Sample records for century locomotive technology

  1. 21st Century Locomotive Technology: Quarterly Technical Status Report 28

    Energy Technology Data Exchange (ETDEWEB)

    Lembit Salasoo; Ramu Chandra


    Thermal testing of a subscale locomotive sodium battery module was validate thermal models. The hybrid trip optimizer problem was formulated. As outcomes of this project, GE has proceeded to commercialize trip optimizer technology, and has initiated work on a state-of-the-art battery manufacturing plant for high energy density, sodium-based batteries.

  2. 21st century locomotive technology: quarterly technical status report 26

    Energy Technology Data Exchange (ETDEWEB)

    Lembit Salasoo; Ramu Chandra


    Parasitic losses due to hybrid sodium battery thermal management do not significantly reduce the fuel saving benefits of the hybrid locomotive. Optimal thermal management trajectories were converted into realizable algorithms which were robust and gave excellent performance to limit thermal excusions and maintain fuel savings.

  3. 21st Century Locomotive Technology: Quarterly Technical Status Report 6 DOE/AL68284-TSR06

    Energy Technology Data Exchange (ETDEWEB)

    Lembit Salasoo; Jennifer Topinka; Paul K. Houpt


    Experimental work to map the performance of the High Pressure Common Rail (HPCR) system on a locomotive is in progress. The experimental trends agree with KIVA modeling predictions. Injection optimization is in progress. Electrically-assisted turbocharger modeling was used to study passenger locomotive performance improvements. Energy storage cycling life testing began, and an improved battery state algorithm was determined. The hybrid locomotive energy storage was prepared for energy management system algorithm testing. Progress in reliable methods for computing optimal driving plans, and methods to reduce the complexity of the necessary optimization are reported.

  4. 21st Century Locomotive Technology: Quarterly Technical Status Report 8 DOE/AL68284-TSR08

    Energy Technology Data Exchange (ETDEWEB)

    Lembit Salasoo; Jennifer Topinka; Anthony Furman; Raj Bharadwaj


    Completed high pressure common rail system performance mapping at notch 8 to establish advanced fuel injection fuel savings entitlement. Investigated performance differences of several abradable coatings between full-scale tests and rub test coupons using post-run micrographic analysis. Demonstrated implementation of advanced energy management controls on hybrid locomotive. Began advanced energy storage detailed design; continued life-cycle subscale energy storage testing. Formulated trip optimization problem with hybrid locomotive, and evaluated first implementation to produce an optimal driving plan.

  5. 21st Century Locomotive Technology: Quarterly Technical Status Report 5 DOE/AL68284-TSR05

    Energy Technology Data Exchange (ETDEWEB)

    Lembit Salasoo; Jennifer Topinka; Paul Houpt


    The integration of the common rail injection facility with the single cylinder test facility is in progress. Injection modeling parameters wereimproved. Turbocharger experimental data was analyzed and the turbocharger inspected after full load testing. Automatic seal coat spray techniques were developed and several material compositions were tested as coupons and on representative parts. A downselect was made from hybrid energy storage vendor studies. Further development of battery state algorithms was done, and a test plan developed for locomotive demonstration of advanced energy management algorithms. Trip optimization software platform was integrated and baseline validation is in progress. Hybrid energy storage modules have been integrated into the system model.

  6. Railroad and locomotive technology roadmap.

    Energy Technology Data Exchange (ETDEWEB)

    Stodolsky, F.; Gaines, L.; Energy Systems


    -government workshop in January 2001 to gauge industry interest. As a result, the railroads, their suppliers, and the federal government5 have embarked on a cooperative effort to further improve railroad fuel efficiency--by 25% between now and 2010 and by 50% by 2020, on an equivalent gallon per revenue ton-mile basis, while meeting emission standards, all in a cost-effective, safe manner. This effort aims to bring the collaborative approaches of other joint industry-government efforts, such as FreedomCAR and the 21st Century Truck partnership, to the problem of increasing rail fuel efficiency. Under these other programs, DOE's Office of FreedomCAR and Vehicle Technologies has supported research on technologies to reduce fuel use and air emissions by light- and heavy-duty vehicles. DOE plans to bring similar efforts to bear on improving locomotives. The Department of Transportation's Federal Railroad Administration will also be a major participant in this new effort, primarily by supporting research on railroad safety. Like FreedomCAR and the 21st Century Truck program, a joint industry-government research effort devoted to locomotives and railroad technology could be a 'win' for the public and a 'win' for industry. Industry's expertise and in-kind contributions, coupled with federal funding and the resources of the DOE's national laboratories, could make for an efficient, effective program with measurable energy efficiency targets and realistic deployment schedules. This document provides the necessary background for developing such a program. Potential R&D pathways to greatly improve the efficiency of freight transportation by rail, while meeting future emission standards in a cost-effective, safe manner, were developed jointly by an industry-government team as a result of DOE's January 2001 Workshop on Locomotive Emissions and System Efficiency and are presented here. The status of technology, technical targets, barriers, and technical

  7. Railroad and locomotive technology roadmap.

    Energy Technology Data Exchange (ETDEWEB)

    Stodolsky, F.; Gaines, L.; Energy Systems


    -government workshop in January 2001 to gauge industry interest. As a result, the railroads, their suppliers, and the federal government5 have embarked on a cooperative effort to further improve railroad fuel efficiency--by 25% between now and 2010 and by 50% by 2020, on an equivalent gallon per revenue ton-mile basis, while meeting emission standards, all in a cost-effective, safe manner. This effort aims to bring the collaborative approaches of other joint industry-government efforts, such as FreedomCAR and the 21st Century Truck partnership, to the problem of increasing rail fuel efficiency. Under these other programs, DOE's Office of FreedomCAR and Vehicle Technologies has supported research on technologies to reduce fuel use and air emissions by light- and heavy-duty vehicles. DOE plans to bring similar efforts to bear on improving locomotives. The Department of Transportation's Federal Railroad Administration will also be a major participant in this new effort, primarily by supporting research on railroad safety. Like FreedomCAR and the 21st Century Truck program, a joint industry-government research effort devoted to locomotives and railroad technology could be a 'win' for the public and a 'win' for industry. Industry's expertise and in-kind contributions, coupled with federal funding and the resources of the DOE's national laboratories, could make for an efficient, effective program with measurable energy efficiency targets and realistic deployment schedules. This document provides the necessary background for developing such a program. Potential R&D pathways to greatly improve the efficiency of freight transportation by rail, while meeting future emission standards in a cost-effective, safe manner, were developed jointly by an industry-government team as a result of DOE's January 2001 Workshop on Locomotive Emissions and System Efficiency and are presented here. The status of technology, technical targets, barriers, and technical

  8. Locomotive Emission and Engine Idle Reduction Technology Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    John R. Archer


    In response to a United States Department of Energy (DOE) solicitation, the Maryland Energy Administration (MEA), in partnership with CSX Transportation, Inc. (CSXT), submitted a proposal to DOE to support the demonstration of Auxiliary Power Unit (APU) technology on fifty-six CSXT locomotives. The project purpose was to demonstrate the idle fuel savings, the Nitrous Oxide (NOX) emissions reduction and the noise reduction capabilities of the APU. Fifty-six CSXT Baltimore Division locomotives were equipped with APUs, Engine Run Managers (ERM) and communications equipment to permit GPS tracking and data collection from the locomotives. Throughout the report there is mention of the percent time spent in the State of Maryland. The fifty-six locomotives spent most of their time inside the borders of Maryland and some spent all their time inside the state borders. Usually when a locomotive traveled beyond the Maryland State border it was into an adjoining state. They were divided into four groups according to assignment: (1) Power Unit/Switcher Mate units, (2) Remote Control units, (3) SD50 Pusher units and (4) Other units. The primary data of interest were idle data plus the status of the locomotive--stationary or moving. Also collected were main engine off, idling or working. Idle data were collected by county location, by locomotive status (stationary or moving) and type of idle (Idle 1, main engine idling, APU off; Idle 2, main engine off, APU on; Idle 3, main engine off, APU off; Idle 4, main engine idle, APU on). Desirable main engine idle states are main engine off and APU off or main engine off and APU on. Measuring the time the main engine spends in these desirable states versus the total time it could spend in an engine idling state allows the calculation of Percent Idle Management Effectiveness (%IME). IME is the result of the operation of the APU plus the implementation of CSXT's Warm Weather Shutdown Policy. It is difficult to separate the two. The

  9. Seaweed technology for India for the twentyfirst century

    Digital Repository Service at National Institute of Oceanography (India)

    Untawale, A.G.; Reddy, C.R.K.

    Some of the concepts regarding seaweed technology which require particular attention for its effective utilization during the twentyfirst century are discussed. Major thrust areas would be application of different techniques like remote sensing...

  10. Technology in the 21st Century. (United States)

    Berger, Sandra


    This article discusses the rapid growth of Internet use and how Internet technology and the World Wide Web can make learning more accessible for gifted students. It outlines how technology can promote improved learning and how educators can integrate technology into gifted education. The need for teachers to be trained in Internet use is…

  11. Cyber Portfolio: The Innovative Menu for 21st Century Technology (United States)

    Robles, Ava Clare Marie O.


    Cyber portfolio is a valuable innovative menu for teachers who seek out strategies or methods to integrate technology into their lessons. This paper presents a straightforward preparation on how to innovate a menu that addresses the 21st century skills blended with higher order thinking skills, multiple intelligence, technology and multimedia.…

  12. Technology Born Fictions for the Cities of 21st Century

    Directory of Open Access Journals (Sweden)

    Mehmet Rıfat Akbulut


    Full Text Available Information and communication technologies will undoubtely be leading determinants of urban landscape in the 21st century. Until the present day, it was assumed that urban landscapes were being shaped by conventional factors such as demography, social and economical structure, transportion, infrastructure, building technologies etc. In spite of many speculative approaches, recent developments in information and communication technologies can offer us some clues which may go beyond mere speculation. The“intelligent city” which is based on “autonomous” and “intelligent” objects and agents promising novel solutions to urban problems. Mobile communication is also another promising domain to offer creative solutions to some cronical urban problems. All these novelties provide sufficient reasons to think about new urban structures based upon information technologies.This paper is an attempt to discuss probable effects of information technologies, as new dynamics to shape the urban environment and urban life of the 21st century.

  13. Cyberbullying and Sexting: Technology Abuses of the 21st Century (United States)

    Siegle, Del


    Many young people cannot remember a time before Instant Messaging (IM), cell phone text messaging, video conferencing, blogging, e-mailing, and MySpace and Facebook postings existed. Thanks to the ubiquitous nature of technology in the 21st century, digital natives are accustomed to seeing, and being seen, on a scale that was unimaginable by their…

  14. Technology Enhanced Formative Assessment for 21st Century Learning (United States)

    Spector, J. Michael; Ifenthaler, Dirk; Sampson, Demetrios; Yang, Lan; Mukama, Evode; Warusavitarana, Amali; Dona, Kulari Lokuge; Eichhorn, Koos; Fluck, Andrew; Huang, Ronghuai; Bridges, Susan; Lu, Jiingyan; Ren, Youqun; Gui, Xiaoqing; Deneen, Christopher C.; San Diego, Jonathan; Gibson, David C.


    This paper is based on the deliberations of the Assessment Working Group at EDUsummIT 2015 in Bangkok, Thailand. All of the members of Thematic Working Group 5 (TWG5) have contributed to this synthesis of potentials, concerns and issues with regard to the role of technology in assessment as, for and of learning in the 21st century. The group…

  15. Navigating through technology: technology and the Dutch East India Company VOC in the eighteenth century

    NARCIS (Netherlands)

    Jong, de Johannes Dirk


    For almost two centuries, the ships and the crews of the VOC navigated their way between the Dutch Republic and Asia. This could not have been achieved without the technology of ship design and ship building, the technology involved with keeping the crew healthy, and the technology of charting a rou

  16. Integrative Technology: 21st Century Technology for 21st Century Engineers (United States)

    Montemagno, Ph. D.


    Integrative technology, the merging of nanotechnology, biotechnology and informatics offers an opportunity for realizing true advances in the manner in which technology interacts with humanity. Using the power of nanotechnology to manipulate matter, that is the placing of molecules where we want, when we want, to perform functions that we want. Using the inspiration of biotechnology both to co-opt the tools of molecular manufacturing and to provide a baseline understanding of the way nature manipulates matter and information. And finally, using Informatics to create a robust framework for transforming the information implicit in molecular and larger scale interactions to engineer Complex Adaptive Systems that exhibit embedded higher-order behavior. Collectively these technologies established the basis for Integrative Technology, a new IT. The first examples of the implementation of Integrated Technology are manifested in the synthesis of a new class of smart materials. These materials have the potential to emulate much of the functionality associated with living systems such as the active transport and transformation of matter and information and, the transduction of energy into different forms. We will present the details of the technological demands and the results of efforts associated with the production of these new functional materials. Elements of the discussion will include the genetic engineering of active biological molecules into engineering building blocks, the precision assembly of these molecules into a stable, "active" material and, the promise of embedding intelligent behavior into the matrix of the assembled matter.

  17. Infrastructure: A technology battlefield in the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Drucker, H.


    A major part of technological advancement has involved the development of complex infrastructure systems, including electric power generation, transmission, and distribution networks; oil and gas pipeline systems; highway and rail networks; and telecommunication networks. Dependence on these infrastructure systems renders them attractive targets for conflict in the twenty-first century. Hostile governments, domestic and international terrorists, criminals, and mentally distressed individuals will inevitably find some part of the infrastructure an easy target for theft, for making political statements, for disruption of strategic activities, or for making a nuisance. The current situation regarding the vulnerability of the infrastructure can be summarized in three major points: (1) our dependence on technology has made our infrastructure more important and vital to our everyday lives, this in turn, makes us much more vulnerable to disruption in any infrastructure system; (2) technologies available for attacking infrastructure systems have changed substantially and have become much easier to obtain and use, easy accessibility to information on how to disrupt or destroy various infrastructure components means that almost anyone can be involved in this destructive process; (3) technologies for defending infrastructure systems and preventing damage have not kept pace with the capability for destroying such systems. A brief review of these points will illustrate the significance of infrastructure and the growing dangers to its various elements.

  18. Computing, information, and communications: Technologies for the 21. Century

    Energy Technology Data Exchange (ETDEWEB)



    To meet the challenges of a radically new and technologically demanding century, the Federal Computing, Information, and Communications (CIC) programs are investing in long-term research and development (R and D) to advance computing, information, and communications in the United States. CIC R and D programs help Federal departments and agencies to fulfill their evolving missions, assure the long-term national security, better understand and manage the physical environment, improve health care, help improve the teaching of children, provide tools for lifelong training and distance learning to the workforce, and sustain critical US economic competitiveness. One of the nine committees of the National Science and Technology Council (NSTC), the Committee on Computing, Information, and Communications (CCIC)--through its CIC R and D Subcommittee--coordinates R and D programs conducted by twelve Federal departments and agencies in cooperation with US academia and industry. These R and D programs are organized into five Program Component Areas: (1) HECC--High End Computing and Computation; (2) LSN--Large Scale Networking, including the Next Generation Internet Initiative; (3) HCS--High Confidence Systems; (4) HuCS--Human Centered Systems; and (5) ETHR--Education, Training, and Human Resources. A brief synopsis of FY 1997 accomplishments and FY 1998 goals by PCA is presented. This report, which supplements the President`s Fiscal Year 1998 Budget, describes the interagency CIC programs.

  19. Undulatory Locomotion

    CERN Document Server

    Cohen, Netta


    Undulatory locomotion is a means of self-propulsion that relies on the generation and propagation of waves along a body. As a mode of locomotion it is primitive and relatively simple, yet can be remarkably robust. No wonder then, that it is so prevalent across a range of biological scales from motile bacteria to gigantic prehistoric snakes. Key to understanding undulatory locomotion is the body's interplay with the physical environment, which the swimmer or crawler will exploit to generate propulsion, and in some cases, even to generate the underlying undulations. This review focuses by and large on undulators in the low Reynolds numbers regime, where the physics of the environment can be much more tractable. We review some key concepts and theoretical advances, as well as simulation tools and results applied to selected examples of biological swimmers. In particular, we extend the discussion to some simple cases of locomotion in non-Newtonian media as well as to small animals, in which the nervous system, mo...

  20. FY 1998 Blue Book: Computing, Information, and Communications: Technologies for the 21st Century (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — As the 21st century approaches, the rapid convergence of computing, communications, and information technology promises unprecedented opportunities for scientific...

  1. Opportunities & Challenges for Green Technology in 21st Century


    Aithal, Sreeramana; Aithal, Shubhrajyotsna


    Technology has affected the society and its surroundings in many ways and helped to develop more advanced economies including today's global economy. Science has contributed many technologies to the society which include Aircraft technology, Automobile technology, Biotechnology, Computer technology, Telecommunication technology, Internet technology, Renewable energy technology, Atomic & Nuclear technology, Nanotechnology, Space technology etc. have changed the lifestyle of the people ...

  2. Torsional locomotion (United States)

    Bigoni, D.; Dal Corso, F.; Misseroni, D.; Bosi, F.


    One edge of an elastic rod is inserted into a friction-less and fitting socket head, whereas the other edge is subjected to a torque, generating a uniform twisting moment. It is theoretically shown and experimentally proved that, although perfectly smooth, the constraint realizes an expulsive axial force on the elastic rod, which amount is independent of the shape of the socket head. The axial force explains why screwdrivers at high torque have the tendency to disengage from screw heads and demonstrates torsional locomotion along a perfectly smooth channel. This new type of locomotion finds direct evidence in the realization of a ‘torsional gun’, capable of transforming torque into propulsive force. PMID:25383038

  3. Software Engineering Technology for the 21st Century

    Institute of Scientific and Technical Information of China (English)


    In this paper we will discuss the software engineering technologyfor the 21 st century. First we review development over the last half-century, overview application re quirement and environment, accept a challenge. Then we outline following software engineering techniques: 1) Process;2) Analysis;3) Design;4) UML;5) Component;6) Java +XML;7) Integrated;8) Quality(ISO9000&CMM).

  4. Fuelcell Prototype Locomotive

    Energy Technology Data Exchange (ETDEWEB)

    David L. Barnes


    An international industry-government consortium is developing a fuelcell hybrid switcher locomotive for commercial railway applications and power-to-grid generation applications. The current phase of this on-going project addresses the practicalities of on-board hydrogen storage, fuelcell technology, and hybridity, all with an emphasis on commercially available products. Through practical evaluation using designs from Vehicle Projects’ Fuelcell-Powered Underground Mine Loader Project, the configuration of the fuelcell switcher locomotive changed from using metal-hydride hydrogen storage and a pure fuelcell power plant to using compressed hydrogen storage, a fuelcell-battery hybrid power plant, and fuelcell stack modules from Ballard Power Systems that have been extensively used in the Citaro bus program in Europe. The new overall design will now use a RailPower battery hybrid Green Goat™ as the locomotive platform. Keeping the existing lead-acid batteries, we will replace the 205 kW diesel gen-set with 225 kW of net fuelcell power, remove the diesel fuel tank, and place 14 compressed hydrogen cylinders, capable of storing 70 kg of hydrogen at 350 bar, on the roof. A detailed design with associated CAD models will allow a complete build of the fuelcell-battery hybrid switcher locomotive in the next funded phase.

  5. Infusing Creativity and Technology in 21st Century Education: A Systemic View for Change (United States)

    Henriksen, Danah; Mishra, Punya; Fisser, Petra


    In this article, we explore creativity alongside educational technology, as fundamental constructs of 21st century education. Creativity has become increasingly important, as one of the most important and noted skills for success in the 21st century. We offer a definition of creativity; and draw upon a systems model of creativity, to suggest…

  6. Representations of Technology in the "Technical Stories" for Children of Otto Witt, Early 20th Century Swedish Technology Educator (United States)

    Axell, Cecilia; Hallström, Jonas


    Children's fiction in school libraries have played and still play a role in mediating representations of technology and attitudes towards technology to schoolchildren. In early 20th century Sweden, elementary education, including textbooks and literature that were used in teaching, accounted for the main mediation of technological knowledge…

  7. Coupling of cytoskeleton functions for fibroblast locomotion

    DEFF Research Database (Denmark)

    Couchman, J R; Lenn, M; Rees, D A


    Using a chick cell phenotype specialised for locomotion with morphometric measurements made possible by modern instrumentation technology, we have reinvestigated motile functions in fibroblast locomotion. Quantitative analysis of rapid fluctuations in cell form and organelle distribution during l...... function of microtubules to direct the flow towards multiple foci on the leading edge, and so determine cell polarity. Such a mechanism of locomotion for fibroblasts has many features consistent with evidence for other cell types, especially amoebae and leukocytes....

  8. ORCMT -- technology resource for the 21. century nonwovens industry

    Energy Technology Data Exchange (ETDEWEB)

    Whittaker, J.W.


    As American textile and nonwovens companies participate in an increasingly competitive world market, technology is playing an ever-growing role in production of new, improved, and more cost competitive products and processes. But the same competitive pressures which drive the need for advanced manufacturing technology also reduce the resources available for necessary research and development activities. Technology resources and manufacturing expertise, unmatched in the world, are available to American industry at the Oak Ridge Centers for Manufacturing Technology (ORCMT). Bottom-line benefits from ORCMT technology solutions are already in the hundreds of millions of dollars. This presentation will describe a sampling of the technologies and expertise available, present examples of previous solutions, and explain how a company can benefit from the wealth of resources available.

  9. Energy Systems and Technologies for the coming Century

    DEFF Research Database (Denmark)

    Sønderberg Petersen, Leif; Larsen, Hans Hvidtfeldt

    Risø International Energy Conference 2011 took place 10 – 12 May 2011. The conference focused on: - Future global energy development options, scenarios and policy issues - Intelligent energy systems of the future, including the interaction between supply and end-use - New and emerging technologies...... for the extended utilisation of sustainable energy - Distributed energy production technologies such as fuel cells, hydrogen, bioenergy, wind, hydro, wave, solar and geothermal - Centralised energy production technologies such as clean coal technologies, CCS and nuclear - Renewable energy for the transport sector...

  10. FY 2001 Blue Book: Information Technology: The 21st Century Revolution (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — At the dawn of the 21st century, the U.S. is enjoying an era of unprecedented possibilities and prosperity built on dramatic advances in science and technology....

  11. Developing the 21st-Century Social Studies Skills through Technology Integration (United States)

    Farisi, Mohammad Imam


    Recently, technology has become an educational necessity in global-digital era. Facing these phenomena, social studies (SS) should make innovations related to changes of 21st-century skills and learning paradigm, which is characterized by the principles of disclosure of information, computing, automation, and communication. Technology integration…

  12. A 21st Century Science, Technology, and Innovation Strategy for Americas National Security (United States)


    aspects of national security. With guidance from the President and Congress, strategic direction and investment priorities for national security science ...interconnected, fast- evolving science and technology landscape that presents new threats and opportunities, the policy directions called for in this...A 21ST CENTURY SCIENCE , TECHNOLOGY, AND INNOVATION STRATEGY FOR AMERICA’S NATIONAL SECURITY PRODUCT OF THE Committee on Homeland and National

  13. Latinos and Information Technology. Perspectives for the 21st Century. (United States)

    Wilhelm, Tony; Rood, Justin, E.

    Data from the Current Population Surveys of the U.S. Census were used to construct this report on the access to and use of computers and information technology by the Hispanic population of the United States. The report explores four main issues, each of which is being transformed by innovations in information technology. The first issue…

  14. Energy systems and technologies for the coming century. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Soenderberg Petersen, L.; Larsen, Hans (eds.)


    Risoe International Energy Conference 2011 took place 10 - 12 May 2011. The conference focused on: 1) Future global energy development options, scenarios and policy issues. 2) Intelligent energy systems of the future, including the interaction between supply and end-use. 3) New and emerging technologies for the extended utilisation of sustainable energy. 4) Distributed energy production technologies such as fuel cells, hydrogen, bioenergy, wind, hydro, wave, solar and geothermal. 5) Centralised energy production technologies such as clean coal technologies, CCS and nuclear. 6) Renewable energy for the transport sector and its integration in the energy system The proceedings are prepared from papers presented at the conference and received with corrections, if any, until the final deadline on 20-04-2011. (Author)

  15. Technology Directions for the 21st Century, volume 1 (United States)

    Crimi, Giles F.; Verheggen, Henry; McIntosh, William; Botta, Robert


    For several decades, semiconductor device density and performance have been doubling about every 18 months (Moore's Law). With present photolithography techniques, this rate can continue for only about another 10 years. Continued improvement will need to rely on newer technologies. Transition from the current micron range for transistor size to the nanometer range will permit Moore's Law to operate well beyond 10 years. The technologies that will enable this extension include: single-electron transistors; quantum well devices; spin transistors; and nanotechnology and molecular engineering. Continuation of Moore's Law will rely on huge capital investments for manufacture as well as on new technologies. Much will depend on the fortunes of Intel, the premier chip manufacturer, which, in turn, depend on the development of mass-market applications and volume sales for chips of higher and higher density. The technology drivers are seen by different forecasters to include video/multimedia applications, digital signal processing, and business automation. Moore's Law will affect NASA in the areas of communications and space technology by reducing size and power requirements for data processing and data fusion functions to be performed onboard spacecraft. In addition, NASA will have the opportunity to be a pioneering contributor to nanotechnology research without incurring huge expenses.

  16. The intersection of education and technology at the century mark. (United States)

    Gadbury Amyot, Cynthia C; Nathe, Christine


    Since the inception of dental hygiene in 1913, we have witnessed the tremendous evolution of the profession. Within the past couple two decades a significant game changer has been technology. The ability to expand access to education through technology has resulted in an increasing number of dental hygienists seeking advanced degrees and gaining new skills and certifications. The evidence shows that dental hygienists are using their advanced education to address lack of access to oral health care services. The profession should remain focused on advocating for the increased education of the dental hygienist, by finding solutions to barriers that presently prevent the realization of this ultimate advancement.

  17. New technologies for 21st century plant science. (United States)

    Ehrhardt, David W; Frommer, Wolf B


    Plants are one of the most fascinating and important groups of organisms living on Earth. They serve as the conduit of energy into the biosphere, provide food, and shape our environment. If we want to make headway in understanding how these essential organisms function and build the foundation for a more sustainable future, then we need to apply the most advanced technologies available to the study of plant life. In 2009, a committee of the National Academy highlighted the "understanding of plant growth" as one of the big challenges for society and part of a new era which they termed "new biology." The aim of this article is to identify how new technologies can and will transform plant science to address the challenges of new biology. We assess where we stand today regarding current technologies, with an emphasis on molecular and imaging technologies, and we try to address questions about where we may go in the future and whether we can get an idea of what is at and beyond the horizon.

  18. 21st Century Coal: Advanced Technology and Global Energy Solution

    Energy Technology Data Exchange (ETDEWEB)



    Coal currently supplies with more than 40% of the world electricity consumption and it essential input of around 70% of world steel production, representing around 30% of the world primary energy supply. This is because coal is cheap, abundant, accessible, widely distributed and easy energy to transport, store and use. For these features, coal is projected to be intensively used in the future. Production and use of coal present a series of issues throughout the whole value chain. While existing technology allows addressing most of them (safety at work, land restoration, mercury, NOx and sulphur emissions avoidance, etc.), CO2 emissions continues to be the biggest challenge for coal use in the future. This report focuses on the technology path to near-zero emissions including useful insights in advanced coal power generation technologies and Carbon Capture, Utilisation and Storage, a promising technology with a large potential which can push Carbon Capture and Storage competitiveness. In addition, the report shows the features of the new generation of coal-fired power plants in terms of flexibility for dynamic operation and grid stability, requirements increasingly needed to operate on grids with significant wind and solar generation.

  19. A Cultural Heritage Exhibit with 21st-Century Technology (United States)

    Lincoln, Margaret


    Lakeview Schools and the Art Center of Battle Creek, both located in Michigan, have worked together on several beneficial projects. This partnership has resulted in the sharing of valuable material and human resources. In addition, the use of innovative technology has provided a meaningful learning experience for the entire community. As the…

  20. Affordable Environmental Technology: Preparing for the 21st Century (United States)


    Research Journal . In addition, a full scale unit is planned together with an industrial company in Israel. This technology may be effective in and operation of a mobile laboratory may be proposed, in order to provide support for field research . 3. Environmental archaeometry . The aim...10196 Approved for public release; dlstudW;buu’ ,",ited. Office of Naval Research European Office TABLE OF CONTENTS IN T R O D U C T IO N

  1. Industrial Wireless Technology for the 21st Century

    Energy Technology Data Exchange (ETDEWEB)



    In July 2002, the U.S. Department of Energy's Industrial Technologies Program sponsored the Industrial Wireless Workshop as a forum for articulating some long-term goals that may help guide the development of industrial wireless sensor systems. Over 30 individuals, representing manufacturers and suppliers, end users, universities, and national laboratories, attended the workshop in San Francisco and participated in a series of facilitated sessions. The workshop participants cooperatively developed a unified vision for the future and defined specific goals and challenges. This document presents the results of the workshop as well as some context for non-experts.

  2. Technology Directions for the 21st Century. Volume 3 (United States)

    Crimi, Giles F.; Botta, Robert; Ditanna, Thomas; Verheggen, Henry; Stancati, Michael; Feingold, Harvey; Jacobs, Mark


    New technologies will unleash the huge capacity of fiber-optic cable to meet growing demands for bandwidth. Companies will continue to replace private networks with public network bandwidth-on-demand. Although asynchronous transfer mode (ATM) is the transmission technology favored by many, its penetration will be slower than anticipated. Hybrid networks - e.g., a mix of ATM, frame relay, and fast Ethernet - may predominate, both as interim and long-term solutions, based on factors such as availability, interoperability, and cost. Telecommunications equipment and services prices will decrease further due to increased supply and more competition. Explosive Internet growth will continue, requiring additional backbone transmission capacity and enhanced protocols, but it is not clear who will fund the upgrade. Within ten years, space-based constellations of satellites in Low Earth orbit (LEO) will serve mobile users employing small, low-power terminals. 'Little LEO's' will provide packet transmission services and geo-position determination. 'Big LEO's' will function as global cellular telephone networks, with some planning to offer video and interactive multimedia services. Geosynchronous satellites also are proposed for mobile voice grade links and high-bandwidth services. NASA may benefit from resulting cost reductions in components, space hardware, launch services, and telecommunications services.

  3. Electrokinetic Locomotion (United States)

    Moran, Jeffrey Lawrence

    occurring in the interfacial layer near the particle/solution interface, which play a key role in the locomotion. The model enables one to understand how the rods' motion depends on the properties of their environment, such as hydrogen peroxide concentration, solution electrical conductivity, and solution viscosity. The numerical simulations are complemented with a scaling analysis based on the governing equations, which makes definite, verifiable predictions of these dependences. One of the most important trends that has been observed experimentally is the significant decrease in speed induced by adding sub-millimolar concentrations of inert electrolyte. It is important to understand the physical reasons for the electrolyte-induced speed decrease, in order to know whether it is fundamental to this propulsion mechanism, or if there is some feasible means to circumvent it. Successful completion of this research will result in an improved understanding of the capabilities, as well as the risks and limits of applicability, of the bimetallic nanomotors for applications in nanotechnology and nanomedicine. Potential applications of the rods include the targeted delivery of drugs in the human body, sensing of chemical impurities in drinking water, and as engines to drive fabrication of microscale structures.

  4. When old technologies were new thinking about electric communication in the late nineteenth century

    CERN Document Server

    Marvin, Carolyn


    In the history of electronic communication, the last quarter of the nineteenth century holds a special place, for it was during this period that the telephone, phonograph, electric light, wireless, and cinema were all invented. In When old Technologies Were New, Carolyn Marvin explores howtwo of these new inventions--the telephone and the electric light--were publicly envisioned at the end of the nineteenth century, as seen in specialized engineering journals and popular media. Marvin pays particular attention to the telephone, describing how it disrupted established socialrelations, unsettl

  5. Technology Roadmap for the 21st Century Truck Program, a government-industry research partnership

    Energy Technology Data Exchange (ETDEWEB)



    The 21st Century Truck Program has been established as a government-industry research partnership to support the development and implementation of commercially viable technologies that will dramatically cut fuel use and emissions of commercial trucks and buses while enhancing their safety and affordability as well as maintaining or enhancing performance. The innovations resulting from this program will reduce dependence on foreign oil, improve our nation's air quality, provide advanced technology for military vehicles, and enhance the competitiveness of the U.S. truck and bus industry while ensuring safe and affordable freight and bus transportation for the nation's economy. This Technology Roadmap for the 21st Century Truck Program has been prepared to guide the development of the technical advancements that will enable the needed improvements in commercial truck fuel economy, emissions, and safety.


    Directory of Open Access Journals (Sweden)

    Mohammad Imam FARISI


    Full Text Available Recently, technology has become an educational necessity in global-digital era. Facing these phenomena, social studies (SS should make innovations related to changes of 21st-century skills and learning paradigm, which is characterized by the principles of disclosure of information, computing, automation, and communication. Technology integration into SS learning is one of the learning innovations in the global-digital era, and powerfully supports the National Council for Social Studies (NCSS as stated in their visions: meaningful, powerful, value-based, challenging, and active. It also strongly supports the development of three core skills of the 21st-century, including learning and innovation skills; information, media and technology skills; life and career skills that developed in partnership with the Partnership Forum for 21st-Century Skills (P21. This paper examines and describes academics evolution toward a commitment and further developments in research; 21stcentury skills map for the SS; and the implications for developing teachers’ competences and teachers’ education curriculum.

  7. The Information and Communication Technologies, Learning and Knowledge Technologies and Technologies for Empowerment and Participation as Tools to Support the University Teachers of the XXI Century

    Directory of Open Access Journals (Sweden)

    John Granados Romero


    Full Text Available The learning environment has suffered major transformations with the rapid development of the information and communications technologies; in this context the concept of learning and knowledge technologies and technologies for the empowerment and participation emerges. This paper aims at contributing to the reflection on the use of information and communication technologies that must be continually made in education, especially among teachers of the 21st century University. As main result, some comments on the digital competence of students of the 21st century are included. Although it has been demonstrated that these technologies are a social phenomenon of great significance that has changed the lives of millions of people, it has also been recognized that their impact on education is far from their potential.

  8. Air quality impacts and health-benefit valuation of a low-emission technology for rail yard locomotives in Atlanta Georgia. (United States)

    Galvis, Boris; Bergin, Michael; Boylan, James; Huang, Yan; Bergin, Michelle; Russell, Armistead G


    One of the largest rail yard facilities in the Southeastern US, the Inman and Tilford yards, is located in the northwestern section of Atlanta, Georgia alongside other industries, schools, businesses, and dwellings. It is a significant source of fine particulate (PM2.5) and black carbon (BC) (Galvis, Bergin, & Russell, 2013). We calculate 2011 PM2.5 and BC emissions from the rail yards and primary industrial and on-road mobile sources in the area and determine their impact on local air quality using Gaussian dispersion modeling. We determine the change in PM2.5 and BC concentrations that could be accomplished by upgrading traditional switcher locomotives used in these rail yards to a lower emitting technology and evaluate the health benefits for comparison with upgrade costs. Emissions from the rail yards were estimated using reported fuel consumption data (GAEPD, 2012b) and emission factors previously measured in the rail yards (Galvis et al., 2013). Model evaluation against 2011 monitoring data found agreement between measured and simulated concentrations. Model outputs indicate that the line-haul and switcher activities are responsible for increments in annual average concentrations of approximately 0.5±0.03 μg/m(3) (39%) and 0.7±0.04 μg/m(3) (56%) of BC, and for 1.0±0.1 μg/m(3) (7%) and 1.6±0.2 μg/m(3) (14%) of PM2.5 at two monitoring sites located north and south of the rail yards respectively. Upgrading the switcher locomotives at the yards with a lower emitting technology in this case "mother slug" units could decrease PM2.5 and BC emissions by about 9 and 3 t/year respectively. This will lower annual average PM2.5 concentrations between 0.3±0.1 μg/m(3) and 0.6±0.1 μg/m(3) and BC concentrations between 0.1±0.02 μg/m(3) and 0.2±0.03 μg/m(3) at monitoring sites north and south of the rail yards respectively, and would facilitate PM2.5 NAAQS attainment in the area. We estimate that health benefits of approximately 20 million dollars per year

  9. Transforming Pedagogies:
Integrating 21st Century Skills And Web 2.0 Technology

    Directory of Open Access Journals (Sweden)

    Shelia Y. TUCKER


    Full Text Available According to (P21, Partnership for 21st Century Skills (n.d., unless the gap is bridged between how students learn and how they live, today’s education system will face irrelevance. The way people work and live has been transformed by demographic, economic, political, technological, and informational forces. Schools must adapt to these changing conditions in order to thrive. Students must be equipped to live in a multifaceted, multitasking, technology-driven world. And, regardless of their economic background, we must also ensure that all students have equal access to this new technological world. Collaborative learning theory which is connected to constructivism pedagogy requires students to work together to solve problems. Students need lifelong learning skills i.e., communication and information skills, problem-solving and thinking skills, and interpersonal and self-directional skills. The challenge becomes to deliberately incorporate learning skills into classrooms strategically and broadly. In this digital age, students must learn to use tools essential to everyday life and workplace productivity. They live in a world of almost unlimited streams of profound information, difficult choices and enormous opportunity. Teachers can create a 21st century context for learning by taking students out into the world, by bringing the world into the classroom, and by creating opportunities for students to collaboratively interact with each other (Learning for the, n.d.. One way of accomplishing this task is by employing the use of the Internet to connect Web 2.0 technology and 21st century skills. These skills are essential due to increased global competition, rising workforce capabilities, and accelerated technological change (Learning for the, n.d..

  10. Digital manufacturing-the development direction of the manufacturing technology in the 21st century

    Institute of Scientific and Technical Information of China (English)

    XIONG You-lun; YIN Zhou-ping


    After introducing the concepts of digital manufacturing technology,the discipline framework of digital manufacturing is presented in the paper by discussing its basic concept,theory foundation,key technology and scientific problems in detail.As the core of the advanced manufacturing technology,digital manufacturing is gradually becoming the main manufacturing technology of the twenty-first century.Firstly,the main features of digital manufacturing are indicated and its key supporting technologies are investigated by grouping them into four levels related to product development, numerical control, production management,and enterprise collaboration,respectively.Moreover,the existing problems in the research on the multi-discipline theory foundation of digital manufacturing such as manufacturing informatics, computational manufacturing,and manufacturing intelligence,are also indicated.Then,the core scientific problems of digital manufacturing are discussed in depth,which focuses on digitization of manufacturing information,modeling of manufacturing constraints,high-speed and high-precision numerical control theory,and Internet-based collaboration and integration.Lastly, the development trends and application perspectives of digital manufacturing are concluded.

  11. Reform of School Science Curriculum for the 21st Century: Science-Technology-Society Theme in Japanese Context. (United States)

    Nakayama, Genzo

    Today, on the eve of the 21st century, Japan is becoming an internationalized, information centered civilization. The sophistication of modern science and technology will create a demand for people who are highly productive in handling knowledge and sensitive in their manipulation of it. This advance of science and technology will also require an…

  12. Teaching with Educational Technology in the 21st Century: The Case of the Asia-Pacific Region (United States)

    Inoue, Yukiko; Bell, Suzanne


    With the emphasis on faculty experiences and efforts to enhance higher learning in less-developed regions, "Teaching with Educational Technology in the 21st Century: The Case of the Asia-Pacific Region" is a comprehensive study of teaching applications involving educational technology. The book encourages collaboration across…

  13. Micro-electro-mechanical systems (MEMS: Technology for the 21st century

    Directory of Open Access Journals (Sweden)

    Đakov Tatjana A.


    Full Text Available Micro-electro-mechanical systems (MEMS are miniturized devices that can sense the environment, process and analyze information, and respond with a variety of mechanical and electrical actuators. MEMS consists of mechanical elements, sensors, actuators, electrical and electronics devices on a common silicon substrate. Micro-electro-mechanical systems are becoming a vital technology for modern society. Some of the advantages of MEMS devices are: very small size, very low power consumption, low cost, easy to integrate into systems or modify, small thermal constant, high resistance to vibration, shock and radiation, batch fabricated in large arrays, improved thermal expansion tolerance. MEMS technology is increasingly penetrating into our lives and improving quality of life, similar to what we experienced in the microelectronics revolution. Commercial opportunities for MEMS are rapidly growing in broad application areas, including biomedical, telecommunication, security, entertainment, aerospace, and more in both the consumer and industrial sectors on a global scale. As a breakthrough technology, MEMS is building synergy between previously unrelated fields such as biology and microelectronics. Many new MEMS and nanotechnology applications will emerge, expanding beyond that which is currently identified or known. MEMS are definitely technology for 21st century.

  14. Designing a zero emissions power switch locomotive

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, J.; Hines, J. [National Instruments, Austin, TX (United States)


    In addition to providing electric power and drinking water in manned spacecraft, fuel cell power plants have provided safe, clean electric power to hospitals, universities and other facilities since the early 1990s. This paper described a zero emissions hydrogen and battery-powered hybrid switching locomotive designed for use in rail, port and military base applications. Designed in partnership with a consortium, the prototype hybrid switching locomotive is comprised of a number of proven commercial technologies and includes a control system developed by National Instruments. New applications for hydrogen fuel cell use in industrial vehicles were also discussed. The new design was scheduled for field testing at the end of 2008.


    Institute of Scientific and Technical Information of China (English)



    Mining subject needs further development and towards Which the development would be being the problems concerned over all along and to be succeded with the public good enough attenlion to discussions to reach an identify of views admittedly. The emergence in successlon of newand-high techs in the mid-and late twentieth century is perhaps the most fascinating and epochmarking event that has given to all the subjects certain but different degrees of impacts to become more ciosely interrelative and interdepartmental each other and feature specifically from that of the past for their entirely new conceptions in the result of formulating many new theories, new technologies and new subjects that mining subject is inevitably and unexceptionally the one inclusive. The author gives in this paper his opinion regarding the problem of the development of mining subject proving with many convincible facts and most informative new ideas.

  16. Trolley locomotives at Easington

    Energy Technology Data Exchange (ETDEWEB)

    Proctor, G.; Nightingale, K.


    A general layout and history of the transport system in the Low Main Seam at Easington is given, illustrating the problems associated with transporting men and materials over long distances coupled with arduous gradients. The Trolley Locomotive Scheme is described in detail. Design considerations, the modifications of equipment and mining work required to install the system are described. A brief summary of the legislation which was required to allow the use of underground trolley locomotives is included. The locomotive braking system is described, together with the overhead electric line and its associated roadway substations. The bonding of heavy copper earthing wires to the ends of the rails is of interest. This was carried out using the Thermit welding process. The section on experiences to date evaluates electrical, mechanical and the general performance of the system since it was installed.

  17. Challenges and Development Opportunities for Catalytic Technologies in Petrochemical Industry in the 21st Century

    Institute of Scientific and Technical Information of China (English)

    CHEN Qing-ling


    The propellent drive and development opportunities for future catalytic technologies in petrochemical industry in the 21st century are reviewed in this paper. It focuses on the following five aspects:(1) The environmentally-friendly catalytic technologies, such as new technologies for the production of organic chemicals changing the raw material and synthetic process, the chemicals production replacing phosgene and hydrogen cyanide toxicant, and the conversion and utilization of organic wastes etc.(2) Utilization and development of cheaper light alkanes, for example, the chemical use of natural gas and the development technologies of methane chain, the production of acetic acid, ethylene and vinyl chloride from selective oxidation of ethane, as well as the manufacture of acrolein and acrylonitrile from the oxidation and ammoxidation of propane.(3) The new propylene-plus technologies of the low value higher olefins, such as catalytic cracking of C4,C5 olefins and metathesis of C4 olefin.(4) The technologies of high selective oxidation, e.g. production of propylene oxide with TS-1 molecular sieve, oxidation process by lattice oxygen and direct oxidation of benzene to phenol etc.(5) Development and application of novel catalytic materials, especially, mesopore molecular sieve materials for a larger molecule reaction, zeolite catalyst with MWW structure for alkylation of benzene and propylene, ionic liquid, and membrane reactor catalyst etc.Meanwhile,the challenging research subjects for future industrial catalysis and the several viewpoints for development strategy of new catalytic technologies are proposed. These viewpoints are as follows:(1) Catalysis discipline must be integrated with many other disciplines and should be multidisciplinary and transdisciplinary.(2) New preparation methods of catalytic materials must be originally developed.(3) The instrumentation having better time resolution and spatial resolution and applying under reaction conditions must be

  18. Use of Technology in the Classroom as Perceived by Public School Teachers in Milwaukee during Early 21st Century (United States)

    Skinner, Sharon F.


    This project utilized descriptive methodology to examine the research question, how is technology being used in the classroom, as perceived by public school teachers in Milwaukee during early 21st century? In order to fully analyze this question, both quantitative and qualitative data were utilized. The researcher developed a survey for the…

  19. Science Teacher Education in the Twenty-First Century: a Pedagogical Framework for Technology-Integrated Social Constructivism (United States)

    Barak, Miri


    Changes in our global world have shifted the skill demands from acquisition of structured knowledge to mastery of skills, often referred to as twenty-first century competencies. Given these changes, a sequential explanatory mixed methods study was undertaken to (a) examine predominant instructional methods and technologies used by teacher educators, (b) identify attributes for learning and teaching in the twenty-first century, and (c) develop a pedagogical framework for promoting meaningful usage of advanced technologies. Quantitative and qualitative data were collected via an online survey, personal interviews, and written reflections with science teacher educators and student teachers. Findings indicated that teacher educators do not provide sufficient models for the promotion of reform-based practice via web 2.0 environments, such as Wikis, blogs, social networks, or other cloud technologies. Findings also indicated four attributes for teaching and learning in the twenty-first century: (a) adapting to frequent changes and uncertain situations, (b) collaborating and communicating in decentralized environments, (c) generating data and managing information, and (d) releasing control by encouraging exploration. Guided by social constructivist paradigms and twenty-first century teaching attributes, this study suggests a pedagogical framework for fostering meaningful usage of advanced technologies in science teacher education courses.

  20. Analysis of fuel cell hybrid locomotives (United States)

    Miller, Arnold R.; Peters, John; Smith, Brian E.; Velev, Omourtag A.

    Led by Vehicle Projects LLC, an international industry-government consortium is developing a 109 t, 1.2 MW road-switcher locomotive for commercial and military railway applications. As part of the feasibility and conceptual-design analysis, a study has been made of the potential benefits of a hybrid power plant in which fuel cells comprise the prime mover and a battery or flywheel provides auxiliary power. The potential benefits of a hybrid power plant are: (i) enhancement of transient power and hence tractive effort; (ii) regenerative braking; (iii) reduction of capital cost. Generally, the tractive effort of a locomotive at low speed is limited by wheel adhesion and not by available power. Enhanced transient power is therefore unlikely to benefit a switcher locomotive, but could assist applications that require high acceleration, e.g. subway trains with all axles powered. In most cases, the value of regeneration in locomotives is minimal. For low-speed applications such as switchers, the available kinetic energy and the effectiveness of traction motors as generators are both minimal. For high-speed heavy applications such as freight, the ability of the auxiliary power device to absorb a significant portion of the available kinetic energy is low. Moreover, the hybrid power plant suffers a double efficiency penalty, namely, losses occur in both absorbing and then releasing energy from the auxiliary device, which result in a net storage efficiency of no more than 50% for present battery technology. Capital cost in some applications may be reduced. Based on an observed locomotive duty cycle, a cost model shows that a hybrid power plant for a switcher may indeed reduce capital cost. Offsetting this potential benefit are the increased complexity, weight and volume of the power plant, as well as 20-40% increased fuel consumption that results from lower efficiency. Based on this analysis, the consortium has decided to develop a pure fuel cell road-switcher locomotive

  1. Report of the Defense Science Board Task Force on Defense Science and Technology Base for the 21st Century (United States)


    Reference directed that the Task Force make recommendations on these issues: - The proper funding level for the Science and Technology program - The...REPORT OF THE DEFENSE SCIENCE BOARD TASK FORCE ON DEFENSE SCIENCE AND TECHNOLOGY BASE FOR THE 21ST CENTURY June 1998 OFFICE OF THE UNDER...number. 1. REPORT DATE 30 JUN 1998 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Report of the Defense Science Board Task

  2. Emerging technologies for the detection of rabies virus: challenges and hopes in the 21st century.

    Directory of Open Access Journals (Sweden)

    Anthony R Fooks

    Full Text Available The diagnosis of rabies is routinely based on clinical and epidemiological information, especially when exposures are reported in rabies-endemic countries. Diagnostic tests using conventional assays that appear to be negative, even when undertaken late in the disease and despite the clinical diagnosis, have a tendency, at times, to be unreliable. These tests are rarely optimal and entirely dependent on the nature and quality of the sample supplied. In the course of the past three decades, the application of molecular biology has aided in the development of tests that result in a more rapid detection of rabies virus. These tests enable viral strain identification from clinical specimens. Currently, there are a number of molecular tests that can be used to complement conventional tests in rabies diagnosis. Indeed the challenges in the 21st century for the development of rabies diagnostics are not of a technical nature; these tests are available now. The challenges in the 21st century for diagnostic test developers are two-fold: firstly, to achieve internationally accepted validation of a test that will then lead to its acceptance by organisations globally. Secondly, the areas of the world where such tests are needed are mainly in developing regions where financial and logistical barriers prevent their implementation. Although developing countries with a poor healthcare infrastructure recognise that molecular-based diagnostic assays will be unaffordable for routine use, the cost/benefit ratio should still be measured. Adoption of rapid and affordable rabies diagnostic tests for use in developing countries highlights the importance of sharing and transferring technology through laboratory twinning between the developed and the developing countries. Importantly for developing countries, the benefit of molecular methods as tools is the capability for a differential diagnosis of human diseases that present with similar clinical symptoms. Antemortem

  3. Research Center for Optical Physics: Education and Technology for the 21st Century (United States)


    During the past eleven years since its inception, RCOP has excelled in its two primary goals: 1) training of the scientists and engineers needed for the twenty-first century with special emphasis on underrepresented citizens and 2) research and technological development in areas of relevance to NASA. In the category of research training, as of May 2003, RCOP produced 36 Bachelors degrees, 25 Masters degrees, and 13 Doctoral degrees. Of these, all 36 Bachelors degrees, 16 of the Masters degrees and 9 of the Doctoral degrees were awarded to African Americans. Four of the Doctoral graduates and one of the Masters graduates are working at NASA Field Centers. RCOP has also provided research experiences to 130 undergraduate students and 22 high school students through a number of outreach programs held during the summer and the academic year. RCOP has also been crucial to the development of the Ph.D. program in physics at Hampton University by providing high quality research training and technical electives required for a Doctoral degree in physics. RCOP has also excelled in research and technological development. Since 1992, RCOP researchers have leveraged over 8 million dollars in additional research funding, published 152 papers in refereed journals and proceedings, and given 125 presentations at refereed international conferences in the United States and eight other countries. RCOP also developed numerous collaborations with other research centers, universities and industries. In recognition of this outstanding work, RCOP is the first research center in the United States invited to join the Joint Open Laboratory for Laser Crystals and Precise Laser Systems headed by Dr. Alexander Kaminiskii of the Russian Academy of Sciences.

  4. Locomotive energy savings possibilities


    Leonas Povilas LINGAITIS; Lionginas LIUDVINAVIČIUS


    Economic indicators of electrodynamic braking have not been properly estimated. Vehicles with alternative power trains are transitional stage between development of pollution- free vehicles. According to these aspects the investigation on conventional hybrids drives and their control system is carried out in the article. The equation that allows evaluating effectiveness of regenerative braking for different variants of hybrid drive are given. Presenting different types of locomotive energy sa...

  5. Advanced robot locomotion.

    Energy Technology Data Exchange (ETDEWEB)

    Neely, Jason C.; Sturgis, Beverly Rainwater; Byrne, Raymond Harry; Feddema, John Todd; Spletzer, Barry Louis; Rose, Scott E.; Novick, David Keith; Wilson, David Gerald; Buerger, Stephen P.


    This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics natural human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.

  6. Compliant Synergies in Locomotion (United States)

    Travers, Matthew; Choset, Howie; Goldman @ Georgia Tech. Physics Department Collaboration

    Biological systems appear to have natural mechanisms that allow them to readily compensate for unexpected environmental variations when compared to their mechanical (i.e., robotic) counterparts. We hypothesize that the basis for this discrepancy is almost innate: what biology appears to be born with, built-in mechanisms for coordinating their many degrees of freedom, we struggle to ``program.'' We therefore look toward biology for inspiration. In particular, we are interested in kinematic synergies, low-dimensional representations that explicitly encode the underlying structure of how systems coordinate their internal degrees of freedom to achieve high-level tasks. In this work, we derive parametric representations of kinematic synergies and present a new compliant locomotion control framework that enables the parameters to be directly controlled in response to external disturbances. We present results of this framework implemented on two separate platforms, a snake-like and hexapod robot. Our results show that, using synergies, the locomotion control of these very different systems can be reduced to simple, extremely capable, and common forms, thus offering new insights into both robotic as well as biological locomotion in complex terrains.

  7. The Chilling Realities of the Telecommuting Tax: Adapting Twentieth Century Policies for Twenty-First Century Technologies

    Directory of Open Access Journals (Sweden)

    Michael Kraich


    Full Text Available The U.S. Tax Code has become so confusing and complex that tax professionals have gone from being a luxury to a necessity. Compound this complexity with the added layer of intricacy found at the state level and this already complex system becomes a labyrinth. While society has favored technological advances, the tax system has not. In particular, telecommuters have found themselves in a sort of limbo – working from home while sometimes simultaneously “working” at their employer’s location. This Note focuses on how this hypothetical of the 1980’s is today a reality, and how the courts of select states have approached this new paradigm. Specifically, this Note elaborates on the positions taken by New York and New Jersey, both major commuting states who have issued relating decisions, as well as what these decisions mean for residents of neighboring states like Connecticut and Pennsylvania. Finally, this Note advocates for uniformity between states, praises existing state policies such as Pennsylvania and New Jersey's, among others, and hopes to revive proposed unifying legislation in light of recent cases.

  8. Dual power locomotives for North America; Zweikraft-Lokomotiven fuer Nordamerika

    Energy Technology Data Exchange (ETDEWEB)

    Bonsen, Georg zur; Schneider, Thomas; Zimmermann, Tobias; Koch, Fabian [Bombardier Transportation (Schweiz) AG, Propulsion and Controls, Zuerich (Switzerland)


    The ALP-45DP locomotive, which will be introduced in Canada and the USA, illustrates the functionality and benefits of the propulsion technology for dual power locomotives. This technology, which has been developed and tested in Switzerland and will be assembled in Germany, is particularly suited to meet high reliability, economy, flexibility and eco friendliness on track networks which are only partially electrified. (orig.)

  9. Transition of wind power utilization technology in the 20th century; 20 seiki ni okeru furyoku riyo gijutsu no hensen

    Energy Technology Data Exchange (ETDEWEB)

    Ushiyama, I. [Ashikaga Inst. of Tech., Tochigi (Japan)


    Windmills are one of the oldest prime movers and have been used for more than 700 years in Europe. The transition from low speed windmills for grain grinding and water pumping to high speed wind turbines for electric power generation had occurred at the end of 19{sup th} century. This paper, at first, reviews the windmill technologies and the researchers before 20th century. Then describes the back ground of how the wind power generator has existed and how the four pioneers developed their wind power generator. The historical developments of windmills to wind turbines in this century are studied focusing mainly on Danish activities. Then, the effort of the development of large wind turbine such as Smith-Putnum's first MW machine in U.S.A. and other mammoth machine concept are introduced. The new concept machines such as Savonius and Darrieus wind turbines in 1920s to 1930s are also explained. Finally, the novel technologies of wind turbine covering larger machines, variable speed generators, special wing sections for wind turbines, theoretical analysis method of wind turbine performance, offshore wind turbines, and wind turbine control technologies are stated. (author)

  10. Locomotive energy savings possibilities

    Directory of Open Access Journals (Sweden)

    Leonas Povilas LINGAITIS


    Full Text Available Economic indicators of electrodynamic braking have not been properly estimated. Vehicles with alternative power trains are transitional stage between development of pollution- free vehicles. According to these aspects the investigation on conventional hybrids drives and their control system is carried out in the article. The equation that allows evaluating effectiveness of regenerative braking for different variants of hybrid drive are given. Presenting different types of locomotive energy savings power systems, which are using regenerative braking energy any form of hybrid traction vehicles systems, circuit diagrams, electrical parameters curves.

