased, whereas the amounts of the anatase TiO2 and amorphous phases first increased and then decreased slightly.

  9. Flexural creep of coated SiC-fiber-reinforced glass-ceramic composites

    International Nuclear Information System (INIS)

    This study reports the flexural creep behavior of a fiber-reinforced glass-ceramic and associated changes in microstructure. SiC fibers were coated with a dual layer of SiC/BN to provide a weak interface that was stable at high temperatures. Flexural creep, creep-rupture, and creep-strain recovery experiments were conducted on composite material and barium-magnesium aluminosilicate matrix from 1,000 to 1,200 C. Below 1,130 C, creep rates were extremely low (∼10-9 s-1), preventing accurate measurement of the stress dependence. Above 1,130 C, creep rates were in the 10-8 s-1 range. The creep-rupture strength of the composite at 1,100 C was about 75--80% of the fast fracture strength. Creep-strain recovery experiments showed recovery of up to 90% under prolonged unloading. Experimental creep results from the composite and the matrix were compared, and microstructural observations by TEM were employed to assess the effectiveness of the fiber coatings and to determine the mechanism(s) of creep deformation and damage

  10. Microstructure and wear behavior of laser cladding VC–Cr7C3 ceramic coating on steel substrate

    International Nuclear Information System (INIS)

    Highlights: ► The VC–Cr7C3 coating on steel substrate was in situ produced by laser cladding. ► The distribution of VC–Cr7C3 phase decreased gradually from the top of the coating. ► The laser cladding achieved a high hardness of the order of 1000 HV. ► The wear resistance of the coating was 4 times that of the steel substrate. - Abstract: To enhance the wear resistance of mechanical components, laser cladding has been applied to deposit in situ VC–Cr7C3 ceramic coating on steel substrate using a pre-placed powder consisting of vanadium, carbon and high-carbon ferrochrome. The laser cladding samples were subjected to various microstructure examinations, microhardness and wear tests. The results showed that defect-free coating with metallurgical joint to the steel substrate was obtained. The quantity of VC–Cr7C3 particles gradually increased from the bottom to the top of the coating. The VC particles in nanometer were observed within the coating. Average hardness of the coating up to 1050 HV was significantly higher than that of the substrate 150 HV. Wear tests indicated the wear resistance of the clad coating was 4 times that of the steel substrate

  11. Durability and Design Issues of Thermal/environmental Barrier Coatings on Sic/sic Ceramic Matrix Composites Under 1650 C Test Conditions

    Science.gov (United States)

    Zhu, Dong-Ming; Choi, Sung R.; Ghosn, Louis J.; Miller, Robert A.

    2004-01-01

    Ceramic thermal/environmental barrier coatings for SiC-based ceramics will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability remains a major concern with the ever-increasing temperature requirements. Currently, advanced T/EBC systems, which typically include a high temperature capable zirconia- (or hahia-) based oxide top coat (thermal barrier) on a less temperature capable mullite/barium-strontium-aluminosilicate (BSAS)/Si inner coat (environmental barrier), are being developed and tested for higher temperature capability Sic combustor applications. In this paper, durability of several thermal/environmental barrier coating systems on SiC/SiC ceramic matrix composites was investigated under laser simulated engine thermal gradient cyclic, and 1650 C (3000 F) test conditions. The coating cracking and delamination processes were monitored and evaluated. The effects of temperature gradients and coating configurations on the ceramic coating crack initiation and propagation were analyzed using finite element analysis (FEA) models based on the observed failure mechanisms, in conjunction with mechanical testing results. The environmental effects on the coating durability will be discussed. The coating design approach will also be presented.

  12. Synthesis and analysis of Mo-Si-B based coatings for high temperature oxidation protection of ceramic materials

    Science.gov (United States)

    Ritt, Patrick J.

    The use of Ni-based superalloys in turbine engines has all but been exhausted, with operating temperatures nearing the melting point of these materials. The use of ceramics in turbine engines, particularly ceramic matrix composites such as SiC/C and SiC/SiC, is of interest due to their low density and attractive mechanical properties at elevated temperatures. The same materials are also in consideration for leading edges on hypersonic vehicles. However, SiC-based composites degrade in high temperature environments with low partial pressures of oxygen due to active oxidation, as well as high temperature environments containing water or sand. The need for a protective external coating for SiC-based composites in service is obvious. To date, no coating investigated for SiC/C or SiC/SiC has been proven to be resistant to oxidation and corrosion at intermediate and high temperatures, as well as in environments deficient in oxygen. The Mo-Si-B coating shows great promise in this area, having been proven resistant to attack from oxidation at extreme temperatures, from water vapor and from calcia-magnesia-aluminosilicate (CMAS). The adaptation of the Mo-Si-B coating for ceramic materials is presented in detail here. Evaluation of the coating under a range of oxidation conditions as well as simulated re-entry conditions confirms the efficacy of the Mo-Si-B based coating as protection from catastrophic failure. The key to the oxidation and corrosion resistance is a robust external aluminoborosilica glass layer that forms and flows quickly to cover the substrate, even under the extreme simulated re-entry conditions. Suppression of active oxidation of SiC, which may occur during atmospheric re-entry and hypersonic flight trajectories, has also been examined. In order to adapt the Mo-Si-B based coating to low partial pressures of oxygen and elevated temperatures, controlled amounts of Al were added to the Mo-Si-B based coating. The resulting coating decreased the inward

  13. Boosting the Detection Potential of Liquid Chromatography-Electron Ionization Mass Spectrometry Using a Ceramic Coated Ion Source

    Science.gov (United States)

    Magrini, Laura; Famiglini, Giorgio; Palma, Pierangela; Termopoli, Veronica; Cappiello, Achille

    2016-01-01

    Detection of target and non-target substances and their characterization in complex samples is a challenging task. Here we demonstrate that coating the electron ionization (EI) ion source of an LC-MS system with a sol-gel ceramic film can drastically improve the detection of high-molecular weight and high-boiling analytes. A new ion source coated with a ceramic material was developed and tested with a mixture of polycyclic aromatic hydrocarbons (PAH) with an increasing number of rings. Comparison of the results obtained with those for an uncoated stainless steel (SS) ion source shows a dramatic improvement in the MS signals, with a nearly 40-fold increase of the signal-to-noise ratio. We also demonstrate the ability of the new system to produce excellent chromatographic profiles for hard-to-detect hormones.

  14. Microstructure and wear characterization of self-lubricating Al2O3 - MoS2 composite ceramic coatings

    International Nuclear Information System (INIS)

    The authors report the results of composite ceramic coatings of alumina Al2O3 containing some molybdenum disulfide MoS2 electro-codeposited on to Al metal substrates by a combination of anodic sparks deposition of Al2O3 and electrophoresis of MoS2. The microstructures were characterized by XRD, XPS, SEM, EDS, SNMS, TEM, SAD and relative wear resistance measurements. The coatings consisted mostly of Al2O3 with some and present as well. The coatings were porous and microcracked. SEM showed them to consist of circular splats which had rapidly crystallized from the molten state in areas of dielectric breakdown in the coating. In the TEM the microstructure was seen to contain sets of parallel, elongated grains having a single crystallographic orientation. The grains were separated by dislocated, low angle grain boundaries or microcracks. The sets intersected at irregularly curved interfaces and were mechanically interlocked. Quantitative SNMS indicated that up to 26 wt% MoS2 was incorporated in coatings fabricated from 5g/1 solutions. SEM/EDS as well as TEM/SAD/EDS identified 1-3 μ particles of MoS2 incorporated into the 5g/1 solution derived coatings. These coatings exhibited 50% lower wear rate than pure alumina coatings deposited under the same condition

  15. Rapid biomimetic deposition of octacalcium phosphate coatings on zirconia ceramics (Y-TZP) for dental implant applications

    Science.gov (United States)

    Stefanic, Martin; Krnel, Kristoffer; Pribosic, Irena; Kosmac, Tomaz

    2012-03-01

    Octacalcium phosphate (OCP) coatings on zirconia oral implants have a great potential to improve the osseointegration of already existing ceramic implants, owing to high osteoconductive characteristics of OCP and its possibility of use as a drug delivery system. Such OCP coatings can be prepared with a simple two-step biomimetic procedure investigated in our study. In the first step, zirconia discs were immersed into the solution with a pH 7.4 and after 1 h of soaking a thin nanostructured calcium phosphate (Ca-P) layer was precipitated on the ceramic substrate via three stages: (i) precipitation of an amorphous Ca-P; (ii) precipitation of the OCP; and (iii) the transformation of the OCP to apatite. This Ca-P layer later served as a template for the rapid deposition of a thicker OCP coating in the second step of the synthesis where the substrate was immersed into the solution with pH 7.0. The main benefits of the method are a relatively quick synthesis, simplicity and a good reproducibility. Moreover, the coatings show good tensile adhesion strength according to the tape tests (ASTM D-3359). In addition, mild physiological conditions of the synthesis may allow incorporation of biologically active molecules in the coating.

  16. Environmental Barrier Coating Development for SiC/SiC Ceramic Matrix Composites: Recent Advances and Future Directions

    Science.gov (United States)

    Zhu, Dongming

    2016-01-01

    This presentation briefly reviews the SiC/SiC major environmental and environment-fatigue degradations encountered in simulated turbine combustion environments, and thus NASA environmental barrier coating system evolution for protecting the SiC/SiC Ceramic Matrix Composites for meeting the engine performance requirements. The presentation will review several generations of NASA EBC materials systems, EBC-CMC component system technologies for SiC/SiC ceramic matrix composite combustors and turbine airfoils, highlighting the temperature capability and durability improvements in simulated engine high heat flux, high pressure, high velocity, and with mechanical creep and fatigue loading conditions. This paper will also focus on the performance requirements and design considerations of environmental barrier coatings for next generation turbine engine applications. The current development emphasis is placed on advanced NASA candidate environmental barrier coating systems for SiC/SiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. The efforts have been also directed to developing prime-reliant, self-healing 2700F EBC bond coat; and high stability, lower thermal conductivity, and durable EBC top coats. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, erosion-impact resistance, and long-term fatigue-environment system durability performance will be described. The research and development opportunities for turbine engine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be briefly discussed.

  17. In vitro and in vivo evaluation of zinc-modified ca-si-based ceramic coating for bone implants.

    Directory of Open Access Journals (Sweden)

    Jiangming Yu

    Full Text Available The host response to calcium silicate ceramic coatings is not always favorable because of their high dissolution rates, leading to high pH within the surrounding physiological environment. Recently, a zinc-incorporated calcium silicate-based ceramic Ca2ZnSi2O7 coating, developed on a Ti-6Al-4V substrate using plasma-spray technology, was found to exhibit improved chemical stability and biocompatibility. This study aimed to investigate and compare the in vitro response of osteoblastic MC3T3-E1 cells cultured on Ca2ZnSi2O7 coating, CaSiO3 coating, and uncoated Ti-6Al-4V titanium control at cellular and molecular level. Our results showed Ca2ZnSi2O7 coating enhanced MC3T3-E1 cell attachment, proliferation, and differentiation compared to CaSiO3 coating and control. In addition, Ca2ZnSi2O7 coating increased mRNA levels of osteoblast-related genes (alkaline phosphatase, procollagen α1(I, osteocalcin, insulin-like growth factor-I (IGF-I, and transforming growth factor-β1 (TGF-β1. The in vivo osteoconductive properties of Ca2ZnSi2O7 coating, compared to CaSiO3 coating and control, was investigated using a rabbit femur defect model. Histological and histomorphometrical analysis demonstrated new bone formation in direct contact with the Ca2ZnSi2O7 coating surface in absence of fibrous tissue and higher bone-implant contact rate (BIC in the Ca2ZnSi2O7 coating group, indicating better biocompatibility and faster osseointegration than CaSiO3 coated and control implants. These results indicate Ca2ZnSi2O7 coated implants have applications in bone tissue regeneration, since they are biocompatible and able to osseointegrate with host bone.

  18. TEM analysis and wear resistance of the ceramic coatings on Q235 steel prepared by hybrid method of hot-dipping aluminum and plasma electrolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Lu Lihong [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Science and Research Department, Chinese People' s Armed Police Academy, Langfang 065000 (China); Zhang Jingwu [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Shen Dejiu, E-mail: sdj217@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Wu Lailei; Jiang Guirong [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Li Liang [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)

    2012-01-25

    Highlights: Black-Right-Pointing-Pointer Transmission electron microscopy (TEM) was firstly used to analyze the phase composition of the ceramic coatings. Black-Right-Pointing-Pointer The phase composition of the ceramic coatings is mainly amorphous phase and crystal Al{sub 2}O{sub 3} oxides. Black-Right-Pointing-Pointer The cross-section micro-hardness of the treated samples was investigated, the hardness of the ceramic coatings is about HV1300. Black-Right-Pointing-Pointer The wear resistance of the PEO samples is about 3 times higher than that of the heat treated 45 steel. - Abstract: The hybrid method of PEO and hot-dipping aluminum (HDA) was employed to deposit composite ceramic coatings on the surface of Q235 steel. The composition of the composite coatings was investigated with X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The cross-section microstructure and micro-hardness of the treated specimens were investigated and analyzed with scanning electron microscopy (SEM) and microscopic hardness meter (MHM), respectively. The wear resistance of the ceramic coatings was investigated by a self-made rubbing wear testing machine. The results indicate that metallurgical bonding can be observed between the ceramic coatings and the steel substrate. There are many micro-pores and micro-cracks, which act as the discharge channels and result of quick and non-uniform cooling of melted sections in the plasma electrolytic oxidation ceramic coatings. The phase composition of the ceramic coatings is mainly composed of amorphous phase and crystal Al{sub 2}O{sub 3} oxides. The crystal Al{sub 2}O{sub 3} phase includes {kappa}-Al{sub 2}O{sub 3}, {theta}-Al{sub 2}O{sub 3} and {beta}-Al{sub 2}O{sub 3}. The grain size of the {kappa}-Al{sub 2}O{sub 3} crystal is quite non-uniform. The hardness of the ceramic coatings is about HV1300 and 10 times higher than that of the Q235 substrate, which was favorable to the better wear resistance of the ceramic

  19. The ceramic SiO2 and SiO2-TiO2 coatings on biomedical Ti6Al4VELI titanium alloy

    International Nuclear Information System (INIS)

    The paper presents the study of intermediate SiO2 and SiO2-TiO2 sol-gel coatings and dental porcelain coatings on Ti6Al4VELI titanium alloy. Surface microstructures and wear behaviour by pin-on-disc method of the ceramic coatings were investigated. The analysis revealed: (1) a compact, homogeneous SiO2 and SiO2-TiO2 coating and (2) that intermediate coatings may provide a durable joint between metal and porcelain, and (3) that dental porcelain on SiO2 and TiO2 coatings shows high wear resistance. (author)

  20. Adjustment of the ratio of Ca/P in the ceramic coating on Mg alloy by plasma electrolytic oxidation

    International Nuclear Information System (INIS)

    The ceramic coatings containing Ca and P were prepared on AZ91D Mg alloy by plasma electrolytic oxidation technique in NaOH system and Na2SiO3 system, respectively. The phase composition, morphology and the element distribution of the coatings was studied by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. The corrosion resistance of the coatings was examined by polarizing curve methods in a 0.9% NaCl solution. In NaOH system, there were a large number of micro-holes distributing evenly on the surface of the coating, and the coating was mainly composed of Mg, Al, P and Ca. In Na2SiO3 system, the micro-holes in the coatings were reduced greatly in number and the distribution of the micro-holes was uneven, and the coating was mainly composed of Mg, Al, Si, P and Ca. The ratio of Ca/P in the coating can be controlled by the adjustment of the technique parameters to a certain extent. The adjustment of the concentration of Ca2+ in the electrolyte was an effective method to change the ratio of Ca/P in the coating in both systems; the reaction time and the working voltage for the adjustment of the ratio of Ca/P in the coating was more suitable for the NaSi2O3 system than the NaOH system. The polarizing curve tests showed the coatings improved the corrosion resistance of the AZ91D Mg alloy in 0.9% NaCl solution by nearly two orders of magnitude.

  1. Control of substrate oxidation in MOD ceramic coating on low-activation ferritic steel with reduced-pressure atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Teruya, E-mail: teru@nifs.ac.jp; Muroga, Takeo

    2014-12-15

    Highlights: • A Cr{sub 2}O{sub 3} layer was produced on a ferritic steel substrate with a reduced-pressure. • The Cr{sub 2}O{sub 3} layer prevents further substrate oxidation in following coating process. • The Cr{sub 2}O{sub 3} layer has a function as a hydrogen permeation barrier. • A smooth MOD Er{sub 2}O{sub 3} coating was successfully made on the Cr{sub 2}O{sub 3} layer by dip coating. • The Cr{sub 2}O{sub 3} layer would enhance flexibility in MOD coating process and performances. - Abstract: An Er{sub 2}O{sub 3} ceramic coating fabricated using the metal–organic decomposition (MOD) method on a Cr{sub 2}O{sub 3}-covered low-activation ferritic steel JLF-1 substrate was examined to improve hydrogen permeation barrier performance of the coating. The Cr{sub 2}O{sub 3} layer was obtained before coating by heat treating the substrate at 700 °C under reduced pressures of <5 × 10{sup −3} Pa and 5 Pa. The Cr{sub 2}O{sub 3} layer was significantly stable even with heat treatment at 700 °C in air. This layer prevented further production of Fe{sub 2}O{sub 3}, which has been considered to degrade coating performance. An MOD Er{sub 2}O{sub 3} coating with a smooth surface was successfully obtained on a Cr{sub 2}O{sub 3}-covered JLF-1 substrate by dip coating followed by drying and baking. Preprocessing to obtain a Cr{sub 2}O{sub 3} layer would provide flexibility in the coating process for blanket components and ducts. Moreover, the Cr{sub 2}O{sub 3} layer suppressed hydrogen permeation through the JLF-1 substrate. While further optimization of the coating fabrication process is required, it would be possible to suppress hydrogen permeation significantly by multilayers of Cr{sub 2}O{sub 3} and MOD oxide ceramic.

  2. Friction and wear of radiation resistant composites, coatings and ceramics in vacuum and low temperature environment

    International Nuclear Information System (INIS)

    Superconducting magnets used in accelerators such as the Superconducting Super Collider (SSC) are exposed to fast neutron and gamma irradiation. Some of the components used in the SSC cryostat are fabricated from organic materials with low radiation resistance. The slide bearing material presently supporting the magnet assembly contains Teflon and must be replaced with a material of improved radiation resistance. A group of sliding materials, most of which have suitable radiation resistance, were tested under conditions of pressure, temperature, velocity, and vacuum typically encountered in normal cryostat operation. As this was a preliminary screening test, the samples were only cooled to liquid nitrogen temperature. The group of materials tested consists of composites, coated base metals, and ceramics. The criteria was to maintain a low coefficient of friction throughout the experiment in spite of changes in temperature and vacuum. Subsequent tests will expose finalist materials to fast neutron irradiation at liquid helium temperatures. This paper describes the experimental setup and presents data of the friction coefficient measurements taken for the various samples

  3. Wear Characteristics on Velocity and Load of Ceramic Coating Steels by Plasma Spray

    International Nuclear Information System (INIS)

    This paper investigates of wear behavior for ceramic coated materials by the wear test of a pin on disk type wear testing machine in air and in lubrication. Test specimens are sprayed with titanium dioxide powder(TiO2) on the carbon steel(S45C) by plasma thermal spray, and then it is tested of friction force, friction coefficient and the weight loss of the stator and the rotor by the change of slide velocities and loads. The results obtained are as follows : 1. When S45C and TiO2 specimen are tested in dry friction and in lubrication, the friction force and friction coefficient of these specimens aren't change according to change of friction velocities, but increases by normal load. 2. When the slide velocity and load of S45C and TiO2 specimen change, the weight loss increases according to them in dry friction. But that hardly take place in lubrication. 3. When S45C and TiO2 specimen is tested dry friction in air, weight loss of the pin is little on S45C and is much on TiO2 because the hardness of TiO2 is very great. The adhesiveness onto friction area of TiO2 specimen is the larger in lubrication than that in dry friction. Minute wear powder adhered onto the surface of TiO2 specimen and that shows metallic color

  4. The n-MAO/EPD bio-ceramic composite coating fabricated on ZK60 magnesium alloy using combined micro-arc oxidation with electrophoretic deposition

    International Nuclear Information System (INIS)

    Highlights: • Adding CeO2/ZrO2 nano-particles to modify the properties of n-MAO coating. • A bio-ceramic n-MAO/EPD composite coating was prepared by two-step methods. • The n-MAO/EPD composite coating with HA has a favorable anti-corrosion effect. - Abstract: A bio-ceramic composite coating was fabricated on ZK60 magnesium (Mg) alloy using combined micro-arc oxidation (MAO) with electrophoretic deposition (EPD) technique. The MAO coating as the basal layer was produced in alkaline electrolyte with (n-MAO coating) and without (MAO coating) the addition of CeO2 and ZrO2 nano-particles, respectively. A hydroxyapatite (HA) coating as the covering layer was deposited on the n-MAO coating to improve the biological properties of the coating (n-MAO/EPD composite coating). The morphology and phase composition of three treated coatings were investigated by scanning electron microscope (SEM) and X-ray diffraction (XRD). The corrosion resistance of these coatings was evaluated with potentiodynamic polarization tests and immersion tests in simulated body fluid (SBF) at 36.5 ± 0.5 °C. The XRD spectra showed that the CeO2 and ZrO2 peaks can be collected in the n-MAO coating, and HA particles exists in the n-MAO/EPD composite coating. The results of corrosion tests indicated that the n-MAO/EPD composite coating owned increased bioactivity and long-term protective ability compared with the MAO coating and the n-MAO coating. Thus Mg alloy coated with the n-MAO/EPD composite coating should be more suited as biodegradable bone implants

  5. The n-MAO/EPD bio-ceramic composite coating fabricated on ZK60 magnesium alloy using combined micro-arc oxidation with electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ying, E-mail: yxiong@zjut.edu.cn [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Lu, Chao [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Wang, Chao; Song, Renguo [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China)

    2014-12-15

    Highlights: • Adding CeO{sub 2}/ZrO{sub 2} nano-particles to modify the properties of n-MAO coating. • A bio-ceramic n-MAO/EPD composite coating was prepared by two-step methods. • The n-MAO/EPD composite coating with HA has a favorable anti-corrosion effect. - Abstract: A bio-ceramic composite coating was fabricated on ZK60 magnesium (Mg) alloy using combined micro-arc oxidation (MAO) with electrophoretic deposition (EPD) technique. The MAO coating as the basal layer was produced in alkaline electrolyte with (n-MAO coating) and without (MAO coating) the addition of CeO{sub 2} and ZrO{sub 2} nano-particles, respectively. A hydroxyapatite (HA) coating as the covering layer was deposited on the n-MAO coating to improve the biological properties of the coating (n-MAO/EPD composite coating). The morphology and phase composition of three treated coatings were investigated by scanning electron microscope (SEM) and X-ray diffraction (XRD). The corrosion resistance of these coatings was evaluated with potentiodynamic polarization tests and immersion tests in simulated body fluid (SBF) at 36.5 ± 0.5 °C. The XRD spectra showed that the CeO{sub 2} and ZrO{sub 2} peaks can be collected in the n-MAO coating, and HA particles exists in the n-MAO/EPD composite coating. The results of corrosion tests indicated that the n-MAO/EPD composite coating owned increased bioactivity and long-term protective ability compared with the MAO coating and the n-MAO coating. Thus Mg alloy coated with the n-MAO/EPD composite coating should be more suited as biodegradable bone implants.

  6. Lubricating Properties of Ceramic-Bonded Calcium Fluoride Coatings on Nickel-Base Alloys from 75 to 1900 deg F

    Science.gov (United States)

    Sliney, Harold E.

    1962-01-01

    The endurance life and the friction coefficient of ceramic-bonded calcium fluoride (CaF2) coatings on nickel-base alloys were determined at temperatures from 75 F to 1900 F. The specimen configuration consisted of a hemispherical rider (3/16-in. rad.) sliding against the flat surface of a rotating disk. Increasing the ambient temperature (up to 1500 F) or the sliding velocity generally reduced the friction coefficient and improved coating life. Base-metal selection was critical above 1500 F. For instance, cast Inconel sliding against coated Inconel X was lubricated effectively to 1500 F, but at 1600 F severe blistering of the coatings occurred. However, good lubrication and adherence were obtained for Rene 41 sliding against coated Rene 41 at temperatures up to 1900 F; no blisters developed, coating wear life was fairly good, and the rider wear rate was significantly lower than for the unlubricated metals. Friction coefficients were 0.12 at 1500 F, 0.15 at 1700 F, and 0.17 at 1800 F and 1900 F. Because of its ready availability, Inconel X appears to be the preferred substrate alloy for applications in which the temperature does not exceed 1500 F. Rene 41 would have to be used in applications involving higher temperatures. Improved coating life was derived by either preoxidizing the substrate metals prior to the coating application or by applying a very thin (less than 0.0002 in.) burnished and sintered overlay to the surface of the coating. Preoxidation did not affect the friction coefficient. The overlay generally resulted in a higher friction coefficient than that obtained without the overlay. The combination of both modifications resulted in longer coating life and in friction coefficients intermediate between those obtained with either modification alone.

  7. Development and characterization of MAO bioactive ceramic coating grown on micro-patterned Ti6Al4V alloy surface

    International Nuclear Information System (INIS)

    Highlights: • MAO combined with FPSP process is superior to the simple MAO. • The rougher dimple surface interspersed by fine pore structure exhibited better bioactivity. • The fatigue was improved due to the introduced residual compressive stress by FPSP. • The wear resistance was improved by the alleviated three body wear. - Abstract: In this paper, we describe a strategy for growing bioactive ceramic coatings on a micro-patterned Ti6Al4V alloy substrate using microarc oxidation (MAO) combined with fine particle shot-peening (FPSP) process, for the purpose to obtain the bio-activated titanium alloy with improved wear resistance and fatigue properties. The microstructure and phase composition of FPSP-MAO coating and simple MAO coating were examined using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The bioactivity, tribology and fatigue properties of FPSP-MAO and simple MAO coated samples were evaluated comparatively. The results indicate that the FPSP-MAO5 coating with a rougher dimple surface interspersed by fine pore structure has better inducing capacity of biomimetic apatite compared with simple MAO5 coating. FPSP-MAO5 and FPSP-MAO10 coated samples exhibit an improved fatigue life, increasing by 12.6% and 8.4% in comparison to that of the simple MAO5 and MAO10 coated ones, which is possibly attributed to residual compressive stress induced in the substrate near the coating/substrate interface. The wear resistance of FPSP-MAO5 and MAO10 coatings was significantly improved caused by the alleviated three body wear due to the debris container effect of dimples structure

  8. Deposition of various metal, ceramic, and cermet coatings by an industrial-scale large area filtered arc deposition process

    International Nuclear Information System (INIS)

    Nearly defect-free nitride, carbide, and oxiceramic coatings have been deposited by a unidirectional dual large area filtered arc deposition (LAFAD) process. One LAFAD dual arc vapor plasma source was used in both gas ionization and coating deposition modes with and without vertical magnetic rastering of the plasma flow. Substrates made of different metal alloys, as well as carbide and ceramics, were installed at different vertical positions on the 0.5 m diameter turntable of the industrial-scale batch coating system which was rotated at 12 rpm to assess deposition rates and coating thickness uniformity. Targets of the same or different compositions were installed on the primary cathodic arc sources of the LAFAD plasma source to deposit a variety of coating compositions by mixing the metal vapor and reactive gaseous components in a magnetically confined, strongly ionized plasma flow with large kinetic energy. The maximum deposition rate typically ranged from 1.5 μm/h for TiCr/TiCrN to 2.5 μm/h for Ti/TiN multilayer and AlN single layer coatings, and up to 6 μm/h for AlCr-based oxiceramic coatings for primary cathode current ranging from 120 to 140 A. When the arc current was increased to 200 A, the deposition rates of TiN-based coatings were as high as 5 μm/h. The vertical coating thickness uniformity was ±15% inside of a 150 mm area without vertical rastering. Vertical rastering increased the uniform coating deposition area up to 250 mm. The coating thickness distribution was well correlated with the output ion current distribution as measured by a multisection ion collector probe. Coatings were characterized for thickness, surface profile, adhesion, hardness, and elemental composition. Estimates of electrical resistivity indicated good dielectric properties for most of the TiCrAlY-based oxiceramic, oxinitride, and nitride coatings. The multielement LAFAD plasma flow consisting of fully ionized metal vapor with a reactive gas ionization rate in excess of 50

  9. Development Status and Performance Comparisons of Environmental Barrier Coating Systems for SiCSiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan

    2016-01-01

    Environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft turbine engine systems, because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. This paper presents current NASA EBC-CMC development emphases including: the coating composition and processing improvements, laser high heat flux-thermal gradient thermo-mechanical fatigue - environmental testing methodology development, and property evaluations for next generation EBC-CMC systems. EBCs processed with various deposition techniques including Plasma Spray, Electron Beam - Physical Vapor Deposition, and Plasma Spray Physical Vapor Deposition (PS-PVD) will be particularly discussed. The testing results and demonstrations of advanced EBCs-CMCs in complex simulated engine thermal gradient cyclic fatigue, oxidizing-steam and CMAS environments will help provide insights into the coating development strategies to meet long-term engine component durability goals.

  10. Effects of α-Al2O3 Nanoadditive on the Properties of Ceramic Coatings Prepared in Borate Electrolyte by Micro-Arc Oxidation

    Science.gov (United States)

    Li, H. X.; Zhu, H. H.; Wu, X.; Ji, Z. G.

    2012-08-01

    Ceramic coatings have been synthesized on 6063 aluminum alloy by micro-arc oxidation (MAO) technique in the solution of Na2B4O7 electrolyte with and without α-Al2O3 nanoadditive. Effects of α-Al2O3 nanoadditive on the phase composition, micro-structure, micro-hardness, adhesion and wear resistance of the prepared ceramic coatings have been investigated in this paper. The phase composition and microstructure of the MAO coatings were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDX) analyses, respectively. Micro-hardness, adhesion and tribological and wear tests were also performed. The results showed that the α-Al2O3 nanoadditive doped in the electrolyte had great influence on the structural and mechanical properties of the ceramic coatings.

  11. The n-MAO/EPD bio-ceramic composite coating fabricated on ZK60 magnesium alloy using combined micro-arc oxidation with electrophoretic deposition

    Science.gov (United States)

    Xiong, Ying; Lu, Chao; Wang, Chao; Song, Renguo

    2014-12-01

    A bio-ceramic composite coating was fabricated on ZK60 magnesium (Mg) alloy using combined micro-arc oxidation (MAO) with electrophoretic deposition (EPD) technique. The MAO coating as the basal layer was produced in alkaline electrolyte with (n-MAO coating) and without (MAO coating) the addition of CeO2 and ZrO2 nano-particles, respectively. A hydroxyapatite (HA) coating as the covering layer was deposited on the n-MAO coating to improve the biological properties of the coating (n-MAO/EPD composite coating). The morphology and phase composition of three treated coatings were investigated by scanning electron microscope (SEM) and X-ray diffraction (XRD). The corrosion resistance of these coatings was evaluated with potentiodynamic polarization tests and immersion tests in simulated body fluid (SBF) at 36.5 ± 0.5 °C. The XRD spectra showed that the CeO2 and ZrO2 peaks can be collected in the n-MAO coating, and HA particles exists in the n-MAO/EPD composite coating. The results of corrosion tests indicated that the n-MAO/EPD composite coating owned increased bioactivity and long-term protective ability compared with the MAO coating and the n-MAO coating. Thus Mg alloy coated with the n-MAO/EPD composite coating should be more suited as biodegradable bone implants.

  12. Pyrochlore free 0.67PMN-0.33PT ceramics prepared by particle-coating method

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Ruiqing; Li, Yan [College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059 (China); Gong, Shuwen [College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059 (China); Liu, Yong [College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059 (China); Li, Guorong [The State Key Lab of High Performance Ceramics and Superfinemicrostructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050 (China); Xu, Zhijun, E-mail: zhjxu@lcu.edu.cn [College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059 (China)

    2012-08-20

    Highlights: Black-Right-Pointing-Pointer Pyrochlore-free PMN-PT powders were obtained by two-step particle-coating method. Black-Right-Pointing-Pointer Mg-citric acid polymeric complex coatings avoid the formation of pyrochlore phase. Black-Right-Pointing-Pointer Pyrochlore-free PMN-PT powders have been successfully prepared at 800 Degree-Sign C. Black-Right-Pointing-Pointer The PMN-PT ceramics sintered at 1150 Degree-Sign C exhibited excellent electrical properties. - Abstract: In present study, pyrochlore-free 0.67Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.33PbTiO{sub 3} (0.67PMN-0.33PT) powders and ceramics have been successfully prepared. Using oxides as raw materials, pyrochlore-free 0.67PMN-0.33PT powders were obtained by two-step particle-coating method. The XRD and EDS results confirmed that the Mg-citric acid polymeric complex coatings effectively prevent the direct contact between PbO and Nb{sub 2}O{sub 5} and thus avoid the formation of pyrochlore phase. The obtained pyrochlore-free 0.67PMN-0.33PT powders at 800 Degree-Sign C showed uniform and even grain size. The 0.67PMN-0.33PT ceramics sintered at 1150 Degree-Sign C for 2 h exhibited 99% of relative density and a piezoelectric coefficient (d{sub 33}) of 576pC/N, a remnant polarization (P{sub r}) of 28.4 {mu}C/cm{sup 2}, a planar electromechanical coupling factor (k{sub p}) of 0.55 and a mechanical quality factor (Q{sub m}) of 90.

  13. Influence of electrolyte temperature on properties and infrared emissivity of MAO ceramic coating on 6061 aluminum alloy

    Science.gov (United States)

    Al Bosta, Mohannad M. S.; Ma, Kung-Jeng

    2014-11-01

    6061 aluminum alloy was treated by MAO at various temperatures of the alkali silicate electrolyte using pulsed bipolar current mode for ten minutes. The surface microstructures and properties were studied using SEM, EDX, and XRD. The infrared emissivities of the MAO ceramic coatings were measured at the 70 °C using FTIR spectrometer. The electrolyte temperature strongly affected all the surface properties. The MAO alumina ceramics prepared in cold electrolytes have volcano-like and accumulated particles microstructures, while those prepared in hot electrolytes were: rougher, thinner and contained grainy spherical hollow bulgy microstructures with more pore density and more sillimanite and cristobalite phases which enhanced the IR emissivity. Also, the increment of sillimanite and cristobalite phases moved the apparent peaks toward longer wavelengths, and broadened the opaque region of the IR spectra. As a result, the increment of electrolyte temperature from 12.3 °C to 90.5 °C increased the average of LWIR emissivity from 80.4% to 94.4%, respectively, for the MAO ceramic coatings.

