WorldWideScience

Sample records for centromere replication timing

  1. Epigenetically-inherited centromere and neocentromere DNA replicates earliest in S-phase.

    Directory of Open Access Journals (Sweden)

    Amnon Koren

    2010-08-01

    Full Text Available Eukaryotic centromeres are maintained at specific chromosomal sites over many generations. In the budding yeast Saccharomyces cerevisiae, centromeres are genetic elements defined by a DNA sequence that is both necessary and sufficient for function; whereas, in most other eukaryotes, centromeres are maintained by poorly characterized epigenetic mechanisms in which DNA has a less definitive role. Here we use the pathogenic yeast Candida albicans as a model organism to study the DNA replication properties of centromeric DNA. By determining the genome-wide replication timing program of the C. albicans genome, we discovered that each centromere is associated with a replication origin that is the first to fire on its respective chromosome. Importantly, epigenetic formation of new ectopic centromeres (neocentromeres was accompanied by shifts in replication timing, such that a neocentromere became the first to replicate and became associated with origin recognition complex (ORC components. Furthermore, changing the level of the centromere-specific histone H3 isoform led to a concomitant change in levels of ORC association with centromere regions, further supporting the idea that centromere proteins determine origin activity. Finally, analysis of centromere-associated DNA revealed a replication-dependent sequence pattern characteristic of constitutively active replication origins. This strand-biased pattern is conserved, together with centromere position, among related strains and species, in a manner independent of primary DNA sequence. Thus, inheritance of centromere position is correlated with a constitutively active origin of replication that fires at a distinct early time. We suggest a model in which the distinct timing of DNA replication serves as an epigenetic mechanism for the inheritance of centromere position.

  2. Defining the Centromere.

    Science.gov (United States)

    Erickson, John

    1983-01-01

    Focusing on the centromere (kinetochore), discusses what term should be used to represent this cellular component. Also discusses centromere/kinetochore replication, structure of the kinetochore, and the nature of the binding material that holds until anaphase of mitosis and meiosis. (JN)

  3. Rif1 regulates initiation timing of late replication origins throughout the S. cerevisiae genome.

    Directory of Open Access Journals (Sweden)

    Jared M Peace

    Full Text Available Chromosomal DNA replication involves the coordinated activity of hundreds to thousands of replication origins. Individual replication origins are subject to epigenetic regulation of their activity during S-phase, resulting in differential efficiencies and timings of replication initiation during S-phase. This regulation is thought to involve chromatin structure and organization into timing domains with differential ability to recruit limiting replication factors. Rif1 has recently been identified as a genome-wide regulator of replication timing in fission yeast and in mammalian cells. However, previous studies in budding yeast have suggested that Rif1's role in controlling replication timing may be limited to subtelomeric domains and derives from its established role in telomere length regulation. We have analyzed replication timing by analyzing BrdU incorporation genome-wide, and report that Rif1 regulates the timing of late/dormant replication origins throughout the S. cerevisiae genome. Analysis of pfa4Δ cells, which are defective in palmitoylation and membrane association of Rif1, suggests that replication timing regulation by Rif1 is independent of its role in localizing telomeres to the nuclear periphery. Intra-S checkpoint signaling is intact in rif1Δ cells, and checkpoint-defective mec1Δ cells do not comparably deregulate replication timing, together indicating that Rif1 regulates replication timing through a mechanism independent of this checkpoint. Our results indicate that the Rif1 mechanism regulates origin timing irrespective of proximity to a chromosome end, and suggest instead that telomere sequences merely provide abundant binding sites for proteins that recruit Rif1. Still, the abundance of Rif1 binding in telomeric domains may facilitate Rif1-mediated repression of non-telomeric origins that are more distal from centromeres.

  4. Organization and evolution of Gorilla centromeric DNA from old strategies to new approaches.

    Science.gov (United States)

    Catacchio, C R; Ragone, R; Chiatante, G; Ventura, M

    2015-01-01

    The centromere/kinetochore interaction is responsible for the pairing and segregation of replicated chromosomes in eukaryotes. Centromere DNA is portrayed as scarcely conserved, repetitive in nature, quickly evolving and protein-binding competent. Among primates, the major class of centromeric DNA is the pancentromeric α-satellite, made of arrays of 171 bp monomers, repeated in a head-to-tail pattern. α-satellite sequences can either form tandem heterogeneous monomeric arrays or assemble in higher-order repeats (HORs). Gorilla centromere DNA has barely been characterized, and data are mainly based on hybridizations of human alphoid sequences. We isolated and finely characterized gorilla α-satellite sequences and revealed relevant structure and chromosomal distribution similarities with other great apes as well as gorilla-specific features, such as the uniquely octameric structure of the suprachromosomal family-2 (SF2). We demonstrated for the first time the orthologous localization of alphoid suprachromosomal families-1 and -2 (SF1 and SF2) between human and gorilla in contrast to chimpanzee centromeres. Finally, the discovery of a new 189 bp monomer type in gorilla centromeres unravels clues to the role of the centromere protein B, paving the way to solve the significance of the centromere DNA's essential repetitive nature in association with its function and the peculiar evolution of the α-satellite sequence. PMID:26387916

  5. Chromatin Assembly at Kinetochores Is Uncoupled from DNA Replication

    Science.gov (United States)

    Shelby, Richard D.; Monier, Karine; Sullivan, Kevin F.

    2000-01-01

    The specification of metazoan centromeres does not depend strictly on centromeric DNA sequences, but also requires epigenetic factors. The mechanistic basis for establishing a centromeric “state” on the DNA remains unclear. In this work, we have directly examined replication timing of the prekinetochore domain of human chromosomes. Kinetochores were labeled by expression of epitope-tagged CENP-A, which stably marks prekinetochore domains in human cells. By immunoprecipitating CENP-A mononucleosomes from synchronized cells pulsed with [3H]thymidine we demonstrate that CENP-A–associated DNA is replicated in mid-to-late S phase. Cytological analysis of DNA replication further demonstrated that centromeres replicate asynchronously in parallel with numerous other genomic regions. In contrast, quantitative Western blot analysis demonstrates that CENP-A protein synthesis occurs later, in G2. Quantitative fluorescence microscopy and transient transfection in the presence of aphidicolin, an inhibitor of DNA replication, show that CENP-A can assemble into centromeres in the absence of DNA replication. Thus, unlike most genomic chromatin, histone synthesis and assembly are uncoupled from DNA replication at the kinetochore. Uncoupling DNA replication from CENP-A synthesis suggests that regulated chromatin assembly or remodeling could play a role in epigenetic centromere propagation. PMID:11086012

  6. Synaptonemal complex components persist at centromeres and are required for homologous centromere pairing in mouse spermatocytes.

    Directory of Open Access Journals (Sweden)

    C Gaston Bisig

    2012-06-01

    Full Text Available Recent studies in simple model organisms have shown that centromere pairing is important for ensuring high-fidelity meiotic chromosome segregation. However, this process and the mechanisms regulating it in higher eukaryotes are unknown. Here we present the first detailed study of meiotic centromere pairing in mouse spermatogenesis and link it with key events of the G2/metaphase I transition. In mouse we observed no evidence of the persistent coupling of centromeres that has been observed in several model organisms. We do however find that telomeres associate in non-homologous pairs or small groups in B type spermatogonia and pre-leptotene spermatocytes, and this association is disrupted by deletion of the synaptonemal complex component SYCP3. Intriguingly, we found that, in mid prophase, chromosome synapsis is not initiated at centromeres, and centromeric regions are the last to pair in the zygotene-pachytene transition. In late prophase, we first identified the proteins that reside at paired centromeres. We found that components of the central and lateral element and transverse filaments of the synaptonemal complex are retained at paired centromeres after disassembly of the synaptonemal complex along diplotene chromosome arms. The absence of SYCP1 prevents centromere pairing in knockout mouse spermatocytes. The localization dynamics of SYCP1 and SYCP3 suggest that they play different roles in promoting homologous centromere pairing. SYCP1 remains only at paired centromeres coincident with the time at which some kinetochore proteins begin loading at centromeres, consistent with a role in assembly of meiosis-specific kinetochores. After removal of SYCP1 from centromeres, SYCP3 then accumulates at paired centromeres where it may promote bi-orientation of homologous centromeres. We propose that, in addition to their roles as synaptonemal complex components, SYCP1 and SYCP3 act at the centromeres to promote the establishment and/or maintenance of

  7. Inferring Where and When Replication Initiates from Genome-Wide Replication Timing Data

    Science.gov (United States)

    Baker, A.; Audit, B.; Yang, S. C.-H.; Bechhoefer, J.; Arneodo, A.

    2012-06-01

    Based on an analogy between DNA replication and one dimensional nucleation-and-growth processes, various attempts to infer the local initiation rate I(x,t) of DNA replication origins from replication timing data have been developed in the framework of phase transition kinetics theories. These works have all used curve-fit strategies to estimate I(x,t) from genome-wide replication timing data. Here, we show how to invert analytically the Kolmogorov-Johnson-Mehl-Avrami model and extract I(x,t) directly. Tests on both simulated and experimental budding-yeast data confirm the location and firing-time distribution of replication origins.

  8. On the scattering of DNA replication completion times

    Science.gov (United States)

    Meilikhov, E. Z.; Farzetdinova, R. M.

    2015-07-01

    Stochasticity of Eukaryotes' DNA replication should not lead to large fluctuations of replication times, which could result in mitotic catastrophes. Fundamental problem that cells face is how to be ensured that entire genome is replicated on time. We develop analytic approach of calculating DNA replication times, that being simplified and approximate, leads, nevertheless, to results practically coincident with those that were obtained by some sophisticated methods. In the framework of that model we consider replication times' scattering and discuss the influence of repair stopping on kinetics of DNA replication. Our main explicit formulae for DNA replication time t r ∝ ( N is the total number of DNA base pairs) is of general character and explains basic features of DNA replication kinetics.

  9. Premitotic assembly of human CENPs -T and -W switches centromeric chromatin to a mitotic state.

    Directory of Open Access Journals (Sweden)

    Lisa Prendergast

    2011-06-01

    Full Text Available Centromeres are differentiated chromatin domains, present once per chromosome, that direct segregation of the genome in mitosis and meiosis by specifying assembly of the kinetochore. They are distinct genetic loci in that their identity in most organisms is determined not by the DNA sequences they are associated with, but through specific chromatin composition and context. The core nucleosomal protein CENP-A/cenH3 plays a primary role in centromere determination in all species and directs assembly of a large complex of associated proteins in vertebrates. While CENP-A itself is stably transmitted from one generation to the next, the nature of the template for centromere replication and its relationship to kinetochore function are as yet poorly understood. Here, we investigate the assembly and inheritance of a histone fold complex of the centromere, the CENP-T/W complex, which is integrated with centromeric chromatin in association with canonical histone H3 nucleosomes. We have investigated the cell cycle regulation, timing of assembly, generational persistence, and requirement for function of CENPs -T and -W in the cell cycle in human cells. The CENP-T/W complex assembles through a dynamic exchange mechanism in late S-phase and G2, is required for mitosis in each cell cycle and does not persist across cell generations, properties reciprocal to those measured for CENP-A. We propose that the CENP-A and H3-CENP-T/W nucleosome components of the centromere are specialized for centromeric and kinetochore activities, respectively. Segregation of the assembly mechanisms for the two allows the cell to switch between chromatin configurations that reciprocally support the replication of the centromere and its conversion to a mitotic state on postreplicative chromatin.

  10. ASAR15, A cis-acting locus that controls chromosome-wide replication timing and stability of human chromosome 15.

    Directory of Open Access Journals (Sweden)

    Nathan Donley

    2015-01-01

    Full Text Available DNA replication initiates at multiple sites along each mammalian chromosome at different times during each S phase, following a temporal replication program. We have used a Cre/loxP-based strategy to identify cis-acting elements that control this replication-timing program on individual human chromosomes. In this report, we show that rearrangements at a complex locus at chromosome 15q24.3 result in delayed replication and structural instability of human chromosome 15. Characterization of this locus identified long, RNA transcripts that are retained in the nucleus and form a "cloud" on one homolog of chromosome 15. We also found that this locus displays asynchronous replication that is coordinated with other random monoallelic genes on chromosome 15. We have named this locus ASynchronous replication and Autosomal RNA on chromosome 15, or ASAR15. Previously, we found that disruption of the ASAR6 lincRNA gene results in delayed replication, delayed mitotic condensation and structural instability of human chromosome 6. Previous studies in the mouse found that deletion of the Xist gene, from the X chromosome in adult somatic cells, results in a delayed replication and instability phenotype that is indistinguishable from the phenotype caused by disruption of either ASAR6 or ASAR15. In addition, delayed replication and chromosome instability were detected following structural rearrangement of many different human or mouse chromosomes. These observations suggest that all mammalian chromosomes contain similar cis-acting loci. Thus, under this scenario, all mammalian chromosomes contain four distinct types of essential cis-acting elements: origins, telomeres, centromeres and "inactivation/stability centers", all functioning to promote proper replication, segregation and structural stability of each chromosome.

  11. Premature centromere division and other centromeric misbehavior

    Energy Technology Data Exchange (ETDEWEB)

    Fitzgerald, P.H. [Christchurch School of Medicine (New Zealand)

    1993-12-31

    Premature centromere division was initially described for the X chromosome. In an otherwise typical metaphase cell, one chromosome showed no primary constriction and appeared to have no centromere. G-banding analysis indicated that this apparent acentric fragment was an entire X chromosome. Because its centromere was divided when the centromeres of all other chromosomes of the metaphase cell were entire, the condition was described as premature centromere division (PCD). The importance of PCD lies in its being a mechanism on non-disjunction, as was indicated by the strong association of X chromosome aneuploidy with PCD,X. We can infer that the affected chromosome failed to take part in the normal distribution of chromosomes at mitoses. The centromere, it its widest sense, is generally believed to have a role in the correct orientation of chromosomes at the metaphase plate and the distribution of chromatids to the spindle poles. The failure of these functions implies a major centromeric dysfunction. What do we know of this complex region of the chromosome that might help us understand its dysfunction?

