WorldWideScience

Sample records for cepheid pulsational quantities

  1. Nonradial Pulsations in Classical Cepheids of the Magellanic Clouds

    CERN Document Server

    Moskalik, P; Moskalik, Pawel; Mizerski, Zbigniew Kolaczkowski & Tomasz

    2003-01-01

    We have performed systematic frequency analysis of the LMC Cepheids observed by OGLE project. Several new types of pulsation behaviour are identified, including triple-mode and amplitude-modulated double-mode pulsations. In ~10% of the first overtone Cepheids we find low amplitude secondary periodicities corresponding to nonradial modes. This is the first evidence for excitation of nonradial oscillations in Classical Cepheid variables.

  2. THE PULSATION MODE OF THE CEPHEID POLARIS

    Energy Technology Data Exchange (ETDEWEB)

    Turner, D. G. [Department of Astronomy and Physics, Saint Mary' s University, Halifax NS B3H 3C3 (Canada); Kovtyukh, V. V.; Usenko, I. A. [Astronomical Observatory, Odessa National University, and Isaac Newton Institute of Chile, Odessa Branch, T. G. Shevkenko Park, 65014 Odessa (Ukraine); Gorlova, N. I., E-mail: turner@ap.smu.ca [Institute of Astronomy, Celestijnenlaan 200D, B-3001 Leuven (Belgium)

    2013-01-01

    A previously derived photometric parallax of 10.10 {+-} 0.20 mas, d = 99 {+-} 2 pc, is confirmed for Polaris by a spectroscopic parallax derived using line ratios in high dispersion spectra for the Cepheid. The resulting estimates for the mean luminosity of (M{sub V} ) = -3.07 {+-} 0.01 s.e., average effective temperature of (T{sub eff}) = 6025 {+-} 1 K s.e., and intrinsic color of ((B) - (V)){sub 0} = +0.56 {+-} 0.01 s.e., which match values obtained previously from the photometric parallax for a space reddening of E{sub B-V} = 0.02 {+-} 0.01, are consistent with fundamental mode pulsation for Polaris and a first crossing of the instability strip, as also argued by its rapid rate of period increase. The systematically smaller Hipparcos parallax for Polaris appears discrepant by comparison.

  3. THE PULSATION MODE AND DISTANCE OF THE CEPHEID FF AQUILAE

    Energy Technology Data Exchange (ETDEWEB)

    Turner, D. G. [Department of Astronomy and Physics, Saint Mary' s University, Halifax, NS B3H 3C3 (Canada); Kovtyukh, V. V. [Astronomical Observatory, Odessa National University, and Isaac Newton Institute of Chile, Odessa Branch, T. G. Shevkenko Park, 65014 Odessa (Ukraine); Luck, R. E. [Department of Astronomy, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-7215 (United States); Berdnikov, L. N., E-mail: turner@ap.smu.ca, E-mail: val@deneb1.odessa.ua, E-mail: rel2@case.edu, E-mail: leonid.berdnikov@gmail.com [Sternberg Astronomical Institute, Moscow M. V. Lomonosov State University, Moscow 119992 (Russian Federation)

    2013-07-20

    The determination of pulsation mode and distance for field Cepheids is a complicated problem best resolved by a luminosity estimate. For illustration a technique based on spectroscopic luminosity discrimination is applied to the 4.47 day s-Cepheid FF Aql. Line ratios in high dispersion spectra of the variable yield values of (M{sub V} ) = -3.40 {+-} 0.02 s.e. ({+-}0.04 s.d.), average effective temperature T{sub eff} = 6195 {+-} 24 K, and intrinsic color ((B) - (V)){sub 0} = +0.506 {+-} 0.007, corresponding to a reddening of E{sub B-V} = 0.25 {+-} 0.01, or E{sub B-V}(B0) = 0.26 {+-} 0.01. The skewed light curve, intrinsic color, and luminosity of FF Aql are consistent with fundamental mode pulsation for a small-amplitude classical Cepheid on the blue side of the instability strip, not a sinusoidal pulsator. A distance of 413 {+-} 14 pc is estimated from the Cepheid's angular diameter in conjunction with a mean radius of (R) = 39.0 {+-} 0.7 R{sub Sun} inferred from its luminosity and effective temperature. The dust extinction toward FF Aql is described by a ratio of total-to-selective extinction of R{sub V} = A{sub V} /E(B - V) = 3.16 {+-} 0.34 according to the star's apparent distance modulus.

  4. Theoretical rates of pulsation period change in the Galactic Cepheids

    CERN Document Server

    Fadeyev, Yuri A

    2014-01-01

    Theoretical estimates of the rates of radial pulsation period change in Galactic Cepheids with initial masses 5.5M_\\odot <= Mzams <= 13M_\\odot, chemical composition X=0.7, Z=0.02 and periods 1.5 day <= P <= 100 day are obtained from consistent stellar evolution and nonlinear stellar pulsation computations. Pulsational instability was investigated for three crossings of the instability strip by the evolutionary track in the HR diagram. The first crossing occurs at the post-main sequence helium core gravitational contraction stage which proceeds in the Kelvin--Helmholtz timescale whereas the second and the third crossings take place at the evolutionary stage of thermonuclear core helium burning. During each crossing of the instability strip the period of radial pulsations is a quadratic function of the stellar evolution time. Theoretical rates of the pulsation period change agree with observations but the scatter of observational estimates of dP/dt noticeably exceeds the width of the band (\\delta\\lo...

  5. Classical Cepheid pulsation models --- VI. The Hertzsprung progression

    Science.gov (United States)

    Bono, G.; Marconi, M.; Stellingwerf, R. F.

    2000-08-01

    We present the results of an extensive theoretical investigation on the pulsation behavior of Bump Cepheids. We constructed several sequences of full amplitude, nonlinear, convective models by adopting a chemical composition typical of Large Magellanic Cloud (LMC) Cepheids (Y=0.25, Z=0.008) and stellar masses ranging from M/M⊙ =6.55 to 7.45. We find that theoretical light and velocity curves reproduce the HP, and indeed close to the blue edge the bump is located along the descending branch, toward longer periods it crosses at first the luminosity/velocity maximum and then it appears along the rising branch. In particular, we find that the predicted period at the HP center is PHP = 11.24∓0.46 d and that such a value is in very good agreement with the empirical value estimated by adopting the Fourier parameters of LMC Cepheid light curves i.e. PHP = 11.2 ∓ 0.8 d (Welch et al. 1997). Moreover, light and velocity amplitudes present a "double-peaked" distribution which is in good qualitative agreement with observational evidence on Bump Cepheids. It turns out that both the skewness and the acuteness typically show a well-defined minimum at the HP center and the periods range from PHP = 10.73 ∓ 0.97 d to PHP = 11.29 ∓ 0.53 d which are in good agreement with empirical estimates. We also find that the models at the HP center are located within the resonance region but not on the 2:1 resonance line (P2/P0 = 0.5), and indeed the P2/P0 ratios roughly range from 0.51 (cool models) to 0.52 (hot models). Interestingly enough, the predicted Bump Cepheid masses, based on a Mass-Luminosity (ML) relation which neglects the convective core overshooting, are in good agreement with the empirical masses of Galactic Cepheids estimated by adopting the Baade-Wesselink method (Gieren 1989). As a matter of fact, the observed mass at the HP center -P ≍ 11.2 d- is 6.9 ∓ 0.9 M⊙, while the predicted mass is 7.0 ∓ 0.45 M⊙. Even by accounting for the metallicity difference

  6. The Secret Lives of Cepheids: Evolutionary Changes and Pulsation-Induced Shock Heating in the Prototype Classical Cepheid {\\delta} Cep

    CERN Document Server

    Engle, Scott G; Harper, Graham M; Neilson, Hilding R; Evans, Nancy Remage

    2014-01-01

    Over the past decade, the Secret Lives of Cepheids (SLiC) program has been carried out at Villanova University to study aspects and behaviors of classical Cepheids that are still not well-understood. In this, the first of several planned papers on program Cepheids, we report the current results for delta Cep, the Cepheid prototype. Ongoing photometry has been obtained to search for changes in the pulsation period, light curve morphology and amplitude. Combining our photometry with the times of maximum light compilation by Berdnikov 2000 returns a small period change of dP/dt ~ -0.1006 +/- 0.0002 sec yr^-1. There is also evidence for a gradual light amplitude increase of ~0.011-mag (V-band) and ~0.012-mag (B-band) per decade over the last ~50 years. In addition, HST-COS UV spectrophotometry and XMM-Newton X-ray data were carried out to investigate the high-temperature plasmas present above the Cepheid photospheres. In total, from the five visits (eight exposures) with XMM-Newton, delta Cep is found to be a sof...

  7. EROS differential studies of Cepheids in the Magellanic Clouds : Stellar pulsation, stellar evolution and distance scale

    NARCIS (Netherlands)

    Beaulieu, J. P.; Sasselov, D. D.

    1996-01-01

    Abstract: We present a differential study of 500 Magellanic Cepheids with 3 million measurements obtained as a by-product of the EROS microlensing survey. The data-set is unbiased and provides an excellent basis for a differential analysis between LMC and SMC. We investigate the pulsational properti

  8. Cepheids at high angular resolution: circumstellar envelope and pulsation

    Science.gov (United States)

    Gallenne, Alexandre

    2011-12-01

    In 2005, interferometric observations with VLTI/VINCI and CHARA/FLUOR revealed the existence of a circumstellar envelope (CSE) around some Cepheids. This surrounding material is particularly interesting for two reasons: it could have an impact on the distance estimates and could be linked to a past or on-going mass loss. The use of Baade-Wesselink methods for independent distance determinations could be significantly biased by the presence of these envelopes. Although their observations are difficult because of the high contrast between the photosphere of the star and the CSE, several observation techniques have the potential to improve our knowledge about their physical properties. In this thesis, I discuss in particular high angular resolution techniques that I applied to the study of several bright Galactic Cepheids. First, I used adaptive optic observations with NACO of the Cepheid RS Puppis, in order to deduce the flux ratio between the CSE and the photosphere of the star. In addition, I could carry out a statistical study of the speckle noise and inspect a possible asymmetry. Secondly, I analysed VISIR data to study the spectral energy distribution of a sample of Cepheids. These diffraction-limited images enabled me to carry out an accurate photometry in the N band and to detect an IR excess linked to the presence of a circumstellar component. On the other hand, applying a Fourier analysis I showed that some components are resolved. I then explored the K' band with the recombination instrument FLUOR for some bright Cepheids. Thanks to new set of data of Y Oph, I improved the study of its circumstellar envelope, using a ring-like model for the CSE. For two other Cepheids, U Vul and S Sge, I applied the interferometric Baade-Wesselink method in order to estimate their distance.

  9. Cepheids at high angular resolution: circumstellar envelope and pulsation

    CERN Document Server

    Gallenne, Alexandre

    2011-01-01

    In 2005, interferometric observations with VLTI/VINCI and CHARA/FLUOR revealed the existence of a circumstellar envelope (CSE) around some Cepheids. This surrounding material is particularly interesting for two reasons: it could have an impact on the distance estimates and could be linked to a past or on-going mass loss. The use of Baade-Wesselink methods for independent distance determinations could be significantly biased by the presence of these envelopes. Although their observations are difficult because of the high contrast between the photosphere of the star and the CSE, several observation techniques have the potential to improve our knowledge about their physical properties. In this thesis, I discuss in particular high angular resolution techniques that I applied to the study of several bright Galactic Cepheids. First, I used adaptive optic observations with NACO of the Cepheid RS Puppis, in order to deduce the flux ratio between the CSE and the photosphere of the star. In addition, I could carry out ...

  10. Evolution and pulsation period change in the Large Magellanic Cloud Cepheids

    CERN Document Server

    Fadeyev, Yuri A

    2013-01-01

    Theoretical estimates of the pulsation period change rates in LMC Cepheids are obtained from consistent calculation of stellar evolution and nonlinear stellar pulsation for stars with initial chemical composition X=0.7, Z=0.008, initial masses 5M_\\odot = 7M_\\odot pulsate in the fundamental mode and the period change rate \\dot\\Pi varies nearly by a factor of two for both crossings of the instability strip. In the period -- period change rate diagram the values of the period and \\dot\\Pi concentrate within the strips, their slope and half--width depending on both the direction of the movement in the HR--diagram and the pulsation mode. For oscillations in the fundamental mode the half-widths of the strip are \\delta\\log\\dot\\Pi = 0.35 and \\delta\\log\\dot\\Pi = 0.2 for the first and the second crossings of the instability strip, respectively. Results of computations are compared with observations of nearly 700 LMC Cepheids. Within existing observational uncertainties of \\dot\\Pi the theoretical dependences of the perio...

  11. The occurrence of binary evolution pulsators in classical instability strip of RR Lyrae and Cepheid variables

    Science.gov (United States)

    Karczmarek, P.; Wiktorowicz, G.; Iłkiewicz, K.; Smolec, R.; Stępień, K.; Pietrzyński, G.; Gieren, W.; Belczynski, K.

    2017-04-01

    Single star evolution does not allow extremely low-mass stars to cross the classical instability strip (IS) during the Hubble time. However, within binary evolution framework low-mass stars can appear inside the IS once the mass transfer (MT) is taken into account. Triggered by a discovery of low-mass (0.26 M⊙) RR Lyrae-like variable in a binary system, OGLE-BLG-RRLYR-02792, we investigate the occurrence of similar binary components in the IS, which set up a new class of low-mass pulsators. They are referred to as binary evolution pulsators (BEPs) to underline the interaction between components, which is crucial for substantial mass-loss prior to the IS entrance. We simulate a population of 500 000 metal-rich binaries and report that 28 143 components of binary systems experience severe MT (losing up to 90 per cent of mass), followed by at least one IS crossing in luminosity range of RR Lyrae (RRL) or Cepheid variables. A half of these systems enter the IS before the age of 4 Gyr. BEPs display a variety of physical and orbital parameters, with the most important being the BEP mass in range 0.2-0.8 M⊙, and the orbital period in range 10-2 500 d. Based on the light curve only, BEPs can be misclassified as genuine classical pulsators, and as such they would contaminate genuine RRL and classical Cepheid variables at levels of 0.8 and 5 per cent, respectively. We state that the majority of BEPs will remain undetected and we discuss relevant detection limitations.

  12. Non-radial pulsation in first overtone Cepheids of the Small Magellanic Cloud

    CERN Document Server

    Smolec, R

    2016-01-01

    We analyse photometry for 138 first overtone Cepheids from the Small Magellanic Cloud, in which Optical Gravitational Lensing Experiment (OGLE) team discovered additional variability with period shorter than first overtone period, and period ratios in the (0.60, 0.65) range. In the Petersen diagram these stars form three well separated sequences. The additional variability cannot correspond to other radial mode. This form of pulsation is still puzzling. We find that amplitude of the additional variability is small, typically 2-4 per cent of the first overtone amplitude, which corresponds to 2-5 mmag. In some stars we find simultaneously two close periodicities corresponding to two sequences in the Petersen diagram. The most important finding is the detection of power excess at half the frequency of the additional variability (at subharmonic) in 35 per cent of the analysed stars. Interestingly, power excess at subharmonic frequency is detected mostly for stars of the middle sequence in the Petersen diagram (74...

  13. On the Effect of Rotation on Populations of Classical Cepheids II. Pulsation Analysis for Metallicities 0.014, 0.006, and 0.002

    CERN Document Server

    Anderson, Richard I; Ekström, Sylvia; Georgy, Cyril; Meynet, Georges

    2016-01-01

    Classical Cepheid variable stars are high-sensitivity probes of stellar evolution and fundamental tracers of cosmic distances. While rotational mixing significantly affects the evolution of Cepheid progenitors (intermediate-mass stars), the impact of the resulting changes in stellar structure and composition on Cepheids on their pulsational properties is hitherto unknown. Here we present the first detailed pulsational instability analysis of stellar evolution models that include the effects of rotation, for both fundamental mode and first overtone pulsation. We employ Geneva evolution models spanning a three-dimensional grid in mass (1.7 - 15 $M_\\odot$), metallicity (Z = 0.014, 0.006, 0.002), and rotation (non-rotating, average & fast rotation). We determine (1) hot and cool instability strip (IS) boundaries taking into account the coupling between convection and pulsation, (2) pulsation periods, and (3) rates of period change. We investigate relations between period and (a) luminosity, (b) age, (c) radiu...

  14. On the effect of rotation on populations of classical Cepheids. II. Pulsation analysis for metallicities 0.014, 0.006, and 0.002

    Science.gov (United States)

    Anderson, R. I.; Saio, H.; Ekström, S.; Georgy, C.; Meynet, G.

    2016-06-01

    Classical Cepheid variable stars (from hereon: Cepheids) are high-sensitivity probes of stellar evolution and fundamental tracers of cosmic distances. While rotational mixing significantly affects the evolution of Cepheid progenitors (intermediate-mass stars), the impact of the resulting changes in stellar structure and composition on Cepheids and their pulsational properties is hitherto unknown. Here we present the first detailed pulsational instability analysis of stellar evolution models that include the effects of rotation, for both fundamental mode and first overtone pulsation. We employ Geneva evolution models spanning a three-dimensional grid in mass (1.7-15 M⊙), metallicity (Z = 0.014, 0.006, 0.002), and rotation (non-rotating, average & fast rotation). We determine (1) hot and cool instability strip (IS) boundaries taking into account the coupling between convection and pulsation; (2) pulsation periods; and (3) rates of period change. We investigate relations between period and (a) luminosity; (b) age; (c) radius; (d) temperature; (e) rate of period change; (f) mass; (g) the flux-weighted gravity-luminosity relation (FWGLR). We confront all predictions aside from those for age with observations, finding generally excellent agreement. We tabulate period-luminosity relations (PLRs) for several photometric pass-bands and investigate how the finite IS width, different IS crossings, metallicity, and rotation affect PLRs. We show that a Wesenheit index based on H, V, and I photometry is expected to have the smallest intrinsic PLR dispersion. We confirm that rotation resolves the Cepheid mass discrepancy. Period-age relations depend significantly on rotation, with rotation leading to older Cepheids, offering a straightforward explanation for evolved stars in binary systems that cannot be matched by conventional isochrones assuming a single age. We further show that Cepheids obey a tight FWGLR. Rotation is a fundamental property of stars that has important

  15. Observations of the pulsation of the Cepheid l Car with the Sydney University Stellar Interferometer

    CERN Document Server

    Davis, J; Robertson, J G; Ireland, M J; North, J R; Tango, W J; Tuthill, P G

    2008-01-01

    Observations of the southern Cepheid l Car to yield the mean angular diameter and angular pulsation amplitude have been made with the Sydney University Stellar Interferometer (SUSI) at a wavelength of 696 nm. The resulting mean limb-darkened angular diameter is 2.990+-0.017 mas (i.e. +-0.6 per cent) with a maximum-to-minimum amplitude of 0.560+-0.018 mas corresponding to 18.7+-0.6 per cent in the mean stellar diameter. Careful attention has been paid to uncertainties, including those in measurements, in the adopted calibrator angular diameters, in the projected values of visibility squared at zero baseline, and to systematic effects. No evidence was found for a circumstellar envelope at 696 nm. The interferometric results have been combined with radial displacements of the stellar atmosphere derived from selected radial velocity data taken from the literature to determine the distance and mean diameter of l Car. The distance is determined to be 525+-26 pc and the mean radius 169+-8R{solar). Comparison with pu...

  16. Mean angular diameters, distances and pulsation modes of the classical Cepheids FF Aql and T Vul - CHARA/FLUOR near-infrared interferometric observations

    CERN Document Server

    Gallenne, A; Mérand, A; McAlister, H; Brummelaar, T ten; Foresto, V Coudé du; Sturmann, J; Sturmann, L; Turner, N; Farrington, C; Goldfinger, P J

    2012-01-01

    We report the first angular diameter measurements of two classical Cepheids, FF Aql and T Vul, that we have obtained with the FLUOR instrument installed at the CHARA interferometric array. We obtain average limb-darkened angular diameters of \\theta_LD = 0.878 +/- 0.013 mas and \\theta_LD = 0.629 +/- 0.013 mas, respectively for FF Aql and T Vul. Combining these angular diameters with the HST-FGS trigonometric parallaxes leads to linear radii R = 33.6 +/- 2.2 Rsol and R = 35.6 +/- 4.4 Rsol, respectively. The comparison with empirical and theoretical Period-Radius relations leads to the conclusion that these Cepheids are pulsating in their fundamental mode. The knowledge of the pulsation mode is of prime importance to calibrate the Period-Luminosity relation with a uniform sample of fundamental mode Cepheids.

  17. Mean angular diameters, distances, and pulsation modes of the classical Cepheids FF Aquilae and T Vulpeculae. CHARA/FLUOR near-infrared interferometric observations

    Science.gov (United States)

    Gallenne, A.; Kervella, P.; Mérand, A.; McAlister, H.; ten Brummelaar, T.; Coudé du Foresto, V.; Sturmann, J.; Sturmann, L.; Turner, N.; Farrington, C.; Goldfinger, P. J.

    2012-05-01

    We report the first angular diameter measurements of two classical Cepheids, FF Aql and T Vul, that we obtain using observations with the FLUOR instrument installed at the CHARA interferometric array. We derive average limb-darkened angular diameters of θLD = 0.878 ± 0.013 mas and θLD = 0.629 ± 0.013 mas, respectively, for FF Aql and T Vul. Combining these angular diameters with the HST-FGS trigonometric parallaxes leads to linear radii R = 33.6 ± 2.2 R⊙ and R = 35.6 ± 4.4 R⊙, respectively. The comparison with empirical and theoretical period-radius relations leads to the conclusion that these Cepheids are pulsating in their fundamental mode. The knowledge of this pulsation mode is of prime importance to calibrating the period-luminosity relation with a uniform sample of fundamental mode Cepheids.

  18. Cepheid models based on self-consistent stellar evolution and pulsation calculations : The right answer?

    NARCIS (Netherlands)

    Baraffe, [No Value; Alibert, Y; Mera, D; Charbrier, G; Beaulieu, JP

    1998-01-01

    We have computed stellar evolutionary models for stars in a mass range characteristic of Cepheid variables (3

  19. Spectroscopic studies of three Cepheids with high positive pulsation period increments: SZ Cas, BY Cas, and RU Sct

    Science.gov (United States)

    Usenko, I. A.; Klochkova, V. G.

    2015-07-01

    Three high-resolution spectra have been taken at different times with the 6-m SAO RAS telescope (LYNX and PFES spectrographs) for three Cepheids exhibiting high positive period increments: the small-amplitude (DCEPS) SZ Cas and BY Cas and the classical (DCEP) RU Sct. SZ Cas and RU Sct are members of the Galactic open clusters χ and h Per and Trump 35, respectively. Analysis of the spectra has shown that the interstellar Na I D1 and D2 lines in all objects are considerably stronger than the atmospheric ones and are redshifted in SZ Cas and BY Cas and blushifted in RU Sct. The core of the H α absorption line in BY Cas has an asymmetric knifelike shape, while RU Sct exhibits an intense emission in the blue wing of this line. Such phenomena are observed in long-period Cepheids and bright hypergiants with an extended envelope. In this case, the strong Mg Ib 5183.62 Å and Ba II 5853.67, 6141.713, and 6496.90 Å lines with low χlow in SZ Cas and RU Sct also show characteristic knifelike profiles with an asymmetry in the red region, while the Ba II 4934.095 Å line shows similar profiles in the blue one. The absorption lines of neutral atoms and singly ionized metals with different lowerlevel excitation potentials exhibit different degrees of asymmetry: from a pronounced one with secondary components in BY Cas (similar to those in the small-amplitude Cepheid BG Cru pulsating in the first overtone and having an envelope) to its insignificance or virtual absence in SZ Cas and RU Sct. Analysis of the secular changes in mean T eff determined from photometric color indices and spectra over the last 55 years for these stars has revealed periodic fluctuations of 200 K for SZ Cas and BY Cas and 500 K for RU Sct. For SZ Cas and RU Sct, T eff determined in some years from some color indices show much lower values, which together with the temperature fluctuations can be associated with mass loss and dust formation. Based on these facts, we hypothesize the existence of

  20. Cepheid models based on self-consistent stellar evolution and pulsation calculations the right answer?

    CERN Document Server

    Baraffe, I; Méra, D; Chabrier, G; Beaulieu, J P

    1998-01-01

    We have computed stellar evolutionary models for stars in a mass range characteristic of Cepheid variables ($3

  1. Fourier analysis of short-period SMC Cepheids: A comparison with Galactic Cepheids

    Science.gov (United States)

    Buchler, J. Robert; Moskalik, Pawel

    1994-12-01

    A Fourier analysis has been made of the Small Magellanic Cloud (SMC) classical Cepheid data of Smith et al. It is shown that the grouping into fundamental and first overtone pulsators, implied by the period-luminosity diagram, survives when the Fourier coefficients are plotted versus period. A comparison with the Galactic Cepheid data corroborates the existing evidence that the short period Galactic s-Cepheids are indeed first overtone pulsators. The only long period overtone Cepheid in the sample that is reliably covered (P = 3.49 d) also conforms with the corresponding s-Cepheids. On the other hand, the hypothesis of Gieren et al. that the long period s-Cepheids are fundamental pulsators is refuted. The data show systematic differences between the SMC Cepheids and their Galactic counterparts, differences that are of theoretical interest. The need for a further observational effort devoted to SMC and to Large Magellanic cloud (LMC) Cepheids is stressed.

  2. RCT photometry of the Hubble Classical Cepheid V19 in M33: Evidence for the Cessation of Pulsations - A Case of Stellar Evolution in Real Time

    Science.gov (United States)

    Engle, Scott G.; Guinan, Edward F.; Macri, Lucas; Pellerin, Ann

    2011-03-01

    We report on our continuing efforts to monitor the photometric behavior of Hubble's Variable Star V19 in the Triangulum Spiral Galaxy M33. B,V photometry has been carried out of this unusual 18th mag (previous) Cepheid with the 1.3-m RCT (Robotically Controlled Telescope) at KPNO. With time-series photometry, with a dedicated robotic telescope, we can hope to solve the mystery of V19 and its unprecedented evolutionary behavior. In the influential work "A Spiral Nebula as a Stellar System: Messier 33" (Hubble 1926) Edwin Hubble determined the distance to M33 by using 35 Cepheids he discovered. One of those Cepheids was designated V19. At that time observations revealed V19 to have a 54.7-day period and B-band (converted from photographic magnitudes) light amplitude of 1.1-mag. Its mean B-magnitude was 19.6 /-0.2. V19 properties were consistent with the Period-Luminosity Law for M33 derived by Hubble at that time. Follow-up observations in 1996-1997 as part of the DIRECT Program (Macri et al. 2001), however, revealed large and surprising changes in the properties of V19. Its mean B-magnitude had risen to 19.05 /-0.05 and its amplitude had decreased to less than 0.1-mag. The DIRECT study thoroughly checked for possible misclassifications of the variable or contamination by nearby objects, and found none. For all intents and purposes, V19 is no longer a Classical Cepheid, or at least varying below the detectable levels of the photometry. The only other well-documented instance of Cepheid pulsations declining over time is in the case of Polaris - whose V-band amplitude decreased from just over 0.1-mag to below 0.03-mag over the course of a century (Engle et al 2004). Also, a study of the visual magnitudes of Polaris over the past two millennia has shown a possible increase in brightness of 1-mag over the past 1000 years. The changes observed for V19 are obviously on a much more dramatic scale. We discuss the properties of this unusual (former) Cepheid and discuss

  3. IRAS observations of cepheid variable stars

    Science.gov (United States)

    Wayman, P. A.; Deasy, H. P.

    1986-09-01

    Mass loss from cepheids is investigated in terms of the evolution and pulsation of cepheids. IR Point Source Catalogue data on galactic cepheids and nonvariable supergiants from IRAS (1985) are analyzed in terms of dereddened colors. The positions on two-color diagrams are compared to black-body curve positions. It is observed that nonvariable supergiants similar to cepheids and short-period cepheids are closely related to black-body objects. Analysis of the mass loss, which is estimated as about 10 to the -6th solar masses/yr, indicates that mass loss is associated with cepheid pulsation; however, the effect of mass loss in the course of stellar evolution from the cepheid phase is insignificant.

  4. The Araucaria Project : the Baade-Wesselink projection factor of pulsating stars

    CERN Document Server

    Nardetto, N; Gieren, W; Pietrzynski, G; Poretti, E

    2013-01-01

    The projection factor used in the Baade-Wesselink methods of determining the distance of Cepheids makes the link between the stellar physics and the cosmological distance scale. A coherent picture of this physical quantity is now provided based on several approaches. We present the lastest news on the expected projection factor for different kinds of pulsating stars in the Hertzsprung-Russell diagram.

  5. Binary Cepheids from optical interferometry

    CERN Document Server

    Gallenne, A; Mérand, A; Monnier, J D; Pietrzyński, J Breitfelder G; Gieren, W

    2013-01-01

    Classical Cepheid stars have been considered since more than a century as reliable tools to estimate distances in the universe thanks to their Period-Luminosity (P-L) relationship. Moreover, they are also powerful astrophysical laboratories, providing fundamental clues for studying the pulsation and evolution of intermediate-mass stars. When in binary systems, we can investigate the age and evolution of the Cepheid, estimate the mass and distance, and constrain theoretical models. However, most of the companions are located too close to the Cepheid (1-40 mas) to be spatially resolved with a 10-meter class telescope. The only way to spatially resolve such systems is to use long-baseline interferometry. Recently, we have started a unique and long-term interferometric program that aims at detecting and characterizing physical parameters of the Cepheid companions, with as main objectives the determination of accurate masses and geometric distances.

  6. Mass loss estimates for Cepheid variables

    Science.gov (United States)

    Deasy, H. P.; Wayman, P. A.

    1986-03-01

    Pulsation theory and the theory of stellar evolution yield estimates for Cepheid masses which disagree to different extents depending, for instance, on the adopted calibration of the period-luminosity relation. For example, Schmidt's (1984) distance scale (revised after redetermining the distance moduli of open clusters with Cepheids) finds the pulsation to be less than the evolutionary masses. Since the beat and bump masses are consistent with the pulsation masses in this scheme, it seems that the evolutionary models used, which have neglected mass loss, are in need of revision.

  7. Improving the mass determination of Galactic Cepheids

    CERN Document Server

    Bono, G; Marconi, M; Fouqué, P; Caputo, F

    2001-01-01

    We have selected a sample of Galactic Cepheids for which accurate estimates of radii, distances, and photometric parameters are available. The comparison between their pulsation masses, based on new Period-Mass-Radius (PMR) relations, and their evolutionary masses, based on both optical and NIR Color-Magnitude (CM) diagrams, suggests that pulsation masses are on average of the order of 10% smaller than the evolutionary masses. Current pulsation masses show, at fixed radius, a strongly reduced dispersion when compared with values published in literature.The increased precision in the pulsation masses is due to the fact that our predicted PMR relations based on nonlinear, convective Cepheid models present smaller standard deviations than PMR relations based on linear models. At the same time, the empirical radii of our Cepheid sample are typically accurate at the 5% level. Our evolutionary mass determinations are based on stellar models constructed by neglecting the effect of mass-loss during the He burning pha...

  8. Masses for Galactic Beat Cepheids

    Science.gov (United States)

    D'Cruz, Noella L.; Morgan, Siobahn M.; Böhm-Vitense, Erika

    2000-08-01

    Accurate mass determinations for Cepheids may be used to determine the degree of excess mixing in the interiors of their main-sequence progenitors: the larger the excess mixing, the larger the luminosity of the Cepheid of a given mass, or the smaller the mass of a Cepheid with given luminosity. Dynamical masses determined recently for a few Cepheid binaries indicate excess mixing somewhat stronger than that corresponding to the convective overshoot models by Schaller et al. Beat Cepheids can be used similarly to test main-sequence mixing in stellar interiors. The period ratios for beat Cepheids depend on luminosity, Teff, heavy element abundance, and mass. By comparing pulsational models and the observationally derived luminosity, Teff, metallicities, and period ratios it is possible to obtain masses for these stars, the so-called beat masses. With the old opacities masses much smaller than the evolutionary masses were obtained. With the new OPAL opacities a beat mass close to the dynamical mass was obtained for the binary beat Cepheid Y Carinae, showing that it is now possible to obtain reliable beat masses. In this paper, we determine beat masses for seven Galactic beat Cepheids for which photometric and spectroscopic data are available. We find an average mass around 4.2+/-0.3 Msolar for these stars, though the actual error limits for each star may be larger mainly because of uncertainties in E(B-V) and the heavy element abundances. (As derived spectroscopically, beat Cepheids are in general metal-poor, with -0.4relation between the derived beat masses and the luminosities again indicates excess mixing that is somewhat larger than that corresponding to the models by Schaller et al.

  9. Cepheid distances from the SpectroPhoto-Interferometry of Pulsating Stars (SPIPS) - Application to the prototypes delta Cep and eta Aql

    CERN Document Server

    Merand, Antoine; Breitfelder, Joanne; Gallenne, Alexandre; Foresto, Vincent Coude du; Brummelaar, Theo A ten; McAlister, Harold A; Ridgway, Stephen; Sturmann, Laszlo; Sturmann, Judit; Turner, Nils H

    2015-01-01

    The parallax of pulsation, and its implementations such as the Baade-Wesselink method and the infrared surface bright- ness technique, is an elegant method to determine distances of pulsating stars in a quasi-geometrical way. However, these classical implementations in general only use a subset of the available observational data. Freedman & Madore (2010) suggested a more physical approach in the implementation of the parallax of pulsation in order to treat all available data. We present a global and model-based parallax-of-pulsation method that enables including any type of observational data in a consistent model fit, the SpectroPhoto-Interferometric modeling of Pulsating Stars (SPIPS). We implemented a simple model consisting of a pulsating sphere with a varying effective temperature and a combina- tion of atmospheric model grids to globally fit radial velocities, spectroscopic data, and interferometric angular diameters. We also parametrized (and adjusted) the reddening and the contribution of the cir...

  10. Cepheids and their 'Cocoons'

    Science.gov (United States)

    2006-02-01

    large as the separation between them. With the VLTI, it is possible to achieve a resolution of 0.001 arc second or less. "The physical processes that have created these envelopes are still uncertain, but, in analogy to what happens around other classes of stars, it is most probable that the environments were created by matter ejected by the star itself", said Antoine Mérand, lead-author of the second paper describing the results. Cepheids pulsate with periods of a few days. As a consequence, they go regularly through large amplitude oscillations that create very rapid motions of its apparent surface (the photosphere) with velocities up to 30 km/s, or 108 000 km/h! While this remains to be established, there could be a link between the pulsation, the mass loss and the formation of the envelopes. Notes Cepheids are commonly used as distance indicators, thanks to the existence of a basic relation between their intrinsic brightness and their pulsation period. By measuring the period of a Cepheid star, its intrinsic brightness can be deduced and from the observed apparent brightness, the distance may then be calculated. As they are intrinsically very bright stars, and can be observed in distant galaxies, this remarkable property has turned these yellow supergiant stars into primary 'standard candles' for extragalactic distance estimations (see ESO PR 25/04). L Carinae is the brightest Cepheid in the sky, and also the one that presents the largest apparent angular diameter. This is a massive supergiant star, having about 10 times the mass of the Sun and a radius approximately 180 times that of the Sun. Polaris is a peculiar star as it is located very close to the North celestial pole (hence its name). It is classified as a Cepheid, but it shows very weak pulsations compared to the other stars of its class. Delta Cephei is the prototype of the Cepheids. It was discovered to be a variable star in the 18th century by the English amateur John Goodricke, and it is still one of

  11. Discovery of the spectroscopic binary nature of six southern Cepheids

    CERN Document Server

    Szabados, L; Kiss, L L; Kovács, J; Anderson, R I; Kiss, Cs; Szalai, T; Székely, P; Christiansen, J L; 10.1093/mnras/stt027

    2013-01-01

    We present the analysis of photometric and spectroscopic data of six bright Galactic Cepheids: GH Carinae, V419 Centauri, V898 Centauri, AD Puppis, AY Sagittarii, and ST Velorum. Based on new radial velocity data (in some cases supplemented with earlier data available in the literature), these Cepheids have been found to be members in spectroscopic binary systems. V898 Cen turned out to have one of the largest orbital radial velocity amplitude (> 40 km/s) among the known binary Cepheids. The data are insufficient to determine the orbital periods nor other orbital elements for these new spectroscopic binaries. These discoveries corroborate the statement on the high frequency of occurrence of binaries among the classical Cepheids, a fact to be taken into account when calibrating the period-luminosity relationship for Cepheids. We have also compiled all available photometric data that revealed that the pulsation period of AD Pup, the longest period Cepheid in this sample, is continuously increasing with Delta P ...

  12. Evidence for mass loss from IRAS observations of classical Cepheids

    Science.gov (United States)

    Deasy, H.; Butler, C. J.

    1986-04-01

    Hypotheses and evidence regarding mass loss from classical Cepheid variable are considered. Mass loss from such stars is suspected on two grounds. First, it may provide an explanation of the persistent discrepancy between estimates of Cepheid masses based on the theories of stellar pulsation and of stellar evolution (Cox, 1980). Second, theoretical models of pulsating atmospheres (Willson and Bowen, 1985) suggest that a pulsation mechanism may be responsible for causing, or enhancing, mass loss from Cepheids. In order to test these hypotheses, evidence of anomalous mass loss was sought by making a comparison between the infrared emission of Cepheids and that of nonvariable supergiants in the same luminosity and effective temperature range. A search of the IRAS (Infrared Astronomy Satellite) Point Source Catalog (1985) found a number of Cepheids and stable supergiants which showed emission in at least one of the IRAS wavelength bands. Some long-period Cepheids showed infrared excesses with respect to their nonpulsating counterparts, while emission from Cepheids with periods of less than 10 days was comparable to the levels seen in the stable supergiants. Mass loss rates of up to 7 x 10 to the -7th solar mass per year were derived from the infrared excesses, which is sufficiently high to have a major effect on the evolution of these stars.

  13. Calibrating the projection factor for Galactic Cepheids

    CERN Document Server

    Ngeow, Chow-Choong; Nardetto, Nicolas; Marengo, Massimo

    2012-01-01

    The projection factor (p), which converts the radial velocity to pulsational velocity, is an important parameter in the Baade-Wesselink (BW) type analysis and distance scale work. The p-factor is either adopted as a constant or linearly depending on the logarithmic of pulsating periods. The aim of this work is to calibrate the p-factor if a Cepheid has both the BW distance and an independent distance measurement, and examine the p-factor for delta Cephei -- the prototype of classical Cepheids. We calibrated the p-factor for several Galactic Cepheids that have both the latest BW distances and independent distances either from Hipparcos parallaxes or main-sequence fitting distances to Cepheid-hosted stellar clusters. Based on 25 Cepheids, the calibrated p-factor relation is consistent with latest p-factor relation in literature. The calibrated p-factor relation also indicates that this relation may not be linear and may exhibit an intrinsic scatter. We also examined the discrepancy of empirical p-factors for de...

  14. Nonlinear pulsation masses

    Energy Technology Data Exchange (ETDEWEB)

    Davis, C.G.

    1990-01-01

    The advent of nonlinear pulsation theory really coincides with the development of the large computers after the second world war. Christy and Stobbie were the first to make use of finite difference techniques on computers to model the bumps'' observed in the classical Cepheid light and velocity curves, the so-called Hertzsprung'' sequence. Following this work a more sophisticated analysis of the light and velocity curves from the models was made by Simon and Davis using Fourier techniques. Recently a simpler amplitude equation formalism has been developed that helps explain this resonance mechanism. The determination of Population I Cepheid masses by nonlinear methods will be discussed. For the lower mass objects, such as RR Lyrae and BL Her. stars, we find general agreement using evolutionary masses and nonlinear pulsation theory. An apparent difficulty of nonlinear pulsation theory occurs in the understanding of double'' mode pulsation, which will also be discussed. Recent studies in nonlinear pulsation theory have dealt with the question of mode selection, period doubling and the trends towards chaotic behavior such as is observed in the transition from W Virginis to RV Tauri-like stars. 10 refs., 1 fig., 2 tabs.

  15. Cepheid Variables in the Maser-Host Galaxy NGC 4258

    CERN Document Server

    Hoffmann, Samantha L

    2015-01-01

    We present results of a ground-based survey for Cepheid variables in NGC 4258. This galaxy plays a key role in the Extragalactic Distance Scale due to its very precise and accurate distance determination via VLBI observations of water masers. We imaged two fields within this galaxy using the Gemini North telescope and GMOS, obtaining 16 epochs of data in the SDSS gri bands over 4 years. We carried out PSF photometry and detected 94 Cepheids with periods between 7 and 127 days, as well as an additional 215 variables which may be Cepheids or Population II pulsators. We used the Cepheid sample to test the absolute calibration of theoretical gri Period-Luminosity relations and found good agreement with the maser distance to this galaxy. The expected data products from the Large Synoptic Survey Telescope (LSST) should enable Cepheid searches out to at least 10 Mpc.

  16. CEPHEID VARIABLES IN THE MASER-HOST GALAXY NGC 4258

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Samantha L.; Macri, Lucas M., E-mail: lmacri@tamu.edu [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States)

    2015-06-15

    We present results of a ground-based survey for Cepheid variables in NGC 4258. This galaxy plays a key role in the Extragalactic Distance Scale due to its very precise and accurate distance determination via very long baseline interferometry observations of water masers. We imaged two fields within this galaxy using the Gemini North telescope and the Gemini Multi-Object Spectrograph, obtaining 16 epochs of data in the Sloan Digital Sky Survey gri bands over 4 yr. We carried out point-spread function photometry and detected 94 Cepheids with periods between 7 and 127 days, as well as an additional 215 variables which may be Cepheids or Population II pulsators. We used the Cepheid sample to test the absolute calibration of theoretical gri Period–Luminosity relations and found good agreement with the maser distance to this galaxy. The expected data products from the Large Synoptic Survey Telescope should enable Cepheid searches out to at least 10 Mpc.

  17. Evidence for mass loss from IRAS observations of classical Cepheids

    Energy Technology Data Exchange (ETDEWEB)

    Deasy, H.; Butler, C.J.

    1986-04-24

    In order to test hypotheses concerning mass loss from classical Cepheid variables, evidence of anomalous mass loss was sought by making a comparison between the infrared emission of Cepheids, and that of nonvariable supergiants, in the same luminosity and effective temperature range. A search of the IRAS (Infrared Astronomy Satellite) catalogue found a number of Cepheids and stable supergiants which showed emission in at least one of the IRAS wavelength bands. Some long-period Cepheids showed infrared excesses with respect to their non-pulsating counterparts, while emission from Cepheids with periods of less than 10 days was comparable to the levels seen in the stable supergiants. Mass loss rates of up to 7 x 10/sup -7/ M solar masses yr/sup -1/ were derived from the infrared excesses, which is sufficiently high to have a major effect on the evolution of these stars.

  18. Multi-Mode Oscillations in Classical Cepheids and RR Lyrae-Type Stars

    CERN Document Server

    Moskalik, Paweł

    2014-01-01

    I review different types of multi-mode pulsations observed in classical Cepheids and in RR Lyrae-type star. The presentation concentrates on the newest results, with special emphasis on recently detected nonradial oscillations.

  19. Cepheid investigations using the Kepler space telescope

    CERN Document Server

    Szabó, R; Ngeow, C -C; Smolec, R; Derekas, A; Moskalik, P; Nuspl, J; Lehmann, H; Fűrész, G; Molenda-Zakowicz, J; Bryson, S T; Henden, A A; Kurtz, D W; Stello, D; Nemec, J M; Benkő, J M; Berdnikov, L; Bruntt, H; Evans, N R; Gorynya, N A; Pastukhova, E N; Simcoe, R J; Grindlay, J E; Los, E J; Doane, A; Laycock, S G; Mink, D J; Champine, G; Sliski, A; Handler, G; Kiss, L L; Kolláth, Z; Kovács, J; Christensen-Dalsgaard, J; Kjeldsen, H; Allen, C; Thompson, S E; Van Cleve, J

    2011-01-01

    We report results of initial work done on selected candidate Cepheids to be observed with the Kepler space telescope. Prior to the launch 40 candidates were selected from previous surveys and databases. The analysis of the first 322 days of Kepler photometry, and recent ground-based follow-up multicolour photometry and spectroscopy allowed us to confirm that one of these stars, V1154 Cyg (KIC 7548061), is indeed a 4.9-d Cepheid. Using the phase lag method we show that this star pulsates in the fundamental mode. New radial velocity data are consistent with previous measurements, suggesting that a long-period binary component is unlikely. No evidence is seen in the ultra-precise, nearly uninterrupted Kepler photometry for nonradial or stochastically excited modes at the micromagnitude level. The other candidates are not Cepheids but an interesting mix of possible spotted stars, eclipsing systems and flare stars.

  20. Observational calibration of the projection factor of Cepheids. II. Application to nine Cepheids with HST/FGS parallax measurements

    CERN Document Server

    Breitfelder, Joanne; Kervella, Pierre; Gallenne, Alexandre; Szabados, Laszlo; Anderson, Richard I; Bouquin, Jean-Baptiste Le

    2016-01-01

    The distance to pulsating stars is classically estimated using the parallax-of-pulsation (PoP) method, which combines spectroscopic radial velocity measurements and angular diameter estimates to derive the distance of the star. An important application of this method is the determination of Cepheid distances, in view of the calibration of their distance scale. However, the conversion of radial to pulsational velocities in the PoP method relies on a poorly calibrated parameter, the projection factor (p-factor). We aim to measure empirically the value of the p-factors of a homogeneous sample of nine Galactic Cepheids for which trigonometric parallaxes were measured with the Hubble Space Telescope Fine Guidance Sensor. We use the SPIPS algorithm, a robust implementation of the PoP method that combines photometry, interferometry, and radial velocity measurements in a global modeling of the pulsation. We obtained new interferometric angular diameters using the PIONIER instrument at the Very Large Telescope Interfe...

  1. Observational evidence for mass loss from classical Cepheids

    Energy Technology Data Exchange (ETDEWEB)

    Deasy, H.P.

    1988-04-01

    This paper examines the evidence for mass loss from classical Cepheid variables in the light of recent observational studies of infrared and ultraviolet emission from these objects. Mass-loss rates derived for several stars range between 10/sup -10/ of the solar mass yr/sup -1/ and 10/sup -6/ of the solar mass yr/sup -1/. The lower end of this range probably corresponds to the majority of classical Cepheids. Non-variable supergiants show, on average, a somewhat lower rate of infrared excess, but have mass-loss rates of the same order of magnitude as the Cepheids. On the basis of the observations to date, mass loss alone is insufficient in explaining the Cepheid mass discrepancy, indicating that adjustments to the evolutionary or pulsation models present a better prospect of resolving this discrepancy.

  2. Observational evidence for mass loss from classical Cepheids

    Science.gov (United States)

    Deasy, H. P.

    1988-04-01

    This paper examines the evidence for mass loss from classical Cepheid variables in the light of recent observational studies of infrared and ultraviolet emission from these objects. Mass-loss rates derived for several stars range between 10-10M_sun;yr-1 and 10-6M_sun;yr-1. The lower end of this range probably corresponds to the majority of classical Cepheids. Non-variable supergiants show, on average, a somewhat lower rate of infrared excess, but have mass-loss rates of the same order of magnitude as the Cepheids. On the basis of the observations to date, mass loss alone is insufficient in explaining the Cepheid mass discrepancy, indicating that adjustments to the evolutionary or pulsation models present a better prospect of resolving this discrepancy.

  3. Multidimensional realistic modelling of Cepheid-like variables-II: Analysis of a Cepheid model

    CERN Document Server

    Mundprecht, Eva; Kupka, Friedrich

    2015-01-01

    Non-local, time-dependent convection models have been used in the literature to explain the location of double-mode pulsations in Cepheids in the HR diagram as well as the existence and location of the red edge of the Cepheid instability strip. These properties are highly sensitive to model parameters. We use 2D radiation hydrodynamical simulations with realistic microphysics and grey radiative-transfer to model the upper 42 % of a short period Cepheid. The simulations show that the strength of the convection zone varies significantly over the pulsation period and exhibits a phase shift of the convective flux relative to the variations in radius. We evaluate the convective flux and the work performed by volume expansion as predicted by the most commonly used convection models. It turns out that over one pulsation cycle the model parameter $\\alpha_{\\rm c}$, which is proportional to the convective flux, has to be varied by up to a factor of beyond 2 to match the convective flux obtained from the simulations. To...

  4. Mode selection in pulsating stars

    CERN Document Server

    Smolec, R

    2013-01-01

    In this review we focus on non-linear phenomena in pulsating stars the mode selection and amplitude limitation. Of many linearly excited modes only a fraction is detected in pulsating stars. Which of them and why (the problem of mode selection) and to what amplitude (the problem of amplitude limitation) are intrinsically non-linear and still unsolved problems. Tools for studying these problems are briefly discussed and our understanding of mode selection and amplitude limitation in selected groups of self-excited pulsators is presented. Focus is put on classical pulsators (Cepheids and RR Lyrae stars) and main sequence variables (delta Scuti and beta Cephei stars). Directions of future studies are briefly discussed.

  5. On the pulsation and evolutionary properties of helium burning radially pulsating variables

    Science.gov (United States)

    Bono, G.; Pietrinferni, A.; Marconi, M.; Braga, V. F.; Fiorentino, G.; Stetson, P. B.; Buonanno, R.; Castellani, M.; Dall'Ora, M.; Fabrizio, M.; Ferraro, I.; Giuffrida, G.; Iannicola, G.; Marengo, M.; Magurno, D.; Martinez-Vazquez, C. E.; Matsunaga, N.; Monelli, M.; Neeley, J.; Rastello, S.; Salaris, M.; Short, L.; Stellingwerf, R. F.

    2016-05-01

    We discuss pulsation and evolutionary properties of low- (RR Lyrae, Type II Cepheids) and intermediate-mass (Anomalous Cepheids) radial variables. We focus our attention on the topology of the instability strip and the distribution of the quoted variables in the Hertzsprung-Russell diagram. We discuss their evolutionary status and the dependence on the metallicity. Moreover, we address the diagnostics (period derivative, difference in luminosity, stellar mass) that can provide solid constraints on their progenitors and on the role that binarity and environment have in shaping their current pulsation characteristics. Finally, we briefly outline their use as standard candles.

  6. The Onset of Chaos in Pulsating Variable Stars

    CERN Document Server

    Turner, David G; Percy, J R; Abdel-Latif, Mohamed Abdel-Sabour

    2011-01-01

    Random changes in pulsation period occur in cool pulsating Mira variables, Type A, B, and C semiregular variables, RV Tauri variables, and in most classical Cepheids. The physical processes responsible for such fluctuations are uncertain, but presumably originate in temporal modifications of the envelope convection in such stars. Such fluctuations are seemingly random over a few pulsation cycles of the stars, but are dominated by the regularity of the primary pulsation over the long term. The magnitude of stochasticity in pulsating stars appears to be linked directly to their dimensions, although not in simple fashion. It is relatively larger in M supergiants, for example, than in short-period Cepheids, but is common enough that it can be detected in visual observations for many types of pulsating stars. Although chaos was discovered in such stars 80 years ago, detection of its general presence in the group has only been possible in recent studies.

  7. CLUSTERED CEPHEID VARIABLES 90 KILOPARSECS FROM THE GALACTIC CENTER

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarti, Sukanya [School of Physics and Astronomy, Rochester Institute of Technology, 84 Lomb Memorial Drive, Rochester, NY 14623 (United States); Saito, Roberto [Departamento de Fisica-Universidade Federal de Sergipe, Rod. Marechal Rondon s/n-Jardim Rosa Elze, Sao Cristovao, 49.100-000, Sergipe (Brazil); Quillen, Alice [Department of Physics and Astronomy, University of Rochester, Rochester NY 14627 (United States); Gran, Felipe [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica of Chile, Av. Vicuña Mackenna 4860, Santiago (Chile); Klein, Christopher; Blitz, Leo, E-mail: chakrabarti@astro.rit.edu [Astronomy Department, UC Berkeley, Berkeley CA 94720 (United States)

    2015-03-20

    Distant regions close to the plane of our Galaxy are largely unexplored by optical surveys as they are hidden by dust. We have used near-infrared data (which minimizes dust obscuration) from the ESO Public survey VISTA Variables of the Via Lactea to search for distant stars at low latitudes. We have discovered four Cepheid variables within an angular extent of 1° centered at a Galactic longitude of l = −27.°4 and a Galactic latitude of b = −1.°08. We use the tightly constrained period–luminosity relationship that these pulsating stars obey to derive distances. We infer an average distance to these Cepheid variables of 90 kpc. The Cepheid variables are highly clustered in angle (within 1°) and in distance (the standard deviation of the distances is 12 kpc). These young (∼100 Myr old), pulsating stars are unexpected at such large distances from the Galactic disk, which terminates at ∼15 kpc. The highly clustered nature in distance and angle of the Cepheid variables suggests that the stars may be associated with a dwarf galaxy; its location and mass were earlier predicted by a dynamical analysis. The Cepheids are at an average distance of ∼2 kpc from the plane and their maximum projected separation is ∼1 kpc.

  8. The VMC Survey. VI. First results for Classical Cepheids

    CERN Document Server

    Ripepi, V; Marconi, M; Clementini, G; Cioni, M R; Marquette, J B; Girardi, L; Rubele, S; Groenewegen, M A T; de Grijs, R; Gibson, B K; Oliveira, J M; van Loon, J Th

    2012-01-01

    The VISTA Magellanic Cloud (VMC, PI M.R. Cioni) survey is collecting deep Ks-band time-series photometry of the pulsating variable stars hosted by the system formed by the two Magellanic Clouds (MCs) and the "bridge" connecting them. In this paper we present the first results for Classical Cepheids, from the VMC observations of two fields in the Large Magellanic Cloud (LMC). The VMC Ks-band light curves of the Cepheids are well sampled (12-epochs) and of excellent precision. We were able to measure for the first time the Ks magnitude of the faintest Classical Cepheids in the LMC (Ks\\sim17.5 mag), which are mostly pulsating in the First Overtone (FO) mode, and to obtain FO Period-Luminosity (PL), Period-Wesenheit (PW), and Period-Luminosity-Color (PLC) relations, spanning a whole period range from 0.25 to 6 days. Saturation limits our Ks measurements of the Fundamental mode (F) Cepheids to periods shorter than 15-20 days. Therefore, we have complemented our sample with literature data for brighter F Cepheids. ...

  9. V440 Per: the longest period overtone Cepheid

    CERN Document Server

    Baranowski, R; Dimitrov, W; Kwiatkowski, T; Schwarzenberg-Czerny, A; Bartczak, P; Fagas, M; Borczyk, W; Kaminski, K; Moskalik, P; Ratajczak, R; Rozek, A

    2009-01-01

    V440 Per is a Population I Cepheid with the period of 7.57 day and low amplitude, almost sinusoidal light and radial velocity curves. With no reliable data on the 1st harmonic, its pulsation mode identification remained controversial. We obtained a radial velocity curve of V440 Per with our new high precision and high throughput Poznan Spectroscopic Telescope. Our data reach the accuracy of 130 m/s per individual measurement and yield a secure detection of the 1st harmonic with the amplitude of A_2= 140+/- 15 m/s. The velocity Fourier phase \\phi_21 of V440 Per is inconsistent at the 7.25 \\sigma level with those of the fundamental mode Cepheids, implying that the star must be an overtone Cepheid, as originally proposed by Kienzle et al.(1999). Thus, V440 Per becomes the longest period Cepheid with the securely established overtone pulsations. We show, that the convective nonlinear pulsation hydrocode can reproduce the Fourier parameters of V440 Per very well. Requirement to match the observed properties of V44...

  10. Pulsating Star Mystery Solved

    Science.gov (United States)

    2010-11-01

    By discovering the first double star where a pulsating Cepheid variable and another star pass in front of one another, an international team of astronomers has solved a decades-old mystery. The rare alignment of the orbits of the two stars in the double star system has allowed a measurement of the Cepheid mass with unprecedented accuracy. Up to now astronomers had two incompatible theoretical predictions of Cepheid masses. The new result shows that the prediction from stellar pulsation theory is spot on, while the prediction from stellar evolution theory is at odds with the new observations. The new results, from a team led by Grzegorz Pietrzyński (Universidad de Concepción, Chile, Obserwatorium Astronomiczne Uniwersytetu Warszawskiego, Poland), appear in the 25 November 2010 edition of the journal Nature. Grzegorz Pietrzyński introduces this remarkable result: "By using the HARPS instrument on the 3.6-metre telescope at ESO's La Silla Observatory in Chile, along with other telescopes, we have measured the mass of a Cepheid with an accuracy far greater than any earlier estimates. This new result allows us to immediately see which of the two competing theories predicting the masses of Cepheids is correct." Classical Cepheid Variables, usually called just Cepheids, are unstable stars that are larger and much brighter than the Sun [1]. They expand and contract in a regular way, taking anything from a few days to months to complete the cycle. The time taken to brighten and grow fainter again is longer for stars that are more luminous and shorter for the dimmer ones. This remarkably precise relationship makes the study of Cepheids one of the most effective ways to measure the distances to nearby galaxies and from there to map out the scale of the whole Universe [2]. Unfortunately, despite their importance, Cepheids are not fully understood. Predictions of their masses derived from the theory of pulsating stars are 20-30% less than predictions from the theory of the

  11. Revisiting the fundamental properties of Cepheid Polaris using detailed stellar evolution models

    CERN Document Server

    Neilson, Hilding R

    2014-01-01

    Polaris the Cepheid has been observed for centuries, presenting surprises and changing our view of Cepheids and stellar astrophysics, in general. Specifically, understanding Polaris helps anchor the Cepheid Leavitt law, but the distance must be measured precisely. The recent debate regarding the distance to Polaris has raised questions about its role in calibrating the Leavitt law and even its evolutionary status. In this work, I present new stellar evolution models of Cepheids to compare with previously measured CNO abundances, period change and angular diameter. Based on the comparison, I show that Polaris cannot be evolving along the first crossing of the Cepheid instability strip and cannot have evolved from a rapidly-rotating main sequence star. As such, Polaris must also be at least 118 pc away and pulsates in the first overtone, disagreeing with the recent results of Turner et al. (2013).

  12. TYC 1031 01262 1: The First Known Galactic Eclipsing Binary with a Type II Cepheid Component

    CERN Document Server

    Antipin, S V; Sokolovsky, K V

    2007-01-01

    We present the discovery and CCD observations of the first eclipsing binary with a Type II Cepheid component in our Galaxy. The pulsation and orbital periods are found to be 4.1523 and 51.38 days, respectively, i.e. this variable is a system with the shortest orbital period among known Cepheid binaries. Pulsations dominate the brightness variations. The eclipses are assumed to be partial. The EB-subtype eclipsing light curve permits to believe that the binary's components are non-spherical.

  13. Multicolor Oservations of the Type II Cepheid Prototype W Virginis

    Science.gov (United States)

    Templeton, Matthew R.; Henden, A. A.; Crawford, T.; James, R.; Bonnardeau, M.; Wells, D.

    2006-12-01

    We present preliminary results of the AAVSO's six-month photometric campaign on the bright, pulsating variable star W Virginis, class prototype of the Type II Cepheid variables. This campaign was organized in support of separate spectroscopic observations (Wallerstein et al., in preparation), but these photometric data also stand alone as a valuable, recent, multicolor light curve of this object. Observations were obtained by several amateur and professional observers using a variety of equipment; data are primarily in the V filter, but include two complete pulsation cycles in the BVRcIc filters. We present lightand color-curves of this star, and compare our results to previous observational and theoretical results on W Vir and the Type II Cepheids.

  14. The Secret Lives of Cepheids: Evolution, Mass-Loss, and Ultraviolet Emission of the Long-period Classical Cepheid

    Science.gov (United States)

    Neilson, Hilding R.; Engle, Scott G.; Guinan, Edward F.; Bisol, Alexandra C.; Butterworth, Neil

    2016-06-01

    The classical Cepheid l Carinae is an essential calibrator of the Cepheid Leavitt Law as a rare long-period Galactic Cepheid. Understanding the properties of this star will also constrain the physics and evolution of massive (M ≥ 8 M ⊙) Cepheids. The challenge, however, is precisely measuring the star's pulsation period and its rate of period change. The former is important for calibrating the Leavitt Law and the latter for stellar evolution modeling. In this work, we combine previous time-series observations spanning more than a century with new observations to remeasure the pulsation period and compute the rate of period change. We compare our new rate of period change with stellar evolution models to measure the properties of l Car, but find models and observations are, at best, marginally consistent. The results imply that l Car does not have significantly enhanced mass-loss rates like that measured for δ Cephei. We find that the mass of l Car is about 8-10 M ⊙. We present Hubble Space Telescope Cosmic Origins Spectrograph observations that also differ from measurements for δ Cep and β Dor. These measurements further add to the challenge of understanding the physics of Cepheids, but do hint at the possible relation between enhanced mass-loss and ultraviolet emission, perhaps both due to the strength of shocks propagating in the atmospheres of Cepheids. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program #13019. This work is also based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA), associated with program #060374.

  15. The Secret Lives of Cepheids: Evolution, Mass Loss, and Ultraviolet Emission of the Long-Period Classical Cepheid $l$ Carinae

    CERN Document Server

    Neilson, Hilding R; Guinan, Edward F; Bisol, Alexandra C; Butterworth, Neil

    2016-01-01

    The classical Cepheid $l$ Carinae is an essential calibrator of the Cepheid Leavitt Law as a rare long-period Galactic Cepheid. Understanding the properties of this star will also constrain the physics and evolution of massive ($M \\ge 8$ $M_\\odot$) Cepheids. The challenge, however, is precisely measuring the star's pulsation period and its rate of period change. The former is important for calibrating the Leavitt Law and the latter for stellar evolution modeling. In this work, we combine previous time-series observations spanning more than a century with new observations to remeasure the pulsation period and compute the rate of period change. We compare our new rate of period change with stellar evolution models to measure the properties of $l$ Car, but find models and observations are, at best, marginally consistent. The results imply that $l$ Car does not have significantly enhanced mass-loss rates like that measured for $\\delta$ Cephei. We find that the mass of $l$ Car is about 8 - 10 $M_\\odot$. We present...

  16. 3D Convection-pulsation Simulations with the HERACLES Code

    Science.gov (United States)

    Felix, S.; Audit, E.; Dintrans, B.

    2015-10-01

    We present 3D simulations of the coupling between surface convection and pulsations due to the κ-mechanism in classical Cepheids of the red edge of Hertzsprung-Russell diagram's instability strip. We show that 3D convection is less powerful than 2D convection and does not quench the radiative pulsations, leading to an efficient 3D κ-mechanism. Thus, the 3D instability strip is closer to the observed one than the 1D or 2D were.

  17. New period-luminosity and period-color relations of classical Cepheids: III. Cepheids in SMC

    CERN Document Server

    Sandage, A; Reindl, B

    2008-01-01

    The photometric data for 460 classical, fundamental-mode Cepheids in the SMC with log P > 0.4 measured by Udalski et al. have been analyzed for their P-C and P-L relations, and for the variation of amplitude across the instability strip in a similar way that was done in Papers I and II of this series. The SMC Cepheids are bluer in (B-V) at a given period than for both the Galaxy and the LMC. Their P-C relation in (B-V) is best fit by two lines intersecting at P=10 d. Their break must necessarily exist also in the P-L relations in B and/or V, but remains hidden in the magnitude scatter. An additional pronounced break of the P-L relations in B, V, and I occurs at P=2.5 d. The observed slope of the lines of constant period in the HR diagram agrees with the theoretical expectation from the pulsation equation. The largest amplitude Cepheids for periods less than 13 days occur near the blue edge of the instability strip. The sense is reversed in the period interval from 13 to 20 days, as in the Galaxy and the LMC. ...

  18. New Baade-Wesselink distances and radii for four metal-rich Galactic Cepheids

    NARCIS (Netherlands)

    Pedicelli, S.; Lemasle, B.; Groenewegen, M.; Romaniello, M.; Bono, G.; Laney, C. D.; Francois, P.; Buonanno, R.; Caputo, F.; Lub, J.; Pel, J. W.; Primas, F.; Pritchard, J.

    2010-01-01

    Aims. We provide accurate estimates of distances, radii, and iron abundances of four metal-rich Cepheids, namely V340 Ara, UZ Sct, AV Sgr, and VY Sgr. The main aim of this investigation is to constrain their pulsation properties and their location across the Galactic inner disk. Methods. We adopted

  19. Cepheids in external galaxies. I. The maser-host galaxy NGC 4258 and the metallicity dependence of period-luminosity and period-Wesenheit relations

    NARCIS (Netherlands)

    Bono, G.; Caputo, F.; Fiorentino, G.; Marconi, M.; Musella, I.

    2008-01-01

    We perform a detailed analysis of Cepheids in NGC4258, the Magellanic Clouds, and Milky Way in order to verify the reliability of the theoretical scenario based on a large set of nonlinear convective pulsation models. We derive Wesenheit functions from the synthetic BVI magnitudes of the pulsators,

  20. CoRoT space photometry of seven Cepheids

    CERN Document Server

    Poretti, Ennio; Rainer, Monica; Baglin, Annie; Benko, Jozsef; Debosscher, Jonas; Weiss, Werner W

    2015-01-01

    A few Galactic classical Cepheids were observed in the programmes of space missions as Coriolis, MOST and Kepler. An appealing opportunity was to detect additional nonradial modes, thus opening the possibility to perform asteroseismic studies and making the pulsational content of Galactic Cepheids more similar to that of Magellanic Clouds ones. However, only hints of cycle-to-cycle variations were found, without any strict periodicity. In this context the potential of the CoRoT exoplanetary data base was not fully exploited despite the wide area covered on the Galactic plane. Therefore, we investigated all the candidate Cepheids pointed out by the automatic classification of the CoRoT curves. At the end we could identify seven bona-fide Cepheids. The light curves were investigated to remove some instrumental effects. The frequency analysis was particularly delicate since these small effects can be enhanced by the large amplitude, resulting in the presence of significant, but spurious, peaks in the power spect...

  1. Pulsating stars

    CERN Document Server

    Catelan, M?rcio

    2014-01-01

    The most recent and comprehensive book on pulsating stars which ties the observations to our present understanding of stellar pulsation and evolution theory.  Written by experienced researchers and authors in the field, this book includes the latest observational results and is valuable reading for astronomers, graduate students, nuclear physicists and high energy physicists.

  2. Learning from Pulsating Stars: Progress over the Last Century (Abstract)

    Science.gov (United States)

    Smith, H.