  11. An Interdisciplinary Approach for Biology, Technology, Engineering and Mathematics (BTEM to Enhance 21st Century Skills in Malaysia.

    Directory of Open Access Journals (Sweden)

    Lee Chuo Hiong


    Full Text Available An interdisciplinary approach for Biology, Technology, Engineering and Mathematics (BTEM is suggested to develop 21st century skills in the Malaysian context. BTEM allows students to master biological knowledge and at the same time to be adroit in other sub discipline skills. Students master factual knowledge of biology and skills of the 21st century simultaneously. The two main teaching and learning strategies applied in BTEM are problem-based learning and inquiry-based learning. Students are exposed to real world problems that require them to undergo inquiry processes to discover the inventive solutions. The content knowledge of biology adheres to the Malaysian Integrated Curriculum for Secondary Schools. The essence of engineering is inventive problem solving. Incorporation of information communication technologies in teaching and learning will be able to fulfil the needs of the current Net Generation. Mathematics plays an important role as computational tools, especially in analysing data. The highlighted 21st century skills in BTEM include digital literacy, inventive thinking, effective communication, high productivity, and spiritual and noble values.

  12. Canada's Dominion Astrophysical Observatory and the rise of 20th Century Astrophysics and Technology (United States)

    Hesser, James E.; Bohlender, David; Crabtree, Dennis


    Construction of Canada's Dominion Astrophysical Observatory (DAO) commenced in 1914 with first light on 6 May 1918. As distinct from the contemporaneous development with private funding of major observatories in the western United States, DAO was (and remains) funded by the federal government. Canada's initial foray into `big science', creation of DAO during the First World War was driven by Canada's desire to contribute significantly to the international rise of observational astrophysics enabled by photographic spectroscopy. In 2009 the Observatory was designated a National Historic Site. DAO's varied, rich contributions to the astronomical heritage of the 20th century continue in the 21st century, with particularly strong ties to Maunakea.

  13. Technological Readiness of the UAE Higher Education Institutions for the 21st Century (United States)

    Al Blooshi, Asma; Ezziane, Zoheir


    Educational institutions are considered as main indicator of a nation's competitiveness and the excellence of implementing their goals and objectives increase a nation's sense of competitiveness. Thus, it is important to receive a progress report showing how close the educational institutions are in accomplishing the 21st century visions and…

  14. Locomotion through Morphosis

    DEFF Research Database (Denmark)

    Larsen, Jørgen Christian

    construction kit called LocoKit, which is intended as a system on which studies on locomotion can be done in a simple way. The simplicity is ob- tained by giving the user the opportunity to build legged robots from a set of small components which allows for adjusting various parameters on the robot, even after...... in nature can be found and tested. These results shows the poten- tial of LocoKit and are nicely in line with the goal of the project. I future development, LocoKit will be improved in such a way that it allows the user to build even more efficient robots than have been build until now....

  15. Scaling macroscopic aquatic locomotion (United States)

    Gazzola, Mattia; Argentina, Mederic; Mahadevan, Lakshminarayanan


    Inertial aquatic swimmers that use undulatory gaits range in length L from a few millimeters to 30 meters, across a wide array of biological taxa. Using elementary hydrodynamic arguments, we uncover a unifying mechanistic principle characterizing their locomotion by deriving a scaling relation that links swimming speed U to body kinematics (tail beat amplitude A and frequency ω) and fluid properties (kinematic viscosity ν). This principle can be simply couched as the power law Re ~ Swα , where Re = UL / ν >> 1 and Sw = ωAL / ν , with α = 4 / 3 for laminar flows, and α = 1 for turbulent flows. Existing data from over 1000 measurements on fish, amphibians, larvae, reptiles, mammals and birds, as well as direct numerical simulations are consistent with our scaling. We interpret our results as the consequence of the convergence of aquatic gaits to the performance limits imposed by hydrodynamics.

  16. Corporeal-Locomotive Media

    DEFF Research Database (Denmark)

    Nørgård, Rikke Toft

    activities and experiences across the abovementioned gameworlds. As a consequence, the article points towards the centrality of expressive first-person corporeality and locomotion in digital games – a circumstance that sets the practice and experience of digital games apart from media practices...... and experiences such as reading or listening to a story and watching a movie or theatre play and other traditional or new media forms. These circumstances make the article question whether digital games can be understood as (new) media form at all and, thus, it points towards a possible new vocabulary...... and structure’ of a couple of specific interactions, expressions and experiences that in the study have proven to be characteristic of being a gameplayer in gameplay in digital games – regardless of whether you are a child playing Temple Run 2 or Frut Ninja on the iPhone, a tween playing Battlefield 3 on your...

  17. Information and communication technologies in geography education in the 21-th Century (United States)

    Vangelova, Rumyana


    In 2013 I attended a course on the Introduction to the Use of Spatial Thinking and Geoinformation (in geography and related subjects) organized by the European Association of Geographers. This course have helped me to realize what will be tomorrow's classroom. We can change education of geography in the classroom by using the following information technologies: Envision in classroom This software solution provides interactive environment for the whole learning experience of students. Envision helps enhance the quality of teaching and also keeps children engaged. An advantage of Envision is that it integrates ICT in education in a natural and easy to implement way improving the quality of education by making it a more positive experience to all involved parties. It is easy to use by teachers, because it provides a flexible way to present lessons. Educational software system supports collaborative learning giving teachers powerful and easy-to-use tool for teaching and learning. It gives students opportunity to take part actively in the lessons and develops team working and collaboration skills. This software is suitable for very different topics in the classroom - geographical location, boundaries, climate, political map, etc. Teachers benefit by easily engaging the full attention of children, taking advantage of best practices and exchanging experience with their colleagues. Children use their mice to interact with the system and can answer questions as individuals or as a group. They solve puzzles, categorize objects/concepts/ or locate objects on a map, type answers using a virtual keyboard. During the lesson Envision tracks the behavior of each child. Interactive classboard The Interactive StarBoard Software helps better acquiring and understanding of the new academic information for the students. Children have great interest and show greater independence, which helps them for easier learning. The use of educational games in teaching Geography by this software

  18. Einstein's Century

    Institute of Scientific and Technical Information of China (English)

    Jeremy Laurance; 贾庆文


    Albert Einstein began working at the patent office in Bern, Switzerland, a little more than a century ago. He had flunked the entrance exam for the Swiss Federal Insitute of Technology and took the job evaluating inventions because it paid a regular salary.

  19. Laboratories for the 21st Century: Case Studies; National Renewable Energy Laboratory, Science and Technology Facility, Golden, Colorado

    Energy Technology Data Exchange (ETDEWEB)


    This publication is one in series of case studies for "Laboratories for the 21st Century," a joint program of the U.S. Environmental Protection Agency and the U.S. Department of Energy Federal Energy Management Program. It is intended for those who plan to design and construct public and private-sector laboratory buildings. This case study describes the Science and Technology Facility, a new laboratory at NREL that incorporated energy-efficient and sustainable design features including underfloor air distribution in offices, daylighting, and process cooling.

  20. Exotendons for assistance of human locomotion

    Directory of Open Access Journals (Sweden)

    van den Bogert Antonie J


    Full Text Available Abstract Background Powered robotic exoskeletons for assistance of human locomotion are currently under development for military and medical applications. The energy requirements for such devices are excessive, and this has become a major obstacle for practical applications. Legged locomotion in many animals, however, is very energy efficient. We propose that poly-articular elastic mechanisms are a major contributor to the economy of locomotion in such specialized animals. Consequently, it should be possible to design unpowered assistive devices that make effective use of similar mechanisms. Methods A passive assistive technology is presented, based on long elastic cords attached to an exoskeleton and guided by pulleys placed at the joints. A general optimization procedure is described for finding the best geometrical arrangement of such "exotendons" for assisting a specific movement. Optimality is defined either as minimal residual joint moment or as minimal residual joint power. Four specific exotendon systems with increasing complexity are considered. Representative human gait data were used to optimize each of these four systems to achieve maximal assistance for normal walking. Results The most complex exotendon system, with twelve pulleys per limb, was able to reduce the joint moments required for normal walking by 71% and joint power by 74%. A simpler system, with only three pulleys per limb, could reduce joint moments by 46% and joint power by 47%. Conclusion It is concluded that unpowered passive elastic devices can substantially reduce the muscle forces and the metabolic energy needed for walking, without requiring a change in movement. When optimally designed, such devices may allow independent locomotion in patients with large deficits in muscle function.

  1. Validating the Technology Proficiency Self-Assessment Questionnaire for 21st Century Learning (TPSA C-21) (United States)

    Christensen, Rhonda; Knezek, Gerald


    Accurately measuring levels of technology proficiency in current and future classroom teachers are an important first step toward enhancing comfort level and confidence in integrating technology into the educational environment. The original Technology Proficiency Self-Assessment (TPSA) survey has maintained respectable psychometric properties for…

  2. The Twenty-First Century Workforce: A Contemporary Challenge for Technology Education (United States)

    Bybee, Rodger W.; Starkweather, Kendall N.


    More than at any time in recent history, technology education has taken on an important role in American education. The emergence of economic issues and the essential role of technology in the global economy have highlighted the omission of technology in K-12 school programs. When business and industry began recognizing the role of education and…

  3. Organizing the Technology Leadership Function for Universities in the 21st Century. (United States)

    Steele, Ray L.


    Discusses how the organization of leadership in the technology area will greatly affect universities' ability to strategically leverage digital tools to have a positive impact on the institution. Offers lessons learned about technology implementation and leadership from years of consulting work, then presents a model of technology leadership…

  4. [Evolution of tetrapod locomotion]. (United States)

    Gambarian, P P


    Fish-like ancestors of tetrapods did not need strong limb musculature because they inhabited waters and were practically imponderable. In the primitive tetrapods, principal function of the limbs was initially restricted to passive anchoring in the course of animal movements on the substrate by means of lateral bending of the body (undulation). However, progressive development of carrying function of tetrapod limbs lead to clearing the body off the substrate which reduced friction costs and made the tetrapods less dependent on the substrate properties. Along with this, the limbs became more important as the active locomotory organs. But at the beginning, this diminished locomotory speed as the momentum caused by undulation could no longer provide additional forward sliding. Locomotory function of the tetrapod limb could be carried out due to both retraction and pronation at the shoulder joint. Relatively short humerus of the primitive tetrapods made it indifferent which of these two particular actions lead to elongation of the steps. In most of the recent tetrapods with sprawling limbs (Urodela, Lacertilia Sphenodontia, Crocodilia), step elongation was carried out mainly by retraction at the shoulder joint. Contrary to this, in Tachyglossidae (Mammalia: Monotremata) retraction is absent while pronation at the shoulder joint becomes the most important component of step elongation. This made it possible to recognize two principal types, pronatory and retractory, of locomotion on the basis of the main movement in the phase of support. A mathematical model describing changes in step length during the phase of support in both of these types is elaborated. It takes into account relative sizes of stylopodium and zeugopodium, the angles of pronation and retraction at the shoulder joint, the angle of adduction at the elbow joint, and the angle of body undulation arc. It is shown on the basis of this model, varying of which of the above parameters is advantageous and which is

  5. Modulation corticale de la locomotion


    Tard, Céline


    Patients with Parkinson 's disease present gait impairments, sometimes sudden and unexpected, either improved or deteriorated with environmental stimuli. Attention focalization, either on external stimuli or on gait, could then modulate locomotion.The main objective was to better characterize how environmental stimuli would modulate locomotion, via attentional networks, in healthy subjects and in parkinsonian patients, with or without freezing of gait.At first, we precisely defined the attent...

  6. The Need for a Strong Science and Technology Program in the Nuclear Weapons Complex for the 21st Century

    Energy Technology Data Exchange (ETDEWEB)

    Garaizar, Xabier [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    In this paper I argue for the need for a strong Science and Technology program in the Nuclear Weapons Complex as the basis for maintaining a credible deterrence capability. The current Nuclear Posture Review establishes a New Triad as the basis for the United States deterrence strategy in a changing security environment. A predictive science capability is at the core of a credible National Nuclear Weapons program in the 21st Century. In absence of nuclear testing, the certification of our current Nuclear Weapons relies on predictive simulations and quantification of the associated simulation uncertainties. In addition, a robust nuclear infrastructure needs an active research and development program that considers all the required nuclear scenarios, including new configurations for which there is no nuclear test data. This paper also considers alternative positions to the need for a Science and Technology program in the Nuclear Weapons complex.

  7. The Impact of Technological Change on Military Manpower in the 21st Century (United States)


    11ners. flat data bases volume. equity operatuial planning "TIhe Federaiin" h,--h r-,hn I her’stchial, Man s.imiar A,, uilgarchv Duplicated opera!ing... foot soldier who will continue to be the key to future combat operations. In addition Wickham emph sed the importance of command, control...G.J., "Moving C3 Into the 21st Century," Signal, pp. 91-94, August 1989. Mannle, T.E., and Risser , D.T., Estimating the Manpower, Personnel, and

  8. [From Miescher to molecular DNA technology; a chapter from the medical history of the past century]. (United States)

    Bosman, F T


    Although molecular biology is a young discipline, it originated in the second half of the 19th century with the simultaneous discoveries of the laws of heredity by Mendel and of nucleic acid by Miescher. It was not until about 1950 that the structure of DNA was determined and it was proved that DNA governs the hereditary properties. Subsequently, the developments followed in rapid succession with the unravelling of the hereditary code, the elucidation of the mechanism of the translation of DNA into proteins, the discovery of the structure of genes and the finding of the methods for genetic manipulation. These have proved essential for the evolution of modern biotechnology.

  9. Advanced underground Vehicle Power and Control: The locomotive Research Platform

    Energy Technology Data Exchange (ETDEWEB)

    Vehicle Projects LLC


    Develop a fuelcell mine locomotive with metal-hydride hydrogen storage. Test the locomotive for fundamental limitations preventing successful commercialization of hydride fuelcells in underground mining. During Phase 1 of the DOE-EERE sponsored project, FPI and its partner SNL, completed work on the development of a 14.4 kW fuelcell power plant and metal-hydride energy storage. An existing battery-electric locomotive with similar power requirements, minus the battery module, was used as the base vehicle. In March 2001, Atlas Copco Wagner of Portland, OR, installed the fuelcell power plant into the base vehicle and initiated integration of the system into the vehicle. The entire vehicle returned to Sandia in May 2001 for further development and integration. Initial system power-up took place in December 2001. A revision to the original contract, Phase 2, at the request of DOE Golden Field Office, established Vehicle Projects LLC as the new prime contractor,. Phase 2 allowed industry partners to conduct surface tests, incorporate enhancements to the original design by SNL, perform an extensive risk and safety analysis, and test the fuelcell locomotive underground under representative production mine conditions. During the surface tests one of the fuelcell stacks exhibited reduced power output resulting in having to replace both fuelcell stacks. The new stacks were manufactured with new and improved technology resulting in an increase of the gross power output from 14.4 kW to 17 kW. Further work by CANMET and Hatch Associates, an engineering consulting firm specializing in safety analysis for the mining industry, both under subcontract to Vehicle Projects LLC, established minimum requirements for underground testing. CANMET upgraded the Programmable Logic Control (PLC) software used to monitor and control the fuelcell power plant, taking into account locomotive operator's needs. Battery Electric, a South Africa manufacturer, designed and manufactured (at no cost

  10. The Future: Science & Technology Enter the 21st Century. LC Science Tracer Bullet. (United States)

    Ezkovich, Jan, Comp.

    Innovations in communications, space, medicine, and other technologies are sure to have an impact on the world of tomorrow and the way we view that world. This guide to the literature on future technology is not intended to be a comprehensive bibliography. It is designed to provide the reader with a set of resources that can be used to focus on…

  11. Using Assistive Technology in Teaching Children with Learning Disabilities in the 21st Century (United States)

    Adebisi, Rufus Olanrewaju; Liman, Nalado Abubakar; Longpoe, Patricia Kwalzoom


    This paper was written to expose the meaning, benefits, and answer why the use of assistive technology for children with learning disabilities. The paper discussed the various types of assistive technology devices that were designed and used to solve written language, reading, listening, memory and mathematic problems of children with learning…

  12. Expanding Horizons for Students with Dyslexia in the 21st Century: Universal Design and Mobile Technology (United States)

    Reid, Gavin; Strnadova, Iva; Cumming, Therese


    This paper discusses the role of mobile technology in supporting people with dyslexia within the theoretical framework of Universal Design for Learning. The authors discuss how students with dyslexia can use mobile technology to address a diverse range of academic needs (such as reading, composing text, notetaking, metacognition and studying…


    Directory of Open Access Journals (Sweden)

    I. V. Zhukovytskyy


    Full Text Available Purpose. The article describes the process of developing the information-measuring test system of diesel locomotives hydraulic transmission, which gives the possibility to obtain baseline data to conduct further studies for the determination of the technical condition of diesel locomotives hydraulic transmission. The improvement of factory technology of post-repair tests of hydraulic transmissions by automating the existing hydraulic transmission test stands according to the specifications of the diesel locomotive repair enterprises was analyzed. It is achieved based on a detailed review of existing foreign information-measuring test systems for hydraulic transmission of diesel locomotives, BelAZ earthmover, aircraft tug, slag car, truck, BelAZ wheel dozer, some brands of tractors, etc. The problem for creation the information-measuring test systems for diesel locomotive hydraulic transmission is being solved, starting in the first place from the possibility of automation of the existing test stand of diesel locomotives hydraulic transmission at Dnipropetrovsk Diesel Locomotive Repair Plant "Promteplovoz". Methodology. In the work the researchers proposed the method to create a microprocessor automated system of diesel locomotives hydraulic transmission stand testing in the locomotive plant conditions. It acts by justifying the selection of the necessary sensors, as well as the application of the necessary hardware and software for information-measuring systems. Findings. Based on the conducted analysis there was grounded the necessity of improvement the plant hydraulic transmission stand testing by creating a microprocessor testing system, supported by the experience of developing such systems abroad. Further research should be aimed to improve the accuracy and frequency of data collection by adopting the more modern and reliable sensors in tandem with the use of filtering software for electromagnetic and other interference. Originality. The

  14. Some historical reflections on the neural control of locomotion. (United States)

    Clarac, François


    Thought on the neural control of locomotion dates back to antiquity. In this article, however, the focus is more recent by starting with some major 17th century concepts, which were developed by René Descartes, a French philosopher; Thomas Willis, an English anatomist; and Giovanni Borelli, an Italian physiologist and physicist. Each relied on his personal expertise to theorize on the organization and control of movements. The 18th and early 19th centuries saw work on both the central and peripheral control of movement: the former most notably by Johann Unzer, Marie Jean-Pierre Flourens and Julien-Jean-César Legallois, and the latter by Unzer, Jirí Procháska and many others. Next in the 19th century, neurologists used human locomotion as a precise tool for characterizing motor pathologies: e.g., Guillaume Duchenne de Boulogne's description of locomotor ataxia. Jean-Martin Charcot considered motor control to be organized at two levels of the central nervous system: the cerebral cortex and the spinal cord. Maurice Philippson's defined the dog's step cycle and considered that locomotion used both central and reflex mechanisms. Charles Sherrington explained that locomotor control was usually thought to consist of a succession of peripheral reflexes (e.g., the stepping reflexes). Thomas Graham Brown's then contemporary evidence for the spinal origin of locomotor rhythmicity languished in obscurity until the early 1960s. By then the stage was set for an international assault on the neural control of locomotion, which featured research conducted on both invertebrate and vertebrate animal models. These contributions have progressively became more integrated and interactive, with current work emphasizing that locomotor control involves a seamless integration between central locomotor networks and peripheral feedback.

  15. Healthcare and biomedical technology in the 21st century an introduction for non-science majors

    CERN Document Server

    Baran, George R; Samuel, Solomon Praveen


    This textbook introduces students not pursuing degrees in science or engineering to the remarkable new applications of technology now available to physicians and their patients and discusses how these technologies are evolving to permit new treatments and procedures.  The book also elucidates the societal and ethical impacts of advances in medical technology, such as extending life and end of life decisions, the role of genetic testing, confidentiality, costs of health care delivery, scrutiny of scientific claims, and provides background on the engineering approach in healthcare and the scientific method as a guiding principle. This concise, highly relevant text enables faculty to offer a substantive course for students from non-scientific backgrounds that will empower them to make more informed decisions about their healthcare by significantly enhancing their understanding of these technological advancements. This book also: ·         Presents scientific concepts from modern medical science using r...

  16. iPads: Intuitive Technology for 21st-Century Students (United States)

    Siegle, Del


    The purpose of this article is to provide a rationale for using iPad technology with young students. Various inexpensive apps are described that parents and educators will find useful. (Contains 9 figures.)

  17. [Quality, Innovation and Technological Development in Enteral Nutrition in the XXI Century]. (United States)

    Wanden-Berghe, Carmina


    This work synthesis the quality evolution as well as innovation and technological advances that have been proven in healthcare area and specifically in enteral nutrition field. Clarifying the most relevant landmarks and the best representative characteristics of these advances.

  18. Research of charging-discharging device for accumulator of electric locomotive based on SVPWM technology%电力机车用蓄电池充放电装置SVPWM技术的研究

    Institute of Scientific and Technical Information of China (English)

    邓木生; 瞿遂春; 肖强晖


    According to the shortcomings of the charging and discharging device of 15 kVA accumulator of electric locomotive, such as low power factor and high AC harmonic, the voltage vector pulse width modulation inverting and commuting technology was adopted in accumulator charging-discharging device. The device might be used as charging source and the loads of battery discharging back to electric net with flexible power adjusting, and possessed the performance of double-way transformation of energy. The experiment and test results demonstrate that the device can achieve the goal of sinusoidal current waveform, high input power factor, the lower AC harmonic and the power of charging and discharging controlled flexibly.%针对电力机车用15 kVA蓄电池传统充放电装置功率因数低、高谐波污染等不足,将电压型矢量PWM整流逆变技术应用到蓄电池充放电装置中.装置既可用作充电电源,也可用作蓄电池放电时的负载,实现能量的双向流动.实验及检测结果表明SVPWM控制方式可实现网侧电流正弦化、高功率因数、谐波污染小以及充放电功率灵活调控的特点.

  19. A Technology Based on Human Exoskeleton for Enhancing Locomotion Capability of Lower Extremity during Extravehicular Tasks%基于外骨骼技术的舱外作业下肢运动能力增强技术

    Institute of Scientific and Technical Information of China (English)

    张向刚; 秦开宇; 张羿; 石宇亮; 王浩


    In the future, the astronauts will have to do more complex extravehicular activity( EVA) tasks with more equipments and payloads in a variety of harsh environments for longer time.There-fore, the requirements on astronaut’ s locomotion capacity during EVA tasks will be higher.In this paper, a technology based on human exoskeleton was introduced to enhance the locomotion capacity of Lower Extremity.The astronaut’ s exoskeleton includes the bionic mechanical structure, actua-tors, energy system, sensing system and control system.The technical approaches mainly include:establishing the dynamic model of the astronaut ’ s exoskeleton system, perceiving the posture of limbs and movement intention, controlling the actuators to enhance the movement ability of the lower extremity.The validity of the astronaut’ s exoskeleton system was demonstrated by the ground experi-mental data and simulation.%针对未来航天活动中航天员面对的在复杂环境下携带大量载荷进行长时间、大范围舱外作业的需求对航天员舱外运动能力要求较高的背景,阐述了一种基于外骨骼技术的舱外作业下肢运动能力增强技术,介绍的外骨骼系统包括仿形机械结构分系统、执行机构分系统、能源分系统、感知分系统和控制分系统,还重点介绍了动力学分析与建模、运动状态和运动意图感知、实时控制等关键技术,并通过地面实验数据和仿真证明了这种方法的有效性。

  20. Teaching With Educational Technology in the 21st Century: The Case of The Asian-Pasific Region

    Directory of Open Access Journals (Sweden)

    Abdullah KUZU


    Full Text Available Teaching With Educational Technology in the 21st Century: The Case of The Asian-Pasific Region Edited by Yukiko Inoue and Suzanne Bell Hersley: PA: Information Science Publishing, 2006 pp. 321, ISBN 1-59140-724-9 Reviewed by Dr. Abdullah KUZU Anadolu University Eskisehir-TURKEY This book was edited by Yukiko Inoue and Suzanne Bell, an educator and a librarian at the University of Guam, and published by Information Science Publishing in 2006. The book describes the opportunities, challenges and strategies of the technology-enhanced learning in the regional base, namely Asia-Pacific. The main goal of the book is to examine educational technology, learning theories, human learning and cognition; to provide successful experiences in higher education and educational technology; to explain the technology integration into teaching in geographically remote regions such as Guam and Micronesia; to support faculty members in technology use and achieve the reluctance, and to discuss the future trends in educational technology. The book can be recommended for students as well as the professionals such as university professors, researchers, learning center directors, librarians, media specialists, supervisors, and software and courseware designers who are interested in theory and practice of the educational technology, distance education and technology-enhanced learning in multicultural context. ORGANIZATION OF THE SESSIONS The book has nine chapters divided into five sections. Section I contain one chapter and provide an introduction to Guam and Micronesia. The selecting of this region as a case study based on their community that reflects diverse ethnic cultures influenced by European, American, Asian, and Micronesian populations. Guam is a regional learning center in western Pacific. Section II consists of two chapters. Chapter II concentrates on advanced technologies and e-learning, and describes an overview of educational technology, educational media in

  1. Design on hopping locomotion mechanism

    Institute of Scientific and Technical Information of China (English)

    LU Yong-kui; WU Yue-hua; YANG Jie; Hisayuki AOYAMA


    A new type of locomotion mechanism is introduced in this paper. With vibrating motors used in controling the movement of the hopping locomotion mechanism, the simple hopping locomotion mechanism had two motors, when the current went through the vertical motor, the vertical motor would vibrate to cause the mechanism to go forward, and when the current went through the horizontal motor, the mechanism will go around itself. A spring was added to the mechanism to change the natural frequency of the mechanism, when the frequency of the motor was equal to the natural frequency of the mechanism, the mechanism would hop resonantly. With the resonant hopping, the load of the mechanism was greatly enlarged, and some sensors could be added to the mechanism. Optical sensors were used to detect the infrared source, the current that went through the sensors related to the distance between the infrared light. Three optical sensors was put on the left, right and the front the mechanism, when the mechanism detect the special infrared source, it would turn itself to the light, and go forward to the light. The experiments of the mechanism shown that the mechanism could work well on different surfaces freely, and the resonant hopping locomotion mechanism with infrared sensors could move to the special light by automatic regulation. Experimental results and theoretical studies demonstrate that the innovative design for hopping locomotion mechanism is superior.

  2. Application of Information Technologies of "Electronic Education" in Higher Education as a Necessary Condition of Overcoming the Modern Crisis and Successful Development in XXI-st Century


    Tadevosyan Artem B.


    New problems and calls which appeared before modern higher education in XXI century isn't possible to overcome old methods, remaining within the framework of the system, method and technologies of traditional studies, without application of modern information technologies in this industry. Only application of modern information technologies in higher education gives the real possibilities of decision of problems and calls which appeared before modern higher education, and output of it, from a...

  3. Amphibian declines in the twenty-first century: why we need assisted reproductive technologies. (United States)

    Clulow, John; Trudeau, Vance L; Kouba, Andrew J


    Each amphibian species is evolutionarily distinct, having developed highly specialized and diverse reproductive strategies in both terrestrial and aquatic environments. These unique reproductive patterns and mechanisms, key to species propagation, have only been explored in a limited number of laboratory models. Although the development of applied reproductive technologies for amphibians has proven useful for a few threatened species, the real benefit of this technology has been new insights into the reproductive adaptations, behavior, endocrinology, and physiological mechanisms that have evolved over millions of years. As the basic fundamental database on amphibian reproductive physiology has grown, so has the applied benefit for species conservation. In particular, technologies such as non-invasive fecal and urinary hormone assays, hormone treatments for induced breeding or gamete collection, in vitro fertilization, and the ability to establish genome resource banks have all played important roles in monitoring or managing small populations of captive species. Amphibians have the ability to produce a large excess of germplasm (up to 10,000 ovulated eggs in a single reproductive event) that if not collected and preserved, would represent a wasted valuable resource. We discuss the current state of knowledge in assisted reproductive technologies for amphibians and why their extinction crisis means these available tools can no longer be implemented as small-scale, last-ditch efforts. The reproductive technologies must be established early as a key component of large-scale species recovery.

  4. Technological determinants of the lifetime well-being in the 21th century

    Directory of Open Access Journals (Sweden)

    Zhironkin Sergey


    Full Text Available The paper deals with technological determinants of the lifetime social well-being, as conditions of maintaining the level and style of consumption, social status throughout the whole life. Despite the high importance of the problem of the social well-being and the relevance of its solution for the development of modern society, the issues of its correlation with the technological level of production and the development of information technologies are still poorly researched. As the problem of the life-time wellbeing take on special significance, it is important to analyze its conditions, related not only to social benefits, but also to the scientific and technological progress. For the future innovation and the digital stage of social well-being is its network well-being. It is based on the usage of the Internet for professional activity and personal self-fulfillment during the whole conscious life. Network well-being also reflects the convergence of information and network, industrial, financial, marketing, and social technologies. The formation of the life-time network well-being requires from the Government some measures of social adjustment, fiscal policy and the regulation of employment to encourage Internet Education and Internet employment, enhancing the prestige of working in high-tech industries.

  5. Science Notebooks for the 21st Century. Going Digital Provides Opportunities to Learn "with" Technology Rather than "from" Technology (United States)

    Fulton, Lori; Paek, Seungoh; Taoka, Mari


    Students of today are digital natives who for the most part come to school with experiences that may surpass those of their teachers. They use tablet computers and other devices in their personal lives and are eager to use them in the classroom. For teachers, this means they must integrate technology in ways that allow their students to learn with…

  6. Envisioning Skills for Adopting, Managing, and Implementing Big Data Technology in the 21st Century

    Directory of Open Access Journals (Sweden)

    Luis Emilio Alvarez-Dionisi


    Full Text Available The skills for big data technology provide a window of new job opportunities for the information technology (IT professionals in the emerging data science landscape. Consequently, the objective of this paper is to introduce the research results of suitable skills required to work with big data technology. Such skills include Document Stored Database; Key-value Stored Database; Column-oriented Database; Object-oriented Database; Graph Database; MapReduce; Hadoop Distributed File System (HDFS; YARN Framework; Zookeeper; Oozie; Hive; Pig; HBase; Mahout; Sqoop; Spark; Flume; Drill; Programming Languages; IBM Watson Analytics; Statistical Tools; SQL; Project Management; Program Management; and Portfolio Management. This paper is part of an ongoing research that addresses the link between economic growth and big data.

  7. The trends in technology supported collaborative learning studies in 21st century

    Directory of Open Access Journals (Sweden)

    Hafize Keser, Huseyin Uzunboylu, Fezile Ozdamli


    Full Text Available Technology supported collaborative learning, assists individuals to work as a team for a common purpose or mission by using computer, internet and such technologies. For a common mission, active learning should be provided by applying collaborative learning approach. A lot of studies had been done with using collaborative learning. In order to learn the effectiveness of collaborative learning, a variety of studies and techniques should be prepared. Collaborative learning studies support individuals to be learners for a life time. Besides, there exist considerable numbers of studies that were done on the techniques of technology supported collaborative learning. In significant proportion of the presented studies, the online systems have been introduced that were developed for technology supported collaborative learning. In literature, meta-analysis studies were also found related to collaborative learning methods (Jigsaw etc.. When the literature is examined a lot of studies are found related to the particular subject however, there do not exist any recent made researches on the trends of this topic. The main purpose of this study is to determine new trends for those who aim to make research in technology supported collaborative learning, published in popular magazines in the field of education technology between the years 2005 and 2010. Four journals had been chosen in the study to be identified within the scope of SSCI from EBSCO database. 114 studies have been attained after the scan made on SSCI covered journals published between the years 2005 and 2010. The reporting of the study was grouped according to following criteria; publishing year of the finding, article number (of the journals, number of authors, research field, techniques, study environment, research country (sampling group, study model, number of references, researchers’ county, the number of studies made with the researchers from different countries, type of the study

  8. From Becquerel to Nanotechnology:. One Century of Decline of Scientific Dissemination, Publishing and Technology Transfer (United States)

    Margaritondo, G.

    2008 marks the 100th anniversary of Henri Becquerel's death, the discoverer of radioactivity and a leading contributor to the birth of modern physics. In addition to well-deserved celebrations, this offers a chance for a sobering look at scientific dissemination then and now and at the evolution of technology transfer. The facts are shocking: both dissemination and technology transfer were much faster and effective at the time of Becquerel, in spite of all the new communication techniques. I briefly speculate on the causes of these dismal failures, arguing that they are primarily rooted in society, academic management and industrial management — and therefore very difficult to reverse.

  9. Science and Technology of China Onshore Petroleum Industry Towards 21st Century (Part 4)

    Institute of Scientific and Technical Information of China (English)

    Fu Chengde; Liu Bingyi; Gao Chao


    @@ V. Oil/Gas Field Construction and Oil/Gas Storage and Transportation Techniques The surface engineering construction of oil and gas fields in China has made great progress in various respects of technology, such as oil and gas gathering and transferring,water injection, treating technology and equipment for oil,gas and water, automation of oil/gas field, techniques of surface engineering for special oil and gas reservoirs,sulfur-resistant and anti-corrosion techniques for recovery and gathering of sour gas field.

  10. Central pattern generator for locomotion: anatomical, physiological, and pathophysiological considerations. (United States)

    Guertin, Pierre A


    This article provides a perspective on major innovations over the past century in research on the spinal cord and, specifically, on specialized spinal circuits involved in the control of rhythmic locomotor pattern generation and modulation. Pioneers such as Charles Sherrington and Thomas Graham Brown have conducted experiments in the early twentieth century that changed our views of the neural control of locomotion. Their seminal work supported subsequently by several decades of evidence has led to the conclusion that walking, flying, and swimming are largely controlled by a network of spinal neurons generally referred to as the central pattern generator (CPG) for locomotion. It has been subsequently demonstrated across all vertebrate species examined, from lampreys to humans, that this CPG is capable, under some conditions, to self-produce, even in absence of descending or peripheral inputs, basic rhythmic, and coordinated locomotor movements. Recent evidence suggests, in turn, that plasticity changes of some CPG elements may contribute to the development of specific pathophysiological conditions associated with impaired locomotion or spontaneous locomotor-like movements. This article constitutes a comprehensive review summarizing key findings on the CPG as well as on its potential role in Restless Leg Syndrome, Periodic Leg Movement, and Alternating Leg Muscle Activation. Special attention will be paid to the role of the CPG in a recently identified, and uniquely different neurological disorder, called the Uner Tan Syndrome.

  11. Central Pattern Generator for Locomotion: Anatomical, Physiological and Pathophysiological Considerations

    Directory of Open Access Journals (Sweden)

    Pierre A. Guertin


    Full Text Available This article provides a perspective on major innovations over the past century in research on the spinal cord and, specifically, on specialized spinal circuits involved in the control of rhythmic locomotor pattern generation and modulation. Pioneers such as Charles Sherrington and Thomas Graham Brown have conducted experiments in the early twentieth century that changed our views of the neural control of locomotion. Their seminal work supported subsequently by several decades of evidence has led to the conclusion that walking, flying and swimming are largely controlled by a network of spinal neurons generally referred to as the central pattern generator (CPG for locomotion. It has been subsequently demonstrated across all vertebrate species examined, from lampreys to humans, that this CPG is capable, under some conditions, to self-produce, even in absence of descending or peripheral inputs, basic rhythmic and coordinated locomotor movements. Recent evidence suggests, in turn, that plasticity changes of some CPG elements may contribute to the development of specific pathophysiological conditions associated with impaired locomotion or spontaneous locomotor-like movements. This article constitutes a comprehensive review summarizing key findings on the CPG as well as on its potential role in Restless Leg Syndrome (RLS, Periodic Leg Movement (PLM, and Alternating Leg Muscle Activation (ALMA. Special attention will be paid to the role of the CPG in a recently identified, and uniquely different neurological disorder, called the Uner Tan Syndrome.

  12. Gold phytomining. A review of the relevance of this technology to mineral extraction in the 21st century. (United States)

    Wilson-Corral, Victor; Anderson, Christopher W N; Rodriguez-Lopez, Mayra


    The precious metal gold can be found at high concentration in tailings dumps and waste rock piles at many mining locations around the world. Conventional technology is generally unable to economically recover this residual gold, and, as a result, the potential resource is wasted, presenting environmental risk to the wider ecosystem through particulate and dissolved metal leaching and erosion. For the past 14 years, the idea of gold phytomining to recover this gold resource has been researched by various scientific groups worldwide. A number of plant species have been tested under laboratory, greenhouse, and field conditions to determine their potential for use in the phytoextraction of gold. This paper presents a review of reported gold phytomining trials developed in the laboratory, the greenhouse under soil and hydroponic conditions, as well as in the field, between 1998 and 2011. A summary economic assessment for gold phytomining in Mexico is also presented. Mexico is an example of a developing country with a long history of gold mining that has a large resource of sites that might be suitable to gold phytomining. The technology remains limited by certain environmental and plant physiology factors. However, the increase in the market price for gold during the first decade of the 21st century and into 2011, and advances recorded for the gold concentration and biomass yield of a range of plant species, suggest that gold phytomining might be an economically viable technology.

  13. Enhancing student engagement through the affordances of mobile technology: a 21st century learning perspective on Realistic Mathematics Education (United States)

    Bray, Aibhín; Tangney, Brendan


    Several recent curriculum reforms aim to address the shortfalls traditionally associated with mathematics education through increased emphasis on higher-order-thinking and collaborative skills. Some stakeholders, such as the US National Council of Teachers of Mathematics and the UK Joint Mathematical Council, advocate harnessing the affordances of digital technology in conjunction with social constructivist pedagogies, contextual scenarios, and/or approaches aligned with Realistic Mathematics Education (RME). However, it can be difficult to create technology-mediated, collaborative and contextual activities within a conventional classroom setting. This paper explores how a combination of a transformative, mobile technology-mediated approach, RME, and a particular model of 21st century learning facilitates the development of mathematics learning activities with the potential to increase student engagement and confidence. An explanatory case study with multiple embedded units and a pre-experimental design was conducted with a total of 54 students in 3 schools over 25 hours of class time. Results from student interviews, along with pre-test/post-test analysis of questionnaires, suggest that the approach has the potential to increase student engagement with, and confidence in, mathematics. This paper expands on these results, proposing connections between aspects of the activity design and their impact on student attitudes and behaviours.

  14. Sonar technology in entering 21 century%进入21世纪的声纳技术

    Institute of Scientific and Technical Information of China (English)



    海洋开发和反潜战的需求是推动声纳技术发展的巨大动力.水声物理、水声信号处理及相关学科的进步又促使声纳设计日趋完善.本文介绍声纳技术在进入21世纪时所面临的机遇和挑战;水声信号处理领域近期研究的热点问题以及声纳系统设计中的技术创新课题.%The requirement of ocean exploring and anti-submarine warfare is the main motivation of sonar technology development. The advances in the field of underwater acoustic physics, underwater acoustic signal processing and other related sciences and technology considerably improve the sonar design. The development opportunities and challenges, which sonar technology faced in enter 21 century are described in this paper. Some recent hot topics in underwater signal processing and technical innovation problem in sonar design are presented.

  15. Bringing (Century-Old) Technology into the Classroom. Part I: Teaching Mechanics and Thermodynamics with Antiques (United States)

    Jewett, John W., Jr.


    The notion of bringing technology into the classroom has been the subject of many recent presentations at conferences and papers in physics teaching journals. The use of devices such as laptops, smartphones, tablets, and clickers is rising in today's classrooms and laboratories. PhET simulations have been available online for over a decade. A…

  16. Technology Creates 21st Century Wealth – Processes, Problems, and Prognosis

    Directory of Open Access Journals (Sweden)

    William Bradley „Brad” Zehner II


    Full Text Available Science and technology are the driving forces increasing the global standards of living. The technology – wealth relationship is complex and not well understood presently but recent macro data tends to support Robert Solow’s 1957 observation that societal, company, and individual wealth and increased standards of living is created by application of science and technology to socio-economic challenges. In 1987, Robert Solow received the Nobel Prize in Economics, for his insight that “seven-eighths” of the world’s increase in world wealth is due to advances in science and technology. The challenges and costs of of wealth creation are identified. This paper explores wealth as defined by GDP/capita, and the current correlations between world /GDP per capita and R&D spending, the number of scientific and technical articles, and number of patents applications from 2000 to 2012 / 2013 with a forecast of world GDP/ capita to 2025 of approximately $15,000 USD from today’s $10,000 USD.

  17. Information Technology: Unlocking the Door to Differentiation in the 21st Century (United States)

    Kyburg, Robin M.


    Maria, Sergio, and Steven, whose stories are described in this article, are gifted students whose needs were served through technology. Tapping into the Internet, these students, as well as other learners with varying needs, can be provided with appropriately challenging work that allows them to develop and make unique contributions to the class.…

  18. Technology-Based Biliteracy Centers for the 21st Century Learner (United States)

    Mercuri, Sandra; Ramos, Laura


    The purpose of this reflective article is to present an alternative that incorporates the four language skills in all content areas through technology-based dual-language centers for emergent bilinguals at the elementary level. The authors propose a matrix to plan the centers and include three examples to facilitate language transfer in English…

  19. Studying Marriage and Family Therapists in the 21st Century: Methodological and Technological Issues (United States)

    Northey, William F., Jr.


    In this article, I present data from two waves of research on demographic characteristics and practice patterns of marriage and family therapists (MFTs) conducted in 2000 and 2002. The research focuses on the methodological and technological issues in studying this population. Specifically, an online survey with MFTs obtained lower response rates…

  20. Agriculture in the xxi century: transgenic plants role in agricultural sector´s technological development

    Directory of Open Access Journals (Sweden)

    Rodrigo Artunduaga Salas


    Full Text Available The new advances in biotechnology, especially in the completion of the Arabidopsis thaliana, genome sequence has profound implications for human health as well as plant biology and agriculture. It will permit us to know the action of all the genes involved in the key growing and development processes of plants. Modification of the structure of genes will allow the regulation of the expression of some characteristics such as the size of the leaves or the dynamics of the roots and fruits growth. In this way, the commercialization of the products of the new biotechnologies will influence in this century´s nations, agricultural production, productivity and food supply. The challenges and opportunities for the countries of Latin America and the Caribbean (LAC are enormous, due to the rich base of their flora, fauna and microorganisms resources, which are essential to the pharmaceutical and feeding industries. The international Community recognizes the benefits of Biotechnology, but it also advocate more inquiry into the impacts of advanced agricultural biotechnologies on the environment, food system, structure of agriculture, rural communities, and population health.The countries of LAC should continue the development and improvement of the regulatory framework for preventing or minimizing the possible risks of the use and management of the transgenic organisms in their territory, and therefore, be able to make use of their potential benefits, ensuring the protection of public health and the environment.

  1. Hip and knee pain : locomotive syndrome



    Locomotive syndrome” is the generic term for disability-free life expectancy and locomotive organ health in advanced people, in other words, becoming bedridden or demented and thus requiring nursing care. The main cause of locomotive syndrome has two reasons ; one is spontaneous disability related to aging and the other one is locomotive organ disease, such as joint disorders, spinal disorders, osteoporosis or rheumatoid arthritis. We describe the hip joint and the knee joint in this p...

  2. Drug delivery interfaces in the 21st century: from science fiction ideas to viable technologies. (United States)

    Chertok, Beata; Webber, Matthew J; Succi, Marc D; Langer, Robert


    Early science fiction envisioned the future of drug delivery as targeted micrometer-scale submarines and "cyborg" body parts. Here we describe the progression of the field toward technologies that are now beginning to capture aspects of this early vision. Specifically, we focus on the two most prominent types of systems in drug delivery: the intravascular micro/nano drug carriers for delivery to the site of pathology and drug-loaded implantable devices that facilitate release with the predefined kinetics or in response to a specific cue. We discuss the unmet clinical needs that inspire these designs, the physiological factors that pose difficult challenges for their realization, and viable technologies that promise robust solutions. We also offer a perspective on where drug delivery may be in the next 50 years based on expected advances in material engineering and in the context of future diagnostics.

  3. New technologies applied to family history: a particular case of southern Europe in the eighteenth century. (United States)

    García, Manuel Pérez


    In this article, the author explains how the support of new technologies has helped historians to develop their research over the last few decades. The author, therefore, summarizes the application of both database and genealogical programs for the southern Europe family studies as a methodological tool. First, the author will establish the importance of the creation of databases using the File Maker program, after which they will explain the value of using genealogical programs such as Genopro and Heredis. The main aim of this article is to give detail about the use of these new technologies as applied to a particular study of southern Europe, specifically the Crown of Castile, during the late modern period. The use of these computer programs has helped to develop the field of social sciences and family history, in particular, social history, during the last decade.

  4. Writing on Pigments in Natural History and Art Technology in Sixteenth-Century Germany and Switzerland. (United States)

    Oltrogge, Doris


    Renaissance painters used a number of inorganic color materials. The development of mineralogy as a discipline opened a new discourse on mineral pigments. Agricola and other naturalists were familiar with the contemporary writings on art technology, but their focus was different. Therefore, the exchange of knowledge between these two color worlds remained selective. One possible meeting point was the Kunstkammer where the study of natural objects and materials was combined with an interest in the manual execution of a painting.

  5. Defence Technology Strategy for the Demands of the 21st Century (United States)


    Network Defence · intrusion detection systems. · sensors. · intrusion protection. · event analysis and integration. · reaction and response. · B5.22 The majority of CBRN agents will enter the body via the lungs (through inhalation of gases, vapours or aerosols) or the skin (by with vapours or liquids). There is a need for drug delivery technologies that target the medical countermeasure to the appropriate site

  6. Strengthening human resources for new and renewable energy technologies of the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Berkovski, B. [UNESCO, Engineering and Technology Div, Geneva (Switzerland); Gottschalk, C.M.


    The UNESCO Engineering Education and Training Programme provides educational materials for postgraduate level students of energy engineering subjects in the fields of new and renewable energy technologies. Aimed at students in developing countries, the package can be used for distance learning. The multi-media ``Learning Package``, part of this program, consists of a textbook, multi-media products and software, much of which is already published. The energy educational goals include environmental awareness, and ethical responsibility towards society. (UK)

  7. Building biophysics in mid-century China: the University of Science and Technology of China. (United States)

    Luk, Yi Lai Christine


    Biophysics has been either an independent discipline or an element of another discipline in the United States, but it has always been recognized as a stand-alone discipline in the People's Republic of China (PRC) since 1949. To inquire into this apparent divergence, this paper investigates the formational history of biophysics in China by examining the early institutional history of one of the best-known and prestigious science and technology universities in the PRC, the University of Science and Technology of China (USTC). By showing how the university and its biophysics program co-evolved with national priorities from the school's founding in 1958 to the eve of the Cultural Revolution in 1966, the purpose of this paper is to assess the development of a scientific discipline in the context of national demands and institutional politics. Specific materials for analysis include the school's admission policies, curricula, students' dissertations, and research program. To further contextualize the institutional setting of Chinese biophysics, this paper begins with a general history of proto-biophysical institutions in China during the Nationalist-Communist transitional years. This paper could be of interest to historians wanting to know more about the origin of the biophysics profession in China, and in particular how research areas that constitute biophysics changed in tandem with socio-political contingencies.

  8. Bruce's Magnificent Quartet: Inquiry, Community, Technology and Literacy--Implications for Renewing Qualitative Research in the Twenty-First Century (United States)

    Davidson, Judith


    Bruce and Bishop's community informatics work brings forward four critical concepts: inquiry, community, technology, and literacy. These four terms serve as the basis for a discussion of qualitative research in the twenty-first century--what is lacking and what is needed. The author suggests that to resolve the tensions or challenges…

  9. Strengthening human resources for technologies of the 21. century UNESCO engineering education and training

    Energy Technology Data Exchange (ETDEWEB)

    Berkovski, B.; Gottschalk, C.M.


    Education must cultivate the ability to make informed choices basing judgements and actions not only on the analysis of present situations but also on the vision of a preferred future. In short, engineering education and training can be conceived as having both long term and short term goals, both important. In the long term, the goal is to develop educated and skilled manpower, including specialists at all levels in all fields of engineering and generalists whose education includes an appreciation of how new technologies will figure in the fields they intend to pursue. In the short term, the goal is to reeducate specialists already in the work force, including policy makers, planners, educators and trainers, technicians, fields-workers, industrial and commercial personnel, agriculturists, and others professionals and non professionals. These goals require many different kinds of educative effort. (N.C.)

  10. Biodiversity and biosystematic research in a brave new 21st century information-technology world

    Directory of Open Access Journals (Sweden)

    Robert Anderson


    Full Text Available A variety of challenges to biodiversity and biosystematics research are discussed. Despite escalating estimates of the biodiversity of the planet, resources being devoted to advance this knowledge have been in decline. Despite the proliferation of information technologies, the focus of knowledge has frequently shifted to making information readily available, rather than generating new information. The principles of authorial responsibility and of explicit documentation of knowledge are under siege. The shortfall of investment in training, research, and collections management (the ''taxonomic deficit'' has lead to a ''taxonomic impediment'' to ecological research, at a time when rates of extinction appear to be rising dramatically. The contents of present volume represent stepping-stones of biodiversity research – a discipline vital to the future of life on the planet.

  11. Analysis of Hexapod Robot Locomotion

    Directory of Open Access Journals (Sweden)

    Tomas Luneckas


    Full Text Available Hexapod robot locomotion is analyzed. Trajectory forming method for one leg is introduced. Servo angles are expressed using geometric inverse kinematics method. Forming of tripod gait is described and a diagram representing it is presented. Servo control parameters are defined to ensure fluent and versatile robot control. Several servo control methods are presented. After testing robot movement using different servo control methods, gait generation is corrected and control method that meets servo control parameters is chosen.Article in Lithuanian

  12. Emotion through Locomotion: Gender Impact (United States)

    Krüger, Samuel; Sokolov, Alexander N.; Enck, Paul; Krägeloh-Mann, Ingeborg; Pavlova, Marina A.


    Body language reading is of significance for daily life social cognition and successful social interaction, and constitutes a core component of social competence. Yet it is unclear whether our ability for body language reading is gender specific. In the present work, female and male observers had to visually recognize emotions through point-light human locomotion performed by female and male actors with different emotional expressions. For subtle emotional expressions only, males surpass females in recognition accuracy and readiness to respond to happy walking portrayed by female actors, whereas females exhibit a tendency to be better in recognition of hostile angry locomotion expressed by male actors. In contrast to widespread beliefs about female superiority in social cognition, the findings suggest that gender effects in recognition of emotions from human locomotion are modulated by emotional content of actions and opposite actor gender. In a nutshell, the study makes a further step in elucidation of gender impact on body language reading and on neurodevelopmental and psychiatric deficits in visual social cognition. PMID:24278456


    Directory of Open Access Journals (Sweden)

    Oleksii S. Voronkin


    Full Text Available The article presents results of a synthesis study of the evolution of computer technologies to support students studying at the universities of Ukraine since the second half of 50th to the early of 90th of the twentieth century. Research was conducted on the basis of a wide range of sources and materials. There are four historical stages highlighted: 1 the emergence of algorithms of programmed learning; 2 the emergence of automated technologies to support studying; 3 the birth of the first computer training systems and the development of learning environment; 4 an integrated development of computer technology, the development of intelligent tutoring systems and virtual reality systems.


    Directory of Open Access Journals (Sweden)

    B. E. Bodnar


    Full Text Available Purpose. In difficult economic conditions, cost reduction of electricity consumption for the needs of production is an urgent task for the country’s industrial enterprises. Technical specifications of enterprises, which repair diesel locomotive hydraulic transmission, recommend conducting a certain amount of evaluation and regulatory tests to monitor their condition after repair. Experience shows that a significant portion of hydraulic transmission defects is revealed by bench tests. The advantages of bench tests include the ability to detect defects after repair, ease of maintenance of the hydraulic transmission and relatively low labour intensity for eliminating defects. The quality of these tests results in the transmission resource and its efficiency. Improvement of the technology of plant post-repairs hydraulic tests in order to reduce electricity consumption while testing. Methodology. The possible options for hydraulic transmission test bench improvement were analysed. There was proposed an energy efficiency method for diesel locomotive hydraulic transmission testing in locomotive repair plant environment. This is achieved by installing additional drive motor which receives power from the load generator. Findings. Based on the conducted analysis the necessity of improving the plant stand testing of hydraulic transmission was proved. The variants of the stand modernization were examined. The test stand modernization analysis was conducted. Originality. The possibility of using electric power load generator to power the stand electric drive motor or the additional drive motor was theoretically substantiated. Practical value. A variant of hydraulic transmission test stand based on the mutual load method was proposed. Using this method increases the hydraulic transmission load range and power consumption by stand remains unchanged. The additional drive motor will increase the speed of the input shaft that in its turn wil allow testing in

  15. Perspectives of mine haulage by locomotives

    Energy Technology Data Exchange (ETDEWEB)

    Palant, G.Ya.; Kravchinskii, S.Yu.; Kreimer, E.L.


    Discussed is use of electric locomotives for coal and rock haulage in underground mining. Mine haulage by locomotives with electric batteries and by locomotives with inductive transmission of high frequency electromagnetic energy from the overhead system is comparatively evaluated. Principles of inductive transmission of electromagnetic energy from the overhead system to a locomotive are analyzed. Design of a power system with transformer stations which transform three-phase 50 Hz electric current into 5,000 Hz single-phase current is given. An experimental unit of the V-14-900 electric locomotive developed by Dongiprouglemash (with inductive transmission of the single-phase 5,000 Hz current) successfully tested in some coal mines is described. Performance of the locomotive in the IM. Lenin coal mine is analyzed. Effects of replacing conventional locomotives equipped with electric batteries with V-14-900 locomotives are evaluated: capacity of mine haulage system, energy consumption, reliability, etc. Effects of thyristor controlled systems on mine haulage by V-14-900 locomotives are also discussed.

  16. Modeling limbless locomotion using ADAMS software Project (United States)

    National Aeronautics and Space Administration — Limbless locomotion has the potential of meeting transportation requirements, particularly in challenging environments. Snakes can traverse a variety of surfaces...

  17. 论技术对新世纪图书馆管理的影响%Influence of Technology to Library in New Century

    Institute of Scientific and Technical Information of China (English)



    In new century, library management was brought greatly reform with the development of the information technology and computer technology, network technology and multimedia network technology. The purpose of the research is to explore the optimal management of library in the new century and predict the future development of the library management mode. The intelligent management, efficient management and strict management will be brought on-site to library through influence analysis of new technology to library management.%信息技术、计算机技术、网络技术以及多媒体网络技术的发展为图书馆的管理工作带来了极大地改革。研究的目的是为了探求新世纪图书馆的最优化管理,并预测未来图书馆管理的发展模式。通过新技术在图书馆管理的影响分析,得出新技术将带给图书馆的是现场智能化管理、高效化管理和严格化管理。

  18. 49 CFR 236.770 - Locomotive. (United States)


    ... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.770 Locomotive. A self... 49 Transportation 4 2010-10-01 2010-10-01 false Locomotive. 236.770 Section 236.770 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT...

  19. 49 CFR 212.215 - Locomotive inspector. (United States)


    ... applicable sections of the Safety Glazing Standards (49 CFR part 223), Locomotive Safety Standards (49 CFR part 229), Safety Appliance Standards (49 CFR part 231) and Power Brake Standards (49 CFR part 232), to... 49 Transportation 4 2010-10-01 2010-10-01 false Locomotive inspector. 212.215 Section...

