WorldWideScience

Sample records for centromere replication timing

  1. Epigenetically-inherited centromere and neocentromere DNA replicates earliest in S-phase.

    Directory of Open Access Journals (Sweden)

    Amnon Koren

    2010-08-01

    Full Text Available Eukaryotic centromeres are maintained at specific chromosomal sites over many generations. In the budding yeast Saccharomyces cerevisiae, centromeres are genetic elements defined by a DNA sequence that is both necessary and sufficient for function; whereas, in most other eukaryotes, centromeres are maintained by poorly characterized epigenetic mechanisms in which DNA has a less definitive role. Here we use the pathogenic yeast Candida albicans as a model organism to study the DNA replication properties of centromeric DNA. By determining the genome-wide replication timing program of the C. albicans genome, we discovered that each centromere is associated with a replication origin that is the first to fire on its respective chromosome. Importantly, epigenetic formation of new ectopic centromeres (neocentromeres was accompanied by shifts in replication timing, such that a neocentromere became the first to replicate and became associated with origin recognition complex (ORC components. Furthermore, changing the level of the centromere-specific histone H3 isoform led to a concomitant change in levels of ORC association with centromere regions, further supporting the idea that centromere proteins determine origin activity. Finally, analysis of centromere-associated DNA revealed a replication-dependent sequence pattern characteristic of constitutively active replication origins. This strand-biased pattern is conserved, together with centromere position, among related strains and species, in a manner independent of primary DNA sequence. Thus, inheritance of centromere position is correlated with a constitutively active origin of replication that fires at a distinct early time. We suggest a model in which the distinct timing of DNA replication serves as an epigenetic mechanism for the inheritance of centromere position.

  2. Replication initiator DnaA binds at the Caulobacter centromere and enables chromosome segregation.

    Science.gov (United States)

    Mera, Paola E; Kalogeraki, Virginia S; Shapiro, Lucy

    2014-11-11

    During cell division, multiple processes are highly coordinated to faithfully generate genetically equivalent daughter cells. In bacteria, the mechanisms that underlie the coordination of chromosome replication and segregation are poorly understood. Here, we report that the conserved replication initiator, DnaA, can mediate chromosome segregation independent of replication initiation. It does so by binding directly to the parS centromere region of the chromosome, and mutations that alter this interaction result in cells that display aberrant centromere translocation and cell division. We propose that DnaA serves to coordinate bacterial DNA replication with the onset of chromosome segregation.

  3. Chromatin determinants of the inner-centromere rely on replication factors with functions that impart cohesion.

    Science.gov (United States)

    Abe, Takuya; Kawasumi, Ryotaro; Arakawa, Hiroshi; Hori, Tetsuya; Shirahige, Katsuhiko; Losada, Ana; Fukagawa, Tatsuo; Branzei, Dana

    2016-10-18

    Replication fork-associated factors promote genome integrity and protect against cancer. Mutations in the DDX11 helicase and the ESCO2 acetyltransferase also cause related developmental disorders classified as cohesinopathies. Here we generated vertebrate model cell lines of these disorders and cohesinopathies-related genes. We found that vertebrate DDX11 and Tim-Tipin are individually needed to compensate for ESCO2 loss in chromosome segregation, with DDX11 also playing complementary roles with ESCO2 in centromeric cohesion. Our study reveals that overt centromeric cohesion loss does not necessarily precede chromosome missegregation, while both these problems correlate with, and possibly originate from, inner-centromere defects involving reduced phosphorylation of histone H3T3 (pH3T3) in the region. Interestingly, the mitotic pH3T3 mark was defective in all analyzed replication-related mutants with functions in cohesion. The results pinpoint mitotic pH3T3 as a postreplicative chromatin mark that is sensitive to replication stress and conducts with different kinetics to robust centromeric cohesion and correct chromosome segregation.

  4. The coordination of centromere replication, spindle formation, and kinetochore-microtubule interaction in budding yeast.

    Directory of Open Access Journals (Sweden)

    Hong Liu

    2008-11-01

    Full Text Available The kinetochore is a protein complex that assembles on centromeric DNA to mediate chromosome-microtubule interaction. Most eukaryotic cells form the spindle and establish kinetochore-microtubule interaction during mitosis, but budding yeast cells finish these processes in S-phase. It has long been noticed that the S-phase spindle in budding yeast is shorter than that in metaphase, but the biological significance of this short S-phase spindle structure remains unclear. We addressed this issue by using ask1-3, a temperature-sensitive kinetochore mutant that exhibits partially elongated spindles at permissive temperature in the presence of hydroxyurea (HU, a DNA synthesis inhibitor. After exposure to and removal of HU, ask1-3 cells show a delayed anaphase entry. This delay depends on the spindle checkpoint, which monitors kinetochore-microtubule interaction defects. Overproduction of microtubule-associated protein Ase1 or Cin8 also induces spindle elongation in HU-arrested cells. The spindle checkpoint-dependent anaphase entry delay is also observed after ASE1 or CIN8 overexpression in HU-arrested cells. Therefore, the shorter spindle in S-phase cells is likely to facilitate proper chromosome-microtubule interaction.

  5. Is the time dimension of the cell cycle re-entry in AD regulated by centromere cohesion dynamics?

    Science.gov (United States)

    Bajić, Vladan P; Spremo-Potparević, Biljana; Zivković, Lada; Djelić, Ninoslav; Smith, Mark A

    2008-01-01

    Chromosomal involvement is a legitimate, yet not well understood, feature of Alzheimer disease (AD). Firstly, AD affects more women than men. Secondly, the amyloid-β protein precursor genetic mutations, responsible for a cohort of familial AD cases, reside on chromosome 21, the same chromosome responsible for the developmental disorder Down's syndrome. Thirdly, lymphocytes from AD patients display a novel chromosomal phenotype, namely premature centromere separation (PCS). Other documented morphological phenomena associated with AD include the occurrence of micronuclei, aneuploidy, binucleation, telomere instability, and cell cycle re-entry protein expression. Based on these events, here we present a novel hypothesis that the time dimension of cell cycle re-entry in AD is highly regulated by centromere cohesion dynamics. In view of the fact that neurons can re-enter the cell division cycle, our hypothesis predicts that alterations in the signaling pathway leading to premature cell death in neurons is a consequence of altered regulation of the separation of centromeres as a function of time. It is well known that centromeres in the metaphase-anaphase transition separate in a non-random, sequential order. This sequence has been shown to be deregulated in aging cells, various tumors, syndromes of chromosome instability, following certain chemical inductions, as well as in AD. Over time, premature chromosome separation is both a result of, and a driving force behind, further cohesion impairment, activation of cyclin dependent kinases, and mitotic catastrophe, a vicious circle resulting in cellular degeneration and death.

  6. Rif1 regulates initiation timing of late replication origins throughout the S. cerevisiae genome.

    Directory of Open Access Journals (Sweden)

    Jared M Peace

    Full Text Available Chromosomal DNA replication involves the coordinated activity of hundreds to thousands of replication origins. Individual replication origins are subject to epigenetic regulation of their activity during S-phase, resulting in differential efficiencies and timings of replication initiation during S-phase. This regulation is thought to involve chromatin structure and organization into timing domains with differential ability to recruit limiting replication factors. Rif1 has recently been identified as a genome-wide regulator of replication timing in fission yeast and in mammalian cells. However, previous studies in budding yeast have suggested that Rif1's role in controlling replication timing may be limited to subtelomeric domains and derives from its established role in telomere length regulation. We have analyzed replication timing by analyzing BrdU incorporation genome-wide, and report that Rif1 regulates the timing of late/dormant replication origins throughout the S. cerevisiae genome. Analysis of pfa4Δ cells, which are defective in palmitoylation and membrane association of Rif1, suggests that replication timing regulation by Rif1 is independent of its role in localizing telomeres to the nuclear periphery. Intra-S checkpoint signaling is intact in rif1Δ cells, and checkpoint-defective mec1Δ cells do not comparably deregulate replication timing, together indicating that Rif1 regulates replication timing through a mechanism independent of this checkpoint. Our results indicate that the Rif1 mechanism regulates origin timing irrespective of proximity to a chromosome end, and suggest instead that telomere sequences merely provide abundant binding sites for proteins that recruit Rif1. Still, the abundance of Rif1 binding in telomeric domains may facilitate Rif1-mediated repression of non-telomeric origins that are more distal from centromeres.

  7. Rad51-Rad52 mediated maintenance of centromeric chromatin in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Sreyoshi Mitra

    2014-04-01

    Full Text Available Specification of the centromere location in most eukaryotes is not solely dependent on the DNA sequence. However, the non-genetic determinants of centromere identity are not clearly defined. While multiple mechanisms, individually or in concert, may specify centromeres epigenetically, most studies in this area are focused on a universal factor, a centromere-specific histone H3 variant CENP-A, often considered as the epigenetic determinant of centromere identity. In spite of variable timing of its loading at centromeres across species, a replication coupled early S phase deposition of CENP-A is found in most yeast centromeres. Centromeres are the earliest replicating chromosomal regions in a pathogenic budding yeast Candida albicans. Using a 2-dimensional agarose gel electrophoresis assay, we identify replication origins (ORI7-LI and ORI7-RI proximal to an early replicating centromere (CEN7 in C. albicans. We show that the replication forks stall at CEN7 in a kinetochore dependent manner and fork stalling is reduced in the absence of the homologous recombination (HR proteins Rad51 and Rad52. Deletion of ORI7-RI causes a significant reduction in the stalled fork signal and an increased loss rate of the altered chromosome 7. The HR proteins, Rad51 and Rad52, have been shown to play a role in fork restart. Confocal microscopy shows declustered kinetochores in rad51 and rad52 mutants, which are evidence of kinetochore disintegrity. CENP-ACaCse4 levels at centromeres, as determined by chromatin immunoprecipitation (ChIP experiments, are reduced in absence of Rad51/Rad52 resulting in disruption of the kinetochore structure. Moreover, western blot analysis reveals that delocalized CENP-A molecules in HR mutants degrade in a similar fashion as in other kinetochore mutants described before. Finally, co-immunoprecipitation assays indicate that Rad51 and Rad52 physically interact with CENP-ACaCse4 in vivo. Thus, the HR proteins Rad51 and Rad52

  8. Organization and evolution of Gorilla centromeric DNA from old strategies to new approaches.

    Science.gov (United States)

    Catacchio, C R; Ragone, R; Chiatante, G; Ventura, M

    2015-09-21

    The centromere/kinetochore interaction is responsible for the pairing and segregation of replicated chromosomes in eukaryotes. Centromere DNA is portrayed as scarcely conserved, repetitive in nature, quickly evolving and protein-binding competent. Among primates, the major class of centromeric DNA is the pancentromeric α-satellite, made of arrays of 171 bp monomers, repeated in a head-to-tail pattern. α-satellite sequences can either form tandem heterogeneous monomeric arrays or assemble in higher-order repeats (HORs). Gorilla centromere DNA has barely been characterized, and data are mainly based on hybridizations of human alphoid sequences. We isolated and finely characterized gorilla α-satellite sequences and revealed relevant structure and chromosomal distribution similarities with other great apes as well as gorilla-specific features, such as the uniquely octameric structure of the suprachromosomal family-2 (SF2). We demonstrated for the first time the orthologous localization of alphoid suprachromosomal families-1 and -2 (SF1 and SF2) between human and gorilla in contrast to chimpanzee centromeres. Finally, the discovery of a new 189 bp monomer type in gorilla centromeres unravels clues to the role of the centromere protein B, paving the way to solve the significance of the centromere DNA's essential repetitive nature in association with its function and the peculiar evolution of the α-satellite sequence.

  9. Synaptonemal complex components persist at centromeres and are required for homologous centromere pairing in mouse spermatocytes.

    Directory of Open Access Journals (Sweden)

    C Gaston Bisig

    2012-06-01

    Full Text Available Recent studies in simple model organisms have shown that centromere pairing is important for ensuring high-fidelity meiotic chromosome segregation. However, this process and the mechanisms regulating it in higher eukaryotes are unknown. Here we present the first detailed study of meiotic centromere pairing in mouse spermatogenesis and link it with key events of the G2/metaphase I transition. In mouse we observed no evidence of the persistent coupling of centromeres that has been observed in several model organisms. We do however find that telomeres associate in non-homologous pairs or small groups in B type spermatogonia and pre-leptotene spermatocytes, and this association is disrupted by deletion of the synaptonemal complex component SYCP3. Intriguingly, we found that, in mid prophase, chromosome synapsis is not initiated at centromeres, and centromeric regions are the last to pair in the zygotene-pachytene transition. In late prophase, we first identified the proteins that reside at paired centromeres. We found that components of the central and lateral element and transverse filaments of the synaptonemal complex are retained at paired centromeres after disassembly of the synaptonemal complex along diplotene chromosome arms. The absence of SYCP1 prevents centromere pairing in knockout mouse spermatocytes. The localization dynamics of SYCP1 and SYCP3 suggest that they play different roles in promoting homologous centromere pairing. SYCP1 remains only at paired centromeres coincident with the time at which some kinetochore proteins begin loading at centromeres, consistent with a role in assembly of meiosis-specific kinetochores. After removal of SYCP1 from centromeres, SYCP3 then accumulates at paired centromeres where it may promote bi-orientation of homologous centromeres. We propose that, in addition to their roles as synaptonemal complex components, SYCP1 and SYCP3 act at the centromeres to promote the establishment and/or maintenance of

  10. Inferring Where and When Replication Initiates from Genome-Wide Replication Timing Data

    Science.gov (United States)

    Baker, A.; Audit, B.; Yang, S. C.-H.; Bechhoefer, J.; Arneodo, A.

    2012-06-01

    Based on an analogy between DNA replication and one dimensional nucleation-and-growth processes, various attempts to infer the local initiation rate I(x,t) of DNA replication origins from replication timing data have been developed in the framework of phase transition kinetics theories. These works have all used curve-fit strategies to estimate I(x,t) from genome-wide replication timing data. Here, we show how to invert analytically the Kolmogorov-Johnson-Mehl-Avrami model and extract I(x,t) directly. Tests on both simulated and experimental budding-yeast data confirm the location and firing-time distribution of replication origins.

  11. Premitotic assembly of human CENPs -T and -W switches centromeric chromatin to a mitotic state.

    Directory of Open Access Journals (Sweden)

    Lisa Prendergast

    2011-06-01

    Full Text Available Centromeres are differentiated chromatin domains, present once per chromosome, that direct segregation of the genome in mitosis and meiosis by specifying assembly of the kinetochore. They are distinct genetic loci in that their identity in most organisms is determined not by the DNA sequences they are associated with, but through specific chromatin composition and context. The core nucleosomal protein CENP-A/cenH3 plays a primary role in centromere determination in all species and directs assembly of a large complex of associated proteins in vertebrates. While CENP-A itself is stably transmitted from one generation to the next, the nature of the template for centromere replication and its relationship to kinetochore function are as yet poorly understood. Here, we investigate the assembly and inheritance of a histone fold complex of the centromere, the CENP-T/W complex, which is integrated with centromeric chromatin in association with canonical histone H3 nucleosomes. We have investigated the cell cycle regulation, timing of assembly, generational persistence, and requirement for function of CENPs -T and -W in the cell cycle in human cells. The CENP-T/W complex assembles through a dynamic exchange mechanism in late S-phase and G2, is required for mitosis in each cell cycle and does not persist across cell generations, properties reciprocal to those measured for CENP-A. We propose that the CENP-A and H3-CENP-T/W nucleosome components of the centromere are specialized for centromeric and kinetochore activities, respectively. Segregation of the assembly mechanisms for the two allows the cell to switch between chromatin configurations that reciprocally support the replication of the centromere and its conversion to a mitotic state on postreplicative chromatin.

  12. On the scattering of DNA replication completion times

    Science.gov (United States)

    Meilikhov, E. Z.; Farzetdinova, R. M.

    2015-07-01

    Stochasticity of Eukaryotes' DNA replication should not lead to large fluctuations of replication times, which could result in mitotic catastrophes. Fundamental problem that cells face is how to be ensured that entire genome is replicated on time. We develop analytic approach of calculating DNA replication times, that being simplified and approximate, leads, nevertheless, to results practically coincident with those that were obtained by some sophisticated methods. In the framework of that model we consider replication times' scattering and discuss the influence of repair stopping on kinetics of DNA replication. Our main explicit formulae for DNA replication time t r ∝ ( N is the total number of DNA base pairs) is of general character and explains basic features of DNA replication kinetics.

  13. Mammalian chromosomes contain cis-acting elements that control replication timing, mitotic condensation, and stability of entire chromosomes.

    Science.gov (United States)

    Thayer, Mathew J

    2012-09-01

    Recent studies indicate that mammalian chromosomes contain discrete cis-acting loci that control replication timing, mitotic condensation, and stability of entire chromosomes. Disruption of the large non-coding RNA gene ASAR6 results in late replication, an under-condensed appearance during mitosis, and structural instability of human chromosome 6. Similarly, disruption of the mouse Xist gene in adult somatic cells results in a late replication and instability phenotype on the X chromosome. ASAR6 shares many characteristics with Xist, including random mono-allelic expression and asynchronous replication timing. Additional "chromosome engineering" studies indicate that certain chromosome rearrangements affecting many different chromosomes display this abnormal replication and instability phenotype. These observations suggest that all mammalian chromosomes contain "inactivation/stability centers" that control proper replication, condensation, and stability of individual chromosomes. Therefore, mammalian chromosomes contain four types of cis-acting elements, origins, telomeres, centromeres, and "inactivation/stability centers", all functioning to ensure proper replication, condensation, segregation, and stability of individual chromosomes.

  14. ASAR15, A cis-acting locus that controls chromosome-wide replication timing and stability of human chromosome 15.

    Directory of Open Access Journals (Sweden)

    Nathan Donley

    2015-01-01

    Full Text Available DNA replication initiates at multiple sites along each mammalian chromosome at different times during each S phase, following a temporal replication program. We have used a Cre/loxP-based strategy to identify cis-acting elements that control this replication-timing program on individual human chromosomes. In this report, we show that rearrangements at a complex locus at chromosome 15q24.3 result in delayed replication and structural instability of human chromosome 15. Characterization of this locus identified long, RNA transcripts that are retained in the nucleus and form a "cloud" on one homolog of chromosome 15. We also found that this locus displays asynchronous replication that is coordinated with other random monoallelic genes on chromosome 15. We have named this locus ASynchronous replication and Autosomal RNA on chromosome 15, or ASAR15. Previously, we found that disruption of the ASAR6 lincRNA gene results in delayed replication, delayed mitotic condensation and structural instability of human chromosome 6. Previous studies in the mouse found that deletion of the Xist gene, from the X chromosome in adult somatic cells, results in a delayed replication and instability phenotype that is indistinguishable from the phenotype caused by disruption of either ASAR6 or ASAR15. In addition, delayed replication and chromosome instability were detected following structural rearrangement of many different human or mouse chromosomes. These observations suggest that all mammalian chromosomes contain similar cis-acting loci. Thus, under this scenario, all mammalian chromosomes contain four distinct types of essential cis-acting elements: origins, telomeres, centromeres and "inactivation/stability centers", all functioning to promote proper replication, segregation and structural stability of each chromosome.

  15. ReplicationDomain: a visualization tool and comparative database for genome-wide replication timing data

    Directory of Open Access Journals (Sweden)

    Yokochi Tomoki

    2008-12-01

    Full Text Available Abstract Background Eukaryotic DNA replication is regulated at the level of large chromosomal domains (0.5–5 megabases in mammals within which replicons are activated relatively synchronously. These domains replicate in a specific temporal order during S-phase and our genome-wide analyses of replication timing have demonstrated that this temporal order of domain replication is a stable property of specific cell types. Results We have developed ReplicationDomain http://www.replicationdomain.org as a web-based database for analysis of genome-wide replication timing maps (replication profiles from various cell lines and species. This database also provides comparative information of transcriptional expression and is configured to display any genome-wide property (for instance, ChIP-Chip or ChIP-Seq data via an interactive web interface. Our published microarray data sets are publicly available. Users may graphically display these data sets for a selected genomic region and download the data displayed as text files, or alternatively, download complete genome-wide data sets. Furthermore, we have implemented a user registration system that allows registered users to upload their own data sets. Upon uploading, registered users may choose to: (1 view their data sets privately without sharing; (2 share with other registered users; or (3 make their published or "in press" data sets publicly available, which can fulfill journal and funding agencies' requirements for data sharing. Conclusion ReplicationDomain is a novel and powerful tool to facilitate the comparative visualization of replication timing in various cell types as well as other genome-wide chromatin features and is considerably faster and more convenient than existing browsers when viewing multi-megabase segments of chromosomes. Furthermore, the data upload function with the option of private viewing or sharing of data sets between registered users should be a valuable resource for the

  16. Three wise centromere functions: see no error, hear no break, speak no delay.

    Science.gov (United States)

    Tanaka, Tomoyuki U; Clayton, Lesley; Natsume, Toyoaki

    2013-12-01

    The main function of the centromere is to promote kinetochore assembly for spindle microtubule attachment. Two additional functions of the centromere, however, are becoming increasingly clear: facilitation of robust sister-chromatid cohesion at pericentromeres and advancement of replication of centromeric regions. The combination of these three centromere functions ensures correct chromosome segregation during mitosis. Here, we review the mechanisms of the kinetochore-microtubule interaction, focusing on sister-kinetochore bi-orientation (or chromosome bi-orientation). We also discuss the biological importance of robust pericentromeric cohesion and early centromere replication, as well as the mechanisms orchestrating these two functions at the microtubule attachment site.

  17. Three wise centromere functions: see no error, hear no break, speak no delay.

    OpenAIRE

    Tanaka, Tomoyuki U; Clayton, Lesley; Natsume, Toyoaki

    2013-01-01

    The main function of the centromere is to promote kinetochore assembly for spindle microtubule attachment. Two additional functions of the centromere, however, are becoming increasingly clear: facilitation of robust sister-chromatid cohesion at pericentromeres and advancement of replication of centromeric regions. The combination of these three centromere functions ensures correct chromosome segregation during mitosis. Here, we review the mechanisms of the kinetochore–microtubule interaction,...

  18. The Cell Cycle Timing of Human Papillomavirus DNA Replication.

    Science.gov (United States)

    Reinson, Tormi; Henno, Liisi; Toots, Mart; Ustav, Mart; Ustav, Mart

    2015-01-01

    Viruses manipulate the cell cycle of the host cell to optimize conditions for more efficient viral genome replication. One strategy utilized by DNA viruses is to replicate their genomes non-concurrently with the host genome; in this case, the viral genome is amplified outside S phase. This phenomenon has also been described for human papillomavirus (HPV) vegetative genome replication, which occurs in G2-arrested cells; however, the precise timing of viral DNA replication during initial and stable replication phases has not been studied. We developed a new method to quantitate newly synthesized DNA levels and used this method in combination with cell cycle synchronization to show that viral DNA replication is initiated during S phase and is extended to G2 during initial amplification but follows the replication pattern of cellular DNA during S phase in the stable maintenance phase. E1 and E2 protein overexpression changes the replication time from S only to both the S and G2 phases in cells that stably maintain viral episomes. These data demonstrate that the active synthesis and replication of the HPV genome are extended into the G2 phase to amplify its copy number and the duration of HPV genome replication is controlled by the level of the viral replication proteins E1 and E2. Using the G2 phase for genome amplification may be an important adaptation that allows exploitation of changing cellular conditions during cell cycle progression. We also describe a new method to quantify newly synthesized viral DNA levels and discuss its benefits for HPV research.

  19. The cell cycle timing of centromeric chromatin assembly in Drosophila meiosis is distinct from mitosis yet requires CAL1 and CENP-C.

    Science.gov (United States)

    Dunleavy, Elaine M; Beier, Nicole L; Gorgescu, Walter; Tang, Jonathan; Costes, Sylvain V; Karpen, Gary H

    2012-01-01

    CENP-A (CID in flies) is the histone H3 variant essential for centromere specification, kinetochore formation, and chromosome segregation during cell division. Recent studies have elucidated major cell cycle mechanisms and factors critical for CENP-A incorporation in mitosis, predominantly in cultured cells. However, we do not understand the roles, regulation, and cell cycle timing of CENP-A assembly in somatic tissues in multicellular organisms and in meiosis, the specialized cell division cycle that gives rise to haploid gametes. Here we investigate the timing and requirements for CID assembly in mitotic tissues and male and female meiosis in Drosophila melanogaster, using fixed and live imaging combined with genetic approaches. We find that CID assembly initiates at late telophase and continues during G1 phase in somatic tissues in the organism, later than the metaphase assembly observed in cultured cells. Furthermore, CID assembly occurs at two distinct cell cycle phases during male meiosis: prophase of meiosis I and after exit from meiosis II, in spermatids. CID assembly in prophase I is also conserved in female meiosis. Interestingly, we observe a novel decrease in CID levels after the end of meiosis I and before meiosis II, which correlates temporally with changes in kinetochore organization and orientation. We also demonstrate that CID is retained on mature sperm despite the gross chromatin remodeling that occurs during protamine exchange. Finally, we show that the centromere proteins CAL1 and CENP-C are both required for CID assembly in meiosis and normal progression through spermatogenesis. We conclude that the cell cycle timing of CID assembly in meiosis is different from mitosis and that the efficient propagation of CID through meiotic divisions and on sperm is likely to be important for centromere specification in the developing zygote.

  20. The cell cycle timing of centromeric chromatin assembly in Drosophila meiosis is distinct from mitosis yet requires CAL1 and CENP-C.

    Directory of Open Access Journals (Sweden)

    Elaine M Dunleavy

    Full Text Available CENP-A (CID in flies is the histone H3 variant essential for centromere specification, kinetochore formation, and chromosome segregation during cell division. Recent studies have elucidated major cell cycle mechanisms and factors critical for CENP-A incorporation in mitosis, predominantly in cultured cells. However, we do not understand the roles, regulation, and cell cycle timing of CENP-A assembly in somatic tissues in multicellular organisms and in meiosis, the specialized cell division cycle that gives rise to haploid gametes. Here we investigate the timing and requirements for CID assembly in mitotic tissues and male and female meiosis in Drosophila melanogaster, using fixed and live imaging combined with genetic approaches. We find that CID assembly initiates at late telophase and continues during G1 phase in somatic tissues in the organism, later than the metaphase assembly observed in cultured cells. Furthermore, CID assembly occurs at two distinct cell cycle phases during male meiosis: prophase of meiosis I and after exit from meiosis II, in spermatids. CID assembly in prophase I is also conserved in female meiosis. Interestingly, we observe a novel decrease in CID levels after the end of meiosis I and before meiosis II, which correlates temporally with changes in kinetochore organization and orientation. We also demonstrate that CID is retained on mature sperm despite the gross chromatin remodeling that occurs during protamine exchange. Finally, we show that the centromere proteins CAL1 and CENP-C are both required for CID assembly in meiosis and normal progression through spermatogenesis. We conclude that the cell cycle timing of CID assembly in meiosis is different from mitosis and that the efficient propagation of CID through meiotic divisions and on sperm is likely to be important for centromere specification in the developing zygote.

  1. Replication timing: a fingerprint for cell identity and pluripotency.

    Directory of Open Access Journals (Sweden)

    Tyrone Ryba

    2011-10-01

    Full Text Available Many types of epigenetic profiling have been used to classify stem cells, stages of cellular differentiation, and cancer subtypes. Existing methods focus on local chromatin features such as DNA methylation and histone modifications that require extensive analysis for genome-wide coverage. Replication timing has emerged as a highly stable cell type-specific epigenetic feature that is regulated at the megabase-level and is easily and comprehensively analyzed genome-wide. Here, we describe a cell classification method using 67 individual replication profiles from 34 mouse and human cell lines and stem cell-derived tissues, including new data for mesendoderm, definitive endoderm, mesoderm and smooth muscle. Using a Monte-Carlo approach for selecting features of replication profiles conserved in each cell type, we identify "replication timing fingerprints" unique to each cell type and apply a k nearest neighbor approach to predict known and unknown cell types. Our method correctly classifies 67/67 independent replication-timing profiles, including those derived from closely related intermediate stages. We also apply this method to derive fingerprints for pluripotency in human and mouse cells. Interestingly, the mouse pluripotency fingerprint overlaps almost completely with previously identified genomic segments that switch from early to late replication as pluripotency is lost. Thereafter, replication timing and transcription within these regions become difficult to reprogram back to pluripotency, suggesting these regions highlight an epigenetic barrier to reprogramming. In addition, the major histone cluster Hist1 consistently becomes later replicating in committed cell types, and several histone H1 genes in this cluster are downregulated during differentiation, suggesting a possible instrument for the chromatin compaction observed during differentiation. Finally, we demonstrate that unknown samples can be classified independently using site

  2. Evidence for sequential and increasing activation of replication origins along replication timing gradients in the human genome.

    Science.gov (United States)

    Guilbaud, Guillaume; Rappailles, Aurélien; Baker, Antoine; Chen, Chun-Long; Arneodo, Alain; Goldar, Arach; d'Aubenton-Carafa, Yves; Thermes, Claude; Audit, Benjamin; Hyrien, Olivier

    2011-12-01

    Genome-wide replication timing studies have suggested that mammalian chromosomes consist of megabase-scale domains of coordinated origin firing separated by large originless transition regions. Here, we report a quantitative genome-wide analysis of DNA replication kinetics in several human cell types that contradicts this view. DNA combing in HeLa cells sorted into four temporal compartments of S phase shows that replication origins are spaced at 40 kb intervals and fire as small clusters whose synchrony increases during S phase and that replication fork velocity (mean 0.7 kb/min, maximum 2.0 kb/min) remains constant and narrowly distributed through S phase. However, multi-scale analysis of a genome-wide replication timing profile shows a broad distribution of replication timing gradients with practically no regions larger than 100 kb replicating at less than 2 kb/min. Therefore, HeLa cells lack large regions of unidirectional fork progression. Temporal transition regions are replicated by sequential activation of origins at a rate that increases during S phase and replication timing gradients are set by the delay and the spacing between successive origin firings rather than by the velocity of single forks. Activation of internal origins in a specific temporal transition region is directly demonstrated by DNA combing of the IGH locus in HeLa cells. Analysis of published origin maps in HeLa cells and published replication timing and DNA combing data in several other cell types corroborate these findings, with the interesting exception of embryonic stem cells where regions of unidirectional fork progression seem more abundant. These results can be explained if origins fire independently of each other but under the control of long-range chromatin structure, or if replication forks progressing from early origins stimulate initiation in nearby unreplicated DNA. These findings shed a new light on the replication timing program of mammalian genomes and provide a general

  3. Timing, coordination, and rhythm: Acrobatics at the DNA replication fork

    KAUST Repository

    Hamdan, Samir

    2010-04-09

    In DNA replication, the antiparallel nature of the parental duplex imposes certain constraints on the activity of the DNA polymerases that synthesize new DNA. The leading-strand polymerase advances in a continuous fashion, but the lagging-strand polymerase is forced to restart at short intervals. In several prokaryotic systems studied so far, this problem is solved by the formation of a loop in the lagging strand of the replication fork to reorient the lagging-strand DNA polymerase so that it advances in parallel with the leading-strand polymerase. The replication loop grows and shrinks during each cycle of Okazaki fragment synthesis. The timing of Okazaki fragment synthesis and loop formation is determined by a subtle interplay of enzymatic activities at the fork. Recent developments in single-molecule techniques have enabled the direct observation of these processes and have greatly contributed to a better understanding of the dynamic nature of the replication fork. Here, we will review recent experimental advances, present the current models, and discuss some of the exciting developments in the field. 2010 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Organization and evolution of Gorilla centromeric DNA from old strategies to new approaches

    OpenAIRE

    Catacchio, C. R.; Ragone, R.; Chiatante, G.; M. Ventura

    2015-01-01

    The centromere/kinetochore interaction is responsible for the pairing and segregation of replicated chromosomes in eukaryotes. Centromere DNA is portrayed as scarcely conserved, repetitive in nature, quickly evolving and protein-binding competent. Among primates, the major class of centromeric DNA is the pancentromeric α-satellite, made of arrays of 171 bp monomers, repeated in a head-to-tail pattern. α-satellite sequences can either form tandem heterogeneous monomeric arrays or assemble in h...

  5. Time averages, recurrence and transience in the stochastic replicator dynamics

    CERN Document Server

    Hofbauer, Josef; 10.1214/08-AAP577

    2009-01-01

    We investigate the long-run behavior of a stochastic replicator process, which describes game dynamics for a symmetric two-player game under aggregate shocks. We establish an averaging principle that relates time averages of the process and Nash equilibria of a suitably modified game. Furthermore, a sufficient condition for transience is given in terms of mixed equilibria and definiteness of the payoff matrix. We also present necessary and sufficient conditions for stochastic stability of pure equilibria.

  6. A Replication Protocol for Real Time database System

    Directory of Open Access Journals (Sweden)

    Ashish Srivastava

    2012-06-01

    Full Text Available Database replication protocols for real time system based on a certification approach are usually the best ones for achieving good performance. The weak voting approach achieves a slightly longer transaction completion time, but with a lower abortion rate. So, both techniques can be considered as the best ones for replication when performance is a must, and both of them take advantage of the properties provided by atomic broadcast. We propose a new database replication strategy that shares many characteristics with such previous strategies. It is also based on totally ordering the application of writesets, using only an unordered reliable broadcast, instead of an atomic broadcast. Additionally, the writesets of transactions that are aborted in the final validation phase along with verification phase incorporated in the new system are not broadcast in our strategy rather than only validation phase. Thus, this new approach certainly reducesc the communication traffic and also achieves a good transaction response time (even shorter than those previous strategies associated with only validation phase in some system configurations.

  7. A CENP-S/X complex assembles at the centromere in S and G2 phases of the human cell cycle.

    Science.gov (United States)

    Dornblut, Carsten; Quinn, Nadine; Monajambashi, Shamci; Prendergast, Lisa; van Vuuren, Chelly; Münch, Sandra; Deng, Wen; Leonhardt, Heinrich; Cardoso, M Cristina; Hoischen, Christian; Diekmann, Stephan; Sullivan, Kevin F

    2014-02-12

    The functional identity of centromeres arises from a set of specific nucleoprotein particle subunits of the centromeric chromatin fibre. These include CENP-A and histone H3 nucleosomes and a novel nucleosome-like complex of CENPs -T, -W, -S and -X. Fluorescence cross-correlation spectroscopy and Förster resonance energy transfer (FRET) revealed that human CENP-S and -X exist principally in complex in soluble form and retain proximity when assembled at centromeres. Conditional labelling experiments show that they both assemble de novo during S phase and G2, increasing approximately three- to fourfold in abundance at centromeres. Fluorescence recovery after photobleaching (FRAP) measurements documented steady-state exchange between soluble and assembled pools, with CENP-X exchanging approximately 10 times faster than CENP-S (t1/2 ∼ 10 min versus 120 min). CENP-S binding to sites of DNA damage was quite distinct, with a FRAP half-time of approximately 160 s. Fluorescent two-hybrid analysis identified CENP-T as a uniquely strong CENP-S binding protein and this association was confirmed by FRET, revealing a centromere-bound complex containing CENP-S, CENP-X and CENP-T in proximity to histone H3 but not CENP-A. We propose that deposition of the CENP-T/W/S/X particle reveals a kinetochore-specific chromatin assembly pathway that functions to switch centromeric chromatin to a mitosis-competent state after DNA replication. Centromeres shuttle between CENP-A-rich, replication-competent and H3-CENP-T/W/S/X-rich mitosis-competent compositions in the cell cycle.

  8. Rif1 Regulates Initiation Timing of Late Replication Origins throughout the S. cerevisiae Genome

    OpenAIRE

    Peace, Jared M.; Anna Ter-Zakarian; Aparicio, Oscar M

    2014-01-01

    Chromosomal DNA replication involves the coordinated activity of hundreds to thousands of replication origins. Individual replication origins are subject to epigenetic regulation of their activity during S-phase, resulting in differential efficiencies and timings of replication initiation during S-phase. This regulation is thought to involve chromatin structure and organization into timing domains with differential ability to recruit limiting replication factors. Rif1 has recently been identi...

  9. Dynamic epigenetic states of maize centromeres

    Directory of Open Access Journals (Sweden)

    Yalin eLiu

    2015-10-01

    Full Text Available The centromere is a specialized chromosomal region identified as the major constriction, upon which the kinetochore complex is formed, ensuring accurate chromosome orientation and segregation during cell division. The rapid evolution of centromere DNA sequence and the conserved centromere function are two contradictory aspects of centromere biology. Indeed, the sole presence of genetic sequence is not sufficient for centromere formation. Various dicentric chromosomes with one inactive centromere have been recognized. It has also been found that de novo centromere formation is common on fragments in which centromeric DNA sequences are lost. Epigenetic factors play important roles in centromeric chromatin assembly and maintenance. Nondisjunction of the supernumerary B chromosome early prophase of meiosis I requires an active centromere. This review discusses recent studies in maize about genetic and epigenetic elements regulating formation and maintenance of centromere chromatin, as well as centromere behavior in meiosis.

  10. DNA replication origin activation in space and time.

    Science.gov (United States)

    Fragkos, Michalis; Ganier, Olivier; Coulombe, Philippe; Méchali, Marcel

    2015-06-01

    DNA replication begins with the assembly of pre-replication complexes (pre-RCs) at thousands of DNA replication origins during the G1 phase of the cell cycle. At the G1-S-phase transition, pre-RCs are converted into pre-initiation complexes, in which the replicative helicase is activated, leading to DNA unwinding and initiation of DNA synthesis. However, only a subset of origins are activated during any S phase. Recent insights into the mechanisms underlying this choice reveal how flexibility in origin usage and temporal activation are linked to chromosome structure and organization, cell growth and differentiation, and replication stress.

  11. On the replication of genetic associations: timing can be everything!

    Science.gov (United States)

    Lasky-Su, Jessica; Lyon, Helen N; Emilsson, Valur; Heid, Iris M; Molony, Cliona; Raby, Benjamin A; Lazarus, Ross; Klanderman, Barbara; Soto-Quiros, Manuel E; Avila, Lydiana; Silverman, Edwin K; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Kronenberg, Florian; Vollmert, Caren; Illig, Thomas; Fox, Caroline S; Levy, Daniel; Laird, Nan; Ding, Xiao; McQueen, Matt B; Butler, Johannah; Ardlie, Kristin; Papoutsakis, Constantina; Dedoussis, George; O'Donnell, Christopher J; Wichmann, H-Erich; Celedón, Juan C; Schadt, Eric; Hirschhorn, Joel; Weiss, Scott T; Stefansson, Kari; Lange, Christoph

    2008-04-01

    The failure of researchers to replicate genetic-association findings is most commonly attributed to insufficient statistical power, population stratification, or various forms of between-study heterogeneity or environmental influences.(1) Here, we illustrate another potential cause for nonreplications that has so far not received much attention in the literature. We illustrate that the strength of a genetic effect can vary by age, causing "age-varying associations." If not taken into account during the design and the analysis of a study, age-varying genetic associations can cause nonreplication. By using the 100K SNP scan of the Framingham Heart Study, we identified an age-varying association between a SNP in ROBO1 and obesity and hypothesized an age-gene interaction. This finding was followed up in eight independent samples comprising 13,584 individuals. The association was replicated in five of the eight studies, showing an age-dependent relationship (one-sided combined p = 3.92 x 10(-9), combined p value from pediatric cohorts = 2.21 x 10(-8), combined p value from adult cohorts = 0.00422). Furthermore, this study illustrates that it is difficult for cross-sectional study designs to detect age-varying associations. If the specifics of age- or time-varying genetic effects are not considered in the selection of both the follow-up samples and in the statistical analysis, important genetic associations may be missed.

  12. Engineered human dicentric chromosomes show centromere plasticity.

    Science.gov (United States)

    Higgins, Anne W; Gustashaw, Karen M; Willard, Huntington F

    2005-01-01

    The centromere is essential for the faithful distribution of a cell's genetic material to subsequent generations. Despite intense scrutiny, the precise genetic and epigenetic basis for centromere function is still unknown. Here, we have used engineered dicentric human chromosomes to investigate mammalian centromere structure and function. We describe three classes of dicentric chromosomes isolated in different cell lines: functionally monocentric chromosomes, in which one of the two genetically identical centromeres is consistently inactivated; functionally dicentric chromosomes, in which both centromeres are consistently active; and dicentric chromosomes heterogeneous with respect to centromere activity. A study of serial single cell clones from heterogeneous cell lines revealed that while centromere activity is usually clonal, the centromere state (i.e. functionally monocentric or dicentric) in some lines can switch within a growing population of cells. Because pulsed field gel analysis indicated that the DNA at the centromeres of these chromosomes did not change detectably, this switching of the centromere state is most likely due to epigenetic changes. Inactivation of one of the two active centromeres in a functionally dicentric chromosome was observed in a percentage of cells after treatment with Trichostatin A, an inhibitor of histone deacetylation. This study provides evidence that the activity of human centromeres, while largely stable, can be subject to dynamic change, most likely due to epigenetic modification.

  13. Centromere domain organization and histone modifications

    Directory of Open Access Journals (Sweden)

    P. Bjerling

    2002-05-01

    Full Text Available Centromere function requires the proper coordination of several subfunctions, such as kinetochore assembly, sister chromatid cohesion, binding of kinetochore microtubules, orientation of sister kinetochores to opposite spindle poles, and their movement towards the spindle poles. Centromere structure appears to be organized in different, separable domains in order to accomplish these functions. Despite the conserved nature of centromere functions, the molecular genetic definition of the DNA sequences that form a centromere in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, in the fruit fly Drosophila melanogaster, and in humans has revealed little conservation at the level of centromere DNA sequences. Also at the protein level few centromere proteins are conserved in all of these four organisms and many are unique to the different organisms. The recent analysis of the centromere structure in the yeast S. pombe by electron microscopy and detailed immunofluorescence microscopy of Drosophila centromeres have brought to light striking similarities at the overall structural level between these centromeres and the human centromere. The structural organization of the centromere is generally multilayered with a heterochromatin domain and a central core/inner plate region, which harbors the outer plate structures of the kinetochore. It is becoming increasingly clear that the key factors for assembly and function of the centromere structure are the specialized histones and modified histones which are present in the centromeric heterochromatin and in the chromatin of the central core. Thus, despite the differences in the DNA sequences and the proteins that define a centromere, there is an overall structural similarity between centromeres in evolutionarily diverse eukaryotes.

  14. Structure, Function, and Evolution of Rice Centromeres

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jiming

    2010-02-04

    The centromere is the most characteristic landmark of eukaryotic chromosomes. Centromeres function as the site for kinetochore assembly and spindle attachment, allowing for the faithful pairing and segregation of sister chromatids during cell division. Characterization of centromeric DNA is not only essential to understand the structure and organization of plant genomes, but it is also a critical step in the development of plant artificial chromosomes. The centromeres of most model eukaryotic species, consist predominantly of long arrays of satellite DNA. Determining the precise DNA boundary of a centromere has proven to be a difficult task in multicellular eukaryotes. We have successfully cloned and sequenced the centromere of rice chromosome 8 (Cen8), representing the first fully sequenced centromere from any multicellular eukaryotes. The functional core of Cen8 spans ~800 kb of DNA, which was determined by chromatin immunoprecipitation (ChIP) using an antibody against the rice centromere-specific H3 histone. We discovered 16 actively transcribed genes distributed throughout the Cen8 region. In addition to Cen8, we have characterized eight additional rice centromeres using the next generation sequencing technology. We discovered four subfamilies of the CRR retrotransposon that is highly enriched in rice centromeres. CRR elements are constitutively transcribed and different CRR subfamilies are differentially processed by RNAi. These results suggest that different CRR subfamilies may play different roles in the RNAi-mediated pathway for formation and maintenance of centromeric chromatin.

  15. Global profiling of DNA replication timing and efficiency reveals that efficient replication/firing occurs late during S-phase in S. pombe.

    Directory of Open Access Journals (Sweden)

    Majid Eshaghi

    Full Text Available BACKGROUND: During S. pombe S-phase, initiation of DNA replication occurs at multiple sites (origins that are enriched with AT-rich sequences, at various times. Current studies of genome-wide DNA replication profiles have focused on the DNA replication timing and origin location. However, the replication and/or firing efficiency of the individual origins on the genomic scale remain unclear. METHODOLOGY/PRINCIPAL FINDINGS: Using the genome-wide ORF-specific DNA microarray analysis, we show that in S. pombe, individual origins fire with varying efficiencies and at different times during S-phase. The increase in DNA copy number plotted as a function of time is approximated to the near-sigmoidal model, when considering the replication start and end timings at individual loci in cells released from HU-arrest. Replication efficiencies differ from origin to origin, depending on the origin's firing efficiency. We have found that DNA replication is inefficient early in S-phase, due to inefficient firing at origins. Efficient replication occurs later, attributed to efficient but late-firing origins. Furthermore, profiles of replication timing in cds1Delta cells are abnormal, due to the failure in resuming replication at the collapsed forks. The majority of the inefficient origins, but not the efficient ones, are found to fire in cds1Delta cells after HU removal, owing to the firing at the remaining unused (inefficient origins during HU treatment. CONCLUSIONS/SIGNIFICANCE: Taken together, our results indicate that efficient DNA replication/firing occurs late in S-phase progression in cells after HU removal, due to efficient late-firing origins. Additionally, checkpoint kinase Cds1p is required for maintaining the efficient replication/firing late in S-phase. We further propose that efficient late-firing origins are essential for ensuring completion of DNA duplication by the end of S-phase.

  16. Bacterial scaffold directs pole-specific centromere segregation.

    Science.gov (United States)

    Ptacin, Jerod L; Gahlmann, Andreas; Bowman, Grant R; Perez, Adam M; von Diezmann, Alexander R S; Eckart, Michael R; Moerner, W E; Shapiro, Lucy

    2014-05-13

    Bacteria use partitioning systems based on the ParA ATPase to actively mobilize and spatially organize molecular cargoes throughout the cytoplasm. The bacterium Caulobacter crescentus uses a ParA-based partitioning system to segregate newly replicated chromosomal centromeres to opposite cell poles. Here we demonstrate that the Caulobacter PopZ scaffold creates an organizing center at the cell pole that actively regulates polar centromere transport by the ParA partition system. As segregation proceeds, the ParB-bound centromere complex is moved by progressively disassembling ParA from a nucleoid-bound structure. Using superresolution microscopy, we show that released ParA is recruited directly to binding sites within a 3D ultrastructure composed of PopZ at the cell pole, whereas the ParB-centromere complex remains at the periphery of the PopZ structure. PopZ recruitment of ParA stimulates ParA to assemble on the nucleoid near the PopZ-proximal cell pole. We identify mutations in PopZ that allow scaffold assembly but specifically abrogate interactions with ParA and demonstrate that PopZ/ParA interactions are required for proper chromosome segregation in vivo. We propose that during segregation PopZ sequesters free ParA and induces target-proximal regeneration of ParA DNA binding activity to enforce processive and pole-directed centromere segregation, preventing segregation reversals. PopZ therefore functions as a polar hub complex at the cell pole to directly regulate the directionality and destination of transfer of the mitotic segregation machine.

  17. Novel Centromeric Loci of the Wine and Beer Yeast Dekkera bruxellensis CEN1 and CEN2

    Science.gov (United States)

    Ishchuk, Olena P.; Vojvoda Zeljko, Tanja; Schifferdecker, Anna J.; Mebrahtu Wisén, Sofia; Hagström, Åsa K.; Rozpędowska, Elżbieta; Rørdam Andersen, Mikael; Hellborg, Linda; Ling, Zhihao; Sibirny, Andrei A.

    2016-01-01

    The wine and beer yeast Dekkera bruxellensis thrives in environments that are harsh and limiting, especially in concentrations with low oxygen and high ethanol. Its different strains’ chromosomes greatly vary in number (karyotype). This study isolates two novel centromeric loci (CEN1 and CEN2), which support both the yeast’s autonomous replication and the stable maintenance of plasmids. In the sequenced genome of the D. bruxellensis strain CBS 2499, CEN1 and CEN2 are each present in one copy. They differ from the known “point” CEN elements, and their biological activity is retained within ~900–1300 bp DNA segments. CEN1 and CEN2 have features of both “point” and “regional” centromeres: They contain conserved DNA elements, ARSs, short repeats, one tRNA gene, and transposon-like elements within less than 1 kb. Our discovery of a miniature inverted-repeat transposable element (MITE) next to CEN2 is the first report of such transposons in yeast. The transformants carrying circular plasmids with cloned CEN1 and CEN2 undergo a phenotypic switch: They form fluffy colonies and produce three times more biofilm. The introduction of extra copies of CEN1 and CEN2 promotes both genome rearrangements and ploidy shifts, with these effects mediated by homologous recombination (between circular plasmid and genome centromere copy) or by chromosome breakage when integrated. Also, the proximity of the MITE-like transposon to CEN2 could translocate CEN2 within the genome or cause chromosomal breaks, so promoting genome dynamics. With extra copies of CEN1 and CEN2, the yeast’s enhanced capacities to rearrange its genome and to change its gene expression could increase its abilities for exploiting new and demanding niches. PMID:27560164

  18. A Positive Twist to the Centromeric Nucleosome

    Directory of Open Access Journals (Sweden)

    Josefina Ocampo

    2015-10-01

    Full Text Available Centromeric nucleosomes are critical for chromosome attachment to the mitotic spindle. In this issue of Cell Reports, Diaz-Ingelmo et al. (2015 propose that the yeast centromeric nucleosome is stabilized by a positively supercoiled loop formed by the sequence-specific CBF3 complex.

  19. Insights into centromeric transcription in mitosis.

    Science.gov (United States)

    Liu, Hong

    2016-01-01

    The major role of RNA polymerase II (RNAP II) is to generate mRNAs. I recently uncovered a novel function of RNAP II in chromosome segregation in mitosis, installing the cohesin protector, Shugoshin, at centromeres. Here I will discuss the current understanding of RNAP II-dependent centromeric transcription in mitosis.

  20. A regulatory effect of INMAP on centromere proteins: antisense INMAP induces CENP-B variation and centromeric halo.

    Directory of Open Access Journals (Sweden)

    Tan Tan

    Full Text Available CENP-B is a highly conserved protein that facilitates the assembly of specific centromere structures both in interphase nuclei and on mitotic chromosomes. INMAP is a conserved protein that localizes at nucleus in interphase cells and at mitotic apparatus in mitotic cells. Our previous results showed that INMAP over-expression leads to spindle defects, mitotic arrest and formation of polycentrosomal and multinuclear cells, indicating that INMAP may modulate the function of (a key protein(s in mitotic apparatus. In this study, we demonstrate that INMAP interacts with CENP-B and promotes cleavage of the N-terminal DNA binding domain from CENP-B. The cleaved CENP-B cannot associate with centromeres and thus lose its centromere-related functions. Consistent with these results, CENP-B in INMAP knockdown cells becomes more diffused around kinetochores. Although INMAP knockdown cells do not exhibit gross defects in mitotic spindle formation, these cells go through mitosis, especially prophase and metaphase, with different relative timing, indicating subtle abnormality. These results identify INMAP as a model regulator of CENP-B and support the notion that INMAP regulates mitosis through modulating CENP-B-mediated centromere organization.

  1. A regulatory effect of INMAP on centromere proteins: antisense INMAP induces CENP-B variation and centromeric halo.

    Science.gov (United States)

    Tan, Tan; Chen, Zhe; Lei, Yan; Zhu, Yan; Liang, Qianjin

    2014-01-01

    CENP-B is a highly conserved protein that facilitates the assembly of specific centromere structures both in interphase nuclei and on mitotic chromosomes. INMAP is a conserved protein that localizes at nucleus in interphase cells and at mitotic apparatus in mitotic cells. Our previous results showed that INMAP over-expression leads to spindle defects, mitotic arrest and formation of polycentrosomal and multinuclear cells, indicating that INMAP may modulate the function of (a) key protein(s) in mitotic apparatus. In this study, we demonstrate that INMAP interacts with CENP-B and promotes cleavage of the N-terminal DNA binding domain from CENP-B. The cleaved CENP-B cannot associate with centromeres and thus lose its centromere-related functions. Consistent with these results, CENP-B in INMAP knockdown cells becomes more diffused around kinetochores. Although INMAP knockdown cells do not exhibit gross defects in mitotic spindle formation, these cells go through mitosis, especially prophase and metaphase, with different relative timing, indicating subtle abnormality. These results identify INMAP as a model regulator of CENP-B and support the notion that INMAP regulates mitosis through modulating CENP-B-mediated centromere organization.

  2. CIRS: A State-Conscious Concurrency Control Protocol for Replicated Real-Time Databases

    Directory of Open Access Journals (Sweden)

    Vishal Pathak,

    2011-01-01

    Full Text Available Replication [5] is the technique of using multiple copies of a server or a resource for better availability and performance.Each copy is called a replica. The main goal of replication is to improve availability, since a service is available even if some of its replicas are not. This helps mission critical services, such as many financial systems or reservation systems, where even a short outage can be very disruptive and expensive.A prerequisite for realizing the banefits of replication, however, is the devlopement of high erformance concurrency machenism. Current applications, such as Web-based services, electronic commerce, mobile telecommunication system, etc., are distributed in nature and manipulate time-critical databases. In order to enhance the performance and the availability of such applications, one of the main techniques is to replicate data on multiple sites of the network. Therefore, the major issue is to develop efficient replica concurrency control protocols that are able to tolerate the overload of the distributed system. In fact, if the system is not designed to handle overloads, the effects can be catastrophic and some primordial transactions of the application can miss their deadlines. In this paper we present CIRS (Concurrency control In Replicated realtime Systems a state conscious concurrency control protocol in replicated distributed environment which is specially for firm realtime database system. CIRS mechanism uses S2PL (Static Two Phase Locking for deadlock free environment.It also includes veto power given to a cohort after receiving PREPARE message from its coordinator. Also with some more assumptions like sending an extra message in execution phase but after completionof execution at local copy which is described later in this paper the proposed mechanism has a significant increased performance over O2PL and MIRROR in decreasing execution time of the current transaction and it also decreases the waiting time of

  3. Mcm10 coordinates the timely assembly and activation of the replication fork helicase

    Science.gov (United States)

    Perez-Arnaiz, Patricia; Bruck, Irina; Kaplan, Daniel L.

    2016-01-01

    Mcm10 is an essential replication factor that is required for DNA replication in eukaryotes. Two key steps in the initiation of DNA replication are the assembly and activation of Cdc45–Mcm2–7-GINS (CMG) replicative helicase. However, it is not known what coordinates helicase assembly with helicase activation. We show in this manuscript, using purified proteins from budding yeast, that Mcm10 directly interacts with the Mcm2–7 complex and Cdc45. In fact, Mcm10 recruits Cdc45 to Mcm2–7 complex in vitro. To study the role of Mcm10 in more detail in vivo we used an auxin inducible degron in which Mcm10 is degraded upon addition of auxin. We show in this manuscript that Mcm10 is required for the timely recruitment of Cdc45 and GINS recruitment to the Mcm2–7 complex in vivo during early S phase. We also found that Mcm10 stimulates Mcm2 phosphorylation by DDK in vivo and in vitro. These findings indicate that Mcm10 plays a critical role in coupling replicative helicase assembly with helicase activation. Mcm10 is first involved in the recruitment of Cdc45 to the Mcm2–7 complex. After Cdc45–Mcm2–7 complex assembly, Mcm10 promotes origin melting by stimulating DDK phosphorylation of Mcm2, which thereby leads to GINS attachment to Mcm2–7. PMID:26582917

  4. Identifying significant temporal variation in time course microarray data without replicates

    Directory of Open Access Journals (Sweden)

    Porter Weston

    2009-03-01

    Full Text Available Abstract Background An important component of time course microarray studies is the identification of genes that demonstrate significant time-dependent variation in their expression levels. Until recently, available methods for performing such significance tests required replicates of individual time points. This paper describes a replicate-free method that was developed as part of a study of the estrous cycle in the rat mammary gland in which no replicate data was collected. Results A temporal test statistic is proposed that is based on the degree to which data are smoothed when fit by a spline function. An algorithm is presented that uses this test statistic together with a false discovery rate method to identify genes whose expression profiles exhibit significant temporal variation. The algorithm is tested on simulated data, and is compared with another recently published replicate-free method. The simulated data consists both of genes with known temporal dependencies, and genes from a null distribution. The proposed algorithm identifies a larger percentage of the time-dependent genes for a given false discovery rate. Use of the algorithm in a study of the estrous cycle in the rat mammary gland resulted in the identification of genes exhibiting distinct circadian variation. These results were confirmed in follow-up laboratory experiments. Conclusion The proposed algorithm provides a new approach for identifying expression profiles with significant temporal variation without relying on replicates. When compared with a recently published algorithm on simulated data, the proposed algorithm appears to identify a larger percentage of time-dependent genes for a given false discovery rate. The development of the algorithm was instrumental in revealing the presence of circadian variation in the virgin rat mammary gland during the estrous cycle.

  5. Chromatin ring formation at plant centromeres

    Directory of Open Access Journals (Sweden)

    Veit eSchubert

    2016-02-01

    Full Text Available We observed the formation of chromatin ring structures at centromeres of somatic rye and Arabidopsis chromosomes. To test whether this behavior is present also in other plant species and tissues we analyzed Arabidopsis, rye, wheat, Aegilops and barley centromeres during cell divisions and in interphase nuclei by immunostaining and FISH. Furthermore, structured illumination microscopy (super-resolution was applied to investigate the ultrastructure of centromere chromatin beyond the classical refraction limit of light. It became obvious, that a ring formation at centromeres may appear during mitosis, meiosis and in interphase nuclei in all species analyzed. However, varying centromere structures, as ring formations or globular organized chromatin fibers, were identified in different tissues of one and the same species. In addition, we found that a chromatin ring formation may also be caused by subtelomeric repeats in barley. Thus, we conclude that the formation of chromatin rings may appear in different plant species and tissues, but that it is not specific for centromere function. Based on our findings we established a model describing the ultrastructure of plant centromeres and discuss it in comparison to previous models proposed for animals and plants.

  6. Dicentric Chromosome Formation and Epigenetics of Centromere Formation in Plants

    Institute of Scientific and Technical Information of China (English)

    Shulan Fu; Zhi Gao; James Birchler; Fangpu Han

    2012-01-01

    Plant centromeres are generally composed of tandem arrays of simple repeats that form a complex chromosome locus where the kinetochore forms and microtubules attach during mitosis and meiosis.Each chromosome has one centromere region,which is essential for accurate division of the genetic material.Recently,chromosomes containing two centromere regions (called dicentric chromosomes)have been found in maize and wheat.Interestingly,some dicentric chromosomes are stable because only one centromere is active and the other one is inactivated.Because such arrays maintain their typical structure for both active and inactive centromeres,the specification of centromere activity has an epigenetic component independent of the DNA sequence.Under some circumstances,the inactive centromeres may recover centromere function,which is called centromere reactivation.Recent studies have highlighted the important changes,such as DNA methylation and histone modification,that occur during centromere inactivation and reactivation.

  7. Dicentric chromosome formation and epigenetics of centromere formation in plants.

    Science.gov (United States)

    Fu, Shulan; Gao, Zhi; Birchler, James; Han, Fangpu

    2012-03-20

    Plant centromeres are generally composed of tandem arrays of simple repeats that form a complex chromosome locus where the kinetochore forms and microtubules attach during mitosis and meiosis. Each chromosome has one centromere region, which is essential for accurate division of the genetic material. Recently, chromosomes containing two centromere regions (called dicentric chromosomes) have been found in maize and wheat. Interestingly, some dicentric chromosomes are stable because only one centromere is active and the other one is inactivated. Because such arrays maintain their typical structure for both active and inactive centromeres, the specification of centromere activity has an epigenetic component independent of the DNA sequence. Under some circumstances, the inactive centromeres may recover centromere function, which is called centromere reactivation. Recent studies have highlighted the important changes, such as DNA methylation and histone modification, that occur during centromere inactivation and reactivation.

  8. Difference-based clustering of short time-course microarray data with replicates

    Directory of Open Access Journals (Sweden)

    Kim Jihoon

    2007-07-01

    Full Text Available Abstract Background There are some limitations associated with conventional clustering methods for short time-course gene expression data. The current algorithms require prior domain knowledge and do not incorporate information from replicates. Moreover, the results are not always easy to interpret biologically. Results We propose a novel algorithm for identifying a subset of genes sharing a significant temporal expression pattern when replicates are used. Our algorithm requires no prior knowledge, instead relying on an observed statistic which is based on the first and second order differences between adjacent time-points. Here, a pattern is predefined as the sequence of symbols indicating direction and the rate of change between time-points, and each gene is assigned to a cluster whose members share a similar pattern. We evaluated the performance of our algorithm to those of K-means, Self-Organizing Map and the Short Time-series Expression Miner methods. Conclusions Assessments using simulated and real data show that our method outperformed aforementioned algorithms. Our approach is an appropriate solution for clustering short time-course microarray data with replicates.

  9. Sisters unbound is required for meiotic centromeric cohesion in Drosophila melanogaster.

    Science.gov (United States)

    Krishnan, Badri; Thomas, Sharon E; Yan, Rihui; Yamada, Hirotsugu; Zhulin, Igor B; McKee, Bruce D

    2014-11-01

    Regular meiotic chromosome segregation requires sister centromeres to mono-orient (orient to the same pole) during the first meiotic division (meiosis I) when homologous chromosomes segregate, and to bi-orient (orient to opposite poles) during the second meiotic division (meiosis II) when sister chromatids segregate. Both orientation patterns require cohesion between sister centromeres, which is established during meiotic DNA replication and persists until anaphase of meiosis II. Meiotic cohesion is mediated by a conserved four-protein complex called cohesin that includes two structural maintenance of chromosomes (SMC) subunits (SMC1 and SMC3) and two non-SMC subunits. In Drosophila melanogaster, however, the meiotic cohesion apparatus has not been fully characterized and the non-SMC subunits have not been identified. We have identified a novel Drosophila gene called sisters unbound (sunn), which is required for stable sister chromatid cohesion throughout meiosis. sunn mutations disrupt centromere cohesion during prophase I and cause high frequencies of non-disjunction (NDJ) at both meiotic divisions in both sexes. SUNN co-localizes at centromeres with the cohesion proteins SMC1 and SOLO in both sexes and is necessary for the recruitment of both proteins to centromeres. Although SUNN lacks sequence homology to cohesins, bioinformatic analysis indicates that SUNN may be a structural homolog of the non-SMC cohesin subunit stromalin (SA), suggesting that SUNN may serve as a meiosis-specific cohesin subunit. In conclusion, our data show that SUNN is an essential meiosis-specific Drosophila cohesion protein.

  10. [Sop proteins can cause transcriptional silencing of genes located close to the centromere sites of linear plasmid N15].

    Science.gov (United States)

    Mardanov, A V; Lane, D; Ravin, N V

    2010-01-01

    Stable inheritance of bacterial chromosomes and low copy number plasmids is ensured by accurate partitioning of replicated molecules between the daughter cells at division. Partitioning of the prophage of the temperate bacteriophage N15, which exists as a linear plasmid molecule with covalently closed ends, depends on the sop locus, comprising genes sopA and sopB, as well as four centromere sites located in different regions of the N15 genome essential for replication and the control of lysogeny. We found that binding of SopB to the centromere can silence centromere-proximal promoters, presumably due to subsequent polymerizing of SopB along the DNA. Close to the IR4 centromere site we identified a promoter, P59, able to drive expression of phage late genes encoding the structural proteins of virion. We found that following binding to IR4 the N15 Sop proteins can cause repression of this promoter. The repression depends on SopB and became stronger in the presence of SopA. Sop-dependent silencing of centromere-proximal promoters control gene expression in phage N15, particularly preventing undesired expression of late genes in the N15 prophage. Thus, the phage N15 sop system not only ensures plasmid partitioning but is also involved in the genetic network controlling prophage replication and the maintenance of lysogeny.

  11. Replication timing of human telomeres is chromosome arm-specific, influenced by subtelomeric structures and connected to nuclear localization.

    Directory of Open Access Journals (Sweden)

    Nausica Arnoult

    2010-04-01

    Full Text Available The mechanisms governing telomere replication in humans are still poorly understood. To fill this gap, we investigated the timing of replication of single telomeres in human cells. Using in situ hybridization techniques, we have found that specific telomeres have preferential time windows for replication during the S-phase and that these intervals do not depend upon telomere length and are largely conserved between homologous chromosomes and between individuals, even in the presence of large subtelomeric segmental polymorphisms. Importantly, we show that one copy of the 3.3 kb macrosatellite repeat D4Z4, present in the subtelomeric region of the late replicating 4q35 telomere, is sufficient to confer both a more peripheral localization and a later-replicating property to a de novo formed telomere. Also, the presence of beta-satellite repeats next to a newly created telomere is sufficient to delay its replication timing. Remarkably, several native, non-D4Z4-associated, late-replicating telomeres show a preferential localization toward the nuclear periphery, while several early-replicating telomeres are associated with the inner nuclear volume. We propose that, in humans, chromosome arm-specific subtelomeric sequences may influence both the spatial distribution of telomeres in the nucleus and their replication timing.

  12. Imprinted chromosomal domains revealed by allele-specific replication timing of the GABRB3 and GABRA5 genes

    Energy Technology Data Exchange (ETDEWEB)

    LaSalle, J.; Flint, A.; Lalande, M. [Harvard Medical School, Boston, MA (United States)] [and others

    1994-09-01

    The GABRB3 and GABRA5 genes are organized as a cluster in chromosome 15q11-q13. The genes are separated by around 100 kb and arranged in opposite transcriptional orientations. The GABA{sub A} receptor cluster lies near the Angelman and Prader-Willi loci and displays asynchronous DNA replication, suggesting that this region is subject to parental imprinting. In order to further study the association between DNA replication and imprinting, allele-specific replication was assayed by fluorescence in situ hybridization with {lambda}-phage probes from the GABRB3/A5 region and a D15Z1 satellite probe to identify the parental origin of each chromosome. The replication kinetics of each allele was determined by using a flow sorter to fractionate mitogen-stimulated lymphocytes on the basis of cell cycle progression prior to FISH analysis. These kinetic studies reveal a 50-150 kb chromosomal domain extending from the middle of the GABRB3/A5 intergenic region into the GABRA5 5{prime}-UTR which displays maternal replication in early S with paternal replication delayed until the end of S. In contrast, genomic regions on either side of this maternal early replication domain exhibit the opposite pattern with paternal before maternal replication and both alleles replicating in the latter half of S. These results indicate that the GABRB3/A5 region is divided into domains in which replication timing is determined by parental origin. In addition to a loss of asynchronous replication, organization into replication timing domains is also lost in lymphocytes from maternal and paternal uniparental disomy 15 patients suggesting that a chromosome contribution from both parents is required for the establishment of the imprinted replication domains.

  13. Turning the hands of time again: a purely confirmatory replication study and a Bayesian analysis.

    Science.gov (United States)

    Wagenmakers, Eric-Jan; Beek, Titia F; Rotteveel, Mark; Gierholz, Alex; Matzke, Dora; Steingroever, Helen; Ly, Alexander; Verhagen, Josine; Selker, Ravi; Sasiadek, Adam; Gronau, Quentin F; Love, Jonathon; Pinto, Yair

    2015-01-01

    In a series of four experiments, Topolinski and Sparenberg (2012) found support for the conjecture that clockwise movements induce psychological states of temporal progression and an orientation toward the future and novelty. Here we report the results of a preregistered replication attempt of Experiment 2 from Topolinski and Sparenberg (2012). Participants turned kitchen rolls either clockwise or counterclockwise while answering items from a questionnaire assessing openness to experience. Data from 102 participants showed that the effect went slightly in the direction opposite to that predicted by Topolinski and Sparenberg (2012), and a preregistered Bayes factor hypothesis test revealed that the data were 10.76 times more likely under the null hypothesis than under the alternative hypothesis. Our findings illustrate the theoretical importance and practical advantages of preregistered Bayes factor replication studies, both for psychological science and for empirical work in general.

  14. Turning the Hands of Time Again: A Purely Confirmatory Replication Study and a Bayesian Analysis

    Directory of Open Access Journals (Sweden)

    Eric-Jan eWagenmakers

    2015-04-01

    Full Text Available In a series of four experiments, Topolinski and Sparenberg (2012; TS found support for the conjecture that clockwise movements induce psychological states of temporal progression and an orientation toward the future and novelty. Here we report the results of a preregistered replication attempt of Experiment 2 from TS. Participants turned kitchen rolls either clockwise or counterclockwise while answering items from a questionnaire assessing openness to experience. Data from 102 participants showed that the effect went slightly in the direction opposite to that predicted by TS, and a preregistered Bayes factor hypothesis test revealed that the data were 10.76 times more likely under the null hypothesis than under the alternative hypothesis. Our findings illustrate the theoretical importance and practical advantages of preregistered Bayes factor replication studies, both for psychological science and for empirical work in general.

  15. Atypical centromeres in plants – what they can tell us

    Directory of Open Access Journals (Sweden)

    Maria eCuacos

    2015-10-01

    Full Text Available The centromere, visible as the primary constriction of condensed metaphase chromosomes, is a defined chromosomal locus essential for genome stability. It mediates transient assembly of a multi-protein complex, the kinetochore, which enables interaction with spindle fibers and thus faithful segregation of the genetic information during nuclear divisions. Centromeric DNA varies in extent and sequence composition among organisms, but a common feature of almost all active eukaryotic centromeres is the presence of the centromeric histone H3 variant cenH3 (a.k.a. CENP-A.These typical centromere features apply to most studied species. However, a number of species display atypical centromeres, such as holocentromeres (centromere extension along almost the entire chromatid length or neocentromeres (ectopic centromere activity.In this review, we provide an overview of different atypical centromere types found in plants including holocentromeres, de novo formed centromeres and terminal neocentromeres as well as di-, tri- and metapolycentromeres (more than one centromere per chromosomes. We discuss their specific and common features and compare them to centromere types found in other eukaryotic species. We also highlight new insights into centromere biology gained in plants with atypical centromeres such as distinct mechanisms to define a holocentromere, specific adaptations in species with holocentromeres during meiosis or various scenarios leading to neocentromere formation.

  16. Multiple DNA binding proteins contribute to timing of chromosome replication in E. coli

    DEFF Research Database (Denmark)

    Riber, Leise; Frimodt-Møller, Jakob; Charbon, Godefroid;

    2016-01-01

    Chromosome replication in Escherichia coli is initiated from a single origin, oriC. Initiation involves a number of DNA binding proteins, but only DnaA is essential and specific for the initiation process. DnaA is an AAA+ protein that binds both ATP and ADP with similar high affinities. Dna...... replication is initiated, or the time window in which all origins present in a single cell are initiated, i.e. initiation synchrony, or both. Overall, these DNA binding proteins modulate the initiation frequency from oriC by: (i) binding directly to oriC to affect DnaA binding, (ii) altering the DNA topology...... in or around oriC, (iii) altering the nucleotide bound status of DnaA by interacting with non-coding chromosomal sequences, distant from oriC, that are important for DnaA activity. Thus, although DnaA is the key protein for initiation of replication, other DNA-binding proteins act not only on ori...

  17. Compaction and transport properties of newly replicated Caulobacter crescentus DNA.

    Science.gov (United States)

    Hong, Sun-Hae; McAdams, Harley H

    2011-12-01

    Upon initiating replication of the Caulobacter chromosome, one copy of the parS centromere remains at the stalked pole; the other moves to the distal pole. We identified the segregation dynamics and compaction characteristics of newly replicated Caulobacter DNA during transport (highly variable from cell to cell) using time-lapse fluorescence microscopy. The parS centromere and a length (also highly variable) of parS proximal DNA on each arm of the chromosome are segregated with the same relatively slow transport pattern as the parS locus. Newly replicated DNA further than about 100 kb from parS segregates with a different and faster pattern, while loci at 48 kb from parS segregate with the slow pattern in some cells and the fast pattern in others. The observed parS-proximal DNA compaction characteristics have scaling properties that suggest the DNA is branched. HU2-deletion strains exhibited a reduced compaction phenotype except near the parS site where only the ΔHU1ΔHU2 double mutant had a compaction phenotype. The chromosome shows speed-dependent extension during translocation suggesting the DNA polymer is under tension. While DNA segregation is highly reliable and succeeds in virtually all wild-type cells, the high degree of cell to cell variation in the segregation process is noteworthy.