    2016-12-01

    (Abstract only) Scarcely more than a century has elapsed since it began to be widely accepted that pulsation plays an important role in the variability of stars. During that century pulsating stars have been used as tools to explore a variety of astrophysical questions, including the determination of distances to other galaxies, the testing of timescales of evolution through the HR diagram, and the identification of the ages and star formation histories of stellar populations. Among the significant early milestones along this investigative path are Henrietta Leavitt's discovery of a relation between the periods and luminosities of Cepheids, Harlow Shapley's proposal that all Cepheids are pulsating stars, and Arthur Stanley Eddington's use of the observed period change of d Cephei to constrain its power source. Today our explorations of pulsating stars are bolstered by long observational histories of brighter variables, surveys involving unprecedentedly large numbers of stars, and improved theoretical analyses. This talk will review aspects of the history and our current understanding of pulsating stars, paying particular attention to RR Lyrae, d Scuti, and Cepheid variables. Observations by AAVSO members have provided insight into several questions regarding the behavior of these stars.

  3. Nonlinear simulations of the convection-pulsation coupling

    CERN Document Server

    Gastine, T

    2011-01-01

    In cold Cepheids close to the red edge of the classical instability strip, a strong coupling between the stellar pulsations and the surface convective motions occurs. This coupling is by now poorly described by 1-D models of convection, the so-called "time-dependent convection models" (TDC). The intrinsic weakness of such models comes from the large number of unconstrained free parameters entering in the description of turbulent convection. A way to overcome these limits is to compute two-dimensional direct simulations (DNS), in which all the nonlinearities are correctly solved. Two-dimensional DNS of the convection-pulsation coupling are presented here. In an appropriate parameter regime, convective motions can actually quench the radial pulsations of the star, as suspected in Cepheids close to the red edge of the instability strip. These nonlinear simulations can also be used to determine the limits and the relevance of the TDC models.

  4. The angular diameter and distance of the Cepheid Zeta Geminorum

    CERN Document Server

    Kervella, P; Perrin, G; Schöller, M; Traub, W A; Lacasse, M D

    2001-01-01

    Cepheids are the primary distance indicators for extragalactic astronomy and therefore are of very high astrophysical interest. Unfortunately, they are rare stars, situated very far from Earth.Though they are supergiants, their typical angular diameter is only a few milliarcseconds, making them very challenging targets even for long-baseline interferometers. We report observations that were obtained in the K prime band (2-2.3 microns), on the Cepheid Zeta Geminorum with the FLUOR beam combiner, installed at the IOTA interferometer. The mean uniform disk angular diameter was measured to be 1.64 +0.14 -0.16 mas. Pulsational variations are not detected at a significant statistical level, but future observations with longer baselines should allow a much better estimation of their amplitude. The distance to Zeta Gem is evaluated using Baade-Wesselink diameter determinations, giving a distance of 502 +/- 88 pc.

  5. V470 Cas and GSC 2901-00089, Two New Double-mode Cepheids

    CERN Document Server

    Khruslov, A V

    2016-01-01

    We present a photometric study of two new double-mode Cepheids, pulsating in the first and second overtones modes: V470 Cas and GSC 2901-00089. For the search of the double-mode variability, we used all available observations from the ROTSE-I/NSVS and SuperWASP online public archives. Our multicolour CCD observations in the B, V and R bands in Johnson's system confirm the double periodicity of these variables. We study period variations of the two stars; variations of the first overtone periods were reliably detected. In addition, we consider the Petersen diagram for the Galactic 1O/2O Cepheids.

  6. Multiplicity of Galactic Cepheids from long-baseline interferometry. II. The Companion of AX Circini revealed with VLTI/PIONIER

    CERN Document Server

    Gallenne, A; Kervella, P; Breitfelder, J; Bouquin, J -B Le; Monnier, J D; Gieren, W; Pilecki, B; Pietrzyński, G

    2013-01-01

    Aims: We aim at detecting and characterizing the main-sequence companion of the Cepheid AX Cir ($P_\\mathrm{orb} \\sim $ 18 yrs). The long-term objective is to estimate the mass of both components and the distance to the system. Methods: We used the PIONIER combiner at the VLT Interferometer to obtain the first interferometric measurements of the short-period Cepheid AX Cir and its orbiting component. Results: The companion is resolved by PIONIER at a projected separation $\\rho = 29.2 \\pm 0.2$ mas and projection angle $PA = 167.6 \\pm 0.3^{\\circ}$. We measured $H$-band flux ratios between the companion and the Cepheid of $0.90 \\pm 0.10$ % and $0.75 \\pm 0.17$ %, respectively at a pulsation phase for the Cepheid $\\phi = 0.24$ and 0.48. The lower contrast at $\\phi = 0.48$ is due to increased brightness of the Cepheid compared to the $\\phi = 0.24$. This gives an average apparent magnitude $m\\mathrm{_H (comp)} = 9.06 \\pm 0.24$ mag. The limb-darkened angular diameter of the Cepheid at the two pulsation phases was meas...

  7. Clustered Cepheid Variables 90 kiloparsec from the Galactic Center

    CERN Document Server

    Chakrabarti, Sukanya; Quillen, Alice; Gran, Felipe; Klein, Christopher; Blitz, Leo

    2015-01-01

    Distant regions close to the plane of our Galaxy are largely unexplored by optical surveys as they are hidden by dust. We have used near-infrared data (that minimizes dust obscuration) from the ESO Public survey VISTA Variables of the Via Lactea (VVV) (Minniti et al. 2011; Saito et al. 2012; henceforth S12) to search for distant stars at low latitudes. We have discovered four Cepheid variables within an angular extent of one degree centered at Galactic longitude of $l = -27.4^\\circ$ and Galactic latitude of $b = -1.08 ^\\circ$. We use the tightly constrained period-luminosity relationship that these pulsating stars obey (Persson et al. 2004; Matsunaga et al. 2011) to derive distances. We infer an average distance to these Cepheid variables of 90 kpc. The Cepheid variables are highly clustered in angle (within one degree) and in distance (the standard deviation of the distances is 12 kpc). They are at an average distance of $\\sim 2~\\rm kpc$ from the plane and their maximum projected separation is $\\sim 1~ \\rm k...

  8. Cepheid Variables in the Flared Outer Disk of our Galaxy

    CERN Document Server

    Feast, Michael W; Matsunaga, Noriyuki; Whitelock, Patricia A

    2014-01-01

    Flaring and warping of the disk of the Milky Way have been inferred from observations of atomic hydrogen, but stars associated with flaring have not hitherto been reported. In the area beyond the Galactic centre the stars are largely hidden from view by dust, and the kinematic distances of the gas cannot be estimated. Thirty-two possible Cepheid stars (young pulsating variable stars) in the direction of the Galactic bulge were recently identified. With their well-calibrated period-luminosity relationships, Cepheid stars are useful distance indicators. When observations of these stars are made in two colours, so that their distance and reddening can be determined simultaneously, the problems of dust obscuration are minimized. Here we report that five of the candidates are classical Cepheid stars. These five stars are distributed from approximately one to two kiloparsecs above and below the plane of the Galaxy, at radial distances of about 13 to 22 kiloparsecs from the centre. The presence of these relatively y...

  9. Stochastic Processes in Yellow and Red Pulsating Variables

    CERN Document Server

    Turner, David G; Colivas, T; Berdnikov, Leonid N; Abdel-Latif, Mohamed Abdel-Sabour

    2009-01-01

    Random changes in pulsation period are well established in cool pulsating stars, in particular the red giant variables: Miras, semi-regulars of types A and B, and RV Tau variables. Such effects are also observed in a handful of Cepheids, the SX Phe variable XX Cyg, and, most recently, the red supergiant variable, BC Cyg, a type C semi-regular. The nature of such fluctuations is seemingly random over a few pulsation cycles of the stars, yet the regularity of the primary pulsation mechanism dominates over the long term. The degree of stochasticity is linked to the dimensions of the stars, the randomness parameter 'e' appearing to correlate closely with mean stellar radius through the period 'P', with an average value of e/P = 0.0136+-0.0005. The physical processes responsible for such fluctuations are uncertain, but presumably originate in temporal modifications of envelope convection in such stars.

  10. The Secret XUV Lives of Cepheids: FUV/X-ray Observations of Polaris and beta Dor

    CERN Document Server

    Engle, Scott G; DePasquale, Joseph; Evans, Nancy

    2009-01-01

    We report on the surprising recent discovery of strong FUV emissions in two bright, nearby Classical Cepheids from analyses of FUSE archival observations and one of our own approved observations just prior to the failure of the satellite. Polaris and beta Dor are currently the only two Cepheids to have been observed with FUSE, and beta Dor is the only one to have multiple spectra. Both Cepheids show strong C III (977A, 1176A) and O VI (1032A, 1038A) emissions, indicative of 50,000-500,000 K plasma, well above the photospheric temperatures of the stars. More remarkably, beta Dor displays variability in the FUV emission strengths which appears to be correlated to its 9.84-d pulsation period. This phenomenon has never before been observed in Cepheids. The FUV studies are presented along with our recent Chandra/XMM X-ray observations of Polaris and beta Dor, in which X-ray detections were found for both stars (as well as for the prototype Classical Cepheid, delta Cep). Further X-ray observations have been propose...

  11. The ACS LCID Project. VIII. The short-period Cepheids of Leo A

    CERN Document Server

    Bernard, Edouard J; Gallart, Carme; Fiorentino, Giuliana; Cassisi, Santi; Aparicio, Antonio; Cole, Andrew A; Drozdovsky, Igor; Hidalgo, Sebastian L; Skillman, Evan D; Stetson, Peter B; Tolstoy, Eline

    2013-01-01

    We present the results of a new search for variable stars in the Local Group dwarf galaxy Leo A, based on deep photometry from the Advanced Camera for Surveys onboard the Hubble Space Telescope. We detected 166 bona fide variables in our field, of which about 60 percent are new discoveries, and 33 candidate variables. Of the confirmed variables, we found 156 Cepheids, but only 10 RR Lyrae stars despite nearly 100 percent completeness at the magnitude of the horizontal branch. The RR Lyrae stars include 7 fundamental and 3 first-overtone pulsators, with mean periods of 0.636 and 0.366 day, respectively. From their position on the period-luminosity (PL) diagram and light-curve morphology, we classify 91, 58, and 4 Cepheids as fundamental, first-overtone, and second-overtone mode Classical Cepheids (CC), respectively, and two as population II Cepheids. However, due to the low metallicity of Leo A, about 90 percent of the detected Cepheids have periods shorter than 1.5 days. Comparison with theoretical models ind...

  12. Variable Stars in Leo A RR Lyraes, Short-period Cepheids, and Implications on Stellar Content

    CERN Document Server

    Dolphin, A E; Claver, J; Skillman, E D; Cole, A A; Gallagher, J S; Tolstoy, E; Dohm-Palmer, R C; Mateo, M

    2002-01-01

    We present the results of a search for short-period variable stars in Leo A. We have found 92 candidate variables, including eight candidate RR Lyrae stars. From the RR Lyraes, we measure a distance modulus of (m-M)_0 = 24.51 +/- 0.12, or 0.80 +/- 0.04 Mpc. This discovery of RR Lyraes confirms, for the first time, the presence of an ancient (> ~11 Gyr) population in Leo A accounting for at least 0.1% of the galaxy's V luminosity. We have also discovered a halo of old (> ~2 Gyr) stars surrounding Leo A, with a scale length roughly 50% larger than that of the dominant young population. We also report the discovery of a large population of Cepheids in Leo A. The median absolute magnitude of our Cepheid sample is M_V = -1.1, fainter than 96% of SMC and 99% of LMC Cepheids. Their periods are also unusual, with three Cepheids that are deduced to be pulsating in the fundamental mode having periods of under 1 day. Upon examination, these characteristics of the Leo A Cepheid population appear to be a natural extension...

  13. On the effect of rotation on populations of classical Cepheids I. Predictions at solar metallicity

    CERN Document Server

    Anderson, R I; Georgy, C; Meynet, G; Mowlavi, N; Eyer, L

    2014-01-01

    [Abridged] We aim to improve the understanding of Cepheids from an evolutionary perspective and establish the role of rotation in the Cepheid paradigm. In particular, we are interested in the contribution of rotation to the problem of Cepheid masses, and explore testable predictions of quantities that can be confronted with observations. Evolutionary models including a homogeneous and self-consistent treatment of rotation are studied in detail during the crossings of the classical instability strip (IS). The dependence of several parameters on initial rotation is studied. These parameters include mass, luminosity, temperature, lifetimes, equatorial velocity, surface abundances, and rates of period change. Several key results are obtained: i) mass-luminosity (M-L) relations depend on rotation, particularly during the blue loop phase; ii) luminosity increases between crossings of the IS. Hence, Cepheid M-L relations at fixed initial rotation rate depend on crossing number (faster rotation yields greater luminos...

  14. On the distance of the Magellanic Clouds using Cepheid NIR and optical-NIR Period Wesenheit Relations

    CERN Document Server

    Inno, L; Bono, G; Caputo, F; Buonanno, R; Genovali, K; Laney, C D; Marconi, M; Piersimoni, A M; Primas, F; Romaniello, M

    2012-01-01

    We present the largest near-infrared (NIR) data sets, $JHKs$, ever collected for classical Cepheids in the Magellanic Clouds (MCs). We selected fundamental (FU) and first overtone (FO) pulsators, and found 4150 (2571 FU, 1579 FO) Cepheids for Small Magellanic Cloud (SMC) and 3042 (1840 FU, 1202 FO) for Large Magellanic Cloud (LMC). Current sample is 2--3 times larger than any sample used in previous investigations with NIR photometry. We also discuss optical $VI$ photometry from OGLE-III. NIR and optical--NIR Period-Wesenheit (PW) relations are linear over the entire period range ($0.0<\\log P_{\\rm FU} \\le1.65 $) and their slopes are, within the intrinsic dispersions, common between the MCs. These are consistent with recent results from pulsation models and observations suggesting that the PW relations are minimally affected by the metal content. The new FU and FO PW relations were calibrated using a sample of Galactic Cepheids with distances based on trigonometric parallaxes and Cepheid pulsation models. B...

  15. Stellar Pulsations in Beyond Horndeski Gravity Theories

    CERN Document Server

    Sakstein, Jeremy; Koyama, Kazuya

    2016-01-01

    Theories of gravity in the beyond Horndeski class recover the predictions of general relativity in the solar system whilst admitting novel cosmologies, including late-time de Sitter solutions in the absence of a cosmological constant. Deviations from Newton's law are predicted inside astrophysical bodies, which allow for falsifiable, smoking-gun tests of the theory. In this work we study the pulsations of stars by deriving and solving the wave equation governing linear adiabatic oscillations to find the modified period of pulsation. Using both semi-analytic and numerical models, we perform a preliminary survey of the stellar zoo in an attempt to identify the best candidate objects for testing the theory. Brown dwarfs and Cepheid stars are found to be particularly sensitive objects and we discuss the possibility of using both to test the theory.

  16. VEGA/CHARA interferometric observations of Cepheids. I. A resolved structure around the prototype classical Cepheid delta Cep in the visible spectral range

    CERN Document Server

    Nardetto, N; Mourard, D; Storm, J; Gieren, W; Fouqué, P; Gallenne, A; Graczyk, D; Kervella, P; Neilson, H; Pietrzynski, G; Pilecki, B; Breitfelder, J; Berio, P; Challouf, M; Clausse, J -M; Ligi, R; Mathias, P; Meilland, A; Perraut, K; Poretti, E; Rainer, M; Spang, A; Stee, P; Tallon-Bosc, I; Brummelaar, T ten

    2016-01-01

    The B-W method is used to determine the distance of Cepheids and consists in combining the angular size variations of the star, as derived from infrared surface-brightness relations or interferometry, with its linear size variation, as deduced from visible spectroscopy using the projection factor. While many Cepheids have been intensively observed by infrared beam combiners, only a few have been observed in the visible. This paper is part of a project to observe Cepheids in the visible with interferometry as a counterpart to infrared observations already in hand. Observations of delta Cep itself were secured with the VEGA/CHARA instrument over the full pulsation cycle of the star. These visible interferometric data are consistent in first approximation with a quasi-hydrostatic model of pulsation surrounded by a static circumstellar environment (CSE) with a size of theta_cse=8.9 +/- 3.0 mas and a relative flux contribution of f_cse=0.07+/-0.01. A model of visible nebula (a background source filling the field o...

  17. OXYGEN ABUNDANCES IN CEPHEIDS

    Energy Technology Data Exchange (ETDEWEB)

    Luck, R. E.; Andrievsky, S. M. [Department of Astronomy, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-7215 (United States); Korotin, S. N.; Kovtyukh, V. V., E-mail: luck@fafnir.astr.cwru.edu, E-mail: serkor@skyline.od.ua, E-mail: val@deneb1.odessa.ua, E-mail: scan@deneb1.odessa.ua [Department of Astronomy and Astronomical Observatory, Odessa National University, Isaac Newton Institute of Chile, Odessa Branch, Shevchenko Park, 65014 Odessa (Ukraine)

    2013-07-01

    Oxygen abundances in later-type stars, and intermediate-mass stars in particular, are usually determined from the [O I] line at 630.0 nm, and to a lesser extent, from the O I triplet at 615.7 nm. The near-IR triplets at 777.4 nm and 844.6 nm are strong in these stars and generally do not suffer from severe blending with other species. However, these latter two triplets suffer from strong non-local thermodynamic equilibrium (NLTE) effects and thus see limited use in abundance analyses. In this paper, we derive oxygen abundances in a large sample of Cepheids using the near-IR triplets from an NLTE analysis, and compare those abundances to values derived from a local thermodynamic equilibrium (LTE) analysis of the [O I] 630.0 nm line and the O I 615.7 nm triplet as well as LTE abundances for the 777.4 nm triplet. All of these lines suffer from line strength problems making them sensitive to either measurement complications (weak lines) or to line saturation difficulties (strong lines). Upon this realization, the LTE results for the [O I] lines and the O I 615.7 nm triplet are in adequate agreement with the abundance from the NLTE analysis of the near-IR triplets.

  18. Square root two period ratios in Cepheid and RR Lyrae variable stars

    CERN Document Server

    Hippke, Michael; Zee, A

    2014-01-01

    We document the presence of nine Cepheid and RR Lyrae variable stars with previously unrecognized characteristics. These stars exhibit the statistically unlikely property of a period ratio of main pulsation divided by secondary pulsation (P1/P2) very close to sqrt(2). Other stars of these types have period ratios which show clustering not with a close association with a single remarkable and nonharmonic number. In the way of explanation, we suggest that this indicates a previously unknown resonance of pulsations. Close examination reveals a deviation of multiples of a few times 0.06% for these stars. This deviation seems to be present in discrete steps on the order of about 0.000388(5), indicating the possible presence of a sort of fine structure in this oscillation. Physical explanation of the source of these regularities remains for 3D simulations of variable stars, and we only claim to make note of the regularities which are suggestive of physical principles.

  19. Hybrid Pulsators -- Pulsating Stars with Multiple Identities

    CERN Document Server

    Zhou, A -Y

    2015-01-01

    We have carried out a statistic survey on the pulsating variable stars with multiple identities. These stars were identified to exhibit two types of pulsation or multiple light variability types in the literature, and are usually called hybrid pulsators. We extracted the hybrid information based on the Simbad database. Actually, all the variables with multiple identities are retrieved. The survey covers various pulsating stars across the Hertzsprung-Russell diagram. We aim at giving a clue in selecting interesting targets for further observation. Hybrid pulsators are excellent targets for asteroseismology. An important implication of such stars is their potential in advancing the theories of both stellar evolution and pulsation. By presenting the statistics, we address the open questions and prospects regarding current status of hybrid pulsation studies.

  20. Period Changes and Evolution in Pulsating Variable Stars

    Science.gov (United States)

    Neilson, H. R.; Percy, J. R.; Smith, H. A.

    2016-12-01

    We review ways in which observations of the changing periods of pulsating variable stars can be used to detect and directly measure their evolution. We briefly describe the two main techniques of analysis-(O-C) analysis and wavelet analysis - and results for pulsating variable star types which are reasonably periodic: type I and II Cepheids, RR Lyrae stars, beta Cephei stars, and Mira stars. We comment briefly on delta Scuti stars and pulsating white dwarfs. For some of these variable star types, observations agree approximately with the predictions of evolutionary models, but there still exist significant areas of disagreement that challenge future models of stellar evolution. There may be a need, for instance, to include processes such as rotation, mass loss, and magnetic fields. There may also be non-evolutionary processes which are contributing to the period changes.

  1. Period Changes and Evolution in Pulsating Variable Stars

    CERN Document Server

    Neilson, Hilding R; Smith, Horace A

    2016-01-01

    We review ways in which observations of the changing periods of pulsating variable stars can be used to detect and directly measure their evolution. We briefly describe the two main techniques of analysis -- (O-C) analysis and wavelet analysis -- and results for pulsating variable star types which are reasonably periodic: type I and II Cepheids, RR Lyrae stars, beta Cephei stars, and Mira stars. We comment briefly on delta Scuti stars and pulsating white dwarfs. For some of these variable star types, observations agree approximately with the predictions of evolutionary models, but there still exist significant areas of disagreement that challenge future models of stellar evolution. There may be a need, for instance, to include processes such as rotation, mass loss, and magnetic fields. There may also be non-evolutionary processes which are contributing to the period changes.

  2. Extended envelopes around Galactic Cepheids III. Y Oph and alpha Per from near-infrared interferometry with CHARA/FLUOR

    CERN Document Server

    Mérand, A; Kervella, P; Foresto, V Coudé du; Brummelaar, T ten; McAlister, H

    2007-01-01

    Unbiased angular diameter measurements are required for accurate distances to Cepheids using the interferometric Baade Wesselink method (IBWM). The precision of this technique is currently limited by interferometric measurements at the 1.5% level. At this level, the center-to-limb darkening (CLD) and the presence of circumstellar envelopes (CSE) seem to be the two main sources of bias. The observations we performed aim at improving our knowledge of the interferometric visibility profile of Cepheids. In particular, we assess the systematic presence of CSE around Cepheids in order determine accurate distances with the IBWM free from CSE biased angular diameters. We observed a Cepheid (Y Oph) for which the pulsation is well resolved and a non-pulsating yellow supergiant (alpha Per) using long-baseline near-infrared interferometry. We interpreted these data using a simple CSE model we previously developed. We found that our observations of alpha Per do not provide evidence for a CSE. The measured CLD is explained...

  3. Investigating Cepheid $\\ell$ Carinae's Cycle-to-cycle Variations via Contemporaneous Velocimetry and Interferometry

    CERN Document Server

    Anderson, R I; Kervella, P; Breitfelder, J; LeBouquin, J -B; Eyer, L; Gallenne, A; Palaversa, L; Semaan, T; Saesen, S; Mowlavi, N

    2015-01-01

    Baade-Wesselink-type (BW) techniques enable geometric distance measurements of Cepheid variable stars in the Galaxy and the Magellanic clouds. The leading uncertainties involved concern projection factors required to translate observed radial velocities (RVs) to pulsational velocities and recently discovered modulated variability. We carried out an unprecedented observational campaign involving long-baseline interferometry (VLTI/PIONIER) and spectroscopy (Euler/Coralie) to search for modulated variability in the long-period (P $\\sim$ 35.5 d) Cepheid Carinae. We determine highly precise angular diameters from squared visibilities and investigate possible differences between two consecutive maximal diameters, $\\Delta_{\\rm{max}} \\Theta$. We characterize the modulated variability along the line-of-sight using 360 high-precision RVs. Here we report tentative evidence for modulated angular variability and confirm cycle-to-cycle differences of $\\ell$ Carinae's RV variability. Two successive maxima yield $\\Delta_{\\rm...

  4. Cepheids : the period-luminosity relation

    NARCIS (Netherlands)

    Beaulieu, JP

    1997-01-01

    The Cepheids are relatively young, bright, periodic supergiant variable stars showing a correlation between their periods and luminosities. Since the beginning of the century, the Cepheid Period-Luminosity relation has been the corner stone of distance determination, and of the measure of the correl

  5. Survey of non-linear hydrodynamic models of type-II Cepheids

    Science.gov (United States)

    Smolec, R.

    2016-03-01

    We present a grid of non-linear convective type-II Cepheid models. The dense model grids are computed for 0.6 M⊙ and a range of metallicities ([Fe/H] = -2.0, -1.5, -1.0), and for 0.8 M⊙ ([Fe/H] = -1.5). Two sets of convective parameters are considered. The models cover the full temperature extent of the classical instability strip, but are limited in luminosity; for the most luminous models, violent pulsation leads to the decoupling of the outermost model shell. Hence, our survey reaches only the shortest period RV Tau domain. In the Hertzsprung-Russell diagram, we detect two domains in which period-doubled pulsation is possible. The first extends through the BL Her domain and low-luminosity W Vir domain (pulsation periods ˜2-6.5 d). The second domain extends at higher luminosities (W Vir domain; periods >9.5 d). Some models within these domains display period-4 pulsation. We also detect very narrow domains (˜10 K wide) in which modulation of pulsation is possible. Another interesting phenomenon we detect is double-mode pulsation in the fundamental mode and in the fourth radial overtone. Fourth overtone is a surface mode, trapped in the outer model layers. Single-mode pulsation in the fourth overtone is also possible on the hot side of the classical instability strip. The origin of the above phenomena is discussed. In particular, the role of resonances in driving different pulsation dynamics as well as in shaping the morphology of the radius variation curves is analysed.

  6. Effective temperature and radial velocity of the small-amplitude Cepheid Polaris (alpha UMi) in 2015

    CERN Document Server

    Usenko, I A; Miroshnichenko, A S; Danford, S

    2016-01-01

    We present the results of an analysis of 21 spectra of alpha UMi (Polaris) obtained in September - December 2015. Frequency analysis shows an increase of the pulsation period up to 8.6 min in comparison to the 2007 observational set. The radial velocity amplitude comes to 4.16 km s^-1, and it approximately twice the one found in 2007. The average Teff = 6017 K, and it is close to the value determined for the 2001-2004 set. Therefore Polaris moves to the red edge of the Cepheid instability strip (CIS)

  7. The Secret Lives of Cepheids: Evolutionary Changes as Found from Historic and Modern Observations.

    Science.gov (United States)

    Engle, S. G.; Guinan, E. F.; Kim, C.-W.

    2004-12-01

    We report on the results of an ongoing study of the light and radial velocity observations of bright classical cepheids over time. The older photometry and spectroscopy are combined with recent observations to determine possible changes in the pulsation period, mean brightness, and light and radial velocity amplitudes with time. In many cases over 100 yrs. years of observations have been collected and analyzed in a uniform way. The cepheids selected for the initial study are those that are already known to have significant period changes. The program stars include SV Vul, Polaris (alpha UMi), SZ Tau, S Vul, and X Cyg as well as several other stars. For example, Polaris has undergone a decrease in its light and radial velocity amplitudes during the last century as well as showing an increase in its pulsation period of dP/dt = +3.2 sec/yr. Studies of 19th and 20th century photometry also indicate that Polaris has increased in brightness from about mv = +2.2 mag to +2.0 mag over the last 150 yrs. Another interesting star in the program is the (P = 45d) classical cepheid SV Vul, which has been found to have a very rapid decrease of its pulsation period of dP/dt = -214 sec/yr. (e.g. see Turner and Berdnikov 2004; A&A 423,335). Photometric studies over the last 100 yrs (including our uvby photometry made in 2004) show that the light amplitude of SV Vul undergoes large changes. For example, the (yellow) light amplitude of SV Vul varies from about 0.8-1.2 mag (visual) between 1910-2004. A study of the changes of the light and radial velocity curves as well as the pulsation periods for these stars provide important clues on what may be discernable evolutionary changes for classical cepheids. The period changes are especially sensitive to variations in the internal structure of the stars from evolutionary effects. The results for these and other stars will be discussed. This research is supported by NSF/RUI (AST00-71260) to Villanova University that we gratefully acknowledge.

  8. Survey of non-linear hydrodynamic models of type-II Cepheids

    CERN Document Server

    Smolec, R

    2015-01-01

    We present a grid on non-linear convective type-II Cepheid models. The dense model grids are computed for 0.6M_Sun and a range of metallicities ([Fe/H]=-2.0,-1.5,-1.0), and for 0.8M_Sun ([Fe/H]=-1.5). Two sets of convective parameters are considered. The models cover the full temperature extent of the classical instability strip, but are limited in luminosity; for the most luminous models violent pulsation leads to the decoupling of the outermost model shell. Hence, our survey reaches only the shortest period RV Tau domain. In the Hertzsprung-Russel diagram we detect two domains in which period doubled pulsation is possible. The first extends through the BL Her domain and low luminosity W Vir domain (pulsation periods ~2-6.5 d). The second domain extends at higher luminosities (W Vir domain; periods >9.5d). Some models within these domains display period-4 pulsation. We also detect very narrow domains (~10 K wide) in which modulation of pulsation is possible. Another interesting phenomenon we detect is double...

  9. A Comprehensive, Wide-Field Study of Pulsating Stars in the Carina Dwarf Spheroidal Galaxy

    OpenAIRE

    Vivas, A. Katherina; Mateo, Mario

    2013-01-01

    We report the detection of 388 pulsating variable stars (and some additional miscellaneous variables) in the Carina dSph galaxy over an area covering the full visible extent of the galaxy and extending a few times beyond its photometric (King) tidal radius along the direction of its major axis. Included in this total are 340 newly discovered dwarf Cepheids which are mostly located ~2.5 magnitudes below the horizontal branch and have very short periods (

  10. NO EVIDENCE FOR CLASSICAL CEPHEIDS AND A NEW DWARF GALAXY BEHIND THE GALACTIC DISK

    Energy Technology Data Exchange (ETDEWEB)

    Pietrukowicz, P.; Udalski, A.; Szymański, M. K.; Soszyński, I.; Pietrzyński, G.; Wyrzykowski, Ł.; Poleski, R.; Ulaczyk, K.; Skowron, J.; Mróz, P.; Pawlak, M.; Kozłowski, S. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland)

    2015-11-10

    Based on data from the ongoing OGLE Galaxy Variability Survey (OGLE GVS), we have verified observed properties of stars detected by the near-infrared VVV survey in a direction near the Galactic plane at longitude l ≈ −27° and recently tentatively classified as classical Cepheids belonging to, hence claimed, a dwarf galaxy at a distance of about 90 kpc from the Galactic Center. Three of four stars are detected in the OGLE GVS I-band images. We show that two of the objects are not variable at all, and the third one with a period of 5.695 days and a nearly sinusoidal light curve of an amplitude of 0.5 mag cannot be a classical Cepheid and is very likely a spotted object. These results together with a very unusual shape of the K{sub s}-band light curve of the fourth star indicate that it is very likely that none of them is a Cepheid and, thus there is no evidence for a background dwarf galaxy. Our observations show that great care must be taken when classifying objects by their low-amplitude close-to-sinusoidal near-infrared light curves, especially with a small number of measurements. We also provide a sample of high-amplitude spotted stars with periods of a few days that can mimic pulsations and even eclipses.

  11. Determining the Metallicity of Cepheid Stars in the SMC, LMC and the Galaxy

    CERN Document Server

    Mottini, M; Romaniello, M; Groenewegen, M

    2003-01-01

    The Cepheid Period-Luminosity relation is unquestionably one of the most powerful tools at our disposal for determining the extragalactic distance scale. While significant progress has been made in the past few years towards its understanding and characterisation, both on the observational (e.g. the HST Key Project) and theoretical (e.g. non-linear pulsation models, non-LTE atmospheres etc.) sides, the debate on the influence that chemical composition may have on the Period-Luminosity relation is still unsettled. Current estimates lead to differences in the distance as large as 15%, effectively limiting the accuracy of Cepheids as distance indicators. To further tackle this problem, we have obtained high resolution spectra of a large sample of Cepheids in our Galaxy and the Magellanic Clouds. The superb quality of the data allow us to probe the detailed effects of chemical composition (alpha, iron-group, and heavy elements) over more than a factor of ten in metallicity. Here, we present the first preliminary ...

  12. Gaia Data Release 1 - The Cepheid & RR Lyrae star pipeline and its application to the south ecliptic pole region

    CERN Document Server

    Clementini, G; Leccia, S; Mowlavi, N; Lecoeur-Taibi, I; Marconi, M; Szabados, L; Eyer, L; Guy, L P; Rimoldini, L; de Fombelle, G Jevardat; Holl, B; Busso, G; Charnas, J; Cuypers, J; De Angeli, F; De Ridder, J; Debosscher, J; Evans, D W; Klagyivik, P; Musella, I; Nienartowicz, K; Ordonez, D; Regibo, S; Riello, M; Sarro, L M; Suveges, M

    2016-01-01

    We present an overview of the Specific Objects Study (SOS) pipeline developed within the Coordination Unit 7 (CU7) of the Gaia Data Processing and Analysis Consortium (DPAC), the coordination unit charged with the processing and analysis of variable sources observed by Gaia, to validate and fully characterise Cepheids and RR Lyrae stars observed by the spacecraft. We describe how the SOS for Cepheids and RR Lyrae stars (SOS Cep&RRL) was specifically tailored to analyse Gaia's G-band photometric time-series with a South Ecliptic Pole (SEP) footprint, which covers an external region of the Large Magellanic Cloud (LMC). G-band time-series photometry and characterization by the SOS Cep&RRL pipeline (mean magnitude and pulsation characteristics) are published in Gaia Data Release 1 (Gaia DR1) for a total sample of 3,194 variable stars, 599 Cepheids and 2,595 RR Lyrae stars, of which 386 (43 Cepheids and 343 RR Lyrae stars) are new discoveries by Gaia. All 3,194 stars are distributed over an area extending ...

  13. Determination of the Hubble Constant Using Cepheids

    CERN Document Server

    Abdel-Sabour, Mohamed; Issa, Issa Ali; El-Nawawy, Mohamed Saleh; Kordi, Ayman; Almostafa, Zaki; El-Said, Ahmad Essam; Ali, Gamal Bakr

    2014-01-01

    This paper introduces a statistical treatment to use Cepheid variable stars as distance indicators. The expansion rate of the Universe is also studied here through deriving the value of the Hubble constant H0. A Gaussian function approximation is proposed to fit the absolute magnitude and period of Cepheid variables in our galaxy. The calculations are carried out on samples of Cepheids observed in 23 galaxies to derive the distance modulus (DM) of these galaxies based on the frequency distributions of their periods and intrinsic apparent magnitudes. The DM is the difference between the apparent magnitude for extragalactic Cepheids and the absolute magnitude of the galactic Cepheids at maximum number. It is calculated by using the comparison of the period distribution of Cepheids in our galaxy and in other galaxies. This method is preferred due to its simplicity to use and its efficiency in providing reliable DM. A linear fit with correlation coefficient of 99.68% has been found between the published distance ...

  14. The Araucaria Project: A study of the classical Cepheid in the eclipsing binary system OGLE LMC562.05.9009 in the Large Magellanic Cloud

    CERN Document Server

    Gieren, Wolfgang; Pietrzynski, Grzegorz; Graczyk, Dariusz; Udalski, Andrzej; Soszynki, Igor; Thompson, Ian B; Moroni, Pier Giorgio Prada; Smolec, Radoslaw; Konorski, Piotr; Gorski, Marek; Karczmarek, Paulina; Suchomska, Ksenia; Taormina, Monica; Gallenne, Alexandre; Storm, Jesper; Bono, Giuseppe; Catelan, Marcio; Szymanski, Michal; Kozlowski, Szymon; Pietrukowicz, Pawel; Wyrzykowski, Lukasz; Poleski, Radoslaw; Skowron, Jan; Minniti, Dante; Ulaczyk, K; Mroz, P; Pawlak, M; Nardetto, Nicolas

    2015-01-01

    We present a detailed study of the classical Cepheid in the double-lined, highly eccentric eclipsing binary system OGLE-LMC562.05.9009. The Cepheid is a fundamental mode pulsator with a period of 2.988 days. The orbital period of the system is 1550 days. Using spectroscopic data from three 4-8-m telescopes and photometry spanning 22 years, we were able to derive the dynamical masses and radii of both stars with exquisite accuracy. Both stars in the system are very similar in mass, radius and color, but the companion is a stable, non-pulsating star. The Cepheid is slightly more massive and bigger (M_1 = 3.70 +/- 0.03M_sun, R_1 = 28.6 +/- 0.2R_sun) than its companion (M_2 = 3.60 +/- 0.03M_sun, R_2 = 26.6 +/- 0.2R_sun). Within the observational uncertainties both stars have the same effective temperature of 6030 +/- 150K. Evolutionary tracks place both stars inside the classical Cepheid instability strip, but it is likely that future improved temperature estimates will move the stable giant companion just beyond...

  15. Period and light curve fluctuations of the Kepler Cepheid V1154 Cyg

    CERN Document Server

    Derekas, A; Berdnikov, L; Szabo, R; Smolec, R; Kiss, L L; Szabados, L; Chadid, M; Evans, N R; Kinemuchi, K; Nemec, J M; Seader, S E; Smith, J C; Tenenbaum, P

    2012-01-01

    We present a detailed period analysis of the bright Cepheid-type variable star V1154 Cygni (V =9.1 mag, P~4.9 d) based on almost 600 days of continuous observations by the Kepler space telescope. The data reveal significant cycle-to-cycle fluctuations in the pulsation period, indicating that classical Cepheids may not be as accurate astrophysical clocks as commonly believed: regardless of the specific points used to determine the O-C values, the cycle lengths show a scatter of 0.015-0.02 days over the 120 cycles covered by the observations. A very slight correlation between the individual Fourier parameters and the O-C values was found, suggesting that the O - C variations might be due to the instability of the light curve shape. Random fluctuation tests revealed a linear trend up to a cycle difference 15, but for long term, the period remains around the mean value. We compare the measurements with simulated light curves that were constructed to mimic V1154 Cyg as a perfect pulsator modulated only by the ligh...

  16. A long-period Cepheid variable in the starburst cluster VdBH222

    CERN Document Server

    Clark, J S; Lohr, M E; Dorda, R; González-Fernández, C; Lewis, F; Roche, P

    2015-01-01

    Galactic starburst clusters play a twin role in astrophysics, serving as laboratories for the study of stellar physics and also delineating the structure and recent star formation history of the Milky Way. In order to exploit these opportunities we have undertaken a multi-epoch spectroscopic survey of the red supergiant dominated young massive clusters thought to be present at both near and far ends of the Galactic Bar. Significant spectroscopic variability suggestive of radial pulsations was found for the yellow supergiant VdBH 222 #505. Follow-up photometric investigations revealed modulation with a period of ~23.325d; both timescale and pulsational profile are consistent with a Cepheid classification. As a consequence #505 may be recognised as one of the longest period Galactic cluster Cepheids identified to date and hence of considerable use in constraining the bright end of the period/luminosity relation at solar metallicities. In conjunction with extant photometry we infer a distance of ~6kpc for VdBH22...

  17. V1135 Herculis: a double-lined eclipsing binary with an Anomalous Cepheid

    CERN Document Server

    Sipahi, E; Cakirli, O; Dal, H A; Evren, S

    2013-01-01

    BVR light curves and radial velocities for the double-lined eclipsing binary V1135\\,Her were obtained. The brighter component of V1135\\,Her is a Cepheid variable with a pulsation period of 4.22433$\\pm$0.00026 days. The orbital period of the system is about 39.99782$\\pm$0.00233 days, which is the shortest value among the known Type\\,II Cepheid binaries. The observed B, V, and R magnitudes were cleaned for the intrinsic variations of the primary star. The remaining light curves, consisting of eclipses and proximity effects, are obtained. Our analyses of the multi-colour light curves and radial velocities led to the determination of fundamental stellar properties of both components of the interesting system V1135\\,Her. The system consists of two evolved stars, G1+K3 between giants and supergiants, with masses of M$_1$=1.461$\\pm$0.054 \\Msun ~and M$_2$=0.504$\\pm$0.040 {\\Msun} and radii of R$_1$=27.1$\\pm$0.4 {\\Rsun} and R$_2$=10.4$\\pm$0.2 {\\Rsun}. The pulsating star is almost filling its corresponding Roche lobe wh...

  18. A search for open cluster Cepheids in the Galactic plane

    CERN Document Server

    Chen, Xiaodian; Deng, Licai

    2014-01-01

    We analyse all potential combinations of Galactic Cepheids and open clusters (OCs) in the most up-to-date catalogues available. Isochrone fitting and proper-motion calcula- tion are applied to all potential OC{Cepheid combinations. Five selection criteria are used to select possible OC Cepheids: (i) the Cepheid of interest must be located within 60 arcmin of the OC's centre; (ii) the Cepheid's proper motion is located within the 1 sigma distribution of that of its host OC; (iii) the Cepheid is located in the instability strip of its postulated host OC; (iv) the Cepheid and OC distance moduli should differ by less than 1 mag; and (v) the Cepheid and OC ages (and, where available, their metal- licities) should be comparable: {\\Delta}log(t yr^-1) < 0.3. Nineteen possible OC Cepheids are found based on our near-infrared (NIR) analysis; eight additional OC{Cepheid associations may be genuine pairs for which we lack NIR data. Six of the Cepheids analysed at NIR wavelengths are new, high-probability OC Cepheids, ...

  19. HARPS-N high spectral resolution observations of Cepheids I. The Baade-Wesselink projection factor of δ Cep revisited

    Science.gov (United States)

    Nardetto, N.; Poretti, E.; Rainer, M.; Fokin, A.; Mathias, P.; Anderson, R. I.; Gallenne, A.; Gieren, W.; Graczyk, D.; Kervella, P.; Mérand, A.; Mourard, D.; Neilson, H.; Pietrzynski, G.; Pilecki, B.; Storm, J.

    2017-01-01

    Context. The projection factor p is the key quantity used in the Baade-Wesselink (BW) method for distance determination; it converts radial velocities into pulsation velocities. Several methods are used to determine p, such as geometrical and hydrodynamical models or the inverse BW approach when the distance is known. Aims: We analyze new HARPS-N spectra of δ Cep to measure its cycle-averaged atmospheric velocity gradient in order to better constrain the projection factor. Methods: We first apply the inverse BW method to derive p directly from observations. The projection factor can be divided into three subconcepts: (1) a geometrical effect (p0); (2) the velocity gradient within the atmosphere (fgrad); and (3) the relative motion of the optical pulsating photosphere with respect to the corresponding mass elements (fo-g). We then measure the fgrad value of δ Cep for the first time. Results: When the HARPS-N mean cross-correlated line-profiles are fitted with a Gaussian profile, the projection factor is pcc-g = 1.239 ± 0.034(stat.) ± 0.023(syst.). When we consider the different amplitudes of the radial velocity curves that are associated with 17 selected spectral lines, we measure projection factors ranging from 1.273 to 1.329. We find a relation between fgrad and the line depth measured when the Cepheid is at minimum radius. This relation is consistent with that obtained from our best hydrodynamical model of δ Cep and with our projection factor decomposition. Using the observational values of p and fgrad found for the 17 spectral lines, we derive a semi-theoretical value of fo-g. We alternatively obtain fo-g = 0.975 ± 0.002 or 1.006 ± 0.002 assuming models using radiative transfer in plane-parallel or spherically symmetric geometries, respectively. Conclusions: The new HARPS-N observations of δ Cep are consistent with our decomposition of the projection factor. The next step will be to measure p0 directly from the next generation of visible interferometers

  20. Alessi 95 and the short period Cepheid SU Cassiopeiae

    CERN Document Server

    Turner, David G; Lane, David J; Balam, David D; Gieren, Wolfgang P; Storm, Jesper; Forbes, Doug W; Havlen, Robert J; Alessi, Bruno

    2012-01-01

    The parameters for the newly-discovered open cluster Alessi 95 are established on the basis of available photometric and spectroscopic data, in conjunction with new observations. Colour excesses for spectroscopically-observed B and A-type stars near SU Cas follow a reddening relation described by E(U-B)/E(B-V)=0.83+0.02*E(B-V), implying a value of R=Av/E(B-V)~2.8 for the associated dust. Alessi 95 has a mean reddening of E(B-V)_(B0)=0.35+-0.02 s.e., an intrinsic distance modulus of Vo-Mv=8.16+-0.04 s.e. (+-0.21 s.d.), d=429+-8 pc, and an estimated age of 10^8.2 yr from ZAMS fitting of available UBV, CCD BV, NOMAD, and 2MASS JHKs observations of cluster stars. SU Cas is a likely cluster member, with an inferred space reddening of E(B-V)=0.33+-0.02 and a luminosity of =-3.15+-0.07 s.e., consistent with overtone pulsation (P_FM=2.75 d), as also implied by the Cepheid's light curve parameters, rate of period increase, and Hipparcos parallaxes for cluster stars. There is excellent agreement of the distance estimat...

  1. Cepheid distances from infrared long-baseline interferometry - I. VINCI/VLTI observations of seven Galactic Cepheids

    CERN Document Server

    Kervella, P; Bersier, D F; Mourard, D; Foresto, V C

    2003-01-01

    We report the angular diameter measurements of seven classical Cepheids (X Sgr, eta Aql, W Sgr, zeta Gem, beta Dor, Y Oph and L Car) that we have obtained with the VINCI instrument, installed at ESO's VLT Interferometer (VLTI). We also present reprocessed archive data obtained with the FLUOR/IOTA instrument on zeta Gem, in order to improve the phase coverage of our observations. We obtain average limb darkened angular diameter values of LD(X Sgr) = 1.471 +/- 0.033 mas, LD(eta Aql) = 1.839 +/- 0.028 mas, LD(W Sgr) = 1.312 +/- 0.029 mas, LD(beta Dor) = 1.891 +/- 0.024 mas, LD(zeta Gem) =1.747 +/- 0.061 mas, LD(Y Oph) = 1.437 +/- 0.040 mas and LD(L Car) = 2.988 +/- 0.012 mas. For four of these stars (eta Aql, W Sgr, beta Dor, and L Car) we detect the pulsational variation of their angular diameter. This enables us to compute directly their distances, using a modified version of the Baade-Wesselink method: d(eta Aql) = 276 [+55 -38] pc, d(W Sgr) = 379 [+216 -130] pc, d(beta Dor) = 345 [+175 -80] pc, d(L Car) = 60...

  2. Physical parameters and the projection factor of the classical Cepheid in the binary system OGLE-LMC-CEP-0227

    CERN Document Server

    Pilecki, B; Pietrzyński, G; Gieren, W; Thompson, I B; Freedman, W L; Scowcroft, V; Madore, B F; Udalski, A; Soszyński, I; Konorski, P; Smolec, R; Nardetto, N; Bono, G; Moroni, P G Prada; Storm, J; Gallenne, A

    2013-01-01

    A novel method of analysis of double-lined eclipsing binaries containing a radially pulsating star is presented. The combined pulsating-eclipsing light curve is built up from a purely eclipsing light curve grid created using an existing modeling tool. For every pulsation phase the instantaneous radius and surface brightness are taken into account, being calculated from the disentangled radial velocity curve of the pulsating star and from its out-of-eclipse pulsational light curve and the light ratio of the components, respectively. The best model is found using the Markov Chain Monte Carlo method. The method is applied to the eclipsing binary Cepheid OGLE-LMC-CEP-0227 (P_puls = 3.80 d, P_orb = 309 d). We analyze a set of new spectroscopic and photometric observations for this binary, simultaneously fitting OGLE V-band, I-band and Spitzer 3.6 {\\mu}m photometry. We derive a set of fundamental parameters of the system significantly improving the precision comparing to the previous results obtained by our group. ...

  3. Period change in Magellanic Cloud Cepheids

    Energy Technology Data Exchange (ETDEWEB)

    Deasy, H.P.; Wayman, P.A. (Dunsink Observatory, Castleknock (Ireland))

    1985-01-15

    The data for period change in some 115 Cepheid variable stars in the Magellanic Clouds are presented. The accuracy of each determination is estimated and for all but three of the stars it is possible to estimate whether the rate of change of period prior to 1966/67 is maintained subsequently. About 40 per cent of the stars show period variations, similar to the percentage estimated for galactic Cepheids by a previous author. About half of these variations cannot be regarded as being constant in rate.

  4. Stellar variability in open clusters. II. Discovery of a new period-luminosity relation in a class of fast-rotating pulsating stars in NGC 3766

    CERN Document Server

    Mowlavi, N; Semaan, T; Eggenberger, P; Barblan, F; Eyer, L; Ekström, S; Georgy, C

    2016-01-01

    $Context.$ Pulsating stars are windows to the physics of stars enabling us to see glimpses of their interior. Not all stars pulsate, however. On the main sequence, pulsating stars form an almost continuous sequence in brightness, except for a magnitude range between $\\delta$ Scuti and slowly pulsating B stars. Against all expectations, 36 periodic variables were discovered in 2013 in this luminosity range in the open cluster NGC 3766, the origins of which was a mystery. $Aims.$ We investigate the properties of those new variability class candidates in relation to their stellar rotation rates and stellar multiplicity. $Methods.$ We took multi-epoch spectra over three consecutive nights using ESO's Very Large Telescope. $Results.$ We find that the majority of the new variability class candidates are fast-rotating pulsators that obey a new period-luminosity relation. We argue that the new relation discovered here has a different physical origin to the period-luminosity relations observed for Cepheids. $Conclusio...

  5. A Comprehensive, Wide-Field Study of Pulsating Stars in the Carina Dwarf Spheroidal Galaxy

    CERN Document Server

    Vivas, A Katherina

    2013-01-01

    We report the detection of 388 pulsating variable stars (and some additional miscellaneous variables) in the Carina dSph galaxy over an area covering the full visible extent of the galaxy and extending a few times beyond its photometric (King) tidal radius along the direction of its major axis. Included in this total are 340 newly discovered dwarf Cepheids which are mostly located ~2.5 magnitudes below the horizontal branch and have very short periods (<0.1 days) typical of their class and consistent with their location on the upper part of the extended main sequence of the younger populations of the galaxy. Several extra-tidal dwarf cepheids were found in our survey up to a distance of ~1 degree from the center of Carina. Our sample also includes RR Lyrae stars and anomalous Cepheids some of which were found outside the galaxy's tidal radius as well. This supports past works that suggests Carina is undergoing tidal disruption. We use the period-luminosity relationship for dwarf Cepheids to estimate a dist...

  6. The VMC Survey. XIX. Classical Cepheids in the Small Magellanic Cloud

    CERN Document Server

    Ripepi, V; Moretti, M I; Clementini, G; Cioni, M -R L; de Grijs, R; Emerson, J P; Groenewegen, M A T; Ivanov, V D; Piatti, A E

    2016-01-01

    The VISTA near infrared Y, J, Ks survey of the Magellanic System (VMC) is collecting deep Ks band time series photometry of pulsating variable stars hosted by the two Magellanic Clouds and their connecting Bridge. In this paper, we present Y, J, Ks light curves for a sample of 4172 Small Magellanic Cloud (SMC) Classical Cepheids (CCs). These data, complemented with literature V values, allowed us to construct a variety of period-luminosity (PL), period-luminosity-color (PLC), and period-wesenheit (PW) relationships, valid for Fundamental (F), First Overtone (FO) and Second Overtone (SO) pulsators. The relations involving V, J, Ks bands are in agreement with their counterparts in the literature. As for the Y band, to our knowledge we present the first CC PL, PW, and PLC relations ever derived using this filter. We also present the first near infrared PL, PW, and PLC relations for SO pulsators to date. We used PW(V,Ks) to estimate the relative SMC-LMC distance and, in turn, the absolute distance to the SMC. For...

  7. Velocity gradients and microturbulence in Cepheids.

    Science.gov (United States)

    Karp, A. H.

    1973-01-01

    Variations of the microturbulent velocity with phase and height in the atmosphere have been reported in classical Cepheids. It is shown that these effects can be understood in terms of variations of the velocity gradient in the atmospheres of these stars.

  8. The VMC survey - XXIII. Model fitting of light and radial velocity curves of Small Magellanic Cloud classical Cepheids

    Science.gov (United States)

    Marconi, M.; Molinaro, R.; Ripepi, V.; Cioni, M.-R. L.; Clementini, G.; Moretti, M. I.; Ragosta, F.; de Grijs, R.; Groenewegen, M. A. T.; Ivanov, V. D.

    2017-04-01

    We present the results of the χ2 minimization model fitting technique applied to optical and near-infrared photometric and radial velocity data for a sample of nine fundamental and three first overtone classical Cepheids in the Small Magellanic Cloud (SMC). The near-infrared photometry (JK filters) was obtained by the European Southern Observatory (ESO) public survey 'VISTA near-infrared Y, J, Ks survey of the Magellanic Clouds system' (VMC). For each pulsator, isoperiodic model sequences have been computed by adopting a non-linear convective hydrodynamical code in order to reproduce the multifilter light and (when available) radial velocity curve amplitudes and morphological details. The inferred individual distances provide an intrinsic mean value for the SMC distance modulus of 19.01 mag and a standard deviation of 0.08 mag, in agreement with the literature. Moreover, the intrinsic masses and luminosities of the best-fitting model show that all these pulsators are brighter than the canonical evolutionary mass-luminosity relation (MLR), suggesting a significant efficiency of core overshooting and/or mass-loss. Assuming that the inferred deviation from the canonical MLR is only due to mass-loss, we derive the expected distribution of percentage mass-loss as a function of both the pulsation period and the canonical stellar mass. Finally, a good agreement is found between the predicted mean radii and current period-radius (PR) relations in the SMC available in the literature. The results of this investigation support the predictive capabilities of the adopted theoretical scenario and pave the way for the application to other extensive data bases at various chemical compositions, including the VMC Large Magellanic Cloud pulsators and Galactic Cepheids with Gaia parallaxes.

  9. THE ARAUCARIA PROJECT: A STUDY OF THE CLASSICAL CEPHEID IN THE ECLIPSING BINARY SYSTEM OGLE LMC562.05.9009 IN THE LARGE MAGELLANIC CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Gieren, Wolfgang; Pilecki, Bogumił; Pietrzyński, Grzegorz; Graczyk, Dariusz; Górski, Marek; Taormina, Mónica; Gallenne, Alexandre, E-mail: wgieren@astro-udec.cl, E-mail: pilecki@astrouw.edu.pl, E-mail: pietrzyn@astrouw.edu.pl [Universidad de Concepción, Departamento de Astronomía, Casilla 160-C, Concepción (Chile); and others

    2015-12-10

    We present a detailed study of the classical Cepheid in the double-lined, highly eccentric eclipsing binary system OGLE-LMC562.05.9009. The Cepheid is a fundamental mode pulsator with a period of 2.988 days. The orbital period of the system is 1550 days. Using spectroscopic data from three 4–8-m telescopes and photometry spanning 22 years, we were able to derive the dynamical masses and radii of both stars with exquisite accuracy. Both stars in the system are very similar in mass, radius, and color, but the companion is a stable, non-pulsating star. The Cepheid is slightly more massive and bigger (M{sub 1} = 3.70 ± 0.03 M{sub ⊙}, R{sub 1} = 28.6 ± 0.2 R{sub ⊙}) than its companion (M{sub 2} = 3.60 ± 0.03 M{sub ⊙}, R{sub 2} = 26.6 ± 0.2 R{sub ⊙}). Within the observational uncertainties both stars have the same effective temperature of 6030 ± 150 K. Evolutionary tracks place both stars inside the classical Cepheid instability strip, but it is likely that future improved temperature estimates will move the stable giant companion just beyond the red edge of the instability strip. Within current observational and theoretical uncertainties, both stars fit on a 205 Myr isochrone arguing for their common age. From our model, we determine a value of the projection factor of p = 1.37 ± 0.07 for the Cepheid in the OGLE-LMC562.05.9009 system. This is the second Cepheid for which we could measure its p-factor with high precision directly from the analysis of an eclipsing binary system, which represents an important contribution toward a better calibration of Baade-Wesselink methods of distance determination for Cepheids.

  10. Discovery of the first Super-Lithium rich Beat Cepheid: V371 Per

    CERN Document Server

    Kovtyukh, V V; Hillen, M

    2013-01-01

    Four high-resolution spectra of the double-mode Cepheid V371 Per, obtained for the first time, showed the presence of the abnormally strong Li I 6707.76 A line. Our analysis of the light element abundances indicates that the star did not go through the evolutionary dredge-up stage. Large distance from the galactic plane and the low metallicity suggest that V371 Per may belong to the thick disc (or to the halo) of the Galaxy, which is consistent with its low metallicity [Fe/H]=-0.42 and the enhancement of the alpha- and s-elements relative to iron. Line splitting is observed in one of the spectra, which can be due to the non-radial pulsations.

  11. Gaia Data Release 1. The Cepheid and RR Lyrae star pipeline and its application to the south ecliptic pole region

    Science.gov (United States)

    Clementini, G.; Ripepi, V.; Leccia, S.; Mowlavi, N.; Lecoeur-Taibi, I.; Marconi, M.; Szabados, L.; Eyer, L.; Guy, L. P.; Rimoldini, L.; Jevardat de Fombelle, G.; Holl, B.; Busso, G.; Charnas, J.; Cuypers, J.; De Angeli, F.; De Ridder, J.; Debosscher, J.; Evans, D. W.; Klagyivik, P.; Musella, I.; Nienartowicz, K.; Ordóñez, D.; Regibo, S.; Riello, M.; Sarro, L. M.; Süveges, M.

    2016-11-01

    Context. The European Space Agency spacecraft Gaia is expected to observe about 10 000 Galactic Cepheids and over 100 000 Milky Way RR Lyrae stars (a large fraction of which will be new discoveries), during the five-year nominal lifetime spent scanning the whole sky to a faint limit of G = 20.7 mag, sampling their light variation on average about 70 times. Aims: We present an overview of the Specific Objects Study (SOS) pipeline developed within the Coordination Unit 7 (CU7) of the Data Processing and Analysis Consortium (DPAC), the coordination unit charged with the processing and analysis of variable sources observed by Gaia, to validate and fully characterise Cepheids and RR Lyrae stars observed by the spacecraft. The algorithms developed to classify and extract information such as the pulsation period, mode of pulsation, mean magnitude, peak-to-peak amplitude of the light variation, subclassification in type, multiplicity, secondary periodicities, and light curve Fourier decomposition parameters, as well as physical parameters such as mass, metallicity, reddening, and age (for classical Cepheids) are briefly described. Methods: The full chain of the CU7 pipeline was run on the time series photometry collected by Gaia during 28 days of ecliptic pole scanning law (EPSL) and over a year of nominal scanning law (NSL), starting from the general Variability Detection, general Characterization, proceeding through the global Classification and ending with the detailed checks and typecasting of the SOS for Cepheids and RR Lyrae stars (SOS Cep&RRL). We describe in more detail how the SOS Cep&RRL pipeline was specifically tailored to analyse Gaia's G-band photometric time series with a south ecliptic pole (SEP) footprint, which covers an external region of the Large Magellanic Cloud (LMC), and to produce results for confirmed RR Lyrae stars and Cepheids to be published in Gaia Data Release 1 (Gaia DR1). Results: G-band time series photometry and characterisation by the

  12. TYC 1031 1262 1: an anomalous Cepheid in a double-lined eclipsing binary

    Science.gov (United States)

    Sipahi, E.; İbanoǧlu, C.; Çakırlı, Ö.; Evren, S.

    2013-02-01

    The multicolour light curves and radial velocities for TYC 1031 1262 1 have been obtained and analysed. TYC 1031 1262 1 includes a Cepheid with a period of 4.15270 ± 0.00061 d. The orbital period of the system is about 51.2857 ± 0.0174 d. The pulsation period indicates that the secular period is increasing at a rate of of 2.46 ± 0.54 min yr-1. The observed B, V and R magnitudes have been cleaned of the intrinsic variations of the primary star. The remaining light curves that have been obtained consist of eclipses and proximity effects, and these have been analysed to obtain the orbital parameters. The system consists of two evolved stars, F8 II + G6 II, with masses of M1 = 1.640 ± 0.151 M⊙ and M2 = 0.934 ± 0.109 M⊙ and radii of R1 = 26.9 ± 0.9 R⊙ and R2 = 15.0 ± 0.7 R⊙, respectively. The pulsating star almost fills its corresponding Roche lobe, which indicates the possibility that mass loss or transfer has taken place. We find an average distance of d = 5070 ± 250 pc, using the BVR and JHK magnitudes, and also the V-band extinction. The kinematic properties and the distance to the Galactic plane (i.e. 970 pc) indicate that it belongs to the thick-disc population. Most of the observed and calculated parameters of TYC 1031 1262 1 lead to its classification as an anomalous Cepheid.

  13. LARGE EDDY SIMULATION OF PULSATING TURBULENT OPEN CHANNEL FLOW

    Institute of Scientific and Technical Information of China (English)

    ZOU Li-yong; LIU Nan-sheng; LU Xi-yun

    2004-01-01

    Pulsating turbulent open channel flow has been investigated by the use of Large Eddy Simulation (LES) technique coupled with dynamic Sub-Grid-Scale (SGS) model for turbulent SGS stress to closure the governing equations. Three-dimensional filtered Navier-Stokes equations are numerically solved by a fractional-step method. The objective of this study is to deal with the behavior of the pulsating turbulent open channel flow and to examine the reliability of the LES approach for predicting the pulsating turbulent flow. In this study, the Reynolds number (Reτ ) is chosen as 180 based on the friction velocity and the channel depth. The frequency of the driving pressure gradient for the pulsating turbulent flow ranges low, medium and high value. Statistical turbulence quantities as well as the flow structures are analyzed.

  14. The Cepheids of NGC 1866: a precise benchmark for the extragalactic distance scale and stellar evolution from modern UBVI photometry

    Science.gov (United States)

    Musella, I.; Marconi, M.; Stetson, P. B.; Raimondo, G.; Brocato, E.; Molinaro, R.; Ripepi, V.; Carini, R.; Coppola, G.; Walker, A. R.; Welch, D. L.

    2016-04-01

    We present the analysis of multiband time series data for a sample of 24 Cepheids in the field of the Large Magellanic Cloud cluster NGC 1866. Very accurate BVI Very Large Telescope photometry is combined with archival UBVI data, covering a large temporal window, to obtain precise mean magnitudes and periods with typical errors of 1-2 per cent and of 1 ppm, respectively. These results represent the first accurate and homogeneous data set for a substantial sample of Cepheid variables belonging to a cluster and hence sharing common distance, age and original chemical composition. Comparisons of the resulting multiband period-luminosity and Wesenheit relations to both empirical and theoretical results for the Large Magellanic Cloud are presented and discussed to derive the distance of the cluster and to constrain the mass-luminosity relation of the Cepheids. The adopted theoretical scenario is also tested by comparison with independent calibrations of the Cepheid Wesenheit zero-point based on trigonometric parallaxes and Baade-Wesselink techniques. Our analysis suggests that a mild overshooting and/or a moderate mass-loss can affect intermediate-mass stellar evolution in this cluster and gives a distance modulus of 18.50 ± 0.01 mag. The obtained V,I colour-magnitude diagram is also analysed and compared with both synthetic models and theoretical isochrones for a range of ages and metallicities and for different efficiencies of core overshooting. As a result, we find that the age of NGC 1866 is about 140 Myr, assuming Z = 0.008 and the mild efficiency of overshooting suggested by the comparison with the pulsation models.

  15. CCD BVI c observations of Cepheids

    Science.gov (United States)

    Berdnikov, L. N.; Kniazev, A. Yu.; Sefako, R.; Kravtsov, V. V.; Zhujko, S. V.

    2014-02-01

    In 2008-2013, we obtained 11333 CCD BVI c frames for 57 Cepheids from the General Catalogue of Variable Stars. We performed our observations with the 76-cm telescope of the South African Astronomical Observatory (SAAO, South Africa) and the 40-cm telescope of the Cerro Armazones Astronomical Observatory of the Universidad Católica del Norte (OCA, Chile) using the SBIG ST-10XME CCD camera. The tables of observations, the plots of light curves, and the current light elements are presented. Comparison of our light curves with those constructed from photoelectric observations shows that the differences between their mean magnitudes exceed 0ṃ05 in 20% of the cases. This suggests the necessity of performing CCD observations for all Cepheids.

  16. Period change in Magellanic Cloud Cepheids

    Science.gov (United States)

    Deasy, H. P.; Wayman, P. A.

    1985-01-01

    The data for period change in some 115 Cepheid variable stars in the Magellanic Clouds are presented. The accuracy of each determination is estimated and for all but three of the stars it is possible to estimate whether the rate of change of period prior to 1966/67 is maintained subsequently. About 40 per cent of the stars show period variations, similar to the percentage estimated for galactic Cepheids by Hoffmeister (1967). About half of these variations cannot be regarded as being constant in rate. Probably the interpretation of the data lies either in small atmospheric changes that produce phase-discontinuities that accumulate or in small luminosity changes that produce random period changes.

  17. Method of LSD profile asymmetry for estimating the center of mass velocities of pulsating stars

    Science.gov (United States)

    Britavskiy, N.; Pancino, E.; Tsymbal, V.; Romano, D.; Cacciari, C.; Clementini, C.

    2016-05-01

    We present radial velocity analysis for 20 solar neighborhood RR Lyrae and 3 Population II Cepheids. High-resolution spectra were observed with either TNG/SARG or VLT/UVES over varying phases. To estimate the center of mass (barycentric) velocities of the program stars, we utilized two independent methods. First, the 'classic' method was employed, which is based on RR Lyrae radial velocity curve templates. Second, we provide the new method that used absorption line profile asymmetry to determine both the pulsation and the barycentric velocities even with a low number of high-resolution spectra and in cases where the phase of the observations is uncertain. This new method is based on a least squares deconvolution (LSD) of the line profiles in order to an- alyze line asymmetry that occurs in the spectra of pulsating stars. By applying this method to our sample stars we attain accurate measurements (+- 2 kms^-1) of the pulsation component of the radial velocity. This results in determination of the barycentric velocity to within 5 kms^-1 even with a low number of high- resolution spectra. A detailed investigation of LSD profile asymmetry shows the variable nature of the project factor at different pulsation phases, which should be taken into account in the detailed spectroscopic analysis of pulsating stars.

  18. Excitation of Stellar Pulsations

    DEFF Research Database (Denmark)

    Houdek, G.

    2012-01-01

    In this review I present an overview of our current understanding of the physical mechanisms that are responsible for the excitation of pulsations in stars with surface convection zones. These are typically cooler stars such as the δ Scuti stars, and stars supporting solar-like oscillations....

  19. Does Collinder 236 host a Cepheid calibrator?

    CERN Document Server

    Turner, David G; Leonard, P J T; Abdel-Latif, Mohamed Abdel-Sabour; Majaess, Daniel J; Berdnikov, Leonid N

    2009-01-01

    Photoelectric UBV photometry and star counts are presented for the previously unstudied open cluster Collinder 236, supplemented by observations for stars near the Cepheid WZ Car. Collinder 236 is typical of groups associated with Cepheids, with an evolutionary age of (3.4+-1.1)x10^7 years, but it is 1944+-71 pc distant, only half the predicted distance to WZ Car. The cluster is reddened by E(B-V)~0.26, and has nuclear and coronal radii of rn~2 arcmin (1.1 pc) and Rc~8 arcmin (4.5 pc), respectively. The Cepheid is not a member of Collinder 236 on the basis of location beyond the cluster tidal radius and implied distance, but its space reddening can be established as E(B-V)=0.268+-0.006 s.e. from 5 adjacent stars. Period changes in WZ Car studied with the aid of archival data are revised. The period of WZ Car is increasing, its rate of +8.27+-0.19 s yr^(-1) being consistent with a third crossing of the instability strip.