  20. Configurable Embedded CPG-based Control for Robot Locomotion

    Directory of Open Access Journals (Sweden)

    Jose Hugo Barron-Zambrano


    Full Text Available Recently, the development of intelligent robots has benefited from a deeper understanding of the biomechanics and neurology of biological systems. Researchers have proposed the concept of Central Pattern Generators (CPGs as a mechanism for generating an efficient control strategy for legged robots based on biological locomotion principles. Although many studies have aimed to develop robust legged locomotion controllers, relatively few of them have focused on adopting the technology for fully practical embedded hardware implementations. In this contribution, a reconfigurable hardware implementation of a CPG‐based controller which is able to generate several gaits for quadruped and hexapod robots is presented. The proposed implementation is modular and configurable in order to scale up to legged robots with different degrees of freedom. Experimental results for embedded Field Programmable Gate Array (FPGA implementations for quadruped and hexapod robot controllers are presented and analysed.

  1. Simulation of a Hybrid Locomotion Robot Vehicle (United States)

    Aarnio, P.


    This study describes a simulation process of a mobile robot. The focus is in kinematic and dynamic behavior simulations of hybrid locomotion robot vehicles. This research is motivated by the development needs of the WorkPartner field service robot. The whole robot system consists of a mobile platform and a two-hand manipulator. The robot platform, called Hybtor, is a hybrid locomotion robot capable of walking and driving by wheels as well as combining these two locomotion modes. This study describes first the general problems and their solutions in the dynamic simulation of mobile robots. A kinematic and dynamic virtual model of the Hybtor robot was built and simulations were carried out using one commercial simulation tool. Walking, wheel driven and rolking mode locomotion, which is a special hybrid locomotion style, has been simulated and analyzed. Position and force control issues during obstacle overrun and climbing were also studied.

  2. Technological Characterization of Wall Paintings from the A Mithraic Tomb Dated to 4th-5th Century AD, Gargaresc, Libya (United States)

    Abd El Salam, S.; Maniatis, Y.


    The excavations of Gargaresc started in 1965 and were one of the most important archaeological sites in Tripoli because it includes a period of about 500 years starting from the 1stc. AD was and continuing until the 5th century AD. The Mithraic tomb is one of the most important outlying monuments of Oea, 200 yards south of the western end of Gargaresc oasis, on the left of the Tripoli-Zuara road between kilometers 5 & 6. The tomb is cut in an outcrop of soft sandstone. The wall paintings found were symbolic to the religion of that period; which contained a mixture of older religions and Christian, and presented the interaction between the artistic and religious elements of that time. Several optical, chemical and mineralogical methods were applied to identify the materials, composition and technology of the plasters and mortars, as well as, the pigments used in the tomb. These are: -OP: Optical microscopy was used as the initial examination of polished cross-sections to identify the structure and microstratigraphy of the plasters and mortars as well as the painted layers. -MCT: Micro-chemical tests were used to identify the type of the plasters and mortars- calcium aluminium silicate and water-soluble salt to identify sulphates, chlorides, carbonates, nitrites and nitrates. -SM: Standard methods for chemical analysis to identify the quantitative and qualitative nature of the plasters and mortars and their mixture. -SEM & EDS: Analytical Scanning electron microscope with energy dispersive x-ray analysis system to examine the micrmorphology and determine the chemical composition of the plasters, pigments and the inclusions. -XRD: X-ray powder diffraction to identify the mineralogical composition of the plasters, mortars and pigments. On the bases of all the data obtained, it was possible to establish the nature of the plasters, mortars and their binder. The examination and analysis gave a full picture about the materials and the approximate ratio of amount of

  3. The impact of western science and technology on 'ukiyo-e' prints and book illustrations in late eighteenth and nineteenth century Japan. (United States)

    Low, Morris


    In the Edo period (c. 1600-1868), exposure to Western art, science and technology encouraged Japanese 'ukiyo-e' (pictures of the floating world) artists to experiment with Western perspective in woodblock prints and book illustrations. We can see its early influence in the work of Utagawa Hiroshige (1787-1858), as well as Utagawa Kuniyoshi (1797-1861). Unlike Hiroshige, Kuniyoshi lived to see the opening of the port of Yokohama to trade with the West in 1859. A whole genre of Yokohama prints emerged and one of the key artists was Utagawa Sadahide (1807-1873). In his illustrated books entitled 'Yokohama kaikō kenbunshi' (A Record of Things Seen and Heard in the Open Port of Yokohama) (1862), Sadahide plays with perspective in an effort to represent the dynamic changes that Japan was undergoing in its encounter with the West at the time. In the work of later artists such as Hiroshige III (1843-1894), Kobayashi Kiyochika (1847-1915) and Inoue Yasuji (1864-1889), we can see growing efforts to depict light, shadow and depth, and a continuing fascination with the steam locomotive and the changes occurring in the Tokyo-Yokohama region as Japan entered the Meiji period (1868-1912).

  4. Laboratories for the 21st Century: Case Studies; National Renewable Energy Laboratory, Science and Technology Facility, Golden, Colorado (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    Van Geet, O.


    As a Laboratories for the 21st Century (Labs21) partner, NREL set aggressive goals for energy savings, daylighting, and achieving a LEED Gold rating (through the U.S. Green Building Council's Leadership in Energy and Environmental Design program) for its S&TF building.

  5. Unifying Rules for Aquatic Locomotion (United States)

    Saadat, Mehdi; Domel, August; di Santo, Valentina; Lauder, George; Haj-Hariri, Hossein


    Strouhal number, St (=fA/U) , a scaling parameter that relates speed, U, to the tail-beat frequency, f, and tail-beat amplitude, A, has been used many times to describe animal locomotion. It has been observed that swimming animals cruise at 0.2 experimental evidence of a self-propelled fish-like swimmer, we show that when cruising at minimum hydrodynamic input power, St is predetermined, and is only a function of the shape, i.e. drag coefficient and area. The narrow range for St, 0.2-0.4, has been previously associated with optimal propulsive efficiency. However, St alone is insufficient for deciding optimal motion. We show that hydrodynamic input power (energy usage to propel over a unit distance) in fish locomotion is minimized at all cruising speeds when A* (= A/L), a scaling parameter that relates tail-beat amplitude, A, to the length of the swimmer, L, is constrained to a narrow range of 0.15-0.25. Our analysis proposes a constraint on A*, in addition to the previously found constraint on St, to fully describe the optimal swimming gait for fast swimmers. A survey of kinematics for dolphin, as well as new data for trout, show that the range of St and A* for fast swimmers indeed are constrained to 0.2-0.4 and 0.15-0.25, respectively. Our findings provide physical explanation as to why fast aquatic swimmers cruise with relatively constant tail-beat amplitude at approximately 20 percent of body length, while their swimming speed is linearly correlated with their tail-beat frequency.

  6. Performance of raters to assess locomotion in dairy cattle

    NARCIS (Netherlands)

    Schlageter Tello, A.A.


    Abstract Locomotion scoring systems are procedures used to evaluate the quality of cows’ locomotion. When scoring locomotion, raters focus their attention on gait and posture traits that are described in the protocol. Using these traits, raters assign a locomotion score to cow

  7. 49 CFR 229.121 - Locomotive cab noise. (United States)


    ... 49 Transportation 4 2010-10-01 2010-10-01 false Locomotive cab noise. 229.121 Section 229.121... § 229.121 Locomotive cab noise. (a) Performance standards for locomotives. (1) When tested for static noise in accordance with paragraph (a)(3) of this section, all locomotives of each design or model...

  8. 49 CFR 230.21 - Steam locomotive number change. (United States)


    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotive number change. 230.21 Section 230... Recordkeeping Requirements § 230.21 Steam locomotive number change. When a steam locomotive number is changed, the steam locomotive owner and/or operator must reflect the change in the upper right-hand corner...

  9. 49 CFR 238.223 - Locomotive fuel tanks. (United States)


    ... 49 Transportation 4 2010-10-01 2010-10-01 false Locomotive fuel tanks. 238.223 Section 238.223... Equipment § 238.223 Locomotive fuel tanks. Locomotive fuel tanks shall comply with either the following or....21: (a) External fuel tanks. External locomotive fuel tanks shall comply with the...

  10. Extensibility enables locomotion under isotropic drag

    CERN Document Server

    Pak, On Shun


    Anisotropic viscous drag is usually believed to be a requirement for the low Reynolds number locomotion of slender bodies such as flagella and cilia. Here we show that locomotion under isotropic drag is possible for extensible slender bodies. After general considerations, a two-ring swimmer and a model dinoflagellate flagellum are studied analytically to illustrate how extensibility can be exploited for self-propulsion without drag anisotropy. This new degree of freedom could be useful for some complex swimmer geometries and locomotion in complex fluid environments where drag anisotropy is weak or even absent.

  11. Locomotive Assignment Problem with Heterogeneous Vehicle Fleet and Hiring External Locomotives

    Directory of Open Access Journals (Sweden)

    Dušan Teichmann


    Full Text Available This paper focuses on solving the problem of how to assign locomotives to assembled trains optimally. To solve the problem, linear programming is applied. The situation we model in the paper occurs in the conditions of a transport operator that provides rail transport in the Czech Republic. In the paper, an extended locomotive assignment problem is modeled; the transport operator can use different classes of the locomotives to serve individual connections, some connections must be served by a predefined locomotive class, and the locomotives can be allocated to several depots at the beginning. The proposed model also takes into consideration the fact that some connections can be served by the locomotives of external transport companies or operators. The presented model is applied to a real example in order to test its functionality.

  12. Low costs of terrestrial locomotion in waders

    NARCIS (Netherlands)

    Bruinzeel, L.W.; Piersma, T; Kersten, M.; Leopold, Mardik F.


    Energy expenditure of terrestrial locomotion on a linear treadmill was measured in five wader species: Turnstone Arenaria interpres, Knot Calidris canutus, Grey Plover Pluvialis squatarola, Oystercatcher Haematopus ostralegus and Bar-tailed Godwit Limosa lapponica. Additional data on Redshank Tringa

  13. Characteristics of undulatory locomotion in granular media

    CERN Document Server

    Peng, Zhiwei; Elfring, Gwynn J


    Undulatory locomotion is ubiquitous in nature and observed in different media, from the swimming of flagellated microorganisms in biological fluids, to the slithering of snakes on land, or the locomotion of sandfish lizards in sand. Despite the similarity in the undulating pattern, the swimming characteristics depend on the rheological properties of different media. Analysis of locomotion in granular materials is relatively less developed compared with fluids partially due to a lack of validated force models but recently a resistive force theory in granular media has been proposed and shown useful in studying the locomotion of a sand-swimming lizard. Here we employ the proposed model to investigate the swimming characteristics of a slender filament, of both finite and infinite length, undulating in a granular medium and compare the results with swimming in viscous fluids. In particular, we characterize the effects of drifting and pitching in terms of propulsion speed and efficiency for a finite sinusoidal swi...

  14. Twenty-First Century Technology and the Global Environment: Developing a Cause/Effect Relationship Perspective Among Proactive Action Students. (United States)

    Peters, Richard O.

    Technology, defined as power to build or to destroy, affects both the natural and social environments. Technological societies are characterized by five elements: green revolution, industry, medicine, biology, and space technology. To demonstrate that individuals and groups perceive the effects of these aspects differently, a summary of nine pro…

  15. National Educational Technology Trends: 2011. Transforming Education to Ensure All Students Are Successful in the 21st Century. (United States)

    Jones, Rachel; Fox, Christine; Levin, Douglas


    The State Educational Technology Directors Association (SETDA)--the principal association representing the technology leadership in all fifty states, the District of Columbia, the U.S. Virgin Islands, American Samoa, and the Bureau of Indian Affairs--presents its eighth annual report on select, national, educational technology activities. This…

  16. Characteristics of undulatory locomotion in granular media (United States)

    Peng, Zhiwei; Pak, On Shun; Elfring, Gwynn J.


    Undulatory locomotion is ubiquitous in nature and observed in different media, from the swimming of flagellated microorganisms in biological fluids, to the slithering of snakes on land, or the locomotion of sandfish lizards in sand. Despite the similarity in the undulating pattern, the swimming characteristics depend on the rheological properties of different media. Analysis of locomotion in granular materials is relatively less developed compared with fluids partially due to a lack of validated force models but recently a resistive force theory in granular media has been proposed and shown useful in studying the locomotion of a sand-swimming lizard. Here we employ the proposed model to investigate the swimming characteristics of a slender filament, of both finite and infinite length, undulating in a granular medium and compare the results with swimming in viscous fluids. In particular, we characterize the effects of drifting and pitching in terms of propulsion speed and efficiency for a finite sinusoidal swimmer. We also find that, similar to Lighthill's results using resistive force theory in viscous fluids, the sawtooth swimmer is the optimal waveform for propulsion speed at a given power consumption in granular media. The results complement our understanding of undulatory locomotion and provide insights into the effective design of locomotive systems in granular media.

  17. New Technology of Low Voltage Electrical Apparatus to Face the 21 Century%面向21世纪的低压电器新技术

    Institute of Scientific and Technical Information of China (English)



    综合国内外低压电器近期发展,提出面向21世纪的低压电器新技术。从智能电器的网络化和信息化、信息技术与虚拟电器、环保电器和电器的高性能、小型化与结构设计现代化等方面进行了探讨。%The development of LV electrical apparatus at home and abroad in recent years was summarized. New technologies of low voltage electrical apparatus to face the 21 century were presented, which includes networked smart apparatus and information smart apparatus, simulation technology and virtual apparatus, environment protection apparatus, high performance, small size and modern structure design.

  18. Bipedal locomotion in granular media (United States)

    Kingsbury, Mark; Zhang, Tingnan; Goldman, Daniel

    Bipedal walking, locomotion characterized by alternating swing and double support phase, is well studied on ground where feet do not penetrate the substrate. On granular media like sand however, intrusion and extrusion phases also occur. In these phases, relative motion of the two feet requires that one or both feet slip through the material, degrading performance. To study walking in these phases, we designed and studied a planarized bipedal robot (1.6 kg, 42 cm) that walked in a fluidized bed of poppy seeds. We also simulated the robot in a multibody software environment (Chrono) using granular resistive force theory (RFT) to calculate foot forces. In experiment and simulation, the robot experienced slip during the intrusion phase, with the experiment presenting additional slip due to motor control error during the double support phase. This exaggerated slip gave insight (through analysis of ground reaction forces in simulation) into how slip occurs when relative motion exists between the two feet in the granular media, where the foot with higher relative drag forces (from its instantaneous orientation, rotation, relative direction of motion, and depth) remains stationary. With this relationship, we generated walking gaits for the robot to walk with minimal slip.

  19. The PS locomotive runs again

    CERN Multimedia


    Over forty years ago, the PS train entered service to steer the magnets of the accelerator into place... ... a service that was resumed last Tuesday. Left to right: Raymond Brown (CERN), Claude Tholomier (D.B.S.), Marcel Genolin (CERN), Gérard Saumade (D.B.S.), Ingo Ruehl (CERN), Olivier Carlier (D.B.S.), Patrick Poisot (D.B.S.), Christian Recour (D.B.S.). It is more than ten years since people at CERN heard the rumbling of the old PS train's steel wheels. Last Tuesday, the locomotive came back into service to be tested. It is nothing like the monstrous steel engines still running on conventional railways -just a small electric battery-driven vehicle employed on installing the magnets for the PS accelerator more than 40 years ago. To do so, it used the tracks that run round the accelerator. In fact, it is the grandfather of the LEP monorail. After PS was commissioned in 1959, the little train was used more and more rarely. This is because magnets never break down, or hardly ever! In fact, the loc...

  20. Gravitational Effects upon Locomotion Posture (United States)

    DeWitt, John K.; Bentley, Jason R.; Edwards, W. Brent; Perusek, Gail P.; Samorezov, Sergey


    Researchers use actual microgravity (AM) during parabolic flight and simulated microgravity (SM) obtained with horizontal suspension analogs to better understand the effect of gravity upon gait. In both environments, the gravitational force is replaced by an external load (EL) that returns the subject to the treadmill. However, when compared to normal gravity (N), researchers consistently find reduced ground reaction forces (GRF) and subtle kinematic differences (Schaffner et al., 2005). On the International Space Station, the EL is applied by elastic bungees attached to a waist and shoulder harness. While bungees can provide EL approaching body weight (BW), their force-length characteristics coupled with vertical oscillations of the body during gait result in a variable load. However, during locomotion in N, the EL is consistently equal to 100% body weight. Comparisons between AM and N have shown that during running, GRF are decreased in AM (Schaffner et al, 2005). Kinematic evaluations in the past have focussed on joint range of motion rather than joint posture at specific instances of the gait cycle. The reduced GRF in microgravity may be a result of differing hip, knee, and ankle positions during contact. The purpose of this investigation was to compare joint angles of the lower extremities during walking and running in AM, SM, and N. We hypothesized that in AM and SM, joints would be more flexed at heel strike (HS), mid-stance (MS) and toe-off (TO) than in N.

  1. A Vision for a Summit: CELT Recently Brought Together School Districts, Vendors and Professional Organizations for a National Summit on "Leadership, Learning and Technology for the 21st Century" (United States)

    Ramsay, Priscilla; Milton, Kenneth


    A lunch-time discussion among CELT (Center for Education Leadership and Technology) Corporation staff about how to positively impact the 2004 presidential campaign quickly evolved into a vision for bringing together top executive-level practitioners in education for a national summit on "Leadership, Learning and Technology for the 21st Century."…

  2. 40 CFR 92.707 - Notification to locomotive or locomotive engine owners. (United States)


    ... established to protect the public health or welfare from the dangers of air pollution.” (2) A statement that... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Recall...) A description of the adverse effects, if any, that an uncorrected nonconformity would have on...

  3. Diesel-hydraulic locomotive becomes a diesel-electric hybrid locomotive; Dieselhydraulische Lokomotive wird dieselelektrische Hybridlokomotive

    Energy Technology Data Exchange (ETDEWEB)

    Behmann, Uwe


    The operational partial load times cause a unnecessarily high fuel consumption and additional environmental pollutions in applications of shunting locomotives. High fuel consumption and additional environmental pollutions can be avoided by hybrid locomotives using a small-scale diesel engine with a generator only for the periodic charging of a large traction battery.

  4. (Never) Mind the Gap!: Gender Equity in Social Studies Research on Technology in the Twenty-First Century (United States)

    Crocco, Margaret S.; Cramer, Judith; Meier, Ellen B.


    Purpose: Focusing on gender as an aspect of diversity, the purpose of this paper is to review social studies research on technology, and suggest a new direction, with gender redefined from a gap to be eliminated to a difference to be explored. Design/methodology/approach: This paper is a literature review of research on gender, technology, and…

  5. Relationship between osteology and aquatic locomotion in birds: determining modes of locomotion in extinct Ornithurae. (United States)

    Hinić-Frlog, S; Motani, R


    The evolutionary history of aquatic invasion in birds would be incomplete without incorporation of extinct species. We show that aquatic affinities in fossil birds can be inferred by multivariate analysis of skeletal features and locomotion of 245 species of extant birds. Regularized discriminant analyses revealed that measurements of appendicular skeletons successfully separated diving birds from surface swimmers and flyers, while also discriminating among different underwater modes of swimming. The high accuracy of this method allows detection of skeletal characteristics that are indicative of aquatic locomotion and inference of such locomotion in bird species with insufficient behavioural information. Statistical predictions based on the analyses confirm qualitative assessments for both foot-propelled (Hesperornithiformes) and wing-propelled (Copepteryx) underwater locomotion in fossil birds. This is the first quantitative inference of underwater modes of swimming in fossil birds, enabling future studies of locomotion in extinct birds and evolutionary transitions among locomotor modes in avian lineage.


    Directory of Open Access Journals (Sweden)

    Salas Madriz Flora


    Full Text Available Resumen:La tecnología educativa y los enfoques teóricos asociados al quehacer de los procesos de enseñanza y aprendizaje durante el siglo XX impactaron en la práctica educativa en las organizaciones de este tipo, la formación de los docentes, la selección, uso y evaluación de medios permitió valorar los aportes al sistema educativo sin descuidar las concepciones de las teorías de aprendizaje y la contribución de la didáctica al mejoramiento de la calidad. Este trabajo expone los principales enfoques teóricos y definiciones de la tecnología educativa en el siglo XX, su objetivo principal es presentar la e volución temática y las aplicaciones de la tecnología educativa y su relación con las diversas teorías de aprendizaje y la incorporación de los medios a la enseñanza.Abstract:The technology and the theoretical approaches associated to the task of the educational and learning processes during the XX century impacted educative practices in the educative organiz ations, the formation of the education professionals, the selection, media use and evaluation allowed to value the contributions to the educative system without neglecting the conceptions of the theories of learning and the contribution of Didactics to the improvement of education quality. This work exposes the main theoretical approaches and definitions of the educative technology in the XX century; its primary target is to present/display the thematic evolution and the applications of the educative technology and their relation with the diverse theories of learning and the incorporation of media to education.

  7. The Defense Science Board 1999 Summer Study Task Force on 21st Century Defense Technology Strategies. Volume 1 (United States)


    transition were managed more effectively, and an overall science and technology strategy tied to direct control of resources was the norm. An ideal approach...recommends stronger involvement from the Office of the Secretary of Defense in providing direction for long-term science and technology initiatives. Such...OMB control number. 1. REPORT DATE 1999 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE The Defense Science Board 1999 Summer

  8. Twist-related locomotion of a snake-like robot

    Institute of Scientific and Technical Information of China (English)

    Ye Changlong; Ma Shugen; Li Bin; Wang Yuechao; Jing Tao


    As a hyper-redundant robot, a 3D snake-like robot can perform many other configurations and types of locomotion adapted to environment except for mimicking the natural snake locomotion. The natural snake locomotion usually limits locomotion capability of the robot because of inadequacy in the mechanism and actuation to imitate characters of natural snake such as the too many DOFs and the characteristics of the muscle. In order to apply snake-like robots to the unstructured environment, the researchers have designed many gaits for increasing the adaptability to a variety of surroundings. The twist-related locomotion is an effective gait achieved by jointly driving the pitching-DOF and yawing-DOF, with which the snakelike robot can move on rough ground and even climb up some obstacles. In this paper, the twist-related locomotion function is firstly solved, and simplified to be expressible by sine or cosine function. The 2D locomotion such as V-shape and U-shape is achieved. Also by applying it to the serpentine locomotion or other types of locomotion, the snake-like robot can complete composite locomotion that combines the serpentine locomotion or others with twist-related locomotion. Then we extend the twist-related locomotion to 3D space. Finally, the experimental results are presented to validate all above analyses.

  9. Compression Ignition Engines - revolutionary technology that has civilized frontiers all over the globe from the Industrial Revolution into the 21st Century

    Directory of Open Access Journals (Sweden)

    Stephen Anthony Ciatti


    Full Text Available The history, present and future of the compression ignition engine is a fascinating story that spans over 100 years, from the time of Rudolf Diesel to the highly regulated and computerized engines of the 21st Century. The development of these engines provided inexpensive, reliable and high power density machines to allow transportation, construction and farming to be more productive with less human effort than in any previous period of human history. The concept that fuels could be consumed efficiently and effectively with only the ignition of pressurized and heated air was a significant departure from the previous coal-burning architecture of the 1800s. Today, the compression ignition engine is undergoing yet another revolution. The equipment that provides transport, builds roads and infrastructure, and harvests the food we eat needs to meet more stringent requirements than ever before. How successfully 21st Century engineers are able to make compression ignition engine technology meet these demands will be of major influence in assisting developing nations (with over 50% of the world’s population achieve the economic and environmental goals they seek.

  10. Structural Mechanics in Reactor Technology Facing New Century%面向新世纪的反应堆结构力学

    Institute of Scientific and Technical Information of China (English)

    谷芳毓; 孙磊


    20年来,我国反应堆结构力学发展迅速,解决了大量的理论和工程应用问题,对核技术的推广应用贡献巨大。在新世纪之交,本文总结过去,展望未来,拟对反应堆结构力学在新世纪将面临的挑战和发展方向作比较系统的论述和设想,并以作者许多见解与同仁共商。%In this twenty years, the SMiRT in China has been grown with high-speed. A great quantity problem in theory and application had been solved. It has taken great contributions in the development and application of nuclear technology. At the beginning of new century, summarizing the past experiences and predicting the future, this paper hoped to give us a relatively systematic discussion and conception of challenges and development directions that SMiRT will face up to in the new century, and put down some immature opinions for discussion.

  11. Locomotion gaits of a rotating cylinder pair (United States)

    van Rees, Wim M.; Novati, Guido; Koumoutsakos, Petros; Mahadevan, L.


    Using 2D numerical simulations of the Navier-Stokes equations, we demonstrate that a simple pair of rotating cylinders can display a range of locomotion patterns of biological and engineering interest. Steadily counter-rotating the cylinders causes the pair to move akin to a vortex dipole for low rotation rates, but as the rotational velocity is increased the direction of motion reverses. Unsteady rotations lead to different locomotion gaits that resemble jellyfish (for in-phase rotations) and undulating swimmers (for out-of-phase rotations). The small number of parameters for this simple system allows us to systematically map the phase space of these gaits, and allows us to understand the underlying physical mechanisms using a minimal model with implications for biological locomotion and engineered analogs.

  12. Stability of Periodic Locomotion in Potential Flow

    CERN Document Server

    Jing, Fangxu


    Most aquatic vertebrates swim by lateral flapping of their bodies and caudal fins. While much effort has been devoted to understanding the flapping kinematics and its influence on the swimming efficiency, little is known about the stability (or lack of) of periodic swimming. In this paper, we examine the stability of periodic locomotion due to sideways flapping in unbounded potential flow. It is believed that stability limits maneuverability and body designs/flapping motions that are adapted for stable swimming are not suitable for high maneuverability and vice versa. Here, we consider a simplified model where the swimmer is a planar elliptic body undergoing prescribed periodic heaving and pitching. We show that periodic locomotion can be achieved due to the resulting hydrodynamic forces, and its value depends on several parameters including the aspect ratio of the body, the amplitudes and phases of the prescribed flapping. We obtain closed-form solutions for the locomotion and efficiency for small flapping a...

  13. Clean, Efficient, and Reliable Heat and Power for the 21st Century, Fuel Cell Technologies Program (FCTP) (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)


    This overview of the U.S. Department of Energy's Fuel Cell Technologies Program describes the program's focus and goals, along with current fuel cell applications and future potential. The program focuses on research and development of fuel cell systems for diverse applications in the stationary power, portable power, and transportation sectors. It works to reduce costs and improve technologies to advance fuel cell uses in areas such as combined heat and power, auxiliary power units, portable power systems, and stationary and backup power. To help ensure that fuel cell advances are realized, the program rigorously analyzes energy efficiency, economic, and environmental benefits of fuel cells and seeks to optimize synergies among fuel cell applications and other renewable technologies.

  14. Theoretical models in low-Reynolds-number locomotion

    CERN Document Server

    Pak, On Shun


    The locomotion of microorganisms in fluids is ubiquitous and plays an important role in numerous biological processes. In this chapter we present an overview of theoretical modeling for low-Reynolds-number locomotion.


    Directory of Open Access Journals (Sweden)



    Full Text Available Recent major political uprisings are indicating the extent to which social learning Web 2.0 technologies, can infl uence change in informal learning settings. Recognition and a discussion of the potential of that infl uence in formal learning settings have only just begun. This article describes a study of an international distance learning project in 2004, using a variety of Web 2.0 technologies, including video-based web conferencing, that sought to initiate and respond to this urgent need for dialogue in the research. Self-selected participants took part in a 5-week English as a foreign language (EFL program, a joint NATO sponsored Canadian and Romanian Ministry of Defense-supported initiative. Clear evidence of linguistic knowledge construction and of important changes to participants’ learner identities, indicates the power of these technologies to support the kind of learning that can lead to the development of global citizens and the skills they will increasingly require in the 21st century.

  16. Century Tide Nicotine Patch

    Institute of Scientific and Technical Information of China (English)


    Century Tide Nicotine Patch, a hi-tech smoking control therapy, is designed in accordance with the scientific principle of nicotine replacement. The therapy is promoted by the World Health Organization. Meanwhile, it also integrates traditional Chinese medical therapy and adopts advanced TTS technology.

  17. Optimizing snake locomotion on an inclined plane

    CERN Document Server

    Wang, Xiaolin; Alben, Silas


    We develop a model to study the locomotion of snakes on an inclined plane. We determine numerically which snake motions are optimal for two retrograde traveling-wave body shapes---triangular and sinusoidal waves---across a wide range of frictional parameters and incline angles. In the regime of large transverse friction coefficient, we find power-law scalings for the optimal wave amplitudes and corresponding costs of locomotion. We give an asymptotic analysis to show that the optimal snake motions are traveling-wave motions with amplitudes given by the same scaling laws found in the numerics.

  18. Moving the Law School into the Twenty-First Century--Embedding Technology into Teaching and Learning (United States)

    Steventon, Beverley; Panesar, Sukhninder; Wood, Jane


    Over the past twenty years phenomenal developments in technology have changed the nature of education. Students now have access to a vast range of resources 24/7. This instant access has created a certain expectation on the part of the student and there must now be very few, if any, courses taught in higher education where the lecturer does not…

  19. Twenty-First Century Learning in Schools: A Case Study of New Technology High School in Napa, California (United States)

    Pearlman, Bob


    When one walks into the classrooms at New Technology High School (NTHS) in Napa, California, he or she will see that students there are always at work: writing journals online, doing research on the Internet, meeting in groups to plan and make their Web sites and their digital media presentations, and evaluating their peers for collaboration and…

  20. First-Year College Students' Attitudes toward Communication Technologies and Their Perceptions of Communication Competence in the 21st Century (United States)

    Morreale, Sherwyn; Staley, Constance; Stavrositu, Carmen; Krakowiak, Maja


    The purpose of this study is to better understand new college students' attitudes toward and perceptions of communication media and technology and themselves as communicators in the context of communication competence. Building on the results of a previous qualitative study, the researchers developed a survey focused on communication competence in…

  1. Education and Technology in the 21st Century Experiences of Adult Online Learners Using Web 2.0 (United States)

    Bryant, Wanda L.


    The emergence of a knowledge-based and technology-driven economy has prompted adults to seek additional knowledge and skills that will enable them to participate effectively in society. The rapid growth and popularity of the internet tools such as Web 2.0 tools have revolutionized adult learning. Through the rich support of Web 2.0 tools, adult…

  2. Bipedal Locomotion: A Fractional CPG for Generating Patterns


    Pinto, Carla M. A.; Machado, J.A. Tenreiro


    Proceedings of the 10th Conference on Dynamical Systems Theory and Applications There has been an increase interest in the study of animal locomotion. Many models for the generation of locomotion patterns of different animals, such as centipedes, millipedes, quadrupeds, hexapods, bipeds, have been proposed. The main goal is the understanding of the neural bases that are behind animal locomotion. In vertebrates, goal-directed locomotion is a complex task, involving the central pattern ge...

  3. 49 CFR 231.29 - Road locomotives with corner stairways. (United States)


    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.29 Road locomotives with corner stairways. After September 30, 1979, road locomotives with corner stairway openings must be... 49 Transportation 4 2010-10-01 2010-10-01 false Road locomotives with corner stairways....

  4. 49 CFR 230.101 - Steam locomotive driving journal boxes. (United States)


    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotive driving journal boxes. 230.101... Locomotives and Tenders Running Gear § 230.101 Steam locomotive driving journal boxes. (a) Driving journal boxes. Driving journal boxes shall be maintained in a safe and suitable condition for service. Not...

  5. Biomechanics of gecko locomotion: the patterns of reaction forces on inverted, vertical and horizontal substrates. (United States)

    Wang, Zhouyi; Dai, Zhendong; Ji, Aihong; Ren, Lei; Xing, Qiang; Dai, Liming


    The excellent locomotion ability of geckos on various rough and/or inclined substrates has attracted scientists' attention for centuries. However, the moving ability of gecko-mimicking robots on various inclined surfaces still lags far behind that of geckos, mainly because our understanding of how geckos govern their locomotion is still very poor. To reveal the fundamental mechanism of gecko locomotion and also to facilitate the design of gecko-mimicking robots, we have measured the reaction forces (RFs) acting on each individual foot of moving geckos on inverted, vertical and horizontal substrates (i.e. ceiling, wall and floor), have associated the RFs with locomotion behaviors by using high-speed camera, and have presented the relationships of the force components with patterns of reaction forces (PRFs). Geckos generate different PRF on ceiling, wall and floor, that is, the PRF is determined by the angles between the direction of gravity and the substrate on which geckos move. On the ceiling, geckos produce reversed shear forces acting on the front and hind feet, which pull away from the body in both lateral and fore-aft directions. They use a very large supporting angle from 21° to 24° to reduce the forces acting on their legs and feet. On the floor, geckos lift their bodies using a supporting angle from 76° to 78°, which not only decreases the RFs but also improves their locomotion ability. On the wall, geckos generate a reliable self-locking attachment by using a supporting angle of 14.8°, which is only about half of the critical angle of detachment.

  6. Lizard locomotion in heterogeneous granular media (United States)

    Schiebel, Perrin; Goldman, Daniel


    Locomotion strategies in heterogeneous granular environments (common substrates in deserts), are relatively unexplored. The zebra-tailed lizard (C. draconoides) is a useful model organism for such studies owing to its exceptional ability to navigate a variety of desert habitats at impressive speed (up to 50 body-lengths per second) using both quadrapedal and bidepal gaits. In laboratory experiments, we challenge the lizards to run across a field of boulders (2.54 cm diameter glass spheres or 3.8 cm 3D printed spheres) placed in a lattice pattern and embedded in a loosely packed granular medium of 0.3 mm diameter glass particles. Locomotion kinematics of the lizard are recorded using high speed cameras, with and without the scatterers. The data reveals that unlike the lizard's typical quadrupedal locomotion using a diagonal gait, when scatterers are present the lizard is most successful when using a bipedal gait, with a raised center of mass (CoM). We propose that the kinematics of bipedal running in conjunction with the lizard's long toes and compliant hind foot are the keys to this lizard's successful locomotion in the presence of such obstacles. NSF PoLS

  7. Locomotion of C elegans in structured environments (United States)

    Majmudar, Trushant; Keaveny, Eric; Shelley, Michael; Zhang, Jun


    Undulatory locomotion of microorganisms like soil-dwelling worms and sperm, in structured environments, is ubiquitous in nature. They navigate complex environments consisting of fluids and obstacles, negotiating hydrodynamic effects and geometrical constraints. Here we report experimental observations on the locomotion of C elegans swimming in arrays of micro-pillars in square lattices, with different lattice spacing. We observe that the worm employs a number of different locomotion strategies depending on the lattice spacing. As observed previously in the literature, we uncover regimes of enhanced locomotion, where the velocity is much higher than the free-swimming velocity. In addition, we also observe changes in frequency, velocity, and the gait of the worm as a function of lattice spacing. We also track the worm over time and find that it exhibits super-diffusive behavior and covers a larger area by utilizing the obstacles. These results may have significant impact on the foraging behavior of the worm in its natural environment. Our experimental approach, in conjunction with modeling and simulations, allows us to disentangle the effects of structure and hydrodynamics for an undulating microorganism.

  8. Aerodynamic Design of a Locomotive Fairing (United States)

    Stucki, Chad; Maynes, Daniel


    Rising fuel cost has motivated increased fuel efficiency of freight trains. At cruising speed, the largest contributing factor to the fuel consumption is the aerodynamic drag. As a result of air stagnation at the front of the train and substantial flow separation behind, the leading locomotive and trailing railcar experience greater drag than intermediate cars. This work introduces the design of streamlined nose fairings to be attached to freight locomotives as a means of reducing the leading locomotive drag. The aerodynamic performance of each fairing design is modeled using a commercial CFD software package. The K-epsilon turbulence model is used, and fluid properties are equivalent to atmospheric air at standard conditions. A selection of isolated screening studies are performed, and a multidimensional regression is used to predict optimal-performing fairing designs. Between screening studies, careful examination of the flow field is performed to inspire subsequent fairing designs. Results are presented for 250 different nose fairings. The best performing fairing geometry predicts a nominal drag reduction of 17% on the lead locomotive in a train set. This drag reduction is expected to result in nearly 1% fuel savings for the entire train.

  9. 77 FR 21311 - Locomotive Safety Standards (United States)


    ... first public hearing on the subject in mid-1990s to gather information and examine the safety issues... systems since the Locomotive Safety Standards regulation was first published in 1980. See 45 FR 21092. The... granted, an extension of the cleaning, repairing, and testing requirements for pneumatic components of...

  10. Intraspecific variation in aerobic and anaerobic locomotion

    DEFF Research Database (Denmark)

    Svendsen, Jon Christian; Tirsgård, Bjørn; Cordero, Gerardo A.;


    Intraspecific variation and trade-off in aerobic and anaerobic traits remain poorly understood in aquatic locomotion. Using gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata), both axial swimmers, this study tested four hypotheses: (1) gait transition from steady...

  11. Locomotive Schedule Optimization for Da-qin Heavy Haul Railway

    Directory of Open Access Journals (Sweden)

    Ruiye Su


    Full Text Available The main difference between locomotive schedule of heavy haul railways and that of regular rail transportation is the number of locomotives utilized for one train. One heavy-loaded train usually has more than one locomotive, but a regular train only has one. This paper develops an optimization model for the multilocomotive scheduling problem (MLSP through analyzing the current locomotive schedule of Da-qin Railway. The objective function of our paper is to minimize the total number of utilized locomotives. The MLSP is nondeterministic polynomial (NP hard. Therefore, we convert the multilocomotive traction problem into a single-locomotive traction problem. Then, the single-locomotive traction problem (SLTP can be converted into an assignment problem. The Hungarian algorithm is applied to solve the model and obtain the optimal locomotive schedule. We use the variance of detention time of locomotives at stations to evaluate the stability of locomotive schedule. In order to evaluate the effectiveness of the proposed optimization model, case studies for 20 kt and 30 kt heavy-loaded combined trains on Da-qin Railway are both conducted. Compared to the current schedules, the optimal schedules from the proposed models can save 62 and 47 locomotives for 20 kt and 30 kt heavy-loaded combined trains, respectively. Therefore, the effectiveness of the proposed model and its solution algorithm are both valid.


    Directory of Open Access Journals (Sweden)

    Diana Ruggiero


    Full Text Available This paper presents a qualitative case study of a virtual service learning project that connected high school students in rural Michigan with communities and a non-profit developmental organization in Honduras. First, students created individual research presentations over Honduran history, current events, economics, and poverty. Second, students were introduced to the concept of service learning, the educational philosophy of Paulo Freire, and Muhammed Yunus’s micro-credit economic process through readings in the target language. Third, using collaborative and Internet-based technology such as Google Docs, students were able to successfully engage in a meaningful service learning opportunity to translate training documents for a micro-loan organization despite the lack of an accessible, locally based Spanish speaking community. Finally, students reflected on their experience with the service learning project. Additionally, the authors discuss the connection between the student translation project to ACTFL’s World-Readiness Standards for Language Learning and the formation of a 21stcentury skill set. While proximity and access to such physical communities remains an obstacle for many foreign language instructors seeking to integrate civic engagement, this case study presents one possible solution that pushes the boundaries of the very concepts of community and service learning

  13. Back to the future: science and technology directions for radio telescopes of the twenty-first century (United States)

    Cordes, James M.


    The early days of radio astronomy showed incredibly diverse experimentation in ways to sample the electromagnetic spectrum at radio wavelengths. In addition to obtaining adequate sensitivity by building large collection areas, a primary goal also was to achieve sufficient angular resolution to localize radio sources for multi-wavelength identification. This led to many creative designs and the invention of aperture synthesis and VLBI. Some of the basic telescope types remain to the present day, now implemented across the entire radio spectrum from wavelengths of tens of meters to submillimeter wavelengths. In recent years, as always, there is still the drive for greater sensitivity but a primary goal is now to achieve very large fields of view to complement high resolution and frequency coverage, leading to a new phase of experimentation. This is the “back to the future” aspect of current research and development for next-generation radio telescopes. In this paper I summarize the scientific motivations for development of new technology and telescopes since about 1990 and going forward for the next decade and longer. Relevant elements include highly optimized telescope optics and feed antenna designs, innovative fabrication methods for large reflectors and dipole arrays, digital implementations, and hardware vs. software processing. The emphasis will be on meter and centimeter wavelength telescopes but I include a brief discussion of millimeter wavelengths to put the longer wavelength enterprises into perspective. I do not discuss submillimeter wavelengths because they are covered in other papers.

  14. Stokesian jellyfish: Viscous locomotion of bilayer vesicles

    CERN Document Server

    Evans, Arthur A; Lauga, Eric


    Motivated by recent advances in vesicle engineering, we consider theoretically the locomotion of shape-changing bilayer vesicles at low Reynolds number. By modulating their volume and membrane composition, the vesicles can be made to change shape quasi-statically in thermal equilibrium. When the control parameters are tuned appropriately to yield periodic shape changes which are not time-reversible, the result is a net swimming motion over one cycle of shape deformation. For two classical vesicle models (spontaneous curvature and bilayer coupling), we determine numerically the sequence of vesicle shapes through an enthalpy minimization, as well as the fluid-body interactions by solving a boundary integral formulation of the Stokes equations. For both models, net locomotion can be obtained either by continuously modulating fore-aft asymmetric vesicle shapes, or by crossing a continuous shape-transition region and alternating between fore-aft asymmetric and fore-aft symmetric shapes. The obtained hydrodynamic e...

  15. Locomotion in complex fluids: Integral theorems

    CERN Document Server

    Lauga, Eric


    The biological fluids encountered by self-propelled cells display complex microstructures and rheology. We consider here the general problem of low-Reynolds number locomotion in a complex fluid. {Building on classical work on the transport of particles in viscoelastic fluids,} we demonstrate how to mathematically derive three integral theorems relating the arbitrary motion of an isolated organism to its swimming kinematics {in a non-Newtonian fluid}. These theorems correspond to three situations of interest, namely (1) squirming motion in a linear viscoelastic fluid, (2) arbitrary surface deformation in a weakly non-Newtonian fluid, and (3) small-amplitude deformation in an arbitrarily non-Newtonian fluid. Our final results, valid for a wide-class of {swimmer geometry,} surface kinematics and constitutive models, at most require mathematical knowledge of a series of Newtonian flow problems, and will be useful to quantity the locomotion of biological and synthetic swimmers in complex environments.

  16. Azimut: a multimodal locomotion robotic platform (United States)

    Michaud, Francois; Letourneau, Dominic; Arsenault, Martin; Bergeron, Yann; Cadrin, Richard; Gagnon, Frederic; Legault, Marc-Antoine; Millette, Mathieu; Pare, Jean-Francois; Tremblay, Marie-Christine; Lepage, Pierre; Morin, Yan; Caron, Serge


    Other than from its sensing and processing capabilities, a mobile robotic platform can be limited in its use by its ability to move in the environment. A wheeled robot works well on flat surfaces. Tracks are useful over rough terrains, while legs allow a robot to move over obstacles. In this paper we present a new concept of mobile robot with the objective of combining different locomotion mechanisms on the same platform to increase its locomotion capabilities. After presenting a review of multi-modal robotic platforms, we describe the design of our robot called AZIMUT. AZIMUT combines wheels, legs and tracks to move in three-dimensional environments. The robot is symmetrical and is made of four independent leg-track-wheel articulations. It can move with its articulations up, down or straight, or move sideways without changing the robot's orientation. The robot could be used in surveillance and rescue missions, exploration or operation in hazardous environments.

  17. Locomotion of chemically powered autonomous nanowire motors (United States)

    Wang, Lin; Li, Longqiu; Li, Tianlong; Zhang, Guangyu; Sun, Qian


    Physical insights on the hydrodynamics and locomotion of self-propelled nanowire motor under nonequilibrium steady state are investigated using finite element method in accordance with hybrid molecular dynamics/multiparticle collision dynamics and rigid body dynamics. Nanowire motor is discretized into finite segments, and forces of solvent molecule acting on the motor are assumed to be the sum of forces acting on all segments of the motor. We show that the locomotion of nanowire motor is mainly determined by the imbalance forces acting on the catalytic and noncatalytic segments. The average velocity along the axis increases significantly as a function of time prior to reaching equilibrium. The length of nanowire motor shows negligible effect on the velocity of the motor. Preliminary experimental results are provided to validate the current model.

  18. Using entropy measures to characterize human locomotion. (United States)

    Leverick, Graham; Szturm, Tony; Wu, Christine Q


    Entropy measures have been widely used to quantify the complexity of theoretical and experimental dynamical systems. In this paper, the value of using entropy measures to characterize human locomotion is demonstrated based on their construct validity, predictive validity in a simple model of human walking and convergent validity in an experimental study. Results show that four of the five considered entropy measures increase meaningfully with the increased probability of falling in a simple passive bipedal walker model. The same four entropy measures also experienced statistically significant increases in response to increasing age and gait impairment caused by cognitive interference in an experimental study. Of the considered entropy measures, the proposed quantized dynamical entropy (QDE) and quantization-based approximation of sample entropy (QASE) offered the best combination of sensitivity to changes in gait dynamics and computational efficiency. Based on these results, entropy appears to be a viable candidate for assessing the stability of human locomotion.

  19. Rehinging biflagellar locomotion in a viscous fluid. (United States)

    Spagnolie, Saverio E


    A means of swimming in a viscous fluid is presented, in which a swimmer with only two links rotates around a joint and then rehinges in a periodic fashion in what is here termed rehinging locomotion. This two-link rigid swimmer is shown to locomote with an efficiency similar to that of Purcell's well-studied three-link swimmer, but with a simpler morphology. The hydrodynamically optimal stroke of an analogous flexible biflagellated swimmer is also considered. The introduction of flexibility is found to increase the swimming efficiency by up to 520% as the body begins to exhibit wavelike dynamics, with an upper bound on the efficiency determined by a degeneracy in the limit of infinite flexibility.

  20. Locomotion of C. elegans in Structured Environments

    CERN Document Server

    Majmudar, Trushant S; Shelley, Mike; Zhang, Jun


    Undulatory locomotion of microorganisms like soil-dwelling worms and spermatozoa, in structured environments, is ubiquitous in nature. They navigate complex environments consisting of fluids and obstacles, negotiating hydrodynamic effects and geometrical constraints. Here, we show fluid dynamics videos of experiments and simulations of {\\textit {C. elegans}} moving in an array of micro-pillars. In addition, we show a video of transition from swimming to crawling in drop of {\\textit {C. elegans}}, where the fluid is wicking into agar.

  1. Biomimetics Micro Robot with Active Hardware Neural Networks Locomotion Control and Insect-Like Switching Behaviour

    Directory of Open Access Journals (Sweden)

    Ken Saito


    Full Text Available In this paper, we presented the 4.0, 2.7, 2.5 mm, width, length, height size biomimetics micro robot system which was inspired by insects. The micro robot system was made from silicon wafer fabricated by micro electro mechanical systems (MEMS technology. The mechanical system of the robot was equipped with small size rotary type actuators, link mechanisms and six legs to realize the insect‐like switching behaviour. In addition, we constructed the active hardware neural networks (HNN by analogue CMOS circuits as a locomotion controlling system. The HNN utilized the pulse‐type hardware neuron model (P‐HNM as a basic component. The HNN outputs the driving pulses using synchronization phenomena such as biological neural networks. The driving pulses can operate the actuators of the biomimetics micro robot directly. Therefore, the HNN realized the robot control without using any software programs or A/D converters. The micro robot emulated the locomotion method and the neural networks of an insect with rotary type actuators, link mechanisms and HNN. The micro robot performed forward and backward locomotion, and also changed direction by inputting an external trigger pulse. The locomotion speed was 26.4 mm/min when the step width was 0.88 mm.

  2. Review article: locomotion systems for ground mobile robots in unstructured environments

    Directory of Open Access Journals (Sweden)

    L. Bruzzone


    Full Text Available The world market of mobile robotics is expected to increase substantially in the next 20 yr, surpassing the market of industrial robotics in terms of units and sales. Important fields of application are homeland security, surveillance, demining, reconnaissance in dangerous situations, and agriculture. The design of the locomotion systems of mobile robots for unstructured environments is generally complex, particularly when they are required to move on uneven or soft terrains, or to climb obstacles. This paper sets out to analyse the state-of-the-art of locomotion mechanisms for ground mobile robots, focussing on solutions for unstructured environments, in order to help designers to select the optimal solution for specific operating requirements. The three main categories of locomotion systems (wheeled – W, tracked – T and legged – L and the four hybrid categories that can be derived by combining these main locomotion systems are discussed with reference to maximum speed, obstacle-crossing capability, step/stair climbing capability, slope climbing capability, walking capability on soft terrains, walking capability on uneven terrains, energy efficiency, mechanical complexity, control complexity and technology readiness. The current and future trends of mobile robotics are also outlined.

  3. Acquiring visual information for locomotion by older adults: a systematic review. (United States)

    Uiga, Liis; Cheng, Kenneth C; Wilson, Mark R; Masters, Rich S W; Capio, Catherine M


    Developments in technology have facilitated quantitative examination of gaze behavior in relation to locomotion. The objective of this systematic review is to provide a critical evaluation of available evidence and to explore the role of gaze behavior among older adults during different forms of locomotion. Database searches were conducted to identify research papers that met the inclusion criteria of (1) study variables that included direct measurement of gaze and at least one form of locomotion, (2) participants who were older adults aged 60 years and above, and (3) reporting original research. Twenty-five papers related to walking on a straight path and turning (n=4), stair navigation (n=3), target negotiation and obstacle circumvention (n=13) and perturbation-evoked sudden loss of balance (n=5) were identified for the final quality assessment. The reviewed articles were found to have acceptable quality, with scores ranging from 47.06% to 94.12%. Overall, the current literature suggests that differences in gaze behavior during locomotion appear to change in late adulthood, especially with respect to transfer of gaze to and from a target, saccade-step latency, fixation durations on targets and viewing patterns. These changes appear to be particularly pronounced for older adults with high risk of falling and impaired executive functioning.

  4. 基于随机机会约束规划的内燃机车减排技术评价优化模型研究%Study on Evaluation Optimization Model of Diesel Locomotive Emission Reduction Technology Based on Stochastic Chance-constrained Programming

    Institute of Scientific and Technical Information of China (English)

    胡辉; 李克平; 徐小明


    利用不确定规划理论,提出基于随机机会约束规划的机车减排技术决策评价优化模型及其算法.模型的目标函数为期望运营成本最小,决策变量为减排技术种类及减排效率,约束条件为排放污染物致癌风险及对健康影响情况不超过一定概率等.将随机模拟和智能算法相结合,设计求解模型的双层混合智能算法,并利用此算法对算例进行求解,说明模型和算法的可行性和有效性.%Utilizing the theory of uncertain programming, the evaluation optimization model of locomotive emission reduction technology based on stochastic chance-constrained programming and its solving algorithm were put forward. The objective function of the model is to minimize the expected operation costs, the decision variables are emission reduction technology selection and their reduction efficiency, and the constraints include e-mission pollutants cancer and non-cancer health risks which are not to exceed certain probability etc. Combined with random simulation, the bilevel hybrid intelligent algorithm was designed for the proposed model. Finally, a simulation case was presented to illustrate feasibility and effectiveness of the model and algorithm.

  5. Locomotive assignment problem with train precedence using genetic algorithm


    Noori, Siamak; Ghannadpour, Seyed


    This paper aims to study the locomotive assignment problem which is very important for railway companies, in view of high cost of operating locomotives. This problem is to determine the minimum cost assignment of homogeneous locomotives located in some central depots to a set of pre-scheduled trains in order to provide sufficient power to pull the trains from their origins to their destinations. These trains have different degrees of priority for servicing, and the high class of trains should...

  6. Locomotion Gait Planning of Climber Snake-Like Robot



    In this article a novel breed of snake-like climber robots has been introduced. Structure and operation of the first generation of snake-like climber robot "Marak I" has been discussed. The gait planning for two dimensional locomotion of a novel snake-like climber robot "Marak I" is presented. The types of locomotion investigated were rectilinear and wheeling gaits. The gaits of locomotion were experimented and their suitability for various applications has been mentioned. Some encountered pr...

  7. Axial dynamics during locomotion in vertebrates lesson from the salamander. (United States)

    Cabelguen, Jean-Marie; Ijspeert, Auke; Lamarque, Stéphanie; Ryczko, Dimitri


    Much of what we know about the flexibility of the locomotor networks in vertebrates is derived from studies examining the adaptation of limb movements during stepping in various conditions. However, the body movements play important roles during locomotion: they produce the thrust during undulatory locomotion and they help to increase the stride length during legged locomotion. In this chapter, we review our current knowledge about the flexibility in the neuronal circuits controlling the body musculature during locomotion. We focus especially on salamander because, as an amphibian, this animal is able to display a rich repertoire of aquatic and terrestrial locomotor modes.

  8. A contribution about ferrofluid based flow manipulation and locomotion systems

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, K; Zeidis, I; Bohm, V; Popp, J [TU Ilmenau, Fak. f. Maschinenbau, FG Technische Mechanik, Max-Planck-Ring 12, 98693 Ilmenau (Germany)], E-mail:, E-mail:


    With the background of developing apedal bionic inspired locomotion systems for future application fields like autonomous (swarm) robots, medical engineering and inspection systems, this article presents a selection of locomotion systems with bifluidic flow control using ferrofluid. By controlling the change of shape, position and pressure of the ferrofluid in a secondary low viscous fluid by magnetic fields locomotion of objects or the ferrofluid itself can be realised. The locomotion of an object is caused in the first example by a ferrofluid generated flow of the secondary fluid and in the second and third case by the direct alteration of the ferrofluid position.

  9. Undergraduate Studies in Earthquake Information Technology (UseIT): Preparing Students for the Twenty-First Century Work Force via a Multidisciplinary and Collaborative Learning Experience (United States)

    Degroot, R. M.; Jordan, T. H.; Benthien, M. L.; Ihrig, M.; Berti, R.


    UseIT is one of the three undergraduate research programs sponsored by the Southern California Earthquake Center (SCEC). The program allows students to work in multi-disciplinary collaborative teams to tackle a scientific “Grand Challenge.” The topic varies each year but it always entails performing computer science research that is needed by earthquake scientists, educators, and other target audiences. The program allows undergraduates to use the advanced tools of information technology to solve important problems in interdisciplinary earthquake research. Since the program began in 2002, 145 students have participated in UseIT. The program stresses problem solving and interdisciplinary cross training. A key aspect of the UseIT program is its flexible, yet structured, team approach. Students share their diverse skills and interests, creating a powerful synergy through this peer mentoring. The majority of UseIT interns have considerable computer science skill or aptitude, but successful UseIT interns have hailed from nearly three-dozen disciplines, all class levels, and all skill levels. Successful UseIT interns have in common a willingness to step outside their comfort zones and try new things. During the 2009 internship the focus of the program was to deliver SCEC Virtual Display of Objects (VDO) images and animations of faults and earthquake sequences to SCEC, the Earthquake Country Alliance, and other virtual organizations via a content management system that captures the metadata and guides the user. SCEC-VDO is the SCEC intern-developed visualization software that allows the user to see earthquake related phenomena in three and four dimensions. The 2009 Grand Challenge had special relevance for the interns because the products they created were used for The Great California ShakeOut. This talk will discuss lessons learned from this program, how it addresses the needs of the 21st century STEM work force, and highlights of the 2009 internship.

  10. Technologie pour le forage scientifique en eau très profonde au XXIe siècle Deepwater Technology for Scientific Drilling in the 21st Century

    Directory of Open Access Journals (Sweden)

    Sparks C.