  12. Three wise centromere functions: see no error, hear no break, speak no delay.

    Science.gov (United States)

    Tanaka, Tomoyuki U; Clayton, Lesley; Natsume, Toyoaki

    2013-12-01

    The main function of the centromere is to promote kinetochore assembly for spindle microtubule attachment. Two additional functions of the centromere, however, are becoming increasingly clear: facilitation of robust sister-chromatid cohesion at pericentromeres and advancement of replication of centromeric regions. The combination of these three centromere functions ensures correct chromosome segregation during mitosis. Here, we review the mechanisms of the kinetochore-microtubule interaction, focusing on sister-kinetochore bi-orientation (or chromosome bi-orientation). We also discuss the biological importance of robust pericentromeric cohesion and early centromere replication, as well as the mechanisms orchestrating these two functions at the microtubule attachment site.

  13. The Cell Cycle Timing of Human Papillomavirus DNA Replication.

    Science.gov (United States)

    Reinson, Tormi; Henno, Liisi; Toots, Mart; Ustav, Mart; Ustav, Mart

    2015-01-01

    Viruses manipulate the cell cycle of the host cell to optimize conditions for more efficient viral genome replication. One strategy utilized by DNA viruses is to replicate their genomes non-concurrently with the host genome; in this case, the viral genome is amplified outside S phase. This phenomenon has also been described for human papillomavirus (HPV) vegetative genome replication, which occurs in G2-arrested cells; however, the precise timing of viral DNA replication during initial and stable replication phases has not been studied. We developed a new method to quantitate newly synthesized DNA levels and used this method in combination with cell cycle synchronization to show that viral DNA replication is initiated during S phase and is extended to G2 during initial amplification but follows the replication pattern of cellular DNA during S phase in the stable maintenance phase. E1 and E2 protein overexpression changes the replication time from S only to both the S and G2 phases in cells that stably maintain viral episomes. These data demonstrate that the active synthesis and replication of the HPV genome are extended into the G2 phase to amplify its copy number and the duration of HPV genome replication is controlled by the level of the viral replication proteins E1 and E2. Using the G2 phase for genome amplification may be an important adaptation that allows exploitation of changing cellular conditions during cell cycle progression. We also describe a new method to quantify newly synthesized viral DNA levels and discuss its benefits for HPV research. PMID:26132923

  14. The Cell Cycle Timing of Human Papillomavirus DNA Replication.

    Directory of Open Access Journals (Sweden)

    Tormi Reinson

    Full Text Available Viruses manipulate the cell cycle of the host cell to optimize conditions for more efficient viral genome replication. One strategy utilized by DNA viruses is to replicate their genomes non-concurrently with the host genome; in this case, the viral genome is amplified outside S phase. This phenomenon has also been described for human papillomavirus (HPV vegetative genome replication, which occurs in G2-arrested cells; however, the precise timing of viral DNA replication during initial and stable replication phases has not been studied. We developed a new method to quantitate newly synthesized DNA levels and used this method in combination with cell cycle synchronization to show that viral DNA replication is initiated during S phase and is extended to G2 during initial amplification but follows the replication pattern of cellular DNA during S phase in the stable maintenance phase. E1 and E2 protein overexpression changes the replication time from S only to both the S and G2 phases in cells that stably maintain viral episomes. These data demonstrate that the active synthesis and replication of the HPV genome are extended into the G2 phase to amplify its copy number and the duration of HPV genome replication is controlled by the level of the viral replication proteins E1 and E2. Using the G2 phase for genome amplification may be an important adaptation that allows exploitation of changing cellular conditions during cell cycle progression. We also describe a new method to quantify newly synthesized viral DNA levels and discuss its benefits for HPV research.

  15. Rad51–Rad52 Mediated Maintenance of Centromeric Chromatin in Candida albicans

    OpenAIRE

    Sreyoshi Mitra; Jonathan Gómez-Raja; Germán Larriba; Dharani Dhar Dubey; Kaustuv Sanyal

    2014-01-01

    Specification of the centromere location in most eukaryotes is not solely dependent on the DNA sequence. However, the non-genetic determinants of centromere identity are not clearly defined. While multiple mechanisms, individually or in concert, may specify centromeres epigenetically, most studies in this area are focused on a universal factor, a centromere-specific histone H3 variant CENP-A, often considered as the epigenetic determinant of centromere identity. In spite of variable timing of...

  16. Evidence for sequential and increasing activation of replication origins along replication timing gradients in the human genome.

    Science.gov (United States)

    Guilbaud, Guillaume; Rappailles, Aurélien; Baker, Antoine; Chen, Chun-Long; Arneodo, Alain; Goldar, Arach; d'Aubenton-Carafa, Yves; Thermes, Claude; Audit, Benjamin; Hyrien, Olivier

    2011-12-01

    Genome-wide replication timing studies have suggested that mammalian chromosomes consist of megabase-scale domains of coordinated origin firing separated by large originless transition regions. Here, we report a quantitative genome-wide analysis of DNA replication kinetics in several human cell types that contradicts this view. DNA combing in HeLa cells sorted into four temporal compartments of S phase shows that replication origins are spaced at 40 kb intervals and fire as small clusters whose synchrony increases during S phase and that replication fork velocity (mean 0.7 kb/min, maximum 2.0 kb/min) remains constant and narrowly distributed through S phase. However, multi-scale analysis of a genome-wide replication timing profile shows a broad distribution of replication timing gradients with practically no regions larger than 100 kb replicating at less than 2 kb/min. Therefore, HeLa cells lack large regions of unidirectional fork progression. Temporal transition regions are replicated by sequential activation of origins at a rate that increases during S phase and replication timing gradients are set by the delay and the spacing between successive origin firings rather than by the velocity of single forks. Activation of internal origins in a specific temporal transition region is directly demonstrated by DNA combing of the IGH locus in HeLa cells. Analysis of published origin maps in HeLa cells and published replication timing and DNA combing data in several other cell types corroborate these findings, with the interesting exception of embryonic stem cells where regions of unidirectional fork progression seem more abundant. These results can be explained if origins fire independently of each other but under the control of long-range chromatin structure, or if replication forks progressing from early origins stimulate initiation in nearby unreplicated DNA. These findings shed a new light on the replication timing program of mammalian genomes and provide a general

  17. Timing, coordination, and rhythm: Acrobatics at the DNA replication fork

    KAUST Repository

    Hamdan, Samir

    2010-04-09

    In DNA replication, the antiparallel nature of the parental duplex imposes certain constraints on the activity of the DNA polymerases that synthesize new DNA. The leading-strand polymerase advances in a continuous fashion, but the lagging-strand polymerase is forced to restart at short intervals. In several prokaryotic systems studied so far, this problem is solved by the formation of a loop in the lagging strand of the replication fork to reorient the lagging-strand DNA polymerase so that it advances in parallel with the leading-strand polymerase. The replication loop grows and shrinks during each cycle of Okazaki fragment synthesis. The timing of Okazaki fragment synthesis and loop formation is determined by a subtle interplay of enzymatic activities at the fork. Recent developments in single-molecule techniques have enabled the direct observation of these processes and have greatly contributed to a better understanding of the dynamic nature of the replication fork. Here, we will review recent experimental advances, present the current models, and discuss some of the exciting developments in the field. 2010 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. DNA replication origin activation in space and time.

    Science.gov (United States)

    Fragkos, Michalis; Ganier, Olivier; Coulombe, Philippe; Méchali, Marcel

    2015-06-01

    DNA replication begins with the assembly of pre-replication complexes (pre-RCs) at thousands of DNA replication origins during the G1 phase of the cell cycle. At the G1-S-phase transition, pre-RCs are converted into pre-initiation complexes, in which the replicative helicase is activated, leading to DNA unwinding and initiation of DNA synthesis. However, only a subset of origins are activated during any S phase. Recent insights into the mechanisms underlying this choice reveal how flexibility in origin usage and temporal activation are linked to chromosome structure and organization, cell growth and differentiation, and replication stress.

  19. Inbreeding drives maize centromere evolution.

    Science.gov (United States)

    Schneider, Kevin L; Xie, Zidian; Wolfgruber, Thomas K; Presting, Gernot G

    2016-02-23

    Functional centromeres, the chromosomal sites of spindle attachment during cell division, are marked epigenetically by the centromere-specific histone H3 variant cenH3 and typically contain long stretches of centromere-specific tandem DNA repeats (∼1.8 Mb in maize). In 23 inbreds of domesticated maize chosen to represent the genetic diversity of maize germplasm, partial or nearly complete loss of the tandem DNA repeat CentC precedes 57 independent cenH3 relocation events that result in neocentromere formation. Chromosomal regions with newly acquired cenH3 are colonized by the centromere-specific retrotransposon CR2 at a rate that would result in centromere-sized CR2 clusters in 20,000-95,000 y. Three lines of evidence indicate that CentC loss is linked to inbreeding, including (i) CEN10 of temperate lineages, presumed to have experienced a genetic bottleneck, contain less CentC than their tropical relatives; (ii) strong selection for centromere-linked genes in domesticated maize reduced diversity at seven of the ten maize centromeres to only one or two postdomestication haplotypes; and (iii) the centromere with the largest number of haplotypes in domesticated maize (CEN7) has the highest CentC levels in nearly all domesticated lines. Rare recombinations introduced one (CEN2) or more (CEN5) alternate CEN haplotypes while retaining a single haplotype at domestication loci linked to these centromeres. Taken together, this evidence strongly suggests that inbreeding, favored by postdomestication selection for centromere-linked genes affecting key domestication or agricultural traits, drives replacement of the tandem centromere repeats in maize and other crop plants. Similar forces may act during speciation in natural systems. PMID:26858403

  20. Nuclear Architecture Organized by Rif1 Underpins the Replication-Timing Program.

    Science.gov (United States)

    Foti, Rossana; Gnan, Stefano; Cornacchia, Daniela; Dileep, Vishnu; Bulut-Karslioglu, Aydan; Diehl, Sarah; Buness, Andreas; Klein, Felix A; Huber, Wolfgang; Johnstone, Ewan; Loos, Remco; Bertone, Paul; Gilbert, David M; Manke, Thomas; Jenuwein, Thomas; Buonomo, Sara C B

    2016-01-21

    DNA replication is temporally and spatially organized in all eukaryotes, yet the molecular control and biological function of the replication-timing program are unclear. Rif1 is required for normal genome-wide regulation of replication timing, but its molecular function is poorly understood. Here we show that in mouse embryonic stem cells, Rif1 coats late-replicating domains and, with Lamin B1, identifies most of the late-replicating genome. Rif1 is an essential determinant of replication timing of non-Lamin B1-bound late domains. We further demonstrate that Rif1 defines and restricts the interactions between replication-timing domains during the G1 phase, thereby revealing a function of Rif1 as organizer of nuclear architecture. Rif1 loss affects both number and replication-timing specificity of the interactions between replication-timing domains. In addition, during the S phase, Rif1 ensures that replication of interacting domains is temporally coordinated. In summary, our study identifies Rif1 as the molecular link between nuclear architecture and replication-timing establishment in mammals. PMID:26725008

  1. The telomere bouquet regulates meiotic centromere assembly.

    Science.gov (United States)

    Klutstein, Michael; Fennell, Alex; Fernández-Álvarez, Alfonso; Cooper, Julia Promisel

    2015-04-01

    The role of the conserved meiotic telomere bouquet has been enigmatic for over a century. We showed previously that disruption of the fission yeast bouquet impairs spindle formation in approximately half of meiotic cells. Surprisingly, bouquet-deficient meiocytes with functional spindles harbour chromosomes that fail to achieve spindle attachment. Kinetochore proteins and the centromeric histone H3 variant Cnp1 fail to localize to those centromeres that exhibit spindle attachment defects in the bouquet's absence. The HP1 orthologue Swi6 also fails to bind these centromeres, suggesting that compromised pericentromeric heterochromatin underlies the kinetochore defects. We find that centromeres are prone to disassembly during meiosis, but this is reversed by localization of centromeres to the telomere-proximal microenvironment, which is conducive to heterochromatin formation and centromere reassembly. Accordingly, artificially tethering a centromere to a telomere rescues the tethered centromere but not other centromeres. These results reveal an unanticipated level of control of centromeres by telomeres. PMID:25774833

  2. Analysis of Single-Locus Replication Timing in Asynchronous Cycling Cells.

    Science.gov (United States)

    Federica, Lo Sardo

    2016-01-01

    In higher eucaryotes, not all the genome is replicated simultaneously: there are parts of the genome that replicate at the beginning of S-phase (early S-phase), others that are replicated later. In each cell, early replicating genomic regions are alternated to late-replicating regions. In general, eucaryotic genomes are organized into structural domains where genes showing the same epigenetic state replicate at the same time.Here, we will describe the protocol that we routinely used for the analysis of replication timing of specific loci in Drosophila embryonic cell lines (S2 and S3) based on BrdU labeling and FACS sorting of different S-phase fractions (early, mid, late) of asynchronous cycling cells. PMID:27659974

  3. Cdk Activity Couples Epigenetic Centromere Inheritance to Cell Cycle Progression

    OpenAIRE

    Silva, Mariana C.C.; Bodor, Dani L.; Stellfox, Madison E.; Martins, Nuno M.C.; Hochegger, Helfrid; Foltz, Daniel R.; Jansen, Lars E.T.

    2012-01-01

    Centromeres form the site of chromosome attachment to microtubules during mitosis. Identity of these loci is maintained epigenetically by nucleosomes containing the histone H3 variant CENP-A. Propagation of CENP-A chromatin is uncoupled from DNA replication initiating only during mitotic exit. We now demonstrate that inhibition of Cdk1 and Cdk2 activities is sufficient to trigger CENP-A assembly throughout the cell cycle in a manner dependent on the canonical CENP-A assembly machinery. We fur...

  4. High Throughput Analyses of Budding Yeast ARSs Reveal New DNA Elements Capable of Conferring Centromere-Independent Plasmid Propagation

    OpenAIRE

    Timothy Hoggard; Ivan Liachko; Cassaundra Burt; Troy Meikle; Katherine Jiang; Gheorghe Craciun; Dunham, Maitreya J.; Fox, Catherine A.

    2016-01-01

    The ability of plasmids to propagate in Saccharomyces cerevisiae has been instrumental in defining eukaryotic chromosomal control elements. Stable propagation demands both plasmid replication, which requires a chromosomal replication origin (i.e., an ARS), and plasmid distribution to dividing cells, which requires either a chromosomal centromere for segregation or a plasmid-partitioning element. While our knowledge of yeast ARSs and centromeres is relatively advanced, we know less about chrom...