  20. On the Impact of Cepheid Outliers on the Distance Ladder

    CERN Document Server

    Becker, M R; Rozo, E; Marshall, P; Rykoff, E S

    2015-01-01

    Recent work by Efstathiou (2014) highlighted the importance of outliers in the period-luminosity (PL) relation of Cepheid data on the distance ladder. We present a statistical framework designed to address this difficulty, and apply it to the Cepheid data from the Milky Way (MW), the Large Magellanic Cloud (LMC), and the Riess et al. (2011) (hereafter R11) dataset. We consider two possible models of the outlier population in the R11 Cepheid dataset. One of these models exhibits tension between the PL relation of the R11 cepheids and the MW+LMC cepheids, while the other does not. We extend our models to adequately account for tension between the cepheid data sets when appropriate. Our outlier treatment has a significant impact on the distance scales to Supernovae hosts with Cepheid distances, increasing the uncertainty in these distances by a median factor of ~30%. We further find that our Cepheid outlier treatment translates into a modest, but non-negligible increase in the statistical uncertainty of H0, addi...

  1. Kinematics of classical Cepheids in the Nuclear Stellar Disk

    CERN Document Server

    Matsunaga, N; Yamamoto, R; Kobayashi, N; Inno, L; Genovali, K; Bono, G; Baba, J; Fujii, M S; Kondo, S; Ikeda, Y; Hamano, S; Nishiyama, S; Nagata, T; Aoki, W; Tsujimoto, T

    2014-01-01

    Classical Cepheids are useful tracers of the Galactic young stellar population because their distances and ages can be determined from their period-luminosity and period-age relations. In addition, the radial velocities and chemical abundance of the Cepheids can be derived from spectroscopic observations, providing further insights into the structure and evolution of the Galaxy. Here, we report the radial velocities of classical Cepheids near the Galactic Center, three of which were reported in 2011, the other reported for the first time. The velocities of these Cepheids suggest that the stars orbit within the Nuclear Stellar Disk, a group of stars and interstellar matter occupying a region of 200 pc around the Center, although the three-dimensional velocities cannot be determined until the proper motions are known. According to our simulation, these four Cepheids formed within the Nuclear Stellar Disk like younger stars and stellar clusters therein.

  2. The Kepler Cepheid V1154 Cyg revisited: light curve modulation and detection of granulation

    Science.gov (United States)

    Derekas, A.; Plachy, E.; Molnár, L.; Sódor, Á.; Benkő, J. M.; Szabados, L.; Bognár, Zs.; Csák, B.; Szabó, Gy. M.; Szabó, R.; Pál, A.

    2017-01-01

    We present a detailed analysis of the bright Cepheid-type variable star V1154 Cygni using 4 yr of continuous observations by the Kepler space telescope. We detected 28 frequencies using the standard Fourier transform method. We identified modulation of the main pulsation frequency and its harmonics with a period of ˜159 d. This modulation is also present in the Fourier parameters of the light curve and the O - C diagram. We detected another modulation with a period of about 1160 d. The star also shows significant power in the low-frequency region that we identified as granulation noise. The effective time-scale of the granulation agrees with the extrapolated scalings of red giant stars. Non-detection of solar-like oscillations indicates that the pulsation inhibits other oscillations. We obtained new radial velocity observations that are in a perfect agreement with previous years data, suggesting that there is no high-mass star companion of V1154 Cygni. Finally, we discuss the possible origin of the detected frequency modulations.

  3. The Kepler Cepheid V1154 Cyg revisited: light curve modulation and detection of granulation

    CERN Document Server

    Derekas, A; Molnar, L; Sodor, A; Benko, J M; Szabados, L; Bognar, Zs; Csak, B; Szabo, Gy M; Szabo, R; Pal, A

    2016-01-01

    We present a detailed analysis of the bright Cepheid-type variable star V1154 Cygni using 4 years of continuous observations by the Kepler space telescope. We detected 28 frequencies using standard Fourier transform method.We identified modulation of the main pulsation frequency and its harmonics with a period of ~159 d. This modulation is also present in the Fourier parameters of the light curve and the O-C diagram. We detected another modulation with a period of about 1160 d. The star also shows significant power in the low-frequency region that we identified as granulation noise. The effective timescale of the granulation agrees with the extrapolated scalings of red giant stars. Non-detection of solar-like oscillations indicates that the pulsation inhibits other oscillations. We obtained new radial velocity observations which are in a perfect agreement with previous years data, suggesting that there is no high mass star companion of V1154 Cygni. Finally, we discuss the possible origin of the detected frequ...

  4. The VMC Survey. XIII. Type II Cepheids in the Large Magellanic Cloud

    CERN Document Server

    Ripepi, V; Marconi, M; Clementini, G; Cioni, M-R L; de Grijs, R; Emerson, J P; Groenewegen, M A T; Ivanov, V D; Muraveva, T; Piatti, A E; Subramanian, S

    2014-01-01

    The VISTA survey of the Magellanic Clouds System (VMC) is collecting deep $K_\\mathrm{s}$--band time--series photometry of the pulsating variable stars hosted in the system formed by the two Magellanic Clouds and the Bridge connecting them. In this paper we have analysed a sample of 130 Large Magellanic Cloud (LMC) Type II Cepheids (T2CEPs) found in tiles with complete or near complete VMC observations for which identification and optical magnitudes were obtained from the OGLE III survey. We present $J$ and $K_\\mathrm{s}$ light curves for all 130 pulsators, including 41 BL Her, 62 W Vir (12 pW Vir) and 27 RV Tau variables. We complement our near-infrared photometry with the $V$ magnitudes from the OGLE III survey, allowing us to build a variety of Period-Luminosity ($PL$), Period-Luminosity-Colour ($PLC$) and Period-Wesenheit ($PW$) relationships, including any combination of the $V, J, K_\\mathrm{s}$ filters and valid for BL Her and W Vir classes. These relationships were calibrated in terms of the LMC distanc...

  5. TYC 1031 1262 1: An Anomalous Cepheid in a double-lined eclipsing binary

    CERN Document Server

    Sipahi, E; Cakirli, O; Evren, S

    2012-01-01

    Multi-color light curves and radial velocities for TYC\\,1031\\,1262\\,1 have been obtained and analyzed. TYC\\,1031\\,1262\\,1 includes a Cepheid with a period of 4.15270$\\pm$0.00061 days. The orbital period of the system is about 51.2857$\\pm$0.0174 days. The pulsation period indicates a secular period increase with an amount of 2.46$\\pm$0.54 min/yr. The observed B, V, and R magnitudes were cleaned for the intrinsic variations of the primary star. The remaining light curves, consisting of eclipses and proximity effects, are obtained and analyzed for orbital parameters. The system consists of two evolved stars, F8II+G6II, with masses of M$_1$=1.640$\\pm$0.151 {\\Msun} and M$_2$=0.934$\\pm$0.109 {\\Msun} and radii of R$_1$=26.9$\\pm$0.9 {\\Rsun} and R$_2$=15.0$\\pm$0.7 {\\Rsun}. The pulsating star is almost filling its corresponding Roche lobe which indicates the possibility of mass loss or transfer having taken place. We find an average distance of d=5070$\\pm$250\\,pc using the BVR and JHK magnitudes and also the V-band ext...

  6. New NIR light-curve templates for classical Cepheids

    CERN Document Server

    Inno, L; Romaniello, M; Bono, G; Monson, A; Ferraro, I; Iannicola, G; Persson, E; Buonanno, R; Freedman, W; Gieren, W; Groenewegen, M A T; Ita, Y; Laney, C D; Lemasle, B; Madore, B F; Nagayama, T; Nakada, Y; Nonino, M; Pietrzynski, G; Primas, F; Scowcroft, V; Soszynski, I; Tanabe, T; Udalski, A

    2014-01-01

    We present new near-infrared (NIR) light-curve templates for fundamental (FU, JHK) and first overtone (FO, J) Cepheids. The new templates together with PL and PW relations provide Cepheid distances from single-epoch observations with a precision only limited by the intrinsic accuracy of the method adopted. The templates rely on a very large set of Galactic and Magellanic Clouds (MCs) Cepheids (FU,~600; FO,~200) with well sampled NIR (IRSF data) and optical (V,I; OGLE data) light curves. To properly trace the change in the shape of the light curve as a function of period, we split the sample of calibrating Cepheids into 10 different period bins. The templates for the first time cover FO Cepheids and the FU short-period Cepheids (P<5 days). Moreover, the zero-point phase is anchored to the phase of the mean magnitude along the rising branch. The new approach has several advantages in sampling the light curve of bump Cepheids when compared with the phase of maximum light. We also provide new estimates of the ...

  7. Monitoring Period and Amplitude Changes in Classical Cepheids

    Science.gov (United States)

    Erickson, Mary; Engle, Scott G.; Mark Wells (Penn State University)

    2017-01-01

    Cepheid Variable Stars, which are located on the Instability Strip of the Hertzsprung-Russel Diagram, can be used as “standard candle” distance markers (Fiorentino 2007). This came about after the discovery of the Period-Luminosity Relationship (the Leavitt Law), and they have since become a cornerstone of the Cosmic Distance Scale and are helping to further refine the Hubble Constant. Cepheids will cross the Instability Strip, either in a “redward” (cooler) or “blueward” (hotter) direction depending on the stage in which the Cepheid is evolving (Neilson 2012). While Cepheids were originally believed to have regular periods, many are now known to have varying periods, dating back to Eddington (1919). Therefore, Cepheids must be closely monitored in order to deduce where these period variations are coming from - either from inside the star itself or from some outside source. Determining period changes in Cepheids can reveal important information (e.g. evolutionary states, potential companions, etc.).Photometric data were taken for two Cepheids from two different sources and analyzed. The Cepheids in question are AA Gem and BB Gem, both located in the Gemini constellation. Data for these two stars were taken from the All Sky Automated Survey (ASAS) and from the Robotically Controlled Telescope (RCT) at Kitt Peak National Observatory, on which Villanova has guaranteed access. ASAS observes automatically each clear night, and has done so for several years, making it an excellent source for obtaining Cepheid data. The RCT telescope also operates automatically, observing from a preset target list, and achieves a much higher precision than ASAS can. Multi-aperture photometry was performed on the AA Gem and BB Gem RCT images, in Astroimagej. The data were then separated into different seasons, and Fourier fits were applied to the light curves in Kephem (written by Andrej Prša and collaborators). These results were then analyzed via the Hertzsprung Method to

  8. GEOS RR Lyr survey: FM Del is indeed a cepheid

    CERN Document Server

    Borgne, Jean-Francois Le

    2014-01-01

    Though FM Del has been considered as a RR Lyr star by Preston et al. in 1959 (following discovery by Huth, 1957), Huth (1960) eventually changed his mind by showing that it is in fact a cepheid of W Vir type of period of 3.95452 days. Various authors since then have considered it as a cepheid indeed, with the exception of Wils et al. (2006) who list this star in their RR Lyr catalog with a period of 0.79688 days. On this basis, FM Del was added to Tarot RR Lyr program. We present here these observations which confirm the cepheid type.

  9. Pulsation driving and convection

    Science.gov (United States)

    Antoci, Victoria

    2015-08-01

    Convection in stellar envelopes affects not only the stellar structure, but has a strong impact on different astrophysical processes, such as dynamo-generated magnetic fields, stellar activity and transport of angular momentum. Solar and stellar observations from ground and space have shown that the turbulent convective motion can also drive global oscillations in many type of stars, allowing to study stellar interiors at different evolutionary stages. In this talk I will concentrate on the influence of convection on the driving of stochastic and coherent pulsations across the Hertzsprung-Russell diagram and give an overview of recent studies.

  10. Asteroseismology of Pulsating Stars

    Indian Academy of Sciences (India)

    Santosh Joshi; Yogesh C. Joshi

    2015-03-01

    The success of helioseismology is due to its capability of measuring -mode oscillations in the Sun. This allows us to extract information on the internal structure and rotation of the Sun from the surface to the core. Similarly, asteroseismology is the study of the internal structure of the stars as derived from stellar oscillations. In this review we highlight the progress in the observational asteroseismology, including some basic theoretical aspects. In particular, we discuss our contributions to asteroseismology through the study of chemically peculiar stars under the 'Nainital-Cape Survey' project being conducted at ARIES, Nainital, since 1999. This survey aims to detect new rapidly-pulsating Ap (roAp) stars in the northern hemisphere. We also discuss the contribution of ARIES towards the asteroseismic study of the compact pulsating variables. We comment on the future prospects of our project in the light of the new optical 3.6-m telescope to be installed at Devasthal (ARIES). Finally, we present a preliminary optical design of the high-speed imaging photometers for this telescope.

  11. The Galactic Cepheid period-luminosity relation revisited using bona fide cluster Cepheids

    Science.gov (United States)

    Anderson, Richard I.; Mowlavi, Nami; Eyer, Laurent

    2013-02-01

    Classical Cepheids in Galactic open clusters (cluster Cepheids: CCs) have been studied extensively for multiple decades, thanks to their importance as calibrators of the Galactic Cepheid period-luminosity relation (PLR). Here we revisit the calibration of the Galactic PLR using a new sample of CCs, since even recent calibrations show significant discrepancies. The CC sample employed for the calibration is based on the preliminary results of a self-consistent, eight-dimensional all-sky census. This census is based mostly on literature data, supplemented with high-precision radial-velocity observations from both hemispheres. New CCs are identified from our census and the degree of confidence in membership is quantified for known candidates. Using only bona fide CCs, we obtain MV = (-3.08 +/- 0.50) log P + (-0.94 +/- 0.42) mag, which is in perfect agreement with the results by Sandage, Tammann, and Reindl, albeit with larger error bars and an rms of 0.21 mag. The key to obtaining a meaningful calibration is to employ accurate cluster distance moduli and space reddening values. A homogeneous study of all bona fide host clusters would be desirable to increase precision and confidence in the calibration.

  12. Theoretical fit of Cepheid light an radial velocity curves in the Large Magellanic Cloud cluster NGC 1866

    CERN Document Server

    Marconi, Marcella; Ripepi, Vincenzo; Musella, Ilaria; Brocato, Enzo

    2012-01-01

    We present a theoretical investigation of multifilter (U,B,V, I and K) light and radial velocity curves of five Classical Cepheids in NGC 1866, a young massive cluster of the Large Magellanic Cloud. The best fit models accounting for the luminosity and radial velocity variations of the five selected variables, four pulsating in the fundamental mode and one in the first overtone, provide direct estimates of their intrinsic stellar parameters and individual distances. The resulting stellar properties indicate a slightly brighter Mass Luminosity relation than the canonical one, possibly due to mild overshooting and/or mass loss. As for the inferred distances, the individual values are consistent within the uncertainties. Moreover, their weighted mean value corresponds to a distance modulus of 18.56 + - 0.03 (stat) + - 0.1 (syst) mag, in agreement with several independent results in the literature.

  13. H$_{\\alpha}$ line as an indicator of envelope presence around the Cepheid Polaris Aa ($\\alpha~ UMi$)

    CERN Document Server

    Usenko, I A; Klochkova, V G; Tavolzhanskaya, N S

    2015-01-01

    We present the results of the radial velocity ($RV$) measurements of metallic lines as well as H$_{\\alpha}$ (H$_{\\beta}$) obtained in 55 high-resolution spectra of the Cepheid $\\alpha$ UMi (Polaris Aa) in 1994-2010. While the $RV$ amplitudes of these lines are roughly equal, their mean $RV$ begin to differ essentially with growth of the Polaris Aa pulsational activity. This difference is accompanied by the H$_{\\alpha}$ line core asymmetries on the red side mainly (so-called knife-like profiles) and reaches 8-12 km/s in 2003 with a subsequent decrease to 1.5-2 km/s. We interpret a so unusual behaviour of the H$_{\\alpha}$ line core as dynamical changes in the envelope around Polaris Aa.

  14. Disk of the Small Magellanic Cloud as traced by Cepheids

    CERN Document Server

    Subramanian, Smitha

    2014-01-01

    The structure and evolution of the disk of the Small Magellanic Cloud (SMC) are traced by studying the Cepheids. We aim to estimate the orientation measurements of the disk, such as the inclination and the position angle of the line of nodes, and the depth of the disk. We used the V and I band photometric data of the fundamental and first-overtone Cepheids from the Optical Gravitational Lensing Experiment survey. The period-luminosity relations were used to estimate the relative distance and reddening of each Cepheid. A weighted least-square plane fitting method was then applied to estimate the structural parameters. The line-of-sight depth and then the orientation corrected depth or thickness of the disk were estimated from the relative distance measurements. The period-age-colour relation of Cepheids were used to derive the age of the Cepheids. A break in the PL relations of the fundamental-mode and first-overtone Cepheids at P ~ 2.95 days and P ~ 1 day are observed. An inclination of 64$^o$.4$\\pm$0$^o$.7 a...

  15. Discovery of a peculiar Cepheid-like star towards the northern edge of the Small Magellanic Cloud

    CERN Document Server

    Marquette, J B; François, P; Beaulieu, J P; Doublier, V; Lesquoy, E; Milsztajn, A; Pritchard, J; Schwarzenberg-Czerny, A; Afonso, C; Albert, J N; Andersen, J; Ansari, R; Aubourg, E; Bareyre, P; Charlot, X; Coutures, C; Ferlet, R; Fouqué, P; Glicenstein, J F; Goldman, B; Gould, A; Graff, D; Gros, M; Haïssinski, J; Hamadache, C; De Kat, J; Guillou, L Le; Loup, C; Magneville, C; Maurice, E; Maury, A; Moniez, M; Palanque-Delabrouille, Nathalie; Perdereau, O; Rahal, Y R; Rich, J; Spiro, M; Vidal-Madjar, A; Zylberajch, S

    2008-01-01

    For seven years, the EROS-2 project obtained a mass of photometric data on variable stars. We present a peculiar Cepheid-like star, in the direction of the Small Magellanic Cloud, which demonstrates unusual photometric behaviour over a short time interval. We to report on data of the photometriy acquired by the MARLY telescope and spectroscopy from the EFOSC instrument for this star, called EROS2 J005135-714459(sm0060n13842), which resembles the unusual Cepheid HR 7308. The light curve of our target is analysed using the Analysis of Variance method to determine a pulsational period of 5.5675 days. A fit of time-dependent Fourier coefficients is performed and a search for proper motion is conducted. The light curve exhibits a previously unobserved and spectacular change in both mean magnitude and amplitude, which has no clear theoretical explanation. Our analysis of the spectrum implies a radial velocity of 104 km s$^{-1}$ and a metallicity of -0.4$\\pm$0.2 dex. In the direction of right ascension, we measure a...

  16. Pulsation models for the 0.26M_sun star mimicking RR Lyrae pulsator. Model survey for the new class of variable stars

    CERN Document Server

    Smolec, R; Graczyk, D; Pilecki, B; Gieren, W; Thompson, I; Stepien, K; Karczmarek, P; Konorski, P; Gorski, M; Suchomska, K; Bono, G; Moroni, P G Prada; Nardetto, N

    2012-01-01

    We present non-linear hydrodynamic pulsation models for OGLE-BLG-RRLYR-02792 - a 0.26M_sun pulsator, component of the eclipsing binary system, analysed recently by Pietrzynski et al. The star's light and radial velocity curves mimic that of classical RR Lyrae stars, except for the bump in the middle of the ascending branch of the radial velocity curve. We show that the bump is caused by the 2:1 resonance between the fundamental mode and the second overtone - the same mechanism that causes the Hertzsprung bump progression in classical Cepheids. The models allow to constrain the parameters of the star, in particular to estimate its absolute luminosity (approx 33L_sun) and effective temperature (approx 6970K, close to the blue edge of the instability strip). We conduct a model survey for the new class of low mass pulsators similar to OGLE-BLG-RRLYR-02792 - products of evolution in the binary systems. We compute a grid of models with masses corresponding to half (and less) of the typical mass of RR Lyrae variable...

  17. Deep Hubble Space Telescope imaging of Sextans A. II. Cepheids and distance

    NARCIS (Netherlands)

    Dolphin, AE; Saha, A; Skillman, ED; Dohm-Palmer, RC; Tolstoy, E; Cole, AA; Gallagher, JS; Hoessel, JG; Mateo, M

    2003-01-01

    We have identified 82 short-period variable stars in Sextans A from deep Wide Field Planetary Camera 2 observations. All the periodic variables appear to be short-period Cepheids, with periods as small as 0.8 days for fundamental mode Cepheids and 0.5 days for first-overtone Cepheids. These objects

  18. Stellar variability in open clusters . II. Discovery of a new period-luminosity relation in a class of fast-rotating pulsating stars in NGC 3766

    Science.gov (United States)

    Mowlavi, N.; Saesen, S.; Semaan, T.; Eggenberger, P.; Barblan, F.; Eyer, L.; Ekström, S.; Georgy, C.

    2016-10-01

    Context. Pulsating stars are windows to the physics of stars enabling us to see glimpses of their interior. Not all stars pulsate, however. On the main sequence, pulsating stars form an almost continuous sequence in brightness, except for a magnitude range between δ Scuti and slowly pulsating B stars. Against all expectations, 36 periodic variables were discovered in 2013 in this luminosity range in the open cluster NGC 3766, the origins of which was a mystery. Aims: We investigate the properties of those new variability class candidates in relation to their stellar rotation rates and stellar multiplicity. Methods: We took multi-epoch spectra over three consecutive nights using ESO's Very Large Telescope. Results: We find that the majority of the new variability class candidates are fast-rotating pulsators that obey a new period-luminosity relation. We argue that the new relation discovered here has a different physical origin to the period-luminosity relations observed for Cepheids. Conclusions: We anticipate that our discovery will boost the relatively new field of stellar pulsation in fast-rotating stars, will open new doors for asteroseismology, and will potentially offer a new tool to estimate stellar ages or cosmic distances. Based on observations made with the FLAMES instruments on the VLT/UT2 telescope at the Paranal Observatory, Chile, under the program ID 69.A-0123(A).

  19. Adapting Predictive Models for Cepheid Variable Star Classification Using Linear Regression and Maximum Likelihood

    Science.gov (United States)

    Gupta, Kinjal Dhar; Vilalta, Ricardo; Asadourian, Vicken; Macri, Lucas

    2014-05-01

    We describe an approach to automate the classification of Cepheid variable stars into two subtypes according to their pulsation mode. Automating such classification is relevant to obtain a precise determination of distances to nearby galaxies, which in addition helps reduce the uncertainty in the current expansion of the universe. One main difficulty lies in the compatibility of models trained using different galaxy datasets; a model trained using a training dataset may be ineffectual on a testing set. A solution to such difficulty is to adapt predictive models across domains; this is necessary when the training and testing sets do not follow the same distribution. The gist of our methodology is to train a predictive model on a nearby galaxy (e.g., Large Magellanic Cloud), followed by a model-adaptation step to make the model operable on other nearby galaxies. We follow a parametric approach to density estimation by modeling the training data (anchor galaxy) using a mixture of linear models. We then use maximum likelihood to compute the right amount of variable displacement, until the testing data closely overlaps the training data. At that point, the model can be directly used in the testing data (target galaxy).

  20. Period-Luminosity Relations Derived From the OGLE-III Fundamental Mode Cepheids II: The Small Magellanic Cloud Cepheids

    CERN Document Server

    Ngeow, Chow-Choong; Bhardwaj, Anupam; Singh, Harinder P

    2015-01-01

    In this paper we present multi-band period-luminosity (P-L) relations for fundamental mode Cepheids in the SMC. The optical VI-band mean magnitudes for these SMC Cepheids were taken from the third phase of the Optical Gravitational Lensing Experiment (OGLE-III) catalog. We also matched the OGLE-III SMC Cepheids to 2MASS and SAGE-SMC catalog to derive mean magnitudes in the JHK-bands and the four {\\it Spitzer} IRAC bands, respectively. All photometry was corrected for extinction by adopting the Zaritsky's extinction map. Cepheids with periods smaller than $\\sim2.5$ days were removed from the sample. In addition to the extinction corrected P-L relations in nine filters from optical to infrared, we also derived the extinction-free Wesenheit function for these Cepheids. We tested the nonlinearity of these SMC P-L relations (except the $8.0\\mu\\mathrm{m}$-band P-L relation) at 10 days: none of the P-L relations show statistically significant evidence of nonlinearity. When compared to the P-L relations in the LMC, t...

  1. PULSATION PERIOD VARIATIONS IN THE RRc LYRAE STAR KIC 5520878

    Energy Technology Data Exchange (ETDEWEB)

    Hippke, Michael [Institute for Data Analysis, Luiter Str. 21b, D-47506 Neukirchen-Vluyn (Germany); Learned, John G. [High Energy Physics Group, Department of Physics and Astronomy, University of Hawaii, Manoa 327 Watanabe Hall, 2505 Correa Road, Honolulu, HI 96822 (United States); Zee, A. [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States); Edmondson, William H. [School of Computer Science, University of Birmingham, Birmingham B15 2TT (United Kingdom); Lindner, John F. [Physics Department, The College of Wooster, Wooster, OH 44691 (United States); Kia, Behnam; Ditto, William L. [Department of Physics and Astronomy, University of Hawai' i at Mānoa, Honolulu, HI 96822 (United States); Stevens, Ian R., E-mail: hippke@ifda.eu, E-mail: jgl@phys.hawaii.edu, E-mail: zee@kitp.ucsb.edu, E-mail: w.h.edmondson@bham.ac.uk, E-mail: jlindner@wooster.edu, E-mail: wditto@hawaii.edu, E-mail: behnam@hawaii.edu, E-mail: irs@star.sr.bham.ac.uk [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom)

    2015-01-01

    Learned et al. proposed that a sufficiently advanced extra-terrestrial civilization may tickle Cepheid and RR Lyrae variable stars with a neutrino beam at the right time, thus causing them to trigger early and jogging the otherwise very regular phase of their expansion and contraction. This would turn these stars into beacons to transmit information throughout the galaxy and beyond. The idea is to search for signs of phase modulation (in the regime of short pulse duration) and patterns, which could be indicative of intentional, omnidirectional signaling. We have performed such a search among variable stars using photometric data from the Kepler space telescope. In the RRc Lyrae star KIC 5520878, we have found two such regimes of long and short pulse durations. The sequence of period lengths, expressed as time series data, is strongly autocorrelated, with correlation coefficients of prime numbers being significantly higher (p = 99.8%). Our analysis of this candidate star shows that the prime number oddity originates from two simultaneous pulsation periods and is likely of natural origin. Simple physical models elucidate the frequency content and asymmetries of the KIC 5520878 light curve. Despite this SETI null result, we encourage testing of other archival and future time-series photometry for signs of modulated stars. This can be done as a by-product to the standard analysis, and can even be partly automated.

  2. [Bachelard and the mathematical pulsation].

    Science.gov (United States)

    Guitart, René

    2015-01-01

    The working mathematician knows a specific gesture named « mathematical pulsation », a necessary creative moving in diagrams of thoughts and interpretations of mathematical writings. In this perspective the fact of being an object is definitely undecided, and related to the game of relations. The purpose of this paper today is to construct this pulsation, starting from the epistemology of Bachelard, concerning mathematics as well as mathematical physics. On the way, we recover links between ideas of Bachelard and more recent specific propositions by Gilles Ch-let, Charles Alunni, or René Guitart. Also are used authors like Jacques Lacan, Arthur Koestler, Alfred N. Whitehead, Charles S. Peirce. We conclude that the mathematical work consists with pulsative moving in the space of diagrams; we claim that this view is well compatible with the Bachelard's analysis of scientific knowledge: the intellectual or formal mathematical data preceeds the empirical objects, and in some sense these objects result from the pulsative gestures of the thinkers. So we finish with a categorical scheme of the pulsation.

  3. Rate of Period Change as a Diagnostic of Cepheid Properties

    CERN Document Server

    Turner, D G; Berdnikov, L N

    2006-01-01

    Rate of period change $\\dot{P}$ for a Cepheid is shown to be a parameter that is capable of indicating the instability strip crossing mode for individual objects, and, in conjunction with light amplitude, likely location within the instability strip. Observed rates of period change in over 200 Milky Way Cepheids are demonstrated to be in general agreement with predictions from stellar evolutionary models, although the sample also displays features that are inconsistent with some published models and indicative of the importance of additional factors not fully incorporated in models to date.

  4. New Pulsating DB White Dwarf Stars from the Sloan Digital Sky Survey

    CERN Document Server

    Nitta, A; Krzesínski, J; Kepler, S O; Metcalfe, T S; Mukadam, Anjum S; Mullally, Fergal; Nather, R E; Sullivan, Denis J; Thompson, Susan E; Winget, D E

    2008-01-01

    We are searching for new He atmosphere white dwarf pulsators (DBVs) based on the newly found white dwarf stars from the spectra obtained by the Sloan Digital Sky Survey. DBVs pulsate at hotter temperature ranges than their better known cousins, the H atmosphere white dwarf pulsators (DAVs or ZZ Ceti stars). Since the evolution of white dwarf stars is characterized by cooling, asteroseismological studies of DBVs give us opportunities to study white dwarf structure at a different evolutionary stage than the DAVs. The hottest DBVs are thought to have neutrino luminosities exceeding their photon luminosities (Winget et al. 2004), a quantity measurable through asteroseismology. Therefore, they can also be used to study neutrino physics in the stellar interior. So far we have discovered nine new DBVs, doubling the number of previously known DBVs. Here we report the new pulsators' lightcurves and power spectra.

  5. The Scale of Reddening for Classical Cepheid Variables

    CERN Document Server

    Turner, David G

    2016-01-01

    Field reddenings are summarized for 68 Cepheids from published studies and updated results presented here. The compilation forms the basis for a comparison with other published reddening scales of Cepheids, including those established from reddening-independent indices, photometry on the Lick six-color system, Str\\"{o}mgren system, Walraven system, Washington system, Cape $BVI$ system, DDO system, and Geneva system, IRSB studies, and Cepheid spectroscopy, both old and new. Reddenings tied to period-color relations are the least reliable, as expected, while photometric color excesses vary in precision, their accuracy depending on the methodology and calibration sample. The tests provide insights into the accuracy and precision of published Cepheid reddening scales, and lead to a new system of standardized reddenings comprising a sample of 198 variables with an average uncertainty of $\\pm0.028$ in E$_{B-V}$, the precision being less than $\\pm0.01$ for many. The collected color excesses are used to map the dispe...

  6. The orbit and companions of the classical Cepheid FF Aql

    Science.gov (United States)

    Evans, Nancy Remage; Welch, Douglas L.; Scarfe, Colin D.; Teays, Terry J.

    1990-01-01

    New radial velocities of the classical Cepheid FF Aql have been obtained and combined with previous observations to provide a revised orbit. A companion has been detected at 1800 A in IUE spectra with a spectral type of A9 V to F3 V. If the Cepheid has an evolutionary mass, then the mass ratio is M1/M2 = 3.8. A companion recently detected by speckle interferometry is in a longer-period orbit if it is a physical companion. In this case it is also an evolved star. The possible fourth member of the system, the visual companion, is unlikely to be a member of the system. The companion at 6 arcsec is unlikely to be a physical companion. Cepheids (in the 'free-fall' descending branch of the light curve) and nonvariable supergiants are shown to have a different spectral slope between 2900 and 1800 A for the same (B-V)0. IUE spectra of Polaris are rediscussed using other Cepheid spectra as comparison stars, and it is concluded that there is probably no sign of a companion.

  7. The period distribution of Cepheids: a test of stellar evolution

    Science.gov (United States)

    Groenewegen, M. A. T.; Girardi, L.

    2015-09-01

    The period distributions of classical Cepheids in the Small and Large Magellanic Cloud are quite different. Using the TRILEGAL population synthesis code and a theoretical instability strip the ultimate aim is to understand these differences quantitatively. First results are presented for one area in the LMC using VMC NIR data.

  8. Deep HST Imaging of Sextans A. II. Cepheids and Distance

    CERN Document Server

    Dolphin, A E; Skillman, E D; Dohm-Palmer, R C; Tolstoy, E; Cole, A A; Gallagher, J S; Hössel, J G; Mateo, M; Dolphin, Andrew E.; Skillman, Evan D.; Tolstoy, Eline; Mateo, Mario

    2002-01-01

    We have identified 82 short-period variable stars in Sextans A from deep WFPC2 observations. All of the periodic variables appear to be short-period Cepheids, with periods as small as 0.8 days for fundamental-mode Cepheids and 0.5 days for first-overtone Cepheids. These objects have been used, along with measurements of the RGB tip and red clump, to measure a true distance modulus to Sextans A of (m-M)_0 = 25.61 +/- 0.07, corresponding to a distance of d = 1.32 +/- 0.04 Mpc. Comparing distances calculated by these techniques, we find that short-period Cepheids (P < 2 days) are accurate distance indicators for objects at or below the metallicity of the SMC. As these objects are quite numerous in low-metallicity star-forming galaxies, they have the potential for providing extremely precise distances throughout the Local Group. We have also compared the relative distances produced by other distance indicators. We conclude that calibrations of RR Lyraes, the RGB tip, and the red clump are self-consistent, but ...

  9. Pulsational-Pair Instability Supernovae

    CERN Document Server

    Woosley, S E

    2016-01-01

    The final evolution of stars in the mass range 60 - 150 solar masses is explored. Depending upon their mass loss and rotation rates, many of these stars will end their lives as pulsational pair-instability supernovae. Even a non-rotating 70 solar mass star is pulsationally unstable during oxygen shell burning and can power a sub-luminous supernova. Rotation decreases the limit further. For more massive stars, the pulsations are less frequent, span a longer time, and are more powerful. Violent pulsations eject not only any residual low density envelope, but also that fraction of the helium core mass outside about 35 - 50 solar masses. The remaining core of helium and heavy elements continues to evolve, ultimately forming an iron core of about 2.5 solar masses that probably collapses to a black hole. A variety of observational transients result with total durations ranging from days to 10,000 years, and luminosities from 10$^{41}$ to 10$^{44}$ erg s$^{-1}$. Many transients resemble ordinary Type IIp supernovae,...

  10. The Cepheid Period-Luminosity Relation (The Leavitt Law) at Mid-Infrared Wavelengths: IV. Cepheids in IC 1613

    CERN Document Server

    Freedman, Wendy L; Madore, Barry F; Persson, S E; Sturch, Laura; Mager, Violet

    2009-01-01

    We present mid-infrared Period-Luminosity relations for Cepheids in the Local Group galaxy IC1613. Using archival IRAC imaging data from Spitzer we were able to measure single-epoch magnitudes for five, 7 to 50-day, Cepheids at 3.6 and 4.5 microns. When fit to the calibrating relations, measured for the Large Magellanic Cloud Cepheids, the data give apparent distance moduli of 24.29 +/- 0.07 and 24.28 +/- 0.07 at 3.6 and 4.5 microns, respectively. A multi-wavelength fit to previously published BVRIJHK apparent moduli and the two IRAC moduli gives a true distance modulus of 24.27 +/- 0.02 mag with E(B-V) = 0.08 mag, and a corresponding metric distance of 715 kpc. Given that these results are based on single-phase observations derived from exposures having total integration times of only 1,000 sec/pixel we suggest that Cepheids out to about 2 Mpc are accessible to Spitzer with modest integration times during its warm mission. We identify the main limiting factor to this method to be crowding/contamination induc...

  11. Searching for visual companions of close Cepheids. VLT/NACO lucky imaging of Y~Oph, FF~Aql, X~Sgr, W~Sgr and $\\eta$~Aql

    CERN Document Server

    Gallenne, A; Mérand, A; Evans, N R; Girard, J H V; Gieren, W; Pietrzynski, G

    2014-01-01

    Aims: High-resolution imaging in several photometric bands can provide color and astrometric information of the wide-orbit component of Cepheid stars. Such measurements are needed to understand the age and evolution of pulsating stars. In addition, binary Cepheids have the potential to provide direct and model-independent distances and masses. Methods: We used the NAOS-CONICA adaptive optics instrument (NACO) in the near-infrared to perform a deep search for wide components around the classical Cepheids, Y~Oph, FF~Aql, X~Sgr, W~Sgr, and $\\eta$~Aql, within a field of view (FoV) of $1.7"\\times 1.7"$ ($3.4"\\times 3.4"$ for $\\eta$~Aql). Results: We were able to reach contrast $\\Delta H = 5$-8\\,mag and $\\Delta K_\\mathrm{s} = 4$-7\\,mag in the radius range $r > 0.2"$, which enabled us to constrain the presence of wide companions. For Y~Oph, FF~Aql, X~Sgr, W~Sgr, and $\\eta$~Aql at $r > 0.2"$, we ruled out the presence of companions with a spectral type that is earlier than a B7V, A9V, A9V, A1V, and G5V star, respecti...

  12. MOND rotation curves for spiral galaxies with Cepheid-based distances

    CERN Document Server

    Bottema, R; Rothberg, B; Sanders, R H; Bottema, Roelof; Pestana, Jose L.G.; Rothberg, Barry; Sanders, Robert H.

    2002-01-01

    Rotation curves for four spiral galaxies with recently determined Cepheid-based distances are reconsidered in terms of modified Newtonian dynamics (MOND). For two of the objects, NGC 2403 and NGC 7331, the rotation curves predicted by MOND are compatible with the observed curves when these galaxies are taken to be at the Cepheid distance. For NGC 3198, the largest distance for which reasonable agreement is obtained is 10% smaller than the Cepheid-based distance; i.e., MOND clearly prefers a smaller distance. This conclusion is unaltered when new near-infrared photometry of NGC 3198 is taken as the tracer of the stellar mass distribution. For the large Sc spiral, NGC 2841, MOND requires a distance which is at least 20% larger than the Cepheid-based distance. However, the discrepancy of the Tully-Fisher and SNIa distances with the Cepheid determination casts some doubt upon the Cepheid method in this case.

  13. Vetting Galactic Leavitt Law Calibrators using Radial Velocities: On the Variability, Binarity, and Possible Parallax Error of 19 Long-period Cepheids

    CERN Document Server

    Anderson, R I; Riess, A G; Melis, C; Holl, B; Semaan, T; Papics, P I; Blanco-Cuaresma, S; Eyer, L; Mowlavi, N; Palaversa, L; Roelens, M

    2016-01-01

    We investigate the radial velocity (RV) variability and spectroscopic binarity of 19 Galactic long-period ($P_{\\rm{puls}} \\gtrsim 10$ d) classical Cepheid variable stars whose trigonometric parallaxes are being measured using the Hubble Space Telescope and Gaia. Our primary objective is to constrain possible parallax error due to undetected orbital motion. Using $>1600$ high-precision RVs measured between 2011 and 2016, we find no indication of orbital motion on $\\lesssim 5$ yr timescales for 18 Cepheids and determine upper limits on allowed configurations for a range of input orbital periods. The results constrain the unsigned parallax error due to orbital motion to $ 10$ yr) variations in pulsation-averaged velocity $v_\\gamma$ via a template fitting approach using both new and literature RVs. We discover the spectroscopic binarity of XZ Car and CD Cyg, find first tentative evidence for AQ Car, and reveal KN Cen's orbital signature. Further (mostly tentative) evidence of time-variable $v_\\gamma$ is found for...

  14. Vetting Galactic Leavitt Law Calibrators Using Radial Velocities: On the Variability, Binarity, and Possible Parallax Error of 19 Long-period Cepheids

    Science.gov (United States)

    Anderson, R. I.; Casertano, S.; Riess, A. G.; Melis, C.; Holl, B.; Semaan, T.; Papics, P. I.; Blanco-Cuaresma, S.; Eyer, L.; Mowlavi, N.; Palaversa, L.; Roelens, M.

    2016-10-01

    We investigate the radial velocity (RV) variability and spectroscopic binarity of 19 Galactic long-period ({P}{puls} ≳ 10 days) classical Cepheid variable stars whose trigonometric parallaxes are being measured using the Hubble Space Telescope and Gaia. Our primary objective is to constrain possible parallax error due to undetected orbital motion. Using over 1600 high-precision RVs measured between 2011 and 2016, we find no indication of orbital motion on ≲5 year timescales for 18 Cepheids and determine upper limits on allowed configurations for a range of input orbital periods. The results constrain the unsigned parallax error due to orbital motion to 10 years) variations in pulsation-averaged velocity v γ via a template fitting approach using both new and literature RVs. We discover the spectroscopic binarity of XZ Car and CD Cyg, find first tentative evidence for AQ Car, and reveal KN Cen’s orbital signature. Further (mostly tentative) evidence of time-variable v γ is found for SS CMa, VY Car, SZ Cyg, and X Pup. We briefly discuss considerations regarding a vetting process of Galactic Leavitt law calibrators and show that light contributions by companions are insignificant for most distance scale applications.

  15. Four new subdwarf B pulsators

    Science.gov (United States)

    Østensen, R.; Heber, U.; Silvotti, R.; Solheim, J.-E.; Dreizler, S.; Edelmann, H.

    2001-11-01

    We report the detection of short period oscillations in the sdB stars HS 0039+4302, HS 0444+0408, HS 1824+5745 and HS 2151+0857 from time-series photometry made at the Nordic Optical Telescope (NOT) of a sample of 55 candidates. Hence these four hot subdwarfs are new members of the EC 14026 class of pulsating sdB stars. HS 0039+4302 is a multi-mode pulsator with at least four distinct periods in the range between 182 and 234 s, and amplitudes up to 8 mma. HS 0444+0408 shows one dominant pulsation at 137 s (A ~ 12 mma) and a second weaker pulsation at 170 s (A ~ 3 mma). For HS 1824+5745 we find a single period of 139 s with an amplitude of about 5 mma. HS 2151+0857 shows four periods in the range 129-151 s with amplitudes between 2 and 5 mma. Our NLTE model atmosphere analysis of the time-averaged optical spectra place all stars well within the theoretical sdBV instability strip. Based on observations obtained at the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. }\\fnmsep\\thanks{ Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, operated by the Max-Plank-Institute für Astronomie Heidelberg jointly with the Spanish National Commission for Astronomy. Based on observations collected at the European Southern Observatory, Chile (ESO No. 66.D-0031).

  16. Why do hot subdwarf stars pulsate?

    CERN Document Server

    Geier, S

    2015-01-01

    Hot subdwarf B stars (sdBs) are the stripped cores of red giants located at the bluest extension of the horizontal branch. Several different kinds of pulsators are found among those stars. The mechanism that drives those pulsations is well known and the theoretically predicted instability regions for both the short-period p-mode and the long-period g-mode pulsators match the observed distributions fairly well. However, it remains unclear why only a fraction of the sdB stars pulsate, while stars with otherwise very similar parameters do not show pulsations. From an observers perspective I review possible candidates for the missing parameter that makes sdB stars pulsate or not.

  17. Hydrodynamic models of a Cepheid atmosphere. I - Deep envelope models

    Science.gov (United States)

    Karp, A. H.

    1975-01-01

    The implicit hydrodynamic code of Kutter and Sparks has been modified to include radiative transfer effects. This modified code has been used to compute deep envelope models of a classical Cepheid with a period of 12 days. It is shown that in this particular model the hydrogen ionization region plays only a small role in producing the observed phase lag between the light and velocity curves. The cause of the bumps on the model's light curve is examined, and a mechanism is presented to explain those Cepheids with two secondary features on their light curves. This mechanism is shown to be consistent with the Hertzsprung sequence only if the evolutionary mass-luminosity law is used.

  18. The Cepheid Period-Luminosity Relation (The Leavitt Law) at Mid-Infrared Wavelengths: III. Cepheids in NGC 6822

    CERN Document Server

    Madore, Barry F; Freedman, Wendy L; Persson, S E; Sturch, Laura; Mager, Violet

    2008-01-01

    We present the first application of mid-infrared Period-Luminosity relations to the determination of a Cepheid distance beyond the Magellanic Clouds. Using archival IRAC imaging data on NGC 6822 from Spitzer we were able to measure single-epoch magnitudes for sixteen long-period (10 to 100-day) Cepheids at 3.6um, fourteen at 4.5um, ten at 5.8um and four at 8.0um. The measured slopes and the observed scatter both conform to the relations previously measured for the Large Magellanic Cloud Cepheids, and fitting to those relations gives apparent distance moduli of mod{3.6} = 23.57 +/- 0.06, mod{4.5} = 23.55 +/- 0.07, mod{5.8} = 23.60 +/- 0.09 and mod{8.0} = 23.51 +/-0.08 mag. A multi-wavelength fit to the new IRAC moduli, and previously published BVRIJHK moduli, allows for a final correction for interstellar reddening and gives a true distance modulus of 23.49 +/- 0.03 mag with E(B-V) = 0.26 mag, corresponding to a metric distance of 500 +/-8 kpc.

  19. Self-pulsation in Raman fiber amplifiers

    DEFF Research Database (Denmark)

    Pedersen, Martin Erland Vestergaard; Ott, Johan Raunkjær; Rottwitt, Karsten

    2009-01-01

    Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated.......Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated....

  20. Enhancements of Impinging Flame by Pulsation

    Institute of Scientific and Technical Information of China (English)

    AySu; Ying-ChiehLiu

    2000-01-01

    Experimental investigations on the pulsating jet-impinging diffusion flame were executed.A soleoid valve was aligned upstream of the jet orifice and the methane fuel was controlled in open-closed cycles from 0 Hz to 20Hz.Results show that the open-closed cycles,indeed increase the fluctuations of the methane fuel obviously.The evolutions of pulsating flame therefore develop faster than the continuous impinging flame.The optimized pulating frequencies are near 9 to 11 hz from the Re=170 to 283.The temperature differences between that under optimized pulsating rate and full open condition(no pulsation)are ranging from 100 to 150 degree.The pulsating effect is more singnificant at low Reynolds number.The cross section of continuous impinging flame behaves as elliptic shape with axial ratio equals to 2/3.The tip of the impinging flame obviously crosses at 42mm above the impinging point.ecause of the phenomenon of pulsation flame,the flame sheet or flame front may not be identified clearly in the averaged temperature contours.Results shows that the averaged end-contour of pulsation flame rears at 38mm above the impinging point.By observation and experiment,the pulsating flame behaves more stable and efficient than the continuous impinging flame.

  1. Discovery of Cycle-to-cycle Modulated Spectral Line Variability and Velocity Gradients in Long-period Cepheids

    CERN Document Server

    Anderson, Richard I

    2016-01-01

    This work reports the discovery of cycle-to-cycle modulated spectral line and atmospheric velocity gradient variability in long-period Cepheids based on 925 high-resolution optical spectra of $\\ell$ Carinae (P $\\sim$ 35.5 d) recorded during three heavy duty-cycle monitoring campaigns (in 2014, 2015, and 2016). Spectral line variability is investigated via cross-correlation functions (CCFs) computed using three sets of spectral lines (weak, solar, strong). A metallic line velocity gradient, {\\delta}v$_r$ (t), is computed as the difference between weak and strong-line RVs. CCF shape indicators BIS (asymmetry), FWHM, and depth all exhibit clear phase-dependent variability patterns that differ from one pulsation cycle to the next. Weak-line CCFs exhibit these effects more clearly than strong-line CCFs. BIS exhibits the most peculiar modulated variability and can be used to identify the presence of cycle-to-cycle modulated line profile variations. {\\delta}v$_r$ (t) clearly exhibits cycle-to-cycle differences that ...

  2. Nonradial Pulsations in ɛ Persei

    Science.gov (United States)

    Saio, Hideyuki; Kambe, Eiji; Lee, Umin

    2000-11-01

    We consider the question of whether all the modes detected in the line profile variations of ɛ Persei are consistent with nonradial pulsations excited by the kappa mechanism at the opacity Z-bump. We have computed massive (12.5-14 Msolar) main-sequence models, adjusting the parameters such that the evolutionary tracks pass around the approximate position of ɛ Per on the H-R diagram. A linear nonadiabatic, nonradial pulsation analysis is applied to these models. The periods in the frame corotating with the stellar surface for the observed 2.3-4.5 hr modes are found to be consistent with the Z-bump kappa mechanism. We have found, however, that the longest-period mode (8.48 hr in the observer's frame) cannot be explained by the kappa mechanism. We have examined the effect of rotation on the stability of oscillations and found that the stabilizing effect is weak, so that only a few of the shortest-period modes are stabilized for the rotation speed of ɛ Per. No significant difference is found between prograde and retrograde modes in the stability. It is a puzzle why no retrograde mode has been detected in ɛ Per, which should equally be excited by the kappa mechanism. We also discuss the observed and theoretical line profile variations of ɛ Per in the Appendix.

  3. Blood Pulsation Intensity Video Mapping

    CERN Document Server

    Borges, Pedro Henrique de M

    2016-01-01

    In this study, we make non-invasive, remote, passive measurements of the heart beat frequency and determine the map of blood pulsation intensity in a region of interest (ROI) of skin. The ROI used was the forearm of a volunteer. The method employs a regular video camera and visible light, and the video acquisition takes less than 1 minute. The mean cardiac frequency found in our volunteer was within 1 bpm of the ground-truth value simultaneously obtained via earlobe plethysmography. Using the signals extracted from the video images, we have determined an intensity map for the blood pulsation at the surface of the skin. In this paper we present the experimental and data processing details of the work and well as limitations of the technique. ----------------------------------------- Neste estudo medimos a frequ\\^encia card\\'iaca de forma n\\~ao invasiva, remota e passiva e determinamos o mapa da atividade de pulsa\\c{c}\\~ao sangu\\'inea numa regi\\~ao de interesse (ROI) da pele. A ROI utilizada foi o antebra\\c{c}o...

  4. A Planet Found by Pulsations

    Science.gov (United States)

    Kohler, Susanna

    2016-10-01

    Searching for planets around very hot stars is much more challenging than looking around cool stars. For this reason, the recent discovery of a planet around a main-sequence A star is an important find both because of its unique position near the stars habitable zone, and because of the way in which the planet was discovered.Challenges in VariabilityIn the past three decades, weve discovered thousands of exoplanets yet most of them have been found around cool stars (like M dwarfs) or moderate stars (like G stars like our Sun). Very few of the planets that weve found orbit hot stars; in fact, weve only discovered ~20 planets orbiting the very hot, main-sequence A stars.The instability strip, indicated on an H-R diagram. Stellar classification types are listed across the bottom of the diagram. Many main-sequence A stars reside in the instability strip. [Rursus]Why is this? We dont expect that main-sequence A stars host fewer planets than cooler stars. Instead, its primarily because the two main techniques that we use to find planets namely, transits and radial velocity cant be used as effectively on the main-sequence A stars that are most likely to host planets, because the luminosities of these stars are often variable.These stars can lie on whats known as the classical instability strip in the Herzsprung-Russell diagram. Such variable stars pulsate due to changes in the ionization state of atoms deep in their interiors, which causes the stars to puff up and then collapse back inward. For variable main-sequence A stars, the periods for these pulsations can be several to several tens of times per day.These very pulsations that make transits and radial-velocity measurements so difficult, however, can potentially be used to detect planets in a different way. Led by Simon Murphy (University of Sydney, Australia and Aarhus University, Denmark), a team of scientists has recently detected the first planet ever to be discovered around a main-sequence A star from the timing

  5. Piezoelectric actuator for pulsating jets

    Science.gov (United States)

    Brissaud, Michel; Gonnard, Paul; Bera, Jean-Christophe; Sunyach, Michel

    2000-08-01

    Recent researches in aeronautics showed that fluidic actuator systems could offer possibilities for drag reduction and lift improvement. To this end many actuator types were designed. This paper deals with the design, fabrication and test of piezoelectric actuator in order to generate pulsated jets normal to a surface and control air flow separation. It is based on the flexural displacement of a rectangular metal plate clamped on one of its large edge. Piezoelectric patches cemented on the plate were used for driving into vibration the actuator. Experimental measurements show that pulsed flow velocities are adjustable from 1.5m/s to 35m/s through a 100x1mm2 slit andwithin a 100 to 400 Hz frequency range. Prototype provides the jet performances classically required for active control flow.

  6. Pulsative hematoma: A penile fracture complication

    Directory of Open Access Journals (Sweden)

    Nale Đorđe

    2007-01-01

    Full Text Available Background. Fracture of the penis is a direct blunt trauma of the erect or semi-erect penis. It can be treated by conservative or surgical means. Retrospective analyses of conservative penile fracture treatment reveal frequent immediate and later complications. Case report. We presented a 41- year-old patient with pulsative hematoma caused by an unusual fracture of the penis. Fracture had appeared 40 days before the admittance during a sexual intercourse. The patient was treated surgically. Conclusion. Pulsative hematoma (pulsative diverticulum is a very rare, early complication of a conservatively treated penile fracture. Surgical treatment has an advantage over surgical one, which was confirmed by our case report.

  7. Pulsations in close binaries: challenges and opportunities

    Directory of Open Access Journals (Sweden)

    Maceroni C.

    2015-01-01

    Full Text Available CoRoT and Kepler provided a precious by-product: a number of eclipsing binaries containing variable stars and, among these, non-radial pulsators. This providential occurrence allows combining independent information from two different phenomena whose synergy yields scientific results well beyond those from the single sources. In particular, the analysis of pulsations in eclipsing binary components throws light on the internal structure of the pulsating star, on the system evolution, and on the role of tidal forces in exciting the oscillations. The case study of the Kepler target KIC 3858884 is illustrative of the difficulties of analysis and of the achievements in this rapidly developing field.

  8. RESOLVED COMPANIONS OF CEPHEIDS: TESTING THE CANDIDATES WITH X-RAY OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Nancy Remage; Pillitteri, Ignazio; Wolk, Scott; Karovska, Margarita; Tingle, Evan [Smithsonian Astrophysical Observatory, MS 4, 60 Garden St., Cambridge, MA 02138 (United States); Guinan, Edward; Engle, Scott [Department of Astronomy and Astrophysics, Villanova University, 800 Lancaster Ave., Villanova, PA 19085 (United States); Bond, Howard E. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Schaefer, Gail H. [The CHARA Array of Georgia State University, Mount Wilson, California 91023 (United States); Mason, Brian D., E-mail: nevans@cfa.harvard.edu, E-mail: heb11@psu.edu, E-mail: schaefer@chara-array.org [US Naval Observatory, 3450 Massachusetts Ave., NW, Washington, DC 20392-5420 (United States)

    2016-04-15

    We have made XMM-Newton observations of 14 Galactic Cepheids that have candidate resolved (≥5″) companion stars based on our earlier HST Wide Field Camera 3 (WFC3) imaging survey. Main-sequence stars that are young enough to be physical companions of Cepheids are expected to be strong X-ray producers in contrast to field stars. XMM-Newton exposures were set to detect essentially all companions hotter than spectral type M0 (corresponding to 0.5 M{sub ⊙}). The large majority of our candidate companions were not detected in X-rays, and hence are not confirmed as young companions. One resolved candidate (S Nor #4) was unambiguously detected, but the Cepheid is a member of a populous cluster. For this reason, it is likely that S Nor #4 is a cluster member rather than a gravitationally bound companion. Two further Cepheids (S Mus and R Cru) have X-ray emission that might be produced by either the Cepheid or the candidate resolved companion. A subsequent Chandra observation of S Mus shows that the X-rays are at the location of the Cepheid/spectroscopic binary. R Cru and also V659 Cen (also X-ray bright) have possible companions closer than 5″ (the limit for this study) which are the likely sources of X-rays. One final X-ray detection (V473 Lyr) has no known optical companion, so the prime suspect is the Cepheid itself. It is a unique Cepheid with a variable amplitude. The 14 stars that we observed with XMM constitute 36% of the 39 Cepheids found to have candidate companions in our HST/WFC3 optical survey. No young probable binary companions were found with separations of ≥5″ or 4000 au.

  9. Resolved Companions of Cepheids: Testing the Candidates with X-Ray Observations

    Science.gov (United States)

    Evans, Nancy Remage; Pillitteri, Ignazio; Wolk, Scott; Karovska, Margarita; Tingle, Evan; Guinan, Edward; Engle, Scott; Bond, Howard E.; Schaefer, Gail H.; Mason, Brian D.

    2016-04-01

    We have made XMM-Newton observations of 14 Galactic Cepheids that have candidate resolved (≥5″) companion stars based on our earlier HST Wide Field Camera 3 (WFC3) imaging survey. Main-sequence stars that are young enough to be physical companions of Cepheids are expected to be strong X-ray producers in contrast to field stars. XMM-Newton exposures were set to detect essentially all companions hotter than spectral type M0 (corresponding to 0.5 M⊙). The large majority of our candidate companions were not detected in X-rays, and hence are not confirmed as young companions. One resolved candidate (S Nor #4) was unambiguously detected, but the Cepheid is a member of a populous cluster. For this reason, it is likely that S Nor #4 is a cluster member rather than a gravitationally bound companion. Two further Cepheids (S Mus and R Cru) have X-ray emission that might be produced by either the Cepheid or the candidate resolved companion. A subsequent Chandra observation of S Mus shows that the X-rays are at the location of the Cepheid/spectroscopic binary. R Cru and also V659 Cen (also X-ray bright) have possible companions closer than 5″ (the limit for this study) which are the likely sources of X-rays. One final X-ray detection (V473 Lyr) has no known optical companion, so the prime suspect is the Cepheid itself. It is a unique Cepheid with a variable amplitude. The 14 stars that we observed with XMM constitute 36% of the 39 Cepheids found to have candidate companions in our HST/WFC3 optical survey. No young probable binary companions were found with separations of ≥5″ or 4000 au. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA).

  10. Relations of pulsatility index and particle residence time to the wall-shear-stress properties in pulsating flows with reverse flow phase

    CERN Document Server

    Kersh, Dikla

    2013-01-01

    Pulsating flows with a \\emph{total reverse flow} phase are ubiquitous in physiological systems in normal and pathological conditions. Irregularity of hemodynamic parameters in such flows is correlated with the appearance and development of several arterial pathologies. We study the relations between flow waveform parameters and the wall shear stress (WSS) related quantities such as mean, root-mean-square, gradient of WSS and the oscillating shear index. The phase-averaged velocity profiles measured by the digital particle image velocimetry are used to estimate WSS utilizing the Womersley pulsating flow model. In addition to the Reynolds and Womersley numbers, another dimensionless parameter, pulsating index (PI) which is the ratio of forward flow rate to the reverse flow rate is required. PI is essential for the complete description of the flow patterns with the total flow reversal. We demonstrate significant effects on the WSS quantities due to the pulsating frequency and PI. Furthermore, the particle reside...

  11. A Test of the Calibration of the Tully-Fisher Relation Using Cepheid and SNIa Distances

    OpenAIRE

    Shanks, T.

    1997-01-01

    We make a direct test of Tully-Fisher distance estimates to eleven spiral galaxies with HST Cepheid distances and to twelve spiral galaxies with SNIa distances. The HST Cepheid distances come from the work of Freedman (1997), Sandage et al (1996) and Tanvir et al (1995). The SNIa distances come from Pierce (1994), calibrated using the Cepheid results of Sandage et al (1996). The Tully-Fisher distances mostly come from the work of Pierce (1994). The results show that the Tully-Fisher distance ...

  12. Cepheid Period-Luminosity Relation from the AKARI Observations

    CERN Document Server

    Ngeow, Chow-Choong; Kanbur, Shashi M; Neilson, Hilding; Onaka, Takashi; Kato, Daisuke

    2010-01-01

    In this paper, we derive the period-luminosity (P-L) relation for Large Magellanic Cloud (LMC) Cepheids based on mid-infrared AKARI observations. AKARI's IRC sources were matched to the OGLE-III LMC Cepheid catalog. Together with the available I band light curves from the OGLE-III catalog, potential false matches were removed from the sample. This procedure excluded most of the sources in the S7 and S11 bands: hence only the P-L relation in the N3 band was derived in this paper. Random-phase corrections were included in deriving the P-L relation for the single epoch AKARI data, even though the derived P-L relation is consistent with the P-L relation without random-phase correction, though there is a \\sim 7 per-cent improvement in the dispersion of the P-L relation. The final adopted N3 band P-L relation is N3 = -3.246 log(P) + 15.844, with a dispersion of 0.149.

  13. Cepheid period-luminosity relation from the AKARI observations

    Science.gov (United States)

    Ngeow, Chow-Choong; Ita, Yoshifusa; Kanbur, Shashi M.; Neilson, Hilding; Onaka, Takashi; Kato, Daisuke

    2010-10-01

    In this paper, we derive the period-luminosity (P-L) relation for Large Magellanic Cloud (LMC) Cepheids based on mid-infrared AKARI observations. AKARI's Infrared Camera sources were matched to the Optical Gravitational Lensing Experiment-III (OGLE-III) LMC Cepheid catalogue. Together with the available I-band light curves from the OGLE-III catalogue, potential false matches were removed from the sample. This procedure excluded most of the sources in the S7 and S11 bands; hence, only the P-L relation in the N3 band is derived in this paper. Random-phase corrections were included in deriving the P-L relation for the single-epoch AKARI data; even though the derived P-L relation is consistent with the P-L relation without random-phase correction, however there is an ~7 per cent improvement in the dispersion of the P-L relation. The final adopted N3-band P-L relation is N3 = -3.246 log(P) + 15.844, with a dispersion of 0.149.

  14. Self-pulsation in Raman fiber amplifiers

    OpenAIRE

    Pedersen, Martin Erland Vestergaard; Ott, Johan Raunkjær; Rottwitt, Karsten

    2009-01-01

    Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated.

  15. Statistical study of dayside pulsating aurora

    Science.gov (United States)

    Kanmae, T.; Kadokura, A.; Ogawa, Y.; Ebihara, Y.; Motoba, T.; Gerrard, A. J.; Weatherwax, A. T.

    2015-12-01

    Pulsating aurora normally occurs after a substorm breakup in the midnight sector, often observed to persist through the morning sector and beyond. Indeed, it has also been observed on the dayside; however, the characteristics of the dayside pulsating aurora are poorly known. A handful of observational studies have been reported, but the results are somewhat disputable because most of the studies had non-uniform sampling of the dark dayside region. Furthermore, the previous studies used photometer data, with which the spatial characteristics of the pulsating aurora cannot be examined. To determine both temporal and spatial characteristics of the pulsating aurora, we have studied three years of all-sky image data obtained at the South Pole station. Because of its unique geographical location, the station has 24 hours of darkness during the austral winter from April to August, providing an ideal platform for studying dayside aurora. In a preliminary survey of the data, we have identified the pulsating auroras in 198 days out of 365 days of observations. The magnetic local time (MLT) distribution of the occurrence peaks between 9:00 and 11:00, but shows no or little dependence on the geomagnetic activity. In many events, pulsating patches initially appear as east-west aligned arc segments and later in the afternoon sector develop into large, diffuse patches, which occasionally fill a large part of the field of view. Using the long-term data, we will statistically examine both temporal (occurrence rate, duration and pulsation period) and spatial (sizes and shapes) characteristics of the dayside pulsating aurora.

  16. Stellar pulsation and rotation in NGC 6811

    Science.gov (United States)

    Rodríguez, E.; Ocando, S.; López-González, M. J.; Martín-Ruiz, S.

    2017-03-01

    We present the results of the frequency analysis for a selected sample of pulsating δ Sct- and γ Dor-type stars in the field of the open cluster NGC 6811, which have been observed in short-cadence (SC) mode by the Kepler satellite. In all cases, the resulting frequency spectra are very complex, especially when the dominant pulsation is that of the δ Sct type, that is, short-period pulsations corresponding to excited pressure (p) modes. In all cases, the δ Sct stars are shown to be essentially δ Sct/ γ Dor hybrid pulsators. However, the opposite seems not to be true. We also find that the δ Sct-type peaks commonly are not stable in amplitude. Many of the main peaks significantly change their amplitudes over relatively short time scales. For a large percentage of pulsators in our sample we also find that the variability shown in the light curves is not produced by a single cause, but a combination of various sources: δ Sct- and γ Dor-type pulsations together with rotational modulation produced by starspots in the surfaces of these stars. This is an indication of stellar activity in the surfaces of these relatively hot stars of spectral type A(-F). Sometimes, activity dominates the luminosity variations in various pulsating stars in our sample. Eclipsing binarity is also detected in a few cases. Flares are also detected in one of the δ Sct-type pulsators. This is an indication of unusual strong activity for this kind of hot stars.

  17. A motion picture presentation of magnetic pulsations

    Science.gov (United States)

    Suzuki, A.; Kim, J. S.; Sugura, M.; Nagano, H.

    1981-01-01

    Using the data obtained from the IMS North American magnetometer network stations at high latitudes, a motion picture was made by a computer technique, describing time changes of Pc5 and Pi3 magnetic pulsation vectors. Examples of pulsation characteristics derived from this presentation are regional polarization changes including shifts of polarization demarcation lines, changes in the extent of an active region and its movement with time.

  18. Eros variable stars A catalog of Cepheids in the Magellanic Clouds

    CERN Document Server

    Afonso, C; Alard, C; Amadon, A; Andersen, J; Ansari, R; Aubourg, E; Bauer, F; Bareyre, P; Beaulieu, J P; Blanc, G; Bouquet, A; Char, S; Charlot, X; Couchot, F; Coutures, C; Derue, F; Ferlet, R; Gaucherel, C; Glicenstein, J F; Goldman, B; Gould, A; Graff, D S; Gros, M H; Haïssinski, J; Hamilton, J C; Hardin, D P; De Kat, J; Kim, A; Lasserre, T; Lesquoy, E; Loup, C; Magneville, C; Mansoux, B; Marquette, J B; Maurice, E; Milshtein, A I; Moniez, M; Palanque-Delabrouille, Nathalie; Perdereau, O; Prévôt, L; Renault, C; Regnault, N; Rich, J; Spiro, Michel; Vidal-Madjar, A; Vigroux, L; Zylberajch, S

    1999-01-01

    We present a catalog containing 290 LMC and 590 SMC Cepheids which have been obtained using the two 4k $\\times$ 8k CCD cameras of the EROS~2 microlensing survey. The Cepheids were selected from 1,134,000 and 504,000 stars in the central regions of the LMC and SMC respectively, that were monitored over 150 nights between October 1996 and February 1997, at a rate of one measurement every night. For each Cepheid the light curves, period, magnitudes in the EROS~2 filter system, Fourier coefficients, J2000 coordinates and cross-identifications with objects referenced in the CDS Simbad database are presented. Finding charts of identified Cepheids in clusters NGC 1943, NGC 1958 and Bruck 56 are presented. The catalogue and the individual light--curves will be electronically available through the CDS (Strasbourg).