  14. Applicability assessment of ceramic microbeads coated with hydroxyapatite-binding silver/titanium dioxide ceramic composite earthplus™ to the eradication of Legionella in rainwater storage tanks for household use

    Science.gov (United States)

    Oana, Kozue; Kobayashi, Michiko; Yamaki, Dai; Sakurada, Tsukasa; Nagano, Noriyuki; Kawakami, Yoshiyuki

    2015-01-01

    Water environments appear to be the habitats of Legionella species. Legionellosis is considered as a preventable illness because bacterial reservoirs can be controlled and removed. Roof-harvested rainwater has attracted significant attention not only as a groundwater recharge but also as a potential alternative source of nonpotable water. We successfully developed ceramic microbeads coated with hydroxyapatite-binding silver/titanium dioxide ceramic composite earthplus™ using the thermal spraying method. The ceramic microbeads were demonstrated to have bactericidal activities against not only Legionella but also coliform and heterotrophic bacteria. Immersing the ceramic microbeads in household rainwater storage tanks was demonstrated to yield the favorable eradication of Legionella organisms. Not only rapid-acting but also long-lasting bactericidal activities of the ceramic microbead were exhibited against Legionella pneumophila. However, time-dependent attenuation of the bactericidal activities against Legionella were also noted in the sustainability appraisal experiment. Therefore, the problems to be overcome surely remain in constantly managing the Legionella-pollution by means of immersing the ceramic microbeads. The results of our investigation apparently indicate that the earthplus™-coated ceramic microbeads would become the favorable tool for Legionella measures in household rainwater storage tanks, which may become the natural reservoir for Legionella species. Our investigation would justify further research and data collection to obtain more reliable procedures to microbiologically regulate the Legionella in rainwater storage tanks. PMID:26346201

  15. In situ formation of Al2O3-SiO2-SnO2 composite ceramic coating by microarc oxidation on Al-20%Sn alloy

    International Nuclear Information System (INIS)

    In situ formation of Al2O3-SiO2-SnO2 composite ceramic coating on Al-20%Sn alloy was successfully fabricated in aqueous Na2SiO3 electrolyte by microarc oxidation technology. The compositions, structure, mechanical and tribological properties of the composite coating were detailed studied by scanning electron microscope, energy dispersive spectroscopy, X-ray diffraction, hardness tester and ball-on-disc friction tester. It is found that the species originating from the Al-20%Sn alloy substrate and the electrolyte solution both participate in reaction and contribute to the composition of the coating, which results in the generated coating firmly adherent to the substrate. The composite ceramic coating can greatly improve the microhardness and tribological property of Al-20%Sn alloy.

  16. Post-treatment of Plasma-Sprayed Amorphous Ceramic Coatings by Spark Plasma Sintering

    Czech Academy of Sciences Publication Activity Database

    Chráska, Tomáš; Pala, Zdeněk; Mušálek, Radek; Medřický, Jan; Vilémová, Monika

    2015-01-01

    Roč. 24, č. 4 (2015), s. 637-643. ISSN 1059-9630 R&D Projects: GA ČR GAP107/12/1922 Institutional support: RVO:61389021 Keywords : ceramics * heat treatment * nanostructured materials Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.344, year: 2014

  17. Bonding mechanism and performance of ceramic coatings by sol-gel process

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Thin alumina coatings were prepared on carbide tools to enhance their wear-resistant ability by dip coating from an aluminum alkoxide solution. The coating eventually obtained was perfectly integrated, without any macroscopic defect, and showed good performance in turning medium carbon steel, which presented a novel and promising coating method for cutting tools. The coating morphology before and after heat treatment was examined with the aid of a scanning electron microscope (SEM). The composition of coating and interface layer as well as the crystal structure of coating was characterized by X-ray diffraction (XRD). The elemental distribution near the interlayer was analyzed by electron probe microanalysis (EPMA).

  18. Si3N4 ceramic cutting tool sintered with CeO2 and Al2O3 additives with AlCrN coating

    OpenAIRE

    José Vitor Candido Souza; Olivério Moreira Macedo Silva; Maria do Carmo Andrade Nono; João Paulo Barros Machado; Marcelo Pimenta; Marcos Valério Ribeiro

    2011-01-01

    Ceramic cutting tools are showing a growing market perspective in terms of application on machining operations due to their high hardness, wear resistance, and machining without a cutting fluid, therefore are good candidates for cast iron and Nickel superalloys machining. The objective of the present paper was the development of Si3N4 based ceramic cutting insert, characterization of its physical and mechanical properties, and subsequent coating with AlCrN using a PVD method. The characteriza...

  19. Effect of Rare Earth Oxide Content on Nanograined Base Metal Electrode Multilayer Ceramic Capacitor Powder Prepared by Aqueous Chemical Coating Method

    Science.gov (United States)

    Zhang, Yichi; Wang, Xiaohui; Kim, Jinyong; Li, Longtu

    2013-02-01

    The aqueous chemical coating route is highly effective in preparing BaTiO3 nanoparticles uniformly coated with additives. Such nanoparticles can be used to produce nano-grained temperature stable BaTiO3 ceramics with core-shell structure, fulfilling the need of next-generation ultrathin layer base metal electrode (BME) multilayer ceramic capacitors (MLCCs). Rare earth oxides are an important class of additives owing to their ability to fulfill both donor and acceptor roles. In this paper, the effects of Y2O3 and Ho2O3 co-dopant content on dielectric and microstructural properties were investigated. By applying chemical coating, BaTiO3-based high performance temperature stabilized ceramics with the average grain size of about 130 nm, which met the requirement of next generation BME MLCCs, were obtained.

  20. Applicability assessment of ceramic microbeads coated with hydroxyapatite-binding silver/titanium dioxide ceramic composite earthplus™ to the eradication of Legionella in rainwater storage tanks for household use

    Directory of Open Access Journals (Sweden)

    Oana K

    2015-08-01

    Full Text Available Kozue Oana,1,2 Michiko Kobayashi,1 Dai Yamaki,3 Tsukasa Sakurada,3 Noriyuki Nagano,1,2 Yoshiyuki Kawakami1,2 1Division of Infection Control and Microbiological Regulation, Department of Health and Medical Sciences, Shinshu University Graduate School of Medicine, 2Division of Clinical Microbiology, Department of Biomedical Laboratory Sciences, School of Health Sciences, Shinshu University School of Medicine, Matsumoto, 3Shinshu Ceramics Co., Ltd., Kiso, Nagano, Japan Abstract: Water environments appear to be the habitats of Legionella species. Legionellosis is considered as a preventable illness because bacterial reservoirs can be controlled and removed. Roof-harvested rainwater has attracted significant attention not only as a groundwater recharge but also as a potential alternative source of nonpotable water. We successfully developed ceramic microbeads coated with hydroxyapatite-binding silver/titanium dioxide ceramic composite earthplus™ using the thermal spraying method. The ceramic microbeads were demonstrated to have bactericidal activities against not only Legionella but also coliform and heterotrophic bacteria. Immersing the ceramic microbeads in household rainwater storage tanks was demonstrated to yield the favorable eradication of Legionella organisms. Not only rapid-acting but also long-lasting bactericidal activities of the ceramic microbead were exhibited against Legionella pneumophila. However, time-dependent attenuation of the bactericidal activities against Legionella were also noted in the sustainability appraisal experiment. Therefore, the problems to be overcome surely remain in constantly managing the Legionella-pollution by means of immersing the ceramic microbeads. The results of our investigation apparently indicate that the earthplus™-coated ceramic microbeads would become the favorable tool for Legionella measures in household rainwater storage tanks, which may become the natural reservoir for Legionella species

  1. On the use, characterization and performance of silane coupling agents between organic coatings and metallic or ceramic substrates

    International Nuclear Information System (INIS)

    Examples are given of the use of organofunctional silane coupling agents for promoting bonding between organic coatings and metallic or ceramic (i.e. oxide) substrates. The orientation of the silane molecules and the type of bonding with the metal oxide can be determined successfully by Time-of-Flight SIMS. Oriented films of aminosilanes are demonstrated to be unstable in air. A prerinse with an inorganic silicate is introduced as a suitable method for masking the ubiquitous carbonaceous contamination at the metal surface, thus promoting the proper orientation and covalent bonding. Some practical applications are described, such as the pretreatment of Galvalumesqbullet surfaces as a replacement of existing chromate treatments in coil coating applications. Electrochemical Impedance Spectroscopy (EIS) is shown to be a powerful tool for studying the performance of the silane treatment under a paint. copyright 1996 American Institute of Physics

  2. Comparation Between Pulsed Nd: Yag Laser Superficial Treatment and Ceramic Coating in Creep Test of Ti-6aAl-4V Alloy

    OpenAIRE

    Reis, Adriano G.; Reis, Danieli A.P.; Moura Neto, C.; Oñoro Lopez, Javier; Oliveira, H.S.; Couto, A.A.

    2010-01-01

    The objective of this work was evaluating the creep resistance of the Ti-6Al-4V alloy with superficial treatment of pulsed Nd:YAG laser and ceramic coating in creep test of Ti-6Al-4V alloy. It was used Ti-6Al-4V alloy as cylindrical bars under forged and annealing of 190oC by 6 hours condition and cooled by air. The Ti-6Al-4V alloy after the superficial treatment of pulsed Nd:YAG laser and ceramic coating was submitted to creep tests at 600°C and 125 at 319 MPa, under constant load mode. In t...

  3. Structures of ceramics coatings on steel fabricated by hot-dipping and micro-arc oxidation

    Institute of Scientific and Technical Information of China (English)

    SHEN De-jiu; WANG Yu-lin; GU Wei-chao; XING Guang-zhong

    2004-01-01

    Firstly, an aluminum coating was produced metallurgically on mild steel by hot-dipping, then an aluminum oxide coating was formed self-growingly from the aluminum coating by micro-arc oxidation treatment. The structures of the composite coatings were investigated by means of SEM, TEM and XRD. The results show that the composite coating consists of three layers which are Fe-Al alloy, aluminum coating and aluminum oxide orderly outward from the steel substrate. There are amorphous phases, k-Al2O3 and θ-Al2O3 mainly in the aluminum oxide.

  4. Scratch resistance of SiO2 and SiO2 - ZrO2 sol-gel coatings on glass-ceramic obtained by sintering

    International Nuclear Information System (INIS)

    The sol-gel process is widely used to obtain coatings on glass-ceramic substrates in order to improve the scratch and abrasion resistance, also providing a bright and homogeneous appearance of a glaze avoiding expensive final polishing treatments. This paper describes the preparation of silica and silica / zirconia coatings by sol-gel method on Li2O-Al2O3-SiO2 (LAS) glassceramic substrates produced by sintering. The coatings were deposited by dip-coating on LAS substrates and characterized by optical microscopy and spectral ellipsometry. On the other hand, hardness and elastic modulus, coefficient of friction and abrasion and scratch resistance of the coatings were determined and compared with the substrate properties. Coatings deposited on LAS glass-ceramic confere the substrate a bright and homogeneous aspect, similar to a glaze, improving the appearance and avoiding the final polishing. However these coatings do not increase the scratch resistance of the substrate only equaling the properties of the glass-ceramic. (Author)

  5. Effect of Al2O3 Ceramic Particles on Corrosion Behaviour and Tribological Properties of Nickel Composite Coatings

    Directory of Open Access Journals (Sweden)

    Nowak M.

    2016-03-01

    Full Text Available The paper presents a study on corrosion behaviour and tribological properties of nickel composite coatings deposited by electrochemical method on aluminium alloy from 2xxx series (AlCu4MgSi. The nickel composite coatings were produced in a Watts bath of the following chemical composition: NiSO4·7H2O 150 g/l, NiCl2·6H2O 30 g/l, H3BO3 30 g/l with the addition of saccharin in an amount of 2 g/l. As hard ceramic dispersed particles embedded in the coating, alumina (Al2O3 was used in an amount of 12,5; 25; 50 and 75 g/l. Coatings were produced using cathodic current density of 6 A/dm2, bath temperature of 60°C, pH 4, and the time 60 minutes. The electroplating bath was stirred with a mechanical stirrer (350 rpm.

  6. Simulation of automotive wrist pin joint and tribological studies of tin coated Al-Si alloy, metal matrix composites and nitrogen ceramics under mixed lubrication

    Science.gov (United States)

    Wang, Qian

    Development of automotive engines with high power output demands the application of high strength materials with good tribological properties. Metal matrix composites (MMC's) and some nitrogen ceramics are of interest to replace some conventional materials in the piston/pin/connecting rod design. A simulation study has been developed to explore the possibility to employ MMC's as bearing materials and ceramics as journal materials, and to investigate the related wear mechanisms and the possible journal bearing failure mechanisms. Conventional tin coated Al-Si alloy (Al-Si/Sn) have been studied for the base line information. A mixed lubrication model for journal bearing with a soft coating has been developed and applied to the contact and temperature analysis of the Al-Si/Sn bearing. Experimental studies were performed to reveal the bearing friction and wear behavior. Tin coating exhibited great a advantage in friction reduction, however, it suffered significant wear through pitting and debonding. When the tin wore out, the Al-Si/steel contact experienced higher friction. A cast and P/M MMC's in the lubricated contact with case hardened steel and ceramic journals were studied experimentally. Without sufficient material removal in the conformal contact situation, MMC bearings in the MMC/steel pairs gained weight due to iron transfer and surface tribochemical reactions with the lubricant additives and contact failure occurred. However, the MMC/ceramic contacts demonstrated promising tribological behavior with low friction and high wear resistance, and should be considered for new journal bearing design. Ceramics are wear resistant. Ceramic surface roughness is very crucial when the journals are in contact with the tin coated bearings. In contact with MMC bearings, ceramic surface quality and fracture toughness seem to play some important roles in affecting the friction coefficient. The wear of silicon nitride and beta sialon (A) journals is pitting due to grain

  7. Compound Ceramic Coatings on Ti-6AI-4V by Micro-Plasma Oxidation in NaAlO2 Solution

    Institute of Scientific and Technical Information of China (English)

    YAOZhong-ping; JIANGZhao-hua; XINShi-gang; SUNXue-tong; WUZhen-dong

    2004-01-01

    Micro-plasma oxidation (MPO) technique is a new technique by which compound ceramic coating can be grown in situ on AI, Ti, Mg and many other valve-metals. Compound ceramic coatings on Ti-6Al-4V alloy were prepared for different time by pulsed bi-polar MPO in NaAlO2 solution. The phase composition, morphology and the element distribution of the coatings were studied by XRD, SEM and JEOL SUPERPROBE 733 electric probe, respectively. Electrochemical Impedance Spectra (EIS) of the coatings were measured to study the structure character of the coatings. Through the proper EIS interpreting software, the "equivalent circuit" of the coatings was established, and the fitting values of equivalent element were calculated. The coating is mainly composed of Al2TiO5, α-Al2O3 and futile TiO2. The content of Ti element in the coating is less than that of substrate; its distribution is relatively uniform, and Ti in the outer layer is less than that in the inner layer. The content of A1 in the coating is more than that of substrate, and its distribution is not even: Al in the middle part is more than that on both sides of the coating; And the EIS analysis has illustrated the double-layer structure of the coatings, and the outside layer is loosen and the inner layer compact; with the increase of the oxidizing time, the surface roughness of the coatings, and the porosity of the outer layer of the coating are increased while the compactness of the inner layer of the coatings are improved.

  8. SiC nanowires reinforced MAS joint of SiC coated carbon/carbon composites to LAS glass ceramics

    International Nuclear Information System (INIS)

    Graphical abstract: Schematic cross-section images of the samples with SiC nanowires and assembly sequence for the raw materials through the process of the hot-pressing method. Highlights: ► The SiC nanowires were firstly used as porous layer in the middle of the joint. ► The shear strength of the joint with SiC nanowires was largely improved. ► A new mode of fracture was proposed. - Abstract: In order to improve the shear strength of the joints of carbon/carbon (C/C) composites to lithium aluminum silicate (LAS) glass ceramics, SiC coating and magnesium aluminum silicate (MAS) glass ceramics were used as transition layer and middle layer, respectively, and high quality SiC nanowires were applied as the reinforcement materials in MAS. The SiC nanowires reinforced MAS joint of SiC coated C/C composites to LAS glass ceramics was prepared by a three-step technique of pack cementation, CVD and hot-pressing. The microstructures of the as-prepared joints were characterized by SEM and EDS, and the shear strength of the joints was also examined. The shear strength of the SiC–MAS joint increased from 24.0 ± 2.0 MPa to 35.5 ± 5.5 MPa after adding SiC nanowires in MAS. The load decreases in step-style but not perpendicularly after the maximum value, which demonstrates good toughness of the joint with SiC nanowire porous layer.

  9. Effect of pyrolysis atmospheres on the morphology of polymer-derived silicon oxynitrocarbide ceramic films coated aluminum nitride surface and the thermal conductivity of silicone rubber composites

    Science.gov (United States)

    Chiu, Hsien T.; Sukachonmakul, Tanapon; Wang, Chen H.; Wattanakul, Karnthidaporn; Kuo, Ming T.; Wang, Yu H.

    2014-02-01

    Amorphous silicon oxycarbide (SiOC) and silicon oxynitrocarbide (SiONC) ceramic films coated aluminum nitride (AlN) were prepared by using preceramic-polysilazane (PSZ) with dip-coating method, followed by pyrolysis at 700 °C in different (air, Ar, N2 and NH3) atmospheres to converted PSZ into SiOCair and SiONC(Ar,N2andNH3) ceramic. The existence of amorphous SiOCair and SiONC(Ar,N2andNH3) ceramic films on AlN surface was characterized by FTIR, XRD and XPS. The interfacial adhesion between silicone rubber and AlN was significantly improved after the introduction of amorphous SiOCair and SiONC(Ar,N2andNH3) ceramic films on AlN surface. It can be observed from AFM that the pyrolysis of PSZ at different atmosphere strongly affected to films morphology on AlN surface as SiOCair and SiONCNH3 ceramic films were more flat and smooth than SiONCN2 and SiONCAr ceramic films. Besides, the enhancement of the thermal conductivity of silicone rubber composites was found to be related to the decrease in the surface roughness of SiOCair and SiONC(Ar,N2andNH3) ceramic films on AlN surface. This present work provided an alternative surface modification of thermally conductive fillers to improve the thermal conductivity of silicon rubber composites by coating with amorphous SiOCair and SiONC(Ar,N2andNH3) ceramic films.

  10. New Approach to Ceramic/Metal-Polymer Multilayered Coatings for High Performance Dry Sliding Applications

    Science.gov (United States)

    Rempp, A.; Killinger, A.; Gadow, R.

    2012-06-01

    The combination of thermally sprayed hard coatings with a polymer based top coat leads to multilayered coating systems with tailored functionalities concerning wear resistance, friction, adhesion, wettability or specific electrical properties. The basic concept is to combine the mechanical properties of the hard base coating with the tribological or chemical abilities of the polymer top coat suitable for the respective application. This paper gives an overview of different types of recently developed multilayer coatings and their application in power transmission under dry sliding conditions. State of the art coatings for dry sliding applications in power transmission are mostly based on thin film coatings like diamond-like carbon or solid lubricants, e.g. MoS2. A new approach is the combination of thin film coatings with combined multilayer coatings. To evaluate the capability of these tribological systems, a multi-stage investigation has been carried out. In the first stage the performance of the sliding lacquers and surface topography of the steel substrate has been evaluated. In the following stage thermally sprayed hard coatings were tested in combination with different sliding lacquers. Wear resistance and friction coefficients of combined coatings were determined using a twin disc test-bed.

  11. Si3N4 ceramic cutting tool sintered with CeO2 and Al2O3 additives with AlCrN coating

    Directory of Open Access Journals (Sweden)

    José Vitor Candido Souza

    2011-12-01

    Full Text Available Ceramic cutting tools are showing a growing market perspective in terms of application on machining operations due to their high hardness, wear resistance, and machining without a cutting fluid, therefore are good candidates for cast iron and Nickel superalloys machining. The objective of the present paper was the development of Si3N4 based ceramic cutting insert, characterization of its physical and mechanical properties, and subsequent coating with AlCrN using a PVD method. The characterization of the coating was made using an optical profiler, XRD, AFM and microhardness tester. The results showed that the tool presented a fracture toughness of 6.43 MPa.m½ and hardness of 16 GPa. The hardness reached 31 GPa after coating. The machining tests showed a decrease on workpiece roughness when machining with coated insert, in comparison with the uncoated cutting tool. Probably this fact is related to hardness, roughness and topography of AlCrN.

  12. Ceramic and coating applications in the hostile environment of a high temperature hypersonic wind tunnel. [Langley 8-foot high temperature structures tunnel

    Science.gov (United States)

    Puster, R. L.; Karns, J. R.; Vasquez, P.; Kelliher, W. C.

    1981-01-01

    A Mach 7, blowdown wind tunnel was used to investigate aerothermal structural phenomena on large to full scale high speed vehicle components. The high energy test medium, which provided a true temperature simulation of hypersonic flow at 24 to 40 km altitude, was generated by the combustion of methane with air at high pressures. Since the wind tunnel, as well as the models, must be protected from thermally induced damage, ceramics and coatings were used extensively. Coatings were used both to protect various wind tunnel components and to improve the quality of the test stream. Planned modifications for the wind tunnel included more extensive use of ceramics in order to minimize the number of active cooling systems and thus minimize the inherent operational unreliability and cost that accompanies such systems. Use of nonintrusive data acquisition techniques, such as infrared radiometry, allowed more widespread use of ceramics for models to be tested in high energy wind tunnels.

  13. Application of Pre-coated Microfiltration Ceramic Membrane with Powdered Activated Carbon for Natural Organic Matter Removal from Secondary Wastewater Effluent

    KAUST Repository

    Kurniasari, Novita

    2012-12-01

    Ceramic membranes offer more advantageous performances than conventional polymeric membranes. However, membrane fouling caused by Natural Organic Matters (NOM) contained in the feed water is still become a major problem for operational efficiency. A new method of ceramic membrane pre-coating with Powdered Activated Carbon (PAC), which allows extremely contact time for adsorbing aquatic contaminants, has been studied as a pre-treatment prior to ceramic microfiltration membrane. This bench scale study evaluated five different types of PAC (SA Super, G 60, KCU 6, KCU 8 and KCU 12,). The results showed that KCU 6 with larger pore size was performed better compared to other PAC when pre-coated on membrane surface. PAC pre-coating on the ceramic membrane with KCU 6 was significantly enhance NOM removal, reduced membrane fouling and improved membrane performance. Increase of total membrane resistance was suppressed to 96%. The removal of NOM components up to 92%, 58% and 56% for biopolymers, humic substances and building blocks, respectively was achieved at pre-coating dose of 30 mg/l. Adsorption was found to be the major removal mechanism of NOM. Results obtained showed that biopolymers removal are potentially correlated with enhanced membrane performance.

  14. Chemical vapor deposited fiber coatings and chemical vapor infiltrated ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Kmetz, M.A.

    1992-01-01

    Conventional Chemical Vapor Deposition (CVD) and Organometallic Chemical Vapor Deposition (MOCVD) were employed to deposit a series of interfacial coatings on SiC and carbon yarn. Molybdenum, tungsten and chromium hexacarbonyls were utilized as precursors in a low temperature (350[degrees]C) MOCVD process to coat SiC yarn with Mo, W and Cr oxycarbides. Annealing studies performed on the MoOC and WOC coated SiC yarns in N[sub 2] to 1,000[degrees]C establish that further decomposition of the oxycarbides occurred, culminating in the formation of the metals. These metals were then found to react with Si to form Mo and W disilicide coatings. In the Cr system, heating in N[sub 2] above 800[degrees]C resulted in the formation of a mixture of carbides and oxides. Convention CVD was also employed to coat SiC and carbon yarn with C, Bn and a new interface designated BC (a carbon-boron alloy). The coated tows were then infiltrated with SiC, TiO[sub 2], SiO[sub 2] and B[sub 4]C by a chemical vapor infiltration process. The B-C coatings were found to provide advantageous interfacial properties over carbon and BN coatings in several different composite systems. The effectiveness of these different coatings to act as a chemically inert barrier layer and their relationship to the degree of interfacial debonding on the mechanical properties of the composites were examined. The effects of thermal stability and strength of the coated fibers and composites were also determined for several difference atmospheres. In addition, a new method for determining the tensile strength of the as-received and coated yarns was also developed. The coated fibers and composites were further characterized by AES, SEM, XPS, IR and X-ray diffraction analysis.

  15. Evaluation and Description of Friction between an Electro-Deposited Coating and a Ceramic Ball under Fretting Condition

    Directory of Open Access Journals (Sweden)

    Kyungmok Kim

    2015-07-01

    Full Text Available This article describes fretting behavior of zirconia and silicon nitride balls on an electro-deposited coating. Fretting tests are performed using a ball-on-flat configuration. The evolution of the kinetic friction coefficient is determined, along with slip ratio. Experimental results show that the steady-state friction coefficient between ceramic balls (Si3N4 and ZrO2 and an electro-deposited coating is about 0.06, lower than the value between AISI 52100 ball and the coating. After a steady-state sliding, the transition of the friction coefficient is varied with a ball. The friction coefficient for ZrO2 balls became a critical value after higher fretting cycles than those for Si3N4 and AISI 52100 balls. In addition, it is identified that two parameters can describe the transition of the friction coefficient. Finally, the evolution of the friction coefficient is expressed as an exponential or a power-law form.

  16. Effects of cathode pulse at high frequency on structure and composition of Al2TiO5 ceramic coatings on Ti alloy by plasma electrolytic oxidation

    International Nuclear Information System (INIS)

    Research highlights: → Al2TiO5 in the coating on Ti alloy by PEO treatment changes with the increase of the cathode pulse, regardless of the amount and the grain size. → The cathode pulse brings about the decrease of γ-Al2O3 and the increase of rutile TiO2 in the coating. → The appropriate cathode pulse during PEO process is beneficial to reduce residual discharging channels and improve the density of the coating. - Abstract: The aim of this work is to investigate the effects of cathode pulse under high working frequency on structure and composition of ceramic coatings on Ti-6Al-4V alloys by plasma electrolytic oxidation (PEO). Ceramic coatings were prepared on Ti alloy by pulsed bi-polar plasma electrolytic oxidation in NaAlO2 solution. The phase composition, morphology and element distribution in the coating were investigated by X-ray diffractometry, scanning electron microscopy and energy distribution spectroscopy, respectively. The coating was mainly composed of a large amount of Al2TiO5. As the cathode pulse was increased, the amount and grain size of Al2TiO5 were first increased, and then decreased. γ-Al2O3 in the coating was gradually decreased to nothing with the increase in the cathode pulse whereas rutile TiO2 began to form in the coating. As opposed to the single-polar anode pulse mode, the cathode pulse reduced the thickness of the coatings. However, as the cathode pulse intensity continued to increase, the coating then became thicker regardless of cathode current density or pulse width. In addition, the residual discharging channels were reduced and the density of the coating was increased with the appropriate increase of the cathode pulse.

  17. Crystallisation of a zirconium-based glaze for ceramic tiles coatings

    OpenAIRE

    Romero, Maximina; Rincón López, Jesús María; Acosta, Anselmo

    2003-01-01

    The effect of iron oxide content on the crystallisation of a zirconium-based glass-ceramic glaze was investigated using a glass-ceramic “white of zirconium” frit and a granite waste glass. Measurements by X-ray diffraction (XRD) combined with scanning electron microscopy (SEM) and EDX microanalysis showed that Fe2O3 gives rise to the crystallisation of an iron-zinc ferrite, which is acting as nucleating agent of feather-like crystals of pyroxene while granite frit enhances the partial dissolu...

  18. Post-treatment of plasma sprayed amorphous ceramic coatings by spark plasma sintering

    Czech Academy of Sciences Publication Activity Database

    Chráska, Tomáš; Medřický, Jan; Mušálek, Radek; Vilémová, Monika; Pala, Zdeněk; Cinert, Jakub

    Düsseldorf: DVS Media GmbH, 2014, s. 617-622. (DVS-Berichte. 302). ISBN 978-3-87155-574-9. [ITSC 2014 :Interational Thermal Spray Conference and Exposition. Barcelona (ES), 21.05.2014-23.05.2014] R&D Projects: GA ČR GAP107/12/1922 Institutional support: RVO:61389021 Keywords : ceramics * plasma spraying * nanocomposites * sintering Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass http://www.dvs-media.eu/media/pdf/inhalt_300302.pdf

  19. Thermal fatigue testing of ceramic coatings produced by water-stabilized plasma gun

    Czech Academy of Sciences Publication Activity Database

    Jakubov, M.; Ctibor, Pavel; Neufuss, Karel

    Dusseldorf: DSV-Verlag, Dusseldorf, 2005 - (Lugscheider, E.), s. 1183-1186 ISBN 3-87155-793-5. [International Thermal Spray Conference 2005. Basilej (CH), 02.05.2005-04.05.2005] R&D Projects: GA AV ČR KSK1010104 Keywords : thermal fatigue * Alumina * adhesion Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  20. Development and investigation on new composite and ceramic coatings as possible abradable seals

    Energy Technology Data Exchange (ETDEWEB)

    Bardi, U.; Borgioli, F.; Fossati, A. [Firenze Univ., Sesto Fiorentino (Italy); Giolli, C.; Scrivani, A.; Rizzi, G. [Turbocoating S.p.A., Rubbiano di Solignano (Italy); Partes, K.; Seefeld, T. [Bremer Inst. fuer Angewandte Strahltechnik (BIAS) GmbH, Bremen (Germany); Sporer, D. [Sulzer Metco (Canada) Inc., Fort Saskatchewan, AB (Canada); Refke, A. [Sulzer Metco AG (Switzerland), Wohlen (Switzerland)

    2008-07-01

    In order to improve gas turbine performance it is possible to decrease back flow gases in the high temperature combustion region of the turbo machine reducing shroud/rotor gap. Thick and porous TBC systems and composite CoNiCrAlY/Al{sub 2}O{sub 3} coatings made by Air Plasma Spray (APS) and composite NiCrAlY/graphite coatings made by Laser Cladding were studied as possible high temperature abradable seal on shroud. Oxidation and thermal fatigue resistance of the coatings were assessed by means of isothermal and cyclic oxidation tests. Tested CoNiCrAlY/Al{sub 2}O{sub 3} and NiCrAlY/graphite coatings after 1000 hours at 1100 C do not show noticeable microstructural modification. The oxidation resistance of new composite coatings satisfied Original Equipment Manufacturer (OEM) specification. Thick and porous TBC systems passed the thermal fatigue test according to the considered OEM procedures. According to the OEM specification for abradable coatings the hardness evaluation suggests that these kinds of coatings must be used with abrasive tipped blades. Thick and porous TBC coating has shown good abradability using tipped blades. (orig.)

  1. Bimodal distribution characteristic of microstructure and mechanical properties of nanostructured composite ceramic coatings prepared by supersonic plasma spraying

    International Nuclear Information System (INIS)

    Highlights: • The microstructure of NCs exhibited a bimodal distribution. • The proportions of FM and PM regions both increased with spray power increasing. • The mechanical properties followed Weibull distribution. - Abstract: Nanostructured composite ceramic coatings (NCs) were deposited by supersonic plasma spraying (SPS) technique. The microstructures of NCs were characterized using scanning electron microscope (SEM), X-ray diffraction (XRD) and transmission electron microscope (TEM). The results showed that the microstructure of NCs exhibited a bimodal distribution consisting of fully melted regions (FM regions) and partially melted regions (PM regions). With the spray power increasing, the proportions of FM regions and PM regions both increased, but no distinct laws were found. The measured data of elastic modulus, micro-hardness and fracture toughness were analyzed using Weibull statistics. The results showed that these micromechanical properties followed Weibull distribution and presented a characteristic of bimodal distribution

  2. Formation of non FP plate-out high density and homogeneity ceramic thin coating onto the surface of high strength Ni-based super alloy by ion plating technique

    International Nuclear Information System (INIS)

    Al2O3 and ZrO2 ceramics thin coating test was performed on the surface of high strength Ni based super alloy by ion plating technique to prevent fission product (FP) plate-out contamination from helium gas turbine, and these ceramics coated specimens were tested to examine its contamination protection behavior and cyclic heat shock resistance. The following conclusions were derived; (1) Less than 4 μm thickness of Al2O3 and ZrO2 ceramic coating layer were formed on the surface of super alloy by ion plating technique and highly densified and homogeneous Al2O3 ceramic coating layer were obtained with surface roughness under ± 10nm. (2) There was no breakaway and dropout in Al2O3 coating layers under 100 cyclic heat shock test between 1173-288 K. However, crack in Al2O3 ceramic coating layer was found over 100 cycles. (3) It was found that there was no plate-out of vaporized Ag onto the Al2O3 ceramic coated specimen on the same heat transfer fluid conditions of gas turbine system, whereas Ag plate-out was found in the cracked Al2O3 and ZrO2 coated specimens damaged by long cyclic heat shock test. (author)

  3. Microstructure and high temperature properties of two-step voltage-controlled MAO ceramic coatings formed on Ti2AlNb alloy

    International Nuclear Information System (INIS)

    A two-step voltage-controlled microarc oxidation (MAO) method has been used to produce ceramic coatings (NA-2st) on Ti2AlNb alloy. For a comparative study, one-step voltage-controlled MAO ceramic coatings (NA-1st) were also formed on Ti2AlNb alloy. The NA-2st coating with a relatively compact microstructure is composed of Al2TiO5, R-TiO2, α-Al2O3 and γ-Al2O3 phases. The adhesive strength of MAO coatings was tested by a direct pull-off method. Isothermal oxidation tests were carried out at 800 °C in a muffle furnace in air. Normal spectral emissivity of MAO coatings was measured at 600 °C in the infrared wavelength range of 3–20 μm. High temperature tribological properties of MAO coatings were evaluated by using a ball-on-disc friction and wear tester at 600 °C. Due to its compact microstructure and high content of Al2TiO5 phase, the NA-2st coating exhibits better high temperature properties, such as good oxidation resistance, high infrared emissivity, low friction coefficient and small wear rate.

  4. Microstructure and high temperature properties of two-step voltage-controlled MAO ceramic coatings formed on Ti{sub 2}AlNb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuan-Hong, E-mail: wangyuanhong522@163.com; Ouyang, Jia-Hu; Liu, Zhan-Guo; Wang, Ya-Ming; Wang, Yu-Jin

    2014-07-01

    A two-step voltage-controlled microarc oxidation (MAO) method has been used to produce ceramic coatings (NA-2st) on Ti{sub 2}AlNb alloy. For a comparative study, one-step voltage-controlled MAO ceramic coatings (NA-1st) were also formed on Ti{sub 2}AlNb alloy. The NA-2st coating with a relatively compact microstructure is composed of Al{sub 2}TiO{sub 5}, R-TiO{sub 2}, α-Al{sub 2}O{sub 3} and γ-Al{sub 2}O{sub 3} phases. The adhesive strength of MAO coatings was tested by a direct pull-off method. Isothermal oxidation tests were carried out at 800 °C in a muffle furnace in air. Normal spectral emissivity of MAO coatings was measured at 600 °C in the infrared wavelength range of 3–20 μm. High temperature tribological properties of MAO coatings were evaluated by using a ball-on-disc friction and wear tester at 600 °C. Due to its compact microstructure and high content of Al{sub 2}TiO{sub 5} phase, the NA-2st coating exhibits better high temperature properties, such as good oxidation resistance, high infrared emissivity, low friction coefficient and small wear rate.