  18. RNAi and heterochromatin repress centromeric meiotic recombination

    DEFF Research Database (Denmark)

    Ellermeier, Chad; Higuchi, Emily C; Phadnis, Naina

    2010-01-01

    During meiosis, the formation of viable haploid gametes from diploid precursors requires that each homologous chromosome pair be properly segregated to produce an exact haploid set of chromosomes. Genetic recombination, which provides a physical connection between homologous chromosomes, is essen......During meiosis, the formation of viable haploid gametes from diploid precursors requires that each homologous chromosome pair be properly segregated to produce an exact haploid set of chromosomes. Genetic recombination, which provides a physical connection between homologous chromosomes....... Surprisingly, one mutant derepressed for recombination in the heterochromatic mating-type region during meiosis and several mutants derepressed for centromeric gene expression during mitotic growth are not derepressed for centromeric recombination during meiosis. These results reveal a complex relation between...... types of repression by heterochromatin. Our results also reveal a previously undemonstrated role for RNAi and heterochromatin in the repression of meiotic centromeric recombination and, potentially, in the prevention of birth defects by maintenance of proper chromosome segregation during meiosis....

  19. Role of transcription at centromeres in budding yeast.

    Science.gov (United States)

    Ohkuni, Kentaro; Kitagawa, Katsumi

    2012-01-01

    Centromeres are specialized chromosomal loci that are essential for proper chromosome segregation. Recent data show that a certain level of active transcription, regulated by transcription factors Cbf1 and Ste12, makes a direct contribution to centromere function in Saccharomyces cerevisiae. Here, we discuss the requirement and function of transcription at centromeres.

  20. Tension sensing by Aurora B kinase is independent of survivin-based centromere localization.

    Science.gov (United States)

    Campbell, Christopher S; Desai, Arshad

    2013-05-01

    Accurate segregation of the replicated genome requires chromosome biorientation on the spindle. Biorientation is ensured by Aurora B kinase (Ipl1), a member of the four-subunit chromosomal passenger complex (CPC). Localization of the CPC to the inner centromere is central to the current model for how tension ensures chromosome biorientation: kinetochore-spindle attachments that are not under tension remain close to the inner centromere and are destabilized by Aurora B phosphorylation, whereas kinetochores under tension are pulled away from the influence of Aurora B, stabilizing their microtubule attachments. Here we show that an engineered truncation of the Sli15 (known as INCENP in humans) subunit of budding yeast CPC that eliminates association with the inner centromere nevertheless supports proper chromosome segregation during both mitosis and meiosis. Truncated Sli15 suppresses the deletion phenotypes of the inner-centromere-targeting proteins survivin (Bir1), borealin (Nbl1), Bub1 and Sgo1 (ref. 6). Unlike wild-type Sli15, truncated Sli15 localizes to pre-anaphase spindle microtubules. Premature targeting of full-length Sli15 to microtubules by preventing Cdk1 (also known as Cdc28) phosphorylation also suppresses the inviability of Bir1 deletion. These results suggest that activation of Aurora B kinase by clustering either on chromatin or on microtubules is sufficient for chromosome biorientation.

  1. HIV-1 replication in central nervous system increases over time on only protease inhibitor therapy.

    Science.gov (United States)

    Donath, Maximilian; Wolf, Timo; Stürmer, Martin; Herrmann, Eva; Bickel, Markus; Khaykin, Pavel; Göpel, Siri; Gute, Peter; Haberl, Annette; de Leuw, Philipp; Schüttfort, Gundolf; Berger, Annemarie; Stephan, Christoph

    2016-12-01

    There are concerns about central nervous system (CNS)-replication of HIV-1 in patients on boosted protease inhibitors. Purpose of this study was to compare HIV-1 viral loads (VLs) from patients treated with only boosted dual protease inhibitor (bdPI), versus combination antiretroviral therapy (cART group), containing two nucleoside analogue reverse transcriptase inhibitors (NRTI) and a third partner. All patients from a large German HIV-treatment cohort with available medication, clinical and demographic data, including results from simultaneous HIV-1 viral load (VL) assessments in cerebrospinal fluid (CSF) and blood plasma, were retrospectively evaluated as controlled cross-sectional study. CSF had been obtained from patients with variable neurological symptoms during 2005-2014. Statistical analysis comprised nonparametric tests, regression and correlation techniques accounting for undetectable quantifications. Statistical analysis comprised nonparametric tests, regression and correlation techniques accounting for undetectable quantifications. Overall, 155 patients were evaluable (bdPI: 24; cART: 131). At time of CSF-collection, both groups were comparable in age, gender, CD4-cell counts, or primary HIV-transmission risks, though bdPI patients were clinically more advanced. The proportion of patients with undetectable HIV-1 (<50 copies/ml) in CSF was lower for bdPI group (25 vs 49.6 %; p = 0.026), but similar in plasma (46 vs 41 %). Median CSF-VL was higher in bdPI group (600 vs 50 copies/ml; p = 0.027) and similar in plasma. Mean VL CSF/plasma ratio was 342.91 for bdPI- and 54.48 for cART patients (p < 0.001). Pearson's regression analysis revealed a trend for an elevated VL-ratio over time within bdPI group. HIV-1 replication was higher and more frequently detectable in CSF from bdPI patients, indicating a worse CNS penetration effectiveness of used boosted PI. Within bdPI group, measured CNS-viral replication was increasing over time, suggesting an over

  2. Kinetochores coordinate pericentromeric cohesion and early DNA replication by Cdc7-Dbf4 kinase recruitment.

    Science.gov (United States)

    Natsume, Toyoaki; Müller, Carolin A; Katou, Yuki; Retkute, Renata; Gierliński, Marek; Araki, Hiroyuki; Blow, J Julian; Shirahige, Katsuhiko; Nieduszynski, Conrad A; Tanaka, Tomoyuki U

    2013-06-01

    Centromeres play several important roles in ensuring proper chromosome segregation. Not only do they promote kinetochore assembly for microtubule attachment, but they also support robust sister chromatid cohesion at pericentromeres and facilitate replication of centromeric DNA early in S phase. However, it is still elusive how centromeres orchestrate all these functions at the same site. Here, we show that the budding yeast Dbf4-dependent kinase (DDK) accumulates at kinetochores in telophase, facilitated by the Ctf19 kinetochore complex. This promptly recruits Sld3-Sld7 replication initiator proteins to pericentromeric replication origins so that they initiate replication early in S phase. Furthermore, DDK at kinetochores independently recruits the Scc2-Scc4 cohesin loader to centromeres in G1 phase. This enhances cohesin loading and facilitates robust pericentromeric cohesion in S phase. Thus, we have found the central mechanism by which kinetochores orchestrate early S phase DNA replication and robust sister chromatid cohesion at microtubule attachment sites.

  3. DNMT3B interacts with constitutive centromere protein CENP-C to modulate DNA methylation and the histone code at centromeric regions.

    Science.gov (United States)

    Gopalakrishnan, Suhasni; Sullivan, Beth A; Trazzi, Stefania; Della Valle, Giuliano; Robertson, Keith D

    2009-09-01

    DNA methylation is an epigenetically imposed mark of transcriptional repression that is essential for maintenance of chromatin structure and genomic stability. Genome-wide methylation patterns are mediated by the combined action of three DNA methyltransferases: DNMT1, DNMT3A and DNMT3B. Compelling links exist between DNMT3B and chromosome stability as emphasized by the mitotic defects that are a hallmark of ICF syndrome, a disease arising from germline mutations in DNMT3B. Centromeric and pericentromeric regions are essential for chromosome condensation and the fidelity of segregation. Centromere regions contain distinct epigenetic marks, including dense DNA hypermethylation, yet the mechanisms by which DNA methylation is targeted to these regions remains largely unknown. In the present study, we used a yeast two-hybrid screen and identified a novel interaction between DNMT3B and constitutive centromere protein CENP-C. CENP-C is itself essential for mitosis. We confirm this interaction in mammalian cells and map the domains responsible. Using siRNA knock downs, bisulfite genomic sequencing and ChIP, we demonstrate for the first time that CENP-C recruits DNA methylation and DNMT3B to both centromeric and pericentromeric satellite repeats and that CENP-C and DNMT3B regulate the histone code in these regions, including marks characteristic of centromeric chromatin. Finally, we demonstrate that loss of CENP-C or DNMT3B leads to elevated chromosome misalignment and segregation defects during mitosis and increased transcription of centromeric repeats. Taken together, our data reveal a novel mechanism by which DNA methylation is targeted to discrete regions of the genome and contributes to chromosomal stability.

  4. Studying the replication history of human B lymphocytes by real-time quantitative (RQ)-PCR.

    Science.gov (United States)

    van Zelm, Menno C; Berkowska, Magdalena A; van Dongen, Jacques J M

    2013-01-01

    The cells of the adaptive immune system, B and T lymphocytes, each generate a unique antigen receptor through V(D)J recombination of their immunoglobulin (Ig) and T cell receptor (TCR) loci, respectively. Such rearrangements join coding elements to form a coding joint and delete the intervening DNA as circular excision products containing the signal joint. These excision circles are stable structures that cannot replicate and have no function in the cell. Since the coding joint in the genome is replicated with each cell division, the ratio between coding joints and signal joints in a population of B cells can be used as a measure for proliferation. This chapter describes a real-time quantitative (RQ-)PCR-based approach to quantify proliferation through calculating the ratio between coding joints and signal joints of the frequently occurring intronRSS-Kde rearrangements in the IGK light chain locus. The approach is useful to study basic B-cell biology as well as abnormal proliferation in human diseases.

  5. Assembly of Drosophila centromeric nucleosomes requires CID dimerization.

    Science.gov (United States)

    Zhang, Weiguo; Colmenares, Serafin U; Karpen, Gary H

    2012-01-27

    Centromeres are essential chromosomal regions required for kinetochore assembly and chromosome segregation. The composition and organization of centromeric nucleosomes containing the essential histone H3 variant CENP-A (CID in Drosophila) is a fundamental, unresolved issue. Using immunoprecipitation of CID mononucleosomes and cysteine crosslinking, we demonstrate that centromeric nucleosomes contain CID dimers in vivo. Furthermore, CID dimerization and centromeric targeting require a residue implicated in formation of the four-helix bundle, which mediates intranucleosomal H3 dimerization and nucleosome integrity. Taken together, our findings suggest that CID nucleosomes are octameric in vivo and that CID dimerization is essential for correct centromere assembly.

  6. Genome-wide mapping of human DNA-replication origins: levels of transcription at ORC1 sites regulate origin selection and replication timing.

    Science.gov (United States)

    Dellino, Gaetano Ivan; Cittaro, Davide; Piccioni, Rossana; Luzi, Lucilla; Banfi, Stefania; Segalla, Simona; Cesaroni, Matteo; Mendoza-Maldonado, Ramiro; Giacca, Mauro; Pelicci, Pier Giuseppe

    2013-01-01

    We report the genome-wide mapping of ORC1 binding sites in mammals, by chromatin immunoprecipitation and parallel sequencing (ChIP-seq). ORC1 binding sites in HeLa cells were validated as active DNA replication origins (ORIs) using Repli-seq, a method that allows identification of ORI-containing regions by parallel sequencing of temporally ordered replicating DNA. ORC1 sites were universally associated with transcription start sites (TSSs) of coding or noncoding RNAs (ncRNAs). Transcription levels at the ORC1 sites directly correlated with replication timing, suggesting the existence of two classes of ORIs: those associated with moderate/high transcription levels (≥1 RNA copy/cell), firing in early S and mapping to the TSSs of coding RNAs; and those associated with low transcription levels (<1 RNA copy/cell), firing throughout the entire S and mapping to TSSs of ncRNAs. These findings are compatible with a scenario whereby TSS expression levels influence the efficiency of ORC1 recruitment at G(1) and the probability of firing during S.

  7. Time-varying Entry Heating Profile Replication with a Rotating Arc Jet Test Article

    Science.gov (United States)

    Grinstead, Jay Henderson; Venkatapathy, Ethiraj; Noyes, Eric A.; Mach, Jeffrey J.; Empey, Daniel M.; White, Todd R.

    2014-01-01

    A new approach for arc jet testing of thermal protection materials at conditions approximating the time-varying conditions of atmospheric entry was developed and demonstrated. The approach relies upon the spatial variation of heat flux and pressure over a cylindrical test model. By slowly rotating a cylindrical arc jet test model during exposure to an arc jet stream, each point on the test model will experience constantly changing applied heat flux. The predicted temporal profile of heat flux at a point on a vehicle can be replicated by rotating the cylinder at a prescribed speed and direction. An electromechanical test model mechanism was designed, built, and operated during an arc jet test to demonstrate the technique.

  8. Cultivation and differentiation change nuclear localization of chromosome centromeres in human mesenchymal stem cells.

    Science.gov (United States)

    Voldgorn, Yana I; Adilgereeva, Elmira P; Nekrasov, Evgeny D; Lavrov, Alexander V

    2015-01-01

    Chromosome arrangement in the interphase nucleus is not accidental. Strong evidences support that nuclear localization is an important mechanism of epigenetic regulation of gene expression. The purpose of this research was to identify differences in the localization of centromeres of chromosomes 6, 12, 18 and X in human mesenchymal stem cells depending on differentiation and cultivating time. We analyzed centromere positions in more than 4000 nuclei in 19 mesenchymal stem cell cultures before and after prolonged cultivation and after differentiation into osteogenic and adipogenic directions. We found a centromere reposition of HSAX at late passages and after differentiation in osteogenic direction as well as of HSA12 and HSA18 after adipogenic differentiation. The observed changes of the nuclear structure are new nuclear characteristics of the studied cells which may reflect regulatory changes of gene expression during the studied processes.

  9. Cultivation and differentiation change nuclear localization of chromosome centromeres in human mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Yana I Voldgorn

    Full Text Available Chromosome arrangement in the interphase nucleus is not accidental. Strong evidences support that nuclear localization is an important mechanism of epigenetic regulation of gene expression. The purpose of this research was to identify differences in the localization of centromeres of chromosomes 6, 12, 18 and X in human mesenchymal stem cells depending on differentiation and cultivating time. We analyzed centromere positions in more than 4000 nuclei in 19 mesenchymal stem cell cultures before and after prolonged cultivation and after differentiation into osteogenic and adipogenic directions. We found a centromere reposition of HSAX at late passages and after differentiation in osteogenic direction as well as of HSA12 and HSA18 after adipogenic differentiation. The observed changes of the nuclear structure are new nuclear characteristics of the studied cells which may reflect regulatory changes of gene expression during the studied processes.

  10. Stretching the rules: monocentric chromosomes with multiple centromere domains.

    Science.gov (United States)

    Neumann, Pavel; Navrátilová, Alice; Schroeder-Reiter, Elizabeth; Koblížková, Andrea; Steinbauerová, Veronika; Chocholová, Eva; Novák, Petr; Wanner, Gerhard; Macas, Jiří

    2012-01-01

    The centromere is a functional chromosome domain that is essential for faithful chromosome segregation during cell division and that can be reliably identified by the presence of the centromere-specific histone H3 variant CenH3. In monocentric chromosomes, the centromere is characterized by a single CenH3-containing region within a morphologically distinct primary constriction. This region usually spans up to a few Mbp composed mainly of centromere-specific satellite DNA common to all chromosomes of a given species. In holocentric chromosomes, there is no primary constriction; the centromere is composed of many CenH3 loci distributed along the entire length of a chromosome. Using correlative fluorescence light microscopy and high-resolution electron microscopy, we show that pea (Pisum sativum) chromosomes exhibit remarkably long primary constrictions that contain 3-5 explicit CenH3-containing regions, a novelty in centromere organization. In addition, we estimate that the size of the chromosome segment delimited by two outermost domains varies between 69 Mbp and 107 Mbp, several factors larger than any known centromere length. These domains are almost entirely composed of repetitive DNA sequences belonging to 13 distinct families of satellite DNA and one family of centromeric retrotransposons, all of which are unevenly distributed among pea chromosomes. We present the centromeres of Pisum as novel "meta-polycentric" functional domains. Our results demonstrate that the organization and DNA composition of functional centromere domains can be far more complex than previously thought, do not require single repetitive elements, and do not require single centromere domains in order to segregate properly. Based on these findings, we propose Pisum as a useful model for investigation of centromere architecture and the still poorly understood role of repetitive DNA in centromere evolution, determination, and function.

  11. Evolution of Centromeric Retrotransposons in Grasses

    Science.gov (United States)

    Sharma, Anupma; Presting, Gernot G.

    2014-01-01

    Centromeric retrotransposons (CRs) constitute a family of plant retroelements, some of which have the ability to target their insertion almost exclusively to the functional centromeres. Our exhaustive analysis of CR family members in four grass genomes revealed not only horizontal transfer (HT) of CR elements between the oryzoid and panicoid grass lineages but also their subsequent recombination with endogenous elements that in some cases created prolific recombinants in foxtail millet and sorghum. HT events are easily identifiable only in cases where host genome divergence significantly predates HT, thus documented HT events likely represent only a fraction of the total. If the more difficult to detect ancient HT events occurred at frequencies similar to those observable in present day grasses, the extant long terminal repeat retrotransposons represent the mosaic products of HT and recombination that are optimized for retrotransposition in their host genomes. This complicates not only phylogenetic analysis but also the establishment of a meaningful retrotransposon nomenclature, which we have nevertheless attempted to implement here. In contrast to the plant-centric naming convention used currently for CR elements, we classify elements primarily based on their phylogenetic relationships regardless of host plant, using the exhaustively studied maize elements assigned to six different subfamilies as a standard. The CR2 subfamily is the most widely distributed of the six CR subfamilies discovered in grass genomes to date and thus the most likely to play a functional role at grass centromeres. PMID:24814286

  12. Switching the centromeres on and off: epigenetic chromatin alterations provide plasticity in centromere activity stabilizing aberrant dicentric chromosomes.

    Science.gov (United States)

    Sato, Hiroshi; Saitoh, Shigeaki

    2013-12-01

    The kinetochore, which forms on a specific chromosomal locus called the centromere, mediates interactions between the chromosome and the spindle during mitosis and meiosis. Abnormal chromosome rearrangements and/or neocentromere formation can cause the presence of multiple centromeres on a single chromosome, which results in chromosome breakage or cell cycle arrest. Analyses of artificial dicentric chromosomes suggested that the activity of the centromere is regulated epigenetically; on some stably maintained dicentric chromosomes, one of the centromeres no longer functions as a platform for kinetochore formation, although the DNA sequence remains intact. Such epigenetic centromere inactivation occurs in cells of various eukaryotes harbouring 'regional centromeres', such as those of maize, fission yeast and humans, suggesting that the position of the active centromere is determined by epigenetic markers on a chromosome rather than the nucleotide sequence. Our recent findings in fission yeast revealed that epigenetic centromere inactivation consists of two steps: disassembly of the kinetochore initiates inactivation and subsequent heterochromatinization prevents revival of the inactivated centromere. Kinetochore disassembly followed by heterochromatinization is also observed in normal senescent human cells. Thus epigenetic centromere inactivation may not only stabilize abnormally generated dicentric chromosomes, but also be part of an intrinsic mechanism regulating cell proliferation.

  13. A DNA polymerase alpha accessory protein, Mcl1, is required for propagation of centromere structures in fission yeast.

    Directory of Open Access Journals (Sweden)

    Toyoaki Natsume

    Full Text Available Specialized chromatin exists at centromeres and must be precisely transmitted during DNA replication. The mechanisms involved in the propagation of these structures remain elusive. Fission yeast centromeres are composed of two chromatin domains: the central CENP-A(Cnp1 kinetochore domain and flanking heterochromatin domains. Here we show that fission yeast Mcl1, a DNA polymerase alpha (Pol alpha accessory protein, is critical for maintenance of centromeric chromatin. In a screen for mutants that alleviate both central domain and outer repeat silencing, we isolated several cos mutants, of which cos1 is allelic to mcl1. The mcl1-101 mutation causes reduced CENP-A(Cnp1 in the central domain and an aberrant increase in histone acetylation in both domains. These phenotypes are also observed in a mutant of swi7(+, which encodes a catalytic subunit of Pol alpha. Mcl1 forms S-phase-specific nuclear foci, which colocalize with those of PCNA and Pol alpha. These results suggest that Mcl1 and Pol alpha are required for propagation of centromere chromatin structures during DNA replication.

  14. DnaA and the timing of chromosome replication in Es-cherichia coli as a function of growth rate

    Directory of Open Access Journals (Sweden)

    Grant Matthew AA

    2011-12-01

    Full Text Available Abstract Background In Escherichia coli, overlapping rounds of DNA replication allow the bacteria to double in faster times than the time required to copy the genome. The precise timing of initiation of DNA replication is determined by a regulatory circuit that depends on the binding of a critical number of ATP-bound DnaA proteins at the origin of replication, resulting in the melting of the DNA and the assembly of the replication complex. The synthesis of DnaA in the cell is controlled by a growth-rate dependent, negatively autoregulated gene found near the origin of replication. Both the regulatory and initiation activity of DnaA depend on its nucleotide bound state and its availability. Results In order to investigate the contributions of the different regulatory processes to the timing of initiation of DNA replication at varying growth rates, we formulate a minimal quantitative model of the initiator circuit that includes the key ingredients known to regulate the activity of the DnaA protein. This model describes the average-cell oscillations in DnaA-ATP/DNA during the cell cycle, for varying growth rates. We evaluate the conditions under which this ratio attains the same threshold value at the time of initiation, independently of the growth rate. Conclusions We find that a quantitative description of replication initiation by DnaA must rely on the dependency of the basic parameters on growth rate, in order to account for the timing of initiation of DNA replication at different cell doubling times. We isolate two main possible scenarios for this, depending on the roles of DnaA autoregulation and DnaA ATP-hydrolysis regulatory process. One possibility is that the basal rate of regulatory inactivation by ATP hydrolysis must vary with growth rate. Alternatively, some parameters defining promoter activity need to be a function of the growth rate. In either case, the basal rate of gene expression needs to increase with the growth rate, in

  15. A reminder on millisecond timing accuracy and potential replication failure in computer-based psychology experiments: An open letter.

    Science.gov (United States)

    Plant, Richard R

    2016-03-01

    There is an ongoing 'replication crisis' across the field of psychology in which researchers, funders, and members of the public are questioning the results of some scientific studies and the validity of the data they are based upon. However, few have considered that a growing proportion of research in modern psychology is conducted using a computer. Could it simply be that the hardware and software, or experiment generator, being used to run the experiment itself be a cause of millisecond timing error and subsequent replication failure? This article serves as a reminder that millisecond timing accuracy in psychology studies remains an important issue and that care needs to be taken to ensure that studies can be replicated on current computer hardware and software.

  16. Strong nucleosomes of A. thaliana concentrate in centromere regions.

    Science.gov (United States)

    Salih, Bilal; Trifonov, Edward N

    2015-01-01

    Earlier identified strongest nucleosome DNA sequences of A. thaliana, those with visible 10-11 base sequence periodicity, are mapped along chromosomes. Resulting positional distributions reveal distinct maxima, one per chromosome, located in the centromere regions. Sequence-directed nucleosome mapping demonstrates that the strong nucleosomes (SNs) make tight arrays, several 'parallel' nucleosomes each, suggesting a columnar chromatin structure. The SNs represent a new class of centromeric nucleosomes, presumably, participating in synapsis of chromatids and securing the centromere architecture.

  17. Identification of novel Drosophila centromere-associated proteins.

    Science.gov (United States)

    Barth, Teresa K; Schade, Georg O M; Schmidt, Andreas; Vetter, Irene; Wirth, Marc; Heun, Patrick; Thomae, Andreas W; Imhof, Axel

    2014-10-01

    Centromeres are chromosomal regions crucial for correct chromosome segregation during mitosis and meiosis. They are epigenetically defined by centromeric proteins such as the centromere-specific histone H3-variant centromere protein A (CENP-A). In humans, 16 additional proteins have been described to be constitutively associated with centromeres throughout the cell cycle, known as the constitutive centromere-associated network (CCAN). In contrast, only one additional constitutive centromeric protein is known in Drosophila melanogaster (D.mel), the conserved CCAN member CENP-C. To gain further insights into D.mel centromere composition and biology, we analyzed affinity-purified chromatin prepared from D.mel cell lines expressing green fluorescent protein tagged histone three variants by MS. In addition to already-known centromeric proteins, we identified novel factors that were repeatedly enriched in affinity purification-MS experiments. We analyzed the cellular localization of selected candidates by immunocytochemistry and confirmed localization to the centromere and other genomic regions for ten factors. Furthermore, RNA interference mediated depletion of CG2051, CG14480, and hyperplastic discs, three of our strongest candidates, leads to elevated mitotic defects. Knockdowns of these candidates neither impair the localization of several known kinetochore proteins nor CENP-A(CID) loading, suggesting their involvement in alternative pathways that contribute to proper centromere function. In summary, we provide a comprehensive analysis of the proteomic composition of Drosophila centromeres. All MS data have been deposited in the ProteomeXchange with identifier PXD000758 (http://proteomecentral.proteomexchange.org/dataset/PXD000758).

  18. Centromere activity in dicentric small supernumerary marker chromosomes.

    Science.gov (United States)

    Ewers, Elisabeth; Yoda, Kinya; Hamid, Ahmed B; Weise, Anja; Manvelyan, Marina; Liehr, Thomas

    2010-07-01

    Twenty-five dicentric small supernumerary marker chromosomes (sSMC) derived from #13/21, #14, #15, #18, and #22 were studied by immunohistochemistry for their centromeric activity. Centromere protein (CENP)-B was applied as marker for all centromeres and CENP-C to label the active ones. Three different 'predominant' activation patterns could be observed, i.e., centric fusion or either only one or all two centromeres were active. In one inherited case, the same activation pattern was found in mother and son. In acrocentric-derived sSMC, all three activation patterns could be present. In contrary, in chromosome 18-derived sSMC, only the fusion type was observed. In concordance with previous studies a certain centromeric plasticity was observed in up to 13% of the cells of an individual case. Surprisingly, the obtained data suggests a possible influence of the sSMC carrier's gender on the implementation of the predominant activation pattern; especially, only one active centromere was found more frequently in female than in male carriers. Also, it might be suggested that dicentric sSMC with one active centromere could be less stable than such with two active ones-centromeric plasticity might have an influence here, as well. Also, centromere activity in acrocentric-derived dicentrics could be influenced by heteromorphisms of the corresponding short arms. Finally, evidence is provided that the closer the centromeres of a dicentric are and if they are not fused, the more likely it was that both of them became active. In concordance and refinement with previous studies, a distance of 1.4 Mb up to about 13 Mb the two active centromere state was favored, while centromeric distance of over approximately 15 Mb lead to inactivation of one centromere. Overall, here, the first and largest ever undertaken study in dicentric sSMC is presented, providing evidence that the centromeric activation pattern is, and parental origin may be of interest for their biology. Influence of

  19. Polycomb Mediated Epigenetic Silencing and Replication Timing at the INK4a/ARF Locus during Senescence

    Science.gov (United States)

    Verthuy, Christophe; Chasson, Lionel; Serrano, Manuel; Djabali, Malek

    2009-01-01

    Background The INK4/ARF locus encodes three tumor suppressor genes (p15Ink4b, Arf and p16Ink4a) and is frequently inactivated in a large number of human cancers. Mechanisms regulating INK4/ARF expression are not fully characterized. Principal Findings Here we show that in young proliferating embryonic fibroblasts (MEFs) the Polycomb Repressive Complex 2 (PRC2) member EZH2 together with PRC1 members BMI1 and M33 are strongly expressed and localized at the INK4/ARF regulatory domain (RD) identified as a DNA replication origin. When cells enter senescence the binding to RD of both PRC1 and PRC2 complexes is lost leading to a decreased level of histone H3K27 trimethylation (H3K27me3). This loss is accompanied with an increased expression of the histone demethylase Jmjd3 and with the recruitment of the MLL1 protein, and correlates with the expression of the Ink4a/Arf genes. Moreover, we show that the Polycomb protein BMI1 interacts with CDC6, an essential regulator of DNA replication in eukaryotic cells. Finally, we demonstrate that Polycomb proteins and associated epigenetic marks are crucial for the control of the replication timing of the INK4a/ARF locus during senescence. Conclusions We identified the replication licencing factor CDC6 as a new partner of the Polycomb group member BMI1. Our results suggest that in young cells Polycomb proteins are recruited to the INK4/ARF locus through CDC6 and the resulting silent locus is replicated during late S-phase. Upon senescence, Jmjd3 is overexpressed and the MLL1 protein is recruited to the locus provoking the dissociation of Polycomb from the INK4/ARF locus, its transcriptional activation and its replication during early S-phase. Together, these results provide a unified model that integrates replication, transcription and epigenetics at the INK4/ARF locus. PMID:19462008

  20. Polycomb mediated epigenetic silencing and replication timing at the INK4a/ARF locus during senescence.

    Directory of Open Access Journals (Sweden)

    Hanane Agherbi

    Full Text Available BACKGROUND: The INK4/ARF locus encodes three tumor suppressor genes (p15(Ink4b, Arf and p16(Ink4a and is frequently inactivated in a large number of human cancers. Mechanisms regulating INK4/ARF expression are not fully characterized. PRINCIPAL FINDINGS: Here we show that in young proliferating embryonic fibroblasts (MEFs the Polycomb Repressive Complex 2 (PRC2 member EZH2 together with PRC1 members BMI1 and M33 are strongly expressed and localized at the INK4/ARF regulatory domain (RD identified as a DNA replication origin. When cells enter senescence the binding to RD of both PRC1 and PRC2 complexes is lost leading to a decreased level of histone H3K27 trimethylation (H3K27me3. This loss is accompanied with an increased expression of the histone demethylase Jmjd3 and with the recruitment of the MLL1 protein, and correlates with the expression of the Ink4a/Arf genes. Moreover, we show that the Polycomb protein BMI1 interacts with CDC6, an essential regulator of DNA replication in eukaryotic cells. Finally, we demonstrate that Polycomb proteins and associated epigenetic marks are crucial for the control of the replication timing of the INK4a/ARF locus during senescence. CONCLUSIONS: We identified the replication licencing factor CDC6 as a new partner of the Polycomb group member BMI1. Our results suggest that in young cells Polycomb proteins are recruited to the INK4/ARF locus through CDC6 and the resulting silent locus is replicated during late S-phase. Upon senescence, Jmjd3 is overexpressed and the MLL1 protein is recruited to the locus provoking the dissociation of Polycomb from the INK4/ARF locus, its transcriptional activation and its replication during early S-phase. Together, these results provide a unified model that integrates replication, transcription and epigenetics at the INK4/ARF locus.

  1. Design Optimization of Time- and Cost-Constrained Fault-Tolerant Embedded Systems with Checkpointing and Replication

    DEFF Research Database (Denmark)

    Pop, Paul; Izosimov, Viacheslav; Eles, Petru;

    2009-01-01

    We present an approach to the synthesis of fault-tolerant hard real-time systems for safety-critical applications. We use checkpointing with rollback recovery and active replication for tolerating transient faults. Processes and communications are statically scheduled. Our synthesis approach deci...

  2. Centromeres cluster de novo at the beginning of meiosis in Brachypodium distachyon.

    Directory of Open Access Journals (Sweden)

    Ruoyu Wen

    Full Text Available In most eukaryotes that have been studied, the telomeres cluster into a bouquet early in meiosis, and in wheat and its relatives and in Arabidopsis the centromeres pair at the same time. In Arabidopsis, the telomeres do not cluster as a typical telomere bouquet on the nuclear membrane but are associated with the nucleolus both somatically and at the onset of meiosis. We therefore assessed whether Brachypodium distachyon, a monocot species related to cereals and whose genome is approximately twice the size of Arabidopsis thaliana, also exhibited an atypical telomere bouquet and centromere pairing. In order to investigate the occurrence of a bouquet and centromere pairing in B distachyon, we first had to establish protocols for studying meiosis in this species. This enabled us to visualize chromosome behaviour in meiocytes derived from young B distachyon spikelets in three-dimensions by fluorescent in situ hybridization (FISH, and accurately to stage meiosis based on chromatin morphology in relation to spikelet size and the timing of sample collection. Surprisingly, this study revealed that the centromeres clustered as a single site at the same time as the telomeres also formed a bouquet or single cluster.

  3. YAP controls retinal stem cell DNA replication timing and genomic stability.

    Science.gov (United States)

    Cabochette, Pauline; Vega-Lopez, Guillermo; Bitard, Juliette; Parain, Karine; Chemouny, Romain; Masson, Christel; Borday, Caroline; Hedderich, Marie; Henningfeld, Kristine A; Locker, Morgane; Bronchain, Odile; Perron, Muriel

    2015-09-22

    The adult frog retina retains a reservoir of active neural stem cells that contribute to continuous eye growth throughout life. We found that Yap, a downstream effector of the Hippo pathway, is specifically expressed in these stem cells. Yap knock-down leads to an accelerated S-phase and an abnormal progression of DNA replication, a phenotype likely mediated by upregulation of c-Myc. This is associated with an increased occurrence of DNA damage and eventually p53-p21 pathway-mediated cell death. Finally, we identified PKNOX1, a transcription factor involved in the maintenance of genomic stability, as a functional and physical interactant of YAP. Altogether, we propose that YAP is required in adult retinal stem cells to regulate the temporal firing of replication origins and quality control of replicated DNA. Our data reinforce the view that specific mechanisms dedicated to S-phase control are at work in stem cells to protect them from genomic instability.

  4. Centromere positions in chicken and Japanese quail chromosomes: de novo centromere formation versus pericentric inversions

    NARCIS (Netherlands)

    Zlotina, A.; Galkina, S.; Krasikova, A.; Crooijmans, R.P.M.A.; Groenen, M.; Gaginskaya, E.; Deryusheva, S.

    2012-01-01

    Chicken (Gallus gallus domesticus, GGA) and Japanese quail (Coturnix coturnix japonica, CCO) karyotypes are very similar. They have identical chromosome number (2n = 78) and show a high degree of synteny. Centromere positions on the majority of orthologous chromosomes are different in these two spec

  5. Turning the hands of time again: a purely confirmatory replication study and a Bayesian analysis

    NARCIS (Netherlands)

    E.-J. Wagenmakers; T.F. Beek; M. Rotteveel; A. Gierholz; D. Matzke; H. Steingroever; A. Ly; J. Verhagen; R. Selker; A. Sasiadek; Q.F. Gronau; J. Love; Y. Pinto

    2015-01-01

    In a series of four experiments, Topolinski and Sparenberg (2012) found support for the conjecture that clockwise movements induce psychological states of temporal progression and an orientation toward the future and novelty. Here we report the results of a preregistered replication attempt of Exper

  6. Neocentrics and holokinetics (holocentrics): chromosomes out of the centromeric rules.

    Science.gov (United States)

    Guerra, M; Cabral, G; Cuacos, M; González-García, M; González-Sánchez, M; Vega, J; Puertas, M J

    2010-07-01

    The centromere appears as a single constriction at mitotic metaphase in most eukaryotic chromosomes. Holokinetic chromosomes are the exception to this rule because they do not show any centromeric constrictions. Holokinetic chromosomes are usually forgotten in most reviews about centromeres, despite their presence in a number of animal and plant species. They are generally linked to very intriguing and unusual mechanisms of mitosis and meiosis. Holokinetic chromosomes differ from monocentric chromosomes not only in the extension of the kinetochore plate, but also in many other peculiar karyological features, which could be understood as the 'holokinetic syndrome' that is reviewed in detail. Together with holokinetic chromosomes we review neocentromeric activity, a similarly intriguing case of regions able to pull chromosomes towards the poles without showing the main components reported to be essential to centromeric function. A neocentromere is a chromosomal region different from the true centromere in structure, DNA sequence and location, but is able to lead chromosomes to the cell poles in special circumstances. Neocentromeres have been reported in plants and animals showing different features. Both in humans and Drosophila, neocentric activity appears in somatic cells with defective chromosomes lacking a functional centromere. In most cases in plants, neocentromeres appear in chromosomes which have normal centromeres, but are active only during meiosis. Because of examples such as spontaneous or induced neocentromeres and holokinetic chromosomes, it is becoming less surprising that different structures and DNA sequences of centromeres appear in evolution.

  7. The Past, Present, and Future of Human Centromere Genomics

    Directory of Open Access Journals (Sweden)

    Megan E. Aldrup-MacDonald

    2014-01-01

    Full Text Available The centromere is the chromosomal locus essential for chromosome inheritance and genome stability. Human centromeres are located at repetitive alpha satellite DNA arrays that compose approximately 5% of the genome. Contiguous alpha satellite DNA sequence is absent from the assembled reference genome, limiting current understanding of centromere organization and function. Here, we review the progress in centromere genomics spanning the discovery of the sequence to its molecular characterization and the work done during the Human Genome Project era to elucidate alpha satellite structure and sequence variation. We discuss exciting recent advances in alpha satellite sequence assembly that have provided important insight into the abundance and complex organization of this sequence on human chromosomes. In light of these new findings, we offer perspectives for future studies of human centromere assembly and function.

  8. HACking the centromere chromatin code: insights from human artificial chromosomes.

    Science.gov (United States)

    Bergmann, Jan H; Martins, Nuno M C; Larionov, Vladimir; Masumoto, Hiroshi; Earnshaw, William C

    2012-07-01

    The centromere is a specialized chromosomal region that serves as the assembly site of the kinetochore. At the centromere, CENP-A nucleosomes form part of a chromatin landscape termed centrochromatin. This chromatin environment conveys epigenetic marks regulating kinetochore formation. Recent work sheds light on the intricate relationship between centrochromatin state, the CENP-A assembly pathway and the maintenance of centromere function. Here, we review the emerging picture of how chromatin affects mammalian kinetochore formation. We place particular emphasis on data obtained from Human Artificial Chromosome (HAC) biology and the targeted engineering of centrochromatin using synthetic HACs. We discuss implications of these findings, which indicate that a delicate balance of histone modifications and chromatin state dictates both de novo centromere formation and the maintenance of centromere identity in dividing cell populations.

  9. Laser-induced heating integrated with a microfluidic platform for real-time DNA replication and detection

    Science.gov (United States)

    Hung, Min-Sheng; Ho, Chia-Chin; Chen, Chih-Pin

    2016-08-01

    This study developed a microfluidic platform for replicating and detecting DNA in real time by integrating a laser and a microfluidic device composed of polydimethylsiloxane. The design of the microchannels consisted of a laser-heating area and a detection area. An infrared laser was used as the heating source for DNA replication, and the laser power was adjusted to heat the solutions directly. In addition, strong biotin-avidin binding was used to capture and detect the replicated products. The biotin on one end was bound to avidin and anchored to the surface of the microchannels, whereas the biotin on the other end was bound to the quantum dots (Qdots). The results showed that the fluorescent intensity of the Qdots bound to the replicated products in the detection area increased with the number of thermal cycles created by the laser. When the number of thermal cycles was ≥10, the fluorescent intensity of the Qdots was directly detectable on the surface of the microchannels. The proposed method is more sensitive than detection methods entailing gel electrophoresis.

  10. Separase Is Required for Homolog and Sister Disjunction during Drosophila melanogaster Male Meiosis, but Not for Biorientation of Sister Centromeres.

    Directory of Open Access Journals (Sweden)

    Ariane C Blattner

    2016-04-01

    Full Text Available Spatially controlled release of sister chromatid cohesion during progression through the meiotic divisions is of paramount importance for error-free chromosome segregation during meiosis. Cohesion is mediated by the cohesin protein complex and cleavage of one of its subunits by the endoprotease separase removes cohesin first from chromosome arms during exit from meiosis I and later from the pericentromeric region during exit from meiosis II. At the onset of the meiotic divisions, cohesin has also been proposed to be present within the centromeric region for the unification of sister centromeres into a single functional entity, allowing bipolar orientation of paired homologs within the meiosis I spindle. Separase-mediated removal of centromeric cohesin during exit from meiosis I might explain sister centromere individualization which is essential for subsequent biorientation of sister centromeres during meiosis II. To characterize a potential involvement of separase in sister centromere individualization before meiosis II, we have studied meiosis in Drosophila melanogaster males where homologs are not paired in the canonical manner. Meiosis does not include meiotic recombination and synaptonemal complex formation in these males. Instead, an alternative homolog conjunction system keeps homologous chromosomes in pairs. Using independent strategies for spermatocyte-specific depletion of separase complex subunits in combination with time-lapse imaging, we demonstrate that separase is required for the inactivation of this alternative conjunction at anaphase I onset. Mutations that abolish alternative homolog conjunction therefore result in random segregation of univalents during meiosis I also after separase depletion. Interestingly, these univalents become bioriented during meiosis II, suggesting that sister centromere individualization before meiosis II does not require separase.

  11. Overexpression of SETβ, a protein localizing to centromeres, causes precocious separation of chromatids during the first meiosis of mouse oocytes.

    Science.gov (United States)

    Qi, Shu-Tao; Wang, Zhen-Bo; Ouyang, Ying-Chun; Zhang, Qing-Hua; Hu, Meng-Wen; Huang, Xin; Ge, Zhaojia; Guo, Lei; Wang, Ya-Peng; Hou, Yi; Schatten, Heide; Sun, Qing-Yuan

    2013-04-01

    Chromosome segregation in mammalian oocyte meiosis is an error-prone process, and any mistake in this process may result in aneuploidy, which is the main cause of infertility, abortion and many genetic diseases. It is now well known that shugoshin and protein phosphatase 2A (PP2A) play important roles in the protection of centromeric cohesion during the first meiosis. PP2A can antagonize the phosphorylation of rec8, a member of the cohesin complex, at the centromeres and thus prevent cleavage of rec8 and so maintain the cohesion of chromatids. SETβ is a protein that physically interacts with shugoshin and inhibits PP2A activity. We thus hypothesized that SETβ might regulate cohesion protection and chromosome segregation during oocyte meiotic maturation. Here we report for the first time the expression, subcellular localization and functions of SETβ during mouse oocyte meiosis. Immunoblotting analysis showed that the expression level of SETβ was stable from the germinal vesicle stage to the MII stage of oocyte meiosis. Immunofluorescence analysis showed SETβ accumulation in the nucleus at the germinal vesicle stage, whereas it was targeted mainly to the inner centromere area and faintly localized to the interchromatid axes from germinal vesicle breakdown to MI stages. At the MII stage, SETβ still localized to the inner centromere area, but could relocalize to kinetochores in a process perhaps dependent on the tension on the centromeres. SETβ partly colocalized with PP2A at the inner centromere area. Overexpression of SETβ in mouse oocytes caused precocious separation of sister chromatids, but depletion of SETβ by RNAi showed little effects on the meiotic maturation process. Taken together, our results suggest that SETβ, even though it localizes to centromeres, might not be essential for chromosome separation during mouse oocyte meiotic maturation, although its forced overexpression causes premature chromatid separation.

  12. Separase Is Required for Homolog and Sister Disjunction during Drosophila melanogaster Male Meiosis, but Not for Biorientation of Sister Centromeres.

    Science.gov (United States)

    Blattner, Ariane C; Chaurasia, Soumya; McKee, Bruce D; Lehner, Christian F

    2016-04-01

    Spatially controlled release of sister chromatid cohesion during progression through the meiotic divisions is of paramount importance for error-free chromosome segregation during meiosis. Cohesion is mediated by the cohesin protein complex and cleavage of one of its subunits by the endoprotease separase removes cohesin first from chromosome arms during exit from meiosis I and later from the pericentromeric region during exit from meiosis II. At the onset of the meiotic divisions, cohesin has also been proposed to be present within the centromeric region for the unification of sister centromeres into a single functional entity, allowing bipolar orientation of paired homologs within the meiosis I spindle. Separase-mediated removal of centromeric cohesin during exit from meiosis I might explain sister centromere individualization which is essential for subsequent biorientation of sister centromeres during meiosis II. To characterize a potential involvement of separase in sister centromere individualization before meiosis II, we have studied meiosis in Drosophila melanogaster males where homologs are not paired in the canonical manner. Meiosis does not include meiotic recombination and synaptonemal complex formation in these males. Instead, an alternative homolog conjunction system keeps homologous chromosomes in pairs. Using independent strategies for spermatocyte-specific depletion of separase complex subunits in combination with time-lapse imaging, we demonstrate that separase is required for the inactivation of this alternative conjunction at anaphase I onset. Mutations that abolish alternative homolog conjunction therefore result in random segregation of univalents during meiosis I also after separase depletion. Interestingly, these univalents become bioriented during meiosis II, suggesting that sister centromere individualization before meiosis II does not require separase.

  13. Validation of the micronucleus-centromere assay for biological dosimetry

    Directory of Open Access Journals (Sweden)

    Wojcik A.

    2000-01-01

    Full Text Available The micronucleus assay is frequently used for purposes of biological dosimetry. Due to high interindividual variability in the spontaneous frequency of micronuclei, its sensitivity in the low dose region is poor. It has been suggested that this problem can be mitigated by selectively analyzing the frequency of those micronuclei which contain only acentric fragments. Using a pan-centromeric FISH probe we have studied the dose dependence of micronuclei with centromeres in peripheral lymphocytes of human donors. In contrast to previous publications, our approach is based on determining the relative frequency of micronuclei with and without centromeric signals. Our results confirm previous observations that in the low dose range of ionizing radiation, the micronucleus-centromere assay is more sensitive than the conventional micronucleus test.

  14. Dicentric chromosomes: unique models to study centromere function and inactivation

    OpenAIRE

    Kaitlin M Stimpson; Matheny, Justyne E.; Sullivan, Beth A.

    2012-01-01

    Dicentric chromosomes are products of genome rearrangement that place two centromeres on the same chromosome. Depending on the organism, dicentric stability varies after formation. In humans, dicentrics occur naturally in a substantial portion of the population and usually segregate successfully in mitosis and meiosis. Their stability has been attributed to inactivation of one of the two centromeres, creating a functionally monocentric chromosome that can segregate normally during cell divisi...

  15. Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells.

    Directory of Open Access Journals (Sweden)

    Yamini Dalal

    2007-08-01

    Full Text Available Centromeres, the specialized chromatin structures that are responsible for equal segregation of chromosomes at mitosis, are epigenetically maintained by a centromere-specific histone H3 variant (CenH3. However, the mechanistic basis for centromere maintenance is unknown. We investigated biochemical properties of CenH3 nucleosomes from Drosophila melanogaster cells. Cross-linking of CenH3 nucleosomes identifies heterotypic tetramers containing one copy of CenH3, H2A, H2B, and H4 each. Interphase CenH3 particles display a stable association of approximately 120 DNA base pairs. Purified centromeric nucleosomal arrays have typical "beads-on-a-string" appearance by electron microscopy but appear to resist condensation under physiological conditions. Atomic force microscopy reveals that native CenH3-containing nucleosomes are only half as high as canonical octameric nucleosomes are, confirming that the tetrameric structure detected by cross-linking comprises the entire interphase nucleosome particle. This demonstration of stable half-nucleosomes in vivo provides a possible basis for the instability of centromeric nucleosomes that are deposited in euchromatic regions, which might help maintain centromere identity.

  16. Multilocus analysis for gene-centromere mapping using first polar bodies and secondary oocytes

    Energy Technology Data Exchange (ETDEWEB)

    Da, Y.; Jarrell, V.L.; Wang, T.; Fernando, R.L.; Wheeler, M.B.; Lewin, H.A. [Univ. of Illinois, Urbana, IL (United States)

    1995-02-01

    Polar body and oocyte typing is a new technique for gene-centromere mapping and for generating female linkage maps. A maximum likelihood approach is presented for ordering multiple markers relative to the centromere and for estimating recombination frequencies between markers and between the centromere and marker loci. Three marker-centromere orders are possible for each pair of markers: two orders when the centromere flanks the two markers and one order when the centromere is flanked by the two markers. For each possible order, the likelihood was expressed as a function of recombination frequencies for two adjacent intervals. LOD score for recombination frequency between markers or between the centromere and a marker locus was derived based on the likelihood for each gene-centromere order. The methods developed herein provide a general solution to the problem of multilocus gene-centromere mapping that involves all theoretical crossover possibilities, including four-strand double crossovers. 24 refs., 2 figs., 2 tabs.

  17. Adaptive evolution of centromere proteins in plants and animals

    Directory of Open Access Journals (Sweden)

    Henikoff Steven

    2004-08-01

    Full Text Available Abstract Background Centromeres represent the last frontiers of plant and animal genomics. Although they perform a conserved function in chromosome segregation, centromeres are typically composed of repetitive satellite sequences that are rapidly evolving. The nucleosomes of centromeres are characterized by a special H3-like histone (CenH3, which evolves rapidly and adaptively in Drosophila and Arabidopsis. Most plant, animal and fungal centromeres also bind a large protein, centromere protein C (CENP-C, that is characterized by a single 24 amino-acid motif (CENPC motif. Results Whereas we find no evidence that mammalian CenH3 (CENP-A has been evolving adaptively, mammalian CENP-C proteins contain adaptively evolving regions that overlap with regions of DNA-binding activity. In plants we find that CENP-C proteins have complex duplicated regions, with conserved amino and carboxyl termini that are dissimilar in sequence to their counterparts in animals and fungi. Comparisons of Cenpc genes from Arabidopsis species and from grasses revealed multiple regions that are under positive selection, including duplicated exons in some grasses. In contrast to plants and animals, yeast CENP-C (Mif2p is under negative selection. Conclusions CENP-Cs in all plant and animal lineages examined have regions that are rapidly and adaptively evolving. To explain these remarkable evolutionary features for a single-copy gene that is needed at every mitosis, we propose that CENP-Cs, like some CenH3s, suppress meiotic drive of centromeres during female meiosis. This process can account for the rapid evolution and the complexity of centromeric DNA in plants and animals as compared to fungi.

  18. Phenotypic Selection Exerted by a Seed Predator Is Replicated in Space and Time and among Prey Species.

    Science.gov (United States)

    Benkman, Craig W; Mezquida, Eduardo T

    2015-11-01

    Although consistent phenotypic selection arising from biotic interactions is thought to be the primary cause of adaptive diversification, studies documenting such selection are relatively few. Here we analyze 12 episodes of phenotypic selection exerted by a predispersal seed predator, the red crossbill (Loxia curvirostra complex), on five species of pines (Pinus). We find that even though the intensity of selection for some traits increased with the strength of the interaction (i.e., proportion of seeds eaten), the relative strength of selection exerted by crossbills on cone and seed traits is replicated across space and time and among species. Such selection (1) can account for repeated patterns of conifer cone evolution and escalation in seed defenses with time and (2) suggests that variation in selection is less the result of variation intrinsic to pairwise biotic interactions than, for example, variation in relative densities of the interacting species, community context, and abiotic factors.

  19. Variation in Copy Number of Ty3/Gypsy Centromeric Retrotransposons in the Genomes of Thinopyrum intermedium and Its Diploid Progenitors.

    Directory of Open Access Journals (Sweden)

    Mikhail G Divashuk

    Full Text Available Speciation and allopolyploidization in cereals may be accompanied by dramatic changes in abundance of centromeric repeated transposable elements. Here we demonstrate that the reverse transcriptase part of Ty3/gypsy centromeric retrotransposon (RT-CR is highly conservative in the segmental hexaploid Thinopyrum intermedium (JrJvsSt and its possible diploid progenitors Th. bessarabicum (Jb, Pseudoroegneria spicata (St and Dasypyrum villosum (V but the abundance of the repeats varied to a large extent. Fluorescence in situ hybridization (FISH showed hybridization signals in centromeric region of all chromosomes in the studied species, although the intensity of the signals drastically differed. In Th. intermedium, the strongest signal of RT-CR probe was detected on the chromosomes of Jv, intermediate on Jr and faint on Js and St subgenome suggesting different abundance of RT-CR on the individual chromosomes rather than the sequence specificity of RT-CRs of the subgenomes. RT-CR quantification using real-time PCR revealed that its content per genome in Th. bessarabicum is ~ 2 times and P. spicata is ~ 1,5 times higher than in genome of D. villosum. The possible burst of Ty3/gypsy centromeric retrotransposon in Th. intermedium during allopolyploidization and its role in proper mitotic and meiotic chromosome behavior in a nascent allopolyploid is discussed.

  20. DNA replication timing is maintained genome-wide in primary human myoblasts independent of D4Z4 contraction in FSH muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Benjamin D Pope

    Full Text Available Facioscapulohumeral muscular dystrophy (FSHD is linked to contraction of an array of tandem 3.3-kb repeats (D4Z4 at 4q35.2 from 11-100 copies to 1-10 copies. The extent to which D4Z4 contraction at 4q35.2 affects overall 4q35.2 chromatin organization remains unclear. Because DNA replication timing is highly predictive of long-range chromatin interactions, we generated genome-wide replication-timing profiles for FSHD and control myogenic precursor cells. We compared non-immortalized myoblasts from four FSHD patients and three control individuals to each other and to a variety of other human cell types. This study also represents the first genome-wide comparison of replication timing profiles in non-immortalized human cell cultures. Myoblasts from both control and FSHD individuals all shared a myoblast-specific replication profile. In contrast, male and female individuals were readily distinguished by monoallelic differences in replication timing at DXZ4 and other regions across the X chromosome affected by X inactivation. We conclude that replication timing is a robust cell-type specific feature that is unaffected by FSHD-related D4Z4 contraction.

  1. The sense, landscape and image. How the tourist destination is replicated in postmodernist times

    Directory of Open Access Journals (Sweden)

    Maximiliano E. Korstanje

    2013-01-01

    Full Text Available Policy makers, practitioners and analysts have focused on the psychology to induce consumers to new products. These new eye-catching packaging products in tourism and hospitality industries and beyond are commercialized to thousands of home thanks to the media. We are living in times, digital times where organic image plays a pivotal role in arousing emotions and experiences, although these experiences were not authentic. Following this discussion, initialized some time ago by D. Maccannell and other sociologists, the present paper explores the philosophical roots of image to expand the current understanding about our ocular-centrism. At time, tourists select a destination, they are moved by “the wish of majority”, but once destination is maturated, its attractiveness declines. What seems to be inter- esting to discuss here is the connection between perceived safety (risk and attraction (organic image. Following I. Kant’s contributions, we present a conceptual model to understand how the dilemma of safety leads consumers to visual pollution.

  2. The sense, landscape and image. How the tourist destination is replicated in postmodernist times

    Directory of Open Access Journals (Sweden)

    Maximiliano E. Korstanje

    2013-07-01

    Full Text Available Policy makers, practitioners and analysts have focused on the psychology to induce consumers to new products. These new eye-catching packaging products in tourism and hospitality industries and beyond are commercialized to thousands of home thanks to the media. We are living in times, digital times where organic image plays a pivotal role in arousing emotions and experiences, although these experiences were not authentic. Following this discussion, initialized some time ago by D. Maccannell and other sociologists, the present paper explores the philosophical roots of image to expand the current understanding about our ocular-centrism. At time, tourists select a destination, they are moved by “the wish of majority”, but once destination is maturated, its attractiveness declines. What seems to be interesting to discuss here is the connection between perceived safety (risk and attraction (organic image. Following I. Kant’s contributions, we present a conceptual model to understand how the dilemma of safety leads consumers to visual pollution.

  3. Negative Correlates of Part-Time Employment during Adolescence: Replication and Elaboration.

    Science.gov (United States)

    Steinberg, Laurence; Dornbusch, Sanford M.

    This study examined the relation between part-time employment and adolescent behavior and development in a multi-ethnic, multi-class sample of approximately 4,000 15- through 18-year-olds. The results indicated that long work hours during the school year were associated with diminished investment in schooling and lowered school performance,…

  4. Diversity and dynamics of dominant and rare bacterial taxa in replicate sequencing batch reactors operated under different solids retention time

    KAUST Repository

    Bagchi, Samik

    2014-10-19

    In this study, 16S rRNA gene pyrosequencing was applied in order to provide a better insight on the diversity and dynamics of total, dominant, and rare bacterial taxa in replicate lab-scale sequencing batch reactors (SBRs) operated at different solids retention time (SRT). Rank-abundance curves showed few dominant operational taxonomic units (OTUs) and a long tail of rare OTUs in all reactors. Results revealed that there was no detectable effect of SRT (2 vs. 10 days) on Shannon diversity index and OTU richness of both dominant and rare taxa. Nonmetric multidimensional scaling analysis showed that the total, dominant, and rare bacterial taxa were highly dynamic during the entire period of stable reactor performance. Also, the rare taxa were more dynamic than the dominant taxa despite expected low invasion rates because of the use of sterile synthetic media.

  5. No longer a nuisance: long non-coding RNAs join CENP-A in epigenetic centromere regulation.

    Science.gov (United States)

    Rošić, Silvana; Erhardt, Sylvia

    2016-04-01

    Centromeres represent the basis for kinetochore formation, and are essential for proper chromosome segregation during mitosis. Despite these essential roles, centromeres are not defined by specific DNA sequences, but by epigenetic means. The histone variant CENP-A controls centromere identity epigenetically and is essential for recruiting kinetochore components that attach the chromosomes to the mitotic spindle during mitosis. Recently, a new player in centromere regulation has emerged: long non-coding RNAs transcribed from repetitive regions of centromeric DNA function in regulating centromeres epigenetically. This review summarizes recent findings on the essential roles that transcription, pericentromeric transcripts, and centromere-derived RNAs play in centromere biology.

  6. A personal reflection on the replicon theory: from R1 plasmid to replication timing regulation in human cells.

    Science.gov (United States)

    Masai, Hisao

    2013-11-29

    Fifty years after the Replicon Theory was originally presented, detailed mechanistic insight into prokaryotic replicons has been obtained and rapid progress is being made to elucidate the more complex regulatory mechanisms of replicon regulation in eukaryotic cells. Here, I present my personal perspectives on how studies of model replicons have contributed to our understanding of the basic mechanisms of DNA replication as well as the evolution of replication regulation in human cells. I will also discuss how replication regulation contributes to the stable maintenance of the genome and how disruption of replication regulation leads to human diseases.

  7. Chromosomes. CENP-C reshapes and stabilizes CENP-A nucleosomes at the centromere.

    Science.gov (United States)

    Falk, Samantha J; Guo, Lucie Y; Sekulic, Nikolina; Smoak, Evan M; Mani, Tomoyasu; Logsdon, Glennis A; Gupta, Kushol; Jansen, Lars E T; Van Duyne, Gregory D; Vinogradov, Sergei A; Lampson, Michael A; Black, Ben E

    2015-05-01

    Inheritance of each chromosome depends upon its centromere. A histone H3 variant, centromere protein A (CENP-A), is essential for epigenetically marking centromere location. We find that CENP-A is quantitatively retained at the centromere upon which it is initially assembled. CENP-C binds to CENP-A nucleosomes and is a prime candidate to stabilize centromeric chromatin. Using purified components, we find that CENP-C reshapes the octameric histone core of CENP-A nucleosomes, rigidifies both surface and internal nucleosome structure, and modulates terminal DNA to match the loose wrap that is found on native CENP-A nucleosomes at functional human centromeres. Thus, CENP-C affects nucleosome shape and dynamics in a manner analogous to allosteric regulation of enzymes. CENP-C depletion leads to rapid removal of CENP-A from centromeres, indicating their collaboration in maintaining centromere identity.

  8. Effects of sense and antisense centromere/kinetochore complex protein-B (CENP-B) in cell cycle regulation

    Institute of Scientific and Technical Information of China (English)

    LUO Song; LIN Haiyan; QI Jianguo; WANG Yongchao

    2005-01-01

    This paper investigates the effects of sense and antisense centromere/kinetochore complex protein-B (CENP-B) in cell cycle regulation. Full-length cenpb cDNA was subcloned into pBI-EGFP eukaryotic expression vector in both sense and antisense orientation. HeLa-Tet-Off cells were transfected with sense or antisense cenpb vectors. Sense transfection of HeLa-Tet-Off cells resulted in the formation of a large centromere/kinetochore complex, and apoptosis of cells following several times of cell division. A stable antisense cenpb transfected cell line, named HACPB, was obtained. The centromere/kinetochore complex of HACPB cells became smaller than control HeLa-Tet-Off cells and scattered, and the expression of CENP-B was down-regulated. In addition, delayed cell cycle progression, inhibited malignant phenotype, restrained ability of tumor formation in nude mice, and delayed entry from G2/M phase into next G1 phase were observed in HACPB cells. Furthermore, the expression of cyclin-dependent kinases (CDKs), cyclins, and CDK inhibitors (CKIs) were modulated during different phases of the cell cycle. CENP-B is an essential protein for the maintenance of the structure and function of centromere/kinetochore complex, and plays important roles in cell cycle regulation.

  9. The cotton centromere contains a Ty3-gypsy-like LTR retroelement.

    Directory of Open Access Journals (Sweden)

    Song Luo

    Full Text Available The centromere is a repeat-rich structure essential for chromosome segregation; with the long-term aim of understanding centromere structure and function, we set out to identify cotton centromere sequences. To isolate centromere-associated sequences from cotton, (Gossypium hirsutum we surveyed tandem and dispersed repetitive DNA in the genus. Centromere-associated elements in other plants include tandem repeats and, in some cases, centromere-specific retroelements. Examination of cotton genomic survey sequences for tandem repeats yielded sequences that did not localize to the centromere. However, among the repetitive sequences we also identified a gypsy-like LTR retrotransposon (Centromere Retroelement Gossypium, CRG that localizes to the centromere region of all chromosomes in domestic upland cotton, Gossypium hirsutum, the major commercially grown cotton. The location of the functional centromere was confirmed by immunostaining with antiserum to the centromere-specific histone CENH3, which co-localizes with CRG hybridization on metaphase mitotic chromosomes. G. hirsutum is an allotetraploid composed of A and D genomes and CRG is also present in the centromere regions of other AD cotton species. Furthermore, FISH and genomic dot blot hybridization revealed that CRG is found in D-genome diploid cotton species, but not in A-genome diploid species, indicating that this retroelement may have invaded the A-genome centromeres during allopolyploid formation and amplified during evolutionary history. CRG is also found in other diploid Gossypium species, including B and E2 genome species, but not in the C, E1, F, and G genome species tested. Isolation of this centromere-specific retrotransposon from Gossypium provides a probe for further understanding of centromere structure, and a tool for future engineering of centromere mini-chromosomes in this important crop species.

  10. Temperature and solids retention time control microbial population dynamics and volatile fatty acid production in replicated anaerobic digesters

    Science.gov (United States)

    Vanwonterghem, Inka; Jensen, Paul D.; Rabaey, Korneel; Tyson, Gene W.

    2015-02-01

    Anaerobic digestion is a widely used technology for waste stabilization and generation of biogas, and has recently emerged as a potentially important process for the production of high value volatile fatty acids (VFAs) and alcohols. Here, three reactors were seeded with inoculum from a stably performing methanogenic digester, and selective operating conditions (37°C and 55°C 12 day and 4 day solids retention time) were applied to restrict methanogenesis while maintaining hydrolysis and fermentation. Replicated experiments performed at each set of operating conditions led to reproducible VFA production profiles which could be correlated with specific changes in microbial community composition. The mesophilic reactor at short solids retention time showed accumulation of propionate and acetate (42 +/- 2% and 15 +/- 6% of CODhydrolyzed, respectively), and dominance of Fibrobacter and Bacteroidales. Acetate accumulation (>50% of CODhydrolyzed) was also observed in the thermophilic reactors, which were dominated by Clostridium. Under all tested conditions, there was a shift from acetoclastic to hydrogenotrophic methanogenesis, and a reduction in methane production by >50% of CODhydrolyzed. Our results demonstrate that shortening the SRT and increasing the temperature are effective strategies for driving microbial communities towards controlled production of high levels of specific volatile fatty acids.

  11. Different patterns of evolution in the centromeric and telomeric regions of group A and B haplotypes of the human killer cell Ig-like receptor locus.

    Directory of Open Access Journals (Sweden)

    Chul-Woo Pyo

    Full Text Available The fast evolving human KIR gene family encodes variable lymphocyte receptors specific for polymorphic HLA class I determinants. Nucleotide sequences for 24 representative human KIR haplotypes were determined. With three previously defined haplotypes, this gave a set of 12 group A and 15 group B haplotypes for assessment of KIR variation. The seven gene-content haplotypes are all combinations of four centromeric and two telomeric motifs. 2DL5, 2DS5 and 2DS3 can be present in centromeric and telomeric locations. With one exception, haplotypes having identical gene content differed in their combinations of KIR alleles. Sequence diversity varied between haplotype groups and between centromeric and telomeric halves of the KIR locus. The most variable A haplotype genes are in the telomeric half, whereas the most variable genes characterizing B haplotypes are in the centromeric half. Of the highly polymorphic genes, only the 3DL3 framework gene exhibits a similar diversity when carried by A and B haplotypes. Phylogenetic analysis and divergence time estimates, point to the centromeric gene-content motifs that distinguish A and B haplotypes having emerged ~6 million years ago, contemporaneously with the separation of human and chimpanzee ancestors. In contrast, the telomeric motifs that distinguish A and B haplotypes emerged more recently, ~1.7 million years ago, before the emergence of Homo sapiens. Thus the centromeric and telomeric motifs that typify A and B haplotypes have likely been present throughout human evolution. The results suggest the common ancestor of A and B haplotypes combined a B-like centromeric region with an A-like telomeric region.

  12. SHUGOSHINs and PATRONUS protect meiotic centromere cohesion in Arabidopsis thaliana.

    Science.gov (United States)

    Zamariola, Linda; De Storme, Nico; Vannerum, Katrijn; Vandepoele, Klaas; Armstrong, Susan J; Franklin, F Christopher H; Geelen, Danny

    2014-03-01

    In meiosis, chromosome cohesion is maintained by the cohesin complex, which is released in a two-step manner. At meiosis I, the meiosis-specific cohesin subunit Rec8 is cleaved by the protease Separase along chromosome arms, allowing homologous chromosome segregation. Next, in meiosis II, cleavage of the remaining centromere cohesin results in separation of the sister chromatids. In eukaryotes, protection of centromeric cohesion in meiosis I is mediated by SHUGOSHINs (SGOs). The Arabidopsis genome contains two SGO homologs. Here we demonstrate that Atsgo1 mutants show a premature loss of cohesion of sister chromatid centromeres at anaphase I and that AtSGO2 partially rescues this loss of cohesion. In addition to SGOs, we characterize PATRONUS which is specifically required for the maintenance of cohesion of sister chromatid centromeres in meiosis II. In contrast to the Atsgo1 Atsgo2 double mutant, patronus T-DNA insertion mutants only display loss of sister chromatid cohesion after meiosis I, and additionally show disorganized spindles, resulting in defects in chromosome segregation in meiosis. This leads to reduced fertility and aneuploid offspring. Furthermore, we detect aneuploidy in sporophytic tissue, indicating a role for PATRONUS in chromosome segregation in somatic cells. Thus, ploidy stability is preserved in Arabidopsis by PATRONUS during both meiosis and mitosis.

  13. Recombination patterns reveal information about centromere location on linkage maps

    DEFF Research Database (Denmark)

    Limborg, Morten T.; McKinney, Garrett J.; Seeb, Lisa W.

    2016-01-01

    . mykiss) characterized by low and unevenly distributed recombination – a general feature of male meiosis in many species. Further, a high frequency of double crossovers along chromosome arms in barley reduced resolution for locating centromeric regions on most linkage groups. Despite these limitations...

  14. Dicentric chromosomes: unique models to study centromere function and inactivation.

    Science.gov (United States)

    Stimpson, Kaitlin M; Matheny, Justyne E; Sullivan, Beth A

    2012-07-01

    Dicentric chromosomes are products of genome rearrangement that place two centromeres on the same chromosome. Depending on the organism, dicentric stability varies after formation. In humans, dicentrics occur naturally in a substantial portion of the population and usually segregate successfully in mitosis and meiosis. Their stability has been attributed to inactivation of one of the two centromeres, creating a functionally monocentric chromosome that can segregate normally during cell division. The molecular basis for centromere inactivation is not well understood, although studies in model organisms and in humans suggest that genomic and epigenetic mechanisms can be involved. Furthermore, constitutional dicentric chromosomes ascertained in patients presumably represent the most stable chromosomes, so the spectrum of dicentric fates, if it exists, is not entirely clear. Studies of engineered or induced dicentrics in budding yeast and plants have provided significant insight into the fate of dicentric chromosomes. And, more recently, studies have shown that dicentrics in humans can also undergo multiple fates after formation. Here, we discuss current experimental evidence from various organisms that has deepened our understanding of dicentric behavior and the intriguingly complex process of centromere inactivation.

  15. High-resolution mapping and transcriptional activity analysis of chicken centromere sequences on giant lampbrush chromosomes.

    Science.gov (United States)

    Krasikova, Alla; Fukagawa, Tatsuo; Zlotina, Anna

    2012-12-01

    Exploration into morphofunctional organisation of centromere DNA sequences is important for understanding the mechanisms of kinetochore specification and assembly. In-depth epigenetic analysis of DNA fragments associated with centromeric nucleosome proteins has demonstrated unique features of centromere organisation in chicken karyotype: there are both mature centromeres, which comprise chromosome-specific homogeneous arrays of tandem repeats, and recently evolved primitive centromeres, which consist of non-tandemly organised DNA sequences. In this work, we describe the arrangement and transcriptional activity of chicken centromere repeats for Cen1, Cen2, Cen3, Cen4, Cen7, Cen8, and Cen11 and non-repetitive centromere sequences of chromosomes 5, 27, and Z using highly elongated lampbrush chromosomes, which are characteristic of the diplotene stage of oogenesis. The degree of chromatin packaging and fine spatial organisations of tandemly repetitive and non-tandemly repetitive centromeric sequences significantly differ at the lampbrush stage. Using DNA/RNA FISH, we have demonstrated that during the lampbrush stage, DNA sequences are transcribed within the centromere regions of chromosomes that lack centromere-specific tandem repeats. In contrast, chromosome-specific centromeric repeats Cen1, Cen2, Cen3, Cen4, Cen7, Cen8, and Cen11 do not demonstrate any transcriptional activity during the lampbrush stage. In addition, we found that CNM repeat cluster localises adjacent to non-repetitive centromeric sequences in chicken microchromosome 27 indicating that centromere region in this chromosome is repeat-rich. Cross-species FISH allowed localisation of the sequences homologous to centromeric DNA of chicken chromosomes 5 and 27 in centromere regions of quail orthologous chromosomes.

  16. Timeless links replication termination to mitotic kinase activation.

    Science.gov (United States)

    Dheekollu, Jayaraju; Wiedmer, Andreas; Hayden, James; Speicher, David; Gotter, Anthony L; Yen, Tim; Lieberman, Paul M

    2011-05-06

    The mechanisms that coordinate the termination of DNA replication with progression through mitosis are not completely understood. The human Timeless protein (Tim) associates with S phase replication checkpoint proteins Claspin and Tipin, and plays an important role in maintaining replication fork stability at physical barriers, like centromeres, telomeres and ribosomal DNA repeats, as well as at termination sites. We show here that human Tim can be isolated in a complex with mitotic entry kinases CDK1, Auroras A and B, and Polo-like kinase (Plk1). Plk1 bound Tim directly and colocalized with Tim at a subset of mitotic structures in M phase. Tim depletion caused multiple mitotic defects, including the loss of sister-chromatid cohesion, loss of mitotic spindle architecture, and a failure to exit mitosis. Tim depletion caused a delay in mitotic kinase activity in vivo and in vitro, as well as a reduction in global histone H3 S10 phosphorylation during G2/M phase. Tim was also required for the recruitment of Plk1 to centromeric DNA and formation of catenated DNA structures at human centromere alpha satellite repeats. Taken together, these findings suggest that Tim coordinates mitotic kinase activation with termination of DNA replication.

  17. Timeless links replication termination to mitotic kinase activation.

    Directory of Open Access Journals (Sweden)

    Jayaraju Dheekollu

    Full Text Available The mechanisms that coordinate the termination of DNA replication with progression through mitosis are not completely understood. The human Timeless protein (Tim associates with S phase replication checkpoint proteins Claspin and Tipin, and plays an important role in maintaining replication fork stability at physical barriers, like centromeres, telomeres and ribosomal DNA repeats, as well as at termination sites. We show here that human Tim can be isolated in a complex with mitotic entry kinases CDK1, Auroras A and B, and Polo-like kinase (Plk1. Plk1 bound Tim directly and colocalized with Tim at a subset of mitotic structures in M phase. Tim depletion caused multiple mitotic defects, including the loss of sister-chromatid cohesion, loss of mitotic spindle architecture, and a failure to exit mitosis. Tim depletion caused a delay in mitotic kinase activity in vivo and in vitro, as well as a reduction in global histone H3 S10 phosphorylation during G2/M phase. Tim was also required for the recruitment of Plk1 to centromeric DNA and formation of catenated DNA structures at human centromere alpha satellite repeats. Taken together, these findings suggest that Tim coordinates mitotic kinase activation with termination of DNA replication.