    Full Text Available Le présent article aborde les slimline risers et les systèmes de forage minier qui sont deux domaines technologiques dont le potentiel doit permettre d'améliorer le forage et le carottage scientifiques en eau très profonde au cours du XXIe siècle. Cet article présente les avantages et les inconvénients des slimline risers, par rapport aux risers de forage utilisés par l'industrie pétrolière. Le potentiel de matériaux nouveaux est évoqué. Des analyses préliminaires de slimline risers fabriqués de différents matériaux (acier, titane, aluminium et composite pour forage scientifique par 4 000 m de profondeur d'eau sont présentées. La seconde partie de l'article aborde les moyens d'adapter les systèmes de forage minier aux grands fonds. This paper addresses slimline riser systems and mining drilling systems which are two items of technology that have the potential to improve scientific drilling and coring in deep water in the 21st century. The paper presents the advantages and disadvantages of drilling with a slimline riser, compared to an oil industry riser. The potential of new materials are discussed. Preliminary analyses of slimline risers made from different materials (steel, titanium, aluminium and composite for 4000 m of water are presented. In the second part of the paper, ways of adapting mining systems to deepwater are discussed.

  11. 国产电力机车 "十五"展望%Prospects for homemade electric locomotive

    Institute of Scientific and Technical Information of China (English)



    阐述了国外电力机车的发展趋势及我国电力机车生产的现状,指出电力机车制造企业要占领市场,就必须具备良好的技术实力,大力提升工艺水平。%The paper expounds the development trend of electric locomotive abroad and the domestic production situation. It points out that manufacturing enterprise of electric locomotive should have good technical strength and greatly promote technological level to dominate the market.

  12. Intelligent mobility research for robotic locomotion in complex terrain (United States)

    Trentini, Michael; Beckman, Blake; Digney, Bruce; Vincent, Isabelle; Ricard, Benoit


    The objective of the Autonomous Intelligent Systems Section of Defence R&D Canada - Suffield is best described by its mission statement, which is "to augment soldiers and combat systems by developing and demonstrating practical, cost effective, autonomous intelligent systems capable of completing military missions in complex operating environments." The mobility requirement for ground-based mobile systems operating in urban settings must increase significantly if robotic technology is to augment human efforts in these roles and environments. The intelligence required for autonomous systems to operate in complex environments demands advances in many fields of robotics. This has resulted in large bodies of research in areas of perception, world representation, and navigation, but the problem of locomotion in complex terrain has largely been ignored. In order to achieve its objective, the Autonomous Intelligent Systems Section is pursuing research that explores the use of intelligent mobility algorithms designed to improve robot mobility. Intelligent mobility uses sensing, control, and learning algorithms to extract measured variables from the world, control vehicle dynamics, and learn by experience. These algorithms seek to exploit available world representations of the environment and the inherent dexterity of the robot to allow the vehicle to interact with its surroundings and produce locomotion in complex terrain. The primary focus of the paper is to present the intelligent mobility research within the framework of the research methodology, plan and direction defined at Defence R&D Canada - Suffield. It discusses the progress and future direction of intelligent mobility research and presents the research tools, topics, and plans to address this critical research gap. This research will create effective intelligence to improve the mobility of ground-based mobile systems operating in urban settings to assist the Canadian Forces in their future urban operations.

  13. Guiding locomotion in complex dynamic environments

    Directory of Open Access Journals (Sweden)

    Brett R Fajen


    Full Text Available Locomotion in complex dynamic environments is an integral part of many daily activities, including walking in crowded spaces, driving on busy roadways, and playing sports. Many of the tasks that humans perform in such environments involve interactions with moving objects -- that is, they require people to coordinate their own movement with the movements of other objects. A widely adopted framework for research on the detection, avoidance, and interception of moving objects is the bearing angle model, according to which observers move so as to keep the bearing angle of the object constant for interception and varying for obstacle avoidance. The bearing angle model offers a simple, parsimonious account of visual control but has several significant limitations and does not easily scale up to more complex tasks. In this paper, I introduce an alternative account of how humans choose actions and guide locomotion in the presence of moving objects. I show how the new approach addresses the limitations of the bearing angle model and accounts for a variety of behaviors involving moving objects, including (1 choosing whether to pass in front of or behind a moving obstacle, (2 perceiving whether a gap between a pair of moving obstacles is passable, (3 avoiding a collision while passing through single or multiple lanes of traffic, (4 coordinating speed and direction of locomotion during interception, (5 simultaneously intercepting a moving target while avoiding a stationary or moving obstacle, and (6 knowing whether to abandon the chase of a moving target. I also summarize data from recent studies that support the new approach.

  14. Intraspecific variation in aerobic and anaerobic locomotion

    DEFF Research Database (Denmark)

    Svendsen, Jon Christian; Tirsgård, Bjørn; Cordero, Gerardo A.;


    Intraspecific variation and trade-off in aerobic and anaerobic traits remain poorly understood in aquatic locomotion. Using gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata), both axial swimmers, this study tested four hypotheses: (1) gait transition from steady...... to unsteady (i.e., burst-assisted) swimming is associated with anaerobic metabolism evidenced as excess post exercise oxygen consumption (EPOC); (2) variation in swimming performance (critical swimming speed; U crit) correlates with metabolic scope (MS) or anaerobic capacity (i.e., maximum EPOC); (3...

  15. Kinematics Analysis of Two Parallel Locomotion Mechanisms (United States)


    world. Many thanks to Dr. Mehdi Ahmandian, Dr. Corina Sandu, Dr. Robert Sturges and Dr. Bob West. As my committee members, you have given me...128(3), pp. 566-573. [47] Mcgeer, T., 1990, "Passive Dynamic Walking," International Journal of Robotics Research, 9(2), pp. 62-82. [48] Spong , M...Locomotion Robot," Proc. 31st ASME Mechanisms and Robotics Conference, Las Vegas, NV, United States, 8 PART B, pp. 1001-1011. [53] Spong , M. W., and

  16. Serpentine Locomotion Articulated Chain: ANA II

    Directory of Open Access Journals (Sweden)

    A. M. Cardona


    Full Text Available When humanity faces challenges in solving problems beyond their technical resources, and has no foundation to solve a problem, engineering must search for an answer developing new concepts and innovative frameworks to excel these limitations and travel beyond our capabilities. This project “Serpentine locomotion articulated chain: ANA II” is a self-contained robot built to evaluate the behavior of the platform being capable of serpentine movements, in a modular chain mechanical design, based on a master/slave architecture.

  17. century drying (United States)

    Cook, Benjamin I.; Smerdon, Jason E.; Seager, Richard; Coats, Sloan


    Global warming is expected to increase the frequency and intensity of droughts in the twenty-first century, but the relative contributions from changes in moisture supply (precipitation) versus evaporative demand (potential evapotranspiration; PET) have not been comprehensively assessed. Using output from a suite of general circulation model (GCM) simulations from phase 5 of the Coupled Model Intercomparison Project, projected twenty-first century drying and wetting trends are investigated using two offline indices of surface moisture balance: the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Evapotranspiration Index (SPEI). PDSI and SPEI projections using precipitation and Penman-Monteith based PET changes from the GCMs generally agree, showing robust cross-model drying in western North America, Central America, the Mediterranean, southern Africa, and the Amazon and robust wetting occurring in the Northern Hemisphere high latitudes and east Africa (PDSI only). The SPEI is more sensitive to PET changes than the PDSI, especially in arid regions such as the Sahara and Middle East. Regional drying and wetting patterns largely mirror the spatially heterogeneous response of precipitation in the models, although drying in the PDSI and SPEI calculations extends beyond the regions of reduced precipitation. This expansion of drying areas is attributed to globally widespread increases in PET, caused by increases in surface net radiation and the vapor pressure deficit. Increased PET not only intensifies drying in areas where precipitation is already reduced, it also drives areas into drought that would otherwise experience little drying or even wetting from precipitation trends alone. This PET amplification effect is largest in the Northern Hemisphere mid-latitudes, and is especially pronounced in western North America, Europe, and southeast China. Compared to PDSI projections using precipitation changes only, the projections incorporating both


    Directory of Open Access Journals (Sweden)

    S. V. Pylypenko


    Full Text Available In the article the results of dynamic running and traction-energy tests of the electric locomotive VL40U are presented. In accordance with the test results a conclusion about the suitability of electric locomotive of such a type for operation with trains containing up to 15 passenger coaches inclusive is made.

  19. 49 CFR 236.509 - Two or more locomotives coupled. (United States)


    ... 49 Transportation 4 2010-10-01 2010-10-01 false Two or more locomotives coupled. 236.509 Section..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Train Stop, Train Control and Cab Signal Systems Standards § 236.509 Two or more locomotives...

  20. Economic assessment of coal-burning locomotives: Topical report

    Energy Technology Data Exchange (ETDEWEB)


    The General Electric Company embarked upon a study to evaluate various alternatives for the design and manufacture a coal fired locomotive considering various prime movers, but retaining the electric drive transmission. The initial study was supported by the Burlington-Northern and Norfolk-Southern railroads, and included the following alternatives: coal fired diesel locomotive; direct fired gas turbine locomotives; direct fired gas turbine locomotive with steam injection; raw coal gasifier gas turbine locomotive; and raw coal fluid bed steam turbine locomotive. All alternatives use the electric drive transmission and were selected for final evaluation. The first three would use a coal water slurry as a fuel, which must be produced by new processing plants. Therefore, use of a slurry would require a significant plant capital investment. The last two would use classified run-of-the-mine (ROM) coal with much less capital expenditure. Coal fueling stations would be required but are significantly lower in capital cost than a coal slurry plant. For any coal fired locomotive to be commercially viable, it must pass the following criteria: be technically feasible and environmentally acceptable; meet railroads' financial expectations; and offer an attractive return to the locomotive manufacturer. These three criteria are reviewed in the report.

  1. Amoeba proteus displays a walking form of locomotion. (United States)

    Cameron, Ivan; Rinaldi, Robert A; Kirby, Gerald; Davidson, David


    This report deals with observations on the directional locomotion of amoeba before and after fixation and scanning electron microscopy. The study was aimed at visualization of the stepwise events of directional movements. After the analysis of the data it is proposed that the amoeba undergoes a sequence of movement events that can be defined as a walking form of locomotion.

  2. 49 CFR 229.213 - Locomotive manufacturing information. (United States)


    ... 49 Transportation 4 2010-10-01 2010-10-01 false Locomotive manufacturing information. 229.213 Section 229.213 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... Design Requirements § 229.213 Locomotive manufacturing information. (a) Each railroad operating...

  3. Underwater locomotion strategy by a benthic pennate diatom Navicula sp. (United States)

    Wang, Jiadao; Cao, Shan; Du, Chuan; Chen, Darong


    The mechanism of diatom locomotion has been widely researched but still remains a hypothesis. There are several questionable points on the prevailing model proposed by Edgar, and some of the observed phenomena cannot be completely explained by this model. In this paper, we undertook detailed investigations of cell structures, locomotion, secreted mucilage, and bending deformation for a benthic pennate diatom Navicula species. According to these broad evidences, an updated locomotion model is proposed. For Navicula sp., locomotion is realized via two or more pseudopods or stalks protruded out of the frustules. The adhesion can be produced due to the pull-off of one pseudopod or stalk from the substratum through extracellular polymeric substances. And the positive pressure is generated to balance the adhesion because of the push-down of another pseudopod or stalk onto the substratum. Because of the positive pressure, friction is generated, acting as a driving force of locomotion, and the other pseudopod or stalk can detach from the substratum, resulting in the locomotion. Furthermore, this model is validated by the force evaluation and can better explain observed phenomena. This updated model would provide a novel aspect on underwater locomotion strategy, hence can be useful in terms of artificial underwater locomotion devices.

  4. 49 CFR 230.106 - Steam locomotive frame. (United States)


    ... Tenders Trucks, Frames and Equalizing System § 230.106 Steam locomotive frame. (a) Maintenance and inspection. Frames, decks, plates, tailpieces, pedestals, and braces shall be maintained in a safe and... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotive frame. 230.106 Section...

  5. Instability-induced hierarchy in bipedal locomotion (United States)

    Ohgane, Kunishige; Ueda, Kei-Ichi


    One of the important features of human locomotion is its instant adaptability to various unpredictable changes of physical and environmental conditions. This property is known as flexibility. Modeling the bipedal locomotion system, we show that initial-state coordination by a global variable which encodes the attractor basins of the system can yield flexibility. This model is based on the following hypotheses: (i) the walking velocity is a global variable, and (ii) the leg posture at the beginning of the stance phase is the initial state of the gait. Moreover, we confirm these hypotheses. We investigate the regions near the neutral states between walking and falling phases using numerical experiments and demonstrate that global variables can be defined as the dominant unstable directions of the system dynamics near the neutral states. We propose the concept of an “instability-induced hierarchy.” In this hierarchy, global variables govern other variables near neutral states; i.e., they become elements of a higher level.

  6. Proprioceptive Actuation Design for Dynamic Legged locomotion (United States)

    Kim, Sangbae; Wensing, Patrick; Biomimetic Robotics Lab Team

    Designing an actuator system for highly-dynamic legged locomotion exhibited by animals has been one of the grand challenges in robotics research. Conventional actuators designed for manufacturing applications have difficulty satisfying challenging requirements for high-speed locomotion, such as the need for high torque density and the ability to manage dynamic physical interactions. It is critical to introduce a new actuator design paradigm and provide guidelines for its incorporation in future mobile robots for research and industry. To this end, we suggest a paradigm called proprioceptive actuation, which enables highly- dynamic operation in legged machines. Proprioceptive actuation uses collocated force control at the joints to effectively control contact interactions at the feet under dynamic conditions. In the realm of legged machines, this paradigm provides a unique combination of high torque density, high-bandwidth force control, and the ability to mitigate impacts through backdrivability. Results show that the proposed design provides an impact mitigation factor that is comparable to other quadruped designs with series springs to handle impact. The paradigm is shown to enable the MIT Cheetah to manage the application of contact forces during dynamic bounding, with results given down to contact times of 85ms and peak forces over 450N. As a result, the MIT Cheetah achieves high-speed 3D running up to 13mph and jumping over an 18-inch high obstacle. The project is sponsored by DARPA M3 program.

  7. A remotely-controlled locomotive IC driven by electrolytic bubbles and wireless powering. (United States)

    Hsieh, Jian-Yu; Kuo, Po-Hung; Huang, Yi-Chun; Huang, Yu-Jie; Tsai, Rong-Da; Wang, Tao; Chiu, Hung-Wei; Wang, Yao-Hung; Lu, Shey-Shi


    A batteryless remotely-controlled locomotive IC utilizing electrolytic bubbles as propelling force is realized in 0.35 μm CMOS technology. Without any external components, such as magnets and on-board coils, the bare IC is wirelessly powered and controlled by a 10 MHz ASK modulated signal with RS232 control commands to execute movement in four moving directions and with two speeds. The receiving coil and electrolysis electrodes are all integrated on the locomotive chip. The experiment successfully demonstrated that the bare IC moved on the surface of an electrolyte with a speed up to 0.3 mm/s and change moving directions according to the commands. The total power consumptions of the chip are 207.4 μW and 180 μ W while the output electrolysis voltages are 2 V and 1.3 V, respectively.

  8. A predictive model of muscle excitations based on muscle modularity for a large repertoire of human locomotion conditions. (United States)

    Gonzalez-Vargas, Jose; Sartori, Massimo; Dosen, Strahinja; Torricelli, Diego; Pons, Jose L; Farina, Dario


    well the experimental excitation with a cross-correlation factor greater than 85% and a root mean square error less than 0.09. The ability of synthetizing the neuromuscular mechanisms underlying human locomotion across a variety of locomotion conditions will enable solutions in the field of neurorehabilitation technologies and control of bipedal artificial systems. Open-access of the model implementation is provided for further analysis at

  9. A predictive model of muscle excitations based on muscle modularity for a large repertoire of human locomotion conditions

    Directory of Open Access Journals (Sweden)

    Jose eGonzalez-Vargas


    matched well the experimental excitation with a cross-correlation factor greater than 85% and a root mean square error less than 0.09. The ability of synthetizing the neuromuscular mechanisms underlying human locomotion across a variety of locomotion conditions will enable solutions in the field of neurorehabilitation technologies and control of bipedal artificial systems.

  10. Reduction and identification for hybrid dynamical models of terrestrial locomotion (United States)

    Burden, Samuel A.; Sastry, S. Shankar


    The study of terrestrial locomotion has compelling applications ranging from design of legged robots to development of novel prosthetic devices. From a first-principles perspective, the dynamics of legged locomotion seem overwhelmingly complex as nonlinear rigid body dynamics couple to a granular substrate through viscoelastic limbs. However, a surfeit of empirical data demonstrates that animals use a small fraction of their available degrees-of-freedom during locomotion on regular terrain, suggesting that a reduced-order model can accurately describe the dynamical variation observed during steady-state locomotion. Exploiting this emergent phenomena has the potential to dramatically simplify design and control of micro-scale legged robots. We propose a paradigm for studying dynamic terrestrial locomotion using empirically-validated reduced{order models.

  11. Locomotion Gait Planning of Climber Snake-Like Robot

    Directory of Open Access Journals (Sweden)

    Mohammad Nezaminia


    Full Text Available In this article a novel breed of snake-like climber robots has been introduced. Structure and operation of the first generation of snake-like climber robot "Marak I" has been discussed. The gait planning for two dimensional locomotion of a novel snake-like climber robot "Marak I" is presented. The types of locomotion investigated were rectilinear and wheeling gaits. The gaits of locomotion were experimented and their suitability for various applications has been mentioned. Some encountered practical problems plus solutions were addressed. Finally we found out that: the vertical motion was producing more fault than horizontal locomotion, and notably the fastest gait of locomotion was the wheeling gait

  12. Cholinergic Mechanisms in Spinal Locomotion - Potential Target for Rehabilitation Approaches

    Directory of Open Access Journals (Sweden)

    L M Jordan


    Full Text Available Previous experiments implicate cholinergic brainstem and spinal systems in the control of locomotion. Our results demonstrate that the endogenous cholinergic propriospinal system, acting via M2 and M3 muscarinic receptors, is capable of consistently producing well-coordinated locomotor activity in the in vitro neonatal preparation, placing it in a position to contribute to normal locomotion and to provide a basis for recovery of locomotor capability in the absence of descending pathways. Tests of these suggestions, however, reveal that the spinal cholinergic system plays little if any role in the induction of locomotion, because MLR-evoked locomotion in decerebrate cats is not prevented by cholinergic antagonists. Furthermore, it is not required for the development of stepping movements after spinal cord injury, because cholinergic agonists do not facilitate the appearance of locomotion after spinal cord injury, unlike the dramatic locomotion-promoting effects of clonidine, a noradrenergic α-2 agonist. Furthermore, cholinergic antagonists actually improve locomotor activity after spinal cord injury, suggesting that plastic changes in the spinal cholinergic system interfere with locomotion rather than facilitating it. Changes that have been observed in the cholinergic innervation of motoneurons after spinal cord injury do not decrease motoneuron excitability, as expected. Instead, the development of a hyper-cholinergic state after spinal cord injury appears to enhance motoneuron output and suppress locomotion. A cholinergic suppression of afferent input from the limb after spinal cord injury is also evident from our data, and this may contribute to the ability of cholinergic antagonists to improve locomotion. Not only is a role for the spinal cholinergic system in supressing locomotion after SCI suggested by our results, but an obligatory contribution of a brainstem cholinergic relay to reticulospinal locomotor command systems is not confirmed

  13. Sovereignty, wealth, culture and technology: Mainland China and Taiwan grapple with the parameters of 'nation state' in the 21st century

    Directory of Open Access Journals (Sweden)

    Emanuel Pastreich


    challenges of globalization further complicate the picture in that the odd convergence of economic and cultural convergence with political tensions may be representative of the conflicts we will encounter in this century. The paper considers the economic, cultural, and technological ties that continue to bind Taiwan and the mainland despite serious differences and closes with a short consideration of possibilities for a long-term peaceful solution.

  14. 数学技术对于新世纪数学教育的意义%Significance for Mathematics Technology on the 21st Century Mathematics Educati6n

    Institute of Scientific and Technical Information of China (English)

    孙旭花; 谢文彪


    With the development of computer, that mathematics technology is brought to mathematics education is the tendency during the 21st century. The reason is that mathematics technology emphasizes not only mathematics three conceptions in the 21st century mathematics education: tool view, experiment view and application view, but also the three characteristics of the new century education development: lifelong learning, individualization and communication.%随着计算机技术的迅猛发展,数学技术进入数学课程在21世纪将是国际趋势,世界各国正纷纷为此作准备.数学技术强调了数学在新世纪数学教育发展的三大理念:工具理念、实验理念、应用理念,同时也能够适应新世纪教育发展三大特征:终身化、个性化及全民化特征.

  15. The 21st Century as Whose Century?

    Directory of Open Access Journals (Sweden)

    David Scott


    Full Text Available Macro-analysis and East-West encounter are shown through consideration of objective yet subjective constructed concepts for the international system and international economy in the 21st century. Three paradigms are considered, namely the 21st century as the ‘Pacific Century’, as ‘China’s Century’ and as the ‘Asian Century’. Overlaps are shown between these three paradigms, as also developments in time, and gradually shift in geographical location. The ‘Pacific Century’, and its associated Rimspeak, was the paradigm emerging in the late 1970s, knitting together America’s West Coast and the Japanese economy. By the late 1980s this was already shifting to talk of the 21st century likely to be an ‘Asian Century’ model, mark-1, based on the Pacific Asia dynamism shown by the ‘Asian Tigers’ and Japan. However, the Asian financial crash of 1997-8, and the economic downturn in Japan, meant that such an ‘Asian Century’ seemed premature as the 21st century arrived. Instead, it was China’s economic growth that seemed most evident, and with it the concept of the 21st century as ‘China’s Century’. However, in turn that has already been modified during the first decade of the century by India’s arrival as a rapidly growing economy. Consequently the 21st century as ‘China’s Century’ and as ‘India’s Century’ has been combined into talk of an ‘Asian Century’, mark-2.

  16. Minimum Energy Demand Locomotion on Space Station

    Directory of Open Access Journals (Sweden)

    Wing Kwong Chung


    Full Text Available The energy of a space station is a precious resource, and the minimization of energy consumption of a space manipulator is crucial to maintain its normal functionalities. This paper first presents novel gaits for space manipulators by equipping a new gripping mechanism. With the use of wheels locomotion, lower energy demand gaits can be achieved. With the use of the proposed gaits, we further develop a global path planning algorithm for space manipulators which can plan a moving path on a space station with a minimum total energy demand. Different from existing approaches, we emphasize both the use of the proposed low energy demand gaits and the gaits composition during the path planning process. To evaluate the performance of the proposed gaits and path planning algorithm, numerous simulations are performed. Results show that the energy demand of both the proposed gaits and the resultant moving path is also minimum.

  17. Embodied Sensorimotor Interaction for Hexapod Locomotion

    DEFF Research Database (Denmark)

    Ambe, Yuichi; Aoi, Shinya; Nachstedt, Timo;


    is still unclear. Recent studies in biology suggest that a functional motor output during walking is formed by the interaction between central pattern generators (CPGs) and sensory feedbacks. In this paper, we investigate the dynamics of a hexapod robot model whose legs are driven by distributed...... sensory feedback the robot produces continuous stable gaits depending on the locomotion speed as a result of self-organization, one of which are similar to those of insects. These results reveal that the neuromechanical interaction induced by the local sensory feedback plays an important role...... oscillators with a local sensory feedback from neuromechanical point of view. This feedback changes the oscillation period of the oscillator depending solely on the timing of the contact between the foot and the ground. The results of dynamic simulations and real robot experiments show that due to the local...

  18. Locomotion of Microscopic Robots in Viscous Fluids

    CERN Document Server

    Hogg, Tad


    Microscopic robots could perform tasks with high spatial precision, such as acting in biological tissues on the scale of individual cells, provided they can reach precise locations. This paper evaluates the feasibility of in vivo locomotion for micron-size robots. Two appealing methods rely only on surface motions: steady tangential motion and small amplitude oscillations. These methods contrast with common microorganism propulsion based on flagella or cilia, which are more likely to damage nearby cells if used by robots made of stiff materials. The power available to robots, e.g., from oxygen and glucose in tissue, is sufficient to support speeds ranging from one to hundreds of microns per second, over the range of viscosities found in biological tissue. We discuss design trade-offs among propulsion method, speed, power, shear forces and robot shape, and relate those choices to robot task requirements.

  19. Undulatory Locomotion of Magnetic Multilink Nanoswimmers. (United States)

    Jang, Bumjin; Gutman, Emiliya; Stucki, Nicolai; Seitz, Benedikt F; Wendel-García, Pedro D; Newton, Taylor; Pokki, Juho; Ergeneman, Olgaç; Pané, Salvador; Or, Yizhar; Nelson, Bradley J


    Micro- and nanorobots operating in low Reynolds number fluid environments require specialized swimming strategies for efficient locomotion. Prior research has focused on designs mimicking the rotary corkscrew motion of bacterial flagella or the planar beating motion of eukaryotic flagella. These biologically inspired designs are typically of uniform construction along their flagellar axis. This work demonstrates for the first time planar undulations of composite multilink nanowire-based chains (diameter 200 nm) induced by a planar-oscillating magnetic field. Those chains comprise an elastic eukaryote-like polypyrrole tail and rigid magnetic nickel links connected by flexible polymer bilayer hinges. The multilink design exhibits a high swimming efficiency. Furthermore, the manufacturing process enables tuning the geometrical and material properties to specific applications.

  20. The Effect of Increasing Mass upon Locomotion (United States)

    DeWitt, John; Hagan, Donald


    The purpose of this investigation was to determine if increasing body mass while maintaining bodyweight would affect ground reaction forces and joint kinetics during walking and running. It was hypothesized that performing gait with increased mass while maintaining body weight would result in greater ground reaction forces, and would affect the net joint torques and work at the ankle, knee and hip when compared to gait with normal mass and bodyweight. Vertical ground reaction force was measured for ten subjects (5M/5F) during walking (1.34 m/s) and running (3.13 m/s) on a treadmill. Subjects completed one minute of locomotion at normal mass and bodyweight and at four added mass (AM) conditions (10%, 20%, 30% and 40% of body mass) in random order. Three-dimensional joint position data were collected via videography. Walking and running were analyzed separately. The addition of mass resulted in several effects. Peak impact forces and loading rates increased during walking, but decreased during running. Peak propulsive forces decreased during walking and did not change during running. Stride time increased and hip extensor angular impulse and positive work increased as mass was added for both styles of locomotion. Work increased at a greater rate during running than walking. The adaptations to additional mass that occur during walking are different than during running. Increasing mass during exercise in microgravity may be beneficial to increasing ground reaction forces during walking and strengthening hip musculature during both walking and running. Future study in true microgravity is required to determine if the adaptations found would be similar in a weightless environment.

  1. 矿井机车监控终端程序%Monitor Terminal of Mine Locomotive

    Institute of Scientific and Technical Information of China (English)

    李会民; 李锡文


    Locomotive monitor system is a kind of basic facilities to make sure the safe of transporting and efficient dispatching underground. It is designed to assure the locomotive safe running, enhance the productive efficiency, reduce the transport expense and improve the operating circumstances. This paper presents the monitor system for coal mine based on the RF1D and WIFI technology. In order to meet the functions, install all kinds of sensors in the system. Judge the location or state of the locomotive and enhance the running security of locomotive by monitoring environment with the information merging technology. Build the wireless Ethernet based on WIFI in the coal mine to fulfill the voice and data exchange between the locomotive and the dispatching center so that the dispatcher can dispatch the locomotive efficiently and in time based on the datum from the locomotive. This paper presents the system framework and pays more emphasis on the program design of the terminal monitor and the realization. The system has run in good condition underground and promotes the locomotive safety and dispatching efficiency significantly.%矿井机车监控系统是矿井运输安全监控和高效调度的基础设备之一,是保证机车行车安全、提高生产效率、降低运输成本和改善作业人员环境的基本系统之一.本文提出一种基于RFID技术和WIFI网络的矿井机车监控系统.根据系统功能需求,安装了多种传感器,并对检测的多种传感器信息进行信息融合处理,实时判断机车运行环境和机车状态,提升机车运行的安全性.利用光纤与WIFI组成井下以太网网络,实现机车与调度室之间的语音与数据通讯,调度室根据机车上传的综合信息,实时地、安全高效地调度机车.本文阐述了系统的总体架构,并重点研究了监控终端程序的设计与实现方法.研制的系统已成功应用于工程实际,运行结果表明:系统工作稳定、运行良好,能保证机车安全、高效运行.

  2. 49 CFR 230.20 - Alteration and repair report for steam locomotive boilers. (United States)


    ... boilers. (a) Alterations. When an alteration is made to a steam locomotive boiler, the steam locomotive... steam locomotive boiler, the steam locomotive owner and/or operator shall file with the FRA Regional... the boiler. Whenever welded or riveted repairs are performed on stayed portions of a steam...

  3. Breathing and locomotion: comparative anatomy, morphology and function. (United States)

    Klein, Wilfried; Codd, Jonathan R


    Using specialized respiratory structures such as gills, lungs and or a tracheal system, animals take up oxygen and release carbon dioxide. The efficiency of gas exchange, however, may be constrained by the morphology of the respiratory organ itself as well as by other aspects of an animal's physiology such as feeding, circulation or locomotion. Herein we discuss some aspects of the functional link between the respiratory and locomotor systems, such as gill morphology of sharks as a factor limiting maximum aerobic scope, respiratory constraints among legless lizards, lung morphology of testudines, trade-offs between locomotion and respiration among birds, reconstruction of the respiratory system of sauropods, respiration of mice during locomotion as well as some aspects of gas exchange among insects. Data covering such a broad spectrum of interactions between the locomotor and respiratory systems shall allow us to place breathing and locomotion into a wider context of evolution of oxygen.

  4. Vibrational Locomotion Enabling Subsurface Exploration of Unconsolidated Regolith Project (United States)

    National Aeronautics and Space Administration — The idea of vibrational locomotion is based on vibrational-fluidization in ISRU reactor systems, which has proven very effective for regolith mixing. The vibrating...

  5. Combining Bio-inspired Sensing with Bio-inspired Locomotion

    DEFF Research Database (Denmark)

    Shaikh, Danish; Hallam, John; Christensen-Dalsgaard, Jakob

    In this paper we present a preliminary Braitenberg vehicle–like approach to combine bio-inspired audition with bio-inspired quadruped locomotion in simulation. Locomotion gaits of the salamander–like robot Salamandra robotica are modified by a lizard’s peripheral auditory system model that modula......In this paper we present a preliminary Braitenberg vehicle–like approach to combine bio-inspired audition with bio-inspired quadruped locomotion in simulation. Locomotion gaits of the salamander–like robot Salamandra robotica are modified by a lizard’s peripheral auditory system model...... that modulates the parameters of the locomotor central pattern generators. We present phonotactic performance results of the simulated lizard-salamander hybrid robot....

  6. Sizing of a hybrid locomotive based on accumulators and ultracapacitors


    Jaafar, Amine; Sareni, Bruno; Roboam, Xavier; Thiounn-Guermeur, Marina


    In this paper, hybridization of a BB460000 locomotive is proposed integrating a reduced power diesel generator, batteries and ultracapacitors as storage elements. The power mission of the BB460000 locomotive is studied in order to analyze its ability to be hybridized and to identify the most critical mission. An energy management strategy based on a frequency sharing is proposed. It allows strongly decreasing the nominal power of the diesel generator. Then, through a power flow sizing model, ...

  7. Visuomotor control of human adaptive locomotion: Understanding the anticipatory nature

    Directory of Open Access Journals (Sweden)

    Takahiro eHiguchi


    Full Text Available To maintain balance during locomotion, the central nervous system (CNS accommodates changes in the constraints of spatial environment (e.g., existence of an obstacle or changes in the surface properties. Locomotion while modifying the basic movement patterns in response to such constraints is referred to as adaptive locomotion. The most powerful means of ensuring balance during adaptive locomotion is to visually perceive the environmental properties at a distance and modify the movement patterns in an anticipatory manner to avoid perturbation altogether. For this reason, visuomotor control of adaptive locomotion is characterized, at least in part, by its anticipatory nature. The purpose of the present article is to review the relevant studies which revealed the anticipatory nature of the visuomotor control of adaptive locomotion. The anticipatory locomotor adjustments for stationary and changeable environment, as well as the spatio-temporal patterns of gaze behavior to support the anticipatory locomotor adjustments are described. Such description will clearly show that anticipatory locomotor adjustments are initiated when an object of interest (e.g., a goal or obstacle still exists in far space. This review also show that, as a prerequisite of anticipatory locomotor adjustments, environmental properties are accurately perceived from a distance in relation to individual’s action capabilities.

  8. A subset of interneurons required for Drosophila larval locomotion. (United States)

    Yoshikawa, Shingo; Long, Hong; Thomas, John B


    Efforts to define the neural circuits generating locomotor behavior have produced an initial understanding of some of the components within the spinal cord, as well as a basic understanding of several invertebrate motor pattern generators. However, how these circuits are assembled during development is poorly understood. We are defining the neural circuit that generates larval locomotion in the genetically tractable fruit fly Drosophila melanogaster to study locomotor circuit development. Forward larval locomotion involves a stereotyped posterior-to-anterior segmental translocation of body wall muscle contraction and is generated by a relatively small number of identified muscles, motor and sensory neurons, plus an unknown number of the ~270 bilaterally-paired interneurons per segment of the 1st instar larva. To begin identifying the relevant interneurons, we have conditionally inactivated synaptic transmission of interneuron subsets and assayed for the effects on locomotion. From this screen we have identified a subset of 25 interneurons per hemisegment, called the lateral locomotor neurons (LLNs), that are required for locomotion. Both inactivation and constitutive activation of the LLNs disrupt locomotion, indicating that patterned output of the LLNs is required. By expressing a calcium indicator in the LLNs, we found that they display a posterior-to-anterior wave of activity within the CNS corresponding to the segmental translocation of the muscle contraction wave. Identification of the LLNs represents the first step toward elucidating the circuit generating larval locomotion.

  9. The coupling of vision with locomotion in cortical blindness. (United States)

    Pelah, Adar; Barbur, John; Thurrell, Adrian; Hock, Howard S


    Maintaining or modifying the speed and direction of locomotion requires the coupling of the locomotion with the retinal optic flow that it generates. It is shown that this essential behavioral capability, which requires on-line neural control, is preserved in the cortically blind hemifield of a hemianope. In experiments, optic flow stimuli were presented to either the normal or blind hemifield while the patient was walking on a treadmill. Little difference was found between the hemifields with respect to the coupling (i.e. co-dependency) of optic flow detection with locomotion. Even in the cortically blind hemifield, faster walking resulted in the perceptual slowing of detected optic flow, and self-selected locomotion speeds demonstrated behavioral discrimination between different optic flow speeds. The results indicate that the processing of optic flow, and thereby on-line visuo-locomotor coupling, can take place along neural pathways that function without processing in Area V1, and thus in the absence of conscious intervention. These and earlier findings suggest that optic flow and object motion are processed in parallel along with correlated non-visual locomotion signals. Extrastriate interactions may be responsible for discounting the optical effects of locomotion on the perceived direction of object motion, and maintaining visually guided self-motion.

  10. Feasibility study for SOFC-GT hybrid locomotive power part II. System packaging and operating route simulation (United States)

    Martinez, Andrew S.; Brouwer, Jacob; Samuelsen, G. Scott


    This work assesses the feasibility of Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) hybrid power systems for use as the prime mover in freight locomotives. The available space in a diesel engine-powered locomotive is compared to that required for an SOFC-GT system, inclusive of fuel processing systems necessary for the SOFC-GT. The SOFC-GT space requirement is found to be similar to current diesel engines, without consideration of the electrical balance of plant. Preliminary design of the system layout within the locomotive is carried out for illustration. Recent advances in SOFC technology and implications of future improvements are discussed as well. A previously-developed FORTRAN model of an SOFC-GT system is then augmented to simulate the kinematics and power notching of a train and its locomotives. The operation of the SOFC-GT-powered train is investigated along a representative route in Southern California, with simulations presented for diesel reformate as well as natural gas reformate and hydrogen as fuels. Operational parameters and difficulties are explored as are comparisons of expected system performance to modern diesel engines. It is found that even in the diesel case, the SOFC-GT system provides significant savings in fuel and CO2 emissions, making it an attractive option for the rail industry.

  11. Legged-locomotion on inclined granular media (United States)

    Rieser, Jennifer; Qian, Feifei; Goldman, Daniel

    Animals traverse a wide variety of complex environments, including situations in which the ground beneath them can yield (e.g. dry granular media in desert dunes). Locomotion strategies that are effective on level granular media can fail when traversing a granular slope. Taking inspiration from successful legged-locomotors in sandy, uneven settings, we explore the ability of a small (15 cm long, 100 g), six-c-shaped legged robot to run uphill in a bed of 1-mm-diameter poppy seeds, using an alternating tripod gait. Our fully automated experiments reveal that locomotor performance can depend sensitively on both environmental parameters such as the inclination angle and volume fraction of the substrate, and robot morphology and control parameters like leg shape, step frequency, and the friction between the feet of the robot and the substrate. We assess performance by measuring the average speed of the robot, and we find that the robot tends to perform better at higher step frequency and lower inclination angles, and that average speed decreases more rapidly with increasing angle for higher step frequency.

  12. Intramuscular Pressure Measurement During Locomotion in Humans (United States)

    Ballard, Ricard E.


    To assess the usefulness of intramuscular pressure (IMP) measurement for studying muscle function during gait, IMP was recorded in the soleus and tibialis anterior muscles of ten volunteers during, treadmill walking, and running using transducer-tipped catheters. Soleus IMP exhibited single peaks during late-stance phase of walking (181 +/- 69 mmHg, mean +/- S.E.) and running (269 +/- 95 mmHg). Tibialis anterior IMP showed a biphasic response, with the largest peak (90 +/- 15 mmHg during walking and 151 +/- 25 mmHg during running) occurring shortly after heel strike. IMP magnitude increased with gait speed in both muscles. Linear regression of soleus IMP against ankle joint torque obtained by a dynamometer in two subjects produced linear relationships (r = 0.97). Application of these relationships to IMP data yielded estimated peak soleus moment contributions of 0.95-165 Nm/Kg during walking, and 1.43-2.70 Nm/Kg during running. IMP results from local muscle tissue deformations caused by muscle force development and thus, provides a direct, practical index of muscle function during locomotion in humans.

  13. Leg intramuscular pressures during locomotion in humans (United States)

    Ballard, R. E.; Watenpaugh, D. E.; Breit, G. A.; Murthy, G.; Holley, D. C.; Hargens, A. R.


    To assess the usefulness of intramuscular pressure (IMP) measurement for studying muscle function during gait, IMP was recorded in the soleus and tibialis anterior muscles of 10 volunteers during treadmill walking and running by using transducer-tipped catheters. Soleus IMP exhibited single peaks during late-stance phase of walking [181 +/- 69 (SE) mmHg] and running (269 +/- 95 mmHg). Tibialis anterior IMP showed a biphasic response, with the largest peak (90 +/- 15 mmHg during walking and 151 +/- 25 mmHg during running) occurring shortly after heel strike. IMP magnitude increased with gait speed in both muscles. Linear regression of soleus IMP against ankle joint torque obtained by a dynamometer produced linear relationships (n = 2, r = 0.97 for both). Application of these relationships to IMP data yielded estimated peak soleus moment contributions of 0.95-1.65 N . m/kg during walking, and 1.43-2.70 N . m/kg during running. Phasic elevations of IMP during exercise are probably generated by local muscle tissue deformations due to muscle force development. Thus profiles of IMP provide a direct, reproducible index of muscle function during locomotion in humans.

  14. Nematode locomotion in unconfined and confined fluids (United States)

    Bilbao, Alejandro; Wajnryb, Eligiusz; Vanapalli, Siva A.; Blawzdziewicz, Jerzy


    The millimeter-long soil-dwelling nematode Caenorhabditis elegans propels itself by producing undulations that propagate along its body and turns by assuming highly curved shapes. According to our recent study [V. Padmanabhan et al., PLoS ONE 7, e40121 (2012), 10.1371/journal.pone.0040121] all these postures can be accurately described by a piecewise-harmonic-curvature model. We combine this curvature-based description with highly accurate hydrodynamic bead models to evaluate the normalized velocity and turning angles for a worm swimming in an unconfined fluid and in a parallel-wall cell. We find that the worm moves twice as fast and navigates more effectively under a strong confinement, due to the large transverse-to-longitudinal resistance-coefficient ratio resulting from the wall-mediated far-field hydrodynamic coupling between body segments. We also note that the optimal swimming gait is similar to the gait observed for nematodes swimming in high-viscosity fluids. Our bead models allow us to determine the effects of confinement and finite thickness of the body of the nematode on its locomotion. These effects are not accounted for by the classical resistive-force and slender-body theories.

  15. A century of physics

    CERN Document Server

    Bromley, D Allan


    In this amazing tour d'horizon, D. Allan Bromley uses the occasion of the centenary of the American Physical Society to reflect upon the growth of physics over the past 100 years, its fragmentation into numerous subdisciplines, the impact physics has had upon modern technology, and the re-emergence of the fundamental unity of the discipline in recent years. Hundreds of historical illustrations accompany the text. Bromley conveys much of the excitement and wonder that research in physics generated in the 20th century and asks what new things are in store in the next century. He covers such topics as relativity and quantum mechanics, the Manhattan project, superconductivity, transistors and the revolution brought about by solid-state electronics, protein folding, the uses of nuclear and atomic physics in biology and medicine, plate tectonics, the expansion of the universe and the Big Bang, and gravitational radiation. Bromley, the Sterling Professor of the Sciences and Dean of Yale University, served as Assista...

  16. 40 CFR 201.27 - Procedures for: (1) Determining applicability of the locomotive load cell test stand standard and... (United States)


    ... applicability of the locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a receiving property; (2) measurement of locomotive load cell test stands more than 120 meters... locomotive load cell test stand standard and switcher locomotive standard by noise measurement on a...


    Directory of Open Access Journals (Sweden)

    S. V. Myamlin


    Full Text Available Purpose. The paper is devoted to dynamic characteristics evaluation of the locomotive with prospective design and determination the feasibility of its use on the Ukrainian railways. Methodology. The methods of mathematical and computer modeling of the dynamics of railway vehicles, as well as methods for the numerical integration of systems of ordinary nonlinear differential equations were used to solve the problem. Findings. The calculated diagram of a locomotive on three-axle bogies was built to solve the problem, and it is a system of rigid bodies connected by various elements of rheology. The mathematical model of the locomotive movement, allowing studying its spatial vibrations at driving on straight and curved sections of the track with random irregularities in plan and profile was developed with use of this calculated diagram. At compiling the mathematical model took into account both geometric (nonlinearity profile of the wheel roll surface and physical nonlinearity of the system (the work forces of dry friction, nonlinearity characteristics of interaction forces between wheels and rails. The multivariate calculations, which allowed assessing the dynamic qualities of the locomotive at its movement along straight and curved sections of the track, were realized with the use of computer modeling. The smoothness movement indicators of the locomotive in horizontal and vertical planes, frame strength, coefficients of vertical dynamics in the first and second stages of the suspension, the load factor of resistance against the derailment of the wheel from the rail were determined at the period of research. In addition, a comparison of the obtained results with similar characteristics is widely used on the Ukrainian railways in six-axle locomotive TE 116. The influence of speed and technical state of the track on the locomotive traffic safety was determined.Originality. A mathematical model of the spatial movement of a six-axle locomotive with

  18. Problems of locomotive wheel wear in fleet replacement

    Directory of Open Access Journals (Sweden)

    L.P. Lingaytis


    Full Text Available Purpose. To conduct a research and find out the causes of defects appearing on the wheel thread of freight locomotives 2М62 and SIEMENS ER20CF. Methodology. To find the ways to solve this problem comparing the locomotive designs and their operating conditions. Findings. After examining the nature of the wheel wear the main difference was found: in locomotives of the 2M62 line wears the wheel flange, and in the locomotives SIEMENS ER20CF – the tread surface. After installation on the 2M62 locomotive the lubrication system of flanges their wear rate significantly decreased. On the new freight locomotives SIEMENS ER20CF the flange lubrication systems of the wheel set have been already installed at the factory, however the wheel thread is wearing. As for locomotives 2M62, and on locomotives SIEMENS ER20CF most wear profile skating wheels of the first wheel set. On both locomotive lines the 2М62 and the SIEMENS ER20CF the tread profile of the first wheel set most of all is subject to the wear. After reaching the 170 000 km run, the tread surface of some wheels begins to crumble. There was a suspicion that the reason for crumb formation of the wheel surface may be insufficient or excessive wheel hardness or its chemical composition. In order to confirm or deny this suspicion the following studies were conducted: the examination of the rim surface, the study of the wheel metal hardness and the document analysis of the wheel production and their comparison with the results of wheel hardness measurement. Practical value. The technical condition of locomotives is one of the bases of safety and reliability of the rolling stock. The reduction of the wheel wear significantly reduces the operating costs of railway transport. After study completion it was found that there was no evidence to suggest that the ratio of the wheel-rail hardness could be the cause of the wheel surface crumbling.

  19. Proceedings of the second seminar on the new fuel technology toward the 21st century, November 25-26, 1997, Korea Atomic Energy Research Institute, Taejon, Korea

    Energy Technology Data Exchange (ETDEWEB)



    This proceedings includes, together with the discussion of the results obtained from the R and D works performed during this year, the topics on the various nuclear fuel technologies being conceived, envisaged or developed for various reactor systems with a wide spectrum from fundamental approaches to applied engineering and from fuel design technologies to manufacturing and materials problems.

  20. Stabilization of cat paw trajectory during locomotion. (United States)

    Klishko, Alexander N; Farrell, Bradley J; Beloozerova, Irina N; Latash, Mark L; Prilutsky, Boris I


    We investigated which of cat limb kinematic variables during swing of regular walking and accurate stepping along a horizontal ladder are stabilized by coordinated changes of limb segment angles. Three hypotheses were tested: 1) animals stabilize the entire swing trajectory of specific kinematic variables (performance variables); and 2) the level of trajectory stabilization is similar between regular and ladder walking and 3) is higher for forelimbs compared with hindlimbs. We used the framework of the uncontrolled manifold (UCM) hypothesis to quantify the structure of variance of limb kinematics in the limb segment orientation space across steps. Two components of variance were quantified for each potential performance variable, one of which affected it ("bad variance," variance orthogonal to the UCM, VORT) while the other one did not ("good variance," variance within the UCM, VUCM). The analysis of five candidate performance variables revealed that cats during both locomotor behaviors stabilize 1) paw vertical position during the entire swing (VUCM > VORT, except in mid-hindpaw swing of ladder walking) and 2) horizontal paw position in initial and terminal swing (except for the entire forepaw swing of regular walking). We also found that the limb length was typically stabilized in midswing, whereas limb orientation was not (VUCM ≤ VORT) for both limbs and behaviors during entire swing. We conclude that stabilization of paw position in early and terminal swing enables accurate and stable locomotion, while stabilization of vertical paw position in midswing helps paw clearance. This study is the first to demonstrate the applicability of the UCM-based analysis to nonhuman movement.

  1. Obstacle Avoidance in Groping Locomotion of a Humanoid Robot

    Directory of Open Access Journals (Sweden)

    Masahiro Ohka


    Full Text Available This paper describes the development of an autonomous obstacle-avoidance method that operates in conjunction with groping locomotion on the humanoid robot Bonten-Maru II. Present studies on groping locomotion consist of basic research in which humanoid robot recognizes its surroundings by touching and groping with its arm on the flat surface of a wall. The robot responds to the surroundings by performing corrections to its orientation and locomotion direction. During groping locomotion, however, the existence of obstacles within the correction area creates the possibility of collisions. The objective of this paper is to develop an autonomous method to avoid obstacles in the correction area by applying suitable algorithms to the humanoid robot's control system. In order to recognize its surroundings, six-axis force sensors were attached to both robotic arms as end effectors for force control. The proposed algorithm refers to the rotation angle of the humanoid robot's leg joints due to trajectory generation. The algorithm relates to the groping locomotion via the measured groping angle and motions of arms. Using Bonten-Maru II, groping experiments were conducted on a wall's surface to obtain wall orientation data. By employing these data, the humanoid robot performed the proposed method autonomously to avoid an obstacle present in the correction area. Results indicate that the humanoid robot can recognize the existence of an obstacle and avoid it by generating suitable trajectories in its legs.

  2. The advantage of mucus for adhesive locomotion in gastropods. (United States)

    Iwamoto, Mayuko; Ueyama, Daishin; Kobayashi, Ryo


    For many gastropods, locomotion is driven by a succession of periodic muscular waves (contractions and relaxations) moving along the foot. The force generated by these waves is coupled to the substratum by a thin layer of pedal mucus. Gastropod pedal mucus has unusual physical properties: the mucus is a viscoelastic solid at small deformation and shows a sharp yield point; then, at greater strains, the mucus is a viscous liquid, although it will recover its solidity if allowed to heal for a certain period. In this paper, to clarify the role of the mucus and the flexible muscular waves in adhesive locomotion, we use a simple mathematical model to verify that directional migration can be realized through the interaction between the periodic muscular waves and the specific physical features of mucus. Our results indicate that the hysteresis property of mucus is essential in controlling kinetic friction for the realization of crawling locomotion. Furthermore, our numerical calculations show that both the hysteresis property of mucus and the contraction ratio of muscle give rise to two styles of locomotion, direct waves and retrograde waves, which until now have been explained by different mechanisms. The biomechanical effectiveness of mucus in adhesive locomotion is also discussed.

  3. Biomimetic Experimental Research on Hexapod Robot's Locomotion Planning

    Institute of Scientific and Technical Information of China (English)

    HUANG Lin; HAN Bao-ling; LUO Qing-sheng; ZHANG Chun-lin; XU Jia


    To provide hexapod robots with strategies of locomotion planning,observation experiments were operated on a kind of ant with the use of high speed digital photography and computer assistant analysis.Through digitalization of original analog video,locomotion characters of ants were obtained,the biomimetic foundation was laid for polynomial trajectory planning of multi-legged robots,which was deduced with mathematics method.In addition,five rules were concluded,which apply to hexapod robots marching locomotion planning.The first one is the fundamental strategy of multi-legged robots' leg trajectory planning.The second one helps to enhance the static and dynamic stability of multi-legged robots.The third one can improve the validity and feasibility of legs' falling points.The last two give criterions of multi-legged robots' toe trajectory figures and practical recommendatory constraints.These five rules give a good method for marching locomotion planning of multi-legged robots,and can be expended to turning planning and any other special locomotion.

  4. Segmental Kinematic Coupling of the Human Spinal Column during Locomotion

    Institute of Scientific and Technical Information of China (English)

    Guo-ru Zhao; Lei Ren; Lu-quan Ren; John R.Hutchinson; Li-mei Tian; Jian S.Dai


    As one of the most important daily motor activities, human locomotion has been investigated intensively in recent decades. The locomotor functions and mechanics of human lower limbs have become relatively well understood. However, so far our understanding of the motions and functional contributions of the human spine during locomotion is still very poor and simul-taneous in-vivo limb and spinal column motion data are scarce. The objective of this study is to investigate the delicate in-vivo kinematic coupling between different functional regions of the human spinal column during locomotion as a stepping stone to explore the locomotor function of the human spine complex. A novel infrared reflective marker cluster system was constructed using stereophotogrammetry techniques to record the 3D in-vivo geometric shape of the spinal column and the segmental position and orientation of each functional spinal region simultaneously. Gait measurements of normal walking were conducted. The preliminary results show that the spinal column shape changes periodically in the frontal plane during locomotion. The segmental motions of different spinal functional regions appear to be strongly coupled, indicating some synergistic strategy may be employed by the human spinal column to facilitate locomotion. In contrast to traditional medical imaging-based methods, the proposed technique can be used to investigate the dynamic characteristics of the spinal column, hence providing more insight into the functional biomechanies of the human spine.

  5. System design of a large fuel cell hybrid locomotive (United States)

    Miller, A. R.; Hess, K. S.; Barnes, D. L.; Erickson, T. L.

    Fuel cell power for locomotives combines the environmental benefits of a catenary-electric locomotive with the higher overall energy efficiency and lower infrastructure costs of a diesel-electric. A North American consortium, a public-private partnership, is developing a prototype hydrogen-fueled fuel cell-battery hybrid switcher locomotive for urban and military-base rail applications. Switcher locomotives are used in rail yards for assembling and disassembling trains and moving trains from one point to another. At 127 tonnes (280,000 lb), continuous power of 250 kW from its (proton exchange membrane) PEM fuel cell prime mover, and transient power well in excess of 1 MW, the hybrid locomotive will be the heaviest and most powerful fuel cell land vehicle yet. This fast-paced project calls for completion of the vehicle itself near the end of 2007. Several technical challenges not found in the development of smaller vehicles arise when designing and developing such a large fuel cell vehicle. Weight, center of gravity, packaging, and safety were design factors leading to, among other features, the roof location of the lightweight 350 bar compressed hydrogen storage system. Harsh operating conditions, especially shock loads during coupling to railcars, require component mounting systems capable of absorbing high energy. Vehicle scale-up by increasing mass, density, or power presents new challenges primarily related to issues of system layout, hydrogen storage, heat transfer, and shock loads.

  6. System design of a large fuel cell hybrid locomotive

    Energy Technology Data Exchange (ETDEWEB)

    Miller, A.R.; Hess, K.S.; Barnes, D.L.; Erickson, T.L. [Vehicle Projects LLC, 621 17th Street, Suite 2131, Denver, CO 80293 (United States)


    Fuel cell power for locomotives combines the environmental benefits of a catenary-electric locomotive with the higher overall energy efficiency and lower infrastructure costs of a diesel-electric. A North American consortium, a public-private partnership, is developing a prototype hydrogen-fueled fuel cell-battery hybrid switcher locomotive for urban and military-base rail applications. Switcher locomotives are used in rail yards for assembling and disassembling trains and moving trains from one point to another. At 127 tonnes (280,000 lb), continuous power of 250 kW from its (proton exchange membrane) PEM fuel cell prime mover, and transient power well in excess of 1 MW, the hybrid locomotive will be the heaviest and most powerful fuel cell land vehicle yet. This fast-paced project calls for completion of the vehicle itself near the end of 2007. Several technical challenges not found in the development of smaller vehicles arise when designing and developing such a large fuel cell vehicle. Weight, center of gravity, packaging, and safety were design factors leading to, among other features, the roof location of the lightweight 350 bar compressed hydrogen storage system. Harsh operating conditions, especially shock loads during coupling to railcars, require component mounting systems capable of absorbing high energy. Vehicle scale-up by increasing mass, density, or power presents new challenges primarily related to issues of system layout, hydrogen storage, heat transfer, and shock loads. (author)

  7. Vitamin D receptor signaling enhances locomotive ability in mice. (United States)

    Sakai, Sadaoki; Suzuki, Miho; Tashiro, Yoshihito; Tanaka, Keisuke; Takeda, Satoshi; Aizawa, Ken; Hirata, Michinori; Yogo, Kenji; Endo, Koichi


    Bone fractures markedly reduce quality of life and life expectancy in elderly people. Although osteoporosis increases bone fragility, fractures frequently occur in patients with normal bone mineral density. Because most fractures occur on falling, preventing falls is another focus for reducing bone fractures. In this study, we investigated the role of vitamin D receptor (VDR) signaling in locomotive ability. In the rotarod test, physical exercise enhanced locomotive ability of wild-type (WT) mice by 1.6-fold, whereas exercise did not enhance locomotive ability of VDR knockout (KO) mice. Compared with WT mice, VDR KO mice had smaller peripheral nerve axonal diameter and disordered AChR morphology on the extensor digitorum longus muscle. Eldecalcitol (ED-71, ELD), an analog of 1,25(OH)2 D3 , administered to rotarod-trained C57BL/6 mice enhanced locomotor performance compared with vehicle-treated nontrained mice. The area of AChR cluster on the extensor digitorum longus was greater in ELD-treated mice than in vehicle-treated mice. ELD and 1,25(OH)2 D3 enhanced expression of IGF-1, myelin basic protein, and VDR in rat primary Schwann cells. VDR signaling regulates neuromuscular maintenance and enhances locomotive ability after physical exercise. Further investigation is required, but Schwann cells and the neuromuscular junction are targets of vitamin D3 signaling in locomotive ability.