  5. Ceramic thermal spray technology and explore the dense coating material%陶瓷热喷涂技术与涂层材料探密

    Institute of Scientific and Technical Information of China (English)

    肖军

    2012-01-01

    采用热喷涂技术,在金属基体上制备陶瓷涂层,能把金属材料的特点和陶瓷材料的特点有机地结合起来,获得复合材料结构。由于这种复合材料结构具有异常优越的综合性能,使得热喷涂技术迅速从高尖领域扩展应用到能源、交通、冶金、轻纺、石化、机械等民用工业领域。首先综述了热喷涂高性能陶瓷涂层的应用前景,接着分析了陶瓷涂层及热喷涂技术的特点,然后介绍了热喷涂陶瓷涂层技术的应用领域,以及热喷涂高性能陶瓷涂层的典型应用,最后讨论了热喷涂高性能陶瓷涂层的发展潜力。%using thermal spray techniques, preparation of the metal ceramic coating on the substrate, can the characteristics of metal and ceramic materials, the characteristics of organically combined to obtain composite structures. Because of this unusual composite structures with superior over- all performance, making the thermal spray technology rapidly expanding field of applications from high point to the energy, transportation, metallurgy, textile, petrochemical, machinery and other ci- vilian industries. First, an overview of high--performance ceramic thermal spray coating application prospects, and then analyzed the ceramic coating and thermal spray technology features, and then introduced the ceramic thermal spray coating technology applications, and thermal spray coating of a typical high--performance ceramic application, and finally discuss the high--performance ceramic thermal spray coatings development potential

  6. Solar Photocatalytic Removal of Chemical and Bacterial Pollutants from Water Using Pt/TiO2-Coated Ceramic Tiles

    Directory of Open Access Journals (Sweden)

    S. P. Devipriya

    2012-01-01

    Full Text Available Semiconductor photocatalysis has become an increasingly promising technology in environmental wastewater treatment. The present work reports a simple technique for the preparation of platinum-deposited TiO2 catalysts and its immobilization on ordinary ceramic tiles. The Pt/TiO2 is characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, energy dispersive X-ray spectroscopy (EDAX, and diffuse reflectance spectroscopy (DRS. Deposition of Pt on TiO2 extends the optical absorption of the latter to the visible region which makes it attractive for solar energy application. Optimum loading of Pt on TiO2 was found to be 0.5%. The Pt/TiO2 is coated on ceramic tiles and immobilized. This catalyst was found effective for the solar photocatalytic removal of chemical and bacterial pollutants from water. Once the parameters are optimized, the Pt/TiO2/tile can find application in swimming pools, hospitals, water theme parks, and even industries for the decontamination of water.

  7. High-temperature tensile behavior of a boron nitride-coated silicon carbide-fiber glass-ceramic composite

    International Nuclear Information System (INIS)

    Tensile properties of a cross-ply glass-ceramic composite were investigated by conducting fracture, creep, and fatigue experiments at both room temperature and high temperatures in air. The composite consisted of a barium magnesium aluminosilicate (BMAS) glass-ceramic matrix reinforced with SiC fibers with a SiC/BN coating. The material exhibited retention of most tensile properties up to 1,200 C. Monotonic tensile fracture tests produced ultimate strengths of 230--300 MPa with failure strains of ∼1%, and no degradation in ultimate strength was observed at 1,100 and 1,200 C. In creep experiments at 1,100 C, nominal steady-state creep rates in the 10-9 s-1 range were established after a period of transient creep. Tensile stress rupture experiments at 1,100 and 1,200 C lasted longer than one year at stress levels above the corresponding proportional limit stresses for those temperatures. Tensile fatigue experiments were conducted in which the maximum applied stress was slightly greater than the proportional limit stress of the matrix, and, in these experiments, the composite survived 105 cycles without fracture at temperatures up to 1,200 C. Microscopic damage mechanisms were investigated by TEM, and microstructural observations of tested samples were correlated with the mechanical response. The SiC/BN fiber coatings effectively inhibited diffusion and reaction at the interface during high-temperature testing. The BN layer also provided a weak interfacial bond that resulted in damage-tolerant fracture behavior

  8. Electrochemical behavior of 45S5 bioactive ceramic coating on Ti6Al4V alloy for dental applications

    Science.gov (United States)

    Machado López, M. M.; Espitia Cabrera, M. I.; Faure, J.; Contreras García, M. E.

    2016-04-01

    Titanium and its alloys are widely used as implant materials because of their mechanical properties and non-toxic behavior. Unfortunately, they are not bioinert, which means that they can release ions and can only fix the bone by mechanical anchorage, this can lead to the encapsulation of dense fibrous tissue in the body. The bone fixation is required in clinical conditions treated by orthopedic and dental medicine. The proposal is to coat metallic implants with bioactive materials to establish good interfacial bonds between the metal substrate and bone by increasing bioactivity. Bioactive glasses, ceramics specifically 45 S5 Bioglass, have drawn attention as a serious functional biomaterial because osseointegration capacity. The EPD method of bioglass gel precursor was proposed in the present work as a new method to obtain 45S5/Ti6A14V for dental applications. The coatings, were thermally treated at 700 and 800°C and presented the 45 S5 bioglass characteristic phases showing morphology and uniformity with no defects, quantification percentages by EDS of Si, Ca, Na, P and O elements in the coating scratched powders, showed a good proportional relationship demonstrating the obtention of the 45S5 bioglass. The corrosion tests were carried out in Hank's solution. By Tafel extrapolation, Ti6Al4V alloy showed good corrosion resistance in Hank's solution media, by the formation of a passivation layer on the metal surface, however, in the system 45S5/Ti6Al4V there was an increase in the corrosion resistance; icon-, Ecorr and corrosion rate decreased, the mass loss and the rate of release of ions, were lower in this system than in the titanium alloy without coating.

  9. Load-deflection and surface properties of coated and conventional superelastic orthodontic archwires in conventional and metal-insert ceramic brackets

    Directory of Open Access Journals (Sweden)

    Shiva Alavi

    2012-01-01

    Full Text Available Background: Properties of coated archwires, which have been introduced for esthetic demands during orthodontic treatments, along with the use of tooth-colored brackets, are not clear. The aim of this study is to compare the load-deflection and surface properties of coated superelastic archwires with conventional superelastic archwires in conventional and metal-insert ceramic brackets. Materials and Methods: In this experimental study, 3 types of archwires including ultraesthetic polycoated, ultraesthetic epoxyresin coated and conventional (uncoated superelastic nickel-titanium (NiTi archwires were used in each of 2 types of brackets including conventional and metal-insert ceramic. To simulate oral environment, all specimens were incubated in artificial saliva using thermocycling model and then were tested in three-bracket bending test machine. Loading and unloading forces, plateau gap and end load deflection point (ELDP were recorded. Archwires were investigated with a stereomicroscope before and after the experiment. Two-way ANOVA and Tukey tests were used at P<0.05. Results: Epoxyresin archwires produced lower forces (19 to 310 gr compared to polycoated (61 to 359 gr and NiTi (61 to 415 gr (P<0.0001. The maximum ELDP (0.43 mm was observed in epoxyresin archwires (P<0.001. Coatings of some epoxyresin wires were torn and of polycoated wires peeled off. Conventional ceramic bracket produced higher loading forces with polycoated and NiTi archwires and lower unloading forces with all 3 types of archwires compared to metal-insert type (P<0.05. Conclusion: Epoxyresin-coated archwire had the lowest force and highest ELDP. Coatings were not durable in these experimental conditions. Conventional ceramic bracket produced higher frictional force compared to metal-insert type.

  10. Corrosion behavior of Al-Fe-sputtering-coated steel, high chromium steels, refractory metals and ceramics in high temperature Pb-Bi

    International Nuclear Information System (INIS)

    Corrosion tests of Al-Fe-coated steel, high chromium steels, refractory metals and ceramics were carried out in high temperature Pb-Bi at 700 C degrees. Oxygen concentrations in this experiment were 6.8*10-7 wt.% for Al-Fe-coated steels and 5*10-6 wt.% for high chromium steels, refractory metals and ceramics. All specimens were immersed in molten Pb-Bi in a corrosion test pot for 1.000 hours. Coating was done with using the unbalanced magnetron sputtering (UBMS) technique to protect the steel from corrosion. Sputtering targets were Al and SUS-304. Al-Fe alloy was coated on STBA26 samples. The Al-Fe alloy-coated layer could be a good protection layer on the surface of steel. The whole of the Al-Fe-coated layer still remained on the base surface of specimen. No penetration of Pb-Bi into this layer and the matrix of the specimen. For high chromium steels i.e. SUS430 and Recloy10, the oxide layer formed in the early time could not prevent the penetration of Pb-Bi into the base of the steels. Refractory metals of tungsten (W) and molybdenum (Mo) had high corrosion resistance with no penetration of Pb-Bi into their matrix. Penetration of Pb-Bi into the matrix of niobium (Nb) was observed. Ceramic materials were SiC and Ti3SiC2. The ceramic materials of SiC and Ti3SiC2 had high corrosion resistance with no penetration of Pb-Bi into their matrix. (authors)

  11. Plasma Spray-Physical Vapor Deposition (PS-PVD) of Ceramics for Protective Coatings

    Science.gov (United States)

    Harder, Bryan J.; Zhu, Dongming

    2011-01-01

    In order to generate advanced multilayer thermal and environmental protection systems, a new deposition process is needed to bridge the gap between conventional plasma spray, which produces relatively thick coatings on the order of 125-250 microns, and conventional vapor phase processes such as electron beam physical vapor deposition (EB-PVD) which are limited by relatively slow deposition rates, high investment costs, and coating material vapor pressure requirements. The use of Plasma Spray - Physical Vapor Deposition (PS-PVD) processing fills this gap and allows thin (< 10 microns) single layers to be deposited and multilayer coatings of less than 100 microns to be generated with the flexibility to tailor microstructures by changing processing conditions. Coatings of yttria-stabilized zirconia (YSZ) were applied to NiCrAlY bond coated superalloy substrates using the PS-PVD coater at NASA Glenn Research Center. A design-of-experiments was used to examine the effects of process variables (Ar/He plasma gas ratio, the total plasma gas flow, and the torch current) on chamber pressure and torch power. Coating thickness, phase and microstructure were evaluated for each set of deposition conditions. Low chamber pressures and high power were shown to increase coating thickness and create columnar-like structures. Likewise, high chamber pressures and low power had lower growth rates, but resulted in flatter, more homogeneous layers

  12. Sliding Wear Behavior of Plasma Sprayed Zirconia Coating on Cast Aluminum against Silicon Carbide Ceramic

    Institute of Scientific and Technical Information of China (English)

    Thuong-Hien LE; Young-Hun CHAE; Seock-Sam KIM

    2005-01-01

    The sliding wear behaviors of ZrO2-22 wt pct MgO (MZ) and ZrO2-8 wt pct Y2O3 (YZ) coatings deposited on a cast aluminum alloy with bond layer (NiCrCoAlY) by plasma spray were investigated under dry test conditions at room temperature. Under all load conditions, the wear mechanisms of the MZ and YZ coatings were almost the same.The material transfer and pullout were involved in the wear process of the studied coatings under the test conditions.The wear rate of the MZ coating was less than that of the YZ coating. While increasing the normal load, the wear rates of the MZ and YZ coatings increased. SEM was used to examine the worn surfaces and to elucidate likely wear mechanisms. Energy dispersive X-ray spectroscopy (EDX) analysis of the worn surfaces indicated that material transfer occurred in the direction from the SiC ball to the disk. Fracture toughness had a significant influence on the wear performance of the coatings. It was suggested that the material transfer played an important role in the wear behavior.

  13. A water-based Al2O3 ceramic coating for polyethylene-based microporous separators for lithium-ion batteries

    Science.gov (United States)

    Jeon, Hyunkyu; Yeon, Daeyong; Lee, Taejoo; Park, Joonam; Ryou, Myung-Hyun; Lee, Yong Min

    2016-05-01

    To develop an environmentally friendly and cost-effective water-based inorganic coating process for hydrophobic, polyolefin-based microporous separators, the effect of surfactants in an aqueous inorganic coating solution comprising alumina (Al2O3) on polyethylene (PE)-based microporous separators is investigated. By using a selected surfactant, i.e., disodium laureth sulfosuccinate (DLSS), the aqueous Al2O3 coating solution maintained a dispersed state over time and facilitated the formation of a uniform Al2O3 coating layer on PE separator surfaces. Due to the hydrophilic nature of the Al2O3 coating layers, the as-prepared, ceramic-coated PE separators had better wetting properties, greater electrolyte uptake, and larger ionic conductivities compared to those of the bare PE separators. Furthermore, half cells (LiMn2O4/Li metal) containing Al2O3-coated PE separators showed improved capacity retention over several cycles (93.6% retention after 400 cycles for Al2O3 coated PE separators, compared to 89.2% for bare PE separators operated at C/2) and rate capability compared to those containing bare PE separators. Moreover, because the Al2O3-coated layers are more thermally stable, the coated separators had improved dimensional stability at high temperatures (140 °C).

  14. Porous SiO2 nanofiber grafted novel bioactive glass-ceramic coating: A structural scaffold for uniform apatite precipitation and oriented cell proliferation on inert implant.

    Science.gov (United States)

    Das, Indranee; De, Goutam; Hupa, Leena; Vallittu, Pekka K

    2016-05-01

    A composite bioactive glass-ceramic coating grafted with porous silica nanofibers was fabricated on inert glass to provide a structural scaffold favoring uniform apatite precipitation and oriented cell proliferation. The coating surfaces were investigated thoroughly before and after immersion in simulated body fluid. In addition, the proliferation behavior of fibroblast cells on the surface was observed for several culture times. The nanofibrous exterior of this composite bioactive coating facilitated homogeneous growth of flake-like carbonated hydroxyapatite layer within a short period of immersion. Moreover, the embedded porous silica nanofibers enhanced hydrophilicity which is required for proper cell adhesion on the surface. The cells proliferated well following a particular orientation on the entire coating by the assistance of nanofibrous scaffold-like structural matrix. This newly engineered composite coating was effective in creating a biological structural matrix favorable for homogeneous precipitation of calcium phosphate, and organized cell growth on the inert glass surface. PMID:26952416

  15. Influence of nanosized carbon particles on the formation of the structure and properties of microarc ceramic coatings based on aluminum alloys

    International Nuclear Information System (INIS)

    A carbon-composite material based on a ceramic coating formed on aluminum alloys due to microarc oxidation and nanostructured carbon synthesized by the electric breakdown of liquid hydrocarbon (cyclohexane) is developed. The highest concentration of carbon nanoparticles is recorded in the coating surface coating 30-50 (μm in depth and also near the interface coating - base. It is shown that the nanocarbon introduced in electrolytes enhances the content of high-temperature modifications of aluminum oxide α-Al2O3 by a factor of 3, as compared to the coating resulting in a solution without additives. The latter achieves higher tribomechanical properties - the 1.6-fold increase of microhardness, the multiple growth of wear resistance in the high pressure range (45,60 MPa) with a simultaneous reduction of the coefficient 2-9 times. (authors)

  16. Sol–gel dip coating of yttria-stabilized tetragonal zirconia dental ceramic by aluminosilicate nanocomposite as a novel technique to improve the bonding of veneering porcelain

    Science.gov (United States)

    Madani, Azamsadat; Nakhaei, Mohammadreza; Karami, Parisa; Rajabzadeh, Ghadir; Salehi, Sahar; Bagheri, Hossein

    2016-01-01

    The aim of this in vitro study was to evaluate the effect of silica and aluminosilicate nanocomposite coating of zirconia-based dental ceramic by a sol–gel dip-coating technique on the bond strength of veneering porcelain to the yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) in vitro. Thirty Y-TZP blocks (10 mm ×10 mm ×3 mm) were prepared and were assigned to four experimental groups (n=10/group): C, without any further surface treatment as the control group; S, sandblasted using 110 μm alumina powder; Si, silica sol dip coating + calcination; and Si/Al, aluminosilicate sol dip coating + calcination. After preparing Y-TZP samples, a 3 mm thick layer of the recommended porcelain was fired on the coated Y-TZP surface. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis were used to characterize the coating and the nature of the bonding between the coating and zirconia. To examine the zirconia–porcelain bond strength, a microtensile bond strength (μTBS) approach was chosen. FT-IR study showed the formation of silica and aluminosilicate materials. XRD pattern showed the formation of new phases consisting of Si, Al, and Zr in coated samples. SEM showed the formation of a uniform coating on Y-TZP samples. Maximum μTBS values were obtained in aluminosilicate samples, which were significantly increased compared to control and sandblasted groups (P=0.013 and P<0.001, respectively). This study showed that aluminosilicate sol–gel dip coating can be considered as a convenient, less expensive reliable method for improving the bond strength between dental Y-TZP ceramics and veneering porcelain. PMID:27478376

  17. Sol-gel dip coating of yttria-stabilized tetragonal zirconia dental ceramic by aluminosilicate nanocomposite as a novel technique to improve the bonding of veneering porcelain.

    Science.gov (United States)

    Madani, Azamsadat; Nakhaei, Mohammadreza; Karami, Parisa; Rajabzadeh, Ghadir; Salehi, Sahar; Bagheri, Hossein

    2016-01-01

    The aim of this in vitro study was to evaluate the effect of silica and aluminosilicate nanocomposite coating of zirconia-based dental ceramic by a sol-gel dip-coating technique on the bond strength of veneering porcelain to the yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) in vitro. Thirty Y-TZP blocks (10 mm ×10 mm ×3 mm) were prepared and were assigned to four experimental groups (n=10/group): C, without any further surface treatment as the control group; S, sandblasted using 110 μm alumina powder; Si, silica sol dip coating + calcination; and Si/Al, aluminosilicate sol dip coating + calcination. After preparing Y-TZP samples, a 3 mm thick layer of the recommended porcelain was fired on the coated Y-TZP surface. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis were used to characterize the coating and the nature of the bonding between the coating and zirconia. To examine the zirconia-porcelain bond strength, a microtensile bond strength (μTBS) approach was chosen. FT-IR study showed the formation of silica and aluminosilicate materials. XRD pattern showed the formation of new phases consisting of Si, Al, and Zr in coated samples. SEM showed the formation of a uniform coating on Y-TZP samples. Maximum μTBS values were obtained in aluminosilicate samples, which were significantly increased compared to control and sandblasted groups (P=0.013 and P<0.001, respectively). This study showed that aluminosilicate sol-gel dip coating can be considered as a convenient, less expensive reliable method for improving the bond strength between dental Y-TZP ceramics and veneering porcelain. PMID:27478376

  18. Diamond-like carbon and ceramic materials as protective coatings grown by pulsed laser deposition

    OpenAIRE

    Perera Mercado, Yibran Argenis

    2004-01-01

    A rather large number of nitride, carbide, and oxide thin films are used as hard and wear-resistant coatings, for optical, corrosive, and refractory applications that are of crucial importance. Additional requirements place even more stringent conditions on the deposition processes. The properties of coatings deposited by pulsed laser deposition are determined by the deposition parameters, the composition of the PLD plasma and its ionization states, the substrate conditions, etc.. In this way...

  19. Comparison among the mineralogic characteristics of Corumbatai formation and a mass for via humidity ceramic coating

    International Nuclear Information System (INIS)

    The mineralogy of the raw materials used in the production of ceramic tiles is a matter of great importance considering the constant necessity of finding alternatives to reduce costs and to improve the product quality. The ceramic industry of Santa Gertrudes could see a dramatic growth due to reasons that include the natural characteristics of the raw materials found in the region which are suitable for the production of ceramic tiles through the dry grinding process. In order to understand the ease of use of such clays which are sedimentary rocks of Corumbatai Formation, their plastic components made up primarily of clay minerals such as illite and smectite, and non-plastic components, including quartz (inert), feldspars (fluxe) and some contaminants, were identified with the use of X-ray diffraction. When comparing the properties of the formulation made with clays from Corumbatai Formation with that made with raw materials for the wet process, it was possible to note the ease of use and the relative characteristics of both processes. (author)

  20. Microstructure and mechanical properties of ceramic coatings on Ti and Ti-based alloy

    Science.gov (United States)

    Surowska, B.; Bieniaś, J.; Walczak, M.; Sangwal, K.; Stoch, A.

    2004-11-01

    Results of a study of silica and silica-titania sol-gel coatings for the creation of intermediate interfaces between commercially pure Ti or titanium alloy Ti6Al4VELI and dental porcelain are presented. Coatings of SiO2 on Ti6Al4V alloy and SiO2-TiO2 on Ti were deposited using sol-gel method. Surface microstructures and wear behaviour of the coatings were studied by using scanning electron microscopy with electron diffraction spectroscopy and pin-on-disc method. It is found that (1) Ti6Al4V/SiO2 and Ti/SiO2-TiO2 coatings obtained by the sol-gel method are compact, chemically homogeneous and relatively rough, and (2) the smaller wear of SiO2 coatings than that of SiO2-TiO2 coatings is associated with differences in their microstructure and roughness.

  1. Microstructure and mechanical properties of ceramic coatings on Ti and Ti-based alloy

    International Nuclear Information System (INIS)

    Results of a study of silica and silica-titania sol-gel coatings for the creation of intermediate interfaces between commercially pure Ti or titanium alloy Ti6Al4VELI and dental porcelain are presented. Coatings of SiO2 on Ti6Al4V alloy and SiO2-TiO2 on Ti were deposited using sol-gel method. Surface microstructures and wear behaviour of the coatings were studied by using scanning electron microscopy with electron diffraction spectroscopy and pin-on-disc method. It is found that (1) Ti6Al4V/SiO2 and Ti/SiO2-TiO2 coatings obtained by the sol-gel method are compact, chemically homogeneous and relatively rough, and (2) the smaller wear of SiO2 coatings than that of SiO2-TiO2 coatings is associated with differences in their microstructure and roughness

  2. Microstructure and mechanical properties of ceramic coatings on Ti and Ti-based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Surowska, B.; Bienias, J.; Walczak, M.; Sangwal, K.; Stoch, A

    2004-11-15

    Results of a study of silica and silica-titania sol-gel coatings for the creation of intermediate interfaces between commercially pure Ti or titanium alloy Ti6Al4VELI and dental porcelain are presented. Coatings of SiO{sub 2} on Ti6Al4V alloy and SiO{sub 2}-TiO{sub 2} on Ti were deposited using sol-gel method. Surface microstructures and wear behaviour of the coatings were studied by using scanning electron microscopy with electron diffraction spectroscopy and pin-on-disc method. It is found that (1) Ti6Al4V/SiO{sub 2} and Ti/SiO{sub 2}-TiO{sub 2} coatings obtained by the sol-gel method are compact, chemically homogeneous and relatively rough, and (2) the smaller wear of SiO{sub 2} coatings than that of SiO{sub 2}-TiO{sub 2} coatings is associated with differences in their microstructure and roughness.

  3. Electrochemical synthesis, structural features and photoelectrocatalytic activity of TiO{sub 2}–SiO{sub 2} ceramic coatings on dye degradation

    Energy Technology Data Exchange (ETDEWEB)

    Mumjitha, M.; Raj, V., E-mail: alaguraj2@rediffmail.com

    2015-08-15

    Highlights: • Titania–silica ceramic coatings were fabricated by anodization in a single step. • Fabrication conditions are optimized based on their photoelectrochemical activity. • The SiO{sub 2} incorporated TiO{sub 2} coating shows good photoelectrochemical activity. • Titania–silica coating can degrade methyl orange dye effectively within 70 min. - Abstract: In this work, dome like TiO{sub 2}–SiO{sub 2} ceramic nanostructures comprises of nanoflakes were successfully formed by anodization method on Ti surface using sodium hexafluoro silicate (SFS) electrolyte. The effects of electrolyte concentration and anodization voltages on the silica incorporation, microstructure and photoelectrocatalytic (PEC) performance of fabricated coatings were investigated and compared in details. The coating formed at 3% SFS concentration and 50 V shows good morphology, better thickness with maximum PEC activity and higher oxygen evolution potential than titania and bare electrodes owing to the enhanced photogenerated electron–hole pairs separation. The PEC activity of the samples was evaluated by the degradation of methyl orange (MO) solutions for different periods of time. The removal efficiency was studied as a function of several operation variables, such as various coatings, dye degradation methods, applied voltages, initial dye concentration, initial pH values and chloride ions.

  4. Electrochemical synthesis, structural features and photoelectrocatalytic activity of TiO2–SiO2 ceramic coatings on dye degradation

    International Nuclear Information System (INIS)

    Highlights: • Titania–silica ceramic coatings were fabricated by anodization in a single step. • Fabrication conditions are optimized based on their photoelectrochemical activity. • The SiO2 incorporated TiO2 coating shows good photoelectrochemical activity. • Titania–silica coating can degrade methyl orange dye effectively within 70 min. - Abstract: In this work, dome like TiO2–SiO2 ceramic nanostructures comprises of nanoflakes were successfully formed by anodization method on Ti surface using sodium hexafluoro silicate (SFS) electrolyte. The effects of electrolyte concentration and anodization voltages on the silica incorporation, microstructure and photoelectrocatalytic (PEC) performance of fabricated coatings were investigated and compared in details. The coating formed at 3% SFS concentration and 50 V shows good morphology, better thickness with maximum PEC activity and higher oxygen evolution potential than titania and bare electrodes owing to the enhanced photogenerated electron–hole pairs separation. The PEC activity of the samples was evaluated by the degradation of methyl orange (MO) solutions for different periods of time. The removal efficiency was studied as a function of several operation variables, such as various coatings, dye degradation methods, applied voltages, initial dye concentration, initial pH values and chloride ions

  5. The Development of 2700-3000 F Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites: Challenges and Opportunities

    Science.gov (United States)

    Zhu, Dongming

    2015-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is a key to enable the applications of the envisioned 2700-3000F EBC - CMC systems to help achieve next generation engine performance and durability goals. This paper will primarily address the performance requirements and design considerations of environmental barrier coatings for turbine engine applications. The emphasis is placed on current NASA candidate environmental barrier coating systems for SiCSiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. The efforts have been also directed to developing prime-reliant, self-healing 2700F EBC bond coat; and high stability, lower thermal conductivity, and durable EBC top coats. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, cyclic durability, erosion-impact resistance, and long-term system performance will be described. The research and development opportunities for turbine engine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be discussed.

  6. Multilayer (TiN, TiAlN) ceramic coatings for nuclear fuel cladding

    Science.gov (United States)

    Alat, Ece; Motta, Arthur T.; Comstock, Robert J.; Partezana, Jonna M.; Wolfe, Douglas E.

    2016-09-01

    In an attempt to develop an accident-tolerant fuel (ATF) that can delay the deleterious consequences of loss-of-coolant-accidents (LOCA), multilayer coatings were deposited onto ZIRLO® coupon substrates by cathodic arc physical vapor deposition (CA-PVD). Coatings were composed of alternating TiN (top) and Ti1-xAlxN (2-layer, 4-layer, 8-layer and 16-layer) layers. The minimum TiN top coating thickness and coating architecture were optimized for good corrosion and oxidation resistance. Corrosion tests were performed in static pure water at 360 °C and 18.7 MPa for up to 90 days. The optimized coatings showed no spallation/delamination and had a maximum of 6 mg/dm2 weight gain, which is 6 times smaller than that of a control sample of uncoated ZIRLO® which showed a weight gain of 40.2 mg/dm2. The optimized architecture features a ∼1 μm TiN top layer to prevent boehmite phase formation during corrosion and a TiN/TiAlN 8-layer architecture which provides the best corrosion performance.

  7. In vitro biocompatibility of 45S5 Bioglass-derived glass-ceramic scaffolds coated with poly(3-hydroxybutyrate).

    Science.gov (United States)

    Bretcanu, Oana; Misra, Superb; Roy, Ipsita; Renghini, Chiara; Fiori, Fabrizio; Boccaccini, Aldo R; Salih, Vehid

    2009-02-01

    The aim of this work was to study the in vitro biocompatibility of glass-ceramic scaffolds based on 45S5 Bioglass, using a human osteosarcoma cell line (HOS-TE85). The highly porous scaffolds were produced by the foam replication technique. Two different types of scaffolds with different porosities were analysed. They were coated with a biodegradable polymer, poly(3-hydroxybutyrate) (P(3HB)). The scaffold bioactivity was evaluated by soaking in a simulated body fluid (SBF) for different durations. Compression strength tests were performed before and after immersion in SBF. These experiments showed that the scaffolds are highly bioactive, as after a few days of immersion in SBF a hydroxyapatite-like layer was formed on the scaffold's surface. It was also observed that P(3HB)-coated samples exhibited higher values of compression strength than uncoated samples. Biocompatibility assessment was carried out by qualitative evaluation of cell morphology after different culture periods, using scanning electron microscopy, while cell proliferation was determined by using the AlamarBlue assay. Alkaline phosphatase (ALP) and osteocalcin (OC) assays were used as quantitative in vitro indicators of osteoblast function. Two different types of medium were used for ALP and OC tests: normal supplemented medium and osteogenic medium. HOS cells were seeded and cultured onto the scaffolds for up to 2 weeks. The AlamarBlue assay showed that cells were able to proliferate and grow on the scaffold surface. After 7 days in culture, the P(3HB)-coated samples had a higher number of cells on their surfaces than the uncoated samples. Regarding ALP- and OC-specific activity, no significant differences were found between samples with different pore sizes. All scaffolds containing osteogenic medium seemed to have a slightly higher level of ALP and OC concentration. These experiments confirmed that Bioglass/P(3HB) scaffolds have potential as osteoconductive tissue engineering substrates for

  8. FUNCTIONALLY GRADED ALUMINA/MULLITE COATINGS FOR PROTECTION OF SILICON CARBIDE CERAMIC COMPONENTS FROM CORROSION; FINAL

    International Nuclear Information System (INIS)

    The main objective of this research project was the formulation of processes that can be used to prepare compositionally graded alumina/mullite coatings for protection from corrosion of silicon carbide components (monolithic or composite) used or proposed to be used in coal utilization systems (e.g., combustion chamber liners, heat exchanger tubes, particulate removal filters, and turbine components) and other energy-related applications. Since alumina has excellent resistance to corrosion but coefficient than silicon carbide, the key idea of this project has been to develop graded coatings with composition varying smoothly along their thickness between an inner (base) layer of mullite in contact with the silicon carbide component and an outer layer of pure alumina, which would function as the actual protective coating of the component. (Mullite presents very good adhesion towards silicon carbide and has thermal expansion coefficient very close to that of the latter.)

  9. FUNCTIONALLY GRADED ALUMINA/MULLITE COATINGS FOR PROTECTION OF SILICON CARBIDE CERAMIC COMPONENTS FROM CORROSION

    Energy Technology Data Exchange (ETDEWEB)

    Prof. Stratis V. Sotirchos

    2001-02-01

    The main objective of this research project was the formulation of processes that can be used to prepare compositionally graded alumina/mullite coatings for protection from corrosion of silicon carbide components (monolithic or composite) used or proposed to be used in coal utilization systems (e.g., combustion chamber liners, heat exchanger tubes, particulate removal filters, and turbine components) and other energy-related applications. Since alumina has excellent resistance to corrosion but coefficient than silicon carbide, the key idea of this project has been to develop graded coatings with composition varying smoothly along their thickness between an inner (base) layer of mullite in contact with the silicon carbide component and an outer layer of pure alumina, which would function as the actual protective coating of the component. (Mullite presents very good adhesion towards silicon carbide and has thermal expansion coefficient very close to that of the latter.)

  10. Plasma-surface interactions associated with electrical breakdown of water using porous ceramic-coated electrodes

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Petr; Člupek, Martin; Babický, Václav; Šunka, Pavel

    Vol. I-01. Matsuyama, Ehime : Ehime Yoko Co.Ltd, 2010, s. 9-10. ISBN N. [International Workshop on Plasmas with Liquids (IWPL 2010). Matsuyama (JP), 22.03.2010-24.03.2010] R&D Projects: GA AV ČR IAAX00430802 Institutional research plan: CEZ:AV0Z20430508 Keywords : corona discharge * water * ceramic * electric breakdown * surface charge Subject RIV: BL - Plasma and Gas Discharge Physics http://plasma.eng.ehime-u.ac.jp/IWPL_2010/IWPL2010_ProceedingsV3.pdf

  11. Tribological testing of self-mated nanocrystalline diamond coatings on Si3N 4 ceramics

    OpenAIRE

    Abreu, C. S.; Amaral, M; Oliveira, F. J.; Tallaire, A.; Bénédic, F.; Syll, O.; Cicala, G.; Gomes, J. R.; Silva, R F

    2006-01-01

    Due to their much lower surface roughness compared to that of microcrystalline diamond, nanocrystalline diamond (NCD) films are promising candidates for tribological applications in particular when deposited on hard ceramic materials such as silicon nitride (Si3N4). In the present work, microwave plasma assisted chemical vapour deposition of NCD is achieved using Ar/H2/CH4 gas mixtures on plates and ball-shaped Si3N4 specimens either by a conventional continuous mode or a recently developed p...

  12. In vitro performance of ceramic coatings obtained by high velocity oxy-fuel spray.

    Science.gov (United States)

    Melero, H; Garcia-Giralt, N; Fernández, J; Díez-Pérez, A; Guilemany, J M

    2014-01-01

    Hydroxyapatite coatings obtained by plasma-spraying have been used for many years to improve biological performance of bone implants, but several studies have drawn attention to the problems arising from high temperatures and the lack of mechanical properties. In this study, plasma-spraying is substituted by high velocity oxy-fuel (HVOF) spray, with lower temperatures reached, and TiO2 is added in low amounts to hydroxyapatite in order to improve the mechanical properties. Four conditions have been tested to evaluate which are those with better biological properties. Viability and proliferation tests, as well as differentiation assays and morphology observation, are performed with human osteoblast cultures onto the studied coatings. The hydroxyapatite-TiO2 coatings maintain good cell viability and proliferation, especially the cases with higher amorphous phase amount and specific surface, and promote excellent differentiation, with a higher ALP amount for these cases than for polystyrene controls. Observation by SEM corroborates this excellent behaviour. In conclusion, these coatings are a good alternative to those used industrially, and an interesting issue would be improving biological behaviour of the worst cases, which in turn show the better mechanical properties. PMID:25201392

  13. Synthesis Mechanism of Low-Voltage Praseodymium Oxide Doped Zinc Oxide Varistor Ceramics Prepared Through Modified Citrate Gel Coating

    Directory of Open Access Journals (Sweden)

    Wan Rafizah Wan Abdullah

    2012-04-01

    Full Text Available High demands on low-voltage electronics have increased the need for zinc oxide (ZnO varistors with fast response, highly non-linear current-voltage characteristics and energy absorption capabilities at low breakdown voltage. However, trade-off between breakdown voltage and grain size poses a critical bottle-neck in the production of low-voltage varistors. The present study highlights the synthesis mechanism for obtaining praseodymium oxide (Pr6O11 based ZnO varistor ceramics having breakdown voltages of 2.8 to 13.3 V/mm through employment of direct modified citrate gel coating technique. Precursor powder and its ceramics were examined by means of TG/DTG, FTIR, XRD and FESEM analyses. The electrical properties as a function of Pr6O11 addition were analyzed on the basis of I-V characteristic measurement. The breakdown voltage could be adjusted from 0.01 to 0.06 V per grain boundary by controlling the amount of Pr6O11 from 0.2 to 0.8 mol%, without alteration of the grain size. The non-linearity coefficient, α, varied from 3.0 to 3.5 and the barrier height ranged from 0.56 to 0.64 eV. Breakdown voltage and α lowering with increasing Pr6O11 content were associated to reduction in the barrier height caused by variation in O vacancies at grain boundary.

  14. Tissue-engineered triphasic ceramic coated hydroxyapatite induced bone formation and vascularization at an extraskeletal site in a rat model

    Indian Academy of Sciences (India)

    Manitha B Nair; H K Varma; P V Mohanan; Annie John

    2011-12-01

    Tissue-engineered bone regeneration has attracted much attention because of its high clinical demand for restoration of injured tissues. In the present study, we have evaluated the capability of bare (without cells) and tissue-engineered (with osteogenic-induced rat Mesenchymal Stem Cells (MSCs)) bioactive ceramics such as hydroxyapatite (HA) and triphasic ceramic-coated hydroxyapatite (HASi) to mediate vascularisation and osteoinduction at an extraskeletal site of rat model. The viability, proliferation and osteogenic differentiation of MSCs on the scaffolds were assessed in vitro and thereby established the capability of HASi in providing a better structural habitat than HA. The vascular invasion was relatively low in bare and tissueengineered HA at 2 and 4 weeks. Interestingly, the implantation site was well vascularised with profuse ingrowth of blood capillaries in HASi groups, with preference for tissue-engineered HASi groups. Similarly, neo-osteogenesis studies were shown only by tissue-engineered HASi groups. The ingrowth of numerous osteoblast-like cells was seen around and within the pores of the material in bare HASi and tissue-engineered HASi groups (very low cellular infiltration in bare HA groups), but there was no osteoid deposition. The positive impact in forming bone in tissue-engineered HASi groups is attributable to the scaffold and to the cells, with the first choice for scaffold because both HA and HASi were engineered simultaneously with the cells from same source and same passage. Thus, highly porous interconnected porous structure and appropriate chemistry provided by HASi in combination with osteogenic-induced MSCs facilitated better vascularisation that lead to neo-osteogenesis.