  18. High Throughput Analyses of Budding Yeast ARSs Reveal New DNA Elements Capable of Conferring Centromere-Independent Plasmid Propagation.

    Science.gov (United States)

    Hoggard, Timothy; Liachko, Ivan; Burt, Cassaundra; Meikle, Troy; Jiang, Katherine; Craciun, Gheorghe; Dunham, Maitreya J; Fox, Catherine A

    2016-04-07

    The ability of plasmids to propagate in Saccharomyces cerevisiae has been instrumental in defining eukaryotic chromosomal control elements. Stable propagation demands both plasmid replication, which requires a chromosomal replication origin (i.e., an ARS), and plasmid distribution to dividing cells, which requires either a chromosomal centromere for segregation or a plasmid-partitioning element. While our knowledge of yeast ARSs and centromeres is relatively advanced, we know less about chromosomal regions that can function as plasmid partitioning elements. The Rap1 protein-binding site (RAP1) present in transcriptional silencers and telomeres of budding yeast is a known plasmid-partitioning element that functions to anchor a plasmid to the inner nuclear membrane (INM), which in turn facilitates plasmid distribution to daughter cells. This Rap1-dependent INM-anchoring also has an important chromosomal role in higher-order chromosomal structures that enhance transcriptional silencing and telomere stability. Thus, plasmid partitioning can reflect fundamental features of chromosome structure and biology, yet a systematic screen for plasmid partitioning elements has not been reported. Here, we couple deep sequencing with competitive growth experiments of a plasmid library containing thousands of short ARS fragments to identify new plasmid partitioning elements. Competitive growth experiments were performed with libraries that differed only in terms of the presence or absence of a centromere. Comparisons of the behavior of ARS fragments in the two experiments allowed us to identify sequences that were likely to drive plasmid partitioning. In addition to the silencer RAP1 site, we identified 74 new putative plasmid-partitioning motifs predicted to act as binding sites for DNA binding proteins enriched for roles in negative regulation of gene expression and G2/M-phase associated biology. These data expand our knowledge of chromosomal elements that may function in plasmid

  19. Euchromatic subdomains in rice centromeres are associated with genes and transcription.

    Science.gov (United States)

    Wu, Yufeng; Kikuchi, Shinji; Yan, Huihuang; Zhang, Wenli; Rosenbaum, Heidi; Iniguez, A Leonardo; Jiang, Jiming

    2011-11-01

    The presence of the centromere-specific histone H3 variant, CENH3, defines centromeric (CEN) chromatin, but poorly understood epigenetic mechanisms determine its establishment and maintenance. CEN chromatin is embedded within pericentromeric heterochromatin in most higher eukaryotes, but, interestingly, it can show euchromatic characteristics; for example, the euchromatic histone modification mark dimethylated H3 Lys 4 (H3K4me2) is uniquely associated with animal centromeres. To examine the histone marks and chromatin properties of plant centromeres, we developed a genomic tiling array for four fully sequenced rice (Oryza sativa) centromeres and used chromatin immunoprecipitation-chip to study the patterns of four euchromatic histone modification marks: H3K4me2, trimethylated H3 Lys 4, trimethylated H3 Lys 36, and acetylated H3 Lys 4, 9. The vast majority of the four histone marks were associated with genes located in the H3 subdomains within the centromere cores. We demonstrate that H3K4me2 is not a ubiquitous component of rice CEN chromatin, and the euchromatic characteristics of rice CEN chromatin are hallmarks of the transcribed sequences embedded in the centromeric H3 subdomains. We propose that the transcribed sequences located in rice centromeres may provide a barrier preventing loading of CENH3 into the H3 subdomains. The separation of CENH3 and H3 subdomains in the centromere core may be favorable for the formation of three-dimensional centromere structure and for rice centromere function.

  20. Total centromere size and genome size are strongly correlated in ten grass species.

    Science.gov (United States)

    Zhang, Han; Dawe, R Kelly

    2012-05-01

    It has been known for decades that centromere size varies across species, but the factors involved in setting centromere boundaries are unknown. As a means to address this question, we estimated centromere sizes in ten species of the grass family including rice, maize, and wheat, which diverged 60~80 million years ago and vary by 40-fold in genome size. Measurements were made using a broadly reactive antibody to rice centromeric histone H3 (CENH3). In species-wide comparisons, we found a clear linear relationship between total centromere size and genome size. Species with large genomes and few chromosomes tend to have the largest centromeres (e.g., rye) while species with small genomes and many chromosomes have the smallest centromeres (e.g., rice). However, within a species, centromere size is surprisingly uniform. We present evidence from three oat-maize addition lines that support this claim, indicating that each of three maize centromeres propagated in oat are not measurably different from each other. In the context of previously published data, our results suggest that the apparent correlation between chromosome and centromere size is incidental to a larger trend that reflects genome size. Centromere size may be determined by a limiting component mechanism similar to that described for Caenorhabditis elegans centrosomes.

  1. SWI/SNF-like chromatin remodeling factor Fun30 supports point centromere function in S. cerevisiae.

    Directory of Open Access Journals (Sweden)

    Mickaël Durand-Dubief

    2012-09-01

    Full Text Available Budding yeast centromeres are sequence-defined point centromeres and are, unlike in many other organisms, not embedded in heterochromatin. Here we show that Fun30, a poorly understood SWI/SNF-like chromatin remodeling factor conserved in humans, promotes point centromere function through the formation of correct chromatin architecture at centromeres. Our determination of the genome-wide binding and nucleosome positioning properties of Fun30 shows that this enzyme is consistently enriched over centromeres and that a majority of CENs show Fun30-dependent changes in flanking nucleosome position and/or CEN core micrococcal nuclease accessibility. Fun30 deletion leads to defects in histone variant Htz1 occupancy genome-wide, including at and around most centromeres. FUN30 genetically interacts with CSE4, coding for the centromere-specific variant of histone H3, and counteracts the detrimental effect of transcription through centromeres on chromosome segregation and suppresses transcriptional noise over centromere CEN3. Previous work has shown a requirement for fission yeast and mammalian homologs of Fun30 in heterochromatin assembly. As centromeres in budding yeast are not embedded in heterochromatin, our findings indicate a direct role of Fun30 in centromere chromatin by promoting correct chromatin architecture.

  2. Molecular and evolutionary characteristics of the fraction of human alpha satellite DNA associated with CENP-A at the centromeres of chromosomes 1, 5, 19, and 21

    Directory of Open Access Journals (Sweden)

    Roizès Gérard

    2010-03-01

    Full Text Available Abstract Background The mode of evolution of the highly homogeneous Higher-Order-Repeat-containing alpha satellite arrays is still subject to discussion. This is also true of the CENP-A associated repeats where the centromere is formed. Results In this paper, we show that the molecular mechanisms by which these arrays evolve are identical in multiple chromosomes: i accumulation of crossovers that homogenise and expand the arrays into different domains and subdomains that are mostly unshared between homologues and ii sporadic mutations and conversion events that simultaneously differentiate them from one another. Individual arrays are affected by these mechanisms to different extents that presumably increase with time. Repeats associated with CENP-A, where the centromere is formed, are subjected to the same evolutionary mechanisms, but constitute minor subsets that exhibit subtle sequence differences from those of the bulk repeats. While the DNA sequence per se is not essential for centromere localisation along an array, it appears that certain sequences can be selected against. On chromosomes 1 and 19, which are more affected by the above evolutionary mechanisms than are chromosomes 21 and 5, CENP-A associated repeats were also recovered from a second homogeneous array present on each chromosome. This could be a way for chromosomes to sustain mitosis and meiosis when the normal centromere locus is ineluctably undermined by the above mechanisms. Conclusion We discuss, in light of these observations, possible scenarios for the normal evolutionary fates of human centromeric regions.

  3. 连续时间动态复制定理的推广与证明%Extension and Proof of the Continuous-Time Dynamic Replication Theorem

    Institute of Scientific and Technical Information of China (English)

    刘海龙; 吴冲锋

    2002-01-01

    This paper extends the continuous-time dynamic replication theorem for incomplete Markets, which is proposed by Bertsimas, Kogan and Lo (1997)[1]. Then this extended dynamic replication theorem is proved using the theory of the stochastic optimal control.%推广了由Bertsimas,Kogan andLo(1997)[1]提出的非完全市场中的连续时间动态复制定理,然后,我们运用随机最优控制理论证明了这个定理.

  4. Database Replication

    CERN Document Server

    Kemme, Bettina

    2010-01-01

    Database replication is widely used for fault-tolerance, scalability and performance. The failure of one database replica does not stop the system from working as available replicas can take over the tasks of the failed replica. Scalability can be achieved by distributing the load across all replicas, and adding new replicas should the load increase. Finally, database replication can provide fast local access, even if clients are geographically distributed clients, if data copies are located close to clients. Despite its advantages, replication is not a straightforward technique to apply, and

  5. Uncoupling of satellite DNA and centromeric function in the genus Equus.

    Directory of Open Access Journals (Sweden)

    Francesca M Piras

    2010-02-01

    Full Text Available In a previous study, we showed that centromere repositioning, that is the shift along the chromosome of the centromeric function without DNA sequence rearrangement, has occurred frequently during the evolution of the genus Equus. In this work, the analysis of the chromosomal distribution of satellite tandem repeats in Equus caballus, E. asinus, E. grevyi, and E. burchelli highlighted two atypical features: 1 several centromeres, including the previously described evolutionary new centromeres (ENCs, seem to be devoid of satellite DNA, and 2 satellite repeats are often present at non-centromeric termini, probably corresponding to relics of ancestral now inactive centromeres. Immuno-FISH experiments using satellite DNA and antibodies against the kinetochore protein CENP-A demonstrated that satellite-less primary constrictions are actually endowed with centromeric function. The phylogenetic reconstruction of centromere repositioning events demonstrates that the acquisition of satellite DNA occurs after the formation of the centromere during evolution and that centromeres can function over millions of years and many generations without detectable satellite DNA. The rapidly evolving Equus species gave us the opportunity to identify different intermediate steps along the full maturation of ENCs.

  6. The chromosomal passenger complex activates Polo kinase at centromeres.

    Directory of Open Access Journals (Sweden)

    Mar Carmena

    2012-01-01

    Full Text Available The coordinated activities at centromeres of two key cell cycle kinases, Polo and Aurora B, are critical for ensuring that the two sister kinetochores of each chromosome are attached to microtubules from opposite spindle poles prior to chromosome segregation at anaphase. Initial attachments of chromosomes to the spindle involve random interactions between kinetochores and dynamic microtubules, and errors occur frequently during early stages of the process. The balance between microtubule binding and error correction (e.g., release of bound microtubules requires the activities of Polo and Aurora B kinases, with Polo promoting stable attachments and Aurora B promoting detachment. Our study concerns the coordination of the activities of these two kinases in vivo. We show that INCENP, a key scaffolding subunit of the chromosomal passenger complex (CPC, which consists of Aurora B kinase, INCENP, Survivin, and Borealin/Dasra B, also interacts with Polo kinase in Drosophila cells. It was known that Aurora A/Bora activates Polo at centrosomes during late G2. However, the kinase that activates Polo on chromosomes for its critical functions at kinetochores was not known. We show here that Aurora B kinase phosphorylates Polo on its activation loop at the centromere in early mitosis. This phosphorylation requires both INCENP and Aurora B activity (but not Aurora A activity and is critical for Polo function at kinetochores. Our results demonstrate clearly that Polo kinase is regulated differently at centrosomes and centromeres and suggest that INCENP acts as a platform for kinase crosstalk at the centromere. This crosstalk may enable Polo and Aurora B to achieve a balance wherein microtubule mis-attachments are corrected, but proper attachments are stabilized allowing proper chromosome segregation.

  7. The chromosomal passenger complex activates Polo kinase at centromeres.

    Science.gov (United States)

    Carmena, Mar; Pinson, Xavier; Platani, Melpi; Salloum, Zeina; Xu, Zhenjie; Clark, Anthony; Macisaac, Fiona; Ogawa, Hiromi; Eggert, Ulrike; Glover, David M; Archambault, Vincent; Earnshaw, William C

    2012-01-01

    The coordinated activities at centromeres of two key cell cycle kinases, Polo and Aurora B, are critical for ensuring that the two sister kinetochores of each chromosome are attached to microtubules from opposite spindle poles prior to chromosome segregation at anaphase. Initial attachments of chromosomes to the spindle involve random interactions between kinetochores and dynamic microtubules, and errors occur frequently during early stages of the process. The balance between microtubule binding and error correction (e.g., release of bound microtubules) requires the activities of Polo and Aurora B kinases, with Polo promoting stable attachments and Aurora B promoting detachment. Our study concerns the coordination of the activities of these two kinases in vivo. We show that INCENP, a key scaffolding subunit of the chromosomal passenger complex (CPC), which consists of Aurora B kinase, INCENP, Survivin, and Borealin/Dasra B, also interacts with Polo kinase in Drosophila cells. It was known that Aurora A/Bora activates Polo at centrosomes during late G2. However, the kinase that activates Polo on chromosomes for its critical functions at kinetochores was not known. We show here that Aurora B kinase phosphorylates Polo on its activation loop at the centromere in early mitosis. This phosphorylation requires both INCENP and Aurora B activity (but not Aurora A activity) and is critical for Polo function at kinetochores. Our results demonstrate clearly that Polo kinase is regulated differently at centrosomes and centromeres and suggest that INCENP acts as a platform for kinase crosstalk at the centromere. This crosstalk may enable Polo and Aurora B to achieve a balance wherein microtubule mis-attachments are corrected, but proper attachments are stabilized allowing proper chromosome segregation.

  8. Molecular characterization of flow-sorted mammalian centromeres

    Energy Technology Data Exchange (ETDEWEB)

    Hamkalo, B.A.; Henschen, A.; Parseghian, M.H. [Univ. of Calfornia, Irvine, CA (United States). Dept. of Molecular Biology and Biochemistry] [and others

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project involved experiments directed towards developing a molecular characterization of the centromere region of mammalian chromosomes. Attempts to purify this essential chromosomal locus by conventional methods have thus far been unsuccessful. However, preliminary data obtained in collaboration with the National Flow Cytometry Resource (NFCR) showed that it is possible to purify a chromosome fragment that is present in certain cultured mouse cell lines and has all the properties expected of an intact centromere region. To begin sorting this minichromosome for the identification of proteins preferentially associated with centromere regions, standard buffers utilized in chromosome sorting were evaluated for potential effects on maintenance of chromosomal proteins during sorting. The data indicate that the presence of several buffer constituents results in the extraction of all but a few chromosomal proteins. The subsequent use of a magnesium sulfate buffer resulted in the sorting of mouse chromosomes that do not suffer a significant loss of proteins. Several DNA stains were also evaluated for causing protein dissociation, but no significant losses were observed. Although flow-sorted chromosomes have been used extensively for DNA analysis and cloning, this is a pioneering effort by the NFCR, and its collaborators, to exploit chromosome sorting capabilities for the analysis of chromosomal proteins.

  9. Effects of solution chemistry and aging time on prion protein adsorption and replication of soil-bound prions.

    Directory of Open Access Journals (Sweden)

    Samuel E Saunders

    Full Text Available Prion interactions with soil may play an important role in the transmission of chronic wasting disease (CWD and scrapie. Prions are known to bind to a wide range of soil surfaces, but the effects of adsorption solution chemistry and long-term soil binding on prion fate and transmission risk are unknown. We investigated HY TME prion protein (PrP(Sc adsorption to soil minerals in aqueous solutions of phosphate buffered saline (PBS, sodium chloride, calcium chloride, and deionized water using western blotting. The replication efficiency of bound prions following adsorption in these solutions was also evaluated by protein misfolding cyclic amplification (PMCA. Aging studies investigated PrP(Sc desorption and replication efficiency up to one year following adsorption in PBS or DI water. Results indicate that adsorption solution chemistry can affect subsequent prion replication or desorption ability, especially after incubation periods of 30 d or longer. Observed effects were minor over the short-term (7 d or less. Results of long-term aging experiments demonstrate that unbound prions or prions bound to a diverse range of soil surfaces can readily replicate after one year. Our results suggest that while prion-soil interactions can vary with solution chemistry, prions bound to soil could remain a risk for transmitting prion diseases after months in the environment.

  10. The Ctf18 RFC-like complex positions yeast telomeres but does not specify their replication time.

    Science.gov (United States)

    Hiraga, Shin-ichiro; Robertson, E Douglas; Donaldson, Anne D

    2006-04-05

    Chromosome ends in Saccharomyces cerevisiae are positioned in clusters at the nuclear rim. We report that Ctf18, Ctf8, and Dcc1, the subunits of a Replication Factor C (RFC)-like complex, are essential for the perinuclear positioning of telomeres. In both yeast and mammalian cells, peripheral nuclear positioning of chromatin during G1 phase correlates with late DNA replication. We find that the mislocalized telomeres of ctf18 cells still replicate late, showing that late DNA replication does not require peripheral positioning during G1. The Ku and Sir complexes have been shown to act through separate pathways to position telomeres, but in the absence of Ctf18 neither pathway can act fully to maintain telomere position. Surprisingly CTF18 is not required for Ku or Sir4-mediated peripheral tethering of a nontelomeric chromosome locus. Our results suggest that the Ctf18 RFC-like complex modifies telomeric chromatin to make it competent for normal localization to the nuclear periphery.

  11. Chromosome complement, C-banding, Ag-NOR and replication banding in the zebrafish Danio rerio.

    Science.gov (United States)

    Daga, R R; Thode, G; Amores, A

    1996-01-01

    The chromosome complement of Danio rerio was investigated by Giemsa staining and C-banding, Ag-NORs and replication banding. The diploid number of this species is 2n = 50 and the arm number (NF) = 100. Constitutive heterochromatin was located at the centromeric position of all chromosome pairs. Nucleolus organizer regions appeared in the terminal position of the long arms of chromosomes 1, 2 and 8. Replication banding pattern allowed the identification of each chromosome pair.

  12. Analysis of premature centromere division (PCD) of the X chromosome in Alzheimer patients through the cell cycle.

    Science.gov (United States)

    Spremo-Potparevic, Biljana; Zivkovic, Lada; Djelic, Ninoslav; Bajic, Vladan

    2004-05-01

    Cytogenetic analysis of the X chromosome in phytohaemagglutinin stimulated peripheral blood lymphocytes was evaluated in 12 sporadic Alzheimer disease (AD) patients and in 11 healthy subjects. For chromosome analysis two methods were used: (1) standard analysis of G-banded metaphase chromosomes and; (2) fluorescent in situ hybridization (FISH) for the detection of the X chromosome centromeric region in interphase nuclei. Cytogenetic analysis revealed that the X chromosome expresses premature centromere division (PCD) in AD females in 10.53% of metaphase cells and in 15.22% of interphase nuclei. In AD men the percentages were 3.98 and 6.06%, respectively. X chromosome PCD in the female control group showed a percentage of 7.46% in metaphase cells and 9.35% in interphase nuclei and in male controls the percentages were 2.84% in metaphases and 5.54% in interphase nuclei. The results of FISH analysis showed that PCD could occur much earlier than metaphase of mitosis, i.e. in interphase of the cell cycle, immediately after replication. The FISH method can be used for PCD verification in all phases of the cell cycle in various disorders including AD.

  13. Hematopoietic stem cell transplantation corrects the immunologic abnormalities associated with immunodeficiency-centromeric instability-facial dysmorphism syndrome.

    NARCIS (Netherlands)

    Gennery, A.R.; Slatter, M.A.; Bredius, R.G.; Hagleitner, M.M.; Weemaes, C.M.R.; Cant, A.J.; Lankester, A.C.

    2007-01-01

    Immunodeficiency-centromeric instability-facial dysmorphism syndrome, characterized by variable immunodeficiency, centromeric instability, and facial anomalies caused by epigenetic dysregulation resulting in hypomethylation, is caused in many patients by mutations in DNMT3B, a DNA methyltransferase

  14. Chromosome segregation regulation in human zygotes : Altered mitotic histone phosphorylation dynamics underlying centromeric targeting of the chromosomal passenger complex

    NARCIS (Netherlands)

    Van De Werken, C.; Avo Santos, M.; Laven, J. S E; Eleveld, C.; Fauser, B. C J M; Lens, S. M A; Baart, E. B.

    2015-01-01

    STUDY QUESTION Are the kinase feedback loops that regulate activation and centromeric targeting of the chromosomal passenger complex (CPC), functional during mitosis in human embryos? SUMMARY ANSWER Investigation of the regulatory kinase pathways involved in centromeric CPC targeting revealed normal

  15. High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize.

    Science.gov (United States)

    Han, Fangpu; Lamb, Jonathan C; Birchler, James A

    2006-02-28

    Somatic chromosome spreads from maize (Zea mays L.) plants containing B-A translocation chromosomes undergoing the chromosome type breakage-fusion-bridge cycle were examined by FISH. The size and type of extra chromosomes varied among cells of the same individual. A collection of minichromosomes derived from the chromosome type breakage-fusion-bridge cycle was examined for the presence of stable dicentric chromosomes. Six of 23 chromosomes in the collection contained two regions with DNA sequences typical of centromeres. Functional analysis and immunolabeling of CENH3, the centromere-specific histone H3 variant, revealed only one functional centromere per chromosome, despite the duplicate centromere sequences. One plant was found with an inactive B centromere that had been translocated to the short arm of chromosome 9. The translocated centromere region appeared identical to that of a normal B chromosome. The inactivation of the centromeres was stable for at least four generations. By using dicentrics from dispensable chromosomes, centromere inactivation was found to be quite common under these circumstances.

  16. Centromere architecture breakdown induced by the viral E3 ubiquitin ligase ICP0 protein of herpes simplex virus type 1.

    Directory of Open Access Journals (Sweden)

    Sylvain Gross

    Full Text Available The viral E3 ubiquitin ligase ICP0 protein has the unique property to temporarily localize at interphase and mitotic centromeres early after infection of cells by the herpes simplex virus type 1 (HSV-1. As a consequence ICP0 induces the proteasomal degradation of several centromeric proteins (CENPs, namely CENP-A, the centromeric histone H3 variant, CENP-B and CENP-C. Following ICP0-induced centromere modification cells trigger a specific response to centromeres called interphase Centromere Damage Response (iCDR. The biological significance of the iCDR is unknown; so is the degree of centromere structural damage induced by ICP0. Interphase centromeres are complex structures made of proximal and distal protein layers closely associated to CENP-A-containing centromeric chromatin. Using several cell lines constitutively expressing GFP-tagged CENPs, we investigated the extent of the centromere destabilization induced by ICP0. We show that ICP0 provokes the disappearance from centromeres, and the proteasomal degradation of several CENPs from the NAC (CENP-A nucleosome associated and CAD (CENP-A Distal complexes. We then investigated the nucleosomal occupancy of the centromeric chromatin in ICP0-expressing cells by micrococcal nuclease (MNase digestion analysis. ICP0 expression either following infection or in cell lines constitutively expressing ICP0 provokes significant modifications of the centromeric chromatin structure resulting in higher MNase accessibility. Finally, using human artificial chromosomes (HACs, we established that ICP0-induced iCDR could also target exogenous centromeres. These results demonstrate that, in addition to the protein complexes, ICP0 also destabilizes the centromeric chromatin resulting in the complete breakdown of the centromere architecture, which consequently induces iCDR.

  17. Structure and function of centromeric and pericentromeric heterochromatin in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Lauriane eSimon

    2015-11-01

    Full Text Available The centromere is a specific chromosomal region where the kinetochore assembles to ensure the faithful segregation of sister chromatids during mitosis and meiosis. Centromeres are defined by a local enrichment of the specific histone variant CenH3 mostly at repetitive satellite sequences. A larger pericentromeric region containing repetitive sequences and transposable elements surrounds the centromere that adopts a particular chromatin state characterized by specific histone variants and post-translational modifications and forms a transcriptionally repressive chromosomal environment. In the model organism Arabidopsis thaliana centromeric and pericentromeric domains form conspicuous heterochromatin clusters called chromocenters in interphase. Here we discuss, using Arabidopsis as example, recent insight into mechanisms involved in maintenance and establishment of centromeric and pericentromeric chromatin signatures as well as in chromocenter formation.

  18. Modeling inhomogeneous DNA replication kinetics.

    Directory of Open Access Journals (Sweden)

    Michel G Gauthier

    Full Text Available In eukaryotic organisms, DNA replication is initiated at a series of chromosomal locations called origins, where replication forks are assembled proceeding bidirectionally to replicate the genome. The distribution and firing rate of these origins, in conjunction with the velocity at which forks progress, dictate the program of the replication process. Previous attempts at modeling DNA replication in eukaryotes have focused on cases where the firing rate and the velocity of replication forks are homogeneous, or uniform, across the genome. However, it is now known that there are large variations in origin activity along the genome and variations in fork velocities can also take place. Here, we generalize previous approaches to modeling replication, to allow for arbitrary spatial variation of initiation rates and fork velocities. We derive rate equations for left- and right-moving forks and for replication probability over time that can be solved numerically to obtain the mean-field replication program. This method accurately reproduces the results of DNA replication simulation. We also successfully adapted our approach to the inverse problem of fitting measurements of DNA replication performed on single DNA molecules. Since such measurements are performed on specified portion of the genome, the examined DNA molecules may be replicated by forks that originate either within the studied molecule or outside of it. This problem was solved by using an effective flux of incoming replication forks at the model boundaries to represent the origin activity outside the studied region. Using this approach, we show that reliable inferences can be made about the replication of specific portions of the genome even if the amount of data that can be obtained from single-molecule experiments is generally limited.

  19. The centromere geometry essential for keeping mitosis error free is controlled by spindle forces.

    Science.gov (United States)

    Loncarek, Jadranka; Kisurina-Evgenieva, Olga; Vinogradova, Tatiana; Hergert, Polla; La Terra, Sabrina; Kapoor, Tarun M; Khodjakov, Alexey

    2007-11-29

    Accurate segregation of chromosomes, essential for the stability of the genome, depends on 'bi-orientation'-simultaneous attachment of each individual chromosome to both poles of the mitotic spindle. On bi-oriented chromosomes, kinetochores (macromolecular complexes that attach the chromosome to the spindle) reside on the opposite sides of the chromosome's centromere. In contrast, sister kinetochores shift towards one side of the centromere on 'syntelic' chromosomes that erroneously attach to one spindle pole with both sister kinetochores. Syntelic attachments often arise during spindle assembly and must be corrected to prevent chromosome loss. It is assumed that restoration of proper centromere architecture occurs automatically owing to elastic properties of the centromere. Here we test this assumption by combining laser microsurgery and chemical biology assays in cultured mammalian cells. We find that kinetochores of syntelic chromosomes remain juxtaposed on detachment from spindle microtubules. These findings reveal that correction of syntelic attachments involves an extra step that has previously been overlooked: external forces must be applied to move sister kinetochores to the opposite sides of the centromere. Furthermore, we demonstrate that the shape of the centromere is important for spindle assembly, because bipolar spindles do not form in cells lacking centrosomes when multiple chromosomes with juxtaposed kinetochores are present. Thus, proper architecture of the centromere makes an important contribution to achieving high fidelity of chromosome segregation.

  20. Widespread Positive Selection Drives Differentiation of Centromeric Proteins in the Drosophila melanogaster subgroup.

    Science.gov (United States)

    Beck, Emily A; Llopart, Ana

    2015-11-25

    Rapid evolution of centromeric satellite repeats is thought to cause compensatory amino acid evolution in interacting centromere-associated kinetochore proteins. Cid, a protein that mediates kinetochore/centromere interactions, displays particularly high amino acid turnover. Rapid evolution of both Cid and centromeric satellite repeats led us to hypothesize that the apparent compensatory evolution may extend to interacting partners in the Condensin I complex (i.e., SMC2, SMC4, Cap-H, Cap-D2, and Cap-G) and HP1s. Missense mutations in these proteins often result in improper centromere formation and aberrant chromosome segregation, thus selection for maintained function and coevolution among proteins of the complex is likely strong. Here, we report evidence of rapid evolution and recurrent positive selection in seven centromere-associated proteins in species of the Drosophila melanogaster subgroup, and further postulate that positive selection on these proteins could be a result of centromere drive and compensatory changes, with kinetochore proteins competing for optimal spindle attachment.

  1. Centromere inactivation on a neo-Y fusion chromosome in threespine stickleback fish.

    Science.gov (United States)

    Cech, Jennifer N; Peichel, Catherine L

    2016-12-01

    Having one and only one centromere per chromosome is essential for proper chromosome segregation during both mitosis and meiosis. Chromosomes containing two centromeres are known as dicentric and often mis-segregate during cell division, resulting in aneuploidy or chromosome breakage. Dicentric chromosome can be stabilized by centromere inactivation, a process which reestablishes monocentric chromosomes. However, little is known about this process in naturally occurring dicentric chromosomes. Using a combination of fluorescence in situ hybridization (FISH) and immunofluorescence combined with FISH (IF-FISH) on metaphase chromosome spreads, we demonstrate that centromere inactivation has evolved on a neo-Y chromosome fusion in the Japan Sea threespine stickleback fish (Gasterosteus nipponicus). We found that the centromere derived from the ancestral Y chromosome has been inactivated. Our data further suggest that there have been genetic changes to this centromere in the two million years since the formation of the neo-Y chromosome, but it remains unclear whether these genetic changes are a cause or consequence of centromere inactivation.

  2. Hepatitis B virus replication

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Hepadnaviruses, including human hepatitis B virus (HBV), replicate through reverse transcription of an RNA intermediate, the pregenomic RNA (pgRNA). Despite this kinship to retroviruses, there are fundamental differences beyond the fact that hepadnavirions contain DNA instead of RNA. Most peculiar is the initiation of reverse transcription: it occurs by protein-priming, is strictly committed to using an RNA hairpin on the pgRNA,ε, as template, and depends on cellular chaperones;moreover, proper replication can apparently occur only in the specialized environment of intact nucleocapsids.This complexity has hampered an in-depth mechanistic understanding. The recent successful reconstitution in the test tube of active replication initiation complexes from purified components, for duck HBV (DHBV),now allows for the analysis of the biochemistry of hepadnaviral replication at the molecular level. Here we review the current state of knowledge at all steps of the hepadnaviral genome replication cycle, with emphasis on new insights that turned up by the use of such cellfree systems. At this time, they can, unfortunately,not be complemented by three-dimensional structural information on the involved components. However, at least for the s RNA element such information is emerging,raising expectations that combining biophysics with biochemistry and genetics will soon provide a powerful integrated approach for solving the many outstanding questions. The ultimate, though most challenging goal,will be to visualize the hepadnaviral reverse transcriptase in the act of synthesizing DNA, which will also have strong implications for drug development.

  3. High quality maize centromere 10 sequence reveals evidence of frequent recombination events

    Directory of Open Access Journals (Sweden)

    Thomas Kai Wolfgruber

    2016-03-01

    Full Text Available The ancestral centromeres of maize contain long stretches of the tandemly arranged CentC repeat. The abundance of tandem DNA repeats and centromeric retrotransposons (CR have presented a significant challenge to completely assembling centromeres using traditional sequencing methods. Here we report a nearly complete assembly of the 1.85 Mb maize centromere 10 from inbred B73 using PacBio technology and BACs from the reference genome project. The error rates estimated from overlapping BAC sequences are 7 x 10-6 and 5 x 10-5 for mismatches and indels, respectively. The number of gaps in the region covered by the reassembly was reduced from 140 in the reference genome to three. Three expressed genes are located between 92 and 477 kb of the inferred ancestral CentC cluster, which lies within the region of highest centromeric repeat density. The improved assembly increased the count of full-length centromeric retrotransposons from 5 to 55 and revealed a 22.7 kb segmental duplication that occurred approximately 121,000 years ago. Our analysis provides evidence of frequent recombination events in the form of partial retrotransposons, deletions within retrotransposons, chimeric retrotransposons, segmental duplications including higher order CentC repeats, a deleted CentC monomer, centromere-proximal inversions, and insertion of mitochondrial sequences. Double-strand DNA break (DSB repair is the most plausible mechanism for these events and may be the major driver of centromere repeat evolution and diversity. This repair appears to be mediated by microhomology, suggesting that tandem repeats may have evolved to facilitate the repair of frequent DSBs in centromeres.

  4. The impact of sampling, PCR, and sequencing replication on discerning changes in drinking water bacterial community over diurnal time-scales.

    Science.gov (United States)

    Bautista-de Los Santos, Quyen Melina; Schroeder, Joanna L; Blakemore, Oliver; Moses, Jonathan; Haffey, Mark; Sloan, William; Pinto, Ameet J

    2016-03-01

    High-throughput and deep DNA sequencing, particularly amplicon sequencing, is being increasingly utilized to reveal spatial and temporal dynamics of bacterial communities in drinking water systems. Whilst the sampling and methodological biases associated with PCR and sequencing have been studied in other environments, they have not been quantified for drinking water. These biases are likely to have the greatest effect on the ability to characterize subtle spatio-temporal patterns influenced by process/environmental conditions. In such cases, intra-sample variability may swamp any underlying small, systematic variation. To evaluate this, we undertook a study with replication at multiple levels including sampling sites, sample collection, PCR amplification, and high throughput sequencing of 16S rRNA amplicons. The variability inherent to the PCR amplification and sequencing steps is significant enough to mask differences between bacterial communities from replicate samples. This was largely driven by greater variability in detection of rare bacteria (relative abundance water use. This suggests hydraulic changes (driven by changes in water demand) contribute to shaping the bacterial community in bulk drinking water over diurnal time-scales.

  5. Clinical spectrum of immunodeficiency, centromeric instability and facial dysmorphism (ICF syndrome).

    NARCIS (Netherlands)

    Hagleitner, M.M.; Lankester, A.; Maraschio, P.; Hulten, M.; Fryns, J.P.; Schuetz, C.; Gimelli, G.; Davies, E.G.; Gennery, A.; Belohradsky, B.H.; Groot, R. de; Gerritsen, E.J.; Mattina, T.; Howard, P.J.; Fasth, A.; Reisli, I.; Furthner, D.; Slatter, M.A.; Cant, A.J.; Cazzola, G.; Dijken, P.J. van; Deuren, M. van; Greef, J.C. de; Maarel, S.M. van der; Weemaes, C.M.R.

    2008-01-01

    BACKGROUND: Immunodeficiency, centromeric instability and facial dysmorphism (ICF syndrome) is a rare autosomal recessive disease characterised by facial dysmorphism, immunoglobulin deficiency and branching of chromosomes 1, 9 and 16 after PHA stimulation of lymphocytes. Hypomethylation of DNA of a

  6. The nucleoplasmin homolog NLP mediates centromere clustering and anchoring to the nucleolus.

    Science.gov (United States)

    Padeken, Jan; Mendiburo, María José; Chlamydas, Sarantis; Schwarz, Hans-Jürgen; Kremmer, Elisabeth; Heun, Patrick

    2013-04-25

    Centromere clustering during interphase is a phenomenon known to occur in many different organisms and cell types, yet neither the factors involved nor their physiological relevance is well understood. Using Drosophila tissue culture cells and flies, we identified a network of proteins, including the nucleoplasmin-like protein (NLP), the insulator protein CTCF, and the nucleolus protein Modulo, to be essential for the positioning of centromeres. Artificial targeting further demonstrated that NLP and CTCF are sufficient for clustering, while Modulo serves as the anchor to the nucleolus. Centromere clustering was found to depend on centric chromatin rather than specific DNA sequences. Moreover, unclustering of centromeres results in the spatial destabilization of pericentric heterochromatin organization, leading to partial defects in the silencing of repetitive elements, defects during chromosome segregation, and genome instability.

  7. Mislocalization of the Drosophila centromere-specific histone CIDpromotes formation of functional ectopic kinetochores

    Energy Technology Data Exchange (ETDEWEB)

    Heun, Patrick; Erhardt, Sylvia; Blower, Michael D.; Weiss,Samara; Skora, Andrew D.; Karpen, Gary H.

    2006-01-30

    The centromere-specific histone variant CENP-A (CID in Drosophila) is a structural and functional foundation for kinetochore formation and chromosome segregation. Here, we show that overexpressed CID is mislocalized into normally non-centromeric regions in Drosophila tissue culture cells and animals. Analysis of mitoses in living and fixed cells reveals that mitotic delays, anaphase bridges, chromosome fragmentation, and cell and organismal lethality are all direct consequences of CID mislocalization. In addition, proteins that are normally restricted to endogenous kinetochores assemble at a subset of ectopic CID incorporation regions. The presence of microtubule motors and binding proteins, spindle attachments, and aberrant chromosome morphologies demonstrate that these ectopic kinetochores are functional. We conclude that CID mislocalization promotes formation of ectopic centromeres and multicentric chromosomes, which causes chromosome missegregation, aneuploidy, and growth defects. Thus, CENP-A mislocalization is one possible mechanism for genome instability during cancer progression, as well as centromere plasticity during evolution.

  8. SGO1 maintains bovine meiotic and mitotic centromeric cohesions of sister chromatids and directly affects embryo development.

    Directory of Open Access Journals (Sweden)

    Feng-Xia Yin

    Full Text Available Shugoshin (SGO is a critical factor that enforces cohesion from segregation of paired sister chromatids during mitosis and meiosis. It has been studied mainly in invertebrates. Knowledge of SGO(s in a mammalian system has only been reported in the mouse and Hela cells. In this study, the functions of SGO1 in bovine oocytes during meiotic maturation, early embryonic development and somatic cell mitosis were investigated. The results showed that SGO1 was expressed from germinal vesicle (GV to the metaphase II stage. SGO1 accumulated on condensed and scattered chromosomes from pre-metaphase I to metaphase II. The over-expression of SGO1 did not interfere with the process of homologous chromosome separation, although once separated they were unable to move to the opposing spindle poles. This often resulted in the formation of oocytes with 60 replicated chromosomes. Depletion of SGO1 in GV oocytes affected chromosomal separation resulting in abnormal chromosome alignment at a significantly higher proportion than in control oocytes. Knockdown of SGO1 expression significantly decreased the embryonic developmental rate and quality. To further confirm the function(s of SGO1 during mitosis, bovine embryonic fibroblast cells were transfected with SGO1 siRNAs. SGO1 depletion induced the premature dissociation of chromosomal cohesion at the centromere and along the chromosome arm giving rise to abnormal appearing mitotic patterns. The results of this study infer that SGO1 is involved in the centromeric cohesion of sister chromatids and chromosomal movement towards the spindle poles. Depletion of SGO1 causes arrestment of cell division in meiosis and mitosis.

  9. DATABASE REPLICATION IN HETEROGENOUS PLATFORM

    Directory of Open Access Journals (Sweden)

    Hendro Nindito

    2014-01-01

    Full Text Available The application of diverse database technologies in enterprises today is increasingly a common practice. To provide high availability and survavibality of real-time information, a database replication technology that has capability to replicate databases under heterogenous platforms is required. The purpose of this research is to find the technology with such capability. In this research, the data source is stored in MSSQL database server running on Windows. The data will be replicated to MySQL running on Linux as the destination. The method applied in this research is prototyping in which the processes of development and testing can be done interactively and repeatedly. The key result of this research is that the replication technology applied, which is called Oracle GoldenGate, can successfully manage to do its task in replicating data in real-time and heterogeneous platforms.

  10. The Role of Dicentric Chromosome Formation and Secondary Centromere Deletion in the Evolution of Myeloid Malignancy

    OpenAIRE

    MacKinnon, Ruth N.; Campbell, Lynda J.

    2011-01-01

    Dicentric chromosomes have been identified as instigators of the genome instability associated with cancer, but this instability is often resolved by one of a number of different secondary events. These include centromere inactivation, inversion, and intercentromeric deletion. Deletion or excision of one of the centromeres may be a significant occurrence in myeloid malignancy and other malignancies but has not previously been widely recognized, and our reports are the first describing centrom...

  11. CenH3 evolution reflects meiotic symmetry as predicted by the centromere drive model.

    Science.gov (United States)

    Zedek, František; Bureš, Petr

    2016-09-15

    The centromere drive model explaining rapid evolution of eukaryotic centromeres predicts higher frequency of positive selection acting on centromeric histone H3 (CenH3) in clades with asymmetric meiosis compared to the clades with only symmetric meiosis. However, despite the impression one might get from the literature, this key prediction of the centromere drive model has not only never been confirmed, but it has never been tested, because all the previous studies dealt only with the presence or absence instead of the frequency of positive selection. To provide evidence for or against different frequencies of positively selected CenH3 in asymmetrics and symmetrics, we have inferred the selective pressures acting on CenH3 in seventeen eukaryotic clades, including plants, animals, fungi, ciliates and apicomplexa, using codon-substitution models, and compared the inferred frequencies between asymmetrics and symmetrics in a quantitative manner. We have found that CenH3 has been evolving adaptively much more frequently in clades with asymmetric meiosis compared with clades displaying only symmetric meiosis which confirms the prediction of centromere drive model. Our findings indicate that the evolution of asymmetric meiosis required CenH3 to evolve adaptively more often to counterbalance the negative consequences of centromere drive.

  12. Identification of Drosophila centromere associated proteins by quantitative affinity purification-mass spectrometry

    Science.gov (United States)

    Barth, Teresa K.; Schade, Georg O.M.; Schmidt, Andreas; Vetter, Irene; Wirth, Marc; Heun, Patrick; Imhof, Axel; Thomae, Andreas W.

    2015-01-01

    Centromeres of higher eukaryotes are epigenetically defined by the centromere specific histone H3 variant CENP-ACID. CENP-ACID builds the foundation for the assembly of a large network of proteins. In contrast to mammalian systems, the protein composition of Drosophila centromeres has not been comprehensively investigated. Here we describe the proteome of Drosophila melanogaster centromeres as analyzed by quantitative affinity purification-mass spectrometry (AP-MS). The AP-MS input chromatin material was prepared from D. melanogaster cell lines expressing CENP-ACID or H3.3 fused to EGFP as baits. Centromere chromatin enriched proteins were identified based on their relative abundance in CENP-ACID–GFP compared to H3.3-GFP or mock affinity-purifications. The analysis yielded 86 proteins specifically enriched in centromere chromatin preparations. The data accompanying the manuscript on this approach (Barth et al., 2015, Proteomics 14:2167-78, DOI: 10.1002/pmic.201400052) has been deposited to the ProteomeXchange Consortium (http://www.proteomexchange.org) via the PRIDE partner repository with the dataset identifier PXD000758. PMID:26306323

  13. Nucleolar activity and CENP-C regulate CENP-A and CAL1 availability for centromere assembly in meiosis.

    Science.gov (United States)

    Kwenda, Lucretia; Collins, Caitriona M; Dattoli, Anna A; Dunleavy, Elaine M

    2016-04-15

    The centromere-specific histone CENP-A is the key epigenetic determinant of centromere identity. Whereas most histones are removed from mature sperm, CENP-A is retained to mark paternal centromeres. In Drosophila males we show that the centromere assembly factors CAL1 and CENP-C are required for meiotic chromosome segregation, CENP-A assembly and maintenance on sperm, as well as fertility. In meiosis, CENP-A accumulates with CAL1 in nucleoli. Furthermore, we show that CENP-C normally limits the release of CAL1 and CENP-A from nucleoli for proper centromere assembly in meiotic prophase I. Finally, we show that RNA polymerase I transcription is required for efficient CENP-A assembly in meiosis, as well as centromere tethering to nucleoli.

  14. Archaeal DNA replication.

    Science.gov (United States)

    Kelman, Lori M; Kelman, Zvi

    2014-01-01

    DNA replication is essential for all life forms. Although the process is fundamentally conserved in the three domains of life, bioinformatic, biochemical, structural, and genetic studies have demonstrated that the process and the proteins involved in archaeal DNA replication are more similar to those in eukaryal DNA replication than in bacterial DNA replication, but have some archaeal-specific features. The archaeal replication system, however, is not monolithic, and there are some differences in the replication process between different species. In this review, the current knowledge of the mechanisms governing DNA replication in Archaea is summarized. The general features of the replication process as well as some of the differences are discussed.

  15. Expression and prognostic relevance of centromere protein A in primary osteosarcoma.

    Science.gov (United States)

    Gu, Xiao-Min; Fu, Jie; Feng, Xiao-Jun; Huang, Xue; Wang, Shou-Mei; Chen, Xin-Feng; Zhu, Ming-Hua; Zhang, Shu-Hui

    2014-04-01

    Centromere protein A (CENP-A) is one of the fundamental components of the human active kinetochore and plays important roles in cell-cycle regulation, cell survival, and genetic stability. The aim of the present study was to explore the expression and prognostic significance of CENP-A in osteosarcoma. The results of real-time quantitative PCR and Western blotting analysis revealed an enhanced expression of CENP-A in osteosarcomas relative to adjacent non-tumorous bone tissues at both mRNA and protein levels. Immunohistochemically, 72 of the 123 osteosarcoma specimens (58.5%) had high expression of CENP-A. CENP-A overexpression was significantly correlated with tumor size (P=0.002), poor response to neoadjuvant chemotherapy (P=0.016), local recurrence/lung metastasis (P=0.001), high Ki-67 index (P=0.004), and P53 positivity (P=0.005). Median overall and recurrence-free survival time was significantly shorter in patients with high-CENP-A osteosarcomas than in those with low-CENP-A osteosarcomas. Multivariate analysis identified CENP-A as an independent poor prognostic factor for osteosarcoma. In conclusion, our results demonstrate that elevated CENP-A expression is significantly associated with osteosarcoma progression and has an independent prognostic value in predicting overall and recurrence-free survival for patients with osteosarcoma.

  16. A quantitative model of DNA replication in Xenopus embryos: reliable replication despite stochasticity

    Science.gov (United States)

    Cheng-Hsin Yang, Scott; Bechhoefer, John

    2008-03-01

    DNA synthesis in Xenopus frog embryos initiates stochastically in time at many sites (origins) along the chromosome. Stochastic initiation implies fluctuations in the replication time and may lead to cell death if replication takes longer than the cell cycle time (˜ 25 min.). Surprisingly, although the typical replication time is about 20 min., in vivo experiments show that replication fails to complete only about 1 in 250 times. How is replication timing accurately controlled despite the stochasticity? Biologists have proposed two mechanisms: the first uses a regular spatial distribution of origins, while the second uses randomly located origins but increases their probability of initiation as the cell cycle proceeds. Here, we show that both mechanisms yield similar end-time distributions, implying that regular origin spacing is not needed for control of replication time. Moreover, we show that the experimentally inferred time-dependent initiation rate satisfies the observed low failure probability and nearly optimizes the use of replicative proteins.

  17. The Role of Dicentric Chromosome Formation and Secondary Centromere Deletion in the Evolution of Myeloid Malignancy

    Directory of Open Access Journals (Sweden)

    Ruth N. MacKinnon

    2011-01-01

    Full Text Available Dicentric chromosomes have been identified as instigators of the genome instability associated with cancer, but this instability is often resolved by one of a number of different secondary events. These include centromere inactivation, inversion, and intercentromeric deletion. Deletion or excision of one of the centromeres may be a significant occurrence in myeloid malignancy and other malignancies but has not previously been widely recognized, and our reports are the first describing centromere deletion in cancer cells. We review what is known about dicentric chromosomes and the mechanisms by which they can undergo stabilization in both constitutional and cancer genomes. The failure to identify centromere deletion in cancer cells until recently can be partly explained by the standard approaches to routine diagnostic cancer genome analysis, which do not identify centromeres in the context of chromosome organization. This hitherto hidden group of primary dicentric, secondary monocentric chromosomes, together with other unrecognized dicentric chromosomes, points to a greater role for dicentric chromosomes in cancer initiation and progression than is generally acknowledged. We present a model that predicts and explains a significant role for dicentric chromosomes in the formation of unbalanced translocations in malignancy.

  18. A cytogenetic study of nuclear power plant workers using the micronucleus-centromere assay.

    Science.gov (United States)

    Thierens, H; Vral, A; Barbé, M; Aousalah, B; De Ridder, L

    1999-09-15

    A cytogenetic study was performed in 215 nuclear power plant workers occupationally exposed to radiation using the micronucleus-centromere assay for peripheral blood lymphocytes. As control population served administrative staff with yearly doses below 1 mSv. The increase of the micronucleus frequency with age, observed in the non-smoking control population, is mainly due to an enhanced number of centromere-positive micronuclei, pointing to an increased chromosome loss. No differences in the number of micronuclei, centromere-positive and centromere-negative micronuclei between smokers and non-smokers are observed. An analysis of the micronucleus data vs. the dose accumulated over the 10 years preceding the venepuncture shows no significant clastogenic or aneuploidogenic effects of the exposure in the studied population which is representative for workers in the nuclear industry at present. According to the linear fits to our data an increase of the micronucleus frequency pro rata 0.5 per 1000 binucleated cells per year, related to the centromere-negative micronuclei, may be expected for workers with the maximal tolerable dose of 20 mSv/year.

  19. Centromere-independent accumulation of cohesin at ectopic heterochromatin sites induces chromosome stretching during anaphase.

    Directory of Open Access Journals (Sweden)

    Raquel A Oliveira

    2014-10-01

    Full Text Available Pericentric heterochromatin, while often considered as "junk" DNA, plays important functions in chromosome biology. It contributes to sister chromatid cohesion, a process mediated by the cohesin complex that ensures proper genome segregation during nuclear division. Long stretches of heterochromatin are almost exclusively placed at centromere-proximal regions but it remains unclear if there is functional (or mechanistic importance in linking the sites of sister chromatid cohesion to the chromosomal regions that mediate spindle attachment (the centromere. Using engineered chromosomes in Drosophila melanogaster, we demonstrate that cohesin enrichment is dictated by the presence of heterochromatin rather than centromere proximity. This preferential accumulation is caused by an enrichment of the cohesin-loading factor (Nipped-B/NIPBL/Scc2 at dense heterochromatic regions. As a result, chromosome translocations containing ectopic pericentric heterochromatin embedded in euchromatin display additional cohesin-dependent constrictions. These ectopic cohesion sites, placed away from the centromere, disjoin abnormally during anaphase and chromosomes exhibit a significant increase in length during anaphase (termed chromatin stretching. These results provide evidence that long stretches of heterochromatin distant from the centromere, as often found in many cancers, are sufficient to induce abnormal accumulation of cohesin at these sites and thereby compromise the fidelity of chromosome segregation.

  20. The role of dicentric chromosome formation and secondary centromere deletion in the evolution of myeloid malignancy.

    Science.gov (United States)

    Mackinnon, Ruth N; Campbell, Lynda J

    2011-01-01

    Dicentric chromosomes have been identified as instigators of the genome instability associated with cancer, but this instability is often resolved by one of a number of different secondary events. These include centromere inactivation, inversion, and intercentromeric deletion. Deletion or excision of one of the centromeres may be a significant occurrence in myeloid malignancy and other malignancies but has not previously been widely recognized, and our reports are the first describing centromere deletion in cancer cells. We review what is known about dicentric chromosomes and the mechanisms by which they can undergo stabilization in both constitutional and cancer genomes. The failure to identify centromere deletion in cancer cells until recently can be partly explained by the standard approaches to routine diagnostic cancer genome analysis, which do not identify centromeres in the context of chromosome organization. This hitherto hidden group of primary dicentric, secondary monocentric chromosomes, together with other unrecognized dicentric chromosomes, points to a greater role for dicentric chromosomes in cancer initiation and progression than is generally acknowledged. We present a model that predicts and explains a significant role for dicentric chromosomes in the formation of unbalanced translocations in malignancy.

  1. The activity regulation of the mitotic centromere-associated kinesin by Polo-like kinase 1.

    Science.gov (United States)

    Ritter, Andreas; Sanhaji, Mourad; Steinhäuser, Kerstin; Roth, Susanne; Louwen, Frank; Yuan, Juping

    2015-03-30

    The mitotic centromere-associated kinesin (MCAK), a potent microtubule depolymerase, is involved in regulating microtubule dynamics. The activity and subcellular localization of MCAK are tightly regulated by key mitotic kinases, such as Polo-like kinase 1 (Plk1) by phosphorylating multiple residues in MCAK. Since Plk1 phosphorylates very often different residues of substrates at different stages, we have dissected individual phosphorylation of MCAK by Plk1 and characterized its function in more depth. We have recently shown that S621 in MCAK is the major phosphorylation site of Plk1, which is responsible for regulating MCAK's degradation by promoting the association of MCAK with APC/CCdc20. In the present study, we have addressed another two residues phosphorylated by Plk1, namely S632/S633 in the C-terminus of MCAK. Our data suggest that Plk1 phosphorylates S632/S633 and regulates its catalytic activity in mitosis. This phosphorylation is required for proper spindle assembly during early phases of mitosis. The subsequent dephosphorylation of S632/S633 might be necessary to timely align the chromosomes onto the metaphase plate. Therefore, our studies suggest new mechanisms by which Plk1 regulates MCAK: the degradation of MCAK is controlled by Plk1 phosphorylation on S621, whereas its activity is modulated by Plk1 phosphorylation on S632/S633 in mitosis.

  2. Development of new punch shape to replicate scale-up issues in laboratory tablet press II: a new design of punch head to emulate consolidation and dwell times in commercial tablet press.

    Science.gov (United States)

    Aoki, Shigeru; Uchiyama, Jumpei; Ito, Manabu

    2014-06-01

    Differences between laboratory and commercial tablet presses are frequently observed during scale-up of tableting process. These scale-up issues result from the differences in total compression time that is the sum of consolidation and dwell times. When a lubricated blend is compressed into tablets, the tablet thickness produced by the commercial tablet press is often thicker than that by a laboratory tablet press. A new punch shape design, designated as shape adjusted for scale-up (SAS), was developed and used to demonstrate the ability to replicate scale-up issues in commercial-scale tableting processes. It was found that the consolidation time can be slightly shortened by changing the vertical curvature of the conventional punch head rim. However, this approach is not enough to replicate the consolidation time. A secondary two-stage SAS punch design and an embossed punch head was designed to replicate the consolidation and dwell times on a laboratory tablet press to match those of a commercial tablet press. The resulting tablet thickness using this second SAS punch on a laboratory tablet press was thicker than when using a conventional punch in the same laboratory tablet press. The secondary SAS punches are more useful tools for replicating and understanding potential scale-up issues. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci.

  3. Formation of functional CENP-B boxes at diverse locations in repeat units of centromeric DNA in New World monkeys.

    Science.gov (United States)

    Kugou, Kazuto; Hirai, Hirohisa; Masumoto, Hiroshi; Koga, Akihiko

    2016-06-13

    Centromere protein B, which is involved in centromere formation, binds to centromeric repetitive DNA by recognizing a nucleotide motif called the CENP-B box. Humans have large numbers of CENP-B boxes in the centromeric repetitive DNA of their autosomes and X chromosome. The current understanding is that these CENP-B boxes are located at identical positions in the repeat units of centromeric DNA. Great apes also have CENP-B boxes in locations that are identical to humans. The purpose of the present study was to examine the location of CENP-B box in New World monkeys. We recently identified CENP-B box in one species of New World monkeys (marmosets). In this study, we found functional CENP-B boxes in CENP-A-assembled repeat units of centromeric DNA in 2 additional New World monkeys (squirrel monkeys and tamarins) by immunostaining and ChIP-qPCR analyses. The locations of the 3 CENP-B boxes in the repeat units differed from one another. The repeat unit size of centromeric DNA of New World monkeys (340-350 bp) is approximately twice that of humans and great apes (171 bp). This might be, associated with higher-order repeat structures of centromeric DNA, a factor for the observed variation in the CENP-B box location in New World monkeys.

  4. Physical Characterization of human centromeric regions using transformation-associated recombination cloning technology

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir Larionov, Ph D

    2007-06-05

    A special interest in the organization of human centromeric DNA was stimulated a few years ago when two independent groups succeeded in reconstituting a functional human centromere, using constructs carrying centromere-specific alphoid DNA arrays. This work demonstrated the importance of DNA components in mammalian centromeres and opened a way for studying the structural requirements for de novo kinetochore formation and for construction of human artificial chromosomes (HACs) with therapeutic potential. To elucidate the structural requirements for formation of HACs with a functional kinetochore, we developed a new method for cloning of large DNA fragments for human centromeric regions that can be used as a substrate for HAC formation. This method exploits in vivo recombination in yeast (TAR cloning). In addition, a new strategy for the construction of alphoid DNA arrays was developed in our lab. The strategy involves the construction of uniform or hybrid synthetic alphoid DNA arrays by the RCA-TAR technique. This technique comprises two steps: rolling circle amplification of an alphoid DNA dimer and subsequent assembling of the amplified fragments by in vivo homologous recombination in yeast (Figure 1). Using this system, we constructed a set of different synthetic alphoid DNA arrays with a predetermined sequence varying in size from 30 to 140 kb and demonstrated that some of the arrays are competent in HAC formation. Because any nucleotide can be changed in a dimer before its amplification, this new technique is optimal for identifying the structural requirements for de novo kinetochore formation in HACs. Moreover, the technique makes possible to introduce into alphoid DNA arrays recognition sites for DNA-binding proteins. We have made the following progress on the studying of human centromeric regions using transformation-associated recombination cloning technology: i) minimal size of alphoid DNA array required for de novo kinetochore formation was estimated; ii

  5. Recognition of the centromere-specific histone Cse4 by the chaperone Scm3

    OpenAIRE

    Cho, Uhn-Soo; Harrison, Stephen C.

    2011-01-01

    A specialized nucleosome is a component of all eukaryotic kinetochores. The core of this nucleosome contains a centromere-specific histone, CENP-A (the Cse4 gene product in budding yeast), instead of the usual H3. Assembly of a centromeric nucleosome depends on a specific chaperone, called Scm3 in yeast and HJURP in higher eukaryotes. We describe here the structure of a complex formed by an N-terminal fragment of Scm3 with the histone-fold domains of Cse4, and H4, all prepared as recombinant ...

  6. Replication of prions in differentiated muscle cells.

    Science.gov (United States)

    Herbst, Allen; Aiken, Judd M; McKenzie, Debbie

    2014-01-01

    We have demonstrated that prions accumulate to high levels in non-proliferative C2C12 myotubes. C2C12 cells replicate as myoblasts but can be differentiated into myotubes. Earlier studies indicated that C2C12 myoblasts are not competent for prion replication. (1) We confirmed that observation and demonstrated, for the first time, that while replicative myoblasts do not accumulate PrP(Sc), differentiated post-mitotic myotube cultures replicate prions robustly. Here we extend our observations and describe the implication and utility of this system for replicating prions.

  7. DNA replication and cancer

    DEFF Research Database (Denmark)

    Boyer, Anne-Sophie; Walter, David; Sørensen, Claus Storgaard

    2016-01-01

    A dividing cell has to duplicate its DNA precisely once during the cell cycle to preserve genome integrity avoiding the accumulation of genetic aberrations that promote diseases such as cancer. A large number of endogenous impacts can challenge DNA replication and cells harbor a battery of pathways...... to promote genome integrity during DNA replication. This includes suppressing new replication origin firing, stabilization of replicating forks, and the safe restart of forks to prevent any loss of genetic information. Here, we describe mechanisms by which oncogenes can interfere with DNA replication thereby...... causing DNA replication stress and genome instability. Further, we describe cellular and systemic responses to these insults with a focus on DNA replication restart pathways. Finally, we discuss the therapeutic potential of exploiting intrinsic replicative stress in cancer cells for targeted therapy....

  8. Inter-domain Cooperation in INCENP Promotes Aurora B Relocation from Centromeres to Microtubules

    Directory of Open Access Journals (Sweden)

    Armando van der Horst

    2015-07-01

    Full Text Available The chromosomal passenger complex is essential for error-free chromosome segregation and proper execution of cytokinesis. To coordinate nuclear division with cytoplasmic division, its enzymatic subunit, Aurora B, relocalizes from centromeres in metaphase to the spindle midzone in anaphase. In budding yeast, this requires dephosphorylation of the microtubule-binding (MTB domain of the INCENP analog Sli15. The mechanistic basis for this relocalization in metazoans is incompletely understood. We demonstrate that the putative coiled-coil domain within INCENP drives midzone localization of Aurora B via a direct, electrostatic interaction with microtubules. Furthermore, we provide evidence that the CPC multimerizes via INCENP’s centromere-targeting domain (CEN box, which increases the MTB affinity of INCENP. In (prometaphase, the MTB affinity of INCENP is outcompeted by the affinity of its CEN box for centromeres, while at anaphase onset—when the histone mark H2AT120 is dephosphorylated—INCENP and Aurora B switch from centromere to microtubule localization.

  9. Inter-domain Cooperation in INCENP Promotes Aurora B Relocation from Centromeres to Microtubules

    NARCIS (Netherlands)

    van der Horst, Armando; Vromans, Martijn J M; Bouwman, Kim; van der Waal, Maike S; Hadders, Michael A; Lens, Susanne M A; Lens, SMA

    2015-01-01

    The chromosomal passenger complex is essential for error-free chromosome segregation and proper execution of cytokinesis. To coordinate nuclear division with cytoplasmic division, its enzymatic subunit, Aurora B, relocalizes from centromeres in metaphase to the spindle midzone in anaphase. In buddin

  10. Mutations in ZBTB24 are associated with immunodeficiency, centromeric instability, and facial anomalies syndrome type 2

    NARCIS (Netherlands)

    Greef, J.C. de; Wang, J.; Balog, J.; Dunnen, J.T. den; Frants, R.R.; Straasheijm, K.R.; Aytekin, C.; Burg, M. van der; Duprez, L.; Ferster, A.; Gennery, A.R.; Gimelli, G.; Reisli, I.; Schuetz, C.; Schulz, A.; Smeets, D.F.C.M.; Sznajer, Y.; Wijmenga, C.; Eggermond, M.C. van; Ostaijen-ten Dam, M.M. van; Lankester, A.C.; Tol, M.J. van; Elsen, P.J. van den; Weemaes, C.M.R.; Maarel, S.M. van der

    2011-01-01

    Autosomal-recessive immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome is mainly characterized by recurrent, often fatal, respiratory and gastrointestinal infections. About 50% of patients carry mutations in the DNA methyltransferase 3B gene (DNMT3B) (ICF1). The remaining

  11. [Chromosomal organization of centromeric Ty3/gypsy retrotransposons in Allium cepa L. and Allium fistulosum L].

    Science.gov (United States)

    Kiseleva, A V; Kirov, I V; Khrustaleva, L I

    2014-06-01

    This is the first report on the presence of Ty3/gypsy-like retrotransposons in the centromeric region of Allium cepa and Allium fistulosum. The paper identifies the putative Ty3/gypsy centromeric retrotransposons (CR) among the DNA sequences of A. cepa present in the NCBI database and evaluates their copy number in the genomes of Allium cepa and Allium fistulosum. The putative copy number of Ty3/gypsy CR constituted about 26000 for A. cepa and about 7000 for A. fistulosum. The chromosomal organization of Ty3/gypsy CR was analyzed with the help of fluorescent in situ hybridization (FISH). The 300-bp PCR products synthesized with genomic DNA of Allium cepa and Allium fistulosum and primers designed for the sequence ET645811 of A. cepa (Genome Survey Sequence database), displaying similarity to the reverse transcriptase of the CR Ty3/gypsy family, served as FISH hybridization probes. On the chromosomes of A. cepa, hybridization signals were mainly localized in the centromeric region. On the chromosomes of A. fistulosum the signals were less expressed in the centromeric regions, though they were abundant in other chromosomal regions. The pathways of evolution in these closely related species are discussed.

  12. Novel Centromeric Loci of the Wine and Beer Yeast Dekkera bruxellensis CEN1 and CEN2

    DEFF Research Database (Denmark)

    Ishchuk, Olena P.; Vojvoda Zeljko, Tanja; Schifferdecker, Anna J.

    2016-01-01

    The wine and beer yeast Dekkera bruxellensis thrives in environments that are harsh and limiting, especially in concentrations with low oxygen and high ethanol. Its different strains' chromosomes greatly vary in number (karyotype). This study isolates two novel centromeric loci (CEN1 and CEN2...

  13. Survivin mediates targeting of the chromosomal passenger complex to the centromere and midbody

    NARCIS (Netherlands)

    Vader, G; Kauw, JJW; Medema, RH; Lens, SMA

    2006-01-01

    The chromosomal passenger complex (CPC) coordinates chromosomal and cytoskeletal events of mitosis. The enzymatic core of this complex (Aurora-B) is guided through the mitotic cell by its companion chromosomal passenger proteins, inner centromere protein (INCENP), Survivin and Borealin/Dasra-B, ther

  14. Correlation between centromere protein-F autoantibodies and cancer analyzed by enzyme-linked immunosorbent assay

    DEFF Research Database (Denmark)

    Welner, Simon; Trier, Nicole Hartwig; Morten Frisch, Morten

    2013-01-01

    Centromere protein-F (CENP-F) is a large nuclear protein of 367 kDa, which is involved in multiple mitosis-related events such as proper assembly of the kinetochores, stabilization of heterochromatin, chromosome alignment and mitotic checkpoint signaling. Several studies have shown a correlation...

  15. Loss of pRB causes centromere dysfunction and chromosomal instability.

    Science.gov (United States)

    Manning, Amity L; Longworth, Michelle S; Dyson, Nicholas J

    2010-07-01

    Chromosome instability (CIN) is a common feature of tumor cells. By monitoring chromosome segregation, we show that depletion of the retinoblastoma protein (pRB) causes rates of missegregation comparable with those seen in CIN tumor cells. The retinoblastoma tumor suppressor is frequently inactivated in human cancers and is best known for its regulation of the G1/S-phase transition. Recent studies have shown that pRB inactivation also slows mitotic progression and promotes aneuploidy, but reasons for these phenotypes are not well understood. Here we describe the underlying mitotic defects of pRB-deficient cells that cause chromosome missegregation. Analysis of mitotic cells reveals that pRB depletion compromises centromeric localization of CAP-D3/condensin II and chromosome cohesion, leading to an increase in intercentromeric distance and deformation of centromeric structure. These defects promote merotelic attachment, resulting in failure of chromosome congression and an increased propensity for lagging chromosomes following mitotic delay. While complete loss of centromere function or chromosome cohesion would have catastrophic consequences, these more moderate defects allow pRB-deficient cells to proliferate but undermine the fidelity of mitosis, leading to whole-chromosome gains and losses. These observations explain an important consequence of RB1 inactivation, and suggest that subtle defects in centromere function are a frequent source of merotely and CIN in cancer.

  16. Aurora B kinase controls the separation of centromeric and telomeric heterochromatin

    OpenAIRE

    Gachet, Yannick; Reyes, Celine; Tournier, Sylvie

    2015-01-01

    The segregation of chromosomes is coordinated at multiple levels to prevent chromosome loss, a phenotype frequently observed in cancers. We recently described an essential role for telomeres in the physical separation of chromosomes and identified Aurora B kinase as a double agent involved in the separation of centromeric and telomeric heterochromatin.

  17. Aurora B kinase controls the separation of centromeric and telomeric heterochromatin.

    Science.gov (United States)

    Gachet, Yannick; Reyes, Celine; Tournier, Sylvie

    2016-03-01

    The segregation of chromosomes is coordinated at multiple levels to prevent chromosome loss, a phenotype frequently observed in cancers. We recently described an essential role for telomeres in the physical separation of chromosomes and identified Aurora B kinase as a double agent involved in the separation of centromeric and telomeric heterochromatin.

  18. Characterization of centromeric histone H3 (CENH3 variants in cultivated and wild carrots (Daucus sp..

    Directory of Open Access Journals (Sweden)

    Frank Dunemann

    Full Text Available In eukaryotes, centromeres are the assembly sites for the kinetochore, a multi-protein complex to which spindle microtubules are attached at mitosis and meiosis, thereby ensuring segregation of chromosomes during cell division. They are specified by incorporation of CENH3, a centromere specific histone H3 variant which replaces canonical histone H3 in the nucleosomes of functional centromeres. To lay a first foundation of a putative alternative haploidization strategy based on centromere-mediated genome elimination in cultivated carrots, in the presented research we aimed at the identification and cloning of functional CENH3 genes in Daucus carota and three distantly related wild species of genus Daucus varying in basic chromosome numbers. Based on mining the carrot transcriptome followed by a subsequent PCR-based cloning, homologous coding sequences for CENH3s of the four Daucus species were identified. The ORFs of the CENH3 variants were very similar, and an amino acid sequence length of 146 aa was found in three out of the four species. Comparison of Daucus CENH3 amino acid sequences with those of other plant CENH3s as well as their phylogenetic arrangement among other dicot CENH3s suggest that the identified genes are authentic CENH3 homologs. To verify the location of the CENH3 protein in the kinetochore regions of the Daucus chromosomes, a polyclonal antibody based on a peptide corresponding to the N-terminus of DcCENH3 was developed and used for anti-CENH3 immunostaining of mitotic root cells. The chromosomal location of CENH3 proteins in the centromere regions of the chromosomes could be confirmed. For genetic localization of the CENH3 gene in the carrot genome, a previously constructed linkage map for carrot was used for mapping a CENH3-specific simple sequence repeat (SSR marker, and the CENH3 locus was mapped on the carrot chromosome 9.

  19. Transgenerational propagation and quantitative maintenance of paternal centromeres depends on Cid/Cenp-A presence in Drosophila sperm.

    Directory of Open Access Journals (Sweden)

    Nitika Raychaudhuri

    Full Text Available In Drosophila melanogaster, as in many animal and plant species, centromere identity is specified epigenetically. In proliferating cells, a centromere-specific histone H3 variant (CenH3, named Cid in Drosophila and Cenp-A in humans, is a crucial component of the epigenetic centromere mark. Hence, maintenance of the amount and chromosomal location of CenH3 during mitotic proliferation is important. Interestingly, CenH3 may have different roles during meiosis and the onset of embryogenesis. In gametes of Caenorhabditis elegans, and possibly in plants, centromere marking is independent of CenH3. Moreover, male gamete differentiation in animals often includes global nucleosome for protamine exchange that potentially could remove CenH3 nucleosomes. Here we demonstrate that the control of Cid loading during male meiosis is distinct from the regulation observed during the mitotic cycles of early embryogenesis. But Cid is present in mature sperm. After strong Cid depletion in sperm, paternal centromeres fail to integrate into the gonomeric spindle of the first mitosis, resulting in gynogenetic haploid embryos. Furthermore, after moderate depletion, paternal centromeres are unable to re-acquire normal Cid levels in the next generation. We conclude that Cid in sperm is an essential component of the epigenetic centromere mark on paternal chromosomes and it exerts quantitative control over centromeric Cid levels throughout development. Hence, the amount of Cid that is loaded during each cell cycle appears to be determined primarily by the preexisting centromeric Cid, with little flexibility for compensation of accidental losses.

  20. Esperanto for histones: CENP-A, not CenH3, is the centromeric histone H3 variant.

    Science.gov (United States)

    Earnshaw, W C; Allshire, R C; Black, B E; Bloom, K; Brinkley, B R; Brown, W; Cheeseman, I M; Choo, K H A; Copenhaver, G P; Deluca, J G; Desai, A; Diekmann, S; Erhardt, S; Fitzgerald-Hayes, M; Foltz, D; Fukagawa, T; Gassmann, R; Gerlich, D W; Glover, D M; Gorbsky, G J; Harrison, S C; Heun, P; Hirota, T; Jansen, L E T; Karpen, G; Kops, G J P L; Lampson, M A; Lens, S M; Losada, A; Luger, K; Maiato, H; Maddox, P S; Margolis, R L; Masumoto, H; McAinsh, A D; Mellone, B G; Meraldi, P; Musacchio, A; Oegema, K; O'Neill, R J; Salmon, E D; Scott, K C; Straight, A F; Stukenberg, P T; Sullivan, B A; Sullivan, K F; Sunkel, C E; Swedlow, J R; Walczak, C E; Warburton, P E; Westermann, S; Willard, H F; Wordeman, L; Yanagida, M; Yen, T J; Yoda, K; Cleveland, D W

    2013-04-01

    The first centromeric protein identified in any species was CENP-A, a divergent member of the histone H3 family that was recognised by autoantibodies from patients with scleroderma-spectrum disease. It has recently been suggested to rename this protein CenH3. Here, we argue that the original name should be maintained both because it is the basis of a long established nomenclature for centromere proteins and because it avoids confusion due to the presence of canonical histone H3 at centromeres.