  5. Characterization of the replication timing program of 6 human model cell lines.

    Science.gov (United States)

    Hadjadj, Djihad; Denecker, Thomas; Maric, Chrystelle; Fauchereau, Fabien; Baldacci, Giuseppe; Cadoret, Jean-Charles

    2016-09-01

    During the S-phase, the DNA replication process is finely orchestrated and regulated by two programs: the spatial program that determines where replication will start in the genome (Cadoret et al. (2008 Oct 14), Cayrou et al. (2011 Sep), Picard et al. (2014 May 1) [1], [2], [3]), and the temporal program that determines when during the S phase different parts of the genome are replicated and when origins are activated. The temporal program is so well conserved for each cell type from independent individuals [4] that it is possible to identify a cell type from an unknown sample just by determining its replication timing program. Moreover, replicative domains are strongly correlated with the partition of the genome into topological domains (determined by the Hi-C method, Lieberman-Aiden et al. (2009 Oct 9), Pope et al. (2014 Nov 20) [5], [6]). On the one hand, replicative areas are well defined and participate in shaping the spatial organization of the genome for a given cell type. On the other hand, studies on the timing program during cell differentiation showed a certain plasticity of this program according to the stage of cell differentiation Hiratani et al. (2008 Oct 7, 2010 Feb) [7], [8]. Domains where a replication timing change was observed went through a nuclear re-localization. Thus the temporal program of replication can be considered as an epigenetic mark Hiratani and Gilbert (2009 Feb 16) [9]. We present the genomic data of replication timing in 6 human model cell lines: U2OS (GSM2111308), RKO (GSM2111309), HEK 293T (GSM2111310), HeLa (GSM2111311), MRC5-SV (GSM2111312) and K562 (GSM2111313). A short comparative analysis was performed that allowed us to define regions common to the 6 cell lines. These replication timing data can be taken into account when performing studies that use these model cell lines. PMID:27508120

  6. Characterization of the replication timing program of 6 human model cell lines

    Directory of Open Access Journals (Sweden)

    Djihad Hadjadj

    2016-09-01

    Full Text Available During the S-phase, the DNA replication process is finely orchestrated and regulated by two programs: the spatial program that determines where replication will start in the genome (Cadoret et al. (2008 Oct 14, Cayrou et al. (2011 Sep, Picard et al. (2014 May 1 [1–3], and the temporal program that determines when during the S phase different parts of the genome are replicated and when origins are activated. The temporal program is so well conserved for each cell type from independent individuals [4] that it is possible to identify a cell type from an unknown sample just by determining its replication timing program. Moreover, replicative domains are strongly correlated with the partition of the genome into topological domains (determined by the Hi-C method, Lieberman-Aiden et al. (2009 Oct 9, Pope et al. (2014 Nov 20 [5,6]. On the one hand, replicative areas are well defined and participate in shaping the spatial organization of the genome for a given cell type. On the other hand, studies on the timing program during cell differentiation showed a certain plasticity of this program according to the stage of cell differentiation Hiratani et al. (2008 Oct 7, 2010 Feb [7,8]. Domains where a replication timing change was observed went through a nuclear re-localization. Thus the temporal program of replication can be considered as an epigenetic mark Hiratani and Gilbert (2009 Feb 16 [9]. We present the genomic data of replication timing in 6 human model cell lines: U2OS (GSM2111308, RKO (GSM2111309, HEK 293T (GSM2111310, HeLa (GSM2111311, MRC5-SV (GSM2111312 and K562 (GSM2111313. A short comparative analysis was performed that allowed us to define regions common to the 6 cell lines. These replication timing data can be taken into account when performing studies that use these model cell lines.

  7. Replication Timing of Human Telomeres is Conserved during Immortalization and Influenced by Respective Subtelomeres.

    Science.gov (United States)

    Piqueret-Stephan, Laure; Ricoul, Michelle; Hempel, William M; Sabatier, Laure

    2016-01-01

    Telomeres are specific structures that protect chromosome ends and act as a biological clock, preventing normal cells from replicating indefinitely. Mammalian telomeres are replicated throughout S-phase in a predetermined order. However, the mechanism of this regulation is still unknown. We wished to investigate this phenomenon under physiological conditions in a changing environment, such as the immortalization process to better understand the mechanism for its control. We thus examined the timing of human telomere replication in normal and SV40 immortalized cells, which are cytogenetically very similar to cancer cells. We found that the timing of telomere replication was globally conserved under different conditions during the immortalization process. The timing of telomere replication was conserved despite changes in telomere length due to endogenous telomerase reactivation, in duplicated homologous chromosomes, and in rearranged chromosomes. Importantly, translocated telomeres, possessing their initial subtelomere, retained the replication timing of their homolog, independently of the proportion of the translocated arm, even when the remaining flanking DNA is restricted to its subtelomere, the closest chromosome-specific sequences (inferior to 500 kb). Our observations support the notion that subtelomere regions strongly influence the replication timing of the associated telomere. PMID:27587191

  8. Centromere domain organization and histone modifications

    Directory of Open Access Journals (Sweden)

    Bjerling P.

    2002-01-01

    Full Text Available Centromere function requires the proper coordination of several subfunctions, such as kinetochore assembly, sister chromatid cohesion, binding of kinetochore microtubules, orientation of sister kinetochores to opposite spindle poles, and their movement towards the spindle poles. Centromere structure appears to be organized in different, separable domains in order to accomplish these functions. Despite the conserved nature of centromere functions, the molecular genetic definition of the DNA sequences that form a centromere in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, in the fruit fly Drosophila melanogaster, and in humans has revealed little conservation at the level of centromere DNA sequences. Also at the protein level few centromere proteins are conserved in all of these four organisms and many are unique to the different organisms. The recent analysis of the centromere structure in the yeast S. pombe by electron microscopy and detailed immunofluorescence microscopy of Drosophila centromeres have brought to light striking similarities at the overall structural level between these centromeres and the human centromere. The structural organization of the centromere is generally multilayered with a heterochromatin domain and a central core/inner plate region, which harbors the outer plate structures of the kinetochore. It is becoming increasingly clear that the key factors for assembly and function of the centromere structure are the specialized histones and modified histones which are present in the centromeric heterochromatin and in the chromatin of the central core. Thus, despite the differences in the DNA sequences and the proteins that define a centromere, there is an overall structural similarity between centromeres in evolutionarily diverse eukaryotes.

  9. Global profiling of DNA replication timing and efficiency reveals that efficient replication/firing occurs late during S-phase in S. pombe.

    Directory of Open Access Journals (Sweden)

    Majid Eshaghi

    Full Text Available BACKGROUND: During S. pombe S-phase, initiation of DNA replication occurs at multiple sites (origins that are enriched with AT-rich sequences, at various times. Current studies of genome-wide DNA replication profiles have focused on the DNA replication timing and origin location. However, the replication and/or firing efficiency of the individual origins on the genomic scale remain unclear. METHODOLOGY/PRINCIPAL FINDINGS: Using the genome-wide ORF-specific DNA microarray analysis, we show that in S. pombe, individual origins fire with varying efficiencies and at different times during S-phase. The increase in DNA copy number plotted as a function of time is approximated to the near-sigmoidal model, when considering the replication start and end timings at individual loci in cells released from HU-arrest. Replication efficiencies differ from origin to origin, depending on the origin's firing efficiency. We have found that DNA replication is inefficient early in S-phase, due to inefficient firing at origins. Efficient replication occurs later, attributed to efficient but late-firing origins. Furthermore, profiles of replication timing in cds1Delta cells are abnormal, due to the failure in resuming replication at the collapsed forks. The majority of the inefficient origins, but not the efficient ones, are found to fire in cds1Delta cells after HU removal, owing to the firing at the remaining unused (inefficient origins during HU treatment. CONCLUSIONS/SIGNIFICANCE: Taken together, our results indicate that efficient DNA replication/firing occurs late in S-phase progression in cells after HU removal, due to efficient late-firing origins. Additionally, checkpoint kinase Cds1p is required for maintaining the efficient replication/firing late in S-phase. We further propose that efficient late-firing origins are essential for ensuring completion of DNA duplication by the end of S-phase.

  10. The CHD remodeling factor Hrp1 stimulates CENP-A loading to centromeres.

    Science.gov (United States)

    Walfridsson, Julian; Bjerling, Pernilla; Thalen, Maria; Yoo, Eung-Jae; Park, Sang Dai; Ekwall, Karl

    2005-01-01

    Centromeres of fission yeast are arranged with a central core DNA sequence flanked by repeated sequences. The centromere-associated histone H3 variant Cnp1 (SpCENP-A) binds exclusively to central core DNA, while the heterochromatin proteins and cohesins bind the surrounding outer repeats. CHD (chromo-helicase/ATPase DNA binding) chromatin remodeling factors were recently shown to affect chromatin assembly in vitro. Here, we report that the CHD protein Hrp1 plays a key role at fission yeast centromeres. The hrp1Delta mutant disrupts silencing of the outer repeats and central core regions of the centromere and displays chromosome segregation defects characteristic for dysfunction of both regions. Importantly, Hrp1 is required to maintain high levels of Cnp1 and low levels of histone H3 and H4 acetylation at the central core region. Hrp1 interacts directly with the centromere in early S-phase when centromeres are replicated, suggesting that Hrp1 plays a direct role in chromatin assembly during DNA replication. PMID:15908586

  11. Structure, Function, and Evolution of Rice Centromeres

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jiming

    2010-02-04

    The centromere is the most characteristic landmark of eukaryotic chromosomes. Centromeres function as the site for kinetochore assembly and spindle attachment, allowing for the faithful pairing and segregation of sister chromatids during cell division. Characterization of centromeric DNA is not only essential to understand the structure and organization of plant genomes, but it is also a critical step in the development of plant artificial chromosomes. The centromeres of most model eukaryotic species, consist predominantly of long arrays of satellite DNA. Determining the precise DNA boundary of a centromere has proven to be a difficult task in multicellular eukaryotes. We have successfully cloned and sequenced the centromere of rice chromosome 8 (Cen8), representing the first fully sequenced centromere from any multicellular eukaryotes. The functional core of Cen8 spans ~800 kb of DNA, which was determined by chromatin immunoprecipitation (ChIP) using an antibody against the rice centromere-specific H3 histone. We discovered 16 actively transcribed genes distributed throughout the Cen8 region. In addition to Cen8, we have characterized eight additional rice centromeres using the next generation sequencing technology. We discovered four subfamilies of the CRR retrotransposon that is highly enriched in rice centromeres. CRR elements are constitutively transcribed and different CRR subfamilies are differentially processed by RNAi. These results suggest that different CRR subfamilies may play different roles in the RNAi-mediated pathway for formation and maintenance of centromeric chromatin.

  12. Novel Centromeric Loci of the Wine and Beer Yeast Dekkera bruxellensis CEN1 and CEN2.

    Science.gov (United States)

    Ishchuk, Olena P; Vojvoda Zeljko, Tanja; Schifferdecker, Anna J; Mebrahtu Wisén, Sofia; Hagström, Åsa K; Rozpędowska, Elżbieta; Rørdam Andersen, Mikael; Hellborg, Linda; Ling, Zhihao; Sibirny, Andrei A; Piškur, Jure

    2016-01-01

    The wine and beer yeast Dekkera bruxellensis thrives in environments that are harsh and limiting, especially in concentrations with low oxygen and high ethanol. Its different strains' chromosomes greatly vary in number (karyotype). This study isolates two novel centromeric loci (CEN1 and CEN2), which support both the yeast's autonomous replication and the stable maintenance of plasmids. In the sequenced genome of the D. bruxellensis strain CBS 2499, CEN1 and CEN2 are each present in one copy. They differ from the known "point" CEN elements, and their biological activity is retained within ~900-1300 bp DNA segments. CEN1 and CEN2 have features of both "point" and "regional" centromeres: They contain conserved DNA elements, ARSs, short repeats, one tRNA gene, and transposon-like elements within less than 1 kb. Our discovery of a miniature inverted-repeat transposable element (MITE) next to CEN2 is the first report of such transposons in yeast. The transformants carrying circular plasmids with cloned CEN1 and CEN2 undergo a phenotypic switch: They form fluffy colonies and produce three times more biofilm. The introduction of extra copies of CEN1 and CEN2 promotes both genome rearrangements and ploidy shifts, with these effects mediated by homologous recombination (between circular plasmid and genome centromere copy) or by chromosome breakage when integrated. Also, the proximity of the MITE-like transposon to CEN2 could translocate CEN2 within the genome or cause chromosomal breaks, so promoting genome dynamics. With extra copies of CEN1 and CEN2, the yeast's enhanced capacities to rearrange its genome and to change its gene expression could increase its abilities for exploiting new and demanding niches. PMID:27560164

  13. De Novo Centromere Formation and Centromeric Sequence Expansion in Wheat and its Wide Hybrids

    OpenAIRE

    Xiang Guo; Handong Su; Qinghua Shi; Shulan Fu; Jing Wang; Xiangqi Zhang; Zanmin Hu; Fangpu Han

    2016-01-01

    Centromeres typically contain tandem repeat sequences, but centromere function does not necessarily depend on these sequences. We identified functional centromeres with significant quantitative changes in the centromeric retrotransposons of wheat (CRW) contents in wheat aneuploids (Triticum aestivum) and the offspring of wheat wide hybrids. The CRW signals were strongly reduced or essentially lost in some wheat ditelosomic lines and in the addition lines from the wide hybrids. The total loss ...

  14. Derivation of a Differential Equation Exhibiting Replicative Time-Evolution Patterns by Inverse Ultra-Discretization

    Science.gov (United States)

    Tanaka, Hiroshi; Nakajima, Asumi; Nishiyama, Akinobu; Tokihiro, Tetsuji

    2009-03-01

    A differential equation exhibiting replicative time-evolution patterns is derived by inverse ultradiscretizatrion of Fredkin’s game, which is one of the simplest replicative cellular automaton (CA) in two dimensions. This is achieved by employing a certain filter and a clock function in the equation. These techniques are applicable to the inverse ultra-discretization (IUD) of other CA and stabilize the time-evolution of the obtained differential equation. Application to the game of life, another CA in two dimensions, is also presented.