  15. Air Plasma-Sprayed Y2O3 Coatings for Al2O3/Al2O3 Ceramic Matrix Composites

    OpenAIRE

    Mechnich, Peter; Braue, Wolfgang

    2013-01-01

    Al2O3/Al2O3 ceramic matrix composites (CMC) are candidate materials for hot-gas leading components of gas turbines. Since Al2O3/Al2O3 CMC are prone to hot-corrosion in combustion environments, the development of environmental barrier coatings (EBC) is mandatory. Owing to its favorable chemical stability and thermal properties, Y2O3 is considered a candidate EBC material for Al2O3/Al2O3 CMC. Up to one mm thick Y2O3 coatings were deposited by means of air plasma spraying (APS) on Al2O3/Al2O3 CM...

  16. The effect of silicide ceramic coatings on the high-temperature strength and plasticity of niobium alloys of the Nb-W-Mo-Zr system

    International Nuclear Information System (INIS)

    A study is made into short-term rupture strength and plasticity of 5VMTs alloy of Nb-W-Mo-Zr system and a 5VMTs-silicide ceramic coating composite material in vacuum, inert environment and in the air within a temperature range of 290-2070 K. The kinetics of defect generation and development both in the protective coating and the matrix is studied. The values of limiting plastic strains are determined at which the composite materials preserves its carrying capacity in high temperature aggressive and oxidizing gaseous media

  17. Excellent stability of plasma-sprayed bioactive Ca3ZrSi2O9 ceramic coating on Ti-6Al-4V

    International Nuclear Information System (INIS)

    In this work, novel zirconium incorporated Ca-Si based ceramic powder Ca3ZrSi2O9 was synthesized. The aim of this study was to fabricate Ca3ZrSi2O9 coating onto Ti-6Al-4V substrate using atmospheric plasma-spraying technology and to evaluate its potential applications in the fields of orthopedics and dentistry. The phase composition, surface morphologies of the coating were examined by XRD and SEM, which revealed that the Ca3ZrSi2O9 coating was composed of grains around 100 nm and amorphous phases. The bonding strength between the coating and the substrate was 28 ± 4 MPa, which is higher than that of traditional HA coating. The dissolution rate of the coating was assessed by monitoring the ions release and mass loss after immersion in the Tris-HCl buffer solution. The in vitro bioactivity of the coating was determined by observing the formation of apatite on its surface in simulated body fluids. It was found that the Ca3ZrSi2O9 coating possessed both excellent chemical stability and good apatite-formation ability, suggesting its potential use as bone implants.

  18. Bioactive glass-ceramic coatings prepared by pulsed laser deposition from RKKP targets (sol-gel vs melt-processing route)

    Energy Technology Data Exchange (ETDEWEB)

    Rau, J.V., E-mail: giulietta.rau@ism.cnr.it [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome (Italy); Teghil, R. [Universita della Basilicata, Dipartimento di Chimica ' A.M. Tamburro' , Via dell' Ateneo Lucano, 10-85100 Potenza (Italy); CNR-IMIP U.O.S. di Potenza, Zona Industriale di Tito scalo (PZ) (Italy); Fosca, M. [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome (Italy); Universita di Roma ' La Sapienza' , Dipartimento di Chimica, Piazzale Aldo Moro, 5-00185 Rome (Italy); De Bonis, A. [Universita della Basilicata, Dipartimento di Chimica ' A.M. Tamburro' , Via dell' Ateneo Lucano, 10-85100 Potenza (Italy); CNR-IMIP U.O.S. di Potenza, Zona Industriale di Tito scalo (PZ) (Italy); Cacciotti, I.; Bianco, A. [Universita di Roma ' Tor Vergata' , Dipartimento di Ingegneria Industriale, UR INSTM ' Roma Tor Vergata' , Via del Politecnico, 1-00133 Rome (Italy); Albertini, V. Rossi [Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere, 100-00133 Rome (Italy); Caminiti, R. [Universita di Roma ' La Sapienza' , Dipartimento di Chimica, Piazzale Aldo Moro, 5-00185 Rome (Italy); Ravaglioli, A. [Parco Torricelli delle Arti e delle Scienze, Via Granarolo, 64-48018 Faenza (Ra) (Italy)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Bioactive glass-ceramic coatings for bone tissue repair and regeneration. Black-Right-Pointing-Pointer Pulsed Lased Deposition allowed congruent transfer of target composition to coating. Black-Right-Pointing-Pointer Target was prepared by sol-gel process suitable for compositional tailoring. Black-Right-Pointing-Pointer Titanium, widely used for orthopaedics and dental implants, was used as substrate. Black-Right-Pointing-Pointer The physico-chemical properties of the prepared coatings are reported. -- Abstract: The deposition of innovative glass-ceramic composition (i.e. RKKP) coatings by Pulsed Lased Deposition (PLD) technique is reported. RKKP was synthesised following two methodologies: melt-processing and sol-gel, the latter being particularly suitable to tailor the compositional range. The PLD advantage with respect to other deposition techniques is the congruent transfer of the target composition to the coating. The physico-chemical properties of films were investigated by Scanning Electron and Atomic Force Microscopies, Fourier Transform Infrared Spectroscopy, Angular and Energy Dispersive X-ray Diffraction, and Vickers microhardness. The deposition performed at 12 J/cm{sup 2} and 500 Degree-Sign C allows to prepare crystalline films with the composition that replicates rather well that of the initial targets. The 0.6 {mu}m thin melt-processing RKKP films, possessing the hardness of 25 GPa, and the 4.3 {mu}m thick sol-gel films with the hardness of 17 GPa were obtained.

  19. [Possibilities for improvement of the surface properties of dental implants (2). The use of ceramic oxides in surface coating for titanium and tantalum implants].

    Science.gov (United States)

    Szabó, G; Kovács, L; Vargha, K

    1995-02-01

    A corrosion-resistant, 2000-2500 A thick, ceramic oxide layer with a coherent crystalline structure was produced on the surface of titanium implants. The layer contains a bioactive component, it is made from the material of the implant, adheres well and gives an aesthetically pleasant impression. The coated implants were subjected to various physical, chemical electronmicroscopic, etc. tests for their qualitative characterization. These tests demonstrated the good properties of the implants. The procedure is protected internationally by patents. PMID:7875341

  20. Life Prediction Issues in Thermal/Environmental Barrier Coatings in Ceramic Matrix Composites

    Science.gov (United States)

    Shah, Ashwin R.; Brewer, David N.; Murthy, Pappu L. N.

    2001-01-01

    Issues and design requirements for the environmental barrier coating (EBC)/thermal barrier coating (TBC) life that are general and those specific to the NASA Ultra-Efficient Engine Technology (UEET) development program have been described. The current state and trend of the research, methods in vogue related to the failure analysis, and long-term behavior and life prediction of EBCITBC systems are reported. Also, the perceived failure mechanisms, variables, and related uncertainties governing the EBCITBC system life are summarized. A combined heat transfer and structural analysis approach based on the oxidation kinetics using the Arrhenius theory is proposed to develop a life prediction model for the EBC/TBC systems. Stochastic process-based reliability approach that includes the physical variables such as gas pressure, temperature, velocity, moisture content, crack density, oxygen content, etc., is suggested. Benefits of the reliability-based approach are also discussed in the report.

  1. Fiber coating/matrix reactions in silicon-base ceramic matrix composites

    International Nuclear Information System (INIS)

    The Knudsen cell technique and coupons of carbon coated Si3N4 and BN coated SiC were employed to study the possible reactions at the SiC/C/Si3N4 and SiC/BN/SiC interface. Carbon reacts with Si3N4 to form gaseous N2 and solid SiC. Solid SiC acts as a physical barrier to the reaction, which prevents the generation of high N2 pressure predicted from thermochemical calculations. Thus, deleterious effects of the reaction to the composite are limited. Limited reactions between BN and C-rich SiC was observed. However, the vapor pressure was so low that it is not likely to cause any interfacial instability. The predicted formation of a BN-C solid solution was not observed. 10 refs

  2. Industrial ceramics - Properties, forming and applications

    International Nuclear Information System (INIS)

    After a general introduction to ceramics (definition, general properties, elaboration, applications, market data), this book address conventional ceramics (elaboration, material types), thermo-structural ceramics (oxide based ceramics, non-oxide ceramics, fields of application, functional coatings), refractory ceramics, long fibre and ceramic matrix composites, carbonaceous materials, ceramics used for filtration, catalysis and the environment, ceramics for biomedical applications, ceramics for electronics and electrical engineering (for capacitors, magnetic, piezoelectric, dielectric ceramics, ceramics for hyper-frequency resonators), electrochemical ceramics, transparent ceramics (forming and sintering), glasses, mineral binders. The last chapter addresses ceramics used in the nuclear energy sector: in nuclear fuels and fissile material, absorbing ceramics and shields, in the management of nuclear wastes, new ceramics for reactors under construction or for future nuclear energy

  3. Chemical stability of the fiber coating/matrix interface in silicon-based ceramic matrix composites

    International Nuclear Information System (INIS)

    Carbon and boron nitride are used as fiber coatings in silicon-based composites. In order to assess the long-term stability of these materials, reactions of carbon/Si3N4 and BN/SiC were studied at high temperatures with Knudsen effusion, coupon tests, and by microstructural examination. in the carbon/Si3N4 system, carbon reacted with Si3N4 to form gaseous N2 and SiC. The formation of SiC limited further reaction by physically separating the carbon and Si3N4. Consequently, the development of high p(N2) at the interface, predicted from thermochemical calculations, did not occur, thus limiting the potential deleterious effects of the reaction on the composite. Strong indications of a reaction between BN and SiC were shown by TEM and SIMS analysis of the BN/SiC interface. In long-term exposures, this reaction can lead to a depletion of a BN coating and/or an unfavorable change of the interfacial properties, limiting the beneficial effects of the coating

  4. NASA's Advanced Environmental Barrier Coatings Development for SiC/SiC Ceramic Matrix Composites: Understanding Calcium Magnesium Alumino-Silicate (CMAS) Degradations and Resistance

    Science.gov (United States)

    Zhu, Dongming

    2014-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is essential to the viability and reliability of the envisioned CMC engine component applications, ensuring integrated EBC-CMC system durability and designs are achievable for successful applications of the game-changing component technologies and lifing methodologies.This paper will emphasize recent NASA environmental barrier coating developments for SiCSiC turbine airfoil components, utilizing advanced coating compositions, state-of-the-art processing methods, and combined mechanical and environment testing and durability evaluations. The coating-CMC degradations in the engine fatigue-creep and operating environments are particularly complex; one of the important coating development aspects is to better understand engine environmental interactions and coating life debits, and we have particularly addressed the effect of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the durability of the environmental barrier coating systems, and how the temperature capability, stability and cyclic life of the candidate rare earth oxide and silicate coating systems will be impacted in the presence of the CMAS at high temperatures and under simulated heat flux conditions. Advanced environmental barrier coating systems, including HfO2-Si with rare earth dopant based bond coat systems, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.

  5. Effect of silver nanoparticle coatings on mycobacterial biofilm attachment and growth: Implications for ceramic water filters

    Science.gov (United States)

    Larimer, Curtis James

    Silver is a natural, broad-spectrum antibacterial metal and its toxicity can be enhanced when surface area is maximized. As a result, silver nanoparticles (AgNP) have been investigated for use in novel water treatment technologies. The hypothesis of this work is that deposited AgNPs can enhance water treatment technologies by inhibiting growth of planktonic bacteria and biofilms. This was investigated by evaluating the antibacterial efficacy of AgNPs both in solution and as deposited on surfaces. AgNPs were found to be toxic to three species of environmental mycobacteria, M. smegmatis, M. avium, and M. marinum and the level of susceptibility varied widely, probably owing to the varying levels of silver that each species is exposed to in its natural environment. When cultured in a AgNP enriched environment M. smegmatis developed resistance to the toxic effects of both the nanoparticles and silver ions. The resistant mutant was as viable as the unmodified strain and was also resistant to antibiotic isoniazid. However, the strain was more susceptible to other toxic metal ions from ZnSO4 and CuSO4. AgNPs were deposited on silicon wafer substrates by vertical colloidal deposition (VCD). Manipulating deposition speed and also concentration of AgNPs in the depositing liquid led to a range of AgNP coatings with distinctive deposition lines perpendicular to the motion of the meniscus. Experimental results for areal coverage, which was measured from SEM images of AgNP coatings, were compared to Diao's theory of VCD but did not show agreement due to a stick-slip mechanism that is not accounted for by the theory. Durability of AgNP coatings is critical for antibacterial efficacy and to mitigate the risks of exposing the environment to nanomaterials and it was measured by exposing AgNP coatings to liquid flow in a flow cell. Durability was improved by modifying processing to include a heat treatment after deposition. Finally, the antibiofilm efficacy of deposited AgNPs was

  6. Preparation, microstructural evolution and properties of Ni–Zr intermetallic/Zr–Si ceramic reinforced composite coatings on zirconium alloy by laser cladding

    International Nuclear Information System (INIS)

    NiZr2–ZrSi–Zr5(SixNi1−x)4-ZrC intermetallic/ceramic reinforced composite coatings were in situ synthesized by laser cladding the pre-placed Ni–Cr–B–Si powder on zirconium substrate. Microstructure and phase constituents were investigated by X-ray diffraction (XRD), optical microscope (OM), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS). Microhardness tester and block-on-ring wear tester were employed to measure the hardness distribution and wear resistance of the intermetallic/ceramic reinforced composite coating. Results indicated that the multiphase of reinforcements includes Ni–Zr intermetallic compounds (e.g., NiZr and NiZr2) and Zr–Si(C) ceramic phases (e.g., ZiSi, Zr5Si4 and ZrC). Ni–Si clusters transforming to Zr–Si–Ni clusters at high temperature facilitated the forming of Zr5(SixNi1−x)4 and during the growth of Zr5(SixNi1−x)4, the consumption of Zr atoms at the lateral interface of liquid/Zr5(SixNi1−x)4 resulted into developing Zr-poor zone near Zr5(SixNi1−x)4. The microhardness and wear resistance of the coating were significantly improved by various reinforced phases in comparison to zirconium substrate. - Highlights: • NiZr2–ZrSi–Zr5(SixNi1−x)4-ZrC compostie coating was in-situ synthesized. • Ni–Si clusters transforming resulted into developing Zr-poor zone near Zr5(SixNi1−x)4. • Reinforced phases significantly improve wear resistance of the coating

  7. Preparation and characterization of TiO2 and Si-doped octacalcium phosphate composite coatings on zirconia ceramics (Y-TZP) for dental implant applications

    Science.gov (United States)

    Bao, Lei; Liu, Jingxiao; Shi, Fei; Jiang, Yanyan; Liu, Guishan

    2014-01-01

    In order to prevent the low temperature degradation and improve the bioactivity of zirconia ceramic implants, TiO2 and Si-doped octacalcium phosphate composite coating was prepared on zirconia substrate. The preventive effect on low temperature degradation and surface morphology of the TiO2 layer were studied. Meanwhile, the structure and property changes of the bioactive coating after doping Si were discussed. The results indicate that the dense TiO2 layer, in spite of some microcracks, inhibited the direct contact of the water vapor with the sample's surface and thus prevented the low temperature degradation of zirconia substrates. The acceleration aging test shows that the ratio of the monoclinic phase transition decreased from 10% for the original zirconia substrate to 4% for the TiO2-coated substrate. As to the Si-doped octacalcium phosphate coating prepared by biomimetic method, the main phase composition of the coating was octacalcium phosphate. The morphology of the coating was lamellar-like, and the surface was uniform and continuous with no cracks being observed. It is suggested that Si was added into the coating both through substituting for PO43- and doping as NaSiO3.

  8. Preparation and properties of nanophase (Ce, Zr, PrO2-doped alumina coating on cordierite ceramic honeycomb for three-way catalysts

    Directory of Open Access Journals (Sweden)

    Jiuying Tian

    2012-03-01

    Full Text Available Nanophase (Ce, Zr, PrO2-doped alumina coatings were prepared by impregnating the cordierite ceramic honeycomb in the sol or in the slurry of already calcined powder, respectively. The effects of preparation methods on the crystal phase, texture, oxygen storage capacity (OSC, reducibility, surface morphology and thermal stability of coatings were investigated by X-ray diffraction (XRD, the Brunauer Emmet Teller (BET method, the oxygen pulsing technique, H2-temperature-programmed reduction (H2-TPR and scanning electron microscopy (SEM. These nanophase (Ce, Zr, PrO2-doped alumina coatings were used as supports to prepare Pd-only three-way catalysts, and evaluated with respect to catalytic activities. The results indicate that the nanophase (Ce, Zr, PrO2-doped alumina coatings prepared by the two methods have high thermal stability. However, the coating derived from the sol shows better crystalline structure, texture, reducibility and oxygen storage capacity than the coating derived from the slurry. SEM observation shows that the morphology of the coating derived from the sol is uniform and smooth. The Pd-only catalyst derived from the sol exhibits high three-way catalytic activity at low temperature and thermal stability, suggesting a great potential for applications.

  9. Intermediate-temperature environmental effects on boron nitride-coated silicon carbide-fiber-reinforced glass-ceramic composites

    International Nuclear Information System (INIS)

    The environmental effects on the mechanical properties of fiber-reinforced composites at intermediate temperatures were investigated by conducting flexural static-fatigue experiments in air at 600 and 950 C. The material that was studied was a silicon carbide/boron nitride (SiC/BN) dual-coated Nicalon-fiber-reinforced barium magnesium aluminosilicate glass-ceramic. Comparable time-dependent failure responses were found at 600 and 950 C when the maximum tensile stress applied in the bend bar was >60% of the room-temperature ultimate flexural strength of as-received materials. At both temperatures, the materials survived 500 h fatigue tests at lower stress levels. Among the samples that survived the 500 h fatigue tests, a 20% degradation in the room temperature flexural strength was measured in samples that were fatigued at 600 C. The growth rate of the Si-C-O fiber oxidation product at 600 C was not sufficient to seal the stress-induced cracks, so that the interior of the material was oxidized and resulted in a strength degradation and less fibrous fracture. In contrast, the interior of the material remained intact at 950 C because of crack sealing by rapid silicate formation, and strength/toughness of the composite was maintained. Also, at 600 C, BN oxidized via volatilization, because no borosilicate was formed

  10. Microstructural Investigation of High Emittance Glass Coatings on Fibrous Ceramic Insulation

    Science.gov (United States)

    Ellerby, Don; Leiser, Dan; DiFiore, Robert; Figone, Jeff; Smith, Dane; Loehman, Ron; Kotula, Paul

    2001-01-01

    This viewgraph presentation provides an overview of the Space Shuttle Thermal Protection System (TPS) and the various products incorporated in the TPS. There are three tile systems which include pure silica, fibrous refractory composite insulation (FRCI), and alumina enhanced thermal barrier (AETB). Coating systems include reaction cured glass (RCG) and toughened uni-piece insulation (TUFI). The microstructures of these systems are explored as are the manufacturing processes associated with each. Microstructural investigation using methods such as automated X-ray spectral image analysis (AXSIA) is a crucial part of understanding the mechanical nature of these systems.

  11. Characterization of bioactive ceramic coatings prepared on titanium implants by micro-arc oxidation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Micro-arc oxidation (MAO) is an enhanced chemical technology in an electrolyte medium to obtain coating structures on valve-metal surfaces. Titanium oxide films obtained by MAO in the sodium phosphate electrolyte were investigated. The films were composed mainly of TiO2 phases in the form of anatase and rutile and enriched with Na and P elements at the surface. Their apatite-inducing ability was evaluated in a simulated body fluid (SBF). When immersing in SBF for over 30 d, a preferential carbonated-hydroxyapatite was formed on the surfaces of the films, which suggests that the MAO-treated titanium has a promising positive biological response.

  12. Thermal conductivity of zirconia-based ceramics for thermal barrier coating

    International Nuclear Information System (INIS)

    Lowering the thermal conductivity of thermal barrier coatings used to protect blade and vane airfoils represents an important challenge for gas turbine designers and manufacturers. Dense zirconia-based materials have been prepared by solid state reaction methods to determine their thermal properties up to 1000 C. Partially stabilised zirconias having a thermal conductivity 40 % lower than the thermal conductivity of the most widely used system (ZrO2-8wt.%Y2O3) have been obtained. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  13. Development of wear resistant ceramic coatings for diesel engine components. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Haselkorn, M.H. [Caterpillar, Inc., Peoria, IL (United States)

    1992-04-01

    Improved fuel economy and a reduction of emissions can be achieved by insulation of the combustion chamber components to reduce heat rejection. However, insulating the combustion chamber components will also increase the operating temperature of the piston ring/cylinder liner interface from approximately 150{degree}C to over 300{degree}C. Existing ring/liner materials can not withstand these higher operating temperatures and for this reason, new materials need to be developed for this critical tribological interface. The overall goal of this program is the development of piston ring/cylinder liner material pairs which would be able to provide the required friction and wear properties at these more severe operating conditions. More specifically, this program first selected, and then evaluated, potential d/wear resistant coatings which could be applied to either piston rings an or cylinder liners and provide, at 350{degree}C under lubricated conditions, coefficients of friction below 0.1 and wear rates of less than 25 {times} lO{sup {minus}6} mm/hour. The processes selected for applying the candidate wear resistant coatings to piston rings and/or cylinder liners were plasma spraying, chemical vapor, physical vapor and low temperature arc vapor deposition techniques as well as enameling techniques.

  14. Biomimetic component coating on 3D scaffolds using high bioactivity of mesoporous bioactive ceramics

    Directory of Open Access Journals (Sweden)

    Yun HS

    2011-10-01

    Full Text Available Hui-suk Yun1, Sang-Hyun Kim2, Dongwoo Khang3, Jungil Choi4, Hui-hoon Kim2, Minji Kang31Functional Materials Division, Korea Institute of Materials Science, Gyeongnam, Korea; 2Department of Pharmacology, School of Medicine, Kyungpook National University, Jung-Gu, Daegu, Korea; 3School of Nano and Advanced Materials Science and Engineering and Center for NMBE, Gyeongsang National University, Jinju, Korea; 4Department of Anatomy, Institute of Health Science and School of Medicine, Gyeongsang National University, Jinju, Gyeongnam, KoreaBackground: Mesoporous bioactive glasses (MBGs are very attractive materials for use in bone tissue regeneration because of their extraordinarily high bone-forming bioactivity in vitro. That is, MBGs may induce the rapid formation of hydroxy apatite (HA in simulated body fluid (SBF, which is a major inorganic component of bone extracellular matrix (ECM and comes with both good osteoconductivity and high affinity to adsorb proteins. Meanwhile, the high bioactivity of MBGs may lead to an abrupt initial local pH variation during the initial Ca ion-leaching from MBGs at the initial transplant stage, which may induce unexpected negative effects on using them in in vivo application. In this study we suggest a new way of using MBGs in bone tissue regeneration that can improve the strength and make up for the weakness of MBGs. We applied the outstanding bone-forming bioactivity of MBG to coat the main ECM components HA and collagen on the MBG-polycarplolactone (PCL composite scaffolds for improving their function as bone scaffolds in tissue regeneration. This precoating process can also expect to reduce initial local pH variation of MBGs.Methods and materials: The MBG-PCL scaffolds were immersed in the mixed solution of the collagen and SBF at 37°C for 24 hours. The coating of ECM components on the MBG-PCL scaffolds and the effect of ECM coating on in vitro cell behaviors were confirmed.Results: The ECM components were fully

  15. Modification of the structure and composition of Ca10(PO4)6(OH)2 ceramic coatings by changing the deposition conditions in O2 and Ar

    International Nuclear Information System (INIS)

    Hydroxyapatite Ca10(PO4)6(OH)2 (HAp) is a material considered to be used to form structural matrices in the mineral phase of bone, dentin and enamel. HAp ceramic materials and coatings are widely applied in medicine and dentistry because of their ability to increase the tissue response to the implant surface and promote bone ingrowth and osseoconduction processes. The deposition conditions affect considerably the structure and bio-functionality of the HAp coatings. We focused our research on developing deposition methods allowing a precise control of the structure and stoichiometric composition of HAp thin films. We found that the use of O2 as a reactive gas improves the quality of the sputtered hydroxyapatite coatings by resulting in the formation of films of better stoichiometry with a fine crystalline structure.

  16. Microstructure and Wear Behaviour of Laser-Induced Thermite Reaction Al2O3 Ceramic Coatings on Pure Aluminum and AA7075 Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    HUANG Kaijin; LIN Xin; XIE Changsheng; T M Yue

    2008-01-01

    Wear-resistant laser-induced thermite reaction Al2O3 ceramic coatings can be fabricated on pure Al and AA7075 aluminum alloy by laser cladding(one-step method)and laser cladding followed by laser re-melting(two-step method)using mixed powders CuO-Al-SiO2 in order to improve the wear properties of aluminum and aluminum alloy,respectively.The microstructure of the coatings was characterized by scanning electron microscopy(SEM)and X-ray diffraction(XRD).The wear resistance of the coatings was evaluated under dry sliding wear test condition at room temperature.Owing to the presence of hard a-Al2O3 and γ-Al2O,3phases,the coatings exhibited excellent wear resistance.In addition,the wear resistance of the coatings fabricated by two-step method is superior to that of the coatings fabricated by one-step method.

  17. The Effects of an Unexpected Ceramic Coating Phase at the Head of a Pipe on Joining and Postprocessing of a Ceramic-Lined Composite Pipe

    Science.gov (United States)

    Mahmoodian, R.; Rahbari, R. G.; Hamdi, M.; Hassan, M. A.; Sparham, Mahdi

    2013-01-01

    Produced ceramic-lined steel pipe using the self-propagating high-temperature synthesis (SHS) method has found uses in many applications. A SHS-centrifugal machine was designed to produce a ceramic-lined steel pipe from ferric oxide and aluminum powder (thermite mixture) under high centrifugal acceleration. The obtained products are expected to be Al2O3 ceramic in the innermost layer and a Fe layer in a region between the outer steel pipes. In the present work, specific regions of a pipe was particularly observed to investigate the stuck (dead) spaces at the pipe head because of its importance in further processes (joining, welding, etc.) which may affect the quality of the next operations. In this article, the product's composition, phase separation, microhardness, and surface finish were studied on three zones of the pipe.

  18. Study on plasma-spraying coating bioactive ceramics onto silicon nitride surface as composite endosteal implants.

    Science.gov (United States)

    Xu, L L; Shi, S J

    1997-01-01

    The successful key of endosteal implants depends on the properties of implant materials which are very important for oral implantology at the present. Because silicon nitride has high strength and hydroxylapatite (HA) and flourapatite (FA) have good biocompatibility. In this paper, we apply silicon nitride as base material. Plasma spray HA, FA onto its surface as composite endosteal implants. Physical and chemical properties test, includes X-ray diffraction (XRD), scanning electronic microscope (SEM), EDAX and bonding strength test (push-out test). The results indicate: after plasma-spraying coating, crystalline phase of HA and FA unchanged and form a lot of pores among the crystal particles. Those pores benefit bone growing into them. It is very important for implants to be fixed in bone for long time, Ca/P ratio has no significant change. Bonding strength test results indicate: Si3N4-HA 23.6MPa, Si3N4-FA 27.12 MPa are higher than that of Ti-HA 15.07 MPa. On the basis of these studies, they are kinds of ideal implant materials. PMID:9731426

  19. Two-zone modeling of diesel / biodiesel blended fuel operated ceramic coated direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    B. Rajendra Prasath, P. Tamil Porai, Mohd. F. Shabir

    2010-11-01

    Full Text Available A comprehensive computer code using ”C” language was developed for compression ignition (C.I engine cycle and modified in to low heat rejection (LHR engine through wall heat transfer model. Combustion characteristics such as cylinder pressure, heat release, heat transfer and performance characteristics such as work done, specific fuel consumption (SFC and brake thermal efficiency (BTE were analysed. On the basis of first law of thermodynamics the properties at each degree crank angle was calculated. Preparation and reaction rate model was used to calculate the instantaneous heat release rate. The effect of coating on engine heat transfer was analysed using a gas-wall heat transfer calculations and total heat transfer was based on ANNAND’s combined heat transfer model. The predicted results are validated through the experiments on the test engine under identical operating conditions on a turbocharged D.I diesel engine. In this analysis 20% of biodiesel (derived from Jatropha seed oil blended with diesel was used in both conventional and LHR engine. The simulated combustion and performance characteristics are found satisfactory with the experimental results.

  20. Heat treatment following surface silanization in rebonded tribochemical silica-coated ceramic brackets: shear bond strength analysis

    Directory of Open Access Journals (Sweden)

    Emilia Adriane Silva

    2013-07-01

    Full Text Available OBJECTIVE: This study aimed to evaluate the effects of heat treatment on the tribochemical silica coating and silane surface conditioning and the bond strength of rebonded alumina monocrystalline brackets. MATERIAL AND METHODS: Sixty alumina monocrystalline brackets were randomly divided according to adhesive base surface treatments (n=20: Gc, no treatment (control; Gt, tribochemical silica coating + silane application; Gh, as per Gt + post-heat treatment (air flux at 100ºC for 60 s. Brackets were bonded to the enamel premolars surface with a light-polymerized resin and stored in distilled water at 37ºC for 100 days. Additionally, half the specimens of each group were thermocycled (6,000 cycles between 5-55ºC (TC. The specimens were submitted to the shear bond strength (SBS test using a universal testing machine (1 mm/min. Failure mode was assessed using optical and scanning electron microscopy (SEM, together with the surface roughness (Ra of the resin cement in the bracket using interference microscopy (IM. 2-way ANOVA and the Tukey test were used to compare the data (p>0.05. RESULTS: The strategies used to treat the bracket surface had an effect on the SBS results (p=0.0, but thermocycling did not (p=0.6974. Considering the SBS results (MPa, Gh-TC and Gc showed the highest values (27.59±6.4 and 27.18±2.9 and Gt-TC showed the lowest (8.45±6.7. For the Ra parameter, ANOVA revealed that the aging method had an effect (p=0.0157 but the surface treatments did not (p=0.458. For the thermocycled and non-thermocycled groups, Ra (µm was 0.69±0.16 and 1.12±0.52, respectively. The most frequent failure mode exhibited was mixed failure involving the enamel-resin-bracket interfaces. CONCLUSION: Regardless of the aging method, Gh promoted similar SBS results to Gc, suggesting that rebonded ceramic brackets are a more effective strategy.

  1. Effect of sandblasting, silica coating, and laser treatment on the microtensile bond strength of a dental zirconia ceramic to resin cements.

    Science.gov (United States)

    Mahmoodi, Nasrin; Hooshmand, Tabassom; Heidari, Solmaz; Khoshro, Kimia

    2016-02-01

    The purpose of this in vitro study was to evaluate the effect of laser irradiation as well as other surface treatment methods on the microtensile bond strength of a dental zirconia ceramic to the two types of resin cements. Zirconia ceramic blocks (ICE Zirkon) were sintered according to the manufacturer's instructions and duplicated in resin composites. The ceramic specimens were divided into four groups according to the following surface treatments: no surface treatment (control), sandblasting with alumina, silica coating plus silanization, and Nd:YAG laser irradiation. The specimens were divided equally and then bonded with Panavia F2.0 (self-etching resin cement) and Clearfil SA Luting (self-adhesive resin cement) to the composite blocks. The bonded ceramic-composite blocks were stored in distilled water at 37 °C for 72 h, cut to prepare bar-shaped specimens with a bonding area of approximately 1 mm(2), and thermocycled for 3000 cycles between 5 and 55 °C, and the microtensile bond strengths were measured using a universal testing machine. The data were analyzed by ANOVA and Tukey post hoc test. The results showed that the self-adhesive resin cement used in this study did not improve the microtensile bond strength when the zirconia surface was sandblasted by alumina. The use of the Nd:YAG laser did not enhance the bond strength between the zirconia and both types of resin cements. In addition, silica coating of the zirconia surfaces plus silane application significantly improved the bond strength regardless of the type of resin cement utilized. PMID:26690357

  2. Coatings.

    Science.gov (United States)

    Anderson, Dennis G.

    1989-01-01

    This review covers analytical techniques applicable to the examination of coatings, raw materials, and substrates upon which coatings are placed. Techniques include chemical and electrochemical methods, chromatography, spectroscopy, thermal analysis, microscopy, and miscellaneous techniques. (MVL)

  3. Interaction of surface laser treatment upon ZrO2-Y2O3 ceramic coating structure obtained by means of air plasma spraying

    Science.gov (United States)

    Kobylanska-Szkaradek, Krystyna

    2003-10-01

    The subject of the analysis and examination is the structure and utilitarian properties of thin ceramic layers placed on the nickel base heat-resistant alloy by plasma spraying method, which later on underwent laser remelting. Examined materials consisting of outer coating ZrO2+8%wt.Y2O3 and NiCrAlY laser are to be used as thermal barriers and protection against high temperature corrosion of heating-resisting alloy on nickel base, applied in internal combustion turbine blades and other construction elements working under stress in high temperature conditions.

  4. Creep, Fatigue and Fracture Behavior of Environmental Barrier Coating and SiC-SiC Ceramic Matrix Composite Systems: The Role of Environment Effects

    Science.gov (United States)

    Zhu, Dongming; Ghosn, Louis J.

    2015-01-01

    Advanced environmental barrier coating (EBC) systems for low emission SiCSiC CMC combustors and turbine airfoils have been developed to meet next generation engine emission and performance goals. This presentation will highlight the developments of NASAs current EBC system technologies for SiC-SiC ceramic matrix composite combustors and turbine airfoils, their performance evaluation and modeling progress towards improving the engine SiCSiC component temperature capability and long-term durability. Our emphasis has also been placed on the fundamental aspects of the EBC-CMC creep and fatigue behaviors, and their interactions with turbine engine oxidizing and moisture environments. The EBC-CMC environmental degradation and failure modes, under various simulated engine testing environments, in particular involving high heat flux, high pressure, high velocity combustion conditions, will be discussed aiming at quantifying the protective coating functions, performance and durability, and in conjunction with damage mechanics and fracture mechanics approaches.

  5. Preparation, microstructural evolution and properties of Ni–Zr intermetallic/Zr–Si ceramic reinforced composite coatings on zirconium alloy by laser cladding

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kun; Li, Yajiang, E-mail: yajli@sdu.edu.cn; Wang, Juan; Ma, Qunshuang; Li, Jishuai; Li, Xinyue

    2015-10-25

    NiZr{sub 2}–ZrSi–Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4}-ZrC intermetallic/ceramic reinforced composite coatings were in situ synthesized by laser cladding the pre-placed Ni–Cr–B–Si powder on zirconium substrate. Microstructure and phase constituents were investigated by X-ray diffraction (XRD), optical microscope (OM), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS). Microhardness tester and block-on-ring wear tester were employed to measure the hardness distribution and wear resistance of the intermetallic/ceramic reinforced composite coating. Results indicated that the multiphase of reinforcements includes Ni–Zr intermetallic compounds (e.g., NiZr and NiZr{sub 2}) and Zr–Si(C) ceramic phases (e.g., ZiSi, Zr{sub 5}Si{sub 4} and ZrC). Ni–Si clusters transforming to Zr–Si–Ni clusters at high temperature facilitated the forming of Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4} and during the growth of Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4}, the consumption of Zr atoms at the lateral interface of liquid/Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4} resulted into developing Zr-poor zone near Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4}. The microhardness and wear resistance of the coating were significantly improved by various reinforced phases in comparison to zirconium substrate. - Highlights: • NiZr{sub 2}–ZrSi–Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4}-ZrC compostie coating was in-situ synthesized. • Ni–Si clusters transforming resulted into developing Zr-poor zone near Zr{sub 5}(Si{sub x}Ni{sub 1−x}){sub 4}. • Reinforced phases significantly improve wear resistance of the coating.