  1. Regulation of beta cell replication

    DEFF Research Database (Denmark)

    Lee, Ying C; Nielsen, Jens Høiriis

    2008-01-01

    Beta cell mass, at any given time, is governed by cell differentiation, neogenesis, increased or decreased cell size (cell hypertrophy or atrophy), cell death (apoptosis), and beta cell proliferation. Nutrients, hormones and growth factors coupled with their signalling intermediates have been...... suggested to play a role in beta cell mass regulation. In addition, genetic mouse model studies have indicated that cyclins and cyclin-dependent kinases that determine cell cycle progression are involved in beta cell replication, and more recently, menin in association with cyclin-dependent kinase...... inhibitors has been demonstrated to be important in beta cell growth. In this review, we consider and highlight some aspects of cell cycle regulation in relation to beta cell replication. The role of cell cycle regulation in beta cell replication is mostly from studies in rodent models, but whether...

  2. Spatial regulation and organization of DNA replication within the nucleus

    OpenAIRE

    2009-01-01

    Duplication of chromosomal DNA is a temporally and spatially regulated process. The timing of DNA replication initiation at various origins is highly coordinated; some origins fire early and others late during S phase. Moreover, inside the nuclei, the bulk of DNA replication is physically organized in replication factories, consisting of DNA polymerases and other replication proteins. In this review article, we discuss how DNA replication is organized and regulated spatially within the nucleu...

  3. Spatial regulation and organization of DNA replication within the nucleus.

    Science.gov (United States)

    Natsume, Toyoaki; Tanaka, Tomoyuki U

    2010-01-01

    Duplication of chromosomal DNA is a temporally and spatially regulated process. The timing of DNA replication initiation at various origins is highly coordinated; some origins fire early and others late during S phase. Moreover, inside the nuclei, the bulk of DNA replication is physically organized in replication factories, consisting of DNA polymerases and other replication proteins. In this review article, we discuss how DNA replication is organized and regulated spatially within the nucleus and how this spatial organization is linked to temporal regulation. We focus on DNA replication in budding yeast and fission yeast and, where applicable, compare yeast DNA replication with that in bacteria and metazoans.

  4. Chromosome replication and segregation in bacteria.

    Science.gov (United States)

    Reyes-Lamothe, Rodrigo; Nicolas, Emilien; Sherratt, David J

    2012-01-01

    In dividing cells, chromosome duplication once per generation must be coordinated with faithful segregation of newly replicated chromosomes and with cell growth and division. Many of the mechanistic details of bacterial replication elongation are well established. However, an understanding of the complexities of how replication initiation is controlled and coordinated with other cellular processes is emerging only slowly. In contrast to eukaryotes, in which replication and segregation are separate in time, the segregation of most newly replicated bacterial genetic loci occurs sequentially soon after replication. We compare the strategies used by chromosomes and plasmids to ensure their accurate duplication and segregation and discuss how these processes are coordinated spatially and temporally with growth and cell division. We also describe what is known about the three conserved families of ATP-binding proteins that contribute to chromosome segregation and discuss their inter-relationships in a range of disparate bacteria.

  5. Genetic and physical mapping of two centromere-proximal regions of chromosome IV in Aspergillus nidulans

    DEFF Research Database (Denmark)

    Aleksenko, Alexei Y.; Nielsen, Michael Lynge; Clutterbuck, A.J.

    2001-01-01

    The centromere-proximal portion of the chromosome was mapped physically using overlapping clones of a cosmid genomic library. Two contiguous segments of a physical map, based on restriction mapping of cosmid clones, were generated, together covering more than 0.4 Mb DNA. A reverse genetic mapping...... approach was used to establish a correlation between physical and genetic maps; i,e., marker genes were integrated into physically mapped segments and subsequently mapped by mitotic and meiotic recombination. The resulting data, together with additional classical genetic mapping, lead to a substantial...... revision of the genetic map of the chromosome, including the position of the centromere, Comparison of physical and genetic maps indicates that meiotic recombination is low in subcentromeric DNA, its frequency being reduced from 1 crossover per 0.8 Mb to approximately 1 crossover per 5 Mb per meiosis...

  6. Replicating animal mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Emily A. McKinney

    2013-01-01

    Full Text Available The field of mitochondrial DNA (mtDNA replication has been experiencing incredible progress in recent years, and yet little is certain about the mechanism(s used by animal cells to replicate this plasmid-like genome. The long-standing strand-displacement model of mammalian mtDNA replication (for which single-stranded DNA intermediates are a hallmark has been intensively challenged by a new set of data, which suggests that replication proceeds via coupled leading-and lagging-strand synthesis (resembling bacterial genome replication and/or via long stretches of RNA intermediates laid on the mtDNA lagging-strand (the so called RITOLS. The set of proteins required for mtDNA replication is small and includes the catalytic and accessory subunits of DNA polymerase y, the mtDNA helicase Twinkle, the mitochondrial single-stranded DNA-binding protein, and the mitochondrial RNA polymerase (which most likely functions as the mtDNA primase. Mutations in the genes coding for the first three proteins are associated with human diseases and premature aging, justifying the research interest in the genetic, biochemical and structural properties of the mtDNA replication machinery. Here we summarize these properties and discuss the current models of mtDNA replication in animal cells.

  7. Posttranslational modification of CENP-A influences the conformation of centromeric chromatin.

    Science.gov (United States)

    Bailey, Aaron O; Panchenko, Tanya; Sathyan, Kizhakke M; Petkowski, Janusz J; Pai, Pei-Jing; Bai, Dina L; Russell, David H; Macara, Ian G; Shabanowitz, Jeffrey; Hunt, Donald F; Black, Ben E; Foltz, Daniel R

    2013-07-16

    Centromeres are chromosomal loci required for accurate segregation of sister chromatids during mitosis. The location of the centromere on the chromosome is not dependent on DNA sequence, but rather it is epigenetically specified by the histone H3 variant centromere protein A (CENP-A). The N-terminal tail of CENP-A is highly divergent from other H3 variants. Canonical histone N termini are hotspots of conserved posttranslational modification; however, no broadly conserved modifications of the vertebrate CENP-A tail have been previously observed. Here, we report three posttranslational modifications on human CENP-A N termini using high-resolution MS: trimethylation of Gly1 and phosphorylation of Ser16 and Ser18. Our results demonstrate that CENP-A is subjected to constitutive initiating methionine removal, similar to other H3 variants. The nascent N-terminal residue Gly1 becomes trimethylated on the α-amino group. We demonstrate that the N-terminal RCC1 methyltransferase is capable of modifying the CENP-A N terminus. Methylation occurs in the prenucleosomal form and marks the majority of CENP-A nucleosomes. Serine 16 and 18 become phosphorylated in prenucleosomal CENP-A and are phosphorylated on asynchronous and mitotic nucleosomal CENP-A and are important for chromosome segregation during mitosis. The double phosphorylation motif forms a salt-bridged secondary structure and causes CENP-A N-terminal tails to form intramolecular associations. Analytical ultracentrifugation of phospho-mimetic CENP-A nucleosome arrays demonstrates that phosphorylation results in greater intranucleosome associations and counteracts the hyperoligomerized state exhibited by unmodified CENP-A nucleosome arrays. Our studies have revealed that the major modifications on the N-terminal tail of CENP-A alter the physical properties of the chromatin fiber at the centromere.

  8. Promiscuous stimulation of ParF protein polymerization by heterogeneous centromere binding factors.

    Science.gov (United States)

    Machón, Cristina; Fothergill, Timothy J G; Barillà, Daniela; Hayes, Finbarr

    2007-11-16

    The segrosome is the nucleoprotein complex that mediates accurate segregation of bacterial plasmids. The segrosome of plasmid TP228 comprises ParF and ParG proteins that assemble on the parH centromere. ParF, which exemplifies one clade of the ubiquitous ParA superfamily of segregation proteins, polymerizes extensively in response to ATP binding. Polymerization is modulated by the ParG centromere binding factor (CBF). The segrosomes of plasmids pTAR, pVT745 and pB171 include ParA homologues of the ParF subgroup, as well as diverse homodimeric CBFs with no primary sequence similarity to ParG, or each other. Centromere binding by these analogues is largely specific. Here, we establish that the ParF homologues of pTAR and pB171 filament modestly with ATP, and that nucleotide hydrolysis is not required for this polymerization, which is more prodigious when the cognate CBF is also present. By contrast, the ParF homologue of plasmid pVT745 did not respond appreciably to ATP alone, but polymerized extensively in the presence of both its cognate CBF and ATP. The co-factors also stimulated nucleotide-independent polymerization of cognate ParF proteins. Moreover, apart from the CBF of pTAR, the disparate ParG analogues promoted polymerization of non-cognate ParF proteins suggesting that filamentation of the ParF proteins is enhanced by a common mechanism. Like ParG, the co-factors may be modular, possessing a centromere-specific interaction domain linked to a flexible region containing determinants that promiscuously stimulate ParF polymerization. The CBFs appear to function as bacterial analogues of formins, microtubule-associated proteins or related ancillary factors that regulate eucaryotic cytoskeletal dynamics.

  9. Identification of a centromeric exchange of acrocentric chromosomes by fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Yu, C.W.; Immken, L.; Curry, C.J.R. [UCSF, Fresno, CA (United States)] [and others

    1994-09-01

    Exchanges of the peri-centromeric area of acrocentric chromosomes are difficult to identify using the conventional cytogenetic techniques. Fluorescence in situ hybridization (FISH) provides a new way for precisely identifying such rearrangements. Here we report a case of centromeric rearrangement in an amniotic fluid specimen with an extra marker chromosome. M.G., a 41-year-old G1, was referred for advanced maternal age. Chromosome studies revealed a 47,XX +mar karyotype. The marker appeared to be bi-satallited with a single C band. Chromosome studies from the parents were normal. The parents elected to terminate the pregnancy. Anatomical examination of the abortus revealed a very short neck, posteriorly rotated ears, high set cecum, absent hepatic lobation and low abdominal kidneys with short ureters. FISH studies with alpha-satellite probes of 13/21, 14/22, and 15, and the DiGeorge probe, indicated that there is a translocation of 21 alpha-satellite to the 22, and that the marker chromosome probably consists of 14/22 alpha-satellite material. FISH analysis of the parents chromosome revealed that father had the translocation of 21 alpha-satellite to the 22 as well. Exchanges of centromeric material among the acrocentric chromosomes may not be an uncommon event in humans. Although it probably has no clinical significance, it may result in non-disjunction or marker chromosome formation from an uncommon satellite association. With the use of FISH techniques, exchanges involving the centromeric regions of acrocentric chromosomes can be identified.

  10. A stable acentric marker chromosome: Possible existence of an intercalary ancient centromere at distal 8p

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Hirofumi; Fukushima, Yoshimitsu; Wakui, Keiko; Ogawa, Kioyshi [Saitama Children`s Medical Center, Iwatsuki (Japan); Okano, Tetsuroh [Kitazato Univ., Tokyo (Japan); Niikawa, Norio [Nagasaki Univ. School of Medicine (Japan)

    1994-12-01

    A centromere is considered to be an essential chromosomal component where microtubule-kinetochore interaction occurs to segregate sister chromatids faithfully and acentric chromosomes are unstable and lost through cell divisions. We report a novel marker chromosome that was acentric but stable through cell divisions. The patient was a 2-year-old girl with mental retardation, patent ductus arteriosus, and mild dysmorphic features. G-banded chromosome analysis revealed that an additional small marker chromosome was observed in all 100 cells examined. By the reverse-chromosome-painting method, the marker was found to originate from the distal region of 8p, and a subsequent two-color FISH analysis with cosmid probes around the region revealed that the marker was an inverted duplication interpreted as 8pter {yields} p23.1::p23.1 {yields} 8pter. No centromeric region was involved in the marker. By FISH, no {alpha}-satellite sequence was detected on the marker, while a telomere sequence was detected at each end. Anti-kinetochore immunostaining, using a serum from a patient with CREST (calcinosis, Raynaud syndrome, esophageal dismotility, sclerodactyly, and telangiectasia) syndrome, showed a pair of signals on the marker, which indicated that a functional kinetochore was present on the marker. The analysis of this patient might suggest the possibility that an ancient centromere sequence exists at distal 8p (8p23.1-pter) and was activated through the chromosome rearrangement in the patient.

  11. Centromere binding and a conserved role in chromosome stability for SUMO-dependent ubiquitin ligases.

    Directory of Open Access Journals (Sweden)

    Loes A L van de Pasch

    Full Text Available The Saccharomyces cerevisiae Slx5/8 complex is the founding member of a recently defined class of SUMO-targeted ubiquitin ligases (STUbLs. Slx5/8 has been implicated in genome stability and transcription, but the precise contribution is unclear. To characterise Slx5/8 function, we determined genome-wide changes in gene expression upon loss of either subunit. The majority of mRNA changes are part of a general stress response, also exhibited by mutants of other genome integrity pathways and therefore indicative of an indirect effect on transcription. Genome-wide binding analysis reveals a uniquely centromeric location for Slx5. Detailed phenotype analyses of slx5Δ and slx8Δ mutants show severe mitotic defects that include aneuploidy, spindle mispositioning, fish hooks and aberrant spindle kinetics. This is associated with accumulation of the PP2A regulatory subunit Rts1 at centromeres prior to entry into anaphase. Knockdown of the human STUbL orthologue RNF4 also results in chromosome segregation errors due to chromosome bridges. The study shows that STUbLs have a conserved role in maintenance of chromosome stability and links SUMO-dependent ubiquitination to a centromere-specific function during mitosis.

  12. Shearing of the CENP-A dimerization interface mediates plasticity in the octameric centromeric nucleosome.

    Science.gov (United States)

    Winogradoff, David; Zhao, Haiqing; Dalal, Yamini; Papoian, Garegin A

    2015-11-25

    The centromeric nucleosome is a key epigenetic determinant of centromere identity and function. Consequently, deciphering how CENP-A containing nucleosomes contribute structurally to centromere function is a fundamental question in chromosome biology. Here, we performed microsecond timescale all-atom molecular dynamics (MD) simulations of CENP-A and H3 nucleosomes, and report that the octameric CENP-A core particles and nucleosomes display different dynamics from their canonical H3-containing counterparts. The most significant motion observed is within key interactions at the heart of the CENP-A octameric core, wherein shearing of contacts within the CENP-A:CENP-A' dimerization interface results in a weaker four helix bundle, and an extrusion of 10-30 bp of DNA near the pseudo-dyad. Coupled to other local and global fluctuations, the CENP-A nucleosome occupies a more rugged free energy landscape than the canonical H3 nucleosome. Taken together, our data suggest that CENP-A encodes enhanced distortability to the octameric nucleosome, which may allow for enhanced flexing of the histone core in vivo.

  13. ParB Partition Proteins: Complex Formation and Spreading at Bacterial and Plasmid Centromeres

    Directory of Open Access Journals (Sweden)

    Barbara Funnell

    2016-08-01

    Full Text Available In bacteria, active partition systems contribute to the faithful segregation of both chromosomes and low-copy-number plasmids. Each system depends on a site-specific DNA binding protein to recognize and assemble a partition complex at a centromere-like site, commonly called parS. Many plasmid and all chromosomal centromere-binding proteins are dimeric helix-turn-helix DNA binding proteins, which are commonly named ParB. Although the overall sequence conservation among ParBs is not high, the proteins share similar domain and functional organization, and they assemble into similar higher-order complexes. In vivo, ParBs spread; that is, DNA binding extends away from the parS site into the surrounding nonspecific DNA, a feature that reflects higher-order complex assembly. ParBs bridge and pair DNA at parS and nonspecific DNA sites. ParB dimers interact with each other via flexible conformations of an N-terminal region. This review will focus on the properties of the HTH centromere-binding protein, in light of recent experimental evidence and models that are adding to our understanding of how these proteins assemble into large and dynamic partition complexes at and around their specific DNA sites.

  14. Mapping autonomously replicating sequence elements in a 73-kb region of chromosome II of the fission yeast, Schizosaccharomyces pombe

    Indian Academy of Sciences (India)

    Vinay Kumar Srivastava; Dharani Dhar Dubey

    2007-08-01

    Autonomously replicating sequence (ARS) elements are the genetic determinants of replication origin function in yeasts. They can be easily identified as the plasmids containing them transform yeast cells at a high frequency. As the first step towards identifying all potential replication origins in a 73-kb region of the long arm of fission yeast chromosome II, we have mapped five new ARS elements using systematic subcloning and transformation assay. 2D analysis of one of the ARS plasmids that showed highest transformation frequency localized the replication origin activity within the cloned genomic DNA. All the new ARS elements are localized in two clusters in centromere proximal 40 kb of the region. The presence of at least six ARS elements, including the previously reported ars727, is suggestive of a higher origin density in this region than that predicted earlier using a computer based search.

  15. How frog embryos replicate their DNA reliably

    Science.gov (United States)

    Bechhoefer, John; Marshall, Brandon

    2007-03-01

    Frog embryos contain three billion base pairs of DNA. In early embryos (cycles 2-12), DNA replication is extremely rapid, about 20 min., and the entire cell cycle lasts only 25 min., meaning that mitosis (cell division) takes place in about 5 min. In this stripped-down cell cycle, there are no efficient checkpoints to prevent the cell from dividing before its DNA has finished replication - a disastrous scenario. Even worse, the many origins of replication are laid down stochastically and are also initiated stochastically throughout the replication process. Despite the very tight time constraints and despite the randomness introduced by origin stochasticity, replication is extremely reliable, with cell division failing no more than once in 10,000 tries. We discuss a recent model of DNA replication that is drawn from condensed-matter theories of 1d nucleation and growth. Using our model, we discuss different strategies of replication: should one initiate all origins as early as possible, or is it better to hold back and initiate some later on? Using concepts from extreme-value statistics, we derive the distribution of replication times given a particular scenario for the initiation of origins. We show that the experimentally observed initiation strategy for frog embryos meets the reliability constraint and is close to the one that requires the fewest resources of a cell.

  16. Modeling DNA Replication.

    Science.gov (United States)

    Bennett, Joan

    1998-01-01

    Recommends the use of a model of DNA made out of Velcro to help students visualize the steps of DNA replication. Includes a materials list, construction directions, and details of the demonstration using the model parts. (DDR)

  17. Abiotic self-replication.

    Science.gov (United States)

    Meyer, Adam J; Ellefson, Jared W; Ellington, Andrew D

    2012-12-18

    The key to the origins of life is the replication of information. Linear polymers such as nucleic acids that both carry information and can be replicated are currently what we consider to be the basis of living systems. However, these two properties are not necessarily coupled. The ability to mutate in a discrete or quantized way, without frequent reversion, may be an additional requirement for Darwinian evolution, in which case the notion that Darwinian evolution defines life may be less of a tautology than previously thought. In this Account, we examine a variety of in vitro systems of increasing complexity, from simple chemical replicators up to complex systems based on in vitro transcription and translation. Comparing and contrasting these systems provides an interesting window onto the molecular origins of life. For nucleic acids, the story likely begins with simple chemical replication, perhaps of the form A + B → T, in which T serves as a template for the joining of A and B. Molecular variants capable of faster replication would come to dominate a population, and the development of cycles in which templates could foster one another's replication would have led to increasingly complex replicators and from thence to the initial genomes. The initial genomes may have been propagated by RNA replicases, ribozymes capable of joining oligonucleotides and eventually polymerizing mononucleotide substrates. As ribozymes were added to the genome to fill gaps in the chemistry necessary for replication, the backbone of a putative RNA world would have emerged. It is likely that such replicators would have been plagued by molecular parasites, which would have been passively replicated by the RNA world machinery without contributing to it. These molecular parasites would have been a major driver for the development of compartmentalization/cellularization, as more robust compartments could have outcompeted parasite-ridden compartments. The eventual outsourcing of metabolic

  18. Adenovirus DNA Replication

    OpenAIRE

    Hoeben, Rob C.; Uil, Taco G.

    2013-01-01

    Adenoviruses have attracted much attention as probes to study biological processes such as DNA replication, transcription, splicing, and cellular transformation. More recently these viruses have been used as gene-transfer vectors and oncolytic agents. On the other hand, adenoviruses are notorious pathogens in people with compromised immune functions. This article will briefly summarize the basic replication strategy of adenoviruses and the key proteins involved and will deal with the new deve...

  19. Identification and Preliminary Analysis of Several Centromere-associated Bacterial Artificial Chromosome Clones from a Diploid Wheat Library

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Although the centromeres of some plants have been investigated previously, our knowledge of the wheat centromere is still very limited. To understand the structure and function of the wheat centromere, we used two centromeric repeats (RCS1 and CCS1-5ab) to obtain some centromere-associated bacterial artificial chromosome (BAC) clones in 32 RCS1-related BAC clones that had been screened out from a diploid wheat (Triticum boeoticum Boiss.; 2n=2x=14) BAC library. Southern hybridization results indicated that, of the 32 candidates,there were 28 RCS1-positive clones. Based on gel blot patterns, the frequency of RCS1 was approximately one copy every 69.4 kb in these 28 RCS1-positive BAC clones. More bands were detected when the same filter was probed with CCS1-5ab. Furthermore, the CCS1 bands covered all the bands detected by RCS1, which suggests that some CCS1 repeats were distributed together with RCS1. The frequency of CCS1 families was once every 35.8 kb, nearly twice that of RCS1. Fluorescence in situ hybridization (FISH) analysis indicated that the five BAC clones containing RCS1 and CCS1 sequences all detected signals at the centromeric regions in hexaploid wheat, but the signal intensities on the A-genome chromosomes were stronger than those on the B- and/or D-genome chromosomes. The FISH analysis among nine Triticeae cereals indicated that there were A-genomespecific (or rich) sequences dispersing on chromosome arms in the BAC clone TbBAC5. In addition, at the interphase cells, the centromeres of diploid species usually clustered at one pole and formed a ring-like allocation in the period before metaphase.

  20. A transcription and translation-coupled DNA replication system using rolling-circle replication.

    Science.gov (United States)

    Sakatani, Yoshihiro; Ichihashi, Norikazu; Kazuta, Yasuaki; Yomo, Tetsuya

    2015-05-27

    All living organisms have a genome replication system in which genomic DNA is replicated by a DNA polymerase translated from mRNA transcribed from the genome. The artificial reconstitution of this genome replication system is a great challenge in in vitro synthetic biology. In this study, we attempted to construct a transcription- and translation-coupled DNA replication (TTcDR) system using circular genomic DNA encoding phi29 DNA polymerase and a reconstituted transcription and translation system. In this system, phi29 DNA polymerase was translated from the genome and replicated the genome in a rolling-circle manner. When using a traditional translation system composition, almost no DNA replication was observed, because the tRNA and nucleoside triphosphates included in the translation system significantly inhibited DNA replication. To minimize these inhibitory effects, we optimized the composition of the TTcDR system and improved replication by approximately 100-fold. Using our system, genomic DNA was replicated up to 10 times in 12 hours at 30 °C. This system provides a step toward the in vitro construction of an artificial genome replication system, which is a prerequisite for the construction of an artificial cell.

  1. Completion of DNA replication in Escherichia coli.

    Science.gov (United States)

    Wendel, Brian M; Courcelle, Charmain T; Courcelle, Justin

    2014-11-18

    The mechanism by which cells recognize and complete replicated regions at their precise doubling point must be remarkably efficient, occurring thousands of times per cell division along the chromosomes of humans. However, this process remains poorly understood. Here we show that, in Escherichia coli, the completion of replication involves an enzymatic system that effectively counts pairs and limits cellular replication to its doubling point by allowing converging replication forks to transiently continue through the doubling point before the excess, over-replicated regions are incised, resected, and joined. Completion requires RecBCD and involves several proteins associated with repairing double-strand breaks including, ExoI, SbcDC, and RecG. However, unlike double-strand break repair, completion occurs independently of homologous recombination and RecA. In some bacterial viruses, the completion mechanism is specifically targeted for inactivation to allow over-replication to occur during lytic replication. The results suggest that a primary cause of genomic instabilities in many double-strand-break-repair mutants arises from an impaired ability to complete replication, independent from DNA damage.

  2. Minichromosome replication in vitro: inhibition of re-replication by replicatively assembled nucleosomes.

    Science.gov (United States)

    Krude, T; Knippers, R

    1994-08-19

    Single-stranded circular DNA, containing the SV40 origin sequence, was used as a template for complementary DNA strand synthesis in cytosolic extracts from HeLa cells. In the presence of the replication-dependent chromatin assembly factor CAF-1, defined numbers of nucleosomes were assembled during complementary DNA strand synthesis. These minichromosomes were then induced to semiconservatively replicate by the addition of the SV40 initiator protein T antigen (re-replication). The results indicate that re-replication of minichromosomes appears to be inhibited by two independent mechanisms. One acts at the initiation of minichromosome re-replication, and the other affects replicative chain elongation. To directly demonstrate the inhibitory effect of replicatively assembled nucleosomes, two types of minichromosomes were prepared: (i) post-replicative minichromosomes were assembled in a reaction coupled to replication as above; (ii) pre-replicative minichromosomes were assembled independently of replication on double-stranded DNA. Both types of minichromosomes were used as templates for DNA replication under identical conditions. Replicative fork movement was found to be impeded only on post-replicative minichromosome templates. In contrast, pre-replicative minichromosomes allowed one unconstrained replication cycle, but re-replication was inhibited due to a block in fork movement. Thus, replicatively assembled chromatin may have a profound influence on the re-replication of DNA.

  3. Mechanism of chromosomal DNA replication initiation and replication fork stabilization in eukaryotes.

    Science.gov (United States)

    Wu, LiHong; Liu, Yang; Kong, DaoChun

    2014-05-01

    Chromosomal DNA replication is one of the central biological events occurring inside cells. Due to its large size, the replication of genomic DNA in eukaryotes initiates at hundreds to tens of thousands of sites called DNA origins so that the replication could be completed in a limited time. Further, eukaryotic DNA replication is sophisticatedly regulated, and this regulation guarantees that each origin fires once per S phase and each segment of DNA gets duplication also once per cell cycle. The first step of replication initiation is the assembly of pre-replication complex (pre-RC). Since 1973, four proteins, Cdc6/Cdc18, MCM, ORC and Cdt1, have been extensively studied and proved to be pre-RC components. Recently, a novel pre-RC component called Sap1/Girdin was identified. Sap1/Girdin is required for loading Cdc18/Cdc6 to origins for pre-RC assembly in the fission yeast and human cells, respectively. At the transition of G1 to S phase, pre-RC is activated by the two kinases, cyclindependent kinase (CDK) and Dbf4-dependent kinase (DDK), and subsequently, RPA, primase-polα, PCNA, topoisomerase, Cdc45, polδ, and polɛ are recruited to DNA origins for creating two bi-directional replication forks and initiating DNA replication. As replication forks move along chromatin DNA, they frequently stall due to the presence of a great number of replication barriers on chromatin DNA, such as secondary DNA structures, protein/DNA complexes, DNA lesions, gene transcription. Stalled forks must require checkpoint regulation for their stabilization. Otherwise, stalled forks will collapse, which results in incomplete DNA replication and genomic instability. This short review gives a concise introduction regarding the current understanding of replication initiation and replication fork stabilization.

  4. Dynamic replication of Web contents

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The phenomenal growth of the World Wide Web has brought huge increase in the traffic to the popular web sites.Long delays and denial of service experienced by the end-users,especially during the peak hours,continues to be the common problem while accessing popular sites.Replicating some of the objects at multiple sites in a distributed web-server environment is one of the possible solutions to improve the response time/Iatency. The decision of what and where to replicate requires solving a constraint optimization problem,which is NP-complete in general.In this paper, we consider the problem of placing copies of objects in a distributed web server system to minimize the cost of serving read and write requests when the web servers have Iimited storage capacity.We formulate the problem as a 0-1 optimization problem and present a polynomial time greedy algorithm with backtracking to dynamically replicate objects at the appropriate sites to minimize a cost function.To reduce the solution search space,we present necessary condi tions for a site to have a replica of an object jn order to minimize the cost function We present simulation resuIts for a variety of problems to illustrate the accuracy and efficiency of the proposed algorithms and compare them with those of some well-known algorithms.The simulation resuIts demonstrate the superiority of the proposed algorithms.

  5. Schmallenberg virus circulation in culicoides in Belgium in 2012: field validation of a real time RT-PCR approach to assess virus replication and dissemination in midges.

    Directory of Open Access Journals (Sweden)

    Nick De Regge

    Full Text Available Indigenous Culicoides biting midges are suggested to be putative vectors for the recently emerged Schmallenberg virus (SBV based on SBV RNA detection in field-caught midges. Furthermore, SBV replication and dissemination has been evidenced in C. sonorensis under laboratory conditions. After SBV had been detected in Culicoides biting midges from Belgium in August 2011, it spread all over the country by the end of 2011, as evidenced by very high between-herd seroprevalence rates in sheep and cattle. This study investigated if a renewed SBV circulation in midges occurred in 2012 in the context of high seroprevalence in the animal host population and evaluated if a recently proposed realtime RT-PCR approach that is meant to allow assessing the vector competence of Culicoides for SBV and bluetongue virus under laboratory conditions was applicable to field-caught midges. Therefore midges caught with 12 OVI traps in four different regions in Belgium between May and November 2012, were morphologically identified, age graded, pooled and tested for the presence of SBV RNA by realtime RT-PCR. The results demonstrate that although no SBV could be detected in nulliparous midges caught in May 2012, a renewed but short lived circulation of SBV in parous midges belonging to the subgenus Avaritia occured in August 2012 at all four regions. The infection prevalence reached up to 2.86% in the south of Belgium, the region where a lower seroprevalence was found at the end of 2011 than in the rest of the country. Furthermore, a frequency analysis of the Ct values obtained for 31 SBV-S segment positive pools of Avaritia midges showed a clear bimodal distribution with peaks of Ct values between 21-24 and 33-36. This closely resembles the laboratory results obtained for SBV infection of C. sonorensis and implicates indigenous midges belonging to the subgenus Avaritia as competent vectors for SBV.

  6. Schmallenberg virus circulation in culicoides in Belgium in 2012: field validation of a real time RT-PCR approach to assess virus replication and dissemination in midges.

    Science.gov (United States)

    De Regge, Nick; Madder, Maxime; Deblauwe, Isra; Losson, Bertrand; Fassotte, Christiane; Demeulemeester, Julie; Smeets, François; Tomme, Marie; Cay, Ann Brigitte

    2014-01-01

    Indigenous Culicoides biting midges are suggested to be putative vectors for the recently emerged Schmallenberg virus (SBV) based on SBV RNA detection in field-caught midges. Furthermore, SBV replication and dissemination has been evidenced in C. sonorensis under laboratory conditions. After SBV had been detected in Culicoides biting midges from Belgium in August 2011, it spread all over the country by the end of 2011, as evidenced by very high between-herd seroprevalence rates in sheep and cattle. This study investigated if a renewed SBV circulation in midges occurred in 2012 in the context of high seroprevalence in the animal host population and evaluated if a recently proposed realtime RT-PCR approach that is meant to allow assessing the vector competence of Culicoides for SBV and bluetongue virus under laboratory conditions was applicable to field-caught midges. Therefore midges caught with 12 OVI traps in four different regions in Belgium between May and November 2012, were morphologically identified, age graded, pooled and tested for the presence of SBV RNA by realtime RT-PCR. The results demonstrate that although no SBV could be detected in nulliparous midges caught in May 2012, a renewed but short lived circulation of SBV in parous midges belonging to the subgenus Avaritia occured in August 2012 at all four regions. The infection prevalence reached up to 2.86% in the south of Belgium, the region where a lower seroprevalence was found at the end of 2011 than in the rest of the country. Furthermore, a frequency analysis of the Ct values obtained for 31 SBV-S segment positive pools of Avaritia midges showed a clear bimodal distribution with peaks of Ct values between 21-24 and 33-36. This closely resembles the laboratory results obtained for SBV infection of C. sonorensis and implicates indigenous midges belonging to the subgenus Avaritia as competent vectors for SBV.

  7. Visualizing Single-molecule DNA Replication with Fluorescence Microscopy

    NARCIS (Netherlands)

    Tanner, Nathan A.; Loparo, Joseph J.; Oijen, Antoine M. van

    2009-01-01

    We describe a simple fluorescence microscopy-based real-time method for observing DNA replication at the single-molecule level. A circular, forked DNA template is attached to a functionalized glass coverslip and replicated extensively after introduction of replication proteins and nucleotides. The g

  8. Characterization of the genomic organization of the region bordering the centromere of chromosome V of Podospora anserina by direct sequencing.

    Science.gov (United States)

    Silar, Philippe; Barreau, Christian; Debuchy, Robert; Kicka, Sébastien; Turcq, Béatrice; Sainsard-Chanet, Annie; Sellem, Carole H; Billault, Alain; Cattolico, Laurence; Duprat, Simone; Weissenbach, Jean

    2003-08-01

    A Podospora anserina BAC library of 4800 clones has been constructed in the vector pBHYG allowing direct selection in fungi. Screening of the BAC collection for centromeric sequences of chromosome V allowed the recovery of clones localized on either sides of the centromere, but no BAC clone was found to contain the centromere. Seven BAC clones containing 322,195 and 156,244bp from either sides of the centromeric region were sequenced and annotated. One 5S rRNA gene, 5 tRNA genes, and 163 putative coding sequences (CDS) were identified. Among these, only six CDS seem specific to P. anserina. The gene density in the centromeric region is approximately one gene every 2.8kb. Extrapolation of this gene density to the whole genome of P. anserina suggests that the genome contains about 11,000 genes. Synteny analyses between P. anserina and Neurospora crassa show that co-linearity extends at the most to a few genes, suggesting rapid genome rearrangements between these two species.

  9. Regulation of centromere localization of the Drosophila Shugoshin MEI-S332 and sister-chromatid cohesion in meiosis.

    Science.gov (United States)

    Nogueira, Cristina; Kashevsky, Helena; Pinto, Belinda; Clarke, Astrid; Orr-Weaver, Terry L

    2014-07-31

    The Shugoshin (Sgo) protein family helps to ensure proper chromosome segregation by protecting cohesion at the centromere by preventing cleavage of the cohesin complex. Some Sgo proteins also influence other aspects of kinetochore-microtubule attachments. Although many Sgo members require Aurora B kinase to localize to the centromere, factors controlling delocalization are poorly understood and diverse. Moreover, it is not clear how Sgo function is inactivated and whether this is distinct from delocalization. We investigated these questions in Drosophila melanogaster, an organism with superb chromosome cytology to monitor Sgo localization and quantitative assays to test its function in sister-chromatid segregation in meiosis. Previous research showed that in mitosis in cell culture, phosphorylation of the Drosophila Sgo, MEI-S332, by Aurora B promotes centromere localization, whereas Polo phosphorylation promotes delocalization. These studies also suggested that MEI-S332 can be inactivated independently of delocalization, a conclusion supported here by localization and function studies in meiosis. Phosphoresistant and phosphomimetic mutants for the Aurora B and Polo phosphorylation sites were examined for effects on MEI-S332 localization and chromosome segregation in meiosis. Strikingly, MEI-S332 with a phosphomimetic mutation in the Aurora B phosphorylation site prematurely dissociates from the centromeres in meiosis I. Despite the absence of MEI-S332 on meiosis II centromeres in male meiosis, sister chromatids segregate normally, demonstrating that detectable levels of this Sgo are not essential for chromosome congression, kinetochore biorientation, or spindle assembly.

  10. Differing requirements for RAD51 and DMC1 in meiotic pairing of centromeres and chromosome arms in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Olivier Da Ines

    Full Text Available During meiosis homologous chromosomes pair, recombine, and synapse, thus ensuring accurate chromosome segregation and the halving of ploidy necessary for gametogenesis. The processes permitting a chromosome to pair only with its homologue are not fully understood, but successful pairing of homologous chromosomes is tightly linked to recombination. In Arabidopsis thaliana, meiotic prophase of rad51, xrcc3, and rad51C mutants appears normal up to the zygotene/pachytene stage, after which the genome fragments, leading to sterility. To better understand the relationship between recombination and chromosome pairing, we have analysed meiotic chromosome pairing in these and in dmc1 mutant lines. Our data show a differing requirement for these proteins in pairing of centromeric regions and chromosome arms. No homologous pairing of mid-arm or distal regions was observed in rad51, xrcc3, and rad51C mutants. However, homologous centromeres do pair in these mutants and we show that this does depend upon recombination, principally on DMC1. This centromere pairing extends well beyond the heterochromatic centromere region and, surprisingly, does not require XRCC3 and RAD51C. In addition to clarifying and bringing the roles of centromeres in meiotic synapsis to the fore, this analysis thus separates the roles in meiotic synapsis of DMC1 and RAD51 and the meiotic RAD51 paralogs, XRCC3 and RAD51C, with respect to different chromosome domains.

  11. Investigating variation in replicability: A "Many Labs" replication project

    NARCIS (Netherlands)

    Klein, R.A.; Ratliff, K.A.; Vianello, M.; Adams, R.B.; Bahnik, S.; Bernstein, M.J.; Bocian, K.; Brandt, M.J.; Brooks, B.; Brumbaugh, C.C.; Cemalcilar, Z.; Chandler, J.; Cheong, W.; Davis, W.E.; Devos, T.; Eisner, M.; Frankowska, N.; Furrow, D.; Galliani, E.M.; Hasselman, F.W.; Hicks, J.A.; Hovermale, J.F.; Hunt, S.J.; Huntsinger, J.R.; IJzerman, H.; John, M.S.; Joy-Gaba, J.A.; Kappes, H.B.; Krueger, L.E.; Kurtz, J.; Levitan, C.A.; Mallett, R.K.; Morris, W.L.; Nelson, A.J.; Nier, J.A.; Packard, G.; Pilati, R.; Rutchick, A.M.; Schmidt, K.; Skorinko, J.L.M.; Smith, R.; Steiner, T.G.; Storbeck, J.; Van Swol, L.M.; Thompson, D.; Veer, A.E. van 't; Vaughn, L.A.; Vranka, M.; Wichman, A.L.; Woodzicka, J.A.; Nosek, B.A.

    2014-01-01

    Although replication is a central tenet of science, direct replications are rare in psychology. This research tested variation in the replicability of 13 classic and contemporary effects across 36 independent samples totaling 6,344 participants. In the aggregate, 10 effects replicated consistently.

  12. Asynchronous replication and autosome-pair non-equivalence in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Devkanya Dutta

    Full Text Available A number of mammalian genes exhibit the unusual properties of random monoallelic expression and random asynchronous replication. Such exceptional genes include genes subject to X inactivation and autosomal genes including odorant receptors, immunoglobulins, interleukins, pheromone receptors, and p120 catenin. In differentiated cells, random asynchronous replication of interspersed autosomal genes is coordinated at the whole chromosome level, indicative of chromosome-pair non-equivalence. Here we have investigated the replication pattern of the random asynchronously replicating genes in undifferentiated human embryonic stem cells, using fluorescence in situ hybridization based assay. We show that allele-specific replication of X-linked genes and random monoallelic autosomal genes occur in human embryonic stem cells. The direction of replication is coordinated at the whole chromosome level and can cross the centromere, indicating the existence of autosome-pair non-equivalence in human embryonic stem cells. These results suggest that epigenetic mechanism(s that randomly distinguish between two parental alleles are emerging in the cells of the inner cell mass, the source of human embryonic stem cells.

  13. Mathematical Framework for A Novel Database Replication Algorithm

    Directory of Open Access Journals (Sweden)

    Divakar Singh Yadav

    2013-10-01

    Full Text Available In this paper, the detailed overview of the database replication is presented. Thereafter, PDDRA (Pre-fetching based dynamic data replication algorithm algorithm as recently published is detailed. In this algorithm, further, modifications are suggested to minimize the delay in data replication. Finally a mathematical framework is presented to evaluate mean waiting time before a data can be replicated on the requested site.

  14. Stem-loop structures of the repetitive DNA sequences located at human centromeres

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, G.; Garcia, A.E.; Ratliff, R.; Moyzis, R.K. [Los Alamos National Lab., NM (United States); Catasti, P.; Hong, Lin; Yau, P. [California Univ., Davis, CA (United States). Dept. of Biological Chemistry; Bradbury, E.M. [Los Alamos National Lab., NM (United States)]|[California Univ., Davis, CA (United States). Dept. of Biological Chemistry

    1993-09-01

    The presence of the highly conserved repetitive DNA sequences in the human centromeres argues for a special role of these sequences in their biological functions - most likely achieved by the formation of unusual structures. This prompted us to carry out quantitative one- and two-dimensional nuclear magnetic resonance (lD/2D NMR) spectroscopy to determine the structural properties of the human centromeric repeats, d(AATGG){sub n.d}(CCATT){sub n}. The studies on centromeric DNAs reveal that the complementary sequence, d(AATGG){sub n.d}(CCATT){sub n}, adopts the usual Watson-Crick B-DNA duplex and the pyrimidine-rich d(CCATT){sub n} strand is essentially a random coil. However, the purine-rich d(AATGG){sub n} strand is shown to adopt unusual stem-loop structures for repeat lengths, n=2,3,4, and 6. In addition to normal Watson-Crick A{center_dot}T pairs, the stem-loop structures are stabilized by mismatch A{center_dot}G and G{center_dot}G pairs in the stem and G-G-A stacking in the loop. Stem-loop structures of d(AATGG)n are independently verified by gel electrophoresis and nuclease digestion studies. Thermal melting studies show that the DNA repeats, d(AATGG){sub n}, are as stable as the corresponding Watson-Crick duplex d(AATGG){sub n.d}(CCATT){sub n}. Therefore, the sequence d(AATGG){sub n} can, indeed, nucleate a stem-loop structure at little free-energy cost and if, during mitosis, they are located on the chromosome surface they can provide specific recognition sites for kinetochore function.

  15. Cytological identification of an isotetrasomic in rice and its application to centromere mapping

    Institute of Scientific and Technical Information of China (English)

    CHENGZHUKUAN; HENGXIUYU; 等

    1997-01-01

    The aneuploid with isochromosome or telochromosome is ideal material for exploring the position of centromere in lingkage map.For obtaining these aneuploids in rice,the primary trisomics from triplo-1 to triplo-12 and the aneuploids derived from a triploid of indica rice variety Zhongxiao 3037 were carefully investigated.From the offsprings of triplo-10,a primary trisomic of chromosome 10 of the variety,an isotetrasomic “triplo-10-1” was obtained.Cytological investigation revealed that a pair of extra isochromosomes of triplo-10-1 were come from the short arm of chromosome 10.In the offsprings of the isotetrasomic,a secondary trisomic “triplo-10-2”,in which the extra-chromosome was an isochromosome derived from the short arm of chromosome 10,was identified.With the isotetrasomic,secondary trisomic,primary trisomic and diploid of variety Zhongxiao 3037,different molecular markers were used for exploring the position of the centromere of chromosome 10.Based on the DNA dosage effect,it was verified that the molecular markers G1125,G333 and L169 were Located on the short arm,G1084 and other 16 available molecular markers were on the long arm of chromosome 10.So the centromere of chromosome 10 was located somewhere between G1125 and G1084 according to the RFLP linkage map given by Kurata et al[1].The distance from G1125 to G1084 was about 3.2cM.

  16. RNA Pol II promotes transcription of centromeric satellite DNA in beetles.

    Directory of Open Access Journals (Sweden)

    Zeljka Pezer

    Full Text Available Transcripts of centromeric satellite DNAs are known to play a role in heterochromatin formation as well as in establishment of the kinetochore. However, little is known about basic mechanisms of satellite DNA expression within constitutive heterochromatin and its regulation. Here we present comprehensive analysis of transcription of abundant centromeric satellite DNA, PRAT from beetle Palorus ratzeburgii (Coleoptera. This satellite is characterized by preservation and extreme sequence conservation among evolutionarily distant insect species. PRAT is expressed in all three developmental stages: larvae, pupae and adults at similar level. Transcripts are abundant comprising 0.033% of total RNA and are heterogeneous in size ranging from 0.5 kb up to more than 5 kb. Transcription proceeds from both strands but with 10 fold different expression intensity and transcripts are not processed into siRNAs. Most of the transcripts (80% are not polyadenylated and remain in the nucleus while a small portion is exported to the cytoplasm. Multiple, irregularly distributed transcription initiation sites as well as termination sites have been mapped within the PRAT sequence using primer extension and RLM-RACE. The presence of cap structure as well as poly(A tails in a portion of the transcripts indicate RNA polymerase II-dependent transcription and a putative polymerase II promoter site overlaps the most conserved part of the PRAT sequence. The treatment of larvae with alpha-amanitin decreases the level of PRAT transcripts at concentrations that selectively inhibit pol II activity. In conclusion, stable, RNA polymerase II dependant transcripts of abundant centromeric satellite DNA, not regulated by RNAi, have been identified and characterized. This study offers a basic understanding of expression of highly abundant heterochromatic DNA which in beetle species constitutes up to 50% of the genome.

  17. A New Replication Norm for Psychology

    Directory of Open Access Journals (Sweden)

    Etienne P LeBel

    2015-10-01

    Full Text Available In recent years, there has been a growing concern regarding the replicability of findings in psychology, including a mounting number of prominent findings that have failed to replicate via high-powered independent replication attempts. In the face of this replicability “crisis of confidence”, several initiatives have been implemented to increase the reliability of empirical findings. In the current article, I propose a new replication norm that aims to further boost the dependability of findings in psychology. Paralleling the extant social norm that researchers should peer review about three times as many articles that they themselves publish per year, the new replication norm states that researchers should aim to independently replicate important findings in their own research areas in proportion to the number of original studies they themselves publish per year (e.g., a 4:1 original-to-replication studies ratio. I argue this simple approach could significantly advance our science by increasing the reliability and cumulative nature of our empirical knowledge base, accelerating our theoretical understanding of psychological phenomena, instilling a focus on quality rather than quantity, and by facilitating our transformation toward a research culture where executing and reporting independent direct replications is viewed as an ordinary part of the research process. To help promote the new norm, I delineate (1 how each of the major constituencies of the research process (i.e., funders, journals, professional societies, departments, and individual researchers can incentivize replications and promote the new norm and (2 any obstacles each constituency faces in supporting the new norm.

  18. A sensitive real-time PCR based assay to estimate the impact of amino acid substitutions on the competitive replication fitness of human immunodeficiency virus type 1 in cell culture.

    Science.gov (United States)

    Liu, Yi; Holte, Sarah; Rao, Ushnal; McClure, Jan; Konopa, Philip; Swain, J Victor; Lanxon-Cookson, Erinn; Kim, Moon; Chen, Lennie; Mullins, James I

    2013-04-01

    Fixation of mutations in human immunodeficiency virus type 1 (HIV-1), such as those conferring drug resistance and immune escape, can result in a change in replication fitness. To assess these changes, a real-time TaqMan PCR detection assay and statistical methods for data analysis were developed to estimate sensitively relative viral fitness in competitive viral replication experiments in cell culture. Chimeric viruses with the gene of interest in an HIV-1NL4-3 backbone were constructed in two forms, vifA (native vif gene in NL4-3) and vifB (vif gene with six synonymous nucleotide differences from vifA). Subsequently, mutations of interest were introduced into the chimeric viruses in NL4-3VifA backbones, and the mutants were competed against the chimera with the isogenic viral sequence in the NL4-3VifB backbone in cell culture. In order to assess subtle fitness differences, culture supernatants were sampled longitudinally, and the viruses differentially quantified using vifA- and vifB-specific primers in real-time PCR assays. Based on an exponential net growth model, the growth rate of each virus was determined and the fitness cost of the mutation(s) distinguishing the two viruses represented as the net growth rate difference between the mutant and the native variants. Using this assay, the fitness impact of eight amino acid substitutions was quantitated at highly conserved sites in HIV-1 Gag and Env.

  19. Centromere binding specificity in assembly of the F plasmid partition complex

    OpenAIRE

    2011-01-01

    The segregation of plasmid F of Escherichia coli is highly reliable. The Sop partition locus, responsible for this stable maintenance, is composed of two genes, sopA and sopB and a centromere, sopC, consisting of 12 direct repeats of 43 bp. Each repeat carries a 16-bp inverted repeat motif to which SopB binds to form a nucleoprotein assembly called the partition complex. A database search for sequences closely related to sopC revealed unexpected features that appeared highly conserved. We hav...

  20. Domain architectures of the Scm3p protein provide insights into centromere function and evolution

    OpenAIRE

    Aravind, L.; Lakshminarayan, M. Iyer; Wu, Carl

    2007-01-01

    Recently, Scm3p has been shown to be a nonhistone component of centromeric chromatin that binds stoichiometrically to CenH3–H4 histones, and to be required for the assembly of kinetochores in S. cerevisiae. Scm3p is conserved across fungi, and displays a remarkable variation in protein size, ranging from ~200 amino acids in Saccharomyces cerevisiae to ~1300 amino acids in Neurospora crassa. This is primarily due a variable C-terminal segment that is linked to a conserved N-terminal, CenH3-int...

  1. Psychology, replication & beyond.

    Science.gov (United States)

    Laws, Keith R

    2016-06-01

    Modern psychology is apparently in crisis and the prevailing view is that this partly reflects an inability to replicate past findings. If a crisis does exists, then it is some kind of 'chronic' crisis, as psychologists have been censuring themselves over replicability for decades. While the debate in psychology is not new, the lack of progress across the decades is disappointing. Recently though, we have seen a veritable surfeit of debate alongside multiple orchestrated and well-publicised replication initiatives. The spotlight is being shone on certain areas and although not everyone agrees on how we should interpret the outcomes, the debate is happening and impassioned. The issue of reproducibility occupies a central place in our whig history of psychology.

  2. A new model of sperm nuclear architecture following assessment of the organization of centromeres and telomeres in three-dimensions

    Science.gov (United States)

    Ioannou, Dimitrios; Millan, Nicole M.; Jordan, Elizabeth; Tempest, Helen G.

    2017-01-01

    The organization of chromosomes in sperm nuclei has been proposed to possess a unique “hairpin-loop” arrangement, which is hypothesized to aid in the ordered exodus of the paternal genome following fertilization. This study simultaneously assessed the 3D and 2D radial and longitudinal organization of telomeres, centromeres, and investigated whether chromosomes formed the same centromere clusters in sperm cells. Reproducible radial and longitudinal non-random organization was observed for all investigated loci using both 3D and 2D approaches in multiple subjects. We report novel findings, with telomeres and centromeres being localized throughout the nucleus but demonstrating roughly a 1:1 distribution in the nuclear periphery and the intermediate regions with exodus of paternal chromosomes following fertilization. PMID:28139771

  3. Replicative intermediates of maize streak virus found during leaf development.

    Science.gov (United States)

    Erdmann, Julia B; Shepherd, Dionne N; Martin, Darren P; Varsani, Arvind; Rybicki, Edward P; Jeske, Holger

    2010-04-01

    Geminiviruses of the genera Begomovirus and Curtovirus utilize three replication modes: complementary-strand replication (CSR), rolling-circle replication (RCR) and recombination-dependent replication (RDR). Using two-dimensional gel electrophoresis, we now show for the first time that maize streak virus (MSV), the type member of the most divergent geminivirus genus, Mastrevirus, does the same. Although mastreviruses have fewer regulatory genes than other geminiviruses and uniquely express their replication-associated protein (Rep) from a spliced transcript, the replicative intermediates of CSR, RCR and RDR could be detected unequivocally within infected maize tissues. All replicative intermediates accumulated early and, to varying degrees, were already present in the shoot apex and leaves at different maturation stages. Relative to other replicative intermediates, those associated with RCR increased in prevalence during leaf maturation. Interestingly, in addition to RCR-associated DNA forms seen in other geminiviruses, MSV also apparently uses dimeric open circular DNA as a template for RCR.

  4. DNA replication origins in archaea

    OpenAIRE

    Zhenfang eWu; Jingfang eLiu; Haibo eYang; Hua eXiang

    2014-01-01

    DNA replication initiation, which starts at specific chromosomal site (known as replication origins), is the key regulatory stage of chromosome replication. Archaea, the third domain of life, use a single or multiple origin(s) to initiate replication of their circular chromosomes. The basic structure of replication origins is conserved among archaea, typically including an AT-rich unwinding region flanked by several conserved repeats (origin recognition box, ORB) that are located adjacent to ...

  5. Replication studies in longevity

    DEFF Research Database (Denmark)

    Varcasia, O; Garasto, S; Rizza, T;

    2001-01-01

    In Danes we replicated the 3'APOB-VNTR gene/longevity association study previously carried out in Italians, by which the Small alleles (less than 35 repeats) had been identified as frailty alleles for longevity. In Danes, neither genotype nor allele frequencies differed between centenarians and 20...

  6. Coronavirus Attachment and Replication

    Science.gov (United States)

    1988-03-28

    synthesis during RNA replication of vesicular stomatitis virus. J. Virol. 49:303-309. Pedersen, N.C. 1976a. Feline infectious peritonitis: Something old...receptors on intestinal brush border membranes from normal host species were developed for canine (CCV), feline (FIPV), porcine (TGEV), human (HCV...gastroenteritis receptor on pig BBMs ...... ................. ... 114 Feline infectious peritonitis virus receptor on cat BBMs ... .............. 117 Human

  7. Organization and evolution of primate centromeric DNA from whole-genome shotgun sequence data.

    Directory of Open Access Journals (Sweden)

    Can Alkan

    2007-09-01

    Full Text Available The major DNA constituent of primate centromeres is alpha satellite DNA. As much as 2%-5% of sequence generated as part of primate genome sequencing projects consists of this material, which is fragmented or not assembled as part of published genome sequences due to its highly repetitive nature. Here, we develop computational methods to rapidly recover and categorize alpha-satellite sequences from previously uncharacterized whole-genome shotgun sequence data. We present an algorithm to computationally predict potential higher-order array structure based on paired-end sequence data and then experimentally validate its organization and distribution by experimental analyses. Using whole-genome shotgun data from the human, chimpanzee, and macaque genomes, we examine the phylogenetic relationship of these sequences and provide further support for a model for their evolution and mutation over the last 25 million years. Our results confirm fundamental differences in the dispersal and evolution of centromeric satellites in the Old World monkey and ape lineages of evolution.

  8. Point Mutations in Centromeric Histone Induce Post-zygotic Incompatibility and Uniparental Inheritance.

    Directory of Open Access Journals (Sweden)

    Sundaram Kuppu

    2015-09-01

    Full Text Available The centromeric histone 3 variant (CENH3, aka CENP-A is essential for the segregation of sister chromatids during mitosis and meiosis. To better define CENH3 functional constraints, we complemented a null allele in Arabidopsis with a variety of mutant alleles, each inducing a single amino acid change in conserved residues of the histone fold domain. Many of these transgenic missense lines displayed wild-type growth and fertility on self-pollination, but exhibited frequent post-zygotic death and uniparental inheritance when crossed with wild-type plants. The failure of centromeres marked by these missense mutation in the histone fold domain of CENH3 reproduces the genome elimination syndromes described with chimeric CENH3 and CENH3 from diverged species. Additionally, evidence that a single point mutation is sufficient to generate a haploid inducer provide a simple one-step method for the identification of non-transgenic haploid inducers in existing mutagenized collections of crop species. As proof of the extreme simplicity of this approach to create haploid-inducing lines, we performed an in silico search for previously identified point mutations in CENH3 and identified an Arabidopsis line carrying the A86V substitution within the histone fold domain. This A87V non-transgenic line, while fully fertile on self-pollination, produced postzygotic death and uniparental haploids when crossed to wild type.

  9. Characterization of the oncogenic function of centromere protein F in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yongdong; Liu, Lulu; Zeng, Tingting; Zhu, Ying-Hui [State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou (China); Li, Jiangchao [Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou (China); Chen, Leilei [Department of Clinical Oncology, The University of Hong Kong, Pokfulam, Hong Kong (China); Li, Yan; Yuan, Yun-Fei [State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou (China); Ma, Stephanie, E-mail: stefma@hku.hk [Department of Clinical Oncology, The University of Hong Kong, Pokfulam, Hong Kong (China); State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong (China); Guan, Xin-Yuan, E-mail: xyguan@hkucc.hku.hk [State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou (China); Department of Clinical Oncology, The University of Hong Kong, Pokfulam, Hong Kong (China); State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong (China)

    2013-07-12

    Highlights: •Overexpression of CENPF is frequently detected in HCC. •Upregulation of CENPF serves as an independent prognosis factor in HCC patients. •CENPF functions as an oncogene in HCC by promoting cell G2/M transition. -- Abstract: Centromere protein F (CENPF) is an essential nuclear protein associated with the centromere-kinetochore complex and plays a critical role in chromosome segregation during mitosis. Up-regulation of CENPF expression has previously been detected in several solid tumors. In this study, we aim to study the expression and functional role of CENPF in hepatocellular carcinoma (HCC). We found CENPF was frequently overexpressed in HCC as compared with non-tumor tissue. Up-regulated CENPF expression in HCC was positively correlated with serum AFP, venous invasion, advanced differentiation stage and a shorter overall survival. Cox regression analysis found that overexpression of CENPF was an independent prognosis factor in HCC. Functional studies found that silencing CENPF could decrease the ability of the cells to proliferate, form colonies and induce tumor formation in nude mice. Silencing CENPF also resulted in the cell cycle arrest at G2/M checkpoint by down-regulating cell cycle proteins cdc2 and cyclin B1. Our data suggest that CENPF is frequently overexpressed in HCC and plays a critical role in driving HCC tumorigenesis.

  10. Identification of a high frequency of chromosomal rearrangements in the centromeric regions of prostate cancer patients

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The aim of the present investigation was to study the major chromosomal aberrations (CA) like deletion, translocation,inversion and mosaic in prostate cancer patients of Tamilnadu, Southern India. Totally 45 blood samples were collected from various hospitals in Tamilnadu, Southern India. Equal numbers of normal healthy subjects were chosen after signing a consent form. Volunteers provided blood samples (5 ml) to establish leukocyte cultures. Cytogenetic studies were performed by using Giemsa-banding technique and finally the results were ensured by spectral karyotyping (SKY) technique. In the present investigation, major CA like deletion, translocation, inversion and mosaic were identified in experimental subjects. Results showed frequent CA in chromosomes 1, 3, 5, 6, 7, 9, 13, 16, 18 and X. In comparison with experimental subjects, the control subjects exhibited very low levels of major CA (P<0.05). In the present study, the high frequency of centromeric rearrangements indicates a potential role for mitotic irregularities associated with the centromere in prostate cancer tumorigenesis. Identification of chromosome alterations may be helpful in understanding the molecular basis of the disease in better manner.

  11. High-affinity binding of Chp1 chromodomain to K9 methylated histone H3 is required to establish centromeric heterochromatin.

    Science.gov (United States)

    Schalch, Thomas; Job, Godwin; Noffsinger, Victoria J; Shanker, Sreenath; Kuscu, Canan; Joshua-Tor, Leemor; Partridge, Janet F

    2009-04-10

    In fission yeast, assembly of centromeric heterochromatin requires the RITS complex, which consists of Ago1, Tas3, Chp1, and siRNAs derived from centromeric repeats. Recruitment of RITS to centromeres has been proposed to depend on siRNA-dependent targeting of Ago1 to centromeric sequences. Previously, we demonstrated that methylated lysine 9 of histone H3 (H3K9me) acts upstream of siRNAs during heterochromatin establishment. Our crystal structure of Chp1's chromodomain in complex with a trimethylated lysine 9 H3 peptide reveals extensive sites of contact that contribute to Chp1's high-affinity binding. We found that this high-affinity binding is critical for the efficient establishment of centromeric heterochromatin, but preassembled heterochromatin can be maintained when Chp1's affinity for H3K9me is greatly reduced.

  12. Control of DNA replication by anomalous reaction-diffusion kinetics

    Science.gov (United States)

    Bechhoefer, John; Gauthier, Michel

    2010-03-01

    DNA replication requires two distinct processes: the initiation of pre-licensed replication origins and the propagation of replication forks away from the fired origins. Experiments indicate that these origins are triggered over the whole genome at a rate I(t) (the number of initiations per unreplicated length per time) that increases throughout most of the synthesis (S) phase, before rapidly decreasing to zero at the end of the replication process. We propose a simple model for the control of DNA replication in which the rate of initiation of replication origins is controlled by protein-DNA interactions. Analyzing recent data from Xenopus frog embryos, we find that the initiation rate is reaction limited until nearly the end of replication, when it becomes diffusion limited. Initiation of origins is suppressed when the diffusion-limited search time dominates. To fit the experimental data, we find that the interaction between DNA and the rate-limiting protein must be subdiffusive.

  13. HSV-1 genome subnuclear positioning and associations with host-cell PML-NBs and centromeres regulate LAT locus transcription during latency in neurons.

    Directory of Open Access Journals (Sweden)

    Frédéric Catez

    Full Text Available Major human pathologies are caused by nuclear replicative viruses establishing life-long latent infection in their host. During latency the genomes of these viruses are intimately interacting with the cell nucleus environment. A hallmark of herpes simplex virus type 1 (HSV-1 latency establishment is the shutdown of lytic genes expression and the concomitant induction of the latency associated (LAT transcripts. Although the setting up and the maintenance of the latent genetic program is most likely dependent on a subtle interplay between viral and nuclear factors, this remains uninvestigated. Combining the use of in situ fluorescent-based approaches and high-resolution microscopic analysis, we show that HSV-1 genomes adopt specific nuclear patterns in sensory neurons of latently infected mice (28 days post-inoculation, d.p.i.. Latent HSV-1 genomes display two major patterns, called "Single" and "Multiple", which associate with centromeres, and with promyelocytic leukemia nuclear bodies (PML-NBs as viral DNA-containing PML-NBs (DCP-NBs. 3D-image reconstruction of DCP-NBs shows that PML forms a shell around viral genomes and associated Daxx and ATRX, two PML partners within PML-NBs. During latency establishment (6 d.p.i., infected mouse TGs display, at the level of the whole TG and in individual cells, a substantial increase of PML amount consistent with the interferon-mediated antiviral role of PML. "Single" and "Multiple" patterns are reminiscent of low and high-viral genome copy-containing neurons. We show that LAT expression is significantly favored within the "Multiple" pattern, which underlines a heterogeneity of LAT expression dependent on the viral genome copy number, pattern acquisition, and association with nuclear domains. Infection of PML-knockout mice demonstrates that PML/PML-NBs are involved in virus nuclear pattern acquisition, and negatively regulate the expression of the LAT. This study demonstrates that nuclear domains including

  14. Reversible Switching of Cooperating Replicators

    Science.gov (United States)

    Urtel, Georg C.; Rind, Thomas; Braun, Dieter

    2017-02-01

    How can molecules with short lifetimes preserve their information over millions of years? For evolution to occur, information-carrying molecules have to replicate before they degrade. Our experiments reveal a robust, reversible cooperation mechanism in oligonucleotide replication. Two inherently slow replicating hairpin molecules can transfer their information to fast crossbreed replicators that outgrow the hairpins. The reverse is also possible. When one replication initiation site is missing, single hairpins reemerge from the crossbreed. With this mechanism, interacting replicators can switch between the hairpin and crossbreed mode, revealing a flexible adaptation to different boundary conditions.

  15. Using areas of known occupancy to identify sources of variation in detection probability of raptors: taking time lowers replication effort for surveys.

    Science.gov (United States)

    Murn, Campbell; Holloway, Graham J

    2016-10-01

    Species occurring at low density can be difficult to detect and if not properly accounted for, imperfect detection will lead to inaccurate estimates of occupancy. Understanding sources of variation in detection probability and how they can be managed is a key part of monitoring. We used sightings data of a low-density and elusive raptor (white-headed vulture Trigonoceps occipitalis) in areas of known occupancy (breeding territories) in a likelihood-based modelling approach to calculate detection probability and the factors affecting it. Because occupancy was known a priori to be 100%, we fixed the model occupancy parameter to 1.0 and focused on identifying sources of variation in detection probability. Using detection histories from 359 territory visits, we assessed nine covariates in 29 candidate models. The model with the highest support indicated that observer speed during a survey, combined with temporal covariates such as time of year and length of time within a territory, had the highest influence on the detection probability. Averaged detection probability was 0.207 (s.e. 0.033) and based on this the mean number of visits required to determine within 95% confidence that white-headed vultures are absent from a breeding area is 13 (95% CI: 9-20). Topographical and habitat covariates contributed little to the best models and had little effect on detection probability. We highlight that low detection probabilities of some species means that emphasizing habitat covariates could lead to spurious results in occupancy models that do not also incorporate temporal components. While variation in detection probability is complex and influenced by effects at both temporal and spatial scales, temporal covariates can and should be controlled as part of robust survey methods. Our results emphasize the importance of accounting for detection probability in occupancy studies, particularly during presence/absence studies for species such as raptors that are widespread and

  16. Genome-wide mapping of cytosine methylation revealed dynamic DNA methylation patterns associated with genes and centromeres in rice.

    Science.gov (United States)

    Yan, Huihuang; Kikuchi, Shinji; Neumann, Pavel; Zhang, Wenli; Wu, Yufeng; Chen, Feng; Jiang, Jiming

    2010-08-01

    We conducted genome-wide mapping of cytosine methylation using methylcytosine immunoprecipitation combined with Illumina sequencing. The chromosomal distribution pattern of methylated DNA is similar to the heterochromatin distribution pattern on rice chromosomes. The DNA methylation patterns of rice genes are similar to those in Arabidopsis thaliana, including distinct methylation patterns asssociated with gene bodies and promoters. The DNA sequences in the core domains of rice Cen4, Cen5 and Cen8 showed elevated methylation levels compared with sequences in the pericentromeric regions. In addition, elevated methylation levels were associated with the DNA sequences in the CENH3-binding subdomains, compared with the sequences in the flanking H3 subdomains. In contrast, the centromeric domain of Cen11, which is composed exclusively of centromeric satellite DNA, is hypomethylated compared with the pericentromeric domains. Thus, the DNA sequences associated with functional centromeres can be either hypomethylated or hypermethylated. The methylation patterns of centromeric DNA appear to be correlated with the composition of the associated DNA sequences. We propose that both hypomethylation and hypermethylation of CENH3-associated DNA sequences can serve as epigenetic marks to distinguish where CENH3 deposition will occur within the surrounding H3 chromatin.

  17. Mutations in Z8T824 Are Associated with Immunodeficiency, Centromeric Instability, and Facial Anomalies Syndrome Type 2

    NARCIS (Netherlands)

    de Greef, Jessica C.; Wang, Jun; Balog, Judit; den Dunnen, Johan T.; Frants, Rune R.; Straasheijm, Kirsten R.; Aytekin, Caner; van der Burg, Mirjam; Duprez, Laurence; Ferster, Alina; Gennery, Andrew R.; Gimelli, Giorgio; Reisli, Ismail; Schuetz, Catharina; Schulz, Ansgar; Smeets, Dominique F. C. M.; Sznajer, Yves; Wijmenga, Cisca; van Eggermond, Maria C.; van Ostaijen-ten Dam, Monique M.; Lankester, Arjan C.; van Tol, Maarten J. D.; van den Elsen, Peter J.; Weemaes, Corry M.; van der Maarel, Silvere M.

    2011-01-01

    Autosomal-recessive immunodeficiency, centromeric instability, and facial anomalies (ICE) syndrome is mainly characterized by recurrent, often fatal, respiratory and gastrointestinal infections. About 50% of patients carry mutations in the DNA methyltransferase 3B gene (DNMT3B) (ICF1). The remaining

  18. Microsatellite-centromere mapping in Japanese scallop ( Patinopecten yessoensis) through half-tetrad analysis in gynogenetic diploid families

    Science.gov (United States)

    Li, Qi; Qi, Mingjun; Nie, Hongtao; Kong, Lingfeng; Yu, Hong

    2016-06-01

    Gene-centromere mapping is an essential prerequisite for understanding the composition and structure of genomes. Half-tetrad analysis is a powerful tool for mapping genes and understanding chromosomal behavior during meiosis. The Japanese scallop ( Patinopecten yessoensis), a cold-tolerant species inhabiting the northwestern Pacific coast, is a commercially important marine bivalve in Asian countries. In this study, inheritance of 32 informative microsatellite loci was examined in 70-h D-shaped larvae of three induced meiogynogenetic diploid families of P. yessoensis for centromere mapping using half-tetrad analysis. The ratio of gynogenetic diploids was proven to be 100%, 100% and 96% in the three families, respectively. Inheritance analysis in the control crosses showed that 51 of the 53 genotypic ratios observed were in accordance with Mendelian expectations at the 5% level after Bonferroni correction. Seven of the 32 microsatellite loci showed the existence of null alleles in control crosses. The second division segregation frequency ( y) of the microsatellite loci ranged from 0.07 to 0.85 with a mean of 0.38, suggesting the existence of positive interference after a single chiasma formation in some chromosomes in the scallop. Microsatellite-centromere distances ranged from 4 cM to 42 cM under the assumption of complete interference. Information on the positions of centromeres in relation to the microsatellite loci will represent a contribution towards the assembly of genetic maps in the commercially important scallop species.

  19. Regulatory cross-talk links Vibrio cholerae chromosome II replication and segregation.

    Directory of Open Access Journals (Sweden)

    Yoshiharu Yamaichi

    2011-07-01

    Full Text Available There is little knowledge of factors and mechanisms for coordinating bacterial chromosome replication and segregation. Previous studies have revealed that genes (and their products that surround the origin of replication (oriCII of Vibrio cholerae chromosome II (chrII are critical for controlling the replication and segregation of this chromosome. rctB, which flanks one side of oriCII, encodes a protein that initiates chrII replication; rctA, which flanks the other side of oriCII, inhibits rctB activity. The chrII parAB2 operon, which is essential for chrII partitioning, is located immediately downstream of rctA. Here, we explored how rctA exerts negative control over chrII replication. Our observations suggest that RctB has at least two DNA binding domains--one for binding to oriCII and initiating replication and the other for binding to rctA and thereby inhibiting RctB's ability to initiate replication. Notably, the inhibitory effect of rctA could be alleviated by binding of ParB2 to a centromere-like parS site within rctA. Furthermore, by binding to rctA, ParB2 and RctB inversely regulate expression of the parAB2 genes. Together, our findings suggest that fluctuations in binding of the partitioning protein ParB2 and the chrII initiator RctB to rctA underlie a regulatory network controlling both oriCII firing and the production of the essential chrII partitioning proteins. Thus, by binding both RctB and ParB2, rctA serves as a nexus for regulatory cross-talk coordinating chrII replication and segregation.

  20. Regulatory cross-talk links Vibrio cholerae chromosome II replication and segregation.

    Science.gov (United States)

    Yamaichi, Yoshiharu; Gerding, Matthew A; Davis, Brigid M; Waldor, Matthew K

    2011-07-01

    There is little knowledge of factors and mechanisms for coordinating bacterial chromosome replication and segregation. Previous studies have revealed that genes (and their products) that surround the origin of replication (oriCII) of Vibrio cholerae chromosome II (chrII) are critical for controlling the replication and segregation of this chromosome. rctB, which flanks one side of oriCII, encodes a protein that initiates chrII replication; rctA, which flanks the other side of oriCII, inhibits rctB activity. The chrII parAB2 operon, which is essential for chrII partitioning, is located immediately downstream of rctA. Here, we explored how rctA exerts negative control over chrII replication. Our observations suggest that RctB has at least two DNA binding domains--one for binding to oriCII and initiating replication and the other for binding to rctA and thereby inhibiting RctB's ability to initiate replication. Notably, the inhibitory effect of rctA could be alleviated by binding of ParB2 to a centromere-like parS site within rctA. Furthermore, by binding to rctA, ParB2 and RctB inversely regulate expression of the parAB2 genes. Together, our findings suggest that fluctuations in binding of the partitioning protein ParB2 and the chrII initiator RctB to rctA underlie a regulatory network controlling both oriCII firing and the production of the essential chrII partitioning proteins. Thus, by binding both RctB and ParB2, rctA serves as a nexus for regulatory cross-talk coordinating chrII replication and segregation.

  1. Chromatin replication and epigenome maintenance

    DEFF Research Database (Denmark)

    Alabert, Constance; Groth, Anja

    2012-01-01

    initiates, whereas the replication process itself disrupts chromatin and challenges established patterns of genome regulation. Specialized replication-coupled mechanisms assemble new DNA into chromatin, but epigenome maintenance is a continuous process taking place throughout the cell cycle. If DNA...