    Institute of Scientific and Technical Information of China (English)



    Predicting the future of paper industry is conventionally conducted from the technological and market-oriented aspects as well as a variety of constraints lying ahead of the industry such as resource, energy, and environmental issues.

  9. Underground Mine Locomotives Positioning System on WIFI and RFID%WIFI和RFID的矿井机车实时定位系统

    Institute of Scientific and Technical Information of China (English)

    司匡书; 李锡文


    实现矿井机车高效调度的前提是对机车进行定位.提出了用RFID技术绝对定位和测算位移相对定位相结合的方法,系统实现矿井机车的精确定位.同时,通过井下无线局城网WIFI实时上传定位信息,实现了调度室与机车实时显示机车位置的功能,为机车调度提供了有效的参考数据.%A necessary condition of mine locomotive efficient dispatching is positioning the locomotives, this paper combines the RFID absolutepositioning technology and relative positioning method by measuring displacement to achieve precise positioning of mine locomotives. Meanwhile, real - time positioning information is uploaded through underground WIFI network, displayed on the screen of both the central dispatching room and the locomotive, which provide reference for locomotive dispatching.

  10. Zero-Gravity Locomotion Simulators: New Ground-Based Analogs for Microgravity Exercise Simulation (United States)

    Perusek, Gail P.; DeWitt, John K.; Cavanagh, Peter R.; Grodsinsky, Carlos M.; Gilkey, Kelly M.


    Maintaining health and fitness in crewmembers during space missions is essential for preserving performance for mission-critical tasks. NASA's Exercise Countermeasures Project (ECP) provides space exploration exercise hardware and monitoring requirements that lead to devices that are reliable, meet medical, vehicle, and habitat constraints, and use minimal vehicle and crew resources. ECP will also develop and validate efficient exercise prescriptions that minimize daily time needed for completion of exercise yet maximize performance for mission activities. In meeting these mission goals, NASA Glenn Research Center (Cleveland, OH, USA), in collaboration with the Cleveland Clinic (Cleveland, Ohio, USA), has developed a suite of zero-gravity locomotion simulators and associated technologies to address the need for ground-based test analog capability for simulating in-flight (microgravity) and surface (partial-gravity) exercise to advance the health and safety of astronaut crews and the next generation of space explorers. Various research areas can be explored. These include improving crew comfort during exercise, and understanding joint kinematics and muscle activation pattern differences relative to external loading mechanisms. In addition, exercise protocol and hardware optimization can be investigated, along with characterizing system dynamic response and the physiological demand associated with advanced exercise device concepts and performance of critical mission tasks for Exploration class missions. Three zero-gravity locomotion simulators are currently in use and the research focus for each will be presented. All of the devices are based on a supine subject suspension system, which simulates a reduced gravity environment by completely or partially offloading the weight of the exercising test subject s body. A platform for mounting treadmill is positioned perpendicularly to the test subject. The Cleveland Clinic Zero-g Locomotion Simulator (ZLS) utilizes a

  11. Small Step or Giant Leap - Human Locomotion on Mars (United States)

    Hawkey, A.

    Human locomotion on Mars will be considerably different from on Earth. Optimum walking speeds will be approximately 30% lower and transitioning from a walk to a run will occur at a speed 25% slower. Peak vertical forces will be reduced by as much as 50%, and although ground contact time will remain constant with locomotion in 1g, stride length and stride time will increase. During running on Mars airborne time will increase by approximately 80% in comparison to running on the Earth. On Mars, half as much energy will be required to travel the equivalent distance on Earth and it will be 65% more economical to run rather than to walk. Crews will, therefore, find themselves using a loping gait - a running-like action, with a slight upper body lean and an extended aerial phase, an unfamiliar gait in terrestrial locomotion.

  12. Goal directed locomotion and balance control in autistic children. (United States)

    Vernazza-Martin, S; Martin, N; Vernazza, A; Lepellec-Muller, A; Rufo, M; Massion, J; Assaiante, C


    This article focuses on postural anticipation and multi-joint coordination during locomotion in healthy and autistic children. Three questions were addressed. (1) Are gait parameters modified in autistic children? (2) Is equilibrium control affected in autistic children? (3) Is locomotion adjusted to the experimenter-imposed goal? Six healthy children and nine autistic children were instructed to walk to a location (a child-sized playhouse) inside the psychomotor room of the pedopsychiatric centre located approximately 5 m in front of them. A kinematic analysis of gait (ELITE system) indicates that, rather than gait parameters or balance control, the main components affected in autistic children during locomotion are the goal of the action, the orientation towards this goal and the definition of the trajectory due probably to an impairment of movement planning.

  13. Climbing, falling and jamming during ant locomotion in confined environments

    CERN Document Server

    Gravish, Nick; Goodisman, Michael A D; Goldman, Daniel I


    Locomotion emerges from effective interactions of an individual with its environment. Principles of biological terrestrial locomotion have been discovered on unconfined vertical and horizontal substrates. However a diversity of organisms construct, inhabit, and move within confined spaces. Such animals are faced with locomotor challenges including limited limb range of motion, crowding, and visual sensory deprivation. Little is known about how these organisms accomplish their locomotor tasks, and such environments challenge human-made devices. To gain greater insight into how animals move within confined spaces we study the confined locomotion of the fire ant {\\em Solenopsis invicta}, which constructs subterranean tunnel networks (nests). Laboratory experiments reveal that ants construct tunnels with diameter, D, comparable to bodylength, L=3.5 $\\pm$ 0.5 mm. Ants can move rapidly (> 9 bodylengths/sec) within these environments; their tunnels allow for effective limb, body, and antennae interaction with walls ...

  14. Prospect of commercialization of some new technologies in electrical engineering in 21-st century%二十一世纪若干电工新技术产业化展望

    Institute of Scientific and Technical Information of China (English)



    On the basis of the development of the new technology in electrical engineering during second half of the 20-th century, and the practical needs of the social and economical development for the first half of 21-st century in China, the pa per comprehensively describes the situation and prospect of some new technologie s in electrical engineering, which are possibly quite fast developing and commercializing and will form some new industrial branches, inclu ding renewable energy power generation, high-speed magnetic levitation train, h igh magnetic field application and superconducting electrical power.%根据二十世纪下半叶电工新技术的发展和我国二十一世纪上半叶经济与社会发展的实际需求 ,重点介绍了可能迅速发展,形成强大新兴产业的可再生能源发电,高速磁悬浮列车,强磁 场应用与超导电力的情况与展望。

  15. Towards a general neural controller for quadrupedal locomotion. (United States)

    Maufroy, Christophe; Kimura, Hiroshi; Takase, Kunikatsu


    Our study aims at the design and implementation of a general controller for quadruped locomotion, allowing the robot to use the whole range of quadrupedal gaits (i.e. from low speed walking to fast running). A general legged locomotion controller must integrate both posture control and rhythmic motion control and have the ability to shift continuously from one control method to the other according to locomotion speed. We are developing such a general quadrupedal locomotion controller by using a neural model involving a CPG (Central Pattern Generator) utilizing ground reaction force sensory feedback. We used a biologically faithful musculoskeletal model with a spine and hind legs, and computationally simulated stable stepping motion at various speeds using the neuro-mechanical system combining the neural controller and the musculoskeletal model. We compared the changes of the most important locomotion characteristics (stepping period, duty ratio and support length) according to speed in our simulations with the data on real cat walking. We found similar tendencies for all of them. In particular, the swing period was approximately constant while the stance period decreased with speed, resulting in a decreasing stepping period and duty ratio. Moreover, the support length increased with speed due to the posterior extreme position that shifted progressively caudally, while the anterior extreme position was approximately constant. This indicates that we succeeded in reproducing to some extent the motion of a cat from the kinematical point of view, even though we used a 2D bipedal model. We expect that such computational models will become essential tools for legged locomotion neuroscience in the future.

  16. Quantifying coordination between the head and the trunk during locomotion (United States)

    Mulavara, Ajitkumar P.

    This study developed unique measures of coordination between the head and the trunk during the combined tasks of locomotion and gaze fixation of visual targets. These measures will be used to determine the effects of long-duration space flight on sensorimotor function. This will enable evaluation of the efficacy of countermeasures and postflight rehabilitation programs. Indices were proposed as composite measures reflecting the functional aspects of the control system involved in gaze fixation during locomotion. The stiffness index (Nm/deg) was calculated as the ratio between the change in the magnitude of the net relative moments to the change in magnitude of the relative angular motion. The viscosity index (Nm-sec/deg) was calculated as the ratio between the change in the magnitude of the net relative moments to the change in magnitude of the relative angular velocity. These coordination measures were used to evaluate the normal dynamic pattern of coordination between the head and the trunk with respect to the events occurring in a gait cycle. The indices were evaluated for three discrete speeds of locomotion for the same gaze fixation task and for three discrete gaze fixation tasks at the same speed of locomotion. The indices were found to be repeatable measures reflecting inter-segmental coordination strategies while performing an activity of daily living. These indices showed that the coordination of the head with respect to the trunk was significantly different between the events of heel strike and swing phases during the gait cycle. These indices showed no significant differences between the different gaze fixation tasks. The speed of locomotion had a significant effect on the magnitude of these indices. The results indicate that the CNS dynamically modulates head motion with respect to the trunk dependent on the events occurring during the gait cycle. This modulation is appropriate for stabilizing gaze during locomotion. The results support the hypothesis

  17. Acquiring Efficient Locomotion in a Simulated Quadruped through Evolving Random and Predefined Neural Networks

    DEFF Research Database (Denmark)

    Veenstra, Frank; Struck, Alexander; Krauledat, Matthias


    The acquisition and optimization of dynamically stable locomotion is important to engender fast and energy efficient locomotion in animals. Conventional optimization strategies tend to have difficulties in acquiring dynamically stable gaits in legged robots. In this paper, an evolving neural...

  18. 40 CFR 1033.15 - Other regulation parts that apply for locomotives. (United States)


    ... chapter apply to everyone, including anyone who manufactures, remanufactures, imports, maintains, owns, or... and others. (2) Exclusions and exemptions for certain locomotives. (3) Importing locomotives. (4) Selective enforcement audits of your production. (5) Defect reporting and recall. (6) Procedures...

  19. 3-D Locomotion control for a biomimetic robot fish

    Institute of Scientific and Technical Information of China (English)

    Zhigang ZHANG; Shuo WANG; Min TAN


    This paper concerns with 3-D locomotion control methods for a biomimetic robot fish. The system architecture of the fish is firstly presented based on a physical model of carangiform fish. The robot fish has a flexible body, a rigid caudal fin and a pair of pectoral fins, driven by several servomotors. The motion control of the robot fish are then divided into speed control, orientation control, submerge control and transient motion control, corresponding algorithms are detailed respectively.Finally, experiments and analyses on a 4-1ink, radio-controlled robot fish prototype with 3-D locomotion show its good performance.

  20. Locomotive two-current ÖBB, series 1822

    Directory of Open Access Journals (Sweden)

    Gabriel MOISA


    Full Text Available The paper presents certain nominal and exploitation data about OBB two-current locomotive, alias locomotive from Breeder, of components principal, which contain she (motors 6 FRA 7059, principal transformer, microcomputer MICAS-S2. Is described in detail this principle of function, as well as one command-control system de-centralized MICAS-S2. It insists about the operation and transit mode from alternate current in continuum current. Are setting off the different protections that are imposed.

  1. Injection nozzle materials for a coal-fueled diesel locomotive

    Energy Technology Data Exchange (ETDEWEB)

    Mehan, R.L.; Leonard, G.L.; Johnson, R.N.; Lavigne, R.G.


    In order to identify materials resistant to coal water mixture (CWM) erosive wear, a number of materials were evaluated using both orifice slurry and dry air erosion tests. Both erosion tests ranked materials in the same order, and the most erosion resistant material identified was sintered diamond compact. Based on operation using CWM in a single-cylinder locomotive test, superhard nozzle materials such as diamond, cubic boron nitride, and perhaps TiB{sub 2} were found to be necessary in order to obtain a reasonable operating life. An injection nozzle using sintered diamond compacts was designed and built, and has operated successfully in a CWM fired locomotive engine.

  2. Radiation Curing——New Technology of Green Industries Facing 21st Century%辐射固化——面向21世纪的绿色工业的新技术

    Institute of Scientific and Technical Information of China (English)

    王建国; 滕人瑞


    The development of radiation curing was simply reviewed and the mechanism of UV curing and EB curing, the equipment and materials used in the radiation curing were also introduced. Compared with ordinary curing, the radiation curing has advantages of energy saving, high effectiveness and little pollution. It is a new technology of green industries facing the 21st century.%概述了辐射固化新技术的发展过程,简述了紫外光固化和电子束固化机理、所需设备和涂层的原材料.与常规固化方法比较,辐射固化具有低能耗、高效率和无污染的优点,是面向21世纪的绿色工业的新技术.

  3. A musculoskeletal model of human locomotion driven by a low dimensional set of impulsive excitation primitives. (United States)

    Sartori, Massimo; Gizzi, Leonardo; Lloyd, David G; Farina, Dario


    Human locomotion has been described as being generated by an impulsive (burst-like) excitation of groups of musculotendon units, with timing dependent on the biomechanical goal of the task. Despite this view being supported by many experimental observations on specific locomotion tasks, it is still unknown if the same impulsive controller (i.e., a low-dimensional set of time-delayed excitastion primitives) can be used as input drive for large musculoskeletal models across different human locomotion tasks. For this purpose, we extracted, with non-negative matrix factorization, five non-negative factors from a large sample of muscle electromyograms in two healthy subjects during four motor tasks. These included walking, running, sidestepping, and crossover cutting maneuvers. The extracted non-negative factors were then averaged and parameterized to obtain task-generic Gaussian-shaped impulsive excitation curves or primitives. These were used to drive a subject-specific musculoskeletal model of the human lower extremity. Results showed that the same set of five impulsive excitation primitives could be used to predict the dynamics of 34 musculotendon units and the resulting hip, knee and ankle joint moments (i.e., NRMSE = 0.18 ± 0.08, and R (2) = 0.73 ± 0.22 across all tasks and subjects) without substantial loss of accuracy with respect to using experimental electromyograms (i.e., NRMSE = 0.16 ± 0.07, and R (2) = 0.78 ± 0.18 across all tasks and subjects). Results support the hypothesis that biomechanically different motor tasks might share similar neuromuscular control strategies. This might have implications in neurorehabilitation technologies such as human-machine interfaces for the torque-driven, proportional control of powered prostheses and orthoses. In this, device control commands (i.e., predicted joint torque) could be derived without direct experimental data but relying on simple parameterized Gaussian-shaped curves, thus decreasing the input drive

  4. Bringing (Century-Old) Technology into the Classroom, Part II: Teaching Vibrations and Waves, Electricity and Magnetism, and Optics with Antiques (United States)

    Jewett, John W., Jr.


    This is the second in a series of two articles on using antique devices to teach introductory physics. As mentioned in the first article, students can more clearly see the physics required for the operation of antique devices than for modern-day technological devices. This article further discusses antiques used to teach vibrations and waves,…

  5. Innovative Methodologies for 21st Century Learning, Teaching and Assessment: A Convenience Sampling Investigation into the Use of Social Media Technologies in Higher Education (United States)

    Kivunja, Charles


    The advent of the Web as a social technology has created opportunities for the creation of informal learning environments, which have potential for innovative methodologies in learning, teaching and assessment. However, as Wolfe (2001) admonishes, "contrary to the rhetoric of cheerleaders, the Web places greater demands on students than…

  6. Using Technology in the Languages Classroom from the 20th to the 21st Century: A Literature Review of Classroom Practices and Fundamental Second Language Learning Theories (United States)

    Hess, Cherie


    In this paper, the literature related to the use of technology in the languages classroom will be explored. In relation to the teaching and learning methodologies and approaches past and present as well as current research, comparisons are made between the audio-lingual/visual classroom and the digital classroom by way of describing and comparing…

  7. A Universally Designed for Learning (UDL) Infused Technological Pedagogical Content Knowledge (TPACK) Practitioners' Model Essential for Teacher Preparation in the 21st Century (United States)

    Benton-Borghi, Beatrice Hope


    This article challenges educational computing researchers and teacher educators to consider a merger between universal design for learning and technological pedagogical content knowledge to create a practitioners' model to prepare teachers to graduate with the knowledge, skills, and dispositions needed to teach the full spectrum of learners.…

  8. 49 CFR 231.15 - Steam locomotives used in road service. (United States)


    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.15 Steam locomotives used... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotives used in road service. 231.15... extends across front end of locomotive to within 8 inches of end of buffer-beam, and is seven-eighths...

  9. Multi-Locomotion Robotic Systems New Concepts of Bio-inspired Robotics

    CERN Document Server

    Fukuda, Toshio; Sekiyama, Kosuke; Aoyama, Tadayoshi


    Nowadays, multiple attention have been paid on a robot working in the human living environment, such as in the field of medical, welfare, entertainment and so on. Various types of researches are being conducted actively in a variety of fields such as artificial intelligence, cognitive engineering, sensor- technology, interfaces and motion control. In the future, it is expected to realize super high functional human-like robot by integrating technologies in various fields including these types of researches. The book represents new developments and advances in the field of bio-inspired robotics research introducing the state of the art, the idea of multi-locomotion robotic system to implement the diversity of animal motion. It covers theoretical and computational aspects of Passive Dynamic Autonomous Control (PDAC), robot motion control, multi legged walking and climbing as well as brachiation focusing concrete robot systems, components and applications. In addition, gorilla type robot systems are described as...

  10. A solution for increasing the efficiency of diesel - electric locomotives with super capacitive energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Destraz, B.; Barrade, P.; Rufer, A. [Swiss Federal Institute of Technology Lausanne, Lab. of Industrial Electronics, CH Lausanne EPFL (Switzerland)


    Diesel - electric traction is a well established technology in railways systems, mainly for lines with a low traffic potential. In those conditions, a diesel powered locomotive is chosen because the infrastructure costs are lower in comparison to a standard electric train. The main inconvenience of that technology is the primary energy source: oil resources are not infinite, prices are difficult to forecast and CO{sub 2} production increases global warming. It is therefore important to develop new strategies to increase the energy efficiency of diesel - electric trains. To reach that goal, a system with super-capacitive energy storage will be proposed in this paper. The aspects of production and exploitation costs are going to be presented in more details. The proposed solution will reduce diesel consumption and therefore also CO{sub 2} and other pollutant emissions while being economically viable. (authors)

  11. Bringing (Century-Old) Technology into the Classroom, Part II: Teaching Vibrations and Waves, Electricity and Magnetism, and Optics with Antiques (United States)

    Jewett, John W.


    This is the second in a series of two articles on using antique devices to teach introductory physics. As mentioned in the first article, students can more clearly see the physics required for the operation of antique devices than for modern-day technological devices. This article will discuss antiques used to teach vibrations and waves, electricity and magnetism, and optics. In addition, a description of possible sources for obtaining antiques will help those interested in pursuing these ideas.

  12. Energy Efficiency of Robot Locomotion Increases Proportional to Weight

    DEFF Research Database (Denmark)

    Larsen, Jørgen Christian; Støy, Kasper


    The task of producing steady, stable and energy efficient locomotion in legged robots with the ability to walk in un- known terrain have for many years been a big challenge in robotics. This work is focusing on how different robots build from the modular robotic system, LocoKit by Larsen et. la [3...

  13. Energy Efficiency of Robot Locomotion Increases Proportional to Weight

    DEFF Research Database (Denmark)

    Larsen, J. C.; Stoy, K.


    The task of producing steady, stable and energy efficient locomotion in legged robots with the ability to walk in unknown terrain have for many years been a big challenge in robotics. This work is focusing on how different robots build from the modular robotic system, LocoKit by Larsen et al. [1...

  14. Cerebellar Control of Locomotion in Health and Disease

    NARCIS (Netherlands)

    M.F. Vinueza Veloz (Maria)


    markdownabstract__Abstract__ Modern neuroscience is paving the way for new insight into cerebellar functions including the control of cognitive, autonomic and emotional processes. Yet, how the cerebellum contributes to complex motor behaviors, such as locomotion, is still only partially understood.

  15. Scaling in Theropod Dinosaurs: Femoral Bone Strength and Locomotion II (United States)

    Lee, Scott


    In the second paper of this series, the effect of transverse femoral stresses due to locomotion in theropod dinosaurs of different sizes was examined for the case of an unchanging leg geometry. Students are invariably thrilled to learn about theropod dinosaurs, and this activity applies the concepts of torque and stress to the issue of theropod…

  16. Scaling in Theropod Dinosaurs: Femoral Bone Strength and Locomotion (United States)

    Lee, Scott


    In our first article on scaling in theropod dinosaurs, the longitudinal stress in the leg bones due to supporting the weight of the animal was studied and found not to control the dimensions of the femur. As a continuation of our study of elasticity in dinosaur bones, we now examine the transverse stress in the femur due to locomotion and find…

  17. Energetic extremes in aquatic locomotion by coral reef fishes.

    Directory of Open Access Journals (Sweden)

    Christopher J Fulton

    Full Text Available Underwater locomotion is challenging due to the high friction and resistance imposed on a body moving through water and energy lost in the wake during undulatory propulsion. While aquatic organisms have evolved streamlined shapes to overcome such resistance, underwater locomotion has long been considered a costly exercise. Recent evidence for a range of swimming vertebrates, however, has suggested that flapping paired appendages around a rigid body may be an extremely efficient means of aquatic locomotion. Using intermittent flow-through respirometry, we found exceptional energetic performance in the Bluelined wrasse Stethojulis bandanensis, which maintains tuna-like optimum cruising speeds (up to 1 metre s(-1 while using 40% less energy than expected for their body size. Displaying an exceptional aerobic scope (22-fold above resting, streamlined rigid-body posture, and wing-like fins that generate lift-based thrust, S. bandanensis literally flies underwater to efficiently maintain high optimum swimming speeds. Extreme energetic performance may be key to the colonization of highly variable environments, such as the wave-swept habitats where S. bandanensis and other wing-finned species tend to occur. Challenging preconceived notions of how best to power aquatic locomotion, biomimicry of such lift-based fin movements could yield dramatic reductions in the power needed to propel underwater vehicles at high speed.

  18. A Field Test of Festinger's Substitute Locomotion Theory. (United States)

    Stewart, Lea P.; Gudykunst, William B.


    Provides evidence for rejecting Festinger's Substitute Locomotion Theory of organizational communication. Demonstrates a clear difference between formal and informal channels of upward communication. Indicates that high mobility individuals communicate significantly more with their supervisors than low mobility individuals and that males…

  19. Optimizing snake locomotion in the plane. II. Large transverse friction

    CERN Document Server

    Alben, Silas


    We determine analytically the form of optimal snake locomotion when the coefficient of transverse friction is large, the typical regime for biological and robotic snakes. We find that the optimal snake motion is a retrograde traveling wave, with a wave amplitude that decays as the -1/4 power of the coefficient of transverse friction. This result agrees well with our numerical computations.

  20. 49 CFR 232.105 - General requirements for locomotives. (United States)


    ... after April 1, 2004, shall be equipped with a hand or parking brake that is: (1) Capable of application... (3) percent grade. (c) On locomotives so equipped, the hand or parking brake as well as its parts and... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION BRAKE SYSTEM SAFETY STANDARDS FOR FREIGHT AND OTHER...

  1. Effects of roughness and compressibility of flooring on cow locomotion. (United States)

    Rushen, J; de Passillé, A M


    We examined the effects of roughness and degree of compressibility of flooring on the locomotion of dairy cows. We observed 16 cows walking down specially constructed walkways with materials that differed in surface roughness and degree of compressibility. Use of a commercially available soft rubber flooring material decreased slipping, number of strides, and time to traverse the corridor. These effects were most apparent at difficult sections of the corridor, such as at the start, at a right-angle turn, and across a gutter. Covering the walkway with a thin layer of slurry increased frequency of slipping, number of strides, and time taken to traverse the walkway. Effects of adding slurry were not overcome by increasing surface roughness or compressibility. Placing more compressible materials under a slip-resistant material reduced the time and number of steps needed to traverse the corridor but did not reduce slips, and the effects on cow locomotion varied nonlinearly with the degree of compressibility of the floor. Use of commercially available rubber floors improved cow locomotion compared with concrete floors. However, standard engineering measures of the floor properties may not predict effects of the floor on cow behavior well. Increasing compressibility of the flooring on which cows walk, independently of the roughness of the surface, can improve cow locomotion.

  2. Locomotive assignment problem with train precedence using genetic algorithm (United States)

    Noori, Siamak; Ghannadpour, Seyed Farid


    This paper aims to study the locomotive assignment problem which is very important for railway companies, in view of high cost of operating locomotives. This problem is to determine the minimum cost assignment of homogeneous locomotives located in some central depots to a set of pre-scheduled trains in order to provide sufficient power to pull the trains from their origins to their destinations. These trains have different degrees of priority for servicing, and the high class of trains should be serviced earlier than others. This problem is modeled using vehicle routing and scheduling problem where trains representing the customers are supposed to be serviced in pre-specified hard/soft fuzzy time windows. A two-phase approach is used which, in the first phase, the multi-depot locomotive assignment is converted to a set of single depot problems, and after that, each single depot problem is solved heuristically by a hybrid genetic algorithm. In the genetic algorithm, various heuristics and efficient operators are used in the evolutionary search. The suggested algorithm is applied to solve the medium sized numerical example to check capabilities of the model and algorithm. Moreover, some of the results are compared with those solutions produced by branch-and-bound technique to determine validity and quality of the model. Results show that suggested approach is rather effective in respect of quality and time.

  3. Locomotion in Stroke Subjects: Interactions between Unaffected and Affected Sides (United States)

    Kloter, Evelyne; Wirz, Markus; Dietz, Volker


    The aim of this study was to evaluate the sensorimotor interactions between unaffected and affected sides of post-stroke subjects during locomotion. In healthy subjects, stimulation of the tibial nerve during the mid-stance phase is followed by electromyography responses not only in the ipsilateral tibialis anterior, but also in the proximal arm…

  4. Optimal trajectory planning for natural biped walking locomotion

    Institute of Scientific and Technical Information of China (English)

    刘荣强; 焦映厚; 陈照波


    An optimal trajectory planning method has been proposed for the walking locomotion of a biped me-c hanical system with thighs, shanks and small feet, which is modelled as a 3-DOF link system consisting of aninverted pendulum and a 2-DOF swing leg. The locomotion of swing and supporting legs is solved by the optimaltrajectory planning based on function approximation. The optimal trajectory planning based on function approxi-mation. The optimal walking locomotion solution with minimum square of input torque exhibits a natural walkinggait with one step period of 0.64 s similar to the human walking gait by using the link parameters of an adult'sleg. It is concluded from the computation results that the method proposed in this paper has been proved to bean effective tool for solving the optimal walking locomotion and joint control torque problems for a 3-DOF bipedmechanism; when the ankle joint of the supporting leg is a passive joint, a nearly, optimal walking solution canbe obtained at t1 = 0. 49 s and t2 = 10 s, and however, when the knee is a passive joint, it is impossible to ob-tain a solution which satisfies the constraint condition; for the link parameters used in this paper, the length ofan optimal stride is 0.3 m.

  5. Twentieth Century Moral Philosophy


    Stout, Rowland


    Despite being somewhat long in the tooth at the time, Aristotle, Hume and Kant were still dominating twentieth century moral philosophy. Much of the progress made in that century came from a detailed working through of each of their approaches by the expanding and increasingly professionalized corps of academic philosophers. And this progress can be measured not just by the quality and sophistication of moral philosophy at the end of that century, but also by the narrowing of s...

  6. Configuration Synthesis and Performance Evaluation Metrics of Lunar Rover Locomotion Systems

    Institute of Scientific and Technical Information of China (English)

    DENG Zongquan; ZHANG Peng; GAO Haibo; HU Ming


    A method of topology synthesis based on graph theory and mechanism combination theory was applied to the configuration design of locomotion systems of lunar exploration rovers (LER).Through topology combination of wheel structural unit,suspension unit,and connecting device unit between suspension and load platform,some new locomotion system configurations were proposed and the metrics and indexes to evaluate the performance of the new locomotion system were analyzed.Performance evaluation and comparison between two LER with locomotion systems of different configurations were analyzed.The analysis results indicate that the new locomotion system configuration has good trafficability performance.

  7. The Effective of Using 5 Simple Steps (QSCCS) Learning Activities on Facebook to Promote Self-Learning in the 21st Century in Technology Printing and Advertising Course for Undergraduate Students in Education Technology and Communications (United States)

    Sittiwong, Tipparat; Wongnam, Thanet


    The objectives of this study were to: 1) study the result of implementing QSCCS with Facebook; 2) study students' opinions concerning the implementation of QSCCS with Facebook. The samples were 38 Technology and Communications undergraduates who attended Printing and Advertising Technology course in academic year of 2013. The information was…

  8. A Locomotion Intent Prediction System Based on Multi-Sensor Fusion

    Directory of Open Access Journals (Sweden)

    Baojun Chen


    Full Text Available Locomotion intent prediction is essential for the control of powered lower-limb prostheses to realize smooth locomotion transitions. In this research, we develop a multi-sensor fusion based locomotion intent prediction system, which can recognize current locomotion mode and detect locomotion transitions in advance. Seven able-bodied subjects were recruited for this research. Signals from two foot pressure insoles and three inertial measurement units (one on the thigh, one on the shank and the other on the foot are measured. A two-level recognition strategy is used for the recognition with linear discriminate classifier. Six kinds of locomotion modes and ten kinds of locomotion transitions are tested in this study. Recognition accuracy during steady locomotion periods (i.e., no locomotion transitions is 99.71% ± 0.05% for seven able-bodied subjects. During locomotion transition periods, all the transitions are correctly detected and most of them can be detected before transiting to new locomotion modes. No significant deterioration in recognition performance is observed in the following five hours after the system is trained, and small number of experiment trials are required to train reliable classifiers.

  9. Contributions To The 9th Workshop On Rf Superconductivity, Accelerator Technology For The 21st Century (rf Superconductivity Activities At Lal Accelerating Field Measurement In 3 Ghz Pulsed Cavities Design And Test Of A 1.3 Ghz Travelling Wave Window

    CERN Document Server

    Le Duff, J; Thomas, C


    Contributions To The 9th Workshop On Rf Superconductivity, Accelerator Technology For The 21st Century (rf Superconductivity Activities At Lal Accelerating Field Measurement In 3 Ghz Pulsed Cavities Design And Test Of A 1.3 Ghz Travelling Wave Window

  10. Educational Policies and new Technologies: a Challenge of the XXI Century Políticas Educacionais e novas Tecnologias: um Desafio do Século XXI

    Directory of Open Access Journals (Sweden)

    Vera Lúcia Lopes Cristovão


    Full Text Available Nowadays, there are many technological resources that make it possible the interaction and the development of the foreign languages learning processes. These tools can be used by teachers and students in the construction of knowledge. It is not unusual to hear that teachers need to update themselves, go further than the blackboard and the chalk, and that both digital literacy and preparation for the technological era have become necessary. This research aims to verify what educational policies have been developed, how it is carried out the education of pre-service and in-service teacher’s of foreign language for the pedagogical use of new technologies, and what investments have been made in didactic and technological resources of schools. Araújo’s (2007, Araújo and Dieb’s (2009, Marcuschi and Xavier’s (2010, Souza-Lima’s (2010 and Gomes’s studies are the main theoretical sources for this work. For the analysis, Data was collected by using a questionnaire from which the contribution of Foreign Language teachers of different public schools in the Regional Teaching Center of the city of Apucarana –Paraná was analysed. These teacher’s voices have given us basis for a rich reflection about the contradictions that exist among the curricular guidelines and the conditions that are offered to accomplish them.Atualmente, há muitos recursos tecnológicos que possibilitam a interação e o desenvolvimento de processos de aprendizagem de línguas estrangeiras: ferramentas que podem ser utilizadas por professores e alunos na construção do conhecimento. Não é raro o discurso de que os professores precisam atualizar-se, de que necessitam ir além da lousa e do giz e que se fazem necessários o letramento digital e a preparação para uma era tecnológica. Nosso objetivo, com esta pesquisa, é verificar que políticas educacionais estão sendo implementadas nas escolas nesse sentido, como se realiza a formação inicial e continuada dos


    Directory of Open Access Journals (Sweden)

    L. V. Ursulyak


    Full Text Available Purpose. To compare the operational characteristics of freight diesel-electric locomotives ER20CF and 2М62м, which are operated with Lithuanian Railways. Important problems on traction calculations are considered in this article. In this article the critical tasks of traction calculations are solved. It is the main computational tool in the rational functioning, planning and development of railways: determination of the estimated weight of the rolling stock, the diagrams construction of specific resultant forces of a train, the permitted speed definition of the train on the slopes, curves of train traffic construction on the section. Methodology. Using the rules and methods of traction calculations the analysis of the basic operational characteristics of the modernized freight diesel-electric locomotive 2М62m and freight passenger dual locomotive 2ER20CF was held. The maximum weight of the train set, the track structure on a high-speed ascent through the use of kinetic energy (with traction and without traction, technical speed, acceleration force and the value of the smallest radius curve are selected as controlled parameters. During the calculations it was considered that the trains were formed of a fully loaded four-axle gondola cars, model 112-119 (feature-606 with axle load of 23.5 t; the motion was carried out on the continuous welded rail track; the front of the train set is a dual locomotive 2ER20CF or two locomotive 2М62м. Longitudinal profile of the road on the route Vilnus–KlF was analyzed for the choice of theoretical rise. Inspection concerning the possibility of overcoming the high-speed rise was performed with an analytical method, based on the use of the kinetic energy accumulated by the overcoming of «light» elements of the profile. Findings. In the calculations, the maximum weight of the train set taking into account theoretical rise was analyzed. The inspection of the theoretical weight of the train set on a reliable

  12. Technology which desires

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangyook


    The table of contents are technology, human and society, Frankenstein, prometheus in modern, modern technology which are pressing human and nature, utopia and dystopia don't come, progressing of bicycle, Edison built the system, clock and human from nano paint to nano machine, diesel locomotive and KTX, airplanes is disappearing, machine is monsters, Taylorism and dream of engineer, union between mass production and public consumption, go away mass production, humanoid and a cyborg and beginning of global village.

  13. Nineteenth-Century English

    DEFF Research Database (Denmark)

    Fabricius, Anne


    The article reviews the book "Nineteenth-Century English: Stability and Change," by Merja Kytö, Mats Rydèn and Erik Smitterberg......The article reviews the book "Nineteenth-Century English: Stability and Change," by Merja Kytö, Mats Rydèn and Erik Smitterberg...

  14. Science and technology for the new century : a framework for the human resources management of the federal science and technology community - project 1, management and scientific development and training

    Energy Technology Data Exchange (ETDEWEB)



    The science-based departments of the Canadian Government are responsible for ensuring the effectiveness and relevance of federal investment in science and technology research projects. This publication provides a flexible framework for effectively planning and delivering a learning strategy for the science and technology workforce to ensure that federal science and technology objectives can be met in the future. The framework helps to: (1) identify the corporate needs for developing the science and technology workforce of the federal government by providing recommendations to appropriate organizations, (2) establish the need for a learning strategy linked to the business lines of each organization, (3) find the best ways to implement learning at the appropriate level of investment, (4) choose means to monitor this investment so that its impact on the organization can be measured, and (5) take the proper steps to ensure the successful introduction and nurturing of a learning environment to ensure maximum return on the investment. 9 refs., 5 figs.

  15. Waste Disposal in the 21st Century and Diabetes Technology: A Little Coffee (Cup) or Beer (Can) with That Insulin Infusion (Set) (United States)

    Krisiunas, Ed


    The advent of single-use disposable syringes along with myriad similar products for the health care industry has raised interest in the impact of these devices on the environment. Interest does not stop at impact of the device, but also includes associated pharmaceutical agents. Across the spectrum of health care, providers as well as end users of products are assessing the impact of product design and contents upon land, air, and water. In this issue of Journal of Diabetes Science and Technology, Pfützner and colleagues tackle the issue by focusing on a product for the diabetes patient. As environmental sustainability has become part of the evaluation process of many products, their assessment sheds some interesting light on the impact of a group of devices when compared and contrasted against the ever-popular disposable coffee cup or beer/soda aluminum can. Regional variations in waste disposal practices need to be understood when conducting these types of assessments. PMID:21880225

  16. A Terradynamics of Legged Locomotion on Granular Media

    CERN Document Server

    Li, Chen; Goldman, Daniel I; 10.1126/science.1229163


    The theories of aero- and hydrodynamics predict animal movement and device design in air and water through the computation of lift, drag, and thrust forces. Although models of terrestrial legged locomotion have focused on interactions with solid ground, many animals move on substrates that flow in response to intrusion. However, locomotor-ground interaction models on such flowable ground are often unavailable. We developed a force model for arbitrarily-shaped legs and bodies moving freely in granular media, and used this "terradynamics" to predict a small legged robot's locomotion on granular media using various leg shapes and stride frequencies. Our study reveals a complex but generic dependence of stresses in granular media on intruder depth, orientation, and movement direction and gives insight into the effects of leg morphology and kinematics on movement.

  17. Fluid elasticity increases the locomotion of flexible swimmers

    CERN Document Server

    Espinosa-Garcia, Julian; Zenit, Roberto; 10.1063/1.4795166


    We conduct experiments with flexible swimmers to address the impact of fluid viscoelasticity on their locomotion. The swimmers are composed of a magnetic head actuated in rotation by a frequency-controlled magnetic field and a flexible tail whose deformation leads to forward propulsion. We consider both viscous Newtonian and glucose-based Boger fluids with similar viscosities. We find that the elasticity of the fluid systematically enhances the locomotion speed of the swimmer, and that this enhancement increases with Deborah number. Using Particle Image Velocimetry to visualize the flow field, we find a significant difference in the amount of shear between the rear and leading parts of the swimmer head. We conjecture that viscoelastic normal stresses lead to a net elastic forces in the swimming direction and thus a faster swimming speed.

  18. Hybrid control and motion planning of dynamical legged locomotion

    CERN Document Server


    "This book provides a comprehensive presentation of issues and challenges faced by researchers and practicing engineers in motion planning and hybrid control of dynamical legged locomotion. The major features range from offline and online motion planning algorithms to generate desired feasible periodic walking and running motions and tow-level control schemes, including within-stride feedback laws, continuous time update laws and event-based update laws, to asymptotically stabilize the generated desired periodic orbits. This book describes the current state of the art and future directions across all domains of dynamical legged locomotion so that readers can extend proposed motion planning algorithms and control methodologies to other types of planar and 3D legged robots".

  19. Using Biomass as Fuel Substitute to Reduce Fuel Cost in Locomotive

    Directory of Open Access Journals (Sweden)

    Gunjan De


    Full Text Available The biological waste poses some characteristics which indicate that they have the calorific value up to some extent which can be used as a fuel. Jute sticks, Jute caddies, cow dung dust, Dhaincha stick, wood etc. can be used as a raw material. By application of proper technologies the potential of these materials can be exploited. The study will show that the one ton of any of these bio wastes can easily substitute coal and oil which will also reduce the fuel cost as well. The process implies supply of producer gas from gasifier to engine to generate power in space of diesel engine to run locomotives, in industries, in power generation, etc. This will result in utilization of green energy and cost effective operation.

  20. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. (United States)

    Palagi, Stefano; Mark, Andrew G; Reigh, Shang Yik; Melde, Kai; Qiu, Tian; Zeng, Hao; Parmeggiani, Camilla; Martella, Daniele; Sanchez-Castillo, Alberto; Kapernaum, Nadia; Giesselmann, Frank; Wiersma, Diederik S; Lauga, Eric; Fischer, Peer


    Microorganisms move in challenging environments by periodic changes in body shape. In contrast, current artificial microrobots cannot actively deform, exhibiting at best passive bending under external fields. Here, by taking advantage of the wireless, scalable and spatiotemporally selective capabilities that light allows, we show that soft microrobots consisting of photoactive liquid-crystal elastomers can be driven by structured monochromatic light to perform sophisticated biomimetic motions. We realize continuum yet selectively addressable artificial microswimmers that generate travelling-wave motions to self-propel without external forces or torques, as well as microrobots capable of versatile locomotion behaviours on demand. Both theoretical predictions and experimental results confirm that multiple gaits, mimicking either symplectic or antiplectic metachrony of ciliate protozoa, can be achieved with single microswimmers. The principle of using structured light can be extended to other applications that require microscale actuation with sophisticated spatiotemporal coordination for advanced microrobotic technologies.

  1. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots (United States)

    Palagi, Stefano; Mark, Andrew G.; Reigh, Shang Yik; Melde, Kai; Qiu, Tian; Zeng, Hao; Parmeggiani, Camilla; Martella, Daniele; Sanchez-Castillo, Alberto; Kapernaum, Nadia; Giesselmann, Frank; Wiersma, Diederik S.; Lauga, Eric; Fischer, Peer


    Microorganisms move in challenging environments by periodic changes in body shape. In contrast, current artificial microrobots cannot actively deform, exhibiting at best passive bending under external fields. Here, by taking advantage of the wireless, scalable and spatiotemporally selective capabilities that light allows, we show that soft microrobots consisting of photoactive liquid-crystal elastomers can be driven by structured monochromatic light to perform sophisticated biomimetic motions. We realize continuum yet selectively addressable artificial microswimmers that generate travelling-wave motions to self-propel without external forces or torques, as well as microrobots capable of versatile locomotion behaviours on demand. Both theoretical predictions and experimental results confirm that multiple gaits, mimicking either symplectic or antiplectic metachrony of ciliate protozoa, can be achieved with single microswimmers. The principle of using structured light can be extended to other applications that require microscale actuation with sophisticated spatiotemporal coordination for advanced microrobotic technologies.

  2. Piezoelectric vibration-driven locomotion systems - Exploiting resonance and bistable dynamics (United States)

    Fang, Hongbin; Wang, K. W.


    While a piezoelectric-based vibration-driven system is an excellent candidate for actuating small-size crawling-type locomotion robots, it has the major drawback of limited stroke output that would severely constraint the system's locomotion performance. In this paper, to advance the state of the art, we propose two novel designs of piezoelectric vibration-driven locomotion systems. The first utilizes the resonant amplification concept, and the second explores the design of a bistable device. While these two ideas have been explored for piezoelectric actuation amplification in general, they have never been exploited for crawling-type robotic locomotion. Numerical analyses on both systems reveal that resonance and bistability can substantially increase the systems' average locomotion speed. Moreover, this research shows that with bistability, the system is able to output high average locomotion speed in a wider frequency band, possess multiple locomotion modes, and achieve fast switches among them. Through proof-of-concept prototypes, the predicted locomotion performance improvements brought by resonance and bistability are verified. Finally, the basin stability is evaluated to systematically describe the occurring probability of certain locomotion behavior of the bistable system, which would provide useful guideline to the design and control of bistable vibration-driven locomotion systems.

  3. The 21st Century: The Century of Biology on Earth and Beyond (United States)

    Tarter, Jill C.; SETI Team


    In a bold 2004 paper, Craig Venter and Daniel Cohen* claimed that whereas the 20th century had been the Century of Physics (Special and General Relativity, Quantum Mechanics, Big Bang Cosmology, Dark Matter and Dark Energy, the Standard Model of Particle Physics…) the 21st century would be the century of biology. They outlined the fantastic potential of genomic research to define the current century. Wondrous as these predictions were, and as rapidly as they have played out and over-delivered during this past decade, these predictions were too parochial. This century will permit us the first opportunities to study biology beyond Earth; biology as we don’t yet know it, and biology that we have exported off the surface of our planet.The technologies needed for discovering biology beyond Earth are different depending on whether you are searching for microbes or mathematicians, and depending on whether you are searching in-situ or remotely. In many cases the necessary technologies do not yet exist, but like genomics, they will probably develop more rapidly, and in more ways, than anyone of us can now imagine. The developing toolkit of the astronomers (stellar, planetary, and exoplanetary) will be shaped and improved as a result of this focus for at least the rest of this century.* New Perspectives Quarterly, Vol 21, pp. 73-77, 2004

  4. Effects of sounds of locomotion on speech perception



    Human locomotion typically creates noise, a possible consequence of which is the masking of sound signals originating in the surroundings. When walking side by side, people often subconsciously synchronize their steps. The neurophysiological and evolutionary background of this behavior is unclear. The present study investigated the potential of sound created by walking to mask perception of speech and compared the masking produced by walking in step with that produced by unsynchronized walkin...

  5. Animal Locomotion in Different Mediums: The Adaptations of Wetland Organisms

    Indian Academy of Sciences (India)


    Wetlands are repositories of unique biodiversity. Wetlandorganisms are well adapted to their habitat, lying at theinterface of aquatic and terrestrial environments. In order tounderstand their adaptations in a better way, it is essential tograsp the basic properties of the medium in which variousorganisms live. This is attempted here by first examining theproperties of the two contrasting environments, terrestrialand aquatic. We focus primarily on locomotion, touchingupon related life processes like respiration, body size andmaintaining body balance by employing basic principles ofbiology and physics.

  6. Research progress in gecko locomotion and biomimetic gecko-robots

    Institute of Scientific and Technical Information of China (English)

    DAI Zhendong; SUN Jiurong


    Geckos are known for their excellent ability to climb walls and mn on ceilings. Previous studies of the gecko's locomotive and adhesive mechanisms, its neuro-sensory and neuro-modulatory systems, its fabrication of artificial setae array, and other related developments, have inspired further research on gecko-based and gecko-like robots. Key resesrch findings in this area are reviewed in the present paper.

  7. Model-based Locomotion Control of Underactuated Snake Robots


    Rezapour, Ehsan


    Snake robots are a class of biologically inspired robots which are built to emulate the features of biological snakes. These robots are underactuated, i.e. they have fewer control inputs than degrees of freedom, and are hyper redundant, i.e. they have many degrees of freedom. Furthermore, snake robots utilize complex motion patterns and possess a complicated but highly flexible physical structure. These properties make locomotion control of snake robots a complicated and cha...

  8. The role of vortices in animal locomotion in fluids

    Directory of Open Access Journals (Sweden)

    Dvořák R.


    Full Text Available The aim of this paper is to show the significance of vortices in animal locomotion in fluids on two deliberately chosen examples. The first example concerns lift generation by bird and insect wings, the second example briefly mentiones swimming and walking on water. In all the examples, the vortices generated by the moving animal impart the necessary momentum to the surrounding fluid, the reaction to which is the force moving or lifting the animal.

  9. Performance analysis of jump-gliding locomotion for miniature robotics. (United States)

    Vidyasagar, A; Zufferey, Jean-Christohphe; Floreano, Dario; Kovač, M


    Recent work suggests that jumping locomotion in combination with a gliding phase can be used as an effective mobility principle in robotics. Compared to pure jumping without a gliding phase, the potential benefits of hybrid jump-gliding locomotion includes the ability to extend the distance travelled and reduce the potentially damaging impact forces upon landing. This publication evaluates the performance of jump-gliding locomotion and provides models for the analysis of the relevant dynamics of flight. It also defines a jump-gliding envelope that encompasses the range that can be achieved with jump-gliding robots and that can be used to evaluate the performance and improvement potential of jump-gliding robots. We present first a planar dynamic model and then a simplified closed form model, which allow for quantification of the distance travelled and the impact energy on landing. In order to validate the prediction of these models, we validate the model with experiments using a novel jump-gliding robot, named the 'EPFL jump-glider'. It has a mass of 16.5 g and is able to perform jumps from elevated positions, perform steered gliding flight, land safely and traverse on the ground by repetitive jumping. The experiments indicate that the developed jump-gliding model fits very well with the measured flight data using the EPFL jump-glider, confirming the benefits of jump-gliding locomotion to mobile robotics. The jump-glide envelope considerations indicate that the EPFL jump-glider, when traversing from a 2 m height, reaches 74.3% of optimal jump-gliding distance compared to pure jumping without a gliding phase which only reaches 33.4% of the optimal jump-gliding distance. Methods of further improving flight performance based on the models and inspiration from biological systems are presented providing mechanical design pathways to future jump-gliding robot designs.

  10. Effect of flooring system on locomotion comfort in dairy cows


    Telezhenko, Evgenij


    The aim of the thesis was to study influence of different flooring systems on several aspects of locomotion of dairy cows. To assess the gait on different floors, trackway analysis was used. Cows walking on a hard, slippery surface had shorter strides, wider posture and asymmetric steps. A hard, slippery surface resulted in stride shortening, wider posture and asymmetric gait. Using soft rubber mats made gait patterns more similar to those on a natural yielding surface such as sand. When cows...

  11. The scaling of uphill and downhill locomotion in legged animals. (United States)

    Birn-Jeffery, Aleksandra V; Higham, Timothy E


    Animals must continually respond dynamically as they move through complex environments, and slopes are a common terrain on which legged animals must move. Despite this, non-level locomotion remains poorly understood. In this study, we first review the literature on locomotor mechanics, metabolic cost, and kinematic strategies on slopes. Using existing literature we then performed scaling analyses of kinematic variables, including speed, duty factor, and stride-length across a range of body sizes from ants to horses. The studies that examined locomotion on inclines vastly outnumbered those focusing on declines. On inclines, animals tend to reduce speed and increase duty factor, but a similar consensus could not be reached for declines. Remarkably, stride-length did not differ between locomotion on inclines and on level terrain, but this may have resulted from data only being available for low slopes (animals tended to use shorter strides than on level terrain, and the opposite occurred at larger body masses. Therefore, possibly due to stability issues, body mass plays a significant role in the locomotor strategy used when traveling downhill. Although we currently lack sufficient data, differential leg function is likely to be critical for locomotion on slopes, with mechanical demands differing on limbs during movement on level, inclined, and declined surfaces. Our scaling analysis not only highlights areas that require future work, but also suggests that body size is important for determining the mechanics and strategies animals use to negotiate non-level terrain. It is clear that selection has resulted in an incredible range of body size among animals, both extant and extinct, and it is likely that the ability to move up and down slopes has constrained or relaxed these mechanical pressures. Given the lack of integration of ecological data with laboratory experiments, future work should first determine which inclines animals actually use in nature, as this likely

  12. Energy management and sizing of a hybrid locomotive


    Akli, Cossi Rockys; Roboam, Xavier; Sareni, Bruno; Jeunesse, Alain


    The French national railways company (SNCF) is involved in a new project which aims at investigating and testing energy efficient and environmentally friendly traction systems of a hybrid locomotive called LHyDIE. This paper presents a new methodology for the hybrid electric vehicle design which exploits an energy management strategy based on a frequency approach. In particular, the design of the LHyDIE prototype and the energy management strategy implemented aboard are presented. The study m...

  13. The development of multisensory balance, locomotion, orientation and navigation.


    Nardini, M.; Cowie, D


    This chapter reviews the development of multisensory control of whole-body movement. The developing interactions between non-visual (e.g. vestibular and proprioceptive) and visual (e.g. optic flow) sensory inputs for whole-body control are discussed. Even very young children use multisensory information for spatial orienting responses, and to control balance and locomotion. In many tasks, research shows that visual information is heavily weighted in infancy and early childhood, but is gradual...

  14. Sustained periodic terrestrial locomotion in air-breathing fishes. (United States)

    Pace, C M; Gibb, A C


    While emergent behaviours have long been reported for air-breathing osteichthyians, only recently have researchers undertaken quantitative analyses of terrestrial locomotion. This review summarizes studies of sustained periodic terrestrial movements by air-breathing fishes and quantifies the contributions of the paired appendages and the axial body to forward propulsion. Elongate fishes with axial-based locomotion, e.g. the ropefish Erpetoichthys calabaricus, generate an anterior-to-posterior wave of undulation that travels down the axial musculoskeletal system and pushes the body against the substratum at multiple points. In contrast, appendage-based locomotors, e.g. the barred mudskipper Periophthalmus argentilineatus, produce no axial bending during sustained locomotion, but instead use repeated protraction-retraction cycles of the pectoral fins to elevate the centre of mass and propel the entire body anteriorly. Fishes that use an axial-appendage-based mechanism, e.g. walking catfishes Clarias spp., produce side-to-side, whole-body bending in co-ordination with protraction-retraction cycles of the pectoral fins. Once the body is maximally bent to one side, the tail is pressed against the substratum and drawn back through the mid-sagittal plane, which elevates the centre of mass and rotates it about a fulcrum formed by the pectoral fin and the ground. Although appendage-based terrestrial locomotion appears to be rare in osteichthyians, many different species appear to have converged upon functionally similar axial-based and axial-appendage-based movements. Based on common forms observed across divergent taxa, it appears that dorsoventral compression of the body, elongation of the axial skeleton or the presence of robust pectoral fins can facilitate effective terrestrial movement by air-breathing fishes.

  15. A strategy for identifying locomotion modes using surface electromyography. (United States)

    Huang, He; Kuiken, Todd A; Lipschutz, Robert D


    This study investigated the use of surface electromyography (EMG) combined with pattern recognition (PR) to identify user locomotion modes. Due to the nonstationary characteristics of leg EMG signals during locomotion, a new phase-dependent EMG PR strategy was proposed for classifying the user's locomotion modes. The variables of the system were studied for accurate classification and timely system response. The developed PR system was tested on EMG data collected from eight able-bodied subjects and two subjects with long transfemoral (TF) amputations while they were walking on different terrains or paths. The results showed reliable classification for the seven tested modes. For eight able-bodied subjects, the average classification errors in the four defined phases using ten electrodes located over the muscles above the knee (simulating EMG from the residual limb of a TF amputee) were 12.4% +/- 5.0%, 6.0% +/- 4.7%, 7.5% +/- 5.1%, and 5.2% +/- 3.7%, respectively. Comparable results were also observed in our pilot study on the subjects with TF amputations. The outcome of this investigation could promote the future design of neural-controlled artificial legs.

  16. Kinematics of Terrestrial Locomotion in Mole Cricket Gryllotalpa orientalis

    Institute of Scientific and Technical Information of China (English)

    Yan Zhang; He Huang; Xiangyang Liu; Luquan Ren


    The fore leg of mole cricket (Orthoptera: Gryllotalpidae) has developed into claw for digging and excavating. As the result of having a well-suited body and appendages for living underground, mole cricket still needs to manoeuvre on land in some cases with some kinds of gait. In this paper, the three-dimensional kinematics information of mole cricket in terrestrial walking was recorded by using a high speed 3D video recording system. The mode and the gait of the terrestrial walking mole cricket were investigated by analyzing the kinematics parameters, and the kinematics coupling disciplines of each limb and body were discussed. The results show that the locomotion gait of mole cricket in terrestrial walking belongs to a distinctive alternating tripod gait. We also found that the fore legs of a mole cricket are not as effective as that ofcommon hexapod insects, its middle legs and body joints act more effective in walking and turning which compensate the function of fore legs. The terrestrial locomotion of mole cricket is the result of biological coupling of three pairs of legs, the distinctive alternating tripod gait and the trunk locomotion.

  17. [Treatment of low back pain (pain of locomotive organs)]. (United States)

    Tanikawa, Hirotaka


    Several diseases, including the functional somatic syndromes (FSS), are characterized by pain involving locomotive structures. These disorders include low back pain, neck-shoulder-arm syndrome and fibromyalgia. FSS patients are convinced that their illness is not a psychosomatic disorder, being instead a bodily disease. Therefore, physicians such as orthopedic surgeons play an important role in supporting patients suffering from FSS with locomotive pain, because these patients expect their physicians to treat them for a physical, rather than a psychological disorder. The author investigated the patient-doctor relationship in the examination room of a hospital, and designated pain combined with a depressive state characterized by agitation and helplessness, a common complaint made by FSS and psychosomatic disorder patients, 'painful depression'. Pain and depression influence each other and trigger a vicious downward spiral termed the 'pain-depression deflation spiral'. Generally, orthopedic surgeons can achieve good relationships with FSS patients with locomotive structure pain, despite suspicion of psycho-social factors. It is concluded that physical examinations and treatments by orthopedic surgeons, conducting physical examinations only, can serve as a very good psychosomatic approach to painful depression/FSS patients.