  6. Metal-ceramic composite coatings obtained by new thermal spray technologies: Cold Gas Spray (CGS) and its wear resistance; Recubrimientos de materiales compuestos metal-ceramico obtenidos por nuevas tecnologias de proyeccion termica: Proyeccion fria (CGS) y su resistencia al desgaste

    Energy Technology Data Exchange (ETDEWEB)

    Miguel, J. M.; Vizcaino, S.; Dosta, S.; Cinca, N.; Lorenzana, C.; Guilemany, J. M.

    2011-07-01

    In this paper, composite coatings composed by an aluminum bronze metal matrix and a hard ceramic alumina phase obtained by cold spray technique were obtained in order to increase the tribological properties of the pure bronze coatings. The different processes that occur during the coating formation (hardening of the metal particles, fragmentation of the ceramic particles, shot peening on the metal substrate, etc) are described and their effects on the coating properties are studied. Wear tests consisting on Ball-on-Disk tests, abrasion Rubber Wheel tests and erosion tests as well as microhardness and adhesion tests are carried out and the results are correlated with the ceramic phase content of the coatings. It can be concluded that the hard ceramic phase increases the tribological properties with relation of the initial bronze coating. Finally, main wear mechanisms during the tribological tests are described. (Author) 21 refs.

  7. PIXE (particle induced X-ray emission): A non-destructive analysis method adapted to the thin decorative coatings of antique ceramics

    International Nuclear Information System (INIS)

    Recent trends in study of Greek and Roman potteries have been to develop non-abrasive methods to determine the elemental composition of their thin coatings. This paper investigates the potential of PIXE (particle induced X-ray emission) in this field. This technique has been currently used to determine the bulk elemental composition of several types of artifacts because of its fast and simultaneous ability to measure a large number of elements with good accuracy and without any damage to the sample. However, until now it has never been applied to the measurement of the composition of thin layers owing to the difficulty in limiting the depth of analysis to the layer thickness. In this paper, we show, through a comparative study of reference clay pellets and thin coatings of Terra Sigillata ceramics that reducing the energy of the particle beam the problem can be solved. The decrease of proton energy from 3 MeV (standard condition) to 1.5 MeV allowed us to limit the analyzed depth to the coating thickness without significant alteration of the results. Quantitative elemental analysis remains possible and the quality of results is similar to the one obtained from electron microprobe.

  8. PIXE (particle induced X-ray emission): A non-destructive analysis method adapted to the thin decorative coatings of antique ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Leon, Y. [CNRS, CEMES, BP 94347, 29 rue J. Marvig, F-31055 Toulouse (France); Universite de Toulouse, UPS, INSA, CEMES, F-31055 Toulouse (France); Sciau, Ph., E-mail: philippe.sciau@cemes.fr [CNRS, CEMES, BP 94347, 29 rue J. Marvig, F-31055 Toulouse (France); Universite de Toulouse, UPS, INSA, CEMES, F-31055 Toulouse (France); Bouquillon, A.; Pichon, L. [C2RMF, 14 quai F. Mitterrand, F-75001 Paris Cedex 01 (France); Parseval, Ph. de [Universite de Toulouse, CNRS, IRD, GET, 14 av. E. Belin, F-31400 Toulouse (France)

    2012-11-15

    Recent trends in study of Greek and Roman potteries have been to develop non-abrasive methods to determine the elemental composition of their thin coatings. This paper investigates the potential of PIXE (particle induced X-ray emission) in this field. This technique has been currently used to determine the bulk elemental composition of several types of artifacts because of its fast and simultaneous ability to measure a large number of elements with good accuracy and without any damage to the sample. However, until now it has never been applied to the measurement of the composition of thin layers owing to the difficulty in limiting the depth of analysis to the layer thickness. In this paper, we show, through a comparative study of reference clay pellets and thin coatings of Terra Sigillata ceramics that reducing the energy of the particle beam the problem can be solved. The decrease of proton energy from 3 MeV (standard condition) to 1.5 MeV allowed us to limit the analyzed depth to the coating thickness without significant alteration of the results. Quantitative elemental analysis remains possible and the quality of results is similar to the one obtained from electron microprobe.

  9. PIXE (particle induced X-ray emission): A non-destructive analysis method adapted to the thin decorative coatings of antique ceramics

    Science.gov (United States)

    Leon, Y.; Sciau, Ph.; Bouquillon, A.; Pichon, L.; de Parseval, Ph.

    2012-11-01

    Recent trends in study of Greek and Roman potteries have been to develop non-abrasive methods to determine the elemental composition of their thin coatings. This paper investigates the potential of PIXE (particle induced X-ray emission) in this field. This technique has been currently used to determine the bulk elemental composition of several types of artifacts because of its fast and simultaneous ability to measure a large number of elements with good accuracy and without any damage to the sample. However, until now it has never been applied to the measurement of the composition of thin layers owing to the difficulty in limiting the depth of analysis to the layer thickness. In this paper, we show, through a comparative study of reference clay pellets and thin coatings of Terra Sigillata ceramics that reducing the energy of the particle beam the problem can be solved. The decrease of proton energy from 3 MeV (standard condition) to 1.5 MeV allowed us to limit the analyzed depth to the coating thickness without significant alteration of the results. Quantitative elemental analysis remains possible and the quality of results is similar to the one obtained from electron microprobe.

  10. Chemical treatment and biomimetic coating evaluating in zirconia-alumina ceramics; Avaliacao de tratamentos quimicos e recobrimento biomimetico em ceramicas de alumina-zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Amanda Abati

    2007-07-01

    Ceramic materials, as alumina and zirconia have been explored along the years as biomaterials application. The bio inert nature has been stimulating the development of new alternatives, as chemical treatments to improve the biological application of these ceramics. The biomimetic process of bio inert ceramics for coating apatite is based on soaking the implant in a simulated body fluid, SBF, with ion concentrations nearly equal to those of human blood plasma. The bioactivity of the material is related with the formation of a layer constituted of hydroxyapatite low crystalline, similar to the biological apatite. The biocompatibility associated to the structural properties of the alumina and zirconia has been stimulating the clinical use of these materials, mainly in areas of larger mechanical requests, places not recommended for bioactive hydroxyapatite, for instance. In this work samples of alumina, zirconia doped with Yttria (3% mol) and composites of alumina and zirconia doped with Yttria (3% mol) were prepared by co-precipitation method, calcinate, sintered, chemically treated with solutions of acid phosphoric and sodium hydroxide and them immersed in 1.0 M and 1.5 M SBF. The calcinate powders were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), gas adsorption (BET) and laser diffraction. The XRD results indicate that the samples are low crystalline. It was observed for BET that the samples present high specific surface area. The results of laser diffraction and SEM showed that the powders are agglomerates. The sintered samples were analyzed by XRD, SEM and X-ray fluorescence (XRF). The phases quantified by Rietveld method were: cubic, tetragonal and monoclinic of the zirconia, besides the phase alpha of the alumina. The chemical treatment with phosphoric acid didn't present a tendency of larger apatite formation in relation to the samples no chemically treated. The treatment with sodium hydroxide provoked accentuated transformation

  11. Double-ceramic-layer thermal barrier coatings based on La2(Zr0.7Ce0.3)2O7/La2Ce2O7 deposited by electron beam-physical vapor deposition

    International Nuclear Information System (INIS)

    Double-ceramic-layer (DCL) thermal barrier coatings (TBCs) of La2(Zr0.7Ce0.3)2O7 (LZ7C3) and La2Ce2O7 (LC) were deposited by electron beam-physical vapor deposition (EB-PVD). The composition, interdiffusion, surface and cross-sectional morphologies, cyclic oxidation behavior of DCL coating were studied. Energy dispersive spectroscopy and X-ray diffraction analyses indicate that both LZ7C3 and LC coatings are effectively fabricated by a single LZ7C3 ingot with properly controlling the deposition energy. The chemical compatibility of LC coating and thermally grown oxide (TGO) layer is unstable. LaAlO3 is formed due to the chemical reaction between LC and Al2O3 which is the main composition of TGO layer. Additionally, the thermal cycling behavior of DCL coating is influenced by the interdiffusion of Zr and Ce between LZ7C3 and LC coatings. The failure of DCL coating is a result of the sintering of LZ7C3 coating surface, the chemical incompatibility of LC coating and TGO layer and the abnormal oxidation of bond coat. Since no single material that has been studied so far satisfies all the requirements for high temperature applications, DCL coating is an important development direction of TBCs.

  12. Transient and residual stresses in a pressable glass-ceramic before and after resin-cement coating determined using profilometry.

    LENUS (Irish Health Repository)

    2011-05-01

    The effect of heat-pressing and subsequent pre-cementation (acid-etching) and resin-cementation operative techniques on the development of transient and residual stresses in different thicknesses of a lithium disilicate glass-ceramic were characterised using profilometry prior to biaxial flexure strength (BFS) determination.

  13. Characterization of micro-arc ceramic coatings on Ti-2Al-2.5Zr alloy substrates

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Titanium oxide coatings were synthesized on Ti-2Al-2.5Zr alloy substrates by micro-arc oxidation (MAO) technique. The surface features of the coatings were studied by scanning electron microscopy. The micro-arc discharge channels of the Ti-2Al-2.5Zr alloy decrease while the discharge channel size increases clearly with an increase in treating time. With an increase of the coating thickness the porous layer thickness increases apparently. Phase composition of the surface layers of the coatings was evaluated by X-ray diffraction and X-ray photoelectron spectroscopy. The results of XRD and XPS analysis show that the MAO coating mainly consists of anatase and rutile TiO2.

  14. Effect of Anodic Current Density on Characteristics and Low Temperature IR Emissivity of Ceramic Coating on Aluminium 6061 Alloy Prepared by Microarc Oxidation

    OpenAIRE

    Al Bosta, Mohannad M. S.; Keng-Jeng Ma; Hsi-Hsin Chien

    2013-01-01

    High emitter MAO ceramic coatings were fabricated on the Al 6061 alloy, using different bipolar anodic current densities, in an alkali silicate electrolyte. We found that, as the current density increased from 10.94 A/dm2 to 43.75 A/dm2, the layer thickness was increased from 10.9 μm to 18.5 μm, the surface roughness was increased from 0.79 μm to 1.27 μm, the area ratio of volcano-like microstructure was increased from 55.6% to 59.6%, the volcano-like density was decreased from 2620 mm−2 to 1...

  15. Surface Ceramic Coating Technology by Microarc Oxidation%铝合金微弧氧化生成陶瓷膜的研究

    Institute of Scientific and Technical Information of China (English)

    贺子凯; 蒋玉思

    2001-01-01

    微弧氧化又称阳极火化沉积技术或等离子体增强电化学陶瓷化技术.该技术生成的膜与基体金属结合牢固,厚度可达230 μm,绝缘电阻大于100 MΩ,硬度达2500 HV,大大改善了轻金属的耐磨性、耐蚀性和耐热冲击性,工件尺寸变化小.本文研究在铝合金表面微弧氧化制备陶瓷化氧化膜,以期改善铝合金的耐磨特性.讨论了影响制备陶瓷弧氧化膜的主要因素.%Microarc oxidation,is called by anodic oxidation,or plasma enhanced electrochemical surface ceramic coating technology.The films formed on the metal combine with the substrate firmly,are up to 230 μm thick.Its dielectric resistor is 100 MΩ,and microhardness is up to 2500 HV.These properties better the wear resistance,corrosion resistance and thermal property of the light metals.The work piece changes little in size.The paper studied the ceramic coating was attempted to prepare on the surface of the aluminium alloy by microarc oxidation to improve its abrasion resistance.The major factors affecting the vifreous films were discussed.

  16. Characterization of ceramic sol-gel coatings as an alternative chemical conversion treatment on commercial carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez-Crespo, M.A. [Instituto Politecnico Nacional, Grupo de Ingenieria en Procesamiento de Materiales CICATA-IPN, Unidad Altamira, km 14.5, Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamps (Mexico)], E-mail: mdominguezc@ipn.mx; Garcia-Murillo, A.; Torres-Huerta, A.M.; Carrillo-Romo, F.J. [Instituto Politecnico Nacional, Grupo de Ingenieria en Procesamiento de Materiales CICATA-IPN, Unidad Altamira, km 14.5, Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamps (Mexico); Onofre-Bustamante, E. [Universidad Nacional Autonoma de Mexico, Edificio D Facultad de Quimica, Departamento de Metalurgia, Ciudad Universitaria, C.P. 04510 Mexico D.F. (Mexico); Yanez-Zamora, C. [Alumna del postgrado en Tecnologia Avanzada del CICATA-IPN, Unidad Altamira IPN, km 14.5, Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamps (Mexico)

    2009-04-01

    Sol-gel yttria-stabilized zirconia (YSZ) thin films were prepared on commercial carbon steel sheets by dip-coating technique followed by a low temperature heat treatment (473, 573, and 673 K for 1 h) in order to improve both corrosion properties and adhesion. For comparison, zirconia (ZrO{sub 2}) coatings have been also analyzed. Electrochemical techniques, Fourier Transform Infrared (FT-IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the anticorrosion behavior of the coatings in a 3.5 wt% NaCl solution. The adhesion with a polyester organic coating was evaluated by the pull-off technique. The typical thickness of the deposited layers ranged from 1 to 1.3 {mu}m depending on process parameters. The obtained results indicated that sol-gel ZrO{sub 2} and YSZ coatings without an organic coating can act as protective barriers against wet corrosion during the first hours, but they fail when the time exposure is longer than 1 day. However, when synthesized films were used as a pre-treatment and an organic coating was added (top-coated), the anticorrosive and adhesion properties were strongly affected by the temperature of the treatment, and an increase in both properties was observed at higher temperatures. The structural and morphological characteristics of the coating provide an explanation of the role of each film in the electrochemical behavior in this aggressive medium. Comparing both systems, YSZ displayed greater protective and adhesion values than exhibited for ZrO{sub 2} which can be correlated with the stabilization of the cubic phase.

  17. Characterization of ceramic sol-gel coatings as an alternative chemical conversion treatment on commercial carbon steel

    International Nuclear Information System (INIS)

    Sol-gel yttria-stabilized zirconia (YSZ) thin films were prepared on commercial carbon steel sheets by dip-coating technique followed by a low temperature heat treatment (473, 573, and 673 K for 1 h) in order to improve both corrosion properties and adhesion. For comparison, zirconia (ZrO2) coatings have been also analyzed. Electrochemical techniques, Fourier Transform Infrared (FT-IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the anticorrosion behavior of the coatings in a 3.5 wt% NaCl solution. The adhesion with a polyester organic coating was evaluated by the pull-off technique. The typical thickness of the deposited layers ranged from 1 to 1.3 μm depending on process parameters. The obtained results indicated that sol-gel ZrO2 and YSZ coatings without an organic coating can act as protective barriers against wet corrosion during the first hours, but they fail when the time exposure is longer than 1 day. However, when synthesized films were used as a pre-treatment and an organic coating was added (top-coated), the anticorrosive and adhesion properties were strongly affected by the temperature of the treatment, and an increase in both properties was observed at higher temperatures. The structural and morphological characteristics of the coating provide an explanation of the role of each film in the electrochemical behavior in this aggressive medium. Comparing both systems, YSZ displayed greater protective and adhesion values than exhibited for ZrO2 which can be correlated with the stabilization of the cubic phase

  18. Research on Properties of Ceramic Coating on 2Al2 Aluminum Alloy bv Plasma Microarc Oxidation%2Al2铝合金微弧氧化膜性能研究

    Institute of Scientific and Technical Information of China (English)

    郭虹; 宫廷; 黄树涛; 周丽

    2011-01-01

    Microarc oxidation (MAO) coating on 2A12 aluminum alloy was prepared in Na2SiO3 and Na2WO4 electrolytes, and the surface morphology, cross-sectional microstructure, wear resistance and micro-hardness and ceramic coatings have been studied in detail. The results show that the microarc oxidation surface treatment can form a dense ceramic coating on 2A12 aluminum alloy, which has good adhesion with aluminum alloy substrate. The concentration of Na2WO4solution has significant influence on the color, surface morphology, density and micro-hardness of ceramic coating, but not much influence on the thickness of the ceramic coating. Additionally, the addition of Na2WO4 into the base Na2SiO3 electrolyte resulted in the increase of the micro-hardness of the ceramic coating, furthermore, the micro-hardness of the ceramic coating increased with the increasing distance from the interface.%采用Na2 WO4和Na2SO3电解液对2Al2铝合金进行微弧氧化,研究了微弧氧化陶瓷膜表面形貌、截面组织、显微硬度及耐磨性等性能.结果表明,微弧氧化表面处理可以在2Al2铝合金表面形成致密并与基体结合良好的陶瓷膜,Na2WO4溶液浓度对陶瓷膜颜色、表面形貌、致密度和显微硬度都有影响,但对于陶瓷膜成膜厚度没有显著影响.同时,在Na2SiO3电解液中添加Na2WO4将会导致陶瓷膜显微硬度的增加,而且随着与界面距离的增大,陶瓷膜显微硬度逐渐增加.

  19. Quantitative Analysis of Life Index of Electrothermal-Film Coated Ceramic Heating Elements with Rare-Earth Element Doped

    Institute of Scientific and Technical Information of China (English)

    He Ping

    2004-01-01

    For electrothermal-film heating elements for ceramics, the quantitative expression of the relation between the contents of multicomponent semiconductor dope and rare-earth element additive through the multivariate statistical regression analysis was presented, and the optimum control index of the multicomponent semiconductor dope and the rareearth element for the maximum life was also determined. The research shows that the life value ranging from 15 to 20 thousand hours can be ensured only if the evaluation grade of metal oxide dope in the compounding formula is controlled between grades 0.5 to 1.2. The relation of the content of multicomponent rare-earth element dope and the life index of electrothermal-film heating material for ceramics was determined theoretically.

  20. Effect of melting pressure and superheating on chemical composition and contamination of yttria coated ceramic crucible induction melted titanium alloys

    OpenAIRE

    Gomes, Fernando; Puga, Hélder; Barbosa, J; Ribeiro, Carlos Silva

    2011-01-01

    When melting reactive alloys, chemical composition and alloy homogeneity strongly depend on processing conditions, especially if melting is performed in ceramic crucibles. In this case, the nature of crucible materials, the melting stock composition and the melting parameters (atmosphere, pressure, superheating time and temperature) are critical processing variables. In this work, a Ti–48Al alloy was induction melted in a ZrO2 SiO2-based crucible with Y2O3 inner layer ...

  1. Interface mechanics and histomorphometric analysis of hydroxyapatite-coated and porous glass-ceramic implants in canine bone

    DEFF Research Database (Denmark)

    Nimb, L; Jensen, J S; Gotfredsen, K

    1995-01-01

    A canine study was performed to make a histological and biomechanical evaluation of the interface between bone and two different bioceramic implants. A newly developed glass-ceramic formed by P2O5, CaO, SiO2, and Al2O3, giving a crystal phase composed of CaP2O6-AlPO4-SiP2O7, was compared to...

  2. Electrochemical and in vitro bioactivity of polypyrrole/ceramic nanocomposite coatings on 316L SS bio-implants

    International Nuclear Information System (INIS)

    The present investigation describes the versatile fabrication and characterization of a novel composite coating that consists of polypyrrole (PPy) and Nb2O5 nanoparticles. Integration of the two materials is achieved by electrochemical deposition on 316L stainless steel (SS) from an aqueous solution of oxalic acid containing pyrrole and Nb2O5 nanoparticles. Fourier transform infrared spectral (FTIR) and X-ray diffraction (XRD) studies revealed that the existence of Nb2O5 nanoparticles in PPy matrix with hexagonal structure. Surface morphological analysis showed that the presence of Nb2O5 nanoparticles strongly influenced the surface nature of the nanocomposite coated 316L SS. Micro hardness results revealed the enhanced mechanical properties of PPy nanocomposite coated 316L SS due to the addition of Nb2O5 nanoparticles. The electrochemical studies were carried out using cyclic polarization and electrochemical impedance spectroscopy (EIS) measurements. In order to evaluate the biocompatibility, contact angle measurements and in vitro characterization were performed in simulated body fluid (SBF) and on MG63 osteoblast cells. The results showed that the nanocomposite coatings exhibit superior biocompatibility and enhanced corrosion protection performance over 316L SS than pure PPy coatings. - Highlights: • Effect of Nb2O5 nanoparticles on the bio activity of PPy coatings was evaluated. • Hydrophilic, more compact and smooth morphology of nanocomposite was achieved. • Nb2O5 nanoparticles enhanced the corrosion protection performance of PPy coating. • Mechanical and surface wettability of nanocomposite exhibited higher than PPy. • Nano Nb2O5 in PPy coating improved the biocompatibility on osteoblast MG63 cells

  3. Electrochemical and in vitro bioactivity of polypyrrole/ceramic nanocomposite coatings on 316L SS bio-implants

    Energy Technology Data Exchange (ETDEWEB)

    Madhan Kumar, A. [Center of Research Excellence in Corrosion, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Nagarajan, S. [Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, Tokyo (Japan); Ramakrishna, Suresh [Graduate School of Biomedical Science and Engineering/College of Medicine, Hanyang University, Sungdong-gu, Seoul (Korea, Republic of); Sudhagar, P.; Kang, Yong Soo [Energy Materials Laboratory, Hanyang University, Seoul 133-791 (Korea, Republic of); Kim, Hyongbum [Graduate School of Biomedical Science and Engineering/College of Medicine, Hanyang University, Sungdong-gu, Seoul (Korea, Republic of); Gasem, Zuhair M. [Center of Research Excellence in Corrosion, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Rajendran, N., E-mail: nrajendran@annauniv.edu [Department of Chemistry, Anna University, Chennai (India)

    2014-10-01

    The present investigation describes the versatile fabrication and characterization of a novel composite coating that consists of polypyrrole (PPy) and Nb{sub 2}O{sub 5} nanoparticles. Integration of the two materials is achieved by electrochemical deposition on 316L stainless steel (SS) from an aqueous solution of oxalic acid containing pyrrole and Nb{sub 2}O{sub 5} nanoparticles. Fourier transform infrared spectral (FTIR) and X-ray diffraction (XRD) studies revealed that the existence of Nb{sub 2}O{sub 5} nanoparticles in PPy matrix with hexagonal structure. Surface morphological analysis showed that the presence of Nb{sub 2}O{sub 5} nanoparticles strongly influenced the surface nature of the nanocomposite coated 316L SS. Micro hardness results revealed the enhanced mechanical properties of PPy nanocomposite coated 316L SS due to the addition of Nb{sub 2}O{sub 5} nanoparticles. The electrochemical studies were carried out using cyclic polarization and electrochemical impedance spectroscopy (EIS) measurements. In order to evaluate the biocompatibility, contact angle measurements and in vitro characterization were performed in simulated body fluid (SBF) and on MG63 osteoblast cells. The results showed that the nanocomposite coatings exhibit superior biocompatibility and enhanced corrosion protection performance over 316L SS than pure PPy coatings. - Highlights: • Effect of Nb{sub 2}O{sub 5} nanoparticles on the bio activity of PPy coatings was evaluated. • Hydrophilic, more compact and smooth morphology of nanocomposite was achieved. • Nb{sub 2}O{sub 5} nanoparticles enhanced the corrosion protection performance of PPy coating. • Mechanical and surface wettability of nanocomposite exhibited higher than PPy. • Nano Nb{sub 2}O{sub 5} in PPy coating improved the biocompatibility on osteoblast MG63 cells.

  4. Fabrication of mullite-bonded porous SiC ceramics from multilayer-coated SiC particles through sol-gel and in-situ polymerization techniques

    Science.gov (United States)

    Ebrahimpour, Omid

    In this work, mullite-bonded porous silicon carbide (SiC) ceramics were prepared via a reaction bonding technique with the assistance of a sol-gel technique or in-situ polymerization as well as a combination of these techniques. In a typical procedure, SiC particles were first coated by alumina using calcined powder and alumina sol via a sol-gel technique followed by drying and passing through a screen. Subsequently, they were coated with the desired amount of polyethylene via an in-situ polymerization technique in a slurry phase reactor using a Ziegler-Natta catalyst. Afterward, the coated powders were dried again and passed through a screen before being pressed into a rectangular mold to make a green body. During the heating process, the polyethylene was burnt out to form pores at a temperature of about 500°C. Increasing the temperature above 800°C led to the partial oxidation of SiC particles to silica. At higher temperatures (above 1400°C) derived silica reacted with alumina to form mullite, which bonds SiC particles together. The porous SiC specimens were characterized with various techniques. The first part of the project was devoted to investigating the oxidation of SiC particles using a Thermogravimetric analysis (TGA) apparatus. The effects of particle size (micro and nano) and oxidation temperature (910°C--1010°C) as well as the initial mass of SiC particles in TGA on the oxidation behaviour of SiC powders were evaluated. To illustrate the oxidation rate of SiC in the packed bed state, a new kinetic model, which takes into account all of the diffusion steps (bulk, inter and intra particle diffusion) and surface oxidation rate, was proposed. Furthermore, the oxidation of SiC particles was analyzed by the X-ray Diffraction (XRD) technique. The effect of different alumina sources (calcined Al2O 3, alumina sol or a combination of the two) on the mechanical, physical, and crystalline structure of mullite-bonded porous SiC ceramics was studied in the

  5. Advanced zinc phosphate conversion and pre-ceramic polymetallosiloxane coatings for corrosion protection of steel and aluminum, and characteristics of polyphenyletheretherketone-based materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, T.; Carciello, N.R.

    1992-07-01

    Anhydrous zinc phosphate (Zn{center_dot}Ph) coatings deposited by immersing the steel in transition Co, Ni, and Mn cation-incorporated phosphating solutions were investigated. Two features for the anhydrous 340C-heated (Zn{center_dot}Ph) were addressed; one was to determine if electron trapping of adsorbed CO{sup 2+} and Ni{sup 2+} ions acts to inhibit the cathodic reaction on the (Zn{center_dot}Ph), and the second was to determine the less susceptibility of the {alpha}-Zn{sub 3}(PO{sub 4}){sub 2} phase to alkali-induced dissolution. The factors governing film-forming of pre-ceramic polymetallosiloxane (PMS) coatings for Al substrates were investigated. Four factors were important in obtaining a good film: (1) formation of organopolymetallosiloxane at sintering temperatures of 150C; (2) pyrolytic conversion at 350C into an amorphous PMS network structure in which the Si-O-M linkage were moderately enhanced; (3) noncrystalline phases; and (4) formation of interfacial oxane bond between PMS and Al oxide. Formation of well-crystallized polyphenyletheretherketone (PEEK) in vicinity of silica aggregates was found in the molted body made in N{sub 2}. Crystalline PEEK contributed to thermal and hydrothermal stabilities of mortar specimens at temperatures up to 200C, and resistance in 5 wt % H{sub 2}SO{sub 4} solution at 80C.

  6. Wear Performance of Sequentially Cross-Linked Polyethylene Inserts against Ion-Treated CoCr, TiNbN-Coated CoCr and Al2O3 Ceramic Femoral Heads for Total Hip Replacement

    Directory of Open Access Journals (Sweden)

    Christian Fabry

    2015-02-01

    Full Text Available The aim of the present study was to evaluate the biotribology of current surface modifications on femoral heads in terms of wettability, polyethylene wear and ion-release behavior. Three 36 mm diameter ion-treated CoCr heads and three 36 mm diameter TiNbN-coated CoCr heads were articulated against sequentially cross-linked polyethylene inserts (X3 in a hip joint simulator, according to ISO 14242. Within the scope of the study, the cobalt ion release in the lubricant, as well as contact angles at the bearing surfaces, were investigated and compared to 36 mm alumina ceramic femoral heads over a period of 5 million cycles. The mean volumetric wear rates were 2.15 ± 0.18 mm3·million cycles−1 in articulation against the ion-treated CoCr head, 2.66 ± 0.40 mm3·million cycles−1 for the coupling with the TiNbN-coated heads and 2.17 ± 0.40 mm3·million cycles−1 for the ceramic heads. The TiNbN-coated femoral heads showed a better wettability and a lower ion level in comparison to the ion-treated CoCr heads. Consequently, the low volumes of wear debris, which is comparable to ceramics, and the low concentration of metal ions in the lubrication justifies the use of coated femoral heads.

  7. Investigation of hydrogen isotope permeation through F82H steel with and without a ceramic coating of Cr2O3-SiO2 including CrPO4 (out-of-pile tests)

    International Nuclear Information System (INIS)

    Ceramic coating on structural materials has been considered to be used as a tritium permeation barrier for fusion power plants. In the present study, a series of hydrogen and deuterium permeation experiments was performed for ferritic F82H steel with and without a ceramic coating of Cr2O3-SiO2 including CrPO4. First, experiments were made on the permeability of F82H steel without coating at 300-600 deg. C in an atmosphere of 100-1000 Pa hydrogen and deuterium. The measured values of diffusion coefficient, permeability and solubility were in good agreement with those published previously. Next, experiments were performed on the permeability of F82H steel with the coating at 400-600 deg. C in an atmosphere of 1000-1500 Pa deuterium, and the permeation reduction factor (PRF) of the coating was determined. The obtained PRF at 600 deg. C was about 400, which is of the same order of magnitude as the PRF value of about 1000 previously evaluated for the same coating on an SS316 substrate. A significant decrease in the PRF (down to about 4%) was observed, when the sample temperature was lowered from 600 to 400 deg. C

  8. The effect of ZnO nanoparticle coating on the frictional resistance between orthodontic wires and ceramic brackets

    Science.gov (United States)

    Behroozian, Ahmad; Kachoei, Mojgan; Khatamian, Masumeh; Divband, Baharak

    2016-01-01

    Background. Any decrease in friction between orthodontic wire and bracket can accelerate tooth movement in the sliding technique and result in better control of anchorage. This study was carried out to evaluate frictional forces by coating orthodontic wires and porcelain brackets with zinc oxide nanoparticles (ZnO). Methods. In this in vitro study, we evaluated a combination of 120 samples of 0.019×0.025 stainless steel (SS) orthodonticwires and 22 mil system edgewise porcelain brackets with and without spherical zinc oxide nanoparticles. Spherical ZnOnanoparticles were deposited on wires and brackets by immersing them in ethanol solution and SEM (scanning electronmicroscope) evaluation confirmed the presence of the ZnO coating. The frictional forces were calculated between the wiresand brackets in four groups: group ZZ (coated wire and bracket), group OO (uncoated wire and bracket), group ZO (coatedwire and uncoated bracket) and group OZ (uncoated wire and coated bracket). Kolmogorov-Smirnov, Mann-Whitney andKruskal-Wallis tests were used for data analysis. Results. The frictional force in ZZ (3.07±0.4 N) was the highest (P <0.05), and OZ (2.18±0.5 N) had the lowest amount of friction (P <0.05) among the groups. There was no significant difference in frictional forces between the ZO and OO groups (2.65±0.2 and 2.70±0.2 N, respectively). Conclusion. Coating of porcelain bracket surfaces with ZnO nanoparticles can decrease friction in the sliding technique,and wire coating combined with bracket coating is not recommended due to its effect on friction. PMID:27429727

  9. 高强度低密度树脂覆膜陶粒研究%Study on High Strength and Low Density Resin Coated Ceramic Proppants

    Institute of Scientific and Technical Information of China (English)

    张伟民; 李宗田; 李庆松; 陈文将; 蒙传幼; 崔彦立

    2013-01-01

    A method of manufacturing high strength and low density resin coated ceramic proppants was developed,and the effects of dosage of phenolic resin and coupling agent,et al,on the sphericity,roundness,acid solubility,turbidity,density,crush resistance and short term flow conductivity of the procured resin coated ceramic were also discussed.The results showed that the apparent density and bulk density of the resin coated ceramic particles (RCCP) decreased by 8.1% and 11.2%,respectively,compared to that of the resin coated quartz sand(RCQZ) ; and the crushing rate of the RCCP and RCQZ under 69 MPa was 1.7% and 8.1%,respectively.The roundness of the RCCP was better than that of the RCQZ; as a result,the short term flow conductivity of the RCCP could be improved more than one time compared to that of the RCQZ.Based on conductivity data,the mechanism that the oil flow conductivity of the RCCP was bigger than the water flow conductivity was proposed.The field test of the RCCP was conducted in 5 wells of Wenmi oil field.It was proved by field construction that the average yield of crude oil per well was increased by 1.35 t and the water cut per well decreased by 7.9%.%本文报道了一种低密度高强度树脂覆膜陶粒支撑剂的制备方法,讨论了酚醛树脂含量和偶联剂含量等及对覆膜低密度陶粒圆球度、密度、酸溶解度、破碎率及导流能力的影响,并采用覆膜低密度陶粒进行了现场试验.结果表明:树脂覆膜低密度陶粒比覆膜石英砂的视密度和体积密度分别降低8.1%和11.2%,69 MPa下二者的破碎率分别为1.7%和8.1%,树脂覆膜低密度陶粒的圆球度更好,短期导流能力能提高一倍以上.依据实验结果提出了树脂覆膜支撑剂对油导流能力高于对水导流能力的机理.采用树脂覆膜低密度陶粒在温米油田进行现场试验5井次,平均单井增油13.5 t/d,含水下降7.9%.

  10. Development and Performance Evaluations of HfO2-Si and Rare Earth-Si Based Environmental Barrier Bond Coat Systems for SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming

    2014-01-01

    Ceramic environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiCSiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, high strength and high temperature capable environmental barrier coating bond coat systems, since the current silicon bond coat cannot meet the advanced EBC-CMC temperature and stability requirements. In this paper, advanced NASA HfO2-Si based EBC bond coat systems for SiCSiC CMC combustor and turbine airfoil applications are investigated. The coating design approach and stability requirements are specifically emphasized, with the development and implementation focusing on Plasma Sprayed (PS) and Electron Beam-Physic Vapor Deposited (EB-PVD) coating systems and the composition optimizations. High temperature properties of the HfO2-Si based bond coat systems, including the strength, fracture toughness, creep resistance, and oxidation resistance were evaluated in the temperature range of 1200 to 1500 C. Thermal gradient heat flux low cycle fatigue and furnace cyclic oxidation durability tests were also performed at temperatures up to 1500 C. The coating strength improvements, degradation and failure modes of the environmental barrier coating bond coat systems on SiCSiC CMCs tested in simulated stress-environment interactions are briefly discussed and supported by modeling. The performance enhancements of the HfO2-Si bond coat systems with rare earth element dopants and rare earth-silicon based bond coats are also highlighted. The advanced bond coat systems, when

  11. Catalytic thermal barrier coatings

    Science.gov (United States)

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  12. SURFACE PROPERTIES OF THE IN SITU FORMED CERAMICS REINFORCED COMPOSITE COATINGS ON TI-3AL-2V ALLOYS

    OpenAIRE

    PENG LIU; WEI GUO; DAKUI HU; HUI LUO; YUANBIN ZHANG

    2012-01-01

    The synthesis of hard composite coating on titanium alloy by laser cladding of Al/Fe/Ni+C/Si3N4 pre-placed powders has been investigated in detail. SEM result indicated that a composite coating with metallurgical joint to the substrate was formed. XRD result indicated that the composite coating mainly consisted of γ-(Fe, Ni), FeAl, Ti3Al, TiC, TiNi, TiC0.3N0.7, Ti2N, SiC, Ti5Si3 and TiNi. Compared with Ti-3Al-2V substrate, an improvement of the micro-hardness and the wear resistance was obser...