  15. CIRS: A State-Conscious Concurrency Control Protocol for Replicated Real-Time Databases

    Directory of Open Access Journals (Sweden)

    Vishal Pathak,

    2011-01-01

    Full Text Available Replication [5] is the technique of using multiple copies of a server or a resource for better availability and performance.Each copy is called a replica. The main goal of replication is to improve availability, since a service is available even if some of its replicas are not. This helps mission critical services, such as many financial systems or reservation systems, where even a short outage can be very disruptive and expensive.A prerequisite for realizing the banefits of replication, however, is the devlopement of high erformance concurrency machenism. Current applications, such as Web-based services, electronic commerce, mobile telecommunication system, etc., are distributed in nature and manipulate time-critical databases. In order to enhance the performance and the availability of such applications, one of the main techniques is to replicate data on multiple sites of the network. Therefore, the major issue is to develop efficient replica concurrency control protocols that are able to tolerate the overload of the distributed system. In fact, if the system is not designed to handle overloads, the effects can be catastrophic and some primordial transactions of the application can miss their deadlines. In this paper we present CIRS (Concurrency control In Replicated realtime Systems a state conscious concurrency control protocol in replicated distributed environment which is specially for firm realtime database system. CIRS mechanism uses S2PL (Static Two Phase Locking for deadlock free environment.It also includes veto power given to a cohort after receiving PREPARE message from its coordinator. Also with some more assumptions like sending an extra message in execution phase but after completionof execution at local copy which is described later in this paper the proposed mechanism has a significant increased performance over O2PL and MIRROR in decreasing execution time of the current transaction and it also decreases the waiting time of

  16. A Positive Twist to the Centromeric Nucleosome

    Directory of Open Access Journals (Sweden)

    Josefina Ocampo

    2015-10-01

    Full Text Available Centromeric nucleosomes are critical for chromosome attachment to the mitotic spindle. In this issue of Cell Reports, Diaz-Ingelmo et al. (2015 propose that the yeast centromeric nucleosome is stabilized by a positively supercoiled loop formed by the sequence-specific CBF3 complex.

  17. Precise Centromere Positioning on Chicken Chromosome 3

    NARCIS (Netherlands)

    Zlotina, A.; Galkina, S.A.; Krasikova, A.; Crooijmans, R.P.M.A.; Groenen, M.A.M.; Gaginskaya, E.; Deryusheva, S.

    2010-01-01

    Despite the progress of the chicken (Gallus gallus) genome sequencing project, the centromeric sequences of most macrochromosomes remain unknown. This makes it difficult to determine centromere positions in the genome sequence assembly. Using giant lampbrush chromosomes from growing oocytes, we anal

  18. RNAi and heterochromatin repress centromeric meiotic recombination

    DEFF Research Database (Denmark)

    Ellermeier, Chad; Higuchi, Emily C; Phadnis, Naina;

    2010-01-01

    to genetic disabilities, including birth defects. The basis by which centromeric meiotic recombination is repressed has been largely unknown. We report here that, in fission yeast, RNAi functions and Clr4-Rik1 (histone H3 lysine 9 methyltransferase) are required for repression of centromeric recombination...

  19. Keeping it together in times of stress: checkpoint function at stalled replication forks

    OpenAIRE

    Berens, Theresa J.; David P Toczyski

    2012-01-01

    In this issue, De Piccoli et al. (2012) show that, contrary to current models of DNA replication checkpoint function, replication proteins remain associated with each other and with replicating DNA when replication is stressed in checkpoint-deficient cells.

  20. Distinct centromere domain structures with separate functions demonstrated in live fission yeast cells.

    Science.gov (United States)

    Appelgren, Henrik; Kniola, Barbara; Ekwall, Karl

    2003-10-01

    Fission yeast (Saccharomyces pombe) centromere DNA is organized in a central core region flanked on either side by a region of outer repeat (otr) sequences. The otr region is known to be heterochromatic and bound by the Swi6 protein whereas the central core region contains an unusual chromatin structure involving the histone H3 variant Cnp1 (S. pombe CENP-A). The central core is the base for formation of the kinetochore structure whereas the flanking region is important for sister centromere cohesion. We have previously shown that the ultrastructural domain structure of S. pombe centromeres in interphase is similar to that of human centromeres. Here we demonstrate that S. pombe centromeres are organized in cytologically distinct domains even in mitosis. Fluorescence in situ hybridization of fixed metaphase cells revealed that the otr regions of the centromere were still held together by cohesion even after the sister kinetochores had separated. In live cells, the central cores and kinetochores of sister chromosomes could be distinguished from one another when they were subjected to mitotic tension. The function of the different centromeric domains was addressed. Transacting mutations affecting the kinetochore (nuf2) central core domain (mis6) and the heterochromatin domain (rik1) were analyzed in live cells. In interphase, both nuf2 and mis6 caused declustering of centromeres from the spindle pole body whereas centromere clustering was normal in rik1 despite an apparent decondensation defect. The declustering of centromeres in mis6 cells correlated with loss the Ndc80 kinetochore marker protein from the centromeres. Interestingly the declustered centromeres were still restricted to the nuclear periphery thus revealing a kinetochore-independent peripheral localization mechanism for heterochromatin. Time-lapse microscopy of live mis6 and nuf2-1 mutant cells in mitosis showed similar severe misaggregation phenotypes whereas the rik1 mutants showed a mild cohesion

  1. De Novo Centromere Formation and Centromeric Sequence Expansion in Wheat and its Wide Hybrids.

    Science.gov (United States)

    Guo, Xiang; Su, Handong; Shi, Qinghua; Fu, Shulan; Wang, Jing; Zhang, Xiangqi; Hu, Zanmin; Han, Fangpu

    2016-04-01

    Centromeres typically contain tandem repeat sequences, but centromere function does not necessarily depend on these sequences. We identified functional centromeres with significant quantitative changes in the centromeric retrotransposons of wheat (CRW) contents in wheat aneuploids (Triticum aestivum) and the offspring of wheat wide hybrids. The CRW signals were strongly reduced or essentially lost in some wheat ditelosomic lines and in the addition lines from the wide hybrids. The total loss of the CRW sequences but the presence of CENH3 in these lines suggests that the centromeres were formed de novo. In wheat and its wide hybrids, which carry large complex genomes or no sequenced genome, we performed CENH3-ChIP-dot-blot methods alone or in combination with CENH3-ChIP-seq and identified the ectopic genomic sequences present at the new centromeres. In adcdition, the transcription of the identified DNA sequences was remarkably increased at the new centromere, suggesting that the transcription of the corresponding sequences may be associated with de novo centromere formation. Stable alien chromosomes with two and three regions containing CRW sequences induced by centromere breakage were observed in the wheat-Th. elongatum hybrid derivatives, but only one was a functional centromere. In wheat-rye (Secale cereale) hybrids, the rye centromere-specific sequences spread along the chromosome arms and may have caused centromere expansion. Frequent and significant quantitative alterations in the centromere sequence via chromosomal rearrangement have been systematically described in wheat wide hybridizations, which may affect the retention or loss of the alien chromosomes in the hybrids. Thus, the centromere behavior in wide crosses likely has an important impact on the generation of biodiversity, which ultimately has implications for speciation. PMID:27110907

  2. Replication timing and transcriptional control: beyond cause and effect-part III.

    Science.gov (United States)

    Rivera-Mulia, Juan Carlos; Gilbert, David M

    2016-06-01

    DNA replication is essential for faithful transmission of genetic information and is intimately tied to chromosome structure and function. Genome duplication occurs in a defined temporal order known as the replication-timing (RT) program, which is regulated during the cell cycle and development in discrete units referred to as replication domains (RDs). RDs correspond to topologically-associating domains (TADs) and are spatio-temporally compartmentalized in the nucleus. While improvements in experimental tools have begun to reveal glimpses of causality, they have also unveiled complex context-dependent relationships that challenge long recognized correlations of RT to chromatin organization and gene regulation. In particular, RDs/TADs that switch RT during development march to the beat of a different drummer. PMID:27115331

  3. Identifying significant temporal variation in time course microarray data without replicates

    Directory of Open Access Journals (Sweden)

    Porter Weston

    2009-03-01

    Full Text Available Abstract Background An important component of time course microarray studies is the identification of genes that demonstrate significant time-dependent variation in their expression levels. Until recently, available methods for performing such significance tests required replicates of individual time points. This paper describes a replicate-free method that was developed as part of a study of the estrous cycle in the rat mammary gland in which no replicate data was collected. Results A temporal test statistic is proposed that is based on the degree to which data are smoothed when fit by a spline function. An algorithm is presented that uses this test statistic together with a false discovery rate method to identify genes whose expression profiles exhibit significant temporal variation. The algorithm is tested on simulated data, and is compared with another recently published replicate-free method. The simulated data consists both of genes with known temporal dependencies, and genes from a null distribution. The proposed algorithm identifies a larger percentage of the time-dependent genes for a given false discovery rate. Use of the algorithm in a study of the estrous cycle in the rat mammary gland resulted in the identification of genes exhibiting distinct circadian variation. These results were confirmed in follow-up laboratory experiments. Conclusion The proposed algorithm provides a new approach for identifying expression profiles with significant temporal variation without relying on replicates. When compared with a recently published algorithm on simulated data, the proposed algorithm appears to identify a larger percentage of time-dependent genes for a given false discovery rate. The development of the algorithm was instrumental in revealing the presence of circadian variation in the virgin rat mammary gland during the estrous cycle.

  4. Difference-based clustering of short time-course microarray data with replicates

    Directory of Open Access Journals (Sweden)

    Kim Jihoon

    2007-07-01

    Full Text Available Abstract Background There are some limitations associated with conventional clustering methods for short time-course gene expression data. The current algorithms require prior domain knowledge and do not incorporate information from replicates. Moreover, the results are not always easy to interpret biologically. Results We propose a novel algorithm for identifying a subset of genes sharing a significant temporal expression pattern when replicates are used. Our algorithm requires no prior knowledge, instead relying on an observed statistic which is based on the first and second order differences between adjacent time-points. Here, a pattern is predefined as the sequence of symbols indicating direction and the rate of change between time-points, and each gene is assigned to a cluster whose members share a similar pattern. We evaluated the performance of our algorithm to those of K-means, Self-Organizing Map and the Short Time-series Expression Miner methods. Conclusions Assessments using simulated and real data show that our method outperformed aforementioned algorithms. Our approach is an appropriate solution for clustering short time-course microarray data with replicates.

  5. Chromatin ring formation at plant centromeres

    Directory of Open Access Journals (Sweden)

    Veit eSchubert

    2016-02-01

    Full Text Available We observed the formation of chromatin ring structures at centromeres of somatic rye and Arabidopsis chromosomes. To test whether this behavior is present also in other plant species and tissues we analyzed Arabidopsis, rye, wheat, Aegilops and barley centromeres during cell divisions and in interphase nuclei by immunostaining and FISH. Furthermore, structured illumination microscopy (super-resolution was applied to investigate the ultrastructure of centromere chromatin beyond the classical refraction limit of light. It became obvious, that a ring formation at centromeres may appear during mitosis, meiosis and in interphase nuclei in all species analyzed. However, varying centromere structures, as ring formations or globular organized chromatin fibers, were identified in different tissues of one and the same species. In addition, we found that a chromatin ring formation may also be caused by subtelomeric repeats in barley. Thus, we conclude that the formation of chromatin rings may appear in different plant species and tissues, but that it is not specific for centromere function. Based on our findings we established a model describing the ultrastructure of plant centromeres and discuss it in comparison to previous models proposed for animals and plants.

  6. Dicentric Chromosome Formation and Epigenetics of Centromere Formation in Plants

    Institute of Scientific and Technical Information of China (English)

    Shulan Fu; Zhi Gao; James Birchler; Fangpu Han

    2012-01-01

    Plant centromeres are generally composed of tandem arrays of simple repeats that form a complex chromosome locus where the kinetochore forms and microtubules attach during mitosis and meiosis.Each chromosome has one centromere region,which is essential for accurate division of the genetic material.Recently,chromosomes containing two centromere regions (called dicentric chromosomes)have been found in maize and wheat.Interestingly,some dicentric chromosomes are stable because only one centromere is active and the other one is inactivated.Because such arrays maintain their typical structure for both active and inactive centromeres,the specification of centromere activity has an epigenetic component independent of the DNA sequence.Under some circumstances,the inactive centromeres may recover centromere function,which is called centromere reactivation.Recent studies have highlighted the important changes,such as DNA methylation and histone modification,that occur during centromere inactivation and reactivation.

  7. Transposons play an important role in the evolution and diversification of centromeres among closely related species

    Directory of Open Access Journals (Sweden)

    Scott eJackson

    2015-04-01

    Full Text Available Centromeres are important chromosomal regions necessary for eukaryotic cell segregation and replication. Due to high amounts of tandem repeats and transposons, centromeres have been difficult to sequence in most multicellular organisms, thus their sequence structure and evolution are poorly understood. In this study, we analyzed transposons in the centromere 8 (Cen8 from the African cultivated rice (O. glaberrima and two subspecies of the Asian cultivated rice (O. sativa, indica and japonica. We detected much higher transposon contents (>69% in centromere regions than in the whole genomes of O. sativa ssp japonica and O. glaberrima (~35%. We compared the three Cen8s and identified numerous recent insertions of transposons that were frequently organized into multiple-layer nested blocks, similar to nested transposons in maize. Except for the Hopi retrotransposon, all LTR retrotransposons were shared but exhibit different abundances amongst the three Cen8s. Even though a majority of the transposons were located in intergenic regions, some gene-related transposons were found and may be involved in gene diversification. Chromatin immunoprecipitated (ChIP data analysis revealed that 165 families from both Class I and Class II transposons were found in CENH3-associated chromatin sequences. These results indicate essential roles for transposons in centromeres and that the rapid divergence of the Cen8 sequences between the two cultivated rice species was primarily caused by recent transposon insertions.

  8. Centromere protein B of African green monkey cells: gene structure, cellular expression, and centromeric localization.

    OpenAIRE

    Yoda, K; Nakamura, T.; Masumoto, H; Suzuki, N.; Kitagawa, K; M. Nakano; Shinjo, A; Okazaki, T.