  18. Sensitization of locomotion following repeated ventral tegmental injections of cytisine. (United States)

    Museo, E; Wise, R A


    Systemic injections of nicotine increase locomotion, and repeating these injections brings about a sensitization of the locomotor response. Ventral tegmental injections of the nicotinic agonist cytisine also increase locomotion. In the present study cytisine was administered repeatedly into the ventral tegmentum to determine whether sensitization of its locomotor-activating effects would develop. Four groups of animals were tested; each group received a total of six injections at a rate of one injection every 48 h. Two of these groups received injections of cytisine (10 nmol/side): one group received injections into the ventral tegmentum, and, to insure the anatomical specificity of the locomotor effect, a second group received injections dorsal to the ventral tegmentum. The remaining two groups received vehicle injections: one group received injections into the ventral tegmentum, and the other received injections into more dorsal sites. The group of animals that received injections of cytisine into the ventral tegmentum locomoted more than any other group. In addition, only with this group was a progressive increase in the locomotor response evident across test days. These findings raise the possibility that a neural substrate in the ventral tegmentum mediates the locomotor-activating and sensitizing effects associated with the systemic administration of nicotine.


    Directory of Open Access Journals (Sweden)

    Orlov A. I.


    Full Text Available The movements of electric locomotives create the interferences affecting the wired link. The creation of sufficiently technical effective and at the same time cost-effective means of protection from wireline interferences generated traction networks assumes as a preparatory phase to develop mathematical models of interference caused by electric locomotives. We have developed a probabilistic-statistical model of interferences caused by electric locomotives. The asymptotic distribution of the total interference is the distribution of the length of the two-dimensional random vector whose coordinates - independent normally distributed random variables with mean 0 and variance 1. Limit theorem is proved for the expectation of the total amplitude of the interferences. Monte-Carlo method is used to study the rate of convergence of the expectation of the total amplitude of the interferences to the limiting value. We used an algorithm of mixing developed by MacLaren-Marsaglia (M-algorithm. Five sets of amplitudes are analyzed, selected in accordance with the recommendations of experts in the field of traction AC networks. The most rapid convergence to the limit takes place in the case of equal amplitudes. It was found that the maximum possible average value of the amplitude of the random noise by 7.4% less than the previously used value, which promises a significant economic impact

  20. Cortical factor feedback model for cellular locomotion and cytofission.

    Directory of Open Access Journals (Sweden)

    Shin I Nishimura


    Full Text Available Eukaryotic cells can move spontaneously without being guided by external cues. For such spontaneous movements, a variety of different modes have been observed, including the amoeboid-like locomotion with protrusion of multiple pseudopods, the keratocyte-like locomotion with a widely spread lamellipodium, cell division with two daughter cells crawling in opposite directions, and fragmentations of a cell to multiple pieces. Mutagenesis studies have revealed that cells exhibit these modes depending on which genes are deficient, suggesting that seemingly different modes are the manifestation of a common mechanism to regulate cell motion. In this paper, we propose a hypothesis that the positive feedback mechanism working through the inhomogeneous distribution of regulatory proteins underlies this variety of cell locomotion and cytofission. In this hypothesis, a set of regulatory proteins, which we call cortical factors, suppress actin polymerization. These suppressing factors are diluted at the extending front and accumulated at the retracting rear of cell, which establishes a cellular polarity and enhances the cell motility, leading to the further accumulation of cortical factors at the rear. Stochastic simulation of cell movement shows that the positive feedback mechanism of cortical factors stabilizes or destabilizes modes of movement and determines the cell migration pattern. The model predicts that the pattern is selected by changing the rate of formation of the actin-filament network or the threshold to initiate the network formation.

  1. Comet of the Century (United States)

    Schaaf, Fred; Ottewell, G.

    The present century has been a disappointing one for comets, but past centuries often featured spectacular, unforgettable comet shows that dominated the night (and even daytime) sky for months: comets that outshone Venus or even the Moon, whose spectacular tails stretched more than halfway across the sky or were weirdly split, and whose apparition was held responsible for everything from wars to unusually good wine vintages. Published to coincide with the first naked-eye appearance of Comet Hale-Bopp, perhaps our own comet of the century, this book is an irresistible guide to comet facts and lore throughout history.

  2. Mineralogy and technology of bricks used for the construction of the XII century ducal castle on the island of Ostrów Tumski, Wrocław (SW Poland) (United States)

    Bartz, W.; Chorowska, M.


    The historic bricks from the ducal castle on Ostrów Tumski (Wrocław), one of the first brickwork structures in the Lower Silesia, which dates back to the XII and XIII century, were studied and characterised by a combination of classical petrographic studies (polarising microscopy), scanning microscopy, thermal analysis and X-ray diffraction. The combined results of these methods suggest that the firing temperature ranges from 950°C, through the most common temperatures of 850-900°C, to the infrequent temperatures below 750°C. Most of the bricks were fired under oxidising conditions, occasionally over a sequence of oxidising and reducing steps, resulting in a sandwich structure. The results indicate, that low-calcareous raw materials were used, presumably Miocene-Pliocene `flamy clays', exploited a few kilometres away from the castle and tempered with locally obtained sand from the Odra river. Only small differences have been recognized in: 1) clay to aplastic material ratio, 2) amount of accessory minerals, 3) grain-size distribution of aplastic materials, but no significant changes in the brick technology were observed. The observed variability corresponds well to the different constructing phases, identified previously on the basis of archaeological work. Thus, our work proves that a detailed mineralogical and petrological study may help to identify different construction phases in historic monuments.

  3. The 21st Century Information Environment. (United States)

    Badger, Rod

    This paper on the 21st century information environment begins with a section that discusses the impact of e-commerce over the next ten years. The second section addresses government focus areas, including ensuring a telecommunications infrastructure, developing the IT (information technology) industry, promoting innovation and entrepreneurship,…

  4. PR in the 21st Century. (United States)

    Forbush, Dan; Toon, John


    The ways in which advancing technology will affect college and university public relations and the mass media in the next century are examined, and a survey of 60 campus public relations specialists and 40 journalists concerning predicted changes is reported. Implications for campus communications with the media are also discussed. (MSE)

  5. 20th-Century Gold Rush. (United States)

    Wargo, Joseph G.


    Presents Nevada's gold rush activities spurred by technological advancements in search methods. Describes the events that led to the twentieth-century gold rush, the techniques for finding deposits and the geological formation process of disseminated gold deposits. Vignettes present the gold extraction process, cross-section, and profile of a…

  6. Locomotion training of legged robots using hybrid machine learning techniques (United States)

    Simon, William E.; Doerschuk, Peggy I.; Zhang, Wen-Ran; Li, Andrew L.


    In this study artificial neural networks and fuzzy logic are used to control the jumping behavior of a three-link uniped robot. The biped locomotion control problem is an increment of the uniped locomotion control. Study of legged locomotion dynamics indicates that a hierarchical controller is required to control the behavior of a legged robot. A structured control strategy is suggested which includes navigator, motion planner, biped coordinator and uniped controllers. A three-link uniped robot simulation is developed to be used as the plant. Neurocontrollers were trained both online and offline. In the case of on-line training, a reinforcement learning technique was used to train the neurocontroller to make the robot jump to a specified height. After several hundred iterations of training, the plant output achieved an accuracy of 7.4%. However, when jump distance and body angular momentum were also included in the control objectives, training time became impractically long. In the case of off-line training, a three-layered backpropagation (BP) network was first used with three inputs, three outputs and 15 to 40 hidden nodes. Pre-generated data were presented to the network with a learning rate as low as 0.003 in order to reach convergence. The low learning rate required for convergence resulted in a very slow training process which took weeks to learn 460 examples. After training, performance of the neurocontroller was rather poor. Consequently, the BP network was replaced by a Cerebeller Model Articulation Controller (CMAC) network. Subsequent experiments described in this document show that the CMAC network is more suitable to the solution of uniped locomotion control problems in terms of both learning efficiency and performance. A new approach is introduced in this report, viz., a self-organizing multiagent cerebeller model for fuzzy-neural control of uniped locomotion is suggested to improve training efficiency. This is currently being evaluated for a possible

  7. The potential of online technologies and social media in 21st century teacher professional development & practice: a mixed methods study exploring teachers’ personal, professional development and/or classroom use of online technologies in Ireland and United States of America.


    Hagan, Teresa


    This research study employed a mixed methods approach to explore connections between teachers’ use of online technologies in their personal lives, for professional development and/ or within classroom practice in Ireland and the USA. In phase 1 of this study, over 80 Irish primary school teachers’ experiences of online Continuing Professional Development (CPD) were examined, through the deployment of interviews, focus groups and an online survey. Almost half of the Irish teachers felt that en...

  8. Technology. (United States)

    Online-Offline, 1998


    Focuses on technology, on advances in such areas as aeronautics, electronics, physics, the space sciences, as well as computers and the attendant progress in medicine, robotics, and artificial intelligence. Describes educational resources for elementary and middle school students, including Web sites, CD-ROMs and software, videotapes, books,…

  9. CSF-contacting neurons regulate locomotion by relaying mechanical stimuli to spinal circuits


    Böhm, Urs Lucas; Prendergast, Andrew; Djenoune, Lydia; Nunes Figueiredo, Sophie; Gomez, Johanna; Stokes, Caleb; Kaiser, Sonya; Suster, Maximilliano; Kawakami, Koichi; Charpentier, Marine; Concordet, Jean-Paul; Rio, Jean-Paul; Del Bene, Filippo; Wyart, Claire


    International audience; Throughout vertebrates, cerebrospinal fluid-contacting neurons (CSF-cNs) are ciliated cells surrounding the central canal in the ventral spinal cord. Their contribution to modulate locomotion remains undetermined. Recently, we have shown CSF-cNs modulate locomotion by directly projecting onto the locomotor central pattern generators (CPGs), but the sensory modality these cells convey to spinal circuits and their relevance to innate locomotion remain elusive. Here, we d...

  10. Automated quantification of locomotion, social interaction, and mate preference in Drosophila mutants


    Iyengar, Atulya; Imoehl, Jordan; Ueda, Atsushi; Nirschl, Jeffery; Wu, Chun-Fang


    Automated tracking methods facilitate screening for and characterization of abnormal locomotion or more complex behaviors in Drosophila. We developed the Iowa Fly Locomotion and Interaction Tracker (IowaFLI Tracker), a MATLAB based video analysis system, to identify and track multiple flies in a small arena. We report altered motor activity in the K+ and Na+ channel mutants, Hk1 and parats1, which had previously been shown to display abnormal larval locomotion. Environmental factors influenci...

  11. 火车驶进美国浪漫主义文学“站台”%Locomotive Steams into the Station of American Romanticism

    Institute of Scientific and Technical Information of China (English)



    In the early 19th century, the England-arisen Industrial Revolution spread onto the land of America, and locomotive was regarded as the symbol of Industrial Revolution. Based on this social background, the American Romanticism emerged. As literature is said to be stimulated in the individual’s mind and caused by social, economical and historical forces, it is possible to find out the traces of locomotive left on the historical works of American Romanticism when locomotive steamed into the sta-tion of American Romanticism. Through a circumspective study, the description and discussion about the locomotive is found from the statements and works of Emerson, Thoreau, Hawthorne, Whitman and Dickinson these five writers of American Ro-manticism.%19世纪初,自英国兴起的工业革命扩散到美国,以火车为象征的工业革命在美国大陆上迅速展开,在此社会背景下,美国出现了浪漫主义文学。如果说文学是由人的心灵引起的,社会、经济、历史因素共同作用的产物,那么当火车驶进美国浪漫主义文学的站台时,必然会在浪漫主义文学的历史作品中留下印迹。通过研究发现,爱默生、梭罗、霍桑、惠特曼、狄金森五位美国浪漫主义文学家都曾在他们的文学作品和论述中有过对火车的描述和讨论。


    Directory of Open Access Journals (Sweden)

    Yu. V. Zelenko


    Full Text Available Purpose.The success of the traffic on the railways of Ukraine depends on the number and the operational fleet of electric locomotives. Today, the locomotive depot exploit physically and morally outdated locomotives that have low reliability. Modernization of electric locomotives is not economically justified. The aim of this study is to improve the safety of the traction rolling stock by the frequency analysis of dynamical systems, which allows conducting the calculation of the natural (of resonant frequencies of the design and related forms of vibrations.Methodology.The study was conducted by methods of analytical mechanics and mathematical modeling of operating loads of freight locomotive when driving at different speeds on the straight and curved track sections. The theoretical value of the work is the technique of choice of constructive schemes and rational parameters of perspective electric locomotive taking into account the electric inertia ratios and stiffness coefficients of Lagrange second-order equations.Findings. The problems of theoretical research and the development of a mathematical model of the spatial electric vibrations are solved. The theoretical studies of the effect of inertia ratios and stiffness coefficients on the dynamic values and the parameter values of electric locomotive undercarriages are presented.Originality.The set of developed regulations and obtained results is a practical solution to selecting rational parameters of bogies of the freight mainline locomotive for railways of Ukraine. A concept of choice of constructive scheme and rational parameters of perspective locomotive is formulated. It is developed the method of calculation of spatial electric locomotive oscillations to determine its dynamic performance. The software complex for processing the data of experimental studies of dynamic parameters of electric locomotive and comparing the results of the theoretical calculations with the data of full


    Directory of Open Access Journals (Sweden)

    V. R. Skalskyi


    Full Text Available Purpose. The problem of determining the residual life of frame bogie elements of locomotives is a great importance for predicting their work safely and avoidance potential failures on the track. This especially concern cases when such elements have creep-fatigue cracks which grow under action of cyclic loading with excerpts T1 in the cycle and reach their critical size. Here the question of the propagation of such defects (cracks arises, their kinetics and about the period of subcritical cracks growth. The aim is to develop a calculation model for determination the period of subcritical creep-fatigue cracks growth in the bogies frames of electric locomotive. The model takes into account the basic parameters of load, geometry of the construction element and cracks. Methodology. The calculation model for determination the period of subcritical creep-fatigue cracks growth in structural elements of frame under conditions of variable load time has been formulated. It is based on the first law of thermodynamics concerning to mechanics of solids slow fracture at low temperature creep and variable loadings. It is assumed that the period of unsteady creep dominates here (the first section of the creep curve. Low-temperature creep is creep of materials at temperatures T0 < 0,5Tmp, where Tmp − the melting point of the material. Findings. The analytical formula for the determination of the stress intensity factor of truck bolster with technological hole has been obtained. It is shown that by experimentally established constants of the material using the proposed analytical relations can easily determine residual resource of the bogie frame elements. Originality. The new mathematical model for describing the kinetics of creep-fatigue cracks growth in the frames bogies of electric locomotive under variable in time loadings with various time excerpts and on this base the period determination of subcritical crack growth has been proposed. Practical value

  14. Application of oxygen-enriched combustion for locomotive diesel engines. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Poola, R.B.; Sekar, R.R.; Assanis, D.N.


    A thermodynamic simulation is used to study the effects of oxygen-enriched intake air on the performance and nitrogen oxide (NO) emissions of a locomotive diesel engine. The parasitic power of the air separation membrane required to supply the oxygen-enriched air is also estimated. For a given constraint on peak cylinder pressure, the gross and net power outputs of an engine operating under different levels of oxygen enrichment are compared with those obtained when a high-boost turbocharged engine is used. A 4% increase in peak cylinder pressure can result in an increase in net engine power of approximately 13% when intake air with an oxygen content of 28% by volume is used and fuel injection timing is retarded by 4 degrees. When the engine is turbocharged to a higher inlet boost, the same increase in peak cylinder pressure improves power by only 4%. If part of the significantly higher exhaust enthalpies available as a result of oxygen enrichment are recovered, the power requirements of the air separator membrane can be met, resulting in substantial net power improvements. Oxygen enrichment reduces particulate and visible smoke emissions but increases NO emissions. However, a combination of retarded fuel injection timing and post-treatment of exhaust gases may be adequate to meet the locomotive diesel engine NO{sub x} standards. Exhaust gas after-treatment and heat recovery would be required to realize the full potential of oxygen enrichment. Economic analysis shows that oxygen-enrichment technology is economically feasible and provides high returns on investment. The study also indicates the strong influence of membrane parasitic requirements and exhaust energy recovery on economic benefits. To obtain an economic advantage while using a membrane with higher parasitic power requirements, it is necessary to recover a part of the exhaust energy.

  15. Does Trichomes on the Plant Epidermic Surface Disturb Ants Locomotion?

    Directory of Open Access Journals (Sweden)

    Danon C. Cardoso


    Full Text Available Problem Statement: Many morphological characteristics, both physical and chemical, are used in the defense against herbivores on plants. Trichomes are structures used by plants as physics defense and when associated with glands combine physics and chemistry defense. Many species of ants are herbivores and use leaves and seeds, others ants use Extra Floral Nectars as a food resource, and the majority of the species are predators of other ants and other insects, and use plants as foraging substrate in search of prey. Likewise, on the assumption that ants feed preferentially in plants free of trichomes, we tested the hypothesis that trichomes plants clouded locomotion of ants. Approach: Experiments were carried out in the field using cotton to mimic the plants surface. Thirty traps for the treatment were assembled with cotton as well as other 30 experiments for the control (treatment without cotton. Each trap consisted of Petri dishes of 14,5 cm diameter with bait (sardine and honey in a disc (3 cm diameter in the center of the plate. Around the bait, 10 grams of cotton prepared uniformly were placed. Furthermore, morphometric analysis on the length of body and legs of ants was performed. Results: The number of ants which accessed baits in the center of Petri dishes in treatment with cotton was not statistically different of the number of accesses in the control treatment without cotton. The trichomes do not cloud locomotion of ants and that leg length is equal to or greater than body length. Conclusions/Recommendations: Data revealed that the trichomes do not cloud locomotion of ants; this allows the free walking of ants on the plants surface. However, glandular trichomes that combine physics and chemistry defense with release toxic and adhesives compounds when mechanically stressed may be more efficient in the defense against these insects.

  16. Sexuality of Disabled Athletes Depending on the Form of Locomotion

    Directory of Open Access Journals (Sweden)

    Plinta Ryszard


    Full Text Available The main purpose of this study was to determine sexuality of disabled athletes depending on the form of locomotion. The study included 170 disabled athletes, aged between 18 and 45. The entire population was divided into 3 research groups depending on the form of locomotion: moving on wheelchairs (n=52, on crutches (n=29 and unaided (n=89. The research tool was a questionnaire voluntarily and anonymously completed by the respondents of the research groups. The questionnaire was composed of a general part concerning the socio-demographic conditions, medical history, health problems, a part dedicated to physical disability as well as the Polish version of the International Index of Erectile Function (IIEF and the Female Sexual Function Index (FSFI evaluating sexual life. STATISTICA 10.0 for Windows was used in the statistical analysis. Subjects moving on crutches were significantly older than ones moving on wheelchairs and unaided (34.41 ±11.00 vs. 30.49 ±10.44 and 27.99 ±10.51 years, respectively (p=0.018. Clinically significant erectile dysfunctions were most often diagnosed in athletes moving on wheelchairs (70.27%, followed by athletes moving on crutches and moving unaided (60% and 35.42%, respectively; p=0.048. Clinical sexual dysfunctions were diagnosed on a similar level among all female athletes. It was concluded that the form of locomotion may determine sexuality of disabled men. Males on wheelchair revealed the worst sexual functioning. Female athletes moving on wheelchairs, on crutches and moving unaided were comparable in the aspect of their sexual life.

  17. Sexuality of Disabled Athletes Depending on the Form of Locomotion (United States)

    Plinta, Ryszard; Sobiecka, Joanna; Drosdzol-Cop, Agnieszka; Nowak-Brzezińska, Agnieszka; Skrzypulec-Plinta, Violetta


    The main purpose of this study was to determine sexuality of disabled athletes depending on the form of locomotion. The study included 170 disabled athletes, aged between 18 and 45. The entire population was divided into 3 research groups depending on the form of locomotion: moving on wheelchairs (n=52), on crutches (n=29) and unaided (n=89). The research tool was a questionnaire voluntarily and anonymously completed by the respondents of the research groups. The questionnaire was composed of a general part concerning the socio-demographic conditions, medical history, health problems, a part dedicated to physical disability as well as the Polish version of the International Index of Erectile Function (IIEF) and the Female Sexual Function Index (FSFI) evaluating sexual life. STATISTICA 10.0 for Windows was used in the statistical analysis. Subjects moving on crutches were significantly older than ones moving on wheelchairs and unaided (34.41 ±11.00 vs. 30.49 ±10.44 and 27.99 ±10.51 years, respectively) (p=0.018). Clinically significant erectile dysfunctions were most often diagnosed in athletes moving on wheelchairs (70.27%), followed by athletes moving on crutches and moving unaided (60% and 35.42%, respectively; p=0.048). Clinical sexual dysfunctions were diagnosed on a similar level among all female athletes. It was concluded that the form of locomotion may determine sexuality of disabled men. Males on wheelchair revealed the worst sexual functioning. Female athletes moving on wheelchairs, on crutches and moving unaided were comparable in the aspect of their sexual life. PMID:26834876

  18. Support afferentation in the posture and locomotion control system (United States)

    Grigoriev, Anatoly; Tomilovskaya, Elena; Kozlovskaya, Inesa

    Mechanisms of support afferentation contribution in posture and locomotion control, which were uncertain up to now, became the point of intensive studies recently. This became possible since the space flights era started which created the conditions for simulated microgravity experiments under conditions of dry immersion and bedrest. The results of neurophysiological studies performed under the conditions of supportlessness have shown that decline or elimination of support loads is followed by deep and fast developing alterations in postural tonic system, including development of postural muscle atonia, changes of recruitment order of motoneurons innervating the shin muscles, spinal hyperreflexia development etc. (Kozlovskaya I.B. et al., 1987). It has been also shown that application of artificial support stimulation in the regimen of natural locomotion under these conditions decreases significantly or even eliminates the development of mentioned changes. The results of these studies laid down the basis for a new hypothesis on the trigger role of support afferentation in postural tonic system and its role in organization and control of postural synergies (Grigoriev A.I. et al., 2004). According to this hypothesis the muscle reception is considered to be the leading afferent input in the control of locomotion. However the data of recent studies pointed out strongly to the participation of support afferentation in definition of cognitive strategies and motor programs of locomotor movements (Chernikova L.A. et al., 2013) and, consequently, in the processes of their initiation (Gerasimenko Yu.P. et al., 2012). The cortical locomotor reflex composes apparently the basis of these processes. The receptive field of this reflex is located in the support zones of the soles and the central part is located in the posterior parietal areas (IPL) of brain cortex. The study is supported by RFBR grant N 13-04-12091 OFI-m.

  19. Imagining the Twentieth Century: Retrospective, Myth, and the Colonial Question

    Directory of Open Access Journals (Sweden)

    David B MacDonald


    Full Text Available Retrospectives on the twentieth century often portray it as the most atrocious century in human history, in terms of totalising ideologies, moral abandonment, technological horror, and mass death. The nineteenth and earlier centuries, by contrast, emerge as progressive and enlightened eras, characterised by morality, rationalism, and the absence of war. Creating a dramatic contrast between old and new centuries ignores the historical reality of colonialism and violence outside Europe’s borders. This article problematises twentieth century retrospectives and their nostalgia for the past, comparing these with recent histories of colonialism and genocide. Rather than see the twentieth century as a decisive break from the past, there are important elements of continuity and evolution which should not be ignored.

  20. Propulsion by sinusoidal locomotion: A motion inspired by Caenorhabditis elegans (United States)

    Ulrich, Xialing

    Sinusoidal locomotion is commonly seen in snakes, fish, nematodes, or even the wings of some birds and insects. This doctoral thesis presents the study of sinusoidal locomotion of the nematode C. elegans in experiments and the application of the state-space airloads theory to the theoretical forces of sinusoidal motion. An original MATLAB program has been developed to analyze the video records of C. elegans' movement in different fluids, including Newtonian and non-Newtonian fluids. The experimental and numerical studies of swimming C. elegans has revealed three conclusions. First, though the amplitude and wavelength are varying with time, the motion of swimming C. elegans can still be viewed as sinusoidal locomotion with slips. The average normalized wavelength is a conserved character of the locomotion for both Newtonian and non-Newtonian fluids. Second, fluid viscosity affects the frequency but not the moving speed of C. elegans, while fluid elasticity affects the moving speed but not the frequency. Third, by the resistive force theory, for more elastic fluids the ratio of resistive coefficients becomes smaller. Inspired by the motion of C. elegans and other animals performing sinusoidal motion, we investigated the sinusoidal motion of a thin flexible wing in theory. Given the equation of the motion, we have derived the closed forms of propulsive force, lift and other generalized forces applying on the wing. We also calculated the power required to perform the motion, the power lost due to the shed vortices and the propulsive efficiency. These forces and powers are given as functions of reduced frequency k, dimensionless wavelength z, dimensionless amplitude A/b, and time. Our results show that a positive, time-averaged propulsive force is produced for all k>k0=pi/ z. At k=k0, which implies the moment when the moving speed of the wing is the same as the wave speed of its undulation, the motion reaches a steady state with all forces being zero. If there were no

  1. Single-unit pattern generators for quadruped locomotion

    DEFF Research Database (Denmark)

    Morse, Gregory; Risi, Sebastian; Snyder, Charles R;


    locomotion can generate oscillations through popular techniques such as continuous time recurrent neural networks (CTRNNs) or sinusoidal input, they typically face a challenge in maintaining long-term stability. The aim of this paper is to address this challenge by introducing an effective alternative based...... on a new type of neuron called a single-unit pattern generator (SUPG). The SUPG, which is indirectly encoded by a compositional pattern producing network (CPPN) evolved by HyperNEAT, produces a flexible temporal activation pattern that can be reset and repeated at any time through an explicit trigger input...

  2. A Bionic Neural Network for Fish-Robot Locomotion

    Institute of Scientific and Technical Information of China (English)

    Dai-bing Zhang; De-wen Hu; Lin-cheng Shen; Hai-bin Xie


    A bionic neural network for fish-robot locomotion is presented. The bionic neural network inspired from fish neural network consists of one high level controller and one chain of central pattern generators (CPGs). Each CPG contains a nonlinear neural Zhang oscillator which shows properties similar to sine-cosine model. Simulation results show that the bionic neural network presents a good performance in controlling the fish-robot to execute various motions such as startup,stop,forward swimming,backward swimming,turn right and turn left.

  3. Biomechanical Analysis of Treadmill Locomotion on the International Space Station (United States)

    De Witt, J. K.; Fincke, R. S.; Guilliams, M. E.; Ploutz-Snyder, L. L.


    Treadmill locomotion exercise is an important aspect of ISS exercise countermeasures. It is widely believed that an optimized treadmill exercise protocol could offer benefits to cardiovascular and bone health. If training heart rate is high enough, treadmill exercise is expected to lead to improvements in aerobic fitness. If impact or bone loading forces are high enough, treadmill exercise may be expected to contribute to improved bone outcomes. Ground-based research suggests that joint loads increase with increased running speed. However, it is unknown if increases in locomotion speed results in similar increases in joint loads in microgravity. Although data exist regarding the biomechanics of running and walking in microgravity, a majority were collected during parabolic flight or during investigations utilizing a microgravity analog. The Second Generation Treadmill (T2) has been in use on the International Space Station (ISS) and records the ground reaction forces (GRF) produced by crewmembers during exercise. Biomechanical analyses will aid in understanding potential differences in typical gait motion and allow for modeling of the human body to determine joint and muscle forces during exercise. By understanding these mechanisms, more appropriate exercise prescriptions can be developed that address deficiencies. The objective of this evaluation is to collect biomechanical data from crewmembers during treadmill exercise prior to and during flight. The goal is to determine if locomotive biomechanics differ between normal and microgravity environments and to determine how combinations of subject load and speed influence joint loading during in-flight treadmill exercise. Further, the data will be used to characterize any differences in specific bone and muscle loading during locomotion in these two gravitational conditions. This project maps to the HRP Integrated Research Plan risks including Risk of Bone Fracture (Gap B15), Risk of Early Onset Osteoporosis Due to

  4. Locomotion trajectory with cooperative metrics in wireless sensor networks

    Institute of Scientific and Technical Information of China (English)

    QIN Ning-ning; ZHANG Lin; SHAN Xiu-ming; XU Bao-guo


    Detection coverage control is one of the most important topics in the intrusion detection problem of wireless sensor networks (WSN). However, its converse, i.e., to design an object locomotion trajectory in WSN, has not received enough attention. This article proposes a heuristic algorithm, namely, the security & speed (SS) algorithm, to depict such a trajectory that takes into consideration both security and speed. The merit of the SS algorithm is its topology independency. When compared with traditional algorithms, the SS algorithm approaches the optimal trajectory better, and enjoys considerably lower computational load, and a better and adjustable tradeoff between trajectory security and speed.

  5. Self organized locomotion via polyhedral geometry: a minimal example

    CERN Document Server

    Ghosh, Shankar; Bhattacharya, S; Nitsure, Nitin


    In this paper we establish a geometrical route to self-organisation. We show that the relevant underlying geometry of the configuration space is a curvilinear polyhedral region. The energetics over the polyhedral region localizes the available space within the close proximity of a corner of this polyhedra. This results into a stronger entrapment of the state which provides it the observed geometrical shape, functionality, and maintains its stability. These theoretical considerations are borne out in the experiments where we study the case of an uphill locomotion of a self organised dumbbell pair placed in a rotating cylinder.

  6. Biodiesel fuel costs and environmental issues when powering railway locomotives

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, Abdul; Ziemer, Norbert; Tatara, Robert; Moraga, Reinaldo; Mirman, Clifford; Vohra, Promod


    Issues for adopting biodiesel fuel, instead of petrodiesel, to power railroad locomotives are engine performance and emissions, fuel infrastructure, and fuel cost. These are evaluated for B2 through B100 blends. Biodiesel's solvent action on fuel systems is addressed. With biodiesel, hydrocarbon, carbon monoxide, and particulate emissions are unchanged or reduced. Nitrogen oxides are elevated but it is believed that engine alterations can minimize these emissions. A Transportation Model, using data from a major railway, has demonstrated that refueling depots can be fully supplied with biodiesel at a pricing premium of 1% to 26%, depending on blend and geographical location.

  7. Improvement of fuel injection system of locomotive diesel engine. (United States)

    Li, Minghai; Cui, Hongjiang; Wang, Juan; Guan, Ying


    The traditional locomotive diesels are usually designed for the performance of rated condition and much fuel will be consumed. A new plunger piston matching parts of fuel injection pump and injector nozzle matching parts were designed. The experimental results of fuel injection pump test and diesel engine show that the fuel consumption rate can be decreased a lot in the most of the working conditions. The forced lubrication is adopted for the new injector nozzle matching parts, which can reduce failure rate and increase service life. The design has been patented by Chinese State Patent Office.

  8. Comment on "Locomotion of a microorganism in weakly viscoelastic liquids" (United States)

    Christov, Ivan C.; Jordan, P. M.


    We point out, and show the implications of resolving, an apparent conceptual difficulty in a recent article by De Corato et al. [Phys. Rev. E 92, 053008 (2015), 10.1103/PhysRevE.92.053008] on the locomotion of certain microorganisms in a second-grade fluid. The difficulty arises due to the assumption that α1non-Newtonian) liquid, was chosen for this study. In particular, this choice of sign for α1 is inconsistent with thermodynamics, and as such casts considerable doubt on De Corato et al.'s assumption regarding the existence of a steady-state solution of the equations of motion of the fluid.

  9. Human-robot interaction strategies for walker-assisted locomotion

    CERN Document Server

    Cifuentes, Carlos A


    This book presents the development of a new multimodal human-robot interface for testing and validating control strategies applied to robotic walkers for assisting human mobility and gait rehabilitation. The aim is to achieve a closer interaction between the robotic device and the individual, empowering the rehabilitation potential of such devices in clinical applications. A new multimodal human-robot interface for testing and validating control strategies applied to robotic walkers for assisting human mobility and gait rehabilitation is presented. Trends and opportunities for future advances in the field of assistive locomotion via the development of hybrid solutions based on the combination of smart walkers and biomechatronic exoskeletons are also discussed. .

  10. Locomotion and visually guided behavior in salamander: a neuromechanical study (United States)

    Ijspeert, Auke J.; Arbib, Michael A.


    This article investigates the neural mechanisms underlying locomotion and visually-guided behavior in a lower vertebrate: the salamander. We develop connectionist models of the salamander's locomotor circuitry and visual system, and analyze their functioning by embedding them into a biomechanical simulation of the salamander's body. This work is therefore an experiment in computational neuroethology which aims at investigating how behavior results from the coupling of a central nervous system (CNS) and a body, and from the interactions of the CNS-body pair with the environment. We believe that understanding these mechanisms is not only relevant for neurobiology but also for potential applications in robotics.

  11. 日本21世纪四大“终极”能源技术发展现状%Development Status of the Four“Ultimate”Energy Technologies for 21st Century in Japan

    Institute of Scientific and Technical Information of China (English)



    日本是化石能源资源极为贫乏的国家,2011年“3.11”大地震引发的严重核泄漏事故,又导致绝大多数的核电站目前处于停堆状态。日本的能源供应正面临前所未有的压力,可以说进一步开发利用可再生能源成为日本21世纪应对能源问题的“终极”手段。通过对日本政府和产业界在光伏电池、海流发电、超导、热泵等四大新能源技术领域的投入进行重点考察,全面分析日本上述四大新能源技术的发展现状、技术流派和应用前景,以期为同样面临能源与环境两大问题的我国相关部门提供有益参考。%Japan is an island country extremely lacking in fossil fuel resources. The large“3.11”Earthquake in 2011 triggered a serious nuclear accident, for which the most nuclear power plants were shutdown even now. Japan’s energy supply is facing unprecedented pressure, so further developing the renewable energy has become“ultimate”means to deal with energy issues for Japan in the 21st century. This paper focuses on the efforts of the Japanese government and industry in the ifeld of four new energy technologies including solar power, ocean current power generation, superconducting, heat pumps, and analyzes the development status, technical category and application prospects of four new energy technologies, hoping to provide useful information for China’s relevant departments in the process of resolving energy and environment problems.

  12. Design and analysis of an optimal hopper for use in resonance-based locomotion

    NARCIS (Netherlands)

    Wanders, Ivor; Folkertsma, Gerrit A.; Stramigioli, Stefano


    Quadrupedal running is an efficient form of locomotion found in nature, which serves as an inspiration for robotics. We believe that a resonance-based approach is the path towards energy-efficient legged locomotion and running robots. The first step in working towards this goal is creating an energy

  13. 40 CFR 1033.650 - Incidental use exemption for Canadian and Mexican locomotives. (United States)


    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Incidental use exemption for Canadian and Mexican locomotives. 1033.650 Section 1033.650 Protection of Environment ENVIRONMENTAL PROTECTION... Provisions § 1033.650 Incidental use exemption for Canadian and Mexican locomotives. You may ask us to...

  14. 49 CFR 236.505 - Proper operative relation between parts along roadway and parts on locomotive. (United States)


    ... roadway and parts on locomotive. 236.505 Section 236.505 Transportation Other Regulations Relating to... SYSTEMS, DEVICES, AND APPLIANCES Automatic Train Stop, Train Control and Cab Signal Systems Standards § 236.505 Proper operative relation between parts along roadway and parts on locomotive....

  15. 49 CFR 231.17 - Specifications common to all steam locomotives. (United States)


    ... 49 Transportation 4 2010-10-01 2010-10-01 false Specifications common to all steam locomotives... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD SAFETY APPLIANCE STANDARDS § 231.17 Specifications common to all steam locomotives. (a) Hand brakes. (1) Hand brakes will not be required...

  16. 49 CFR 236.512 - Cab signal indication when locomotive enters block where restrictive conditions obtain. (United States)


    ... 49 Transportation 4 2010-10-01 2010-10-01 false Cab signal indication when locomotive enters block... TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Train Stop, Train Control and Cab Signal Systems Standards § 236.512 Cab signal indication when locomotive enters block where...

  17. Distributed Recurrent Neural Forward Models with Neural Control for Complex Locomotion in Walking Robots

    DEFF Research Database (Denmark)

    Dasgupta, Sakyasingha; Goldschmidt, Dennis; Wörgötter, Florentin


    Walking animals, like stick insects, cockroaches or ants, demonstrate a fascinating range of locomotive abilities and complex behaviors. The locomotive behaviors can consist of a variety of walking patterns along with adaptation that allow the animals to deal with changes in environmental...

  18. The G6. A heavy-duty, six-wheeled shunting locomotive

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Tim [Vossloh Locomotives GmbH, Kiel (Germany). Development and Standardisation Group


    Nowadays, railway operating companies need robust, reliable and versatile locomotives. Vossloh has shown one way that future developments are likely to go with its 'G6' six-wheeled shunting locomotive, which features a central driver's cab. (orig.)

  19. 对21世纪大庆油田开发前沿技术发展的初步思考%Preliminary Thinking on Leading Edge Technology Development of Daqing Oil Field in the 21st Century

    Institute of Scientific and Technical Information of China (English)



    In the 21st century, Daqing oil field has to face new challenges mainly reflected in: (1)Unbalance in reserve-production ratio is tending to be serious after recovering cumulative productidon 70.32% of petroleum recoverable reserve; (2) Development difficulty increasing dramatically, with overall economic benefit getting poor;and (3) More strict requiements must be put forward in recognization and restructuring, due to the fact that market competition becomes more intense. From now on, the key work during development of Daqing oil field will be coverted from petroleum production rates to economic benefit, and overall targets will be coverted from continuous stable production to sustainable development, leading edge technology development in two levels will be accelerated. One level is about recent leading edge technology, focusing on increasing the employment percentage of and the total oil produced over the proved OOIP, which includes 3 sets of core techniques: (1)A complete set of techniques for improving waterflooding recovery factor at late high water cut stage; (2)Polymer flooding combined with ASP technique;and (3) Completion set of techniques for effective development of peripherial low permeability, low reserve richness and low single well productivity reservoirs. Another level is mainly about oil field long-term development requirements in the 21st century, focusing on new exploration and investigation in three directions: (1)Foam flooding, microbial flooding and other replacing new techniques after EOR; (2)Related techniques for effective development of newly incremental proved reserves in deep tight natural gas reservoir and complex fault-block oil and gas reservoirs;and (3)Related techniques required by market development for oil fields both at home and abroad. In the future, focus will be put on improving overall economic benefit of developing Daqing oil field through energetically developing and applying advanced hydrocarbon recovery techniques

  20. Controlling legs for locomotion-insights from robotics and neurobiology. (United States)

    Buschmann, Thomas; Ewald, Alexander; von Twickel, Arndt; Büschges, Ansgar


    Walking is the most common terrestrial form of locomotion in animals. Its great versatility and flexibility has led to many attempts at building walking machines with similar capabilities. The control of walking is an active research area both in neurobiology and robotics, with a large and growing body of work. This paper gives an overview of the current knowledge on the control of legged locomotion in animals and machines and attempts to give walking control researchers from biology and robotics an overview of the current knowledge in both fields. We try to summarize the knowledge on the neurobiological basis of walking control in animals, emphasizing common principles seen in different species. In a section on walking robots, we review common approaches to walking controller design with a slight emphasis on biped walking control. We show where parallels between robotic and neurobiological walking controllers exist and how robotics and biology may benefit from each other. Finally, we discuss where research in the two fields diverges and suggest ways to bridge these gaps.

  1. Locomotion while load-carrying in reduced gravities. (United States)

    Wickman, L A; Luna, B


    Supporting the mass of a protective suit and portable life support system (PLSS) will impose an energy requirement on planetary astronauts. To design extravehicular protective equipment for planetary missions, scientists must learn more about human physical capabilities while load-carrying in reduced gravities. In this study, an underwater treadmill and weighting system were used to simulate reduced-gravity locomotion while load-carrying. The test matrix included 3 gravity levels, 6 subjects, 2 locomotion speeds, and a range of load sizes. Energy expenditure, calculated from measured oxygen consumption, is positively correlated with gravity level, speed, and load size. The data are used to project that individuals in average physical condition will be able to walk for 8 h on the Moon while carrying up to 170% of their body mass without undue fatigue, and on Mars with up to 50% of their body mass. These approximate limits, especially for Martian gravity, may prove quite a challenge for designers of advanced protective systems. Requirements for regenerable and non-venting PLSS components have been driving the total projected masses of advanced PLSSs increasingly higher, perhaps beyond what is reasonable to carry. However, the larger mass can be beneficial in maintaining bone mass. Using Whalen's model (1988), the daily planetary walking times required to maintain bone mass were calculated for a range of carried load sizes. The calculated times were unattainably high, suggesting that some combination of loads carrying and supplemental bone maintenance measures will likely be required to maintain bone mass in reduced gravity environments.

  2. Differences in gaze anticipation for locomotion with and without vision

    Directory of Open Access Journals (Sweden)

    Colas Nils Authié


    Full Text Available Previous experimental studies have shown a spontaneous anticipation of locomotor trajectory by the head and gaze direction during human locomotion. This anticipatory behavior could serve several functions: an optimal selection of visual information, for instance through landmarks and optic flow, as well as trajectory planning and motor control. This would imply that anticipation remains in darkness but with different characteristics.We asked ten participants to walk along two predefined complex trajectories (limacon and figure eight without any cue on the trajectory to follow. Two visual conditions were used: (i in light and (ii in complete darkness with eyes open. The whole body kinematics were recorded by motion capture, along with the participant's right eye movements.We showed that in darkness and in light, horizontal gaze anticipates the orientation of the head which itself anticipates the trajectory direction. However, the horizontal angular anticipation decreases by a half in darkness for both gaze and head. In both visual conditions we observed an eye nystagmus with similar properties (frequency and amplitude. The main difference comes from the fact that in light, there is a shift of the orientations of the eye nystagmus and the head in the direction of the trajectory.These results suggest that a fundamental function of gaze is to represent self motion, stabilize the perception of space during locomotion, and to simulate the future trajectory, regardless of the vision condition.

  3. The human vestibulo-ocular reflex during linear locomotion (United States)

    Moore, S. T.; Hirasaki, E.; Raphan, T.; Cohen, B.


    During locomotion, there is a translation and compensatory rotation of the head in both the vertical and horizontal planes. During moderate to fast walking (100 m/min), vertical head translation occurs at the frequency of stepping (2 Hz) and generates peak linear acceleration of 0.37 g. Lateral head translation occurs at the stride frequency (1 Hz) and generates peak linear acceleration of 0.1 g. Peak head pitch and yaw angular velocities are approximately 17 degrees/s. The frequency and magnitude of these head movements are within the operational range of both the linear and angular vestibulo-ocular reflex (IVOR and aVOR). Vertical eye movements undergo a phase reversal from near to far targets. When viewing a far (>1 m) target, vertical eye velocity is typical of an aVOR response; that is, it is compensatory for head pitch. At close viewing distances (<1 m), vertical eye velocity is in phase with head pitch and is compensatory for vertical head translation, suggesting that the IVOR predominantly generates the eye movement response. Horizontal head movements during locomotion occur at the stride frequency of 1 Hz, where the IVOR gain is low. Horizontal eye movements are compensatory for head yaw at all viewing distances and are likely generated by the aVOR.

  4. Crawling beneath the free surface: Water snail locomotion

    CERN Document Server

    Lee, Sungyon; Hosoi, A E; Lauga, Eric


    Land snails move via adhesive locomotion. Through muscular contraction and expansion of their foot, they transmit waves of shear stress through a thin layer of mucus onto a solid substrate. Since a free surface cannot support shear stress, adhesive locomotion is not a viable propulsion mechanism for water snails that travel inverted beneath the free surface. Nevertheless, the motion of the freshwater snail, Sorbeoconcha physidae, is reminiscent of that of its terrestrial counterparts, being generated by the undulation of the snail foot that is separated from the free surface by a thin layer of mucus. Here, a lubrication model is used to describe the mucus flow in the limit of small amplitude interfacial deformations. By assuming the shape of the snail foot to be a traveling sine wave and the mucus to be Newtonian, an evolution equation for the interface shape is obtained and the resulting propulsive force on the snail is calculated. This propulsive force is found to be non-zero for moderate values of Capillar...

  5. Paper-based Pneumatic Locomotive Robot with Sticky Actuator

    Directory of Open Access Journals (Sweden)

    Du Xiaohan


    Full Text Available Demands for small-scale and low-cost robots have witnessed a great increase in recent years [1–5]. This paper introduces the design and fabrication of a novel, simple, low-cost and designer-friendly locomotive robot. The materials and tools to build the robot originate from everyday life. The robot is pneumatically powered and manually controlled by simply pumping and vacuuming the syringe repeatedly, which realizes reliable locomotion by folding and opening of the planes. In order to realize this complicated motion, a “3D Sticky Actuator” is developed. The motion and force analysis of actuator are then modelled by the numerical method to develop the relations between design parameters. This suggests a systematic and user interactive way of manufacturing various shapes of the actuator, depending on user-defined road condition (e.g. obstacles and slopes and other constraints. One key advantage of the paper-based robot is suggested by its high feasibility.

  6. Locomotion and Grasping impairment in preschoolers with autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Francesca Fulceri


    Full Text Available Objective: To investigate expressiveness of motor impairment in autism spectrum disorder (ASD and its correlation with developmental and clinical features of ASD. Method: Thirty-five male preschoolers with ASD completed the Peabody Developmental Motor Scales-2 (PDMS-2; Folio and Fewell, 2000 and underwent a multidisciplinary assessment including medical examination, standardized assessment of cognitive abilities, administration of Autism_Diagnostic_Observation_Schedule (ADOS and a parent interview about adaptive skills. Results: Results revealed a substantial impairment in locomotion and grasping skills. Both fine and gross motor skills were significantly correlated with non verbal IQ and adaptive behaviours (p<0.01 but not with chronological age or ADOS scores. Children with weaker motor skills have greater cognitive and adaptive behaviours deficits. Conclusions: Motor development in ASD can be detected at preschool age and locomotion and grasping skills are substantially the most impaired area. These findings support the need to assess motor skills in preschoolers with ASD in addition to other developmental skill areas. Along with the increasingly acknowledged importance of motor skills for subsequent social, cognitive, and communicative development our findings support the need to consider motor intervention as a key area in therapeutic program to improve outcome in preschoolers with ASD.

  7. SNF Project Locomotion: Progress report 2008-2009

    CERN Document Server

    Hoffmann, Matej; Ziegler, Marc


    Summary of results (project period 1. 10. 2008 - 30. 9. 2009) of SNFS Project "From locomotion to cognition" The research that we have been involved in, and will continue to do, starts from the insight that in order to understand and design intelligent behavior, we must adopt an embodied perspective, i.e. we must take the entire agent, including its shape or morphology, the materials out of which it is built, and its interaction with the environment into account, in addition to the neural control. A lot of our research in the past has been on relatively low-level sensory-motor tasks such as locomotion (e.g. walking, running, jumping), navigation, and grasping. While this research is of interest in itself, in the context of artificial intelligence and cognitive science, this leads to the question of what these kinds of tasks have to do with higher levels of cognition, or to put it more provocatively, "What does walking have to do with thinking?" This question is of course reminiscent of the notorious "symbol g...

  8. SNF Project Locomotion: Final report 2009-2010

    CERN Document Server

    Hoffmann, Matej; Ziegler, Marc


    Summary of results in last project period (1. 10. 2009 - 30. 9. 2010) of SNFS Project "From locomotion to cognition" The research that we have been involved in, and will continue to do, starts from the insight that in order to understand and design intelligent behavior, we must adopt an embodied perspective, i.e. we must take the entire agent, including its shape or morphology, the materials out of which it is built, and its interaction with the environment into account, in addition to the neural control. A lot of our research in the past has been on relatively low-level sensory-motor tasks such as locomotion (e.g. walking, running, jumping), navigation, and grasping. While this research is of interest in itself, in the context of artificial intelligence and cognitive science, this leads to the question of what these kinds of tasks have to do with higher levels of cognition, or to put it more provocatively, "What does walking have to do with thinking?" This question is of course reminiscent of the notorious "...

  9. Loss of hearing in drivers of mine locomotives

    Energy Technology Data Exchange (ETDEWEB)

    Yanish, R.


    One of the most dangerous factors in railroad transport is noise. Drivers of locomotives are exposed to the noise of engines and cars on rails, transporting workers to their places of work; coupling of cars and emptying cars by overturning them; and the transport of fire cars. To determine the amount of noise drivers are subjected to, the Zavodski Institute for National Public Health conducted studies on noise in underground mines. By means of portable noisemeters worn by drivers measurement of the noise of cars running on rails, passing over joints of railroad tracks, and reflected from the rock walls of the drift was made. Mine ventilators added a constant source of noise. At the Zavodski Institute, 64 drivers were examined in the otorhinolaryngology department. Thresholds of hearing were measured by means of tonal audiometry. Combining results of this examination with measurements of noise in the uranium mines, it was determined that the hearing of drivers of mine locomotives deteriorated on the average of 1 dB per year at a frequency of 4000 Hz. (6 refs.) (In Russian)

  10. Locomotion and drag in wet and dry granular media (United States)

    Goldman, Daniel; Kuckuk, Robyn; Sharpe, Sarah


    Many animals move within substrates such as soil and dry sand; the resistive properties of such granular materials (GM) can depend on water content and compaction, but little is known about how such parameters affect locomotion or the relevant physics of drag and penetration. We developed a system to create homogeneous wet GM of varying moisture content and compaction in quantities sufficient to study the burial and subsurface locomotion of the Ocellated skink (C. ocellatus) a desert-generalist lizard. X-ray imaging revealed that in wet and dry GM the lizard slowly buried (~ 30 seconds) propagating a wave from head to tail, while moving in a start-stop motion. During forward movement, the head oscillated, and the forelimb on the convex side of the body propelled the animal. Although body kinematics (and ``slip'') were similar in both substrates, the burial depth was smaller in wet GM. Penetration and drag force experiments on smooth cylinders revealed that wet GM was ~ 3 × more resistive than dry GM, suggesting that during burial the lizard operated near its maximum force producing capability and was thus constrained by environmental properties. work supported by NSF PoLS.

  11. Kinematic Analysis and Experimental Verification on the Locomotion of Gecko

    Institute of Scientific and Technical Information of China (English)

    Woochul Nam; TaeWon Seo; Byungwook Kim; Dongsu Jeon; Kyu-Jin Cho; Jongwon Kim


    This paper presents a kinematic analysis of the locomotion of a gecko, and experimental verification of the kinematic model. Kinematic analysis is important for parameter design, dynamic analysis, and optimization in biomimetic robot research. The proposed kinematic analysis can simulate, without iteration, the locomotion of gecko satisfying the constraint conditions that maintain the position of the contacted feet on the surface. So the method has an advantage for analyzing the climbing motion of the quadruped mechanism in a real time application. The kinematic model of a gecko consists of four legs based on 7-degrees of freedom spherical-revolute-spherical joints and two revolute joints in the waist. The motion of the kinematic model is simulated based on measurement data of each joint. The motion of the kinematic model simulates the investigated real gecko's motion by using the experimental results. The analysis solves the forward kinematics by considering the model as a combination of closed and open serial mechanisms under the condition that maintains the contact positions of the attached feet on the ground. The motions of each joint are validated by comparing with the experimental results. In addition to the measured gait, three other gaits are simulated based on the kinematic model. The maximum strides of each gait are calculated by workspace analysis. The result can be used in biomimetic robot design and motion planning.

  12. No slip locomotion of hatchling sea turtles on granular media (United States)

    Mazouchova, Nicole; Li, Chen; Gravish, Nick; Savu, Andrei; Goldman, Daniel


    Sea turtle locomotion occurs predominantly in aquatic environments. However after hatching from a nest on a beach, the juvenile turtles (hatchlings), must run across several hundred meters of granular media to reach the water. To discover how these organisms use aquatically adapted limbs for effective locomotion on sand, we use high speed infrared video to record hatchling Loggerhead sea turtles (Caretta caretta) kinematics in a field site on Jekyll Island, GA, USA. A portable fluidized bed trackway allows variation of the properties of the granular bed including volume fraction and angle up to the angle of repose. Despite being adapted for life in water, on all treatments the turtles use strategies similar to terrestrial organisms when moving on sand. Speeds up to 3 BL/sec are generated not by paddling in sand, but by limb movement that minimizes slip of the flippers, thus maintaining force below the yield stress of the medium. We predict turtle speed using a model which incorporates the yield stress of the granular medium as a function of surface angle.

  13. Undulatory locomotion of finite filaments: lessons from C. elegans (United States)

    Leshansky, Alexander; Kenneth, Oded; Berman, Rotem; Sznitman, Josue


    Undulatory swimming is a widespread propulsion strategy adopted by many small-scale organisms including various single-cell eukaryotes and nematodes. In this work, we report a comprehensive study of undulatory locomotion of a finite filament using an approximate resistive force theory (RFT) and particle-based numerical computations. Using the ubiquitous model of a propagating sinusoidal waveform, we identify the limit of applicability of the RFT and determine the optimal propulsion gait in terms of (i) swimming distance covered per period of undulation and (ii) hydrodynamic propulsion efficiency. To compare the model sine swimmer to biological undulatory swimmers, we apply the particle-based approach to study locomotion of the of the model organism nematode Caenorhabditis elegans using the swimming gait extracted from experiments. The analysis reveals that the nematode overperforms the model sine swimmer in terms of both displacement and efficiency. Further comparison with common undulatory microorganisms reveals that many adopt waveforms with characteristics similar to the most efficient sine swimmer, yet real swimmers still manage to beat the latter in terms of speed. Our results emphasize the importance of the waveform optimization.

  14. Hybrid magnetic mechanism for active locomotion based on inchworm motion (United States)

    Kim, Sung Hoon; Hashi, Shuichiro; Ishiyama, Kazushi


    Magnetic robots have been studied in the past. Insect-type micro-robots are used in various biomedical applications; researchers have developed inchworm micro-robots for endoscopic use. A biological inchworm has a looping locomotion gait. However, most inchworm micro-robots depend on a general bending, or bellows, motion. In this paper, we introduce a new robotic mechanism using magnetic force and torque control in a rotating magnetic field for a looping gait. The proposed robot is controlled by the magnetic torque, attractive force, and body mechanisms (two stoppers, flexible body, and different frictional legs). The magnetic torque generates a general bending motion. In addition, the attractive force and body mechanisms produce the robot’s looping motion within a rotating magnetic field and without the use of an algorithm for field control. We verified the device’s performance and analyzed the motion through simulations and various experiments. The robot mechanism can be applied to active locomotion for various medical robots, such as wireless endoscopes.

  15. Fuel-free locomotion of Janus motors: magnetically induced thermophoresis. (United States)

    Baraban, Larysa; Streubel, Robert; Makarov, Denys; Han, Luyang; Karnaushenko, Dmitriy; Schmidt, Oliver G; Cuniberti, Gianaurelio


    We present fuel-free locomotion of magnetic spherical Janus motors driven by magnetically induced thermophoresis--a self-diffusive propulsion of an object in any liquid media due to a local temperature gradient. Within this approach an ac magnetic field is applied to induce thermophoretic motion of the objects via heating a magnetic cap of the particles, while an additional dc magnetic field is used to orient Janus motors and guide their motion on a long time scale. Full control over the motion is achieved due to specific properties of ultrathin 100-nm-thick Permalloy (Py, Fe₁₉Ni₈₁ alloys) magnetic films resulting in a topologically stable magnetic vortex state in the cap structure of Janus motors. Realized here magnetically induced thermophoretic locomotion does not require catalytic chemical reactions that imply toxic reagents. In this respect, we addressed and successfully solved one of the main shortcomings in the field of artificial motors, namely being fully controlled and remain biocompatible. Therefore, our approach is attractive for biotechnological in vitro assays and even in vivo operations, since the functioning of Janus motors offers low toxicity; it is not dependent on the presence of the fuel molecules in solution. Furthermore, the suggested magnetic ac excitation is superior compared to the previously proposed optically induced heating using lasers as it does not require transparent packaging.