  19. Anchors for the Cosmic Distance Scale: the Cepheids U Sgr, CF Cas and CEab Cas

    CERN Document Server

    Majaess, D; Bidin, C Moni; Bonatto, C; Berdnikov, L; Balam, D; Moyano, M; Gallo, L; Turner, D; Lane, D; Gieren, W; Borissova, J; Kovtyukh, V; Beletsky, Y

    2013-01-01

    New and existing X-ray, UBVJHKsW(1-4), and spectroscopic observations were analyzed to constrain fundamental parameters for M25, NGC 7790, and dust along their sight-lines. The star clusters are of particular importance given they host the classical Cepheids U Sgr, CF Cas, and the visual binary Cepheids CEa and CEb Cas. Precise results from the multiband analysis, in tandem with a comprehensive determination of the Cepheids' period evolution (dP/dt) from ~140 years of observations, helped resolve concerns raised regarding the clusters and their key Cepheid constituents. Specifically, distances derived for members of M25 and NGC 7790 are 630+-25 pc and 3.40+-0.15 kpc, respectively.

  20. Hubble Space Telescope: Snapshot Survey for Resolved Companions of Galactic Cepheids

    CERN Document Server

    Evans, Nancy Remage; Schaefer, Gail H; Mason, Brian D; Tingle, Evan; Karovska, Margarita; Pillitteri, Ignazio

    2016-01-01

    We have conducted an imaging survey with the Hubble Space Telescope Wide Field Camera~3 (WFC3) of 70 Galactic Cepheids, typically within 1~kpc, with the aim of finding resolved physical companions. The WFC3 field typically covers the 0.1 pc area where companions are expected. In this paper, we identify 39 Cepheids having candidate companions, based on their positions in color--magnitude diagrams, and having separations $\\geq$5$"$ from the Cepheids. We use follow-up observations of 14 of these candidates with XMM-Newton, and of one of them with ROSAT, to separate X-ray-active young stars (probable physical companions) from field stars (chance alignments). Our preliminary estimate, based on the optical and X-ray observations, is that only 3\\% of the Cepheids in the sample have wide companions. Our survey easily detects resolved main-sequence companions as faint as spectral type K\

  1. The Final SHOE; Completing a Rich Cepheid Field in NGC 1309

    Science.gov (United States)

    Riess, Adam

    2007-07-01

    The Cycle 15 SHOES program {GO 10802} is a large HST program allocated 186 orbits to rebuild the distance ladder using NGC 4258 as a new anchor, a set of 6 recent, ideal type Ia supernovae and Cepheids in their hosts, and NICMOS as a single, homogeneous photometer of long period Cepheids. These tools provide the means to achieve a 4% measurement of the Hubble constant, an invaluable constraint for cosmic concordance fits to dark energy models. Unfortunately, the SHOES NICMOS integrations of long period Cepheids in the last and most recent nearby type Ia supernova host, NGC 1309, are too short because the preliminary estimate of its distance, 30 Mpc, was too low. Our refined estimate now based on the full reduction of both our Cycle 14 and 15 ACS data is 36 Mpc, or 0.4 mag farther. Fortunately, Nature was extremely kind providing a single rich NIC2 field in which we can fully make up for the shortfall due to its abundance of Cepheids. We are expensing our final 4 orbits on this field of a dozen P>30 day Cepheids and seek an additional 5 orbits to reach the depth for measuring the mean F160W magnitudes of the long-period Cepheids with the necessary signal-to-noise ratios of better than 10.

  2. Objective detection of retinal vessel pulsation.

    Directory of Open Access Journals (Sweden)

    William H Morgan

    Full Text Available PURPOSE: Retinal venous pulsation detection is a subjective sign, which varies in elevated intracranial pressure, venous obstruction and glaucoma. To date no method can objectively measure and identify pulsating regions. METHOD: Using high resolution video-recordings of the optic disk and retina we measured fluctuating light absorption by haemoglobin during pulsation. Pulsation amplitude was calculated from all regions of the retinal image video-frames in a raster pattern. Segmented retinal images were formed by objectively selecting regions with amplitudes above a range of threshold values. These were compared to two observers manually drawing an outline of the pulsating areas while viewing video-clips in order to generate receiver operator characteristics. RESULTS: 216,515 image segments were analysed from 26 eyes in 18 research participants. Using data from each eye, the median area under the receiver operator curve (AU-ROC was 0.95. With all data analysed together the AU-ROC was 0.89. We defined the ideal threshold amplitude for detection of any pulsating segment being that with maximal sensitivity and specificity. This was 5 units (95% confidence interval 4.3 to 6.0 compared to 12 units before any regions were missed. A multivariate model demonstrated that ideal threshold amplitude increased with increased variation in video-sequence illumination (p = 0.0119, but between the two observers (p = 0.0919 or other variables. CONCLUSION: This technique demonstrates accurate identification of retinal vessel pulsating regions with no areas identified manually being missed with the objective technique. The amplitude values are derived objectively and may be a significant advance upon subjective ophthalmodynamometric threshold techniques.

  3. White Dwarf Pulsational Constraints on Stellar Evolution

    Science.gov (United States)

    Dunlap, Bart H.; Clemens, J. Christopher; O'Brien, Patrick C.; Hermes, J. J.; Fuchs, Joshua T.

    2017-01-01

    The complex processes that convert a protostellar cloud into a carbon/oxygen-core white dwarf star are distilled and modeled in state of the art stellar evolution codes. Many of these processes are well-constrained, but several are uncertain or must be parameterized in the models because a complete treatment would be computationally prohibitive—turbulent motions such as convective overshoot cannot, for example, be modeled in 1D. Various free parameters in the models must therefore be calibrated. We will discuss how white dwarf pulsations can inform such calibrations. The results of all prior evolution are cemented into the interiors of white dwarf stars and, so, hidden from view. However, during certain phases of their cooling, pulsations translate the star's evolutionary history into observable surface phenomena. Because the periods of a pulsating white dwarf star depend on an internal structure assembled as it evolved to its final state, white dwarf pulsation periods can be viewed as observable endpoints of stellar evolution. For example, the thickness of the helium layer in a white dwarf directly affects its pulsations; the observed periods are, therefore, a function of the number of thermal pulses during which the star converts helium into core material on the asymptotic giant branch. Because they are also a function of several other significant evolutionary processes, several pulsation modes are necessary to tease all of these apart. Unfortunately, white dwarf pulsators typically do not display enough oscillation modes to constrain stellar evolution. To avoid this limitation, we consider the pulsations of the entire collection of hot pulsating hydrogen-atmosphere white dwarf stars (DAVs). Though any one star may not have sufficient information to place interesting constraints on its evolutionary history, taken together, the stars show a pattern of modes that allows us to test evolutionary models. For an example set of published evolutionary models, we show a

  4. Kepler photometry of RRc stars: peculiar double-mode pulsations and period doubling

    CERN Document Server

    Moskalik, P; Kolenberg, K; Molnár, L; Kurtz, D W; Szabó, R; Benkő, J M; Nemec, J M; Chadid, M; Guggenberger, E; Ngeow, C -C; Jeon, Y -B; Kopacki, G; Kanbur, S M

    2014-01-01

    We present the analysis of four first overtone RR Lyrae stars observed with the Kepler space telescope, based on data obtained over nearly 2.5yr. All four stars are found to be multiperiodic. The strongest secondary mode with frequency f_2 has an amplitude of a few mmag, 20 - 45 times lower than the main radial mode with frequency f_1. The two oscillations have a period ratio of P_2/P_1 = 0.612 - 0.632 that cannot be reproduced by any two radial modes. Thus, the secondary mode is nonradial. Modes yielding similar period ratios have also recently been discovered in other variables of the RRc and RRd types. These objects form a homogenous group and constitute a new class of multimode RR Lyrae pulsators, analogous to a similar class of multimode classical Cepheids in the Magellanic Clouds. Because a secondary mode with P_2/P_1 ~ 0.61 is found in almost every RRc and RRd star observed from space, this form of multiperiodicity must be common. In all four Kepler RRc stars studied, we find subharmonics of f_2 at ~1/...

  5. Long Period Variables: questioning the pulsation paradigm

    CERN Document Server

    Berlioz-Arthaud, Paul

    2016-01-01

    Long period variables, among them Miras, are thought to be pulsating. Under this approach the whole star inflates and deflates along a period that can vary from 100 to 900 days; that pulsation is assumed to produce shock waves on the outer layers of the star that propagate into the atmosphere and could account for the increase in luminosity and the presence of emission lines in the spectra of these stars. However, this paradigm can seriously be questioned from a theoretical point of view. First, in order to maintain a radial pulsation, the spherical symmetry of the star must be preserved: how can it be reconciled with the large convective cells present in these stars? or when close companions are detected? Secondly, how different radial and non-radial pulsation modes of a sphere could be all damped except one radial mode? These problems have no solution and significantly weigh on the pulsation paradigm. Acknowledging this inconsistency, we show that a close companion around these stars could account for the s...

  6. Connections between whistlers and pulsation activity

    Directory of Open Access Journals (Sweden)

    J. Verö

    Full Text Available Simultaneous whistler records of one station and geomagnetic pulsation (Pc3 records at three stations were compared. In a previous study correlation was found between occurrence and L value of propagation/excitation for the two phenomena. The recently investigated simultaneous records have shown that the correlation is better on longer time scales (days than on shorter ones (minutes, but the L values of the propagation of whistlers/excitation of pulsations are correlated, i.e. if whistlers propagate in higher latitude ducts, pulsations have periods longer than in the case when whistlers propagate in lower latitude ducts.

    Key words: Electromagnetics (wave propagation - Magnetospheric physics (magnetospheric configuration and dynamics; MHD waves and instabilities

  7. OGLE-ing the Magellanic System: Three-Dimensional Structure of the Clouds and the Bridge Using Classical Cepheids

    Science.gov (United States)

    Jacyszyn-Dobrzeniecka, A. M.; Skowron, D. M.; Mróz, P.; Skowron, J.; Soszyński, I.; Udalski, A.; Pietrukowicz, P.; Kozłowski, S.; Wyrzykowski, Ł.; Poleski, R.; Pawlak, M.; Szymański, M. K.; Ulaczyk, K.

    2016-06-01

    We analyzed a sample of 9418 fundamental-mode and first-overtone classical Cepheids from the OGLE-IV Collection of Classical Cepheids. The distance to each Cepheid was calculated using the period-luminosity relation for the Wesenheit magnitude, fitted to our data. The classical Cepheids in the LMC are situated mainly in the bar and in the northern arm. The eastern part of the LMC is closer to us and the plane fit to the whole LMC sample yields the inclination i=24.°2 ±0.°7 and position angle P.A.=151.°4±1.°7. We redefined the LMC bar by extending it in the western direction and found no offset from the plane of the LMC contrary to previous studies. On the other hand, we found that the northern arm is offset from a plane by about -0.5 kpc, which was not observed before. The age distribution of the LMC Cepheids shows one maximum at about 100 Myr. We demonstrate that the SMC has a non-planar structure and can be described as an extended ellipsoid. We identified two large ellipsoidal off-axis structures in the SMC. The northern one is located closer to us and is younger, while the south-western is farther and older. The age distribution of the SMC Cepheids is bimodal with one maximum at 110 Myr, and another one at 220 Myr. Younger stars are located in the closer part of this galaxy while older ones are more distant. We classified nine Cepheids from our sample as Magellanic Bridge objects. These Cepheids show a large spread in three-dimensions although five of them form a connection between the Clouds. The closest one is closer than any of the LMC Cepheids, while the farthest one - farther than any SMC Cepheid. All but one Cepheids in the Magellanic Bridge are younger than 300 Myr. The oldest one can be associated with the SMC Wing.

  8. Benefit of pulsation in soft corals.

    Science.gov (United States)

    Kremien, Maya; Shavit, Uri; Mass, Tali; Genin, Amatzia

    2013-05-28

    Soft corals of the family Xeniidae exhibit a unique, rhythmic pulsation of their tentacles (Movie S1), first noted by Lamarck nearly 200 y ago. However, the adaptive benefit of this perpetual, energetically costly motion is poorly understood. Using in situ underwater particle image velocimetry, we found that the pulsation motions thrust water upward and enhance mixing across the coral-water boundary layer. The induced upward motion effectively prevents refiltration of water by neighboring polyps, while the intensification of mixing, together with the upward flow, greatly enhances the coral's photosynthesis. A series of controlled laboratory experiments with the common xeniid coral Heteroxenia fuscescens showed that the net photosynthesis rate during pulsation was up to an order of magnitude higher than during the coral's resting, nonpulsating state. This enhancement diminished when the concentration of oxygen in the ambient water was artificially raised, indicating that the enhancement of photosynthesis was due to a greater efflux of oxygen from the coral tissues. By lowering the internal oxygen concentration, pulsation alleviates the problem of reduced affinity of ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO) to CO2 under conditions of high oxygen concentrations. The photosynthesis-respiration ratio of the pulsating H. fuscescens was markedly higher than the ratios reported for nonpulsating soft and stony corals. Although pulsation is commonly used for locomotion and filtration in marine mobile animals, its occurrence in sessile (bottom-attached) species is limited to members of the ancient phylum Cnidaria, where it is used to accelerate water and enhance physiological processes.

  9. Pulsating White Dwarfs in Globular Clusters

    Science.gov (United States)

    Kanaan, A.; Zabot, A.; Fraga, L.

    2012-09-01

    We present our current efforts to detect pulsating white dwarfs in globular clusters and analyze the future of this area when the Extremely Large Telescope (ELT), the Giant Magellan Telescope (GMT) and the Thirty-Meter Telescope (TMT) all become operational. Today we are able to detect pulsating white dwarfs in M 4, NGC 6397 and NGC 6752. When ELT comes on line we should be able to improve the quality of data for the nearby clusters and push the limit to at least 3 magnitudes further, up to NGC 6626, increasing the number of observable clusters from 3 to 20.

  10. Resolved Companions of Cepheids: Testing the Candidates with X-Ray Observations

    CERN Document Server

    Evans, Nancy Remage; Wolk, Scott; Karovska, Margarita; Tingle, Evan; Guinan, Edward; Engle, Scott; Bond, Howard E; Schaefer, Gail H; Mason, Brian D

    2016-01-01

    We have made {\\it XMM-Newton\\/} observations of 14 Galactic Cepheids that have candidate resolved ($\\geq$5$\\arcsec$) companion stars based on our earlier {\\it HST\\/} WFC3 imaging survey. Main-sequence stars that are young enough to be physical companions of Cepheids are expected to be strong X-ray producers in contrast to field stars. {\\it XMM-Newton\\/} exposures were set to detect essentially all companions hotter than spectral type M0 (corresponding to 0.5 $ M_\\odot$.) The large majority of our candidate companions were not detected in X-rays, and hence are not confirmed as young companions. One resolved candidate (S~Nor \\#4) was unambiguously detected, but the Cepheid is a member of a populous cluster. For this reason, it is likely that S~Nor \\#4 is a cluster member rather than a gravitationally bound companion. Two further Cepheids (S~Mus and R~Cru) have X-ray emission that might be produced by either the Cepheid or the candidate resolved companion. A subsequent {\\it Chandra} observation of S Mus shows th...

  11. The Cepheids of Centaurus A (NGC 5128) and Implications for H0

    CERN Document Server

    Majaess, Daniel J

    2010-01-01

    An analysis based on new OGLE observations reaffirms Ferrarese et al.2007 discovery of 5 Type II Cepheids in NGC 5128. The distance to that comparatively unreddened population is d=3.8+-0.4(se)+-0.8(sd) Mpc. The classical Cepheids in NGC 5128 are the most obscured in the extragalactic sample (n=30) surveyed, whereas groups of Cepheids tied to several SNe host galaxies feature negative reddenings. Adopting an anomalous extinction law for Cepheids in NGC 5128 owing to observations of SN 1986G (Rv~2.4) is not favoured, granted SNe Ia may follow small Rv. The distances to classical Cepheids in NGC 5128 exhibit a dependence on colour and CCD chip, which may arise in part from photometric contamination. The mean for the entire sample is d~3.1 Mpc, while applying a colour cut yields d~3.5 Mpc. The distance was established via the latest VI Galactic Wesenheit functions that include the 10 HST calibrators, and which imply a shorter distance scale than Sandage et al.2004 by 15% at P~25 d. HST monitored classical Cephei...

  12. A Test of the Calibration of the Tully-Fisher Relation Using Cepheid and SNIa Distances

    CERN Document Server

    Shanks, T

    1997-01-01

    We make a direct test of Tully-Fisher distance estimates to eleven spiral galaxies with HST Cepheid distances and to twelve spiral galaxies with SNIa distances. The HST Cepheid distances come from the work of Freedman (1997), Sandage et al (1996) and Tanvir et al (1995). The SNIa distances come from Pierce (1994), calibrated using the Cepheid results of Sandage et al (1996). The Tully-Fisher distances mostly come from the work of Pierce (1994). The results show that the Tully-Fisher distance moduli are too short with respect to the Cepheid distances by 0.46+-0.14mag and too short with respect to the SNIa distances by 0.46+-0.19mag. Combining the HST Cepheid and SNIa data suggests that, overall, previous Tully-Fisher distances were too short by 0.46+-0.11mag, a result which is significant at the 4sigma level. These data therefore indicate that previous Tully-Fisher distances should be revised upwards by 24+-6% implying, for example, a Virgo distance of 19.3+-1.9Mpc. The value of Ho from Tully-Fisher estimates ...

  13. Updated 24 $\\mu\\mathrm{m}$ Period-Luminosity Relation Derived from Galactic Cepheids

    CERN Document Server

    Ngeow, Chow-Choong; Bhardwaj, Anupam; Kanbur, Shashi M; Singh, Harinder P

    2015-01-01

    In this work, we updated the catalog of Galactic Cepheids with $24\\mu\\mathrm{m}$ photometry by cross-matching the positions of known Galactic Cepheids to the recently released MIPSGAL point source catalog. We have added 36 new sources featuring MIPSGAL photometry in our analysis, thus increasing the existing sample to 65. Six different sources of compiled Cepheid distances were used to establish a $24\\mu\\mathrm{m}$ period-luminosity (P-L) relation. Our recommended $24\\mu\\mathrm{m}$ P-L relation is $M_{24\\mu\\mathrm{m}}=-3.18(\\pm0.10)\\log P - 2.46(\\pm0.10)$, with an estimated intrinsic dispersion of 0.20 mag, and is derived from 58 Cepheids exhibiting distances based on a calibrated Wesenheit function. The slopes of the P-L relations were steepest when tied solely to the 10 Cepheids exhibiting trigonometric parallaxes from the Hubble Space Telescope and Hipparcos. Statistical tests suggest that these P-L relations are significantly different from those associated with other methods of distance determination, an...

  14. X-ray Pulsation Searches with NICER

    Science.gov (United States)

    Ray, Paul S.; Arzoumanian, Zaven

    2016-04-01

    The Neutron Star Interior Composition Explorer (NICER) is an X-ray telescope with capabilities optimized for the study of the structure, dynamics, and energetics of neutron stars through high-precision timing of rotation- and accretion-powered pulsars in the 0.2-12 keV band. It has large collecting area (twice that of the XMM-Newton EPIC-pn camera), CCD-quality spectral resolution, and high-precision photon time tagging referenced to UTC through an onboard GPS receiver. NICER will begin its 18-month prime mission as an attached payload on the International Space Station around the end of 2016. I will describe the science planning for the pulsation search science working group, which is charged with searching for pulsations and studying flux modulation properties of pulsars and other neutron stars. A primary goal of our observations is to detect pulsations from new millisecond pulsars that will contribute to NICER’s studies of the neutron star equation of state through pulse profile modeling. Beyond that, our working group will search for pulsations in a range of source categories, including LMXBs, new X-ray transients that might be accreting millisecond pulsars, X-ray counterparts to unassociated Fermi LAT sources, gamma-ray binaries, isolated neutron stars, and ultra-luminous X-ray sources. I will survey our science plans and give an overview of our planned observations during NICER’s prime mission.

  15. Panchromatic Hubble Andromeda Treasury. XIV. The Period-Age Relationship of Cepheid Variables in M31 Star Clusters

    Science.gov (United States)

    Senchyna, Peter; Johnson, L. Clifton; Dalcanton, Julianne J.; Beerman, Lori C.; Fouesneau, Morgan; Dolphin, Andrew; Williams, Benjamin F.; Rosenfield, Philip; Larsen, Søren S.

    2015-11-01

    We present a sample of 11 M31 Cepheids in stellar clusters, derived from the overlap of the Panchromatic Hubble Andromeda Treasury cluster catalog and the Pan-STARRS1 (PS1) disk Cepheid catalog. After identifying the PS1 Cepheids in the Hubble Space Telescope (HST) catalog, we calibrate the PS1 mean magnitudes using the higher resolution HST photometry, revealing up to 1 mag offsets due to crowding effects in the ground-based catalog. We measure ages of the clusters by performing single-age stellar population fits to their color-magnitude diagrams excluding their Cepheids. From these cluster age measurements, we derive an empirical period-age relation which agrees well with the existing literature values. By confirming this relation for M31 Cepheids, we justify its application in high-precision pointwise age estimation across M31.

  16. Panchromatic Hubble Andromeda Treasury. XIV. The Period-Age Relationship of Cepheid Variables in M31 Star Clusters

    CERN Document Server

    Senchyna, Peter; Dalcanton, Julianne J; Beerman, Lori C; Fouesneau, Morgan; Dolphin, Andrew; Williams, Benjamin F; Rosenfield, Philip; Larsen, Søren S

    2015-01-01

    We present a sample of 11 M31 Cepheids in stellar clusters, derived from the overlap of the Panchromatic Hubble Andromeda Treasury (PHAT) cluster catalog and the Pan-STARRS1 (PS1) disk Cepheid catalog. After identifying the PS1 Cepheids in the HST catalog, we calibrate the PS1 mean magnitudes using the higher resolution HST photometry, revealing up to 1 magnitude offsets due to crowding effects in the ground-based catalog. We measure ages of the clusters by performing single stellar population fits to their color-magnitude diagrams (CMDs) excluding their Cepheids. From these cluster age measurements, we derive an empirical period-age relation which agrees well with the existing literature values. By confirming this relation for M31 Cepheids, we justify its application in high-precision pointwise age estimation across M31.

  17. Digital filter technology and its application to geomagnetic pulsations in Antarctica

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Digital filter technology is an important method in study of geomagnetic pulsations in Antarctica. The signals received by pulsation magnetometer on the ground include various types of magnetic pulsations. Some types of pulsations or some frequency hands of pulsations can be extracted from the signals by means of digital filter technology because types of pulsations are defined according to their frequency range. In this paper usual digital filter technology is provided for study of magnetic pulsations in Antarctica and some examples are introduced.

  18. The VMC Survey - XIX. Identification of new Cepheids in the Small Magellanic Cloud

    CERN Document Server

    Moretti, M I; Ripepi, V; Marconi, M; Rubele, S; Cioni, M -R L; Muraveva, T; Groenewegen, M A T; Cross, N J G; Ivanov, V D; Piatti, A E; de Grijs, R

    2015-01-01

    We present Ks-band light curves for 299 new Cepheids in the Small Magellanic Cloud (SMC) that were identified using multi-epoch near-infrared photometry obtained by the VISTA survey of the Magellanic Clouds system (VMC). The new Cepheids have periods in the range from 0.38 to 13.15 days and cover the magnitude interval 12.35 < Ks < 17.6 mag. Our method was developed using variable stars previously identified by the optical microlensing survey OGLE. We focus on searching new Cepheids in external regions of the SMC for which complete VMC Ks-band observations are available and no comprehensive identification of different types of variable stars from other surveys exists yet.

  19. Period-Luminosity Relations for Type II Cepheids and their Application

    CERN Document Server

    Matsunaga, Noriyuki; Menzies, John W

    2009-01-01

    JHKs magnitudes corrected to mean intensity are estimated for LMC type II Cepheids in the OGLE-III survey. Period-luminosity (PL) relations are derived in JHKs as well as in a reddening-free VI parameter. Within the uncertainties the BL Her stars (P 20 d (RV Tau stars) show that a high proportion have TiO bands; only one has been found showing C_2. The LMC RV Tau stars, as a group, are not co-linear with the shorter-period type II Cepheids in the infrared PL relations in marked contrast to such stars in globular clusters. Other differences between LMC, globular cluster and Galactic field type II Cepheids are noted in period distribution and infrared colours.

  20. A photometric determination of the metal content for Cepheids in the Small Magellanic Cloud

    Science.gov (United States)

    Pel, J. W.; van Genderen, A. M.; Lub, J.

    1981-06-01

    A description is given of results which were obtained in studies of the photometry of SMC Cepheids conducted with the aid of the Walraven VBLUW photometric system. Twenty variables outside the dense central regions had been selected in the SMC. The results confirm the differences in VBLUW colors between galactic and SMC Cepheids reported by van Genderen (1977). They also support similar color effects found in other photometric systems. Composition is not the only possible cause of these color differences, however. An alternative has been proposed by DeYoreo and Karp (1979), who ascribe the blueness of SMC Cepheids to contamination by companions. Such an explanation is not supported by the presented data. A metal deficiency of a factor 5 with respect to the sun is obtained. This value agrees with data reported by Wallerstein (1980) and Smith (1980).

  1. Hydrodynamic models of a cepheid atmosphere. Ph.D. Thesis - Maryland Univ., College Park

    Science.gov (United States)

    Karp, A. H.

    1974-01-01

    A method for including the solution of the transfer equation in a standard Henyey type hydrodynamic code was developed. This modified Henyey method was used in an implicit hydrodynamic code to compute deep envelope models of a classical Cepheid with a period of 12(d) including radiative transfer effects in the optically thin zones. It was found that the velocity gradients in the atmosphere are not responsible for the large microturbulent velocities observed in Cepheids but may be responsible for the occurrence of supersonic microturbulence. It was found that the splitting of the cores of the strong lines is due to shock induced temperature inversions in the line forming region. The adopted light, color, and velocity curves were used to study three methods frequently used to determine the mean radii of Cepheids. It is concluded that an accuracy of 10% is possible only if high quality observations are used.

  2. A new Cepheid distance measurement and method for NGC 6822

    Energy Technology Data Exchange (ETDEWEB)

    Rich, Jeffrey A.; Persson, S. E.; Freedman, Wendy L.; Madore, Barry F.; Monson, Andrew J.; Scowcroft, Victoria; Seibert, Mark, E-mail: jrich@obs.carnegiescience.edu [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2014-10-20

    We present a revised distance to the nearby galaxy NGC 6822 using a new multi-band fit to both previously published and new optical, near-, and mid-infrared data for Cepheid variables. The new data presented in this study include multi-epoch observations obtained in 3.6 μm and 4.5 μm with the Spitzer Space Telescope taken for the Carnegie Hubble Program. We also present new observations in J, H, and K{sub s} with FourStar on the Magellan Baade Telescope at Las Campanas Observatory. We determine mean magnitudes and present new period-luminosity relations in V, I, J, H, K{sub s} , Infrared Array Camera 3.6 μm, and 4.5 μm. In addition to using the multi-band distance moduli to calculate extinction and a true distance, we present a new method for determining an extinction-corrected distance modulus from multi-band data with varying sample sizes. We combine the distance moduli and extinction for individual stars to determine E(B – V) = 0.35 ± 0.04 and a true distance modulus μ {sub o} = 23.38 ± 0.02{sub stat} ± 0.04{sub sys}.

  3. Trajectories of Cepheid variable stars in the Galactic nuclear bulge

    Science.gov (United States)

    Matsunaga, Noriyuki

    2012-06-01

    The central region of our Galaxy provides us with a good opportunity to study the evolution of galactic nuclei and bulges because we can observe various phenomena in detail at the proximity of 8 kpc. There is a hierarchical alignment of stellar systems with different sizes; from the extended bulge, the nuclear bulge, down to the compact cluster around the central supermassive blackhole. The nuclear bulge contains stars as young as a few Myr, and even hosts the ongoing star formation. These are in contrast to the more extended bulge which are dominated by old stars, ~10Gyr. It is considered that the star formation in the nuclear bulge is caused by fresh gas provided from the inner disk. In this picture, the nuclear bulge plays an important role as the interface between the gas supplier, the inner disk, and the galactic nucleus. Kinematics of young stars in the nuclear bulge is important to discuss the star forming process and the gas circulation in the Galactic Center. We here propose spectroscopic observations of Cepheid variable stars, ~25 Myr, which we recently discovered in the nuclear bulge. The spectra taken in this proposal will allow timely estimates of the systemic velocities of the variable stars.

  4. A New Cepheid Distance Measurement and Method for NGC 6822

    CERN Document Server

    Rich, Jeffrey A; Freedman, Wendy L; Madore, Barry F; Monson, Andrew J; Scowcroft, Victoria; Seibert, Mark

    2014-01-01

    We present a revised distance to the nearby galaxy NGC6822 using a new multi-band fit to both previously published and new optical, near- and mid-infrared data for Cepheid variables. The new data presented in this study include multi-epoch observations obtained in 3.6\\um and 4.5\\um with the \\emph{Spitzer Space Telescope} taken for the Carnegie Hubble Program. We also present new observations in J, H and \\kswith FourStar on the Magellan Baade telescope at Las Campanas Observatory. We determine mean magnitudes and present new period-luminosity relations in V, I, J, H, \\ks, IRAC 3.6\\um and 4.5\\um. In addition to using the multi-band distance moduli to calculate extinction and a true distance, we present a new method for determining an extinction-corrected distance modulus from multi-band data with varying sample sizes. We combine the distance moduli and extinction for individual stars to determine $E(B-V)=0.35\\pm0.04$ and a true distance modulus $\\mu_{o}=23.38\\pm0.02_{stat}\\pm0.04_{sys}$.

  5. Blazhko effect in Cepheids and RR Lyrae stars

    CERN Document Server

    Szabó, R

    2013-01-01

    The Blazhko effect is the conspicuous amplitude and phase modulation of the pulsation of RR Lyrae stars that was discovered in the early 20th century. The field of study of this mysterious modulation has recently been invigorated thanks to the space photometric missions providing long, uninterrupted, ultra-precise time series data. In this paper I give a brief overview of the new observational findings related to the Blazhko effect, like extreme modulations, irregular modulation cycles and additional periodicities. I argue that these findings together with dedicated ground-based efforts now provide us with a fairly complete picture and a good starting point to theoretical investigations. Indeed, new, unpredicted dynamical phenomena have been discovered in Blazhko RR Lyrae stars, such as period doubling, high-order resonances, three-mode pulsation and low-dimensional chaos. These led to the proposal of a new explanation to this century-old enigma, namely a high-order resonance between radial modes. Along these...

  6. Research on Order Quantity Simulation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hong; LI Zhi-cheng

    2003-01-01

    The order quantity is often affected by various factors, so it is more valuable to research the problem of evaluating the order quantity based on a less premise. In this paper, a complicated order quantity problem is studied and an order quantity simulation system is established with the simulation software of ARENA. Finally, an example is given.

  7. Prices versus Quantities

    DEFF Research Database (Denmark)

    Hansen, Lars Gårn; Jensen, Frank

    Weitzman (2002) studies the regulation of a fishery characterised by constant marginal harvest costs and shows that price regulation performs better than quantity regulation when the regulator is uncertain about the biological reproduction function (ecological uncertainty). Here, we initially...... uncertainty. We find that the gain from eliminating compliance uncertainty may be up to 5% of gross profit while the gain from eliminating ecological uncertainty is minimal. Under landing fee regulation, the entire gain from eliminating both types of uncertainty is captured, even if the regulator’s stock...

  8. Flow induced pulsations in pipe systems

    Science.gov (United States)

    Bruggeman, Jan Cornelis

    1987-12-01

    The aeroacoustic behavior of a low Mach number, high Reynolds number flow through a pipe with closed side branches was investigated. Sound is generated by coherent structures of concentrated vorticity formed periodically in the separated flow in the T-shaped junctions of side branches and the main pipe. The case of moderate pulsation amplitudes was investigated. It appears that the vortical flow in a T-joint is an aeroacoustic source of constant strength when acoustic energy losses due to radiation and friction are small but not negligible. When acoustic energy losses due to radiation and friction are negligible, the nonlinear character of vortex damping is the amplitude limiting mechanism. It is stressed that aeroacoustic sources should not be neglected in studies of the response of a piping lay-out with flow to, e.g., the pulsating output of a compressor.

  9. Pulsating White Dwarf Stars and Precision Asteroseismology

    CERN Document Server

    Winget, D E

    2008-01-01

    Galactic history is written in the white dwarf stars. Their surface properties hint at interiors composed of matter under extreme conditions. In the forty years since their discovery, pulsating white dwarf stars have moved from side-show curiosities to center stage as important tools for unraveling the deep mysteries of the Universe. Innovative observational techniques and theoretical modeling tools have breathed life into precision asteroseismology. We are just learning to use this powerful tool, confronting theoretical models with observed frequencies and their time rate-of-change. With this tool, we calibrate white dwarf cosmochronology; we explore equations of state; we measure stellar masses, rotation rates, and nuclear reaction rates; we explore the physics of interior crystallization; we study the structure of the progenitors of Type Ia supernovae, and we test models of dark matter. The white dwarf pulsations are at once the heartbeat of galactic history and a window into unexplored and exotic physics.

  10. Pulsating White Dwarf Stars and Precision Asteroseismology

    Science.gov (United States)

    Winget, D. E.; Kepler, S. O.

    2008-09-01

    Galactic history is written in the white dwarf stars. Their surface properties hint at interiors composed of matter under extreme conditions. In the forty years since their discovery, pulsating white dwarf stars have moved from side-show curiosities to center stage as important tools for unraveling the deep mysteries of the Universe. Innovative observational techniques and theoretical modeling tools have breathed life into precision asteroseismology. We are just learning to use this powerful tool, confronting theoretical models with observed frequencies and their time rate-of-change. With this tool, we calibrate white dwarf cosmochronology; we explore equations of state; we measure stellar masses, rotation rates, and nuclear reaction rates; we explore the physics of interior crystallization; we study the structure of the progenitors of Type Ia supernovae, and we test models of dark matter. The white dwarf pulsations are at once the heartbeat of galactic history and a window into unexplored and exotic physics.

  11. New open cluster Cepheids in the VVV survey tightly constrain near-infrared period--luminosity relations

    CERN Document Server

    Chen, Xiaodian; Deng, Licai

    2016-01-01

    Classical Cepheids are among the most useful Galactic and nearby extragalactic distance tracers because of their well-defined period--luminosity relations (PLRs). Open cluster (OC) Cepheids are important objects to independently calibrate these PLRs. Based on Data Release 1 of the {\\sl VISTA} Variables in the V\\'ia L\\'actea survey, we have discovered four new, faint and heavily reddened OC Cepheids, including the longest-period OC Cepheid known, ASAS J180342$-$2211.0 in Teutsch 14a. The other OC--Cepheid pairs include NGC 6334 and V0470 Sco, Majaess 170 and ASAS J160125$-$5150.3, and Teutsch 77 and BB Cen. ASAS J180342$-$2211.0, with a period of $\\log P = 1.623$ [days] is important to constrain the slope of the PLR. The currently most complete $JHK_{\\rm s}$ Galactic Cepheid PLRs are obtained based on a significantly increased sample of 31 OC Cepheids, with associated uncertainties that are improved by 40 per cent compared with previous determinations (in the $J$ band). The NIR PLRs are in good agreement with ...

  12. Pulsating Radio Sources near the Crab Nebula.

    Science.gov (United States)

    Staelin, D H; Reifenstein, E C

    1968-12-27

    Two new pulsating radio sources, designated NP 0527 and NP 0532, were found near the Crab Nebula and could be coincident with it. Both sources are sporadic, and no periodicities are evident. The pulse dispersions indicate that 1.58 +/- 0.03 and 1.74 +/- 0.02 x 10(20) electrons per square centimeter lie in the direction of NP 0527 and NP 0532, respectively.

  13. SuperWASP observations of pulsating Am stars

    CERN Document Server

    Smalley, B; Smith, A M S; Fossati, L; Anderson, D R; Barros, S C C; Butters, O W; Cameron, A Collier; Christian, D J; Enoch, B; Faedi, F; Haswell, C A; Hellier, C; Holmes, S; Horne, K; Kane, S R; Lister, T A; Maxted, P F L; Norton, A J; Parley, N; Pollacco, D; Simpson, E K; Skillen, I; Southworth, J; Street, R A; West, R G; Wheatley, P J; Wood, P L

    2011-01-01

    We have studied over 1600 Am stars at a photometric precision of 1 mmag with SuperWASP photometric data. Contrary to previous belief, we find that around 200 Am stars are pulsating delta Sct and gamma Dor stars, with low amplitudes that have been missed in previous, less extensive studies. While the amplitudes are generally low, the presence of pulsation in Am stars places a strong constraint on atmospheric convection, and may require the pulsation to be laminar. While some pulsating Am stars have been previously found to be delta Sct stars, the vast majority of Am stars known to pulsate are presented in this paper. They will form the basis of future statistical studies of pulsation in the presence of atomic diffusion.

  14. Discovery of five new massive pulsating white dwarf stars

    Science.gov (United States)

    Castanheira, B. G.; Kepler, S. O.; Kleinman, S. J.; Nitta, A.; Fraga, L.

    2013-03-01

    Using the SOuthern Astrophysical Research telescope (SOAR) Optical Imager at the SOAR 4.1 m telescope, we report on the discovery of five new massive pulsating white dwarf stars. Our results represent an increase of about 20 per cent in the number of massive pulsators. We have detected both short and long periods, low and high amplitude pulsation modes, covering the whole range of the ZZ Ceti instability strip. In this paper, we present a first seismological study of the new massive pulsators based on the few frequencies detected. Our analysis indicates that these stars have masses higher than average, in agreement with the spectroscopic determinations. In addition, we study for the first time the ensemble properties of the pulsating white dwarf stars with masses above 0.8 M⊙. We found a bimodal distribution of the main pulsation period with the effective temperature for the massive DAVs, which indicates mode selection mechanisms.

  15. Intermediate dosimetric quantities.

    Science.gov (United States)

    Kellerer, A M; Hahn, K; Rossi, H H

    1992-04-01

    The transfer of energy from ionizing radiation to matter involves a series of steps. In wide ranges of their energy spectra photons and neutrons transfer energy to an irradiated medium almost exclusively by the production of charged particles which ionize and thereby produce electrons that can ionize in turn. The examination of these processes leads to a series of intermediate quantities. One of these is kerma, which has long been employed as a measure of the energy imparted in the first of the interactions. It depends only on the fluence of uncharged particles and is therefore--unlike absorbed dose and electron fluence--insensitive to local differences of receptor geometry and composition. An analogous quantity for charged-particle fields, cema (converted energy per unit mass), is defined, which quantifies the energy imparted in terms of the interactions of charged particles, disregarding energy dissipation by secondary electrons. Cema can be expressed as an integral over the fluence of ions times their stopping power. However, complications arise when the charged particles are electrons, and when their fluence cannot be separated from that of the secondaries. The resulting difficulty can be circumvented by the definition of reduced cema. This quantity corresponds largely to the concept employed in the cavity theory of Spencer and Attix. In reduced cema not all secondary electrons but all electrons below a chosen cutoff energy, delta, are considered to be absorbed locally. When the cutoff energy is reduced, cema approaches absorbed dose and thereby becomes sensitive to highly local differences in geometry or composition. With larger values of delta, reduced cema is a useful parameter to specify the dose-generating potential of a charged-particle field 'free in air' or in vacuo. It is nearly equal to the mean absorbed dose in a sphere with radius equal to the range of electrons of energy delta. Reduced cema is a function of the fluence at the specified location at

  16. On pulsating and cellular forms of hydrodynamic instability in liquid-propellant combustion

    Energy Technology Data Exchange (ETDEWEB)

    Margolis, S.B. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility

    1997-11-01

    An extended Landau/Levich model of liquid-propellant combustion, one that allows for a local dependence of the burning rate on the (gas) pressure at the liquid/gas interface, exhibits not only the classical hydrodynamic cellular instability attributed to Landau, but also a pulsating hydrodynamic instability associated with sufficiently negative pressure sensitivities. Exploiting the realistic limit of small values of the gas-to-liquid density ratio {rho}, analytical formulas for both neutral stability boundaries may be obtained by expanding all quantities in appropriate powers of {rho} in each of three distinguished wavenumber regimes. In particular, composite analytical expressions are derived for the neutral stability boundaries A{sub p}(k), where A{sub p} is the pressure sensitivity of the burning rate and k is the wavenumber of the disturbance. For the cellular boundary, the results demonstrate explicitly the stabilizing effect of gravity on long-wave disturbances, the stabilizing effect of viscosity and surface tension on short-wave perturbations, and the instability associated with intermediate wavenumbers for negative values of A{sub p}, which is characteristic of many hydroxylammonium nitrate-based liquid propellants over certain pressure ranges. In contrast, the pulsating hydrodynamic stability boundary is insensitive to gravitational and surface-tension effects, but is more sensitive to the effects of liquid viscosity since, for typical nonzero values of the latter, the pulsating boundary decreases to larger negative values of A{sub p} as k increases through O(1) values.

  17. Metallicity effect on the cepheid period-luminosity relation and H-0

    NARCIS (Netherlands)

    Beaulieu, JP

    1998-01-01

    in the first article, we presented a review on the Cepheid PL relation as a tool for measuring distances, and showed the sensitivity of the method to metallicity. Accounting for it brings the recent differing estimates of H-0 into agreement. (C) Academie des Sciences/Elsevier, Paris.

  18. DISCOVERY OF A PAIR OF CLASSICAL CEPHEIDS IN AN INVISIBLE CLUSTER BEYOND THE GALACTIC BULGE

    Energy Technology Data Exchange (ETDEWEB)

    Dékány, I.; Palma, T. [Millennium Institute of Astrophysics, Santiago (Chile); Minniti, D. [Departamento de Ciencias Físicas, Universidad Andres Bello, República 220, Santiago (Chile); Hajdu, G.; Alonso-García, J.; Hempel, M.; Catelan, M. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago (Chile); Gieren, W. [Departamento de Astronomía, Universidad de Concepción, Casilla 160 C, Concepción (Chile); Majaess, D. [Department of Astronomy and Physics, Saint Mary’s University, Halifax, NS B3H 3C3 (Canada)

    2015-01-20

    We report the discovery of a pair of extremely reddened classical Cepheid variable stars located in the Galactic plane behind the bulge, using near-infrared (NIR) time-series photometry from the VISTA Variables in the Vía Láctea Survey. This is the first time that such objects have ever been found in the opposite side of the Galactic plane. The Cepheids have almost identical periods, apparent brightnesses, and colors. From the NIR Leavitt law, we determine their distances with ∼1.5% precision and ∼8% accuracy. We find that they have a same total extinction of A(V)≃32 mag, and are located at the same heliocentric distance of 〈d〉=11.4±0.9 kpc, and less than 1 pc from the true Galactic plane. Their similar periods indicate that the Cepheids are also coeval, with an age of ∼48±3 Myr, according to theoretical models. They are separated by an angular distance of only 18.″3, corresponding to a projected separation of ∼1 pc. Their position coincides with the expected location of the Far 3 kpc Arm behind the bulge. Such a tight pair of similar classical Cepheids indicates the presence of an underlying young open cluster that is both hidden behind heavy extinction and disguised by the dense stellar field of the bulge. All our attempts to directly detect this “invisible cluster” have failed, and deeper observations are needed. (letters)

  19. The Cepheid distance to NGC 5236 (M83) with the ESO Very Large Telescope

    NARCIS (Netherlands)

    Thim, F; Tammann, GA; Saha, A; Dolphin, A; Sandage, A; Tolstoy, E; Labhardt, L

    2003-01-01

    Cepheids have been observed in NGC 5236 (M83) using the Antu (Unit Telescope 1) 8.2 m telescope of the ESO Very Large Telescope with the Focal Reducer/Low Dispersion Spectrograph 1. Repeated imaging observations have been made between 2000 January and 2001 July. Images were obtained in 34 epochs in

  20. On the neutron-capture elements across the Galactic thin disk using Cepheids

    CERN Document Server

    da Silva, R; Bono, G; Genovali, K; McWilliam, A; Cristallo, S; Bergemann, M; Buonanno, R; Fabrizio, M; Ferraro, I; Francois, P; Iannicola, G; Inno, L; Laney, C D; Kudritzki, R -P; Matsunaga, N; Nonino, M; Primas, F; Przybilla, N; Romaniello, M; Thevenin, F; Urbaneja, M A

    2015-01-01

    We present new accurate abundances for five neutron-capture (Y, La, Ce, Nd, Eu) elements in 73 classical Cepheids located across the Galactic thin disk. Individual abundances are based on high spectral resolution (R ~ 38,000) and high signal-to-noise ratio (S/N ~ 50-300) spectra collected with UVES at ESO VLT for the DIONYSOS project. Taking account for similar Cepheid abundances provided either by our group (111 stars) or available in the literature, we end up with a sample of 435 Cepheids covering a broad range in iron abundances (-1.6 < [Fe/H] < 0.6). We found, using homogeneous individual distances and abundance scales, well defined gradients for the above elements. However, the slope of the light s-process element (Y) is at least a factor of two steeper than the slopes of heavy s- (La, Ce, Nd) and r- (Eu) process elements. The s to r abundance ratio ([La/Eu]) of Cepheids shows a well defined anticorrelation with of both Eu and Fe. On the other hand, Galactic field stars attain an almost constant va...

  1. The Cepheid Distance to NGC 5236 (M 83) with the VLT

    NARCIS (Netherlands)

    Thim, F.; Tammann, G. A.; Saha, A.; Dolphin, A.; Sandage, A.; Tolstoy, E.; Labhardt, L.

    2003-01-01

    Published in: Astrophys. J. 590 (2003) 256-270 citations recorded in [Science Citation Index] Abstract: Cepheids have been observed in NGC 5236 (M 83) using the ANTU (UT1) 8.2 meter telescope of the ESO VLT with FORS1. Observations over 34 epochs in V and I have been made between January 2000 and Ju

  2. PHAT XIII: The Cepheid Period-Luminosity Relation in M31 Based on the PHAT Survey

    CERN Document Server

    Wagner-Kaiser, R; Dalcanton, J J; Williams, B F; Dolphin, A

    2015-01-01

    Using Hubble Space Telescope Advanced Camera for Surveys (HST/ACS) and Wide Field Camera 3 (WFC3) observations from the Panchromatic Hubble Andromeda Treasury (PHAT), we present new period-luminosity relations for Cepheid variables in M31. Cepheid from several ground-based studies are identified in the PHAT pho- tometry to derive new Period-Luminosity and Wesenheit Period-Luminosity relations in the NIR and visual filters. We derive a distance modulus to M31 of 24.51+/-0.08 in the IR bands and 24.32+/-0.09 in the visual bands, including the first PL relations in the F475W and F814W filters for M31. Our derived visual and IR distance moduli dis- agree at slightly more than a 1-{\\sigma} level. Differences in the Period-Luminosity relations between ground-based and HST observations are investigated for a subset of Cepheids. We find a significant discrepancy between ground-based and HST Period-Luminosity relations with the same Cepheids, suggesting adverse effects from photometric contam- ination in ground-based ...

  3. On the alpha-element gradients of the Galactic thin disk using Cepheids

    CERN Document Server

    Genovali, K; da Silva, R; Bono, G; Fabrizio, M; Bergemann, M; Buonanno, R; Ferraro, I; François, P; Iannicola, G; Inno, L; Laney, C D; Kudritzki, R -P; Matsunaga, N; Nonino, M; Primas, F; Romaniello, M; Urbaneja, M A; Thévenin, F

    2015-01-01

    We present new homogeneous measurements of Na, Al and three alpha-elements (Mg, Si, Ca) for 75 Galactic Cepheids. The abundances are based on high spectral resolution (R ~ 38,000) and high signal-to-noise ratio (S/N ~ 50-300) spectra collected with UVES at ESO VLT. The current measurements were complemented with Cepheid abundances either provided by our group (75) or available in the literature, for a total of 439 Galactic Cepheids. Special attention was given in providing a homogeneous abundance scale for these five elements plus iron (Genovali et al. 2013, 2014). In addition, accurate Galactocentric distances (RG) based on near-infrared photometry are also available for all the Cepheids in the sample (Genovali et al. 2014). They cover a large fraction of the Galactic thin disk (4.1 <= RG <= 18.4 kpc). We found that the above five elements display well defined linear radial gradients and modest standard deviations over the entire range of RG. Moreover, the [element/Fe] abundance ratios are constant acr...

  4. The Cepheids of NGC1866: A Precise Benchmark for the Extragalactic Distance Scale and Stellar Evolution from Modern UBVI Photometry

    CERN Document Server

    Musella, I; Stetson, P B; Raimondo, G; Brocato, E; Molinaro, R; Ripepi, V; Carini, R; Coppola, G; Walker, A R; Welch, D L

    2016-01-01

    We present the analysis of multiband time-series data for a sample of 24 Cepheids in the field of the Large Magellanic Cloud cluster NGC1866. Very accurate BVI VLT photometry is combined with archival UBVI data, covering a large temporal window, to obtain precise mean magnitudes and periods with typical errors of 1-2% and of 1 ppm, respectively. These results represent the first accurate and homogeneous dataset for a substantial sample of Cepheid variables belonging to a cluster and hence sharing common distance, age and original chemical composition. Comparisons of the resulting multiband Period-Luminosity and Wesenheit relations to both empirical and theoretical results for the Large Magellanic Cloud are presented and discussed to derive the distance of the cluster and to constrain the mass-luminosity relation of the Cepheids. The adopted theoretical scenario is also tested by comparison with independent calibrations of the Cepheid Wesenheit zero point based on trigonometric parallaxes and Baade-Wesselink t...

  5. RZ Cassiopeia: Eclipsing Binary with Pulsating Component

    CERN Document Server

    Golovin, A

    2007-01-01

    We report time-resolved VR-band CCD photometry of the eclipsing binary RZ Cas obtained with 38-cm Cassegrain telescope at the Crimean Astrophysical Observatory during July 2004 - October 2005. Obtained lightcurves clearly demonstrates rapid pulsations with the period about 22 minutes. Periodogram analysis of such oscillations also is reported. On the 12, January, 2005 we observed rapid variability with higher amplitude (~0.^m 1) that, perhaps, may be interpreted as high-mass-transfer-rate event and inhomogeneity of accretion stream. Follow-up observations (both, photometric and spectroscopic) of RZ Cas are strictly desirable for more detailed study of such event.

  6. Multidimensional modelling of classical pulsating stars

    CERN Document Server

    Muthsam, Herbert J

    2016-01-01

    After an overview of general aspects of modelling the pulsation- convection interaction we present reasons why such simulations (in multidimensions) are needed but, at the same time, pose a considerable challenge. We then discuss, for several topics, what insights multidimensional simulations have either already provided or can be expected to yield in the future. We finally discuss properties of our ANTARES code. Many of these features can be expected to be characteristic of other codes which may possibly be applied to these physical questions in the foreseeable future.

  7. Computational model of miniature pulsating heat pipes.

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Mario J.; Givler, Richard C.

    2013-01-01

    The modeling work described herein represents Sandia National Laboratories (SNL) portion of a collaborative three-year project with Northrop Grumman Electronic Systems (NGES) and the University of Missouri to develop an advanced, thermal ground-plane (TGP), which is a device, of planar configuration, that delivers heat from a source to an ambient environment with high efficiency. Work at all three institutions was funded by DARPA/MTO; Sandia was funded under DARPA/MTO project number 015070924. This is the final report on this project for SNL. This report presents a numerical model of a pulsating heat pipe, a device employing a two phase (liquid and its vapor) working fluid confined in a closed loop channel etched/milled into a serpentine configuration in a solid metal plate. The device delivers heat from an evaporator (hot zone) to a condenser (cold zone). This new model includes key physical processes important to the operation of flat plate pulsating heat pipes (e.g. dynamic bubble nucleation, evaporation and condensation), together with conjugate heat transfer with the solid portion of the device. The model qualitatively and quantitatively predicts performance characteristics and metrics, which was demonstrated by favorable comparisons with experimental results on similar configurations. Application of the model also corroborated many previous performance observations with respect to key parameters such as heat load, fill ratio and orientation.

  8. Computational model of miniature pulsating heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Mario J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Givler, Richard C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-01-01

    The modeling work described herein represents Sandia National Laboratories (SNL) portion of a collaborative three-year project with Northrop Grumman Electronic Systems (NGES) and the University of Missouri to develop an advanced, thermal ground-plane (TGP), which is a device, of planar configuration, that delivers heat from a source to an ambient environment with high efficiency. Work at all three institutions was funded by DARPA/MTO; Sandia was funded under DARPA/MTO project number 015070924. This is the final report on this project for SNL. This report presents a numerical model of a pulsating heat pipe, a device employing a two phase (liquid and its vapor) working fluid confined in a closed loop channel etched/milled into a serpentine configuration in a solid metal plate. The device delivers heat from an evaporator (hot zone) to a condenser (cold zone). This new model includes key physical processes important to the operation of flat plate pulsating heat pipes (e.g. dynamic bubble nucleation, evaporation and condensation), together with conjugate heat transfer with the solid portion of the device. The model qualitatively and quantitatively predicts performance characteristics and metrics, which was demonstrated by favorable comparisons with experimental results on similar configurations. Application of the model also corroborated many previous performance observations with respect to key parameters such as heat load, fill ratio and orientation.

  9. Impulsively started, steady and pulsated annular inflows

    Science.gov (United States)

    Abdel-Raouf, Emad; Sharif, Muhammad A. R.; Baker, John

    2017-04-01

    A computational investigation was carried out on low Reynolds number laminar inflow starting annular jets using multiple blocking ratios and atmospheric ambient conditions. The jet exit velocity conditions are imposed as steady, unit pulsed, and sinusoidal pulsed while the jet surroundings and the far-field jet inlet upstream conditions are left atmospheric. The reason is to examine the flow behavior in and around the jet inlet under these conditions. The pulsation mode behavior is analyzed based on the resultant of the momentum and pressure forces at the entry of the annulus, the circulation and vortex formation, and the propulsion efficiency of the inflow jets. The results show that under certain conditions, the net force of inflow jets (sinusoidal pulsed jets in particular) could point opposite to the flow direction due to the adverse pressure drops in the flow. The propulsion efficiency is also found to increase with pulsation frequency and the sinusoidal pulsed inflow jets are more efficient than the unit pulsed inflow jets. In addition, steady inflow jets did not trigger the formation of vortices, while unit and sinusoidal pulsed inflow jets triggered the formation of vortices under a certain range of frequencies.

  10. Secular Evolution in Mira Variable Pulsations

    CERN Document Server

    Templeton, M R; Willson, L A

    2005-01-01

    Stellar evolution theory predicts that asymptotic giant branch stars undergo a series of short thermal pulses that significantly change their luminosity and mass on timescales of hundreds to thousands of years. Secular changes in these stars resulting from thermal pulses can be detected as measurable changes in period if the star is undergoing Mira pulsations. The American Association of Variable Star Observers (AAVSO) International Database currently contains visual data for over 1500 Mira variables. Light curves for these stars span nearly a century in some cases, making it possible to study the secular evolution of the pulsation behavior on these timescales. In this paper, we present the results of our study of period change in 547 Mira variables using data from the AAVSO. We find non-zero rates of period change, dlnP/dt, at the 2-sigma significance level in 57 of the 547 stars, at the 3-sigma level in 21 stars, and at the level of 6-sigma or greater in eight of the 547. The latter eight stars have been pr...

  11. The pulsation spectrum of VX Hydrae

    CERN Document Server

    Templeton, M R; Dvorak, S; Poklar, R; Butterworth, N; Gerner, H

    2009-01-01

    We present the results of a two-year, multisite observing campaign investigating the high-amplitude delta Scuti star VX Hydrae during the 2006 and 2007 observing seasons. The final data set consists of nearly 8500 V-band observations spanning HJD 2453763.6 to 2454212.7 (2006 January 28 to 2007 April 22). Separate analyses of the two individual seasons of data yield 25 confidently-detected frequencies common to both data sets, of which two are pulsation modes, and the remaining 23 are Fourier harmonics or beat frequencies of these two modes. The 2006 data set had five additional frequencies with amplitudes less than 1.5 mmag, and the 2007 data had one additional frequency. Analysis of the full 2006-2007 data set yields 22 of the 25 frequencies found in the individual seasons of data. There are no significant peaks in the spectrum other than these between 0 and 60 c/d. The frequencies of the two main pulsation modes derived from the 2006 and 2007 observing seasons individually do not differ at the level of 3-si...

  12. The Pulsation Spectrum of VX Hydrae

    Science.gov (United States)

    Templeton, M. R.; Samolyk, G.; Dvorak, S.; Poklar, R.; Butterworth, N.; Gerner, H.

    2009-10-01

    We present the results of a two-year, multisite observing campaign investigating the high-amplitude δ Scuti star VX Hydrae during the 2006 and 2007 observing seasons. The final data set consists of nearly 8500 V-band observations spanning HJD 2453763.6 to 2454212.7 (2006 January 28 to 2007 April 22). Separate analyses of the two individual seasons of data yield 25 confidently detected frequencies common to both data sets, of which two are pulsation modes, and the remaining 23 are Fourier harmonics or beat frequencies of these two modes. The 2006 data set had five additional frequencies with amplitudes less than 1.5 mmag, and the 2007 data had one additional frequency. Analysis of the full 2006–2007 data set yields 22 of the 25 frequencies found in the individual seasons of data. There are no significant peaks in the spectrum other than these between 0 and 60 cycles day-1. The frequencies of the two main pulsation modes derived from the 2006 and 2007 observing seasons individually do not differ at the level of 3σ, and thus we find no conclusive evidence for period change over the span of these observations. However, the amplitude of changed significantly between the two seasons, while the amplitude of remained constant; amplitudes of the Fourier harmonics and beat frequencies of f1 also changed. Similar behavior was seen in the 1950s, and it is clear that VX Hydrae undergoes significant amplitude changes over time.

  13. Determination of discharge during pulsating flow

    Science.gov (United States)

    Thompson, T.H.

    1968-01-01

    Pulsating flow in an open channel is a manifestation of unstable-flow conditions in which a series of translatory waves of perceptible magnitude develops and moves rapidly downstream. Pulsating flow is a matter of concern in the design and operation of steep-gradient channels. If it should occur at high stages in a channel designed for stable flow, the capacity of the channel may be inadequate at a discharge that is much smaller than that for which the channel was designed. If the overriding translatory wave carries an appreciable part of the total flow, conventional stream-gaging procedures cannot be used to determine the discharge; neither the conventional instrumentation nor conventional methodology is adequate. A method of determining the discharge during pulsating flow was tested in the Santa Anita Wash flood control channel in Arcadia, Calif., April 16, 1965. Observations of the dimensions and velocities of translatory waves were made during a period of controlled reservoir releases of about 100, 200, and 300 cfs (cubic feet per second). The method of computing discharge was based on (1) computation of the discharge in the overriding waves and (2) computation of the discharge in the shallow-depth, or overrun, part of the flow. Satisfactory results were obtained by this method. However, the procedure used-separating the flow into two components and then treating the shallow-depth component as though it were steady--has no theoretical basis. It is simply an expedient for use until laboratory investigation can provide a satisfactory analytical solution to the problem of computing discharge during pulsating flow. Sixteen months prior to the test in Santa Anita Wash, a robot camera had been designed .and programmed to obtain the data needed to compute discharge by the method described above. The photographic equipment had been installed in Haines Creek flood control channel in Los Angeles, Calif., but it had not been completely tested because of the infrequency of

  14. Effects of pulsation rate and viscosity on pulsation-induced taste enhancement: new insights into texture-taste interactions.

    Science.gov (United States)

    Burseg, Kerstin Martha Mensien; Camacho, Sara; Bult, Johannes Hendrikus Franciscus

    2011-05-25

    Oral stimulation with high-tastant concentrations that are alternared with low-tastant concentrations or water rinses (pulsatile stimulation) results in taste intensity ratings that are higher than continuous stimulation with the same average tastant concentration. This study tested the combined effects of taste pulsation rate and viscosity on pulsation-induced taste enhancement in apple juice. According to a tastant-kinetics hypothesis, less pulsation-induced taste enhancement is expected at enhanced pulsation rates in the high-viscous proximal stimulus compared to lower viscous stimuli. High-concentration sucrose apple juice pulses and low-concentration sucrose apple juice intervals were alternated at different pulsation periods (pulse + interval in seconds) every 2.5 s (period length = 5 s) or every 1.25 s (period length = 2.5 s). Pulsed stimuli were presented at two viscosity levels by the addition of pectin (0 and 10 g/L). Sweetness intensities of pulsed stimuli were compared to a continuous reference of the same net but nonalternating sucrose concentration. Sweetness ratings were higher for pulsatile stimuli than for continuous stimuli. In low-viscous stimuli, enhancement depended on the pulsation period and peaked at 5 s periods. In high-viscous stimuli, the same enhancement was observed for both pulsation periods. These results contradict a tastant-kinetics hypothesis of viscosity-induced taste suppression because impaired tastant kinetics by viscosity would predict the opposite: lower pulsation-induced taste enhancement for viscous stimuli, especially at higher pulsation rates. Instead, these observations favor an explanation based on perceptual texture-taste interactions, which predict the observed independence between viscosity and pulsation rate.

  15. VizieR Online Data Catalog: BVIc light curves of 57 Cepheids (Berdnikov+,

    Science.gov (United States)

    Berdnikov, L. N.; Kniazev, A. Yu.; Sefako, R.; Kravtsov, V. V.; Zhujko, S. V.

    2014-04-01

    In 2008-2013, we obtained 11333 CCD BV Ic frames for 57 Cepheids from the General Catalogue of Variable Stars. We performed our observations with the 76-cm telescope of the South AfricanAstronomicalObservatory (SAAO, South Africa) and the 40-cm telescope of the Cerro Armazones Astronomical Observatory of the Universidad Catolica del Norte (OCA, Chile) using the SBIG ST-10XME CCD camera. The tables of observations, the plots of light curves, and the current light elements are presented. Comparison of our light curves with those constructed from photoelectric observations shows that the differences between their mean magnitudes exceed 0.05mag in 20% of the cases. This suggests the necessity of performing CCD observations for all Cepheids. (2 data files).

  16. X-ray Detection of the Cluster Containing the Cepheid S Mus

    CERN Document Server

    Evans, Nancy Remage; Wolk, Scott J; Guinan, Edward; Engle, Scott; Bond, Howard E; Schaefer, Gail H; Karovska, Margarita; DePasquale, Joseph; Tingle, Evan

    2014-01-01

    The galactic Cepheid S Muscae has recently been added to the important list of Cepheids linked to open clusters, in this case the sparse young cluster ASCC 69. Low-mass members of a young cluster are expected to have rapid rotation and X-ray activity, making X-ray emission an excellent way to discriminate them from old field stars. We have made an XMM-Newton observation centered on S Mus and identified (Table 1) a population of X-ray sources whose near-IR 2MASS counterparts lie at locations in the J, (J-K) color-magnitude diagram consistent with cluster membership at the distance of S Mus. Their median energy and X-ray luminosity are consistent with young cluster members as distinct from field stars. These strengthen the association of S Mus with the young cluster, making it a potential Leavitt Law (Period-Luminosity relation) calibrator.

  17. VizieR Online Data Catalog: OGLE LC classification of MC Cepheids (Garcia-Varela+, 2016)

    Science.gov (United States)

    Garcia-Varela, A.; Munoz, J. R.; Sabogal, B. E.; Vargas Dominguez, S.; Martinez, J.

    2016-08-01

    OGLE-II and OGLE-IV observations of Cepheid variables in the LMC and SMC galaxies were collected with the 1.3m Warsaw telescope, at Las Campanas Observatory, Chile (Udalski et al. 1999, J/AcA/49/223; 1999, J/AcA/49/437; 2015AcA....65....1U). While Cepheid catalogs for the OGLE-II fundamental mode contain 771 and 1319 stars for the LMC and SMC, respectively, OGLE-IV has a nearly complete collection (2429 and 2739 for the LMC and SMC, respectively), covering practically the whole Magellanic System with a time baseline of a little more than five years (Soszynski et al. 2015AcA....65..329S). (1 data file).

  18. Binary Cepheids: Separations and Mass Ratios in 5 Solar Mass Binaries

    Science.gov (United States)

    2013-10-01

    cfa.harvard.edu 2 Department of Astronomy & Astrophysics, Pennsylvania State University, University Park, PA 16802, USA; heb11@psu.edu 3 Space...Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy , Inc., under NASA contract NAS5-26555. 6...spectroscopic binary. We have tested this by comparing two seasons of accurate data from the same group (Moscow Table 2 Cepheids with Resolved Companions

  19. Pulsating hydraulic fracturing technology in low permeability coal seams

    Institute of Scientific and Technical Information of China (English)

    Wang Wenchao; Li Xianzhong; Lin Baiquan; Zhai Cheng

    2015-01-01

    Based on the difficult situation of gas drainage in a single coal bed of high gas content and low perme-ability, we investigate the technology of pulsating hydraulic pressure relief, the process of crank plunger movement and the mechanism of pulsating pressure formation using theoretical research, mathematical modeling and field testing. We analyze the effect of pulsating pressure on the formation and growth of fractures in coal by using the pulsating hydraulic theory in hydraulics. The research results show that the amplitude of fluctuating pressure tends to increase in the case where the exit is blocked, caused by pulsating pressure reflection and frictional resistance superposition, and it contributes to the growth of fractures in coal. The crack initiation pressure of pulsating hydraulic fracturing is 8 MPa, which is half than that of normal hydraulic fracturing;the pulsating hydraulic fracturing influence radius reaches 8 m. The total amount of gas extraction is increased by 3.6 times, and reaches 50 L/min at the highest point. The extraction flow increases greatly, and is 4 times larger than that of drilling without fracturing and 1.2 times larger than that of normal hydraulic fracturing. The technology provides a technical measure for gas drainage of high gas content and low permeability in the single coal bed.

  20. The influential effect of blending, bump, changing period and eclipsing Cepheids on the Leavitt law

    CERN Document Server

    García-Varela, A; Sabogal, B E; Domínguez, S Vargas; Martínez, J

    2016-01-01

    The investigation of the non-linearity of the Leavitt law is a topic that began more than seven decades ago, when some of the studies in this field found that the Leavitt law has a break at about ten days. The goal of this work is to investigate a possible statistical cause of this non-linearity. By applying linear regressions to OGLE-II and OGLE-IV data, we find that, in order to obtain the Leavitt law by using linear regression, robust techniques to deal with influential points and/or outliers are needed instead of the ordinary least-squares regression traditionally used. In particular, by using $M$- and $MM$-regressions we establish firmly and without doubts the linearity of the Leavitt law in the Large Magellanic Cloud, without rejecting or excluding Cepheid data from the analysis. This implies that light curves of Cepheids suggesting blending, bumps, eclipses or period changes, do not affect the Leavitt law for this galaxy. For the SMC, including this kind of Cepheids, it is not possible to find an adequ...