  2. Chromatin replication and epigenome maintenance

    DEFF Research Database (Denmark)

    Alabert, Constance; Groth, Anja

    2012-01-01

    Stability and function of eukaryotic genomes are closely linked to chromatin structure and organization. During cell division the entire genome must be accurately replicated and the chromatin landscape reproduced on new DNA. Chromatin and nuclear structure influence where and when DNA replication...... initiates, whereas the replication process itself disrupts chromatin and challenges established patterns of genome regulation. Specialized replication-coupled mechanisms assemble new DNA into chromatin, but epigenome maintenance is a continuous process taking place throughout the cell cycle. If DNA...

  3. Initiation of adenovirus DNA replication.

    OpenAIRE

    Reiter, T; Fütterer, J; Weingärtner, B; Winnacker, E L

    1980-01-01

    In an attempt to study the mechanism of initiation of adenovirus DNA replication, an assay was developed to investigate the pattern of DNA synthesis in early replicative intermediates of adenovirus DNA. By using wild-type virus-infected cells, it was possible to place the origin of adenovirus type 2 DNA replication within the terminal 350 to 500 base pairs from either of the two molecular termini. In addition, a variety of parameters characteristic of adenovirus DNA replication were compared ...

  4. Cis-acting determinants affecting centromere function, sister-chromatid cohesion and reciprocal recombination during meiosis in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Sears, D.D.; Hieter, P. [Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States); Shero, J.H. [Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States)]|[Baylor College of Medicine, Houston, TX (United States); Hegemann, J.H. [Justus Liebig Universitaet, Giessen (Germany)

    1995-03-01

    We have employed a system that utilizes homologous pairs of human DNA-derived yeast artificial chromosomes (YACs) as marker chromosomes to assess the specific role(s) of conserved centromere DNA elements (CDEI, CDEII, and CDEIII) in meiotic chromosome disjunction fidelity. Thirteen different centromere (CEN) mutations were tested for their effects on meiotic centromere function. YACs containing a wild-type CEN DNA sequence segregate with high fidelity in meiosis I (99% normal segregation) and in meiosis II (96% normal segregation). YACs containing a 31-bp deletion mutation in centromere DNA element II (CDEII{Delta}31) in either a heterocentric (mutant/wild type), homocentric (mutant/mutant) or monosomic (mutant/-) YAC pair configuration exhibited high levels (16-28%) of precocious sister-chromatid segregation (PSS) and increased levels (1-6%) of nondisjunction meiosis I (NDI). YACs containing this mutation also exhibit high levels (21%) of meiosis II nondisjunction. Interestingly, significant alterations in homolog recombination frequency were observed in the exceptional PSS class of tetrads, suggesting unusual interactions between prematurely separated sister chromatids and their homologous nonsister chromatids. We also have assessed the meiotic segregation effects of rare gene conversion events occurring at sites located immediately adjacent to or distantly from the centromere region. Proximal gene conversion events were associated with extremely high levels (60%) of meiosis I segregation errors (including both PSS and NDI), whereas distal events had no apparent effect. Taken together, our results indicate a critical role for CDEII in meiosis and underscore the importance of maintaining sister-chromatid cohesion for proper recombination in meiotic prophase and for proper disjunction in meiosis I. 49 refs., 4 figs., 5 tabs.

  5. Eukaryotic Mismatch Repair in Relation to DNA Replication.

    Science.gov (United States)

    Kunkel, Thomas A; Erie, Dorothy A

    2015-01-01

    Three processes act in series to accurately replicate the eukaryotic nuclear genome. The major replicative DNA polymerases strongly prevent mismatch formation, occasional mismatches that do form are proofread during replication, and rare mismatches that escape proofreading are corrected by mismatch repair (MMR). This review focuses on MMR in light of increasing knowledge about nuclear DNA replication enzymology and the rate and specificity with which mismatches are generated during leading- and lagging-strand replication. We consider differences in MMR efficiency in relation to mismatch recognition, signaling to direct MMR to the nascent strand, mismatch removal, and the timing of MMR. These studies are refining our understanding of relationships between generating and repairing replication errors to achieve accurate replication of both DNA strands of the nuclear genome.

  6. The Alleged Crisis and the Illusion of Exact Replication.

    Science.gov (United States)

    Stroebe, Wolfgang; Strack, Fritz

    2014-01-01

    There has been increasing criticism of the way psychologists conduct and analyze studies. These critiques as well as failures to replicate several high-profile studies have been used as justification to proclaim a "replication crisis" in psychology. Psychologists are encouraged to conduct more "exact" replications of published studies to assess the reproducibility of psychological research. This article argues that the alleged "crisis of replicability" is primarily due to an epistemological misunderstanding that emphasizes the phenomenon instead of its underlying mechanisms. As a consequence, a replicated phenomenon may not serve as a rigorous test of a theoretical hypothesis because identical operationalizations of variables in studies conducted at different times and with different subject populations might test different theoretical constructs. Therefore, we propose that for meaningful replications, attempts at reinstating the original circumstances are not sufficient. Instead, replicators must ascertain that conditions are realized that reflect the theoretical variable(s) manipulated (and/or measured) in the original study.

  7. Replication Research and Special Education

    Science.gov (United States)

    Travers, Jason C.; Cook, Bryan G.; Therrien, William J.; Coyne, Michael D.

    2016-01-01

    Replicating previously reported empirical research is a necessary aspect of an evidence-based field of special education, but little formal investigation into the prevalence of replication research in the special education research literature has been conducted. Various factors may explain the lack of attention to replication of special education…

  8. Centromere pairing by a plasmid-encoded type I ParB protein

    DEFF Research Database (Denmark)

    Ringgaard, Simon; Löwe, Jan; Gerdes, Kenn

    2007-01-01

    over the nucleoid. ParB ribbon-helix-helix dimers bind cooperatively to direct repeats in parC1 and parC2. Using four different assays we obtain solid evidence that ParB can pair parC1- and parC2-encoding DNA fragments in vitro. Convincingly, electron microscopy revealed that ParB mediates binary...... pairing of parC fragments. In addition to binary complexes, ParB mediated the formation of higher order complexes consisting of several DNA fragments joined by ParB at centromere site parC. N-terminal truncated versions of ParB still possessing specific DNA binding activity were incompetent in pairing...

  9. Isolation and molecular characterization of a highly polymorphic centromeric tandem repeat in the family Falconidae.

    Science.gov (United States)

    Longmire, J L; Lewis, A K; Brown, N C; Buckingham, J M; Clark, L M; Jones, M D; Meincke, L J; Meyne, J; Ratliff, R L; Ray, F A

    1988-01-01

    An abundant tandem repeat has been cloned from genomic DNA of the merlin (Falco columbarius). The cloned sequence is 174 bp in length, and maps by in situ hybridization to the centromeric regions of several of the large chromosomes within the merlin karyotype. Complementary sequences have been identified within a variety of falcon species; these sequences are either absent or in very low copy number in the family Accipitridae. The cloned merlin repeat reveals highly polymorphic restriction patterns in the peregrine falcon (Falco peregrinus). These polymorphisms, which have been shown to be stably inherited within a family of captive peregrines, can be used to differentiate the Greenland and Argentina populations of this endangered raptor species.

  10. A hemicentric inversion in the maize line knobless Tama flint created two sites of centromeric elements and moved the kinetochore-forming region.

    Science.gov (United States)

    Lamb, Jonathan C; Meyer, Julie M; Birchler, James A

    2007-06-01

    A maize line, knobless Tama flint (KTF), was found to contain a version of chromosome 8 with two spatially distinct regions of centromeric elements, one at the original genetic position and the other at a novel location on the long arm. The new site of centromeric elements functions as the kinetochore-forming region resulting in a change of arm length ratio. Examination of fluorescence in situ hybridization markers on chromosome 8 revealed an inversion between the two centromere sites relative to standard maize lines, indicating that this chromosome 8 resulted from a hemicentric inversion with one breakpoint approximately 20 centi-McClintocks (cMc) on the long arm (20% of the total arm length from the centromere) and the other in the original cluster of centromere repeats. This inversion moved the kinetochore-forming region but left the remainder of the centromere repeats. In a hybrid between a standard line (Mo17) and KTF, both chromosome 8 homologues were completely synapsed at pachytene despite the inversion. Although the homologous centromeres were not paired, they were always correctly oriented at anaphase and migrated to opposite poles. Additionally, recombination on 8L was severely repressed in the hybrid.

  11. Replication data collection highlights value in diversity of replication attempts

    Science.gov (United States)

    DeSoto, K. Andrew; Schweinsberg, Martin

    2017-01-01

    Researchers agree that replicability and reproducibility are key aspects of science. A collection of Data Descriptors published in Scientific Data presents data obtained in the process of attempting to replicate previously published research. These new replication data describe published and unpublished projects. The different papers in this collection highlight the many ways that scientific replications can be conducted, and they reveal the benefits and challenges of crucial replication research. The organizers of this collection encourage scientists to reuse the data contained in the collection for their own work, and also believe that these replication examples can serve as educational resources for students, early-career researchers, and experienced scientists alike who are interested in learning more about the process of replication. PMID:28291224

  12. Detection and Automated Scoring of Dicentric Chromosomes in Nonstimulated Lymphocyte Prematurely Condensed Chromosomes After Telomere and Centromere Staining

    Energy Technology Data Exchange (ETDEWEB)

    M' kacher, Radhia [Laboratoire de Radiobiologie et Oncologie, Commissariat à l' Energie Atomique, Fontenay-aux-Roses (France); El Maalouf, Elie [Laboratoire de Radiobiologie et Oncologie, Commissariat à l' Energie Atomique, Fontenay-aux-Roses (France); Laboratoire Modélisation Intelligence Processus Systèmes (MIPS)–Groupe TIIM3D, Université de Haute-Alsace, Mulhouse (France); Terzoudi, Georgia [Laboratory of Radiobiology & Biodosimetry, National Center for Scientific Research Demokritos, Athens (Greece); Ricoul, Michelle [Laboratoire de Radiobiologie et Oncologie, Commissariat à l' Energie Atomique, Fontenay-aux-Roses (France); Heidingsfelder, Leonhard [MetaSystems, Altlussheim (Germany); Karachristou, Ionna [Laboratory of Radiobiology & Biodosimetry, National Center for Scientific Research Demokritos, Athens (Greece); Laplagne, Eric [Pole Concept, Paris (France); Hempel, William M. [Laboratoire de Radiobiologie et Oncologie, Commissariat à l' Energie Atomique, Fontenay-aux-Roses (France); Colicchio, Bruno; Dieterlen, Alain [Laboratoire Modélisation Intelligence Processus Systèmes (MIPS)–Groupe TIIM3D, Université de Haute-Alsace, Mulhouse (France); Pantelias, Gabriel [Laboratory of Radiobiology & Biodosimetry, National Center for Scientific Research Demokritos, Athens (Greece); Sabatier, Laure, E-mail: laure.sabatier@cea.fr [Laboratoire de Radiobiologie et Oncologie, Commissariat à l' Energie Atomique, Fontenay-aux-Roses (France)

    2015-03-01

    Purpose: To combine telomere and centromere (TC) staining of premature chromosome condensation (PCC) fusions to identify dicentrics, centric rings, and acentric chromosomes, making possible the realization of a dose–response curve and automation of the process. Methods and Materials: Blood samples from healthy donors were exposed to {sup 60}Co irradiation at varying doses up to 8 Gy, followed by a repair period of 8 hours. Premature chromosome condensation fusions were carried out, and TC staining using peptide nucleic acid probes was performed. Chromosomal aberration (CA) scoring was carried out manually and automatically using PCC-TCScore software, developed in our laboratory. Results: We successfully optimized the hybridization conditions and image capture parameters, to increase the sensitivity and effectiveness of CA scoring. Dicentrics, centric rings, and acentric chromosomes were rapidly and accurately detected, leading to a linear-quadratic dose–response curve by manual scoring at up to 8 Gy. Using PCC-TCScore software for automatic scoring, we were able to detect 95% of dicentrics and centric rings. Conclusion: The introduction of TC staining to the PCC fusion technique has made possible the rapid scoring of unstable CAs, including dicentrics, with a level of accuracy and ease not previously possible. This new approach can be used for biological dosimetry in radiation emergency medicine, where the rapid and accurate detection of dicentrics is a high priority using automated scoring. Because there is no culture time, this new approach can also be used for the follow-up of patients treated by genotoxic therapy, creating the possibility to perform the estimation of induced chromosomal aberrations immediately after the blood draw.

  13. A systemic increase in the recombination frequency upon local infection of Arabidopsis thaliana plants with oilseed rape mosaic virus depends on plant age, the initial inoculum concentration and the time for virus replication.

    Science.gov (United States)

    Yao, Youli; Kathiria, Palak; Kovalchuk, Igor

    2013-01-01

    In the past, we showed that local infection of tobacco leaves with either tobacco mosaic virus or oilseed rape mosaic virus (ORMV) resulted in a systemic increase in the homologous recombination frequency (HRF). Later on, we showed that a similar phenomenon occurs in Arabidopsis thaliana plants infected with ORMV. Here, we tested whether the time of removing the infected leaves as well as viral titer have any effect on the degree of changes in HRF in systemic tissues. An increase in HRF in systemic non-infected tissues was more pronounced when the infected leaves were detached from the infected plants at 60-96 h post-infection, rather than at earlier time. Next, we found that exposure to higher concentrations of inoculum was much more efficient in triggering an increase in HRF than exposure to lower concentrations. Finally, we showed that older plants exhibited a higher increase in HRF than younger plants. We found that an increase in genome instability in systemic tissues of locally infected plants depends on plant age, the concentration of initial inoculums and the time of viral replication.

  14. A systemic increase in the recombination frequency upon local infection of Arabidopsis thaliana plants with oilseed rape mosaic virus depends on plant age, the initial inoculum concentration and the time for virus replication

    Directory of Open Access Journals (Sweden)

    Youli eYao

    2013-03-01

    Full Text Available In the past, we showed that local infection of tobacco leaves with either Tobacco mosaic virus (TMV or Oilseed rape mosaic virus (ORMV resulted in a systemic increase in the homologous recombination frequency (HRF. Later on, we showed that a similar phenomenon occurs in Arabidopsis thaliana plants infected with ORMV. Here, we tested whether the time of removing the infected leaves as well as viral titer have any effect on the degree of changes in HRF in systemic tissues. An increase in HRF in systemic non-infected tissues was more pronounced when the infected leaves were detached from the infected plants at 60-96 hours post infection, rather than at earlier time. Next, we found that exposure to higher concentrations of inoculum was much more efficient in triggering an increase in HRF than exposure to lower concentrations. Finally, we showed that older plants exhibited a higher increase in HRF than younger plants. We found that an increase in genome instability in systemic tissues of locally infected plants depends on plant age, the concentration of initial inoculums and the time of viral replication.

  15. Transcription-replication conflicts at chromosomal fragile sites—consequences in M phase and beyond

    DEFF Research Database (Denmark)

    Østergaard, Vibe Hallundbæk; Lisby, Michael

    2017-01-01

    transcription and replication patterns. At the same time, these chromosomal fragile sites engage in aberrant DNA structures in mitosis. Here, we discuss the mechanistic details of transcription–replication conflicts including putative scenarios for R-loop-induced replication inhibition to understand how...... transcription–replication conflicts transition from S phase into various aberrant DNA structures in mitosis....

  16. High-Resolution Replication Profiles Define the Stochastic Nature of Genome Replication Initiation and Termination

    Directory of Open Access Journals (Sweden)

    Michelle Hawkins

    2013-11-01

    Full Text Available Eukaryotic genome replication is stochastic, and each cell uses a different cohort of replication origins. We demonstrate that interpreting high-resolution Saccharomyces cerevisiae genome replication data with a mathematical model allows quantification of the stochastic nature of genome replication, including the efficiency of each origin and the distribution of termination events. Single-cell measurements support the inferred values for stochastic origin activation time. A strain, in which three origins were inactivated, confirmed that the distribution of termination events is primarily dictated by the stochastic activation time of origins. Cell-to-cell variability in origin activity ensures that termination events are widely distributed across virtually the whole genome. We propose that the heterogeneity in origin usage contributes to genome stability by limiting potentially deleterious events from accumulating at particular loci.

  17. Object Individuation or Object Movement as Attractor? A Replication of the Wide-Screen/Narrow-Screen Study by Means of (a Standard Looking Time Methodology and (b Eye Tracking

    Directory of Open Access Journals (Sweden)

    Peter Krøjgaard

    2013-01-01

    Full Text Available We report a replication experiment of a mechanized version of the seminal wide-screen/narrow-screen design of Wilcox and Baillargeon (1998 with 9.5-month-old infants (N=80. Two different methodologies were employed simultaneously: (a the standard looking time paradigm and (b eye tracking. Across conditions with three different screen sizes, the results from both methodologies revealed a clear and interesting pattern: the looking times increased as a significantly linear function of reduced screen sizes, that is, independently of the number of different objects involved. There was no indication in the data that the infants made use of the featural differences between the different-looking objects involved. The results suggest a simple, novel, and thought-provoking interpretation of the infants’ looking behavior in the wide-screen/narrow-screen design: moving objects are attractors, and the more space left for visible object movement in the visual field, the longer are infants’ looks. Consequently, no cognitive interpretation may be needed.

  18. Epigenetic control of DNA replication dynamics in mammals

    OpenAIRE

    Casas Delucchi, Corella Susana

    2011-01-01

    One of the most critically important processes in any living organism, essential for development and reproduction, is that of the accurate replication of its genome before each cell division. The process of DNA replication can take place millions of times in a single organism and any mistake, if left unrepaired, is potentially transmitted into the next generation. Errors during replication can result in genetic mutations or karyotype aberrations, both of which can lead to disease or death. ...

  19. Replicated Spectrographs in Astronomy

    CERN Document Server

    Hill, Gary J

    2014-01-01

    As telescope apertures increase, the challenge of scaling spectrographic astronomical instruments becomes acute. The next generation of extremely large telescopes (ELTs) strain the availability of glass blanks for optics and engineering to provide sufficient mechanical stability. While breaking the relationship between telescope diameter and instrument pupil size by adaptive optics is a clear path for small fields of view, survey instruments exploiting multiplex advantages will be pressed to find cost-effective solutions. In this review we argue that exploiting the full potential of ELTs will require the barrier of the cost and engineering difficulty of monolithic instruments to be broken by the use of large-scale replication of spectrographs. The first steps in this direction have already been taken with the soon to be commissioned MUSE and VIRUS instruments for the Very Large Telescope and the Hobby-Eberly Telescope, respectively. MUSE employs 24 spectrograph channels, while VIRUS has 150 channels. We compa...

  20. The Inner Centromere Protein (INCENP) Coil Is a Single α-Helix (SAH) Domain That Binds Directly to Microtubules and Is Important for Chromosome Passenger Complex (CPC) Localization and Function in Mitosis.

    Science.gov (United States)

    Samejima, Kumiko; Platani, Melpomeni; Wolny, Marcin; Ogawa, Hiromi; Vargiu, Giulia; Knight, Peter J; Peckham, Michelle; Earnshaw, William C

    2015-08-28

    The chromosome passenger complex (CPC) is a master regulator of mitosis. Inner centromere protein (INCENP) acts as a scaffold regulating CPC localization and activity. During early mitosis, the N-terminal region of INCENP forms a three-helix bundle with Survivin and Borealin, directing the CPC to the inner centromere where it plays essential roles in chromosome alignment and the spindle assembly checkpoint. The C-terminal IN box region of INCENP is responsible for binding and activating Aurora B kinase. The central region of INCENP has been proposed to comprise a coiled coil domain acting as a spacer between the N- and C-terminal domains that is involved in microtubule binding and regulation of the spindle checkpoint. Here we show that the central region (213 residues) of chicken INCENP is not a coiled coil but a ∼ 32-nm-long single α-helix (SAH) domain. The N-terminal half of this domain directly binds to microtubules in vitro. By analogy with previous studies of myosin 10, our data suggest that the INCENP SAH might stretch up to ∼ 80 nm under physiological forces. Thus, the INCENP SAH could act as a flexible "dog leash," allowing Aurora B to phosphorylate dynamic substrates localized in the outer kinetochore while at the same time being stably anchored to the heterochromatin of the inner centromere. Furthermore, by achieving this flexibility via an SAH domain, the CPC avoids a need for dimerization (required for coiled coil formation), which would greatly complicate regulation of the proximity-induced trans-phosphorylation that is critical for Aurora B activation.

  1. SUMO and KSHV Replication

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Pei-Ching [Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan (China); Kung, Hsing-Jien, E-mail: hkung@nhri.org.tw [Institute for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan (China); Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616 (United States); UC Davis Cancer Center, University of California, Davis, CA 95616 (United States); Division of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan (China)

    2014-09-29

    Small Ubiquitin-related MOdifier (SUMO) modification was initially identified as a reversible post-translational modification that affects the regulation of diverse cellular processes, including signal transduction, protein trafficking, chromosome segregation, and DNA repair. Increasing evidence suggests that the SUMO system also plays an important role in regulating chromatin organization and transcription. It is thus not surprising that double-stranded DNA viruses, such as Kaposi’s sarcoma-associated herpesvirus (KSHV), have exploited SUMO modification as a means of modulating viral chromatin remodeling during the latent-lytic switch. In addition, SUMO regulation allows the disassembly and assembly of promyelocytic leukemia protein-nuclear bodies (PML-NBs), an intrinsic antiviral host defense, during the viral replication cycle. Overcoming PML-NB-mediated cellular intrinsic immunity is essential to allow the initial transcription and replication of the herpesvirus genome after de novo infection. As a consequence, KSHV has evolved a way as to produce multiple SUMO regulatory viral proteins to modulate the cellular SUMO environment in a dynamic way during its life cycle. Remarkably, KSHV encodes one gene product (K-bZIP) with SUMO-ligase activities and one gene product (K-Rta) that exhibits SUMO-targeting ubiquitin ligase (STUbL) activity. In addition, at least two viral products are sumoylated that have functional importance. Furthermore, sumoylation can be modulated by other viral gene products, such as the viral protein kinase Orf36. Interference with the sumoylation of specific viral targets represents a potential therapeutic strategy when treating KSHV, as well as other oncogenic herpesviruses. Here, we summarize the different ways KSHV exploits and manipulates the cellular SUMO system and explore the multi-faceted functions of SUMO during KSHV’s life cycle and pathogenesis.

  2. Content replication and placement in mobile networks

    CERN Document Server

    La, Chi-Anh; Casetti, Claudio; Chiasserini, Carla-Fabiana; Fiore, Marco

    2011-01-01

    Performance and reliability of content access in mobile networks is conditioned by the number and location of content replicas deployed at the network nodes. Location theory has been the traditional, centralized approach to study content replication: computing the number and placement of replicas in a static network can be cast as a facility location problem. The endeavor of this work is to design a practical solution to the above joint optimization problem that is suitable for mobile wireless environments. We thus seek a replication algorithm that is lightweight, distributed, and reactive to network dynamics. We devise a solution that lets nodes (i) share the burden of storing and providing content, so as to achieve load balancing, and (ii) autonomously decide whether to replicate or drop the information, so as to adapt the content availability to dynamic demands and time-varying network topologies. We evaluate our mechanism through simulation, by exploring a wide range of settings, including different node ...

  3. Efficient usage of Adabas replication

    CERN Document Server

    Storr, Dieter W

    2011-01-01

    In today's IT organization replication becomes more and more an essential technology. This makes Software AG's Event Replicator for Adabas an important part of your data processing. Setting the right parameters and establishing the best network communication, as well as selecting efficient target components, is essential for successfully implementing replication. This book provides comprehensive information and unique best-practice experience in the field of Event Replicator for Adabas. It also includes sample codes and configurations making your start very easy. It describes all components ne

  4. Solving the Telomere Replication Problem

    Science.gov (United States)

    Maestroni, Laetitia; Matmati, Samah; Coulon, Stéphane

    2017-01-01

    Telomeres are complex nucleoprotein structures that protect the extremities of linear chromosomes. Telomere replication is a major challenge because many obstacles to the progression of the replication fork are concentrated at the ends of the chromosomes. This is known as the telomere replication problem. In this article, different and new aspects of telomere replication, that can threaten the integrity of telomeres, will be reviewed. In particular, we will focus on the functions of shelterin and the replisome for the preservation of telomere integrity. PMID:28146113

  5. Replication of Avocado Sunblotch Viroid in the Yeast Saccharomyces cerevisiae▿

    Science.gov (United States)

    Delan-Forino, Clémentine; Maurel, Marie-Christine; Torchet, Claire

    2011-01-01

    Viroids are the smallest known pathogenic agents. They are noncoding, single-stranded, closed-circular, “naked” RNAs, which replicate through RNA-RNA transcription. Viroids of the Avsunviroidae family possess a hammerhead ribozyme in their sequence, allowing self-cleavage during their replication. To date, viroids have only been detected in plant cells. Here, we investigate the replication of Avocado sunblotch viroid (ASBVd) of the Avsunviroidae family in a nonconventional host, the yeast Saccharomyces cerevisiae. We demonstrate that ASBVd RNA strands of both polarities are able to self-cleave and to replicate in a unicellular eukaryote cell. We show that the viroid monomeric RNA is destabilized by the nuclear 3′ and the cytoplasmic 5′ RNA degradation pathways. For the first time, our results provide evidence that viroids can replicate in other organisms than plants and that yeast contains all of the essential cellular elements for the replication of ASBVd. PMID:21270165

  6. DNA Topoisomerase II Is a Determinant of the Tensile Properties of Yeast Centromeric Chromatin and the Tension Checkpoint

    OpenAIRE

    Warsi, Tariq H.; Navarro, Michelle S.; Bachant, Jeff

    2008-01-01

    Centromeric (CEN) chromatin is placed under mechanical tension and stretches as kinetochores biorient on the mitotic spindle. This deformation could conceivably provide a readout of biorientation to error correction mechanisms that monitor kinetochore–spindle interactions, but whether CEN chromatin acts in a tensiometer capacity is unresolved. Here, we report observations linking yeast Topoisomerase II (Top2) to both CEN mechanics and assessment of interkinetochore tension. First, in top2-4 a...

  7. Histone modifications: Cycling with chromosomal replication

    DEFF Research Database (Denmark)

    Thon, Genevieve

    2008-01-01

    Histone modifications tend to be lost during chromosome duplication. Several recent studies suggest that the RNA interference pathway becomes active during the weakened transcriptional repression occurring at centromeres in S phase, resulting in the re-establishment of histone modifications that ...

  8. Multifork chromosome replication in slow-growing bacteria

    Science.gov (United States)

    Trojanowski, Damian; Hołówka, Joanna; Ginda, Katarzyna; Jakimowicz, Dagmara; Zakrzewska-Czerwińska, Jolanta

    2017-01-01

    The growth rates of bacteria must be coordinated with major cell cycle events, including chromosome replication. When the doubling time (Td) is shorter than the duration of chromosome replication (C period), a new round of replication begins before the previous round terminates. Thus, newborn cells inherit partially duplicated chromosomes. This phenomenon, which is termed multifork replication, occurs among fast-growing bacteria such as Escherichia coli and Bacillus subtilis. In contrast, it was historically believed that slow-growing bacteria (including mycobacteria) do not reinitiate chromosome replication until the previous round has been completed. Here, we use single-cell time-lapse analyses to reveal that mycobacterial cell populations exhibit heterogeneity in their DNA replication dynamics. In addition to cells with non-overlapping replication rounds, we observed cells in which the next replication round was initiated before completion of the previous replication round. We speculate that this heterogeneity may reflect a relaxation of cell cycle checkpoints, possibly increasing the ability of slow-growing mycobacteria to adapt to environmental conditions. PMID:28262767

  9. Maximum-likelihood method identifies meiotic restitution mechanism from heterozygosity transmission of centromeric loci: application in citrus

    Science.gov (United States)

    Cuenca, José; Aleza, Pablo; Juárez, José; García-Lor, Andrés; Froelicher, Yann; Navarro, Luis; Ollitrault, Patrick

    2015-01-01

    Polyploidisation is a key source of diversification and speciation in plants. Most researchers consider sexual polyploidisation leading to unreduced gamete as its main origin. Unreduced gametes are useful in several crop breeding schemes. Their formation mechanism, i.e., First-Division Restitution (FDR) or Second-Division Restitution (SDR), greatly impacts the gametic and population structures and, therefore, the breeding efficiency. Previous methods to identify the underlying mechanism required the analysis of a large set of markers over large progeny. This work develops a new maximum-likelihood method to identify the unreduced gamete formation mechanism both at the population and individual levels using independent centromeric markers. Knowledge of marker-centromere distances greatly improves the statistical power of the comparison between the SDR and FDR hypotheses. Simulating data demonstrated the importance of selecting markers very close to the centromere to obtain significant conclusions at individual level. This new method was used to identify the meiotic restitution mechanism in nineteen mandarin genotypes used as female parents in triploid citrus breeding. SDR was identified for 85.3% of 543 triploid hybrids and FDR for 0.6%. No significant conclusions were obtained for 14.1% of the hybrids. At population level SDR was the predominant mechanisms for the 19 parental mandarins. PMID:25894579

  10. Maximum-likelihood method identifies meiotic restitution mechanism from heterozygosity transmission of centromeric loci: application in citrus.

    Science.gov (United States)

    Cuenca, José; Aleza, Pablo; Juárez, José; García-Lor, Andrés; Froelicher, Yann; Navarro, Luis; Ollitrault, Patrick

    2015-04-20

    Polyploidisation is a key source of diversification and speciation in plants. Most researchers consider sexual polyploidisation leading to unreduced gamete as its main origin. Unreduced gametes are useful in several crop breeding schemes. Their formation mechanism, i.e., First-Division Restitution (FDR) or Second-Division Restitution (SDR), greatly impacts the gametic and population structures and, therefore, the breeding efficiency. Previous methods to identify the underlying mechanism required the analysis of a large set of markers over large progeny. This work develops a new maximum-likelihood method to identify the unreduced gamete formation mechanism both at the population and individual levels using independent centromeric markers. Knowledge of marker-centromere distances greatly improves the statistical power of the comparison between the SDR and FDR hypotheses. Simulating data demonstrated the importance of selecting markers very close to the centromere to obtain significant conclusions at individual level. This new method was used to identify the meiotic restitution mechanism in nineteen mandarin genotypes used as female parents in triploid citrus breeding. SDR was identified for 85.3% of 543 triploid hybrids and FDR for 0.6%. No significant conclusions were obtained for 14.1% of the hybrids. At population level SDR was the predominant mechanisms for the 19 parental mandarins.

  11. Pregnancy-associated thrombotic thrombocytopenic purpura with anti-centromere antibody-positive Raynaud's syndrome.

    Science.gov (United States)

    Watanabe, Ryu; Shirai, Tsuyoshi; Tajima, Yumi; Ohguchi, Hiroto; Onishi, Yasushi; Fujii, Hiroshi; Takasawa, Naruhiko; Ishii, Tomonori; Harigae, Hideo

    2010-01-01

    Thrombotic thrombocytopenic purpura (TTP), scleroderma renal crisis (SRC), and hemolysis, elevated liver enzyme levels, and a low platelet count (HELLP) syndrome display common symptoms that include microangiopathic hemolytic anemia, thrombocytopenia, and renal failure. Therefore, it is important to distinguish between them because their treatments vary: however, the differential diagnosis is sometimes difficult. We report a 32-year-old woman who was referred to our department for further examination of microangiopathic hemolytic anemia, thrombocytopenia, and a slightly elevated serum creatinine level with anti-centromere antibody-positive Raynaud's syndrome in the early puerperal period. TTP, SRC, and HELLP syndrome were considered in the differential diagnosis, but the measurement of a disintegrin-like metalloprotease with thrombospondin type 1 motifs 13 (ADAMTS 13) activity and its inhibitor level led to the diagnosis of TTP. She was successfully treated by plasma exchange and high-dose prednisolone and angiotensin-converting enzyme inhibitor. If microangiopathic hemolytic anemia and thrombocytopenia are observed in perinatal women or patients with signs of systemic sclerosis, the measurement of ADAMTS13 activity and its inhibitor level are essential for diagnosis and therapeutic choice.

  12. Overexpression of centromere protein H is significantly associated with breast cancer progression and overall patient survival

    Institute of Scientific and Technical Information of China (English)

    Wen-Ting Liao; Yan Feng; Men-Lin Li; Guang-Lin Liu; Man-Zhi Li; Mu-Sheng Zeng; Li-Bing Song

    2011-01-01

    Breast cancer is one of the leading causes of cancer death worldwide.This study aimed to analyze the expression of centromere protein H (CENP-H) in breast cancer and to correlate it with clinicopathologic data,including patient survival.Using reverse transcription-polymerase chain reaction and Westem blotting to detect the expression of CENP-H in normal mammary epithelial cells,immortalized mammary epithelial cell lines,and breast cancer cell lines,we observed that the mRNA and protein levels of CENP-H were higher in breast cancer cell lines and in immortalized mammary epithelial cells than in normal mammary epithelial cells.We next examined CENP-H expression in 307 paraffin-embedded archived samples of clinicopathologically characterized breast cancer using immunohistochemistry,and detected high CENP-H expression in 134 (43.6%) samples.Statistical analysis showed that CENP-H expression was related with clinical stage (P = 0.001),T classification (P = 0.032),N classification (P =0.018),and Ki-67 (P<0.001).Patients with high CENP-H expression had short overall survival.Multivariate analysis showed that CENP-H expression was an independent prognostic indicator for patient survival.Our results suggest that CENP-H protein is a valuable marker of breast cancer progression and prognosis.

  13. Charter School Replication. Policy Guide

    Science.gov (United States)

    Rhim, Lauren Morando

    2009-01-01

    "Replication" is the practice of a single charter school board or management organization opening several more schools that are each based on the same school model. The most rapid strategy to increase the number of new high-quality charter schools available to children is to encourage the replication of existing quality schools. This policy guide…

  14. New tool for biological dosimetry: Reevaluation and automation of the gold standard method following telomere and centromere staining

    Energy Technology Data Exchange (ETDEWEB)

    M’kacher, Radhia [Laboratoire de Radiobiologie et Oncologie (LRO), Commissariat à l’Energie Atomique (CEA), Route du Panorama, 92265 Fontenay-aux-Roses (France); Maalouf, Elie E.L. [Laboratoire de Radiobiologie et Oncologie (LRO), Commissariat à l’Energie Atomique (CEA), Route du Panorama, 92265 Fontenay-aux-Roses (France); Laboratoire MIPS – Groupe TIIM3D, Université de Haute-Alsace, F-68093 Mulhouse (France); Ricoul, Michelle [Laboratoire de Radiobiologie et Oncologie (LRO), Commissariat à l’Energie Atomique (CEA), Route du Panorama, 92265 Fontenay-aux-Roses (France); Heidingsfelder, Leonhard [MetaSystems GmbH, Robert-Bosch-Str. 6, 68804 Altlussheim (Germany); Laplagne, Eric [Pole Concept, 61 Rue Erlanger, 75016 Paris (France); Cuceu, Corina; Hempel, William M. [Laboratoire de Radiobiologie et Oncologie (LRO), Commissariat à l’Energie Atomique (CEA), Route du Panorama, 92265 Fontenay-aux-Roses (France); Colicchio, Bruno; Dieterlen, Alain [Laboratoire MIPS – Groupe TIIM3D, Université de Haute-Alsace, F-68093 Mulhouse (France); Sabatier, Laure, E-mail: laure.sabatier@cea.fr [Laboratoire de Radiobiologie et Oncologie (LRO), Commissariat à l’Energie Atomique (CEA), Route du Panorama, 92265 Fontenay-aux-Roses (France)

    2014-12-15

    Graphical abstract: - Highlights: • We have applied telomere and centromere (TC) staining to the scoring of dicentrics. • TC staining renders the scoring of dicentrics more rapid and robust. • TC staining allows the scoring of not only dicentrics but all chromosomal anomalies. • TC staining has led to a reevaluation of the radiation dose–response curve. • TC staining allows automation of the scoring of chromosomal aberations. • Automated scoring of dicentrics after TC staining was as efficient as manual scoring. - Abstract: Purpose: The dicentric chromosome (dicentric) assay is the international gold-standard method for biological dosimetry and classification of genotoxic agents. The introduction of telomere and centromere (TC) staining offers the potential to render dicentric scoring more efficient and robust. In this study, we improved the detection of dicentrics and all unstable chromosomal aberrations (CA) leading to a significant reevaluation of the dose–effect curve and developed an automated approach following TC staining. Material and methods: Blood samples from 16 healthy donors were exposed to {sup 137}Cs at 8 doses from 0.1 to 6 Gy. CA were manually and automatically scored following uniform (Giemsa) or TC staining. The detection of centromeric regions and telomeric sequences using PNA probes allowed the detection of all unstable CA: dicentrics, centric and acentric rings, and all acentric fragments (with 2, 4 or no telomeres) leading to the precise quantification of estimated double strand breaks (DSB). Results: Manual scoring following TC staining revealed a significantly higher frequency of dicentrics (p < 10{sup −3}) (up to 30%) and estimated DSB (p < 10{sup −4}) compared to uniform staining due to improved detection of dicentrics with centromeres juxtaposed with other centromeres or telomeres. This improvement permitted the development of the software, TCScore, that detected 95% of manually scored dicentrics compared to 50% for

  15. LHCb experience with LFC replication

    CERN Document Server

    Bonifazi, F; Perez, E D; D'Apice, A; dell'Agnello, L; Düllmann, D; Girone, M; Re, G L; Martelli, B; Peco, G; Ricci, P P; Sapunenko, V; Vagnoni, V; Vitlacil, D

    2008-01-01

    Database replication is a key topic in the framework of the LHC Computing Grid to allow processing of data in a distributed environment. In particular, the LHCb computing model relies on the LHC File Catalog, i.e. a database which stores information about files spread across the GRID, their logical names and the physical locations of all the replicas. The LHCb computing model requires the LFC to be replicated at Tier-1s. The LCG 3D project deals with the database replication issue and provides a replication service based on Oracle Streams technology. This paper describes the deployment of the LHC File Catalog replication to the INFN National Center for Telematics and Informatics (CNAF) and to other LHCb Tier-1 sites. We performed stress tests designed to evaluate any delay in the propagation of the streams and the scalability of the system. The tests show the robustness of the replica implementation with performance going much beyond the LHCb requirements.

  16. LHCb experience with LFC replication

    CERN Document Server

    Carbone, Angelo; Dafonte Perez, Eva; D'Apice, Antimo; dell'Agnello, Luca; Duellmann, Dirk; Girone, Maria; Lo Re, Giuseppe; Martelli, Barbara; Peco, Gianluca; Ricci, Pier Paolo; Sapunenko, Vladimir; Vagnoni, Vincenzo; Vitlacil, Dejan

    2007-01-01

    Database replication is a key topic in the framework of the LHC Computing Grid to allow processing of data in a distributed environment. In particular, the LHCb computing model relies on the LHC File Catalog, i.e. database which stores information about files spread across the GRID, their logical names and the physical locations of all the replicas. The LHCb computing model requires the LFC to be replicated at Tier-1s. The LCG 3D project deals with the database replication issue and provides a replication service based on Oracle Streams technology. This paper describes the deployment of the LHC File Catalog replication to the INFN National Center for Telematics and Informations (CNAF) and to other LHCb Tier-1 sites. We performed stress tests designed to evaluate any delay in the propagation of the streams and the scalability of the system. The tests show the robustness of the replica implementation with performance going much beyond the LHCb requirements.

  17. Pyrimidine Pool Disequilibrium Induced by a Cytidine Deaminase Deficiency Inhibits PARP-1 Activity, Leading to the Under Replication of DNA.

    Directory of Open Access Journals (Sweden)

    Simon Gemble

    2015-07-01

    Full Text Available Genome stability is jeopardized by imbalances of the dNTP pool; such imbalances affect the rate of fork progression. For example, cytidine deaminase (CDA deficiency leads to an excess of dCTP, slowing the replication fork. We describe here a novel mechanism by which pyrimidine pool disequilibrium compromises the completion of replication and chromosome segregation: the intracellular accumulation of dCTP inhibits PARP-1 activity. CDA deficiency results in incomplete DNA replication when cells enter mitosis, leading to the formation of ultrafine anaphase bridges between sister-chromatids at "difficult-to-replicate" sites such as centromeres and fragile sites. Using molecular combing, electron microscopy and a sensitive assay involving cell imaging to quantify steady-state PAR levels, we found that DNA replication was unsuccessful due to the partial inhibition of basal PARP-1 activity, rather than slower fork speed. The stimulation of PARP-1 activity in CDA-deficient cells restores replication and, thus, chromosome segregation. Moreover, increasing intracellular dCTP levels generates under-replication-induced sister-chromatid bridges as efficiently as PARP-1 knockdown. These results have direct implications for Bloom syndrome (BS, a rare genetic disease combining susceptibility to cancer and genomic instability. BS results from mutation of the BLM gene, encoding BLM, a RecQ 3'-5' DNA helicase, a deficiency of which leads to CDA downregulation. BS cells thus have a CDA defect, resulting in a high frequency of ultrafine anaphase bridges due entirely to dCTP-dependent PARP-1 inhibition and independent of BLM status. Our study describes previously unknown pathological consequences of the distortion of dNTP pools and reveals an unexpected role for PARP-1 in preventing DNA under-replication and chromosome segregation defects.

  18. The Psychology of Replication and Replication in Psychology.

    Science.gov (United States)

    Francis, Gregory

    2012-11-01

    Like other scientists, psychologists believe experimental replication to be the final arbiter for determining the validity of an empirical finding. Reports in psychology journals often attempt to prove the validity of a hypothesis or theory with multiple experiments that replicate a finding. Unfortunately, these efforts are sometimes misguided because in a field like experimental psychology, ever more successful replication does not necessarily ensure the validity of an empirical finding. When psychological experiments are analyzed with statistics, the rules of probability dictate that random samples should sometimes be selected that do not reject the null hypothesis, even if an effect is real. As a result, it is possible for a set of experiments to have too many successful replications. When there are too many successful replications for a given set of experiments, a skeptical scientist should be suspicious that null or negative findings have been suppressed, the experiments were run improperly, or the experiments were analyzed improperly. This article describes the implications of this observation and demonstrates how to test for too much successful replication by using a set of experiments from a recent research paper.

  19. Heterochromatic genes undergo epigenetic changes and escape silencing in immunodeficiency, centromeric instability, facial anomalies (ICF syndrome.

    Directory of Open Access Journals (Sweden)

    Marie-Elisabeth Brun

    Full Text Available Immunodeficiency, Centromeric Instability, Facial Anomalies (ICF syndrome is a rare autosomal recessive disorder that is characterized by a marked immunodeficiency, severe hypomethylation of the classical satellites 2 and 3 associated with disruption of constitutive heterochromatin, and facial anomalies. Sixty percent of ICF patients have mutations in the DNMT3B (DNA methyltransferase 3B gene, encoding a de novo DNA methyltransferase. In the present study, we have shown that, in ICF lymphoblasts and peripheral blood, juxtacentromeric heterochromatic genes undergo dramatic changes in DNA methylation, indicating that they are bona fide targets of the DNMT3B protein. DNA methylation in heterochromatic genes dropped from about 80% in normal cells to approximately 30% in ICF cells. Hypomethylation was observed in five ICF patients and was associated with activation of these silent genes. Although DNA hypomethylation occurred in all the analyzed heterochromatic genes and in all the ICF patients, gene expression was restricted to some genes, every patient having his own group of activated genes. Histone modifications were preserved in ICF patients. Heterochromatic genes were associated with histone modifications that are typical of inactive chromatin: they had low acetylation on H3 and H4 histones and were slightly enriched in H3K9Me(3, both in ICF and controls. This was also the case for those heterochromatic genes that escaped silencing. This finding suggests that gene activation was not generalized to all the cells, but rather was restricted to a clonal cell population that may contribute to the phenotypic variability observed in ICF syndrome. A slight increase in H3K27 monomethylation was observed both in heterochromatin and active euchromatin in ICF patients; however, no correlation between this modification and activation of heterochromatic genes was found.

  20. Chromosome 17 centromere duplication and responsiveness to anthracycline-based neoadjuvant chemotherapy in breast cancer.

    Science.gov (United States)

    Tibau, Ariadna; López-Vilaró, Laura; Pérez-Olabarria, Maitane; Vázquez, Tania; Pons, Cristina; Gich, Ignasi; Alonso, Carmen; Ojeda, Belén; Ramón y Cajal, Teresa; Lerma, Enrique; Barnadas, Agustí; Escuin, Daniel

    2014-10-01

    Human epidermal growth factor receptor 2 (HER2) and topoisomerase II alpha (TOP2A) genes have been proposed as predictive biomarkers of sensitivity to anthracycline chemotherapy. Recently, chromosome 17 centromere enumeration probe (CEP17) duplication has also been associated with increased responsiveness to anthracyclines. However, reports are conflicting and none of these tumor markers can yet be considered a clinically reliable predictor of response to anthracyclines. We studied the association of TOP2A gene alterations, HER2 gene amplification, and CEP17 duplication with response to anthracycline-based neoadjuvant chemotherapy in 140 patients with operable or locally advanced breast cancer. HER2 was tested by fluorescence in situ hybridization and TOP2A and CEP17 by chromogenic in situ hybridization. Thirteen patients (9.3%) achieved pathologic complete response (pCR). HER2 amplification was present in 24 (17.5%) of the tumors. TOP2A amplification occurred in seven tumors (5.1%). CEP17 duplication was detected in 13 patients (9.5%). CEP17 duplication correlated with a higher rate of pCR [odds ratio (OR) 6.55, 95% confidence interval (95% CI) 1.25-34.29, P = .026], and analysis of TOP2A amplification showed a trend bordering on statistical significance (OR 6.97, 95% CI 0.96-50.12, P = .054). TOP2A amplification and CEP17 duplication combined were strongly associated with pCR (OR 6.71, 95% CI 1.66-27.01, P = .007). HER2 amplification did not correlate with pCR. Our results suggest that CEP17 duplication predicts pCR to primary anthracycline-based chemotherapy. CEP17 duplication, TOP2A amplifications, and HER2 amplifications were not associated with prognosis.

  1. Systematic determination of replication activity type highlights interconnections between replication, chromatin structure and nuclear localization.

    Directory of Open Access Journals (Sweden)

    Shlomit Farkash-Amar

    Full Text Available DNA replication is a highly regulated process, with each genomic locus replicating at a distinct time of replication (ToR. Advances in ToR measurement technology enabled several genome-wide profiling studies that revealed tight associations between ToR and general genomic features and a remarkable ToR conservation in mammals. Genome wide studies further showed that at the hundreds kb-to-megabase scale the genome can be divided into constant ToR regions (CTRs in which the replication process propagates at a faster pace due to the activation of multiple origins and temporal transition regions (TTRs in which the replication process propagates at a slower pace. We developed a computational tool that assigns a ToR to every measured locus and determines its replication activity type (CTR versus TTR. Our algorithm, ARTO (Analysis of Replication Timing and Organization, uses signal processing methods to fit a constant piece-wise linear curve to the measured raw data. We tested our algorithm and provide performance and usability results. A Matlab implementation of ARTO is available at http://bioinfo.cs.technion.ac.il/people/zohar/ARTO/. Applying our algorithm to ToR data measured in multiple mouse and human samples allowed precise genome-wide ToR determination and replication activity type characterization. Analysis of the results highlighted the plasticity of the replication program. For example, we observed significant ToR differences in 10-25% of the genome when comparing different tissue types. Our analyses also provide evidence for activity type differences in up to 30% of the probes. Integration of the ToR data with multiple aspects of chromosome organization characteristics suggests that ToR plays a role in shaping the regional chromatin structure. Namely, repressive chromatin marks, are associated with late ToR both in TTRs and CTRs. Finally, characterization of the differences between TTRs and CTRs, with matching ToR, revealed that TTRs are

  2. 植物着丝粒结构及进化的研究进展%Research Progress on Structure and Evolution of Plant Centromeres

    Institute of Scientific and Technical Information of China (English)

    刘青

    2015-01-01

    植物着丝粒是染色体重要结构域,介导动粒装配。不同物种间着丝粒重复序列快速趋异进化,着丝粒功能保守,确保有丝分裂和减数分裂过程中染色体正确分离和准确传递。伴随染色质免疫共沉淀技术(Chromatin immunoprecipitation, ChIP)、ChIP与高密度芯片相结合技术(ChIP-chip)、ChIP与高通量测序相结合技术(ChIP-seq)的应用,植物着丝粒研究获得里程碑式进展:某些模式植物着丝粒DNA序列、蛋白质结构、功能获得大量新认识;着丝粒基本蛋白质组蛋白H3被用来界定着丝粒大小和边界;某些非着丝粒区域被激活为新着丝粒,在世代传递中保持稳定性。本文对植物着丝粒结构、功能、进化研究进行了综述,并探讨了植物着丝粒研究存在的问题。%The plant centromere is the most important chromosome domain mediating the assembly of kinetochore. The rapid divergent evolution of centromeric repeat sequences and function conservation of centromeres among different species ensure correct segregation and faithful transmission of chromosome in mitosis and meiosis. Along with the development of chromatin immunoprecipitation (ChIP), ChIP-chip, and ChIP-sequencing (ChIP-seq) technologies, three milestone discoveries have achieved in plant centromere research since the last 20 years, such as a lot of new knowledge on the structure, function, and evolution of centromeres from model plants, the fundamental kinetochore protein CENH3 used to delimiting the size and boundaries of centromere, the neocentromeres activated from non-centromeric regions stably transmitted to subsequent generations. The research progress on structure, function, and evolution of plant centromeres are reviewed and the remaining questions of plant centromere studies are discussed.

  3. The DNA damage checkpoint response to replication stress: A Game of Forks.

    Directory of Open Access Journals (Sweden)

    Rachel eJossen

    2013-03-01

    Full Text Available Conditions challenging replication fork progression, collectively referred to as replication stress, represent a major source of genomic instability and are associated to cancer onset. The replication checkpoint, a specialized branch of the DNA damage checkpoint, monitors fork problems and triggers a cellular response aimed at preserving genome integrity. Here, we review the mechanisms by which the replication checkpoint monitors and responds to replication stress, focusing on the checkpoint-mediated pathways contributing to protect replication fork integrity. We discuss how cells achieve checkpoint signaling inactivation once replication stress is overcome and how a failure to timely revert checkpoint-mediated changes in cellular physiology might impact on replication dynamics and genome integrity. We also highlight the checkpoint function as an anti-cancer barrier preventing cells malignant transformation following oncogene-induced replication stress.

  4. Autophagy facilitates Salmonella replication in HeLa cells.

    Science.gov (United States)

    Yu, Hong B; Croxen, Matthew A; Marchiando, Amanda M; Ferreira, Rosana B R; Cadwell, Ken; Foster, Leonard J; Finlay, B Brett

    2014-03-11

    Autophagy is a process whereby a double-membrane structure (autophagosome) engulfs unnecessary cytosolic proteins, organelles, and invading pathogens and delivers them to the lysosome for degradation. We examined the fate of cytosolic Salmonella targeted by autophagy and found that autophagy-targeted Salmonella present in the cytosol of HeLa cells correlates with intracellular bacterial replication. Real-time analyses revealed that a subset of cytosolic Salmonella extensively associates with autophagy components p62 and/or LC3 and replicates quickly, whereas intravacuolar Salmonella shows no or very limited association with p62 or LC3 and replicates much more slowly. Replication of cytosolic Salmonella in HeLa cells is significantly decreased when autophagy components are depleted. Eventually, hyperreplication of cytosolic Salmonella potentiates cell detachment, facilitating the dissemination of Salmonella to neighboring cells. We propose that Salmonella benefits from autophagy for its cytosolic replication in HeLa cells. IMPORTANCE As a host defense system, autophagy is known to target a population of Salmonella for degradation and hence restricting Salmonella replication. In contrast to this concept, a recent report showed that knockdown of Rab1, a GTPase required for autophagy of Salmonella, decreases Salmonella replication in HeLa cells. Here, we have reexamined the fate of Salmonella targeted by autophagy by various cell biology-based assays. We found that the association of autophagy components with cytosolic Salmonella increases shortly after initiation of intracellular bacterial replication. Furthermore, through a live-cell imaging method, a subset of cytosolic Salmonella was found to be extensively associated with autophagy components p62 and/or LC3, and they replicated quickly. Most importantly, depletion of autophagy components significantly reduced the replication of cytosolic Salmonella in HeLa cells. Hence, in contrast to previous reports, we propose

  5. Nucleotide Metabolism and DNA Replication.

    Science.gov (United States)

    Warner, Digby F; Evans, Joanna C; Mizrahi, Valerie

    2014-10-01

    The development and application of a highly versatile suite of tools for mycobacterial genetics, coupled with widespread use of "omics" approaches to elucidate the structure, function, and regulation of mycobacterial proteins, has led to spectacular advances in our understanding of the metabolism and physiology of mycobacteria. In this article, we provide an update on nucleotide metabolism and DNA replication in mycobacteria, highlighting key findings from the past 10 to 15 years. In the first section, we focus on nucleotide metabolism, ranging from the biosynthesis, salvage, and interconversion of purine and pyrimidine ribonucleotides to the formation of deoxyribonucleotides. The second part of the article is devoted to DNA replication, with a focus on replication initiation and elongation, as well as DNA unwinding. We provide an overview of replication fidelity and mutation rates in mycobacteria and summarize evidence suggesting that DNA replication occurs during states of low metabolic activity, and conclude by suggesting directions for future research to address key outstanding questions. Although this article focuses primarily on observations from Mycobacterium tuberculosis, it is interspersed, where appropriate, with insights from, and comparisons with, other mycobacterial species as well as better characterized bacterial models such as Escherichia coli. Finally, a common theme underlying almost all studies of mycobacterial metabolism is the potential to identify and validate functions or pathways that can be exploited for tuberculosis drug discovery. In this context, we have specifically highlighted those processes in mycobacterial DNA replication that might satisfy this critical requirement.

  6. Plasmid Rolling-Circle Replication.

    Science.gov (United States)

    Ruiz-Masó, J A; MachóN, C; Bordanaba-Ruiseco, L; Espinosa, M; Coll, M; Del Solar, G

    2015-02-01

    Plasmids are DNA entities that undergo controlled replication independent of the chromosomal DNA, a crucial step that guarantees the prevalence of the plasmid in its host. DNA replication has to cope with the incapacity of the DNA polymerases to start de novo DNA synthesis, and different replication mechanisms offer diverse solutions to this problem. Rolling-circle replication (RCR) is a mechanism adopted by certain plasmids, among other genetic elements, that represents one of the simplest initiation strategies, that is, the nicking by a replication initiator protein on one parental strand to generate the primer for leading-strand initiation and a single priming site for lagging-strand synthesis. All RCR plasmid genomes consist of a number of basic elements: leading strand initiation and control, lagging strand origin, phenotypic determinants, and mobilization, generally in that order of frequency. RCR has been mainly characterized in Gram-positive bacterial plasmids, although it has also been described in Gram-negative bacterial or archaeal plasmids. Here we aim to provide an overview of the RCR plasmids' lifestyle, with emphasis on their characteristic traits, promiscuity, stability, utility as vectors, etc. While RCR is one of the best-characterized plasmid replication mechanisms, there are still many questions left unanswered, which will be pointed out along the way in this review.

  7. Differential repetitive DNA composition in the centromeric region of chromosomes of Amazonian lizard species in the family Teiidae.

    Science.gov (United States)

    Carvalho, Natalia D M; Carmo, Edson; Neves, Rogerio O; Schneider, Carlos Henrique; Gross, Maria Claudia

    2016-01-01

    Differences in heterochromatin distribution patterns and its composition were observed in Amazonian teiid species. Studies have shown repetitive DNA harbors heterochromatic blocks which are located in centromeric and telomeric regions in Ameiva ameiva (Linnaeus, 1758), Kentropyx calcarata (Spix, 1825), Kentropyx pelviceps (Cope, 1868), and Tupinambis teguixin (Linnaeus, 1758). In Cnemidophorus sp.1, repetitive DNA has multiple signals along all chromosomes. The aim of this study was to characterize moderately and highly repetitive DNA sequences by C ot1-DNA from Ameiva ameiva and Cnemidophorus sp.1 genomes through cloning and DNA sequencing, as well as mapping them chromosomally to better understand its organization and genome dynamics. The results of sequencing of DNA libraries obtained by C ot1-DNA showed that different microsatellites, transposons, retrotransposons, and some gene families also comprise the fraction of repetitive DNA in the teiid species. FISH using C ot1-DNA probes isolated from both Ameiva ameiva and Cnemidophorus sp.1 showed these sequences mainly located in heterochromatic centromeric, and telomeric regions in Ameiva ameiva, Kentropyx calcarata, Kentropyx pelviceps, and Tupinambis teguixin chromosomes, indicating they play structural and functional roles in the genome of these species. In Cnemidophorus sp.1, C ot1-DNA probe isolated from Ameiva ameiva had multiple interstitial signals on chromosomes, whereas mapping of C ot1-DNA isolated from the Ameiva ameiva and Cnemidophorus sp.1 highlighted centromeric regions of some chromosomes. Thus, the data obtained showed that many repetitive DNA classes are part of the genome of Ameiva ameiva, Cnemidophorus sp.1, Kentroyx calcarata, Kentropyx pelviceps, and Tupinambis teguixin, and these sequences are shared among the analyzed teiid species, but they were not always allocated at the same chromosome position.

  8. Universal Temporal Profile of Replication Origin Activation in Eukaryotes

    Science.gov (United States)

    Goldar, Arach

    2011-03-01

    The complete and faithful transmission of eukaryotic genome to daughter cells involves the timely duplication of mother cell's DNA. DNA replication starts at multiple chromosomal positions called replication origin. From each activated replication origin two replication forks progress in opposite direction and duplicate the mother cell's DNA. While it is widely accepted that in eukaryotic organisms replication origins are activated in a stochastic manner, little is known on the sources of the observed stochasticity. It is often associated to the population variability to enter S phase. We extract from a growing Saccharomyces cerevisiae population the average rate of origin activation in a single cell by combining single molecule measurements and a numerical deconvolution technique. We show that the temporal profile of the rate of origin activation in a single cell is similar to the one extracted from a replicating cell population. Taking into account this observation we exclude the population variability as the origin of observed stochasticity in origin activation. We confirm that the rate of origin activation increases in the early stage of S phase and decreases at the latter stage. The population average activation rate extracted from single molecule analysis is in prefect accordance with the activation rate extracted from published micro-array data, confirming therefore the homogeneity and genome scale invariance of dynamic of replication process. All these observations point toward a possible role of replication fork to control the rate of origin activation.

  9. Competition and cooperation in dynamic replication networks.

    Science.gov (United States)

    Dadon, Zehavit; Wagner, Nathaniel; Alasibi, Samaa; Samiappan, Manickasundaram; Mukherjee, Rakesh; Ashkenasy, Gonen

    2015-01-07

    The simultaneous replication of six coiled-coil peptide mutants by reversible thiol-thioester exchange reactions is described. Experimental analysis of the time dependent evolution of networks formed by the peptides under different conditions reveals a complex web of molecular interactions and consequent mutant replication, governed by competition for resources and by autocatalytic and/or cross-catalytic template-assisted reactions. A kinetic model, first of its kind, is then introduced, allowing simulation of varied network behaviour as a consequence of changing competition and cooperation scenarios. We suggest that by clarifying the kinetic description of these relatively complex dynamic networks, both at early stages of the reaction far from equilibrium and at later stages approaching equilibrium, one lays the foundation for studying dynamic networks out-of-equilibrium in the near future.

  10. Human chromosome pellicle antibody recognizing centromere protein—C (CENP0C),the main component of the kinetochore

    Institute of Scientific and Technical Information of China (English)

    XIEYONG; ZUMEINI; 等

    1997-01-01

    Recently the antichromosome antisera from several sclerogerma patients have been found to recognize the pellicle of metaphase and anaphase chromosomes.In order to identify the pellicle components,we used these antichromosome antisera to screen a human embryonic cDNA library.The sequences of the positive clones are identical to the cDNA gene sequence of CENP-C (centromere protein C),a human centromere autoantigen.This result suggusts that CENP-C is a component of the pellicle of human metaphase and anaphase chromosomes.

  11. Shell Separation for Mirror Replication

    Science.gov (United States)

    1999-01-01

    NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery, and materials to replicate electro-formed nickel mirrors. Optics replication uses reusable forms, called mandrels, to make telescope mirrors ready for final finishing. MSFC optical physicist Bill Jones monitors a device used to chill a mandrel, causing it to shrink and separate from the telescope mirror without deforming the mirror's precisely curved surface.

  12. Defects of mitochondrial DNA replication.

    Science.gov (United States)

    Copeland, William C

    2014-09-01

    Mitochondrial DNA is replicated by DNA polymerase γ in concert with accessory proteins such as the mitochondrial DNA helicase, single-stranded DNA binding protein, topoisomerase, and initiating factors. Defects in mitochondrial DNA replication or nucleotide metabolism can cause mitochondrial genetic diseases due to mitochondrial DNA deletions, point mutations, or depletion, which ultimately cause loss of oxidative phosphorylation. These genetic diseases include mitochondrial DNA depletion syndromes such as Alpers or early infantile hepatocerebral syndromes, and mitochondrial DNA deletion disorders, such as progressive external ophthalmoplegia, ataxia-neuropathy, or mitochondrial neurogastrointestinal encephalomyopathy. This review focuses on our current knowledge of genetic defects of mitochondrial DNA replication (POLG, POLG2, C10orf2, and MGME1) that cause instability of mitochondrial DNA and mitochondrial disease.

  13. Biomarkers of replicative senescence revisited

    DEFF Research Database (Denmark)

    Nehlin, Jan

    2016-01-01

    Biomarkers of replicative senescence can be defined as those ultrastructural and physiological variations as well as molecules whose changes in expression, activity or function correlate with aging, as a result of the gradual exhaustion of replicative potential and a state of permanent cell cycle...... arrest. The biomarkers that characterize the path to an irreversible state of cell cycle arrest due to proliferative exhaustion may also be shared by other forms of senescence-inducing mechanisms. Validation of senescence markers is crucial in circumstances where quiescence or temporary growth arrest may...... be triggered or is thought to be induced. Pre-senescence biomarkers are also important to consider as their presence indicate that induction of aging processes is taking place. The bona fide pathway leading to replicative senescence that has been extensively characterized is a consequence of gradual reduction...

  14. MHF1–2/CENP-S-X performs distinct roles in centromere metabolism and genetic recombination

    Science.gov (United States)

    Bhattacharjee, Sonali; Osman, Fekret; Feeney, Laura; Lorenz, Alexander; Bryer, Claire; Whitby, Matthew C.

    2013-01-01

    The histone-fold proteins Mhf1/CENP-S and Mhf2/CENP-X perform two important functions in vertebrate cells. First, they are components of the constitutive centromere-associated network, aiding kinetochore assembly and function. Second, they work with the FANCM DNA translocase to promote DNA repair. However, it has been unclear whether there is crosstalk between these roles. We show that Mhf1 and Mhf2 in fission yeast, as in vertebrates, serve a dual function, aiding DNA repair/recombination and localizing to centromeres to promote chromosome segregation. Importantly, these functions are distinct, with the former being dependent on their interaction with the FANCM orthologue Fml1 and the latter not. Together with Fml1, they play a second role in aiding chromosome segregation by processing sister chromatid junctions. However, a failure of this activity does not manifest dramatically increased levels of chromosome missegregation due to the Mus81–Eme1 endonuclease, which acts as a failsafe to resolve DNA junctions before the end of mitosis. PMID:24026537

  15. Functional analysis of phosphorylation of the mitotic centromere-associated kinesin by Aurora B kinase in human tumor cells.

    Science.gov (United States)

    Ritter, Andreas; Sanhaji, Mourad; Friemel, Alexandra; Roth, Susanne; Rolle, Udo; Louwen, Frank; Yuan, Juping

    2015-01-01

    Mitotic centromere-associated kinesin (MCAK) is the best characterized member of the kinesin-13 family and plays important roles in microtubule dynamics during mitosis. Its activity and subcellular localization is tightly regulated by an orchestra of mitotic kinases, such as Aurora B. It is well known that serine 196 of MCAK is the major phosphorylation site of Aurora B in Xenopus leavis extracts and that this phosphorylation regulates its catalytic activity and subcellular localization. In the current study, we have addressed the conserved phosphorylation site serine 192 in human MCAK to characterize its function in more depth in human cancer cells. Our data confirm that S192 is the major phosphorylation site of Aurora B in human MCAK and that this phosphorylation has crucial roles in regulating its catalytic activity and localization at the kinetochore/centromere region in mitosis. Interfering with this phosphorylation leads to a delayed progression through prometa- and metaphase associated with mitotic defects in chromosome alignment and segregation. We show further that MCAK is involved in directional migration and invasion of tumor cells, and interestingly, interference with the S192 phosphorylation affects this capability of MCAK. These data provide the first molecular explanation for clinical observation, where an overexpression of MCAK was associated with lymphatic invasion and lymph node metastasis in gastric and colorectal cancer patients.

  16. Toxoplasma gondii chromodomain protein 1 binds to heterochromatin and colocalises with centromeres and telomeres at the nuclear periphery.

    Directory of Open Access Journals (Sweden)

    Mathieu Gissot

    Full Text Available BACKGROUND: Apicomplexan parasites are responsible for some of the most deadly parasitic diseases afflicting humans, including malaria and toxoplasmosis. These obligate intracellular parasites exhibit a complex life cycle and a coordinated cell cycle-dependant expression program. Their cell division is a coordinated multistep process. How this complex mechanism is organised remains poorly understood. METHODS AND FINDINGS: In this study, we provide evidence for a link between heterochromatin, cell division and the compartmentalisation of the nucleus in Toxoplasma gondii. We characterised a T. gondii chromodomain containing protein (named TgChromo1 that specifically binds to heterochromatin. Using ChIP-on-chip on a genome-wide scale, we report TgChromo1 enrichment at the peri-centromeric chromatin. In addition, we demonstrate that TgChromo1 is cell-cycle regulated and co-localised with markers of the centrocone. Through the loci-specific FISH technique for T. gondii, we confirmed that TgChromo1 occupies the same nuclear localisation as the peri-centromeric sequences. CONCLUSION: We propose that TgChromo1 may play a role in the sequestration of chromosomes at the nuclear periphery and in the process of T. gondii cell division.

  17. Loss of maternal ATRX results in centromere instability and aneuploidy in the mammalian oocyte and pre-implantation embryo.

    Science.gov (United States)

    Baumann, Claudia; Viveiros, Maria M; De La Fuente, Rabindranath

    2010-09-23

    The α-thalassemia/mental retardation X-linked protein (ATRX) is a chromatin-remodeling factor known to regulate DNA methylation at repetitive sequences of the human genome. We have previously demonstrated that ATRX binds to pericentric heterochromatin domains in mouse oocytes at the metaphase II stage where it is involved in mediating chromosome alignment at the meiotic spindle. However, the role of ATRX in the functional differentiation of chromatin structure during meiosis is not known. To test ATRX function in the germ line, we developed an oocyte-specific transgenic RNAi knockdown mouse model. Our results demonstrate that ATRX is required for heterochromatin formation and maintenance of chromosome stability during meiosis. During prophase I arrest, ATRX is necessary to recruit the transcriptional regulator DAXX (death domain associated protein) to pericentric heterochromatin. At the metaphase II stage, transgenic ATRX-RNAi oocytes exhibit abnormal chromosome morphology associated with reduced phosphorylation of histone 3 at serine 10 as well as chromosome segregation defects leading to aneuploidy and severely reduced fertility. Notably, a large proportion of ATRX-depleted oocytes and 1-cell stage embryos exhibit chromosome fragments and centromeric DNA-containing micronuclei. Our results provide novel evidence indicating that ATRX is required for centromere stability and the epigenetic control of heterochromatin function during meiosis and the transition to the first mitosis.

  18. Loss of maternal ATRX results in centromere instability and aneuploidy in the mammalian oocyte and pre-implantation embryo.

    Directory of Open Access Journals (Sweden)

    Claudia Baumann

    2010-09-01

    Full Text Available The α-thalassemia/mental retardation X-linked protein (ATRX is a chromatin-remodeling factor known to regulate DNA methylation at repetitive sequences of the human genome. We have previously demonstrated that ATRX binds to pericentric heterochromatin domains in mouse oocytes at the metaphase II stage where it is involved in mediating chromosome alignment at the meiotic spindle. However, the role of ATRX in the functional differentiation of chromatin structure during meiosis is not known. To test ATRX function in the germ line, we developed an oocyte-specific transgenic RNAi knockdown mouse model. Our results demonstrate that ATRX is required for heterochromatin formation and maintenance of chromosome stability during meiosis. During prophase I arrest, ATRX is necessary to recruit the transcriptional regulator DAXX (death domain associated protein to pericentric heterochromatin. At the metaphase II stage, transgenic ATRX-RNAi oocytes exhibit abnormal chromosome morphology associated with reduced phosphorylation of histone 3 at serine 10 as well as chromosome segregation defects leading to aneuploidy and severely reduced fertility. Notably, a large proportion of ATRX-depleted oocytes and 1-cell stage embryos exhibit chromosome fragments and centromeric DNA-containing micronuclei. Our results provide novel evidence indicating that ATRX is required for centromere stability and the epigenetic control of heterochromatin function during meiosis and the transition to the first mitosis.

  19. Personality and Academic Motivation: Replication, Extension, and Replication

    Science.gov (United States)

    Jones, Martin H.; McMichael, Stephanie N.

    2015-01-01

    Previous work examines the relationships between personality traits and intrinsic/extrinsic motivation. We replicate and extend previous work to examine how personality may relate to achievement goals, efficacious beliefs, and mindset about intelligence. Approximately 200 undergraduates responded to the survey with a 150 participants replicating…

  20. International Expansion through Flexible Replication

    DEFF Research Database (Denmark)

    Jonsson, Anna; Foss, Nicolai Juul

    2011-01-01

    Business organizations may expand internationally by replicating a part of their value chain, such as a sales and marketing format, in other countries. However, little is known regarding how such “international replicators” build a format for replication, or how they can adjust it in order to adapt...... to local environments and under the impact of new learning. To illuminate these issues, we draw on a longitudinal in-depth study of Swedish home furnishing giant IKEA, involving more than 70 interviews. We find that IKEA has developed organizational mechanisms that support an ongoing learning process aimed...

  1. Kinetic model of DNA replication in eukaryotic organisms

    CERN Document Server

    Herrick, J; Bensimon, A; Herrick, John; Bechhoefer, John; Bensimon, Aaron

    2001-01-01

    We formulate a kinetic model of DNA replication that quantitatively describes recent results on DNA replication in the in vitro system of Xenopus laevis prior to the mid-blastula transition. The model describes well a large amount of different data within a simple theoretical framework. This allows one, for the first time, to determine the parameters governing the DNA replication program in a eukaryote on a genome-wide basis. In particular, we have determined the frequency of origin activation in time and space during the cell cycle. Although we focus on a specific stage of development, this model can easily be adapted to describe replication in many other organisms, including budding yeast.

  2. System-wide Analysis of SUMOylation Dynamics in Response to Replication Stress Reveals Novel Small Ubiquitin-like Modified Target Proteins and Acceptor Lysines Relevant for Genome Stability

    DEFF Research Database (Denmark)

    Xiao, Zhenyu; Chang, Jer-Gung; Hendriks, Ivo A;

    2015-01-01

    . Following statistical analysis on five biological replicates, a total of 566 SUMO-2 targets were identified. After 2 hours of Hydroxyurea treatment, 10 proteins were up-regulated for SUMOylation and 2 proteins were down-regulated for SUMOylation, whereas after 24 hours, 35 proteins were up......-regulated for SUMOylation and 13 proteins were down-regulated for SUMOylation. A site-specific approach was used to map over 1,000 SUMO-2 acceptor lysines in target proteins. The methodology is generic and is widely applicable in the ubiquitin field. A large subset of these identified proteins function in one network...... that consists of interacting replication factors, transcriptional regulators, DNA damage response factors including MDC1, ATR-interacting protein ATRIP, the Bloom syndrome protein and the BLM-binding partner RMI1, the crossover junction endonuclease EME1, BRCA1 and CHAF1A. Furthermore, centromeric proteins...