  16. Neuromechanical models for insect locomotion: Stability, maneuverability, and proprioceptive feedback (United States)

    Kukillaya, R.; Proctor, J.; Holmes, P.


    We describe a hierarchy of models for legged locomotion, emphasizing relationships among feedforward (preflexive) stability, maneuverability, and reflexive feedback. We focus on a hexapedal geometry representative of insect locomotion in the ground plane that includes a neural central pattern generator circuit, nonlinear muscles, and a representative proprioceptive sensory pathway. Although these components of the model are rather complex, neglect of leg mass yields a neuromechanical system with only three degrees of freedom, and numerical simulations coupled with a Poincaré map analysis shows that the feedforward dynamics is strongly stable, apart from one relatively slow mode and a neutral mode in body yaw angle. These modes moderate high frequency perturbations, producing slow heading changes that can be corrected by a stride-to-stride steering strategy. We show that the model's response to a lateral impulsive perturbation closely matches that of a cockroach subject to a similar impulse. We also describe preliminary studies of proprioceptive leg force feedback, showing how a reflexive pathway can reinforce the preflexive stability inherent in the system.

  17. Synaptic polarity of the interneuron circuit controlling C. elegans locomotion

    Directory of Open Access Journals (Sweden)

    Franciszek eRakowski


    Full Text Available C. elegans is the only animal for which a detailed neural connectivity diagram has been constructed. However, synaptic polarities in this diagram, and thus, circuit functions are largely unknown. Here, we deciphered the likely polarities of 7 pre-motor neurons implicated in the control of worm's locomotion, using a combination of experimental and computational tools. We performed single and multiple laser ablations in the locomotor interneuron circuit and recorded times the worms spent in forward and backward locomotion. We constructed a theoretical model of the locomotor circuit and searched its all possible synaptic polarity combinations and sensory input patterns in order to find the best match to the timing data. The optimal solution is when either all or most of the interneurons are inhibitory and forward interneurons receive the strongest input, which suggests that inhibition governs the dynamics of the locomotor interneuron circuit. From the five pre-motor interneurons, only AVB and AVD are equally likely to be excitatory, i.e. they have probably similar number of inhibitory and excitatory connections to distant targets. The method used here has a general character and thus can be also applied to other neural systems consisting of small functional networks.

  18. Synaptic polarity of the interneuron circuit controlling C. elegans locomotion. (United States)

    Rakowski, Franciszek; Srinivasan, Jagan; Sternberg, Paul W; Karbowski, Jan


    Caenorhabditis elegans is the only animal for which a detailed neural connectivity diagram has been constructed. However, synaptic polarities in this diagram, and thus, circuit functions are largely unknown. Here, we deciphered the likely polarities of seven pre-motor neurons implicated in the control of worm's locomotion, using a combination of experimental and computational tools. We performed single and multiple laser ablations in the locomotor interneuron circuit and recorded times the worms spent in forward and backward locomotion. We constructed a theoretical model of the locomotor circuit and searched its all possible synaptic polarity combinations and sensory input patterns in order to find the best match to the timing data. The optimal solution is when either all or most of the interneurons are inhibitory and forward interneurons receive the strongest input, which suggests that inhibition governs the dynamics of the locomotor interneuron circuit. From the five pre-motor interneurons, only AVB and AVD are equally likely to be excitatory, i.e., they have probably similar number of inhibitory and excitatory connections to distant targets. The method used here has a general character and thus can be also applied to other neural systems consisting of small functional networks.

  19. Crawling beneath the free surface: Water snail locomotion (United States)

    Lee, Sungyon; Bush, John W. M.; Hosoi, A. E.; Lauga, Eric


    Land snails move via adhesive locomotion. Through muscular contraction and expansion of their foot, they transmit waves of shear stress through a thin layer of mucus onto a solid substrate. Since a free surface cannot support shear stress, adhesive locomotion is not a viable propulsion mechanism for water snails that travel inverted beneath the free surface. Nevertheless, the motion of the freshwater snail, Sorbeoconcha physidae, is reminiscent of that of its terrestrial counterparts, being generated by the undulation of the snail foot that is separated from the free surface by a thin layer of mucus. Here, a lubrication model is used to describe the mucus flow in the limit of small-amplitude interfacial deformations. By assuming the shape of the snail foot to be a traveling sine wave and the mucus to be Newtonian, an evolution equation for the interface shape is obtained and the resulting propulsive force on the snail is calculated. This propulsive force is found to be nonzero for moderate values of the capillary number but vanishes in the limits of high and low capillary number. Physically, this force arises because the snail's foot deforms the free surface, thereby generating curvature pressures and lubrication flows inside the mucus layer that couple to the topography of the foot.

  20. A review on locomotion robophysics: the study of movement at the intersection of robotics, soft matter and dynamical systems (United States)

    Aguilar, Jeffrey; Zhang, Tingnan; Qian, Feifei; Kingsbury, Mark; McInroe, Benjamin; Mazouchova, Nicole; Li, Chen; Maladen, Ryan; Gong, Chaohui; Travers, Matt; Hatton, Ross L.; Choset, Howie; Umbanhowar, Paul B.; Goldman, Daniel I.


    Discovery of fundamental principles which govern and limit effective locomotion (self-propulsion) is of intellectual interest and practical importance. Human technology has created robotic moving systems that excel in movement on and within environments of societal interest: paved roads, open air and water. However, such devices cannot yet robustly and efficiently navigate (as animals do) the enormous diversity of natural environments which might be of future interest for autonomous robots; examples include vertical surfaces like trees and cliffs, heterogeneous ground like desert rubble and brush, turbulent flows found near seashores, and deformable/flowable substrates like sand, mud and soil. In this review we argue for the creation of a physics of moving systems—a ‘locomotion robophysics’—which we define as the pursuit of principles of self-generated motion. Robophysics can provide an important intellectual complement to the discipline of robotics, largely the domain of researchers from engineering and computer science. The essential idea is that we must complement the study of complex robots in complex situations with systematic study of simplified robotic devices in controlled laboratory settings and in simplified theoretical models. We must thus use the methods of physics to examine both locomotor successes and failures using parameter space exploration, systematic control, and techniques from dynamical systems. Using examples from our and others’ research, we will discuss how such robophysical studies have begun to aid engineers in the creation of devices that have begun to achieve life-like locomotor abilities on and within complex environments, have inspired interesting physics questions in low dimensional dynamical systems, geometric mechanics and soft matter physics, and have been useful to develop models for biological locomotion in complex terrain. The rapidly decreasing cost of constructing robot models with easy access to significant

  1. Can Clinical Assessment of Locomotive Body Function Explain Gross Motor Environmental Performance in Cerebral Palsy? (United States)

    Sanz Mengibar, Jose Manuel; Santonja-Medina, Fernando; Sanchez-de-Muniain, Paloma; Canteras-Jordana, Manuel


    Gross Motor Function Classification System has discriminative purposes but does not assess short-term therapy goals. Locomotion Stages (LS) classify postural body functions and independent activity components. Assessing the relation between Gross Motor Function Classification System level and Locomotion Stages will make us understand if clinical assessment can explain and predict motor environmental performance in cerebral palsy. A total of 462 children were assessed with both scales. High reliability and strong negative correlation (-0.908) for Gross Motor Function Classification System and Locomotion Stages at any age was found. Sensitivity was 83%, and specificity and positive predictive value were 100% within the same age range. Regression analysis showed detailed probabilities for the realization of the Gross Motor Function Classification System depending on the Locomotion Stages and the age group. Postural body function measure with Locomotion Stages is reliable, sensitive, and specific for gross motor function and able to predict environmental performance.

  2. Multibody system dynamics for bio-inspired locomotion: from geometric structures to computational aspects. (United States)

    Boyer, Frédéric; Porez, Mathieu


    This article presents a set of generic tools for multibody system dynamics devoted to the study of bio-inspired locomotion in robotics. First, archetypal examples from the field of bio-inspired robot locomotion are presented to prepare the ground for further discussion. The general problem of locomotion is then stated. In considering this problem, we progressively draw a unified geometric picture of locomotion dynamics. For that purpose, we start from the model of discrete mobile multibody systems (MMSs) that we progressively extend to the case of continuous and finally soft systems. Beyond these theoretical aspects, we address the practical problem of the efficient computation of these models by proposing a Newton-Euler-based approach to efficient locomotion dynamics with a few illustrations of creeping, swimming, and flying.


    Directory of Open Access Journals (Sweden)

    B. Ye. Bodnar


    Full Text Available Purpose. The article describes the most common methods for determining the locomotive traction force. Solving the tasks of traction calculations involves determination of the forces influencing the train at every point of the way. When choosing a rational trajectory of the train motion and the development of operational regulations of train driving it is necessary to determine the actual value of the locomotive traction force. Considering various factors, power value of traction electric motor of locomotive may have significant differences. Advancement of the operational definition system of the locomotive traction force during the calculations by electrical parameters of traction electric motor with regard to uneven load of wheel-motor block is the purpose of the article. Methodology. The method of determining the traction force of locomotives and diesel locomotives with electric transmission, which is based on primary data acquisition of traction electric engines of direct current behavior, was proposed. Sensors and their integration into the electrical circuitry of the locomotive in order to get the data in digital form and for operational calculation of the each traction motor mode and the definition of locomotive traction force are presented. Findings. The experimental investigation of the system of locomotive traction force determination with the electric traction motor ED-105 was offered. A comparison of electrical and mechanical power of the electric motor was conducted. Originality. The system of locomotives power operational definition, which takes into account the variable electro-mechanical factors of wheel and motor blocks and increases the accuracy of the calculations, was proposed. Practical value. The system is a part of an onboard complex in definition of energy-efficient regimes for trains movement and provides the definition of accelerating and decelerating forces.

  4. 49 CFR 1242.67 - Switch crews; controlling operations; yard and terminal clerical; locomotive fuel; electric power... (United States)


    ... terminal clerical; locomotive fuel; electric power purchased/produced for motive power; operating switches signals, retarders, and humps; and servicing locomotives (accounts XX-52-64, XX-52-65, XX-52-66, XX-52-59...; yard and terminal clerical; locomotive fuel; electric power purchased/produced for motive...

  5. A Century of Acoustic Metrology

    DEFF Research Database (Denmark)

    Rasmussen, Knud


    The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect.......The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect....

  6. Statisticians of the centuries

    CERN Document Server

    Seneta, E; Crépel, P; Fienberg, S; Gani, J


    Statisticians of the Centuries aims to demonstrate the achievements of statistics to a broad audience, and to commemorate the work of celebrated statisticians. This is done through short biographies that put the statistical work in its historical and sociological context, emphasizing contributions to science and society in the broadest terms rather than narrow technical achievement. The discipline is treated from its earliest times and only individuals born prior to the 20th Century are included. The volume arose through the initiative of the International Statistical Institute (ISI), the principal representative association for international statistics (founded in 1885). Extensive consultations within the statistical community, and with prominent members of ISI in particular, led to the names of the 104 individuals who are included in the volume. The biographies were contributed by 73 authors from across the world. The editors are the well-known statisticians Chris Heyde and Eugene Seneta. Chris Heyde is Pro...

  7. The Next American Century (United States)


    forces emphasizlng global mobl ]ity, technological superlority, an~ high quality for intervention in regional conflicts at the expense of be on the verge of a further technological leap :n civilian and military technology . The Soviet military ceallzed as early as 1982, despite its...dominance of the heights of £he Soviet economy, it possessed inadequate resources to compete with the West in a new technological -military revolution


    Institute of Scientific and Technical Information of China (English)



    IN an excavated pit at the side of an expressway in Shandong’s Linzi are visible 2,000-year-old remains of horses and wooden carriages. The horse skeletons are on their side, in an attitude of motion. The pit was discovered in the late 20th century, when the expressway was being built. These early ancestors of modern transport, no longer "road-worthy," are now protected historic artifacts.

  9. Science for the 21st Century

    Energy Technology Data Exchange (ETDEWEB)


    The Federal government plays a key role in supporting the country's science infrastructure, a national treasure, and scientific research, an investment in our future. Scientific discoveries transform the way we think about our universe and ourselves, from the vastness of space to molecular-level biology. In innovations such as drugs derived through biotechnology and new communications technologies we see constant evidence of the power of science to improve lives and address national challenges. We had not yet learned to fly at the dawn of the 20th century, and could not have imagined the amazing 20th century inventions that we now take for granted. As we move into the 21st century, we eagerly anticipate new insights, discoveries, and technologies that will inspire and enrich us for many decades to come. This report presents the critical responsibilities of our Federal science enterprise and the actions taken by the Federal research agencies, through the National Science and Technology Council, to align our programs with scientific opportunity and with national needs. The many examples show how our science enterprise has responded to the President's priorities for homeland and national security, economic growth, health research, and the environment. In addition, we show how the science agencies work together to set priorities; coordinate related research programs; leverage investments to promote discovery, translate science into national benefits, and sustain the national research enterprise; and promote excellence in math and science education and work force development.

  10. Scaling Relations for Wheeled Locomotion in Granular Media (United States)

    Slonaker, James; Kamrin, Ken

    Vehicular wheel design for use on granular material has not currently been perfected. Resistive Force Theory (RFT) is a reduced-order empirical model for granular drag, which shows promise to help simulate and understand locomotion processes to design more efficient wheels. Here we explore the fundamental scaling relations derived from RFT and their experimental validation. Similar to the non-dimensional scaling relations in fluid mechanics, the relative simplicity of RFT asserts that only one material parameter, the ''grain-structure coefficient'', is required, which reduces the complexity of the non-dimensional groups implied by the system. Therefore, wheels with differing input design parameters like size, mass, shape and even gravity, can be tested and their performance related to each other in predictable ways. We experimentally confirmed these relations by testing with 3D printed wheel geometries in a controlled sand bed.

  11. Undulatory locomotion of finite filaments: lessons from C. elegans

    CERN Document Server

    Berman, R; Sznitman, J; Leshansky, A


    Undulatory swimming is a widespread propulsion strategy adopted by many small-scale organisms including various single-cell eukaryotes and nematodes. In this work, we report a comprehensive study of undulatory locomotion of a finite filament using (i) approximate resistive force theory (RFT) assuming a local nature of hydrodynamic interaction between the filament and the surrounding viscous liquid, and (ii) particle-based numerical computations taking into account the intra-filament hydrodynamic interaction. Using the ubiquitous model of a propagating sinusoidal waveform, we identify the limit of applicability of the RFT and determine the optimal propulsion gait in terms of (i) swimming distance per period of undulation and (ii) hydrodynamic propulsion efficiency. The occurrence of the optimal swimming gait maximizing hydrodynamic efficiency at finite wavelength in particle-based computations diverges from the prediction of the RFT. To compare the model swimmer powered by sine wave undulations to biological u...

  12. Bipedal Robot Locomotion on a Terrain with Pitfalls

    Directory of Open Access Journals (Sweden)

    Alireza Tabrizizadeh


    Full Text Available In this paper a locomotion control system for bipedal robot is proposed to provide desirable walking on a terrain and skipping over a pitfall preventing the robot from falling in it. The proposed strategy is a combination of motion optimization based on particle swarm optimization algorithm and utilization of mode switching at the higher level controller. The model for bipedal robot is a compass gait model but the presented method is general and could be appropriately extended and generalized for other complicated models. Principles of minimalistic designs are also respected and simple central pattern generator and simple mechanical feedback control are used to produce and maintain desirable motion patterns of the robot.

  13. Exploiting Bird Locomotion Kinematics Data for Robotics Modeling

    CERN Document Server

    Hugel, Vincent; Abourachid, Anick


    We present here the results of an analysis carried out by biologists and roboticists with the aim of modeling bird locomotion kinematics for robotics purposes. The aim was to develop a bio-inspired kinematic model of the bird leg from biological data. We first acquired and processed kinematic data for sagittal and top views obtained by X-ray radiography of quails walking. Data processing involved filtering and specific data reconstruction in three dimensions, as two-dimensional views cannot be synchronized. We then designed a robotic model of a bird-like leg based on a kinematic analysis of the biological data. Angular velocity vectors were calculated to define the number of degrees of freedom (DOF) at each joint and the orientation of the rotation axes.

  14. Locomotion induced by ventral tegmental microinjections of a nicotinic agonist. (United States)

    Museo, E; Wise, R A


    Bilateral microinjections of the nicotinic agonist cytisine (0.1, 1 or 10 nanomoles per side) into the ventral tegmental area increased locomotor activity. This increase in locomotion was antagonized by mecamylamine (2 mg/kg, IP), a nicotinic antagonist that readily crosses the blood-brain barrier, and by pimozide (0.3 mg/kg, IP), a central dopaminergic antagonist. Hexamethonium (2 mg/kg, IP), a nicotinic antagonist that, unlike mecamylamine, does not cross the blood-brain barrier, had no effect; this suggests that mecamylamine's attenuation of cytisine-induced locomotor activity resulted from a blockade of central and not peripheral nicotinic receptors. The data support the notion that nicotinic and dopaminergic substrates interact at the level of the VTA to produce increases in locomotor activity.

  15. A gait planning method applied to hexapod biomimetic robot locomotion

    Institute of Scientific and Technical Information of China (English)

    Chen Fu; Yan Jihong; Zang Xizhe; Zhao Jie


    In order to fulfill the goal of autonomous walking on rough terrain, a distributed gait planning method applied to hexapod biomimetic robot locomotion is proposed based on the research effort of gait coordination mechanism of stick insect. The mathematical relation of walking velocity and gait pattern was depicted, a set of local rules operating between adjacent legs were put forward, and a distributed network of local rules for gait control was constructed. With the interaction of adjacent legs, adaptive adjustment of phase sequence fluctuation of walking legs resulting from change of terrain conditions or variety of walking speed was implemented to generate statically stable gait. In the simulation experiments, adaptive adjustment of inter-leg phase sequence and smooth transition of velocity and gait pattern were realized, and static stableness was ensured simultaneously, which provided the hexapod robot with the capability of walking on rough terrain stably and expeditiously.

  16. Elastic mesh braided worm robot for locomotive endoscopy. (United States)

    Manwell, Thomas; Vítek, Tomáš; Ranzani, Tommaso; Menciassi, Arianna; Althoefer, Kaspar; Liu, Hongbin


    This paper presents a new design of worm robot whose body is constructed using a novel crimped elastic mesh braid inspired by the earthworm. The proposed worm robot is intended for inspection within the human body via natural orifices. The design and fabrication procedure of the worm robot are given in the paper. The imitation of peristalsis, used by natural worms, is used to control the worm robot for the purpose of producing motion while causing minimal trauma to biological tissue. The forward locomotive function of the worm robot has been tested on both a flat surface and in a rubber tube. It is shown that the worm robot is capable of propagating forwards for both test conditions in a form similar to the earthworm. The test results indicate the proposed worm robot design has promising application for natural tube inspection, like the colon and the esophagus.

  17. A unified theory for the energy cost of legged locomotion. (United States)

    Pontzer, Herman


    Small animals are remarkably efficient climbers but comparatively poor runners, a well-established phenomenon in locomotor energetics that drives size-related differences in locomotor ecology yet remains poorly understood. Here, I derive the energy cost of legged locomotion from two complementary components of muscle metabolism, Activation-Relaxation and Cross-bridge cycling. A mathematical model incorporating these costs explains observed patterns of locomotor cost both within and between species, across a broad range of animals (insects to ungulates), for a wide range of substrate slopes including level running and vertical climbing. This ARC model unifies work- and force-based models for locomotor cost and integrates whole-organism locomotor cost with cellular muscle physiology, creating a predictive framework for investigating evolutionary and ecological pressures shaping limb design and ranging behaviour.

  18. System Design and Locomotion of Superball, an Untethered Tensegrity Robot (United States)

    Sabelhaus, Andrew P.; Bruce, Jonathan; Caluwaerts, Ken; Manovi, Pavlo; Firoozi, Roya Fallah; Dobi, Sarah; Agogino, Alice M.; Sunspiral, Vytas


    The Spherical Underactuated Planetary Exploration Robot ball (SUPERball) is an ongoing project within NASA Ames Research Center's Intelligent Robotics Group and the Dynamic Tensegrity Robotics Lab (DTRL). The current SUPERball is the first full prototype of this tensegrity robot platform, eventually destined for space exploration missions. This work, building on prior published discussions of individual components, presents the fully-constructed robot. Various design improvements are discussed, as well as testing results of the sensors and actuators that illustrate system performance. Basic low-level motor position controls are implemented and validated against sensor data, which show SUPERball to be uniquely suited for highly dynamic state trajectory tracking. Finally, SUPERball is shown in a simple example of locomotion. This implementation of a basic motion primitive shows SUPERball in untethered control.

  19. Metastable legged locomotion: methods to quantify and optimize reliability (United States)

    Saglam, Cenk O.; Byl, Katie


    Measuring the stability of highly-dynamic bipedal locomotion is a challenging but essential task for more capable human-like walking. By discretizing the walking dynamics, we treat the system as a Markov chain, which lends itself to an easy quantification of failure rates by the expected number of steps before falling. This meaningful and intuitive metric is then used for optimizing and benchmarking given controllers. While this method is applicable to any controller scheme, we illustrate the results with two case demonstrations. One scheme is the now-familiar hybrid zero dynamics approach and the other is a method using piece-wise reference trajectories with a sliding mode control. We optimize low-level controllers, to minimize failure rates for any one gait, and we adopt a hierarchical control structure to switch among low-level gaits, providing even more dramatic improvements on the system performance.

  20. Influence of locomotion speed on biomechanical subtask and muscle synergy. (United States)

    Gui, Kai; Zhang, Dingguo


    This paper investigates the relationship of biomechanical subtasks, and muscle synergies with various locomotion speeds. Ground reaction force (GRF) of eight healthy subjects is measured synchronously by force plates of treadmill at five different speeds ranging from 0.5m/s to 1.5m/s. Four basic biomechanical subtasks, body support, propulsion, swing, and heel strike preparation, are identified according to GRF. Meanwhile, electromyography (EMG) data, used to extract muscle synergies, are collected from lower limb muscles. EMG signals are segmented periodically based on GRF with the heel strike as the split points. Variability accounted for (VAF) is applied to determine the number of muscle synergies. We find that four muscle synergies can be extracted in all five situations by non-negative matrix factorization (NMF). Furthermore, the four muscle synergies and biomechanical subtasks keep invariant as the walking speed changes.

  1. CPGs With Continuous Adjustment of Phase Difference for Locomotion Control

    Directory of Open Access Journals (Sweden)

    Xingming Wu


    In this article, we adopt a CPG method in which phase difference between oscillators can be arbitrarily adjusted, and we try to improve the CPG’s applications in quadruped robots in some aspects. One aspect is static walk gait locomotion, in which we try to add a transition state in the CPG network to enhance the static balance of the robot. Another aspect is gait transition. Compared with the traditional abrupt gait transition, we try to realize a continuous gait transition between walk gait and trot gait to decrease the fluctuations of the robot. The improved CPG method is tested on a quadruped model and it shows positive results with regard to the improvement of static walk gait and gait transitions.

  2. Effect of back muscle strength and sagittal spinal imbalance on locomotive syndrome in Japanese men. (United States)

    Hirano, Kenichi; Imagama, Shiro; Hasegawa, Yukiharu; Wakao, Norimitsu; Muramoto, Akio; Ishiguro, Naoki


    The Japanese Orthopaedic Association has proposed the term locomotive syndrome to designate a condition of individuals in high-risk groups with musculoskeletal disease who are highly likely to require nursing care. This study investigates the influence of spinal factors on locomotive syndrome in Japanese men. A total of 105 men older than 50 years were enrolled in the study. Those answering yes to least 1 of 7 categories in a self-assessment checklist for locomotive syndrome were defined as having locomotive syndrome. The authors evaluated lateral lumbar radiographs, sagittal parameters, sagittal balance using the spinal inclination angle as an index, spinal range of motion as determined with SpinalMouse (Idiag, Volkerswill, Switzerland), back muscle strength, and body mass index. Age, back muscle strength, and spinal inclination angle significantly correlated with locomotive syndrome. Multiple logistic regression analysis indicated that a decrease in back muscle strength (odds ratio, 0.964; Pmuscle strength had significant negative correlations with age and spinal inclination angle. Spinal inclination angle had significant negative correlations with back muscle strength and lumbar and total spinal range of motion and significant positive correlations with age, body mass index, sacral slope angle, and lumbar kyphosis. A decrease in back muscle strength and an increase in spinal inclination angle may be the most important risk factors for locomotive syndrome in Japanese men. Back muscle strengthening and spinal range of motion exercises could be useful for improving the symptoms of locomotive syndrome.

  3. Trunk orientation causes asymmetries in leg function in small bird terrestrial locomotion. (United States)

    Andrada, Emanuel; Rode, Christian; Sutedja, Yefta; Nyakatura, John A; Blickhan, Reinhard


    In contrast to the upright trunk in humans, trunk orientation in most birds is almost horizontal (pronograde). It is conceivable that the orientation of the heavy trunk strongly influences the dynamics of bipedal terrestrial locomotion. Here, we analyse for the first time the effects of a pronograde trunk orientation on leg function and stability during bipedal locomotion. For this, we first inferred the leg function and trunk control strategy applied by a generalized small bird during terrestrial locomotion by analysing synchronously recorded kinematic (three-dimensional X-ray videography) and kinetic (three-dimensional force measurement) quail locomotion data. Then, by simulating quail gaits using a simplistic bioinspired numerical model which made use of parameters obtained in in vivo experiments with real quail, we show that the observed asymmetric leg function (left-skewed ground reaction force and longer leg at touchdown than at lift-off) is necessary for pronograde steady-state locomotion. In addition, steady-state locomotion becomes stable for specific morphological parameters. For quail-like parameters, the most common stable solution is grounded running, a gait preferred by quail and most of the other small birds. We hypothesize that stability of bipedal locomotion is a functional demand that, depending on trunk orientation and centre of mass location, constrains basic hind limb morphology and function, such as leg length, leg stiffness and leg damping.

  4. Self-generated sounds of locomotion and ventilation and the evolution of human rhythmic abilities. (United States)

    Larsson, Matz


    It has been suggested that the basic building blocks of music mimic sounds of moving humans, and because the brain was primed to exploit such sounds, they eventually became incorporated in human culture. However, that raises further questions. Why do genetically close, culturally well-developed apes lack musical abilities? Did our switch to bipedalism influence the origins of music? Four hypotheses are raised: (1) Human locomotion and ventilation can mask critical sounds in the environment. (2) Synchronization of locomotion reduces that problem. (3) Predictable sounds of locomotion may stimulate the evolution of synchronized behavior. (4) Bipedal gait and the associated sounds of locomotion influenced the evolution of human rhythmic abilities. Theoretical models and research data suggest that noise of locomotion and ventilation may mask critical auditory information. People often synchronize steps subconsciously. Human locomotion is likely to produce more predictable sounds than those of non-human primates. Predictable locomotion sounds may have improved our capacity of entrainment to external rhythms and to feel the beat in music. A sense of rhythm could aid the brain in distinguishing among sounds arising from discrete sources and also help individuals to synchronize their movements with one another. Synchronization of group movement may improve perception by providing periods of relative silence and by facilitating auditory processing. The adaptive value of such skills to early ancestors may have been keener detection of prey or stalkers and enhanced communication. Bipedal walking may have influenced the development of entrainment in humans and thereby the evolution of rhythmic abilities.

  5. Do horizontal propulsive forces influence the nonlinear structure of locomotion?

    Directory of Open Access Journals (Sweden)

    Stergiou Nicholas


    Full Text Available Abstract Background Several investigations have suggested that changes in the nonlinear gait dynamics are related to the neural control of locomotion. However, no investigations have provided insight on how neural control of the locomotive pattern may be directly reflected in changes in the nonlinear gait dynamics. Our simulations with a passive dynamic walking model predicted that toe-off impulses that assist the forward motion of the center of mass influence the nonlinear gait dynamics. Here we tested this prediction in humans as they walked on the treadmill while the forward progression of the center of mass was assisted by a custom built mechanical horizontal actuator. Methods Nineteen participants walked for two minutes on a motorized treadmill as a horizontal actuator assisted the forward translation of the center of mass during the stance phase. All subjects walked at a self-select speed that had a medium-high velocity. The actuator provided assistive forces equal to 0, 3, 6 and 9 percent of the participant's body weight. The largest Lyapunov exponent, which measures the nonlinear structure, was calculated for the hip, knee and ankle joint time series. A repeated measures one-way analysis of variance with a t-test post hoc was used to determine significant differences in the nonlinear gait dynamics. Results The magnitude of the largest Lyapunov exponent systematically increased as the percent assistance provided by the mechanical actuator was increased. Conclusion These results support our model's prediction that control of the forward progression of the center of mass influences the nonlinear gait dynamics. The inability to control the forward progression of the center of mass during the stance phase may be the reason the nonlinear gait dynamics are altered in pathological populations. However, these conclusions need to be further explored at a range of walking speeds.

  6. Kinematics of the coordination of pointing during locomotion.

    Directory of Open Access Journals (Sweden)

    Enrico Chiovetto

    Full Text Available In natural motor behaviour arm movements, such as pointing or reaching, often need to be coordinated with locomotion. The underlying coordination patterns are largely unexplored, and require the integration of both rhythmic and discrete movement primitives. For the systematic and controlled study of such coordination patterns we have developed a paradigm that combines locomotion on a treadmill with time-controlled pointing to targets in the three-dimensional space, exploiting a virtual reality setup. Participants had to walk at a constant velocity on a treadmill. Synchronized with specific foot events, visual target stimuli were presented that appeared at different spatial locations in front of them. Participants were asked to reach these stimuli within a short time interval after a "go" signal. We analysed the variability patterns of the most relevant joint angles, as well as the time coupling between the time of pointing and different critical timing events in the foot movements. In addition, we applied a new technique for the extraction of movement primitives from kinematic data based on anechoic demixing. We found a modification of the walking pattern as consequence of the arm movement, as well as a modulation of the duration of the reaching movement in dependence of specific foot events. The extraction of kinematic movement primitives from the joint angle trajectories exploiting the new algorithm revealed the existence of two distinct main components accounting, respectively, for the rhythmic and discrete components of the coordinated movement pattern. Summarizing, our study shows a reciprocal pattern of influences between the coordination patterns of reaching and walking. This pattern might be explained by the dynamic interactions between central pattern generators that initiate rhythmic and discrete movements of the lower and upper limbs, and biomechanical factors such as the dynamic gait stability.

  7. Experimental hydrodynamics of fish locomotion: functional insights from wake visualization. (United States)

    Drucker, Eliot G; Lauder, George V


    Despite enormous progress during the last twenty years in understanding the mechanistic basis of aquatic animal propulsion-a task involving the construction of a substantial data base on patterns of fin and body kinematics and locomotor muscle function-there remains a key area in which biologists have little information: the relationship between propulsor activity and water movement in the wake. How is internal muscular force translated into external force exerted on the water? What is the pattern of fluid force production by different fish fins (e.g., pectoral, caudal, dorsal) and how does swimming force vary with speed and among species? These types of questions have received considerable attention in analyses of terrestrial locomotion where force output by limbs can be measured directly with force plates. But how can forces exerted by animals moving through fluid be measured? The advent of digital particle image velocimetry (DPIV) has provided an experimental hydrodynamic approach for quantifying the locomotor forces of freely moving animals in fluids, and has resulted in significant new insights into the mechanisms of fish propulsion. In this paper we present ten "lessons learned" from the application of DPIV to problems of fish locomotion over the last five years. (1) Three-dimensional DPIV analysis is critical for reconstructing wake geometry. (2) DPIV analysis reveals the orientation of locomotor reaction forces. (3) DPIV analysis allows calculation of the magnitude of locomotor forces. (4) Swimming speed can have a major impact on wake structure. (5) DPIV can reveal interspecific differences in vortex wake morphology. (6) DPIV analysis can provide new insights into the limits to locomotor performance. (7) DPIV demonstrates the functional versatility of fish fins. (8) DPIV reveals hydrodynamic force partitioning among fins. (9) DPIV shows that wake interaction among fins may enhance thrust production. (10) Experimental hydrodynamic analysis can provide

  8. The mechanics of the adhesive locomotion of terrestrial gastropods. (United States)

    Lai, Janice H; del Alamo, Juan C; Rodríguez-Rodríguez, Javier; Lasheras, Juan C


    Research on the adhesive locomotion of terrestrial gastropods is gaining renewed interest as it provides a source of guidance for the design of soft biomimetic robots that can perform functions currently not achievable by conventional rigid vehicles. The locomotion of terrestrial gastropods is driven by a train of periodic muscle contractions (pedal waves) and relaxations (interwaves) that propagate from their tails to their heads. These ventral waves interact with a thin layer of mucus secreted by the animal that transmits propulsive forces to the ground. The exact mechanism by which these propulsive forces are generated is still a matter of controversy. Specifically, the exact role played by the complex rheological and adhesive properties of the mucus is not clear. To provide quantitative data that could shed light on this question, we use a newly developed technique to measure, with high temporal and spatial resolution, the propulsive forces that terrestrial gastropods generate while crawling on smooth flat surfaces. The traction force measurements demonstrate the importance of the finite yield stress of the mucus in generating thrust and are consistent with the surface of the ventral foot being lifted with the passage of each pedal wave. We also show that a forward propulsive force is generated beneath each stationary interwave and that this net forward component is balanced by the resistance caused by the outer rim of the ventral foot, which slides at the speed of the center of mass of the animal. Simultaneously, the animal pulls the rim laterally inward. Analysis of the traction forces reveals that the kinematics of the pedal waves is far more complex than previously thought, showing significant spatial variation (acceleration/deceleration) as the waves move from the tail to the head of the animal.

  9. Undulatory locomotion of finite filaments: lessons from Caenorhabditis elegans (United States)

    Berman, R. S.; Kenneth, O.; Sznitman, J.; Leshansky, A. M.


    Undulatory swimming is a widespread propulsion strategy adopted by many small-scale organisms including various single-cell eukaryotes and nematodes. In this work, we report a comprehensive study of undulatory locomotion of a finite filament using (i) approximate resistive force theory (RFT) assuming a local nature of hydrodynamic interaction between the filament and the surrounding viscous liquid and (ii) particle-based numerical computations taking into account the intra-filament hydrodynamic interaction. Using the ubiquitous model of a propagating sinusoidal waveform, we identify the limit of applicability of the RFT and determine the optimal propulsion gait in terms of (i) swimming distance per period of undulation and (ii) hydrodynamic propulsion efficiency. The occurrence of the optimal swimming gait maximizing hydrodynamic efficiency at finite wavelength in particle-based computations diverges from the prediction of the RFT. To compare the model swimmer powered by sine wave undulations to biological undulatory swimmers, we apply the particle-based approach to study locomotion of the model organism nematode Caenorhabditis elegans using the swimming gait extracted from experiments. The analysis reveals that even though the amplitude and the wavenumber of undulations are similar to those determined for the best performing sinusoidal swimmer, C. elegans overperforms the latter in terms of both displacement and hydrodynamic efficiency. Further comparison with other undulatory microorganisms reveals that many adopt waveforms with characteristics similar to the optimal model swimmer, yet real swimmers still manage to beat the best performing sine-wave swimmer in terms of distance covered per period. Overall our results underline the importance of further waveform optimization, as periodic undulations adopted by C. elegans and other organisms deviate considerably from a simple sine wave.

  10. Health Physics in the 21st Century

    CERN Document Server

    Bevelacqua, Joseph John


    Adopting a proactive approach and focusing on emerging radiation-generating technologies, Health Physics in the 21st Century meets the growing need for a presentation of the relevant radiological characteristics and hazards. As such, this monograph discusses those technologies that will affect the health physics and radiation protection profession over the decades to come. After an introductory overview, the second part of this book looks at fission and fusion energy, followed by a section devoted to accelerators, while the final main section deals with radiation on manned space missions.

  11. Measurement of black carbon emissions from in-use diesel-electric passenger locomotives in California (United States)

    Tang, N. W.; Kirchstetter, T.; Martien, P. T.; Apte, J.


    Black carbon (BC) emission factors were measured for a California commuter rail line fleet of diesel-electric passenger locomotives (Caltrain). The emission factors are based on BC and carbon dioxide (CO2) concentrations in the exhaust plumes of passing locomotives, which were measured from pedestrian overpasses using portable analyzers. Each of the 29 locomotives in the fleet was sampled on 4-20 separate occasions at different locations to characterize different driving modes. The average emission factor expressed as g BC emitted per kg diesel consumed was 0.87 ± 0.66 g kg-1 (±1 standard deviation, n = 362 samples). BC emission factors tended to be higher for accelerating locomotives traveling at higher speeds with engines in higher notch settings. Higher fuel-based BC emission factors (g kg-1) were measured for locomotives equipped with separate "head-end" power generators (SEP-HEPs), which power the passenger cars, while higher time-based emission factors (g h-1) were measured for locomotives without SEP-HEPs, whose engines are continuously operated at high speeds to provide both head-end and propulsion power. PM10 emission factors, estimated assuming a BC/PM10 emission ratio of 0.6 and a typical power output-to-fuel consumption ratio, were generally in line with the Environmental Protection Agency's locomotive exhaust emission standards. Per passenger mile, diesel-electric locomotives in this study emit only 20% of the CO2 emitted by typical gasoline-powered light-duty vehicles (i.e., cars). However, the reduction in carbon footprint (expressed in terms of CO2 equivalents) due to CO2 emissions avoidance from a passenger commuting by train rather than car is appreciably offset by the locomotive's higher BC emissions.

  12. The G6 - a heavy-duty six-wheeled shunting locomotive; Dreiachsige Hochleistungsrangierlokomotive G6

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Tim [Vossloh Locomotives GmbH, Kiel (Germany). Entwicklung und Standardisierung


    With the three-axle shunter G6, exhibited at Innotrans 2008, the renowned producer of rail vehicles Vossloh Locomotives GmbH marks the beginning of a generational change - not only for three-axle but also for four-axle locomotives. In order to replace the type G765C the G6 has been developed in close cooperation with potential customers. Their request concerning robustness and reliability as well as the equipment options set standards for central driver's cab locomotives in general and lead the way for future four-axle replacements within the Vossloh product family. (orig.)

  13. Achieving Technological Literacy: A National Imperative. (United States)

    Bybee, Rodger W.


    Discusses the importance of technological literacy for the 21st century. Points out that, of the top 100 headlines of the 20th century, over 40 percent were related to technology, yet many people have an outdated notion of what technology really is. Discusses the need for standards of technological literacy. (JOW)

  14. Understanding Edward Muybridge: historical review of behavioral alterations after a 19th-century head injury and their multifactorial influence on human life and culture. (United States)

    Manjila, Sunil; Singh, Gagandeep; Alkhachroum, Ayham M; Ramos-Estebanez, Ciro


    Edward Muybridge was an Anglo-American photographer, well known for his pioneering contributions in photography and his invention of the "zoopraxiscope," a forerunner of motion pictures. However, this 19th-century genius, with two original patents in photographic technology, made outstanding contributions in art and neurology alike, the latter being seldom acknowledged. A head injury that he sustained changed his behavior and artistic expression. The shift of his interests from animal motion photography to human locomotion and gait remains a pivotal milestone in our understanding of patterns in biomechanics and clinical neurology, while his own behavioral patterns, owing to an injury to the orbitofrontal cortex, remain a mystery even for cognitive neurologists. The behavioral changes he exhibited and the legal conundrum that followed, including a murder of which he was acquitted, all depict the complexities of his personality and impact of frontal lobe injuries. This article highlights the life journey of Muybridge, drawing parallels with Phineas Gage, whose penetrating head injury has been studied widely. The wide sojourn of Muybridge also illustrates the strong connections that he maintained with Stanford and Pennsylvania universities, which were later considered pinnacles of higher education on the two coasts of the United States.

  15. New Century, New Prospects

    Institute of Scientific and Technical Information of China (English)



    @@ Nuclear weapons changed the world of the 20th century. Their powerful force rewrote history. Nuclear bombs dropped on Japan by the United States accelerated the collapse of Japanese militarism and hastened the end of World War Ⅱ. The West led by the United States and the East bloc led by the Soviet Union started a bitter nuclear arms race that mutually assured destruction. The balance of terror between the two blocs stabilized in the Cold War and prevented the world from actual armed conflict, thus maintaining a long-term but occasionally uneasy peace in Europe and the world.

  16. Deriving Shape-Based Features for C. elegans Locomotion Using Dimensionality Reduction Methods (United States)

    Gyenes, Bertalan; Brown, André E. X.


    High-throughput analysis of animal behavior is increasingly common following the advances of recording technology, leading to large high-dimensional data sets. This dimensionality can sometimes be reduced while still retaining relevant information. In the case of the nematode worm Caenorhabditis elegans, more than 90% of the shape variance can be captured using just four principal components. However, it remains unclear if other methods can achieve a more compact representation or contribute further biological insight to worm locomotion. Here we take a data-driven approach to worm shape analysis using independent component analysis (ICA), non-negative matrix factorization (NMF), a cosine series, and jPCA (a dynamic variant of principal component analysis [PCA]) and confirm that the dimensionality of worm shape space is close to four. Projecting worm shapes onto the bases derived using each method gives interpretable features ranging from head movements to tail oscillation. We use these as a comparison method to find differences between the wild type N2 worms and various mutants. For example, we find that the neuropeptide mutant nlp-1(ok1469) has an exaggerated head movement suggesting a mode of action for the previously described increased turning rate. The different bases provide complementary views of worm behavior and we expect that closer examination of the time series of projected amplitudes will lead to new results in the future. PMID:27582697

  17. A musculoskeletal model of human locomotion driven by a low dimensional set of impulsive excitation primitives

    Directory of Open Access Journals (Sweden)

    Massimo eSartori


    Full Text Available Human locomotion has been described as being generated by an impulsive (burst-like excitation of groups of musculotendon units, with timing dependent on the biomechanical goal of the task. Despite this view is supported by many experimental observations on specific locomotion tasks, it is still unknown if the same impulsive controller (i.e. a low-dimensional set of time-delayed excitation primitives can be used as input drive for large musculoskeletal models across different human locomotor tasks. For this purpose, we extracted, with non-negative matrix factorization, five non-negative factors from a large sample of muscle EMG signals in two healthy subjects during four motor tasks including walking, running, sidestepping, and crossover cutting maneuvers. The extracted non-negative factors were then averaged and parameterized to obtain task-generic Gaussian-shaped impulsive excitation curves or primitives. These were used to drive a subject-specific musculoskeletal model of the human lower extremity. Results showed that the same set of five impulsive excitation primitives could be used to predict the dynamics of 34 musculotendon units and the resulting hip, knee and ankle joint moments (i.e. NRMSE = 0.18±0.08, and R2 = 0.73±0.22 across all tasks and subjects without substantial loss of accuracy with respect to using experimental EMG recordings (i.e. NRMSE = 0.16±0.07, and R2 = 0.78±0.18 across all tasks and subjects. Results support the hypothesis that dynamically different motor tasks might share similar neuromuscular control strategies. This might have implications in neurorehabilitation technologies such as human-machine interfaces for the torque-driven, proportional control of powered prostheses and orthoses. In this, device control commands (i.e. predicted joint torque could be derived without direct experimental data but relying on simple parameterized Gaussian-shaped curves, thus decreasing the input drive complexity and the number of

  18. Regulation of two motor patterns enables the gradual adjustment of locomotion strategy in Caenorhabditis elegans. (United States)

    Hums, Ingrid; Riedl, Julia; Mende, Fanny; Kato, Saul; Kaplan, Harris S; Latham, Richard; Sonntag, Michael; Traunmüller, Lisa; Zimmer, Manuel


    In animal locomotion a tradeoff exists between stereotypy and flexibility: fast long-distance travelling (LDT) requires coherent regular motions, while local sampling and area-restricted search (ARS) rely on flexible movements. We report here on a posture control system in C. elegans that coordinates these needs. Using quantitative posture analysis we explain worm locomotion as a composite of two modes: regular undulations versus flexible turning. Graded reciprocal regulation of both modes allows animals to flexibly adapt their locomotion strategy under sensory stimulation along a spectrum ranging from LDT to ARS. Using genetics and functional imaging of neural activity we characterize the counteracting interneurons AVK and DVA that utilize FLP-1 and NLP-12 neuropeptides to control both motor modes. Gradual regulation of behaviors via this system is required for spatial navigation during chemotaxis. This work shows how a nervous system controls simple elementary features of posture to generate complex movements for goal-directed locomotion strategies.

  19. Practical experiments on an adsorption air conditioner powered by exhausted heat from a diesel locomotive

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Y.Z.; Wang, R.Z.; Jianzhou, S.; Xu, Y.X.; Wu, J.Y. [Shanghai Jiao Tong University (China). Institute of Refrigeration and Cryogenics


    Experimental studies on the practical performance of an adsorption air conditioning system powered by exhausted heat from a diesel locomotive are presented. The system incorporates one adsorbent bed and utilizes zeolite-water as a working pair to provide chilled water for conditioning the air in the driver's cab of the locomotive. Performance tests under different running conditions have been carried out. Experimental results show that the suggested adsorption system is technically feasible and can be applied for space air conditioning of the locomotive driver's cab, except the case when the locomotive tracts a way train. The average refrigeration power ranging from 3.0 to 4.2 kW has been obtained under typical running conditions. (author)

  20. Optimization of two- and three-link snake-like locomotion

    CERN Document Server

    Jing, Fangxu


    We analyze two- and three-link planar snake-like locomotion and optimize the motion for efficiency. The locomoting system consists of two or three identical inextensible links connected via hinge joints, and the angles between the links are actuated as prescribed periodic functions of time. An essential feature of snake locomotion is frictional anisotropy: the forward, backward and transverse coefficients of friction are different. The dynamics are studied analytically and numerically for small and large amplitudes of the internal angles. Efficiency is defined as the ratio between distance traveled and the energy expended within one period, i.e. the inverse of the cost of locomotion. The optimal set of coefficients of friction to maximize efficiency consists of a large backward coefficient of friction and a small transverse coefficient of friction, compared to the forward coefficient of friction. For the two-link case with a symmetrical motion, efficiency is maximized when the internal angle amplitude is appr...

  1. One-sided limb preference is linked to alternating-limb locomotion in anuran amphibians. (United States)

    Malashichev, Yegor B


    Amphibians provide a unique opportunity for identifying possible links between lateralized behaviors, locomotion, and phylogeny and for addressing the origin of lateralized behaviors of higher vertebrates. Five anuran species with different locomotive habits were tested for forelimb and hind limb preferences during 2 stereotyped behavior sequences--wiping a foreign object off their snout and righting themselves from the overturned position. The experiments were analyzed in a broader context of previous findings on anuran lateralization involving 11 anuran species that were studied within the same experimental paradigms. This analysis shows that one-sided forelimb and hind limb motor lateralization in anurans is strongly associated with alternating-limb locomotion and other unilateral limb activity. Conclusions reached for anuran amphibians may be applicable to other vertebrates possessing paired appendages-the degree of lateralization in motor response depends on the mode of locomotion used by a species.

  2. Design and modeling of power system for a fuel cell hybrid switcher locomotive

    Energy Technology Data Exchange (ETDEWEB)

    Guo Liping, E-mail: lguo@niu.ed [Department of Engineering Technology, Northern Illinois University, DeKalb, IL 60115 (United States); Yedavalli, Karthik; Zinger, Donald [Department of Electrical Engineering, Northern Illinois University, DeKalb, IL 60115 (United States)


    This paper discusses the design and modeling of power system for a fuel cell hybrid locomotive. Different types of fuel cells for appropriate application to locomotives were compared, fuel cell and auxiliary storage devices were modeled, and a control strategy for the overall system was developed in this paper. By using the proposed control strategy, the power control system regulates the sharing of power demand between fuel cell and auxiliary storage units including batteries and ultracapacitors. Experimental data of the power duty cycle of a typical switcher locomotive is analyzed. The proposed control system is tested using the experimental data. Results show that the control system is able to maintain output voltage from different power sources within a certain range, keep the state of charge of the batteries within an optimal range and meet power demand of the locomotive at a high efficiency.

  3. Design and modeling of power system for a fuel cell hybrid switcher locomotive

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Liping [Department of Engineering Technology, Northern Illinois University, DeKalb, IL 60115 (United States); Yedavalli, Karthik; Zinger, Donald [Department of Electrical Engineering, Northern Illinois University, DeKalb, IL 60115 (United States)


    This paper discusses the design and modeling of power system for a fuel cell hybrid locomotive. Different types of fuel cells for appropriate application to locomotives were compared, fuel cell and auxiliary storage devices were modeled, and a control strategy for the overall system was developed in this paper. By using the proposed control strategy, the power control system regulates the sharing of power demand between fuel cell and auxiliary storage units including batteries and ultracapacitors. Experimental data of the power duty cycle of a typical switcher locomotive is analyzed. The proposed control system is tested using the experimental data. Results show that the control system is able to maintain output voltage from different power sources within a certain range, keep the state of charge of the batteries within an optimal range and meet power demand of the locomotive at a high efficiency. (author)

  4. A hybrid active/passive exhaust noise control system for locomotives (United States)

    Remington, Paul J.; Knight, J. Scott; Hanna, Doug; Rowley, Craig


    A prototype hybrid system consisting of active and passive components for controlling far-field locomotive exhaust noise has been designed, assembled, and tested on a locomotive. The system consisted of a resistive passive silencer for controlling high-frequency broadband noise and a feedforward multiple-input, multiple-output active control system for suppressing low-frequency tonal noise. The active system used ten roof-mounted bandpass speaker enclosures with 2-12-in. speakers per enclosure as actuators, eight roof-mounted electret microphones as residual sensors, and an optical tachometer that sensed locomotive engine speed as a reference sensor. The system was installed on a passenger locomotive and tested in an operating rail yard. Details of the system are described and the near-field and far-field noise reductions are compared against the design goal. .

  5. Physiological aspects of legged terrestrial locomotion the motor and the machine

    CERN Document Server

    Cavagna, Giovanni


    This book offers a succinct but comprehensive description of the mechanics of muscle contraction and legged terrestrial locomotion. It describes on the one hand how the fundamental properties of muscle tissue affect the mechanics of locomotion, and on the other, how the mechanics of locomotion modify the mechanism of muscle operation under different conditions. Further, the book reports on the design and results of experiments conducted with two goals. The first was to describe the physiological function of muscle tissue (which may be considered as the “motor”) contracting at a constant length, during shortening, during lengthening, and under a condition that occurs most frequently in the back-and-forth movement of the limbs during locomotion, namely the stretch-shortening cycle of the active muscle. The second objective was to analyze the interaction between the motor and the “machine” (the skeletal lever system) during walking and running in different scenarios with respect to speed, step frequency,...

  6. Kinematics and the Implementation of a Modular Caterpillar Robot in Trapezoidal Wave Locomotion

    Directory of Open Access Journals (Sweden)

    Hongxing Wei


    Full Text Available With the development of bionic engineering, research into bionic robots has become a popular topic. In this field, the design of robotic mechanisms to realize the locomotion of insects forms a significant research branch. The current paper presents a caterpillar robotic mechanism that is composed of our newly-developed\tself-assembly\tmodular\trobots (Sambot. A trapezoidal wave locomotion gait is planned for the caterpillar mechanism and the kinematics equations are established and solved analytically for such locomotion. The variations of the kinematics quantities are illustrated and discussed. The variation of the jump of the angular acceleration indicates that it is better to apply the trapezoidal wave gait to low velocity situations. Finally, the obtained data of the kinematics quantities is used to perform the gait control locomotion experiment and the errors of the experimental data are analysed in depth.

  7. The management century. (United States)

    Kiechel, Walter


    In 1886, addressing the nascent American Society of Mechanical Engineers, Henry R. Towne proposed that "the management of works" be considered a modern art--thereby heralding the Management Century, when management as we know it came into being and shaped the world in which we work. Kiechel, a past editorial director of Harvard Business Publishing, elucidates the three eras that punctuate this period: the years leading up to World War II, during which scientific exactitude gave wings to a new managerial elite; the early postwar decades, managerialism's apogee of self-confidence and a time when wartime principles of strategy were adapted, sometimes ruthlessly, to the running of companies; and the 1980s to the present, years that saw fast-moving changes, disequilibrium, and a servitude to market forces but also ushered in globalism, unprecedented innovation, and heightened expectations about how workers are to be treated. Along the way he examines the contributions of thinkers such as Frederick Taylor, Elton Mayo, Peter Drucker, and Michael Porter. What lies ahead? Perhaps the biggest challenge facing the 21st-century company, Kiechel posits, is to truly free the spark of human imagination from the organization's tidal pull toward the status quo. There's almost always a better way, he concludes--and management will continue to seek it.

  8. Fictive locomotion in the adult decerebrate and spinal mouse in vivo

    DEFF Research Database (Denmark)

    Meehan, Claire Francesca; Grøndahl, Lillian; Nielsen, Jens Bo;


    Recently, transgenic mice have been created with mutations affecting the components of the mammalian spinal central pattern generator (CPG) for locomotion, however, it has currently only been possible to evoke fictive locomotion in mice, using neonatal in vitro preparations. Here, we demonstrate ...... organisation and allowing for future results in transgenic mice to be extrapolated to existing knowledge of CPG components and circuitry obtained in larger species....

  9. Sizing and Energy Management of a Hybrid Locomotive Based on Flywheel and Accumulators


    Jaafar, Amine; Akli, Cossi Rockys; Sareni, Bruno; Roboam, Xavier; Jeunesse, Alain


    The French National Railways Company (SNCF) is interested in the design of a hybrid locomotive based on various storage devices (accumulator, flywheel, and ultracapacitor) and fed by a diesel generator. This paper particularly deals with the integration of a flywheel device as a storage element with a reduced-power diesel generator and accumulators on the hybrid locomotive. First, a power flow model of energy-storage elements (flywheel and accumulator) is developed to achieve the design of...

  10. A Systemic Approach Integrating Driving Cycles for the Design of Hybrid Locomotives


    Jaafar, Amine; Sareni, Bruno; Roboam, Xavier


    International audience; Driving cycles are essential in hybrid locomotive design by conditioning their size and performance. This paper introduces a new systemic approach to hybrid locomotive design, taking real-world driving cycles into account. The proposed approach first exploits clustering analysis with the aim of identifying classes corresponding to particular sets of driving cycles. Then, a synthesis process of a reduced and representative profile from each class of driving cycles is pr...

  11. Robustness: a new SLIP model based criterion for gait transitions in bipedal locomotion


    Martinez Salazar, Harold Roberto; Carbajal, Juan Pablo; Ivanenko, Yuri P.


    Bipedal locomotion is a phenomenon that still eludes a fundamental and concise mathematical understanding. Conceptual models that capture some relevant aspects of the process exist but their full explanatory power is not yet exhausted. In the current study, we introduce the robustness criterion which defines the conditions for stable locomotion when steps are taken with imprecise angle of attack. Intuitively, the necessity of a higher precision indicates the difficulty to continue moving with...

  12. Heliportable drilling in the 21. century

    Energy Technology Data Exchange (ETDEWEB)

    Argue, F. [Academy Services, Calgary, AB (Canada); Korach, D. [Nabors Alaska, Anchorage, AK (United States); Read, M. [Nabors Canada, Calgary, AB (Canada)


    The access season for conventional ice roads has been reduced. Therefore, efficient drilling programs are required for a short winter drilling, and long wells are not able to compete in one season. Heliportable drilling provides non-ice access. This presentation outlined the merits of heliportable drilling in the twenty-first century. Conventional heliportable drilling was discussed and several images of current and past heliportable drilling rigs were presented. New technologies were also illustrated and discussed, with particular reference to the Mi26T enabler, a Russian super heavy lift helicopter, leased to Airborne Energy Solutions. Operating data for the Mi26T was also presented and the heli-drill system was explained. Several twenty-first century heli-rigs were also illustrated and described, including rig 119H, rig 103AC, rig 106E, rig 99AC, and rig 105E. Last, the presentation identified the next steps for heli-rigs. tabs., figs.