  1. A Search for Mass Loss on the Cepheid Instability Strip using HI 21-cm Line Observations

    CERN Document Server

    Matthews, L D; Evans, N R

    2016-01-01

    We present the results of a search for HI 21-cm line emission from the circumstellar environments of four Galactic Cepheids (RS Pup, X Cyg, $\\zeta$ Gem, and T Mon) based on observations with the Karl G. Jansky Very Large Array. The observations were aimed at detecting gas associated with previous or ongoing mass loss. Near the long-period Cepheid T Mon, we report the detection of a partial shell-like structure whose properties appear consistent with originating from an earlier epoch of Cepheid mass loss. At the distance of T Mon, the nebula would have a mass (HI+He) of $\\sim0.5M_{\\odot}$, or $\\sim$6\\% of the stellar mass. Assuming that one-third of the nebular mass comprises swept-up interstellar gas, we estimate an implied mass-loss rate of ${\\dot M}\\sim (0.6-2)\\times10^{-5} M_{\\odot}$ yr$^{-1}$. No clear signatures of circumstellar emission were found toward $\\zeta$ Gem, RS Pup, or X Cyg, although in each case, line-of-sight confusion compromised portions of the spectral band. For the undetected stars, we d...

  2. No Evidence for Classical Cepheids and a New Dwarf Galaxy Behind the Galactic Disk

    CERN Document Server

    Pietrukowicz, P; Szymanski, M K; Soszynski, I; Pietrzynski, G; Wyrzykowski, L; Poleski, R; Ulaczyk, K; Skowron, J; Mroz, P; Pawlak, M; Kozlowski, S

    2015-01-01

    Based on data from the ongoing OGLE Galaxy Variability Survey (OGLE GVS) we have verified observed properties of stars detected by the near-infrared VVV survey in a direction near the Galactic plane at longitude l~-27 deg and recently tentatively classified as classical Cepheids belonging to a, hence claimed, dwarf galaxy at a distance of about 90 kpc from the Galactic Center. Three of four stars are detected in the OGLE GVS I-band images. We show that two of the objects are not variable at all and the third one with a period of 5.695 d and a nearly sinusoidal light curve of an amplitude of 0.5 mag cannot be a classical Cepheid and is very likely a spotted object. These results together with a very unusual shape of the Ks-band light curve of the fourth star indicate that very likely none of them is a Cepheid and, thus, there is no evidence for a background dwarf galaxy. Our observations show that a great care must be taken when classifying objects by their low-amplitude close-to-sinusoidal near-infrared light...

  3. Hubble Space Telescope Fine Guidance Sensor Parallaxes of Galactic Cepheid Variable Stars: Period-Luminosity Relations

    CERN Document Server

    Benedict, G F; Feast, M W; Barnes, T G; Harrison, T E; Patterson, R J; Menzies, J W; Bean, J L; Freedman, W L; Arthur, Barbara E. Mc; Feast, Michael W.; Barnes, Thomas G.; Harrison, Thomas E.; Patterson, Richard J.; Menzies, John W.; Bean, Jacob L.; Freedman, Wendy L.

    2006-01-01

    (abridged) We present new absolute trigonometric parallaxes and relative proper motions for nine Galactic Cepheid variable stars: l Car, zeta Gem, beta Dor, W Sgr, X Sgr, Y Sgr, FF Aql, T Vul, and RT Aur. We obtain these results with astrometric data from Fine Guidance Sensor 1r, a white-light interferometer on Hubble Space Telescope. We find absolute parallaxes with an average sigma_pi/pi = 8%. Two stars (FF Aql and W Sgr) required the inclusion of binary astrometric perturbations, providing Cepheid mass estimates. With these parallaxes we compute absolute magnitudes in V, I, K, and Wesenheit W_{VI} bandpasses corrected for interstellar extinction and Lutz-Kelker-Hanson bias. Adding our previous absolute magnitude determination for delta Cep, we construct Period-Luminosity relations for ten Galactic Cepheids. We compare our new Period-Luminosity relations with those adopted by several recent investigations, including the Freedman and Sandage H_0 projects. Adopting our Period-Luminosity relationship would ten...

  4. Constraining the Thin Disc Initial Mass Function using Galactic Classical Cepheids

    CERN Document Server

    Mor, R; Figueras, F; Lemasle, B

    2016-01-01

    Context: The Initial Mass Function (IMF) plays a crucial role on galaxy evolution and its implications on star formation theory make it a milestone for the next decade. It is in the intermediate and high mass ranges where the uncertainties of the IMF are larger. This is a major subject of debate and analysis both for Galactic and extragalactic science. Aims: Our goal is to constrain the IMF of the Galactic thin disc population using both Galactic Classical Cepheids and Tycho-2 data. Methods: For the first time the Besan\\c{c}on Galaxy Model (BGM) has been used to characterise the Galactic population of the Classical Cepheids. We have modified the age configuration in the youngest populations of the BGM thin disc model to avoid artificial discontinuities in the age distribution of the simulated Cepheids. Three statistical methods, optimized for different mass ranges, have been developed and applied to search for the best IMF that fits the observations. This strategy allows us to quantify variations in the Star ...

  5. Towards a Determination of Definitive Parameters for the Long Period Cepheid S Vulpeculae

    CERN Document Server

    Turner, David G

    2014-01-01

    A new compilation of UBV data for stars near the Cepheid S Vul incorporates BV observations from APASS and NOMAD to augment UBV observations published previously. A reddening analysis yields mean colour excesses and distance moduli for two main groups of stars in the field: the sparse cluster Turner 1 and an anonymous background group of BA stars. The former appears to be 1.07+-0.12 kpc distant and reddened by E(B-V)=0.45+-0.05, with an age of 10^9 yrs. The previously overlooked latter group is 3.48+-0.19 kpc distant and reddened by E(B-V)=0.78+-0.02, with an age of 1.3x10^7 yrs. Parameters inferred for S Vul under the assumption that it belongs to the distant group, as also argued by 2MASS data, are all consistent with similar results for other cluster Cepheids and Cepheid-like supergiants.

  6. Is $\\lambda$ Cep a pulsating star?

    CERN Document Server

    Uuh-Sonda, J M; Rauw, G

    2014-01-01

    It has been proposed that the variability seen in absorption lines of the O6Ief star $\\lambda$ Cep is periodical and due to non-radial pulsations (NRP). We have obtained new spectra during six campaigns lasting between five and nine nights. In some datasets we find recurrent spectral variations which move redward in the absorption line profile, consistent with perturbations on the stellar surface of a rotating star. However the periods found are not stable between datasets, at odds with the NRP hypothesis. Moreover, even when no redward trend is found in a full dataset of an observing campaign, it can be present in a subset, suggesting that the phenomenon is short-lived, of the order of a few days, and possibly linked to transient magnetic loops.

  7. Sher 25: pulsating but apparently alone

    CERN Document Server

    Taylor, William D; Simón-Díaz, Sergio; Sana, Hugues; Langer, Norbert; Smith, Nathan; Smartt, Stephen J

    2014-01-01

    The blue supergiant Sher25 is surrounded by an asymmetric, hourglass-shaped circumstellar nebula, which shows similarities to the triple-ring structure seen around SN1987A. From optical spectroscopy over six consecutive nights, we detect periodic radial velocity variations in the stellar spectrum of Sher25 with a peak-to-peak amplitude of ~12 km/s on a timescale of about 6 days, confirming the tentative detec-tion of similar variations by Hendry et al. From consideration of the amplitude and timescale of the signal, coupled with observed line profile variations, we propose that the physical origin of these variations is related to pulsations in the stellar atmosphere, rejecting the previous hypothesis of a massive, short-period binary companion. The radial velocities of two other blue supergiants with similar bipolar nebulae, SBW1 and HD 168625, were also monitored over the course of six nights, but these did not display any significant radial velocity variations.

  8. Ambiguity of mapping the relative phase of blood pulsations

    Science.gov (United States)

    Teplov, Victor; Nippolainen, Ervin; Makarenko, Alexander A.; Giniatullin, Rashid; Kamshilin, Alexei A.

    2014-01-01

    Blood pulsation imaging (BPI) is a non-invasive optical method based on photoplethysmography (PPG). It is used for the visualization of changes in the spatial distribution of blood in the microvascular bed. BPI specifically allows measurements of the relative phase of blood pulsations and using it we detected a novel type of PPG fast waveforms, which were observable in limited areas with asynchronous regional blood supply. In all subjects studied, these fast waveforms coexisted with traditional slow waveforms of PPG. We are therefore presenting a novel lock-in image processing technique of blood pulsation imaging, which can be used for detailed temporal characterization of peripheral microcirculation. PMID:25401026

  9. Ambiguity of mapping the relative phase of blood pulsations.

    Science.gov (United States)

    Teplov, Victor; Nippolainen, Ervin; Makarenko, Alexander A; Giniatullin, Rashid; Kamshilin, Alexei A

    2014-09-01

    Blood pulsation imaging (BPI) is a non-invasive optical method based on photoplethysmography (PPG). It is used for the visualization of changes in the spatial distribution of blood in the microvascular bed. BPI specifically allows measurements of the relative phase of blood pulsations and using it we detected a novel type of PPG fast waveforms, which were observable in limited areas with asynchronous regional blood supply. In all subjects studied, these fast waveforms coexisted with traditional slow waveforms of PPG. We are therefore presenting a novel lock-in image processing technique of blood pulsation imaging, which can be used for detailed temporal characterization of peripheral microcirculation.

  10. Period-Luminosity relations derived from the OGLE-III First-overtone mode Cepheids in the Magellanic Clouds

    CERN Document Server

    Bhardwaj, Anupam; Kanbur, Shashi M; Singh, Harinder P

    2016-01-01

    We present multi-band Period-Luminosity (PL) relations for first-overtone mode Cepheids in the Small Magellanic Cloud (SMC). We derive optical band PL relations and the Wesenheit function using $VI$ mean magnitudes from the Optical Gravitational Lensing Experiment (OGLE-III) survey. We cross-match OGLE-III first-overtone mode Cepheids to the 2MASS and SAGE-SMC catalogs to derive PL relations at near-infrared ($JHK_s$) and mid-infrared ($3.6~\\&~4.5\\mu\\mathrm{m}$) wavelengths. We test for possible non-linearities in these PL relations using robust statistical tests and find a significant break only in the optical-band PL relations at 2.5 days for first-overtone mode Cepheids. We do not find statistical evidence for a non-linearity in these PL relations at 1 day. The multi-band PL relations for fundamental-mode Cepheids in the SMC also exhibit a break at 2.5 days. We suggest that the period break around 2.5 days is related to sharp changes in the light curve parameters for SMC Cepheids. We also derive new op...

  11. OGLE-ing the Magellanic System: Three-dimensional structure of the Clouds and the Bridge using classical Cepheids

    CERN Document Server

    Jacyszyn-Dobrzeniecka, Anna M; Mróz, P; Skowron, J; Soszyński, I; Udalski, A; Pietrukowicz, P; Kozłowski, S; Wyrzykowski, Ł; Poleski, R; Pawlak, M; Szymański, M K; Ulaczyk, K

    2016-01-01

    We analyzed a sample of 9418 fundamental-mode and first-overtone classical Cepheids from the OGLE-IV Collection of Classical Cepheids. The distance to each Cepheid was calculated using the period-luminosity relation for the Wesenheit magnitude, fitted to our data. The classical Cepheids in the LMC are situated mainly in the bar and in the northern arm. The eastern part of the LMC is closer to us and the plane fit to the whole LMC sample yields the inclination i=24.2+-0.6 deg and position angle P.A.=151.4+-1.5 deg. We redefined the LMC bar by extending it in the western direction and found no offset from the plane of the LMC contrary to previous studies. On the other hand, we found that the northern arm is offset from a plane by about -0.5 kpc, which was not observed before. The age distribution of the LMC Cepheids shows one maximum at about 100 Myr. We demonstrate that the SMC has a non-planar structure and can be described as an extended ellipsoid. We identified two large ellipsoidal off-axis structures in t...

  12. Very accurate Distances and Radii of Open Cluster Cepheids from a Near-Infrared Surface Brightness Technique

    CERN Document Server

    Gieren, W P; Gomes, M J; Gieren, Wolfgang P.; Fouque, Pascal; Gomez, Matias

    1997-01-01

    We have obtained the radii and distances of 16 galactic Cepheids supposed to be members in open clusters or associations using the new optical and near-infrared calibrations of the surface brightness (Barnes-Evans) method given by Fouque & Gieren (1997). We discuss in detail possible systematic errors in our infrared solutions and conclude that the typical total uncertainty of the infrared distance and radius of a Cepheid is about 3 percent in both infrared solutions, provided that the data are of excellent quality and that the amplitude of the color curve used in the solution is larger than ~0.3 mag. We compare the adopted infrared distances of the Cepheid variables to the ZAMS-fitting distances of their supposed host clusters and associations and find an unweighted mean value of the distance ratio of 1.02 +- 0.04. A detailed discussion of the individual Cepheids shows that the uncertainty of the ZAMS-fitting distances varies considerably from cluster to cluster. We find clear evidence that four Cepheids...

  13. Thermal quantities of 46Ti

    Science.gov (United States)

    Rahmatinejad, A.; Razavi, R.; Kakavand, T.

    2015-07-01

    Thermodynamic quantities of 46Ti have been calculated in the framework of the BCS model with inclusion of modified nuclear pairing gap (MPBCS) that was proposed in our previous publication. Using modified paring gap results in an S-shaped heat capacity curve at critical temperature with a smooth behavior instead of singular behavior of the same curve in the BCS calculations. In addition the thermal quantities have been extracted within the framework of a canonical ensemble according to the new experimental data on nuclear level densities measured by the Oslo group. Comparison shows a good agreement between our calculations in MPBCS and the extracted quantities in the canonical ensemble framework.

  14. Search of Secondary Pulsation Modes: Globular cluster (NGC 6496)

    CERN Document Server

    Joshi, Gireesh C

    2016-01-01

    The Fourier-discrete-peridogram are used to identify pulsation modes in variables. We have found two pulsation modes in V1 and V2 among 13 new variables as described by Abbas et al.. The five variables V9 to V13 are not shown close to periodic values by analysis of the frequency distribution of multi-band data and also create difficulty to describe their varied nature. The multi-band periodic values of V1 and V6 are matched with known literature values. The scattering of the varied nature of secondary pulsation modes is eliminated by moving average methodology. The phase curve of secondary mode is found to be more smooth compared to a prominent mode of pulsation.

  15. Return of Pulsations in SDSS 0745+4538

    Science.gov (United States)

    Mukadam, Anjum S.; Townsley, D. M.; Szkody, P.; Gänsicke, B. T.; Winget, D. E.; Hermes, J. J.; Howell, Steve B.; Teske, J.; Patterson, Joseph; Kemp, Jonathan; Armstrong, Eve

    2010-11-01

    Nonradial pulsations had ceased in the accreting white dwarf SDSS J074531.92+453829.6 subsequent to its October 2006 outburst. We recently acquired optical high-speed time-series photometry on this cataclysmic variable more than three years after its outburst to find that pulsations have now returned to the primary white dwarf. Moreover, the observed pulsation periods agree with pre-outburst periods within the uncertainties of 1-2 s. This discovery is both remarkable and significant because it indicates that the outburst did not affect the interior stellar structure, which dictates the observed pulsation frequencies. Using this discovery in addition to an HST ultra-violet temperature measurement obtained one year after outburst, we have also been able to constrain the matter accreted during the 2006 outburst.

  16. Micro-Channel Embedded Pulsating Heat Pipes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — As the need for thermal control technology becomes more demanding Micro-Channel Embedded Pulsating Heat Pipes (ME-PHPs) represents a sophisticated and enabling...

  17. Unilateral Loss of Spontaneous Venous Pulsations in an Astronaut

    Science.gov (United States)

    Mader, Thomas H.; Gibson, C. Robert; Lee, Andrew G.; Patel, Nimesh; Hart, Steven; Pettit, Donald R.

    2014-01-01

    Spontaneous venous pulsations seen on the optic nerve head (optic disc) are presumed to be caused by fluctuations in the pressure gradient between the intraocular and retrolaminar venous systems. The disappearance of previously documented spontaneous venous pulsations is a well-recognized clinical sign usually associated with a rise in intracranial pressure and a concomitant bilateral elevation of pressure in the subarachnoid space surrounding the optic nerves. In this correspondence we report the unilateral loss of spontaneous venous pulsations in an astronaut 5 months into a long duration space flight. We documented a normal lumbar puncture opening pressure 8 days post mission. The spontaneous venous pulsations were also documented to be absent 21 months following return to Earth.. We hypothesize that these changes may have resulted from a chronic unilateral rise in optic nerve sheath pressure caused by a microgravity-induced optic nerve sheath compartment syndrome.

  18. Report of geomagnetic pulsation indices for space weather applications

    Science.gov (United States)

    Xu, Z.; Gannon, Jennifer L.; Rigler, Erin J.

    2013-01-01

    The phenomenon of ultra-low frequency geomagnetic pulsations was first observed in the ground-based measurements of the 1859 Carrington Event and has been studied for over 100 years. Pulsation frequency is considered to be “ultra” low when it is lower than the natural frequencies of the plasma, such as the ion gyrofrequency. Ultra-low frequency pulsations are considered a source of noise in some geophysical analysis techniques, such as aeromagnetic surveys and transient electromagnetics, so it is critical to develop near real-time space weather products to monitor these geomagnetic pulsations. The proper spectral analysis of magnetometer data, such as using wavelet analysis techniques, can also be important to Geomagnetically Induced Current risk assessment.

  19. Self-Pulsating Semiconductor Lasers Theory and Experiment

    CERN Document Server

    Mirasso, C R; Hernández-García, E; Lenstra, D; Lynch, S; Landais, P; Phelan, P; O'Gorman, J; San Miguel, M; Elsasser, W

    1999-01-01

    We report detailed measurements of the pump-current dependency of the self-pulsating frequency of semiconductor CD lasers. A distinct kink in this dependence is found and explained using rate-equation model. The kink denotes a transition between a region where the self-pulsations are weakly sustained relaxation oscillations and a region where Q-switching takes place. Simulations show that spontaneous emission noise plays a crucial role for the cross-over.

  20. First Kepler results on compact pulsators - II. KIC 010139564, a new pulsating subdwarf B (V361 Hya) star with an additional low-frequency mode

    DEFF Research Database (Denmark)

    Kawaler, Stephen; Reed, M.D.; Quint, A.C.;

    2010-01-01

    We present the discovery of non-radial pulsations in a hot subdwarf B star based on 30.5 d of nearly continuous time series photometry using the Kepler spacecraft. KIC 010139564 is found to be a short-period pulsator of the V361 Hya (EC 14026) class with more than 10 independent pulsation modes...

  1. Tuning in on Cepheids: Radial velocity amplitude modulations. A source of systematic uncertainty for Baade-Wesselink distances

    CERN Document Server

    Anderson, Richard I

    2014-01-01

    [Abridged] I report the discovery of modulations in radial velocity (RV) curves of four Galactic classical Cepheids and investigate their impact as a systematic uncertainty for Baade-Wesselink distances. Highly precise Doppler measurements were obtained using the Coralie high-resolution spectrograph since 2011. Particular care was taken to sample all phase points in order to very accurately trace the RV curve during multiple epochs and to search for differences in linear radius variations derived from observations obtained at different epochs. Different timescales are sampled, ranging from cycle-to-cycle to months and years. The unprecedented combination of excellent phase coverage obtained during multiple epochs and high precision enabled the discovery of significant modulation in the RV curves of the short-period s-Cepheids QZ Normae and V335 Puppis, as well as the long-period fundamental mode Cepheids l Carinae and RS Puppis. The modulations manifest as shape and amplitude variations that vary smoothly on ...

  2. The Carnegie Hubble Program: The Distance and Structure of the SMC as Revealed by Mid-infrared Observations of Cepheids

    CERN Document Server

    Scowcroft, Victoria; Madore, Barry F; Monson, Andy; Persson, S E; Rich, Jeff; Seibert, Mark; Rigby, Jane R

    2015-01-01

    Using Spitzer observations of classical Cepheids we have measured the true average distance modulus of the SMC to be $18.96 \\pm 0.01_{stat} \\pm 0.03_{sys}$ mag (corresponding to $62 \\pm 0.3$ kpc), which is $0.48 \\pm 0.01$ mag more distant than the LMC. This is in agreement with previous results from Cepheid observations, as well as with measurements from other indicators such as RR Lyrae stars and the tip of the red giant branch. Utilizing the properties of the mid--infrared Leavitt Law we measured precise distances to individual Cepheids in the SMC, and have confirmed that the galaxy is tilted and elongated such that its eastern side is up to 20 kpc closer than its western side. This is in agreement with the results from red clump stars and dynamical simulations of the Magellanic Clouds and Stream.

  3. First Kepler results on compact pulsators - III. Subdwarf B stars with V1093 Her and hybrid (DW Lyn) type pulsations

    DEFF Research Database (Denmark)

    Reed, M.D.; Kawaler, Stephen D.; Østensen, Roy H.

    2010-01-01

    1093 Her (PG 1716) class or a hybrid star with both short and long periods. The apparently non-binary long-period and hybrid pulsators are described here. The V1093 Her periods range from 1 to 4.5 h and are associated with g-mode pulsations. Three stars also exhibit short periods indicative of p......We present the discovery of non-radial pulsations in five hot subdwarf B (sdB) stars based on 27 d of nearly continuous time series photometry using the Kepler spacecraft. We find that every sdB star cooler than ≈27 500 K that Kepler has observed (seven so far) is a long-period pulsator of the V......-modes with periods of 2-5 min and in addition, these stars exhibit periodicities between both classes from 15 to 45 min. We detect the coolest and longest-period V1093 Her-type pulsator to date, KIC010670103 (Teff≈ 20 900 K, Pmax≈ 4.5 h) as well as a suspected hybrid pulsator, KIC002697388, which is extremely cool...

  4. SABRE observations of Pi2 pulsations: case studies

    Science.gov (United States)

    Bradshaw, E. G.; Lester, M.

    1997-01-01

    The characteristics of substorm-associated Pi2 pulsations observed by the SABRE coherent radar system during three separate case studies are presented. The SABRE field of view is well positioned to observe the differences between the auroral zone pulsation signature and that observed at mid-latitudes. During the first case study the SABRE field of view is initially in the eastward electrojet, equatorward and to the west of the substorm-enhanced electrojet current. As the interval progresses, the western, upward field-aligned current of the substorm current wedge moves westward across the longitudes of the radar field of view. The westward motion of the wedge is apparent in the spatial and temporal signatures of the associated Pi2 pulsation spectra and polarisation sense. During the second case study, the complex field-aligned and ionospheric currents associated with the pulsation generation region move equatorward into the SABRE field of view and then poleward out of it again after the third pulsation in the series. The spectral content of the four pulsations during the interval indicate different auroral zone and mid-latitude signatures. The final case study is from a period of low magnetic activity when SABRE observes a Pi2 pulsation signature from regions equatorward of the enhanced substorm currents. There is an apparent mode change between the signature observed by SABRE in the ionosphere and that on the ground by magnetometers at latitudes slightly equatorward of the radar field of view. The observations are discussed in terms of published theories of the generation mechanisms for this type of pulsation. Different signatures are observed by SABRE depending on the level of magnetic activity and the position of the SABRE field of view relative to the pulsation generation region. A twin source model for Pi2 pulsation generation provides the clearest explanation of the signatures observed Acknowledgements. The authors are grateful to Prof. D. J. Southwood

  5. Source of temperature and pressure pulsations during sessile droplet evaporation into multicomponent atmospheres.

    Science.gov (United States)

    Persad, Aaron H; Sefiane, Khellil; Ward, Charles A

    2013-10-29

    During sessile droplet evaporation, studies with IR thermography and shadowgraphs have indicated temperature pulsations. We confirm those observations with microthermocouples, but microthermocouples also indicate temperature pulsations in the atmosphere of the droplet. The pressure in this atmosphere pulsated as well and was correlated with the temperature pulsations in the droplet. Also, we find that if a droplet evaporates into its own vapor, there are no temperature or pressure pulsations. The pulsations occur only if the droplet evaporates into an atmosphere with a component having a heat of solution with the droplet when it adsorbs-absorbs. None of the currently proposed mechanisms for the temperature pulsations provide an explanation for the coupling between the temperature pulsations in the droplet and the vapor-phase pressure pulsations, and for the absence of the pulsations when the system is single-component. As a mechanism for the pulsations, we propose that when a droplet is exposed to an atmosphere containing a component that has a heat of solution with the droplet, energy will be released from adsorption-absorption. This energy will cause pulsations in the evaporation flux, and these pulsations could cause the observed temperature and pressure pulsations. We examine this mechanism by showing that, if the measured temperature pulsations in a water droplet exposed to a methanol atmosphere are used as the input to a theory of evaporation kinetics (statistical rate theory), the pressure pulsations of the water vapor in the methanol atmosphere are predicted and agree with those measured with a quadrupole mass analyzer. When the inputs and outputs are reversed in the theory, we find that the temperature pulsations in the droplet are correctly predicted from the measured water vapor pulsations in the atmosphere.

  6. The evolved pulsating CEMP star HD112869

    CERN Document Server

    Začs, L; Grankina, A; Deveikis, V; Kaminskyi, B; Pavlenko, Y; Musaev, F

    2015-01-01

    Radial velocity measurements, $BVR_C$ photometry, and high-resolution spectroscopy in the wavelength region from blue to near infrared are employed in order to clarify the evolutionary status of the carbon-enhanced metal-poor star HD112869 with unique ratio of carbon isotopes in the atmosphere. An LTE abundance analysis was carried out using the method of spectral synthesis and new self consistent 1D atmospheric models. The radial velocity monitoring confirmed semiregular variations with a peak-to-peak amplitude of about 10 km $s^{-1}$ and a dominating period of about 115 days. The light, color and radial velocity variations are typical of the evolved pulsating stars. The atmosphere of HD112869 appears to be less metal-poor than reported before, [Fe/H] = -2.3 $\\pm$0.2 dex. Carbon to oxygen and carbon isotope ratios are found to be extremely high, C/O $\\simeq$ 12.6 and $^{12}C/^{13}C \\gtrsim$ 1500, respectively. The s-process elements yttrium and barium are not enhanced, but neodymium appears to be overabundan...

  7. Radio Pulsating Structures with Coronal Loop Contraction

    Science.gov (United States)

    Kallunki, J.; Pohjolainen, S.

    2012-10-01

    We present a multi-wavelength study of a solar eruption event on 20 July 2004, comprising observations in Hα, EUV, soft X-rays, and in radio waves with a wide frequency range. The analyzed data show both oscillatory patterns and shock wave signatures during the impulsive phase of the flare. At the same time, large-scale EUV loops located above the active region were observed to contract. Quasi-periodic pulsations with ˜ 10 and ˜ 15 s oscillation periods were detected both in microwave - millimeter waves and in decimeter - meter waves. Our calculations show that MHD oscillations in the large EUV loops - but not likely in the largest contracting loops - could have produced the observed periodicity in radio emission, by triggering periodic magnetic reconnection and accelerating particles. As the plasma emission in decimeter - meter waves traces the accelerated particle beams and the microwave emission shows a typical gyrosynchrotron flux spectrum (emission created by trapped electrons within the flare loop), we find that the particles responsible for the two different types of emission could have been accelerated in the same process. Radio imaging of the pulsed decimetric - metric emission and the shock-generated radio type II burst in the same wavelength range suggest a rather complex scenario for the emission processes and locations. The observed locations cannot be explained by the standard model of flare loops with an erupting plasmoid located above them, driving a shock wave at the CME front.

  8. THE VVV SURVEY REVEALS CLASSICAL CEPHEIDS TRACING A YOUNG AND THIN STELLAR DISK ACROSS THE GALAXY’S BULGE

    Energy Technology Data Exchange (ETDEWEB)

    Dékány, I. [Instituto Milenio de Astrofísica, Santiago (Chile); Minniti, D. [Departamento de Física, Facultad de Ciencias Exactas, Universidad Andres Bello, República 220, Santiago (Chile); Majaess, D. [Saint Mary’s University, Halifax, Nova Scotia (Canada); Zoccali, M.; Hajdu, G.; Catelan, M. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago (Chile); Alonso-García, J. [Unidad de Astronomía, Fac. Cs. Básicas, Universidad de Antofagasta, Avda. U. de Antofagasta 02800, Antofagasta (Chile); Gieren, W. [Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Borissova, J., E-mail: idekany@astro.puc.cl [Instituto de Física y Astronomía, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaso (Chile)

    2015-10-20

    Solid insight into the physics of the inner Milky Way is key to understanding our Galaxy’s evolution, but extreme dust obscuration has historically hindered efforts to map the area along the Galactic mid-plane. New comprehensive near-infrared time-series photometry from the VVV Survey has revealed 35 classical Cepheids, tracing a previously unobserved component of the inner Galaxy, namely a ubiquitous inner thin disk of young stars along the Galactic mid-plane, traversing across the bulge. The discovered period (age) spread of these classical Cepheids implies a continuous supply of newly formed stars in the central region of the Galaxy over the last 100 million years.

  9. Constraining the neutrino magnetic dipole moment from white dwarf pulsations

    Energy Technology Data Exchange (ETDEWEB)

    Córsico, A.H.; Althaus, L.G. [Grupo de Evolución Estelar y Pulsaciones, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, (1900) La Plata (Argentina); Bertolami, M.M. Miller [Instituto de Astrofísica La Plata, CONICET-UNLP, Paseo del Bosque s/n, (1900) La Plata (Argentina); Kepler, S.O. [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, Porto Alegre 91501-970, RS (Brazil); García-Berro, E., E-mail: acorsico@fcaglp.unlp.edu.ar, E-mail: althaus@fcaglp.unlp.edu.ar, E-mail: marcelo@MPA-Garching.MPG.DE, E-mail: kepler@if.ufrgs.br, E-mail: enrique.garcia-berro@upc.edu [Departament de Física Aplicada, Universitat Politècnica de Catalunya, c/Esteve Terrades 5, 08860, Castelldefels (Spain)

    2014-08-01

    Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (μ{sub ν}) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pidot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pidot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of μ{sub ν} ∼< 10{sup -11} μ{sub B}. This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.

  10. Analysis of the possible Blazhko-effect Cepheid V473 Lyrae

    CERN Document Server

    Molnár, L; Dukes,, R J; Győrffy, Á; Szabó, R

    2013-01-01

    V473 Lyrae is a peculiar Galactic Cepheid, showing strong amplitude modulation that resembles the Blazhko-effect observed in RR Lyrae stars. We collected data spanning several modulation cycles and started a detailed analysis. The first results indicate that the star shows both amplitude and phase modulations with an average period of 1204 days, but both the cycle length and the strength of the modulation are subjected to considerable variations. A possible quintuplet component in the Fourier spectrum and additional period changes were also detected.

  11. VizieR Online Data Catalog: Timing data for the classical Cepheid l Car (Neilson+, 2016)

    Science.gov (United States)

    Neilson, H. R.; Engle, S. G.; Guinan, E. F.; Bisol, A. C.; Butterworth, N.

    2016-08-01

    To measure the period and rate of period change for l Car, we use published photometric data spanning from 1871 to 1990 which we complement with new observations for the year 2012 taken by one of us (Butterworth). See table 1. Six UV observations of l Car were carried out in 2012-2013 with the HST-COS. Also as part of "The Secret Lives of Cepheids" program, an X-ray observation of l Car was carried out with XMM-Newton in 2010 February. See section 4 for further details. (1 data file).

  12. The Galaxy Kinematics from the Cepheids with the Proper Motions from the GAIA DR1 Catalog

    OpenAIRE

    Bobylev, V. V.

    2016-01-01

    The sample of classic Cepheids with known distances and line-of-sight velocities is supplemented by the proper motions from the Gaia DR1 catalog. From spatial velocities of 260 stars the components of the peculiar Solar velocity: (U,V,W)_\\odot=(7.90,11.73,7.39)+/-(0.65,0.77,0.62) km/s, parameters of the Galactic rotation curve: \\Omega_0 =28.840+/-.33 km/s/kpc, \\Omega'_0=-4.05+/-0.10 km/s/kpc^2, \\Omega''_0=0.805+/-0.067 km/s/kpc^3 are obtained. For the adopted Galactocentric Solar distance R_0...

  13. Type II Cepheids in the Milky Way disc. Chemical composition of two new W Vir stars: DD Vel and HQ Car

    CERN Document Server

    Lemasle, B; Bono, G; François, P; Saviane, I; Yegorova, I; Genovali, K; Inno, L; Galazutdinov, G; da Silva, R

    2015-01-01

    A robust classification of Cepheids into their different sub-classes and, in particular, between classical and Type II Cepheids, is necessary to properly calibrate the period-luminosity relations and for populations studies in the Galactic disc. Type II Cepheids are, however, very diverse, and classifications based either on intrinsic (period, light curve) or external parameters (e.g., [Fe/H], |z|) do not provide a unique classification. We want to ascertain the classification of two Cepheids, HQ Car and DD Vel, that are sometimes classified as classical Cepheids and sometimes as Type II Cepheids. To achieve this goal, we examine both their chemical composition and the presence of specific features in their spectra. We find emission features in the H{\\alpha} and in the 5875.64 {\\AA} He I lines that are typical of W Vir stars. The [Na/Fe] (or [Na/Zn]) abundances are typical of thick-disc stars, while BL Her stars are Na-overabundant ([Na/Fe]>+0.5 dex). Finally, the two Cepheids show a possible (HQ Car) or prob...

  14. Heartbeat Stars and the Ringing of Tidal Pulsations

    Directory of Open Access Journals (Sweden)

    Hambleton Kelly

    2015-01-01

    Full Text Available With the advent of high precision photometry from satellites such as Kepler and CoRoT, a whole new layer of interesting and astounding astronomical objects has been revealed: heartbeat stars are an example of such objects. Heartbeat stars are eccentric ellipsoidal variables that undergo strong tidal interactions when the stars are almost in contact at the time of closest approach. These interactions deform of the stars and cause a notable light curve variation in the form of a tidal pulse. A subset of these objects (~20% show prominent tidally induced pulsations: pulsations forced by the binary orbit. We now have a fully functional code that models binary star features (using PHOEBE and stellar pulsations simultaneously, enabling a complete and accurate heartbeat star model to be determined. In this paper we show the results of our new code, which uses emcee, a variant of mcmc, to generate a full set of stellar parameters. We further highlight the interesting features of KIC 8164262, including its tidally induced pulsations and resonantly locked pulsations.

  15. On the polarization properties of magnetar giant flare pulsating tails

    CERN Document Server

    Yang, Yuan-Pei

    2015-01-01

    Three giant flares have been detected so far from soft gamma-ray repeaters, each characterized by an initial short hard spike and a pulsating tail. The observed pulsating tails are characterized by a duration of $\\sim100\\,\\rm{s}$, an isotropic energy of $\\sim 10^{44}\\,\\rm{erg}$, and a pulse period of a few seconds. The pulsating tail emission likely originates from the residual energy after the intense energy release during the initial spike, which forms a trapped fireball composed of a photon-pair plasma in a closed field line region of the magnetars. Observationally the spectra of pulsating tails can be fitted by the superposition of a thermal component and a power-law component, with the thermal component dominating the emission in the early and late stages of the pulsating tail observations. In this paper, assuming that the trapped fireball is from a closed field line region in the magnetosphere, we calculate the atmosphere structure of the optically-thick trapped fireball and the polarization properties ...

  16. Photometric Survey to Search for Field sdO Pulsators

    CERN Document Server

    Johnson, Christopher B; Wallace, S; O'Malley, C J; Amaya, H; Biddle, L; Fontaine, G

    2013-01-01

    We present the results of a campaign to search for subdwarf O (sdO) star pulsators among bright field stars. The motivation for this project is the recent discovery by Randall et al. (2011), of four rapidly pulsating sdO stars in the globular cluster Omega Cen, with Teff near 50,000 K, 5.4 -0.1 and similar temperatures and gravities. To date, we have found no detectable pulsations at amplitudes above 0.08% (4 times the mean noise level) in any of the 36 field sdO stars that we observed. The presence of pulsations in Omega Cen sdO stars and their apparent absence in seemingly comparable field sdO stars is perplexing. While very suggestive, the significance of this result is difficult to assess more completely right now due to remaining uncertainties about the temperature width and purity of the Omega Cen instability strip and the existence of any sdO pulsators with weaker amplitudes than the current detection limit in globular clusters.

  17. Recognizing Prefixes in Scientific Quantities

    Science.gov (United States)

    Sokolowski, Andrzej

    2015-01-01

    Although recognizing prefixes in physical quantities is inherent for practitioners, it might not be inherent for students, who do not use prefixes in their everyday life experiences. This deficiency surfaces in AP Physics exams. For example, readers of an AP Physics exam reported "a common mistake of incorrectly converting nanometers to…

  18. Finding the Instability Strip for Accreting Pulsating White Dwarfs from HST and Optical Observations

    CERN Document Server

    Szkody, Paula; Gansicke, Boris T; Henden, Arne; Templeton, Matthew; Holtzman, Jon; Montgomery, Michael H; Howell, Steve B; Nitta, Atsuko; Sion, Edward M; Schwartz, Richard D; Dillon, William

    2010-01-01

    Time-resolved low resolution Hubble Space Telescope ultraviolet spectra together with ground-based optical photometry and spectra are used to constrain the temperatures and pulsation properties of six cataclysmic variables containing pulsating white dwarfs. Combining our temperature determinations for the five pulsating white dwarfs that are several years past outburst with past results on six other systems shows that the instability strip for accreting pulsating white dwarfs ranges from 10,500-15,000K, a wider range than evident for ZZ Ceti pulsators. Analysis of the UV/optical pulsation properties reveals some puzzling aspects. While half the systems show high pulsation amplitudes in the UV compared to their optical counterparts, others show UV/optical amplitude ratios that are less than one or no pulsations at either wavelength region.

  19. Three dimensional maps of the Magellanic Clouds using RR~Lyrae stars and Cepheids - I. The Large Magellanic Cloud

    CERN Document Server

    Haschke, Raoul; Duffau, Sonia

    2012-01-01

    The new data for Cepheids and RR Lyrae stars of the Optical Gravitational Lensing Experiment (OGLE-III) survey allow us to study the three-dimensional distribution of stars corresponding to young (a few tens to a few hundreds of millions of years) and old (typically older than ~9 Gyr) populations of the Large Magellanic Cloud (LMC) traced by these variable stars. We estimate the distance to 16949 RR Lyrae stars by using their photometrically estimated metallicities. Furthermore the periods of 1849 Cepheids are used to determine their distances. Three-dimensional maps are obtained by using individual reddening estimates derived from the intrinsic color of these stars. The resulting median distances of the RR Lyrae stars and Cepheids appear to resolve the long and short distance scale problem for our sample. With median distances of 53.1 \\pm 3.2 kpc for the RR Lyrae stars and 53.9 \\pm 1.8 kpc for the Cepheids, these two distance indicators are in very good agreement with each other in contrast to a number of ea...

  20. On the relative distance of Magellanic Clouds using Cepheid NlR and Optical-NIR PW relations

    CERN Document Server

    Inno, L; Matsunaga, N; Romaniello, M; Primas, F; Buonanno, R; Caputo, F; Genovali, K; Laney, C D; Marconi, M; Pietrinferni, A

    2013-01-01

    We present new estimates of the relative distance of the Magellanic Clouds (MCs) by using NIR and Optical-NIR Cepheid Period Wesenheit (PW) relations. The relative distances are independent of uncertainties affecting the zero-point of the PW relations, but do depend on the adopted pivot periods. We estimated the pivot periods for fundamental (FU) and first overtone (FO) Cepheids on the basis of their period distributions. We found that log P=0.5 (FU) and log P=0.3 (FO) are solid choices, since they trace a main peak and a shoulder in LMC and SMC period distributions. By using the above pivot periods and ten PW relations, we found MC relative distances of 0.53$\\pm$0.06 (FU) and 0.53$\\pm$0.07 (FO) mag. Moreover, we investigated the possibility to use mixed-mode (FU/FO, FO/SO) Cepheids as distance indicators and we found that they follow quite well the PW relations defined by single mode MC Cepheids, with deviations typically smaller than 0.3{\\sigma}.

  1. The VMC Survey - X. Cepheids, RR Lyrae stars and binaries as probes of the Magellanic System's structure

    CERN Document Server

    Moretti, M I; Muraveva, T; Ripepi, V; Marquette, J B; Cioni, M -R L; Marconi, M; Girardi, L; Rubele, S; Tisserand, P; de Grijs, R; Groenewegen, M A T; Guandalini, R; Ivanov, V D; van Loon, J Th

    2013-01-01

    The VMC survey is obtaining multi-epoch photometry in the Ks band of the Magellanic System down to a limiting magnitude of Ks ~ 19.3 for individual epoch data. The observations are spaced in time such as to provide optimal sampling of the light curves for RR Lyrae stars and for Cepheids with periods up to 20-30 days. We present examples of the Ks-band light curves of Classical Cepheids and RR Lyrae stars we are obtaining from the VMC data and outline the strategy we put in place to measure distances and infer the System three-dimensional geometry from the variable stars. For this purpose the near-infrared Period-Luminosity, Period-Wesenheit, and Period-Luminosity-Colour relations of the system RR Lyrae stars and Cepheids are used. We extensively exploit the catalogues of the Magellanic Clouds' variable stars provided by the EROS-2 and OGLE III/IV microlensing surveys. By combining these surveys we present the currently widest-area view of the Large Magellanic Cloud as captured by the galaxy Cepheids, RR Lyrae...

  2. Two New Tests of the Metallicity Sensitivity of the Cepheid Period-Luminosity Relation (The Leavitt Law)

    CERN Document Server

    Freedman, Wendy L

    2011-01-01

    We undertake a new test of the metallicity sensitivity of the Leavitt Law for Classical Cepheids. We derive an empirical calibration of the apparent luminosities of Cepheids as measured from the optical through the mid-infrared (0.45-8.0um) as a function of spectroscopic [Fe/H] abundances of individual Cepheids in the Large Magellanic Cloud from Romaniello et al. (2008). The cumulative trend over the entire wavelength range shows a nearly monotonic behavior. The sense of the trend is consistent with differential line-blanketing in the optical, leading to stars of high metallicity being fainter in the optical. This is followed by a reversal in the trend at longer wavelengths, with the cross-over occurring near the K band at about 2.2um, consistent with a subsequent redistribution of energy resulting in a mild brightening of Cepheids (with increased metallicity) at mid-infrared wavelengths. This conclusion agrees with that of Romaniello et al. based on a differential comparison of the mean V- and K-band Leavitt...

  3. The Cepheid Period-Luminosity Relation at Mid-Infrared Wavelengths: I. First-Epoch LMC Data

    CERN Document Server

    Freedman, Wendy L; Rigby, Jane; Persson, S E; Sturch, Laura

    2008-01-01

    We present the first mid-infrared Period-Luminosity (PL) relations for Large Magellanic Cloud (LMC) Cepheids. Single-epoch observations of 70 Cepheids were extracted from Spitzer IRAC observations at 3.6, 4.5, 5.8 and 8.0 microns, serendipitously obtained during the SAGE (Surveying the Agents of a Galaxy's Evolution) imaging survey of the LMC. All four mid-infrared PL relations have nearly identical slopes over the period range 6 - 88 days, with a small scatter of only +/-0.16 mag independent of period for all four of these wavelengths. We emphasize that differential reddening is not contributing significantly to the observed scatter, given the nearly two orders of magnitude reduced sensitivity of the mid-IR to extinction compared to the optical. Future observations, filling in the light curves for these Cepheids, should noticeably reduce the residual scatter. These attributes alone suggest that mid-infrared PL relations will provide a practical means of significantly improving the accuracy of Cepheid distanc...

  4. Prediction of gas pulsation of an industrial compressor

    Institute of Scientific and Technical Information of China (English)

    Heuicheol; Kim; Mi-Gyung; Cho; Jaehong; Park; Cheolho; Bai; Jaesool; Shim

    2013-01-01

    The measurement and prediction of gas pulsations are performed along the discharge pipeline of a reciprocating compressor for a refrigerator. A regression based experimental model of the one-dimensional acoustic field is developed. First, the conventional method for gas pulsation measurement and prediction, which separates the incident and reflected wave of acoustic waves traveling in the frequency domain, is discussed. Then, regression based on our proposed simple model, which is able to predict gas pulsation compared to the conventional method, is introduced for the analysis of a reciprocating compressor(The conventional method requires the value of sound speed in the piping line for the reciprocating compressor). A numerical prediction is made for the regression method. Three power spectrum values along the discharge pipeline are used for analysis, and two values are used for verification. Our results are in a good agreement with the conventional method.

  5. Finding the First Cosmic Explosions. III. Pair-Pulsational Supernovae

    CERN Document Server

    Whalen, Daniel J; Even, Wesley; Woosley, S E; Heger, Alexander; Stiavelli, Massimo; Fryer, Chris L

    2013-01-01

    Population III supernovae have been the focus of growing attention because of their potential to directly probe the properties of the first stars, particularly the most energetic events that can be seen at the edge of the observable universe. But until now pair-pulsation supernovae, in which explosive thermonuclear burning in massive stars fails to unbind them but can eject their outer layers into space, have been overlooked as cosmic beacons at the earliest redshifts. These shells can later collide and, like Type IIn supernovae, produce superluminous events in the UV at high redshifts that could be detected in the near infrared today. We present numerical simulations of a 110 M$_{\\odot}$ pair-pulsation explosion done with the Los Alamos radiation hydrodynamics code RAGE. We find that collisions between consecutive pair pulsations are visible in the near infrared out to z $\\sim$ 15 - 20 and can probe the earliest stellar populations at cosmic dawn.

  6. New DA white dwarf evolutionary models and their pulsational properties

    CERN Document Server

    Corsico, A H; Benvenuto, O G; Serenelli, A M

    2001-01-01

    In this letter we investigate the pulsational properties of ZZ Ceti stars on the basis of new white dwarf evolutionary models calculated in a self-consistent way with the predictions of time dependent element diffusion and nuclear burning. In addition, full account is taken of the evolutionary stages prior to the white dwarf formation. Emphasis is placed on the trapping properties of such models. By means of adiabatic, non-radial pulsation calculations, we find, as a result of time dependent diffusion, a much weaker mode trapping effect, particularly for the high-period regime of the pulsation g-spectrum. This result is valid at least for models with massive hydrogen-rich envelopes. Thus, mode trapping would not be an effective mechanism to explain the fact that all the high periods expected from standard models of stratified white dwarfs are not observed in the ZZ Ceti stars.

  7. On the pulsation modes and masses of RGB OSARGs

    Directory of Open Access Journals (Sweden)

    Saio H.

    2013-03-01

    Full Text Available OSARG (OGLE Small Amplitude Red Giants variables are RGB or AGB stars that show multi-periodic light variations with periods of about 10-100 days. Comparing linear nonadiabatic pulsation periods and period ratios with observed ones, we determined pulsation modes and masses of the RGB OSARG variables in the LMC. We found that pulsations of OSARGs involve radial 1st to 3rd overtones, p4 of l = 1, and p2 of l = 2 modes. The range of mass isfound to be 0.9-1.4M⊙ for RGB OSARGs and their mass-luminosity relation is logL/L⊙ = 0.79 M/M⊙ + 2.2.

  8. Stellar Pulsations, Impact of New Instrumentation and New Insights

    CERN Document Server

    Garrido, R; Balona, L; Christensen-Dalsgaard, J; 20th Stellar Pulsation Conference Series

    2013-01-01

    Analyses of photometric time series obtained from the MOST, CoRoT and Kepler space missions were presented at the 20th conference on Stellar Pulsations (Granada, September 2011). These results are leading to a re-appraisal of our views on stellar pulsation in some stars and posing some new and unexpected challenges. The very important and exciting role played by innovative ground-based observational techniques, such as interferometric measurements of giant pulsating stars and high-resolution spectroscopy in the near infrared, is also discussed. These Proceedings are distinguished by the format of the conference, which brings together a variety of related but different topics not found in other meetings of this nature.

  9. Search for pulsations in the LMXB EXO 0748-676

    Institute of Scientific and Technical Information of China (English)

    Chetana Jain; Biswajit Paul

    2011-01-01

    We present here results from our search for X-ray pulsations of the neutron star in the low mass X-ray binary EXO 0748-676 at a frequency near the burstoscillation frequency of 44.7 Hz.Using the observations made with the Proportional Counter Array onboard the Rossi X-ray Timing Explorer, we did not find any pulsations in the frequency band of 44.4 Hz to 45.0 Hz and obtained a 3σ upper limit of 0.47% on the pulsed fraction for any possible underlying pulsation in this frequency band.We also discuss the importance of EXO 0748-676 as a promising source for the detection of Gravitational Waves.

  10. Articulated pipes conveying fluid pulsating with high frequency

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    1999-01-01

    Stability and nonlinear dynamics of two articulated pipes conveying fluid with a high-frequency pulsating component is investigated. The non-autonomous model equations are converted into autonomous equations by approximating the fast excitation terms with slowly varying terms. The downward hanging...... pipe position will lose stability if the mean flow speed exceeds a certain critical value. Adding a pulsating component to the fluid flow is shown to stabilize the hanging position for high values of the ratio between fluid and pipe-mass, and to marginally destabilize this position for low ratios....... An approximate nonlinear solution for small-amplitude flutter oscillations is obtained using a fifth-order multiple scales perturbation method, and large-amplitude oscillations are examined by numerical integration of the autonomous model equations, using a path-following algorithm. The pulsating fluid component...

  11. Outbursts in Two New Cool Pulsating DA White Dwarfs

    Science.gov (United States)

    Bell, Keaton J.; Hermes, J. J.; Montgomery, M. H.; Gentile Fusillo, N. P.; Raddi, R.; Gänsicke, B. T.; Winget, D. E.; Dennihy, E.; Gianninas, A.; Tremblay, P.-E.; Chote, P.; Winget, K. I.

    2016-10-01

    The unprecedented extent of coverage provided by Kepler observations recently revealed outbursts in two hydrogen-atmosphere pulsating white dwarfs (DAVs) that cause hours-long increases in the overall mean flux of up to 14%. We have identified two new outbursting pulsating white dwarfs in K2, bringing the total number of known outbursting white dwarfs to four. EPIC 211629697, with {T}{eff} = 10,780 ± 140 K and {log} g = 7.94 ± 0.08, shows outbursts recurring on average every 5.0 days, increasing the overall flux by up to 15%. EPIC 229227292, with {T}{eff} = 11,190 ± 170 K and {log} g = 8.02 ± 0.05, has outbursts that recur roughly every 2.4 days with amplitudes up to 9%. We establish that only the coolest pulsating white dwarfs within a small temperature range near the cool, red edge of the DAV instability strip exhibit these outbursts.

  12. The Metallicity Dependence of the Cepheid P-L Relation in M101

    CERN Document Server

    Mager, Violet A; Freedman, Wendy L

    2013-01-01

    The impact of metallicity on the Cepheid Period-Luminosity (P-L) relation is investigated using HST ACS V and I images of M101. Variations in the reddening-free Wesenheit parameter (W), which is employed as a proxy for luminosity, are examined as a function of the radial distance from the center of M101 (and thus metallicity). We determine that there is no dependence of the slope on metallicity. However, the intercept is found to depend on metallicity by -0.33 +/- 0.12 mag/dex and -0.71 +/- 0.17 mag/dex using 2 and 3 sigma rejection criteria, respectively. Sigma-clipping impacts the derived metallicity dependence, and the 2-sigma criterion applied likely mitigates blending, particularly in the crowded inner regions of M101. A metallicity-corrected distance modulus of 28.96 +/- 0.11 for M101 is obtained from 619 Cepheids, a result that agrees with the recently determined SN Ia distance. The metallicity effects described can be bypassed by working at near and mid-infrared wavelengths (e.g., the Carnegie Hubble ...

  13. Period-luminosity relations for Small Magellanic Cloud Cepheid based on AKARI archival data

    Science.gov (United States)

    Ngeow, Chow-Choong; Citro, Danielle M.; Kanbur, Shashi M.

    2012-02-01

    In this work we matched the AKARI archival data to the Optical Gravitational Lensing Experiment III (OGLE-III) catalogue to derive the mid-infrared period-luminosity (PL) relations for Small Magellanic Cloud (SMC) Cepheids. Mismatched AKARI sources were eliminated using random-phase colours obtained from the full I-band light curves from OGLE-III. It was possible to derive PL relations in the N3 and N4 bands only, although the S7-, S11-, L15- and L24-band data were also tested. Random-phase correction was included when deriving the PL relation in the N3 and N4 bands using the available time of observations from AKARI data. The final adopted PL relations were N3 =-3.370 log P + 16.527 and N4 =-3.402 log P + 16.556. However, these PL relations may be biased due to the small number of Cepheids in the sample.

  14. Period-Luminosity Relations for Small Magellanic Cloud Cepheid Based on AKARI Archival Data

    CERN Document Server

    Ngeow, Chow-Choong; Kanbur, Shashi M

    2011-01-01

    In this work we matched the AKARI archival data to the Optical Gravitational Lensing Experiment-III (OGLE-III) catalog to derive the mid-infrared period luminosity (PL) relations for Small Magellanic Cloud (SMC) Cepheids. Mismatched AKARI sources were eliminated using random-phase colors obtained from the full I-band light curves from OGLE-III. It was possible to derive PL relations in the N3 and N4 bands only, although the S7, S11, L15, and L24 band data were also tested. Random-phase correction was included when deriving the PL relation in the N3 and N4 bands using the available time of observations from AKARI data. The final adopted PL relations were: N3 = -3.370 logP + 16.527 and N4 = -3.402 logP + 16.556. However, these PL relations may be biased due to the small number of Cepheids in the sample.

  15. On the metallicity distribution of classical Cepheids in the Galactic inner disk

    CERN Document Server

    Genovali, K; Bono, G; Romaniello, M; Primas, F; Fabrizio, M; Buonanno, R; François, P; Inno, L; Laney, C D; Matsunaga, N; Pedicelli, S; Thévenin, F

    2013-01-01

    We present homogeneous and accurate iron abundances for almost four dozen (47) of Galactic Cepheids using high-spectral resolution (R$\\sim$40,000) high signal-to-noise ratio (SNR $\\ge$ 100) optical spectra collected with UVES at VLT. A significant fraction of the sample (32) is located in the inner disk (RG $le$ 6.9 kpc) and for half of them we provide new iron abundances. Current findings indicate a steady increase in iron abundance when approaching the innermost regions of the thin disk. The metallicity is super-solar and ranges from 0.2 dex for RG $\\sim$ 6.5 kpc to 0.4 dex for RG $\\sim$ 5.5 kpc. Moreover, we do not find evidence of correlation between iron abundance and distance from the Galactic plane. We collected similar data available in the literature and ended up with a sample of 420 Cepheids. Current data suggest that the mean metallicity and the metallicity dispersion in the four quadrants of the Galactic disk attain similar values. The first-second quadrants show a more extended metal-poor tail, w...

  16. Bimodal chemical evolution of the Galactic disk and the Barium abundance of Cepheids

    CERN Document Server

    Lepine, Jacques R D; Barros, Douglas A; Junqueira, Thiago C; Scarano, Sergio

    2013-01-01

    In order to understand the Barium abundance distribution in the Galactic disk based on Cepheids, one must first be aware of important effects of the corotation resonance, situated a little beyond the solar orbit. The thin disk of the Galaxy is divided in two regions that are separated by a barrier situated at that radius. Since the gas cannot get across that barrier, the chemical evolution is independent on the two sides of it. The barrier is caused by the opposite directions of flows of gas, on the two sides, in addition to a Cassini-like ring void of HI (caused itself by the flows). A step in the metallicity gradient developed at corotation, due to the difference in the average star formation rate on the two sides, and to this lack of communication between them. In connection with this, a proof that the spiral arms of our Galaxy are long-lived (a few billion years) is the existence of this step. When one studies the abundance gradients by means of stars which span a range of ages, like the Cepheids, one has...

  17. Flame fronts in Supernovae Ia and their pulsational stability

    CERN Document Server

    Glazyrin, S I; Dolgov, A D

    2013-01-01

    The structure of the deflagration burning front in type Ia supernovae is considered. The parameters of the flame are obtained: its normal velocity and thickness. The results are in good agreement with previous work of different authors. After that the question of pulsational instability of the flame subject to plane perturbations is considered. The flame can be unstable if hydrodynamics can be ignored, e.g. in solid-body propellants. However, with account of hydrodynamics we find that the flame in type Ia supernovae is pulsationally stable with realistic parameters of reactions and thermal conduction.

  18. Search for Optical Pulsations in PSR J0337+1715

    CERN Document Server

    Strader, M J; Meeker, S R; Szypryt, P; Walter, A B; van Eyken, J C; Ulbricht, G; Stoughton, C; Bumble, B; Kaplan, D L; Mazin, B A

    2016-01-01

    We report on a search for optical pulsations from PSR J0337+1715 at its observed radio pulse period. PSR J0337+1715 is a millisecond pulsar (2.7 ms spin period) in a triple hierarchical system with two white dwarfs, and has a known optical counterpart with g-band magnitude 18. The observations were done with the Array Camera for Optical to Near-IR Spectrophotometry (ARCONS) at the 200" Hale telescope at Palomar Observatory. No significant pulsations were found in the range 4000-11000 angstroms, and we can limit pulsed emission in g-band to be fainter than 25 mag.

  19. Cycles of self-pulsations in a photonic integrated circuit.

    Science.gov (United States)

    Karsaklian Dal Bosco, Andreas; Kanno, Kazutaka; Uchida, Atsushi; Sciamanna, Marc; Harayama, Takahisa; Yoshimura, Kazuyuki

    2015-12-01

    We report experimentally on the bifurcation cascade leading to the appearance of self-pulsation in a photonic integrated circuit in which a laser diode is subjected to delayed optical feedback. We study the evolution of the self-pulsing frequency with the increase of both the feedback strength and the injection current. Experimental observations show good qualitative accordance with numerical results carried out with the Lang-Kobayashi rate equation model. We explain the mechanism underlying the self-pulsations by a phenomenon of beating between successive pairs of external cavity modes and antimodes.

  20. Latitude distribution of nonradial pulsations in rapidly rotating B stars

    Science.gov (United States)

    Jankov, S.; Mathias, P.; Domiciano de Souza, A., Jr.; Uytterhoeven, K.; Aerts, C.

    2004-05-01

    We present a method for the analysis of latitude distribution associated with temperature and/or velocity perturbations of the stellar surface due to non-radial pulsation (NRP) modes in rapidly rotating B stars. The technique is applied together with Fourier Doppler Imaging (FDI) to high resolution and high signal-to-noise ratio spectroscopic observations of ɛ Per. The main advantage of this approach is that it decomposed complex multi-periodic line profile variations into single components, allowing the detailed analysis of each mode seperately. We study the 10.6-d-1 frequency that is particularly important for modal analysis of non-radial pulsations in the star.

  1. First Kepler results on compact pulsators - V. Slowly pulsating subdwarf B stars in short-period binaries

    DEFF Research Database (Denmark)

    Kawaler, Stephen D.; Reed, Michael D.; Østensen, Roy H.

    2010-01-01

    The survey phase of the Kepler Mission includes a number of hot subdwarf B (sdB) stars to search for non-radial pulsations. We present our analysis of two sdB stars that are found to be g-mode pulsators of the V1093 Her class. These two stars also display the distinct irradiation effect typical...... of sdB stars with a close M-dwarf companion with orbital periods of less than half a day. Because the orbital period is so short, the stars should be in synchronous rotation, and if so, the rotation period should imprint itself on the multiplet structure of the pulsations. However, we do not find clear...... evidence for such rotational splitting. Though the stars do show some frequency spacings that are consistent with synchronous rotation, they also display multiplets with splittings that are much smaller. Longer-duration time series photometry will be needed to determine if those small splittings...

  2. M dwarf search for pulsations within Kepler GO program

    CERN Document Server

    Rodríguez-López, C; MacDonald, J; Amado, P J; Carosso, A

    2014-01-01

    We present the analysis of four M dwarf stars -plus one M giant that seeped past our selection criteria- observed in Cycle 3 of Kepler Guest Observer program (GO3) in a search for intrinsic pulsations. Stellar oscillations in M dwarfs were theoretically predicted by Rodr\\'iguez-L\\'opez et al. (2012) to be in the range ~20-40 min and ~4-8 h, depending on the age and the excitation mechanism. We requested Kepler short cadence observations to have an adequate sampling of the oscillations. The targets were chosen on the basis of detectable rotation in the initial Kepler results, biasing towards youth.The analysis reveals no oscillations attributable to pulsations at a detection limit of several parts per million, showing that either the driving mechanisms are not efficient in developing the oscillations to observable amplitudes, or that if pulsations are driven, the amplitudes are very low. The size of the sample, and the possibility that the instability strip is not pure, allowing the coexistence of pulsators an...

  3. Experimental and numerical study of pulsating transversal jets

    Science.gov (United States)

    Goldfeld, M. A.; Fedorova, N. N.; Fedorchenko, I. A.; Pozdnyakov, G. A.; Timofeev, K. Yu.; Zhakharova, Yu. V.

    2015-06-01

    Paper presents results of joint experimental and numerical investigation of pulsating jet penetration into still air and supersonic flow. Goal of the study is to investigate two-dimensional (2D) Hartmann generator (HG) properties and clear up its possibilities in providing better mixing between air and secondary (injected) gases.

  4. Solar Microwave and Geomagnetic Field Pulsations as Space Weather Factors

    Science.gov (United States)

    Snegirev, S. D.; Fridman, V. M.; Sheiner, O. A.

    The procedure of short-term prediction of main solar flares was created on the basis of temporal behavior of long-period microwave pulsations [Kobrin et al., 1997]. At the same time it was shown that before these flares one could observe long-period (T > 20 min) pulsations of geomagnetic field [Kobrin et al, 1985]. The resemblance between microwave and geomagnetic pulsations (duration and temporal behaviour) allows us to propose the common nature of these variations: the reflection of solar energy accumulation and instabilities in solar centers of activity. To be an important factor of Space Weather above mentioned pulsations can be useful for constructing the procedures to predict the near Earth's conditions. This work was supported by the Russian Foundation for Fundamental Research and Russian Federal Programm "Astronomy" (grant N 1.5.5.5). Kobrin M.M, Malygin V.I., Snegirev S.D. Plan. Space Sci., 33, N11, p. 1251 (1985). Kobrin M.M., Pakhomov V.V., Snegirev S.D., Fridman V.M., Sheiner O.A. Proc. Workshop `STPW-96', Tokyo: RCW, p. 200 (1997).

  5. EXOTIME: searching for planets around pulsating subdwarf B stars

    CERN Document Server

    Schuh, Sonja; Lutz, Ronny; Loeptien, Bjoern; Green, Elizabeth M; Ostensen, Roy H; Leccia, Silvio; Kim, Seung-Lee; Fontaine, Gilles; Charpinet, Stephane; Francoeur, Myriam; Randall, Suzanna; Rodriguez-Lopez, Cristina; van Grootel, Valerie; Odell, Andrew P; Paparo, Margit; Bognar, Zsofia; Papics, Peter; Nagel, Thorsten; Beeck, Benjamin; Hundertmark, Markus; Stahn, Thorsten; Dreizler, Stefan; Hessman, Frederic V; Dall'Ora, Massimo; Mancini, Dario; Cortecchia, Fausto; Benatti, Serena; Claudi, Riccardo; Janulis, Rimvydas; 10.1007/s10509-010-0356-4

    2010-01-01

    In 2007, a companion with planetary mass was found around the pulsating subdwarf B star V391 Pegasi with the timing method, indicating that a previously undiscovered population of substellar companions to apparently single subdwarf B stars might exist. Following this serendipitous discovery, the EXOTIME (http://www.na.astro.it/~silvotti/exotime/) monitoring program has been set up to follow the pulsations of a number of selected rapidly pulsating subdwarf B stars on time-scales of several years with two immediate observational goals: 1) determine Pdot of the pulsational periods P 2) search for signatures of substellar companions in O-C residuals due to periodic light travel time variations, which would be tracking the central star's companion-induced wobble around the center of mass. These sets of data should therefore at the same time: on the one hand be useful to provide extra constraints for classical asteroseismological exercises from the Pdot (comparison with "local" evolutionary models), and on the othe...

  6. The triple-mode pulsating variable V823 Cas

    CERN Document Server

    Jurcsik, J; Varadi, M; Henden, A; Hurta, Z; Lakatos, B; Posztobanyi, K; Klagyivik, P; Sodor, A; Hurta, Zs.

    2005-01-01

    Based on extended multicolour CCD photometry of the triple-mode radial pulsator V823 Cas we studied the properties of the coupling frequencies invoked by nonlinear processes. Our results support that a resonance connection as suggested by Antonello & Aikawa (1998) affects the mode coupling behaviour. The P1/P0 period ratio of V823 Cas has an "out of range" value if compared with the period ratios of the known double mode pulsators, while the P2/P1 period ratio is normal. The periods and period ratios cannot be consistently interpret without conflict with pulsation and/or evolution models. We attempt to interpret this failure by the suggestion that at present, the periods of V823 Cas are in a transient, resonance affected state, thus do not reflect the true parameters of the object. The anomalous period change behaviour of the fundamental and second overtone modes supports this idea. We have also raised the possibility that a f0 + f2 = 2f1 resonance may act in triple mode pulsators.

  7. Transformerless photovoltaic inverters with leakage current and pulsating power elimination

    DEFF Research Database (Denmark)

    Tang, Yi; Yao, Wenli; Wang, H.;

    2015-01-01

    that is inherent in single-phase PV systems. By properly injecting CM voltages to the output filter capacitors, the pulsating power can be decoupled from the dc-link. Therefore, it is possible to use long lifetime film capacitors instead of electrolytic capacitors to improve the reliability of the PV system...

  8. Pressure pulsations in reciprocating pump piping systems Part 1: Modelling

    CERN Document Server

    Shu, Jian-Jun; Edge, Kevin A

    2014-01-01

    A distributed parameter model of pipeline transmission line behaviour is presented, based on a Galerkin method incorporating frequency-dependent friction. This is readily interfaced to an existing model of the pumping dynamics of a plunger pump to allow time-domain simulations of pipeline pressure pulsations in both suction and delivery lines. A new model for the pump inlet manifold is also proposed.

  9. First Kepler results on compact pulsators VI. Targets in the final half of the survey phase

    DEFF Research Database (Denmark)

    H. Østensen, R.; Silvotti, R.; Charpinet, S.;

    2011-01-01

    We present results from the final six months of a survey to search for pulsations in white dwarfs and hot subdwarf stars with the Kepler spacecraft. Spectroscopic observations are used to separate the objects into accurate classes, and we explore the physical parameters of the subdwarf B (sd....... No V361 Hya type of short-period pulsating sdB stars were found in this half, leaving us with a total of one single multiperiodic V361 Hya and 13 V1093 Her pulsators for the full survey. Except for the sdB pulsators, no other clearly pulsating hot subdwarfs or white dwarfs were found, although a few...

  10. On the metallicity distribution of classical Cepheids in the Galactic inner disk

    Science.gov (United States)

    Genovali, K.; Lemasle, B.; Bono, G.; Romaniello, M.; Primas, F.; Fabrizio, M.; Buonanno, R.; François, P.; Inno, L.; Laney, C. D.; Matsunaga, N.; Pedicelli, S.; Thévenin, F.