    1996-01-01

    Centromere protein B (CENP-B) is a centromeric DNA-binding protein which recognizes a 17-bp sequence (CENP-B box) in human and mouse centromeric satellite DNA. The African green monkey (AGM) is phylogenetically closer to humans than mice and is known to contain large amounts of alpha-satellite DNA, but there has been no report of CENP-B boxes or CENP-B in the centromere domains of its chromosomes. To elucidate the AGM CENP-B-CENP-B box interaction, we have analyzed the gene structure, express...

  9. Imprinted chromosomal domains revealed by allele-specific replication timing of the GABRB3 and GABRA5 genes

    Energy Technology Data Exchange (ETDEWEB)

    LaSalle, J.; Flint, A.; Lalande, M. [Harvard Medical School, Boston, MA (United States)] [and others

    1994-09-01

    The GABRB3 and GABRA5 genes are organized as a cluster in chromosome 15q11-q13. The genes are separated by around 100 kb and arranged in opposite transcriptional orientations. The GABA{sub A} receptor cluster lies near the Angelman and Prader-Willi loci and displays asynchronous DNA replication, suggesting that this region is subject to parental imprinting. In order to further study the association between DNA replication and imprinting, allele-specific replication was assayed by fluorescence in situ hybridization with {lambda}-phage probes from the GABRB3/A5 region and a D15Z1 satellite probe to identify the parental origin of each chromosome. The replication kinetics of each allele was determined by using a flow sorter to fractionate mitogen-stimulated lymphocytes on the basis of cell cycle progression prior to FISH analysis. These kinetic studies reveal a 50-150 kb chromosomal domain extending from the middle of the GABRB3/A5 intergenic region into the GABRA5 5{prime}-UTR which displays maternal replication in early S with paternal replication delayed until the end of S. In contrast, genomic regions on either side of this maternal early replication domain exhibit the opposite pattern with paternal before maternal replication and both alleles replicating in the latter half of S. These results indicate that the GABRB3/A5 region is divided into domains in which replication timing is determined by parental origin. In addition to a loss of asynchronous replication, organization into replication timing domains is also lost in lymphocytes from maternal and paternal uniparental disomy 15 patients suggesting that a chromosome contribution from both parents is required for the establishment of the imprinted replication domains.

  10. Turning the hands of time again: a purely confirmatory replication study and a Bayesian analysis.

    Science.gov (United States)

    Wagenmakers, Eric-Jan; Beek, Titia F; Rotteveel, Mark; Gierholz, Alex; Matzke, Dora; Steingroever, Helen; Ly, Alexander; Verhagen, Josine; Selker, Ravi; Sasiadek, Adam; Gronau, Quentin F; Love, Jonathon; Pinto, Yair

    2015-01-01

    In a series of four experiments, Topolinski and Sparenberg (2012) found support for the conjecture that clockwise movements induce psychological states of temporal progression and an orientation toward the future and novelty. Here we report the results of a preregistered replication attempt of Experiment 2 from Topolinski and Sparenberg (2012). Participants turned kitchen rolls either clockwise or counterclockwise while answering items from a questionnaire assessing openness to experience. Data from 102 participants showed that the effect went slightly in the direction opposite to that predicted by Topolinski and Sparenberg (2012), and a preregistered Bayes factor hypothesis test revealed that the data were 10.76 times more likely under the null hypothesis than under the alternative hypothesis. Our findings illustrate the theoretical importance and practical advantages of preregistered Bayes factor replication studies, both for psychological science and for empirical work in general.

  11. Turning the Hands of Time Again: A Purely Confirmatory Replication Study and a Bayesian Analysis

    Directory of Open Access Journals (Sweden)

    Eric-Jan eWagenmakers

    2015-04-01

    Full Text Available In a series of four experiments, Topolinski and Sparenberg (2012; TS found support for the conjecture that clockwise movements induce psychological states of temporal progression and an orientation toward the future and novelty. Here we report the results of a preregistered replication attempt of Experiment 2 from TS. Participants turned kitchen rolls either clockwise or counterclockwise while answering items from a questionnaire assessing openness to experience. Data from 102 participants showed that the effect went slightly in the direction opposite to that predicted by TS, and a preregistered Bayes factor hypothesis test revealed that the data were 10.76 times more likely under the null hypothesis than under the alternative hypothesis. Our findings illustrate the theoretical importance and practical advantages of preregistered Bayes factor replication studies, both for psychological science and for empirical work in general.

  12. Compaction and transport properties of newly replicated Caulobacter crescentus DNA.

    Science.gov (United States)

    Hong, Sun-Hae; McAdams, Harley H

    2011-12-01

    Upon initiating replication of the Caulobacter chromosome, one copy of the parS centromere remains at the stalked pole; the other moves to the distal pole. We identified the segregation dynamics and compaction characteristics of newly replicated Caulobacter DNA during transport (highly variable from cell to cell) using time-lapse fluorescence microscopy. The parS centromere and a length (also highly variable) of parS proximal DNA on each arm of the chromosome are segregated with the same relatively slow transport pattern as the parS locus. Newly replicated DNA further than about 100 kb from parS segregates with a different and faster pattern, while loci at 48 kb from parS segregate with the slow pattern in some cells and the fast pattern in others. The observed parS-proximal DNA compaction characteristics have scaling properties that suggest the DNA is branched. HU2-deletion strains exhibited a reduced compaction phenotype except near the parS site where only the ΔHU1ΔHU2 double mutant had a compaction phenotype. The chromosome shows speed-dependent extension during translocation suggesting the DNA polymer is under tension. While DNA segregation is highly reliable and succeeds in virtually all wild-type cells, the high degree of cell to cell variation in the segregation process is noteworthy.

  13. DNA topoisomerase III localizes to centromeres and affects centromeric CENP-A levels in fission yeast.

    Science.gov (United States)

    Norman-Axelsson, Ulrika; Durand-Dubief, Mickaël; Prasad, Punit; Ekwall, Karl

    2013-01-01

    Centromeres are specialized chromatin regions marked by the presence of nucleosomes containing the centromere-specific histone H3 variant CENP-A, which is essential for chromosome segregation. Assembly and disassembly of nucleosomes is intimately linked to DNA topology, and DNA topoisomerases have previously been implicated in the dynamics of canonical H3 nucleosomes. Here we show that Schizosaccharomyces pombe Top3 and its partner Rqh1 are involved in controlling the levels of CENP-A(Cnp1) at centromeres. Both top3 and rqh1 mutants display defects in chromosome segregation. Using chromatin immunoprecipitation and tiling microarrays, we show that Top3, unlike Top1 and Top2, is highly enriched at centromeric central domains, demonstrating that Top3 is the major topoisomerase in this region. Moreover, centromeric Top3 occupancy positively correlates with CENP-A(Cnp1) occupancy. Intriguingly, both top3 and rqh1 mutants display increased relative enrichment of CENP-A(Cnp1) at centromeric central domains. Thus, Top3 and Rqh1 normally limit the levels of CENP-A(Cnp1) in this region. This new role is independent of the established function of Top3 and Rqh1 in homologous recombination downstream of Rad51. Therefore, we hypothesize that the Top3-Rqh1 complex has an important role in controlling centromere DNA topology, which in turn affects the dynamics of CENP-A(Cnp1) nucleosomes. PMID:23516381

  14. DNA topoisomerase III localizes to centromeres and affects centromeric CENP-A levels in fission yeast.

    Directory of Open Access Journals (Sweden)

    Ulrika Norman-Axelsson

    Full Text Available Centromeres are specialized chromatin regions marked by the presence of nucleosomes containing the centromere-specific histone H3 variant CENP-A, which is essential for chromosome segregation. Assembly and disassembly of nucleosomes is intimately linked to DNA topology, and DNA topoisomerases have previously been implicated in the dynamics of canonical H3 nucleosomes. Here we show that Schizosaccharomyces pombe Top3 and its partner Rqh1 are involved in controlling the levels of CENP-A(Cnp1 at centromeres. Both top3 and rqh1 mutants display defects in chromosome segregation. Using chromatin immunoprecipitation and tiling microarrays, we show that Top3, unlike Top1 and Top2, is highly enriched at centromeric central domains, demonstrating that Top3 is the major topoisomerase in this region. Moreover, centromeric Top3 occupancy positively correlates with CENP-A(Cnp1 occupancy. Intriguingly, both top3 and rqh1 mutants display increased relative enrichment of CENP-A(Cnp1 at centromeric central domains. Thus, Top3 and Rqh1 normally limit the levels of CENP-A(Cnp1 in this region. This new role is independent of the established function of Top3 and Rqh1 in homologous recombination downstream of Rad51. Therefore, we hypothesize that the Top3-Rqh1 complex has an important role in controlling centromere DNA topology, which in turn affects the dynamics of CENP-A(Cnp1 nucleosomes.

  15. Kinetochores coordinate pericentromeric cohesion and early DNA replication by Cdc7-Dbf4 kinase recruitment.

    Science.gov (United States)

    Natsume, Toyoaki; Müller, Carolin A; Katou, Yuki; Retkute, Renata; Gierliński, Marek; Araki, Hiroyuki; Blow, J Julian; Shirahige, Katsuhiko; Nieduszynski, Conrad A; Tanaka, Tomoyuki U

    2013-06-01

    Centromeres play several important roles in ensuring proper chromosome segregation. Not only do they promote kinetochore assembly for microtubule attachment, but they also support robust sister chromatid cohesion at pericentromeres and facilitate replication of centromeric DNA early in S phase. However, it is still elusive how centromeres orchestrate all these functions at the same site. Here, we show that the budding yeast Dbf4-dependent kinase (DDK) accumulates at kinetochores in telophase, facilitated by the Ctf19 kinetochore complex. This promptly recruits Sld3-Sld7 replication initiator proteins to pericentromeric replication origins so that they initiate replication early in S phase. Furthermore, DDK at kinetochores independently recruits the Scc2-Scc4 cohesin loader to centromeres in G1 phase. This enhances cohesin loading and facilitates robust pericentromeric cohesion in S phase. Thus, we have found the central mechanism by which kinetochores orchestrate early S phase DNA replication and robust sister chromatid cohesion at microtubule attachment sites.

  16. Studying the replication history of human B lymphocytes by real-time quantitative (RQ)-PCR.

    Science.gov (United States)

    van Zelm, Menno C; Berkowska, Magdalena A; van Dongen, Jacques J M

    2013-01-01

    The cells of the adaptive immune system, B and T lymphocytes, each generate a unique antigen receptor through V(D)J recombination of their immunoglobulin (Ig) and T cell receptor (TCR) loci, respectively. Such rearrangements join coding elements to form a coding joint and delete the intervening DNA as circular excision products containing the signal joint. These excision circles are stable structures that cannot replicate and have no function in the cell. Since the coding joint in the genome is replicated with each cell division, the ratio between coding joints and signal joints in a population of B cells can be used as a measure for proliferation. This chapter describes a real-time quantitative (RQ-)PCR-based approach to quantify proliferation through calculating the ratio between coding joints and signal joints of the frequently occurring intronRSS-Kde rearrangements in the IGK light chain locus. The approach is useful to study basic B-cell biology as well as abnormal proliferation in human diseases.

  17. Centromere licensing: Mis18 is required to Polo-ver.

    Science.gov (United States)

    Barnhart-Dailey, Meghan C; Foltz, Daniel R

    2014-09-01

    The Mis18 complex is a critical player in determining when and where centromeres are built. A new study identifies Polo-like kinase (Plk1) as a positive regulator required for the localization of Mis18 to centromeres. This is a critical step that is essential for proper centromere function and maintaining the integrity of the genome. PMID:25202874

  18. Role of transcription at centromeres in budding yeast.

    Science.gov (United States)

    Ohkuni, Kentaro; Kitagawa, Katsumi

    2012-01-01

    Centromeres are specialized chromosomal loci that are essential for proper chromosome segregation. Recent data show that a certain level of active transcription, regulated by transcription factors Cbf1 and Ste12, makes a direct contribution to centromere function in Saccharomyces cerevisiae. Here, we discuss the requirement and function of transcription at centromeres.

  19. Tension sensing by Aurora B kinase is independent of survivin-based centromere localization.

    Science.gov (United States)

    Campbell, Christopher S; Desai, Arshad

    2013-05-01

    Accurate segregation of the replicated genome requires chromosome biorientation on the spindle. Biorientation is ensured by Aurora B kinase (Ipl1), a member of the four-subunit chromosomal passenger complex (CPC). Localization of the CPC to the inner centromere is central to the current model for how tension ensures chromosome biorientation: kinetochore-spindle attachments that are not under tension remain close to the inner centromere and are destabilized by Aurora B phosphorylation, whereas kinetochores under tension are pulled away from the influence of Aurora B, stabilizing their microtubule attachments. Here we show that an engineered truncation of the Sli15 (known as INCENP in humans) subunit of budding yeast CPC that eliminates association with the inner centromere nevertheless supports proper chromosome segregation during both mitosis and meiosis. Truncated Sli15 suppresses the deletion phenotypes of the inner-centromere-targeting proteins survivin (Bir1), borealin (Nbl1), Bub1 and Sgo1 (ref. 6). Unlike wild-type Sli15, truncated Sli15 localizes to pre-anaphase spindle microtubules. Premature targeting of full-length Sli15 to microtubules by preventing Cdk1 (also known as Cdc28) phosphorylation also suppresses the inviability of Bir1 deletion. These results suggest that activation of Aurora B kinase by clustering either on chromatin or on microtubules is sufficient for chromosome biorientation.

  20. Genome-wide mapping of human DNA-replication origins: levels of transcription at ORC1 sites regulate origin selection and replication timing.

    Science.gov (United States)

    Dellino, Gaetano Ivan; Cittaro, Davide; Piccioni, Rossana; Luzi, Lucilla; Banfi, Stefania; Segalla, Simona; Cesaroni, Matteo; Mendoza-Maldonado, Ramiro; Giacca, Mauro; Pelicci, Pier Giuseppe

    2013-01-01

    We report the genome-wide mapping of ORC1 binding sites in mammals, by chromatin immunoprecipitation and parallel sequencing (ChIP-seq). ORC1 binding sites in HeLa cells were validated as active DNA replication origins (ORIs) using Repli-seq, a method that allows identification of ORI-containing regions by parallel sequencing of temporally ordered replicating DNA. ORC1 sites were universally associated with transcription start sites (TSSs) of coding or noncoding RNAs (ncRNAs). Transcription levels at the ORC1 sites directly correlated with replication timing, suggesting the existence of two classes of ORIs: those associated with moderate/high transcription levels (≥1 RNA copy/cell), firing in early S and mapping to the TSSs of coding RNAs; and those associated with low transcription levels (<1 RNA copy/cell), firing throughout the entire S and mapping to TSSs of ncRNAs. These findings are compatible with a scenario whereby TSS expression levels influence the efficiency of ORC1 recruitment at G(1) and the probability of firing during S.