  13. Role of plasma-solid interactions in pulsed corona discharge generated in water using ceramic-coated wire electrodes

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Petr; Člupek, Martin; Babický, Václav; Šunka, Pavel

    Francie: Universite de Poitiers, Poitiers, France, 2006, nestránkováno. [International Symposium on Non-Thermal Plasma Technology for Pollution Control and Sustainable Energy Development (ISNTPT-5)/5th./. Saint Pierre d'Oleron, Oleron Island, Francie (FR), 19.06.2006-23.06.2006] R&D Projects: GA AV ČR(CZ) KSK2043105 Institutional research plan: CEZ:AV0Z20430508 Keywords : corona discharge * composite electrode * ceramic * breakdown Subject RIV: BL - Plasma and Gas Discharge Physics

  14. Multilayer thermal barrier coating systems

    Science.gov (United States)

    Vance, Steven J.; Goedjen, John G.; Sabol, Stephen M.; Sloan, Kelly M.

    2000-01-01

    The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

  15. HIGHWAY INFRASTRUCTURE FOCUS AREA NEXT-GENERATION INFRASTRUCTURE MATERIALS VOLUME I - TECHNICAL PROPOSAL & MANAGEMENTENHANCEMENT OF TRANSPORTATION INFRASTRUCTURE WITH IRON-BASED AMORPHOUS-METAL AND CERAMIC COATINGS

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C

    2007-12-04

    . The high boron content of this particular amorphous metal made it an effective neutron absorber, and suitable for criticality control applications. These amorphous alloys appear to maintain their corrosion resistance up to the glass transition temperature. Visionary research is proposed to extend the application of corrosion-resistant iron-based amorphous metal coatings, and variants of these coatings, to protection of the Nation's transportation infrastructure. Specific objectives of the proposed work are: (1) fabrication of appropriate test samples for evaluation of concept; (2) collection of production and test data for coated steel reinforcement bars, enabling systematic comparison of various coating options, based upon performance and economic considerations; and (3) construction and testing of concrete structures with coated steel reinforcement bars, thereby demonstrating the value of amorphous-metal coatings. The benefits of ceramic coatings as thermal barriers will also be addressed.

  16. Effect of Anodic Current Density on Characteristics and Low Temperature IR Emissivity of Ceramic Coating on Aluminium 6061 Alloy Prepared by Microarc Oxidation

    Directory of Open Access Journals (Sweden)

    Mohannad M. S. Al Bosta

    2013-01-01

    Full Text Available High emitter MAO ceramic coatings were fabricated on the Al 6061 alloy, using different bipolar anodic current densities, in an alkali silicate electrolyte. We found that, as the current density increased from 10.94 A/dm2 to 43.75 A/dm2, the layer thickness was increased from 10.9 μm to 18.5 μm, the surface roughness was increased from 0.79 μm to 1.27 μm, the area ratio of volcano-like microstructure was increased from 55.6% to 59.6%, the volcano-like density was decreased from 2620 mm−2 to 1420 mm−2, and the γ-alumina phase was decreased from 66.6 wt.% to 26.2 wt.%, while the α-alumina phase was increased from 3.9 wt.% to 27.6 wt.%. The sillimanite and cristobalite phases were around 20 wt.% and 9 wt.%, respectively, for 10.94 A/dm2 and approximately constant around 40 wt.% and less than 5 wt.%, respectively, for the anodic current densities 14.58, 21.88, and 43.75 A/dm2. The ceramic surface roughness and thickness slightly enhanced the IR emissivity in the semitransparent region (4.0–7.8 μm, while the existing phases contributed together to raise the emissivity in the opaque region (8.6–16.0 μm to higher but approximately the same emissivities.

  17. Studies of glass ceramic coating effect (Cr2O3-SiO2-P2O5) on permeation parameters of hydrogen isotopes through F82H steel

    International Nuclear Information System (INIS)

    Full text: Using of tritium breeding liquid metal systems (Li, PbLi17) in some types of future fusion devices arise additional demands to blanket structural materials. One of the problems here is the creation of structure material or material with protective barrier, having minimal possible value of tritium permeation through itself or having maximal permeation reduction factor (PRF). Steel F82H is supposed to be used as a blanket structure material of fusion machine. Presented work shows the experiments results on studies of glass ceramic coating over F82H steel. The tests were carried out within temperature range 673-873 K at hydrogen outlet pressure of 1000-1500 Pa. The constant of deuterium permeation was calculated using experiment results for low activated steel F82H with Cr2O3 - SiO2 - P2O5 glass ceramic coating from outlet side of sample. PRF of coating under investigation was calculated relatively to outlet. Experimental results show, that given coating are in an accord with all demands, concerned with development of protective coating, which decrease the tritium leakage from fusion device blanket

  18. Preparation of Nickle-adulterated Foam Ceramics and Nickle-coated on its Surface%Al2O3泡沫金属复合陶瓷的制备及表面包镍处理

    Institute of Scientific and Technical Information of China (English)

    杨少锋; 晏彬彬; 吴阳; 李恺

    2013-01-01

    采用有机泡沫前驱体浸渍工艺制备Al2O3泡沫金属复合陶瓷.通过涂覆处理获得缺陷较少、结构均匀的泡沫金属复合陶瓷;采用Ni(NO3)2·6H2O液相包覆+氢气热还原技术对泡沫金属复合陶瓷体表面进行金属化处理.采用SEM、EDS研究了含镍泡沫陶瓷体的结构及金属化处理后的表面形貌.结果表明,镍颗粒均匀地分布在泡沫陶瓷骨架内部,骨架中心宏观孔保持通孔;经包覆处理后,金属层较均匀地附着于陶瓷表面.%The open cell Nickle-adulterated alumina foam ceramics were prepared by impregnating a polymeric sponge with aqueous ceramic slurry. The Nickle-adulterated alumina foam ceramics with a very u-niform macrostructure and few flaws were produced by recoating process. A nickelousnitrate liquid-phase coating and deoxidized by hydrogen method was used to deposit Ni on the surface of Ni-adulterated alumina foams. Coating morphology and microstructure of the foam ceramics were observed by SEM (scanning electron microscope) and EDS (energy dispersed spectrometer). The results indicate that Ni particles are distributed uniformly in the foam skeleton and pores in the sintered body exhibit interconnected. Furthermore, Ni is successfully coated on alumina foams surface after coating process.

  19. Dissolution and precipitation behaviors of silicon-containing ceramic coating on Mg-Zn-Ca alloy in simulated body fluid.

    Science.gov (United States)

    Pan, Yaokun; Chen, Chuanzhong; Wang, Diangang; Huang, Danlan

    2014-10-01

    We prepared Si-containing and Si-free coatings on Mg-1.74Zn-0.55Ca alloy by micro-arc oxidation. The dissolution and precipitation behaviors of Si-containing coating in simulated body fluid (SBF) were discussed. Corrosion products were characterized by scanning electron microscope (SEM), X-ray diffractometer (XRD), fourier transform infrared spectrometer (FT-IR) and X-ray photoelectron spectrometer (XPS). Electrochemical workstation, inductively coupled plasma atomic emission spectrometer (ICP-AES), flame atomic absorption spectrophotometer (AAS) and pH meter were employed to detect variations of electrochemical parameter and ions concentration respectively. Results indicate that the fast formation of calcium phosphates is closely related to the SiOx(n-) groups, which induce the heterogeneous nucleation of amorphous hydroxyapatite (HA) by sorption of calcium and phosphate ions. PMID:25174544

  20. Performance of oxygen sensor and corrosion of surface-coated steels, ceramics and refractory metals in high temperature LBE

    International Nuclear Information System (INIS)

    Characteristics of zirconia solid electrolyte oxygen sensor with a reference electrode of oxygen saturated bismuth were investigated for measuring oxygen concentration in molten lead and lead-bismuth eutectic (LBE, 45%Pb-55%Bi). An alumina test pot was used for the test to avoid the effect of metallic impurities on the performance. Lead and LBE temperature ranged in 350-700 deg C. Oxygen potential in the melt was controlled in the range of 1 x 10-5-5 x 10-9 wt.%. The measured electromotive forces (EMF) in lead and LBE agreed well with theoretical ones above certain temperatures. Under the active control of oxygen concentration, Al-Fe-coated steel, refractory metals and silicon carbide were immersed in LBE at 700 deg. C in the alumina test pot for 1 000 hours. After the immersion, a thin and stable protection layer of aluminium oxide was formed on the Al-Fe-alloy-coated steels and the coated surface layer still remained on the base specimen without penetration of LBE into matrix of specimen. No penetration of LBE into the refractory metals of W and Mo was observed with no appreciable weight changes after the immersion, although the penetration of LBE into Nb was observed. No penetration of LBE into silicon carbide (SiC) and titanium silicon carbide (Ti3SiC2) was observed with no appreciable weight changes. (authors)

  1. Antibacterial and mechanical properties of ceramic orthodontic brackets with nano silver hydroxyapatite coating%纳米银羟基磷灰石涂层正畸陶瓷托槽的抗菌与力学性能

    Institute of Scientific and Technical Information of China (English)

    周冠军; 杨大鹏; 刘新芳; 胡博

    2015-01-01

    背景:临床口腔正畸过程中,陶瓷托槽存在抗菌性能和力学性能不足的情况,容易导致各种不良事件的出现,影响正畸效果。目的:观察纳米银羟基磷灰石涂层陶瓷托槽的抗菌与力学性能。方法:制备纳米银羟基磷灰石涂层陶瓷托槽,采用扫描电镜观察涂层表面,并进行涂层表面定量抗菌实验。将50颗离体人上颌前磨牙随机分为2组,实验组(n=25)粘接纳米银羟基磷灰石涂层陶瓷托槽,对照组(n=25)粘接普通陶瓷托槽,检测两组抗剪切强度。结果与结论:纳米银羟基磷灰石涂层整体结构有序,均匀致密,羟基磷灰石具有多孔状结构,孔径属于微纳米级别,其中均匀分布大量纳米银颗粒。定量抗菌实验显示,纳米银羟基磷灰石涂层陶瓷托槽对大肠杆菌、白色葡萄球菌有较强的抑制作用,抗菌率均在95%以上。实验组抗剪切强度低于对照组(P <0.05)。表明纳米银羟基磷灰石涂层陶瓷托槽具有良好的抗菌和力学性能,满足临床正畸过程中力学变化的需求。%BACKGROUND:In the clinical orthodontics, ceramic brackets have deficiencies in the aspects of antibacterial and mechanical properties, which easily lead to the emergence of a variety of adverse events and influence the orthodontic effect. OBJECTIVE:To observe the antibacterial and mechanical properties of nano silver hydroxyapatite coating ceramic brackets. METHODS:The nano silver hydroxyapatite coating ceramic brackets were prepared. Scanning electron microscopy was used to observe the coating surface. Coating antibacterial experiment was conducted. Totaly 50 in vitro human maxilary premolars were randomly divided into two groups (n=25 per group): experimental and control groups. Premolars in the experimental group were bonded to nano silver coating hydroxyapatite ceramic brackets, and premolars in the control group were bonded to ordinary ceramic brackets. The

  2. 陶瓷涂层性能影响因素及工艺优化研究%Research of Influencing Factors on Performance and Process Optimization of Ceramic Coating

    Institute of Scientific and Technical Information of China (English)

    黄燕滨; 邵新海; 宋高伟; 仲流石

    2012-01-01

    为了提高Al2O3陶瓷涂层的综合性能,对陶瓷涂层性能影响因素进行了正交试验设计.以磨损量、结合强度和耐腐蚀性为评价指标,得出了在Al2O3陶瓷颗粒粒径为160目,颗粒填入量为125%,涂层厚度为1mm时,综合性能最好.同时利用差示扫描量热(DSC)技术推算出胶粘剂体系的最佳固化工艺为50℃(1h)→100 ℃(2 h)→225 ℃(1h);采用磷酸阳极化(PAA)方法对铝合金基体表面进行处理,使其与涂层之间获得最好的结合强度.%To improve the comprehensive performance of A12O3 ceramic coating, orthogonal design was applied to the influencing factors of ceramic coating. Abrasion amount, bonding strength, and corrosion resistance were selected as evaluation index. The results showed that when the size of A12O3 ceramic particle is 160 meshes, fillings of particle is 125%, and thickness of coating is lmm, the coating has the best comprehensive performance. The best cure process of its adhesive system was obtained by using differential scanning calorimetry(DSC) and calculation, which is 50℃(lh)→100℃ (2 h)→225 ℃ (1h); to improve the adhesive strength of coating, the surface of aluminium alloy is treated by phosphoric acid anodizing (PAA).

  3. Y-TZP/LZAS 微晶玻璃功能梯度涂层残余应力分析%Analysis on the residual stresses in Y-TZP/LZAS glass-ceramic gradient coatings

    Institute of Scientific and Technical Information of China (English)

    龚伟; 周黎明; 王恩泽

    2014-01-01

    为了提高钢基体微晶玻璃涂层的韧性,设计了 Y-TZP/LZAS 微晶玻璃功能梯度涂层。运用有限元软件,分析了梯度层数目、梯度层厚度和层间3Y-TZP 体积组分差等参数对涂层/基体界面残余热应力的影响。结果表明,涂层表层主要分布为径向压应力;在涂层/基体界面的边缘区域应力集中较为严重;涂层/基体界面处的径向应力、轴向应力和剪切应力以及梯度层数目、梯度层厚度和3Y-TZP 体积组分差均有密切关系。最后通过涂搪法制备了梯度涂层,测试了涂层表面残余应力,并与有限元结果对比,以验证模拟的准确性。%Y-TZP/LZAS glass-ceramic gradient coatings on Q235 steel substrate were designed in order to im-prove the toughness of glass-ceramic coatings.The effects of the number of graded layers,coating thickness and the volume difference of 3Y-TZP between layers on the residual stress were analyzed by using finite element software.The results show that radial compressive stress was distributed on the surface of graded coatings. There are clear stress concentration in the coating/substrate interface edge.The layer numbers,the coating thickness,and the volume difference of 3Y-TZP between layers have an important influence on radial stress, axial stress and shear stress in the coating/substrate interface.Y-TZP/ LZAS glass-ceramic gradient coatings were fabricated on the Q235 steel substrate via slurry methord.The residual stress of gradient coatings were measured by X-ray diffraction approach to verify the reliability of the simulation.

  4. Research on Grinding Force of Nanometre Ceramic Coatings%纳米结构陶瓷涂层磨削力的研究

    Institute of Scientific and Technical Information of China (English)

    刘伟香; 周忠于

    2012-01-01

    对纳米陶瓷涂层材料在金刚石砂轮精密磨削过程中的磨削力(包括单位磨削面积磨削力和砂轮单颗磨粒磨削力)进行了研究,分析了砂轮磨削深度、工件进给速度、金刚石砂轮磨粒尺寸以及粘结剂类型等磨削参数对磨削力的影响规律.%This paper makes a study of the grinding force in the precision grinding process of nanometre ceramic coatings with dia mond wheel,including the grinding forces of unit grinding dimension and wheel' s single abrasive grits and analyzes the effect of grinding parameters, such as grinding depth of grinding wheel, feedrate of workplace, diamond wheel grit size as well as bond type on the grinding force.

  5. Effect of interactions between Co(2+) and surface goethite layer on the performance of α-FeOOH coated hollow fiber ceramic ultrafiltration membranes.

    Science.gov (United States)

    Zhu, Zhiwen; Zhu, Li; Li, Jianrong; Tang, Jianfeng; Li, Gang; Hsieh, Yi-Kong; Wang, TsingHai; Wang, Chu-Fang

    2016-03-15

    The consideration of water energy nexus inspires the environmental engineering community to pursue a more sustainable strategy in the wastewater treatment. One potential response would be to enhance the performance of the low-pressure driven filtration system. To reach this objective, it is essential to have a better understanding regarding the surface interaction between the target substance and the surface of membrane. In this study, the hollow fiber ceramic membranes were coated with a goethite layer in order to enhance the Co(2+) rejection. Experimental results indicate that higher Co(2+) rejections are always accompanied with the significant reduction in the permeability. Based on the consideration of electroviscous effect, the surface interactions including the induced changes in viscosity, pore radius and Donnan effect in the goethite layer are likely responsible for the pH dependent behaviors in the rejection and permeability. These results could be valuable references to develop the filtration system with high rejection along with acceptable degree of permeability in the future. PMID:26704473

  6. Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  7. Effect of rare earth doping on thermo-physical properties of lanthanum zirconate ceramic for thermal barrier coatings

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hongming; YI Danqing

    2008-01-01

    The effect of rare earth doping on thermo-physical properties of lanthanum zirconate was investigated. Oxide powders of various compositions La2Zr2O7 were synthesized by coprecipitation-calcination method. High-temperature dilatometer, DSC, and laser thermal dif-fusivity methods were used to analyze thermal expansion coefficient (TEC), specific heat, and thermal diffusivity. The results showed that CeO2 doped pyrochlores La2(Zr1.8Ce0.2)2O7 and La1.7(DyNd)0.15(Zr0.8Ce0.2)2O7 had higher TEC than La2Zr2O7 and Lal.7Dyo.3Zr207. La2(Zr1.8Ce0.2)2O7, La1.7Oy0.3Zr2O7, and La1.7(DyNd)0.15(Zr0.8Ce0.2)2O7 had lower thermal conductivity than undoped La2Zr2O7. The Dy203, Nd2O3, and CeO2 codoped composition showed the lowest thermal conductivity and the highest TEC. Thermo-physical results also indicated that TEC of rare earth oxide doped La2Zr2O7 ceramic was slightly higher than that of conventional ZrO2-8wt.% Y2O3 (8YSZ), and its thermal conductivity was lower than that of 8YSZ.

  8. Research Progress of SiC Ceramic Surface Modification with Coating for Mirror%反射镜用SiC陶瓷表面改性涂层的研究进展

    Institute of Scientific and Technical Information of China (English)

    蒋芳; 杨勇; 黄政仁

    2012-01-01

    The recent development of SiC ceramic surface modification with coating was summaried. The merits and demerits of chemical vapor deposition (CVD) through which the SiC coating and the Si coating were prepared were introduced as well as physical vapor deposition (PVD). The future development of SiC surface modification was also discussed.%综述了反射镜用SiC陶瓷表面改性涂层的研究现状,重点介绍了化学气相沉积(CVD)和物理气相沉积(PVD)制备SiC涂层和硅涂层的优缺点及制备机理,并讨论了SiC陶瓷光学部件表面改性今后的发展方向。

  9. Method for Waterproofing Ceramic Materials

    Science.gov (United States)

    Cagliostro, Domenick E. (Inventor); Hsu, Ming-Ta S. (Inventor)

    1998-01-01

    Hygroscopic ceramic materials which are difficult to waterproof with a silane, substituted silane or silazane waterproofing agent, such as an alumina containing fibrous, flexible and porous, fibrous ceramic insulation used on a reentry space vehicle, are rendered easy to waterproof if the interior porous surface of the ceramic is first coated with a thin coating of silica. The silica coating is achieved by coating the interior surface of the ceramic with a silica precursor converting the precursor to silica either in-situ or by oxidative pyrolysis and then applying the waterproofing agent to the silica coated ceramic. The silica precursor comprises almost any suitable silicon containing material such as a silane, silicone, siloxane, silazane and the like applied by solution, vapor deposition and the like. If the waterproofing is removed by e.g., burning, the silica remains and the ceramic is easily rewaterproofed. An alumina containing TABI insulation which absorbs more that five times its weight of water, absorbs less than 10 wt. % water after being waterproofed according to the method of the invention.

  10. 粉末表面涂层陶瓷的硬质合金刀具材料%Advanced Cutting Tool Material by Hot-Pressing Ceramic Coated Carbide Powders

    Institute of Scientific and Technical Information of China (English)

    陈元春; 黄传真; 艾兴; 王宝友

    2000-01-01

    Carbide powders were coated with very thin alumina films by the sol-gel process. The coated powders were then hot-pressed as a novel cutting tool material. This material possessed relatively high hardness, which led to similar wear resistant ability with ceramics. At the same time, its bending strength and toughness were higher than that of the ceramic cutting tool materials with similar composition. As a result, these tools show good performance in cutting high-hardness materials. SEM and TEM photographs of coated powders and fracture surface were presented as an aid to illustrate the strengthen mechanism.%使用溶胶-凝胶法在硬质合金粉末表面涂覆了一层氧化铝陶瓷,涂层粉末经热压烧结后, 制得一种新型的涂层刀具材料. 这种刀具材料的耐磨性与陶瓷材料接近,并且具有较高的强度和韧性,在切削高硬度材料时表现出良好性能,具有广阔的应用前景.

  11. Preparation of Microcapsule Ceramic- Like Emulsion Used for Noval Heat Insulation Architectural Coatings%新型保温建筑涂料用微胶囊仿瓷乳液的制备

    Institute of Scientific and Technical Information of China (English)

    万义玲; 张琪; 麦东彬; 粱路路

    2011-01-01

    采用微胶囊技术制备空囊材料,以减少材料的导热性能,从而达到保温、节能降耗和提高材料性能的目的.以三聚氰胺为壁材,空气(或二氧化碳气体)为芯材,司盘-60为乳化剂,采用锐孔法和乳化缩聚技术制备涂料用微胶囊仿瓷乳液.以涂料用微胶囊的外形、粒径大小,涂料用微胶囊仿瓷乳液稳定性、导热系数为评价指标,对涂料用微胶囊仿瓷乳液制备方法、工艺条件及乳液性能进行了研究.结果表明:方法可行,工艺简便,经济;涂料用微胶囊仿瓷乳液保温性能较佳,且具有良好的仿瓷性能.%The microcapsule ceramic -like emulsion used for coating was prepared using melamine as wall,air (or carbon dioxide) as core and Span -60 as emulsifier by combining the orificing method and emulsification condensation polymerization technique. The profile, particle size, stability of microcapsule ceramic -like emulsion and its heat transfer coeffcient were used as evaluating criteria to study the preparation technology microcapsule emulsion for coating and its properties. Results showed the method was simple feasible and economic, which could be used to provide a coating with good heat insulation performance and ceramic -like effect.

  12. Preparation of micro-arc oxidation coatings on magnesium alloy and its thermal shock resistance property

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhaohua; ZENG Xiaobin; YAO Zhongping

    2006-01-01

    In the NaAlO2-Na2SiO3 compound system, the ceramic coatings were prepared on magnesium alloy by micro-arc oxidation. The morphology, phase composition, and thermal shock resistance of the ceramic coatings were studied by scanning electron microscope, X-ray diffraction and thermal shock tests, respectively. The results showed that the ceramic coating contains MgO, MgAl2O4, as well as a little amount of Mg2SiO4. The thickness of the ceramic coatings induced ceramic coating is the best. The hardness of the ceramic coating is up to 10 GPa or so.

  13. The Development of Environmental Barrier Coating Systems for SiC-SiC Ceramic Matrix Composites: Environment Effects on the Creep and Fatigue Resistance

    Science.gov (United States)

    Zhu, Dongming; Ghosn, Louis J.

    2014-01-01

    Topics covered include: Environmental barrier coating system development: needs, challenges and limitations; Advanced environmental barrier coating systems (EBCs) for CMC airfoils and combustors; NASA EBC systems and material system evolutions, Current turbine and combustor EBC coating emphases, Advanced development, processing, testing and modeling, EBC and EBC bond coats: recent advances; Design tool and life prediction of coated CMC components; Advanced CMC-EBC rig demonstrations; Summary and future directions.

  14. Scratch resistance of SiO{sub 2} and SiO{sub 2} - ZrO{sub 2} sol-gel coatings on glass-ceramic obtained by sintering; Resistencia al desgaste de recubrimientos sol-gel de SiO{sub 2} y SiO{sub 2} - ZrO{sub 2} sobre materiales vitroceramicos obtenidos por sinterizacion

    Energy Technology Data Exchange (ETDEWEB)

    Soares, V. O.; Soares, P.; Peitl, O.; Zanotto, E. D.; Duran, A.; Castro, Y.

    2013-10-01

    The sol-gel process is widely used to obtain coatings on glass-ceramic substrates in order to improve the scratch and abrasion resistance, also providing a bright and homogeneous appearance of a glaze avoiding expensive final polishing treatments. This paper describes the preparation of silica and silica / zirconia coatings by sol-gel method on Li{sub 2}O-Al{sub 2}O3-SiO{sub 2} (LAS) glassceramic substrates produced by sintering. The coatings were deposited by dip-coating on LAS substrates and characterized by optical microscopy and spectral ellipsometry. On the other hand, hardness and elastic modulus, coefficient of friction and abrasion and scratch resistance of the coatings were determined and compared with the substrate properties. Coatings deposited on LAS glass-ceramic confere the substrate a bright and homogeneous aspect, similar to a glaze, improving the appearance and avoiding the final polishing. However these coatings do not increase the scratch resistance of the substrate only equaling the properties of the glass-ceramic. (Author)

  15. Influence of Manganese Element on Phase Composition of Plasma Electrolytic Oxidation Ceramic Coatings%Mn元素对等离子体电解氧化陶瓷层相组成的影响

    Institute of Scientific and Technical Information of China (English)

    苗景国; 陈秋荣; 董香芸; 郝康达; 吴润; 卫中领

    2013-01-01

    Applying plasma electrolytic oxidation in condition of Na2SiO3-NaOH solutions on pure aluminum 1070 and aluminum alloy 3003.The thickness and microhardness of ceramic coatings were tested,and microstructure and phase composition of ceramic layer were analyzed.Results showed that,ceramic coatings of pure aluminum 1070 was consisted of phase α-Al2O3 and phase γ-Al2O3,while aluminum alloy 3003 contained phase γ-Al2O3 only; At the same processing time,the ceramic coatings of aluminum alloy 3003 were thicker but lower in micro-hardness and compactness than those of pure aluminum 1070.Manganese element inhibited the formation of high temperature alumina phase on the reaction process.%在Na2SiO3-NaOH体系的电解液中,对Mn元素含量不同的1070纯铝及3003铝合金进行等离子体电解氧化.对所得陶瓷层的厚度及显微硬度进行了测试,并分析了陶瓷层的微观形貌及相组成.结果表明:1070纯铝表面所形成的陶瓷层由α-Al2O3及γ-Al2O3组成,而3003铝合金表面所形成的陶瓷层则由γ-Al2O3组成;处理时间相同时,3003铝合金所形成的陶瓷层较纯铝1070所形成的陶瓷层更厚,但显微硬度更低,致密性下降,Mn元素对反应过程中高温氧化铝相的形成有一定的抑制作用.

  16. Influence of Concentrations of KOH and Na2SiO3 Electrolytes on the Electrochemical Behavior of Ceramic Coatings on 6061 Al Alloy Processed by Plasma Electrolytic Oxidation

    Institute of Scientific and Technical Information of China (English)

    Arash Fattah-Alhosseini; Mojtaba Vakili-Azghandi; Mohsen K.Keshavarz

    2016-01-01

    In this study,ceramic coatings were deposited on 6061 A1 alloy using a plasma electrolytic oxidation (PEO) technique,and the effect of concentrations of KOH and Na2SiO3 as electrolytes for PEO process was studied on microstructure,chemical composition,and electrochemical behavior of PEO coatings formed on the 6061 A1 alloy.The results indicated that the increase in concentration of KOH led to rise in electrical conductivity of electrolyte.Consequently,the breakdown voltage reduced,which in turn improved the surface quality and the corrosion behavior.Moreover,the increase in concentration of Na2SiO3 resulted in the increase in incorporation of Si in the coating,which led to a higher corrosion potential in the concentration of 4 g L-1.According to this investigation,the best protection behavior of coatings can be obtained when the KOH and Na2SiO3 concentrations in PEO electrolyte are equal to 4 g L-1.

  17. In-pile Tritium Permeation through F82H Steel with and without a Ceramic Coating of Cr2O3-SiO2 Including CrPO4

    International Nuclear Information System (INIS)

    Development of coating on blanket structural materials with significant reduction capability of tritium permeation is highly required in order to realize a reasonable design of a tritium recovery and processing system of demonstration (DEMO) fusion reactors. An effective coating has been developed in Japan Atomic Energy Agency (JAEA) using a ceramic material of Cr2O3-SiO2 including CrPO4. In previous out-of-pile deuterium permeation experiments at 600 oC [T.V. Kulsartov et al., Fusion Eng. Des. 81 (2006) 701], a significant permeation reduction factor (PFR) of about 300 was obtained for the coating on the inner-side surface of tubular diffusion cells made by ferritic steel (F82H). In the present study, in-pile experiments on tritium permeation were conducted for F82H steel with and without the same coating, using a testing reactor IGV-1M in Kazakhstan. The tritium source used was liquid lithium-lead eutectics, Pb17Li, which was poured into a space around a tubular diffusion cell (specimen) of F82H steel with or without the coating on the inner side the cell. The irradiation time was about 4 hours, which corresponds to a fast-neuron fluence of about 2x1021m-2 (E > 1.1 MeV). The permeation reduction factor (PRF) was obtained by comparison of kinetics curves of tritium permeation through the diffusion cell of F82H steel with and without the coating. The PRFs at 600 and 500 oC were 292 and 30, respectively. These values are close to corresponding PRF values of 307 and 45, which had been obtained at 600 and 500 oC, respectively, in the previous out-of-pile experiments [T.V. Kulsartov et al., Fusion Eng. Des. 81 (2006) 701]. (author)

  18. Performance of Ceramics in Severe Environments

    Science.gov (United States)

    Jacobson, Nathan S.; Fox, Dennis S.; Smialek, James L.; Deliacorte, Christopher; Lee, Kang N.

    2005-01-01

    Ceramics are generally stable to higher temperatures than most metals and alloys. Thus the development of high temperature structural ceramics has been an area of active research for many years. While the dream of a ceramic heat engine still faces many challenges, niche markets are developing for these materials at high temperatures. In these applications, ceramics are exposed not only to high temperatures but also aggressive gases and deposits. In this chapter we review the response of ceramic materials to these environments. We discuss corrosion mechanisms, the relative importance of a particular corrodent, and, where available, corrosion rates. Most of the available corrosion information is on silicon carbide (SIC) and silicon nitride (Si3N4) monolithic ceramics. These materials form a stable film of silica (SO2) in an oxidizing environment. We begin with a discussion of oxidation of these materials and proceed to the effects of other corrodents such as water vapor and salt deposits. We also discuss oxidation and corrosion of other ceramics: precurser derived ceramics, ceramic matrix composites (CMCs), ceramics which form oxide scales other than silica, and oxide ceramics. Many of the corrosion issues discussed can be mitigated with refractory oxide coatings and we discuss the current status of this active area of research. Ultimately, the concern of corrosion is loss of load bearing capability. We discuss the effects of corrosive environments on the strength of ceramics, both monolithic and composite. We conclude with a discussion of high temperature wear of ceramics, another important form of degradation at high temperatures.

  19. Preparation and Friction Properties of Ceramic Coating on Tantalum by Micro-arc Oxidation%钽表面微弧氧化陶瓷层的制备及耐磨性能研究

    Institute of Scientific and Technical Information of China (English)

    杨海彧; 李争显; 李宏战; 王毅飞; 赵文

    2015-01-01

    Objective To study the formation mechanism and the change of wear resistance performance of micro-arc oxidation ceramic coatings on tantalum under different experimental circumstances. Methods Ceramic coating on the surface of tantalum me-tal was prepared by micro-arc oxidation technology. The surface profile of coating was studied by SEM. Moreover, the influence of experiment parameters like voltage, current and duty cycle, frequency on the abrasion resistance of ceramic coating was investigated in details. Results The best surface quality performance was observed under the set of parameters as follow:400 V, 1000 Hz, 20 min;the best wear resistance performance was observed under the set of parameters:350 V, 1000 Hz, 10 min. Conclusion The tantalum metal surface by micro-arc oxidation could obviously reduce the friction coefficient and improve the wear resistance of tan-talum metal surface.%目的:研究不同电压、电流和氧化时间下,钽表面微弧氧化陶瓷层的生长机理与耐磨性能的变化。方法通过微弧氧化技术在钽金属表面制备陶瓷层,并采用扫描电子显微镜观察陶瓷层的表面形貌,采用摩擦磨损试验仪对陶瓷层的摩擦学性能进行研究,探讨放电电压、放电频率、氧化时间对陶瓷层摩擦系数的影响。结果在电压400 V、频率1000 Hz、氧化时间20 min条件下获得的陶瓷层表面质量最好;在电压350 V,频率1000 Hz,氧化时间10 min条件下获得的陶瓷层耐摩擦性能最好。结论对钽金属表面进行微弧氧化处理,可以显著降低钽金属表面的摩擦系数,提高耐磨性能。

  20. Structural Ceramics

    Science.gov (United States)

    1986-01-01

    This publication is a compilation of abstracts and slides of papers presented at the NASA Lewis Structural Ceramics Workshop. Collectively, these papers depict the scope of NASA Lewis' structural ceramics program. The technical areas include monolithic SiC and Si3N4 development, ceramic matrix composites, tribology, design methodology, nondestructive evaluation (NDE), fracture mechanics, and corrosion.

  1. Advanced Ceramics

    International Nuclear Information System (INIS)

    The First Florida-Brazil Seminar on Materials and the Second State Meeting about new materials in Rio de Janeiro State show the specific technical contribution in advanced ceramic sector. The others main topics discussed for the development of the country are the advanced ceramic programs the market, the national technic-scientific capacitation, the advanced ceramic patents, etc. (C.G.C.)

  2. Rock-hard coatings

    NARCIS (Netherlands)

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has sign

  3. Tantalum-Based Ceramics for Refractory Composites

    Science.gov (United States)

    Stewart, David A.; Leiser, Daniel; DiFiore, Robert; Kalvala, Victor

    2006-01-01

    A family of tantalum-based ceramics has been invented as ingredients of high-temperature composite insulating tiles. These materials are suitable for coating and/or permeating the outer layers of rigid porous (foam-like or fibrous) ceramic substrates to (1) render the resulting composite ceramic tiles impervious to hot gases and (2) enable the tiles to survive high heat fluxes at temperatures that can exceed 3,000 F ( 1,600 C).

  4. Dip coating of boron nitride thin films on nicalon fibers

    International Nuclear Information System (INIS)

    This paper discusses a process involving dip coating of ceramic fibers in H3BO3 solution followed by reaction with NH3 has resulted in the formation of a BN coating on Nicalon and a carbon coated Nicalon fiber. BN coated C-Nicalon fiber maintained its strength during the coating process, while the BN coated Nicalon did not

  5. Fabrication of ceramic coatings on NIFS-HEAT by arc-source plasma-assisted deposition method for fusion blanket application

    International Nuclear Information System (INIS)

    Al2O3 coatings and AlN coatings were fabricated by filtered arc-source plasma assisted deposition method on a low activation vanadium alloy NIFS-HEAT-2' for self-cooled liquid blanket application. The AlN coating had a low electrical resistivity due to relatively large amount of Al deposited in the coatings than that of N. Al2O3 bulk specimens and the Al2O3 coating were sintered in Li20-Sn80 and Flibe. They showed a high compatibility in the Li20-Sn80 at 823 K for 1 day. In the Flibe at 823 K for 2 days, on the contrast, slight mass decreases of the bulk specimens were observed and the coatings disappeared. (author)

  6. Composition and mechanical properties of hard ceramic coating containing {alpha}-Al{sub 2}O{sub 3} produced by microarc oxidation on Ti-6Al-4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sun Xuetong; Jiang Zhaohua; Xin Shigang; Yao Zhongping

    2005-01-03

    Ceramic coatings with 1100-1600 HK{sub 50} {sub g} hardness were deposited on Ti-6Al-4V alloy substrates using a microarc oxidation (MAO) technique, based on a dielectric barrier discharge created during anodic oxidation in an aqueous electrolyte. The influences of electrolyte concentration, deposition time and the cathodic to anodic current ratio Ic/Ia on phase composition and mechanical properties of the coatings have been studied using X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron probe microanalysis methods (EPMA), as well as microhardness measurement, direct pull-off and impact tests. The results show {alpha}-Al{sub 2}O{sub 3} phase, which greatly improved the hardness of the coatings, can be obtained at high concentration of NaAlO{sub 2} and its relative content increases with decreasing Ic/Ia ratio. The direct pull-off test and impact test results indicate that the films have the excellent adhesion with the substrate.