    2013-06-01

    We present homogeneous and accurate iron abundances for almost four dozen (47) of Galactic Cepheids using high-spectral resolution (R ~ 40 000) high signal-to-noise ratio (S/N ≥ 100) optical spectra collected with UVES at VLT. A significant fraction of the sample (32) is located in the inner disk (RG ≤ 6.9 kpc) and for half of them we provide new iron abundances. Current findings indicate a steady increase in iron abundance when approaching the innermost regions of the thin disk. The metallicity is super-solar and ranges from 0.2 dex for RG ~ 6.5 kpc to 0.4 dex for RG ~ 5.5 kpc. Moreover, we do not find evidence of correlation between iron abundance and distance from the Galactic plane. We collected similar data available in the literature and ended up with a sample of 420 Cepheids. Current data suggest that the mean metallicity and the metallicity dispersion in the four quadrants of the Galactic disk attain similar values. The first-second quadrants show a more extended metal-poor tail, while the third-fourth quadrants show a more extended metal-rich tail, but the bulk of the sample is at solar iron abundance. Finally, we found a significant difference between the iron abundance of Cepheids located close to the edge of the inner disk ([Fe/H] ~ 0.4) and young stars located either along the Galactic bar or in the nuclear bulge ([Fe/H] ~ 0). Thus suggesting that the above regions have had different chemical enrichment histories. The same outcome applies to the metallicity gradient of the Galactic bulge, since mounting empirical evidence indicates that the mean metallicity increases when moving from the outer to the inner bulge regions. Based on spectra collected with the spectrograph UVES available at the ESO Very Large Telescope (VLT), Cerro Paranal, (081.D-0928(A) PI: S. Pedicelli - 082.D-0901(A) PI: S. Pedicelli).Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc

  11. Asteroseismology of hybrid δ Scuti-γ Doradus pulsating stars

    Science.gov (United States)

    Sánchez Arias, J. P.; Córsico, A. H.; Althaus, L. G.

    2017-01-01

    Context. Hybrid δ Scuti-γ Doradus pulsating stars show acoustic (p) oscillation modes typical of δ Scuti variable stars, and gravity (g) pulsation modes characteristic of γ Doradus variable stars simultaneously excited. Observations from space missions such as MOST, CoRoT, and Kepler have revealed a large number of hybrid δ Scuti-γ Doradus pulsators, thus paving the way for an exciting new channel of asteroseismic studies. Aims: We perform detailed asteroseismological modelling of five hybrid δ Scuti-γ Doradus stars. Methods: A grid-based modeling approach was employed to sound the internal structure of the target stars using stellar models ranging from the zero-age main sequence to the terminal-age main sequence, varying parameters such as stellar mass, effective temperature, metallicity and core overshooting. Their adiabatic radial (ℓ = 0) and non-radial (ℓ = 1,2,3) p and g mode periods were computed. Two model-fitting procedures were used to search for asteroseismological models that best reproduce the observed pulsation spectra of each target star. Results: We derive the fundamental parameters and the evolutionary status of five hybrid δ Scuti-γ Doradus variable stars recently observed by the CoRoT and Kepler space missions: CoRoT 105733033, CoRoT 100866999, KIC 11145123, KIC 9244992, and HD 49434. The asteroseismological model for each star results from different criteria of model selection, in which we take full advantage of the richness of periods that characterises the pulsation spectra for this kind of star.

  12. ON THE POLARIZATION PROPERTIES OF MAGNETAR GIANT FLARE PULSATING TAILS

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yuan-Pei [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Zhang, Bing, E-mail: yypspore@gmail.com, E-mail: zhang@physics.unlv.edu [Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154 (United States)

    2015-12-10

    Three giant flares have been detected so far from soft gamma-ray repeaters, each characterized by an initial short hard spike and a pulsating tail. The observed pulsating tails are characterized by a duration of ∼100 s, an isotropic energy of ∼10{sup 44} erg, and a pulse period of a few seconds. The pulsating tail emission likely originates from the residual energy after the intense energy release during the initial spike, which forms a trapped fireball composed of a photon-pair plasma in a closed-field-line region of the magnetars. Observationally the spectra of pulsating tails can be fitted by the superposition of a thermal component and a power-law component, with the thermal component dominating the emission in the early and late stages of the pulsating-tail observations. In this paper, assuming that the trapped fireball is from a closed-field-line region in the magnetosphere, we calculate the atmospheric structure of the optically thick trapped fireball and the polarization properties of the trapped fireball. By properly treating the photon propagation in a hot, highly magnetized, electron–positron pair plasma, we tally photons in two modes (O mode and E mode) at a certain observational angle through Monte Carlo simulations. Our results suggest that the polarization degree depends on the viewing angle with respect to the magnetic axis of the magnetar, and can be as high as Π ≃ 30% in the 1–30 keV band, and Π ≃ 10% in the 30–100 keV band, if the line of sight is perpendicular to the magnetic axis.

  13. Indirect imaging of nonradial pulsations in a rapidly oscillating Ap star

    CERN Document Server

    Kochukhov, O P

    2004-01-01

    Many types of stars show periodic variations of radius and brightness, which are commonly referred to as `stellar pulsations'. Observed pulsational characteristics are determined by fundamental stellar parameters. Consequently, investigations of stellar pulsations provide a unique opportunity to verify and refine our understanding of the evolution and internal structure of stars. However, a key boundary condition for this analysis -- precise information about the geometry of pulsations in the outer stellar envelopes -- has been notoriously difficult to secure. Here we demonstrate that it is possible to solve this problem by constructing an `image' of the pulsation velocity field from time series observations of stellar spectra. This technique is applied to study the geometry of nonradial pulsations in a prototype magnetic oscillating (roAp) star HR 3831. Our velocity map directly demonstrates an alignment of pulsations with the axis of the global magnetic field and reveals a significant magnetically induced d...

  14. VizieR Online Data Catalog: AKARI observations of SMC Cepheids (Ngeow+, 2012)

    Science.gov (United States)

    Ngeow, C.-C.; Citro, D. M.; Kanbur, S. M.

    2012-07-01

    The AKARI data used in this work is based on the SMC bright point source catalogue presented in Ita et al. (2010, Cat. J/PASJ/62/273). Photometry in 3.2um (N3, 12899 sources), 4.1um (N4, 9748 sources), 7um (S7, 1838 sources), 11um (S11, 1045 sources), 15um (L15, 479 sources) and 24um (L24, 356 sources) bands provided from the AKARI catalogue. This catalogue was matched to the Optical Gravitational Lensing Experiment III (OGLE-III) SMC fundamental mode (FU) Cepheid catalogue from Soszynski et al. (2010, Cat. J/AcA/60/17). (1 data file).

  15. The Galaxy Kinematics from the Cepheids with the Proper Motions from the GAIA DR1 Catalog

    CERN Document Server

    Bobylev, V V

    2016-01-01

    The sample of classic Cepheids with known distances and line-of-sight velocities is supplemented by the proper motions from the Gaia DR1 catalog. From spatial velocities of 260 stars the components of the peculiar Solar velocity: (U,V,W)_\\odot=(7.90,11.73,7.39)+/-(0.65,0.77,0.62) km/s, parameters of the Galactic rotation curve: \\Omega_0 =28.840+/-.33 km/s/kpc, \\Omega'_0=-4.05+/-0.10 km/s/kpc^2, \\Omega''_0=0.805+/-0.067 km/s/kpc^3 are obtained. For the adopted Galactocentric Solar distance R_0=8 kpc the linear circular velocity of the Local Standard of Rest is found as V_0=231+/-6 km/s.

  16. V1135 HERCULIS: A DOUBLE-LINED ECLIPSING BINARY WITH AN ANOMALOUS CEPHEID

    Directory of Open Access Journals (Sweden)

    E. Sipahi

    2013-01-01

    Full Text Available BV R light curves and radial velocities for the double-lined eclipsing binary V1135 Her were obtained. Our analyses of the multi-color light curves and radial velocities led to the determination of fundamental stellar properties of both components of the interesting system V1135 Her. The system consists of two evolved stars, G1+K3 between giants and supergiants, with masses of M1 = 1.461±0.054 M⊙ and M2 = 0.504 ± 0.040 M⊙ and radii of R1 = 27.1 ± 0.4 R⊙ and R2 = 10.4 ± 0.2 R⊙ . Most of the observed and calculated parameters of the V1135 Her and its location on the color-magnitude and period-luminosity diagrams lead to a classification of an Anomalous Cepheid.

  17. VizieR Online Data Catalog: 5yr radial velocity measurements of 19 Cepheids (Anderson+, 2016)

    Science.gov (United States)

    Anderson, R. I.; Casertano, S.; Riess, A. G.; Melis, C.; Holl, B.; Semaan, T.; Papics, P. I.; Blanco-Cuaresma, S.; Eyer, L.; Mowlavi, N.; Palaversa, L.; Roelens, M.

    2016-11-01

    We here present a detailed investigation of spectroscopic binarity of the 19 Cepheids for which HST/WFC3 spatial scan parallaxes are being recorded (Riess+ 2014ApJ...785..161R; Casertano+ 2016ApJ...825...11C). We have secured time-series observations from three different high-resolution echelle spectrographs: Coralie (R~60000) at the Swiss 1.2m Euler telescope located at La Silla Observatory, Chile; Hermes (R~85000) at the Flemish 1.2m Mercator telescope located at the Roque de los Muchachos Observatory on La Palma, Canary Islands, Spain; Hamilton (R~60000) at the 3m Shane telescope located at Lick Observatory, California, USA. (8 data files).

  18. Effects of self-pulsation on the spray characteristics of gas-liquid swirl coaxial injector

    Science.gov (United States)

    Kang, Zhongtao; Li, Qinglian; Cheng, Peng; Zhang, Xinqiao; Wang, Zhen-guo

    2016-10-01

    To understand the influence of self-pulsation on the spray characteristics of gas-liquid swirl coaxial injector, a back-lighting photography technique has been employed to capture the instantaneous self-pulsated spray and stable spray images with a high speed camera. The diameter and velocity of the droplets in the spray have been characterized with a Dantec Phase Doppler Anemometry (PDA) system. The effects of self-pulsation on the spray pattern, primary breakup, spray angle, diameter and velocity distribution and mass flow rate distribution are analyzed and discussed. The results show that the spray morphology is greatly influenced by self-pulsation. The stable spray has a cone shape, while the self-pulsated spray looks like a Christmas tree. The main difference of these two sprays is the primary breakup. The liquid film of stable spray keeps stable while that of self-pulsated spray oscillates periodically. The film width of self-pulsated spray varies in a large range with 'neck' and 'shoulder' features existing. The liquid film of self-pulsated spray breaks up at the second neck, and then the second shoulder begins to breakup into ligaments. The self-pulsated spray produces droplet clusters periodically, varies horizontal spray width and mass flux periodically. From the point of spatial distribution, self-pulsation is good for the spray, it uniformizes the mass flux along radius and increases the spray angle. However, when self-pulsation occurs, the SMD distribution varies from an inverted V shape to a hollow cone shape, and SMD increases at all the measuring points. Namely, from the point of atomization performance, self-pulsation has negative effects even when the breakup length is smaller. The effects of self-pulsation on the diameter and velocity distributions of the spray are mainly in the center part of the spray. The periphery of stable and self-pulsated spray has similar diameter and velocity distribution.

  19. BINARY CEPHEIDS: SEPARATIONS AND MASS RATIOS IN 5 M {sub ☉} BINARIES

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Nancy Remage; Karovska, Margarita; Tingle, Evan [Smithsonian Astrophysical Observatory, MS 4, 60 Garden Street, Cambridge, MA 02138 (United States); Bond, Howard E. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Schaefer, Gail H. [The CHARA Array, Georgia State University, P.O. Box 3965, Atlanta, GA 30302-3965 (United States); Mason, Brian D., E-mail: nevans@cfa.harvard.edu, E-mail: heb11@psu.edu, E-mail: schaefer@chara-array.org [US Naval Observatory, 3450 Massachusetts Avenue, NW, Washington, DC 20392-5420 (United States)

    2013-10-01

    Deriving the distribution of binary parameters for a particular class of stars over the full range of orbital separations usually requires the combination of results from many different observing techniques (radial velocities, interferometry, astrometry, photometry, direct imaging), each with selection biases. However, Cepheids—cool, evolved stars of ∼5 M {sub ☉}—are a special case because ultraviolet (UV) spectra will immediately reveal any companion star hotter than early type A, regardless of the orbital separation. We have used International Ultraviolet Explorer UV spectra of a complete sample of all 76 Cepheids brighter than V = 8 to create a list of all 18 Cepheids with companions more massive than 2.0 M {sub ☉}. Orbital periods of many of these binaries are available from radial-velocity studies, or can be estimated for longer-period systems from detected velocity variability. In an imaging survey with the Hubble Space Telescope Wide Field Camera 3, we resolved three of the companions (those of η Aql, S Nor, and V659 Cen), allowing us to make estimates of the periods out to the long-period end of the distribution. Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations, orbital periods, and mass ratios. The distribution of orbital periods shows that the 5 M {sub ☉} binaries have systematically shorter periods than do 1 M {sub ☉} stars. Our data also suggest that the distribution of mass ratios depends on both binary separation and system multiplicity. The distribution of mass ratios as a function of orbital separation, however, does not depend on whether a system is a binary or a triple.

  20. Pulsating combustion - Combustion characteristics and reduction of emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, Annika

    1999-11-01

    In the search for high efficiency combustion systems pulsating combustion has been identified as one of the technologies that potentially can meet the objectives of clean combustion and good fuel economy. Pulsating combustion offers low emissions of pollutants, high heat transfer and efficient combustion. Although it is an old technology, the interest in pulsating combustion has been renewed in recent years, due to its unique features. Various applications of pulsating combustion can be found, mainly as drying and heating devices, of which the latter also have had commercial success. It is, however, in the design process of a pulse combustor, difficult to predict the operating frequency, the heat release etc., due to the lack of a well founded theory of the phenomenon. Research concerning control over the combustion process is essential for developing high efficiency pulse combustors with low emissions. Natural gas fired Helmholtz type pulse combustors have been the experimental objects of this study. In order to investigate the interaction between the fluid dynamics and the chemistry in pulse combustors, laser based measuring techniques as well as other conventional measuring techniques have been used. The experimental results shows the possibilities to control the combustion characteristics of pulsating combustion. It is shown that the time scales in the large vortices created at the inlet to the combustion chamber are very important for the operation of the pulse combustor. By increasing/decreasing the time scale for the large scale mixing the timing of the heat release is changed and the operating characteristics of the pulse combustor changes. Three different means for NO{sub x} reduction in Helmholtz type pulse combustors have been investigated. These include exhaust gas recirculation, alteration of air/fuel ratio and changed inlet geometry in the combustion chamber. All used methods achieved less than 10 ppm NO{sub x} emitted (referred to stoichiometric

  1. Optical Identification of Cepheids in 19 Host Galaxies of Type Ia Supernovae and NGC 4258 with the Hubble Space Telescope

    CERN Document Server

    Hoffmann, Samantha L; Riess, Adam G; Yuan, Wenlong; Casertano, Stefano; Filippenko, Alexei V; Tucker, Brad E; Chornock, Ryan; Silverman, Jeffrey M; Welch, Douglas L; Goobar, Ariel; Amanullah, Rahman

    2016-01-01

    We present results of an optical search for Cepheid variable stars using the Hubble Space Telescope (HST) in 19 hosts of Type Ia supernovae (SNe Ia) and the maser-host galaxy NGC 4258, conducted as part of the SH0ES project (Supernovae and H0 for the Equation of State of dark energy). The targets include 9 newly imaged SN Ia hosts using a novel strategy based on a long-pass filter that minimizes the number of HST orbits required to detect and accurately determine Cepheid properties. We carried out a homogeneous reduction and analysis of all observations, including new universal variability searches in all SN Ia hosts, that yielded a total of 2200 variables with well-defined selection criteria -- the largest such sample identified outside the Local Group. These objects are used in a companion paper to determine the local value of H0 with a total uncertainty of 2.4%.

  2. Successful off-label use of the Cepheid Xpert GBS in a late-onset neonatal meningitis by Streptococcus agalactiae

    OpenAIRE

    Savini, Vincenzo; Marrollo, Roberta; Coclite, Eleonora; Fusilli, Paola; D’Incecco, Carmine; Fazii, Paolo

    2014-01-01

    We report the case of a late-onset neonatal meningitis by Streptococcus agalactiae (group B Streptococcus - GBS) that was diagnosed with a latex agglutination assay (on cerebrospinal fluid, CSF), as well as by using, for the first time, Xpert GBS (Cepheid, US) on CSF. Due to empirical antibiotics given before sampling, both CSF and blood culture were negative, so the abovementioned diagnostics was crucial. Moreover, the Xpert GBS assay, performed according to an off-label, modified protocol (...

  3. Features of Pc5 pulsations in the geomagnetic field, auroral luminosity, and Riometer absorption

    Science.gov (United States)

    Belakhovsky, V. B.; Pilipenko, V. A.; Samsonov, S. N.; Lorentsen, D.

    2016-01-01

    Simultaneous morning Pc5 pulsations ( f ~ 3-5 mHz) in the geomagnetic field, aurora intensities (in the 557.7 and 630.0 nm oxygen emissions and the 471.0 nm nitrogen emission), and riometer absorption, were studied based on the CARISMA, CANMOS, and NORSTAR network data for the event of January 1, 2000. According to the GOES-8 satellite observations, these Pc5 geomagnetic pulsations are observed as incompressible Alfvén waves with toroidal polarization in the magnetosphere. Although the Pc5 pulsation frequencies in auroras, the geomagnetic field, and riometer absorption are close to one another, stable phase relationships are not observed between them. Far from all trains of geomagnetic Pc5 pulsations are accompanied by corresponding auroral pulsations; consequently, geomagnetic pulsations are primary with respect to auroral pulsations. Both geomagnetic and auroral pulsations propagate poleward, and the frequency decreases with increasing geomagnetic latitude. When auroral Pc5 pulsations appear, the ratio of the 557.7/630.0 nm emission intensity sharply increases, which indicates that auroral pulsations result from not simply modulated particle precipitation but also an additional periodic acceleration of auroral electrons by the wave field. A high correlation is not observed between Pc5 pulsations in auroras and the riometer absorption, which indicates that these pulsations have a common source but different generation mechanisms. Auroral luminosity modulation is supposedly related to the interaction between Alfvén waves and the region with the field-aligned potential drop above the auroral ionosphere, and riometer absorption modulation is caused by the scattering of energetic electrons by VLF noise pulsations.

  4. Quantity Cognition: Numbers, Numerosity, Zero and Mathematics.

    Science.gov (United States)

    Harvey, Ben M

    2016-05-23

    Physical quantities differ from abstract numbers and mathematics, but recent results are revealing the neural representation of both: a new study demonstrates how an absence of quantity is transformed into a representation of zero as a number.

  5. The Cepheid Distance to NGC 1637: A Direct Test of the EPM Distance to SN 1999em

    CERN Document Server

    Leonard, D C; Ngeow, C C; Tanvir, N R; Leonard, Douglas C.; Kanbur, Shashi M.; Ngeow, Choong C.; Tanvir, Nial R.

    2003-01-01

    Type II-plateau supernovae (SNe II-P) are the classic variety of core-collapse events that result from isolated, massive stars with thick hydrogen envelopes intact at the time of explosion. Their distances are now routinely estimated through two techniques: the expanding photosphere method (EPM), a primary distance-determining method, and the recently developed standard-candle method (SCM), a promising secondary technique. Using Cycle 10 HST observations, we identify 41 Cepheid variable stars in NGC 1637, the host galaxy of the most thoroughly studied SN II-P to date, SN 1999em. Remarkably, the Cepheid distance that we derive to NGC 1637, D = 11.7 +/- 1.0 Mpc, is nearly 50% larger than earlier EPM distance estimates to SN 1999em. This is the first direct comparison between these two primary distance determining methods for a galaxy hosting a well-observed, spectroscopically and photometrically normal, SN II-P. Extensive consistency checks show strong evidence to support the Cepheid distance scale, so we are l...

  6. Study of the Thermal Pulsation of AGB Stars

    CERN Document Server

    Halabi, Ghina M

    2014-01-01

    A systematic investigation on the third dredge up in a 3M$_{\\odot}$, solar metallicity AGB star will be presented. The model evolves from the main sequence up to the Asymptotic Giant Branch (AGB). Intermediate mass stars are important because they contribute significantly via the slow neutron capture nucleosynthesis. The aim of this work is to gain insight on the behaviour of the AGB star during thermal pulsation. This investigation is based on an extended numerical simulation of the evolutionary phases and full, consistent AGB model calculations. In particular, the convective structure during pulsation will be studied, giving particular emphasis to the analysis of the stability of the Schwarzschild boundary that will eventually determine the occurrence of Third Dredge Up (hereafter referred to as TDUP). We provide a brief description of our updated evolutionary code and focus primarily on the obtaining the TDUP after 14 thermal pulses. We elaborate on the non-standard treatment of convection known as "oversh...

  7. The First Six Outbursting Cool DA White Dwarf Pulsators

    CERN Document Server

    Bell, Keaton J; Montgomery, M H; Winget, D E; Fusillo, N P Gentile; Raddi, R; Gänsicke, B T

    2016-01-01

    Extensive observations from the Kepler spacecraft have recently revealed a new outburst phenomenon operating in cool pulsating DA (hydrogen atmosphere) white dwarfs (DAVs). With the introduction of two new outbursting DAVs from K2 Fields 7 (EPIC 229228364) and 8 (EPIC 220453225) in these proceedings, we presently know of six total members of this class of object. We present the observational commonalities of the outbursting DAVs: (1) outbursts that increase the mean stellar flux by up to 15%, last many hours, and recur irregularly on timescales of days; (2) effective temperatures that locate them near the cool edge of the DAV instability strip; and (3) rich pulsation spectra with modes that are observed to wander in amplitude/frequency.

  8. Experimental investigation on a pulsating heat pipe with hydrogen

    Science.gov (United States)

    Deng, H. R.; Liu, Y. M.; Ma, R. F.; Han, D. Y.; Gan, Z. H.; Pfotenhauer, J. M.

    2015-12-01

    The pulsating heat pipe (PHP) has been increasingly studied in cryogenic application, for its high transfer coefficient and quick response. Compared with Nb3Sn and NbTi, MgB2 whose critical transformation temperature is 39 K, is expected to replace some high-temperature superconducting materials at 25 K. In order to cool MgB2, this paper designs a Hydrogen Pulsating Heat Pipe, which allows a study of applied heat, filling ratio, turn number, inclination angle and length of adiabatic section on the thermal performance of the PHP. The thermal performance of the hydrogen PHP is investigated for filling ratios of 35%, 51%, 70% at different heat inputs, and provides information regarding the starting process is received at three filling ratios.

  9. Experimental research on heat transfer of pulsating heat pipe

    Institute of Scientific and Technical Information of China (English)

    LI Jia; Yan Li

    2008-01-01

    Experimental research was conducted to understand heat transfer characteristic of pulsating heat pipe in this paper,and the PHP is made of high quality glass capillary tube. Under different fill ratio, heat transfer rate and many other influence factors, the flow patterns were observed in the start-up, transition and stable stage. The effects of heating position on heat transfer were discussed. The experimental results indicate that no annular flow appears in top heating condition. Under different fill ratios and heat transfer rate, the flow pattern in PHP is transferred from bulk flow to semi-annular flow and annular flow, and the performance of heat transfer is improved for down heating case. The experimental results indicate that the total heat resistant of PHP is increased with fill ratio, and heat transfer rate achieves optimum at filling rate 50%. But for pulsating heat pipe with changing diameters the thermal resistance is higher than that with uniform diameters.

  10. Pulsating laminar pipe flows with sinusoidal mass flux variations

    Science.gov (United States)

    Ünsal, B.; Ray, S.; Durst, F.; Ertunç, Ö.

    2005-11-01

    Combined analytical and experimental investigation of sinusoidal mass flow-controlled, pulsating, laminar and fully developed pipe flow was carried out. The experimental investigation employed a mass flow control unit built at LSTM-Erlangen for the present investigation. For the analytical investigation, the equations describing such flows were normalized to allow for a general solution, depending only on the normalized amplitude mA* of the mass flow pulsation and the normalized frequency F. The analytical and experimental results are presented in this normalized way and it is shown that good agreement between the results of the authors is obtained. A diagram is presented for the condition of flow reversal in terms of the dimensionless frequency F and the mass flow rate amplitude mA*.

  11. Pulsations and outbursts in Be stars: Small differences - big impacts

    CERN Document Server

    Baade, D; Pigulski, A; Carciofi, A; Handler, G; Kuschnig, R; Martayan, Ch; Mehner, A; Moffat, A F J; Pablo, H; Popowicz, A; Rucinski, S M; Wade, G A; Weiss, W W; Zwintz, K

    2016-01-01

    New high-cadence observations with BRITE covering many months confirm that coupled pairs of nonradial pulsation modes are widespread among early-type Be stars. With the difference frequency between the parental variations they may form a roughly sinusoidal variability or the amplitude may cyclicly vary. A first - amplified - beat pattern is also found. In all three cases the amplitudes of difference frequencies can exceed the amplitude sum of the base frequencies, and modulations of the star-to-circumstellar-disk mass-transfer rate may be associated with these slow variations. This suggests more strongly than any earlier observations that significant dissipation of pulsational energy in the atmosphere may be a cause of mass ejections from Be stars. A unifying interpretative concept is presented.

  12. Modelling hybrid Beta Cephei/SPB pulsations: Gamma Pegasi

    CERN Document Server

    Zdravkov, T

    2009-01-01

    Recent photometric and spectroscopic observations of the hybrid variable Gamma Pegasi (Handler et al. 2009, Handler 2009) revealed 6 frequencies of the SPB type and 8 of the Beta Cep type pulsations. Standard seismic models, which have been constructed with OPAL (Iglesias & Rogers 1996) and OP (Seaton 2005) opacities by fitting three frequencies (those of the radial fundamental and two dipole modes), do not reproduce the frequency range of observed pulsations and do not fit the observed individual frequencies with a satisfactory accuracy. We argue that better fitting can be achieved with opacity enhancements, over the OP data, by about 20-50 percent around the opacity bumps produced by excited ions of the iron-group elements at temperatures of about 200 000 K (Z bump) and 2 million K (Deep Opacity Bump).

  13. On the optical pulsations from the Geminga pulsar

    CERN Document Server

    Gil, J; Melikidze, G I; Gil, Janusz; Khechinashvili, David; Melikidze, George

    2000-01-01

    We present a model for generation mechanisms of the optical pulsations recently detected from the Geminga pulsar. We argue that this is just a synchrotron radiation emitted along open magnetic field lines at altitudes of a few light cylinder radii (which requires that Geminga is an almost aligned rotator), where charged particles acquire non-zero pitch-angles as a result of the cyclotron absorption of radio waves in the magnetized pair plasma. This explains self-consistently both the lack of apparent radio emission, at least at frequencies higher than about 100 MHz, and the optical pulsations from the Geminga pulsar. From our model it follows that the synchrotron radiation is a maximum in the infrared band, which suggests that Geminga should also be a source of a pulsed infrared emission.

  14. Quasi-periodic pulsations in partially occulted flares

    Science.gov (United States)

    Szaforz, Zaneta; Tomczak, Michal

    The model of oscillating magnetic traps (OMT) suggests that the cusp-like magnetic structures located in an upper part of flare loops are responsible for quasi-periodic pulsations (QPP) observed sometimes in hard X-rays (HXR). Electrons within these oscillating traps are efficiently accelerated and confined, therefore the traps should be recognize as loop-top HXR sources. However, these sources are difficult for reconstruction in the presence of the stronger footpoint HXR sources. To overcome this problem, we analyzed partially occulted flares, observed by Yohkoh, from the survey of Tomczak (2009). We will present the correlation between the diameter of the loop-top HXR source and the period of pulsations. We will present also some interesting examples of observations, for which changes in QPPs coincide with the changes in appearance of loop-top sources.

  15. Self-pulsation threshold of Raman amplified Brillouin fiber cavities.

    Science.gov (United States)

    Ott, J R; Pedersen, M E V; Rottwitt, K

    2009-08-31

    An implicit equation for the oscillation threshold of stimulated Brillouin scattering from Raman amplified signals in fibers with external feedback is derived under the assumption of no depletion. This is compared to numerical investigations of Raman amplification schemes showing good agreement for high reflectivities. For low reflectivities and high attenuation or long fibers, the assumption of no depletion is shown not to be valid. In these cases the effects of the depletion on the self-pulsation is examined.

  16. Self-pulsation threshold of Raman amplified Brillouin fiber cavities

    DEFF Research Database (Denmark)

    Ott, Johan Raunkjær; Pedersen, Martin Erland Vestergaard; Rottwitt, Karsten

    2009-01-01

    An implicit equation for the oscillation threshold of stimulated Brillouin scattering from Raman amplified signals in fibers with external feedback is derived under the assumption of no depletion. This is compared to numerical investigations of Raman amplification schemes showing good agreement...... for high reflectivities. For low reflectivities and high attenuation or long fibers, the assumption of no depletion is shown not to be valid. In these cases the effects of the depletion on the self-pulsation is examined....

  17. Decreasing of pulsation intensity levels in X-ray receivers

    CERN Document Server

    Dvoryankin, V F; Kudryashov, A A; Petrov, A G

    2002-01-01

    The low frequency filter is applied in the multichannel receiver on the basis of the GaAs epitaxial structures for decreasing the pulsations level at the signals amplifier outlet. The optimal band of the filter is determined by the transition processes by the detector scanning in the roentgen beams. The X-ray source of radiation with the medium-frequency feeding generator is used for verifying the quality of the obtained X-ray image

  18. Effect of orientation on heat transfer in pulsating heat pipe

    Directory of Open Access Journals (Sweden)

    Naumova A. M.

    2010-10-01

    Full Text Available The paper presents the results of experimental research of orientation effect on heat transfer characteristics of a pulsating heat pipe (PHP. It is shown that transport of either mass or heat depends on PHP orientation against it`s axis. As a consequence of comparing experimental data with other authors’ results it was concluded that PHP thermal resistance depends not only on orientation but on some other determinal factors such as device construction and thermophysical properties of heat carrier.

  19. Research of heat exchange rate of the pulsating heat pipe

    Directory of Open Access Journals (Sweden)

    Kravets V. Yu.

    2010-02-01

    Full Text Available Given article presents experimental research of heat transfer characteristics of the pulsating heat pipe (PHP which consists of seven coils with 1 mm inner diameter. Water was used as the heat carrier. PHP construction, measuring circuit and research technique are presented. It is shown that under PHP functioning there are two characteristic modes of operation, which can be distinguished by values of thermal resistance. PHP heat exchange features are disclosed.

  20. Diffusion and pulsations in slowly rotating B stars

    CERN Document Server

    Turcotte, S

    2005-01-01

    Diffusion in cool B stars of the main sequence has been shown to strongly affect opacities and convection in cool B stars of the main sequence. We show here that diffusion in B stars maintains or enhances the excitation of pulsations in these stars. This result conflicts with observations as cool B stars that show evidence of diffusion, the HgMn stars, are stable to the current detection level. We discuss possible implications of this discrepancy for the models.

  1. A size limit for uniformly pulsating sources of electromagnetic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Dewdney, A.K.

    1979-01-01

    An extremal model for a uniformly pulsating source of electromagnetic radiation is developed, and a formula is obtained which relates the source variation to diameter, pulse width, and period. An upper limit on source diameter is derived from this formula, applied to three pulsars, and compared with standard estimates of their diameters. The use of the limit formula is shown to be no less justified, in general, than the size estimate based on the product of variation period and the speed of light.

  2. Pulsations powered by hydrogen shell burning in white dwarfs

    CERN Document Server

    Camisassa, María E; Althaus, Leandro G; Shibahashi, Hiromoto

    2016-01-01

    In the absence of a third dredge-up episode during the asymptotic giant branch phase, white dwarf models evolved from low-metallicity progenitors have a thick hydrogen envelope, which makes hydrogen shell burning be the most important energy source. We investigate the pulsational stability of white dwarf models with thick envelopes to see whether nonradial $g$-mode pulsations are triggered by hydrogen burning, with the aim of placing constraints on hydrogen shell burning in cool white dwarfs and on a third dredge-up during the asymptotic giant branch evolution of their progenitor stars. We construct white-dwarf sequences from low-metallicity progenitors by means of full evolutionary calculations, and analyze their pulsation stability for the models in the range of effective temperatures $T_{\\rm eff} \\sim 15\\,000\\,-\\, 8\\,000$ K. We demonstrate that, for white dwarf models with masses $M_{\\star} \\lesssim 0.71\\,\\rm M_{\\sun}$ and effective temperatures $8\\,500 \\lesssim T_{\\rm eff} \\lesssim 11\\,600$ K that evolved...

  3. Studies of the Long Secondary Periods in Pulsating Red Giants

    Science.gov (United States)

    Percy, J. R.; Deibert, E.

    2016-12-01

    We have used systematic, sustained visual observations from the AAVSO International Database and the AAVSO time-series analysis package VSTAR to study the unexplained "long secondary periods" (LSPs) in 27 pulsating red giants. In our sample, the LSPs range from 479 to 2967 days, and are on average 8.1 +/- 1.3 times the excited pulsation period. There is no evidence for more than one LSP in each star. In stars with both the fundamental and first overtone radial period present, the LSP is more often about 10 times the latter. The visual amplitudes of the LSPs are typically 0.1 magnitude and do not correlate with the LSP. The phase curves tend to be sinusoidal, but at least two are sawtooth. The LSPs are stable, within their errors, over the timespan of our data, which is typically 25,000 days. The amplitudes, however, vary by up to a factor of two or more on a time scale of roughly 20-30 LSPs. There is no obvious difference between the carbon (C) stars and the normal oxygen (M) stars. Previous multicolor observations showed that the LSP color variations are similar to those of the pulsation period, and of the LSPs in the Magellanic Clouds, and not like those of eclipsing stars. We note that the LSPs are similar to the estimated rotation periods of the stars, though the latter have large uncertainties. This suggests that the LSP phenomenon may be a form of modulated rotational variability.

  4. Development of a balloon volume sensor for pulsating balloon catheters.

    Science.gov (United States)

    Nolan, Timothy D C; Hattler, Brack G; Federspiel, William J

    2004-01-01

    Helium pulsed balloons are integral components of several cardiovascular devices, including intraaortic balloon pumps (IABP) and a novel intravenous respiratory support catheter. Effective use of these devices clinically requires full inflation and deflation of the balloon, and improper operating conditions that lead to balloon under-inflation can potentially reduce respiratory or cardiac support provided to the patient. The goal of the present study was to extend basic spirographic techniques to develop a system to dynamically measure balloon volumes suitable for use in rapidly pulsating balloon catheters. The dynamic balloon volume sensor system (DBVSS) developed here used hot wire anemometry to measure helium flow in the drive line from console to catheter and integrated the flow to determine the volume delivered in each balloon pulsation. An important component of the DBVSS was an algorithm to automatically detect and adjust flow signals and measured balloon volumes in the presence of gas composition changes that arise from helium leaks occurring in these systems. The DBVSS was capable of measuring balloon volumes within 5-10% of actual balloon volumes over a broad range of operating conditions relevant to IABP and the respiratory support catheter. This includes variations in helium concentration from 70-100%, pulsation frequencies from 120-480 beats per minute, and simulated clinical conditions of reduced balloon filling caused by constricted vessels, increased driveline, or catheter resistance.

  5. Mass-spring model of a self-pulsating drop.

    Science.gov (United States)

    Antoine, Charles; Pimienta, Véronique

    2013-12-03

    Self-pulsating sessile drops are a striking example of the richness of far-from-equilibrium liquid/liquid systems. The complex dynamics of such systems is still not fully understood, and simple models are required to grasp the mechanisms at stake. In this article, we present a simple mass-spring mechanical model of the highly regular drop pulsations observed in Pimienta, V.; Brost, M.; Kovalchuk, N.; Bresch, S.; Steinbock, O. Complex shapes and dynamics of dissolving drops of dichloromethane. Angew. Chem., Int. Ed. 2011, 50, 10728-10731. We introduce an effective time-dependent spreading coefficient that sums up all of the forces (due to evaporation, solubilization, surfactant transfer, coffee ring effect, solutal and thermal Marangoni flows, drop elasticity, etc.) that pull or push the edge of a dichloromethane liquid lens, and we show how to account for the periodic rim breakup. The model is examined and compared against experimental observations. The spreading parts of the pulsations are very rapid and cannot be explained by a constant positive spreading coefficient or superspreading.

  6. Constraining the neutrino magnetic dipole moment from white dwarf pulsations

    CERN Document Server

    Córsico, Alejandro H; Bertolami, Marcelo M Miller; Kepler, S O; García-Berro, Enrique

    2014-01-01

    Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. By comparing the theoretical rate of change of period expected for this star with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment. Our upper limit for the neutrino magnetic dipole moment is somewhat less restrictive than, but still compat...

  7. Asteroseismology of hybrid $\\delta$ Scuti--$\\gamma$ Doradus pulsating stars

    CERN Document Server

    Arias, J P Sánchez; Althaus, L G

    2016-01-01

    Hybrid $\\delta$ Scuti-$\\gamma$ Doradus pulsating stars show acoustic ($p$) oscillation modes typical of $\\delta$ Scuti variable stars, and gravity ($g$) pulsation modes characteristic of $\\gamma$ Doradus variable stars simultaneously excited. Observations from space missions like MOST, CoRoT, and \\emph{Kepler} have revealed a large number of hybrid $\\delta$ Scuti-$\\gamma$ Doradus pulsators, thus paving the way for a exciting new channel for asteroseismic studies. We perform a detailed asteroseismological modeling of five hybrid $\\delta$ Scuti-$\\gamma$ Doradus stars. We employ a grid-based modeling approach to sound the internal structure of the target stars by employing a huge grid of stellar models from the zero-age main sequence to the terminal-age main sequence, varying parameters like stellar mass, effective temperature, metallicity and core overshooting. We compute their adiabatic radial ($\\ell= 0$) and non-radial ($\\ell= 1, 2, 3$) $p$ and $g$ mode periods. We employ two model-fitting procedures to searc...

  8. KIC 3858884: a hybrid {\\delta} Sct pulsator in a highly eccentric eclipsing binary

    CERN Document Server

    Maceroni, C; da Silva, R; Montalbán, J; Lee, C -U; Ak, H; Deshpande, R; Yakut, K; Debosscher, J; Guo, Z; Kim, S -L; Lee, J W; Southworth, J

    2014-01-01

    The analysis of eclipsing binaries containing non-radial pulsators allows: i) to combine two different and independent sources of information on the internal structure and evolutionary status of the components, and ii) to study the effects of tidal forces on pulsations. KIC 3858884 is a bright Kepler target whose light curve shows deep eclipses, complex pulsation patterns with pulsation frequencies typical of {\\delta} Sct, and a highly eccentric orbit. We present the result of the analysis of Kepler photometry and of high resolution phaseresolved spectroscopy. Spectroscopy yielded both the radial velocity curves and, after spectral disentangling, the primary component effective temperature and metallicity, and line-of-sight projected rotational velocities. The Kepler light curve was analyzed with an iterative procedure devised to disentangle eclipses from pulsations which takes into account the visibility of the pulsating star during eclipses. The search for the best set of binary parameters was performed com...

  9. A Study on the Influence of Commutation Time on Torque Pulsating in BLDCM

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Choel Ju; Kang, Byoung Hee; Mok, Hyoung Su; Choe, Gyu-Ha [Konkuk University, Seoul(Korea)

    2001-01-01

    A BLDC motor has a serious drawback that torque pulsation is generated in every commutation period though it has many advantages compared to the conventional DC Motor. In this paper, the influence of commutation time on torque pulsation is studied. Generally in calculating the torque of BLDC motor, it is assumed that the decaying phase back EMF is constant, but the torque model considering decaying phase back EMF is introduced here. Through it, the torque in commutation period has torque pulsation component caused by commutation itself and it cannot be removed perfectly even if there is no current and pulsation. To reduce the torque pulsation, a new method is proposed, which controls a point of commutation and the optimal point of commutation is found. Simulation shows proposed method reduces the torque pulsation considerately. (author). 5 refs., 8 figs., 2 tabs.

  10. GW Librae: A unique laboratory for pulsations in an accreting white dwarf

    CERN Document Server

    Toloza, O; Hermes, J J; Townsley, D M; Schreiber, M R; Szkody, P; Pala, A; Beuermann, K; Bildsten, L; Breedt, E; Cook, M; Godon, P; Henden, A A; Hubeny, I; Knigge, C; Long, K S; Marsh, T R; de Martino, D; Mukadam, A S; Myers, G; Nelson, P; Oksanen, A; Patterson, J; Sion, E M; Zorotovic, M

    2016-01-01

    Non-radial pulsations have been identified in a number of accreting white dwarfs in cataclysmic variables. These stars offer insight into the excitation of pulsation modes in atmospheres with mixed compositions of hydrogen, helium, and metals, and the response of these modes to changes in the white dwarf temperature. Among all pulsating cataclysmic variable white dwarfs, GW Librae stands out by having a well-established observational record of three independent pulsation modes that disappeared when the white dwarf temperature rose dramatically following its 2007 accretion outburst. Our analysis of HST ultraviolet spectroscopy taken in 2002, 2010 and 2011, showed that pulsations produce variations in the white dwarf effective temperature as predicted by theory. Additionally in May~2013, we obtained new HST/COS ultraviolet observations that displayed unexpected behaviour: besides showing variability at ~275s, which is close to the post-outburst pulsations detected with HST in 2010 and 2011, the white dwarf exhi...

  11. On the periodic variations of secondary cosmic rays and the geomagnetic Pc4 pulsations in BMAr

    Directory of Open Access Journals (Sweden)

    I. M. Martin

    Full Text Available In a set of balloon flights in the Brazilian magnetic anomaly region (BMAr short time periodic variations were observed, i.e. pulsation, of secondary charged and neutral particle fluxes, X- and -ray fluxes with amplitudes of about 2–4%. The pulsations are accompanied by the geomagnetic Pc4 pulsations and have similar periodicity. The phenomenon was observed over various local times and in quiet and disturbed magnetospheric conditions. One of the explanations of this effect, i.e. periodic variation of local cut-off rigidity, and following pulsations of primary and secondary cosmic ray intensity is suggested.

  12. Asteroseismology and forced oscillations of HD 209295, the first member of two classes of pulsating star

    CERN Document Server

    Handler, G; Shobbrook, R R; Koen, C; Bruch, A; Romero-Colmenero, E; Pamyatnykh, A A; Willems, B; Eyer, L; James, D J; Maas, T; Crause, L A

    2001-01-01

    We report the discovery of both intermediate-order gravity mode and low-order pressure mode pulsation in the same star, HD 209295. It is therefore both a gamma Doradus and a delta Scuti star, which makes it the first confirmed member of two classes of pulsating star. This object is located in a close binary system with an unknown, but likely degenerate companion in an eccentric orbit, and some of the gamma Doradus pulsation frequencies are exact integer multiples of the orbital frequency. We suggest that these pulsations are tidally excited. HD 209295 may be the progenitor of an intermediate-mass X-Ray binary.

  13. Continuous vs. pulsating flow boiling. Part 2: Statistical comparison using response surface methodology

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Elmegaard, Brian; Meyer, Knud Erik;

    2016-01-01

    pulsations is statistically significant in terms of the time-averaged flow boiling heat transfer coefficient. The cycle time range from 1 s to 9 s for the pulsations. The results show that the effect of fluid flow pulsations is statistically significant, disregarding the lowest heat flux measurements....... The response surface comparison reveals that the flow pulsations improves the time-averaged heat transfer coefficient by as much as 10 % at the smallest cycle time compared with continuous flow. On the other hand, at highest cycle time and heat flux, the reduction may be as much as 20 % due to significant dry...

  14. White Dwarf Period Tables - I. Pulsators with hydrogen-dominated atmospheres

    CERN Document Server

    Bognár, Zs

    2016-01-01

    We aimed at collecting all known white dwarf pulsators with hydrogen-dominated atmospheres and list their main photometric and atmospheric parameters together with their pulsation periods and amplitudes observed at different epochs. For this purpose, we explored the pulsating white dwarf related literature with the systematic use of the SIMBAD and the NASA's Astrophysics Data System (ADS) databases. We summarized our results in four tables listing seven ZZ Ceti stars in detached white dwarf plus main-sequence binaries, seven extremely low-mass DA pulsators, three hot DAVs and 180 ZZ Ceti stars.

  15. Studies of the Long Secondary Periods in Pulsating Red Giants. II. Lower-Luminosity Stars

    CERN Document Server

    Percy, John R

    2016-01-01

    We have used AAVSO visual and photoelectric V data, and the AAVSO time-series package VSTAR and the Lomb-Scargle time-series algorithm to determine improved pulsation periods, "long secondary periods" (LSPs). and their amplitudes in 51 shorter-period pulsating red giants in the AAVSO photoelectric photometry program, and the AAVSO LPV (long period variable) binocular program. As is well known, radial pulsation becomes detectable in red giants at about spectral type M0, with periods of about 20 days. We find that the LSP phenomenon is also first detectable at about M0. Pulsation and LSP amplitudes increase from near zero to about 0.1 at pulsation periods of about 100 days. At longer periods, the pulsation amplitudes continue to increase, but the LSP amplitudes are generally between 0.1 and 0.2 on average. The ratios of LSP to pulsation period cluster around 5 and 10, presumably depending on whether the pulsation period is the fundamental or first overtone. The pulsation and LSP phase curves are generally close...

  16. White Dwarf Period Tables I. Pulsators with hydrogen-dominated atmospheres

    Science.gov (United States)

    Bognar, Zs.; Sodor, A.

    2016-09-01

    We aimed at collecting all known white dwarf pulsators with hydrogen-dominated atmospheres and list their main photometric and atmospheric parameters together with their pulsation periods and amplitudes observed at different epochs. For this purpose, we explored the pulsating white dwarf related literature with the systematic use of the SIMBAD and the NASA's Astrophysics Data System (ADS) databases. We summarized our results in four tables listing seven ZZ Ceti stars in detached white dwarf plus main-sequence binaries, seven extremely low-mass DA pulsators, three hot DAVs and 180 ZZ Ceti stars.

  17. Developments in Observational Studies on the PL Relation of Cepheids%造父变星周光关系之实测研究进展

    Institute of Scientific and Technical Information of China (English)

    赵君亮

    2013-01-01

    造父变星周光(PL)关系对于宇宙距离尺度研究和哈勃常数测定具有重要意义,所涉及的内容颇为广泛,可包括两类不同星族造父变星的PL关系,PL关系的绝对定标,周光色(PLC)关系,PL关系的金属度效应,多波段PL关系,极大光度PL关系和多相PL关系,以及非线性形式的PL关系,等等。%Cepheids have been used as very good distance indicators on Galactic and exstragalactic distance scales, based upon their period-luminosity (PL) relations. Since the Cepheids PL relation was found in 1908 by Leavitt, an American lady astronomer, lots of researches in different aspects have been done for the PL relations. Because of its great importance, it was suggested that the Cepheids PL relation should be referred to as Leavitt Law. In order to calibrate the PL relations, it is necessary to know the distances of calibrating Cepheids, which can be determined through many different approaches, such as moving cluster par-allax, statistical parallax, main sequence fitting, Baade-Wesselink method, trigonometric parallax, angular diameter measurements, etc. In recent years, some of the approaches mentioned above are combined to calibrate the PL relations. As early as 1950s, it was recognized there are two different PL relations, valid for the population I (classical) and the Population II Cepheids respectively, the zero point difference between them being some 1.5 mag. This discovery leads to the value of the Hubble constant a decrease of some 50%. In 1958, the importance of the color term was pointed out for calibration of the Cepheids PL relation, which leads to the PLC relation of Cepheids to be found. Later, some people argue that the PLC relation offers no advantage over the simpler PL relation, and others show that the PLC relation gives a much better fit to observational data than the PL relation at least in a period range. So far as the metallicity dependence of the Cepheids PL relations is

  18. Carbon Footprint and Order Quantity in Logistics

    Directory of Open Access Journals (Sweden)

    Tian Zhiyong

    2014-05-01

    Full Text Available Purpose: Even without economic factors and government regulations, the pressure and motivation of corporation to reduce emission are still increasing. This is because the key factors for corporation to reduce emissions have become corporate social responsibility and identification of low-carbon value by consumer and society from economic trade-off and government regulations. So, the purpose of this paper is to provide quantity methods for the logistics organizations with wish of voluntary reduction and social responsibility.Design/methodology/approach: Being difference from the traditional research that takes economic value as object, this paper takes carbon footprint as object directly, order quantity as decision variable. By referring to the traditional economic order quantity model, the paper creates logistics carbon footprint model which takes transport and inventory into account. Then it solves the model by calculating the values of order quantity, carbon footprint and revenue using the method of optimization.Findings and Originality/value: By solving and comparing the two models of economic order quantity model and carbon footprint model, it gets some results, such as carbon optimization order quantity, the effects order quantity deviating from economic order quantity or carbon order quantity having on economic or carbon footprint values, which can give some meaningful insight for corporation to search out reduction opportunities by operations adjustment.Originality/value: The study takes carbon footprint as object directly and creates the corresponding quantity model. By comparing with the traditional economic order quantity model, the paper provides quantity methods and obtains some meaningful insights for the logistics organizations with wish of voluntary reduction and social responsibility to reduce emissions by operations adjustment.

  19. Anchors for the Cosmic Distance Scale: the Cepheid QZ Normae in the Open Cluster NGC 6067

    CERN Document Server

    Majaess, D; Bidin, C Moni; Soto, M; Gieren, W; Cohen, R; Mauro, F; Geisler, D; Bonatto, C; Borissova, J; Minniti, D; Turner, D; Lane, D; Madore, B; Carraro, G; Berdnikov, L

    2013-01-01

    Cepheids are key to establishing the cosmic distance scale. Therefore it's important to assess the viability of QZ Nor, V340 Nor, and GU Nor as calibrators for Leavitt's law via their purported membership in the open cluster NGC 6067. The following suite of evidence confirms that QZ Nor and V340 Nor are members of NGC 6067, whereas GU Nor likely lies in the foreground: (i) existing radial velocities for QZ Nor and V340 Nor agree with that established for the cluster (-39.4+-1.2 km/s) to within 1 km/s, whereas GU Nor exhibits a markedly smaller value; (ii) a steep velocity-distance gradient characterizes the sight-line toward NGC 6067, thus implying that objects sharing common velocities are nearly equidistant; (iii) a radial profile constructed for NGC 6067 indicates that QZ Nor is within the cluster bounds, despite being 20' from the cluster center; (iv) new BVJH photometry for NGC 6067 confirms the cluster lies d=1.75+-0.10 kpc distant, a result that matches Wesenheit distances computed for QZ Nor/V340 Nor ...

  20. The CoRoT discovery of a unique triple-mode cepheid in the galaxy

    CERN Document Server

    Poretti, Ennio; Weiss, Werner W

    2014-01-01

    The exploitation of the CoRoT treasure of stars observed in the exoplanetary field allowed the detection of a unusual triple-mode Cepheid in the Milky Way, CoRoT 0223989566. The two modes with the largest amplitudes and period ratio of 0.80 are identified with the first (P1=1.29 d) and second (P2=1.03 d) radial overtones. The third period, which has the smallest amplitude but able to produce combination terms with the other two, is the longest one (P3=1.89 d). The ratio of 0.68 between the first-overtone period and the third period is the unusual feature. Its identification with the fundamental radial or a nonradial mode is discussed with respect to similar cases in the Magellanic Clouds. In both cases the period triplet and the respective ratios make the star unique in our Galaxy. The distance derived from the period-luminosity relation and the galactic coordinates put CoRoT~0223989566 in the metal-rich environment of the "outer arm" of the Milky Way.

  1. VizieR Online Data Catalog: The VMC survey. XIX. Classical Cepheids in SMC (Ripepi+, 2016)

    Science.gov (United States)

    Ripepi, V.; Marconi, M.; Moretti, M. I.; Clementini, G.; Cioni, M.-R.; de Grijs, R.; Emerson, J. P.; Groenewegen, M. A. T.; Ivanov, V. D.; Piatti, A. E.

    2016-07-01

    In this paper, we present results for the Classical Cepheids (CCs) included in 11 tiles (each tile is 1.5deg2 on the sky) completely or nearly completely observed, processed, and cataloged by the "VISTA near-infrared YJKs survey of the Magellanic Clouds System" (VMC) survey as of 2015 March 9 (including observations obtained until 2014 September). See Figure 1. VMC is a European Southern Observatory (ESO) public survey that is carried out with VIRCAM (VISTA InfraRed Camera) on the ESO/VISTA telescope. The scope of this paper is to present the results for the CCs in the SMC after four years of VMC observations. The SMC is known to host more than 4500 CCs, according to the OGLE III (Soszynski et al. 2010, J/AcA/60/17) and EROS 2 (Tisserand et al. 2007A&A...469..387T; Kim et al. 2014, J/A+A/566/A43) surveys. (2 data files).

  2. DARK STARS: IMPROVED MODELS AND FIRST PULSATION RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Rindler-Daller, T.; Freese, K. [Department of Physics and Michigan Center for Theoretical Physics, University of Michigan, Ann Arbor, MI 48109 (United States); Montgomery, M. H.; Winget, D. E. [Department of Astronomy, McDonald Observatory and Texas Cosmology Center, University of Texas, Austin, TX 78712 (United States); Paxton, B. [Kavli Insitute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States)

    2015-02-01

    We use the stellar evolution code MESA to study dark stars (DSs). DSs, which are powered by dark matter (DM) self-annihilation rather than by nuclear fusion, may be the first stars to form in the universe. We compute stellar models for accreting DSs with masses up to 10{sup 6} M {sub ☉}. The heating due to DM annihilation is self-consistently included, assuming extended adiabatic contraction of DM within the minihalos in which DSs form. We find remarkably good overall agreement with previous models, which assumed polytropic interiors. There are some differences in the details, with positive implications for observability. We found that, in the mass range of 10{sup 4}-10{sup 5} M {sub ☉}, our DSs are hotter by a factor of 1.5 than those in Freese et al., are smaller in radius by a factor of 0.6, denser by a factor of three to four, and more luminous by a factor of two. Our models also confirm previous results, according to which supermassive DSs are very well approximated by (n = 3)-polytropes. We also perform a first study of DS pulsations. Our DS models have pulsation modes with timescales ranging from less than a day to more than two years in their rest frames, at z ∼ 15, depending on DM particle mass and overtone number. Such pulsations may someday be used to identify bright, cool objects uniquely as DSs; if properly calibrated, they might, in principle, also supply novel standard candles for cosmological studies.

  3. Appraisal of electromagnetic induction effects on magnetic pulsation studies

    Directory of Open Access Journals (Sweden)

    B. R. Arora

    Full Text Available The quantification of wave polarization characteristics of ULF waves from the geomagnetic field variations is done under ‘a priori’ assumption that fields of internal induced currents are in-phase with the external inducing fields. Such approximation is invalidated in the regions marked by large lateral conductivity variations that perturb the flow pattern of induced currents. The amplitude and phase changes that these perturbations produce, in the resultant fields at the Earth’s surface, make determination of polarization and phase of the oscillating external signals problematic. In this paper, with the help of a classical Pc5 magnetic pulsation event of 24 March 1991, recorded by dense network of magnetometers in the equatorial belt of Brazil, we document the nature and extent of the possible influence of anomalous induction effects in the wave polarization of ULF waves. The presence of anomalous induction effects at selected sites lead to an over estimation of the equatorial enhancement at pulsation period and also suggest changes in the azimuth of ULF waves as they propagate through the equatorial electrojet. Through numerical calculations, it is shown that anomalous horizontal fields, that result from induction in the lateral conductivity distribution in the study region, vary in magnitude and phase with the polarization of external source field. Essentially, the induction response is also a function of the period of external inducing source field. It is further shown that when anomalous induction fields corresponding to the magnitude and polarization of the 24 March 1991 pulsation event are eliminated from observed fields, corrected amplitude in the X and Y horizontal components allows for true characterisation of ULF wave parameters.

    Key words. Geomagnetism and paleomagnetism (geomagnetic induction – Ionosphere (equatorial ionosphere – Magnetospheric physics (magnetosphere-ionosphere interactions

  4. Modeling KIC10684673 and KIC12216817 as Single Pulsating Variables

    CERN Document Server

    Turner, Garrison

    2016-01-01

    The raw light curves of both KIC 10684673 and KIC 12216817 show variability. Both are listed in the Kepler Eclipsing Binary Catalog (hereafter KEBC), however both are flagged as uncertain in nature. In the present study we show their light curves can be modeled by considering each target as a single, multi-modal delta Scuti pulsator. While this does not exclude the possibility of eclipsing systems, we argue, while spectroscopy on the systems is still lacking, the delta Scuti model is a simpler explanation and therefore more probable.

  5. Discovery of a new PG 1159 (GW Vir) pulsator

    Science.gov (United States)

    Kepler, S. O.; Fraga, Luciano; Winget, Don Earl; Bell, Keaton; Córsico, Alejandro H.; Werner, Klaus

    2014-08-01

    We report the discovery of pulsations in the spectroscopic PG 1159 type pre-white dwarf SDSS J075415.12 + 085232.18. Analysis of the spectrum by Werner et al. indicated Teff = 120 000 ± 10 000 K, log g = 7.0 ± 0.3, mass {M}=0.52 ± 0.02 M_{⊙}, C/He = 0.33 by number. We obtained time series images with the SOAR 4.1 m telescope and 2.1 m Otto Struve telescope at McDonald Observatory and show the star is also a variable PG 1159 type star, with dominant period of 525 s.

  6. Discovery of a new PG1159 (GW Vir) Pulsator

    CERN Document Server

    Kepler, S O; Winget, Don Earl; Bell, Keaton; Corsico, Alejandro H; Werner, Klaus

    2014-01-01

    We report the discovery of pulsations in the spectroscopic PG 1159 type pre-white dwarf SDSS J075415.12+085232.18. Analysis of the spectrum by Werner, Rauch and Kepler (2014) indicated Teff=120 000+/-10 000 K, log g=7.0+/-0.3, mass M=0.52+/-0.02 Msun, C/He=0.33 by number. We obtained time-series images with the SOAR 4.1 m telescope and 2.1 m Otto Struve telescope at McDonald Observatory and show the star is also a variable PG 1159 type star, with dominant period of 525 s.

  7. DYNAMIC STABILITY OF AXIALLY MOVING VISCOELASTIC BEAMS WITH PULSATING SPEED

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-dong; CHEN Li-qun

    2005-01-01

    Parametric vibration of an axially moving, elastic, tensioned beam with pulsating speed was investigated in the vicinity of subharmonic and combination resonance. The method of averaging was used to yield a set of autonomous equations when the parametric excitation frequency is twice or the combination of the natural frequencies. Instability boundaries were presented in the plane of parametric frequency and amplitude. The analytical results were numerically verified. The effects of the viscoelastic damping, steady speed and tension on the instability boundaries were numerically demonstrated. It is found that the viscoelastic damping decreases the instability regions and the steady speed and the tension make the instability region drift along the frequency axis.

  8. Multiplicity of Galactic Cepheids from long-baseline interferometry~III. Sub-percent limits on the relative brightness of a close companion of $\\delta$~Cephei

    CERN Document Server

    Gallenne, A; Kervella, P; Monnier, J D; Schaefer, G H; Roettenbacher, R M; Gieren, W; Pietrzynski, G; McAlister, H; Brummelaar, T ten; Sturmann, J; Sturmann, L; Turner, N; Anderson, R I

    2016-01-01

    We report new CHARA/MIRC interferometric observations of the Cepheid archetype $\\delta$ Cep, which aimed at detecting the newly discovered spectroscopic companion. We reached a maximum dynamic range $\\Delta H $ = 6.4, 5.8, and 5.2 mag, respectively within the relative distance to the Cepheid $r 9.15, 8.31$ and 7.77 mag, respectively for $r < 25$ mas, $25 < r < 50$ mas and $50 < r < 100$ mas. We also found that to be consistent with the predicted orbital period, the companion has to be located at a projected separation $< 24$ mas with a spectral type later than a F0V star.

  9. Pulsation period variations in the RRc Lyrae star KIC 5520878

    CERN Document Server

    Hippke, Michael; Zee, A; Edmondson, William H; Steven, Ian R; Lindner, John F; Kia, Benham; Ditto, William L

    2014-01-01

    Learned et. al. proposed that a sufficiently advanced extra-terrestrial civilization may tickle Cepheid and RR Lyrae variable stars with a neutrino beam at the right time, thus causing them to trigger early and jogging the otherwise very regular phase of their expansion and contraction. This would turn these stars into beacons to transmit information throughout the galaxy and beyond. The idea is to search for signs of phase modulation (in the regime of short pulse duration) and patterns, which could be indicative of intentional, omnidirectional signaling. We have performed such a search among variable stars using photometric data from the Kepler space telescope. In the RRc Lyrae star KIC 5520878, we have found two such regimes of long and short pulse durations. The sequence of period lengths, expressed as time series data, is strongly auto correlated, with correlation coefficients of prime numbers being significantly higher ($p=99.8$\\%). Our analysis of this candidate star shows that the prime number oddity o...

  10. Observation of quasi-periodic pulsations in the solar flare SF 900610

    DEFF Research Database (Denmark)

    Terekhov, O.V.; Shevchenko, A.V.; Kuz'min, A.G.;

    2002-01-01

    A quasi-periodic component was found at the maximum of the X-ray light curve for the June 10, 1990 solar flare detected by the Granat observatory. The pulsation period was 143.2 +/- 0.8 s. The intensity of the pulsing component is not constant; the maximum amplitude of the pulsations is similar t...

  11. Pulsation Solution to the Equation of Earth's Gravitational Field (Main Outcome)

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Using d'Alembert equation as the approximation of Einstein's equation, a solution is given in this paper to the time-dependent gravitational equation of the Earth in consideration of the Earth's features, which describes the characteristics of pulsation of the Earth and the structures of spherical layers of its interior, thus providing a theoretical basis for establishing the idea of mantle pulsation.

  12. Keeping Secrets : Quantity, Quality and Consequences

    NARCIS (Netherlands)

    Frijns, T.

    2005-01-01

    Keeping Secrets deals with the consequences of an elusive yet everyday phenomenon. It addresses both the quantity and quality of secret-keeping. With respect to quantity, it presents research on the intra- and interpersonal consequences of keeping secrets from parents in adolescence. With respect t

  13. Rethinking Intensive Quantities via Guided Mediated Abduction

    Science.gov (United States)

    Abrahamson, Dor

    2012-01-01

    Some intensive quantities, such as slope, velocity, or likelihood, are perceptually privileged in the sense that they are experienced as holistic, irreducible sensations. However, the formal expression of these quantities uses "a/b" analytic metrics; for example, the slope of a line is the quotient of its rise and run. Thus, whereas students'…

  14. On the use of hot-wire anemometry in pulsating flows. A comment on 'A critical review on advanced velocity measurement techniques in pulsating flows'

    OpenAIRE

    Berson, Arganthaël; Blanc-Benon, Philippe; Comte-Bellot, Geneviève

    2010-01-01

    International audience; In their recent topical review, Nabavi and Siddiqui (Meas. Sci. Technol. 2010 21 042002) recommended the use of hot-wire anemometry for velocity measurements in pulsating flows, especially at high frequency. This recommendation is misleading. The procedures invoked by these authors are valid only for small-amplitude fluctuations, which are of little interest for pulsating flows. When large-amplitude velocity changes occur without flow reversal, new procedures for the c...

  15. Pulsation versus metallicism in Am stars as revealed by LAMOST and WASP

    CERN Document Server

    Smalley, B; Holdsworth, D L; Kurtz, D W; Murphy, S J; De Cat, P; Anderson, D R; Catanzaro, G; Cameron, A Collier; Hellier, C; Maxted, P F L; Norton, A J; Pollacco, D; Ripepi, V; West, R G; Wheatley, P J

    2016-01-01

    We present the results of a study of a large sample of A and Am stars with spectral types from LAMOST and light curves from WASP. We find that, unlike normal A stars, $\\delta$ Sct pulsations in Am stars are mostly confined to the effective temperature range 6900 $<$ $T_{\\rm eff}$ $<$ 7600 K. We find evidence that the incidence of pulsations in Am stars decreases with increasing metallicism (degree of chemical peculiarity). The maximum amplitude of the pulsations in Am stars does not appear to vary significantly with metallicism. The amplitude distributions of the principal pulsation frequencies for both A and Am stars appear very similar and agree with results obtained from Kepler photometry. We present evidence that suggests turbulent pressure is the main driving mechanism in pulsating Am stars, rather than the $\\kappa$-mechanism, which is expected to be suppressed by gravitational settling in these stars.

  16. The technology of heat transfer enhancement in channels by means of flow pulsations

    Directory of Open Access Journals (Sweden)

    Tsynaeva Anna

    2016-01-01

    Full Text Available The rate and efficiency of curing of concrete can boost when used intense heat. The work is dedicated to the development and research of technologies of intensification of heat transfer in channels by pulsations. The study was conducted by means of numerical methods based on mass and momentum conservation equations (Navier-Stokes with software Code Saturne. Verification of implemented methods and software was performed. The research of heat transfer enhancement for semicircle-shaped channel exposed to low-frequency pulsations was performed. The pulsation frequency of the flow during the study was in a range of 0…10 Hz. A significant (up to 4 times increase of turbulent kinetic energy with implementing pulsations was detected. Flow pulsations with frequency of 10 Hz results in 1.21 times increase of heat transfer coefficient.

  17. High frequency A-type pulsators discovered using SuperWASP

    CERN Document Server

    Holdsworth, Daniel L; Gillon, M; Clubb, K I; Southworth, J; Maxted, P F L; Anderson, D R; Barros, S C C; Cameron, A Collier; Delrez, L; Faedi, F; Haswell, C A; Hellier, C; Horne, K; Jehin, E; Norton, A J; Pollacco, D; Skillen, I; Smith, A M S; West, R G; Wheatley, P J

    2014-01-01

    We present the results of a survey using the WASP archive to search for high frequency pulsations in F-, A- and B-type stars. Over 1.5 million targets have been searched for pulsations with amplitudes greater than 0.5 millimagnitude. We identify over 350 stars which pulsate with periods less than 30 min. Spectroscopic follow-up of selected targets has enabled us to confirm 10 new rapidly oscillating Ap stars, 13 pulsating Am stars and the fastest known $\\delta$ Scuti star. We also observe stars which show pulsations in both the high-frequency domain and in the low-frequency $\\delta$ Scuti range. This work shows the power of the WASP photometric survey to find variable stars with amplitudes well below the nominal photometric precision per observation.