  1. Absence of Positive Selection on Centromeric Histones in Tetrahymena Suggests Unsuppressed Centromere-Drive in Lineages Lacking Male Meiosis

    OpenAIRE

    Elde, Nels C.; Kevin C Roach; Yao, Meng-Chao; Harmit S Malik

    2011-01-01

    Centromere-drive is a process where centromeres compete for transmission through asymmetric "female" meiosis for inclusion into the oocyte. In symmetric "male" meiosis, all meiotic products form viable germ cells. Therefore, the primary incentive for centromere-drive, a potential transmission bias, is believed to be missing from male meiosis. In this article, we consider whether male meiosis also bears the primary cost of centromere-drive. Because different taxa carry out different combinatio...

  2. Synthetic heterochromatin bypasses RNAi and centromeric repeats to establish functional centromeres.

    Science.gov (United States)

    Kagansky, Alexander; Folco, Hernan Diego; Almeida, Ricardo; Pidoux, Alison L; Boukaba, Abdelhalim; Simmer, Femke; Urano, Takeshi; Hamilton, Georgina L; Allshire, Robin C

    2009-06-26

    In the central domain of fission yeast centromeres, the kinetochore is assembled on CENP-A(Cnp1) nucleosomes. Normally, small interfering RNAs generated from flanking outer repeat transcripts direct histone H3 lysine 9 methyltransferase Clr4 to homologous loci to form heterochromatin. Outer repeats, RNA interference (RNAi), and centromeric heterochromatin are required to establish CENP-A(Cnp1) chromatin. We demonstrated that tethering Clr4 via DNA-binding sites at euchromatic loci induces heterochromatin assembly, with or without active RNAi. This synthetic heterochromatin completely substitutes for outer repeats on plasmid-based minichromosomes, promoting de novo CENP-A(Cnp1) and kinetochore assembly, to allow their mitotic segregation, even with RNAi inactive. Thus, the role of outer repeats in centromere establishment is simply the provision of RNAi substrates to direct heterochromatin formation; H3K9 methylation-dependent heterochromatin is alone sufficient to form functional centromeres. PMID:19556509

  3. Synthetic heterochromatin bypasses RNAi and centromeric repeats to establish functional centromeres

    OpenAIRE

    Kagansky, Alexander; Folco, Hernan Diego; Almeida, Ricardo; Pidoux, Alison L.; Boukaba, Abdelhalim; Simmer, Femke; Urano, Takeshi; Hamilton, Georgina L.; Allshire, Robin C.

    2009-01-01

    In the central domain of fission yeast centromeres, the kinetochore is assembled on CENP-A(Cnp1) nucleosomes. Normally, small interfering RNAs generated from flanking outer repeat transcripts direct histone H3 lysine 9 methyltransferase Clr4 to homologous loci to form heterochromatin. Outer repeats, RNA interference (RNAi), and centromeric heterochromatin are required to establish CENP-A(Cnp1) chromatin. We demonstrated that tethering Clr4 via DNA-binding sites at euchromatic loci induces het...

  4. Significances of differences between slopes: An upgrade for replicated time series

    Directory of Open Access Journals (Sweden)

    Vasco M. N. C. S. Vieira

    2013-12-01

    Full Text Available In some ecology subjects the slope of the line fit between x and y variables is the focus of concern. Such is the case of self-thinning theory, developed for plant demography and later verified also occurring in algae and animals. Different slopes identify statistical populations subject to different conditions. Therefore, it is fundamental that a test is able to identify honestly significant differences between slopes. The most used tested for the overlap of the 95% confidence intervals of the bootstrapped slopes. However, Vieira and Creed (2013 demonstrated it to possess weak theoretical grounds having proposed a permutation methods alternative. Unfortunately, both were fallible upon small sample sizes and/or large data scatter. Data about self-thinning, as well as other subjects, often comes in replicated time series enabling upgrading the test algorithm to randomize sampling units only within the respective time frame. This was added to the previous software, increasing outstandingly the capacity of the permutation test in identifying both true and false differences between slopes.

  5. Two distinct pathways responsible for the loading of CENP-A to centromeres in the fission yeast cell cycle.

    Science.gov (United States)

    Takahashi, Kohta; Takayama, Yuko; Masuda, Fumie; Kobayashi, Yasuyo; Saitoh, Shigeaki

    2005-03-29

    CENP-A is a centromere-specific histone H3 variant that is- essential for faithful chromosome segregation in all eukaryotes thus far investigated. We genetically identified two factors, Ams2 and Mis6, each of which is required for the correct centromere localization of SpCENP-A (Cnp1), the fission yeast homologue of CENP-A. Ams2 is a cell-cycle-regulated GATA factor that localizes on the nuclear chromatin, including on centromeres, during the S phase. Ams2 may be responsible for the replication-coupled loading of SpCENP-A by facilitating nucleosomal formation during the S phase. Consistently, overproduction of histone H4, but not that of H3, suppressed the defect of SpCENP-A localization in Ams2-deficient cells. We demonstrated the existence of at least two distinct phases for SpCENP-A loading during the cell cycle: the S phase and the late-G2 phase. Ectopically induced SpCENP-A was efficiently loaded onto the centromeres in G2-arrested cells, indicating that SpCENP-A probably undergoes replication-uncoupled loading after the completion of S phase. This G2 loading pathway of SpCENP-A may require Mis6, a constitutive centromere-binding protein that is also implicated in the Mad2-dependent spindle attachment checkpoint response. Here, we discuss the functional relationship between the flexible loading mechanism of CENP-A and the plasticity of centromere chromatin formation in fission yeast. PMID:15897182

  6. Cultivation and differentiation change nuclear localization of chromosome centromeres in human mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Yana I Voldgorn

    Full Text Available Chromosome arrangement in the interphase nucleus is not accidental. Strong evidences support that nuclear localization is an important mechanism of epigenetic regulation of gene expression. The purpose of this research was to identify differences in the localization of centromeres of chromosomes 6, 12, 18 and X in human mesenchymal stem cells depending on differentiation and cultivating time. We analyzed centromere positions in more than 4000 nuclei in 19 mesenchymal stem cell cultures before and after prolonged cultivation and after differentiation into osteogenic and adipogenic directions. We found a centromere reposition of HSAX at late passages and after differentiation in osteogenic direction as well as of HSA12 and HSA18 after adipogenic differentiation. The observed changes of the nuclear structure are new nuclear characteristics of the studied cells which may reflect regulatory changes of gene expression during the studied processes.

  7. Mediator promotes CENP-a incorporation at fission yeast centromeres.

    Science.gov (United States)

    Carlsten, Jonas O; Szilagyi, Zsolt; Liu, Beidong; Lopez, Marcela Davila; Szászi, Erzsébet; Djupedal, Ingela; Nyström, Thomas; Ekwall, Karl; Gustafsson, Claes M; Zhu, Xuefeng

    2012-10-01

    At Schizosaccharomyces pombe centromeres, heterochromatin formation is required for de novo incorporation of the histone H3 variant CENP-A(Cnp1), which in turn directs kinetochore assembly and ultimately chromosome segregation during mitosis. Noncoding RNAs (ncRNAs) transcribed by RNA polymerase II (Pol II) directs heterochromatin formation through not only the RNA interference (RNAi) machinery but also RNAi-independent RNA processing factors. Control of centromeric ncRNA transcription is therefore a key factor for proper centromere function. We here demonstrate that Mediator directs ncRNA transcription and regulates centromeric heterochromatin formation in fission yeast. Mediator colocalizes with Pol II at centromeres, and loss of the Mediator subunit Med20 causes a dramatic increase in pericentromeric transcription and desilencing of the core centromere. As a consequence, heterochromatin formation is impaired via both the RNAi-dependent and -independent pathways, resulting in loss of CENP-A(Cnp1) from the core centromere, a defect in kinetochore function, and a severe chromosome segregation defect. Interestingly, the increased centromeric transcription observed in med20Δ cells appears to directly block CENP-A(Cnp1) incorporation since inhibition of Pol II transcription can suppress the observed phenotypes. Our data thus identify Mediator as a crucial regulator of ncRNA transcription at fission yeast centromeres and add another crucial layer of regulation to centromere function. PMID:22851695

  8. Stretching the rules: monocentric chromosomes with multiple centromere domains.

    Science.gov (United States)

    Neumann, Pavel; Navrátilová, Alice; Schroeder-Reiter, Elizabeth; Koblížková, Andrea; Steinbauerová, Veronika; Chocholová, Eva; Novák, Petr; Wanner, Gerhard; Macas, Jiří

    2012-01-01

    The centromere is a functional chromosome domain that is essential for faithful chromosome segregation during cell division and that can be reliably identified by the presence of the centromere-specific histone H3 variant CenH3. In monocentric chromosomes, the centromere is characterized by a single CenH3-containing region within a morphologically distinct primary constriction. This region usually spans up to a few Mbp composed mainly of centromere-specific satellite DNA common to all chromosomes of a given species. In holocentric chromosomes, there is no primary constriction; the centromere is composed of many CenH3 loci distributed along the entire length of a chromosome. Using correlative fluorescence light microscopy and high-resolution electron microscopy, we show that pea (Pisum sativum) chromosomes exhibit remarkably long primary constrictions that contain 3-5 explicit CenH3-containing regions, a novelty in centromere organization. In addition, we estimate that the size of the chromosome segment delimited by two outermost domains varies between 69 Mbp and 107 Mbp, several factors larger than any known centromere length. These domains are almost entirely composed of repetitive DNA sequences belonging to 13 distinct families of satellite DNA and one family of centromeric retrotransposons, all of which are unevenly distributed among pea chromosomes. We present the centromeres of Pisum as novel "meta-polycentric" functional domains. Our results demonstrate that the organization and DNA composition of functional centromere domains can be far more complex than previously thought, do not require single repetitive elements, and do not require single centromere domains in order to segregate properly. Based on these findings, we propose Pisum as a useful model for investigation of centromere architecture and the still poorly understood role of repetitive DNA in centromere evolution, determination, and function. PMID:22737088

  9. A DNA polymerase alpha accessory protein, Mcl1, is required for propagation of centromere structures in fission yeast.

    Directory of Open Access Journals (Sweden)

    Toyoaki Natsume

    Full Text Available Specialized chromatin exists at centromeres and must be precisely transmitted during DNA replication. The mechanisms involved in the propagation of these structures remain elusive. Fission yeast centromeres are composed of two chromatin domains: the central CENP-A(Cnp1 kinetochore domain and flanking heterochromatin domains. Here we show that fission yeast Mcl1, a DNA polymerase alpha (Pol alpha accessory protein, is critical for maintenance of centromeric chromatin. In a screen for mutants that alleviate both central domain and outer repeat silencing, we isolated several cos mutants, of which cos1 is allelic to mcl1. The mcl1-101 mutation causes reduced CENP-A(Cnp1 in the central domain and an aberrant increase in histone acetylation in both domains. These phenotypes are also observed in a mutant of swi7(+, which encodes a catalytic subunit of Pol alpha. Mcl1 forms S-phase-specific nuclear foci, which colocalize with those of PCNA and Pol alpha. These results suggest that Mcl1 and Pol alpha are required for propagation of centromere chromatin structures during DNA replication.

  10. A DNA polymerase alpha accessory protein, Mcl1, is required for propagation of centromere structures in fission yeast.

    Science.gov (United States)

    Natsume, Toyoaki; Tsutsui, Yasuhiro; Sutani, Takashi; Dunleavy, Elaine M; Pidoux, Alison L; Iwasaki, Hiroshi; Shirahige, Katsuhiko; Allshire, Robin C; Yamao, Fumiaki

    2008-01-01

    Specialized chromatin exists at centromeres and must be precisely transmitted during DNA replication. The mechanisms involved in the propagation of these structures remain elusive. Fission yeast centromeres are composed of two chromatin domains: the central CENP-A(Cnp1) kinetochore domain and flanking heterochromatin domains. Here we show that fission yeast Mcl1, a DNA polymerase alpha (Pol alpha) accessory protein, is critical for maintenance of centromeric chromatin. In a screen for mutants that alleviate both central domain and outer repeat silencing, we isolated several cos mutants, of which cos1 is allelic to mcl1. The mcl1-101 mutation causes reduced CENP-A(Cnp1) in the central domain and an aberrant increase in histone acetylation in both domains. These phenotypes are also observed in a mutant of swi7(+), which encodes a catalytic subunit of Pol alpha. Mcl1 forms S-phase-specific nuclear foci, which colocalize with those of PCNA and Pol alpha. These results suggest that Mcl1 and Pol alpha are required for propagation of centromere chromatin structures during DNA replication. PMID:18493607

  11. Evolution of centromeric retrotransposons in grasses.

    Science.gov (United States)

    Sharma, Anupma; Presting, Gernot G

    2014-06-01

    Centromeric retrotransposons (CRs) constitute a family of plant retroelements, some of which have the ability to target their insertion almost exclusively to the functional centromeres. Our exhaustive analysis of CR family members in four grass genomes revealed not only horizontal transfer (HT) of CR elements between the oryzoid and panicoid grass lineages but also their subsequent recombination with endogenous elements that in some cases created prolific recombinants in foxtail millet and sorghum. HT events are easily identifiable only in cases where host genome divergence significantly predates HT, thus documented HT events likely represent only a fraction of the total. If the more difficult to detect ancient HT events occurred at frequencies similar to those observable in present day grasses, the extant long terminal repeat retrotransposons represent the mosaic products of HT and recombination that are optimized for retrotransposition in their host genomes. This complicates not only phylogenetic analysis but also the establishment of a meaningful retrotransposon nomenclature, which we have nevertheless attempted to implement here. In contrast to the plant-centric naming convention used currently for CR elements, we classify elements primarily based on their phylogenetic relationships regardless of host plant, using the exhaustively studied maize elements assigned to six different subfamilies as a standard. The CR2 subfamily is the most widely distributed of the six CR subfamilies discovered in grass genomes to date and thus the most likely to play a functional role at grass centromeres. PMID:24814286