  3. Regulation of Replication Recovery and Genome Integrity

    DEFF Research Database (Denmark)

    Colding, Camilla Skettrup

    facilitate replication recovery after MMS-induced replication stress. Our data reveal that control of Mrc1 turnover through the interplay between posttranslational modifications and INQ localization adds another layer of regulation to the replication checkpoint. We also add replication recovery to the list...... is mediated by Mrc1, which ensures Mec1 presence at the stalled replication fork thus facilitating Rad53 phosphorylation. When replication can be resumed safely, the replication checkpoint is deactivated and replication forks restart. One mechanism for checkpoint deactivation is the ubiquitin......-targeted proteasomal degradation of Mrc1. In this study, we describe a novel nuclear structure, the intranuclear quality control compartment (INQ), which regulates protein turnover and is important for recovery after replication stress. We find that upon methyl methanesulfonate (MMS)-induced replication stress, INQ...

  4. Limiting DNA replication to once and only once

    OpenAIRE

    2000-01-01

    In Escherichia coli cells, the origin of chromosomal replication is temporarily inactivated after initiation has occurred. Origin sequestration is the first line of defence against over-initiation, providing a time window during which the initiation potential can be reduced by: (i) titration of DnaA proteins to newly replicated chromosomal elements; (ii) regulation of the activity of the DnaA initiator protein; and (iii) sequestration of the dnaA gene promoter. This review represents the firs...

  5. Deciphering DNA replication dynamics in eukaryotic cell populations in relation with their averaged chromatin conformations

    Science.gov (United States)

    Goldar, A.; Arneodo, A.; Audit, B.; Argoul, F.; Rappailles, A.; Guilbaud, G.; Petryk, N.; Kahli, M.; Hyrien, O.

    2016-03-01

    We propose a non-local model of DNA replication that takes into account the observed uncertainty on the position and time of replication initiation in eukaryote cell populations. By picturing replication initiation as a two-state system and considering all possible transition configurations, and by taking into account the chromatin’s fractal dimension, we derive an analytical expression for the rate of replication initiation. This model predicts with no free parameter the temporal profiles of initiation rate, replication fork density and fraction of replicated DNA, in quantitative agreement with corresponding experimental data from both S. cerevisiae and human cells and provides a quantitative estimate of initiation site redundancy. This study shows that, to a large extent, the program that regulates the dynamics of eukaryotic DNA replication is a collective phenomenon that emerges from the stochastic nature of replication origins initiation.

  6. Clustering of diverse replicated sequences in the MHC: Evidence for en bloc duplication

    Energy Technology Data Exchange (ETDEWEB)

    Leelayuwat, C.; Pinelli, M. [Univ. Western Australia, Perth (Australia); Dawkins, R.L. [Royal Perth Hospital (Australia)

    1995-07-15

    The MHC contains clusters of polymorphic duplicated genes and gene sequences. It has been thought that these duplicated genes and sequences have arisen from single gene duplications. We compared the cloned region between TNF and HLA-B with the region in close proximity to HLA-A using sequence analysis and DNA hybridization. The results indicate that several sequences existing in the region centromeric of HLA-B are also present in close proximity to HLA-A. These include sequences belonging to the P5, BAT1, and PERB11 gene families as well as HLA class I gene sequences. Interestingly, when the two regions of approximately 200 kilobases are compared, the replicated sequences are organized similarly but in an inverted fashion suggesting the existence of an historical inverted en bloc duplication. Thus, we propose that the origin of these MHC gene clusters involves several mechanisms. In addition to single gene replication, a long-range duplication of a genomic block must have occurred. It is possible that a block at the telomeric end of the MHC represents a basic functional genomic unit conserved and duplicated en bloc. 49 refs., 3 figs., 3 tabs.

  7. Non‐Canonical Replication Initiation: You’re Fired!

    Directory of Open Access Journals (Sweden)

    Bazilė Ravoitytė

    2017-01-01

    Full Text Available The division of prokaryotic and eukaryotic cells produces two cells that inherit a perfect copy of the genetic material originally derived from the mother cell. The initiation of canonical DNA replication must be coordinated to the cell cycle to ensure the accuracy of genome duplication. Controlled replication initiation depends on a complex interplay of cis‐acting DNA sequences, the so‐called origins of replication (ori, with trans‐acting factors involved in the onset of DNA synthesis. The interplay of cis‐acting elements and trans‐acting factors ensures that cells initiate replication at sequence‐specific sites only once, and in a timely order, to avoid chromosomal endoreplication. However, chromosome breakage and excessive RNA:DNA hybrid formation can cause breakinduced (BIR or transcription‐initiated replication (TIR, respectively. These non‐canonical replication events are expected to affect eukaryotic genome function and maintenance, and could be important for genome evolution and disease development. In this review, we describe the difference between canonical and non‐canonical DNA replication, and focus on mechanistic differences and common features between BIR and TIR. Finally, we discuss open issues on the factors and molecular mechanisms involved in TIR.

  8. Hyperthermia stimulates HIV-1 replication.

    Directory of Open Access Journals (Sweden)

    Ferdinand Roesch

    Full Text Available HIV-infected individuals may experience fever episodes. Fever is an elevation of the body temperature accompanied by inflammation. It is usually beneficial for the host through enhancement of immunological defenses. In cultures, transient non-physiological heat shock (42-45°C and Heat Shock Proteins (HSPs modulate HIV-1 replication, through poorly defined mechanisms. The effect of physiological hyperthermia (38-40°C on HIV-1 infection has not been extensively investigated. Here, we show that culturing primary CD4+ T lymphocytes and cell lines at a fever-like temperature (39.5°C increased the efficiency of HIV-1 replication by 2 to 7 fold. Hyperthermia did not facilitate viral entry nor reverse transcription, but increased Tat transactivation of the LTR viral promoter. Hyperthermia also boosted HIV-1 reactivation in a model of latently-infected cells. By imaging HIV-1 transcription, we further show that Hsp90 co-localized with actively transcribing provirus, and this phenomenon was enhanced at 39.5°C. The Hsp90 inhibitor 17-AAG abrogated the increase of HIV-1 replication in hyperthermic cells. Altogether, our results indicate that fever may directly stimulate HIV-1 replication, in a process involving Hsp90 and facilitation of Tat-mediated LTR activity.

  9. Cellular Responses to Replication Problems

    NARCIS (Netherlands)

    M. Budzowska (Magdalena)

    2008-01-01

    textabstractDuring every S-phase cells need to duplicate their genomes so that both daughter cells inherit complete copies of genetic information. It is a tremendous task, given the large sizes of mammalian genomes and the required precision of DNA replication. A major threat to the accuracy and eff

  10. Crinivirus replication and host interactions

    Directory of Open Access Journals (Sweden)

    Zsofia A Kiss

    2013-05-01

    Full Text Available Criniviruses comprise one of the genera within the family Closteroviridae. Members in this family are restricted to the phloem and rely on whitefly vectors of the genera Bemisia and/or Trialeurodes for plant-to-plant transmission. All criniviruses have bipartite, positive-sense ssRNA genomes, although there is an unconfirmed report of one having a tripartite genome. Lettuce infectious yellows virus (LIYV is the type species of the genus, the best studied so far of the criniviruses and the first for which a reverse genetics system was available. LIYV RNA 1 encodes for proteins predicted to be involved in replication, and alone is competent for replication in protoplasts. Replication results in accumulation of cytoplasmic vesiculated membranous structures which are characteristic of most studied members of the Closteroviridae. These membranous structures, often referred to as BYV-type vesicles, are likely sites of RNA replication. LIYV RNA 2 is replicated in trans when co-infecting cells with RNA 1, but is temporally delayed relative to RNA1. Efficient RNA 2 replication also is dependent on the RNA 1-encoded RNA binding protein, P34. No LIYV RNA 2-encoded proteins have been shown to affect RNA replication, but at least four, CP, CPm, Hsp70h, and p59 are virion structural components and CPm is a determinant of whitefly transmissibility. Roles of other LIYV RNA 2-encoded proteins are largely as yet unknown, but P26 is a non-virion protein that accumulates in cells as characteristic plasmalemma deposits which in plants are localized within phloem parenchyma and companion cells over plasmodesmata connections to sieve elements. The two remaining crinivirus-conserved RNA 2-encoded proteins are P5 and P9. P5 is 39 amino acid protein and is encoded at the 5’ end of RNA 2 as ORF1 and is part of the hallmark closterovirus gene array. The orthologous gene in BYV has been shown to play a role in cell-to-cell movement and indicated to be localized to the

  11. Fluorescence In Situ Hybridization (FISH-Based Karyotyping Reveals Rapid Evolution of Centromeric and Subtelomeric Repeats in Common Bean (Phaseolus vulgaris and Relatives

    Directory of Open Access Journals (Sweden)

    Aiko Iwata-Otsubo

    2016-04-01

    Full Text Available Fluorescence in situ hybridization (FISH-based karyotyping is a powerful cytogenetics tool to study chromosome organization, behavior, and chromosome evolution. Here, we developed a FISH-based karyotyping system using a probe mixture comprised of centromeric and subtelomeric satellite repeats, 5S rDNA, and chromosome-specific BAC clones in common bean, which enables one to unambiguously distinguish all 11 chromosome pairs. Furthermore, we applied the karyotyping system to several wild relatives and landraces of common bean from two distinct gene pools, as well as other related Phaseolus species, to investigate repeat evolution in the genus Phaseolus. Comparison of karyotype maps within common bean indicates that chromosomal distribution of the centromeric and subtelomeric satellite repeats is stable, whereas the copy number of the repeats was variable, indicating rapid amplification/reduction of the repeats in specific genomic regions. In Phaseolus species that diverged approximately 2–4 million yr ago, copy numbers of centromeric repeats were largely reduced or diverged, and chromosomal distributions have changed, suggesting rapid evolution of centromeric repeats. We also detected variation in the distribution pattern of subtelomeric repeats in Phaseolus species. The FISH-based karyotyping system revealed that satellite repeats are actively and rapidly evolving, forming genomic features unique to individual common bean accessions and Phaseolus species.

  12. Replication-Uncoupled Histone Deposition during Adenovirus DNA Replication

    OpenAIRE

    Komatsu, Tetsuro; Nagata, Kyosuke

    2012-01-01

    In infected cells, the chromatin structure of the adenovirus genome DNA plays critical roles in its genome functions. Previously, we reported that in early phases of infection, incoming viral DNA is associated with both viral core protein VII and cellular histones. Here we show that in late phases of infection, newly synthesized viral DNA is also associated with histones. We also found that the knockdown of CAF-1, a histone chaperone that functions in the replication-coupled deposition of his...

  13. Multiscale modeling of virus replication and spread.

    Science.gov (United States)

    Kumberger, Peter; Frey, Felix; Schwarz, Ulrich S; Graw, Frederik

    2016-07-01

    Replication and spread of human viruses is based on the simultaneous exploitation of many different host functions, bridging multiple scales in space and time. Mathematical modeling is essential to obtain a systems-level understanding of how human viruses manage to proceed through their life cycles. Here, we review corresponding advances for viral systems of large medical relevance, such as human immunodeficiency virus-1 (HIV-1) and hepatitis C virus (HCV). We will outline how the combination of mathematical models and experimental data has advanced our quantitative knowledge about various processes of these pathogens, and how novel quantitative approaches promise to fill remaining gaps.

  14. Schizosaccharomyces pombe centromere protein Mis19 links Mis16 and Mis18 to recruit CENP-A through interacting with NMD factors and the SWI/SNF complex.

    Science.gov (United States)

    Hayashi, Takeshi; Ebe, Masahiro; Nagao, Koji; Kokubu, Aya; Sajiki, Kenichi; Yanagida, Mitsuhiro

    2014-07-01

    CENP-A is a centromere-specific variant of histone H3 that is required for accurate chromosome segregation. The fission yeast Schizosaccharomyces pombe and mammalian Mis16 and Mis18 form a complex essential for CENP-A recruitment to centromeres. It is unclear, however, how the Mis16-Mis18 complex achieves this function. Here, we identified, by mass spectrometry, novel fission yeast centromere proteins Mis19 and Mis20 that directly interact with Mis16 and Mis18. Like Mis18, Mis19 and Mis20 are localized at the centromeres during interphase, but not in mitosis. Inactivation of Mis19 in a newly isolated temperature-sensitive mutant resulted in CENP-A delocalization and massive chromosome missegregation, whereas Mis20 was dispensable for proper chromosome segregation. Mis19 might be a bridge component for Mis16 and Mis18. We isolated extragenic suppressor mutants for temperature-sensitive mis18 and mis19 mutants and used whole-genome sequencing to determine the mutated sites. We identified two groups of loss-of-function suppressor mutations in non-sense-mediated mRNA decay factors (upf2 and ebs1), and in SWI/SNF chromatin-remodeling components (snf5, snf22 and sol1). Our results suggest that the Mis16-Mis18-Mis19-Mis20 CENP-A-recruiting complex, which is functional in the G1-S phase, may be counteracted by the SWI/SNF chromatin-remodeling complex and non-sense-mediated mRNA decay, which may prevent CENP-A deposition at the centromere.

  15. Alphavirus polymerase and RNA replication.

    Science.gov (United States)

    Pietilä, Maija K; Hellström, Kirsi; Ahola, Tero

    2017-01-16

    Alphaviruses are typically arthropod-borne, and many are important pathogens such as chikungunya virus. Alphaviruses encode four nonstructural proteins (nsP1-4), initially produced as a polyprotein P1234. nsP4 is the core RNA-dependent RNA polymerase but all four nsPs are required for RNA synthesis. The early replication complex (RC) formed by the polyprotein P123 and nsP4 synthesizes minus RNA strands, and the late RC composed of fully processed nsP1-nsP4 is responsible for the production of genomic and subgenomic plus strands. Different parts of nsP4 recognize the promoters for minus and plus strands but the binding also requires the other nsPs. The alphavirus polymerase has been purified and is capable of de novo RNA synthesis only in the presence of the other nsPs. The purified nsP4 also has terminal adenylyltransferase activity, which may generate the poly(A) tail at the 3' end of the genome. Membrane association of the nsPs is vital for replication, and alphaviruses induce membrane invaginations called spherules, which form a microenvironment for RNA synthesis by concentrating replication components and protecting double-stranded RNA intermediates. The RCs isolated as crude membrane preparations are active in RNA synthesis in vitro, but high-resolution structure of the RC has not been achieved, and thus the arrangement of viral and possible host components remains unknown. For some alphaviruses, Ras-GTPase-activating protein (Src-homology 3 (SH3) domain)-binding proteins (G3BPs) and amphiphysins have been shown to be essential for RNA replication and are present in the RCs. Host factors offer an additional target for antivirals, as only few alphavirus polymerase inhibitors have been described.

  16. Therapeutic targeting of replicative immortality

    OpenAIRE

    Yaswen, Paul; MacKenzie, Karen L.; Keith, W. Nicol; Hentosh, Patricia; Rodier, Francis; Zhu, Jiyue; Firestone, Gary L.; Matheu, Ander; Carnero, Amancio; Bilsland, Alan; Sundin, Tabetha; Honoki, Kanya; Fujii, Hiromasa; Georgakilas, Alexandros G.; Amedei, Amedeo

    2015-01-01

    One of the hallmarks of malignant cell populations is the ability to undergo continuous proliferation. This property allows clonal lineages to acquire sequential aberrations that can fuel increasingly autonomous growth, invasiveness, and therapeutic resistance. Innate cellular mechanisms have evolved to regulate replicative potential as a hedge against malignant progression. When activated in the absence of normal terminal differentiation cues, these mechanisms can result in a state of persis...

  17. Statistical analysis of 3D images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei.

    Directory of Open Access Journals (Sweden)

    Philippe Andrey

    Full Text Available In eukaryotes, the interphase nucleus is organized in morphologically and/or functionally distinct nuclear "compartments". Numerous studies highlight functional relationships between the spatial organization of the nucleus and gene regulation. This raises the question of whether nuclear organization principles exist and, if so, whether they are identical in the animal and plant kingdoms. We addressed this issue through the investigation of the three-dimensional distribution of the centromeres and chromocenters. We investigated five very diverse populations of interphase nuclei at different differentiation stages in their physiological environment, belonging to rabbit embryos at the 8-cell and blastocyst stages, differentiated rabbit mammary epithelial cells during lactation, and differentiated cells of Arabidopsis thaliana plantlets. We developed new tools based on the processing of confocal images and a new statistical approach based on G- and F- distance functions used in spatial statistics. Our original computational scheme takes into account both size and shape variability by comparing, for each nucleus, the observed distribution against a reference distribution estimated by Monte-Carlo sampling over the same nucleus. This implicit normalization allowed similar data processing and extraction of rules in the five differentiated nuclei populations of the three studied biological systems, despite differences in chromosome number, genome organization and heterochromatin content. We showed that centromeres/chromocenters form significantly more regularly spaced patterns than expected under a completely random situation, suggesting that repulsive constraints or spatial inhomogeneities underlay the spatial organization of heterochromatic compartments. The proposed technique should be useful for identifying further spatial features in a wide range of cell types.

  18. Escape from Mitotic Arrest: An Unexpected Connection Between Microtubule Dynamics and Epigenetic Regulation of Centromeric Chromatin in Schizosaccharomyces pombe.

    Science.gov (United States)

    George, Anuja A; Walworth, Nancy C

    2015-12-01

    Accurate chromosome segregation is necessary to ensure genomic integrity. Segregation depends on the proper functioning of the centromere, kinetochore, and mitotic spindle microtubules and is monitored by the spindle assembly checkpoint (SAC). In the fission yeast Schizosaccharomyces pombe, defects in Dis1, a microtubule-associated protein that influences microtubule dynamics, lead to mitotic arrest as a result of an active SAC and consequent failure to grow at low temperature. In a mutant dis1 background (dis1-288), loss of function of Msc1, a fission yeast homolog of the KDM5 family of proteins, suppresses the growth defect and promotes normal mitosis. Genetic analysis implicates a histone deacetylase (HDAC)-linked pathway in suppression because HDAC mutants clr6-1, clr3∆, and sir2∆, though not hos2∆, also promote normal mitosis in the dis1-288 mutant. Suppression of the dis phenotype through loss of msc1 function requires the spindle checkpoint protein Mad2 and is limited by the presence of the heterochromatin-associated HP1 protein homolog Swi6. We speculate that alterations in histone acetylation promote a centromeric chromatin environment that compensates for compromised dis1 function by allowing for successful kinetochore-microtubule interactions that can satisfy the SAC. In cells arrested in mitosis by mutation of dis1, loss of function of epigenetic determinants such as Msc1 or specific HDACs can promote cell survival. Because the KDM5 family of proteins has been implicated in human cancers, an appreciation of the potential role of this family of proteins in chromosome segregation is warranted.

  19. Genome-wide alterations of the DNA replication program during tumor progression

    Science.gov (United States)

    Arneodo, A.; Goldar, A.; Argoul, F.; Hyrien, O.; Audit, B.

    2016-08-01

    Oncogenic stress is a major driving force in the early stages of cancer development. Recent experimental findings reveal that, in precancerous lesions and cancers, activated oncogenes may induce stalling and dissociation of DNA replication forks resulting in DNA damage. Replication timing is emerging as an important epigenetic feature that recapitulates several genomic, epigenetic and functional specificities of even closely related cell types. There is increasing evidence that chromosome rearrangements, the hallmark of many cancer genomes, are intimately associated with the DNA replication program and that epigenetic replication timing changes often precede chromosomic rearrangements. The recent development of a novel methodology to map replication fork polarity using deep sequencing of Okazaki fragments has provided new and complementary genome-wide replication profiling data. We review the results of a wavelet-based multi-scale analysis of genomic and epigenetic data including replication profiles along human chromosomes. These results provide new insight into the spatio-temporal replication program and its dynamics during differentiation. Here our goal is to bring to cancer research, the experimental protocols and computational methodologies for replication program profiling, and also the modeling of the spatio-temporal replication program. To illustrate our purpose, we report very preliminary results obtained for the chronic myelogeneous leukemia, the archetype model of cancer. Finally, we discuss promising perspectives on using genome-wide DNA replication profiling as a novel efficient tool for cancer diagnosis, prognosis and personalized treatment.

  20. Replication of micro and nano surface geometries

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Hocken, R.J.; Tosello, Guido

    2011-01-01

    The paper describes the state-of-the-art in replication of surface texture and topography at micro and nano scale. The description includes replication of surfaces in polymers, metals and glass. Three different main technological areas enabled by surface replication processes are presented......: manufacture of net-shape micro/nano surfaces, tooling (i.e. master making), and surface quality control (metrology, inspection). Replication processes and methods as well as the metrology of surfaces to determine the degree of replication are presented and classified. Examples from various application areas...... are given including replication for surface texture measurements, surface roughness standards, manufacture of micro and nano structured functional surfaces, replicated surfaces for optical applications (e.g. optical gratings), and process chains based on combinations of repeated surface replication steps....

  1. Evaluating replicability of laboratory experiments in economics.

    Science.gov (United States)

    Camerer, Colin F; Dreber, Anna; Forsell, Eskil; Ho, Teck-Hua; Huber, Jürgen; Johannesson, Magnus; Kirchler, Michael; Almenberg, Johan; Altmejd, Adam; Chan, Taizan; Heikensten, Emma; Holzmeister, Felix; Imai, Taisuke; Isaksson, Siri; Nave, Gideon; Pfeiffer, Thomas; Razen, Michael; Wu, Hang

    2016-03-25

    The replicability of some scientific findings has recently been called into question. To contribute data about replicability in economics, we replicated 18 studies published in the American Economic Review and the Quarterly Journal of Economics between 2011 and 2014. All of these replications followed predefined analysis plans that were made publicly available beforehand, and they all have a statistical power of at least 90% to detect the original effect size at the 5% significance level. We found a significant effect in the same direction as in the original study for 11 replications (61%); on average, the replicated effect size is 66% of the original. The replicability rate varies between 67% and 78% for four additional replicability indicators, including a prediction market measure of peer beliefs.

  2. SNP CHARACTERISTICS PREDICT REPLICATION SUCCESS IN ASSOCIATION STUDIES

    Science.gov (United States)

    Gorlov, Ivan P.; Moore, Jason H.; Peng, Bo; Jin, Jennifer L.; Gorlova, Olga Y.; Amos, Christopher I.

    2014-01-01

    Successful independent replication is the most direct approach for distinguishing real genotype-disease associations from false discoveries in Genome Wide Association Studies (GWAS). Selecting SNPs for replication has been primarily based on p-values from the discovery stage, although additional characteristics of SNPs may be used to improve replication success. We used disease-associated SNPs from more than 2,000 published GWASs to identify predictors of SNP reproducibility. SNP reproducibility was defined as a proportion of successful replications among all replication attempts. The study reporting association for the first time was considered to be discovery and all consequent studies targeting the same phenotype replications. We found that −Log(P), where P is a p-value from the discovery study, is the strongest predictor of the SNP reproducibility. Other significant predictors include type of the SNP (e.g. missense vs intronic SNPs) and minor allele frequency. Features of the genes linked to the disease-associated SNP also predict SNP reproducibility. Based on empirically defined rules, we developed a reproducibility score (RS) to predict SNP reproducibility independently of −Log(P). We used data from two lung cancer GWAS studies as well as recently reported disease-associated SNPs to validate RS. Minus Log(P) outperforms RS when the very top SNPs are selected, while RS works better with relaxed selection criteria. In conclusion, we propose an empirical model to predict SNP reproducibility, which can be used to select SNPs for validation and prioritization. PMID:25273843

  3. Preventing DNA over-replication: a Cdk perspective

    Directory of Open Access Journals (Sweden)

    Porter Andrew CG

    2008-01-01

    Full Text Available Abstract The cell cycle is tightly controlled to ensure that replication origins fire only once per cycle and that consecutive S-phases are separated by mitosis. When controls fail, DNA over-replication ensues: individual origins fire more than once per S-phase (re-replication or consecutive S-phases occur without intervening mitoses (endoreduplication. In yeast the cell cycle is controlled by a single cyclin dependent kinase (Cdk that prevents origin licensing at times when it promotes origin firing, and that is inactivated, via proteolysis of its partner cyclin, as cells undergo mitosis. A quantitative model describes three levels of Cdk activity: low activity allows licensing, intermediate activity allows firing but prevents licensing, and high activity promotes mitosis. In higher eukaryotes the situation is complicated by the existence of additional proteins (geminin, Cul4-Ddb1Cdt2, and Emi1 that control licensing. A current challenge is to understand how these various control mechanisms are co-ordinated and why the degree of redundancy between them is so variable. Here the experimental induction of DNA over-replication is reviewed in the context of the quantitative model of Cdk action. Endoreduplication is viewed as a consequence of procedures that cause Cdk activity to fall below the threshold required to prevent licensing, and re-replication as the result of procedures that increase that threshold value. This may help to explain why over-replication does not necessarily require reduced Cdk activity and how different mechanisms conspire to prevent over-replication. Further work is nevertheless required to determine exactly how losing just one licensing control mechanism often causes over-replication, and why this varies between cell systems.

  4. Adenovirus sequences required for replication in vivo.

    OpenAIRE

    Wang, K.; Pearson, G D

    1985-01-01

    We have studied the in vivo replication properties of plasmids carrying deletion mutations within cloned adenovirus terminal sequences. Deletion mapping located the adenovirus DNA replication origin entirely within the first 67 bp of the adenovirus inverted terminal repeat. This region could be further subdivided into two functional domains: a minimal replication origin and an adjacent auxillary region which boosted the efficiency of replication by more than 100-fold. The minimal origin occup...

  5. Exploiting replicative stress to treat cancer

    DEFF Research Database (Denmark)

    Dobbelstein, Matthias; Sørensen, Claus Storgaard

    2015-01-01

    DNA replication in cancer cells is accompanied by stalling and collapse of the replication fork and signalling in response to DNA damage and/or premature mitosis; these processes are collectively known as 'replicative stress'. Progress is being made to increase our understanding of the mechanisms...

  6. Replication Origin Specification Gets a Push.

    Science.gov (United States)

    Plosky, Brian S

    2015-12-03

    During the gap between G1 and S phases when replication origins are licensed and fired, it is possible that DNA translocases could disrupt pre-replicative complexes (pre-RCs). In this issue of Molecular Cell, Gros et al. (2015) find that pre-RCs can be pushed along DNA and retain the ability to support replication.

  7. Replication domains are self-interacting structural chromatin units of human chromosomes

    Science.gov (United States)

    Arneodo, Alain

    2011-03-01

    In higher eukaryotes, the absence of specific sequence motifs marking the origins of replication has been a serious hindrance to the understanding of the mechanisms that regulate the initiation and the maintenance of the replication program in different cell types. In silico analysis of nucleotide compositional skew has predicted the existence, in the germline, of replication N-domains bordered by putative replication origins and where the skew decreases rather linearly as the signature of a progressive inversion of the average fork polarity. Here, from the demonstration that the average fork polarity can be directly extracted from the derivative of replication timing profiles, we develop a wavelet-based pattern recognition methodology to delineate replication U-domains where the replication timing profile is shaped as a U and its derivative as a N. Replication U-domains are robustly found in seven cell lines as covering a significant portion (40-50%) of the human genome where the replication timing data actually displays some plasticity between cell lines. The early replication initiation zones at U-domains borders are found to be hypersensitive to DNase I cleavage, to be associated with transcriptional activity and to present a significant enrichment in insular-binding proteins CTCF, the hallmark of an open chromatin structure. A comparative analysis of genome-wide chromatin interaction (HiC) data shows that replication-U domains correspond to self-interacting structural high order chromatin units of megabase characteristic size. Taken together, these findings provide evidence that the epigenetic compartmentalization of the human genome into autonomous replication U-domains comes along with an extensive remodelling of the threedimensional chromosome architecture during development or in specific diseases. The observed cell specific conservation of the replication timing between the human and mouse genomes strongly suggests that this chromosome organization into

  8. How Xenopus laevis embryos replicate reliably: Investigating the random-completion problem

    Science.gov (United States)

    Yang, Scott Cheng-Hsin; Bechhoefer, John

    2008-10-01

    DNA synthesis in Xenopus frog embryos initiates stochastically in time at many sites (origins) along the chromosome. Stochastic initiation implies fluctuations in the time to complete and may lead to cell death if replication takes longer than the cell cycle time (≈25min) . Surprisingly, although the typical replication time is about 20min , in vivo experiments show that replication fails to complete only about 1 in 300 times. How is replication timing accurately controlled despite the stochasticity? Biologists have proposed two solutions to this “random-completion problem.” The first solution uses randomly located origins but increases their rate of initiation as S phase proceeds, while the second uses regularly spaced origins. In this paper, we investigate the random-completion problem using a type of model first developed to describe the kinetics of first-order phase transitions. Using methods from the field of extreme-value statistics, we derive the distribution of replication-completion times for a finite genome. We then argue that the biologists’ first solution to the problem is not only consistent with experiment but also nearly optimizes the use of replicative proteins. We also show that spatial regularity in origin placement does not alter significantly the distribution of replication times and, thus, is not needed for the control of replication timing.

  9. How Xenopus laevis embryos replicate reliably: investigating the random-completion problem

    CERN Document Server

    Yang, Scott Cheng-Hsin

    2008-01-01

    DNA synthesis in \\textit{Xenopus} frog embryos initiates stochastically in time at many sites (origins) along the chromosome. Stochastic initiation implies fluctuations in the time to complete and may lead to cell death if replication takes longer than the cell cycle time ($\\approx 25$ min). Surprisingly, although the typical replication time is about 20 min, \\textit{in vivo} experiments show that replication fails to complete only about 1 in 300 times. How is replication timing accurately controlled despite the stochasticity? Biologists have proposed two solutions to this "random-completion problem." The first solution uses randomly located origins but increases their rate of initiation as S phase proceeds, while the second uses regularly spaced origins. In this paper, we investigate the random-completion problem using a type of model first developed to describe the kinetics of first-order phase transitions. Using methods from the field of extreme-value statistics, we derive the distribution of replication-c...

  10. Le Chatelier's principle in replicator dynamics

    Science.gov (United States)

    Allahverdyan, Armen E.; Galstyan, Aram

    2011-10-01

    The Le Chatelier principle states that physical equilibria are not only stable, but they also resist external perturbations via short-time negative-feedback mechanisms: a perturbation induces processes tending to diminish its results. The principle has deep roots, e.g., in thermodynamics it is closely related to the second law and the positivity of the entropy production. Here we study the applicability of the Le Chatelier principle to evolutionary game theory, i.e., to perturbations of a Nash equilibrium within the replicator dynamics. We show that the principle can be reformulated as a majorization relation. This defines a stability notion that generalizes the concept of evolutionary stability. We determine criteria for a Nash equilibrium to satisfy the Le Chatelier principle and relate them to mutualistic interactions (game-theoretical anticoordination) showing in which sense mutualistic replicators can be more stable than (say) competing ones. There are globally stable Nash equilibria, where the Le Chatelier principle is violated even locally: in contrast to the thermodynamic equilibrium a Nash equilibrium can amplify small perturbations, though both types of equilibria satisfy the detailed balance condition.

  11. DNA replication stress: causes, resolution and disease.

    Science.gov (United States)

    Mazouzi, Abdelghani; Velimezi, Georgia; Loizou, Joanna I

    2014-11-15

    DNA replication is a fundamental process of the cell that ensures accurate duplication of the genetic information and subsequent transfer to daughter cells. Various pertubations, originating from endogenous or exogenous sources, can interfere with proper progression and completion of the replication process, thus threatening genome integrity. Coordinated regulation of replication and the DNA damage response is therefore fundamental to counteract these challenges and ensure accurate synthesis of the genetic material under conditions of replication stress. In this review, we summarize the main sources of replication stress and the DNA damage signaling pathways that are activated in order to preserve genome integrity during DNA replication. We also discuss the association of replication stress and DNA damage in human disease and future perspectives in the field.

  12. Replication Stress: A Lifetime of Epigenetic Change

    Directory of Open Access Journals (Sweden)

    Simran Khurana

    2015-09-01

    Full Text Available DNA replication is essential for cell division. Challenges to the progression of DNA polymerase can result in replication stress, promoting the stalling and ultimately collapse of replication forks. The latter involves the formation of DNA double-strand breaks (DSBs and has been linked to both genome instability and irreversible cell cycle arrest (senescence. Recent technological advances have elucidated many of the factors that contribute to the sensing and repair of stalled or broken replication forks. In addition to bona fide repair factors, these efforts highlight a range of chromatin-associated changes at and near sites of replication stress, suggesting defects in epigenome maintenance as a potential outcome of aberrant DNA replication. Here, we will summarize recent insight into replication stress-induced chromatin-reorganization and will speculate on possible adverse effects for gene expression, nuclear integrity and, ultimately, cell function.

  13. Depletion of acidic phospholipids influences chromosomal replication in Escherichia coli.

    Science.gov (United States)

    Fingland, Nicholas; Flåtten, Ingvild; Downey, Christopher D; Fossum-Raunehaug, Solveig; Skarstad, Kirsten; Crooke, Elliott

    2012-12-01

    In Escherichia coli, coordinated activation and deactivation of DnaA allows for proper timing of the initiation of chromosomal synthesis at the origin of replication (oriC) and assures initiation occurs once per cell cycle. In vitro, acidic phospholipids reactivate DnaA, and in vivo depletion of acidic phospholipids, results in growth arrest. Growth can be restored by the expression of a mutant form of DnaA, DnaA(L366K), or by oriC-independent DNA synthesis, suggesting acidic phospholipids are required for DnaA- and oriC-dependent replication. We observe here that when acidic phospholipids were depleted, replication was inhibited with a concomitant reduction of chromosomal content and cell mass prior to growth arrest. This global shutdown of biosynthetic activity was independent of the stringent response. Restoration of acidic phospholipid synthesis resulted in a resumption of DNA replication prior to restored growth, indicating a possible cell-cycle-specific growth arrest had occurred with the earlier loss of acidic phospholipids. Flow cytometry, thymidine uptake, and quantitative polymerase chain reaction data suggest that a deficiency in acidic phospholipids prolonged the time required to replicate the chromosome. We also observed that regardless of the cellular content of acidic phospholipids, expression of mutant DnaA(L366K) altered the DNA content-to-cell mass ratio.

  14. Lack of independent prognostic and predictive value of centromere 17 copy number changes in breast cancer patients with known HER2 and TOP2A status

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Vang; Ejlertsen, Bent; Møller, Susanne

    2011-01-01

    The clinical benefit of anthracyclines has been connected to HER2 status, TOP2A status and centromere 17 copy numbers (CEN-17). Data from a clinical trial randomizing patients to anthracyclines was used to assess whether the number of CEN-17 in breast cancers may predict incremental responsiveness...... to anthracyclines besides what is obtained when used relatively to TOP2A and HER2. As cut sections of paraffin-embedded tissue are prone to truncation of nuclei, strict definition of ploidy levels is lacking. We therefore used normal breast tissue to assist define ploidy levels in cut sections. Fluorescence in situ...... hybridization (FISH) with centromere 17 (CEN-17) and TOP2A was performed on 120 normal breast specimens. The diploid CEN-17 copy number was reduced from the expected two signals in whole nuclei to an average of 1.68 signals per nucleus in cut sections of normal breast. Ploidy levels determined in normal breast...

  15. Self-replication of DNA rings

    Science.gov (United States)

    Kim, Junghoon; Lee, Junwye; Hamada, Shogo; Murata, Satoshi; Ha Park, Sung

    2015-06-01

    Biology provides numerous examples of self-replicating machines, but artificially engineering such complex systems remains a formidable challenge. In particular, although simple artificial self-replicating systems including wooden blocks, magnetic systems, modular robots and synthetic molecular systems have been devised, such kinematic self-replicators are rare compared with examples of theoretical cellular self-replication. One of the principal reasons for this is the amount of complexity that arises when you try to incorporate self-replication into a physical medium. In this regard, DNA is a prime candidate material for constructing self-replicating systems due to its ability to self-assemble through molecular recognition. Here, we show that DNA T-motifs, which self-assemble into ring structures, can be designed to self-replicate through toehold-mediated strand displacement reactions. The inherent design of these rings allows the population dynamics of the systems to be controlled. We also analyse the replication scheme within a universal framework of self-replication and derive a quantitative metric of the self-replicability of the rings.

  16. DNA Replication via Entanglement Swapping

    CERN Document Server

    Pusuluk, Onur

    2010-01-01

    Quantum effects are mainly used for the determination of molecular shapes in molecular biology, but quantum information theory may be a more useful tool to understand the physics of life. Molecular biology assumes that function is explained by structure, the complementary geometries of molecules and weak intermolecular hydrogen bonds. However, both this assumption and its converse are possible if organic molecules and quantum circuits/protocols are considered as hardware and software of living systems that are co-optimized during evolution. In this paper, we try to model DNA replication as a multiparticle entanglement swapping with a reliable qubit representation of nucleotides. In the model, molecular recognition of a nucleotide triggers an intrabase entanglement corresponding to a superposition state of different tautomer forms. Then, base pairing occurs by swapping intrabase entanglements with interbase entanglements.

  17. Security in a Replicated Metadata Catalogue

    CERN Document Server

    Koblitz, B

    2007-01-01

    The gLite-AMGA metadata has been developed by NA4 to provide simple relational metadata access for the EGEE user community. As advanced features, which will be the focus of this presentation, AMGA provides very fine-grained security also in connection with the built-in support for replication and federation of metadata. AMGA is extensively used by the biomedical community to store medical images metadata, digital libraries, in HEP for logging and bookkeeping data and in the climate community. The biomedical community intends to deploy a distributed metadata system for medical images consisting of various sites, which range from hospitals to computing centres. Only safe sharing of the highly sensitive metadata as provided in AMGA makes such a scenario possible. Other scenarios are digital libraries, which federate copyright protected (meta-) data into a common catalogue. The biomedical and digital libraries have been deployed using a centralized structure already for some time. They now intend to decentralize ...

  18. A stable acentric marker chromosome derived from distal 8p: Reactivation of a latent ancient centromere at 8p23.1?

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, H.; Wakui, K.; Ogawa, K. [Saitama Children`s Medical Ctr., Iwatsuki (Japan)] [and others

    1994-09-01

    Centromere is considered to be an essential chromosomal component for faithful segregation, and acentric chromosomes are unstable and lost through cell divisions. We report a novel marker chromosome that was acentric but stable through cell divisions. The patient was a 2-year-old girl with mental retardation, patent ductus arteriosus and mild dysmorphic features. G-banded chromosome analysis revealed an additional small marker chromosome in all 100 cells examined. Using the targeted chromosome-band painting method, the marker was found to originate from the distal region of 8p, and subsequent two color FISH analysis with cosmid probes around the region revealed the marker was a rearranged chromosome interpreted as 8pter{r_arrow}p23.1{r_arrow}8pter. No centromeric region was involved in the marker. By FISH, no {alpha}-satellite sequence was detected on the marker, while telomere sequence was detected at each end. Antikinetochore immunostaining using a serum from a patient with CREST syndrome showed a pair of signals on the marker, which indicated that a functional kinetochore was present on the marker, presumably at 8p23.1-corresponding region. The patient may provide evidence that an ancient centromere sequence exists at 8p23.1 and was reactivated through the chromosome rearrangement in the patient.

  19. Preferential recruitment of the maternal centromere-specific histone H3 (CENH3) in oat (Avena sativa L.) × pearl millet (Pennisetum glaucum L.) hybrid embryos.

    Science.gov (United States)

    Ishii, Takayoshi; Sunamura, Naohiro; Matsumoto, Ayaka; Eltayeb, Amin Elsadig; Tsujimoto, Hisashi

    2015-12-01

    Chromosome elimination occurs frequently in interspecific hybrids between distantly related species in Poaceae. However, chromosomes from both parents behave stably in a hybrid of female oat (Avena sativa L.) pollinated by pearl millet (Pennisetum glaucum L.). To analyze the chromosome behavior in this hybrid, we cloned the centromere-specific histone H3 (CENH3) genes of oat and pearl millet and produced a pearl millet-specific anti-CENH3 antibody. Application of this antibody together with a grass species common anti-CENH3 antibody revealed the dynamic CENH3 composition of the hybrid cells before and after fertilization. Despite co-expression of CENH3 genes encoded by oat and pearl millet, only an oat-type CENH3 was incorporated into the centromeres of both species in the hybrid embryo. Oat CENH3 enables a functional centromere in pearl millet chromosomes in an oat genetic background. Comparison of CENH3 genes among Poaceae species that show chromosome elimination in interspecific hybrids revealed that the loop 1 regions of oat and pearl millet CENH3 exhibit exceptionally high similarity.

  20. Metadata Control Agent approach for Replication in Grid Environments

    Directory of Open Access Journals (Sweden)

    P. SunilGavaskar

    2013-10-01

    Full Text Available since grid environment is dynamic, network latency and user requests may change. In order to provide better communication, access time and fault tolerant in decentralized systems, the replication is a technique to reduce access time, storage space. The objective of the work is to propose an agent control approach for Heterogeneous environments using the Agents for storing objects as replicas in decentralized environments. Our idea minimizes the more replicas (i.e. causes overhead on response time and update cost, therefore maintaining suitable number of replicas is important. Fixed replicas provides file access structure to identify the esteem files and gives optimal replication location, which minimize replication issues like access time and update cost by assuming a given traffic pattern. In this context we present the Agents as replicas to maintain a suitable scalable architecture. The solution uses fewer replicas, which lead to fewer agents as a result of that frequent updating is possible. Our tests show that the proposed strategy outperforms previous solutions in terms of replication issues.

  1. The evolution of self-replicating computer organisms

    Science.gov (United States)

    Pargellis, A. N.

    A computer model is described that explores some of the possible behavior of biological life during the early stages of evolution. The simulation starts with a primordial soup composed of randomly generated sequences of computer operations selected from a basis set of 16 opcodes. With a probability of about 10 -4, these sequences spontaneously generate large and inefficient self-replicating “organisms”. Driven by mutations, these protobiotic ancestors more efficiently generate offspring by initially eliminating unnecessary code. Later they increase their complexity by adding additional subroutines as they compete for the system's two limited resources, computer memory and CPU time. The ensuing biology includes replicating hosts, parasites and colonies.

  2. Dengue virus binding and replication by platelets.

    Science.gov (United States)

    Simon, Ayo Y; Sutherland, Michael R; Pryzdial, Edward L G

    2015-07-16

    Dengue virus (DENV) infection causes ∼200 million cases of severe flulike illness annually, escalating to life-threatening hemorrhagic fever or shock syndrome in ∼500,000. Although thrombocytopenia is typical of both mild and severe diseases, the mechanism triggering platelet reduction is incompletely understood. As a probable initiating event, direct purified DENV-platelet binding was followed in the current study by quantitative reverse transcription-polymerase chain reaction and confirmed antigenically. Approximately 800 viruses specifically bound per platelet at 37°C. Fewer sites were observed at 25°C, the blood bank storage temperature (∼350 sites), or 4°C, known to attenuate virus cell entry (∼200 sites). Dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) and heparan sulfate proteoglycan were implicated as coreceptors because only the combination of anti-DC-SIGN and low-molecular-weight heparin prevented binding. Interestingly, at 37°C and 25°C, platelets replicated the positive sense single-stranded RNA genome of DENV by up to ∼4-fold over 7 days. Further time course experiments demonstrated production of viral NS1 protein, which is known to be highly antigenic in patient serum. The infectivity of DENV intrinsically decayed in vitro, which was moderated by platelet-mediated generation of viable progeny. This was shown using a transcription inhibitor and confirmed by freeze-denatured platelets being incapable of replicating the DENV genome. For the first time, these data demonstrate that platelets directly bind DENV saturably and produce infectious virus. Thus, expression of antigen encoded by DENV is a novel consideration in the pathogen-induced thrombocytopenia mechanism. These results furthermore draw attention to the possibility that platelets may produce permissive RNA viruses in addition to DENV.

  3. Delay Scheduling Based Replication Scheme for Hadoop Distributed File System

    Directory of Open Access Journals (Sweden)

    S. Suresh

    2015-03-01

    Full Text Available The data generated and processed by modern computing systems burgeon rapidly. MapReduce is an important programming model for large scale data intensive applications. Hadoop is a popular open source implementation of MapReduce and Google File System (GFS. The scalability and fault-tolerance feature of Hadoop makes it as a standard for BigData processing. Hadoop uses Hadoop Distributed File System (HDFS for storing data. Data reliability and faulttolerance is achieved through replication in HDFS. In this paper, a new technique called Delay Scheduling Based Replication Algorithm (DSBRA is proposed to identify and replicate (dereplicate the popular (unpopular files/blocks in HDFS based on the information collected from the scheduler. Experimental results show that, the proposed method achieves 13% and 7% improvements in response time and locality over existing algorithms respectively.

  4. Regulation of DNA Replication in Early Embryonic Cleavages

    Directory of Open Access Journals (Sweden)

    Chames Kermi

    2017-01-01

    Full Text Available Early embryonic cleavages are characterized by short and highly synchronous cell cycles made of alternating S- and M-phases with virtually absent gap phases. In this contracted cell cycle, the duration of DNA synthesis can be extraordinarily short. Depending on the organism, the whole genome of an embryo is replicated at a speed that is between 20 to 60 times faster than that of a somatic cell. Because transcription in the early embryo is repressed, DNA synthesis relies on a large stockpile of maternally supplied proteins stored in the egg representing most, if not all, cellular genes. In addition, in early embryonic cell cycles, both replication and DNA damage checkpoints are inefficient. In this article, we will review current knowledge on how DNA synthesis is regulated in early embryos and discuss possible consequences of replicating chromosomes with little or no quality control.

  5. Regulation of Unperturbed DNA Replication by Ubiquitylation

    Directory of Open Access Journals (Sweden)

    Sara Priego Moreno

    2015-06-01

    Full Text Available Posttranslational modification of proteins by means of attachment of a small globular protein ubiquitin (i.e., ubiquitylation represents one of the most abundant and versatile mechanisms of protein regulation employed by eukaryotic cells. Ubiquitylation influences almost every cellular process and its key role in coordination of the DNA damage response is well established. In this review we focus, however, on the ways ubiquitylation controls the process of unperturbed DNA replication. We summarise the accumulated knowledge showing the leading role of ubiquitin driven protein degradation in setting up conditions favourable for replication origin licensing and S-phase entry. Importantly, we also present the emerging major role of ubiquitylation in coordination of the active DNA replication process: preventing re-replication, regulating the progression of DNA replication forks, chromatin re-establishment and disassembly of the replisome at the termination of replication forks.

  6. Studies on the replication of Escherichia coli phage lambda DNA. I. The kinetics of DNA replication and requirements for the generation of rolling circles.

    Science.gov (United States)

    Better, M; Freifelder, D

    1983-04-15

    Escherichia coli phage lambda DNA has been isolated from infected bacteria using a new technique by which virtually all phage DNA is recovered. Isolated DNA is examined by electron microscopy. Addition of phi X174 RF1 molecules as a counting standard enables us to determine the average number of lambda DNA molecules present in an infected cell. In this study, we have followed the kinetics of lambda DNA replication and examined rolling circle replication. The most important findings are the following: (1) Rolling circle replication is initiated at roughly the same time as is theta replication, indicating that the rolling circle is not solely a late-replicating form. (2) theta replication stops at about 16 min after infection. (3) Early in infection the number of DNA molecules per cell doubles every 2-3 min until theta replication stops, at which point most DNA synthesis consists of growth of the tails of about three rolling circles per cell. (4) Neither the timing of rolling circle replication nor the number of molecules is affected by the activity of the lambda red genes. (5). The red genes are responsible for the production of oligomeric circles late in infection.

  7. DNA topoisomerase II is a determinant of the tensile properties of yeast centromeric chromatin and the tension checkpoint.

    Science.gov (United States)

    Warsi, Tariq H; Navarro, Michelle S; Bachant, Jeff

    2008-10-01

    Centromeric (CEN) chromatin is placed under mechanical tension and stretches as kinetochores biorient on the mitotic spindle. This deformation could conceivably provide a readout of biorientation to error correction mechanisms that monitor kinetochore-spindle interactions, but whether CEN chromatin acts in a tensiometer capacity is unresolved. Here, we report observations linking yeast Topoisomerase II (Top2) to both CEN mechanics and assessment of interkinetochore tension. First, in top2-4 and sumoylation-resistant top2-SNM mutants CEN chromatin stretches extensively during biorientation, resulting in increased sister kinetochore separation and preanaphase spindle extension. Our data indicate increased CEN stretching corresponds with alterations to CEN topology induced in response to tension. Second, Top2 potentiates aspects of the tension checkpoint. Mutations affecting the Mtw1 kinetochore protein activate Ipl1 kinase to detach kinetochores and induce spindle checkpoint arrest. In mtw1top2-4 and mtw1top2-SNM mutants, however, kinetochores are resistant to detachment and checkpoint arrest is attenuated. For top2-SNM cells, CEN stretching and checkpoint attenuation occur even in the absence of catenation linking sister chromatids. In sum, Top2 seems to play a novel role in CEN compaction that is distinct from decatenation. Perturbations to this function may allow weakened kinetochores to stretch CENs in a manner that mimics tension or evades Ipl1 surveillance.

  8. A KIR B centromeric region present in Africans but not Europeans protects pregnant women from pre-eclampsia.

    Science.gov (United States)

    Nakimuli, Annettee; Chazara, Olympe; Hiby, Susan E; Farrell, Lydia; Tukwasibwe, Stephen; Jayaraman, Jyothi; Traherne, James A; Trowsdale, John; Colucci, Francesco; Lougee, Emma; Vaughan, Robert W; Elliott, Alison M; Byamugisha, Josaphat; Kaleebu, Pontiano; Mirembe, Florence; Nemat-Gorgani, Neda; Parham, Peter; Norman, Paul J; Moffett, Ashley

    2015-01-20

    In sub-Saharan Africans, maternal mortality is unacceptably high, with >400 deaths per 100,000 births compared with pre-eclampsia, a syndrome arising from defective placentation. Controlling placentation are maternal natural killer (NK) cells that use killer-cell immunoglobulin-like receptor (KIR) to recognize the fetal HLA-C molecules on invading trophoblast. We analyzed genetic polymorphisms of maternal KIR and fetal HLA-C in 484 normal and 254 pre-eclamptic pregnancies at Mulago Hospital, Kampala, Uganda. The combination of maternal KIR AA genotypes and fetal HLA-C alleles encoding the C2 epitope associates with pre-eclampsia [P = 0.0318, odds ratio (OR) = 1.49]. The KIR genes associated with protection are located in centromeric KIR B regions that are unique to sub-Saharan African populations and contain the KIR2DS5 and KIR2DL1 genes (P = 0.0095, OR = 0.59). By contrast, telomeric KIR B genes protect Europeans against pre-eclampsia. Thus, different KIR B regions protect sub-Saharan Africans and Europeans from pre-eclampsia, whereas in both populations, the KIR AA genotype is a risk factor for the syndrome. These results emphasize the importance of undertaking genetic studies of pregnancy disorders in African populations with the potential to provide biological insights not available from studies restricted to European populations.

  9. Condensin HEAT subunits required for DNA repair, kinetochore/centromere function and ploidy maintenance in fission yeast.

    Directory of Open Access Journals (Sweden)

    Xingya Xu

    Full Text Available Condensin, a central player in eukaryotic chromosomal dynamics, contains five evolutionarily-conserved subunits. Two SMC (structural maintenance of chromosomes subunits contain ATPase, hinge, and coiled-coil domains. One non-SMC subunit is similar to bacterial kleisin, and two other non-SMC subunits contain HEAT (similar to armadillo repeats. Here we report isolation and characterization of 21 fission yeast (Schizosaccharomyces pombe mutants for three non-SMC subunits, created using error-prone mutagenesis that resulted in single-amino acid substitutions. Beside condensation, segregation, and DNA repair defects, similar to those observed in previously isolated SMC and cnd2 mutants, novel phenotypes were observed for mutants of HEAT-repeats containing Cnd1 and Cnd3 subunits. cnd3-L269P is hypersensitive to the microtubule poison, thiabendazole, revealing defects in kinetochore/centromere and spindle assembly checkpoints. Three cnd1 and three cnd3 mutants increased cell size and doubled DNA content, thereby eliminating the haploid state. Five of these mutations reside in helix B of HEAT repeats. Two non-SMC condensin subunits, Cnd1 and Cnd3, are thus implicated in ploidy maintenance.

  10. High resolution mapping of Dense spike-ar (dsp.ar) to the genetic centromere of barley chromosome 7H.

    Science.gov (United States)

    Shahinnia, Fahimeh; Druka, Arnis; Franckowiak, Jerome; Morgante, Michele; Waugh, Robbie; Stein, Nils

    2012-02-01

    Spike density in barley is under the control of several major genes, as documented previously by genetic analysis of a number of morphological mutants. One such class of mutants affects the rachis internode length leading to dense or compact spikes and the underlying genes were designated dense spike (dsp). We previously delimited two introgressed genomic segments on chromosome 3H (21 SNP loci, 35.5 cM) and 7H (17 SNP loci, 20.34 cM) in BW265, a BC(7)F(3) nearly isogenic line (NIL) of cv. Bowman as potentially containing the dense spike mutant locus dsp.ar, by genotyping 1,536 single nucleotide polymorphism (SNP) markers in both BW265 and its recurrent parent. Here, the gene was allocated by high-resolution bi-parental mapping to a 0.37 cM interval between markers SC57808 (Hv_SPL14)-CAPSK06413 residing on the short and long arm at the genetic centromere of chromosome 7H, respectively. This region putatively contains more than 800 genes as deduced by comparison with the collinear regions of barley, rice, sorghum and Brachypodium, Classical map-based isolation of the gene dsp.ar thus will be complicated due to the infavorable relationship of genetic to physical distances at the target locus.

  11. Semiconservative replication in the quasispecies model

    Science.gov (United States)

    Tannenbaum, Emmanuel; Deeds, Eric J.; Shakhnovich, Eugene I.

    2004-06-01

    This paper extends Eigen’s quasispecies equations to account for the semiconservative nature of DNA replication. We solve the equations in the limit of infinite sequence length for the simplest case of a static, sharply peaked fitness landscape. We show that the error catastrophe occurs when μ , the product of sequence length and per base pair mismatch probability, exceeds 2 ln [2/ ( 1+1/k ) ] , where k>1 is the first-order growth rate constant of the viable “master” sequence (with all other sequences having a first-order growth rate constant of 1 ). This is in contrast to the result of ln k for conservative replication. In particular, as k→∞ , the error catastrophe is never reached for conservative replication, while for semiconservative replication the critical μ approaches 2 ln 2 . Semiconservative replication is therefore considerably less robust than conservative replication to the effect of replication errors. We also show that the mean equilibrium fitness of a semiconservatively replicating system is given by k ( 2 e-μ/2 -1 ) below the error catastrophe, in contrast to the standard result of k e-μ for conservative replication (derived by Kimura and Maruyama in 1966). From this result it is readily shown that semiconservative replication is necessary to account for the observation that, at sufficiently high mutagen concentrations, faster replicating cells will die more quickly than more slowly replicating cells. Thus, in contrast to Eigen’s original model, the semiconservative quasispecies equations are able to provide a mathematical basis for explaining the efficacy of mutagens as chemotherapeutic agents.

  12. Replicating chromatin: a tale of histones

    DEFF Research Database (Denmark)

    Groth, Anja

    2009-01-01

    Chromatin serves structural and functional roles crucial for genome stability and correct gene expression. This organization must be reproduced on daughter strands during replication to maintain proper overlay of epigenetic fabric onto genetic sequence. Nucleosomes constitute the structural...... framework of chromatin and carry information to specify higher-order organization and gene expression. When replication forks traverse the chromosomes, nucleosomes are transiently disrupted, allowing the replication machinery to gain access to DNA. Histone recycling, together with new deposition, ensures...... reassembly on nascent DNA strands. The aim of this review is to discuss how histones - new and old - are handled at the replication fork, highlighting new mechanistic insights and revisiting old paradigms....

  13. Regulation of chromosomal replication in Caulobacter crescentus.

    Science.gov (United States)

    Collier, Justine

    2012-03-01

    The alpha-proteobacterium Caulobacter crescentus is characterized by its asymmetric cell division, which gives rise to a replicating stalked cell and a non-replicating swarmer cell. Thus, the initiation of chromosomal replication is tightly regulated, temporally and spatially, to ensure that it is coordinated with cell differentiation and cell cycle progression. Waves of DnaA and CtrA activities control when and where the initiation of DNA replication will take place in C. crescentus cells. The conserved DnaA protein initiates chromosomal replication by directly binding to sites within the chromosomal origin (Cori), ensuring that DNA replication starts once and only once per cell cycle. The CtrA response regulator represses the initiation of DNA replication in swarmer cells and in the swarmer compartment of pre-divisional cells, probably by competing with DnaA for binding to Cori. CtrA and DnaA are controlled by multiple redundant regulatory pathways that include DNA methylation-dependent transcriptional regulation, temporally regulated proteolysis and the targeting of regulators to specific locations within the cell. Besides being critical regulators of chromosomal replication, CtrA and DnaA are also master transcriptional regulators that control the expression of many genes, thus connecting DNA replication with other events of the C. crescentus cell cycle.

  14. Comparison of three replication strategies in complex multicellular organisms: Asexual replication, sexual replication with identical gametes, and sexual replication with distinct sperm and egg gametes

    Science.gov (United States)

    Tannenbaum, Emmanuel

    2008-01-01

    This paper studies the mutation-selection balance in three simplified replication models. The first model considers a population of organisms replicating via the production of asexual spores. The second model considers a sexually replicating population that produces identical gametes. The third model considers a sexually replicating population that produces distinct sperm and egg gametes. All models assume diploid organisms whose genomes consist of two chromosomes, each of which is taken to be functional if equal to some master sequence, and defective otherwise. In the asexual population, the asexual diploid spores develop directly into adult organisms. In the sexual populations, the haploid gametes enter a haploid pool, where they may fuse with other haploids. The resulting immature diploid organisms then proceed to develop into mature organisms. Based on an analysis of all three models, we find that, as organism size increases, a sexually replicating population can only outcompete an asexually replicating population if the adult organisms produce distinct sperm and egg gametes. A sexual replication strategy that is based on the production of large numbers of sperm cells to fertilize a small number of eggs is found to be necessary in order to maintain a sufficiently low cost for sex for the strategy to be selected for over a purely asexual strategy. We discuss the usefulness of this model in understanding the evolution and maintenance of sexual replication as the preferred replication strategy in complex, multicellular organisms.

  15. Result Analysis and Benefits of Detecting Replicate Documents Using MD5 Hash Function

    Directory of Open Access Journals (Sweden)

    Pushpendra Singh Tomar

    2011-12-01

    Full Text Available The definition of what constitutes a replicate has somewhat different interpretations. For instance, some define a replicate as having the exact syntactic terms and sequence, whether having formatting differences or not. In effect, there are either no difference or only formatting differences and the contents of the data are exactly the same. In any case, data replication happens all the time. In large data warehouses, data replication is an inevitable phenomenon as millions of data are gathered at very short intervals. In this paper we provide a detail result analysis on the basis of our approach and the previous one.

  16. Result Analysis and Benefits of Detecting Replicate Documents Using MD5 Hash Function

    Directory of Open Access Journals (Sweden)

    Mr. Pushpendra Singh Tomar

    2011-09-01

    Full Text Available The definition of what constitutes a replicate has somewhat different interpretations. For instance, some define a replicate as having the exact syntactic terms and sequence, whether having formatting differences or not. In effect, there are either no difference or only formatting differences and the contents of the data are exactly the same. In any case, data replication happens all the time. In large data warehouses, data replication is an inevitable phenomenon as millions of data are gathered at very short intervals. In this paper we provide a detail result analysis on the basis of our approach and the previous one.

  17. Effects of DNA replication on mRNA noise.

    Science.gov (United States)

    Peterson, Joseph R; Cole, John A; Fei, Jingyi; Ha, Taekjip; Luthey-Schulten, Zaida A

    2015-12-29

    There are several sources of fluctuations in gene expression. Here we study the effects of time-dependent DNA replication, itself a tightly controlled process, on noise in mRNA levels. Stochastic simulations of constitutive and regulated gene expression are used to analyze the time-averaged mean and variation in each case. The simulations demonstrate that to capture mRNA distributions correctly, chromosome replication must be realistically modeled. Slow relaxation of mRNA from the low copy number steady state before gene replication to the high steady state after replication is set by the transcript's half-life and contributes significantly to the shape of the mRNA distribution. Consequently both the intrinsic kinetics and the gene location play an important role in accounting for the mRNA average and variance. Exact analytic expressions for moments of the mRNA distributions that depend on the DNA copy number, gene location, cell doubling time, and the rates of transcription and degradation are derived for the case of constitutive expression and subsequently extended to provide approximate corrections for regulated expression and RNA polymerase variability. Comparisons of the simulated models and analytical expressions to experimentally measured mRNA distributions show that they better capture the physics of the system than previous theories.

  18. Efficient Dynamic Replication Algorithm Using Agent for Data Grid

    Directory of Open Access Journals (Sweden)

    Priyanka Vashisht

    2014-01-01

    Full Text Available In data grids scientific and business applications produce huge volume of data which needs to be transferred among the distributed and heterogeneous nodes of data grids. Data replication provides a solution for managing data files efficiently in large grids. The data replication helps in enhancing the data availability which reduces the overall access time of the file. In this paper an algorithm, namely, EDRA using agents for data grid, has been proposed and implemented. EDRA consists of dynamic replication of hierarchical structure taken into account for the selection of best replica. Decision for selecting the best replica is based on scheduling parameters. The scheduling parameters are bandwidth, load gauge, and computing capacity of the node. The scheduling in data grid helps in reducing the data access time. The distribution of the load on the nodes of data grid is done evenly by considering scheduling parameters. EDRA is implemented using data grid simulator, namely, OptorSim. European Data Grid CMS test bed topology is used in this experiment. The simulation results are obtained by comparing BHR, LRU, No Replication, and EDRA. The result shows the efficiency of EDRA algorithm in terms of mean job execution time, network usage, and storage usage of node.

  19. Genome-wide studies highlight indirect links between human replication origins and gene regulation.

    Science.gov (United States)

    Cadoret, Jean-Charles; Meisch, Françoise; Hassan-Zadeh, Vahideh; Luyten, Isabelle; Guillet, Claire; Duret, Laurent; Quesneville, Hadi; Prioleau, Marie-Noëlle

    2008-10-14

    To get insights into the regulation of replication initiation, we systematically mapped replication origins along 1% of the human genome in HeLa cells. We identified 283 origins, 10 times more than previously known. Origin density is strongly correlated with genomic landscapes, with clusters of closely spaced origins in GC-rich regions and no origins in large GC-poor regions. Origin sequences are evolutionarily conserved, and half of them map within or near CpG islands. Most of the origins overlap transcriptional regulatory elements, providing further evidence of a connection with gene regulation. Moreover, we identify c-JUN and c-FOS as important regulators of origin selection. Half of the identified replication initiation sites do not have an open chromatin configuration, showing the absence of a direct link with gene regulation. Replication timing analyses coupled with our origin mapping suggest that a relatively strict origin-timing program regulates the replication of the human genome.

  20. Direct observation of enzymes replicating DNA using a single-molecule DNA stretching assay

    NARCIS (Netherlands)

    Kulczyk, A.W.; Tanner, N.A.; Loparo, J.J.; Richardson, C.C.; Oijen, A.M. van

    2010-01-01

    We describe a method for observing real time replication of individual DNA molecules mediated by proteins of the bacteriophage replication system. Linearized lambda DNA is modified to have a biotin on the end of one strand, and a digoxigenin moiety on the other end of the same strand. The biotinylat

  1. A new fuzzy optimal data replication method for data grid

    Directory of Open Access Journals (Sweden)

    Zeinab Ghilavizadeh

    2013-03-01

    Full Text Available These days, There are several applications where we face with large data set and it has become an important part of common resources in different scientific areas. In fact, there are many applications where there are literally huge amount of information handled either in terabyte or in petabyte. Many scientists apply huge amount of data distributed geographically around the world through advanced computing systems. The huge volume data and calculations have created new problems in accessing, processing and distribution of data. The challenges of data management infrastructure have become very difficult under a large amount of data, different geographical spaces, and complicated involved calculations. Data Grid is a remedy to all mentioned problems. In this paper, a new method of dynamic optimal data replication in data grid is introduced where it reduces the total job execution time and increases the locality in accessibilities by detecting and impacting the factors influencing the data replication. Proposed method is composed of two main phases. During the first phase is the phase of file application and replication operation. In this phase, we evaluate three factors influencing the data replication and determine whether the requested file can be replicated or it can be used from distance. In the second phase or the replacement phase, the proposed method investigates whether there is enough space in the destination to store the requested file or not. In this phase, the proposed method also chooses a replica with the lowest value for deletion by considering three replica factors to increase the performance of system. The results of simulation also indicate the improved performance of our proposed method compared with other replication methods represented in the simulator Optorsim.

  2. Errors and alternatives in prebiotic replication and catalysis.

    Science.gov (United States)

    Ninio, Jacques

    2007-04-01

    The work on nonenzymatic nucleic acid replication performed by Leslie Orgel and co-workers over the last four decades, now extended by work on artificial selection of RNA aptamers and ribozymes, is generating some pessimism concerning the 'naked gene' theories of the origin of life. It is suggested here that the low probability of finding RNA aptamers and ribozymes within pools of random sequences is not as disquieting as the poor gain in efficiency obtained with increases in information content. As acknowledged by Orgel and many other authors, primitive RNA replication and catalysis must have occurred within already complex and dynamic environments. I, thus, propose to pay attention to a number of possibilities that bridge the gap between 'naked gene' theories, on one side, and metabolic theories in which complex systems self-propagate by growth and fragmentation, on the other side. For instance, one can de-emphasize nucleotide-by-nucleotide replication leading to long informational polymers, and view instead long random polymers as storage devices, from which shorter oligomers are excised. Catalytic tasks would be mainly performed by complexes associating two or more oligomers belonging to the same or to different chemical families. It is proposed that the problems of stability, binding affinity, reactivity, and specificity could be easier to handle by heterogeneous complexes of short oligomers than by long, single-stranded polymers. Finally, I point out that replication errors in a primitive replication context should include incorporations of alternative nucleotides with interesting, chemically reactive groups. In this way, an RNA sequence could be at the same time an inert sequence when copied without error, and a ribozyme, when a chemically reactive nucleotide is inadvertently introduced during replication.

  3. Replication and Robustness in Developmental Research

    Science.gov (United States)

    Duncan, Greg J.; Engel, Mimi; Claessens, Amy; Dowsett, Chantelle J.

    2014-01-01

    Replications and robustness checks are key elements of the scientific method and a staple in many disciplines. However, leading journals in developmental psychology rarely include explicit replications of prior research conducted by different investigators, and few require authors to establish in their articles or online appendices that their key…

  4. Chromosomal context and replication properties of ARS plasmids in Schizosaccharomyces pombe

    Indian Academy of Sciences (India)

    Aditya S Pratihar; Vishnu P Tripathi; Mukesh P Yadav; Dharani D Dubey

    2015-12-01

    Short, specific DNA sequences called as Autonomously Replicating Sequence (ARS) elements function as plasmid as well as chromosomal replication origins in yeasts. As compared to ARSs, different chromosomal origins vary greatly in their efficiency and timing of replication probably due to their wider chromosomal context. The two Schizosaccharomyces pombe ARS elements, ars727 and ars2OO4, represent two extremities in their chromosomal origin activity - ars727 is inactive and late replicating, while ars2OO4 is a highly active, early-firing origin. To determine the effect of chromosomal context on the activity of these ARS elements, we have cloned them with their extended chromosomal context as well as in the context of each other in both orientations and analysed their replication efficiency by ARS and plasmid stability assays. We found that these ARS elements retain their origin activity in their extended/altered context. However, deletion of a 133-bp region of the previously reported ars727-associated late replication enforcing element (LRE) caused advancement in replication timing of the resulting plasmid. These results confirm the role of LRE in directing plasmid replication timing and suggest that the plasmid origin efficiency of ars2OO4 or ars727 remains unaltered by the extended chromosomal context.

  5. Arabidopsis thaliana chromosome 4 replicates in two phases that correlate with chromatin state.

    Science.gov (United States)

    Lee, Tae-Jin; Pascuzzi, Pete E; Settlage, Sharon B; Shultz, Randall W; Tanurdzic, Milos; Rabinowicz, Pablo D; Menges, Margit; Zheng, Ping; Main, Dorrie; Murray, James A H; Sosinski, Bryon; Allen, George C; Martienssen, Robert A; Hanley-Bowdoin, Linda; Vaughn, Matthew W; Thompson, William F

    2010-06-10

    DNA replication programs have been studied extensively in yeast and animal systems, where they have been shown to correlate with gene expression and certain epigenetic modifications. Despite the conservation of core DNA replication proteins, little is known about replication programs in plants. We used flow cytometry and tiling microarrays to profile DNA replication of Arabidopsis thaliana chromosome 4 (chr4) during early, mid, and late S phase. Replication profiles for early and mid S phase were similar and encompassed the majority of the euchromatin. Late S phase exhibited a distinctly different profile that includes the remaining euchromatin and essentially all of the heterochromatin. Termination zones were consistent between experiments, allowing us to define 163 putative replicons on chr4 that clustered into larger domains of predominately early or late replication. Early-replicating sequences, especially the initiation zones of early replicons, displayed a pattern of epigenetic modifications specifying an open chromatin conformation. Late replicons, and the termination zones of early replicons, showed an opposite pattern. Histone H3 acetylated on lysine 56 (H3K56ac) was enriched in early replicons, as well as the initiation zones of both early and late replicons. H3K56ac was also associated with expressed genes, but this effect was local whereas replication time correlated with H3K56ac over broad regions. The similarity of the replication profiles for early and mid S phase cells indicates that replication origin activation in euchromatin is stochastic. Replicon organization in Arabidopsis is strongly influenced by epigenetic modifications to histones and DNA. The domain organization of Arabidopsis is more similar to that in Drosophila than that in mammals, which may reflect genome size and complexity. The distinct patterns of association of H3K56ac with gene expression and early replication provide evidence that H3K56ac may be associated with initiation zones

  6. Arabidopsis thaliana chromosome 4 replicates in two phases that correlate with chromatin state.

    Directory of Open Access Journals (Sweden)

    Tae-Jin Lee

    2010-06-01

    Full Text Available DNA replication programs have been studied extensively in yeast and animal systems, where they have been shown to correlate with gene expression and certain epigenetic modifications. Despite the conservation of core DNA replication proteins, little is known about replication programs in plants. We used flow cytometry and tiling microarrays to profile DNA replication of Arabidopsis thaliana chromosome 4 (chr4 during early, mid, and late S phase. Replication profiles for early and mid S phase were similar and encompassed the majority of the euchromatin. Late S phase exhibited a distinctly different profile that includes the remaining euchromatin and essentially all of the heterochromatin. Termination zones were consistent between experiments, allowing us to define 163 putative replicons on chr4 that clustered into larger domains of predominately early or late replication. Early-replicating sequences, especially the initiation zones of early replicons, displayed a pattern of epigenetic modifications specifying an open chromatin conformation. Late replicons, and the termination zones of early replicons, showed an opposite pattern. Histone H3 acetylated on lysine 56 (H3K56ac was enriched in early replicons, as well as the initiation zones of both early and late replicons. H3K56ac was also associated with expressed genes, but this effect was local whereas replication time correlated with H3K56ac over broad regions. The similarity of the replication profiles for early and mid S phase cells indicates that replication origin activation in euchromatin is stochastic. Replicon organization in Arabidopsis is strongly influenced by epigenetic modifications to histones and DNA. The domain organization of Arabidopsis is more similar to that in Drosophila than that in mammals, which may reflect genome size and complexity. The distinct patterns of association of H3K56ac with gene expression and early replication provide evidence that H3K56ac may be associated

  7. Parasites Sustain and Enhance RNA-Like Replicators through Spatial Self-Organisation.

    Directory of Open Access Journals (Sweden)

    Enrico Sandro Colizzi

    2016-04-01

    Full Text Available In a prebiotic RNA world, parasitic behaviour may be favoured because template dependent replication happens in trans, thus being altruistic. Spatially extended systems are known to reduce harmful effects of parasites. Here we present a spatial system to show that evolution of replication is (indirectly enhanced by strong parasites, and we characterise the phase transition that leads to this mode of evolution. Building on the insights of this analysis, we identify two scenarios, namely periodic disruptions and longer replication time-span, in which speciation occurs and an evolved parasite-like lineage enables the evolutionary increase of replication rates in replicators. Finally, we show that parasites co-evolving with replicators are selected to become weaker, i.e. worse templates for replication when the duration of replication is increased. We conclude that parasites may not be considered a problem for evolution in a prebiotic system, but a degree of freedom that can be exploited by evolution to enhance the evolvability of replicators, by means of emergent levels of selection.