  18. CoRoT's view of newly discovered B-star pulsators: results for 358 candidate B pulsators from the initial run's exoplanet field data

    CERN Document Server

    Degroote, P; Ollivier, M; Miglio, A; Debosscher, J; Cuypers, J; Briquet, M; Montalban, J; Thoul, A; Noels, A; De Cat, P; Balaguer-Nuñez, L; Maceroni, C; Ribas, I; Auvergne, M; Baglin, A; Deleuil, M; Weiss, W; Jorda, L; Baudin, F; Samadi, R

    2009-01-01

    We search for new variable B-type pulsators in the CoRoT data assembled primarily for planet detection, as part of CoRoT's Additional Programme. We aim to explore the properties of newly discovered B-type pulsators from the uninterrupted CoRoT space-based photometry and to compare them with known members of the Beta Cep and slowly pulsating B star (SPB) classes. We developed automated data analysis tools that include algorithms for jump correction, light-curve detrending, frequency detection, frequency combination search, and for frequency and period spacing searches. Besides numerous new, classical, slowly pulsating B stars, we find evidence for a new class of low-amplitude B-type pulsators between the SPB and Delta Sct instability strips, with a very broad range of frequencies and low amplitudes, as well as several slowly pulsating B stars with residual excess power at frequencies typically a factor three above their expected g-mode frequencies. The frequency data we obtained for numerous new B-type pulsato...

  19. $\\gamma$ Doradus Pulsations in the Eclipsing Binary Star KIC 6048106

    CERN Document Server

    Lee, Jae Woo

    2016-01-01

    We present the ${\\it Kepler}$ photometry of KIC 6048106 exhibiting O'Connell effect and multiperiodic pulsations. Including a starspot on either of the components, light-curve synthesis indicates that this system is a semi-detached Algol with a mass ratio of 0.211, an orbital inclination of 73.9 deg, and a large temperature difference of 2,534 K. To examine in detail both spot variations and pulsations, we separately analyzed the {\\it Kepler} time-series data at the interval of an orbital period by an iterative way. The results reveal that the variable asymmetries of the light maxima can be interpreted as the changes of a magnetic cool spot on the secondary component with time. Multiple frequency analyses were performed in the outside-eclipse light residuals after removal of the binarity effects from the observed {\\it Kepler} data. We detected 30 frequencies with signal to noise amplitude ratios larger than 4.0, of which six ($f_2$--$f_6$ and $f_{10}$) can be identified as high-order (17 $\\le n \\le$ 25) low-d...

  20. Tidally Induced Pulsations in Kepler Eclipsing Binary KIC 3230227

    CERN Document Server

    Guo, Zhao; Fuller, Jim

    2016-01-01

    KIC 3230227 is a short period ($P\\approx 7.0$ days) eclipsing binary with a very eccentric orbit ($e=0.6$). From combined analysis of radial velocities and {\\it Kepler} light curves, this system is found to be composed of two A-type stars, with masses of $M_1=1.84\\pm 0.18M_{\\odot}$, $M_2=1.73\\pm 0.17M_{\\odot}$ and radii of $R_1=2.01\\pm 0.09R_{\\odot}$, $R_2=1.68\\pm 0.08 R_{\\odot}$ for the primary and secondary, respectively. In addition to an eclipse, the binary light curve shows a brightening and dimming near periastron, making this a somewhat rare eclipsing heartbeat star system. After removing the binary light curve model, more than ten pulsational frequencies are present in the Fourier spectrum of the residuals, and most of them are integer multiples of the orbital frequency. These pulsations are tidally driven, and both the amplitudes and phases are in agreement with predictions from linear tidal theory for $l=2, m=-2$ prograde modes.

  1. Pulsations in Hydrogen Burning Low Mass Helium White Dwarfs

    CERN Document Server

    Steinfadt, Justin D R; Arras, Phil

    2010-01-01

    Helium core white dwarfs (WDs) with mass M < 0.20 M_sun undergo several Gyrs of stable hydrogen burning as they evolve. We show that in a certain range of WD and hydrogen envelope masses, these WDs may exhibit g-mode pulsations similar to their passively cooling, more massive carbon/oxygen core counterparts, the ZZ Cetis. Our models with stably burning hydrogen envelopes on helium cores yield g-mode periods and period spacings longer than the canonical ZZ Cetis by nearly a factor of two. We show that core composition and structure can be probed using seismology since the g-mode eigenfunctions predominantly reside in the helium core. Though we have not carried out a fully nonadiabatic stability analysis, the scaling of the thermal time in the convective zone with surface gravity highlights several low mass helium WDs that should be observed in search of pulsations: NLTT 11748, SDSS J0822+2753, and the companion to PSR J1012+5307. Seismological studies of these He core WDs may prove especially fruitful, as t...

  2. Pulsations of rapidly rotating stars: I. The ACOR numerical code

    CERN Document Server

    Ouazzani, Rhita-Maria; Reese, Daniel

    2012-01-01

    Very high precision seismic space missions such as CoRoT and Kepler provide the means of testing the modeling of transport processes in stellar interiors. For some stars, such as solar-like and red giant stars, a rotational splitting is measured. However, in order to fully exploit these splittings and constrain the rotation profile, one needs to be able to calculate them accurately. For some other stars, such as $\\delta$ Scuti and Be stars, for instance, the observed pulsation spectra are modified by rotation to such an extent that a perturbative treatment of the effects of rotation is no longer valid. We present here a new two-dimensional non-perturbative code, called ACOR (\\textit{Adiabatic Code of Oscillation including Rotation}) which allows us to compute adiabatic non-radial pulsations of rotating stars, without making any assumptions on the sphericity of the star, the fluid properties (i.e. baroclinicity) or the rotation profile. The 2D non-perturbative calculations fully take into account the centrifug...

  3. Pulsation models for the roAp star HD 134214

    CERN Document Server

    Saio, H; Weiss, W W; Matthews, J M; Ryabchikova, T

    2011-01-01

    Precise time-series photometry with the MOST satellite has led to identification of 10 pulsation frequencies in the rapidly oscillating Ap (roAp) star HD 134214. We have fitted the observed frequencies with theoretical frequencies of axisymmetric modes in a grid of stellar models with dipole magnetic fields. We find that, among models with a standard composition of $(X,Z) = (0.70,0.02)$ and with suppressed convection, eigenfrequencies of a $1.65\\,{\\rm M}_\\odot$ model with $\\log T_{\\rm eff} = 3.858$ and a polar magnetic field strength of 4.1kG agree best with the observed frequencies. We identify the observed pulsation frequency with the largest amplitude as a deformed dipole ($\\ell = 1$) mode, and the four next-largest-amplitude frequencies as deformed $\\ell = 2$ modes. These modes have a radial quasi-node in the outermost atmospheric layers ($\\tau \\sim 10^{-3}$). Although the model frequencies agree roughly with observed ones, they are all above the acoustic cut-off frequency for the model atmosphere and hen...

  4. Empirical Determination of Convection in Pulsating White Dwarfs

    Science.gov (United States)

    Provencal, Judith L.; Hermes, J. J.; Montgomery, M.; Reed, Mike; Shipman, Harry; Fraga, Luciano

    2013-02-01

    We propose high speed photometric observations of WD J1518+0658 with SOAR and the KPNO 2m as important components of a coordinated international campaign designed to survey the properties of convection in white dwarf atmospheres. Convection remains the largest source of theoretical uncertainty in our understanding of stellar physics. Asteroseismology has proven a powerful tool to attack this problem. White dwarf pulsations appear as local surface temperature variations. The extreme temperature sensitivity of convection leads to local variations in the convection zone's depth. This in turn modulates the local energy flux, producing nonsinusoidal light curves. The observed nonlinearities provide a self-consistent observational test of convection in white dwarf atmospheres. WD J1518+0658 is a member of the newly discovered class of extremely low mass white dwarf pulsators (ELMVs). ELMVs offer the opportunity to extend our investigation to unexplored regions of lower effective temperatures and surface gravities, where conditions are closer to those found in main sequence stars. High precision light curves from SOAR, combined with frequency, amplitude, and phase information provided by the KPNO 2m and the entire WET run, will allow us to recover WD J1518+0658's convective thermal response timescale.

  5. SEISMOLOGY OF A MASSIVE PULSATING HYDROGEN ATMOSPHERE WHITE DWARF

    Energy Technology Data Exchange (ETDEWEB)

    Kepler, S. O.; Pelisoli, Ingrid; Pecanha, Viviane; Costa, J. E. S. [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, RS (Brazil); Fraga, Luciano [Southern Observatory for Astrophysical Research, Casilla 603, La Serena (Chile); Hermes, J. J.; Winget, D. E.; Castanheira, Barbara [Department of Astronomy and McDonald Observatory, University of Texas, Austin, TX 78712-1083 (United States); Corsico, A. H.; Romero, A. D.; Althaus, Leandro [Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata (Argentina); Kleinman, S. J.; Nitta, A. [Gemini Observatory, Northern Operations Center, 670 North A' ohoku Place, Hilo, HI 96720 (United States); Koester, D. [Institut fuer Theoretische Physik und Astrophysik, Universitaet Kiel, D-24098 Kiel (Germany); Kuelebi, Baybars [Institut de Ciencies de L' Espai, Universitat Autonoma de Barcelon and Institute for Space Studies of Catalonia, c/Gran Capita 2-4, Edif. Nexus 104, E-08034 Barcelona (Spain); Jordan, Stefan [Astronomisches Rechen-Institut, ZAH, Moenchhofstr. 12-14, D-69120 Heidelberg (Germany); Kanaan, Antonio, E-mail: kepler@if.ufrgs.br [Departamento de Fisica, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil)

    2012-10-01

    We report our observations of the new pulsating hydrogen atmosphere white dwarf SDSS J132350.28+010304.22. We discovered periodic photometric variations in frequency and amplitude that are commensurate with nonradial g-mode pulsations in ZZ Ceti stars. This, along with estimates for the star's temperature and gravity, establishes it as a massive ZZ Ceti star. We used time-series photometric observations with the 4.1 m SOAR Telescope, complemented by contemporary McDonald Observatory 2.1 m data, to discover the photometric variability. The light curve of SDSS J132350.28+010304.22 shows at least nine detectable frequencies. We used these frequencies to make an asteroseismic determination of the total mass and effective temperature of the star: M{sub *} = 0.88 {+-} 0.02 M{sub Sun} and T{sub eff} = 12, 100 {+-} 140 K. These values are consistent with those derived from the optical spectra and photometric colors.

  6. Pressure pulsation in roller pumps: a validated lumped parameter model.

    Science.gov (United States)

    Moscato, Francesco; Colacino, Francesco M; Arabia, Maurizio; Danieli, Guido A

    2008-11-01

    During open-heart surgery roller pumps are often used to keep the circulation of blood through the patient body. They present numerous key features, but they suffer from several limitations: (a) they normally deliver uncontrolled pulsatile inlet and outlet pressure; (b) blood damage appears to be more than that encountered with centrifugal pumps. A lumped parameter mathematical model of a roller pump (Sarns 7000, Terumo CVS, Ann Arbor, MI, USA) was developed to dynamically simulate pressures at the pump inlet and outlet in order to clarify the uncontrolled pulsation mechanism. Inlet and outlet pressures obtained by the mathematical model have been compared with those measured in various operating conditions: different rollers' rotating speed, different tube occlusion rates, and different clamping degree at the pump inlet and outlet. Model results agree with measured pressure waveforms, whose oscillations are generated by the tube compression/release mechanism during the rollers' engaging and disengaging phases. Average Euclidean Error (AEE) was 20mmHg and 33mmHg for inlet and outlet pressure estimates, respectively. The normalized AEE never exceeded 0.16. The developed model can be exploited for designing roller pumps with improved performances aimed at reducing the undesired pressure pulsation.

  7. Axions and the pulsation periods of variable white dwarfs revisited

    CERN Document Server

    Isern, J; Althaus, L G; Córsico, A H

    2010-01-01

    Axions are the natural consequence of the introduction of the Peccei-Quinn symmetry to solve the strong CP problem. All the efforts to detect such elusive particles have failed up to now. Nevertheless, it has been recently shown that the luminosity function of white dwarfs is best fitted if axions with a mass of a few meV are included in the evolutionary calculations. Our aim is to show that variable white dwarfs can provide additional and independent evidence about the existence of axions. The evolution of a white dwarf is a slow cooling process that translates into a secular increase of the pulsation periods of some variable white dwarfs, the so-called DAV and DBV types. Since axions can freely escape from such stars, their existence would increase the cooling rate and, consequently, the rate of change of the periods as compared with the standard ones. The present values of the rate of change of the pulsation period of G117-B15A are compatible with the existence of axions with the masses suggested by the lu...

  8. Studies of the Long Secondary Periods in Pulsating Red Giants

    CERN Document Server

    Percy, John R

    2016-01-01

    We have used systematic, sustained visual observations from the AAVSO International Database, and the AAVSO time-series analysis package VSTAR to study the unexplained "long secondary periods" (LSPs) in 27 pulsating red giants. In our sample, the LSPs range from 479 to 2967 days, and are on average 8.1 +/- 1.3 times the pulsation period. There is no evidence for more than one LSP in each star. In stars with both the fundamental and first overtone radial period present, the LSP is more often about 10 times the latter. The visual amplitudes of the LSPs are typically 0.1 magnitude and do not correlate with the LSP. The phase curves tend to be sinusoidal, but at least two are sawtooth. The LSPs are stable, within their errors, over the timespan of our data, which is typically 25,000 days. The amplitudes, however, vary by up to a factor of two or more on a timescale of roughly 20-30 LSPs. There is no obvious difference between the behavior of the carbon (C) stars and the normal oxygen (M) stars. Previous multicolo...

  9. Computer modeling of capillary flow with superimposed pulsations

    Science.gov (United States)

    Yaganova, A. E.; Marfin, E. A.

    2016-11-01

    Increasing efficiency of methods of oil production can be achieved by the influence of elastic vibrations. It is a well-known fact that shift viscosity of oil changes under the effect of elastic vibrations. This change depends on properties of the oil and exposure mode. Existing approaches to the research of the way wave exposure impacts on viscosity are based on measuring it after the processing. This article concerns development of methods to measure viscosity of liquid right during its exposure to elastic vibrations. The suggested approach is based on combining numerical and natural experiments. We investigated the pulsating flow of viscid liquid in a capillary numerically in this article. We received allocations of fields of average velocity and pressure in a capillary. It is demonstrated that imposed pulsations in a capillary do not impact on hydrodynamics of the flow. We offered the scheme of an experimental installation for a research of the impact that wave exposure has on the viscosity of liquids. The installation is based on a capillary viscometer.

  10. Spectrophotometry of pulsating stars at Oukaimeden Observatory in Morocco

    Science.gov (United States)

    Benhida, Abdelmjid; sefyani, Fouad; de France, Thibault; Elashab, Sana; Zohra Belharcha, fatim; Gillet, Denis; Mathias, phillipe; Daassou, Ahmed; Lazrek, Mohamed; Benkhaldoun, Zouhair

    2015-08-01

    Location of modern observatories requires high sky quality: good weather, isolated site to avoid any pollution, high altitude for a better transparency and to reduce temperature gradients, the main source of atmospheric turbulence. With an altitude of 2750m, the region of Oukaimeden in Morocco (longitude: 7°52'052" West, latitude: 3°112032" North) meets most of these criteriaWith its 10'' and 14'' dedicated telescopes operating in remote control modes that combines high precision photometry and high resolution spectroscopy (spectrograph Eshell of R~12000 resolution over a wide spectral range), the universitary observatory of Oukaimeden (code J43) aims to develop new thematics in addition to present science. In particular, through this instrumentation, we aim to develop the field of pulsating stars, especially the atmospheric dynamics of high amplitude pulsators such as RR Lyrae and RV Tauri star, in order to establish new models of the mechanical and thermal behaviour of their atmospheres (shock waves, relaxation time, energy loss...).In this work we will first describe our measuring instruments, and then analyze spectra and photometric curves of RR Lyrae star obtained during the maximum of the Blazhko effect.

  11. Characterization of ultra low frequency (ULF pulsations and the investigation of their possible source

    Directory of Open Access Journals (Sweden)

    S. H. Mthembu

    2009-08-01

    Full Text Available In this paper we present the results from the observation of ultra low frequency (ULF pulsations in the Doppler velocity data from SuperDARN HF radar located at Goose Bay (61.94° N, 23.02° E, geomagnetic. Fourier spectral techniques were used to determine the spectral content of the data and the results show Pc 5 ULF pulsations (with a frequency range of 1 to 4 mHz where the magnetic field lines were oscillating at discrete frequencies of about 1.3 and 1.9 mHz. These pulsations are classified as field lines resonance (FLR since the 1.9 mHz component exhibited an enhancement in amplitude with an associated phase change of approximately 180° across a resonance latitude of 71.3°. The spatial and temporal structure of the ULF pulsations was examined by investigating their instantaneous amplitude which was calculated as the amplitude of the analytic signal. The results presented a full field of view which exhibit pulsations activity simultaneously from all beams. This representation shows that the peak amplitude of the 1.9 mHz component was observed over the longitudinal range of 13°. The temporal structure of the pulsations was investigated from the evolution of the 1.9 mHz component and the results showed that the ULF pulsations had a duration of about 1 h. Wavelet analysis was used to investigate solar wind as a probable source of the observed ULF pulsations. The time delay compared well with the solar wind travel time estimates and the results suggest a possible link between the solar wind and the observed pulsations. The sudden change in dynamic pressure also proved to be a possible source of the observed ULF pulsations.

  12. Ventricular dilation and elevated aqueductal pulsations in a new experimental model of communicating hydrocephalus

    Energy Technology Data Exchange (ETDEWEB)

    Wagshul, M.; Smith, S.; Wagshul, M.; McAllister, J.P.; Rashid, S.; Li, J.; Egnor, M.R.; Walker, M.L.; Yu, M.; Smith, S.D.; Zhang, G.; Chen, J.J.; Beneveniste, H.

    2009-03-01

    In communicating hydrocephalus (CH), explanations for the symptoms and clear-cut effective treatments remain elusive. Pulsatile flow through the cerebral aqueduct is often significantly elevated, but a clear link between abnormal pulsations and ventriculomegaly has yet to be identified. We sought to demonstrate measurement of pulsatile aqueductal flow of CSF in the rat, and to characterize the temporal changes in CSF pulsations in a new model of CH. Hydrocephalus was induced by injection of kaolin into the basal cisterns of adult rats (n = 18). Ventricular volume and aqueductal pulsations were measured on a 9.4 T MRI over a one month period. Half of the animals developed ventricular dilation, with increased ventricular volume and pulsations as early as one day post-induction, and marked chronic elevations compared to intact controls (volume: 130.15 {+-} 83.21 {mu}l vs. 15.52 {+-} 2.00 {mu}l; pulsations: 114.51 nl {+-} 106.29 vs. 0.72 {+-} 0.13 nl). Similar to the clinical presentation, the relationship between ventricular size and pulsations was quite variable. However, the pulsation time-course revealed two distinct sub-types of hydrocephalic animals: those with markedly elevated pulsations which persisted over time, and those with mildly elevated pulsations which returned to near normal levels after one week. These groups were associated with severe and mild ventriculomegaly respectively. Thus, aqueductal flow can be measured in the rat using high-field MRI and basal cistern-induced CH is associated with an immediate change in CSF pulsatility. At the same time, our results highlight the complex nature of aqueductal pulsation and its relationship to ventricular dilation.

  13. Thermal quantities of {sup 46}Ti

    Energy Technology Data Exchange (ETDEWEB)

    Rahmatinejad, A. [Department of Physics, Faculty of Science, University of Zanjan, Zanjan (Iran, Islamic Republic of); Razavi, R., E-mail: rrazavin@ihu.ac.ir [Physics Department, Faculty of Science, Imam Hossein Comprehensive University, Tehran (Iran, Islamic Republic of); Kakavand, T. [Department of Physics, Faculty of Science, Imam Khomeini International University, Qazvin (Iran, Islamic Republic of)

    2015-07-15

    Thermodynamic quantities of {sup 46}Ti have been calculated in the framework of the BCS model with inclusion of modified nuclear pairing gap (MPBCS) that was proposed in our previous publication. Using modified paring gap results in an S-shaped heat capacity curve at critical temperature with a smooth behavior instead of singular behavior of the same curve in the BCS calculations. In addition the thermal quantities have been extracted within the framework of a canonical ensemble according to the new experimental data on nuclear level densities measured by the Oslo group. Comparison shows a good agreement between our calculations in MPBCS and the extracted quantities in the canonical ensemble framework.

  14. The first evidence for multiple pulsation axes: a new rapidly oscillating Ap star in the Kepler field, KIC 10195926

    DEFF Research Database (Denmark)

    Kurtz, Donald W.; Cunha, Margarida S.; Saio, H.;

    2011-01-01

    model that these two modes cannot have the same axis of pulsation. This is the first time for any pulsating star that evidence has been found for separate pulsation axes for different modes. The two modes are separated in frequency by 55 μHz, which we model as the large separation. The star is an α2 CVn...... to these values that reproduces the rotational variations of the two obliquely pulsating modes with different pulsation axes. The star shows overabundances of the rare earth elements, but these are not as extreme as most other roAp stars. The spectrum is variable with rotation, indicating surface abundance...

  15. The panchromatic view of the Magellanic Clouds from Classical Cepheids. I. Distance, Reddening and Geometry of the Large Magellanic Cloud disk

    CERN Document Server

    Inno, L; Matsunaga, N; Fiorentino, G; Marconi, M; Lemasle, B; da Silva, R; Soszyński, I; Udalski, A; Romaniello, M; Rix, H -W

    2016-01-01

    We present a detailed investigation of the Large Magellanic Cloud (LMC) disk using classical Cepheids. Our analysis is based on optical (I,V; OGLE-IV), near-infrared (NIR: J,H,Ks) and mid-infrared (MIR: w1; WISE) mean magnitudes. By adopting new templates to estimate the NIR mean magnitudes from single-epoch measurements, we build the currently most accurate, largest and homogeneous multi-band dataset of LMC Cepheids. We determine Cepheid individual distances using optical and NIR Period-Wesenheit relations (PWRs), to measure the geometry of the LMC disk and its viewing angles. Cepheid distances based on optical PWRs are precise at 3%, but accurate to 7, while the ones based on NIR PWRs are more accurate (to 3%), but less precise (2%-15%), given the higher photometric error on the observed magnitudes. We found an inclination i=25.05 $\\pm$ 0.02 (stat.) $\\pm$ 0.55 (syst.) deg, and a position angle of the lines of nodes P.A.=150.76 $\\pm$ 0.02(stat.) $\\pm$ 0.07(syst.) deg. These values agree well with estimates b...

  16. The Hubble Constant: A Summary of the HST Program for the Luminosity Calibration of Type Ia Supernovae by Means of Cepheids

    CERN Document Server

    Sandage, A; Panagia, N; Reindl, B; Saha, A; Tammann, G A

    2006-01-01

    This is the summary paper of our 15 year program using the Hubble Space Telescope (HST) to determine the Hubble constant using Type Ia supernovae, calibrated with Cepheid variables in nearby galaxies that hosted them. In four previous papers new metallicity-dependent P-L relations of the Cepheids in LMC and the Galaxy were defined, a Hubble diagram for a large sample of uniformly reduced SNeIa established, the secular variation of the HST photometry tested, and the revised Cepheid distances of 37 galaxies derived. The new Cepheid distances of the subset of 10 galaxies, which were hosts of normal SNe Ia, give weighted mean luminosities in B,V,I at maximum light of -19.49, -19.46, and -19.22. These calibrate the adopted SNe Ia Hubble diagram from Paper III to give H_0 = 62.3 +/- 1.3 (random) +/- 5.0 (systematic). This is a global value because it uses the Hubble diagram between redshift limits of 3000 and 20000km/s reduced to the CMB kinematic frame, well beyond the effects of any local random and streaming mot...

  17. Discovering Cepheid and RR Lyrae Stars: Pan-STARRS Science Archive @ STScI and Robotically Controlled Telescopes

    Science.gov (United States)

    Johnson, Elizabeth; Strolger, Louis-Gregory; Engle, Scott G.; Anderson, Richard I.; Rest, Armin; Calamida, Annalisa; Dosovitz Fox, Ori; Laney, David

    2017-01-01

    Cepheid and RR Lyrae stars are an integral part of the cosmic distance ladder and are also useful for studying galactic structure and stellar ages. This project aims to greatly expand the number of known periodic variables in our galaxy by identifying candidates in the PanSTARRS-1 3pi catalog, and carrying out systematically targeted characterization with robotically controlled telescopes. Candidate targets are selected from available detection tables based on color and variability indices and are then fully vetted using robotic telescopes: the RCT 1.3 meter (Kitt Peak National Observatory) and RATIR 1.5 meter (Mexico). Here we present work to develop a full, semi-automated prescription for candidate selection, targeted follow-up photometry, cataloging, and classification, which allows the review of approximately 25 variable candidates every two weeks. We make comparisons of our sample selection and purity from a similar study based on Pan-STARRS data (Hernitschek et al. 2016), as well as candidates identified in Gaia DR1. The goal, through continued observation and analysis, is to identify at least 10,000 new variables, hundreds of which will be new Cepheid and RR Lyrae stars.

  18. Optical Identification of Cepheids in 19 Host Galaxies of Type Ia Supernovae and NGC 4258 with the Hubble Space Telescope

    Science.gov (United States)

    Hoffmann, Samantha L.; Macri, Lucas M.; Riess, Adam G.; Yuan, Wenlong; Casertano, Stefano; Foley, Ryan J.; Filippenko, Alexei V.; Tucker, Brad E.; Chornock, Ryan; Silverman, Jeffrey M.; Welch, Douglas L.; Goobar, Ariel; Amanullah, Rahman

    2016-10-01

    We present results of an optical search conducted as part of the SH0ES project (Supernovae and H0 for the Equation of State of dark energy) for Cepheid variable stars using the Hubble Space Telescope (HST) in 19 hosts of Type Ia supernovae (SNe Ia) and the maser-host galaxy NGC 4258. The targets include nine newly imaged SN Ia hosts using a novel strategy based on a long-pass filter that minimizes the number of HST orbits required to detect and accurately determine Cepheid properties. We carried out a homogeneous reduction and analysis of all observations, including new universal variability searches in all SN Ia hosts, which yielded a total of 2200 variables with well-defined selection criteria, the largest such sample identified outside the Local Group. These objects are used in a companion paper to determine the local value of H0 with a total uncertainty of 2.4%. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  19. VizieR Online Data Catalog: >20yrs of HST obs. of Cepheids in SNIa host gal. (Hoffmann+, 2016)

    Science.gov (United States)

    Hoffmann, S. L.; Macri, L. M.; Riess, A. G.; Yuan, W.; Casertano, S.; Foley, R. J.; Filippenko, A. V.; Tucker, B. E.; Chornock, R.; Silverman, J. M.; Welch, D. L.; Goobar, A.; Amanullah, R.

    2017-01-01

    HST observations of Cepheid variables (both archival or newly obtained) span more than two decades (1994-2016; see table 1). The earliest Cepheid observations we analyzed were obtained with the Wide Field and Planetary Camera 2 (WFPC2) as part of the initial efforts to measure H0 with HST (Freedman+ 2001ApJ...553...47F; Sandage+ 2006ApJ...653..843S) and were later used by Freedman+ (2012ApJ...758...24F) to reach beyond the LMC for the Carnegie Hubble Project. We also re-analyzed observations obtained in previous phases of our project (Riess+ 2009, J/ApJS/183/109; 2011, J/ApJ/730/119) with the Advanced Camera for Surveys (ACS) Wide Field Channel (WFC) and/or the Wide Field Camera 3 (WFC3) Ultraviolet and Visible Channel (UVIS). Finally, we obtained new observations of nine SN Ia hosts using WFC3. We obtained the majority of our optical images with these modern cameras, 113 and 132 unique epochs with ACS and WFC3, respectively, while WFPC2 contributes a smaller fraction with 67 epochs. (6 data files).

  20. Peculiar variations of white dwarf pulsation frequencies and maestro

    Science.gov (United States)

    Dalessio, James Ruland

    In Part I we report on variations of the normal mode frequencies of the pulsating DB white dwarfs EC 20058-5234 and KIC 8626021 and the pulsating DA white dwarf GD 66. The observations of EC 20058-5234 and KIC 8626021 were motivated by the possibility of measuring the plasmon neutrino production rate of a white dwarf, while the observations of GD 66 were part of a white dwarf pulsation timing based planet search. We announce the discovery of periodic and quasi-periodic variations of multiple normal mode frequencies that cannot be due to the presence of planetary companions. We note the possible signature of a planetary companion to EC 20058-5234 and show that GD 66 cannot have a planet in a several AU orbit down to half a Jupiter mass. We also announce the discovery of secular variations of the normal mode frequencies of all three stars that are inconsistent with cooling alone. Importantly, the rates of period change of several modes of KIC 8626021 are consistent with evolutionary cooling, but are not yet statistically significant. These modes offer the best possibility of measuring the neutrino production rate in a white dwarf. We also observe periodic and secular variations in the frequency of a combination mode that exactly matches the variations predicted by the parent modes, strong observational evidence that combination modes are created by the convection zone and are not normal modes. Periodic variations in the amplitudes of many of these modes is also noted. We hypothesize that these frequency variations are caused by complex variations of the magnetic field strength and geometry, analogous to behavior observed in the Sun. In Part II we describe the MAESTRO software framework and the MAESTRO REDUCE algorithm. MAESTRO is a collection of astronomy specific MatLab software developed by the Whole Earth Telescope. REDUCE is an an algorithm that can extract the brightness of stars on a set of CCD images with minimal configuration and human interaction. The key to

  1. Soft X-Ray Pulsations in Solar Flares

    Science.gov (United States)

    Simões, P. J. A.; Hudson, H. S.; Fletcher, L.

    2015-12-01

    The soft X-ray emissions ( hν>1.5 keV) of solar flares mainly come from the bright coronal loops at the highest temperatures normally achieved in the flare process. Their ubiquity has led to their use as a standard measure of flare occurrence and energy, although the overwhelming bulk of the total flare energy goes elsewhere. Recently Dolla et al. ( Astrophys. J. Lett. 749, L16, 2012) noted quasi-periodic pulsations (QPP) in the soft X-ray signature of the X-class flare SOL2011-02-15, as observed by the standard photometric data from the GOES ( Geostationary Operational Environmental Satellite) spacecraft. In this article we analyse the suitability of the GOES data for this type of analysis and find them to be generally valuable after September, 2010 (GOES-15). We then extend the result of Dolla et al. to a complete list of X-class flares from Cycle 24 and show that most of them (80 %) display QPPs in the impulsive phase. The pulsations show up cleanly in both channels of the GOES data, making use of time-series of irradiance differences (the digital time derivative on the 2-s sampling). We deploy different techniques to characterise the periodicity of GOES pulsations, considering the red-noise properties of the flare signals, finding a range of characteristic time scales of the QPPs for each event, but usually with no strong signature of a single period dominating in the power spectrum. The QPP may also appear on somewhat longer time scales during the later gradual phase, possibly with a greater tendency towards coherence, but the sampling noise in GOES difference data for high irradiance values (X-class flares) makes these more uncertain. We show that there is minimal phase difference between the differenced GOES energy channels, or between them and the hard X-ray variations on short time scales. During the impulsive phase, the footpoints of the newly forming flare loops may also contribute to the observed soft X-ray variations.

  2. Uncertainty propagation with functionally correlated quantities

    CERN Document Server

    Giordano, Mosè

    2016-01-01

    Many uncertainty propagation software exist, written in different programming languages, but not all of them are able to handle functional correlation between quantities. In this paper we review one strategy to deal with uncertainty propagation of quantities that are functionally correlated, and introduce a new software offering this feature: the Julia package Measurements.jl. It supports real and complex numbers with uncertainty, arbitrary-precision calculations, mathematical and linear algebra operations with matrices and arrays.

  3. GW Librae: a unique laboratory for pulsations in an accreting white dwarf

    Science.gov (United States)

    Toloza, O.; Gänsicke, B. T.; Hermes, J. J.; Townsley, D. M.; Schreiber, M. R.; Szkody, P.; Pala, A.; Beuermann, K.; Bildsten, L.; Breedt, E.; Cook, M.; Godon, P.; Henden, A. A.; Hubeny, I.; Knigge, C.; Long, K. S.; Marsh, T. R.; de Martino, D.; Mukadam, A. S.; Myers, G.; Nelson, P.; Oksanen, A.; Patterson, J.; Sion, E. M.; Zorotovic, M.

    2016-07-01

    Non-radial pulsations have been identified in a number of accreting white dwarfs in cataclysmic variables. These stars offer insight into the excitation of pulsation modes in atmospheres with mixed compositions of hydrogen, helium, and metals, and the response of these modes to changes in the white dwarf temperature. Among all pulsating cataclysmic variable white dwarfs, GW Librae stands out by having a well-established observational record of three independent pulsation modes that disappeared when the white dwarf temperature rose dramatically following its 2007 accretion outburst. Our analysis of Hubble Space Telescope (HST) ultraviolet spectroscopy taken in 2002, 2010, and 2011, showed that pulsations produce variations in the white dwarf effective temperature as predicted by theory. Additionally in 2013 May, we obtained new HST/Cosmic Origin Spectrograph ultraviolet observations that displayed unexpected behaviour: besides showing variability at ≃275 s, which is close to the post-outburst pulsations detected with HST in 2010 and 2011, the white dwarf exhibits high-amplitude variability on an ≃4.4 h time-scale. We demonstrate that this variability is produced by an increase of the temperature of a region on white dwarf covering up to ≃30 per cent of the visible white dwarf surface. We argue against a short-lived accretion episode as the explanation of such heating, and discuss this event in the context of non-radial pulsations on a rapidly rotating star.

  4. Coupled pulsating and cellular structure in the propagation of globally planar detonations in free space

    Energy Technology Data Exchange (ETDEWEB)

    Han, Wenhu [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Gao, Yang, E-mail: gaoyang-00@mails.tsinghua.edu.cn [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China); Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Wang, Cheng [Beijing Institute of Technology, Beijing 100081 (China); Law, Chung K. [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States)

    2015-10-15

    The globally planar detonation in free space is numerically simulated, with particular interest to understand and quantify the emergence and evolution of the one-dimensional pulsating instability and the two-dimensional cellular structure which is inherently also affected by pulsating instability. It is found that the pulsation includes three stages: rapid decay of the overdrive, approach to the Chapman-Jouguet state and emergence of weak pulsations, and the formation of strong pulsations; while evolution of the cellular structure also exhibits distinct behavior at these three stages: no cell formation, formation of small-scale, irregular cells, and formation of regular cells of a larger scale. Furthermore, the average shock pressure in the detonation front consists of fine-scale oscillations reflecting the collision dynamics of the triple-shock structure and large-scale oscillations affected by the global pulsation. The common stages of evolution between the cellular structure and the pulsating behavior, as well as the existence of shock-front pressure oscillation, suggest highly correlated mechanisms between them. Detonations with period doubling, period quadrupling, and chaotic amplitudes were also observed and studied for progressively increasing activation energies.

  5. Propagation and source of Pc5 frequency range pulsation at cusp latitude

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Two induction magnetometers have been installed at Chinese Zhongshan Station and Australia Davis Station, Antarctica respectively. We adopt the cross-spectral analysis technique to analyze the data of the two induction magnetometers, in June, September, December 1996 and March 1997, and to investigate Pc5 frequency range pulsation (150 600 s) occurrence and propagation in cusp latitude. The results are summarized as follows: At Zhongshan-Davis Station, the magnetic pulsations in Pc5 frequency band can occurs over a wide time, but more frequently at pre local magnetic noon and pre local magnetic midnight. The Pc5 pulsations have no significant seasonal variation in the amplitude, occurrence and propagation. The amplitude has a small peak at pre local magnetic noon and large value sometimes at pre local magnetic midnight. In daytime, the Pc5 pulsations propagate westward in morning and eastward in afternoon, and reversal at local magnetic noon. In nighttime, the Pc5 pulsations propagate westward before 20:00 MLT and eastward after 20:00 MLT. Near dusk time, the Pc5 pulsations propagate irregularly. These characteristics indicate that the Pc5 pulsations have different source at different local magnetic time.

  6. Spatio-temporal dynamics of sources of hard X-ray pulsations in solar flares

    CERN Document Server

    Kuznetsov, S A; Morgachev, A S; Struminsky, A B

    2016-01-01

    We present systematic analysis of spatio-temporal evolution of sources of hard X-ray (HXR) pulsations in solar flares. We concentrate on disk flares whose impulsive phase are accompanied by a series of more than three peaks (pulsations) of HXR emission detected in the RHESSI 50-100 keV channel with 4-second cadence. 29 such flares observed from February 2002 to June 2015 with time differences between successive peaks of 8-270 s are studied. The main observational result is that sources of HXR pulsations in all flares are not stationary, they demonstrate apparent displacements from pulsation to pulsation. The flares can be subdivided into two groups depending on character of dynamics of HXR sources. The group-1 consists of 16 flares (55%) with systematic dynamics of HXR sources from pulsation to pulsation with respect to a magnetic polarity inversion line (MPIL), which has simple extended trace on the photosphere. The group-2 consists of 13 flares (45%) with more chaotic displacements of HXR sources with respe...

  7. Ultra-fast magnetic resonance encephalography of physiological brain activity - Glymphatic pulsation mechanisms?

    Science.gov (United States)

    Kiviniemi, Vesa; Wang, Xindi; Korhonen, Vesa; Keinänen, Tuija; Tuovinen, Timo; Autio, Joonas; LeVan, Pierre; Keilholz, Shella; Zang, Yu-Feng; Hennig, Jürgen; Nedergaard, Maiken

    2016-06-01

    The theory on the glymphatic convection mechanism of cerebrospinal fluid holds that cardiac pulsations in part pump cerebrospinal fluid from the peri-arterial spaces through the extracellular tissue into the peri-venous spaces facilitated by aquaporin water channels. Since cardiac pulses cannot be the sole mechanism of glymphatic propulsion, we searched for additional cerebrospinal fluid pulsations in the human brain with ultra-fast magnetic resonance encephalography. We detected three types of physiological mechanisms affecting cerebral cerebrospinal fluid pulsations: cardiac, respiratory, and very low frequency pulsations. The cardiac pulsations induce a negative magnetic resonance encephalography signal change in peri-arterial regions that extends centrifugally and covers the brain in ≈1 Hz cycles. The respiratory ≈0.3 Hz pulsations are centripetal periodical pulses that occur dominantly in peri-venous areas. The third type of pulsation was very low frequency (VLF 0.001-0.023 Hz) and low frequency (LF 0.023-0.73 Hz) waves that both propagate with unique spatiotemporal patterns. Our findings using critically sampled magnetic resonance encephalography open a new view into cerebral fluid dynamics. Since glymphatic system failure may precede protein accumulations in diseases such as Alzheimer's dementia, this methodological advance offers a novel approach to image brain fluid dynamics that potentially can enable early detection and intervention in neurodegenerative diseases.

  8. Pulsating jet-like structures in magnetized plasma

    Science.gov (United States)

    Goncharov, V. P.; Pavlov, V. I.

    2016-08-01

    The formation of pulsating jet-like structures has been studied in the scope of the nonhydrostatic model of a magnetized plasma with horizontally nonuniform density. We discuss two mechanisms which are capable of stopping the gravitational spreading appearing to grace the Rayleigh-Taylor instability and to lead to the formation of stationary or oscillating localized structures. One of them is caused by the Coriolis effect in the rotating frames, and another is connected with the Lorentz effect for magnetized fluids. Magnetized jets/drops with a positive buoyancy must oscillate in transversal size and can manifest themselves as "radio pulsars." The estimates of their frequencies are made for conditions typical for the neutron star's ocean.

  9. Non-radial Pulsations in the Open Cluster NGC 3766

    CERN Document Server

    Roettenbacher, Rachael M; McSwain, M Virginia

    2009-01-01

    Non-radial pulsations (NRPs) are a proposed mechanism for the formation of decretion disks around Be stars and are important tools to study the internal structure of stars. NGC 3766 has an unusually large fraction of transient Be stars, so it is an excellent location to study the formation mechanism of Be star disks. High resolution spectroscopy can reveal line profile variations from NRPs, allowing measurements of both the degree, l, and azimuthal order, m. However, spectroscopic studies require large amounts of time with large telescopes to achieve the necessary high S/N and time domain coverage. On the other hand, multi-color photometry can be performed more easily with small telescopes to measure l only. Here, we present representative light curves of Be stars and non-emitting B stars in NGC 3766 from the CTIO 0.9m telescope in an effort to study NRPs in this cluster.

  10. An application of Bayesian inference for solar-like pulsators

    Science.gov (United States)

    Benomar, O.

    2008-12-01

    As the amount of data collected by space-borne asteroseismic instruments (such as CoRoT and Kepler) increases drastically, it will be useful to have automated processes to extract a maximum of information from these data. The use of a Bayesian approach could be very help- ful for this goal. Only a few attempts have been made in this way (e.g. Brewer et al. 2007). We propose to use Markov Chain Monte Carlo simulations (MCMC) with Metropolis-Hasting (MH) based algorithms to infer the main stellar oscillation parameters from the power spec- trum, in the case of solar-like pulsators. Given a number of modes to be fitted, the algorithm is able to give the best set of parameters (frequency, linewidth, amplitude, rotational split- ting) corresponding to a chosen input model. We illustrate this algorithm with one of the first CoRoT targets: HD 49933.

  11. A 'one in a million' case of pulsating thoracoabdominal mass.

    LENUS (Irish Health Repository)

    Tan, Lay Ong

    2012-11-01

    Ectopia cordis is a rare congenital malformation in which the heart is located partially or totally outside the thoracic cavity. It comprises 0.1% of congenital heart diseases. The authors present a case of a male baby born at term by emergency caesarean section due to prolonged fetal bradycardia, who was noted to have a large pulsating mass in the thoracoabdominal area. In view of lower thoracolumbar abdominal defect, ectopic placement of the umbilicus, deficiency of the diaphragmatic pericardium, deficiency of anterior diaphragm and intracardiac abnormalities, a diagnosis of ectopia cordis-Pentalogy of Cantrell was made. He was transferred to a tertiary centre and required oxygen supplement initially. He was sent home after 1 week, on propanolol, with weekly oxygen saturation checks. He is awaiting further surgical intervention pending the required weight gain.

  12. Cerebrospinal fluid flow. Pt. 3; Pathological cerebrospinal fluid pulsations

    Energy Technology Data Exchange (ETDEWEB)

    Schroth, G. (Dept. of Neuradiology, Tuebingen Univ. (Germany)); Klose, U. (Dept. of Neuradiology, Tuebingen Univ. (Germany))

    1992-12-01

    Cardiac- and respiration-related movements of the cerebrospinal fluid (CSF) were investigated by MRI in 71 patients. In most patients with arteriosclerotic occlusive vascular disease CSF pulsations are normal. Decreased pulsatile flow is detectable in those with arteriovenous malformations, intracranial air and following lumbar puncture and withdrawal of CSF. Increased pulsatile flow in the cerebral aqueduct was found in 2 patients with large aneurysms, idiopathic communicating syringomyelia and in most cases of normal pressure hydrocephalus (NPH). CSF flow in the cervical spinal canal is, however, reduced or normal in NPH, indicating reduction of the unfolding ability of the surface of the brain and/or inhibition of rapid CSF movements in the subrachnoid space over its convexity. (orig.)

  13. Asteroseismology of pulsating DA white dwarfs with fully evolutionary models

    Directory of Open Access Journals (Sweden)

    Althaus L.G.

    2013-03-01

    Full Text Available We present a new approach for asteroseismology of DA white dwarfs that consists in the employment of a large set of non-static, physically sound, fully evolutionary models representative of these stars. We already have applied this approach with success to pulsating PG1159 stars (GW Vir variables. Our white dwarf models, which cover a wide range of stellar masses, effective temperatures, and envelope thicknesses, are the result of fully evolutionary computations that take into account the complete history of the progenitor stars from the ZAMS. In particular, the models are characterized by self-consistent chemical structures from the centre to the surface, a crucial aspect of white dwarf asteroseismology. We apply this approach to an ensemble of 44 bright DAV (ZZ Ceti stars.

  14. Dynamic response of nuclear fuel assembly excited by pressure pulsations

    Directory of Open Access Journals (Sweden)

    Zeman V.

    2012-12-01

    Full Text Available The paper deals with dynamic load calculation of the hexagonal type nuclear fuel assembly caused by spatial motion of the support plates in the reactor core. The support plate motion is excited by pressure pulsations generated by main circulation pumps in the coolant loops of the primary circuit of the nuclear power plant. Slightly different pumps revolutions generate the beat vibrations which causes an amplification of fuel assembly component dynamic deformations and fuel rods coating abrasion. The cyclic and central symmetry of the fuel assembly makes it possible the system decomposition into six identical revolved fuel rod segments which are linked with central tube and skeleton by several spacer grids in horizontal planes.The modal synthesis method with condensation of the fuel rod segments is used for calculation of the normal and friction forces transmitted between fuel rods and spacer grids cells.

  15. Mathematical Modelling and Parameter Optimization of Pulsating Heat Pipes

    CERN Document Server

    Yang, Xin-She; Luan, Tao; Koziel, Slawomir

    2014-01-01

    Proper heat transfer management is important to key electronic components in microelectronic applications. Pulsating heat pipes (PHP) can be an efficient solution to such heat transfer problems. However, mathematical modelling of a PHP system is still very challenging, due to the complexity and multiphysics nature of the system. In this work, we present a simplified, two-phase heat transfer model, and our analysis shows that it can make good predictions about startup characteristics. Furthermore, by considering parameter estimation as a nonlinear constrained optimization problem, we have used the firefly algorithm to find parameter estimates efficiently. We have also demonstrated that it is possible to obtain good estimates of key parameters using very limited experimental data.

  16. Making a Be star: the role of rotation and pulsations

    CERN Document Server

    Neiner, C

    2013-01-01

    The Be phenomenon, i.e. the ejection of matter from Be stars into a circumstellar disk, has been a long lasting mystery. In the last few years, the CoRoT satellite brought clear evidence that Be outbursts are directly correlated to pulsations and rapid rotation. In particular the stochastic excitation of gravito-inertial modes, such as those detected by CoRoT in the hot Be star HD 51452, is enhanced thanks to rapid rotation. These waves increase the transport of angular momentum and help to bring the already rapid stellar rotation to its critical value at the surface, allowing the star to eject material. Below we summarize the recent observational and theoretical findings and describe the new picture of the Be phenomenon which arose from these results.

  17. Making a Be star: the role of rotation and pulsations

    Science.gov (United States)

    Neiner, Coralie; Mathis, Stéphane

    2014-02-01

    The Be phenomenon, i.e. the ejection of matter from Be stars into a circumstellar disk, has been a long lasting mystery. In the last few years, the CoRoT satellite brought clear evidence that Be outbursts are directly correlated to pulsations and rapid rotation. In particular the stochastic excitation of gravito-inertial modes, such as those detected by CoRoT in the hot Be star HD 51452, is enhanced thanks to rapid rotation. These waves increase the transport of angular momentum and help to bring the already rapid stellar rotation to its critical value at the surface, allowing the star to eject material. Below we summarize the recent observational and theoretical findings and describe the new picture of the Be phenomenon which arose from these results.

  18. Pulsating instability and self-acceleration of fast turbulent flames

    CERN Document Server

    Poludnenko, A Y

    2015-01-01

    (Abridged) A series of three-dimensional numerical simulations is used to study the intrinsic stability of high-speed turbulent flames. Calculations model the interaction of a fully-resolved premixed flame with a highly subsonic, statistically steady, homogeneous, isotropic turbulence. We consider a wide range of turbulent intensities and system sizes, corresponding to the Damk\\"ohler numbers Da = 0.1-6.0. These calculations show that turbulent flames in the regimes considered are intrinsically unstable. In particular, we find three effects. 1) Turbulent flame speed develops pulsations with the observed peak-to-peak amplitude > 10 and a characteristic time scale close to a large-scale eddy turnover time. Such variability is caused by the interplay between turbulence, which continuously creates the flame surface, and highly intermittent flame collisions, which consume the flame surface. 2) Unstable burning results in the periodic pressure build-up and the formation of pressure waves or shocks, when the flame s...

  19. A Novel Pre-cooling System for a Cryogenic Pulsating Heat Pipe

    Science.gov (United States)

    Xu, Dong; Liu, Huiming; Gong, Linghui; Xu, Xiangdong; Li, Laifeng

    To reduce the influence of the pipe material on the measurement of effective thermal conductivity, the pipe of a cryogenic pulsating heat pipe is generally made of stainless steel. Because of the low thermal conductivity of stainless steel, the pre-cooling of the evaporator in cryogenic pulsating heat pipe using helium as working fluid at 4.2 K is a problem. We designed a mechanical-thermal switch between the cryocooler and the evaporator, which was on during the pre-cooling process and off during the test process. By using the pre-cooling system, the cool down time of the cryogenic pulsating heat pipe was reduced significantly.

  20. Dependences between kinetics of the human eye pupil and blood pulsation

    Science.gov (United States)

    Szmigiel, Marta A.; Kasprzak, Henryk; Klysik, Anna

    2016-09-01

    The study presents measurement and numerical analysis of time variability of the eye pupil geometry and its position, as well as their correlations with blood pulsation. The image of the eye pupil was recorded by use of the fast CCD camera with 200 fps rates. Blood pulsation was synchronously recorded by use of pulse transducer with the sampling frequency of 200 Hz. Each single image from a sequence was numerically processed. Contour of the eye pupil was approximated, and its selected geometrical parameters as well as center positions were calculated. Spectral and coherence analysis of time variability of calculated pupil parameters and blood pulsation were determined.

  1. Pulsation, Mass Loss and the Upper Mass Limit

    Science.gov (United States)

    Klapp, J.; Corona-Galindo, M. G.

    1990-11-01

    RESUMEN. La existencia de estrellas con masas en exceso de 100 M0 ha sido cuestionada por mucho tiempo. Lfmites superiores para la masa de 100 M0 han sido obtenidos de teorfas de pulsaci6n y formaci6n estelar. En este trabajo nosotros primero investigamos la estabilidad radial de estrellas masivas utilizando la aproximaci6n clasica cuasiadiabatica de Ledoux, la aproximaci6n cuasiadiabatica de Castor y un calculo completamente no-adiabatico. Hemos encontrado que los tres metodos de calculo dan resultados similares siempre y cuando una pequefia regi6n de las capas externas de la estrella sea despreciada para la aproximaci6n clasica. La masa crftica para estabilidad de estrellas masivas ha sido encontrada en acuerdo a trabajos anteriores. Explicamos Ia discrepancia entre este y trabajos anteriores por uno de los autores. Discunmos calculos no-lineales y perdida de masa con respecto a) lfmite superior de masa. The existence of stars with masses in excess of 100 M0 has been questioned for a very long time. Upper mass limits of 100 Me have been obtained from pulsation and star formation theories. In this work we first investigate the radial stability of massive stars using the classical Ledoux's quasiadiabatic approximation. the Castor quasiadiabatic approximation and a fully nonadiabatic calculation. We have found that the three methods of calculation give similar results provided that a small region in outer layers of the star be neglected for the classical approximation. The critical mass for stability of massive stars is found to be in agreement with previous work. We explain the reason for the discrepancy between this and previous work by one of the authors. We discuss non-linear calculations and mass loss with regard to the upper mass limit. Key words: STARS-MASS FUNCTION - STARS-MASS LOSS - STARS-PULSATION

  2. Relationship of spontaneous retinal vein pulsation with ocular circulatory cycle.

    Directory of Open Access Journals (Sweden)

    Mijin Kim

    Full Text Available PURPOSE: To determine the timing of spontaneous venous pulsation (SVP relative to the ocular circulatory cycle by using the movie tool of confocal scanning laser ophthalmoloscope. METHODS: A video recording of the fundus was obtained using a confocal scanning laser ophthalmoscope (Spectralis HRA, Heidelberg Engineering, Heidelberg, Germany at 8 frames/s in 47 eyes (15 glaucoma patients and 32 glaucoma suspects with visible pulsation of both the central retinal artery (CRA and vein (CRV. The timing of the maximum and minimum diameters of the CRA (CRA(max and CRAmin, respectively and CRV (CRV(max and CRV(min, respectively was identified during four pulse cycles. The interval between CRV(min and CRA(min, and between CRV(max and CRA(max was expressed as the number of frames and as a percentage of the ocular circulatory cycle. RESULTS: The ocular circulatory cycle (from one CRA(max to the next lasted 7.7 ± 1.0 frames (958.8 ± 127.2 ms, mean ± SD, with a mean pulse rate of 62.6 beats/min. The diameter of the CRA was increased for 2.4 ± 0.5 frames (301.9 ± 58.8 ms and decreased for 5.3 ± 0.9 frames (656.9 ± 113.5 ms. CRV(max occurred 1.0 ± 0.2 frames after CRA(max (equivalent to 13.0% of the ocular circulatory cycle, while CRV(min occurred 1.1 ± 0.4 frames after CRA(min (equivalent to 14.6% of the ocular circulatory cycle. CONCLUSIONS: During SVP, the diameter of the CRV began to decrease at early diastole, and the reduction persisted until early systole. This finding supports that CRV collapse occurs during ocular diastole.

  3. Time Domain Astronomy with the Harvard Plates: from Cepheids to DASCH

    Science.gov (United States)

    Grindlay, Jonathan E.

    2014-06-01

    The ~500,000 Harvard glass plate photographic negatives are the world’s largest and most complete (full sky; 107y time span) database for Time Domain Astronomy (TDA) on days-months-decades to century timescales. With plate fields of view ranging from 3o - 30o exposed quasi-randomly full sky from 1885 - 1992, any object is observed ~1000 - 3000 times, with limiting magnitudes ranging from B =12-18. I briefly review some of the colorful history of this massive plate-taking project and a few of the pivotal discoveries (e.g. the “Leavitt Law” for the Cepheid Period-Luminosity relation) made by visual studies of the plates by the true TDA pioneers, the likely Harvard (DASCH) project to fully digitize and reduce this wealth of data 1 Pb) and provide it on spinning disk to the full astronomical community and public. Using the full-sky APASS catalog giving BVR magnitudes (for V ~9-17) as well as GSC2.3.2 for both fainter and brighter stars, DASCH does spatially resolved (0.25o -0.6o bins) photometric calibrations to derive B magnitudes with rm 0.1mag over the full plate and over the (typically) ~6-8 different principal plate series (telescopes and plate scales) covering any given object, along with ~0.3-1 arcsec astrometry (depending on plate scale) for each stellar object averaged over ~1year. The high speed/precision scanner, plate processing, and analysis pipeline have now enabled the first data releases (DR1-DR3) of 12 to cover full sky and already enabled a wealth of new discoveries. I describe a few examples, such as: K2III giants with decadal variations; a new class of Symbiotic novae; ~50-100y recurrence times for black hole X-ray binary outbursts; and QPOs from 3C273. The DASCH data are increasingly available 15% now; 100% in 3.5y) for TDA on largely unexplored timescales. We are grateful to NSF for support with grants AST-0407380, AST-0909073 and AST-1313370.

  4. A conserved quantity in thin body dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, J.A., E-mail: hannaj@vt.edu [Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Pendar, H. [Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States)

    2016-02-15

    Thin, solid bodies with metric symmetries admit a restricted form of reparameterization invariance. Their dynamical equilibria include motions with both rigid and flowing aspects. On such configurations, a quantity is conserved along the intrinsic coordinate corresponding to the symmetry. As an example of its utility, this conserved quantity is combined with linear and angular momentum currents to construct solutions for the equilibria of a rotating, flowing string, for which it is akin to Bernoulli's constant. - Highlights: • A conserved quantity relevant to the dynamical equilibria of thin structures. • A mixed Lagrangian–Eulerian non-material action principle for fixed windows of axially moving systems. • Analytical solutions for rotating, flowing strings (yarn balloons). • Noether meets Bernoulli in a textile factory.

  5. Electromagnetic Quantities in Black Hole Magnetosphere

    Institute of Scientific and Technical Information of China (English)

    汪定雄; 马任意; 雷卫华; 姚国政

    2004-01-01

    Some electromagnetic quantities in the black hole (BH) magnetosphere are discussed by considering the coexistence of the Blandford-Znajek process and the magnetic coupling process. These quantities are (i) flux of electromagnetic energy and angular momentum transferred between the BH and the disc, (ii) poloidal currents flowing on the horizon and disc, (iii) poloidal electric field on the horizon, (iv) toroidal magnetic field in the BH magnetosphere,and (v) voltage drop across the magnetic coupling region on the horizon. It turns out that these quantities are determined mainly by three parameters: (i) the positions relative to the corotation magnetic surface, (ii) the BH spin, and (iii) the power-law index for the variation of the magnetic field on the disc.

  6. A generalized definition of dosimetric quantities.

    Science.gov (United States)

    Kellerer, A M; Rossi, H H

    1990-04-01

    The current definitions of microdosimetric and dosimetric quantities use the notion of 'ionizing radiation'. However, this notion is not rigorously defined, and its definition would require the somewhat arbitrary choice of specified energy cut-off values for different types of particles. Instead of choosing fixed cut-off values one can extend the system of definitions by admitting the free selection of a category of types and energies of particles that are taken to be part of the field. In this way one extends the system of dosimetric quantities. Kerma and absorbed dose appear then as special cases of a more general dosimetric quantity, and an analogue to kerma can be obtained for charged particle fields; it is termed cema. A modification that is suitable for electron fields is termed reduced cema.

  7. NUMERICAL SIMULATION AND ANALYSIS OF PRESSURE PULSATION IN FRANCIS HYDRAULIC TURBINE WITH AIR ADMISSION

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this article, the three-dimensional unsteady multiphase flow is simulated in the whole passage of Francis hydraulic turbine. The pressure pulsation is predicted and compared with experimental data at positions in the draft tube, in front of runner, guide vanes and at the inlet of the spiral case. The relationship between pressure pulsation in the whole passage and air admission is analyzed. The computational results show: air admission from spindle hole decreases the pressure difference in the horizontal section of draft tube, which in turn decreases the amplitude of low-frequency pressure pulsation in the draft tube; the rotor-stator interaction between the air inlet and the runner increases the blade-frequency pressure pulsation in front of the runner.

  8. A Novel Multisection Distributed Feedback Laser with Varied Ridge Width for Self-Pulsation Generation

    Institute of Scientific and Technical Information of China (English)

    WAN Qin; SUN Chang-Zheng; XIONG Bing; WANG Jian; LUO Yi

    2006-01-01

    @@ A novel ridge-waveguide multisection (MS) distributed feedback (DFB) laser, which consists of two identical DFB sections but different ridge widths, is proposed to generate beating-type self-pulsations (SPs).

  9. Recent advances in the theoretical modeling of pulsating low-mass He-core white dwarfs

    CERN Document Server

    Córsico, A H; Calcaferro, L M; Serenelli, A M; Kepler, S O; Jeffery, C S

    2016-01-01

    Many extremely low-mass (ELM) white-dwarf (WD) stars are currently being found in the field of the Milky Way. Some of these stars exhibit long-period nonradial $g$-mode pulsations, and constitute the class of ELMV pulsating WDs. In addition, several low-mass pre-WDs, which could be precursors of ELM WDs, have been observed to show short-period photometric variations likely due to nonradial $p$ modes and radial modes. They could constitute a new class of pulsating low-mass pre-WD stars, the pre-ELMV stars. Here, we present the recent results of a thorough theoretical study of the nonadiabatic pulsation properties of low-mass He-core WDs and pre-WDs on the basis of fully evolutionary models representative of these stars.

  10. Discovery of non-radial pulsations in the spectroscopic binary Herbig Ae star RS Cha

    CERN Document Server

    Böhm, T; Catala, C; Alecian, E; Pollard, K; Wright, D

    2008-01-01

    In this article we present a first discovery of non radial pulsations in both components of the Herbig Ae spectroscopic binary star RS Cha. The binary was monitored in quasi-continuous observations during 14 observing nights (Jan 2006) at the 1m Mt John (New Zealand) telescope with the Hercules high-resolution echelle spectrograph. The cumulated exposure time on the star was 44 hrs, corresponding to 255 individual high-resolution echelle spectra with $R = 45000$. Least square deconvolved spectra (LSD) were obtained for each spectrum representing the effective photospheric absorption profile modified by pulsations. Difference spectra were calculated by subtracting rotationally broadened artificial profiles; these residual spectra were analysed and non-radial pulsations were detected. A subsequent analysis with two complementary methods, namely Fourier Parameter Fit (FPF) and Fourier 2D (F2D) has been performed and first constraints on the pulsation modes have been derived. In fact, both components of the spect...

  11. Radial velocity measurements of the pulsating zirconium star: LS IV -14 116

    CERN Document Server

    Jeffery, C Simon; Neelamkodan, Naslim; Kerzendorf, Wolfgang

    2014-01-01

    The helium-rich hot subdwarf LS IV -14 116 shows remarkably high surface abundances of zirconium, yttrium, strontium, and germanium, indicative of strong chemical stratification in the photosphere. It also shows photometric behaviour indicative of non-radial g-mode pulsations, despite having surface properties inconsistent with any known pulsational instability zone. We have conducted a search for radial velocity variability. This has demonstrated that at least one photometric period is observable in several absorption lines as a radial velocity variation with a semi-amplitude in excess of 5 km s$^{-1}$. A correlation between line strength and pulsation amplitude provides evidence that the photosphere pulsates differentially. The ratio of light to velocity amplitude is too small to permit the largest amplitude oscillation to be radial.

  12. Impact of Pulsation Activity on the Light Curves of Symbiotic Variables

    CERN Document Server

    Marsakova, Vladyslava I; Chinarova, Lidia L; Chyzhyk, Maksim S; Andrych, Kateryna D

    2015-01-01

    We used long-term visual amateur observations of several symbiotic variables for detection of periods that may be caused by pulsation. The examples of multiple periodicities are discussed individually in each case.

  13. Continuous vs. pulsating flow boiling. Part 1: Experimental comparison and visualization

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Elmegaard, Brian; Meyer, Knud Erik;

    2016-01-01

    . The fluid pulsations are introduced by a flow modulating expansion device and are compared with continuous flow by a stepper-motor expansion valve in terms of time-averaged heat transfer coefficient. The cycle time ranges from 1 s to 9 s for the pulsations. The time-averaged heat transfer coefficients...... are reduced from transient measurements immediately downstream of the expansion valves at low vapor qualities. The results show that the pulsations improve the time-averaged heat transfer coefficient by 3.2 % on average at low cycle time (1 s to 2) s, whereas the pulsations may reduce the time-averaged heat...... transfer coefficient by as much as 8 % at high heat flux (q ≥ 35 kW/m2) and cycle time (8 s). The latter reduction is adhered to the significant dry-out when the flow modulating expansion valve is closed....

  14. Quantitative assessment of the impact of blood pulsation on images of the pupil in infrared light.

    Science.gov (United States)

    Koprowski, Robert; Szmigiel, Marta; Kasprzak, Henryk; Wróbel, Zygmunt; Wilczyński, Sławomir

    2015-08-01

    Pulsation in the blood vessels of the eye has a big impact on the dynamics of the entire eyeball and its individual elements. Blood pulsation in the retina can be recorded by the pupil, whose size is also subject to dynamic changes. The study involved synchronous measurements of pupil size using a high-speed camera, and blood pulsation using a pulse oximeter placed on the ear lobe. In addition, there were no metrologically significant differences in the phase shift between the average brightness of the individual pupil quadrants. Blood pulsation in other ocular tissues can affect the dynamics of the optical properties of the eye. As demonstrated in this paper, it affects the pupil behavior and its parameters to a considerable extent.

  15. Spatio-temporal Dynamics of Sources of Hard X-Ray Pulsations in Solar Flares

    Science.gov (United States)

    Kuznetsov, S. A.; Zimovets, I. V.; Morgachev, A. S.; Struminsky, A. B.

    2016-09-01

    We present a systematic analysis of the spatio-temporal evolution of sources of hard X-ray (HXR) pulsations in solar flares. We concentrate on disk flares whose impulsive phases are accompanied by a series of more than three successive peaks (pulsations) of HXR emission detected in the RHESSI 50 - 100 keV energy channel with a four-second time cadence. Twenty-nine such flares observed from February 2002 to June 2015 with characteristic time differences between successive peaks P ≈8 - 270 s are studied. The main observational result of the analysis is that sources of HXR pulsations in all flares are not stationary, they demonstrate apparent movements or displacements in the parent active regions from pulsation to pulsation. The flares can be subdivided into two main groups depending on the character of the dynamics of the HXR sources. Group 1 consists of 16 flares ( 55~%) that show systematic dynamics of the HXR sources from pulsation to pulsation with respect to a magnetic polarity inversion line (MPIL), which has a simple extended trace on the photosphere. Group 2 consists of 13 flares ( 45~%) that show more chaotic displacements of the HXR sources with respect to an MPIL with a more complex structure, and sometimes several MPILs are present in the parent active regions of such flares. Based on the observations, we conclude that the mechanism of the flare HXR pulsations (at least with time differences of the considered range) is related to successive triggering of the flare energy release process in different magnetic loops (or bundles of loops) of the parent active regions. Group 1 flare regions consist of loops stacked into magnetic arcades that are extended along MPILs. Group 2 flare regions have more complex magnetic structures, and the loops are arranged more chaotically and randomly there. We also found that at least 14 ( 88~%) group 1 flares and 11 ( 85~%) group 2 flares are accompanied by coronal mass ejections (CMEs), i.e. the absolute majority of the

  16. Latitude-independent Pc5 Geomagnetic Pulsations Associated With Field Line Resonance

    Science.gov (United States)

    Sung, S.; Kim, K.; Lee, D.; Cattell, C. A.; Andre, M.; Khotyaintsev, Y. V.

    2004-12-01

    The latitude-independent Pc5 pulsations with a spectral peak at ˜2.8 mHz were observed with IMAGE and SAMNET magnetometer array in the morning sector (0700-1000 local time) on April 29 (Day 119), 2001. The spectral amplitude had a local peak at ˜67° geomagnetic latitude, where a sudden phase change of ˜180° appeared. A vortical equivalent ionospheric current structure centered at latitude between 67° and 71° was observed during the Pc5 pulsations and the rotational sense of the current vortex was reversed for one cycle of the pulsation. During the interval of the enhancement of the Pc5 pulsations, the POLAR spacecraft in the morning side crossed near the magnetic shell (L ˜ 8) corresponding to the latitude where the spectral amplitude was maximum, and observed ˜2.8 mHz pulsations in the radial electric field and compressional magnetic field components. Since the toroidal mode Alfvén waves in the magnetosphere are characterized by an electric field perturbation in the radial direction, the simultaneous presence of the pulsations in both components indicates that a field line resonance (FLR) was driven by compressional Pc5 pulsations. Using solar wind data, we conformed that the compressional Pc5 pulsations at POLAR occurred during an interval of enhanced solar wind dynamic pressure. From the analysis of the ground magnetometer data and POLAR data, we suggest that latitude independent ground magnetic perturbations are caused by the vortical equivalent current generated by FLR-associated field-aligned currents.