  7. Plasma-Spraying Ceramics Onto Smooth Metallic Substrates

    Science.gov (United States)

    Miller, Robert A.; Brindley, William J.; Rouge, Carl J.; Leissler, George

    1992-01-01

    In fabrication process, plasma-sprayed ceramic coats bonded strongly to smooth metallic surfaces. Principal use of such coats in protecting metal parts in hot-gas paths of advanced gas turbine engines. Process consists of application of initial thin layer of ceramic on smooth surface by low-pressure-plasma spraying followed by application of layer of conventional, low-thermal-conductivity atmospheric-pressure plasma-sprayed ceramic.

  8. Thermal cycling effects on degradation of YBa2Cu3O7-x ceramics in water vapour and protective properties of hydrocarbon coatings

    International Nuclear Information System (INIS)

    The thermocycling of high temperature superconducting ceramics YBa2Cu3O7-x from 77 to 273 K was shown to decrease strongly its resistance to the influence of saturated water steam. The deposition of hydrocarbon films can reduce considerably the degradation of superconducting characteristics

  9. Q235钢基体表面微晶玻璃功能梯度涂层的残余应力分析%Residual stress analysis in functionally gradient glass-ceramic coatings on Q235 steel

    Institute of Scientific and Technical Information of China (English)

    周黎明; 龚伟; 王恩泽; 韩腾

    2014-01-01

    运用ANSYS有限元软件对Q235钢/微晶玻璃梯度涂层复合材料在制备过程中产生的残余应力进行了数值模拟。建立了该复合材料的有限元分析模型,探讨了不同层数、层厚对该复合材料体系残余应力分布的影响。结果表明:在基体与梯度涂层的界面边缘处存在较大的应力集中;随着层数或层厚的增加,涂层表面最大径向残余压应力增大;梯度层数和涂层厚度对界面处的残余应力都有明显影响。此模拟分析结果可以为该梯度涂层复合材料的设计和制备提供理论依据和参考。%The residual stress of Q 235 steel/glass-ceramic gradient coatings was simulated with the commercial software ANSYS .The finite element analysis model of the composite was established and the distributions of residual stress in the composite system had been investigated based on various the layer numbers and the coating thickness .The results show that there is a remarkable stress concentration near the edge of the interface between substrate and coating .The maximum radial stress on the coating surface increase with the layer number or the coating thickness increasing .The layer numbers and the thickness of gradient coatings have a significant effect on the residual stress at the interface between substrate and coating .The simulation results can be used to provide theoretical guidance for the design and preparation of the composite.

  10. Solar Absorptance of Cermet Coatings Evaluated

    Science.gov (United States)

    Jaworske, Donald A.

    2004-01-01

    Cermet coatings, molecular mixtures of metal and ceramic, are being considered for the heat inlet surface of solar Stirling convertors. In this application, the key role of the cermet coating is to absorb as much of the incident solar energy as possible. To achieve this objective, the cermet coating has a high solar absorptance value. Cermet coatings are manufactured utilizing sputter deposition, and many different metal and ceramic combinations can be created. The ability to mix metal and ceramic at the atomic level offers the opportunity to tailor the composition, and hence, the optical properties of these coatings. The NASA Glenn Research Center has prepared and characterized a wide variety of cermet coatings utilizing different metals deposited in an aluminum oxide ceramic matrix. In addition, the atomic oxygen durability of these coatings has been evaluated.

  11. Ceramic joining

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    This paper describes the relation between reactions at ceramic-metal interfaces and the development of strong interfacial bonds in ceramic joining. Studies on a number of systems are described, including silicon nitrides, aluminium nitrides, mullite, and aluminium oxides. Joints can be weakened by stresses such as thermal expansion mismatch. Ceramic joining is used in a variety of applications such as solid oxide fuel cells.

  12. Boronized stainless steel with zirconia coatings

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Kolísko, J.; Kubatík, Tomáš František; Mastný, L.; Pokorný, P.; Tej, P.

    Ostrava: TANGER Ltd, 2015, s. 1069-1074. ISBN 978-80-87294-62-8. [METAL 2015. International Conference on Metallurgy and Materials /24./. Brno (CZ), 03.06.2015-05.06.2015] Institutional support: RVO:61389021 Keywords : Boronised steel * plasma spraying * ceramic coatings * bond strength * zirkonia coatings Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  13. 稀土锆酸盐热障涂层材料研究进展%Research Progresses of Rare-Earth Zirconate Ceramic Materials for Thermal Barrier Coatings

    Institute of Scientific and Technical Information of China (English)

    项建英; 陈树海; 黄继华; 周国栋; 梁文建; 汪瑞军; 何箐

    2012-01-01

    稀土锆酸盐是最有希望应用于未来高性能航空发动机的热障涂层材料之一.归纳了国内外研究者在稀土锆酸盐类陶瓷材料上取得的结果,系统分析了不同位置全取代或部分取代得到的掺杂陶瓷材料的热物理性能和力学性能,并讨论了热障涂层材料研究的发展趋势,最后指出了稀土高酸盐热障涂层材料需要进一步研究的关键问题.%Rare-earth zirconates is one of the prospective thermal barrier coatings (TBCs) materials for use in high performance turbine engine in the future. The research progress of home and abroad is summarized, and the ther-mo-physical and mechanical properties of ceramic materials which substituted by completely or partly at different elements were analyzed systematically. The research progress and development tendency of ceramic materials for TBCs are analyzed and investigated, and then some key problems of rare-earth zirconates as TBCs materials in further reac-her are reviewed in the end.

  14. Ceramic materials testing and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Wilfinger, K. R., LLNL

    1998-04-30

    Certain refractory ceramics (notably oxides) have desirable properties suitable for the construction of ceramic waste containers for long term use in nuclear waste disposal applications. In particular, they are far less prone to environmental corrosion than metals under realistic repository conditions. The aqueous corrosion rates of oxides such as magnesium aluminate spinel (MgAl{sub 2}0{sub 4}) and alumina (Al{sub 2}0{sub 4}) fall in the range of a few millimeters per million years. Oxide ceramics are also not likely to be subject to microbiologically influenced corrosion, which apparently can attack most, if not all, of the available engineering metals. Ceramics have a reputation for poor mechanical performance and large, impermeable objects are not easily fabricated by most current fabrication methods. As a result, the most promising approach for incorporating ceramics in large waste packages appears to be to apply a high density ceramic coating to a supporting metallic structure. Ceramic coatings 2048 applied by a thermal spray technique can be made effectively seamless and provide a method for final closure of the waste package while maintaining low average temperatures for the entire assembly. The corrosion resistance of the ceramic should prevent or delay water penetration to the underlying metal, which will in turn provide most of the mechanical strength and toughness required by the application. In this way, the major concerns regarding the ceramic coating become ensuring it is impervious to moisture, its adherence and its resistance to mechanical stresses during handling or resulting from rock fall in the repository. Without water, electrochemical corrosion and microbiologically influenced corrosion processes are considered impossible, so a complete coating should protect the metal vessels for far longer than the current design requirements. Even an imperfect coating should extend the life of the package, delaying the onset and reducing the severity of

  15. Thermally Sprayed Y2O3-Al2O3-SiO2 Coatings for High-Temperature Protection of SiC Ceramics

    Science.gov (United States)

    García, E.; Nistal, A.; Martín de la Escalera, F.; Khalifa, A.; Sainz, M. A.; Osendi, M. I.; Miranzo, P.

    2015-01-01

    The suitability of certain glass compositions in the Y2O3-Al2O3-SiO2 (YAS) system as protecting coatings for silicon carbide components has been prospected. One particular YAS composition was formulated considering its glass formation ability and subsequent crystallization during service. Round-shaped and homogeneous granules of the selected composition were prepared by spray drying the corresponding homogeneous oxide powder mixture. Glassy coatings (197 µm thick) were obtained by oxyacetylene flame spraying the YAS granules over SiC substrates, previously grit blasted and coated with a Si bond layer (56 µm thick). Bulk glass of the same composition was produced by the conventional glass casting method and used as reference material for comparative evaluation of the characteristic glass transition temperatures, crystallization behavior, mechanical, and thermal coating properties. The mechanical properties and thermal conductivity of the coating were lower than those of the bulk glass owing to its lower density, higher porosity, and characteristic lamellar structure. The crystallization of both bulk glass and coating occurred during isothermal treatments in air at 1100-1350 °C. Preliminary data on ablation tests at 900 °C using the oxyacetylene gun indicated that the YAS glassy coating was a viable protective shield for the SiC substrate during 150 s.

  16. (Ti, AI)C ceramic coating prepared by electrical discharge in liquid%液体中脉冲放电制备(Ti,Al)C陶瓷涂层的研究

    Institute of Scientific and Technical Information of China (English)

    李国亮; 揭晓华; 罗雯

    2012-01-01

    用粉末模压成型工艺和无压烧结方法制备了Ti-Al混合烧结工具电极,采用所制备的电极在煤油中对45钢表面进行脉冲放电沉积(Ti,Al)C陶瓷涂层。探讨了粉体配比对工具电极致密度和相组成以及对液相放电所制备的涂层组织与表面形貌的影响。结果表明,随着Al含量的提高,工具电极密度和相对密度先下降后升高,当Al含量为60%时,电极密度达到最小;XRD结果显示制备出涂层的物相主要为(Ti,Al)C,而制备出的涂层表面形貌明显不同,随着电极中Al元素的升高,熔滴状的熔池尺寸越来越大,宏观上越来越粗糙,截面涂层厚度约为20μm。%Ti-A1 powder sintered tool electrodes were prepared by mould pressing and pressureless sintering method, and the ceramic coating was prepared with the tool electrode on the surface of 45 steel by electrical discharge coating in kerosene. Effect of the powder composition on density of the tool electrode and phase composition, microstructure and surface morphology of the prepared coatings were studied. The results show that as the aluminum content increases, the density and the relative density of the Ti-A1 sintered tool electrodes decrease markedly first then increase. The density reaches the lowest as the aluminum content is 60%. The XRD results show that the phase constituent of the coating is mainly ( Ti, Al) C and the morphologies of the coating are obviously different. With the increase of aluminum content, the size of the molten drop-like melt pool increases, and the surface roughness increases in macroscopic view. The thickness of the coating is about 20 μm.

  17. Use of aluminum oxides, titanium and cerium in the production of ceramic composites for protective coating of storage tanks and transportation of oil raw; Uso de oxidos de aluminio, titanio e cerio na producao de compositos ceramicos para revestimento protetor de tanques de armazenamento e transporte de petroleo cru

    Energy Technology Data Exchange (ETDEWEB)

    Rego, S.A.B.C.; Ferreira, R.A.S.; Yadava, Y.P., E-mail: sheila.abc.rego@hotmail.com [Universidade Federal de Pernambuco (UFPE), PE (Brazil). Centro de Tecnologia e Geociencias

    2012-07-01

    The deployment of the Abreu e Lima refinery in the port of SUAPE - PE will increase the need to store oil in the region, it is essential to research and develop new materials inert to chemical attack promoted by oil. In this work, we produce the ceramic composite alumina-titania, ceria of high mechanical strength which is observed that with additions of titanium oxide in the order of 15% and 20% better results are obtained as possibly indicating these composites suitable for use in coating ceramic storage tanks of crude oil. (author)

  18. Microstructure and mechanical properties of ceramic coatings formed on 6063 aluminium alloy by micro-arc oxidation%6063铝合金微弧氧化陶瓷涂层的显微组织和力学性能

    Institute of Scientific and Technical Information of China (English)

    项南; 宋仁国; 赵坚; 李海; 王超; 王芝秀

    2015-01-01

    以硅酸盐、硼酸盐和铝酸盐为主要溶液,分别在这3种溶液中添加纳米添加剂Al2O3和TiO2以及不添加纳米添加剂,制备6063铝合金的微弧氧化陶瓷涂层。利用扫描电镜(SEM)、电子能谱分析(EDS)、X射线衍射、硬度和摩擦磨损测试研究这些涂层的显微组织和力学性能。SEM结果显示,含纳米添加剂涂层的孔洞比不含添加剂涂层的孔洞少。X射线衍射结果表明,在每种溶液中含添加剂的涂层比不含添加剂的涂层含有更多的氧化物成分,这与EDS的分析结果是一致的。力学性能测试结果表明,含纳米添加剂Al2O3的涂层较其他各种情况下在硅酸盐、硼酸盐和铝酸盐中制备出的涂层具有更高的硬度;纳米添加剂在这3种溶液中都能够提高微弧氧化涂层的耐磨性能。此外,无论是否含有纳米添加剂,硼酸盐微弧氧化涂层相对于硅酸盐和铝酸盐涂层都表现出较差的耐磨性能。%The microstructure and mechanical properties of ceramic coatings formed on 6063 aluminium alloy obtained in silicate-, borate-and aluminate-based electrolyte without and with nanoadditive Al2O3 and TiO2 by micro-arc oxidation (MAO) were studied by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), microhardness and friction−abrasion tests, respectively. SEM results show that coatings with nanoadditive have less porosities than those without nanoadditive. XRD results reveal that nanoadditive-containing coatings contain more oxides compared with nanoadditive-free coatings in all cases, which are consistent with the EDS analysis. Mechanical properties tests show that nanoadditive Al2O3-containing coatings have higher microhardness values compared with the other coatings obtained in silicate-, borate- and aluminate-based electrolyte. On the other hand, nanoadditive has a positive effect on improving the wearing-resistance of MAO coatings

  19. Ceramic Methyltrioxorhenium

    CERN Document Server

    Herrmann, R; Eickerling, G; Helbig, C; Hauf, C; Miller, R; Mayr, F; Krug von Nidda, H A; Scheidt, E W; Scherer, W; Herrmann, Rudolf; Troester, Klaus; Eickerling, Georg; Helbig, Christian; Hauf, Christoph; Miller, Robert; Mayr, Franz; Nidda, Hans-Albrecht Krug von; Scheidt, Ernst-Wilhelm; Scherer, Wolfgang

    2006-01-01

    The metal oxide polymeric methyltrioxorhenium [(CH3)xReO3] is an unique epresentative of a layered inherent conducting organometallic polymer which adopts the structural motifs of classical perovskites in two dimensions (2D) in form of methyl-deficient, corner-sharing ReO5(CH3) octahedra. In order to improve the characteristics of polymeric methyltrioxorhenium with respect to its physical properties and potential usage as an inherentconducting polymer we tried to optimise the synthetic routes of polymeric modifications of 1 to obtain a sintered ceramic material, denoted ceramic MTO. Ceramic MTO formed in a solvent-free synthesis via auto-polymerisation and subsequent sintering processing displays clearly different mechanical and physical properties from polymeric MTO synthesised in aqueous solution. Ceramic MTO is shown to display activated Re-C and Re=O bonds relative to MTO. These electronic and structural characteristics of ceramic MTO are also reflected by a different chemical reactivity compared with its...

  20. Electrochemical Codeposition of Ceramic Nanocomposite Films

    OpenAIRE

    Toledano, Reut; Okner, Regina; Mandler, Daniel

    2007-01-01

    A novel method for deposition of ceramic nanocomposite films has been developed. This approach allows controlling the exact composition of the deposit, e.g., Cu-TiO2, Au-SiO2 and should enable the formation of a wide variety of coatings such as graded films, catalysts etc, in a straightforward approach. Sol-gel films are traditionally deposited via spin-coating, dip-coating or spraying. We describe a single step electrochemical deposition method for the preparation of ceramic nanocomposite fi...

  1. Ceramic on Metal Substrates Produced by Plasma Spraying for Thick Film Technology

    OpenAIRE

    Lech Pawłowski; Leszek Gołonka

    1983-01-01

    The arc plasma spraying process was applied to obtain ceramic coatings on stainless steel substrates. The outer coatings were formed from pure alumina or alumina + 2 wt. % titania mixture. The nichrome intermediate coating was applied to increase adhesion of ceramic coating to stainless steel. The X-ray analysis, metallographic and SEM investigations of the sprayed coatings were also carried out. The effect of interaction of thick film conductor and resistor compositions was studied. Conducto...

  2. Investigation of hydrogen isotope permeation through F82H steel with and without a ceramic coating of Cr{sub 2}O{sub 3}-SiO{sub 2} including CrPO{sub 4} (out-of-pile tests)

    Energy Technology Data Exchange (ETDEWEB)

    Kulsartov, T.V. [NIIETF, Kazakh State University, Tole-bi st., 96a Almaty 480012 (Kazakhstan)]. E-mail: istcvova@kazmail.asdc.kz; Hayashi, K. [Group of Blanket Irradiation and Analysis, Division of Fusion Energy Technology (Oarai Site), Japan Atomic Energy Agency, Oarai-machi, Ibaraki-ken 311-1393 (Japan)]. E-mail: hayashi.kimio@jaea.go.jp; Nakamichi, M. [Secretariat of Nuclear Safety Commission, Cabinet Office, Government of Japan, Kasumigaseki, Chiyoda-ku, Tokyo 100-8970 (Japan); Afanasyev, S.E. [NIIETF, Kazakh State University, Tole-bi st., 96a Almaty 480012 (Kazakhstan); Shestakov, V.P. [NIIETF, Kazakh State University, Tole-bi st., 96a Almaty 480012 (Kazakhstan); Chikhray, Y.V. [NIIETF, Kazakh State University, Tole-bi st., 96a Almaty 480012 (Kazakhstan); Kenzhin, E.A. [IAE National Nuclear Centre, Krasnoarmeyskaya st., 10, Kurchatov 490060 (Kazakhstan); Kolbaenkov, A.N. [IAE National Nuclear Centre, Krasnoarmeyskaya st., 10, Kurchatov 490060 (Kazakhstan)

    2006-02-15

    Ceramic coating on structural materials has been considered to be used as a tritium permeation barrier for fusion power plants. In the present study, a series of hydrogen and deuterium permeation experiments was performed for ferritic F82H steel with and without a ceramic coating of Cr{sub 2}O{sub 3}-SiO{sub 2} including CrPO{sub 4}. First, experiments were made on the permeability of F82H steel without coating at 300-600 deg. C in an atmosphere of 100-1000 Pa hydrogen and deuterium. The measured values of diffusion coefficient, permeability and solubility were in good agreement with those published previously. Next, experiments were performed on the permeability of F82H steel with the coating at 400-600 deg. C in an atmosphere of 1000-1500 Pa deuterium, and the permeation reduction factor (PRF) of the coating was determined. The obtained PRF at 600 deg. C was about 400, which is of the same order of magnitude as the PRF value of about 1000 previously evaluated for the same coating on an SS316 substrate. A significant decrease in the PRF (down to about 4%) was observed, when the sample temperature was lowered from 600 to 400 deg. C.

  3. 镍基高温合金表面激光熔覆制备A12O3-TiO2陶瓷涂层%Al2O3-TiO2 ceramic coating prepared by laser cladding on Nickel-base superalloy

    Institute of Scientific and Technical Information of China (English)

    高雪松; 田宗军; 黄因慧; 刘志东; 沈理达

    2011-01-01

    利用不同工艺辅助激光熔覆技术制备了Al2O3-TiO2陶瓷涂层,以判断激光熔覆制备陶瓷涂层的可行性.结果表明:利用激光熔覆技术直接制备陶瓷层存在一定难度,陶瓷层裂纹较大,存在剥落现象;采用基底预热辅助激光熔覆法制备的陶瓷层整体脱落,可行性较差;结合冷等静压与高频表面预热技术进行激光熔覆陶瓷层试验,制备的陶瓷层表面光滑平整、无明显微裂纹.采用扫描电子显微镜对熔覆涂层的形貌进行分析.利用高频辅助激光熔覆技术制备的陶瓷涂层表面结构致密,陶瓷层与黏结层之间结合紧密,没有明显的微裂纹和孔隙.根据上述试验方案,分析发现提高粉末密度及降低熔覆过程中的温度梯度可以明显提高陶瓷层的成型性.%Al2O3-TiO2 coatings were prepared by laser cladding on nickel-based alloy with the assistance of other different technologies. The result shows that there are a lot of cracks and flake phenomenon with the coating by laser cladding, while the whole ceramic coating prepared by laser cladding spalled from substrate preheated. The excellent performance of ceramic coating was achieved by laser cladding with the assistance of high frequency induction sources and isostatic pressing (CIP) technology. Microstructures of the laser sintered samples were characterized by scanning electron microscope ( SEM). The surface of A12O3 - TiO2 ceramic has high compactness and strong bonding strength with no obvious cracks and porous in the interface between ceramic coating and bond coating. According to experiment results, it can be deduced that the increasing of ceramic powders density and the decreasing of temperature gradient in laser cladding process can improve ceramic formability obviously.

  4. Coated particle waste form development

    International Nuclear Information System (INIS)

    Coated particle waste forms have been developed as part of the multibarrier concept at Pacific Northwest Laboratory under the Alternative Waste Forms Program for the Department of Energy. Primary efforts were to coat simulated nuclear waste glass marbles and ceramic pellets with low-temperature pyrolytic carbon (LT-PyC) coatings via the process of chemical vapor deposition (CVD). Fluidized bed (FB) coaters, screw agitated coaters (SAC), and rotating tube coaters were used. Coating temperatures were reduced by using catalysts and plasma activation. In general, the LT-PyC coatings did not provide the expected high leach resistance as previously measured for carbon alone. The coatings were friable and often spalled off the substrate. A totally different concept, thermal spray coating, was investigated at PNL as an alternative to CVD coating. Flame spray, wire gun, and plasma gun systems were evaluated using glass, ceramic, and metallic coating materials. Metal plasma spray coatings (Al, Sn, Zn, Pb) provided a two to three orders-of-magnitude increase in chemical durability. Because the aluminum coatings were porous, the superior leach resistance must be due to either a chemical interaction or to a pH buffer effect. Because they are complex, coated waste form processes rank low in process feasibility. Of all the possible coated particle processes, plasma sprayed marbles have the best rating. Carbon coating of pellets by CVD ranked ninth when compared with ten other processes. The plasma-spray-coated marble process ranked sixth out of eleven processes

  5. Coated particle waste form development

    Energy Technology Data Exchange (ETDEWEB)

    Oma, K.H.; Buckwalter, C.Q.; Chick, L.A.

    1981-12-01

    Coated particle waste forms have been developed as part of the multibarrier concept at Pacific Northwest Laboratory under the Alternative Waste Forms Program for the Department of Energy. Primary efforts were to coat simulated nuclear waste glass marbles and ceramic pellets with low-temperature pyrolytic carbon (LT-PyC) coatings via the process of chemical vapor deposition (CVD). Fluidized bed (FB) coaters, screw agitated coaters (SAC), and rotating tube coaters were used. Coating temperatures were reduced by using catalysts and plasma activation. In general, the LT-PyC coatings did not provide the expected high leach resistance as previously measured for carbon alone. The coatings were friable and often spalled off the substrate. A totally different concept, thermal spray coating, was investigated at PNL as an alternative to CVD coating. Flame spray, wire gun, and plasma gun systems were evaluated using glass, ceramic, and metallic coating materials. Metal plasma spray coatings (Al, Sn, Zn, Pb) provided a two to three orders-of-magnitude increase in chemical durability. Because the aluminum coatings were porous, the superior leach resistance must be due to either a chemical interaction or to a pH buffer effect. Because they are complex, coated waste form processes rank low in process feasibility. Of all the possible coated particle processes, plasma sprayed marbles have the best rating. Carbon coating of pellets by CVD ranked ninth when compared with ten other processes. The plasma-spray-coated marble process ranked sixth out of eleven processes.

  6. Cermet coatings for solar Stirling space power

    International Nuclear Information System (INIS)

    Cermet coatings, molecular mixtures of metal and ceramic, are being considered for the heat inlet surface of a solar Stirling space power convertor. The role of the cermet coating is to absorb as much of the incident solar energy as possible. The ability to mix metal and ceramic at the atomic level offers the opportunity to tailor the composition and the solar absorptance of these coatings. Several candidate cermet coatings were created and their solar absorptance was characterized as-manufactured and after exposure to elevated temperatures. Coating composition was purposely varied through the thickness of the coating. As a consequence of changing composition, islands of metal are thought to form in the ceramic matrix. Computer modeling indicated that diffusion of the metal atoms played an important role in island formation while the ceramic was important in locking the islands in place. Much of the solar spectrum is absorbed as it passes through this labyrinth

  7. Production of heat-resistant metal-ceramic coatings on the basis of titanium silicide and nitride by thermoreactive electrospark surface strengthening

    International Nuclear Information System (INIS)

    Coatings on the basis of Ti5Si3 titanium silicide have been produced using the Thermoreactive Electrospark Surface Strengthening (TRESS) method. Their formation took place by applying a charge exothermic layer of specified composition (Ti-Si, Ti-Si3N4) onto a substrate and the subsequent chemical conversion in it that is maintained by energy of pulsed discharges. A series of investigations of structure, composition and properties (microhardness, thickness, integrity, and wear-resistance) of TRESS-coatings on OT4-1 titanium alloy was carried out. A dependence of depth of chemical conversion in charge layers on energy processing mode was found. It was established that the coatings produced during optimal processing mode (E = 0,3 J) facilitate an increase in microhardness, wear-resistance and heat-resistance of OT4-1 alloy

  8. Engineering ceramics

    CERN Document Server

    Bengisu, Murat

    2001-01-01

    This is a comprehensive book applying especially to junior and senior engineering students pursuing Materials Science/ Engineering, Ceramic Engineering and Mechanical Engineering degrees. It is also a reference book for other disciplines such as Chemical Engineering, Biomedical Engineering, Nuclear Engineering and Environmental Engineering. Important properties of most engineering ceramics are given in detailed tables. Many current and possible applications of engineering ceramics are described, which can be used as a guide for materials selection and for potential future research. While covering all relevant information regarding raw materials, processing properties, characterization and applications of engineering ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  9. Ceramic glossary

    International Nuclear Information System (INIS)

    This book is a 2nd edition that contains new terms reflecting advances in high technology applications of ceramic materials. Definitions for terms which materials scientists, engineers, and technicians need to know are included

  10. Structural and chemical analysis of silica-doped β-TCP ceramic coatings on surgical grade 316L SS for possible biomedical application

    Directory of Open Access Journals (Sweden)

    Karuppasamy Prem Ananth

    2015-09-01

    Full Text Available We have developed a novel approach to introduce silica-doped β-tricalcium phosphate (Si-β-TCP on 316L SS substrates for enhanced biological properties. Doping of β-TCP with silica loadings ranging from 0 to 8 mol% was carried out using chemical precipitation method. Si-β-TCP powder was sintered at 800 °C followed by coating it on 316L SS substrate using electrophoretic deposition. The coated and uncoated samples were investigated by various characterization techniques such as X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, field emission scanning electron microscopy (FESEM and X-ray fluorescence spectroscopy (XRF. Biomineralization ability of the coatings was evaluated by immersing in simulated body fluid (SBF solution for different number of days such as 7, 14, 21 and 28 days. The results obtained in our study have shown that the apatite formation ability was high for the 8 mol% of Si-β-TCP. This will promote better biomineralization ability compared to the other coatings.

  11. Superhydrophobic ceramic coatings enabled by phase-separated nanostructured composite TiO2–Cu2O thin films

    International Nuclear Information System (INIS)

    By exploiting phase-separation in oxide materials, we present a simple and potentially low-cost approach to create exceptional superhydrophobicity in thin-film based coatings. By selecting the TiO2–Cu2O system and depositing through magnetron sputtering onto single crystal and metal templates, we demonstrate growth of nanostructured, chemically phase-segregated composite films. These coatings, after appropriate chemical surface modification, demonstrate a robust, non-wetting Cassie–Baxter state and yield an exceptional superhydrophobic performance, with water droplet contact angles reaching to ∼172° and sliding angles <1°. As an added benefit, despite the photo-active nature of TiO2, the chemically coated composite film surfaces display UV stability and retain superhydrophobic attributes even after exposure to UV (275 nm) radiation for an extended period of time. The present approach could benefit a variety of outdoor applications of superhydrophobic coatings, especially for those where exposure to extreme atmospheric conditions is required. (papers)

  12. Metal-Ceramic Interfaces in Laser Coated Steels : A Transmission Electron Microscopy Study of a Mixture of Iron and Spinel Grains

    NARCIS (Netherlands)

    Hosson, J.Th.M. De; Zhou, X.B.; Burg, M. van den

    1992-01-01

    This paper concentrates on laser coating of a Duplex steel SAF 2205 by bringing a mixture of Cr2O3 and Fe powder into a laser beam. After the laser treatment the Duplex steel transforms into a b.c.c. structure. Transmission electron microscopy observations indicate a proper bonding between substrate

  13. METAL CERAMIC INTERFACES IN LASER COATED STEELS - A TRANSMISSION ELECTRON-MICROSCOPY STUDY OF A MIXTURE OF IRON AND SPINEL GRAINS

    NARCIS (Netherlands)

    DEHOSSON, JTM; ZHOU, XB; VANDENBURG, M

    1992-01-01

    This paper concentrates on laser coating of a Duplex steel SAF 2205 by bringing a mixture of Cr2O3 and Fe powder into a laser beam. After the laser treatment the Duplex steel transforms into a b.c.c. structure. Transmission electron microscopy observations indicate a proper bonding between substrate

  14. Tailored ceramics

    International Nuclear Information System (INIS)

    In polyphase tailored ceramic forms two distinct modes of radionuclide immobilization occur. At high waste loadings the radionuclides are distributed through most of the ceramic phases in dilute solid solution, as indicated schematically in this paper. However, in the case of low waste loadings, or a high loading of a waste with low radionuclide content, the ceramic can be designed with only selected phases containing the radionuclides. The remaining material forms nonradioactive phases which provide a degree of physical microstructural isolation. The research and development work with polyphase ceramic nuclear waste forms over the past ten years is discussed. It has demonstrated the critical attributes which suggest them as a waste form for future HLW disposal. From a safety standpoint, the crystalline phases in the ceramic waste forms offer the potential for demonstrable chemical durability in immobilizing the long-lived radionuclides in a geologic environment. With continued experimental research on pure phases, analysis of mineral analogue behavior in geochemical environments, and the study of radiation effects, realistic predictive models for waste form behavior over geologic time scales are feasible. The ceramic forms extend the degree of freedom for the economic optimization of the waste disposal system

  15. for zeolite coating

    Directory of Open Access Journals (Sweden)

    Carlos Renato Rambo

    2006-01-01

    Full Text Available Biotemplating is the processing of microcellular ceramics by reproduction of natural morphologies, where the microstructural features of the biotemplate are maintained in the biomorphic ceramic. Different biotemplates with distinct pore anatomies were used to produce biomorphic supports for the zeolite coating: wood, cardboard, sea-sponge and sisal. The biomorphic ceramics were produced by distinguished processing routes: Al-gas infiltration-reaction, liquid-metal infiltration, dip-coating and sol-gel synthesis, in order to produce nitrides, carbides and oxides, depending on the processing conditions. The zeolite coating was performed by hydrothermal growth of MFI-type (Silicalite-1 and ZSM-5 zeolite crystals onto the internal pore walls of the biomorphic templates. The final biomorphic ceramic-zeolite composites were physically characterized, evaluated in terms of their gas adsorption capabilities and correlated to their microstructure and specific pore anatomy. The combination of the properties of the biomorphic ceramics with the adsorption properties of zeolites results in materials with distinct properties as potential candidates for adsorption and catalytic applications due to their characteristic porosity, molecular sieving capabilities and high thermo-mechanical strength.

  16. Measurement of radiant properties of ceramic foam

    International Nuclear Information System (INIS)

    An experimental facility is described for the measurement of the normal spectral and total emissivity and transmissivity of semi-transparent materials in the temperature range of 600 C to 1200 C. The set-up was used for the measurement of radiation properties of highly porous ceramic foam which is used in low NOx radiant burners. Emissivity and transmissivity data were measured and are presented for coated and uncoated ceramic foam of different thicknesses. (orig.)

  17. Ceramic technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1991-07-01

    Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

  18. Cementless Hydroxyapatite Coated Hip Prostheses

    Directory of Open Access Journals (Sweden)

    Antonio Herrera

    2015-01-01

    Full Text Available More than twenty years ago, hydroxyapatite (HA, calcium phosphate ceramics, was introduced as a coating for cementless hip prostheses. The choice of this ceramic is due to its composition being similar to organic apatite bone crystals. This ceramic is biocompatible, bioactive, and osteoconductive. These qualities facilitate the primary stability and osseointegration of implants. Our surgical experience includes the implantation of more than 4,000 cementless hydroxyapatite coated hip prostheses since 1990. The models implanted are coated with HA in the acetabulum and in the metaphyseal area of the stem. The results corresponding to survival and stability of implants were very satisfactory in the long-term. From our experience, HA-coated hip implants are a reliable alternative which can achieve long term survival, provided that certain requirements are met: good design selection, sound choice of bearing surfaces based on patient life expectancy, meticulous surgical technique, and indications based on adequate bone quality.

  19. Thermal stability of phosphate coatings on steel

    Directory of Open Access Journals (Sweden)

    P. Pokorny

    2015-07-01

    Full Text Available The work was validated thermal stability of zinc, manganese and tri-cations phosphate coatings on steel, made from commercial phosphating bath type Pragofos. Thermogravimetric data dehydration of scholzite, phosphophylite and hureaulite coatings in the temperature range 160 °C – 400 °C define the conditions for applying paints with higher firing temperature or thermal spraying ceramic coatings.