  12. Polycomb Mediated Epigenetic Silencing and Replication Timing at the INK4a/ARF Locus during Senescence

    Science.gov (United States)

    Verthuy, Christophe; Chasson, Lionel; Serrano, Manuel; Djabali, Malek

    2009-01-01

    Background The INK4/ARF locus encodes three tumor suppressor genes (p15Ink4b, Arf and p16Ink4a) and is frequently inactivated in a large number of human cancers. Mechanisms regulating INK4/ARF expression are not fully characterized. Principal Findings Here we show that in young proliferating embryonic fibroblasts (MEFs) the Polycomb Repressive Complex 2 (PRC2) member EZH2 together with PRC1 members BMI1 and M33 are strongly expressed and localized at the INK4/ARF regulatory domain (RD) identified as a DNA replication origin. When cells enter senescence the binding to RD of both PRC1 and PRC2 complexes is lost leading to a decreased level of histone H3K27 trimethylation (H3K27me3). This loss is accompanied with an increased expression of the histone demethylase Jmjd3 and with the recruitment of the MLL1 protein, and correlates with the expression of the Ink4a/Arf genes. Moreover, we show that the Polycomb protein BMI1 interacts with CDC6, an essential regulator of DNA replication in eukaryotic cells. Finally, we demonstrate that Polycomb proteins and associated epigenetic marks are crucial for the control of the replication timing of the INK4a/ARF locus during senescence. Conclusions We identified the replication licencing factor CDC6 as a new partner of the Polycomb group member BMI1. Our results suggest that in young cells Polycomb proteins are recruited to the INK4/ARF locus through CDC6 and the resulting silent locus is replicated during late S-phase. Upon senescence, Jmjd3 is overexpressed and the MLL1 protein is recruited to the locus provoking the dissociation of Polycomb from the INK4/ARF locus, its transcriptional activation and its replication during early S-phase. Together, these results provide a unified model that integrates replication, transcription and epigenetics at the INK4/ARF locus. PMID:19462008

  13. Large-Scale Chromatin Structure-Function Relationships during the Cell Cycle and Development: Insights from Replication Timing.

    Science.gov (United States)

    Dileep, Vishnu; Rivera-Mulia, Juan Carlos; Sima, Jiao; Gilbert, David M

    2015-01-01

    Chromosome architecture has received a lot of attention since the recent development of genome-scale methods to measure chromatin interactions (Hi-C), enabling the first sequence-based models of chromosome tertiary structure. A view has emerged of chromosomes as a string of structural units (topologically associating domains; TADs) whose boundaries persist through the cell cycle and development. TADs with similar chromatin states tend to aggregate, forming spatially segregated chromatin compartments. However, high-resolution Hi-C has revealed substructure within TADs (subTADs) that poses a challenge for models that attribute significance to structural units at any given scale. More than 20 years ago, the DNA replication field independently identified stable structural (and functional) units of chromosomes (replication foci) as well as spatially segregated chromatin compartments (early and late foci), but lacked the means to link these units to genomic map units. Genome-wide studies of replication timing (RT) have now merged these two disciplines by identifying individual units of replication regulation (replication domains; RDs) that correspond to TADs and are arranged in 3D to form spatiotemporally segregated subnuclear compartments. Furthermore, classifying RDs/TADs by their constitutive versus developmentally regulated RT has revealed distinct classes of chromatin organization, providing unexpected insight into the relationship between large-scale chromosome structure and function. PMID:26590169

  14. Strong nucleosomes of A. thaliana concentrate in centromere regions.

    Science.gov (United States)

    Salih, Bilal; Trifonov, Edward N

    2015-01-01

    Earlier identified strongest nucleosome DNA sequences of A. thaliana, those with visible 10-11 base sequence periodicity, are mapped along chromosomes. Resulting positional distributions reveal distinct maxima, one per chromosome, located in the centromere regions. Sequence-directed nucleosome mapping demonstrates that the strong nucleosomes (SNs) make tight arrays, several 'parallel' nucleosomes each, suggesting a columnar chromatin structure. The SNs represent a new class of centromeric nucleosomes, presumably, participating in synapsis of chromatids and securing the centromere architecture.

  15. Centromeres cluster de novo at the beginning of meiosis in Brachypodium distachyon.

    Directory of Open Access Journals (Sweden)

    Ruoyu Wen

    Full Text Available In most eukaryotes that have been studied, the telomeres cluster into a bouquet early in meiosis, and in wheat and its relatives and in Arabidopsis the centromeres pair at the same time. In Arabidopsis, the telomeres do not cluster as a typical telomere bouquet on the nuclear membrane but are associated with the nucleolus both somatically and at the onset of meiosis. We therefore assessed whether Brachypodium distachyon, a monocot species related to cereals and whose genome is approximately twice the size of Arabidopsis thaliana, also exhibited an atypical telomere bouquet and centromere pairing. In order to investigate the occurrence of a bouquet and centromere pairing in B distachyon, we first had to establish protocols for studying meiosis in this species. This enabled us to visualize chromosome behaviour in meiocytes derived from young B distachyon spikelets in three-dimensions by fluorescent in situ hybridization (FISH, and accurately to stage meiosis based on chromatin morphology in relation to spikelet size and the timing of sample collection. Surprisingly, this study revealed that the centromeres clustered as a single site at the same time as the telomeres also formed a bouquet or single cluster.

  16. Turning the hands of time again: a purely confirmatory replication study and a Bayesian analysis

    NARCIS (Netherlands)

    E.-J. Wagenmakers; T.F. Beek; M. Rotteveel; A. Gierholz; D. Matzke; H. Steingroever; A. Ly; J. Verhagen; R. Selker; A. Sasiadek; Q.F. Gronau; J. Love; Y. Pinto

    2015-01-01

    In a series of four experiments, Topolinski and Sparenberg (2012) found support for the conjecture that clockwise movements induce psychological states of temporal progression and an orientation toward the future and novelty. Here we report the results of a preregistered replication attempt of Exper

  17. Centromere positions in chicken and Japanese quail chromosomes: de novo centromere formation versus pericentric inversions

    NARCIS (Netherlands)

    Zlotina, A.; Galkina, S.; Krasikova, A.; Crooijmans, R.P.M.A.; Groenen, M.; Gaginskaya, E.; Deryusheva, S.

    2012-01-01

    Chicken (Gallus gallus domesticus, GGA) and Japanese quail (Coturnix coturnix japonica, CCO) karyotypes are very similar. They have identical chromosome number (2n = 78) and show a high degree of synteny. Centromere positions on the majority of orthologous chromosomes are different in these two spec

  18. Holocentromeres are dispersed point centromeres localized at transcription factor hotspots.

    Science.gov (United States)

    Steiner, Florian A; Henikoff, Steven

    2014-01-01

    Centromeres vary greatly in size and sequence composition, ranging from 'point' centromeres with a single cenH3-containing nucleosome to 'regional' centromeres embedded in tandemly repeated sequences to holocentromeres that extend along the length of entire chromosomes. Point centromeres are defined by sequence, whereas regional and holocentromeres are epigenetically defined by the location of cenH3-containing nucleosomes. In this study, we show that Caenorhabditis elegans holocentromeres are organized as dispersed but discretely localized point centromeres, each forming a single cenH3-containing nucleosome. These centromeric sites co-localize with kinetochore components, and their occupancy is dependent on the cenH3 loading machinery. These sites coincide with non-specific binding sites for multiple transcription factors ('HOT' sites), which become occupied when cenH3 is lost. Our results show that the point centromere is the basic unit of holocentric organization in support of the classical polycentric model for holocentromeres, and provide a mechanistic basis for understanding how centromeric chromatin might be maintained. DOI: http://dx.doi.org/10.7554/eLife.02025.001. PMID:24714495

  19. HJURP is involved in the expansion of centromeric chromatin.

    Science.gov (United States)

    Perpelescu, Marinela; Hori, Tetsuya; Toyoda, Atsushi; Misu, Sadahiko; Monma, Norikazu; Ikeo, Kazuho; Obuse, Chikashi; Fujiyama, Asao; Fukagawa, Tatsuo

    2015-08-01

    The CENP-A-specific chaperone HJURP mediates CENP-A deposition at centromeres. The N-terminal region of HJURP is responsible for binding to soluble CENP-A. However, it is unclear whether other regions of HJURP have additional functions for centromere formation and maintenance. In this study, we generated chicken DT40 knockout cell lines and gene replacement constructs for HJURP to assess the additional functions of HJURP in vivo. Our analysis revealed that the middle region of HJURP associates with the Mis18 complex protein M18BP1/KNL2 and that the HJURP-M18BP1 association is required for HJURP function. In addition, on the basis of the analysis of artificial centromeres induced by ectopic HJURP localization, we demonstrate that HJURP exhibits a centromere expansion activity that is separable from its CENP-A-binding activity. We also observed centromere expansion surrounding natural centromeres after HJURP overexpression. We propose that this centromere expansion activity reflects the functional properties of HJURP, which uses this activity to contribute to the plastic establishment of a centromeric chromatin structure. PMID:26063729

  20. HACking the centromere chromatin code: insights from human artificial chromosomes.

    Science.gov (United States)

    Bergmann, Jan H; Martins, Nuno M C; Larionov, Vladimir; Masumoto, Hiroshi; Earnshaw, William C

    2012-07-01

    The centromere is a specialized chromosomal region that serves as the assembly site of the kinetochore. At the centromere, CENP-A nucleosomes form part of a chromatin landscape termed centrochromatin. This chromatin environment conveys epigenetic marks regulating kinetochore formation. Recent work sheds light on the intricate relationship between centrochromatin state, the CENP-A assembly pathway and the maintenance of centromere function. Here, we review the emerging picture of how chromatin affects mammalian kinetochore formation. We place particular emphasis on data obtained from Human Artificial Chromosome (HAC) biology and the targeted engineering of centrochromatin using synthetic HACs. We discuss implications of these findings, which indicate that a delicate balance of histone modifications and chromatin state dictates both de novo centromere formation and the maintenance of centromere identity in dividing cell populations.

  1. The Past, Present, and Future of Human Centromere Genomics

    Directory of Open Access Journals (Sweden)

    Megan E. Aldrup-MacDonald

    2014-01-01

    Full Text Available The centromere is the chromosomal locus essential for chromosome inheritance and genome stability. Human centromeres are located at repetitive alpha satellite DNA arrays that compose approximately 5% of the genome. Contiguous alpha satellite DNA sequence is absent from the assembled reference genome, limiting current understanding of centromere organization and function. Here, we review the progress in centromere genomics spanning the discovery of the sequence to its molecular characterization and the work done during the Human Genome Project era to elucidate alpha satellite structure and sequence variation. We discuss exciting recent advances in alpha satellite sequence assembly that have provided important insight into the abundance and complex organization of this sequence on human chromosomes. In light of these new findings, we offer perspectives for future studies of human centromere assembly and function.

  2. Inference of fitness values and putative appearance time points for evolvable self-replicating molecules from time series of occurrence frequencies in an evolution reactor.

    Science.gov (United States)

    Aita, Takuyo; Ichihashi, Norikazu; Yomo, Tetsuya

    2016-07-21

    We have established a translation-coupled RNA replication system within a cell-like compartment, and conducted an experimental evolution of the RNA molecules in the system. Then, we obtained a time series of occurrence frequencies of 91 individual genotypes through random sampling and next-generation sequencing. The time series showed a complex clonal interference and a polymorphic population called the "quasispecies". By fitting a deterministic kinetic model of evolvable simple self-replicators to the time series, we estimated the fitness value and "putative appearance time point" for each of the 91 major genotypes identified, where the putative appearance time point is defined as a certain time point at which a certain mutant genotype is supposed to appear in the deterministic kinetic model. As a result, the kinetic model was well fitted and additionally we confirmed that the estimated fitness values for 11 genotypes were considerably close to the experimentally measured ones (Ichihashi et al., 2015). In this sequel paper, with the theoretical basis of the deterministic kinetic model, we present the details of inference of the fitness values and putative appearance time points for the 91 genotypes. It may be possible to apply this methodology to other self-replicating molecules, viruses and bacteria. PMID:27091052

  3. Methods for Monitoring Dynamics of Pulmonary RSV Replication by Viral Culture and by Real-Time Reverse Transcription-PCR in vivo: Detection of Abortive Viral Replication

    OpenAIRE

    Boukhvalova, Marina S.

    2010-01-01

    Viral infection is normally detected either by viral culture or by PCR methods. Rarely a combination of the two techniques is used in the same study. Yet, when applied simultaneously, viral culture and PCR may reveal important features of viral biology, such as an abortive replication as in the case of respiratory syncytial virus (RSV) infection. In this unit we describe methods for detecting abortive RSV replication in a cotton rat model by using the plaque-forming unit assay and by the real...

  4. Cohesin interaction with centromeric minichromosomes shows a multi-complex rod-shaped structure.

    Directory of Open Access Journals (Sweden)

    Alexandra Surcel

    Full Text Available Cohesin is the protein complex responsible for maintaining sister chromatid cohesion. Cohesin interacts with centromeres and specific loci along chromosome arms known as Chromosome Attachment Regions (CARs. The cohesin holocomplex contains four subunits. Two of them, Smc1p (Structural maintenance of chromosome 1 protein and Smc3p, are long coiled-coil proteins, which heterodimerize with each other at one end. They are joined together at the other end by a third subunit, Scc1p, which also binds to the fourth subunit, Scc3p. How cohesin interacts with chromosomes is not known, although several models have been proposed, in part on the basis of in vitro assembly of purified cohesin proteins. To be able to observe in vivo cohesin-chromatin interactions, we have modified a Minichromosome Affinity Purification (MAP method to isolate a CAR-containing centromeric minichromosome attached to in vivo assembled cohesin. Transmission Electron Microscopy (TEM analysis of these minichromosomes suggests that cohesin assumes a rod shape and interacts with replicated minichromosome at one end of that rod. Additionally, our data implies that more than one cohesin molecule interacts with each pair of replicated minichromsomes. These molecules seem to be packed into a single thick rod, suggesting that the Smc1p and Smc3p subunits may interact extensively.