  17. Analysis on observational results of Pi2 geomagnetic pulsation in Henan region

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A measurement profile consisted of 5 sites from Xinyang to Tangyin in Henan Province was set up in September of 1996 to carry out simultaneous observation of Pi2 geomagnetic pulsations. Simultaneity of Pi2 geomagnetic pulsation occurrence along the N-S profile was investigated. Results of analysis pointed out that Pi2 geomagnetic pulsations appeared at first at the site of Xinyang at the southern end of the profile, the later the same Pi2 geomagnetic pulsation appeared, the more north the site was at. Apparent propagation speed of Pi2 in N-S direction in the region is about 140 km/s. Because Pi2 geomagnetic pulsation varying with time is of instability, and based on characteristics that basic wavelet can be dilated and localized, we selected proper basic wavelet form and by means of wavelet transform to analyze the changes of periods and amplitudes of main periodic components included in Pi2 pulsations with time. The results show that there existed complex form in periods and amplitudes of wavelet varying with time.

  18. Evaluation of runner cone extension to dampen pressure pulsations in a Francis model turbine

    Science.gov (United States)

    Gogstad, Peter Joachim; Dahlhaug, Ole Gunnar

    2016-11-01

    Today's energy market has a high demand of flexibility due to introduction of other intermittent renewables as wind and solar. To ensure a steady power supply, hydro turbines are often forced to operate more at part load conditions. Originally, turbines were built for steady operation around the best efficiency point. The demand of flexibility, combined with old designs has showed an increase in turbines having problems with hydrodynamic instabilities such as pressure pulsations. Different methods have been investigated to mitigate pressure pulsations. Air injection shows a significant reduction of pressure pulsation amplitudes. However, installation of air injection requires extra piping and a compressor. Investigation of other methods such as shaft extension shows promising results for some operational points, but may significantly reduce the efficiency of the turbine at other operational points. The installation of an extension of the runner cone has been investigated at NTNU by Vekve in 2004. This has resulted in a cylindrical extension at Litjfossen Power Plant in Norway, where the bolt suffered mechanical failure. This indicates high amplitude pressure pulsations in the draft tube centre. The high pressure pulsation amplitudes are believed to be related to high tangential velocity in the draft tube. The mentioned runner cone extension has further been developed to a freely rotating extension. The objective is to reduce the tangential velocity in the draft tube and thereby the pressure pulsation amplitudes.

  19. Blue straggler masses from pulsation properties. II. Topology of the Instability Strip

    CERN Document Server

    Fiorentino, G; Bono, G; Dalessandro, E; Ferraro, F R; Lanzoni, B; Lovisi, L; Mucciarelli, A

    2015-01-01

    We present a new set of nonlinear, convective radial pulsation models for main sequence stars computed assuming three metallicities: Z=0.0001, 0.001 and 0.008. These chemical compositions bracket the metallicity of stellar systems hosting SX Phoenicis stars (SXPs or pulsating Blue Stragglers), namely Galactic globular clusters and nearby dwarf spheroidals. Stellar masses and luminosities of the pulsation models are based on alpha--enhanced evolutionary tracks from the BASTI website. We are able to define the topology of the instability strip (IS), and in turn the pulsation relations for the first four pulsation modes. We found that third overtones approach a stable nonlinear limit cycle. Predicted and empirical IS agree quite well in the case of 49 SXPs belonging to omega Cen. We used theoretical Period-Luminosity relations in B,V bands to identify their pulsation mode. We assumed Z=0.001 and Z=0.008 as mean metallicities of SXPs in omega Cen. We found respectively 13-15 fundamental, 22-6 first and 9-4 second...

  20. A second case of outbursts in a pulsating white dwarf observed by Kepler

    CERN Document Server

    Hermes, J J; Bell, Keaton J; Chote, P; Gaensicke, B T; Kawaler, Steven D; Clemens, J C; Dunlap, B H; Winget, D E; Armstrong, D J

    2015-01-01

    We present observations of a new phenomenon in pulsating white dwarf stars: large-amplitude outbursts at timescales much longer than the pulsation periods. The cool (Teff = 11,010 K), hydrogen-atmosphere pulsating white dwarf PG 1149+057 was observed nearly continuously for more than 78.8 d by the extended Kepler mission in K2 Campaign 1. The target showed 10 outburst events, recurring roughly every 8 d and lasting roughly 15 hr, with maximum flux excursions up to 45% in the Kepler bandpass. We demonstrate that the outbursts affect the pulsations and therefore must come from the white dwarf. Additionally, we argue that these events are not magnetic reconnection flares, and are most likely connected to the stellar pulsations and the relatively deep surface convection zone. PG 1149+057 is now the second cool pulsating white dwarf to show this outburst phenomenon, after the first variable white dwarf observed in the Kepler mission, KIC 4552982. Both stars have the same effective temperature, within the uncertain...

  1. The pulsation modes of the pre-white dwarf PG 1159-035

    CERN Document Server

    Costa, J E S; Winget, D E; O'Brien, M S; Kawaler, S D; Costa, A F M; Giovannini, O; Kanaan, A; Mukadam, A S; Mullally, F; Nitta, A; Provençal, J L; Shipman, H; Wood, M A; Ahrens, T J; Grauer, A; Kilic, M; Bradley, P A; Sekiguchi, K; Crowe, R; Jiang, X J; Sullivan, D; Sullivan, T; Rosen, R; Clemens, J C; Janulis, R; O'Donoghue, D; Ogloza, W; Baran, A; Silvotti, R; Marinoni, S; Vauclair, G; Dolez, N; Chevreton, M; Dreizler, S; Schuh, S; Deetjen, J; Nagel, T; Solheim, J -E; Perez, J M Gonzalez; Ulla, A; Barstow, Martin; Burleigh, M; Good, S; Metcalfe, T S; Kim, S -L; Lee, H; Sergeev, A; Akan, M C; Çakirli, Ö; Paparo, M; Viraghalmy, G; Ashoka, B N; Handler, G; Hürkal, Özlem; Johannessen, F; Kleinman, S J; Kalytis, R; Krzesínski, J; Klumpe, E; Larrison, J; Lawrence, T; Mestas, E; Martínez, P; Nather, R E; Fu, J -N; Pakstien, E; Rosen, R; Romero-Colmenero, E; Riddle, R; Seetha, S; Silvestri, N M; Vuckovic, M; Warner, B; Zola, S; Althaus, L G; Córsico, A H; Montgomery, M H

    2007-01-01

    PG 1159-035, a pre-white dwarf with T_eff=140,000 K, is the prototype of both two classes: the PG1159 spectroscopic class and the DOV pulsating class. Previous studies of PG 1159-035 photometric data obtained with the Whole Earth Telescope (WET) showed a rich frequency spectrum allowing the identification of 122 pulsation modes. In this work, we used all available WET photometric data from 1983, 1985, 1989, 1993 and 2002 to identify the pulsation periods and identified 76 additional pulsation modes, increasing to 198 the number of known pulsation modes in PG 1159-035, the largest number of modes detected in any star besides the Sun. From the period spacing we estimated a mass M = 0.59 +/- 0.02 solar masses for PG 1159-035, with the uncertainty dominated by the models, not the observation. Deviations in the regular period spacing suggest that some of the pulsation modes are trapped, even though the star is a pre-white dwarf and the gravitational settling is ongoing. The position of the transition zone that cau...

  2. 16 CFR 500.19 - Conversion of SI metric quantities to inch/pound quantities and inch/pound quantities to SI...

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Conversion of SI metric quantities to inch/pound quantities and inch/pound quantities to SI metric quantities. 500.19 Section 500.19 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENT OF GENERAL POLICY OR INTERPRETATION AND EXEMPTIONS UNDER THE FAIR PACKAGING...

  3. Variation and Change in Northern Bavarian Quantity

    Science.gov (United States)

    Drake, Derek

    2013-01-01

    This dissertation presents new research on the "Bavarian Quantity Law" (the BQL) in the northern Bavarian dialect of Hahnbach. Building upon earlier investigation of the BQL (cf. Bannert 1976a,b for Central Bavarian) this study examines the historical, phonological, and phonetic motivations for this feature as well the variability in its…

  4. Hypergraph topological quantities for tagged social networks

    Science.gov (United States)

    Zlatić, Vinko; Ghoshal, Gourab; Caldarelli, Guido

    2009-09-01

    Recent years have witnessed the emergence of a new class of social networks, which require us to move beyond previously employed representations of complex graph structures. A notable example is that of the folksonomy, an online process where users collaboratively employ tags to resources to impart structure to an otherwise undifferentiated database. In a recent paper, we proposed a mathematical model that represents these structures as tripartite hypergraphs and defined basic topological quantities of interest. In this paper, we extend our model by defining additional quantities such as edge distributions, vertex similarity and correlations as well as clustering. We then empirically measure these quantities on two real life folksonomies, the popular online photo sharing site Flickr and the bookmarking site CiteULike. We find that these systems share similar qualitative features with the majority of complex networks that have been previously studied. We propose that the quantities and methodology described here can be used as a standard tool in measuring the structure of tagged networks.

  5. Practice Makes Perfect: Contracting Quantity and Quality.

    Science.gov (United States)

    Reichert, Nancy

    2003-01-01

    Discusses how contract grading promotes quality writing as well as a larger quantity of writing. Considers how teachers can use contract grading to support and promote the behaviors, thinking skills, and writing skills they believe will help students create quality writing. Notes that contract grading leads students to write more, to have fewer…

  6. 30 CFR 75.325 - Air quantity.

    Science.gov (United States)

    2010-07-01

    ... of permanent supports. (3) If machine mounted dust collectors or diffuser fans are used, the approved... currents cannot be controlled and air measurements cannot be obtained, the air shall have perceptible... results of sampling that demonstrate that the lesser air quantity will maintain continuous compliance...

  7. Factors affecting lactose quantity in raw milk

    Directory of Open Access Journals (Sweden)

    Rubporn Kittivachra

    2007-07-01

    Full Text Available The purpose of this study was to characterize factors affecting lactose quantities in raw cow's milk. This study combined the survey design with laboratory analysis. Selected farm members of Nong Poh Dairy Cooperatives, from Ban Pong and Photharam Districts, Ratchaburi Province, were sampled. From the selected farms, data collected included lactose quantities in the raw milk and dairy farming information. The raw milk of selected farms was sampled at the delivery site of Nong Poh dairy cooperatives in the morning during December 2003 till February 2004. Lactose in the raw milk was then quantified by the Fourier Transform Infrared Analysis (FTIR using the MilkoScan FT6000 at the Department of Livestock Development. The farm owners or managers of selected farms were in-depth interviewed on dairy farming information including cowsí health and cows' diet. The data revealed that all cows from the selected farms were fed with concentrate diet purchased from Nong Poh Dairy Cooperatives and grass as high fiber diets. Sample of eighteen farms also fed their cows with one of supplements: corn stem, soybean meal, or rice straw. All cows from these farms were Holstein-Friesian Hybrid. As supplemented high fiber diets, corn stem significantly increased the lactose quantities over soybean meal and rice straw (planned comparison, pvalue = 0.044. The study concluded that some high fiber diets, specifically corn stem, significantly contributed to the lactose quantities in raw milk.

  8. Quantity language speakers show enhanced subcortical processing.

    Science.gov (United States)

    Dawson, Caitlin; Aalto, Daniel; Šimko, Juraj; Putkinen, Vesa; Tervaniemi, Mari; Vainio, Martti

    2016-07-01

    The complex auditory brainstem response (cABR) can reflect language-based plasticity in subcortical stages of auditory processing. It is sensitive to differences between language groups as well as stimulus properties, e.g. intensity or frequency. It is also sensitive to the synchronicity of the neural population stimulated by sound, which results in increased amplitude of wave V. Finnish is a full-fledged quantity language, in which word meaning is dependent upon duration of the vowels and consonants. Previous studies have shown that Finnish speakers have enhanced behavioural sound duration discrimination ability and larger cortical mismatch negativity (MMN) to duration change compared to German and French speakers. The next step is to find out whether these enhanced duration discrimination abilities of quantity language speakers originate at the brainstem level. Since German has a complementary quantity contrast which restricts the possible patterns of short and long vowels and consonants, the current experiment compared cABR between nonmusician Finnish and German native speakers using seven short complex stimuli. Finnish speakers had a larger cABR peak amplitude than German speakers, while the peak onset latency was only affected by stimulus intensity and spectral band. The results suggest that early cABR responses are better synchronised for Finns, which could underpin the enhanced duration sensitivity of quantity language speakers.

  9. Measurements of non-physical quantities

    Science.gov (United States)

    Shishkin, Igor F.

    2016-11-01

    The aim of the paper is to suggest an approach to development of a theory of measurements for non-physical quantities. For these measurements it is not possible to ensure traceability because of their exclusive nature as substantiated by the author. This theory is presented as particularly important one for social and human sciences.

  10. CALL, Prewriting Strategies, and EFL Writing Quantity

    Science.gov (United States)

    Shafiee, Sajad; Koosha, Mansour; Afghar, Akbar

    2015-01-01

    This study sought to explore the effect of teaching prewriting strategies through different methods of input delivery (i.e. conventional, web-based, and hybrid) on EFL learners' writing quantity. In its quasi-experimental study, the researchers recruited 98 available sophomores, and assigned them to three experimental groups (conventional,…

  11. 7 CFR 35.13 - Minimum quantity.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Minimum quantity. 35.13 Section 35.13 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS EXPORT...

  12. Mass flow and its pulsation measurements in supersonic wing wake

    Science.gov (United States)

    Shmakov, A. S.; Shevchenko, A. M.; Yatskikh, A. A.; Yermolaev, Yu. G.

    2016-10-01

    The results of experimental study of the flow in the wing wake are presented. Experiments were carried out in supersonic wind tunnel T-325 of ITAM SB RAS. Rectangle half-wing with sharp edges with a chord length of 30 mm and semispan of 95 mm was used to generate vortex wake. Experimental data were obtained in the cross section located 6 chord length downstream of the trailing edge at Mach numbers of 2.5 and 4 and at wing angles of attack of 4 and 10 degrees. Constant temperature hot-wire anemometer was used to measure disturbances in supersonic flow. Hot-wire was made of a tungsten wire with a diameter of 10 μm and length of 1.5 mm. Shlieren flow visualization were performed. As a result, the position and size of the vortex core in the wake of a rectangular wing were determined. For the first time experimental data on the mass flow distribution and its pulsations in the supersonic longitudinal vortex were obtained.

  13. Quasiperiodic ULF-pulsations in Saturn's magnetosphere

    Directory of Open Access Journals (Sweden)

    G. Kleindienst

    2009-02-01

    Full Text Available Recent magnetic field investigations made onboard the Cassini spacecraft in the magnetosphere of Saturn show the existence of a variety of ultra low frequency plasma waves. Their frequencies suggest that they are presumably not eigenoscillations of the entire magnetospheric system, but excitations confined to selected regions of the magnetosphere. While the main magnetic field of Saturn shows a distinct large scale modulation of approximately 2 nT with a periodicity close to Saturn's rotation period, these ULF pulsations are less obvious superimposed oscillations with an amplitude generally not larger than 3 nT and show a package-like structure. We have analyzed these wave packages and found that they are correlated to a certain extent with the large scale modulation of the main magnetic field. The spatial localization of the ULF wave activity is represented with respect to local time and Kronographic coordinates. For this purpose we introduce a method to correct the Kronographic longitude with respect to a rotation period different from its IAU definition. The observed wave packages occur in all magnetospheric regions independent of local time, elevation, or radial distance. Independent of the longitude correction applied the wave packages do not occur in an accentuated Kronographic longitude range, which implies that the waves are not excited or confined in the same selected longitude ranges at all times or that their lifetime leads to a variable phase with respect to the longitudes where they have been exited.

  14. A helium based pulsating heat pipe for superconducting magnets

    Science.gov (United States)

    Fonseca, Luis Diego; Miller, Franklin; Pfotenhauer, John

    2014-01-01

    This study was inspired to investigate an alternative cooling system using a helium-based pulsating heat pipes (PHP), for low temperature superconducting magnets. In addition, the same approach can be used for exploring other low temperature applications. The advantages of PHP for transferring heat and smoothing temperature profiles in various room temperature applications have been explored for the past 20 years. An experimental apparatus has been designed, fabricated and operated and is primarily composed of an evaporator and a condenser; in which both are thermally connected by a closed loop capillary tubing. The main goal is to measure the heat transfer properties of this device using helium as the working fluid. The evaporator end of the PHP is comprised of a copper winding in which heat loads up to 10 watts are generated, while the condenser is isothermal and can reach 4.2 K via a two stage Sumitomo RDK408A2 GM cryocooler. Various experimental design features are highlighted. Additionally, performance results in the form of heat transfer and temperature characteristics are provided as a function of average condenser temperature, PHP fill ratio, and evaporator heat load. Results are summarized in the form of a dimensionless correlation and compared to room temperature systems. Implications for superconducting magnet stability are highlighted.

  15. SMEI observations of previously unseen pulsation frequencies in gamma Doradus

    CERN Document Server

    Tarrant, N J; Elsworth, Y P; Spreckley, S A; Stevens, I R

    2008-01-01

    Aims: As g-mode pulsators, gamma-Doradus-class stars may naively be expected to show a large number of modes. Taking advantage of the long photometric time-series generated by the Solar Mass Ejection Imager (SMEI) instrument, we have studied the star gamma Doradus to determine whether any other modes than the three already known are present at observable amplitude. Methods: High-precision photometric data from SMEI taken between April 2003 and March 2006 were subjected to periodogram analysis with the PERIOD04 package. Results: We confidently determine three additional frequencies at 1.39, 1.87, and 2.743 cycles per day. These are above and beyond the known frequencies of 1.320, 1.364, and 1.47 cycles per day. Conclusions: Two of the new frequencies, at 1.39 and 1.87 cycles per day, are speculated to be additional modes of oscillation, with the third frequency at 2.743 cycles per day a possible combination frequency.

  16. Pressure pulsation in Kaplan turbines: Prototype-CFD comparison

    Science.gov (United States)

    Rivetti, A.; Lucino1, C.; Liscia, S.; Muguerza, D.; Avellan, F.

    2012-11-01

    Pressure pulsation phenomena in a large Kaplan turbine are investigated by means of numerical simulations (CFD) and prototype measurements in order to study the dynamic behavior of flow due to the blade passage and its interaction with other components of the turbine. Numerical simulations are performed with the commercial software Ansys CFX code, solving the incompressible Unsteady Reynolds-Averaged-Navier Stokes equations under a finite volume scheme. The computational domain involves the entire machine at prototype scale. Special care is taken in the discretization of the wicket gate overhang and runner blade gap. Prototype measurements are performed using pressure transducers at different locations among the wicket gate outlet and the draft tube inlet. Then, CFD results are compared with temporary signals of prototype measurements at identical locations to validate the numerical model. A detailed analysis was focused on the tip gap flow and the pressure field at the discharge ring. From a rotating reference frame perspective, it is found that the mean pressure fluctuates accordingly the wicket gate passage. Moreover, in prototype measurements the pressure frequency that reveals the presence of modulated cavitation at the discharge ring is distinguished, as also verified from the shape of erosion patches in concordance with the number of wicket gates.

  17. Variability and pulsations in the Be star 66 Ophiuchi

    Science.gov (United States)

    Floquet, M.; Neiner, C.; Janot-Pacheco, E.; Hubert, A. M.; Jankov, S.; Zorec, J.; Briot, D.; Chauville, J.; Leister, N. V.; Percy, J. R.; Ballereau, D.; Bakos, A. G.

    2002-10-01

    66 Oph is a Be star seen under a moderate inclination angle that shows strong variability from UV to IR wavelengths. A concise review of long-term variability history is given. High resolution, high S/N spectroscopic observations obtained in 1997, 1998 and 2001 and spectropolarimetric observations obtained in 2000 are presented. These observations occurred during a long-term decrease of Hα intensity. Fundamental parameters of the star have been revisited from Barbier-Chalonge-Divan (BCD) calibrations. New V sin i values are obtained using Fourier transforms applied to observed helium lines and a rotational frequency f_rot = 1.29 c d-1 is determined. Time series analysis and Fourier Doppler Imaging (FDI) of He I lines (4713, 4921, 5876 and 6678 Å) lead for the first time to the detection of multi-periodicity in 66 Oph. The two main frequencies found are f = 2.22 c d-1 and f = 4.05 c d-1 . They are attributed to non-radial pulsations and can be associated with mode degree l = 2 and l = 3, respectively. Inspection of Stokes V profiles suggests the presence of a weak Zeeman signature but further observations are needed to confirm the detection of a magnetic field in 66 Oph. Based on observations taken at OHP and Pic du Midi Observatory (France), at MBT/LNA (Brazil) and on Brazilian observing time at La Silla (ESO, Chile).

  18. Soft X-ray Pulsations in Solar Flares

    CERN Document Server

    Simões, Paulo J A; Fletcher, Lyndsay

    2014-01-01

    The soft X-ray emissions of solar flares come mainly from the bright coronal loops at the highest temperatures normally achieved in the flare process. Their ubiquity has led to their use as a standard measure of flare occurrence and energy, although the bulk of the total flare energy goes elsewhere. Recently Dolla et al. (2012) noted quasi-periodic pulsations (QPP) in the soft X-ray signature of the X-class flare SOL2011-02-15, as observed by the standard photometric data from the GOES (Geostationary Operational Environmental Satellite) spacecraft. We analyze the suitability of the GOES data for this kind of analysis and find them to be generally valuable after Sept. 2010 (GOES-15). We then extend Dolla et al. results to a list of X-class flares from Cycle 24, and show that most of them display QPP in the impulsive phase. During the impulsive phase the footpoints of the newly-forming flare loops may also contribute to the observed soft X-ray variations. The QPP show up cleanly in both channels of the GOES dat...

  19. KIC 4552982: outbursts and pulsations in the longest-ever pseudo-continuous light curve of a ZZ Ceti

    Directory of Open Access Journals (Sweden)

    Bell K. J.

    2015-01-01

    Full Text Available KIC 4552982 was the first ZZ Ceti (hydrogen-atmosphere pulsating white dwarf identified to lie in the Kepler field, resulting in the longest pseudo-continuous light curve ever obtained for this type of variable star. In addition to the pulsations, this light curve exhibits stochastic episodes of brightness enhancement unlike any previously studied white dwarf phenomenon. We briefly highlight the basic outburst and pulsation properties in these proceedings.

  20. Multiplicity of Galactic Cepheids from long-baseline interferometry - III. Sub-percent limits on the relative brightness of a close companion of δ Cephei

    Science.gov (United States)

    Gallenne, A.; Mérand, A.; Kervella, P.; Monnier, J. D.; Schaefer, G. H.; Roettenbacher, R. M.; Gieren, W.; Pietrzyński, G.; McAlister, H.; ten Brummelaar, T.; Sturmann, J.; Sturmann, L.; Turner, N.; Anderson, R. I.

    2016-09-01

    We report new CHARA/Michigan InfraRed Combiner interferometric observations of the Cepheid archetype δ Cep, which aimed at detecting the newly discovered spectroscopic companion. We reached a maximum dynamic range ΔH = 6.4, 5.8 and 5.2 mag, respectively, within the relative distance to the Cepheid r 9.15, 8.31 and 7.77 mag, respectively, for r < 25 mas, 25 < r < 50 mas and 50 < r < 100 mas. We also found that to be consistent with the predicted orbital period (Anderson et al.), the companion has to be located at a projected separation <24 mas with a spectral type later than an F0V star.

  1. CME on March 16, 2001, electron pulsation event and solar-terrestrial phenomena related with CMEs

    Institute of Scientific and Technical Information of China (English)

    张桂清

    2002-01-01

    The electron pulsation event is defined in the paper. Firstly, a slow Halo CME on March 16, 2001 that led to low-energetic solar proton event, electron pulsation event and major geomagnetic storm was analyzed. And then, dozens of events are collected. The interrelations among the solar flare, CME, solar proton event, electron pulsation event and geomagnetic storm are studied. The results show that: (ⅰ) Solar proton events can be regarded as the indication that CMEs get to the earth and the electron pulsation events can be regarded as the indication of solar proton flux. (ⅱ) Not only can fast CMEs strongly influence the earth, but also slow CMEs can influence the earth, and its influences are more frequent and cannot be neglected. (ⅲ) Most of high-energetic solar proton events with E≥10 MeV can lead to geomagnetic storms, but most of the medium and weak geomagnetic storms result from low-energetic solar proton events that are caused by CMEs. (ⅳ) Both the electron pulsation events and geomagnetic storms are the link effects of high- and low-energetic solar proton events, but the occurrence of electron pulsation event are generally prior to the geomagnetic storm. So in the circumstance where the near real-time observing data of the low-energetic solar proton event cannot be obtained, we can regard electron pulsation event as the indication of the low-energetic solar proton flux reaching the earth, which can be used as one of the important 参考文献 of short-term prediction and alert of the geomagnetic storm.

  2. The Panchromatic View of the Magellanic Clouds from Classical Cepheids. I. Distance, Reddening, and Geometry of the Large Magellanic Cloud Disk

    Science.gov (United States)

    Inno, L.; Bono, G.; Matsunaga, N.; Fiorentino, G.; Marconi, M.; Lemasle, B.; da Silva, R.; Soszyński, I.; Udalski, A.; Romaniello, M.; Rix, H.-W.

    2016-12-01

    We present a detailed investigation of the Large Magellanic Cloud (LMC) disk using classical Cepheids. Our analysis is based on optical (I, V OGLE-IV), near-infrared (NIR: J, H, {K}{{S}}) and mid-infrared (MIR: w1; WISE) mean magnitudes. By adopting new templates to estimate the NIR mean magnitudes from single-epoch measurements, we build the currently most accurate, largest, and homogeneous multi-band data set of LMC Cepheids. We determine Cepheid individual distances using optical and NIR Period-Wesenheit relations (PWRs), to measure the geometry of the LMC disk and its viewing angles. Cepheid distances based on optical PWRs are precise at 3%, but accurate to 7%, while the ones based on NIR PWRs are more accurate (to 3%), but less precise (2%-15%), given the higher photometric error on the observed magnitudes. We found an inclination of i = 25.05 ± 0.02 (stat.) ± 0.55 (syst.) deg, and a position angle of the lines of nodes P.A. = 150.76 ± 0.02 (stat.) ± 0.07 (syst.) deg. These values agree well with estimates based either on young (Red Supergiants) or on intermediate-age (Asymptotic Giant Branch, Red Clump) stellar tracers, but they significantly differ from evaluations based on old (RR Lyrae) stellar tracers. This indicates that young/intermediate and old stellar populations have different spatial distributions. Finally, by using the reddening-law fitting approach, we provide a reddening map of the LMC disk, which is 10 times more accurate and 2 times larger than similar maps in the literature. We also found an LMC true distance modulus of {μ }0,{LMC}=18.48+/- 0.10 (stat. and syst.) mag, in excellent agreement with the currently most accurate measurement.

  3. The Araucaria Project. A Distance Determination to the Local Group Spiral M33 from Near-Infrared Photometry of Cepheid Variables

    CERN Document Server

    Gieren, W; Pietrzynski, G; Konorski, P; Suchomska, K; Graczyk, D; Pilecki, B; Bresolin, F; Kudritzki, R P; Karczmarek, P; Gallenne, A; Calderon, P; Geisler, D

    2013-01-01

    Motivated by an amazing range of reported distances to the nearby Local Group spiral galaxy M33, we have obtained deep near-infrared photometry for 26 long-period Cepheids in this galaxy with the ESO VLT. From the data we constructed period-luminosity relations in the J and K bands which together with previous optical VI photometry for the Cepheids by Macri et al. were used to determine the true distance modulus of M33, and the mean reddening affecting the Cepheid sample with the multiwavelength fit method developed in the Araucaria Project. We find a true distance modulus of 24.62 for M33, with a total uncertainty of +- 0.07 mag which is dominated by the uncertainty on the photometric zero points in our photometry. The reddening is determined as E(B-V)=0.19 +- 0.02, in agreement with the value used by the HST Key Project of Freedman et al. but in some discrepancy with other recent determinations based on blue supergiant spectroscopy and an O-type eclipsing binary which yielded lower reddening values. Our der...

  4. Parallax of Galactic Cepheids from Spatially Scanning the Wide Field Camera 3 on the Hubble Space Telescope: The Case of SS Canis Majoris

    CERN Document Server

    Casertano, Stefano; Anderson, Richard I; Bowers, J Bradley; Clubb, Kelsey I; Cukierman, Aviv R; Filippenko, Alexei V; Graham, Melissa L; MacKenty, John W; Melis, Carl; Tucker, Brad E; Upadhya, Gautam

    2016-01-01

    We present a high-precision measurement of the parallax for the 12-day Cepheid SS Canis Majoris, obtained via spatial scanning with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). Spatial scanning enables astrometric measurements with a precision of 20-40 muas, an order of magnitude better than pointed observations. SS CMa is the second Cepheid targeted for parallax measurement with HST, and is the first of a sample of eighteen long-period >~ 10 days) Cepheids selected in order to improve the calibration of their period-luminosity relation and eventually permit a determination of the Hubble constant H_0 to better than 2%. The parallax of SS CMa is found to be 348 +/- 38 muas, corresponding to a distance of 2.9 +/- 0.3 kpc. We also present a refinement of the static geometric distortion of WFC3 obtained using spatial scanning observations of calibration fields, with a typical magnitude <~0.01 pixels on scales of 100 pixels.

  5. Kepler observations of rapidly oscillating Ap, δ Scuti and γ Doradus pulsations in Ap stars

    DEFF Research Database (Denmark)

    Balona, Luis A.; Cunha, Margarida S.; Kurtz, Donald W.

    2011-01-01

    Observations of the A5p star KIC 8677585 obtained during the Kepler 10-d commissioning run with 1-min time resolution show that it is a rapidly oscillating Ap (roAp) star with several frequencies with periods near 10 min. In addition, a low frequency at 3.142 d−1 is also clearly present....... Multiperiodic γ Doradus (γ Dor) and δ Scuti (δ Sct) pulsations, never before seen in any Ap star, are present in Kepler observations of at least three other Ap stars. Since γ Dor pulsations are seen in Ap stars, it is likely that the low frequency in KIC 8677585 is also a γ Dor pulsation. The simultaneous...... presence of both γ Dor and roAp pulsations and the unexpected detection of δ Sct and γ Dor pulsations in Ap stars present new opportunities and challenges for the interpretation of these stars. Since it is easy to confuse Am and Ap stars at classification dispersions, the nature of these Ap stars...

  6. Planet-induced Stellar Pulsations in HAT-P-2's Eccentric System

    Science.gov (United States)

    de Wit, Julien; Lewis, Nikole K.; Knutson, Heather A.; Fuller, Jim; Antoci, Victoria; Fulton, Benjamin J.; Laughlin, Gregory; Deming, Drake; Shporer, Avi; Batygin, Konstantin; Cowan, Nicolas B.; Agol, Eric; Burrows, Adam S.; Fortney, Jonathan J.; Langton, Jonathan; Showman, Adam P.

    2017-02-01

    Extrasolar planets on eccentric short-period orbits provide a laboratory in which to study radiative and tidal interactions between a planet and its host star under extreme forcing conditions. Studying such systems probes how the planet’s atmosphere redistributes the time-varying heat flux from its host and how the host star responds to transient tidal distortion. Here, we report the insights into the planet–star interactions in HAT-P-2's eccentric planetary system gained from the analysis of ∼350 hr of 4.5 μm observations with the Spitzer Space Telescope. The observations show no sign of orbit-to-orbit variability nor of orbital evolution of the eccentric planetary companion, HAT-P-2 b. The extensive coverage allows us to better differentiate instrumental systematics from the transient heating of HAT-P-2 b’s 4.5 μm photosphere and yields the detection of stellar pulsations with an amplitude of approximately 40 ppm. These pulsation modes correspond to exact harmonics of the planet’s orbital frequency, indicative of a tidal origin. Transient tidal effects can excite pulsation modes in the envelope of a star, but, to date, such pulsations had only been detected in highly eccentric stellar binaries. Current stellar models are unable to reproduce HAT-P-2's pulsations, suggesting that our understanding of the interactions at play in this system is incomplete.

  7. Pulsating pre-main sequence stars in IC 4996 and NGC 6530

    CERN Document Server

    Zwintz, K; Zwintz, Konstanze; Weiss, Werner W.

    2006-01-01

    Asteroseismology of pulsating pre-main sequence (PMS) stars has the potential of testing the validity of current models of PMS structure and evolution. As a first step, a sufficiently large sample of pulsating PMS stars has to be established, which allows to select candidates optimally suited for a detailed asteroseismological analysis based on photometry from space or ground based network data. A search for pulsating PMS members in the young open clusters IC 4996 and NGC 6530 has been performed to improve the sample of known PMS pulsators. As both clusters are younger than 10 million years, all members with spectral types later than A0 have not reached the zero-age main sequence yet. Hence, IC 4996 and NGC 6530 are most suitable to search for PMS pulsation among their A- and F-type cluster stars. CCD time series photometry in Johnson B and V filters has been obtained for IC 4996 and NGC 6530. The resulting light curves for 113 stars in IC 4996 and 194 stars in NGC 6530 have been subject to detailed frequency...

  8. STRAIN ELASTOGRAPHY USING DOBUTAMINE-INDUCED CAROTID ARTERY PULSATION IN CANINE THYROID GLAND.

    Science.gov (United States)

    Lee, Gahyun; Jeon, Sunghoon; Lee, Sang-Kwon; Kim, Hyunwoo; Yu, Dohyeon; Choi, Jihye

    2015-01-01

    Thyroid disease is common in dogs and conventional ultrasonography is a standard diagnostic test for diagnosis and treatment planning. Strain elastography can provide additional information about tissue stiffness noninvasively after applying external or internal compression. However, natural carotid artery pulsations in the canine thyroid gland are too weak to maintain sufficient internal compression force. The objective of the present study was to describe the feasibility of strain elastography for evaluating the canine thyroid gland and the repeatability of dobutamine-induced carotid artery pulsation as an internal compression method. In seven healthy Beagle dogs, strain on each thyroid lobe was induced by external compression using the ultrasound probe and internal compression using carotid artery pulsation after dobutamine infusion. The thyroid appeared homogeneously green and the subcutaneous fat superficial to the thyroid lobe appeared blue. Strain values and strain ratios did not differ among dogs or between the left and right lobes. Interobserver repeatability was excellent for both compression methods. Intraobserver repeatability of the strain ratio measured using the carotid artery pulsation method (intraclass coefficient correlation = 0.933) was higher than that measured using the external compression method (0.760). Mean strain values of thyroid lobes for the external compression method (142.93 ± 6.67) differed from the internal method (147.31 ± 8.24; P thyroid stiffness in dogs. Carotid artery pulsation induced by dobutamine infusion can be used for canine thyroid strain elastography with excellent repeatability.

  9. Pulsation-triggered mass loss from AGB stars: the 60-day critical period

    CERN Document Server

    McDonald, Iain

    2016-01-01

    Low- and intermediate-mass stars eject much of their mass during the late, red giant branch (RGB) phase of evolution. The physics of their strong stellar winds is still poorly understood. In the standard model, stellar pulsations extend the atmosphere, allowing a wind to be driven through radiation pressure on condensing dust particles. Here we investigate the onset of the wind, using nearby RGB stars drawn from the Hipparcos catalogue. We find a sharp onset of dust production when the star first reaches a pulsation period of 60 days. This approximately co-incides with the point where the star transitions to the first overtone pulsation mode. Models of the spectral energy distributions show stellar mass-loss rate suddenly increases at this point, by a factor of ~10 over the existing (chromospherically driven) wind. The dust emission is strongly correlated with both pulsation period and amplitude, indicating stellar pulsation is the main trigger for the strong mass loss, and determines the mass-loss rate. Dust...

  10. Discovery of Three Pulsating, Mixed Atmosphere, Extremely Low-Mass White Dwarf Precursors

    CERN Document Server

    Gianninas, A; Fontaine, G; Browm, Warren R; Kilic, Mukremin

    2016-01-01

    We report the discovery of pulsations in three mixed atmosphere, extremely low-mass white dwarf (ELM WD, M $<$ 0.3 M$_{\\odot}$) precursors. Following the recent discoveries of pulsations in both ELM and pre-ELM WDs, we targeted pre-ELM WDs with mixed H/He atmospheres with high-speed photometry. We find significant optical variability in all three observed targets with periods in the range 320--590 s, consistent in time-scale with theoretical predictions of p-mode pulsations in mixed-atmosphere $\\approx$ 0.18 M$_{\\odot}$ He-core pre-ELM WDs. This represents the first empirical evidence that pulsations in pre-ELM WDs can only occur if a significant amount of He is present in the atmosphere. Future, more extensive, time-series photometry of the brightest of the three new pulsators offers an excellent opportunity to constrain the thickness of the surface H layer which regulates the cooling timescales for ELM WDs.

  11. The Music of the Stars : Spectroscopy of Pulsations in gamma Doradus Stars

    Science.gov (United States)

    Brunsden, Emily

    2013-05-01

    p>The mysteries of the interior structures of stars are being tackled with asteroseismology. The observable parameters of the surface pulsations of stars inform us of the interior characteristics of numerous classes of stars. The main-sequence gamma Doradus stars, just a little hotter than the Sun, offer the potential of determining stellar structure right down to the core. To determine the structural profile of a star, the observed frequencies and a full geometric description must be determined. This is only possible with long-term spectroscopic monitoring and careful analysis of the pulsation signature in spectral lines. This work seeks to identify the pulsational geometry of several gamma Doradus stars and to identify areas of improvement for current observation, analysis and modelling techniques. More than 4500 spectra were gathered on five stars for this purpose. For three stars a successful multi-frequency and mode identification solution was determined and significant progress has been made towards the understanding of a binary system involving a gamma Doradus star. A hybrid gamma Doradus/nbsp;delta Scuti pulsator was also intensely monitored and results from this work raise important questions about the classification of this type of star. Current analysis techniques were found to be fit-for-purpose for pure gamma Doradus stars, but stars with complexities such as hybrid pulsations and/or fast rotation require future development of the current models./p>

  12. Development of pulsating twin jets mechanism for mixing flow heat transfer analysis.

    Science.gov (United States)

    Gitan, Ali Ahmed; Zulkifli, Rozli; Abdullah, Shahrir; Sopian, Kamaruzzaman

    2014-01-01

    Pulsating twin jets mechanism (PTJM) was developed in the present work to study the effect of pulsating twin jets mixing region on the enhancement of heat transfer. Controllable characteristics twin pulsed jets were the main objective of our design. The variable nozzle-nozzle distance was considered to study the effect of two jets interaction at the mixing region. Also, the phase change between the frequencies of twin jets was taken into account to develop PTJM. All of these factors in addition to the ability of producing high velocity pulsed jet led to more appropriate design for a comprehensive study of multijet impingement heat transfer problems. The performance of PTJM was verified by measuring the pulse profile at frequency of 20 Hz, where equal velocity peak of around 64 m/s for both jets was obtained. Moreover, the jet velocity profile at different pulsation frequencies was tested to verify system performance, so the results revealed reasonable velocity profile configuration. Furthermore, the effect of pulsation frequency on surface temperature of flat hot plate in the midpoint between twin jets was studied experimentally. Noticeable enhancement in heat transfer was obtained with the increasing of pulsation frequency.

  13. Quasi-Periodic Pulsations during the Impulsive and Decay phases of an X-class Flare

    CERN Document Server

    Hayes, Laura A; Dennis, Brian R; Ireland, Jack; Inglis, Andrew R; Ryan, Daniel F

    2016-01-01

    Quasi-periodic pulsations (QPP) are often observed in X-ray emission from solar flares. To date, it is unclear what their physical origins are. Here, we present a multi-instrument investigation of the nature of QPP during the impulsive and decay phases of the X1.0 flare of 28 October 2013. We focus on the character of the fine structure pulsations evident in the soft X-ray time derivatives and compare this variability with structure across multiple wavelengths including hard X-ray and microwave emission. We find that during the impulsive phase of the flare, high correlations between pulsations in the thermal and non-thermal emissions are seen. A characteristic timescale of ~20s is observed in all channels and a second timescale of ~55s is observed in the non-thermal emissions. Soft X-ray pulsations are seen to persist into the decay phase of this flare, up to 20 minutes after the non-thermal emission has ceased. We find that these decay phase thermal pulsations have very small amplitude and show an increase i...

  14. Discovery of Three Pulsating, Mixed-atmosphere, Extremely Low-mass White Dwarf Precursors

    Science.gov (United States)

    Gianninas, A.; Curd, Brandon; Fontaine, G.; Brown, Warren R.; Kilic, Mukremin

    2016-05-01

    We report the discovery of pulsations in three mixed-atmosphere, extremely low-mass white dwarf (ELM WD, M ≤slant 0.3 M ⊙) precursors. Following the recent discoveries of pulsations in both ELM and pre-ELM WDs, we targeted pre-ELM WDs with mixed H/He atmospheres with high-speed photometry. We find significant optical variability in all three observed targets with periods in the range 320-590 s, consistent in timescale with theoretical predictions of p-mode pulsations in mixed-atmosphere ≈0.18 M ⊙ He-core pre-ELM WDs. This represents the first empirical evidence that pulsations in pre-ELM WDs can only occur if a significant amount of He is present in the atmosphere. Future, more extensive, timeseries photometry of the brightest of the three new pulsators offers an excellent opportunity to constrain the thickness of the surface H layer, which regulates the cooling timescales for ELM WDs. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).

  15. Asteroseismology of the Beta Cephei star Nu Eridani: photometric observations and pulsational frequency analysis

    CERN Document Server

    Handler, G; Jerzykiewicz, M; Krisciunas, K; Tshenye, T; Rodríguez, E; Costa, V; Zhou, A Y; Medupe, R; Phorah, W M; Garrido, R; Amado, P J; Paparo, M; Zsuffa, D; Ramokgali, L; Crowe, R; Purves, N; Avila, R; Knight, R; Brassfield, E; Kilmartin, P M; Cottrell, P L

    2004-01-01

    We undertook a multisite photometric campaign for the Beta Cephei star Nu Eridani. More than 600 hours of differential photoelectric uvyV photometry were obtained with 11 telescopes during 148 clear nights. The frequency analysis of our measurements shows that the variability of Nu Eri can be decomposed into 23 sinusoidal components, eight of which correspond to independent pulsation frequencies between 5 - 8 c/d. Some of these are arranged in multiplets, which suggests rotational m-mode splitting of nonradial pulsation modes as the cause. If so, the rotation period of the star must be between 30 - 60 d. One of the signals in the light curves of Nu Eri has a very low frequency of 0.432 c/d. It can be a high-order combination frequency or, more likely, an independent pulsation mode. In the latter case Nu Eri would be both a Beta Cephei star and a slowly pulsating B (SPB) star. The photometric amplitudes of the individual pulsation modes of Nu Eri appear to have increased by about 20 per cent over the last 40 y...

  16. Design and Operation of a Cryogenic Nitrogen Pulsating Heat Pipe

    Science.gov (United States)

    Diego Fonseca, Luis; Miller, Franklin; Pfotenhauer, John

    2015-12-01

    We report the design, experimental setup and successful test results using an innovative passive cooling system called a “Pulsating Heat Pipe” (PHP) operating at temperatures ranging from 77 K to 80 K and using nitrogen as the working fluid. PHPs, which transfer heat by two phase flow mechanisms through a closed loop tubing have the advantage that no electrical pumps are needed to drive the fluid flow. In addition, PHPs have an advantage over copper straps and thermal conductors since they are lighter in weight, exhibit lower temperature gradients and have higher heat transfer rates. PHPs consist of an evaporator section, thermally anchored to a solid, where heat is received at the saturation temperature where the liquid portion of the two-phase flow evaporates, and a condenser where heat is rejected at the saturation temperature where the vapor is condensed. The condenser section in our experiment has been thermally interfaced to a CT cryocooler from SunPower that has a cooling capacity of 10 W at 77 K. Alternating regions of liquid slugs and small vapor plugs fill the capillary tubing, with the vapor regions contracting in the condenser section and expanding in the evaporator section due to an electric heater that will generate heat loads up to 10 W. This volumetric expansion and contraction provides the oscillatory flow of the fluid throughout the capillary tubing thereby transferring heat from one end to the other. The thermal performance and temperature characteristics of the PHP will be correlated as a function of average condenser temperature, PHP fill liquid ratio, and evaporator heat load. The experimental data show that the heat transfer between the evaporator and condenser sections can produce an effective thermal conductivity up to 35000 W/m-K at a 3.5 W heat load.

  17. Detection of pulsations in three subdwarf B stars

    Science.gov (United States)

    Østensen, R.; Solheim, J.-E.; Heber, U.; Silvotti, R.; Dreizler, S.; Edelmann, H.

    2001-03-01

    We report the detection of short period oscillations in the sdB stars HS 0815+4243, HS 2149+0847 and HS 2201+2610 from time-series photometry made at the Nordic Optical Telescope (NOT) from a sample of 31 candidates. Hence these three hot subdwarfs are new members of the EC 14026 class of pulsating sdB stars. One short period is detected for HS 0815+4243 (P ~ 126 s; A ~ 7 mma) and two short periods are seen for HS 2149+0847 (P ~ 142, 159 s; A ~ 11, 7 mma), whereas the single oscillation detected for HS 2201+2610 has a considerably longer period (P ~ 350 s; A ~ 11 mma). Our NLTE model atmosphere analysis of the time-averaged optical spectra indicate that HS 0815+4243 has Teff = 33 700 K and log g=5.95, HS 2149+0847 has Teff = 35 600 K and log g = 5.9, and HS 2201+2610 has Teff = 29 300 K and log g= 5.4. This places the former two at the hot end and the latter at the cool end of the theoretical sdBV instability strip. Based on observations obtained at the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, operated by the Max-Plank-Institute für Astronomie Heidelberg jointly with the Spanish National Commission for Astronomy.

  18. Target selection of classical pulsating variables for space-based photometry

    Science.gov (United States)

    Plachy, E.; Molnar, L.; Szabo, R.; Kolenberg, K.; Banyai, E.

    2016-05-01

    In a few years the Kepler and TESS missions will provide ultra- precise photometry for thousands of RR Lyrae and hundreds of Cepheid stars. In the extended Kepler mission all targets are proposed in the Guest Observer (GO) Program, while the TESS space telescope will work with full frame images and a ~15-16th mag brightness limit with the possibility of short cadence measurements for a limited number of pre-selected objects. This paper highlights some details of the enormous and important work of the target selection process made by the members of Working Group 7 (WG#7) of the Kepler and TESS Asteroseismic Science Consortium.

  19. Target selection of classical pulsating variables for space-based photometry

    CERN Document Server

    Plachy, E; Szabó, R; Kolenberg, K; Bányai, E

    2016-01-01

    In a few years the Kepler and TESS missions will provide ultra-precise photometry for thousands of RR Lyrae and hundreds of Cepheid stars. In the extended Kepler mission all targets are proposed in the Guest Observer (GO) Program, while the TESS space telescope will work with full frame images and a ~15-16th mag brightness limit with the possibility of short cadence measurements for a limited number of pre-selected objects. This paper highlights some details of the enormous and important work of the target selection process made by the members of Working Group 7 (WG#7) of the Kepler and TESS Asteroseismic Science Consortium.

  20. 48 CFR 52.211-16 - Variation in Quantity.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Variation in Quantity. 52....211-16 Variation in Quantity. As prescribed in 11.703(a), insert the following clause: Variation in Quantity (APR 1984) (a) A variation in the quantity of any item called for by this contract will not...

  1. Conformal invariance conserved quantity of Hamilton systems

    Institute of Scientific and Technical Information of China (English)

    Cai Jian-Le; Luo Shao-Kai; Mei Feng-Xiang

    2008-01-01

    This paper studies conformal invariance and comserved quantRies of Hamilton system.The definition and the determining equation of conformal invariance for Hamilton system are provided.The relationship between the conformal invariance and the Lie symmetry are discussed,and the necessary and sufficient condition that the conformal invariance would be the Lie symmetry of the system under the infinitesimal one-parameter transformation group is deduced.It gives the conserved quantities of the system and an example for illustration.

  2. On ADM quantities of multiple black holes

    CERN Document Server

    Rácz, István

    2016-01-01

    In [11] a proposal was made to construct initial data for binary black hole configurations. It was done by using the parabolic-hyperbolic form of the constraints and choosing the free data provided by superposed Kerr-Schild black holes. The proposal of [11] do also apply to multiple systems involving generic Kerr-Schild black holes. Notably, the specific choice made for the free data allows---without making detailed use of the to be solutions to the constraints---to determine explicitly, the ADM quantities of the multiple system in terms of the separations velocities and spins of the individual Kerr-Schild black holes.

  3. The challenge of measuring magnetic fields in strongly pulsating stars: the case of HD 96446

    CERN Document Server

    Järvinen, S P; Ilyin, I; Schöller, M; Briquet, M

    2016-01-01

    Among the early B-type stars, He-rich Bp stars exhibit the strongest large-scale organized magnetic fields with a predominant dipole contribution. The presence of $\\beta$ Cep-like pulsations in the typical magnetic early Bp-type star HD 96446 was announced a few years ago, but the analysis of the magnetic field geometry was hampered by the absence of a reliable rotation period and a sophisticated procedure for accounting for the impact of pulsations on the magnetic field measurements. Using new spectropolarimetric observations and a recently determined rotation period based on an extensive spectroscopic time series, we investigate the magnetic field model parameters of this star under more detailed considerations of the pulsation behaviour of the line profiles.

  4. A New Timescale for Period Change in the Pulsating DA White Dwarf WD 0111+0018

    CERN Document Server

    Hermes, J J; Mullally, Fergal; Winget, D E; Bischoff-Kim, A

    2013-01-01

    We report the most rapid rate of period change measured to date for a pulsating DA (hydrogen atmosphere) white dwarf (WD), observed in the 292.9 s mode of WD 0111+0018. The observed period change, faster than 10^{-12} s/s, exceeds by more than two orders of magnitude the expected rate from cooling alone for this class of slow and simply evolving pulsating WDs. This result indicates the presence of an additional timescale for period evolution in these pulsating objects. We also measure the rates of period change of nonlinear combination frequencies and show that they share the evolutionary characteristics of their parent modes, confirming that these combination frequencies are not independent modes but rather artifacts of some nonlinear distortion in the outer layers of the star.

  5. Flow pulsation in the near-wall layer of impinging jets

    Science.gov (United States)

    Tesař, V.

    2013-04-01

    Pulsation of impinging jets promises to become a useful way towards achieving the highest possible rate of passive scalar convective transport between fluid and a wall. Author investigated experimentally steady and pulsated impingement by hot-wire anemometer traversing along a radial line at a small height above the impingement wall. The data have shown two conspicuous local maxima of fluctuation intensity. In an attempt to reach understanding of these phenomena, numerical flowfield computations were also made, fitted to the experimental conditions. Despite simplification (isotropic handling of unsteadiness, eddies computed as Reynolds-type phase averages) the synergetic approach (experiment & computation) revealed interesting correlation and resulted in useful interpretations of the old problem of the off-axis extremes - and also brings new views on their behaviour in the pulsating jet case.

  6. Synthetic photometry for carbon-rich giants II. The effects of pulsation and circumstellar dust

    CERN Document Server

    Nowotny, Walter; Höfner, Susanne; Lederer, Michael T

    2011-01-01

    By using self-consistent dynamic model atmospheres which simulate pulsation-enhanced dust-driven winds of AGB stars we studied in detail the influence of (i) pulsations of the stellar interiors, and (ii) the development of dusty stellar winds on the spectral appearance of long period variables with carbon-rich atmospheric chemistry. While the pulsations lead to large-amplitude photometric variability, the dusty envelopes cause pronounced circumstellar reddening. Based on one selected dynamical model which is representative of C-type Mira variables with intermediate mass loss rates, we calculated synthetic spectra and photometry for standard broad-band filters from the visual to the near-infrared. Our modelling allows to investigate in detail the substantial effect of circumstellar dust on the resultant photometry. The pronounced absorption of amorphous carbon dust grains leads to colour indices which are significantly redder than the corresponding ones based on hydrostatic dust-free models. Only if we account...

  7. Suppression of Instabilities and Stochastic Pulsation at Laser-Plasma Interaction by Beam Smoothing

    Directory of Open Access Journals (Sweden)

    Frederick Osman

    2004-01-01

    Full Text Available The key problem of direct drive laser fusion is the appearance of parametric instabilities, stochastic pulsation, self-focusing (filamentation and other anomalies. During the long years studies, the empirical and intuitively developed methods for smoothing of the laser beam were rather successful but a transparent understanding of the physics has still to be found. The first theory how the instabilities are reduced by smoothing was given recently by using PIG simulation while the suppression of the 10-picosecond stochastic pulsation by broadband laser beams was analyzed by the genuine two fluid models. A synoptic evaluation of these results is presented here where the correlation between the instabilities with the pulsation is evident. This opens new ways for direct drive laser fusion with the fundamental red laser light avoiding expensive and because of crystal defects - unsolved problems with higher harmonic production.

  8. Properties of strongly magnetized ultradense matter and their imprints on magnetar pulsations

    CERN Document Server

    Flores, C Vásquez; Lugones, G

    2016-01-01

    We investigate the effect of strong magnetic fields on the adiabatic radial oscillations of hadronic stars. We describe magnetized hadronic matter within the framework of the relativistic nonlinear Walecka model and integrate the equations of relativistic radial oscillations to determine the fundamental pulsation mode. We consider that the magnetic field increases, in a density dependent way, from the surface, where it has a typical magnetar value of $10^{15}$ G, to the interior of the star where it can be as large as $3 \\times 10^{18}$ G. We show that magnetic fields of the order of $10^{18}$ G at the stellar core produce a significant change in the frequency of neutron star pulsations with respect to unmagnetized objects. If radial pulsations are excited in magnetar flares, they can leave an imprint in the flare lightcurves and open a new window for the study of highly magnetized ultradense matter.

  9. Properties of strongly magnetized ultradense matter and its effects on magnetar pulsations

    Science.gov (United States)

    Flores, C. Vásquez; Castro, L. B.; Lugones, G.

    2016-07-01

    We investigate the effect of strong magnetic fields on the adiabatic radial oscillations of hadronic stars. We describe magnetized hadronic matter within the framework of the relativistic nonlinear Walecka model and integrate the equations of relativistic radial oscillations to determine the fundamental pulsation mode. We consider that the magnetic field increases, in a density dependent way, from the surface, where it has a typical magnetar value of 1015G , to the interior of the star, where it can be as large as 3 ×1018G . We show that magnetic fields of the order of 1018G at the stellar core produce a significant change in the frequency of neutron star pulsations with respect to unmagnetized objects. If radial pulsations are excited in magnetar flares, they can leave an imprint in the flare lightcurves and open a new window for the study of highly magnetized ultradense matter.

  10. Large-scale Flow Pulsation in Tight Square Arrayed Rod Bundles of Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Hwan; Kim, Kyung Min; Cho, Hyung Hee [Yonsei University, Seoul (Korea, Republic of); Shin, Chang Hwan; In, Wang Kee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    As a major component of modern nuclear reactor, the nuclear fuel rod bundles with liquid coolant have been studied by a lot of researchers to understand the flow structure between the fuel rods. Recently, rod arrays with much small pitch-to-diameter ratio have been being tried to increase performance of the nuclear reactor. The liquid coolant flowing axially through these small spaces between the rods is known to show some peculiar phenomena including large-scale, quasi-periodic flow pulsation. These flow pulsation phenomena dominate mixing process in the subchannels. Thus, precise understating of the flow structure is essential to predict thermal-hydraulic phenomena in nuclear rod bundles. In this present paper, the turbulent flow in tight square arrayed rod bundles is investigated with Hot-wire anemometry. Then, the measured velocity data are analyzed by using Fast Fourier Transform analysis to find characteristic frequency of the pulsation

  11. Experimental study on rack cooling system based on a pulsating heat pipe

    Science.gov (United States)

    Lu, Qianyi; Jia, Li

    2016-02-01

    A rack cooling system based on a large scale flat plate pulsating heat pipe is proposed. The heat generated from IT equipment in a closed rack is transferred by the rear door pulsating heat pipe to the chilled air passage and is avoided to release into the room. The influence of the start-up performance of the heat pipe, the load of the rack and the load dissipation to the temperature and the velocity distribution in the rack are discussed. It is found that the temperature would be lower and the temperature distribution would be more uniform in the rack when the pulsating heat pipe is in operation. Also, the effect of rack electricity load on temperature distribution is analyzed. It is indicated that higher velocity of chilled air will improve heat transfer of the rack.

  12. Moment of Inertia Dependence of Vertical Axis Wind Turbines in Pulsating Winds

    Directory of Open Access Journals (Sweden)

    Yutaka Hara

    2012-01-01

    Full Text Available Vertical Axis Wind Turbines (VAWTs are unaffected by changes in wind direction, and they have a simple structure and the potential for high efficiency due to their lift driving force. However, VAWTs are affected by changes in wind speed, owing to effects originating from the moment of inertia. In this study, changes in the rotational speed of a small VAWT in pulsating wind, generated by an unsteady wind tunnel, are investigated by varying the wind cycle and amplitude parameters. It is shown that the responses observed experimentally agree with simulations based on torque characteristics obtained under steady rotational conditions. Additionally, a simple equation expressing the relationship between the rotational change width and amplitude of the pulsating wind is presented. The energy efficiency in a pulsating wind remains constant with changes in both the moment of inertia and the wind cycle; however, the energy efficiency decreases when the wind amplitude is large.

  13. The potential of space observations for pulsating pre-main sequence stars

    CERN Document Server

    Zwintz, Konstanze

    2016-01-01

    The first asteroseismic studies of pre-main sequence (pre-MS) pulsators have been conducted based on data from the space telescopes MOST and CoRoT with typical time bases of less than 40 days. With these data, a relation between the pulsational properties of pre-MS delta Scuti stars and their relative evolutionary phase on their way from the birthline to the zero-age main sequence was revealed. But it is evident from comparison with the more evolved pulsators in their main sequence or post-main sequence stages observed by the main Kepler mission, that many more questions could be addressed with significantly longer time bases and ultra-high precision. Here, I will discuss the observational status of pre-MS asteroseismology and the potential of future space observations for this research field.

  14. Non-linear axisymmetric pulsations of rotating relativistic stars in the conformal flatness approximation

    CERN Document Server

    Dimmelmeier, H; Font, J A; Dimmelmeier, Harald; Stergioulas, Nikolaos; Font, Jose A.

    2005-01-01

    We study non-linear axisymmetric pulsations of rotating relativistic stars using a general relativistic hydrodynamics code under the assumption of a conformal flatness. We compare our results to previous simulations where the spacetime dynamics was neglected. The pulsations are studied along various sequences of both uniformly and differentially rotating relativistic polytropes with index N = 1. We identify several modes, including the lowest-order l = 0, 2, and 4 axisymmetric modes, as well as several axisymmetric inertial modes. Differential rotation significantly lowers mode frequencies, increasing prospects for detection by current gravitational wave interferometers. We observe an extended avoided crossing between the l = 0 and l = 4 first overtones, which is important for correctly identifying mode frequencies in case of detection. For uniformly rotating stars near the mass-shedding limit, we confirm the existence of the mass-shedding-induced damping of pulsations, though the effect is not as strong as i...

  15. Experimental study on heat transfer performance of pulsating heat pipe with refrigerants

    Science.gov (United States)

    Wang, Xingyu; Jia, Li

    2016-10-01

    The effects of different refrigerants on heat transfer performance of pulsating heat pipe (PHP) are investigated experimentally. The working temperature of pulsating heat pipe is kept in the range of 20°C-50°C. The startup time of the pulsating heat pipe with refrigerants can be shorter than 4 min, when heating power is in the range of 10W?100W. The startup time decreases with heating power. Thermal resistances of PHP with filling ratio 20.55% were obviously larger than those with other filling ratios. Thermal resistance of the PHP with R134a is much smaller than that with R404A and R600a. It indicates that the heat transfer ability of R134a is better. In addition, a correlation to predict thermal resistance of PHP with refrigerants was suggested.

  16. Quasi-periodic pulsations with periods that change depending on whether the pulsations have thermal or nonthermal components

    Science.gov (United States)

    Li, D.; Zhang, Q. M.; Huang, Y.; Ning, Z. J.; Su, Y. N.

    2017-01-01

    Context. Quasi-periodic pulsations (QPPs) typically display periodic and regular peaks in the light curves during the flare emissions. Sometimes, QPPs show multiple periods at the same wavelength. However, changing periods in various channels are rare. Aims: We report QPPs in a solar flare on 2014 October 27. They showed a period change that depended on whether thermal or nonthermal components were included. The flare was simultaneously observed by many instruments. Methods: Using the fast Fourier transform (FFT), we decomposed the light curves at multiple wavelengths into slowly varying and rapidly varying signals. Then we identified the QPPs as the regular and periodic peaks from the rapidly varying signals. The periods are derived with the wavelet method and confirmed based on the FFT spectra of the rapidly varying signals. Results: We find a period of 50 s from the thermal emissions during the impulsive phase of the flare, that is, in the soft X-ray bands. At the same time, a period of about 100 s is detected from the nonthermal emissions, such as hard X-ray and microwave channels. The period ratio is exactly 2.0, which might be due to the modulations of the magnetic reconnection rate by the fundamental and harmonic modes of magnetohydrodynamic waves. Our results further show that the 100 s period is present over a broad wavelength, such as hard X-rays, extreme-UV/UV, and microwave emissions, indicating the periodic magnetic reconnection in this flare. Conclusions: To our knowledge, this is the first report about period changes from thermal to nonthermal components in a single flare that occur at almost the same time. This new observational finding could be a challenge to the theory of flare QPPs.

  17. Maximizing Complementary Quantities by Projective Measurements

    Science.gov (United States)

    M. Souza, Leonardo A.; Bernardes, Nadja K.; Rossi, Romeu

    2017-04-01

    In this work, we study the so-called quantitative complementarity quantities. We focus in the following physical situation: two qubits ( q A and q B ) are initially in a maximally entangled state. One of them ( q B ) interacts with a N-qubit system ( R). After the interaction, projective measurements are performed on each of the qubits of R, in a basis that is chosen after independent optimization procedures: maximization of the visibility, the concurrence, and the predictability. For a specific maximization procedure, we study in detail how each of the complementary quantities behave, conditioned on the intensity of the coupling between q B and the N qubits. We show that, if the coupling is sufficiently "strong," independent of the maximization procedure, the concurrence tends to decay quickly. Interestingly enough, the behavior of the concurrence in this model is similar to the entanglement dynamics of a two qubit system subjected to a thermal reservoir, despite that we consider finite N. However, the visibility shows a different behavior: its maximization is more efficient for stronger coupling constants. Moreover, we investigate how the distinguishability, or the information stored in different parts of the system, is distributed for different couplings.

  18. Blue Straggler Masses from Pulsation Properties. II. Topology of the Instability Strip

    Science.gov (United States)

    Fiorentino, G.; Marconi, M.; Bono, G.; Dalessandro, E.; Ferraro, F. R.; Lanzoni, B.; Lovisi, L.; Mucciarelli, A.

    2015-09-01

    We present a new set of nonlinear, convective radial pulsation models for main-sequence stars computed assuming three metallicities: Z = 0.0001, 0.001, and 0.008. These chemical compositions bracket the metallicity of stellar systems hosting SX Phoenicis stars (SXPs, or pulsating Blue Stragglers), namely, Galactic globular clusters and nearby dwarf spheroidals. Stellar masses and luminosities of the pulsation models are based on alpha-enhanced evolutionary tracks from the BASTI website. We are able to define the topology of the instability strip (IS) and in turn the pulsation relations for the first four pulsation modes. We found that third overtones approach a stable nonlinear limit cycle. Predicted and empirical ISs agree quite well in the case of 49 SXPs belonging to ω Cen. We used theoretical period-luminosity (PL) relations in B and V bands to identify their pulsation mode. We assumed Z = 0.001 and Z = 0.008 as mean metallicities of SXPs in ω Cen. We found respectively 13-15 fundamental, 22-6 first-overtone, and 9-4 second-overtone modes. Five are unstable in the third-overtone mode only for Z = 0.001. Using the above mode identification and applying the proper mass-dependent PL relations, we found masses ranging from ˜1.0 to 1.2 {M}⊙ ( = 1.12, σ =0.04 {M}⊙ ) and from ˜1.2 to 1.5 {M}⊙ ( = 1.33, σ =0.03 {M}⊙ ) for Z = 0.001 and 0.008, respectively. Our investigation supports the use of evolutionary tracks to estimate SXP masses. We will extend our analysis to higher helium content, which may have an impact on our understanding of the blue straggler stars formation scenario.

  19. First axion bounds from a pulsating helium-rich white dwarf star

    Science.gov (United States)

    Battich, T.; Córsico, A. H.; Althaus, L. G.; Miller Bertolami, M. M.

    2016-08-01

    The Peccei-Quinn mechanism proposed to solve the CP problem of Quantum Chromodynamics has as consequence the existence of axions, hypothetical weakly interacting particles whose mass is constrained to be on the sub-eV range. If these particles exist and interact with electrons, they would be emitted from the dense interior of white dwarfs, becoming an important energy sink for the star. Due to their well known physics, white dwarfs are good laboratories to study the properties of fundamental particles such as the axions. We study the general effect of axion emission on the evolution of helium-rich white dwarfs and on their pulsational properties. To this aim, we calculate evolutionary helium-rich white dwarf models with axion emission, and assess the pulsational properties of this models. Our results indicate that the rates of change of pulsation periods are significantly affected by the existence of axions. We are able for the first time to independently constrain the mass of the axion from the study of pulsating helium-rich white dwarfs. To do this, we use an estimation of the rate of change of period of the pulsating white dwarf PG 1351+489 corresponding to the dominant pulsation period. From an asteroseismological model of PG 1351+489 we obtain gae < 3.3 × 10-13 for the axion-electron coupling constant, or macos2β lesssim 11.5 meV for the axion mass. This constraint is relaxed to gae < 5.5 × 10-13 (macos2β lesssim 19.5 meV), when no detailed asteroseismological model is adopted for the comparison with observations.

  20. A new way to study the stellar pulsation; First Polar mission PAIX

    Science.gov (United States)

    Chadid, M.

    2015-12-01

    In the context of long and continuous time-series photometry and after the MOST, CoRoT, KEPLER space missions and large geographic longitude ground--based networks, a new way is offered by the polar location helping to cope with the problem associated with the Earth day--night cycle. In this paper, we present the first long time-series photometry from the heart of Antarctica -Dome Charlie- and we discuss briefly our new results and perspectives on the pulsating stars from Antarctica, especially the connection between temporal hydrodynamic phenomena and cyclic modulations. Finally, we highlight the impact of PAIX -the robotic Antarctica photometer- on the stellar pulsation study.