  13. Selective Reproduction in the 21st Century

    DEFF Research Database (Denmark)

    In the 21st century, human reproduction increasingly involves decisions about which gametes to fertilize, which embryos to implant, or which fetuses to abort. The term ‘selective reproduction’ refers to these increasingly widespread efforts to bring specific kinds of children into being....... To this end, selective reproductive technologies (SRTs) have been developed and routinized over the last few decades. In today’s world, selective reproduction is taking place on a historically unprecedented scale; through sex-selective abortions following ultrasound scans, termination of pregnancies following...... detection of fetal anomalies during prenatal screening and testing programs, the development of preimplantation genetic diagnosis techniques as well as the screening of potential gamete donors by egg agencies and sperm banks. Selective Reproduction in the 21st Century provides unique ethnographic insights...

  14. Locomotion Generation and Motion Library Design for an Anguilliform Robotic Fish

    Institute of Scientific and Technical Information of China (English)

    Xuelei Niu; Jianxin Xu; Qinyuan Ren; Qingguo Wang


    In this paper,modeling,locomotion generation,motion library design and path planning for a real prototype of an Anguilliform robotic fish are presented.The robotic fish consists of four links and three joints,and the driving forces are the torques applied to the joints.Considering kinematic constraints and hydrodynamic forces,Lagrangian formulation is used to obtain the dynamic model of the fish.Using this model,three major locomotion patterns of Anguilliform fish,including forward locomotion,backward locomotion and turning locomotion are investigated.It is found that the fish exhibits different locomotion pattems by giving different reference joint angles,such as adding reversed phase difference,or adding deflections to the original reference angles.The results are validated by both simulations and experiments.Furthermore,the relations among the speed of the fish,angular frequency,undulation amplitude,phase difference,as well as the relationship between the turning radius and deflection angle are investigated.These relations provide an elaborated motion library that can be used for motion planning of the robotic fish.

  15. Robotic and mathematical modeling reveal general principles of appendage control and coordination in terrestrial locomotion (United States)

    McInroe, Benjamin; Astley, Henry; Gong, Chaohui; Kawano, Sandy; Schiebel, Perrin; Choset, Howie; Goldman, Daniel I.

    The transition from aquatic to terrestrial life presented new challenges to early walkers, necessitating robust locomotion on complex, flowable substrates (e.g. sand, mud). Locomotion on such substrates is sensitive to limb morphology and kinematics. Although early walker morphologies are known, principles of appendage control remain elusive. To reveal limb control strategies that facilitated the invasion of land, we study both robotic and mathematical models. Robot experiments show that an active tail is critical for robust locomotion on granular media, enabling locomotion even with poor foot placement and limited ability to lift the body. Using a granular resistive force theory model, we construct connection vector fields that reveal how appendage coordination and terrain inclination impact locomotor performance. This model replicates experimental results, showing that moving limbs/tail in phase is most effective (suggesting a locomotor template). Varying limb trajectories and contacts, we find gaits for which tail use can be neutral or harmful, suggesting limb-tail coordination to be a nontrivial aspect of locomotion. Our findings show that robot experiments coupled with geometric mechanics provide a general framework to reveal principles of robust terrestrial locomotion. This work was supported by NSF PoLS.

  16. Education Technology Success Stories (United States)

    West, Darrell M.; Bleiberg, Joshua


    Advances in technology are enabling dramatic changes in education content, delivery, and accessibility. Throughout history, new technologies have facilitated the exponential growth of human knowledge. In the early twentieth century, the focus was on the use of radios in education. But since then, innovators have seen technology as a way to improve…

  17. Biometric technology overview

    Institute of Scientific and Technical Information of China (English)


    Biometrics was identified as one amongst 10 emerging technologies which would change the world in the twenty-first century. Components and processes of biometric system and the relevant technologies are explained in this article. Examples of biometric applications and trends of biometric research, together with industry development,are introduced, which illustrate the challenges and opportunities of this technology.

  18. Enhancing Teaching with Technology. (United States)

    Pedras, Melvin J.; Oaks, Merrill

    Students who are not educated in the modern advances of our technological society will be ill-prepared for the world of work in the 21st century. It is therefore incumbent upon all educators to modify traditional curriculum to reflect contemporary technology. School technology education programs today are being developed to reflect the needs of…

  19. 陆上杆机构运动仿生的现状、关键技术及未来发展%Biomimetics of Legged Locomotion on Unstructured Multi-Bar Compound:Present Situation, Key Technology and Future Development

    Institute of Scientific and Technical Information of China (English)



    The problems in the development of bionic robots, the biological basis and the future of animal-motion bionics are generally reviewed, and the development opportunities as well as problems to be faced in the animal-motion bionics are discussed. At the same time, it is pointed out that the advanced environment perception technology, the multistep actuator driven by smart material, the multi-bar compound mobile robot and its intelligent control technology, and the research on the law of animal motion will be the developing trend in the future.%从运动仿生的生物学基础、仿生运动体的发展和存在问题、运动仿生的未来发展等几个方面回顾和评述运动仿生面临的问题和发展机遇.分析了四足动物运动的生物学机制和国内外现有仿生机器人发展现状及存在的问题,并预测先进环境感知技术、分布式驱动和智能驱动材料、杆机构机器人与智能控制技术和动物运动规律的研究将是未来运动仿生发展的方向.

  20. Universality in legged locomotion on low-resistance ground (United States)

    Qian, Feifei; Korff, Wyatt; Umbanhowar, Paul; Full, Robert; Goldman, Daniel


    Natural substrates like sand, snow, leaf litter and soil vary widely in penetration resistance, but little is known about how legged locomotors respond to this variation. To address this deficit, we built an air-fluidized trackway filled with granular material to control ground resistance. Resistance can be reduced to zero by increasing the upward flow of air through the bed. Using a hexapedal robot as our model locomotor, we systematically study how locomotion performance varies with penetration resistance, limb kinematics and foot morphology. A universal model, which combines robot kinematics and ground parameters, determines robot speed for all penetration resistances and captures the dependence of performance sensitivity on foot pressure and ground resistance. Expanding the scope of locomotors to include five organisms, we find that their performance on low-resistance ground is also well captured by the universal model. The model suggests that both increasing foot size and decreasing gait frequency reduce the performance loss as ground resistance decreases. Organisms may minimize the inertial effects of the granular media by maintaining maximum foot impact shear stresses through passive structures, e.g. long flexible toes, and active mechanisms, e.g. gait frequency control.

  1. Compensatory plasticity restores locomotion after chronic removal of descending projections. (United States)

    Harley, Cynthia M; Reilly, Melissa G; Stewart, Christopher; Schlegel, Chantel; Morley, Emma; Puhl, Joshua G; Nagel, Christian; Crisp, Kevin M; Mesce, Karen A


    Homeostatic plasticity is an important attribute of neurons and their networks, enabling functional recovery after perturbation. Furthermore, the directed nature of this plasticity may hold a key to the restoration of locomotion after spinal cord injury. Here we studied the recovery of crawling in the leech Hirudo verbana after descending cephalic fibers were surgically separated from crawl central pattern generators shown previously to be regulated by dopamine. We observed that immediately after nerve cord transection leeches were unable to crawl, but remarkably, after a day to weeks, animals began to show elements of crawling and intersegmental coordination. Over a similar time course, excessive swimming due to the loss of descending inhibition returned to control levels. Additionally, removal of the brain did not prevent crawl recovery, indicating that connectivity of severed descending neurons was not essential. After crawl recovery, a subset of animals received a second transection immediately below the anterior-most ganglion remaining. Similar to their initial transection, a loss of crawling with subsequent recovery was observed. These data, in recovered individuals, support the idea that compensatory plasticity directly below the site of injury is essential for the initiation and coordination of crawling. We maintain that the leech provides a valuable model to understand the neural mechanisms underlying locomotor recovery after injury because of its experimental accessibility, segmental organization, and dependence on higher-order control involved in the initiation, modulation, and coordination of locomotor behavior.

  2. Markerless 3D motion capture for animal locomotion studies

    Directory of Open Access Journals (Sweden)

    William Irvin Sellers


    Full Text Available Obtaining quantitative data describing the movements of animals is an essential step in understanding their locomotor biology. Outside the laboratory, measuring animal locomotion often relies on video-based approaches and analysis is hampered because of difficulties in calibration and often the limited availability of possible camera positions. It is also usually restricted to two dimensions, which is often an undesirable over-simplification given the essentially three-dimensional nature of many locomotor performances. In this paper we demonstrate a fully three-dimensional approach based on 3D photogrammetric reconstruction using multiple, synchronised video cameras. This approach allows full calibration based on the separation of the individual cameras and will work fully automatically with completely unmarked and undisturbed animals. As such it has the potential to revolutionise work carried out on free-ranging animals in sanctuaries and zoological gardens where ad hoc approaches are essential and access within enclosures often severely restricted. The paper demonstrates the effectiveness of video-based 3D photogrammetry with examples from primates and birds, as well as discussing the current limitations of this technique and illustrating the accuracies that can be obtained. All the software required is open source so this can be a very cost effective approach and provides a methodology of obtaining data in situations where other approaches would be completely ineffective.

  3. Energetics of foraging and locomotion in the platypus Ornithorhynchus anatinus. (United States)

    Bethge, P; Munks, S; Nicol, S


    We measured the energy requirements of platypuses foraging, diving and resting in a swim tank using flow-through respirometry. Also, walking metabolic rates were obtained from platypuses walking on a conventional treadmill. Energy requirements while foraging were found to depend on water temperature, body weight and dive duration and averaged 8.48 W kg(-1). Rates for subsurface swimming averaged 6.71 W kg(-1). Minimal cost of transport for subsurface swimming platypuses was 1.85 J N(-1)m(-1) at a speed of 0.4 m s(-1). Aerobic dive limit of the platypus amounted to 59 s. Metabolic rate of platypuses resting on the water surface was minimal with 3.91 W kg(-1) while minimal RMR on land was 2.08 W kg(-1). The metabolic rate for walking was 8.80 W kg(-1) and 10.56 W kg(-1) at speeds of 0.2 m s(-1) and 0.3 m s(-1), respectively. A formula was derived, which allows prediction of power requirements of platypuses in the wild from measurements of body weight, dive duration and water temperature. Platypuses were found to expend energy at only half the rate of semiaquatic eutherians of comparable body sizes during both walking and diving. However, costs of transport at optimal speed were in line with findings for eutherians. These patterns suggest that underwater locomotion of semiaquatic mammals have converged on very similar efficiencies despite differences in phylogeny and locomotor mode.

  4. Energy expenditure for thermoregulation and locomotion in emperor penguins. (United States)

    Pinshow, B; Fedak, M A; Battles, D R; Schmidt-Nielsen, K


    During the antarctic winter emperor penguins (Aptenodytes forsteri) spend up to four mo fasting while they breed at rookeries 80 km or more from the sea, huddling close together in the cold. This breeding cycle makes exceptional demands on their energy reserves, and we therefore studied their thermoregulation and locomotion. Rates of metabolism were measured in five birds (mean body mass, 23.37 kg) at ambient temperatures ranging from 25 to -47 degrees C. Between 20 and -10 degrees C the metabolic rate (standard metabolic rate (SMR)) remained neraly constant, about 42.9 W. Below -10 degrees C metabolic rate increased lineraly with decreasing ambient temperature and at -47 degrees C it was 70% above the SMR. Mean thermal conductance below -10 degrees C was 1.57 W m-2 degrees C-1. Metabolic rate during treadmill walking increased linearly with increasing speed. Our data suggest that walking 200 km (from the sea to the rookery and back) requires less than 15% of the energy reserves of a breeding male emperor penguin initially weighing 35 kg. The high energy requirement for thermoregulation (about 85%) would, in the absence of huddling, probably exceed the total energy reserves.

  5. Intramuscular EMG from the hip flexor muscles during human locomotion. (United States)

    Andersson, E A; Nilsson, J; Thorstensson, A


    The purpose was to investigate the activation pattern of five major hip flexor muscles and its adaptation to changing speed and mode of progression. A total of 11 healthy subjects performed walking and running on a motor-driven treadmill at speeds ranging from 1.0 to 6.0 m s-1. Intramuscular fine-wire electrodes were used to record myoelectric signals from the iliacus, psoas, sartorius, rectus femoris and tensor fascia latae muscles. The basic pattern, with respect to number of activation periods, remained the same irrespective of speed and mode of progression. However, differences in the relative duration and timing of onset of activation occurred between individual muscles. Over the speed range in walking, a progressively earlier onset was generally seen for the activation period related to hip flexion. Changes in EMG amplitude were measured in the iliacus and psoas muscles and showed a marked increase and difference between walking and running at speeds above 2.0 m s-1. Thus, the alternating flexion-extension movements at the hip during locomotion appear to be governed by a rather fixed 'neural program' which normally only needs minor modulations to accomplish the adjustments accompanying an increase in speed of progression as well as a change from walking to running.

  6. Planning energy-efficient bipedal locomotion on patterned terrain (United States)

    Zamani, Ali; Bhounsule, Pranav A.; Taha, Ahmad


    Energy-efficient bipedal walking is essential in realizing practical bipedal systems. However, current energy-efficient bipedal robots (e.g., passive-dynamics-inspired robots) are limited to walking at a single speed and step length. The objective of this work is to address this gap by developing a method of synthesizing energy-efficient bipedal locomotion on patterned terrain consisting of stepping stones using energy-efficient primitives. A model of Cornell Ranger (a passive-dynamics inspired robot) is utilized to illustrate our technique. First, an energy-optimal trajectory control problem for a single step is formulated and solved. The solution minimizes the Total Cost Of Transport (TCOT is defined as the energy used per unit weight per unit distance travelled) subject to various constraints such as actuator limits, foot scuffing, joint kinematic limits, ground reaction forces. The outcome of the optimization scheme is a table of TCOT values as a function of step length and step velocity. Next, we parameterize the terrain to identify the location of the stepping stones. Finally, the TCOT table is used in conjunction with the parameterized terrain to plan an energy-efficient stepping strategy.

  7. Unified phase variables of relative degree two for human locomotion. (United States)

    Villarreal, Dario J; Gregg, Robert D; Villarreal, Dario J; Gregg, Robert D; Gregg, Robert D; Villarreal, Dario J


    A starting point to achieve stable locomotion is synchronizing the leg joint kinematics during the gait cycle. Some biped robots parameterize a nonlinear controller (e.g., input-output feedback linearization) whose main objective is to track specific kinematic trajectories as a function of a single mechanical variable (i.e., a phase variable) in order to allow the robot to walk. A phase variable capable of parameterizing the entire gait cycle, the hip phase angle, has been used to control wearable robots and was recently shown to provide a robust representation of the phase of human gait. However, this unified phase variable relies on hip velocity, which is difficult to measure in real-time and prevents the use of derivative corrections in phase-based controllers for wearable robots. One derivative of this phase variable yields accelerations (i.e., the equations of motion), so the system is said to be relative degree-one. This means that there are states of the system that cannot be controlled. The goal of this paper is to offer relative degree-two alternatives to the hip phase angle and examine their robustness for parameterizing human gait.

  8. A Full Body Steerable Wind Display for a Locomotion Interface. (United States)

    Kulkarni, Sandip D; Fisher, Charles J; Lefler, Price; Desai, Aditya; Chakravarthy, Shanthanu; Pardyjak, Eric R; Minor, Mark A; Hollerbach, John M


    This paper presents the Treadport Active Wind Tunnel (TPAWT)-a full-body immersive virtual environment for the Treadport locomotion interface designed for generating wind on a user from any frontal direction at speeds up to 20 kph. The goal is to simulate the experience of realistic wind while walking in an outdoor virtual environment. A recirculating-type wind tunnel was created around the pre-existing Treadport installation by adding a large fan, ducting, and enclosure walls. Two sheets of air in a non-intrusive design flow along the side screens of the back-projection CAVE-like visual display, where they impinge and mix at the front screen to redirect towards the user in a full-body cross-section. By varying the flow conditions of the air sheets, the direction and speed of wind at the user are controlled. Design challenges to fit the wind tunnel in the pre-existing facility, and to manage turbulence to achieve stable and steerable flow, were overcome. The controller performance for wind speed and direction is demonstrated experimentally.

  9. Magneto-mechanical actuation model for fin-based locomotion

    CERN Document Server

    Carbajal, Juan Pablo; 10.2495/DN100331


    In this paper, we report the results from the analysis of a numerical model used for the design of a magnetic linear actuator with applications to fin-based locomotion. Most of the current robotic fish generate bending motion using rotary motors which implies at least one mechanical conversion of the motion. We seek a solution that directly bends the fin and, at the same time, is able to exploit the magneto-mechanical properties of the fin material. This strong fin-actuator coupling blends the actuator and the body of the robot, allowing cross optimization of the system's elements. We study a simplified model of an elastic element, a spring-mass system representing a flexible fin, subjected to nonlinear forcing, emulating magnetic interaction. The dynamics of the system is studied under unforced and periodic forcing conditions. The analysis is focused on the limit cycles present in the system, which allows the periodic bending of the fin and the generation of thrust. The frequency, maximum amplitude and cente...

  10. The forward undulatory locomotion of Ceanorhabditis elegans in viscoelastic fluids (United States)

    Shen, Amy; Ulrich, Xialing


    Caenorhabditis elegans is a soil dwelling roundworm that has served as model organisms for studying a multitude of biological and engineering phenomena. We study the undulatory locomotion of nematode in viscoelastic fluids with zero-shear viscosity varying from 0.03-75 Pa .s and relaxation times ranging from 0-350 s. We observe that the averaged normalized wavelength of swimming worm is essentially the same as that in Newtonian fluids. The undulatory frequency f shows the same reduction rate with respect to zero-shear viscosity in viscoelastic fluids as that found in the Newtonian fluids, meaning that the undulatory frequency is mainly controlled by the fluid viscosity. However, the moving speed Vm of the worm shows more distinct dependence on the elasticity of the fluid and exhibits a 4% drop with each 10-fold increase of the Deborah number De, a dimensionless number characterizing the elasticity of a fluid. To estimate the swimming efficiency coefficient and the ratio K =CN /CL of resistive coefficients of the worm in various viscoelastic fluids, we show that whereas it would take the worm around 7 periods to move a body length in a Newtonian fluid, it would take 27 periods to move a body length in a highly viscoelastic fluid.

  11. Pelvic girdle shape predicts locomotion and phylogeny in batoids. (United States)

    Ekstrom, Laura J; Kajiura, Stephen M


    In terrestrial vertebrates, the pelvic girdle can reliably predict locomotor mode. Because of the diminished gravitational effects on positively buoyant bony fish, the same relationship does not appear to exist. However, within the negatively buoyant elasmobranch fishes, benthic batoids employ pelvic fin bottom-walking and punting as primary or supplementary forms of locomotion. Therefore, in this study, we employed geometric and linear morphometrics to investigate if their pelvic girdles exhibit shape characteristics similar to those of sprawling terrestrial vertebrates. We tested for correlates of pelvic girdle shape with 1) Order, 2) Family, 3) Swim Mode, and/or 4) Punt Mode. Landmarks and semilandmarks were placed along outlines of dorsal views of 61 batoid pelvic girdles (3/3 orders, 10/13 families, 35/72 genera). The first three relative warps explained 88.45% of the variation among individuals (P girdle, was significantly different among punt modes, whereas only pectoral fin oscillators had differently shaped pelvic girdles when compared with batoids that perform other swimming modes (P girdles of batoids vary greatly, and therefore, likely function in ways not previously described in teleost fishes. This study illustrates that pelvic girdle shape is a good predictor of punt mode, some forms of swimming mode, and a species' Order. Such correlation between locomotor style and pelvic girdle shape provides evidence for the convergent evolution of morphological features that support both sprawled-gait terrestrial walking and aquatic bottom-walking.

  12. Modeling posture-dependent leg actuation in sagittal plane locomotion

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, J [Department of Mechanical Engineering, Oregon State University, Corvallis, OR 97331 (United States); Clark, J, E-mail: schmitjo@engr.orst.ed [Department of Mechanical Engineering, Florida State University, Tallahassee, FL 32310 (United States)


    The spring loaded inverted pendulum template has been shown to accurately model the steady locomotion dynamics of a variety of running animals, and has served as the inspiration for an entire class of dynamic running robots. While the template models the leg dynamics by an energy-conserving spring, insects and animals have structures that dissipate, store and produce energy during a stance phase. Recent investigations into the spring-like properties of limbs, as well as animal response to drop-step perturbations, suggest that animals use their legs to manage energy storage and dissipation, and that this management is important for gait stability. In this paper, we extend our previous analysis of control of the spring loaded inverted pendulum template via changes in the leg touch-down angle to include energy variations during the stance phase. Energy variations are incorporated through leg actuation that varies the force-free leg length during the stance phase, yet maintains qualitatively correct force and velocity profiles. In contrast to the partially asymptotically stable gaits identified in previous analyses, incorporating energy and leg angle variations in this manner produces complete asymptotic stability. Drop-step perturbation simulations reveal that the control strategy is rather robust, with gaits recovering from drops of up to 30% of the nominal hip height.

  13. Reinforcement learning of periodical gaits in locomotion robots (United States)

    Svinin, Mikhail; Yamada, Kazuyaki; Ushio, S.; Ueda, Kanji


    Emergence of stable gaits in locomotion robots is studied in this paper. A classifier system, implementing an instance- based reinforcement learning scheme, is used for sensory- motor control of an eight-legged mobile robot. Important feature of the classifier system is its ability to work with the continuous sensor space. The robot does not have a prior knowledge of the environment, its own internal model, and the goal coordinates. It is only assumed that the robot can acquire stable gaits by learning how to reach a light source. During the learning process the control system, is self-organized by reinforcement signals. Reaching the light source defines a global reward. Forward motion gets a local reward, while stepping back and falling down get a local punishment. Feasibility of the proposed self-organized system is tested under simulation and experiment. The control actions are specified at the leg level. It is shown that, as learning progresses, the number of the action rules in the classifier systems is stabilized to a certain level, corresponding to the acquired gait patterns.

  14. Technology Policy Task Force Hearing Summary. The Technical Enterprise for Computers, Communications, and Manufacturing in the 21st Century. Report Prepared for the Technology Task Force, Transmitted to the Committee on Science, Space, and Technology. House of Representatives, One Hundredth Congress, First Session (November 1987). (United States)

    Kennedy, Kevin

    It has been acknowledged that the federal government has a responsibility to provide significant support for the nation's basic research whereas the role for support of technology is less understood. This report concerns a study on the determination of the appropriate role of the federal government in technology development. Currently the federal…

  15. Locomotion and muscle mass measures in a murine model of collagen-induced arthritis

    Directory of Open Access Journals (Sweden)

    Hartog Anita


    Full Text Available Abstract Background Rheumatoid arthritis (RA is characterized by chronic poly-arthritis, synovial hyperplasia, erosive synovitis, progressive cartilage and bone destruction accompanied by a loss of body cell mass. This loss of cell mass, known as rheumatoid cachexia, predominates in the skeletal muscle and can in part be explained by a decreased physical activity. The murine collagen induced arthritis (CIA model has been proven to be a useful model in RA research since it shares many immunological and pathological features with human RA. The present study explored the interactions between arthritis development, locomotion and muscle mass in the CIA model. Methods CIA was induced in male DBA/1 mice. Locomotion was registered at different time points by a camera and evaluated by a computerized tracing system. Arthritis severity was detected by the traditionally used semi-quantitative clinical scores. The muscle mass of the hind-legs was detected at the end of the study by weighing. A methotrexate (MTX intervention group was included to study the applicability of the locomotion and muscle mass for testing effectiveness of interventions in more detail. Results There is a strong correlation between clinical arthritis and locomotion. The correlations between muscle mass and locomotion or clinical arthritis were less pronounced. MTX intervention resulted in an improvement of disease severity accompanied by an increase in locomotion and muscle mass. Conclusion The present data demonstrate that registration of locomotion followed by a computerized evaluation of the movements is a simple non invasive quantitative method to define disease severity and evaluate effectiveness of therapeutic agents in the CIA model.

  16. Editorial: Digital systems supporting cognition and exploratory learning in 21st century

    Directory of Open Access Journals (Sweden)

    Demetrios G. Sampson


    Full Text Available Digital systems and digital technologies are globally investigated for their potential to transform learning and teaching towards offering unique learning experiences to the 21st century learners. This Special Issue on Digital Systems supporting Cognition and Exploratory Learning in 21st Century aims to contribute to the dialogue between the educational technology and educational psychology research community and the educational practitioners on current issues towards large scale take-up of educational technology.

  17. Transformations in Air Transportation Systems For the 21st Century (United States)

    Holmes, Bruce J.


    Globally, our transportation systems face increasingly discomforting realities: certain of the legacy air and ground infrastructures of the 20th century will not satisfy our 21st century mobility needs. The consequence of inaction is diminished quality of life and economic opportunity for those nations unable to transform from the 20th to 21st century systems. Clearly, new thinking is required regarding business models that cater to consumers value of time, airspace architectures that enable those new business models, and technology strategies for innovating at the system-of-networks level. This lecture proposes a structured way of thinking about transformation from the legacy systems of the 20th century toward new systems for the 21st century. The comparison and contrast between the legacy systems of the 20th century and the transformed systems of the 21st century provides insights into the structure of transformation of air transportation. Where the legacy systems tend to be analog (versus digital), centralized (versus distributed), and scheduled (versus on-demand) for example, transformed 21st century systems become capable of scalability through technological, business, and policy innovations. Where air mobility in our legacy systems of the 20th century brought economic opportunity and quality of life to large service markets, transformed air mobility of the 21st century becomes more equitable available to ever-thinner and widely distributed populations. Several technological developments in the traditional aircraft disciplines as well as in communication, navigation, surveillance and information systems create new foundations for 21st thinking about air transportation. One of the technological developments of importance arises from complexity science and modern network theory. Scale-free (i.e., scalable) networks represent a promising concept space for modeling airspace system architectures, and for assessing network performance in terms of robustness

  18. Biomechanics of the Treadmill Locomotion on the International Space Station (United States)

    DeWitt, John; Cromwell, R. L.; Ploutz-Snyder, L. L.


    Exercise prescriptions completed by International Space Station (ISS) crewmembers are typically based upon evidence obtained during ground-based investigations, with the assumption that the results of long-term training in weightlessness will be similar to that attained in normal gravity. Coupled with this supposition are the assumptions that exercise motions and external loading are also similar between gravitational environments. Normal control of locomotion is dependent upon learning patterns of muscular activation and requires continual monitoring of internal and external sensory input [1]. Internal sensory input includes signals that may be dependent on or independent of gravity. Bernstein hypothesized that movement strategy planning and execution must include the consideration of segmental weights and inertia [2]. Studies of arm movements in microgravity showed that individuals tend to make errors but that compensation strategies result in adaptations, suggesting that control mechanisms must include peripheral information [3-5]. To date, however, there have been no studies examining a gross motor activity such as running in weightlessness other than using microgravity analogs [6-8]. The objective of this evaluation was to collect biomechanical data from crewmembers during treadmill exercise before and during flight. The goal was to determine locomotive biomechanics similarities and differences between normal and weightless environments. The data will be used to optimize future exercise prescriptions. This project addresses the Critical Path Roadmap risks 1 (Accelerated Bone Loss and Fracture Risk) and 11 (Reduced Muscle Mass, Strength, and Endurance). Data were collected from 7 crewmembers before flight and during their ISS missions. Before launch, crewmembers performed a single data collection session at the NASA Johnson Space Center. Three-dimensional motion capture data were collected for 30 s at speeds ranging from 1.5 to 9.5 mph in 0.5 mph increments

  19. 21st Century Transformation (United States)

    Davidson, Nadene; Stone, Jody


    Education has changed, and at no time is this more evident than when working with students who are tethered to the Internet, are fully engaged in technology-based social networking, create blogs and wikis, and expect instantaneous responses as they twitter with their peers around the world. Some of the knowledge and skills that millennial students…

  20. Decoding bipedal locomotion from the rat sensorimotor cortex (United States)

    Rigosa, J.; Panarese, A.; Dominici, N.; Friedli, L.; van den Brand, R.; Carpaneto, J.; DiGiovanna, J.; Courtine, G.; Micera, S.


    Objective. Decoding forelimb movements from the firing activity of cortical neurons has been interfaced with robotic and prosthetic systems to replace lost upper limb functions in humans. Despite the potential of this approach to improve locomotion and facilitate gait rehabilitation, decoding lower limb movement from the motor cortex has received comparatively little attention. Here, we performed experiments to identify the type and amount of information that can be decoded from neuronal ensemble activity in the hindlimb area of the rat motor cortex during bipedal locomotor tasks. Approach. Rats were trained to stand, step on a treadmill, walk overground and climb staircases in a bipedal posture. To impose this gait, the rats were secured in a robotic interface that provided support against the direction of gravity and in the mediolateral direction, but behaved transparently in the forward direction. After completion of training, rats were chronically implanted with a micro-wire array spanning the left hindlimb motor cortex to record single and multi-unit activity, and bipolar electrodes into 10 muscles of the right hindlimb to monitor electromyographic signals. Whole-body kinematics, muscle activity, and neural signals were simultaneously recorded during execution of the trained tasks over multiple days of testing. Hindlimb kinematics, muscle activity, gait phases, and locomotor tasks were decoded using offline classification algorithms. Main results. We found that the stance and swing phases of gait and the locomotor tasks were detected with accuracies as robust as 90% in all rats. Decoded hindlimb kinematics and muscle activity exhibited a larger variability across rats and tasks. Significance. Our study shows that the rodent motor cortex contains useful information for lower limb neuroprosthetic development. However, brain-machine interfaces estimating gait phases or locomotor behaviors, instead of continuous variables such as limb joint positions or speeds

  1. Effects of sounds of locomotion on speech perception

    Directory of Open Access Journals (Sweden)

    Matz Larsson


    Full Text Available Human locomotion typically creates noise, a possible consequence of which is the masking of sound signals originating in the surroundings. When walking side by side, people often subconsciously synchronize their steps. The neurophysiological and evolutionary background of this behavior is unclear. The present study investigated the potential of sound created by walking to mask perception of speech and compared the masking produced by walking in step with that produced by unsynchronized walking. The masking sound (footsteps on gravel and the target sound (speech were presented through the same speaker to 15 normal-hearing subjects. The original recorded walking sound was modified to mimic the sound of two individuals walking in pace or walking out of synchrony. The participants were instructed to adjust the sound level of the target sound until they could just comprehend the speech signal ("just follow conversation" or JFC level when presented simultaneously with synchronized or unsynchronized walking sound at 40 dBA, 50 dBA, 60 dBA, or 70 dBA. Synchronized walking sounds produced slightly less masking of speech than did unsynchronized sound. The median JFC threshold in the synchronized condition was 38.5 dBA, while the corresponding value for the unsynchronized condition was 41.2 dBA. Combined results at all sound pressure levels showed an improvement in the signal-to-noise ratio (SNR for synchronized footsteps; the median difference was 2.7 dB and the mean difference was 1.2 dB [P < 0.001, repeated-measures analysis of variance (RM-ANOVA]. The difference was significant for masker levels of 50 dBA and 60 dBA, but not for 40 dBA or 70 dBA. This study provides evidence that synchronized walking may reduce the masking potential of footsteps.

  2. Effects of sounds of locomotion on speech perception. (United States)

    Larsson, Matz; Ekström, Seth Reino; Ranjbar, Parivash


    Human locomotion typically creates noise, a possible consequence of which is the masking of sound signals originating in the surroundings. When walking side by side, people often subconsciously synchronize their steps. The neurophysiological and evolutionary background of this behavior is unclear. The present study investigated the potential of sound created by walking to mask perception of speech and compared the masking produced by walking in step with that produced by unsynchronized walking. The masking sound (footsteps on gravel) and the target sound (speech) were presented through the same speaker to 15 normal-hearing subjects. The original recorded walking sound was modified to mimic the sound of two individuals walking in pace or walking out of synchrony. The participants were instructed to adjust the sound level of the target sound until they could just comprehend the speech signal ("just follow conversation" or JFC level) when presented simultaneously with synchronized or unsynchronized walking sound at 40 dBA, 50 dBA, 60 dBA, or 70 dBA. Synchronized walking sounds produced slightly less masking of speech than did unsynchronized sound. The median JFC threshold in the synchronized condition was 38.5 dBA, while the corresponding value for the unsynchronized condition was 41.2 dBA. Combined results at all sound pressure levels showed an improvement in the signal-to-noise ratio (SNR) for synchronized footsteps; the median difference was 2.7 dB and the mean difference was 1.2 dB [P < 0.001, repeated-measures analysis of variance (RM-ANOVA)]. The difference was significant for masker levels of 50 dBA and 60 dBA, but not for 40 dBA or 70 dBA. This study provides evidence that synchronized walking may reduce the masking potential of footsteps.

  3. Role of phosphodiesterase-4 on ethanol elicited locomotion and narcosis. (United States)

    Baliño, Pablo; Ledesma, Juan Carlos; Aragon, Carlos M G


    The cAMP signaling pathway has emerged as an important modulator of the pharmacological effects of ethanol. In this respect, the cAMP-dependent protein kinase has been shown to play an important role in the modulation of several ethanol-induced behavioral actions. Cellular levels of cAMP are maintained by the activity of adenylyl cyclases and phosphodiesterases. In the present work we have focused on ascertaining the role of PDE4 in mediating the neurobehavioral effects of ethanol. For this purpose, we have used the selective PDE4 inhibitor Ro 20-1724. This compound has been proven to enhance cellular cAMP response by PDE4 blockade and can be administered systemically. Swiss mice were injected intraperitoneally (i.p.) with Ro 20-1724 (0-5 mg/kg; i.p.) at different time intervals before ethanol (0-4 g/kg; i.p.) administration. Immediately after the ethanol injection, locomotor activity, loss of righting reflex, PKA footprint and enzymatic activity were assessed. Pretreatment with Ro 20-1724 increased ethanol-induced locomotor stimulation in a dose-dependent manner. Doses that increased locomotor stimulation did not modify basal locomotion or the suppression of motor activity produced by high doses of this alcohol. Ro 20-1724 did not alter the locomotor activation produced by amphetamine or cocaine. The time of loss of righting reflex evoked by ethanol was increased after pretreatment with Ro 20-1724. This effect was selective for the narcotic effects of ethanol since Ro 20-1724 did not affect pentobarbital-induced narcotic effects. Moreover, Ro 20-1724 administration increased the PKA footprint and enzymatic activity response elicited by ethanol. These data provide further evidence of the key role of the cAMP signaling pathway in the central effects of ethanol.

  4. Selecting appropriate bedding to reduce locomotion problems in broilers

    Directory of Open Access Journals (Sweden)

    ICL Almeida Paz


    Full Text Available Two experiments were carried out at the Poultry Sector of the School of Agrarian Sciences of the Federal University of Grande Dourados to evaluate the incidence of leg problems in broilers reared on two distinct types of bedding material: rice husks or wood shavings, both new and reused. In both trials, a randomized experimental design was applied in factorial arrangement (2 x 2 x 2 using two genetic strains (Cobb® or Ross®; two sexes (male or female, and two litter materials (rice husks or wood shavings. In each trial 1080 one day pullets were reared equally divided in the treatments. The birds were placed in 4.5 m² boxes at a density of 10 birds m-2. All birds were fed diets with equal nutritional density, and water was offered ad libitum. Feeds were divided in three phases: starter diet (1 - 21 days, grower diet (22 - 35 days, and finisher diet (36 - 45 days. On day 45, fifty birds were randomly selected in each experiment to evaluate flock leg problems. The following parameters were analyzed: gait score, incidence of valgus and varus disorder, footpad dermatitis, femoral degeneration, tibial dyschondroplasia, and spondylolisthesis. Ambient temperature during rearing and litter caking and moisture content were recorded in four boxes per treatment. The analytical hierarchy process was used to organize the data into specific criteria. Several criteria, related to the attributes that were determinant according to the statistical analysis, were chosen in order to provide the best input to the process. Results indicated that new wood-shavings bedding was the most appropriate bedding to prevent locomotion problems, followed by new rice husks, reused wood shavings, and reused rice husks. However, when leg problems were associated to sex and genetic strain, male Ross birds strain presented less problems when reared on new rice husks, followed by new wood shavings

  5. [Simple locomotion and during load carrying in pregnant women]. (United States)

    Golomer, E; Ducher, D; Arfi, G S; Sud, R


    There have been few studies of the way women walk in pregnancy, though some of the causes of low back ache of which they complain have only been partially worked out. This is why this study has been carried out on ten women between the third and eighth month of pregnancy. The speed at which they walk and the parameters of the gait as well as the localization of the centre of gravity when keeping upright have been measured in these pregnant women as well as in twenty control women of the same age. The results show that the speed at which they walk whether with or without carrying a weight usually is identical at the beginning and the end of pregnancy. When walking normally the size of the steps taken are no larger in pregnant women than in the control patients (p less than 0.05). Though the results are not statistically significant the rhythm of the steps is faster as well as their being a reduction in the length of the steps between the third and eighth month of pregnancy. When carrying a weight the length of the steps does not change greatly with pregnancy (p less than 0.05) and it would seem therefore to be a good way of assessing the changes that locomotion undergoes in pregnancy. The fact that women do not walk faster or slower can give evidence that they adapt to the change in posture that happens in pregnancy and they make the best possible biomechanical use of the parameters of walking in order to economise total energy output of the organism.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Biofabrication: a 21st century manufacturing paradigm

    Energy Technology Data Exchange (ETDEWEB)

    Mironov, V; Trusk, T; Markwald, R [Medical University of South Carolina, Charleston, SC 29425 (United States); Kasyanov, V [Riga Stradins University, Riga (Latvia); Little, S [South Carolina EPSCoR/IDeA Program, Columbia, SC (United States); Swaja, R [South Carolina Bioengineering Alliance, Charleston, SC 29425 (United States)


    Biofabrication can be defined as the production of complex living and non-living biological products from raw materials such as living cells, molecules, extracellular matrices, and biomaterials. Cell and developmental biology, biomaterials science, and mechanical engineering are the main disciplines contributing to the emergence of biofabrication technology. The industrial potential of biofabrication technology is far beyond the traditional medically oriented tissue engineering and organ printing and, in the short term, it is essential for developing potentially highly predictive human cell- and tissue-based technologies for drug discovery, drug toxicity, environmental toxicology assays, and complex in vitro models of human development and diseases. In the long term, biofabrication can also contribute to the development of novel biotechnologies for sustainable energy production in the future biofuel industry and dramatically transform traditional animal-based agriculture by inventing 'animal-free' food, leather, and fur products. Thus, the broad spectrum of potential applications and rapidly growing arsenal of biofabrication methods strongly suggests that biofabrication can become a dominant technological platform and new paradigm for 21st century manufacturing. The main objectives of this review are defining biofabrication, outlining the most essential disciplines critical for emergence of this field, analysis of the evolving arsenal of biofabrication technologies and their potential practical applications, as well as a discussion of the common challenges being faced by biofabrication technologies, and the necessary conditions for the development of a global biofabrication research community and commercially successful biofabrication industry. (topical review)

  7. Gait analysis during treadmill and overground locomotion in children and adults. (United States)

    Stolze, H; Kuhtz-Buschbeck, J P; Mondwurf, C; Boczek-Funcke, A; Jöhnk, K; Deuschl, G; Illert, M


    Gait analysis on the treadmill and in the overground condition is used both in scientific approaches for investigating the neuronal organisation and ontogenetic development of locomotion and in a variety of clinical applications. We investigated the differences between overground and treadmill locomotion (at identical gait velocity) in 12 adults and 14 children (6-7 years old). During treadmill locomotion the step frequency increased by 7% in adults and 10% in children compared to overground walking, whereas the stride length and the stance phase of the walking cycle decreased. The swing phase, however, increased significantly by 5% in adults and remained unchanged in children. Balance-related gait parameters such as the step width and foot rotation angles increased during treadmill locomotion. The reduction of the step length was found to be stable after 10 min of treadmill walking in most subjects. With regard to the shifted phases of the walking cycle and the changed balance related gait parameters in the treadmill condition, we assume a different modulation of the central pattern generator in treadmill walking, due to a changed afferent input. Regarding the pronounced differences between overground and treadmill walking in children, it is discussed whether the systems generating and integrating different modulations of locomotion into a stable movement pattern have reached full capacity in 6-7 year old children.

  8. Dynamics of gecko locomotion: a force-measuring array to measure 3D reaction forces. (United States)

    Dai, Zhendong; Wang, Zhouyi; Ji, Aihong


    Measuring the interaction between each foot of an animal and the substrate is one of the most effective ways to understand the dynamics of legged locomotion. Here, a new facility - the force-measuring array (FMA) - was developed and applied to measure 3D reaction forces of geckos on different slope surfaces. The FMA consists of 16 3D sensors with resolution to the mN level. At the same time the locomotion behaviour of geckos freely moving on the FMA was recorded by high speed camera. The reaction forces acting on the gecko's individual feet measured by the FMA and correlated with locomotion behaviour provided enough information to reveal the mechanical and dynamic secrets of gecko locomotion. Moreover, dynamic forces were also measured by a force platform and correlated with locomotion behaviour. The difference between the forces measured by the two methods is discussed. From the results we conclude that FMA is the best way to obtain true reaction forces acting on the gecko's individual feet.


    Directory of Open Access Journals (Sweden)

    YE. B. Bodnar


    Full Text Available Purpose. Justification of the basic principles of construction on-board diagnostic systems locomotive and choose from high-performance and reliable interface for the exchange of information on-board diagnostic systems. Methodology. Problem of getting correct and adequate information about the technical state of the technical object is solved with the use and compliance of the fundamental principles of modern computers. Findings. High-performance and reliable interface to exchange messages between different units of management systems and on-board diagnostic systems was selected. Properties which are required high data rate, high reliability and low error rate of information transfer. Originality. The main principles of building on-board diagnostic systems which ensure compliance locomotives accumulation of accurate and adequate information about the technical condition which is necessary to organize its maintenance and repair were formulated. Practical value. Diagnostic equipment designed with use of requirements set forth above and principles will affect the technical condition of the engine, increasing the likelihood of uptime, productivity and locomotive repair teams. The introduction of on-board diagnostic systems and stationary locomotives will significantly improve the system and optimize their maintenance costs of maintenance and repairs. Besides, information about diagnostic parameters changing accumulated with the aim of airborne systems will be used in order to create mathematical models that, in turn, will organize a system of maintenance and predict the technical condition of locomotives

  10. A stability-based mechanism for hysteresis in the walk-trot transition in quadruped locomotion. (United States)

    Aoi, Shinya; Katayama, Daiki; Fujiki, Soichiro; Tomita, Nozomi; Funato, Tetsuro; Yamashita, Tsuyoshi; Senda, Kei; Tsuchiya, Kazuo


    Quadrupeds vary their gaits in accordance with their locomotion speed. Such gait transitions exhibit hysteresis. However, the underlying mechanism for this hysteresis remains largely unclear. It has been suggested that gaits correspond to attractors in their dynamics and that gait transitions are non-equilibrium phase transitions that are accompanied by a loss in stability. In the present study, we used a robotic platform to investigate the dynamic stability of gaits and to clarify the hysteresis mechanism in the walk-trot transition of quadrupeds. Specifically, we used a quadruped robot as the body mechanical model and an oscillator network for the nervous system model to emulate dynamic locomotion of a quadruped. Experiments using this robot revealed that dynamic interactions among the robot mechanical system, the oscillator network, and the environment generate walk and trot gaits depending on the locomotion speed. In addition, a walk-trot transition that exhibited hysteresis was observed when the locomotion speed was changed. We evaluated the gait changes of the robot by measuring the locomotion of dogs. Furthermore, we investigated the stability structure during the gait transition of the robot by constructing a potential function from the return map of the relative phase of the legs and clarified the physical characteristics inherent to the gait transition in terms of the dynamics.

  11. Biped locomotion control with compliance; Compliance wo mochiita nisoku soko robot no undo seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Kawaji, S.; Ogasawara, K.; Iimori, J. [Kumamoto University, Kumamoto (Japan)


    Realization of stable walking motion of biped locomotive robot is one of difficult control problems, but it is very interesting both theoretically and practically from the view point of motion control. The authors have already reported that the locomotion rhythm plays an important role in walking motions, and confirmed experimentally that the control method based on the locomotion rhythm is effective. But, many uncertainties, e.g., the changes of robot dynamics and the interaction between the robot and the floor, may make the locomotion rhythm irregular. In this paper, we introduce the compliance into the control system in order to modify the original reference locomotion rhythm for stable walking under the existence of the uncertainties. Concretely a compliance control system for the contact leg is designed to modify the rhythm by changing the posture of the leg corresponding to the force acting from the body so that the robot may keep the equilibrium state dynamically. Finally the simulation results are given to illustrate the effectiveness of the proposed compliance control system. 21 refs., 12 figs., 3 tabs.

  12. Walking like dinosaurs: chickens with artificial tails provide clues about non-avian theropod locomotion.

    Directory of Open Access Journals (Sweden)

    Bruno Grossi

    Full Text Available Birds still share many traits with their dinosaur ancestors, making them the best living group to reconstruct certain aspects of non-avian theropod biology. Bipedal, digitigrade locomotion and parasagittal hindlimb movement are some of those inherited traits. Living birds, however, maintain an unusually crouched hindlimb posture and locomotion powered by knee flexion, in contrast to the inferred primitive condition of non-avian theropods: more upright posture and limb movement powered by femur retraction. Such functional differences, which are associated with a gradual, anterior shift of the centre of mass in theropods along the bird line, make the use of extant birds to study non-avian theropod locomotion problematic. Here we show that, by experimentally manipulating the location of the centre of mass in living birds, it is possible to recreate limb posture and kinematics inferred for extinct bipedal dinosaurs. Chickens raised wearing artificial tails, and consequently with more posteriorly located centre of mass, showed a more vertical orientation of the femur during standing and increased femoral displacement during locomotion. Our results support the hypothesis that gradual changes in the location of the centre of mass resulted in more crouched hindlimb postures and a shift from hip-driven to knee-driven limb movements through theropod evolution. This study suggests that, through careful experimental manipulations during the growth phase of ontogeny, extant birds can potentially be used to gain important insights into previously unexplored aspects of bipedal non-avian theropod locomotion.

  13. Walking like dinosaurs: chickens with artificial tails provide clues about non-avian theropod locomotion. (United States)

    Grossi, Bruno; Iriarte-Díaz, José; Larach, Omar; Canals, Mauricio; Vásquez, Rodrigo A


    Birds still share many traits with their dinosaur ancestors, making them the best living group to reconstruct certain aspects of non-avian theropod biology. Bipedal, digitigrade locomotion and parasagittal hindlimb movement are some of those inherited traits. Living birds, however, maintain an unusually crouched hindlimb posture and locomotion powered by knee flexion, in contrast to the inferred primitive condition of non-avian theropods: more upright posture and limb movement powered by femur retraction. Such functional differences, which are associated with a gradual, anterior shift of the centre of mass in theropods along the bird line, make the use of extant birds to study non-avian theropod locomotion problematic. Here we show that, by experimentally manipulating the location of the centre of mass in living birds, it is possible to recreate limb posture and kinematics inferred for extinct bipedal dinosaurs. Chickens raised wearing artificial tails, and consequently with more posteriorly located centre of mass, showed a more vertical orientation of the femur during standing and increased femoral displacement during locomotion. Our results support the hypothesis that gradual changes in the location of the centre of mass resulted in more crouched hindlimb postures and a shift from hip-driven to knee-driven limb movements through theropod evolution. This study suggests that, through careful experimental manipulations during the growth phase of ontogeny, extant birds can potentially be used to gain important insights into previously unexplored aspects of bipedal non-avian theropod locomotion.

  14. Design of a cyclic inhibitory CPG controller for the locomotion of a snakelike robot

    Institute of Scientific and Technical Information of China (English)

    LU Zhen-li; MA Shu-gen; LI Bin; WANG Yue-chao


    The rhythmic locomotion of a creature is a serf-excitation behavior of the CPG (central pattern generator),which makes it supremely adapted for environment.Based on this fact,firstly,a snake-like robot controller with cyclic inhibitory CPG model was designed,and then the stability of a single neuron,CPG model and the NON(neuron oscillator network) was analyzed.By implementing this control architecture to a simulator based on the mechanical dynamics of a real snake-like robot named Perambulator-I,we presented preliminary rules for parameter setting of the CPG controller to modulate the number of S shapes,the curve of the body shape,locomotion velocity,and the curve of the locomotion trajectory for serpentine locomotion.Moreover,we demonstrated that Perambulator-I can successfully exhibit serpentine locomotion by using the output of the proposed CPG controller.The results of this paper provide a realistic approach for designing an artificial CPG controller.

  15. Locomotion mode identification for lower limbs using neuromuscular and joint kinematic signals. (United States)

    Afzal, Taimoor; White, Gannon; Wright, Andrew B; Iqbal, Kamran


    Recent development in lower limb prosthetics has seen an emergence of powered prosthesis that have the capability to operate in different locomotion modes. However, these devices cannot transition seamlessly between modes such as level walking, stair ascent and descent and up slope and down slope walking. They require some form of user input that defines the human intent. The purpose of this study was to develop a locomotion mode detection system and evaluate its performance for different sensor configurations and to study the effect of locomotion mode detection with and without electromyography (EMG) signals while using kinematic data from hip joint of non-dominant/impaired limb and an accelerometer. Data was collected from four able bodied subjects that completed two circuits that contained standing, level-walking, ramp ascent and descent and stair ascent and descent. By using only the kinematic data from the hip joint and accelerometer data the system was able to identify the transitions, stance and swing phases with similar performance as compared to using only EMG and accelerometer data. However, significant improvement in classification error was observed when EMG, kinematic and accelerometer data were used together to identify the locomotion modes. The higher recognition rates when using the kinematic data along with EMG shows that the joint kinematics could be beneficial in intent recognition systems of locomotion modes.

  16. The kinematics of locomotion in caecilians: effects of substrate and body shape. (United States)

    Herrel, Anthony; Measey, G John


    Caecilians are limbless amphibians that have radiated extensively in the tropics, and have evolved distinct cranial and postcranial specializations associated with a burrowing lifestyle. Some species are recognized as being surface active, whereas others are dedicated burrowers. Previous authors have demonstrated that some caecilians use a hydrostatic mechanism to generate burrowing forces which is dependent on the existence of skin-vertebral independence. It has been hypothesized that skin-vertebral independence may be lost in extremely elongated species, thus affecting their ability to burrow. Here, we use X-ray video to study the kinematics of locomotion in five species of caecilian differing in their degree of body elongation. Animals were filmed moving in or across different substrates imposing different functional demands on the locomotor system. Our data demonstrate that all species have the ability to perform internal concertina locomotion, but indicate differences between species in the kinematics of locomotion with more elongate species showing a smaller degree of skin-vertebral independence. In all species, locomotion was dependent on the substrate and species switched from using lateral undulation on the surface substrates to the use of whole body or internal concertina in wide and narrow tunnels, respectively. When burrowing in soil, all species used a combination of whole-body and internal concertina locomotion. Additional studies on the ability of different species to generate forces are needed to test whether the reduced skin-vertebral independence in elongate forms has resulted in a decreased ability to generate burrows.

  17. A training method for locomotion mode prediction using powered lower limb prostheses. (United States)

    Young, Aaron J; Simon, Ann M; Hargrove, Levi J


    Recently developed lower-limb prostheses are capable of actuating the knee and ankle joints, allowing amputees to perform advanced locomotion modes such as step-over-step stair ascent and walking on sloped surfaces. However, transitions between these locomotion modes and walking are neither automatic nor seamless. This study describes methods for construction and training of a high-level intent recognition system for a lower-limb prosthesis that provides natural transitions between walking, stair ascent, stair descent, ramp ascent, and ramp descent. Using mechanical sensors onboard a powered prosthesis, we collected steady-state and transition data from six transfemoral amputees while the five locomotion modes were performed. An intent recognition system built using only mechanical sensor data was 84.5% accurate using only steady-state training data. Including training data collected while amputees performed seamless transitions between locomotion modes improved the overall accuracy rate to 93.9%. Training using a single analysis window at heel contact and toe off provided higher recognition accuracy than training with multiple analysis windows. This study demonstrates the capability of an intent recognition system to provide automatic, natural, and seamless transitions between five locomotion modes for transfemoral amputees using powered lower limb prostheses.

  18. Simplified and advanced modelling of traction control systems of heavy-haul locomotives (United States)

    Spiryagin, Maksym; Wolfs, Peter; Szanto, Frank; Cole, Colin


    Improving tractive effort is a very complex task in locomotive design. It requires the development of not only mechanical systems but also power systems, traction machines and traction algorithms. At the initial design stage, traction algorithms can be verified by means of a simulation approach. A simple single wheelset simulation approach is not sufficient because all locomotive dynamics are not fully taken into consideration. Given that many traction control strategies exist, the best solution is to use more advanced approaches for such studies. This paper describes the modelling of a locomotive with a bogie traction control strategy based on a co-simulation approach in order to deliver more accurate results. The simplified and advanced modelling approaches of a locomotive electric power system are compared in this paper in order to answer a fundamental question. What level of modelling complexity is necessary for the investigation of the dynamic behaviours of a heavy-haul locomotive running under traction? The simulation results obtained provide some recommendations on simulation processes and the further implementation of advanced and simplified modelling approaches.

  19. Advantage of straight walk instability in turning maneuver of multilegged locomotion: a robotics approach (United States)

    Aoi, Shinya; Tanaka, Takahiro; Fujiki, Soichiro; Funato, Tetsuro; Senda, Kei; Tsuchiya, Kazuo


    Multilegged locomotion improves the mobility of terrestrial animals and artifacts. Using many legs has advantages, such as the ability to avoid falling and to tolerate leg malfunction. However, many intrinsic degrees of freedom make the motion planning and control difficult, and many contact legs can impede the maneuverability during locomotion. The underlying mechanism for generating agile locomotion using many legs remains unclear from biological and engineering viewpoints. The present study used a centipede-like multilegged robot composed of six body segments and twelve legs. The body segments are passively connected through yaw joints with torsional springs. The dynamic stability of the robot walking in a straight line changes through a supercritical Hopf bifurcation due to the body axis flexibility. We focused on a quick turning task of the robot and quantitatively investigated the relationship between stability and maneuverability in multilegged locomotion by using a simple control strategy. Our experimental results show that the straight walk instability does help the turning maneuver. We discuss the importance and relevance of our findings for biological systems and propose a design principle for a simple control scheme to create maneuverable locomotion of multilegged robots.

  20. From cineradiography to biorobots: an approach for designing robots to emulate and study animal locomotion. (United States)

    Karakasiliotis, K; Thandiackal, R; Melo, K; Horvat, T; Mahabadi, N K; Tsitkov, S; Cabelguen, J M; Ijspeert, A J


    Robots are increasingly used as scientific tools to investigate animal locomotion. However, designing a robot that properly emulates the kinematic and dynamic properties of an animal is difficult because of the complexity of musculoskeletal systems and the limitations of current robotics technology. Here, we propose a design process that combines high-speed cineradiography, optimization, dynamic scaling, three-dimensional printing, high-end servomotors and a tailored dry-suit to construct Pleurobot: a salamander-like robot that closely mimics its biological counterpart, Pleurodeles waltl Our previous robots helped us test and confirm hypotheses on the interaction between the locomotor neuronal networks of the limbs and the spine to generate basic swimming and walking gaits. With Pleurobot, we demonstrate a design process that will enable studies of richer motor skills in salamanders. In particular, we are interested in how these richer motor skills can be obtained by extending our spinal cord models with the addition of more descending pathways and more detailed limb central pattern generator networks. Pleurobot is a dynamically scaled amphibious salamander robot with a large number of actuated degrees of freedom (DOFs: 27 in total). Because of our design process, the robot can capture most of the animal's DOFs and range of motion, especially at the limbs. We demonstrate the robot's abilities by imposing raw kinematic data, extracted from X-ray videos, to the robot's joints for basic locomotor behaviours in water and on land. The robot closely matches the behaviour of the animal in terms of relative forward speeds and lateral displacements. Ground reaction forces during walking also resemble those of the animal. Based on our results, we anticipate that future studies on richer motor skills in salamanders will highly benefit from Pleurobot's design.