  8. Top2 and Sgs1-Top3 Act Redundantly to Ensure rDNA Replication Termination.

    Directory of Open Access Journals (Sweden)

    Kamilla Mundbjerg

    2015-12-01

    Full Text Available Faithful DNA replication with correct termination is essential for genome stability and transmission of genetic information. Here we have investigated the potential roles of Topoisomerase II (Top2 and the RecQ helicase Sgs1 during late stages of replication. We find that cells lacking Top2 and Sgs1 (or Top3 display two different characteristics during late S/G2 phase, checkpoint activation and accumulation of asymmetric X-structures, which are both independent of homologous recombination. Our data demonstrate that checkpoint activation is caused by a DNA structure formed at the strongest rDNA replication fork barrier (RFB during replication termination, and consistently, checkpoint activation is dependent on the RFB binding protein, Fob1. In contrast, asymmetric X-structures are formed independent of Fob1 at less strong rDNA replication fork barriers. However, both checkpoint activation and formation of asymmetric X-structures are sensitive to conditions, which facilitate fork merging and progression of replication forks through replication fork barriers. Our data are consistent with a redundant role of Top2 and Sgs1 together with Top3 (Sgs1-Top3 in replication fork merging at rDNA barriers. At RFB either Top2 or Sgs1-Top3 is essential to prevent formation of a checkpoint activating DNA structure during termination, but at less strong rDNA barriers absence of the enzymes merely delays replication fork merging, causing an accumulation of asymmetric termination structures, which are solved over time.

  9. Parasites Sustain and Enhance RNA-Like Replicators through Spatial Self-Organisation.

    Science.gov (United States)

    Colizzi, Enrico Sandro; Hogeweg, Paulien

    2016-04-01

    In a prebiotic RNA world, parasitic behaviour may be favoured because template dependent replication happens in trans, thus being altruistic. Spatially extended systems are known to reduce harmful effects of parasites. Here we present a spatial system to show that evolution of replication is (indirectly) enhanced by strong parasites, and we characterise the phase transition that leads to this mode of evolution. Building on the insights of this analysis, we identify two scenarios, namely periodic disruptions and longer replication time-span, in which speciation occurs and an evolved parasite-like lineage enables the evolutionary increase of replication rates in replicators. Finally, we show that parasites co-evolving with replicators are selected to become weaker, i.e. worse templates for replication when the duration of replication is increased. We conclude that parasites may not be considered a problem for evolution in a prebiotic system, but a degree of freedom that can be exploited by evolution to enhance the evolvability of replicators, by means of emergent levels of selection.

  10. Anti-centromere antibody-seropositive Sjögren's syndrome differs from conventional subgroup in clinical and pathological study

    Directory of Open Access Journals (Sweden)

    Ida Hiroaki

    2010-07-01

    Full Text Available Abstract Background To clarify the clinicopathological characteristics of primary Sjögren's syndrome (pSS with anti-centromere antibody (ACA. Methods Characteristics of 14 patients of pSS with ACA were evaluated. All patients were anti-SS-A/Ro and SS-B/La antibodies negative (ACA+ group without sclerodactyly. The prevalence of Raynaud's phenomenon (RP, titer of IgG and focus score (FS in the minor salivary glands (MSGs were determined. Quantification analysis of Azan Mallory staining was performed to detect collagenous fiber. Forty eight patients in whom ACA was absent were chosen as the conventional (ACA- pSS group. Results Prevalence of ACA+ SS patients was 14 out of 129 (10.85% pSS patients. RP was observed in 61.5% of the patients with ACA. The level of IgG in the ACA+ group was significantly lower than that of the ACA- group (p = 0.018. Statistical difference was also found in the FS of MSGs from the ACA+ group (1.4 ± 1.0 as compared with the ACA- group (2.3 ± 1.6 (p = 0.035. In contrast, the amount of fibrous tissue was much higher in the ACA+ group (65052.2 ± 14520.6 μm2 versus 26251.3 ± 14249.8 μm2 (p = 1.3 × 10-12. Conclusions Low cellular infiltration but with an increase in fibrous tissues may explain the clinical feature of a high prevalence of RP and normal IgG concentration in ACA+ pSS.

  11. Eclipse period of R1 plasmids during downshift from elevated copy number: Nonrandom selection of copies for replication.

    Science.gov (United States)

    Olsson, Jan A; Berg, Otto; Nordström, Kurt; Dasgupta, Santanu

    2012-03-01

    The classical Meselson-Stahl density-shift method was used to study replication of pOU71, a runaway-replication derivative of plasmid R1 in Escherichia coli. The miniplasmid maintained the normal low copy number of R1 during steady growth at 30°C, but as growth temperatures were raised above 34°C, the copy number of the plasmid increased to higher levels, and at 42°C, it replicated without control in a runaway replication mode with lethal consequences for the host. The eclipse periods (minimum time between successive replication of the same DNA) of the plasmid shortened with rising copy numbers at increasing growth temperatures (Olsson et al., 2003). In this work, eclipse periods were measured during downshifts in copy number of pOU71 after it had replicated at 39 and 42°C, resulting in 7- and 50-fold higher than normal plasmid copy number per cell, respectively. Eclipse periods for plasmid replication, measured during copy number downshift, suggested that plasmid R1, normally selected randomly for replication, showed a bias such that a newly replicated DNA had a higher probability of replication compared to the bulk of the R1 population. However, even the unexpected nonrandom replication followed the copy number kinetics such that every generation, the plasmids underwent the normal inherited number of replication, n, independent of the actual number of plasmid copies in a newborn cell.

  12. Data from Investigating Variation in Replicability: A “Many Labs” Replication Project

    Directory of Open Access Journals (Sweden)

    Richard A. Klein

    2014-04-01

    Full Text Available This dataset is from the Many Labs Replication Project in which 13 effects were replicated across 36 samples and over 6,000 participants. Data from the replications are included, along with demographic variables about the participants and contextual information about the environment in which the replication was conducted. Data were collected in-lab and online through a standardized procedure administered via an online link. The dataset is stored on the Open Science Framework website. These data could be used to further investigate the results of the included 13 effects or to study replication and generalizability more broadly.

  13. Panero et al. (2016): Failure to replicate methods caused the failure to replicate results.

    Science.gov (United States)

    Kidd, David Comer; Castano, Emanuele

    2017-03-01

    Contrary to Kidd and Castano (2013), Panero et al. (2016) fail to find that reading literary fiction improves performance on an advanced test of theory of mind (ToM), the Reading the Mind in the Eyes Test. However, this commentary shows that the findings presented in Panero et al. (2016) are not reliable due to two striking threats to the internal validity of their studies that were not clearly disclosed or discussed in the manuscript or supplementary materials. First, no effective strategy was implemented to ensure that participants read their assigned texts, and examination of the data revealed many participants whose reading times indicate that they were not exposed to the manipulation. Second, further examination shows that two of the largest studies contributing to Panero et al. (2016) are not valid experiments due to a clear failure of random assignment to conditions. These threats to experimental internal validity make the conclusions presented in Panero et al. (2016) untenable. After removing cases in which participants were not exposed to the manipulation and the data from the two studies without random assignment, an analysis reveals that reading literary fiction improves ToM compared to reading popular genre fiction. This result is consistent with prior studies and indicates that a failure to carefully replicate the methods of Kidd and Castano (2013) led to the failure to replicate Kidd and Castano's (2013) results. (PsycINFO Database Record

  14. Quasispecies spatial models for RNA viruses with different replication modes and infection strategies.

    Directory of Open Access Journals (Sweden)

    Josep Sardanyés

    Full Text Available Empirical observations and theoretical studies suggest that viruses may use different replication strategies to amplify their genomes, which impact the dynamics of mutation accumulation in viral populations and therefore, their fitness and virulence. Similarly, during natural infections, viruses replicate and infect cells that are rarely in suspension but spatially organized. Surprisingly, most quasispecies models of virus replication have ignored these two phenomena. In order to study these two viral characteristics, we have developed stochastic cellular automata models that simulate two different modes of replication (geometric vs stamping machine for quasispecies replicating and spreading on a two-dimensional space. Furthermore, we explored these two replication models considering epistatic fitness landscapes (antagonistic vs synergistic and different scenarios for cell-to-cell spread, one with free superinfection and another with superinfection inhibition. We found that the master sequences for populations replicating geometrically and with antagonistic fitness effects vanished at low critical mutation rates. By contrast, the highest critical mutation rate was observed for populations replicating geometrically but with a synergistic fitness landscape. Our simulations also showed that for stamping machine replication and antagonistic epistasis, a combination that appears to be common among plant viruses, populations further increased their robustness by inhibiting superinfection. We have also shown that the mode of replication strongly influenced the linkage between viral loci, which rapidly reached linkage equilibrium at increasing mutations for geometric replication. We also found that the strategy that minimized the time required to spread over the whole space was the stamping machine with antagonistic epistasis among mutations. Finally, our simulations revealed that the multiplicity of infection fluctuated but generically increased along

  15. Targeting DNA Replication Stress for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2016-08-01

    Full Text Available The human cellular genome is under constant stress from extrinsic and intrinsic factors, which can lead to DNA damage and defective replication. In normal cells, DNA damage response (DDR mediated by various checkpoints will either activate the DNA repair system or induce cellular apoptosis/senescence, therefore maintaining overall genomic integrity. Cancer cells, however, due to constitutive growth signaling and defective DDR, may exhibit “replication stress” —a phenomenon unique to cancer cells that is described as the perturbation of error-free DNA replication and slow-down of DNA synthesis. Although replication stress has been proven to induce genomic instability and tumorigenesis, recent studies have counterintuitively shown that enhancing replicative stress through further loosening of the remaining checkpoints in cancer cells to induce their catastrophic failure of proliferation may provide an alternative therapeutic approach. In this review, we discuss the rationale to enhance replicative stress in cancer cells, past approaches using traditional radiation and chemotherapy, and emerging approaches targeting the signaling cascades induced by DNA damage. We also summarize current clinical trials exploring these strategies and propose future research directions including the use of combination therapies, and the identification of potential new targets and biomarkers to track and predict treatment responses to targeting DNA replication stress.

  16. Targeting DNA Replication Stress for Cancer Therapy

    Science.gov (United States)

    Zhang, Jun; Dai, Qun; Park, Dongkyoo; Deng, Xingming

    2016-01-01

    The human cellular genome is under constant stress from extrinsic and intrinsic factors, which can lead to DNA damage and defective replication. In normal cells, DNA damage response (DDR) mediated by various checkpoints will either activate the DNA repair system or induce cellular apoptosis/senescence, therefore maintaining overall genomic integrity. Cancer cells, however, due to constitutive growth signaling and defective DDR, may exhibit “replication stress” —a phenomenon unique to cancer cells that is described as the perturbation of error-free DNA replication and slow-down of DNA synthesis. Although replication stress has been proven to induce genomic instability and tumorigenesis, recent studies have counterintuitively shown that enhancing replicative stress through further loosening of the remaining checkpoints in cancer cells to induce their catastrophic failure of proliferation may provide an alternative therapeutic approach. In this review, we discuss the rationale to enhance replicative stress in cancer cells, past approaches using traditional radiation and chemotherapy, and emerging approaches targeting the signaling cascades induced by DNA damage. We also summarize current clinical trials exploring these strategies and propose future research directions including the use of combination therapies, and the identification of potential new targets and biomarkers to track and predict treatment responses to targeting DNA replication stress. PMID:27548226

  17. Oncogene v-jun modulates DNA replication.

    Science.gov (United States)

    Wasylyk, C; Schneikert, J; Wasylyk, B

    1990-07-01

    Cell transformation leads to alterations in both transcription and DNA replication. Activation of transcription by the expression of a number of transforming oncogenes is mediated by the transcription factor AP1 (Herrlich & Ponta, 1989; Imler & Wasylyk, 1989). AP1 is a composite transcription factor, consisting of members of the jun and fos gene-families. c-jun and c-fos are progenitors of oncogenes, suggestion that an important transcriptional event in cell transformation is altered activity of AP1, which may arise either indirectly by oncogene expression or directly by structural modification of AP1. We report here that the v-jun oncogene and its progenitor c-jun, as fusion proteins with the lex-A-repressor DNA binding domain, can activate DNA replication from the Polyoma virus (Py) origin of replication, linked to the lex-A operator. The transcription-activation region of v-jun is required for activation of replication. When excess v-jun is expressed in the cell, replication is inhibited or 'squelched'. These results suggest that one consequence of deregulated jun activity could be altered DNA replication and that there are similarities in the way v-jun activates replication and transcription.

  18. A whole genome RNAi screen identifies replication stress response genes.

    Science.gov (United States)

    Kavanaugh, Gina; Ye, Fei; Mohni, Kareem N; Luzwick, Jessica W; Glick, Gloria; Cortez, David

    2015-11-01

    Proper DNA replication is critical to maintain genome stability. When the DNA replication machinery encounters obstacles to replication, replication forks stall and the replication stress response is activated. This response includes activation of cell cycle checkpoints, stabilization of the replication fork, and DNA damage repair and tolerance mechanisms. Defects in the replication stress response can result in alterations to the DNA sequence causing changes in protein function and expression, ultimately leading to disease states such as cancer. To identify additional genes that control the replication stress response, we performed a three-parameter, high content, whole genome siRNA screen measuring DNA replication before and after a challenge with replication stress as well as a marker of checkpoint kinase signalling. We identified over 200 replication stress response genes and subsequently analyzed how they influence cellular viability in response to replication stress. These data will serve as a useful resource for understanding the replication stress response.

  19. Study on the micro-replication of shark skin

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Direct replication of creatural scarfskins to form biomimetic surfaces with relatively vivid morphology is a new attempt of the bio-replicated forming technology at animal body. Taking shark skins as the replication templates, and the micro-embossing and micro-molding as the material forming methods, the micro-replicating technology of the outward morphology on shark skins was demonstrated. The preliminary analysis on replication precision indicates that the bio-replicated forming technology can replicate the outward morphology of the shark scales with good precision, which validates the application of the bio-replicated forming technology in the direct morphology replication of the firm creatural scarfskins.

  20. Hydrogen peroxide thermochemical oscillator as driver for primordial RNA replication.

    Science.gov (United States)

    Ball, Rowena; Brindley, John

    2014-06-06

    This paper presents and tests a previously unrecognized mechanism for driving a replicating molecular system on the prebiotic earth. It is proposed that cell-free RNA replication in the primordial soup may have been driven by self-sustained oscillatory thermochemical reactions. To test this hypothesis, a well-characterized hydrogen peroxide oscillator was chosen as the driver and complementary RNA strands with known association and melting kinetics were used as the substrate. An open flow system model for the self-consistent, coupled evolution of the temperature and concentrations in a simple autocatalytic scheme is solved numerically, and it is shown that thermochemical cycling drives replication of the RNA strands. For the (justifiably realistic) values of parameters chosen for the simulated example system, the mean amount of replicant produced at steady state is 6.56 times the input amount, given a constant supply of substrate species. The spontaneous onset of sustained thermochemical oscillations via slowly drifting parameters is demonstrated, and a scheme is given for prebiotic production of complementary RNA strands on rock surfaces.

  1. Inhibition of simian virus 40 DNA replication by ultraviolet light

    Energy Technology Data Exchange (ETDEWEB)

    Edenberg, H.J.

    1983-07-30

    The effects of ultraviolet light (uv) upon SV40 DNA synthesis in monkey cells were examined to determine whether replication forks were halted upon encountering lesions in the DNA, or alternatively whether lesions were rapidly bypassed. Ultraviolet light inhibits elongation of nascent DNA strands; the extent of incorporation of (/sup 3/H)deoxythymidine ((/sup 3/H)dT) into DNA decreases with increasing uv fluence. Inhibition begins within minutes of irradiation, and becomes more pronounced with increasing time after irradiation. The synthesis of form I (covalently closed) molecules is inhibited even more severely than is total incorporation: post-uv incorporation is predominantly into replication intermediates. In contrast to previous reports, we find that replication intermediates labeled after uv resemble those in unirradiated cells, and contain covalently closed parental strands. DNA strands made after uv are approximately the size of parental DNA which has been cleaved at pyrimidine dimers by a uv endonuclease, indicating that they do not extend past dimers. The hypothesis that replication forks are halted upon encountering pyrimidine dimers in the template strand is consistent with these data.

  2. Replicated Data Management for Mobile Computing

    CERN Document Server

    Douglas, Terry

    2008-01-01

    Managing data in a mobile computing environment invariably involves caching or replication. In many cases, a mobile device has access only to data that is stored locally, and much of that data arrives via replication from other devices, PCs, and services. Given portable devices with limited resources, weak or intermittent connectivity, and security vulnerabilities, data replication serves to increase availability, reduce communication costs, foster sharing, and enhance survivability of critical information. Mobile systems have employed a variety of distributed architectures from client-server

  3. Molecular characterization and chromosomal distribution of a species-specific transcribed centromeric satellite repeat from the olive fruit fly, Bactrocera oleae.

    Directory of Open Access Journals (Sweden)

    Konstantina T Tsoumani

    Full Text Available Satellite repetitive sequences that accumulate in the heterochromatin consist a large fraction of a genome and due to their properties are suggested to be implicated in centromere function. Current knowledge of heterochromatic regions of Bactrocera oleae genome, the major pest of the olive tree, is practically nonexistent. In our effort to explore the repetitive DNA portion of B. oleae genome, a novel satellite sequence designated BoR300 was isolated and cloned. The present study describes the genomic organization, abundance and chromosomal distribution of BoR300 which is organized in tandem, forming arrays of 298 bp-long monomers. Sequence analysis showed an AT content of 60.4%, a CENP-B like-motif and a high curvature value based on predictive models. Comparative analysis among randomly selected monomers demonstrated a high degree of sequence homogeneity (88%-97% of BoR300 repeats, which are present at approximately 3,000 copies per haploid genome accounting for about 0.28% of the total genomic DNA, based on two independent qPCR approaches. In addition, expression of the repeat was also confirmed through RT-PCR, by which BoR300 transcripts were detected in both sexes. Fluorescence in situ hybridization (FISH of BoR300 on mitotic metaphases and polytene chromosomes revealed signals to the centromeres of two out of the six chromosomes which indicated a chromosome-specific centromeric localization. Moreover, BoR300 is not conserved in the closely related Bactrocera species tested and it is also absent in other dipterans, but it's rather restricted to the B. oleae genome. This feature of species-specificity attributed to BoR300 satellite makes it a good candidate as an identification probe of the insect among its relatives at early development stages.

  4. Advance in Research of Centromeres in the Meiotic Process%着丝粒及其在减数分裂中的作用研究进展

    Institute of Scientific and Technical Information of China (English)

    张峰; 林娟; 赵军

    2013-01-01

    Centromeres are the important functional elements of chromosomes in eukaryotes, their roles played in mitosis and meiosis processes have been paid more and more attentions. Though the chromosomes vary greatly in DNA sequences, their roles are conserved in all eukaryotic organisms, which make sure the faithful segregation of chromosomes and correct cell division. With the continuous development of molecular biology techniques, we have a deep understanding of the functions of centromeres. Here we review the function of centromeres during the meiotic progress.%着丝粒作为真核生物染色体的重要结构之一,是有丝分裂和减数分裂过程中重要的功能元件,其所起到的重要作用越来越受到人们的重视。在整个真核生物类群中,尽管不同物种之间着丝粒的DNA序列相差极大,但是其功能却是相当保守,这确保了着丝粒在调控细胞分裂和染色单体分离过程中能够正常行使其功能,除此之外,人们还发现着丝粒蛋白不仅在细胞的有丝分裂中起作用,还在减数分裂中起着重要的作用。

  5. Quantification, by solid-phase minisequencing, of the telomeric and centromeric copies of the survival motor neuron gene in families with spinal muscular atrophy

    DEFF Research Database (Denmark)

    Schwartz, M; Sørensen, N; Hansen, F J

    1997-01-01

    In an analysis of 30 families affected by spinal muscular atrophy (SMA) we have used the solid-phase minisequencing method to determine the ratio between the number of telomeric and centromeric copies of the survival motor neuron gene (SMN and cBCD541 respectively) on normal and SMA chromosomes...... be explained by an underrepresentation of the haplotype completely lacking SMN genes, which is expected to cause early embryonic death in homozygotes. This first report of a direct haplotype analysis of SMN and cBCD541 should help clarify the role of cBCD541 in the pathogenesis of SMA....

  6. DNA deformability changes of single base pair mutants within CDE binding sites in S. Cerevisiae centromere DNA correlate with measured chromosomal loss rates and CDE binding site symmetries

    Directory of Open Access Journals (Sweden)

    Marx Kenneth A

    2006-03-01

    Full Text Available Abstract Background The centromeres in yeast (S. cerevisiae are organized by short DNA sequences (125 bp on each chromosome consisting of 2 conserved elements: CDEI and CDEIII spaced by a CDEII region. CDEI and CDEIII are critical sequence specific protein binding sites necessary for correct centromere formation and following assembly with proteins, are positioned near each other on a specialized nucleosome. Hegemann et al. BioEssays 1993, 15: 451–460 reported single base DNA mutants within the critical CDEI and CDEIII binding sites on the centromere of chromosome 6 and quantitated centromere loss of function, which they measured as loss rates for the different chromosome 6 mutants during cell division. Olson et al. Proc Natl Acad Sci USA 1998, 95: 11163–11168 reported the use of protein-DNA crystallography data to produce a DNA dinucleotide protein deformability energetic scale (PD-scale that describes local DNA deformability by sequence specific binding proteins. We have used the PD-scale to investigate the DNA sequence dependence of the yeast chromosome 6 mutants' loss rate data. Each single base mutant changes 2 PD-scale values at that changed base position relative to the wild type. In this study, we have utilized these mutants to demonstrate a correlation between the change in DNA deformability of the CDEI and CDEIII core sites and the overall experimentally measured chromosome loss rates of the chromosome 6 mutants. Results In the CDE I and CDEIII core binding regions an increase in the magnitude of change in deformability of chromosome 6 single base mutants with respect to the wild type correlates to an increase in the measured chromosome loss rate. These correlations were found to be significant relative to 105 Monte Carlo randomizations of the dinucleotide PD-scale applied to the same calculation. A net loss of deformability also tends to increase the loss rate. Binding site position specific, 4 data-point correlations were also

  7. Actin-binding protein (ABP-280) filamin gene (FLN) maps telomeric to the color vision locus (R/GCP) and centromeric to G6PD in Xq28

    Energy Technology Data Exchange (ETDEWEB)

    Gorlin, J.B. (Brigham and Women' s Hospital, Boston, MA (United States) Dana-Farber Cancer Institute, Boston, MA (United States)); Henske, E.; Hartwig, J.H.; Kwiatkowski, D.J. (Brigham and Women' s Hospital, Boston, MA (United States)); Warren, S.T.; Kunst, C.B. (Emory Univ. School of Medicine, Atlanta, GA (United States)); D' Urso, M.; Palmieri, G. (International Institute of Genetics and Biophysics, Naples, (Italy)); Bruns, G. (Children' s Hospital, Boston, MA (United States))

    1993-08-01

    Actin-binding protein-280 (ABP-280) is a dimeric actin filament-crosslinking protein that promotes orthogonal branching of actin filaments and links actin filaments to membrane glycoproteins. The authors have mapped the ABP-280 filamin gene (FLN) to Xq28 by Southern blot analysis of somatic cell hybrid lines, by fluorescence in situ hybridization, and through identification of portions of the FLN gene within cosmids and YACs mapped to Xq28. The FLN gene is found within a 200-kb region centromeric to the G6PD locus and telomeric to DSX52 and the color vision locus. 23 refs., 2 figs.

  8. Using autonomous replication to physically and genetically define human origins of replication

    Energy Technology Data Exchange (ETDEWEB)

    Krysan, P.J.

    1993-01-01

    The author previously developed a system for studying autonomous replication in human cells involving the use of sequences from the Epstein-Barr virus (EBV) genome to provide extrachromosomal plasmids with a nuclear retention function. Using this system, it was demonstrated that large fragments of human genomic DNA could be isolated which replicate autonomously in human cells. In this study the DNA sequences which function as origins of replication in human cells are defined physically and genetically. These experiments demonstrated that replication initiates at multiple locations distributed throughout the plasmid. Another line of experiments addressed the DNA sequence requirements for autonomous replication in human cells. These experiments demonstrated that human DNA fragments have a higher replication activity than bacterial fragments do. It was also found, however, that the bacterial DNA sequence could support efficient replication if enough copies of it were present on the plasmid. These findings suggested that autonomous replication in human cells does not depend on extensive, specific DNA sequences. The autonomous replication system which the author has employed for these experiments utilizes a cis-acting sequence from the EBV origin and the trans-acting EBNA-1 protein to provide plasmids with a nuclear retention function. It was therefore relevant to verify that the autonomous replication of human DNA fragments did not depend on the replication activity associated with the EBV sequences utilized for nuclear retention. To accomplish this goal, the author demonstrated that plasmids carrying the EBV sequences and large fragments of human DNA could support long-term autonomous replication in hamster cells, which are not permissive for EBV replication.

  9. Surface Micro Topography Replication in Injection Moulding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Hansen, Hans Nørgaard; Kjær, Erik Michael

    2005-01-01

    carried out with rough EDM (electrical discharge machining) mould surfaces, a PS grade, and by applying established three-dimensional topography parameters. Significant quantitative relationships between process parameters and topography parameters were established. It further appeared that replication...

  10. LHCb Data Replication During SC3

    CERN Multimedia

    Smith, A

    2006-01-01

    LHCb's participation in LCG's Service Challenge 3 involves testing the bulk data transfer infrastructure developed to allow high bandwidth distribution of data across the grid in accordance with the computing model. To enable reliable bulk replication of data, LHCb's DIRAC system has been integrated with gLite's File Transfer Service middleware component to make use of dedicated network links between LHCb computing centres. DIRAC's Data Management tools previously allowed the replication, registration and deletion of files on the grid. For SC3 supplementary functionality has been added to allow bulk replication of data (using FTS) and efficient mass registration to the LFC replica catalog.Provisional performance results have shown that the system developed can meet the expected data replication rate required by the computing model in 2007. This paper details the experience and results of integration and utilisation of DIRAC with the SC3 transfer machinery.

  11. Energy Proportionality for Disk Storage Using Replication

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinoh; Rotem, Doron

    2010-09-09

    Energy saving has become a crucial concern in datacenters as several reports predict that the anticipated energy costs over a three year period will exceed hardware acquisition. In particular, saving energy for storage is of major importance as storage devices (and cooling them off) may contribute over 25 percent of the total energy consumed in a datacenter. Recent work introduced the concept of energy proportionality and argued that it is a more relevant metric than just energy saving as it takes into account the tradeoff between energy consumption and performance. In this paper, we present a novel approach, called FREP (Fractional Replication for Energy Proportionality), for energy management in large datacenters. FREP includes areplication strategy and basic functions to enable flexible energy management. Specifically, our method provides performance guarantees by adaptively controlling the power states of a group of disks based on observed and predicted workloads. Our experiments, using a set of real and synthetic traces, show that FREP dramatically reduces energy requirements with a minimal response time penalty.

  12. Widening Disparity and its Suppression in a Stochastic Replicator Model

    CERN Document Server

    Sakaguchi, Hidetsugu

    2016-01-01

    Winner-take-all phenomena are observed in various competitive systems. We find similar phenomena in replicator models with randomly fluctuating growth rates. The disparity between winners and losers increases indefinitely, even if all elements are statistically equivalent. A lognormal distribution describes well the nonstationary time evolution. If a nonlinear load corresponding to progressive taxation is introduced, a stationary distribution is obtained and disparity widening is suppressed.

  13. Optimal replicator factor control in wireless sensor networks

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    For TDMA MAC protocols in wireless sensor networks (WSNs), redundancy and retransmission are two important methods to provide high end-to-end transmission reliability. Since reliable transmissions will lead to more energy consumption, there exists an intrinsic tradeoff between transmission reliability and energy efficiency. For each link, we name the number of its reserved time slots in each MAC superframe as a replicator factor. In the following paper, we propose a reliability-lifetime tradeoff framework (...

  14. [Determination of genomic and replicative RNA of hepatitis C virus in patients treated with interferon].

    Science.gov (United States)

    Zeilicoff, R; Ameigeiras, B; Ojeda, E; Isla Rodríguez, R; Grünbaum, S; Genero, M; Cappelletti, C; Tielli, G; Roatta, R; Koch, O

    1995-01-01

    We have investigated the presence of genomic and replicative RNA strands of hepatitis C virus in liver and serum. Eleven patients with proven chronic hepatitis C, received Interferon a2a 4,5 MU, three times a week during six months. RT-PCR was used with sense primer to detect the replicative strand and an antisense primer to identify genomic strand. Before treatment, genomic strands were present in liver and serum of all patients. Replicative strands were present in liver and serum in five and six cases, respectively. Seven out of eleven responded to treatment. In responders, genomic strands were absent in liver of 3 cases (43%) and replicative strands in liver of 4 (57%). In plasma genomic and replicative strands were absent in 5 (71%) and 7 (100%), respectively. In all non responders, genomic strands in liver and plasma remained present. Replicative strands in liver and plasma were present in 100% and 25%, respectively. Knodell score improved in 5 out of 7 responders and remained unchanged in 3 out of 4 non responders. In 2 out of 4 responders with genomic and replicative strands in liver, Knodell score remained unchanged or worse. In all non responders, genomic and replicative strands in liver were present and Knodell score remained unchanged or worse. Genomic and replicative strands in plasma tended to be negative after treatment in responders. Genomic strands in plasma remained present in non responders. Conversely, genomic and replicative strands in liver were present in all non responders. It seems to exist a relationship between genomic and replicative strands in liver and the same or worse Knodell score. After a follow up, it will be possible to determined whether responders who still present viral RNA in liver would be prone to a relapse.

  15. Regulation of the switch from early to late bacteriophage lambda DNA replication.

    Science.gov (United States)

    Baranska, S; Gabig, M; Wegrzyn, A; Konopa, G; Herman-Antosiewicz, A; Hernandez, P; Schvartzman, J B; Helinski, D R; Wegrzyn, G

    2001-03-01

    There are two modes of bacteriophage lambda DNA replication following infection of its host, Escherichia coli. Early after infection, replication occurs according to the theta (theta or circle-to-circle) mode, and is later switched to the sigma (sigma or rolling-circle) mode. It is not known how this switch, occurring at a specific time in the infection cycle, is regulated. Here it is demonstrated that in wild-type cells the replication starting from orilambda proceeds both bidirectionally and unidirectionally, whereas in bacteria devoid of a functional DnaA protein, replication from orilambda is predominantly unidirectional. The regulation of directionality of replication from orilambda is mediated by positive control of lambda p(R) promoter activity by DnaA, since the mode of replication of an artificial lambda replicon bearing the p(tet) promoter instead of p(R) was found to be independent of DnaA function. These findings and results of density-shift experiments suggest that in dnaA mutants infected with lambda, phage DNA replication proceeds predominantly according to the unidirectional theta mechanism and is switched early after infection to the sigma mode. It is proposed that in wild-type E. coli cells infected with lambda, phage DNA replication proceeds according to a bidirectional theta mechanism early after infection due to efficient transcriptional activation of orilambda, stimulated by the host DnaA protein. After a few rounds of this type of replication, the resulting increased copy number of lambda genomic DNA may cause a depletion of free DnaA protein because of its interaction with the multiple DnaA-binding sites in lambda DNA. It is proposed that this may lead to inefficient transcriptional activation of orilambda resulting in unidirectional theta replication followed by sigma type replication.

  16. Low oxygen tension enhances hepatitis C virus replication.

    Science.gov (United States)

    Vassilaki, N; Kalliampakou, K I; Kotta-Loizou, I; Befani, C; Liakos, P; Simos, G; Mentis, A F; Kalliaropoulos, A; Doumba, P P; Smirlis, D; Foka, P; Bauhofer, O; Poenisch, M; Windisch, M P; Lee, M E; Koskinas, J; Bartenschlager, R; Mavromara, P

    2013-03-01

    Low oxygen tension exerts a significant effect on the replication of several DNA and RNA viruses in cultured cells. In vitro propagation of hepatitis C virus (HCV) has thus far been studied under atmospheric oxygen levels despite the fact that the liver tissue microenvironment is hypoxic. In this study, we investigated the efficiency of HCV production in actively dividing or differentiating human hepatoma cells cultured under low or atmospheric oxygen tensions. By using both HCV replicons and infection-based assays, low oxygen was found to enhance HCV RNA replication whereas virus entry and RNA translation were not affected. Hypoxia signaling pathway-focused DNA microarray and real-time quantitative reverse transcription-PCR (qRT-PCR) analyses revealed an upregulation of genes related to hypoxic stress, glycolytic metabolism, cell growth, and proliferation when cells were kept under low (3% [vol/vol]) oxygen tension, likely reflecting cell adaptation to anaerobic conditions. Interestingly, hypoxia-mediated enhancement of HCV replication correlated directly with the increase in anaerobic glycolysis and creatine kinase B (CKB) activity that leads to elevated ATP production. Surprisingly, activation of hypoxia-inducible factor alpha (HIF-α) was not involved in the elevation of HCV replication. Instead, a number of oncogenes known to be associated with glycolysis were upregulated and evidence that these oncogenes contribute to hypoxia-mediated enhancement of HCV replication was obtained. Finally, in liver biopsy specimens of HCV-infected patients, the levels of hypoxia and anaerobic metabolism markers correlated with HCV RNA levels. These results provide new insights into the impact of oxygen tension on the intricate HCV-host cell interaction.

  17. Chikungunya triggers an autophagic process which promotes viral replication

    Directory of Open Access Journals (Sweden)

    Briant Laurence

    2011-09-01

    Full Text Available Abstract Background Chikungunya Virus (ChikV surprised by a massive re-emerging outbreak in Indian Ocean in 2006, reaching Europe in 2007 and exhibited exceptional severe physiopathology in infants and elderly patients. In this context, it is important to analyze the innate immune host responses triggered against ChikV. Autophagy has been shown to be an important component of the innate immune response and is involved in host defense elimination of different pathogens. However, the autophagic process was recently observed to be hijacked by virus for their own replication. Here we provide the first evidence that hallmarks of autophagy are specifically found in HEK.293 infected cells and are involved in ChikV replication. Methods To test the capacity of ChikV to mobilize the autophagic machinery, we performed fluorescence microscopy experiments on HEK.GFP.LC3 stable cells, and followed the LC3 distribution during the time course of ChikV infection. To confirm this, we performed electron microscopy on HEK.293 infected cells. To test the effect of ChikV-induced-autophagy on viral replication, we blocked the autophagic process, either by pharmacological (3-MA or genetic inhibition (siRNA against the transcript of Beclin 1, an autophagic protein, and analyzed the percentage of infected cells and the viral RNA load released in the supernatant. Moreover, the effect of induction of autophagy by Rapamycin on viral replication was tested. Results The increasing number of GFP-LC3 positive cells with a punctate staining together with the enhanced number of GFP-LC3 dots per cell showed that ChikV triggered an autophagic process in HEK.293 infected cells. Those results were confirmed by electron microscopy analysis since numerous membrane-bound vacuoles characteristic of autophagosomes were observed in infected cells. Moreover, we found that inhibition of autophagy, either by biochemical reagent and RNA interference, dramatically decreases ChikV replication

  18. Dynamics of Escherichia coli Chromosome Segregation during Multifork Replication

    DEFF Research Database (Denmark)

    Nielsen, Henrik Jørck; Youngren, Brenda; Hansen, Flemming G.

    2007-01-01

    Slowly growing Escherichia coli cells have a simple cell cycle, with replication and progressive segregation of the chromosome completed before cell division. In rapidly growing cells, initiation of replication occurs before the previous replication rounds are complete. At cell division...

  19. Using Model Replication to Improve the Reliability of Agent-Based Models

    Science.gov (United States)

    Zhong, Wei; Kim, Yushim

    The basic presupposition of model replication activities for a computational model such as an agent-based model (ABM) is that, as a robust and reliable tool, it must be replicable in other computing settings. This assumption has recently gained attention in the community of artificial society and simulation due to the challenges of model verification and validation. Illustrating the replication of an ABM representing fraudulent behavior in a public service delivery system originally developed in the Java-based MASON toolkit for NetLogo by a different author, this paper exemplifies how model replication exercises provide unique opportunities for model verification and validation process. At the same time, it helps accumulate best practices and patterns of model replication and contributes to the agenda of developing a standard methodological protocol for agent-based social simulation.

  20. Mycobacterium tuberculosis replicates within necrotic human macrophages

    Science.gov (United States)

    Lerner, Thomas R.; Repnik, Urska; Herbst, Susanne; Collinson, Lucy M.; Griffiths, Gareth

    2017-01-01

    Mycobacterium tuberculosis modulation of macrophage cell death is a well-documented phenomenon, but its role during bacterial replication is less characterized. In this study, we investigate the impact of plasma membrane (PM) integrity on bacterial replication in different functional populations of human primary macrophages. We discovered that IFN-γ enhanced bacterial replication in macrophage colony-stimulating factor–differentiated macrophages more than in granulocyte–macrophage colony-stimulating factor–differentiated macrophages. We show that permissiveness in the different populations of macrophages to bacterial growth is the result of a differential ability to preserve PM integrity. By combining live-cell imaging, correlative light electron microscopy, and single-cell analysis, we found that after infection, a population of macrophages became necrotic, providing a niche for M. tuberculosis replication before escaping into the extracellular milieu. Thus, in addition to bacterial dissemination, necrotic cells provide first a niche for bacterial replication. Our results are relevant to understanding the environment of M. tuberculosis replication in the host. PMID:28242744

  1. Commercial Building Partnerships Replication and Diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Antonopoulos, Chrissi A.; Dillon, Heather E.; Baechler, Michael C.

    2013-09-16

    This study presents findings from survey and interview data investigating replication efforts of Commercial Building Partnership (CBP) partners that worked directly with the Pacific Northwest National Laboratory (PNNL). PNNL partnered directly with 12 organizations on new and retrofit construction projects, which represented approximately 28 percent of the entire U.S. Department of Energy (DOE) CBP program. Through a feedback survey mechanism, along with personal interviews, PNNL gathered quantitative and qualitative data relating to replication efforts by each organization. These data were analyzed to provide insight into two primary research areas: 1) CBP partners’ replication efforts of technologies and approaches used in the CBP project to the rest of the organization’s building portfolio (including replication verification), and, 2) the market potential for technology diffusion into the total U.S. commercial building stock, as a direct result of the CBP program. The first area of this research focused specifically on replication efforts underway or planned by each CBP program participant. Factors that impact replication include motivation, organizational structure and objectives firms have for implementation of energy efficient technologies. Comparing these factors between different CBP partners revealed patterns in motivation for constructing energy efficient buildings, along with better insight into market trends for green building practices. The second area of this research develops a diffusion of innovations model to analyze potential broad market impacts of the CBP program on the commercial building industry in the United States.

  2. 植物着丝粒区串联重复序列的研究进展%Research Progress of Tandem Repetitive Sequence in the Centromere of Plant

    Institute of Scientific and Technical Information of China (English)

    郝薇薇; 周岩

    2013-01-01

      着丝粒是细胞染色体的重要结构组成,控制姊妹染色单体的结合、动粒的组装和纺锤丝的附着,确保真核生物细胞在有丝分裂和减数分裂过程中染色体的正常分离及遗传信息的稳定传递。植物着丝粒DNA序列主要由反转录转座子和串联重复序列构成。串联重复序列在着丝粒功能实现和基因组进化过程中起重要作用。随着测序技术的成熟,近年来对串联重复序列的研究取得了很大的进展。综述了植物串联重复序列结构、分析方法及在进化中的作用,以期为相关研究提供参考。%Centromeres are the important domains of chromosomes that are responsible for sister chromatid cohesion, kinetochore assembly and spindle attachment, and are essential for proper chromosome segregation during mitosis and meiosis. Satellite DNA and retrotransposons are the most abundant DNA elements found in plant centromere regions. Centromeric tandem repeat play an important role in the centromere function and genome evolution. The study of centromeric tandem repeats got great progress for the development of sequencing technology. This paper introduces the development of centromeric tandem repeat of plants.

  3. The Study of Detecting Replicate Documents Using MD5 Hash Function

    Directory of Open Access Journals (Sweden)

    Pushpendra Singh Tomar

    2011-12-01

    Full Text Available A great deal of the Web is replicate or near- replicate content. Documents may be served in different formats: HTML, PDF, and Text for different audiences. Documents may get mirrored to avoid delays or to provide fault tolerance. Algorithms for detecting replicate documents are critical in applications where data is obtained from multiple sources. The removal of replicate documents is necessary, not only to reduce runtime, but also to improve search accuracy. Today, search engine crawlers are retrieving billions of unique URL’s, of which hundreds of millions are replicates of some form. Thus, quickly identifying replicate detection expedites indexing and searching. One vendor’s analysis of 1.2 billion URL’s resulted in 400 million exact replicates found with a MD5 hash. Reducing the collection sizes by tens of percentage point’s results in great savings in indexing time and a reduction in the amount of hardware required to support the system. Last and probably more significant, users benefit by eliminating replicate results. By efficiently presenting only unique documents, user satisfaction is likely to increase.

  4. The Study of Detecting Replicate Documents Using MD5 Hash Functio

    Directory of Open Access Journals (Sweden)

    Mr. Pushpendra Singh Tomar

    2011-09-01

    Full Text Available A great deal of the Web is replicate or near- replicate content. Documents may be served in different formats: HTML, PDF, and Text for different audiences. Documents may get mirrored to avoid delays or to provide fault tolerance. Algorithms for detecting replicate documents are critical in applications where data is obtained from multiple sources. The removal of replicate documents is necessary, not only to reduce runtime, but also to improve search accuracy. Today, search engine crawlers are retrieving billions of unique URL’s, of which hundreds of millions are replicates of some form. Thus, quickly identifying replicate detection expedites indexing and searching. One vendor’s analysis of 1.2 billion URL’s resulted in 400 million exact replicates found with a MD5 hash. Reducing the collection sizes by tens of percentage point’s results in great savings in indexing time and a reduction in the amount of hardware required to support the system. Last and probably more significant, users benefit by eliminating replicate results. By efficiently presenting only unique documents, user satisfaction is likely to increase.

  5. Managing Single-Stranded DNA during Replication Stress in Fission Yeast

    Directory of Open Access Journals (Sweden)

    Sarah A. Sabatinos

    2015-09-01

    Full Text Available Replication fork stalling generates a variety of responses, most of which cause an increase in single-stranded DNA. ssDNA is a primary signal of replication distress that activates cellular checkpoints. It is also a potential source of genome instability and a substrate for mutation and recombination. Therefore, managing ssDNA levels is crucial to chromosome integrity. Limited ssDNA accumulation occurs in wild-type cells under stress. In contrast, cells lacking the replication checkpoint cannot arrest forks properly and accumulate large amounts of ssDNA. This likely occurs when the replication fork polymerase and helicase units are uncoupled. Some cells with mutations in the replication helicase (mcm-ts mimic checkpoint-deficient cells, and accumulate extensive areas of ssDNA to trigger the G2-checkpoint. Another category of helicase mutant (mcm4-degron causes fork stalling in early S-phase due to immediate loss of helicase function. Intriguingly, cells realize that ssDNA is present, but fail to detect that they accumulate ssDNA, and continue to divide. Thus, the cellular response to replication stalling depends on checkpoint activity and the time that replication stress occurs in S-phase. In this review we describe the signs, signals, and symptoms of replication arrest from an ssDNA perspective. We explore the possible mechanisms for these effects. We also advise the need for caution when detecting and interpreting data related to the accumulation of ssDNA.

  6. Replication program of active and inactive multigene families in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, K.S.; Dhar, V.; Brown, E.H.; Iqbal, M.A.; Stuart, S.; Didamo, V.T.; Schildkraut, C.L.

    1988-05-01

    In a comprehensive study, the temporal replication of tissue-specific genes and flanking sequences was compared in nine cells lines exhibiting different tissue-specific functions. Some of the rules the authors determined for the replication of these tissue specific genes include the following. (i) Actively transcribed genes usually replicate during the first quarter of the S phase. (ii) Some immunoglobulin genes replicate during the first half of S phase even when no transcriptional activity is detected but appear to replicate even earlier in cell lines where they are transcribed. (iii) Nontranscribed genes can replicate during any interval of S phase. (iv) Multigene families arranged in clusters of 250 kilobases or less define a temporal compartment comprising approximately one-quarter of S phase. While these rules, and others that are discussed, apply to the tissue-specific genes studied here, all tissue-specific genes may not follow this pattern. In addition, housekeeping genes did not follow some of these rules. These results provide the first molecular evidence that the coordinate timing of replication of contiguous sequences within a multigene family is a general property of the mammalian genome. The relationship between replication very early during S phase and the transcriptional activity within a chromosomal domain is discussed.

  7. Mammalian RAD52 Functions in Break-Induced Replication Repair of Collapsed DNA Replication Forks

    DEFF Research Database (Denmark)

    Sotiriou, Sotirios K; Kamileri, Irene; Lugli, Natalia;

    2016-01-01

    Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose...... RAD52 facilitates repair of collapsed DNA replication forks in cancer cells.......RNA or knockout of the gene by CRISPR/Cas9 compromised restart of collapsed forks and led to DNA damage in cells experiencing DRS. Furthermore, in cancer-prone, heterozygous APC mutant mice, homozygous deletion of the Rad52 gene suppressed tumor growth and prolonged lifespan. We therefore propose that mammalian...

  8. Transcriptional Response of Human Neurospheres to Helper-Dependent CAV-2 Vectors Involves the Modulation of DNA Damage Response, Microtubule and Centromere Gene Groups.

    Directory of Open Access Journals (Sweden)

    Stefania Piersanti

    Full Text Available Brain gene transfer using viral vectors will likely become a therapeutic option for several disorders. Helper-dependent (HD canine adenovirus type 2 vectors (CAV-2 are well suited for this goal. These vectors are poorly immunogenic, efficiently transduce neurons, are retrogradely transported to afferent structures in the brain and lead to long-term transgene expression. CAV-2 vectors are being exploited to unravel behavior, cognition, neural networks, axonal transport and therapy for orphan diseases. With the goal of better understanding and characterizing HD-CAV-2 for brain therapy, we analyzed the transcriptomic modulation induced by HD-CAV-2 in human differentiated neurospheres derived from midbrain progenitors. This 3D model system mimics several aspects of the dynamic nature of human brain. We found that differentiated neurospheres are readily transduced by HD-CAV-2 and that transduction generates two main transcriptional responses: a DNA damage response and alteration of centromeric and microtubule probes. Future investigations on the biochemistry of processes highlighted by probe modulations will help defining the implication of HD-CAV-2 and CAR receptor binding in enchaining these functional pathways. We suggest here that the modulation of DNA damage genes is related to viral DNA, while the alteration of centromeric and microtubule probes is possibly enchained by the interaction of the HD-CAV-2 fibre with CAR.

  9. Role of Ctf3 and COMA subcomplexes in meiosis: Implication in maintaining Cse4 at the centromere and numeric spindle poles.

    Science.gov (United States)

    Agarwal, Meenakshi; Mehta, Gunjan; Ghosh, Santanu K

    2015-03-01

    During mitosis and meiosis, kinetochore, a conserved multi-protein complex, connects microtubule with the centromere and promotes segregation of the chromosomes. In budding yeast, central kinetochore complex named Ctf19 has been implicated in various functions and is believed to be made up of three biochemically distinct subcomplexes: COMA, Ctf3 and Iml3-Chl4. In this study, we aimed to identify whether Ctf3 and COMA subcomplexes have any unshared function at the kinetochore. Our data suggests that both these subcomplexes may work as a single functional unit without any unique functions, which we tested. Analysis of severity of the defects in the mutants suggests that COMA is epistatic to Ctf3 subcomplex. Interestingly, we noticed that these subcomplexes affect the organization of mitotic and meiotic kinetochores with subtle differences and they promote maintenance of Cse4 at the centromeres specifically during meiosis which is similar to the role of Mis6 (Ctf3 homolog) in fission yeast during mitosis. Interestingly, analysis of ctf3Δ and ctf19Δ mutants revealed a novel role of Ctf19 complex in regulation of SPB cohesion and duplication in meiosis.

  10. A Lightweight Distributed Solution to Content Replication in Mobile Networks

    CERN Document Server

    La, Chi-Anh; Casetti, Claudio; Chiasserini, Carla-Fabiana; Fiore, Marco

    2009-01-01

    Performance and reliability of content access in mobile networks is conditioned by the number and location of content replicas deployed at the network nodes. Facility location theory has been the traditional, centralized approach to study content replication: computing the number and placement of replicas in a network can be cast as an uncapacitated facility location problem. The endeavour of this work is to design a distributed, lightweight solution to the above joint optimization problem, while taking into account the network dynamics. In particular, we devise a mechanism that lets nodes share the burden of storing and providing content, so as to achieve load balancing, and decide whether to replicate or drop the information so as to adapt to a dynamic content demand and time-varying topology. We evaluate our mechanism through simulation, by exploring a wide range of settings and studying realistic content access mechanisms that go beyond the traditional assumptionmatching demand points to their closest con...

  11. Dynamics of Escherichia coli chromosome segregation during multifork replication.

    Science.gov (United States)

    Nielsen, Henrik J; Youngren, Brenda; Hansen, Flemming G; Austin, Stuart

    2007-12-01

    Slowly growing Escherichia coli cells have a simple cell cycle, with replication and progressive segregation of the chromosome completed before cell division. In rapidly growing cells, initiation of replication occurs before the previous replication rounds are complete. At cell division, the chromosomes contain multiple replication forks and must be segregated while this complex pattern of replication is still ongoing. Here, we show that replication and segregation continue in step, starting at the origin and progressing to the replication terminus. Thus, early-replicated markers on the multiple-branched chromosomes continue to separate soon after replication to form separate protonucleoids, even though they are not segregated into different daughter cells until later generations. The segregation pattern follows the pattern of chromosome replication and does not follow the cell division cycle. No extensive cohesion of sister DNA regions was seen at any growth rate. We conclude that segregation is driven by the progression of the replication forks.

  12. COPI is required for enterovirus 71 replication.

    Directory of Open Access Journals (Sweden)

    Jianmin Wang

    Full Text Available Enterovirus 71 (EV71, a member of the Picornaviridae family, is found in Asian countries where it causes a wide range of human diseases. No effective therapy is available for the treatment of these infections. Picornaviruses undergo RNA replication in association with membranes of infected cells. COPI and COPII have been shown to be involved in the formation of picornavirus-induced vesicles. Replication of several picornaviruses, including poliovirus and Echovirus 11 (EV11, is dependent on COPI or COPII. Here, we report that COPI, but not COPII, is required for EV71 replication. Replication of EV71 was inhibited by brefeldin A and golgicide A, inhibitors of COPI activity. Furthermore, we found EV71 2C protein interacted with COPI subunits by co-immunoprecipitation and GST pull-down assay, indicating that COPI coatomer might be directed to the viral replication complex through viral 2C protein. Additionally, because the pathway is conserved among different species of enteroviruses, it may represent a novel target for antiviral therapies.

  13. Spacetime replication of continuous variable quantum information

    Science.gov (United States)

    Hayden, Patrick; Nezami, Sepehr; Salton, Grant; Sanders, Barry C.

    2016-08-01

    The theory of relativity requires that no information travel faster than light, whereas the unitarity of quantum mechanics ensures that quantum information cannot be cloned. These conditions provide the basic constraints that appear in information replication tasks, which formalize aspects of the behavior of information in relativistic quantum mechanics. In this article, we provide continuous variable (CV) strategies for spacetime quantum information replication that are directly amenable to optical or mechanical implementation. We use a new class of homologically constructed CV quantum error correcting codes to provide efficient solutions for the general case of information replication. As compared to schemes encoding qubits, our CV solution requires half as many shares per encoded system. We also provide an optimized five-mode strategy for replicating quantum information in a particular configuration of four spacetime regions designed not to be reducible to previously performed experiments. For this optimized strategy, we provide detailed encoding and decoding procedures using standard optical apparatus and calculate the recovery fidelity when finite squeezing is used. As such we provide a scheme for experimentally realizing quantum information replication using quantum optics.

  14. A Self-Replicating Ligase Ribozyme

    Science.gov (United States)

    Paul, Natasha; Joyce, Gerald F.

    2002-01-01

    A self-replicating molecule directs the covalent assembly of component molecules to form a product that is of identical composition to the parent. When the newly formed product also is able to direct the assembly of product molecules, the self-replicating system can be termed autocatalytic. A self-replicating system was developed based on a ribozyme that catalyzes the assembly of additional copies of Itself through an RNA-catalyzed RNA ligation reaction. The R3C ligase ribozyme was redesigned so that it would ligate two substrates to generate an exact copy of itself, which then would behave in a similar manner. This self-replicating system depends on the catalytic nature of the RNA for the generation of copies. A linear dependence was observed between the initial rate of formation of new copies and the starting concentration of ribozyme, consistent with exponential growth. The autocatalytic rate constant was 0.011 per min, whereas the initial rate of reaction in the absence of pre-existing ribozyme was only 3.3 x 10(exp -11) M per min. Exponential growth was limited, however, because newly formed ribozyme molecules had greater difficulty forming a productive complex with the two substrates. Further optimization of the system may lead to the sustained exponential growth of ribozymes that undergo self-replication.

  15. Extremal dynamics in random replicator ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Kärenlampi, Petri P., E-mail: petri.karenlampi@uef.fi

    2015-10-02

    The seminal numerical experiment by Bak and Sneppen (BS) is repeated, along with computations with replicator models, including a greater amount of features. Both types of models do self-organize, and do obey power-law scaling for the size distribution of activity cycles. However species extinction within the replicator models interferes with the BS self-organized critical (SOC) activity. Speciation–extinction dynamics ruins any stationary state which might contain a steady size distribution of activity cycles. The BS-type activity appears as a dissimilar phenomenon in comparison to speciation–extinction dynamics in the replicator system. No criticality is found from the speciation–extinction dynamics. Neither are speciations and extinctions in real biological macroevolution known to contain any diverging distributions, or self-organization towards any critical state. Consequently, biological macroevolution probably is not a self-organized critical phenomenon. - Highlights: • Extremal Dynamics organizes random replicator ecosystems to two phases in fitness space. • Replicator systems show power-law scaling of activity. • Species extinction interferes with Bak–Sneppen type mutation activity. • Speciation–extinction dynamics does not show any critical phase transition. • Biological macroevolution probably is not a self-organized critical phenomenon.

  16. Ribosome biogenesis in replicating cells: Integration of experiment and theory.

    Science.gov (United States)

    Earnest, Tyler M; Cole, John A; Peterson, Joseph R; Hallock, Michael J; Kuhlman, Thomas E; Luthey-Schulten, Zaida

    2016-10-01

    Ribosomes-the primary macromolecular machines responsible for translating the genetic code into proteins-are complexes of precisely folded RNA and proteins. The ways in which their production and assembly are managed by the living cell is of deep biological importance. Here we extend a recent spatially resolved whole-cell model of ribosome biogenesis in a fixed volume [Earnest et al., Biophys J 2015, 109, 1117-1135] to include the effects of growth, DNA replication, and cell division. All biological processes are described in terms of reaction-diffusion master equations and solved stochastically using the Lattice Microbes simulation software. In order to determine the replication parameters, we construct and analyze a series of Escherichia coli strains with fluorescently labeled genes distributed evenly throughout their chromosomes. By measuring these cells' lengths and number of gene copies at the single-cell level, we could fit a statistical model of the initiation and duration of chromosome replication. We found that for our slow-growing (120 min doubling time) E. coli cells, replication was initiated 42 min into the cell cycle and completed after an additional 42 min. While simulations of the biogenesis model produce the correct ribosome and mRNA counts over the cell cycle, the kinetic parameters for transcription and degradation are lower than anticipated from a recent analytical time dependent model of in vivo mRNA production. Describing expression in terms of a simple chemical master equation, we show that the discrepancies are due to the lack of nonribosomal genes in the extended biogenesis model which effects the competition of mRNA for ribosome binding, and suggest corrections to parameters to be used in the whole-cell model when modeling expression of the entire transcriptome. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 735-751, 2016.

  17. A genetic screen for replication initiation defective (rid mutants in Schizosaccharomyces pombe

    Directory of Open Access Journals (Sweden)

    Locovei Alexandra M

    2010-08-01

    Full Text Available Abstract In fission yeast the intra-S phase and DNA damage checkpoints are activated in response to inhibition of DNA replication or DNA damage, respectively. The intra-S phase checkpoint responds to stalled replication forks leading to the activation of the Cds1 kinase that both delays cell cycle progression and stabilizes DNA replication forks. The DNA damage checkpoint, that operates during the G2 phase of the cell cycle delays mitotic progression through activation of the checkpoint kinase, Chk1. Delay of the cell cycle is believed to be essential to allow time for either replication restart (in S phase or DNA damage repair (in G2. Previously, our laboratory showed that fission yeast cells deleted for the N-terminal half of DNA polymerase ε (Cdc20 are delayed in S phase, but surprisingly require Chk1 rather than Cds1 to maintain cell viability. Several additional DNA replication mutants were then tested for their dependency on Chk1 or Cds1 when grown under semi-permissive temperatures. We discovered that mutants defective in DNA replication initiation are sensitive only to loss of Chk1, whilst mutations that inhibit DNA replication elongation are sensitive to loss of both Cds1 and Chk1. To confirm that the Chk1-sensitive, Cds1-insensitive phenotype (rid phenotype is specific to mutants defective in DNA replication initiation, we completed a genetic screen for cell cycle mutants that require Chk1, but not Cds1 to maintain cell viability when grown at semi-permissive temperatures. Our screen identified two mutants, rid1-1 and rid2-1, that are defective in Orc1 and Mcm4, respectively. Both mutants show defects in DNA replication initiation consistent with our hypothesis that the rid phenotype is replication initiation specific. In the case of Mcm4, the mutation has been mapped to a highly conserved region of the protein that appears to be required for DNA replication initiation, but not elongation. Therefore, we conclude that the cellular

  18. Replication and characterization of the compound eye of a fruit fly for imaging purpose

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hefu [State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888, Dongnanhu Road, Changchun, Jilin (China); University of Chinese Academy of Sciences, Beijing 10039 (China); Gong, Xianwei; Ni, Qiliang; Zhao, Jingli; Zhang, Hongsheng; Wang, Taisheng [State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888, Dongnanhu Road, Changchun, Jilin (China); Yu, Weixing, E-mail: yuwx@szu.edu.cn [Insititue of Micro and Nano Optics, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China)

    2014-10-06

    In this work, we report the replication and characterization of the compound eye of a fruit fly for imaging purpose. In the replication, soft lithography method was employed to replicate the compound eye of a fruit fly into a UV-curable polymer. The method was demonstrated to be effective and the compound eye is replicated into the polymer (NOA78) where each ommatidium has a diameter of about 30 μm and a sag height of about 7 μm. To characterize its optical property, the point spread function of the compound eye was tested and a NA of 0.386 has been obtained for the replicated polymeric ommatidium. Comparing with the NA of a real fruit fly ommatidium which was measured to be about 0.212, the replicated polymeric ommatidium has a much larger NA due to the refractive index of NOA78 is much higher than that of the material used to form the real fruit fly ommatidium. Furthermore, the replicated compound eye was used to image a photomask patterned with grating structures to test its imaging property. It is shown that the grating with a line width of 20 μm can be clearly imaged. The image of the grating formed by the replicated compound eye was shrunk by about 10 times and therefore a line width of about 2.2 μm in the image plane has been obtained, which is close to the diffraction limited resolution calculated through the measured NA. In summary, the replication method demonstrated is effective and the replicated compound eye has the great potential in optical imaging.

  19. Replication and characterization of the compound eye of a fruit fly for imaging purpose

    Science.gov (United States)

    Li, Hefu; Gong, Xianwei; Ni, Qiliang; Zhao, Jingli; Zhang, Hongsheng; Wang, Taisheng; Yu, Weixing

    2014-10-01

    In this work, we report the replication and characterization of the compound eye of a fruit fly for imaging purpose. In the replication, soft lithography method was employed to replicate the compound eye of a fruit fly into a UV-curable polymer. The method was demonstrated to be effective and the compound eye is replicated into the polymer (NOA78) where each ommatidium has a diameter of about 30 μm and a sag height of about 7 μm. To characterize its optical property, the point spread function of the compound eye was tested and a NA of 0.386 has been obtained for the replicated polymeric ommatidium. Comparing with the NA of a real fruit fly ommatidium which was measured to be about 0.212, the replicated polymeric ommatidium has a much larger NA due to the refractive index of NOA78 is much higher than that of the material used to form the real fruit fly ommatidium. Furthermore, the replicated compound eye was used to image a photomask patterned with grating structures to test its imaging property. It is shown that the grating with a line width of 20 μm can be clearly imaged. The image of the grating formed by the replicated compound eye was shrunk by about 10 times and therefore a line width of about 2.2 μm in the image plane has been obtained, which is close to the diffraction limited resolution calculated through the measured NA. In summary, the replication method demonstrated is effective and the replicated compound eye has the great potential in optical imaging.

  20. Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure.

    Directory of Open Access Journals (Sweden)

    Nicolas M Berbenetz

    2010-09-01

    Full Text Available Eukaryotic DNA replication origins differ both in their efficiency and in the characteristic time during S phase when they become active. The biological basis for these differences remains unknown, but they could be a consequence of chromatin structure. The availability of genome-wide maps of nucleosome positions has led to an explosion of information about how nucleosomes are assembled at transcription start sites, but no similar maps exist for DNA replication origins. Here we combine high-resolution genome-wide nucleosome maps with comprehensive annotations of DNA replication origins to identify patterns of nucleosome occupancy at eukaryotic replication origins. On average, replication origins contain a nucleosome depleted region centered next to the ACS element, flanked on both sides by arrays of well-positioned nucleosomes. Our analysis identified DNA sequence properties that correlate with nucleosome occupancy at replication origins genome-wide and that are correlated with the nucleosome-depleted region. Clustering analysis of all annotated replication origins revealed a surprising diversity of nucleosome occupancy patterns. We provide evidence that the origin recognition complex, which binds to the origin, acts as a barrier element to position and phase nucleosomes on both sides of the origin. Finally, analysis of chromatin reconstituted in vitro reveals that origins are inherently nucleosome depleted. Together our data provide a comprehensive, genome-wide view of chromatin structure at replication origins and suggest a model of nucleosome positioning at replication origins in which the underlying sequence occludes nucleosomes to permit binding of the origin recognition complex, which then (likely in concert with nucleosome modifiers and remodelers positions nucleosomes adjacent to the origin to promote replication origin function.

  1. Chromatin Structure and Replication Origins: Determinants Of Chromosome Replication And Nuclear Organization

    OpenAIRE

    Smith, Owen K.; Aladjem, Mirit I.

    2014-01-01

    The DNA replication program is, in part, determined by the epigenetic landscape that governs local chromosome architecture and directs chromosome duplication. Replication must coordinate with other biochemical processes occurring concomitantly on chromatin, such as transcription and remodeling, to insure accurate duplication of both genetic and epigenetic features and to preserve genomic stability. The importance of genome architecture and chromatin looping in coordinating cellular processes ...

  2. Improvement of replication fidelity in injection moulding of nano structures using an induction heating system

    DEFF Research Database (Denmark)

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano

    2014-01-01

    In today’s industry, applications involving surface pattering with sub-μm scale structures have shown a high interest. The replication of these structures by injection molding leads to special requirements for the mold in order to ensure proper replication and an acceptable cycle time. A tool ins...... quantitatively characterized by atomic force microscopy comparing the measurement in the nickel insert with the corresponding polymer nano-features. The experimental results show that the use of the induction heating system is an efficient way to improve the pattern replication....

  3. GFLV replication in electroporated grapevine protoplasts.

    Science.gov (United States)

    Valat; Toutain; Courtois; Gaire; Decout; Pinck; Mauro; Burrus

    2000-06-29

    Grapevine fanleaf virus (GFLV), responsible for the economically important court-noué disease, is exclusively transmitted to its natural host in the vineyards through Xiphinema nematodes. We have developed direct inoculation of GFLV into grapevine through protoplast electroporation. Protoplasts were isolated from mesophyll of in vitro-grown plants and from embryogenic cell suspensions. Permeation conditions were determined by monitoring calcein uptake. Low salt poration medium was selected. Electrical conditions leading to strong transient gene expression were also tested for GFLV inoculation (isolate F13). GFLV replication was detected with either virus particles (2 µg) or viral RNA (10 ng) in both protoplast populations, as shown by anti-P38 Western blotting. Direct inoculation and replication were also observed with Arabis mosaic virus (ArMV), a closely related nepovirus, as well as with another GFLV isolate. These results will be valuable in grapevine biotechnology, for GFLV replication studies, transgenic plant screening for GFLV resistance, and biorisk evaluation.

  4. Replicating Cardiovascular Condition-Birth Month Associations

    Science.gov (United States)

    Li, Li; Boland, Mary Regina; Miotto, Riccardo; Tatonetti, Nicholas P.; Dudley, Joel T.

    2016-01-01

    Independent replication is vital for study findings drawn from Electronic Health Records (EHR). This replication study evaluates the relationship between seasonal effects at birth and lifetime cardiovascular condition risk. We performed a Season-wide Association Study on 1,169,599 patients from Mount Sinai Hospital (MSH) to compute phenome-wide associations between birth month and CVD. We then evaluated if seasonal patterns found at MSH matched those reported at Columbia University Medical Center. Coronary arteriosclerosis, essential hypertension, angina, and pre-infarction syndrome passed phenome-wide significance and their seasonal patterns matched those previously reported. Atrial fibrillation, cardiomyopathy, and chronic myocardial ischemia had consistent patterns but were not phenome-wide significant. We confirm that CVD risk peaks for those born in the late winter/early spring among the evaluated patient populations. The replication findings bolster evidence for a seasonal birth month effect in CVD. Further study is required to identify the environmental and developmental mechanisms. PMID:27624541

  5. Synchronization of DNA array replication kinetics

    Science.gov (United States)

    Manturov, Alexey O.; Grigoryev, Anton V.

    2016-04-01

    In the present work we discuss the features of the DNA replication kinetics at the case of multiplicity of simultaneously elongated DNA fragments. The interaction between replicated DNA fragments is carried out by free protons that appears at the every nucleotide attachment at the free end of elongated DNA fragment. So there is feedback between free protons concentration and DNA-polymerase activity that appears as elongation rate dependence. We develop the numerical model based on a cellular automaton, which can simulate the elongation stage (growth of DNA strands) for DNA elongation process with conditions pointed above and we study the possibility of the DNA polymerases movement synchronization. The results obtained numerically can be useful for DNA polymerase movement detection and visualization of the elongation process in the case of massive DNA replication, eg, under PCR condition or for DNA "sequencing by synthesis" sequencing devices evaluation.

  6. Evolution of Database Replication Technologies for WLCG

    CERN Document Server

    Baranowski, Zbigniew; Blaszczyk, Marcin; Dimitrov, Gancho; Canali, Luca

    2015-01-01

    In this article we summarize several years of experience on database replication technologies used at WLCG and we provide a short review of the available Oracle technologies and their key characteristics. One of the notable changes and improvement in this area in recent past has been the introduction of Oracle GoldenGate as a replacement of Oracle Streams. We report in this article on the preparation and later upgrades for remote replication done in collaboration with ATLAS and Tier 1 database administrators, including the experience from running Oracle GoldenGate in production. Moreover, we report on another key technology in this area: Oracle Active Data Guard which has been adopted in several of the mission critical use cases for database replication between online and offline databases for the LHC experiments.

  7. Suppression of Adenovirus Replication by Cardiotonic Steroids.

    Science.gov (United States)

    Grosso, Filomena; Stoilov, Peter; Lingwood, Clifford; Brown, Martha; Cochrane, Alan

    2017-02-01

    The dependence of adenovirus on the host pre-RNA splicing machinery for expression of its complete genome potentially makes it vulnerable to modulators of RNA splicing, such as digoxin and digitoxin. Both drugs reduced the yields of four human adenoviruses (HAdV-A31, -B35, and -C5 and a species D conjunctivitis isolate) by at least 2 to 3 logs by affecting one or more steps needed for genome replication. Immediate early E1A protein levels are unaffected by the drugs, but synthesis of the delayed protein E4orf6 and the major late capsid protein hexon is compromised. Quantitative reverse transcription-PCR (qRT-PCR) analyses revealed that both drugs altered E1A RNA splicing (favoring the production of 13S over 12S RNA) early in infection and partially blocked the transition from 12S and 13S to 9S RNA at late stages of virus replication. Expression of multiple late viral protein mRNAs was lost in the presence of either drug, consistent with the observed block in viral DNA replication. The antiviral effect was dependent on the continued presence of the drug and was rapidly reversible. RIDK34, a derivative of convallotoxin, although having more potent antiviral activity, did not show an improved selectivity index. All three drugs reduced metabolic activity to some degree without evidence of cell death. By blocking adenovirus replication at one or more steps beyond the onset of E1A expression and prior to genome replication, digoxin and digitoxin show potential as antiviral agents for treatment of serious adenovirus infections. Furthermore, understanding the mechanism(s) by which digoxin and digitoxin inhibit adenovirus replication will guide the development of novel antiviral therapies.

  8. Replication, recombination, and repair: going for the gold.

    Science.gov (United States)

    Klein, Hannah L; Kreuzer, Kenneth N

    2002-03-01

    DNA recombination is now appreciated to be integral to DNA replication and cell survival. Recombination allows replication to successfully maneuver through the roadblocks of damaged or collapsed replication forks. The signals and controls that permit cells to transition between replication and recombination modes are now being identified.

  9. Direct visualization of replication dynamics in early zebrafish embryos.

    Science.gov (United States)

    Kuriya, Kenji; Higashiyama, Eriko; Avşar-Ban, Eriko; Okochi, Nanami; Hattori, Kaede; Ogata, Shin; Takebayashi, Shin-Ichiro; Ogata, Masato; Tamaru, Yutaka; Okumura, Katsuzumi

    2016-05-01

    We analyzed DNA replication in early zebrafish embryos. The replicating DNA of whole embryos was labeled with the thymidine analog 5-ethynyl-2'-deoxyuridine (EdU), and spatial regulation of replication sites was visualized in single embryo-derived cells. The results unveiled uncharacterized replication dynamics during zebrafish early embryogenesis.

  10. Involvement of Autophagy in Coronavirus Replication

    Directory of Open Access Journals (Sweden)

    Paul Britton

    2012-11-01

    Full Text Available Coronaviruses are single stranded, positive sense RNA viruses, which induce the rearrangement of cellular membranes upon infection of a host cell. This provides the virus with a platform for the assembly of viral replication complexes, improving efficiency of RNA synthesis. The membranes observed in coronavirus infected cells include double membrane vesicles. By nature of their double membrane, these vesicles resemble cellular autophagosomes, generated during the cellular autophagy pathway. In addition, coronavirus infection has been demonstrated to induce autophagy. Here we review current knowledge of coronavirus induced membrane rearrangements and the involvement of autophagy or autophagy protein microtubule associated protein 1B light chain 3 (LC3 in coronavirus replication.

  11. Chromatin challenges during DNA replication and repair

    DEFF Research Database (Denmark)

    Groth, Anja; Rocha, Walter; Verreault, Alain;

    2007-01-01

    Inheritance and maintenance of the DNA sequence and its organization into chromatin are central for eukaryotic life. To orchestrate DNA-replication and -repair processes in the context of chromatin is a challenge, both in terms of accessibility and maintenance of chromatin organization. To meet...... the challenge of maintenance, cells have evolved efficient nucleosome-assembly pathways and chromatin-maturation mechanisms that reproduce chromatin organization in the wake of DNA replication and repair. The aim of this Review is to describe how these pathways operate and to highlight how the epigenetic...