  20. Thermal stability of phosphated coatings on steels

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Pokorný, P.; Szelag, P.; Cinert, Jakub

    Zagreb: Croatian Metallurgical Society (CMS), 2014 - (Mamuzić, I.). s. 405 ISBN N. [International Symposium of Croatian Metallurgical Society SHMD 2014/11./. 22.06.2014-26.06.2014, Šibenik] Institutional support: RVO:61389021 Keywords : steel phosphating * phosphate coatings * plasma spraying * ceramic coatings * corrosion resistance * bond strength of coatings Subject RIV: CA - Inorganic Chemistry

  1. Superconducting YBCO and YBCO-Ag thick films (Tc(0)=92 K) by dip coating on GdBa2HfO5.5, a new perovskite ceramic substrate

    International Nuclear Information System (INIS)

    A new ceramic perovskite, GdBa2HfO5.5, has been synthesized and developed for use as substrate for the YBa2Cu3O7-δ superconductor. The dielectric constant and loss factor of this material are in a range suitable for its use as substrate for microwave applications. No detectable chemical reaction between YBa2Cu3O7-δ and GdBa2HfO5.5 was observed even under severe heat treatment. YBa2Cu2O7-δ and YBa2Cu3O7-δ-Ag thick films dip coated on GdBa2HfO5.5 substrate gave a zero-resistivity superconducting transition of 92 K. The critical current density (Jc) of YBa2Cu3O7-δ thick film was 3*103 A cm-2 whereas a current density of 2*104 A cm-2 was obtained for YBa2Cu3O7-δ-Ag thick film. The YBa2Cu3O7-δ-Ag thick film showed preferred (001) orientation on polycrystalline GdBa2HfO5.5 substrate. (author)

  2. Fatigue lifespan of a mobile blade gas turbine with ceramic coating; Vida util por fatiga de un alabe movil de turbina de gas con recubrimiento ceramico

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Illescas, Rafael; Z. Mazur Czerwiec, Zdzislaw; Islas Mungarro, Ricardo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: rgi@iie.org.mx; mazur@iie.org.mx; rick_iie@terra.com.mx

    2010-11-15

    Fatigue analysis of a gas turbine moving blade made of IN738LC was carried out in order to evaluate useful life time. The life estimation was done from a previous 3D linear finite element analysis where thermal and mechanical stress calculation at high temperatures was done during steady and transient state i.e. normal start ups and shutdowns. Several load histories with different stresses and strains in the blade were used for different cooling conditions including a thermal barrier coating in comparison with to simple blade without such coating. The important effect of high temperatures on the blade material and stress calculations is shown. The analysis is focused on two different critical zones in the blade: the leading edge at the middle of the height and a cooling channel surface, where high stresses were found in numerical analysis as well as in reality. Finally, the benefit of the presence of a thermal barrier coating in the blade life is shown. [Spanish] Se realizo el analisis de fatiga de un alabe movil de turbina de gas fabricado de IN738LC a fin de evaluar su vida util. La estimacion de vida fue realizada a partir de simulaciones lineales de esfuerzos termomecanicos por elemento finito en 3D a altas temperaturas y durante el arranque y paro normal. Se utilizaron diversos historiales de carga, esfuerzos y deformaciones del alabe para diferentes configuraciones de enfriamiento incluyendo el recubrimiento ceramico tipo barrera termica en comparacion con los resultados sin incluir dicho recubrimiento. Se presenta el efecto importante de las temperaturas elevadas en las propiedades de fatiga del material del alabe y en sus esfuerzos. El analisis se centra en dos puntos de interes identificados como criticos: borde de entrada y un canal de enfriamiento, en donde esfuerzos elevados fueron encontrados tanto numericamente como en la realidad. Finalmente se muestra el beneficio del recubrimiento tipo barrera termica en la vida del alabe.

  3. Capsulation of moldings made from silicon ceramic material

    Science.gov (United States)

    Rossmann, A.; Schweitzer, K.; Huether, W.

    1985-01-01

    Ceramic articles are potted for hot isostatic pressing by porous glass and/or ceramic coating which is sintered to a pressure-tight coating in vacuo. Thus, a powdered SiO2 glass mixture with saturated alcohol sterin is sprayed on a SI3N4 ceramic, dried, introduced into the press which is evacuated to less than 0.013 mbar and heated to approximately 1200 C to drive off the organic binder and leave a powdered glass coating on the ceramic. The coating is sintered by heating to approximately 1200 C for 0.5 to 2 hours and forms a tight gass-impermeable layer. The press is heated to approximately 1700 C at 1000-300 bar and isostatic pressing is performed in the conventional manner.

  4. Development and characterization of AlCrN coated Si{sub 3}N{sub 4} ceramic cutting tool; Desenvolvimento e caracterizacao de ferramentas ceramicas de Si{sub 3}N{sub 4} revestidas com AlCrN

    Energy Technology Data Exchange (ETDEWEB)

    Souza, J.V.C.; Nono, M.C.A.; Machado, J.P.B., E-mail: vitor@las.inpe.b [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil); Silva, O.M.M. [Centro Tecnico de Aeronautica (CTA-IAE/AMR), Sao Jose dos Campos, SP (Brazil). Inst. de Aeronautica e Espaco. Div. de Materiais; Pimenta, M. [Balzers, Jundiai, SP (Brazil); Sa, F.C.L. [Centro Universitario de Volta Redonda (UNIFOA), RJ (Brazil)

    2010-07-01

    Ceramic cutting tools are showing a growing market perspective in terms of application on machining operations due to their high hardness, wear resistance, and machining without a cutting fluid, therefore are good candidates for cast iron and Nickel superalloys machining. The objective of the present paper was the development of Si{sub 3}N{sub 4} based ceramic cutting insert, characterization of its physical and mechanical properties, and subsequent coating with AlCrN using a PVD method. The characterization of the coating was made using an optical profiler, XRD, AFM and microhardness tester. The results showed that the tool presented a fracture toughness of 6,43 MPa.m{sup 1/2} and hardness of 16 GPa. The hardness reached 31 GPa after coating. The machining tests showed an improvement on work piece roughness when machining with coated insert, in comparison with the uncoated cutting tool. Probably this fact is related to hardness, roughness and topography of AlCrN. (author)

  5. Microstructure and Wear Behaviour of Laser-induced Thermite Reaction Al2O3 Ceramic Coating on AA7075 Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    Kaijin HUANG; Xin LIN; Changsheng XIE; T.M. Yue

    2007-01-01

    The microstructure and wear behaviour of the thermite reaction coating produced by the hybrid laser claddingremelting on AA7075 aluminum alloy for the systems of Al-CuO-SiO2, Al-Cr2O3-SiO2, Al-Fe2O3-SiO2, and Al-TiO2-SiO2 were studied. The results of the X-ray diffraction (XRD) analysis show that in all the four reaction coatings, α-Al2O3 and γ-Al2O3 phases were present at the top surface, together with various intermetallic phases, the corresponding reduced metal and Al phase in the fusion zone. Under the dry sliding condition, the wear resistance, in terms of weight loss, of the laser-clad specimens was considerably higher than that of the untreated specimen. The predominant wear mechanism of the former specimens was abrasive wear, while for the latter, it was the adhesive wear that prevailed.

  6. Ceramic Technology Project semiannual progress report for October 1991--March 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    Objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. Focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. The work is organized into the following elements: materials and processing (monolithics [SiC, SiN], ceramic composites, thermal and wear coatings, joining), materials design methodology, data base and life prediction (structural qualification, time-dependent behavior, environmental effects, fracture mechanics, NDE), and technology transfer. Individual abstracts were prepared for the individual contributions.

  7. Ceramic Technology Project semiannual progress report, April 1992--September 1992

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1993-07-01

    This project was developed to meet the ceramic technology requirements of the DOE Office of Transportation Systems` automotive technology programs. Significant progress in fabricating ceramic components for DOE, NASA, and DOE advanced heat engine programs show that operation of ceramic parts in high-temperature engines is feasible; however, addition research is needed in materials and processing, design, and data base and life prediction before industry will have a sufficient technology base for producing reliable cost-effective ceramic engine components commercially. A 5-yr project plan was developed, with focus on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  8. Novel approach for high resultion TEM studies of ceramic-ceramic interfaces

    International Nuclear Information System (INIS)

    Ceramic coatings on oxides can be studied by high resolution transmission electron microscopy (HRTEM), with minimal sample preparation, if the substrate consists of nonporous particles of simple geometric shape. Interfaces suitable for end-on examination by HRTEM can be readily obtained without any necessity for ion-beam thinning. All the interface orientations that are thermodynamically stable are available for examination from a single sample. This technique is of general applicability and can be used for studies of metal-ceramic and ceramic-ceramic interfaces. The authors have examined the nature of boron nitride interfaces with oxides such as MgO, TiO2 and Al2O3 and find that BN appears to wet the oxide surface and form tough, adherent coatings. The hexagonal crystalline BN grows with the (0001) planes always being locally parallel to the oxide surface in every instance

  9. Development of mica glass-ceramic glazes

    OpenAIRE

    Romero, Maximina; Rincón López, Jesús María; Acosta, Anselmo

    2004-01-01

    The effect of iron content on crystallization of a mica glaze as coating for fast firing stoneware substrates has been investi¬gated. Measurements by differential thermal analysis (DTA) combined with X-ray diffraction (XRD) and scanning electron microscopy (SEM) have shown the development of preferential crystal orientation in the mica glass-ceramic glaze. By com¬parison with amorphous and partly crystalline glazes, an enhancement of the mechanical properties of coatings with aligned and inte...

  10. Wettability, surface tension and reactivity ofthe molten manganese/zirconia-yttria ceramic system

    OpenAIRE

    Shinozaki, N; Sonoda, M; Mukai, K.

    1998-01-01

    A basic research for improvement of plasma sprayed zirconia coatings has been conducted. Contact angle and surface tension of molten manganese/zirconia-yttria ceramic system weremeasured at 1573K by the sessile drop method, suggesting that molten manganese would spontaneously infiltrate open pores inzirconia coatings. Structure and elementary composition development of ZirCOnIa ceramICs caused by reaction with manganese were examined by using SEM(Scanning Electron Microscopy), EPMA(Electron P...

  11. In situ toughened SiC ceramics with Al-B-C additions and oxide-coated SiC platelet/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Cao, J. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering]|[Lawrence Berkeley National Lab., CA (United States). Materials Sciences Div.

    1996-12-01

    This work aimed at fabrication and characterization of high toughness SiC ceramics through the applications of in situ toughening and SiC platelet reinforcement. The processing-microstructure-property relations of hot pressed SiC with Al, B, and C additions (designated as ABC-SiC) were investigated. Through a liquid phase sintering mechanism, dense SiC was obtained by hot pressing at a temperature as low as 1,700 C with 3 wt% Al, 0.6 wt% B, and 2 wt% C additions. These sintering aids also enhanced the {beta}-to-{alpha} (3C-to-4H) phase transformation, which promoted SiC grains to grow into plate-like shapes. Under optimal processing conditions, the microstructure exhibited high-aspect-ratio plate-shaped grains with a thin (< 1 nm) Al-containing amorphous grain boundary film. The mechanical properties of the toughened SiC and the composites were evaluated in comparison with a commercial Hexoloy SiC under identical test conditions. The C-curve behavior was examined using the strength-indentation load relationship and compared with that directly measured using precracked compact tension specimens. The in situ toughened ABC-SiC exhibited much improved flaw tolerance and a significantly rising R-curve behavior. A steady-state toughness in excess of 9 MPam{sup 1/2} was recorded for the ABC-SiC in comparison to a single valued toughness below 3 MPam{sup 1/2} for the Hexoloy. Toughening in the ABC-SiC was mainly attributed to grain bridging and subsequent pullout of the plate-shaped grains. The high toughness ABC-SiC exhibited a bend strength of 650 MPa with a Weibull modulus of 19; in comparison, the commercial SiC showed a bend strength of 400 MPa with a Weibull modulus of 6. Higher fracture toughness was also achieved by the reinforcement of SiC platelets, encapsulated with alumina, yttria, or silica, in a SiC matrix.

  12. A Coating That Cools and Cuts Costs

    Science.gov (United States)

    2004-01-01

    To enable low-cost space access for advanced exploration vehicles, researchers from NASA's Ames Research Center invented and patented a protective coating for ceramic materials (PCCM) in 1994. The technology, originally intended to coat the heat shields of the X-33 and X-34 next-generation vehicles for optimum protection during atmospheric reentry, greatly reduces surface temperature of a thermal control structure while it reradiates absorbed energy to a cooler surface or body, thus preventing degradation of the underlying ceramic material.

  13. Friction- and wear-reducing coating

    Science.gov (United States)

    Zhu, Dong; Milner, Robert; Elmoursi, Alaa AbdelAzim

    2011-10-18

    A coating includes a first layer of a ceramic alloy and a second layer disposed on the first layer and including carbon. The coating has a hardness of from 10 to 20 GPa and a coefficient of friction of less than or equal to 0.12. A method of coating a substrate includes cleaning the substrate, forming the first layer on the substrate, and depositing the second layer onto the first layer to thereby coat the substrate.

  14. Reciprocating sliding behaviour of self-mated amorphous diamond-like carbon coatings on Si3N4 ceramics under tribological stress

    International Nuclear Information System (INIS)

    Amorphous diamond-like carbon films grown by magnetron sputtering have been deposited on silicon nitride based substrates for tribological purposes. A conductive Si3N4/30% vol.TiN composite was produced for bias substrate application. Friction and wear properties of carbon coated self-mated pairs were assessed using a reciprocal motion ball-on-flat setup in unlubricated conditions with applied normal loads of 3 N and 5 N. The worn surfaces were studied by Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) in order to identify the prevalent wear mechanism. Unbiased and biased substrates behaved differently, the former undergoing premature delamination while the latter endured the tribological test conditions (3 N, ∼ 43 m). Very low friction coefficient values of ∼ 0.015 were sustained assuring remarkable wear behaviour. Surface grooving and wear debris accumulation in the sliding track lead to a roughness increase from the nominal rms value of ∼ 12 nm to ∼ 97 nm, although no weight loss and surface profile modification was quantifiable

  15. Industrial ceramics

    International Nuclear Information System (INIS)

    After having given the definition of the term 'ceramics', the author describes the different manufacturing processes of these compounds. These materials are particularly used in the fields of 1)petroleum industry (in primary and secondary reforming units, in carbon black reactors and ethylene furnaces). 2)nuclear industry (for instance UO2 and PuO2 as fuels; SiC for encapsulation; boron carbides for control systems..)

  16. Ceramic Technology Project semiannual progress report, October 1992--March 1993

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.R.

    1993-09-01

    This project was developed to meet the ceramic technology requirements of the OTS`s automotive technology programs. Although progress has been made in developing reliable structural ceramics, further work is needed to reduce cost. The work described in this report is organized according to the following work breakdown structure project elements: Materials and processing (monolithics [Si nitride, carbide], ceramic composites, thermal and wear coatings, joining, cost effective ceramic machining), materials design methodology (contact interfaces, new concepts), data base and life prediction (structural qualification, time-dependent behavior, environmental effects, fracture mechanics, nondestructive evaluation development), and technology transfer.

  17. UV laser micromachining of ceramic materials: formation of columnar topographies

    International Nuclear Information System (INIS)

    Laser machining is increasingly appearing as an alternative for micromachining of ceramics. Using ceramic materials using excimer lasers can result in smooth surfaces or in the formation of cone-like or columnar topography. Potential applications of cone-shaped or columnar surface topography include, for example, light trapping in anti-reflection coatings and improvement of adhesion bonding between ceramic materials. In this communication results of a comparative study of surface topography change during micromachining of several ceramic materials with different ablation behaviors are reported. (orig.)

  18. Structured ceramic surfaces by preceramic polymer demixing processes

    International Nuclear Information System (INIS)

    Polymeric and ceramic coatings with a cellular structure have been manufactured based on demixing processes by the use of two different preceramic polymers and silicon carbide fillers in a dip coating process. The rheological properties of the coating system were adjusted by adding a monomeric silane and methanol, and the crosslinking process was triggered by the addition of catalysts. The surface tension of the coating system was measured and a temperature range for coating and structure formation was identified. The as coated substrates were investigated with respect to an influence of the substrate microstructure and the coating speed on the cellular structure of the coatings. While the substrate microstructure has no influence on the cell structure the coating speed led to a minor change in the cell width. The as received thermoset coatings were pyrolyzed and the structure was intact even after firing at 1100 °C in different atmospheres

  19. Development of a ceramic tamper indicating seal: SRNL contributions

    International Nuclear Information System (INIS)

    Savannah River National Laboratory (SRNL) and Sandia National Laboratories (SNL) are collaborating on development of a Ceramic Seal, also sometimes designated the Intrinsically Tamper Indicating Ceramic Seal (ITICS), which is a tamper indicating seal for international safeguards applications. The Ceramic Seal is designed to be a replacement for metal loop seals that are currently used by the IAEA and other safeguards organizations. The Ceramic Seal has numerous features that enhance the security of the seal, including a frangible ceramic body, protective and tamper indicating coatings, an intrinsic unique identifier using Laser Surface Authentication, electronics incorporated into the seal that provide cryptographic seal authentication, and user-friendly seal wire capture. A second generation prototype of the seal is currently under development whose seal body is of Low Temperature Co-fired Ceramic (LTCC) construction. SRNL has developed the mechanical design of the seal in an iterative process incorporating comments from the SNL vulnerability review team. SRNL is developing fluorescent tamper indicating coatings, with recent development focusing on optimizing the durability of the coatings and working with a vendor to develop a method to apply coatings on a 3-D surface. SRNL performed a study on the effects of radiation on the electronics of the seal and possible radiation shielding techniques to minimize the effects. SRNL is also investigating implementation of Laser Surface Authentication (LSA) as a means of unique identification of each seal and the effects of the surface coatings on the LSA signature.

  20. DEVELOPMENT OF A CERAMIC TAMPER INDICATING SEAL: SRNL CONTRIBUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Krementz, D.; Brinkman, K.; Martinez-Rodriguez, M.; Mendez-Torres, A.; Weeks, G.

    2013-06-03

    Savannah River National Laboratory (SRNL) and Sandia National Laboratories (SNL) are collaborating on development of a Ceramic Seal, also sometimes designated the Intrinsically Tamper Indicating Ceramic Seal (ITICS), which is a tamper indicating seal for international safeguards applications. The Ceramic Seal is designed to be a replacement for metal loop seals that are currently used by the IAEA and other safeguards organizations. The Ceramic Seal has numerous features that enhance the security of the seal, including a frangible ceramic body, protective and tamper indicating coatings, an intrinsic unique identifier using Laser Surface Authentication, electronics incorporated into the seal that provide cryptographic seal authentication, and user-friendly seal wire capture. A second generation prototype of the seal is currently under development whose seal body is of Low Temperature Co-fired Ceramic (LTCC) construction. SRNL has developed the mechanical design of the seal in an iterative process incorporating comments from the SNL vulnerability review team. SRNL is developing fluorescent tamper indicating coatings, with recent development focusing on optimizing the durability of the coatings and working with a vendor to develop a method to apply coatings on a 3-D surface. SRNL performed a study on the effects of radiation on the electronics of the seal and possible radiation shielding techniques to minimize the effects. SRNL is also investigating implementation of Laser Surface Authentication (LSA) as a means of unique identification of each seal and the effects of the surface coatings on the LSA signature.

  1. Ceramic Technology for Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  2. Wear and impact resistance of HVOF sprayedceramic matrix composites coating

    Science.gov (United States)

    Prawara, B.; Martides, E.; Priyono, B.; Ardy, H.; Rikardo, N.

    2016-02-01

    Ceramic coating has the mechanical properties of high hardness and it is well known for application on wear resistance, but on the other hand the resistance to impact load is low. Therefore its use is limited to applications that have no impact loading. The aim of this research was to obtain ceramic-metallic composite coating which has improved impact resistance compared to conventional ceramic coating. The high impact resistance of ceramic-metallic composite coating is obtained from dispersed metallic alloy phase in ceramic matrix. Ceramic Matrix Composites (CMC) powder with chrome carbide (Cr3C2) base and ceramic-metal NiAl-Al2O3 with various particle sizes as reinforced particle was deposited on mild steel substrate with High Velocity Oxygen Fuel (HVOF) thermal spray coating. Repeated impact test showed that reinforced metallic phase size influenced impact resistance of CMC coating. The ability of CMC coating to absorb impact energy has improved eight times and ten times compared with original Cr3C2 and hard chrome plating respectively. On the other hand the high temperature corrosion resistance of CMC coating showed up to 31 cycles of heating at 800°C and water quenching cooling.

  3. Microstructures and properties of double-ceramic-layer thermal barrier coatings of La{sub 2}(Zr{sub 0.7}Ce{sub 0.3}){sub 2}O{sub 7}/8YSZ made by atmospheric plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shuhai; Xiang, Jianying; Huang, Jihua, E-mail: jhhuang@ustb.edu.cn; Zhao, Xingke

    2015-06-15

    Highlights: • The DCL LZ7C3/8YSZ coating system was prepared by the APS. • The LZ and LC in as-sprayed LZ7C3 have almost overlapping diffracted angles. • The LZ and LC in as-sprayed LZ7C3 have approximately equal diffracted intensity. • The DCL LZ7C3/8YSZ coating exhibited good thermal shock resistance. • The DCL LZ7C3/8YSZ coating has excellent thermal insulated ability. - Abstract: A double-ceramic-layer (DCL) thermal barrier coatings (TBC) of La{sub 2}(Zr{sub 0.7}Ce{sub 0.3}){sub 2}O{sub 7}/8YSZ (LZ7C3/8YSZ) was prepared by atmospheric plasma spraying (APS). The phase structure, composition, thermal conductivity, surface and cross-sectional morphologies, adhesion strength and thermal shock behavior of the LZ7C3/8YSZ coating were investigated. The X-ray diffraction pattern showed that the phase structures of top coat LZ7C3 was different from the powder for spraying, which consists of pyrochlore LZ and fluorite LC structures. Main peaks between LZ and LC in as-sprayed LZ7C3 have almost overlapping diffracted angles and approximately equal diffracted intensity. Thermal shock lifetime and adhesion strength of the DCL LZ7C3/8YSZ coating are enhanced significantly as compared to single LZ7C3 coating, and are very close to that of single 8YSZ coating. The mechanisms of performance improvement are considered to be effictive reduction of stress concentration between substrate and LZ7C3 coating by 8YSZ buffer effect, and the gentle thermal gradient initiated at the time of quenching in water. The DCL LZ7C3/8YSZ coating has lower thermal conductivity than 8YSZ, which was only 25% of 8YSZ bulk material and 65% of 8YSZ coating by APS.

  4. Interface coatings for Carbon and Silicon Carbide Fibers in Silicon Carbide Matrixes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Interface coatings for fiber-reinforced composites are an enabling technology for high temperature ceramic matrix composites. Because of their availability and...

  5. Monolithic ceramics

    Science.gov (United States)

    Herbell, Thomas P.; Sanders, William A.

    1992-01-01

    A development history and current development status evaluation are presented for SiC and Si3N4 monolithic ceramics. In the absence of widely sought improvements in these materials' toughness, and associated reliability in structural applications, uses will remain restricted to components in noncritical, nonman-rated aerospace applications such as cruise missile and drone gas turbine engine components. In such high temperature engine-section components, projected costs lie below those associated with superalloy-based short-life/expendable engines. Advancements are required in processing technology for the sake of fewer and smaller microstructural flaws.

  6. Ceramic composition

    International Nuclear Information System (INIS)

    Improved ceramic compositions useful for cutting tools and the like are described. They are composed of an essentially homogeneous admixture of sintered powders of an aluminum oxide base material with other refractories including zirconium oxide, titanium oxide, hafnium oxide, titanium nitride, zirconium nitride, and tungsten or molybdenum carbide. In addition to their common and improved properties of hardness and strength, many of these compositions may be made by simple cold-pressing and sintering procedures. This avoids the known drawbacks of conventional hot press production

  7. Ceramic nanotubes for polymer composites with stable anticorrosion properties

    Science.gov (United States)

    Fakhrullin, R. F.; Tursunbayeva, A.; Portnov, V. S.; L'vov, Yu. M.

    2014-12-01

    The use of natural halloysite clay tubes 50 nm in diameter as nanocontainers for loading, storing, and slowly releasing organic corrosion inhibitors is described. Loaded nanotubes can be mixed well with many polymers and dyes in amounts of 5-10 wt % to form a ceramic framework (which increases the strength of halloysite composites by 30-50%), increase the adhesion of these coatings to metals, and allow for the slow release of corrosion inhibitors in defects of coatings. A significant improvement of protective anticorrosion properties of polyacryl and polyurethane coatings containing ceramic nanotubes loaded with benzotriazole and hydroxyquinoline is demonstrated.

  8. Silsesquioxane-derived ceramic fibres

    Science.gov (United States)

    Hurwitz, F. I.; Farmer, S. C.; Terepka, F. M.; Leonhardt, T. A.

    1991-01-01

    Fibers formed from blends of silsesquioxane polymers were characterized to study the pyrolytic conversion of these precursors to ceramics. The morphology of fibers pyrolyzed to 1400 C revealed primarily amorphous glasses whose conversion to beta-SiC is a function of both blend composition and pyrolysis conditions. Formation of beta-SiC crystallites within the glassy phase is favored by higher than stoichiometric C/Si ratios, while carbothermal reduction of Si-O bonds to form SiC with loss of SiO and CO occurs at higher methyl/phenylpropyl silsesquioxane (lower C/Si) ratios. As the carbothermal reduction is assumed to be diffusion controlled, the fibers can serve as model systems to gain understanding of the silsesquioxane pyrolysis behavior, and therefore are useful in the development of polysilsesquioxane-derived ceramic matrices and coatings as well.

  9. Molecular Adsorber Coating

    Science.gov (United States)

    Straka, Sharon; Peters, Wanda; Hasegawa, Mark; Hedgeland, Randy; Petro, John; Novo-Gradac, Kevin; Wong, Alfred; Triolo, Jack; Miller, Cory

    2011-01-01

    A document discusses a zeolite-based sprayable molecular adsorber coating that has been developed to alleviate the size and weight issues of current ceramic puck-based technology, while providing a configuration that more projects can use to protect against degradation from outgassed materials within a spacecraft, particularly contamination-sensitive instruments. This coating system demonstrates five times the adsorption capacity of previously developed adsorber coating slurries. The molecular adsorber formulation was developed and refined, and a procedure for spray application was developed. Samples were spray-coated and tested for capacity, thermal optical/radiative properties, coating adhesion, and thermal cycling. Work performed during this study indicates that the molecular adsorber formulation can be applied to aluminum, stainless steel, or other metal substrates that can accept silicate-based coatings. The coating can also function as a thermal- control coating. This adsorber will dramatically reduce the mass and volume restrictions, and is less expensive than the currently used molecular adsorber puck design.

  10. New casting coatings

    International Nuclear Information System (INIS)

    In this project the results of the researches about the influence of the four types of ceramic coatings of the evaporating patterns (on the basis of talc, mullite, zircon and cordierite) on the talc of the Lost Foam process and the castings quality are presented. For the valid evaluation of the results, some parallel examinations of the quality of castings obtained by casting in sand were carried out. (Original)

  11. Environmental durability of ceramics and ceramic composites

    Science.gov (United States)

    Fox, Dennis S.

    1992-01-01

    An account is given of the current understanding of the environmental durability of both monolithic ceramics and ceramic-matrix composites, with a view to the prospective development of methods for the characterization, prediction, and improvement of ceramics' environmental durability. Attention is given to the environmental degradation behaviors of SiC, Si3N4, Al2O3, and glass-ceramic matrix compositions. The focus of corrosion prevention in Si-based ceramics such as SiC and Si3N4 is on the high and low sulfur fuel combustion-product effects encountered in heat engine applications of these ceramics; sintering additives and raw material impurities are noted to play a decisive role in ceramics' high temperature environmental response.

  12. Dental ceramics: An update

    OpenAIRE

    Shenoy Arvind; Shenoy Nina

    2010-01-01

    In the last few decades, there have been tremendous advances in the mechanical properties and methods of fabrication of ceramic materials. While porcelain-based materials are still a major component of the market, there have been moves to replace metal ceramics systems with all ceramic systems. Advances in bonding techniques have increased the range and scope for use of ceramics in dentistry. In this brief review, we will discuss advances in ceramic materials and fabrication techniques. Examp...

  13. Application of the quasi-ceramic coating technique to well completion in highly sour gas reservoirs%高酸性气藏完井类陶瓷覆膜处理技术

    Institute of Scientific and Technical Information of China (English)

    何祖清; 马开华; 王晖; 刘文玲

    2011-01-01

    完井工具在高酸性气藏中的腐蚀破坏普遍存在.对完井工具的腐蚀形式和各种处理技术进行了研究.研究结果表明,采用化学气一固平衡反应工艺制取(TiCr)xNy和(TiCr)xNy,膜具有很好的阻氢效果,其防止氢渗透的效率是抗氢不锈钢的1000倍以上,可以有效防止氢进入材料内部所造成的氢致应力腐蚀.通过模拟井下H2S环境的室内的腐蚀试验结果表明,在各种工具表面制备的多层致密类陶瓷覆膜能够适应油田井下各种复杂的腐蚀环境,提高完井工具的防腐性能及其部分机械性能指标,从而为高酸性气藏完井研究了一种安全新型、经济合理的关键技术.%The corrosion of well-completion tools used in highly sour gas reservoirs is very common. The present paper dealt with the corrosion of well-completion tools and the related anti-corrosion techniques, and the study found that(TiCr)x Ny and(TiCr)x Ny membranes prepared in a chemical gas-solid equilibrium reaction process were very helpful in hydrogen resistance, their efficiency of preventing hydrogen from permeation was 1000 times higher than that of hydrogen-proof stainless steel, so they could effectively resist the hydrogen-induced stress corrosion by preventing hydrogen from entering the interior of materials. Through a laboratory corrosion experiment on material samples used for well-completion tools at a simulated downhole H2S environment, the study proved that dense quasi-ceramic multi-layer coatings prepared on the surface of various tools were capable of adapting to various complex downhole corrosive environments, enhancing corrosion-proof properties of well-completion tools and improving some of their mechanical performance indicators. Therefore, this key technique is a safe and economical new approach for the anticorrosion of well-completion tools used in highly sour gas reservoirs.

  14. Scratch and wear behaviour of plasma sprayed nano ceramics bilayer Al2O3-13 wt%TiO2/hydroxyapatite coated on medical grade titanium substrates in SBF environment

    Science.gov (United States)

    Palanivelu, R.; Ruban Kumar, A.

    2014-10-01

    Among the various coating techniques, plasma spray coating is an efficient technique to protect the metal surface from the various surface problems like wear and corrosion. The aim of this present work is to design and produce a bilayer coating on the non- toxic commercially pure titanium (denoted as CP-Ti) implant substrate in order to improve the biocompatibility and surface properties. To achieve that, Al2O3-13 wt%TiO2 (AT13) and hydroxyapatite (HAP) were coated on CP-Ti implant substrate using plasma spray coating technique. Further, the coated substrates were subjected to various characterization techniques. The crystallite size of coated HAP and its morphological studies were carried out using X-ray diffractometer (XRD) and scanning electron microscopy (SEM) respectively. The wear test on the bilayer (AT13/HAP) coated CP-Ti implant surface was conducted using ball-on-disc tester under SBF environment at 37 °C, in order to determine the wear rate and the coefficient of friction. The adhesion strength of the bilayer coated surface was evaluated by micro scratch tester under the ramp load conditions with load range of 14-20 N. The above said studies were repeated on the single layer coated HAP and AT13 implant surfaces. The results reveal that the bilayer (AT13/HAP) coated CP-Ti surface has the improved wear rate, coefficient of friction in compared to single layer coated HAP and AT13 surfaces.

  15. Improvement of tool materials by deposition of gradient and multilayers coatings

    OpenAIRE

    L.A. Dobrzański; K. Gołombek; J. Mikuła; D. Pakuła

    2006-01-01

    Purpose: Investigation of the functional properties of cermets, Si3N4 and Al2O3 based ceramics, coated with the PVD andCVD multilayer and gradient coatings and comparison them with the commercial uncoated and coated tool materials.Design/methodology/approach: TEM, SEM, confocal microscopy, scratch test, microhardness tests, roughnesstests, cutting tests.Findings: Employment of the hard wear resistant coatings deposited onto the sintered ceramic tool materials withthe physical deposition from ...

  16. Cermet Coatings for Solar Stirling Space Power

    Science.gov (United States)

    Jaworske, Donald A.; Raack, Taylor

    2004-01-01

    Cermet coatings, molecular mixtures of metal and ceramic are being considered for the heat inlet surface of a solar Stirling space power converter. This paper will discuss the solar absorption characteristics of as-deposited cermet coatings as well as the solar absorption characteristics of the coatings after heating. The role of diffusion and island formation, during the deposition process and during heating will also be discussed.

  17. Dental ceramics: An update

    Directory of Open Access Journals (Sweden)

    Shenoy Arvind

    2010-01-01

    Full Text Available In the last few decades, there have been tremendous advances in the mechanical properties and methods of fabrication of ceramic materials. While porcelain-based materials are still a major component of the market, there have been moves to replace metal ceramics systems with all ceramic systems. Advances in bonding techniques have increased the range and scope for use of ceramics in dentistry. In this brief review, we will discuss advances in ceramic materials and fabrication techniques. Examples of the microstructure property relationships for these ceramic materials will also be addressed.

  18. TWINNING MECHANISMS IN LASER PROCESSED CERAMIC COATINGS

    NARCIS (Netherlands)

    de Hosson, J.T.M.

    1995-01-01

    Twinning behaviour and martensitic transformations are observed in laser treated (Fe, Cr) spinel with chemical formula FexCr3-xO4 (0

  19. Scratch and wear behaviour of plasma sprayed nano ceramics bilayer Al2O3-13 wt%TiO2/hydroxyapatite coated on medical grade titanium substrates in SBF environment

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Hydroxyapatite was synthesized by sol–gel route. • Bilayer (AT13/HAP) coating improves wear resistance of CP-Ti implant surface. • The microhardness values of bilayer coating surface were increased 4 times compared to uncoated sample surface. - Abstract: Among the various coating techniques, plasma spray coating is an efficient technique to protect the metal surface from the various surface problems like wear and corrosion. The aim of this present work is to design and produce a bilayer coating on the non- toxic commercially pure titanium (denoted as CP-Ti) implant substrate in order to improve the biocompatibility and surface properties. To achieve that, Al2O3-13 wt%TiO2 (AT13) and hydroxyapatite (HAP) were coated on CP-Ti implant substrate using plasma spray coating technique. Further, the coated substrates were subjected to various characterization techniques. The crystallite size of coated HAP and its morphological studies were carried out using X-ray diffractometer (XRD) and scanning electron microscopy (SEM) respectively. The wear test on the bilayer (AT13/HAP) coated CP-Ti implant surface was conducted using ball-on-disc tester under SBF environment at 37 °C, in order to determine the wear rate and the coefficient of friction. The adhesion strength of the bilayer coated surface was evaluated by micro scratch tester under the ramp load conditions with load range of 14–20 N. The above said studies were repeated on the single layer coated HAP and AT13 implant surfaces. The results reveal that the bilayer (AT13/HAP) coated CP-Ti surface has the improved wear rate, coefficient of friction in compared to single layer coated HAP and AT13 surfaces

  20. Scratch and wear behaviour of plasma sprayed nano ceramics bilayer Al{sub 2}O{sub 3}-13 wt%TiO{sub 2}/hydroxyapatite coated on medical grade titanium substrates in SBF environment

    Energy Technology Data Exchange (ETDEWEB)

    Palanivelu, R.; Ruban Kumar, A., E-mail: arubankumarvit@gmail.com

    2014-10-01

    Graphical abstract: - Highlights: • Hydroxyapatite was synthesized by sol–gel route. • Bilayer (AT13/HAP) coating improves wear resistance of CP-Ti implant surface. • The microhardness values of bilayer coating surface were increased 4 times compared to uncoated sample surface. - Abstract: Among the various coating techniques, plasma spray coating is an efficient technique to protect the metal surface from the various surface problems like wear and corrosion. The aim of this present work is to design and produce a bilayer coating on the non- toxic commercially pure titanium (denoted as CP-Ti) implant substrate in order to improve the biocompatibility and surface properties. To achieve that, Al{sub 2}O{sub 3}-13 wt%TiO{sub 2} (AT13) and hydroxyapatite (HAP) were coated on CP-Ti implant substrate using plasma spray coating technique. Further, the coated substrates were subjected to various characterization techniques. The crystallite size of coated HAP and its morphological studies were carried out using X-ray diffractometer (XRD) and scanning electron microscopy (SEM) respectively. The wear test on the bilayer (AT13/HAP) coated CP-Ti implant surface was conducted using ball-on-disc tester under SBF environment at 37 °C, in order to determine the wear rate and the coefficient of friction. The adhesion strength of the bilayer coated surface was evaluated by micro scratch tester under the ramp load conditions with load range of 14–20 N. The above said studies were repeated on the single layer coated HAP and AT13 implant surfaces. The results reveal that the bilayer (AT13/HAP) coated CP-Ti surface has the improved wear rate, coefficient of friction in compared to single layer coated HAP and AT13 surfaces.