  12. The replication of expansive production knowledge

    DEFF Research Database (Denmark)

    Wæhrens, Brian Vejrum; Yang, Cheng; Madsen, Erik Skov

    2012-01-01

    . Design/methodology/approach – Two case studies are introduced. Empirical data were collected over a period of two years based on interviews and participating observations. Findings – The findings show that (1) knowledge transfer within the replication of a production line is a stepwise expansive process......Purpose – With the aim to support offshore production line replication, this paper specifically aims to explore the use of templates and principles to transfer expansive productive knowledge embedded in a production line and understand the contingencies that influence the mix of these approaches...... and principles to transfer productive knowledge in a specific context, which, in this paper, is a production line....

  13. Mapping replication dynamics in Trypanosoma brucei reveals a link with telomere transcription and antigenic variation.

    Science.gov (United States)

    Devlin, Rebecca; Marques, Catarina A; Paape, Daniel; Prorocic, Marko; Zurita-Leal, Andrea C; Campbell, Samantha J; Lapsley, Craig; Dickens, Nicholas; McCulloch, Richard

    2016-05-26

    Survival of Trypanosoma brucei depends upon switches in its protective Variant Surface Glycoprotein (VSG) coat by antigenic variation. VSG switching occurs by frequent homologous recombination, which is thought to require locus-specific initiation. Here, we show that a RecQ helicase, RECQ2, acts to repair DNA breaks, including in the telomeric site of VSG expression. Despite this, RECQ2 loss does not impair antigenic variation, but causes increased VSG switching by recombination, arguing against models for VSG switch initiation through direct generation of a DNA double strand break (DSB). Indeed, we show DSBs inefficiently direct recombination in the VSG expression site. By mapping genome replication dynamics, we reveal that the transcribed VSG expression site is the only telomeric site that is early replicating - a differential timing only seen in mammal-infective parasites. Specific association between VSG transcription and replication timing reveals a model for antigenic variation based on replication-derived DNA fragility.

  14. Regulation of eukaryotic DNA replication and nuclear structure

    Institute of Scientific and Technical Information of China (English)

    WUJIARUI

    1999-01-01

    In eukaryote,nuclear structure is a key component for the functions of eukaryotic cells.More and more evidences show that the nuclear structure plays important role in regulating DNA replication.The nuclear structure provides a physical barrier for the replication licensing,participates in the decision where DNA replication initiates,and organizes replication proteins as replication factory for DNA replication.Through these works,new concepts on the regulation of DNA replication have emerged,which will be discussed in this minireview.

  15. Cloning of an origin of DNA replication of Xenopus laevis

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, S.; Taylor, J.H.

    1980-09-01

    DNA fragments of Xenopus laevis, the African frog, were cloned in the EcoRI site of the Eschrichia coli plasmid pACYC189 and tested for ability to initiate and complete replication of the recombinant plasmid when injected into unfertilized eggs of X. laevis. After measurement of the (/sup 3/H)-thymidine incorporation per egg for a number of recombinant plasmids, pSW14 and pSW9, which respectively contain a small segment (550 base pairs) and several kilobases of frog DNA, were selected for more extensive analysis. In spite of the small size of th segment in pSW14, it incorporates in 2 hr at least 3 times as much labeled thymidine as either pSW9 or the vector alone. To determine the number of replications of pSW14, a novel method was employed. The results showed that about 50% of the labeled, supercoiled DNA recovered from eggs after 4 hr was sensitive to EcoRI digestion, which indicates that most of the DNA that incorporated (/sup 3/H)thymidine had replicated twice during the 4 hr in the unfertilized eggs of X. laevis. We conclude the pSW14 has a functional origin in the Xenopus DNA segment.

  16. Hepatitis B virus: pathogenesis, viral intermediates, and viral replication.

    Science.gov (United States)

    Lee, Jia-Yee; Locarnini, Stephen

    2004-05-01

    Although HBV has the potential to generate an almost limitless spectrum of quasispecies during chronic infection, the viability of the majority of these quasispecies is almost certainly impaired due to constraints imposed by the remarkably compact organization of the HBV genome. On the other hand, single mutations may affect more than one gene and result in complex and unpredictable effects on viral phenotype. Better understanding of the constraints imposed by gene overlap and of genotype-phenotype relationships should help in the development of improved antiviral strategies and management approaches. Although the probability of developing viral resistance is directly proportional to the intensity of selection pressure and the diversity of quasispecies, potent inhibition of HBV replication should be able to prevent development of drug resistance because mutagenesis is replication dependent. If viral replication can be suppressed for a sufficient length of time, viral load should decline to a point where the continued production of quasispecies with the potential to resist new drug treatments no longer occurs. Clinical application of this concept will require optimization of combination therapies analogous to highly active antiretroviral therapy (HAART) for HIV infection. Total cure of hepatitis B will require elimination of the intranuclear pool of viral minichromosomes, which will probably only be achieved by normal cell turnover, reactivation of host immunity, or elucidation of the antiviral mechanisms operating during cytokine clearance in acute hepatitis B (see Fig. 1).

  17. Silver nanoparticles impair Peste des petits ruminants virus replication.

    Science.gov (United States)

    Khandelwal, Nitin; Kaur, Gurpreet; Chaubey, Kundan Kumar; Singh, Pushpendra; Sharma, Shalini; Tiwari, Archana; Singh, Shoor Vir; Kumar, Naveen

    2014-09-22

    In the present study, we evaluated the antiviral efficacy of the silver nanoparticles (SNPs) against Peste des petits ruminants virus (PPRV), a prototype Morbillivirus. The leaf extract of the Argemone maxicana was used as a reducing agent for biological synthesis of the SNPs from silver nitrate. The SNPs were characterized using UV-vis absorption spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The TEM analysis revealed particle size of 5-30 nm and the XRD analysis revealed their characteristic silver structure. The treatment of Vero cells with the SNPs at a noncytotoxic concentration significantly inhibited PPRV replication in vitro. The time-course and virus step-specific assays showed that the SNPs impair PPRV replication at the level of virus entry. The TEM analysis showed that the SNPs interact with the virion surface as well with the virion core. However, this interaction has no direct virucidal effect, instead exerts a blocking effect on viral entry into the target cells. This is the first documented evidence indicating that the SNPs are capable of inhibiting a Morbillivirus replication in vitro.

  18. Two failures to replicate high-performance-goal priming effects.

    Directory of Open Access Journals (Sweden)

    Christine R Harris

    Full Text Available Bargh et al. (2001 reported two experiments in which people were exposed to words related to achievement (e.g., strive, attain or to neutral words, and then performed a demanding cognitive task. Performance on the task was enhanced after exposure to the achievement related words. Bargh and colleagues concluded that better performance was due to the achievement words having activated a "high-performance goal". Because the paper has been cited well over 1100 times, an attempt to replicate its findings would seem warranted. Two direct replication attempts were performed. Results from the first experiment (n = 98 found no effect of priming, and the means were in the opposite direction from those reported by Bargh and colleagues. The second experiment followed up on the observation by Bargh et al. (2001 that high-performance-goal priming was enhanced by a 5-minute delay between priming and test. Adding such a delay, we still found no evidence for high-performance-goal priming (n = 66. These failures to replicate, along with other recent results, suggest that the literature on goal priming requires some skeptical scrutiny.

  19. AcMNPV As A Model for Baculovirus DNA Replication

    Institute of Scientific and Technical Information of China (English)

    Eric B. Carstens

    2009-01-01

    Baculoviruses were first identified as insect-specific pathogens, and it was this specificity that lead to their use as safe, target specific biological pesticides. For the past 30 years, AcMNPV has served as the subject of intense basic molecular research into the baculovirus infectious cycle including the interaction of the virus with a continuous insect cell line derived from Spodoptera frugiperda. The studies on baculoviruese have led to an in-depth understanding of the physical organization of the viral genomes including many complete genomic sequences, the time course of gene expression, and the application of this basic research to the use of baculoviruses not only as insecticides, but also as a universal eukaryotic protein expression system, and a potential vector in gene therapy. A great deal has also been discovered about the viral genes required for the replication of the baculovirus genome, while much remains to be learned about the mechanism of viral DNA replication. This report outlines the current knowledge of the factors involved in baculovirus DNA replication, using data on AcMNPV as a model for most members of the Baculoviridae.

  20. Assembly of Slx4 signaling complexes behind DNA replication forks.

    Science.gov (United States)

    Balint, Attila; Kim, TaeHyung; Gallo, David; Cussiol, Jose Renato; Bastos de Oliveira, Francisco M; Yimit, Askar; Ou, Jiongwen; Nakato, Ryuichiro; Gurevich, Alexey; Shirahige, Katsuhiko; Smolka, Marcus B; Zhang, Zhaolei; Brown, Grant W

    2015-08-13

    Obstructions to replication fork progression, referred to collectively as DNA replication stress, challenge genome stability. In Saccharomyces cerevisiae, cells lacking RTT107 or SLX4 show genome instability and sensitivity to DNA replication stress and are defective in the completion of DNA replication during recovery from replication stress. We demonstrate that Slx4 is recruited to chromatin behind stressed replication forks, in a region that is spatially distinct from that occupied by the replication machinery. Slx4 complex formation is nucleated by Mec1 phosphorylation of histone H2A, which is recognized by the constitutive Slx4 binding partner Rtt107. Slx4 is essential for recruiting the Mec1 activator Dpb11 behind stressed replication forks, and Slx4 complexes are important for full activity of Mec1. We propose that Slx4 complexes promote robust checkpoint signaling by Mec1 by stably recruiting Dpb11 within a discrete domain behind the replication fork, during DNA replication stress.

  1. Effects of Data Replication on Data Exfiltration in Mobile Ad Hoc Networks Utilizing Reactive Protocols

    Science.gov (United States)

    2015-03-01

    Success . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 xi List of Acronyms Acronym Definition ARA Ant-Colony-Based...advantage quickly tapers off as node pause time increases past 240 seconds. In the simulation set-up, Caro explains that they intentionally used a...increasing replication does not significantly improve mean success rate. Gains taper off once a file is replicated twice in the 5% churn samples and at a

  2. Replication banding and molecular studies of a mosaic, unbalanced dic(X;15)(Xpter {yields} Xq26.1::15p11 {yields} 15qter)

    Energy Technology Data Exchange (ETDEWEB)

    Scheuerle, A.; Ledbetter, D.H.; Greenberg, F. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1995-05-08

    We present a patient with a chromosomal mosaicism involving the X chromosome. One cell line is 45,X and the other has a de novo paternally derived dicentric X;15 translocation. Her karyotype is therefore 45,X/45,X,dic(X;15)(Xpter {yields} Xq26.1::15p11 {yields} 15qter) based on G-banding. The presence of 2 centromeres on the derivative X was confirmed by fluorescence in situ hybridization (FISH) and a deletion of Xq26.1 {yields} qter was confirmed by polymerase chain reaction (PCR) using DXS52 and DXYS154. Replication banding studies indicate that the derivative X is late replicating. Based on these studies, it is unclear whether inactivation has spread to proximal 15q. The patient has a unique phenotype distinct from Ullrich-Turner or Prader-Willi syndromes, but includes ataxia and language delay which are commonly seen in Angelman syndrome. These findings are contrary to those anticipated since deficiency of paternal genes at 15q12 typically leads to Prader-Willi syndrome. Molecular analysis of PCR-based polymorphisms of chromosomes 15 and X indicates that uniparental disomy is not present for the X chromosome or chromosome 15 in either cell line. It is hypothesized that her phenotype results from the interaction of the 2 abnormal genotypes. Each abnormality may be diluted by the mosaicism and, in the derivative X line, by the possible variation among cells of inactivation spreading to chromosome 15. 18 refs., 6 figs., 1 tab.

  3. MMSET is dynamically regulated during cell-cycle progression and promotes normal DNA replication.

    Science.gov (United States)

    Evans, Debra L; Zhang, Haoxing; Ham, Hyoungjun; Pei, Huadong; Lee, SeungBaek; Kim, JungJin; Billadeau, Daniel D; Lou, Zhenkun

    2016-01-01

    The timely and precise duplication of cellular DNA is essential for maintaining genome integrity and is thus tightly-regulated. During mitosis and G1, the Origin Recognition Complex (ORC) binds to future replication origins, coordinating with multiple factors to load the minichromosome maintenance (MCM) complex onto future replication origins as part of the pre-replication complex (pre-RC). The pre-RC machinery, in turn, remains inactive until the subsequent S phase when it is required for replication fork formation, thereby initiating DNA replication. Multiple myeloma SET domain-containing protein (MMSET, a.k.a. WHSC1, NSD2) is a histone methyltransferase that is frequently overexpressed in aggressive cancers and is essential for normal human development. Several studies have suggested a role for MMSET in cell-cycle regulation; however, whether MMSET is itself regulated during cell-cycle progression has not been examined. In this study, we report that MMSET is degraded during S phase in a cullin-ring ligase 4-Cdt2 (CRL4(Cdt2)) and proteasome-dependent manner. Notably, we also report defects in DNA replication and a decreased association of pre-RC factors with chromatin in MMSET-depleted cells. Taken together, our results suggest a dynamic regulation of MMSET levels throughout the cell cycle, and further characterize the role of MMSET in DNA replication and cell-cycle progression.

  4. Separation of DNA replication from the assembly of break-competent meiotic chromosomes.

    Directory of Open Access Journals (Sweden)

    Hannah G Blitzblau

    Full Text Available The meiotic cell division reduces the chromosome number from diploid to haploid to form gametes for sexual reproduction. Although much progress has been made in understanding meiotic recombination and the two meiotic divisions, the processes leading up to recombination, including the prolonged pre-meiotic S phase (meiS and the assembly of meiotic chromosome axes, remain poorly defined. We have used genome-wide approaches in Saccharomyces cerevisiae to measure the kinetics of pre-meiotic DNA replication and to investigate the interdependencies between replication and axis formation. We found that replication initiation was delayed for a large number of origins in meiS compared to mitosis and that meiotic cells were far more sensitive to replication inhibition, most likely due to the starvation conditions required for meiotic induction. Moreover, replication initiation was delayed even in the absence of chromosome axes, indicating replication timing is independent of the process of axis assembly. Finally, we found that cells were able to install axis components and initiate recombination on unreplicated DNA. Thus, although pre-meiotic DNA replication and meiotic chromosome axis formation occur concurrently, they are not strictly coupled. The functional separation of these processes reveals a modular method of building meiotic chromosomes and predicts that any crosstalk between these modules must occur through superimposed regulatory mechanisms.

  5. Visualization and measurement of ATP levels in living cells replicating hepatitis C virus genome RNA.

    Directory of Open Access Journals (Sweden)

    Tomomi Ando

    Full Text Available Adenosine 5'-triphosphate (ATP is the primary energy currency of all living organisms and participates in a variety of cellular processes. Although ATP requirements during viral lifecycles have been examined in a number of studies, a method by which ATP production can be monitored in real-time, and by which ATP can be quantified in individual cells and subcellular compartments, is lacking, thereby hindering studies aimed at elucidating the precise mechanisms by which viral replication energized by ATP is controlled. In this study, we investigated the fluctuation and distribution of ATP in cells during RNA replication of the hepatitis C virus (HCV, a member of the Flaviviridae family. We demonstrated that cells involved in viral RNA replication actively consumed ATP, thereby reducing cytoplasmic ATP levels. Subsequently, a method to measure ATP levels at putative subcellular sites of HCV RNA replication in living cells was developed by introducing a recently-established Förster resonance energy transfer (FRET-based ATP indicator, called ATeam, into the NS5A coding region of the HCV replicon. Using this method, we were able to observe the formation of ATP-enriched dot-like structures, which co-localize with non-structural viral proteins, within the cytoplasm of HCV-replicating cells but not in non-replicating cells. The obtained FRET signals allowed us to estimate ATP concentrations within HCV replicating cells as ∼5 mM at possible replicating sites and ∼1 mM at peripheral sites that did not appear to be involved in HCV replication. In contrast, cytoplasmic ATP levels in non-replicating Huh-7 cells were estimated as ∼2 mM. To our knowledge, this is the first study to demonstrate changes in ATP concentration within cells during replication of the HCV genome and increased ATP levels at distinct sites within replicating cells. ATeam may be a powerful tool for the study of energy metabolism during replication of the viral genome.

  6. Representation dimension of m-replicated algebras

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Let A be a finite-dimensional hereditary algebra over an algebraically closed field and A(m) be the m-replicated algebra of A.We prove that the representation dimension of A(m) is at most 3,and that the dominant dimension of A(m) is at least m.

  7. Multiseason occupancy models for correlated replicate surveys

    Science.gov (United States)

    Hines, James; Nichols, James; Collazo, Jaime

    2014-01-01

    Occupancy surveys collecting data from adjacent (sometimes correlated) spatial replicates have become relatively popular for logistical reasons. Hines et al. (2010) presented one approach to modelling such data for single-season occupancy surveys. Here, we present a multiseason analogue of this model (with corresponding software) for inferences about occupancy dynamics. We include a new parameter to deal with the uncertainty associated with the first spatial replicate for both single-season and multiseason models. We use a case study, based on the brown-headed nuthatch, to assess the need for these models when analysing data from the North American Breeding Bird Survey (BBS), and we test various hypotheses about occupancy dynamics for this species in the south-eastern United States. The new model permits inference about local probabilities of extinction, colonization and occupancy for sampling conducted over multiple seasons. The model performs adequately, based on a small simulation study and on results of the case study analysis. The new model incorporating correlated replicates was strongly favoured by model selection for the BBS data for brown-headed nuthatch (Sitta pusilla). Latitude was found to be an important source of variation in local colonization and occupancy probabilities for brown-headed nuthatch, with both probabilities being higher near the centre of the species range, as opposed to more northern and southern areas. We recommend this new occupancy model for detection–nondetection studies that use potentially correlated replicates.

  8. Are renal ciliopathies (replication) stressed out?

    NARCIS (Netherlands)

    Slaats, Gisela G; Giles, R

    2015-01-01

    Juvenile renal failure is commonly caused by the ciliopathy nephronophthisis (NPHP). Since all NPHP genes regulate cilia function, it has been assumed that NPHP onset is due to cilia loss. However, recent data suggest that DNA damage caused by replication stress, possibly concomitant with or upstrea

  9. The replication of expansive production knowledge

    DEFF Research Database (Denmark)

    Wæhrens, Brian Vejrum; Yang, Cheng; Madsen, Erik Skov

    2012-01-01

    exploration, the small sample size is an obvious limitation for generalisation. Practical implications – A roadmap for knowledge transfer within the replication of a production line is suggested, which, together with four managerial suggestions, provides strong support and clear directions to managers...

  10. Replication and Inhibitors of Enteroviruses and Parechoviruses

    Directory of Open Access Journals (Sweden)

    Lonneke van der Linden

    2015-08-01

    Full Text Available The Enterovirus (EV and Parechovirus genera of the picornavirus family include many important human pathogens, including poliovirus, rhinovirus, EV-A71, EV-D68, and human parechoviruses (HPeV. They cause a wide variety of diseases, ranging from a simple common cold to life-threatening diseases such as encephalitis and myocarditis. At the moment, no antiviral therapy is available against these viruses and it is not feasible to develop vaccines against all EVs and HPeVs due to the great number of serotypes. Therefore, a lot of effort is being invested in the development of antiviral drugs. Both viral proteins and host proteins essential for virus replication can be used as targets for virus inhibitors. As such, a good understanding of the complex process of virus replication is pivotal in the design of antiviral strategies goes hand in hand with a good understanding of the complex process of virus replication. In this review, we will give an overview of the current state of knowledge of EV and HPeV replication and how this can be inhibited by small-molecule inhibitors.

  11. Chemistry: Small molecular replicators go organic

    Science.gov (United States)

    Taylor, Annette F.

    2016-09-01

    The emergence of complex, dynamic molecular behaviour might have had a role in the origin of life. Such behaviour has now been seen in a reaction network involving small, organic, self-replicating molecules of biological relevance. See Letter p.656

  12. Replication of biotinylated human immunodeficiency viruses.

    Science.gov (United States)

    Belshan, Michael; Matthews, John M; Madson, Christian J

    2011-01-01

    Previous work demonstrated recently the adaptation of the Escherichia coli biotin ligase BirA - biotin acceptor sequence (BAS) labeling system to produce human immunodeficiency virus type 1 viruses with biotinylated integrase (NLXIN(B)) and matrix (NLXMA(B)) proteins (Belshan et al., 2009). This report describes the construction of an HIV permissive cell line stably expressing BirA (SupT1.BirA). Consistent with the results in the previous report, NLXMA(B) replicated similar to wild-type levels and expressed biotinylated Gag and MA proteins in the SupT1.BirA cells, whereas the replication of NLXIN(B) was reduced severely. Three additional HIV type 2 (HIV-2) viruses were constructed with the BAS inserted into the vpx and vpr accessory genes. Two BAS insertions were made into the C-terminal half of the Vpx, including one internal insertion, and one at the N-terminus of Vpr. All three viruses were replication competent in the SupT1.BirA cells and their target proteins biotinylated efficiently and incorporated into virions. These results demonstrate the potential utility of the biotinylation system to label and capture HIV protein complexes in the context of replicating virus.

  13. Suppression of Coronavirus Replication by Cyclophilin Inhibitors

    Directory of Open Access Journals (Sweden)

    Takashi Sasaki

    2013-05-01

    Full Text Available Coronaviruses infect a variety of mammalian and avian species and cause serious diseases in humans, cats, mice, and birds in the form of severe acute respiratory syndrome (SARS, feline infectious peritonitis (FIP, mouse hepatitis, and avian infectious bronchitis, respectively. No effective vaccine or treatment has been developed for SARS-coronavirus or FIP virus, both of which cause lethal diseases. It has been reported that a cyclophilin inhibitor, cyclosporin A (CsA, could inhibit the replication of coronaviruses. CsA is a well-known immunosuppressive drug that binds to cellular cyclophilins to inhibit calcineurin, a calcium-calmodulin-activated serine/threonine-specific phosphatase. The inhibition of calcineurin blocks the translocation of nuclear factor of activated T cells from the cytosol into the nucleus, thus preventing the transcription of genes encoding cytokines such as interleukin-2. Cyclophilins are peptidyl-prolyl isomerases with physiological functions that have been described for many years to include chaperone and foldase activities. Also, many viruses require cyclophilins for replication; these include human immunodeficiency virus, vesicular stomatitis virus, and hepatitis C virus. However, the molecular mechanisms leading to the suppression of viral replication differ for different viruses. This review describes the suppressive effects of CsA on coronavirus replication.

  14. Mis17 is a regulatory module of the Mis6-Mal2-Sim4 centromere complex that is required for the recruitment of CenH3/CENP-A in fission yeast.

    Directory of Open Access Journals (Sweden)

    Yoshiharu Shiroiwa

    Full Text Available BACKGROUND: The centromere is the chromosome domain on which the mitotic kinetochore forms for proper segregation. Deposition of the centromeric histone H3 (CenH3, CENP-A is vital for the formation of centromere-specific chromatin. The Mis6-Mal2-Sim4 complex of the fission yeast S. pombe is required for the recruitment of CenH3 (Cnp1, but its function remains obscure. METHODOLOGY/PRINCIPAL FINDINGS: Mass spectrometry was performed on the proteins precipitated with Mis6- and Mis17-FLAG. The results together with the previously identified Sim4- and Mal2-TAP precipitated proteins indicated that the complex contains 12 subunits, Mis6, Sim4, Mal2, Mis15, Mis17, Cnl2, Fta1-4, Fta6-7, nine of which have human centromeric protein (CENP counterparts. Domain dissection indicated that the carboxy-half of Mis17 is functional, while its amino-half is regulatory. Overproduction of the amino-half caused strong negative dominance, which led to massive chromosome missegregation and hypersensitivity to the histone deacetylase inhibitor TSA. Mis17 was hyperphosphorylated and overproduction-induced negative dominance was abolished in six kinase-deletion mutants, ssp2 (AMPK, ppk9 (AMPK, ppk15 (Yak1, ppk30 (Ark1, wis4 (Ssk2, and lsk1 (P-TEFb. CONCLUSIONS: Mis17 may be a regulatory module of the Mis6 complex. Negative dominance of the Mis17 fragment is exerted while the complex and CenH3 remain at the centromere, a result that differs from the mislocalization seen in the mis17-362 mutant. The known functions of the kinases suggest an unexpected link between Mis17 and control of the cortex actin, nutrition, and signal/transcription. Possible interpretations are discussed.

  15. Dicentric chromosome aberration analysis using giemsa and centromere specific fluorescence in-situ hybridization for biological dosimetry: An inter- and intra-laboratory comparison in Indian laboratories.

    Science.gov (United States)

    Bhavani, M; Tamizh Selvan, G; Kaur, Harpreet; Adhikari, J S; Vijayalakshmi, J; Venkatachalam, P; Chaudhury, N K

    2014-09-01

    To facilitate efficient handling of large samples, an attempt towards networking of laboratories in India for biological dosimetry was carried out. Human peripheral blood samples were exposed to (60)Co γ-radiation for ten different doses (0-5Gy) at a dose rate of 0.7 and 2Gy/min. The chromosomal aberrations (CA) were scored in Giemsa-stained and fluorescence in-situ hybridization with centromere-specific probes. No significant difference (p>0.05) was observed in the CA yield for given doses except 4 and 5Gy, between the laboratories, among the scorers and also staining methods adapted suggest the reliability and validates the inter-lab comparisons exercise for triage applications.

  16. The Role of the Transcriptional Response to DNA Replication Stress.

    Science.gov (United States)

    Herlihy, Anna E; de Bruin, Robertus A M

    2017-03-02

    During DNA replication many factors can result in DNA replication stress. The DNA replication stress checkpoint prevents the accumulation of replication stress-induced DNA damage and the potential ensuing genome instability. A critical role for post-translational modifications, such as phosphorylation, in the replication stress checkpoint response has been well established. However, recent work has revealed an important role for transcription in the cellular response to DNA replication stress. In this review, we will provide an overview of current knowledge of the cellular response to DNA replication stress with a specific focus on the DNA replication stress checkpoint transcriptional response and its role in the prevention of replication stress-induced DNA damage.

  17. Study on the micro-replication of shark skin

    Institute of Scientific and Technical Information of China (English)

    HAN Xin; ZHANG DeYuan

    2008-01-01

    Direct replication of creatural scarfskins to form biomimetic surfaces with relatively vivid morphology is a new attempt of the bio-replicated forming technology at animal body.Taking shark skins as the replication templates,and the micro-em-bossing and micro-molding as the material forming methods,the micro-replicating technology of the outward morphology on shark skins was demonstrated.The pre-liminary analysis on replication precision indicates that the bio-replicated forming technology can replicate the outward morphology of the shark scales with good precision,which validates the application of the bio-replicated forming technology in the direct morphology replication of the firm creatural scarfskins.

  18. Single molecule analysis of Trypanosoma brucei DNA replication dynamics.

    Science.gov (United States)

    Calderano, Simone Guedes; Drosopoulos, William C; Quaresma, Marina Mônaco; Marques, Catarina A; Kosiyatrakul, Settapong; McCulloch, Richard; Schildkraut, Carl L; Elias, Maria Carolina

    2015-03-11

    Eukaryotic genome duplication relies on origins of replication, distributed over multiple chromosomes, to initiate DNA replication. A recent genome-wide analysis of Trypanosoma brucei, the etiological agent of sleeping sickness, localized its replication origins to the boundaries of multigenic transcription units. To better understand genomic replication in this organism, we examined replication by single molecule analysis of replicated DNA. We determined the average speed of replication forks of procyclic and bloodstream form cells and we found that T. brucei DNA replication rate is similar to rates seen in other eukaryotes. We also analyzed the replication dynamics of a central region of chromosome 1 in procyclic forms. We present evidence for replication terminating within the central part of the chromosome and thus emanating from both sides, suggesting a previously unmapped origin toward the 5' extremity of chromosome 1. Also, termination is not at a fixed location in chromosome 1, but is rather variable. Importantly, we found a replication origin located near an ORC1/CDC6 binding site that is detected after replicative stress induced by hydroxyurea treatment, suggesting it may be a dormant origin activated in response to replicative stress. Collectively, our findings support the existence of more replication origins in T. brucei than previously appreciated.

  19. High-throughput mapping of origins of replication in human cells.

    Science.gov (United States)

    Lucas, Isabelle; Palakodeti, Aparna; Jiang, Yanwen; Young, David J; Jiang, Nan; Fernald, Anthony A; Le Beau, Michelle M

    2007-08-01

    Mapping origins of replication has been challenging in higher eukaryotes. We have developed a rapid, genome-wide method to map origins of replication in asynchronous human cells by combining the nascent strand abundance assay with a highly tiled microarray platform, and we validated the technique by two independent assays. We applied this method to analyse the enrichment of nascent DNA in three 50-kb regions containing known origins of replication in the MYC, lamin B2 (LMNB2) and haemoglobin beta (HBB) genes, a 200-kb region containing the rare fragile site, FRAXA, and a 1,075-kb region on chromosome 22; we detected most of the known origins and also 28 new origins. Surprisingly, the 28 new origins were small in size and located predominantly within genes. Our study also showed a strong correlation between origin replication timing and chromatin acetylation.

  20. Replication cycle of duck hepatitis A virus type 1 in duck embryonic hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Fangke; Chen, Yun; Shi, Jintong; Ming, Ke; Liu, Jiaguo, E-mail: liujiaguo@njau.edu.cn; Xiong, Wen; Song, Meiyun; Du, Hongxu; Wang, Yixuan; Zhang, Shuaibin; Wu, Yi; Wang, Deyun; Hu, Yuanliang

    2016-04-15

    Duck hepatitis A virus type 1 (DHAV-1) is an important agent of duck viral hepatitis. Until recently, the replication cycle of DHAV-1 is still unknown. Here duck embryonic hepatocytes infected with DHAV-1 were collected at different time points, and dynamic changes of the relative DHAV-1 gene expression during replication were detected by real-time PCR. And the morphology of hepatocytes infected with DHAV was evaluated by electron microscope. The result suggested that the adsorption of DHAV-1 saturated at 90 min post-infection, and the virus particles with size of about 50 nm including more than 20 nm of vacuum drying gold were observed on the infected cells surface. What's more, the replication lasted around 13 h after the early protein synthesis for about 5 h, and the release of DHAV-1 was in steady state after 32 h. The replication cycle will enrich the data for DVH control and provide the foundation for future studies. - Highlights: • This is the first description of the replication cycle of DHAV-1. • Firstly find that DHAV-1 adsorption saturated at 90 min post-infection. • The replication lasted around 13 h after early protein synthesis for about 5 h. • The release of DHAV-1 was in steady state after 32 h.

  1. Novel Mutant AAV2 Rep Proteins Support AAV2 Replication without Blocking HSV-1 Helpervirus Replication

    Science.gov (United States)

    Seyffert, Michael; Glauser, Daniel L.; Schraner, Elisabeth M.; de Oliveira, Anna-Paula; Mansilla-Soto, Jorge; Vogt, Bernd; Büning, Hildegard; Linden, R. Michael; Ackermann, Mathias; Fraefel, Cornel

    2017-01-01

    As their names imply, parvoviruses of the genus Dependovirus rely for their efficient replication on the concurrent presence of a helpervirus, such as herpesvirus, adenovirus, or papilloma virus. Adeno-associated virus 2 (AAV2) is such an example, which in turn can efficiently inhibit the replication of each helpervirus by distinct mechanisms. In a previous study we have shown that expression of the AAV2 rep gene is not compatible with efficient replication of herpes simplex virus 1 (HSV-1). In particular, the combined DNA-binding and ATPase/helicase activities of the Rep68/78 proteins have been shown to exert opposite effects on the replication of AAV2 and HSV-1. While essential for AAV2 DNA replication these protein activities account for the Rep-mediated inhibition of HSV-1 replication. Here, we describe a novel Rep mutant (Rep-D371Y), which displayed an unexpected phenotype. Rep-D371Y did not block HSV-1 replication, but still supported efficient AAV2 replication, at least when a double-stranded AAV2 genome template was used. We also found that the capacity of Rep-D371Y to induce apoptosis and a Rep-specific DNA damage response was significantly reduced compared to wild-type Rep. These findings suggest that AAV2 Rep-helicase subdomains exert diverging activities, which contribute to distinct steps of the AAV2 life cycle. More important, the novel AAV2 mutant Rep-D371Y may allow deciphering yet unsolved activities of the AAV2 Rep proteins such as DNA second-strand synthesis, genomic integration or packaging, which all involve the Rep-helicase activity. PMID:28125695

  2. Replicative Homeostasis: A fundamental mechanism mediating selective viral replication and escape mutation

    Directory of Open Access Journals (Sweden)

    Sallie Richard

    2005-02-01

    Full Text Available Abstract Hepatitis C (HCV, hepatitis B (HBV, the human immunodeficiency viruses (HIV, and other viruses that replicate via RNA intermediaries, cause an enormous burden of disease and premature death worldwide. These viruses circulate within infected hosts as vast populations of closely related, but genetically diverse, molecules known as "quasispecies". The mechanism(s by which this extreme genetic and antigenic diversity is stably maintained are unclear, but are fundamental to understanding viral persistence and pathobiology. The persistence of HCV, an RNA virus, is especially problematic and HCV stability, maintained despite rapid genomic mutation, is highly paradoxical. This paper presents the hypothesis, and evidence, that viruses capable of persistent infection autoregulate replication and the likely mechanism mediating autoregulation – Replicative Homeostasis – is described. Replicative homeostasis causes formation of stable, but highly reactive, equilibria that drive quasispecies expansion and generates escape mutation. Replicative homeostasis explains both viral kinetics and the enigma of RNA quasispecies stability and provides a rational, mechanistic basis for all observed viral behaviours and host responses. More importantly, this paradigm has specific therapeutic implication and defines, precisely, new approaches to antiviral therapy. Replicative homeostasis may also modulate cellular gene expression.

  3. The Tat protein of human immunodeficiency virus-1 enhances hepatitis C virus replication through interferon gamma-inducible protein-10

    Directory of Open Access Journals (Sweden)

    Qu Jing

    2012-04-01

    Full Text Available Abstract Background Co-infection with human immunodeficiency virus-1 (HIV-1 and hepatitis C virus (HCV is associated with faster progression of liver disease and an increase in HCV persistence. However, the mechanism by which HIV-1 accelerates the progression of HCV liver disease remains unknown. Results HIV-1/HCV co-infection is associated with increased expression of interferon gamma-induced protein-10 (IP-10 mRNA in peripheral blood mononuclear cells (PBMCs. HCV RNA levels were higher in PBMCs of patients with HIV-1/HCV co-infection than in patients with HCV mono-infection. HIV-1 Tat and IP-10 activated HCV replication in a time-dependent manner, and HIV-1 Tat induced IP-10 production. In addition, the effect of HIV-1 Tat on HCV replication was blocked by anti-IP-10 monoclonal antibody, demonstrating that the effect of HIV-1 Tat on HCV replication depends on IP-10. Taken together, these results suggest that HIV-1 Tat protein activates HCV replication by upregulating IP-10 production. Conclusions HIV-1/HCV co-infection is associated with increased expression of IP-10 mRNA and replication of HCV RNA. Furthermore, both HIV-1 Tat and IP-10 activate HCV replication. HIV-1 Tat activates HCV replication by upregulating IP-10 production. These results expand our understanding of HIV-1 in HCV replication and the mechanism involved in the regulation of HCV replication mediated by HIV-1 during co-infection.

  4. Escalation of error catastrophe for enzymatic self-replicators

    Science.gov (United States)

    Obermayer, B.; Frey, E.

    2009-11-01

    It is a long-standing question in origin-of-life research whether the information content of replicating molecules can be maintained in the presence of replication errors. Extending standard quasispecies models of non-enzymatic replication, we analyze highly specific enzymatic self-replication mediated through an otherwise neutral recognition region, which leads to frequency-dependent replication rates. We find a significant reduction of the maximally tolerable error rate, because the replication rate of the fittest molecules decreases with the fraction of functional enzymes. Our analysis is extended to hypercyclic couplings as an example for catalytic networks.

  5. The Solution to Science's Replication Crisis

    CERN Document Server

    Knuteson, Bruce

    2016-01-01

    The solution to science's replication crisis is a new ecosystem in which scientists sell what they learn from their research. In each pairwise transaction, the information seller makes (loses) money if he turns out to be correct (incorrect). Responsibility for the determination of correctness is delegated, with appropriate incentives, to the information purchaser. Each transaction is brokered by a central exchange, which holds money from the anonymous information buyer and anonymous information seller in escrow, and which enforces a set of incentives facilitating the transfer of useful, bluntly honest information from the seller to the buyer. This new ecosystem, capitalist science, directly addresses socialist science's replication crisis by explicitly rewarding accuracy and penalizing inaccuracy.

  6. Entropy involved in fidelity of DNA replication

    CERN Document Server

    Arias-Gonzalez, J Ricardo

    2012-01-01

    Information has an entropic character which can be analyzed within the Statistical Theory in molecular systems. R. Landauer and C.H. Bennett showed that a logical copy can be carried out in the limit of no dissipation if the computation is performed sufficiently slowly. Structural and recent single-molecule assays have provided dynamic details of polymerase machinery with insight into information processing. We introduce a rigorous characterization of Shannon Information in biomolecular systems and apply it to DNA replication in the limit of no dissipation. Specifically, we devise an equilibrium pathway in DNA replication to determine the entropy generated in copying the information from a DNA template in the absence of friction. Both the initial state, the free nucleotides randomly distributed in certain concentrations, and the final state, a polymerized strand, are mesoscopic equilibrium states for the nucleotide distribution. We use empirical stacking free energies to calculate the probabilities of incorpo...

  7. Surface micro topography replication in injection moulding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf

    , the topography itself, and other factors were also investigated. The experimental work is based on a multi-purpose experimental injection mould with a collection of test surface inserts manufactured by EDM (electrical discharge machining). Experimental production took place with an injection moulding machine......Thermoplastic injection moulding is a widely used industrial process that involves surface generation by replication. The surface topography of injection moulded plastic parts can be important for aesthetical or technical reasons. With the emergence of microengineering and nanotechnology additional...... in a clean room environment. The mould and the injection moulding machine were fitted with transducers for subsequent process analysis. A total of 13 different plastic material grades were applied. Topographical characterisation was performed with an optical laser focus detection instrument. Replication...

  8. Experimental Replication of an Aeroengine Combustion Instability

    Science.gov (United States)

    Cohen, J. M.; Hibshman, J. R.; Proscia, W.; Rosfjord, T. J.; Wake, B. E.; McVey, J. B.; Lovett, J.; Ondas, M.; DeLaat, J.; Breisacher, K.

    2000-01-01

    Combustion instabilities in gas turbine engines are most frequently encountered during the late phases of engine development, at which point they are difficult and expensive to fix. The ability to replicate an engine-traceable combustion instability in a laboratory-scale experiment offers the opportunity to economically diagnose the problem (to determine the root cause), and to investigate solutions to the problem, such as active control. The development and validation of active combustion instability control requires that the causal dynamic processes be reproduced in experimental test facilities which can be used as a test bed for control system evaluation. This paper discusses the process through which a laboratory-scale experiment was designed to replicate an instability observed in a developmental engine. The scaling process used physically-based analyses to preserve the relevant geometric, acoustic and thermo-fluid features. The process increases the probability that results achieved in the single-nozzle experiment will be scalable to the engine.

  9. Choreography of bacteriophage T7 DNA replication.

    Science.gov (United States)

    Lee, Seung-Joo; Richardson, Charles C

    2011-10-01

    The replication system of phage T7 provides a model for DNA replication. Biochemical, structural, and single-molecule analyses together provide insight into replisome mechanics. A complex of polymerase, a processivity factor, and helicase mediates leading strand synthesis. Establishment of the complex requires an interaction of the C-terminal tail of the helicase with the polymerase. During synthesis the complex is stabilized by other interactions to provide for a processivity of 5 kilobase (kb). The C-terminal tail also interacts with a distinct region of the polymerase to captures dissociating polymerase to increase the processivity to >17kb. The lagging strand is synthesized discontinuously within a loop that forms and resolves during each cycle of Okazaki fragment synthesis. The synthesis of a primer as well as the termination of a fragment signal loop resolution.

  10. Replicative DNA polymerase mutations in cancer.

    Science.gov (United States)

    Heitzer, Ellen; Tomlinson, Ian

    2014-02-01

    Three DNA polymerases - Pol α, Pol δ and Pol ɛ - are essential for DNA replication. After initiation of DNA synthesis by Pol α, Pol δ or Pol ɛ take over on the lagging and leading strand respectively. Pol δ and Pol ɛ perform the bulk of replication with very high fidelity, which is ensured by Watson-Crick base pairing and 3'exonuclease (proofreading) activity. Yeast models have shown that mutations in the exonuclease domain of Pol δ and Pol ɛ homologues can cause a mutator phenotype. Recently, we identified germline exonuclease domain mutations (EDMs) in human POLD1 and POLE that predispose to 'polymerase proofreading associated polyposis' (PPAP), a disease characterised by multiple colorectal adenomas and carcinoma, with high penetrance and dominant inheritance. Moreover, somatic EDMs in POLE have also been found in sporadic colorectal and endometrial cancers. Tumors with EDMs are microsatellite stable and show an 'ultramutator' phenotype, with a dramatic increase in base substitutions.

  11. DNA ligase I, the replicative DNA ligase.

    Science.gov (United States)

    Howes, Timothy R L; Tomkinson, Alan E

    2012-01-01

    Multiple DNA ligation events are required to join the Okazaki fragments generated during lagging strand DNA synthesis. In eukaryotes, this is primarily carried out by members of the DNA ligase I family. The C-terminal catalytic region of these enzymes is composed of three domains: a DNA binding domain, an adenylation domain and an OB-fold domain. In the absence of DNA, these domains adopt an extended structure but transition into a compact ring structure when they engage a DNA nick, with each of the domains contacting the DNA. The non-catalytic N-terminal region of eukaryotic DNA ligase I is responsible for the specific participation of these enzymes in DNA replication. This proline-rich unstructured region contains the nuclear localization signal and a PCNA interaction motif that is critical for localization to replication foci and efficient joining of Okazaki fragments. DNA ligase I initially engages the PCNA trimer via this interaction motif which is located at the extreme N-terminus of this flexible region. It is likely that this facilitates an additional interaction between the DNA binding domain and the PCNA ring. The similar size and shape of the rings formed by the PCNA trimer and the DNA ligase I catalytic region when it engages a DNA nick suggest that these proteins interact to form a double-ring structure during the joining of Okazaki fragments. DNA ligase I also interacts with replication factor C, the factor that loads the PCNA trimeric ring onto DNA. This interaction, which is regulated by phosphorylation of the non-catalytic N-terminus of DNA ligase I, also appears to be critical for DNA replication.

  12. The molecular biology of Bluetongue virus replication.

    Science.gov (United States)

    Patel, Avnish; Roy, Polly

    2014-03-01

    The members of Orbivirus genus within the Reoviridae family are arthropod-borne viruses which are responsible for high morbidity and mortality in ruminants. Bluetongue virus (BTV) which causes disease in livestock (sheep, goat, cattle) has been in the forefront of molecular studies for the last three decades and now represents the best understood orbivirus at a molecular and structural level. The complex nature of the virion structure has been well characterised at high resolution along with the definition of the virus encoded enzymes required for RNA replication; the ordered assembly of the capsid shell as well as the protein and genome sequestration required for it; and the role of host proteins in virus entry and virus release. More recent developments of Reverse Genetics and Cell-Free Assembly systems have allowed integration of the accumulated structural and molecular knowledge to be tested at meticulous level, yielding higher insight into basic molecular virology, from which the rational design of safe efficacious vaccines has been possible. This article is centred on the molecular dissection of BTV with a view to understanding the role of each protein in the virus replication cycle. These areas are important in themselves for BTV replication but they also indicate the pathways that related viruses, which includes viruses that are pathogenic to man and animals, might also use providing an informed starting point for intervention or prevention.

  13. Ultrastructural Characterization of Zika Virus Replication Factories

    Directory of Open Access Journals (Sweden)

    Mirko Cortese

    2017-02-01

    Full Text Available A global concern has emerged with the pandemic spread of Zika virus (ZIKV infections that can cause severe neurological symptoms in adults and newborns. ZIKV is a positive-strand RNA virus replicating in virus-induced membranous replication factories (RFs. Here we used various imaging techniques to investigate the ultrastructural details of ZIKV RFs and their relationship with host cell organelles. Analyses of human hepatic cells and neural progenitor cells infected with ZIKV revealed endoplasmic reticulum (ER membrane invaginations containing pore-like openings toward the cytosol, reminiscent to RFs in Dengue virus-infected cells. Both the MR766 African strain and the H/PF/2013 Asian strain, the latter linked to neurological diseases, induce RFs of similar architecture. Importantly, ZIKV infection causes a drastic reorganization of microtubules and intermediate filaments forming cage-like structures surrounding the viral RF. Consistently, ZIKV replication is suppressed by cytoskeleton-targeting drugs. Thus, ZIKV RFs are tightly linked to rearrangements of the host cell cytoskeleton.

  14. Continuously Cumulating Meta-Analysis and Replicability.

    Science.gov (United States)

    Braver, Sanford L; Thoemmes, Felix J; Rosenthal, Robert

    2014-05-01

    The current crisis in scientific psychology about whether our findings are irreproducible was presaged years ago by Tversky and Kahneman (1971), who noted that even sophisticated researchers believe in the fallacious Law of Small Numbers-erroneous intuitions about how imprecisely sample data reflect population phenomena. Combined with the low power of most current work, this often leads to the use of misleading criteria about whether an effect has replicated. Rosenthal (1990) suggested more appropriate criteria, here labeled the continuously cumulating meta-analytic (CCMA) approach. For example, a CCMA analysis on a replication attempt that does not reach significance might nonetheless provide more, not less, evidence that the effect is real. Alternatively, measures of heterogeneity might show that two studies that differ in whether they are significant might have only trivially different effect sizes. We present a nontechnical introduction to the CCMA framework (referencing relevant software), and then explain how it can be used to address aspects of replicability or more generally to assess quantitative evidence from numerous studies. We then present some examples and simulation results using the CCMA approach that show how the combination of evidence can yield improved results over the consideration of single studies.

  15. The spatiotemporal program of DNA replication is associated with specific combinations of chromatin marks in human cells.

    Directory of Open Access Journals (Sweden)

    Franck Picard

    2014-05-01

    Full Text Available The duplication of mammalian genomes is under the control of a spatiotemporal program that orchestrates the positioning and the timing of firing of replication origins. The molecular mechanisms coordinating the activation of about [Formula: see text] predicted origins remain poorly understood, partly due to the intrinsic rarity of replication bubbles, making it difficult to purify short nascent strands (SNS. The precise identification of origins based on the high-throughput sequencing of SNS constitutes a new methodological challenge. We propose a new statistical method with a controlled resolution, adapted to the detection of replication origins from SNS data. We detected an average of 80,000 replication origins in different cell lines. To evaluate the consistency between different protocols, we compared SNS detections with bubble trapping detections. This comparison demonstrated a good agreement between genome-wide methods, with 65% of SNS-detected origins validated by bubble trapping, and 44% of bubble trapping origins validated by SNS origins, when compared at the same resolution. We investigated the interplay between the spatial and the temporal programs of replication at fine scales. We show that most of the origins detected in regions replicated in early S phase are shared by all the cell lines investigated whereas cell-type-specific origins tend to be replicated in late S phase. We shed a new light on the key role of CpG islands, by showing that 80% of the origins associated with CGIs are constitutive. Our results further show that at least 76% of CGIs are origins of replication. The analysis of associations with chromatin marks at different timing of cell division revealed new potential epigenetic regulators driving the spatiotemporal activity of replication origins. We highlight the potential role of H4K20me1 and H3K27me3, the coupling of which is correlated with increased efficiency of replication origins, clearly identifying those

  16. Big Data Archives: Replication and synchronizing on a large scale

    Science.gov (United States)

    King, T. A.; Walker, R. J.

    2015-12-01

    Modern data archives provide unique challenges to replication and synchronization because of their large size. We collect more digital information today than any time before and the volume of data collected is continuously increasing. Some of these data are from unique observations, like those from planetary missions that should be preserved for use by future generations. In addition data from NASA missions are considered federal records and must be retained. While the data may be stored on resilient hardware (i.e. RAID systems) they also must be protected from local or regional disasters. Meeting this challenge requires creating multiple copies. This task is complicated by the fact that new data are constantly being added creating what are called "active archives". Having reliable, high performance tools for replicating and synchronizing active archives in a timely fashion is critical to preservation of the data. When archives were smaller using tools like bbcp, rsync and rcp worked fairly well. While these tools are affective they are not optimized for synchronizing big data archives and their poor performance at scale lead us to develop a new tool designed specifically for big data archives. It combines the best features of git, bbcp, rsync and rcp. We call this tool "Mimic" and we discuss the design of the tool, performance comparisons and its use at NASA's Planetary Plasma Interactions (PPI) Node of the Planetary Data System (PDS).

  17. DESIGN SAMPLING AND REPLICATION ASSIGNMENT UNDER FIXED COMPUTING BUDGET

    Institute of Scientific and Technical Information of China (English)

    Loo Hay LEE; Ek Peng CHEW

    2005-01-01

    For many real world problems, when the design space is huge and unstructured, and time consuming simulation is needed to estimate the performance measure, it is important to decide how many designs to sample and how long to run for each design alternative given that we have only a fixed amount of computing time. In this paper, we present a simulation study on how the distribution of the performance measures and distribution of the estimation errors/noises will affect the decision.From the analysis, it is observed that when the underlying distribution of the noise is bounded and if there is a high chance that we can get the smallest noise, then the decision will be to sample as many as possible, but if the noise is unbounded, then it will be important to reduce the noise level first by assigning more replications for each design. On the other hand, if the distribution of the performance measure indicates that we will have a high chance of getting good designs, the suggestion is also to reduce the noise level, otherwise, we need to sample more designs so as to increase the chances of getting good designs. For the special case when the distributions of both the performance measures and noise are normal, we are able to estimate the number of designs to sample, and the number of replications to run in order to obtain the best performance.

  18. Synthesis of Fault-Tolerant Embedded Systems with Checkpointing and Replication

    DEFF Research Database (Denmark)

    Izosimov, Viacheslav; Pop, Paul; Eles, Petru;

    2006-01-01

    We present an approach to the synthesis of fault-tolerant hard real-time systems for safety-critical applications. We use checkpointing with rollback recovery and active replication for tolerating transient faults. Processes are statically scheduled and communications are performed using the time...

  19. Distinct Contributions of Replication and Transcription to Mutation Rate Variation of Human Genomes

    KAUST Repository

    Cui, Peng

    2012-03-23

    Here, we evaluate the contribution of two major biological processes—DNA replication and transcription—to mutation rate variation in human genomes. Based on analysis of the public human tissue transcriptomics data, high-resolution replicating map of Hela cells and dbSNP data, we present significant correlations between expression breadth, replication time in local regions and SNP density. SNP density of tissue-specific (TS) genes is significantly higher than that of housekeeping (HK) genes. TS genes tend to locate in late-replicating genomic regions and genes in such regions have a higher SNP density compared to those in early-replication regions. In addition, SNP density is found to be positively correlated with expression level among HK genes. We conclude that the process of DNA replication generates stronger mutational pressure than transcription-associated biological processes do, resulting in an increase of mutation rate in TS genes while having weaker effects on HK genes. In contrast, transcription-associated processes are mainly responsible for the accumulation of mutations in highly-expressed HK genes.

  20. Inhibition of nuclear factor kappa B activation reduces Coxsackievirus B3 replication in lymphoid cells.

    Science.gov (United States)

    Sobotta, Katharina; Wilsky, Steffi; Althof, Nadine; Wiesener, Nadine; Wutzler, Peter; Henke, Andreas

    2012-02-01

    Interactions between viral replication machineries and host cell metabolism display interesting information how certain viruses capitalize cellular pathways to support progeny production. Among those pathogens, Coxsackievirus B3 (CVB3) has been identified to manipulate intracellular signaling very comprehensively. Next to others, this human pathogenic virus causes acute and chronic forms of myocarditis, pancreatitis, and meningitis. Here, activation of nuclear factor kappa B (NFκB) signaling appears to be involved in successful infection. Viral replication is not restricted to solid organs but involves susceptible immune cells as well. In the present study, p65 phosphorylation as one aspect of NFκB activation and inhibition via BAY 11-7085 administration was analyzed in the context of CVB3 replication in lymphoid cells. During CVB3 infection, an up-regulation of p65 translation is detectable, which is accompanied by noticeable phosphorylation. Inhibition of NFκB signaling reduces viral replication in a dose- and time-dependent manner. Taken together, these results indicate that during CVB3 replication in human and murine lymphoid cells, NFκB signaling is activated and facilitates viral replication. Therefore, antiviral strategies to target such central cellular signaling pathways may represent potential possibilities for the development of new virostatica.

  1. Replication efficiency of soil-bound prions varies with soil type.

    Science.gov (United States)

    Saunders, Samuel E; Shikiya, Ronald A; Langenfeld, Katie; Bartelt-Hunt, Shannon L; Bartz, Jason C

    2011-06-01

    Prion sorption to soil is thought to play an important role in the transmission of scrapie and chronic wasting disease (CWD) via the environment. Sorption of PrP to soil and soil minerals is influenced by the strain and species of PrP(Sc) and by soil characteristics. However, the ability of soil-bound prions to convert PrP(c) to PrP(Sc) under these wide-ranging conditions remains poorly understood. We developed a semiquantitative protein misfolding cyclic amplification (PMCA) protocol to evaluate replication efficiency of soil-bound prions. Binding of the hyper (HY) strain of transmissible mink encephalopathy (TME) (hamster) prions to a silty clay loam soil yielded a greater-than-1-log decrease in PMCA replication efficiency with a corresponding 1.3-log reduction in titer. The increased binding of PrP(Sc) to soil over time corresponded with a decrease in PMCA replication efficiency. The PMCA efficiency of bound prions varied with soil type, where prions bound to clay and organic surfaces exhibited significantly lower replication efficiencies while prions bound to sand exhibited no apparent difference in replication efficiency compared to unbound controls. PMCA results from hamster and CWD agent-infected elk prions yielded similar findings. Given that PrP(Sc) adsorption affinity varies with soil type, the overall balance between prion adsorption affinity and replication efficiency for the dominant soil types of an area may be a significant determinant in the environmental transmission of prion diseases.

  2. Adenovirus E1A/E1B Transformed Amniotic Fluid Cells Support Human Cytomegalovirus Replication

    Directory of Open Access Journals (Sweden)

    Natascha Krömmelbein

    2016-02-01

    Full Text Available The human cytomegalovirus (HCMV replicates to high titers in primary human fibroblast cell cultures. A variety of primary human cells and some tumor-derived cell lines do also support permissive HCMV replication, yet at low levels. Cell lines established by transfection of the transforming functions of adenoviruses have been notoriously resistant to HCMV replication and progeny production. Here, we provide first-time evidence that a permanent cell line immortalized by adenovirus type 5 E1A and E1B (CAP is supporting the full HCMV replication cycle and is releasing infectious progeny. The CAP cell line had previously been established from amniotic fluid cells which were likely derived from membranes of the developing fetus. These cells can be grown under serum-free conditions. HCMV efficiently penetrated CAP cells, expressed its immediate-early proteins and dispersed restrictive PML-bodies. Viral DNA replication was initiated and viral progeny became detectable by electron microscopy in CAP cells. Furthermore, infectious virus was released from CAP cells, yet to lower levels compared to fibroblasts. Subviral dense bodies were also secreted from CAP cells. The results show that E1A/E1B expression in transformed cells is not generally repressive to HCMV replication and that CAP cells may be a good substrate for dense body based vaccine production.

  3. The glyceraldehyde-3-phosphate dehydrogenase and the small GTPase Rab 2 are crucial for Brucella replication.

    Directory of Open Access Journals (Sweden)

    Emilie Fugier

    2009-06-01

    Full Text Available The intracellular pathogen Brucella abortus survives and replicates inside host cells within an endoplasmic reticulum (ER-derived replicative organelle named the "Brucella-containing vacuole" (BCV. Here, we developed a subcellular fractionation method to isolate BCVs and characterize for the first time the protein composition of its replicative niche. After identification of BCV membrane proteins by 2 dimensional (2D gel electrophoresis and mass spectrometry, we focused on two eukaryotic proteins: the glyceraldehyde-3-phosphate dehydrogenase (GAPDH and the small GTPase Rab 2 recruited to the vacuolar membrane of Brucella. These proteins were previously described to localize on vesicular and tubular clusters (VTC and to regulate the VTC membrane traffic between the endoplasmic reticulum (ER and the Golgi. Inhibition of either GAPDH or Rab 2 expression by small interfering RNA strongly inhibited B. abortus replication. Consistent with this result, inhibition of other partners of GAPDH and Rab 2, such as COPI and PKC iota, reduced B. abortus replication. Furthermore, blockage of Rab 2 GTPase in a GDP-locked form also inhibited B. abortus replication. Bacteria did not fuse with the ER and instead remained in lysosomal-associated membrane vacuoles. These results reveal an essential role for GAPDH and the small GTPase Rab 2 in B. abortus virulence within host cells.

  4. [The effects of TorR protein on initiation of DNA replication in Escherichia coli].

    Science.gov (United States)

    Yuan, Yao; Jiaxin, Qiao; Jing, Li; Hui, Li; Morigen, Morigen

    2015-03-01

    The two-component systems, which could sense and respond to environmental changes, widely exist in bacteria as a signal transduction pathway. The bacterial CckA/CtrA, ArcA/ArcB and PhoP/PhoQ two-component systems are associated with initiation of DNA replication and cell division, however, the effects of the TorS/TorR system on cell cycle and DNA replication remains unknown. The TorS/TorR system in Escherichia coli can sense changes in trimethylamine oxide (TMAO) concentration around the cells. However, it is unknown if it also affects initiation of DNA replication. We detected DNA replication patterns in ΔtorS and ΔtorR mutant strains by flow cytometry. We found that the average number of replication origins (oriCs) per cell and doubling time in ΔtorS mutants were the same while the average number of oriCs in ΔtorR mutants was increased compared with that in wild-type cells. These results indicated that absence of TorR led to an earlier initiation of DNA replication than that in wild-type cells. Strangely, neither overexpression of TorR nor co-expression of TorR and TorS could restore ΔtorR mutant phenotype to the wild type. However, overexpression of SufD in both wild type and ΔtorR mutants promoted initiation of DNA replication, while mutation of SufD delayed it in ΔtorR mutants. Thus, TorR may affect initiation of DNA replication indirectly through regulating gene expression of sufD.

  5. A Role of hIPI3 in DNA Replication Licensing in Human Cells.

    Science.gov (United States)

    Huang, Yining; Amin, Aftab; Qin, Yan; Wang, Ziyi; Jiang, Huadong; Liang, Lu; Shi, Linjing; Liang, Chun

    2016-01-01

    The yeast Ipi3p is required for DNA replication and cell viability in Sacharomyces cerevisiae. It is an essential component of the Rix1 complex (Rix1p/Ipi2p-Ipi1p-Ipi3p) that is required for the processing of 35S pre-rRNA in pre-60S ribosomal particles and for the initiation of DNA replication. The human IPI3 homolog is WDR18 (WD repeat domain 18), which shares significant homology with yIpi3p. Here we report that knockdown of hIPI3 resulted in substantial defects in the chromatin association of the MCM complex, DNA replication, cell cycle progression and cell proliferation. Importantly, hIPI3 silencing did not result in a reduction of the protein level of hCDC6, hMCM7, or the ectopically expressed GFP protein, indicating that protein synthesis was not defective in the same time frame of the DNA replication and cell cycle defects. Furthermore, the mRNA and protein levels of hIPI3 fluctuate in the cell cycle, with the highest levels from M phase to early G1 phase, similar to other pre-replicative (pre-RC) proteins. Moreover, hIPI3 interacts with other replication-initiation proteins, co-localizes with hMCM7 in the nucleus, and is important for the nuclear localization of hMCM7. We also found that hIPI3 preferentially binds to the origins of DNA replication including those at the c-Myc, Lamin-B2 and β-Globin loci. These results indicate that hIPI3 is involved in human DNA replication licensing independent of its role in ribosome biogenesis.

  6. Sleeping Beauty transposon-based system for rapid generation of HBV-replicating stable cell lines.

    Science.gov (United States)

    Wu, Yong; Zhang, Tian-Ying; Fang, Lin-Lin; Chen, Zi-Xuan; Song, Liu-Wei; Cao, Jia-Li; Yang, Lin; Yuan, Quan; Xia, Ning-Shao

    2016-08-01

    The stable HBV-replicating cell lines, which carry replication-competent HBV genome stably integrated into the genome of host cell, are widely used to evaluate the effects of antiviral agents. However, current methods to generate HBV-replicating cell lines, which are mostly dependent on random integration of foreign DNA via plasmid transfection, are less-efficient and time-consuming. To address this issue, we constructed an all-in-one Sleeping Beauty transposon system (denoted pTSMP-HBV vector) for robust generation of stable cell lines carrying replication-competent HBV genome of different genotype. This vector contains a Sleeping Beauty transposon containing HBV 1.3-copy genome with an expression cassette of the SV40 promoter driving red fluorescent protein (mCherry) and self-cleaving P2A peptide linked puromycin resistance gene (PuroR). In addition, a PGK promoter-driven SB100X hyperactive transposase cassette is placed in the outside of the transposon in the same plasmid.The HBV-replicating stable cells could be obtained from pTSMP-HBV transfected HepG2 cells by red fluorescence-activated cell sorting and puromycin resistant cell selection within 4-week. Using this system, we successfully constructed four cell lines carrying replication-competent HBV genome of genotypes A-D. The replication and viral protein expression profiles of these cells were systematically characterized. In conclusion, our study provides a high-efficiency strategy to generate HBV-replicating stable cell lines, which may facilitate HBV-related virological study.

  7. PCNA Modifications for Regulation of Post-Replication Repair Pathways

    OpenAIRE

    2008-01-01

    Stalled DNA replication forks activate specific DNA repair mechanism called post-replication repair (PRR) pathways that simply bypass DNA damage. The bypassing of DNA damage by PRR prevents prolonged stalling of DNA replication that could result in double strand breaks (DSBs). Proliferating cell nuclear antigen (PCNA) functions to initiate and choose different bypassing pathways of PRR. In yeast, DNA replication forks stalled by DNA damage induces monoubiquitination of PCNA at K164, which is ...

  8. Checkpoint responses to replication stalling: inducing tolerance and preventing mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kai, Mihoko; Wang, Teresa S.-F

    2003-11-27

    Replication mutants often exhibit a mutator phenotype characterized by point mutations, single base frameshifts, and the deletion or duplication of sequences flanked by homologous repeats. Mutation in genes encoding checkpoint proteins can significantly affect the mutator phenotype. Here, we use fission yeast (Schizosaccharomyces pombe) as a model system to discuss the checkpoint responses to replication perturbations induced by replication mutants. Checkpoint activation induced by a DNA polymerase mutant, aside from delay of mitotic entry, up-regulates the translesion polymerase DinB (Pol{kappa}). Checkpoint Rad9-Rad1-Hus1 (9-1-1) complex, which is loaded onto chromatin by the Rad17-Rfc2-5 checkpoint complex in response to replication perturbation, recruits DinB onto chromatin to generate the point mutations and single nucleotide frameshifts in the replication mutator. This chain of events reveals a novel checkpoint-induced tolerance mechanism that allows cells to cope with replication perturbation, presumably to make possible restarting stalled replication forks. Fission yeast Cds1 kinase plays an essential role in maintaining DNA replication fork stability in the face of DNA damage and replication fork stalling. Cds1 kinase is known to regulate three proteins that are implicated in maintaining replication fork stability: Mus81-Eme1, a hetero-dimeric structure-specific endonuclease complex; Rqh1, a RecQ-family helicase involved in suppressing inappropriate recombination during replication; and Rad60, a protein required for recombinational repair during replication. These Cds1-regulated proteins are thought to cooperatively prevent mutagenesis and maintain replication fork stability in cells under replication stress. These checkpoint-regulated processes allow cells to survive replication perturbation by preventing stalled replication forks from degenerating into deleterious DNA structures resulting in genomic instability and cancer development.

  9. Replication of plasmids in gram-negative bacteria.

    OpenAIRE

    1989-01-01

    Replication of plasmid deoxyribonucleic acid (DNA) is dependent on three stages: initiation, elongation, and termination. The first stage, initiation, depends on plasmid-encoded properties such as the replication origin and, in most cases, the replication initiation protein (Rep protein). In recent years the understanding of initiation and regulation of plasmid replication in Escherichia coli has increased considerably, but it is only for the ColE1-type plasmids that significant biochemical d...

  10. Pressure tube replication techniques using the advanced NDE system

    Energy Technology Data Exchange (ETDEWEB)

    Isherwood, A.; Jarron, D.; Travers, J.; Hanley, K. [Ontario Power Generation, Pickering, Ontario (Canada)]. E-mail: andrew.isherwood@opg.com

    2006-07-01

    Periodic and in-service inspections of fuel channels are essential for the proper assessment of the structural integrity of these vital components. The arrival of new delivery devices for fuel channel inspections has driven new tooling for gathering and analyzing NDE data. The Advanced Non-Destructive Examination (ANDE) Replication System has been designed to compliment the ANDE Inspection System by providing a two plate replica system. These plates deliver a compound that makes a positive 3D mould of known ID flaws to gather information for flaw assessment. The two plate system, and the ability to retrieve and recharge the moulds in the reactor vault allows for gathering defect information with minimal critical path time. The ANDE Replication System was built on the foundation of CIGAR experience by a solid design team familiar with 3D CAD and manufacturing techniques. The tooling and controls went through a series of integration stages in the laboratory and then later with the Universal Delivery Machine (UDM) before being used on reactor starting in 2003. Once the inspection phase of an outage has been completed, the analysis team provides a list of flaw candidates that require 'root radius' information to complete the flaw assessment. This is a measure of how sharp the corners are in the defect. This data is used as part of the stress calculation that ultimately determines how many shutdown cycles that the reactor can have before that flaw must be re-inspected. The inspection tool is then swapped out of the delivery machine in the reactor vault using the versatile connectorized umbilical. The replication tool is loaded on the machine, charged with replica compound on each of the two plates, and then sent to the target channel(s). On channel, the operators use the same console as the ANDE Inspection System, but have a separate control system with a graphical display of the tool that shows its position in the channel with respect to the E-face. The axial

  11. Chromatin Dynamics During DNA Replication and Uncharacterized Replication Factors determined by Nascent Chromatin Capture (NCC) Proteomics

    Science.gov (United States)

    Alabert, Constance; Bukowski-Wills, Jimi-Carlo; Lee, Sung-Bau; Kustatscher, Georg; Nakamura, Kyosuke; de Lima Alves, Flavia; Menard, Patrice; Mejlvang, Jakob; Rappsilber, Juri; Groth, Anja

    2014-01-01

    SUMMARY To maintain genome function and stability, DNA sequence and its organization into chromatin must be duplicated during cell division. Understanding how entire chromosomes are copied remains a major challenge. Here, we use Nascent Chromatin Capture (NCC) to profile chromatin proteome dynamics during replication in human cells. NCC relies on biotin-dUTP labelling of replicating DNA, affinity-purification and quantitative proteomics. Comparing nascent chromatin with mature post-replicative chromatin, we provide association dynamics for 3995 proteins. The replication machinery and 485 chromatin factors like CAF-1, DNMT1, SUV39h1 are enriched in nascent chromatin, whereas 170 factors including histone H1, DNMT3, MBD1-3 and PRC1 show delayed association. This correlates with H4K5K12diAc removal and H3K9me1 accumulation, while H3K27me3 and H3K9me3 remain unchanged. Finally, we combine NCC enrichment with experimentally derived chromatin probabilities to predict a function in nascent chromatin for 93 uncharacterized proteins and identify FAM111A as a replication factor required for PCNA loading. Together, this provides an extensive resource to understand genome and epigenome maintenance. PMID:24561620

  12. Geminin: a major DNA replication safeguard in higher eukaryotes

    DEFF Research Database (Denmark)

    Melixetian, Marina; Helin, Kristian

    2004-01-01

    Eukaryotes have evolved multiple mechanisms to restrict DNA replication to once per cell cycle. These mechanisms prevent relicensing of origins of replication after initiation of DNA replication in S phase until the end of mitosis. Most of our knowledge of mechanisms controlling prereplication...

  13. Anaphase onset before complete DNA replication with intact checkpoint responses

    DEFF Research Database (Denmark)

    Torres-Rosell, Jordi; De Piccoli, Giacomo; Cordon-Preciado, Violeta

    2007-01-01

    Cellular checkpoints prevent mitosis in the presence of stalled replication forks. Whether checkpoints also ensure the completion of DNA replication before mitosis is unknown. Here, we show that in yeast smc5-smc6 mutants, which are related to cohesin and condensin, replication is delayed, most...

  14. Replication NAND gate with light as input and output.

    Science.gov (United States)

    Samiappan, Manickasundaram; Dadon, Zehavit; Ashkenasy, Gonen

    2011-01-14

    Logic operations can highlight information transfer within complex molecular networks. We describe here the design of a peptide-based replication system that can be detected by following its fluorescence quenching. This process is used to negate the signal of light-activated replication, and thus to prepare the first replication NAND gate.

  15. Assembling semiconductor nanocomposites using DNA replication technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Heimer, Brandon W.; Crown, Kevin K.; Bachand, George David

    2005-11-01

    Deoxyribonucleic acid (DNA) molecules represent Nature's genetic database, encoding the information necessary for all cellular processes. From a materials engineering perspective, DNA represents a nanoscale scaffold with highly refined structure, stability across a wide range of environmental conditions, and the ability to interact with a range of biomolecules. The ability to mass-manufacture functionalized DNA strands with Angstrom-level resolution through DNA replication technology, however, has not been explored. The long-term goal of the work presented in this report is focused on exploiting DNA and in vitro DNA replication processes to mass-manufacture nanocomposite materials. The specific objectives of this project were to: (1) develop methods for replicating DNA strands that incorporate nucleotides with ''chemical handles'', and (2) demonstrate attachment of nanocrystal quantum dots (nQDs) to functionalized DNA strands. Polymerase chain reaction (PCR) and primer extension methodologies were used to successfully synthesize amine-, thiol-, and biotin-functionalized DNA molecules. Significant variability in the efficiency of modified nucleotide incorporation was observed, and attributed to the intrinsic properties of the modified nucleotides. Noncovalent attachment of streptavidin-coated nQDs to biotin-modified DNA synthesized using the primer extension method was observed by epifluorescence microscopy. Data regarding covalent attachment of nQDs to amine- and thiol-functionalized DNA was generally inconclusive; alternative characterization tools are necessary to fully evaluate these attachment methods. Full realization of this technology may facilitate new approaches to manufacturing materials at the nanoscale. In addition, composite nQD-DNA materials may serve as novel recognition elements in sensor devices, or be used as diagnostic tools for forensic analyses. This report summarizes the results obtained over the course of this 1-year

  16. The IFITMs Inhibit Zika Virus Replication

    Directory of Open Access Journals (Sweden)

    George Savidis

    2016-06-01

    Full Text Available Zika virus has emerged as a severe health threat with a rapidly expanding range. The IFITM family of restriction factors inhibits the replication of a broad range of viruses, including the closely related flaviruses West Nile virus and dengue virus. Here, we show that IFITM1 and IFITM3 inhibit Zika virus infection early in the viral life cycle. Moreover, IFITM3 can prevent Zika-virus-induced cell death. These results suggest that strategies to boost the actions and/or levels of the IFITMs might be useful for inhibiting a broad range of emerging viruses.

  17. Replication of DNA during barley endosperm development

    DEFF Research Database (Denmark)

    Giese, H.

    1992-01-01

    The incorporation of [6-H-3]-thymidine into DNA of developing barley end sperm was examined by autoradiography of cross sections of seeds and DNA analysis. The majority of nuclear divisions took place in the very young endosperm, but as late as 25 days after anthesis there was evidence for DNA...... replication. The DNA content of the endosperm increases during development and in response to nitrogen application in parallel to the storage protein synthesis profile. The hordein genes were hypersensitive to DNase I treatment throughout development....

  18. Simulation Studies in Data Replication Strategies

    Institute of Scientific and Technical Information of China (English)

    HarveyB.Newman; IosifC.Legrand

    2001-01-01

    The aim of this work is to present the simulation studies in evaluating different data replication strategies between Regional Cent