  5. A NASP (N1/N2)-related protein, Sim3, binds CENP-A and is required for its deposition at fission yeast centromeres.

    Science.gov (United States)

    Dunleavy, Elaine M; Pidoux, Alison L; Monet, Marie; Bonilla, Carolina; Richardson, William; Hamilton, Georgina L; Ekwall, Karl; McLaughlin, Paul J; Allshire, Robin C

    2007-12-28

    A defining feature of centromeres is the presence of the histone H3 variant CENP-A(Cnp1). It is not known how CENP-A(Cnp1) is specifically delivered to, and assembled into, centromeric chromatin. Through a screen for factors involved in kinetochore integrity in fission yeast, we identified Sim3. Sim3 is homologous to known histone binding proteins NASP(Human) and N1/N2(Xenopus) and aligns with Hif1(S. cerevisiae), defining the SHNi-TPR family. Sim3 is distributed throughout the nucleoplasm, yet it associates with CENP-A(Cnp1) and also binds H3. Cells defective in Sim3 function have reduced levels of CENP-A(Cnp1) at centromeres (and increased H3) and display chromosome segregation defects. Sim3 is required to allow newly synthesized CENP-A(Cnp1) to accumulate at centromeres in S and G2 phase-arrested cells in a replication-independent mechanism. We propose that one function of Sim3 is to act as an escort that hands off CENP-A(Cnp1) to chromatin assembly factors, allowing its incorporation into centromeric chromatin. PMID:18158900

  6. CENP-C facilitates the recruitment of M18BP1 to centromeric chromatin

    OpenAIRE

    Dambacher, Silvia; Deng, Wen; Hahn, Matthias; Sadic, Dennis; Fröhlich, Jonathan; Nuber, Alexander; Hoischen, Christian; Diekmann, Stephan; Leonhardt, Heinrich; Schotta, Gunnar

    2012-01-01

    Centromeres are important structural constituents of chromosomes that ensure proper chromosome segregation during mitosis by providing defined sites for kinetochore attachment. In higher eukaryotes, centromeres have no specific DNA sequence and thus, they are rather determined through epigenetic mechanisms. A fundamental process in centromere establishment is the incorporation of the histone variant CENP-A into centromeric chromatin, which provides a binding platform for the other centromeric...

  7. Evidence for centromere drive in the holocentric chromosomes of Caenorhabditis.

    Directory of Open Access Journals (Sweden)

    František Zedek

    Full Text Available In monocentric organisms with asymmetric meiosis, the kinetochore proteins, such as CENH3 and CENP-C, evolve adaptively to counterbalance the deleterious effects of centromere drive, which is caused by the expansion of centromeric satellite repeats. The selection regimes that act on CENH3 and CENP-C genes have not been analyzed in organisms with holocentric chromosomes, although holocentrism is speculated to have evolved to suppress centromere drive. We tested both CENH3 and CENP-C for positive selection in several species of the holocentric genus Caenorhabditis using the maximum likelihood approach and sliding-window analysis. Although CENP-C did not show any signs of positive selection, positive selection has been detected in the case of CENH3. These results support the hypothesis that centromere drive occurs in Nematoda, at least in the telokinetic meiosis of Caenorhabditis.

  8. Ectopic centromere nucleation by CENP--a in fission yeast.

    Science.gov (United States)

    Gonzalez, Marlyn; He, Haijin; Dong, Qianhua; Sun, Siyu; Li, Fei

    2014-12-01

    The centromere is a specific chromosomal locus that organizes the assembly of the kinetochore. It plays a fundamental role in accurate chromosome segregation. In most eukaryotic organisms, each chromosome contains a single centromere the position and function of which are epigenetically specified. Occasionally, centromeres form at ectopic loci, which can be detrimental to the cell. However, the mechanisms that protect the cell against ectopic centromeres (neocentromeres) remain poorly understood. Centromere protein-A (CENP-A), a centromere-specific histone 3 (H3) variant, is found in all centromeres and is indispensable for centromere function. Here we report that the overexpression of CENP-A(Cnp1) in fission yeast results in the assembly of CENP-A(Cnp1) at noncentromeric chromatin during mitosis and meiosis. The noncentromeric CENP-A preferentially assembles near heterochromatin and is capable of recruiting kinetochore components. Consistent with this, cells overexpressing CENP-A(Cnp1) exhibit severe chromosome missegregation and spindle microtubule disorganization. In addition, pulse induction of CENP-A(Cnp1) overexpression reveals that ectopic CENP-A chromatin can persist for multiple generations. Intriguingly, ectopic assembly of CENP-A(cnp1) is suppressed by overexpression of histone H3 or H4. Finally, we demonstrate that deletion of the N-terminal domain of CENP-A(cnp1) results in an increase in the number of ectopic CENP-A sites and provide evidence that the N-terminal domain of CENP-A prevents CENP-A assembly at ectopic loci via the ubiquitin-dependent proteolysis. These studies expand our current understanding of how noncentromeric chromatin is protected from mistakenly assembling CENP-A. PMID:25298518

  9. HJURP is involved in the expansion of centromeric chromatin

    OpenAIRE

    Perpelescu, Marinela; Hori, Tetsuya; Toyoda, Atsushi; Misu, Sadahiko; Monma, Norikazu; Ikeo, Kazuho; Obuse, Chikashi; Fujiyama, Asao; Fukagawa, Tatsuo

    2015-01-01

    The CENP-A–specific chaperone HJURP mediates CENP-A deposition at centromeres. The N-terminal region of HJURP is responsible for binding to soluble CENP-A. However, it is unclear whether other regions of HJURP have additional functions for centromere formation and maintenance. In this study, we generated chicken DT40 knockout cell lines and gene replacement constructs for HJURP to assess the additional functions of HJURP in vivo. Our analysis revealed that the middle region of HJURP associate...

  10. Rotating Arc Jet Test Model: Time-Accurate Trajectory Heat Flux Replication in a Ground Test Environment

    Science.gov (United States)

    Laub, Bernard; Grinstead, Jay; Dyakonov, Artem; Venkatapathy, Ethiraj

    2011-01-01

    Though arc jet testing has been the proven method employed for development testing and certification of TPS and TPS instrumentation, the operational aspects of arc jets limit testing to selected, but constant, conditions. Flight, on the other hand, produces timevarying entry conditions in which the heat flux increases, peaks, and recedes as a vehicle descends through an atmosphere. As a result, we are unable to "test as we fly." Attempts to replicate the time-dependent aerothermal environment of atmospheric entry by varying the arc jet facility operating conditions during a test have proven to be difficult, expensive, and only partially successful. A promising alternative is to rotate the test model exposed to a constant-condition arc jet flow to yield a time-varying test condition at a point on a test article (Fig. 1). The model shape and rotation rate can be engineered so that the heat flux at a point on the model replicates the predicted profile for a particular point on a flight vehicle. This simple concept will enable, for example, calibration of the TPS sensors on the Mars Science Laboratory (MSL) aeroshell for anticipated flight environments.

  11. Kinetochore and heterochromatin domains of the fission yeast centromere.

    Science.gov (United States)

    Pidoux, Alison L; Allshire, Robin C

    2004-01-01

    Fission yeast centromeres are composed of two distinctive chromatin domains. The central domain nucleosomes contain the histone H3-like protein CENP-A(Cnp1). In contrast, the flanking repeats are coated with silent chromatin in which Swi6 (HP1) binds histone H3 methylated on lysine 9 that is induced by the action of the RNA interference pathway on non-coding centromeric transcripts. The overall structure is similar to that of metazoan centromeres where the kinetochore is embedded in surrounding heterochromatin. Kinetochore specific proteins associate with the central domain and affect silencing in that region. The flanking heterochromatin is required to recruit cohesin and mediate tight physical cohesion between sister centromeres. The loss of silencing that accompanies defects in heterochromatin has been invaluable as a tool in the investigation of centromere function. Both the heterochromatin and kinetochore regions are required for the de novo assembly of a functional centromere on DNA constructs, suggesting that heterochromatin may provide an environment that promotes kinetochore assembly within the central domain. The process is clearly epigenetically regulated. Fission yeast kinetochores associate with 2-4 microtubules, and flanking heterochromatin may be required to promote the orientation of multiple microtubule binding sites on one kinetochore towards the same pole and thus prevent merotelic orientation. PMID:15289660

  12. Centromeric barrier disruption leads to mitotic defects in Schizosaccharomyces pombe.

    Science.gov (United States)

    Gaither, Terilyn L; Merrett, Stephanie L; Pun, Matthew J; Scott, Kristin C

    2014-04-01

    Centromeres are cis-acting chromosomal domains that direct kinetochore formation, enabling faithful chromosome segregation and preserving genome stability. The centromeres of most eukaryotic organisms are structurally complex, composed of nonoverlapping, structurally and functionally distinct chromatin subdomains, including the specialized core chromatin that underlies the kinetochore and pericentromeric heterochromatin. The genomic and epigenetic features that specify and preserve the adjacent chromatin subdomains critical to centromere identity are currently unknown. Here we demonstrate that chromatin barriers regulate this process in Schizosaccharomyces pombe. Reduced fitness and mitotic chromosome segregation defects occur in strains that carry exogenous DNA inserted at centromere 1 chromatin barriers. Abnormal phenotypes are accompanied by changes in the structural integrity of both the centromeric core chromatin domain, containing the conserved CENP-A(Cnp1) protein, and the flanking pericentric heterochromatin domain. Barrier mutant cells can revert to wild-type growth and centromere structure at a high frequency after the spontaneous excision of integrated exogenous DNA. Our results reveal a previously undemonstrated role for chromatin barriers in chromosome segregation and in the prevention of genome instability. PMID:24531725

  13. Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells.

    Directory of Open Access Journals (Sweden)

    Yamini Dalal

    2007-08-01

    Full Text Available Centromeres, the specialized chromatin structures that are responsible for equal segregation of chromosomes at mitosis, are epigenetically maintained by a centromere-specific histone H3 variant (CenH3. However, the mechanistic basis for centromere maintenance is unknown. We investigated biochemical properties of CenH3 nucleosomes from Drosophila melanogaster cells. Cross-linking of CenH3 nucleosomes identifies heterotypic tetramers containing one copy of CenH3, H2A, H2B, and H4 each. Interphase CenH3 particles display a stable association of approximately 120 DNA base pairs. Purified centromeric nucleosomal arrays have typical "beads-on-a-string" appearance by electron microscopy but appear to resist condensation under physiological conditions. Atomic force microscopy reveals that native CenH3-containing nucleosomes are only half as high as canonical octameric nucleosomes are, confirming that the tetrameric structure detected by cross-linking comprises the entire interphase nucleosome particle. This demonstration of stable half-nucleosomes in vivo provides a possible basis for the instability of centromeric nucleosomes that are deposited in euchromatic regions, which might help maintain centromere identity.

  14. Phenotypic Selection Exerted by a Seed Predator Is Replicated in Space and Time and among Prey Species.

    Science.gov (United States)

    Benkman, Craig W; Mezquida, Eduardo T

    2015-11-01

    Although consistent phenotypic selection arising from biotic interactions is thought to be the primary cause of adaptive diversification, studies documenting such selection are relatively few. Here we analyze 12 episodes of phenotypic selection exerted by a predispersal seed predator, the red crossbill (Loxia curvirostra complex), on five species of pines (Pinus). We find that even though the intensity of selection for some traits increased with the strength of the interaction (i.e., proportion of seeds eaten), the relative strength of selection exerted by crossbills on cone and seed traits is replicated across space and time and among species. Such selection (1) can account for repeated patterns of conifer cone evolution and escalation in seed defenses with time and (2) suggests that variation in selection is less the result of variation intrinsic to pairwise biotic interactions than, for example, variation in relative densities of the interacting species, community context, and abiotic factors.

  15. DNA replication timing is maintained genome-wide in primary human myoblasts independent of D4Z4 contraction in FSH muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Benjamin D Pope

    Full Text Available Facioscapulohumeral muscular dystrophy (FSHD is linked to contraction of an array of tandem 3.3-kb repeats (D4Z4 at 4q35.2 from 11-100 copies to 1-10 copies. The extent to which D4Z4 contraction at 4q35.2 affects overall 4q35.2 chromatin organization remains unclear. Because DNA replication timing is highly predictive of long-range chromatin interactions, we generated genome-wide replication-timing profiles for FSHD and control myogenic precursor cells. We compared non-immortalized myoblasts from four FSHD patients and three control individuals to each other and to a variety of other human cell types. This study also represents the first genome-wide comparison of replication timing profiles in non-immortalized human cell cultures. Myoblasts from both control and FSHD individuals all shared a myoblast-specific replication profile. In contrast, male and female individuals were readily distinguished by monoallelic differences in replication timing at DXZ4 and other regions across the X chromosome affected by X inactivation. We conclude that replication timing is a robust cell-type specific feature that is unaffected by FSHD-related D4Z4 contraction.

  16. The sense, landscape and image. How the tourist destination is replicated in postmodernist times

    Directory of Open Access Journals (Sweden)

    Maximiliano E. Korstanje

    2013-07-01

    Full Text Available Policy makers, practitioners and analysts have focused on the psychology to induce consumers to new products. These new eye-catching packaging products in tourism and hospitality industries and beyond are commercialized to thousands of home thanks to the media. We are living in times, digital times where organic image plays a pivotal role in arousing emotions and experiences, although these experiences were not authentic. Following this discussion, initialized some time ago by D. Maccannell and other sociologists, the present paper explores the philosophical roots of image to expand the current understanding about our ocular-centrism. At time, tourists select a destination, they are moved by “the wish of majority”, but once destination is maturated, its attractiveness declines. What seems to be interesting to discuss here is the connection between perceived safety (risk and attraction (organic image. Following I. Kant’s contributions, we present a conceptual model to understand how the dilemma of safety leads consumers to visual pollution.

  17. Conditional Spectral Analysis of Replicated Multiple Time Series with Application to Nocturnal Physiology

    OpenAIRE

    Krafty, Robert T; Rosen, Ori; Stoffer, David S.; Buysse, Daniel J.; Hall, Martica H.

    2015-01-01

    During sleep, the human body cycles through different states, and physiological activity during these states is essential to the rejuvenating properties of sleep. Researchers use polysomnography to record electrophysiological time series during sleep with the goal of characterizing sleep and elucidating the pathways through which sleep affects, and can be treated to improve, health and functioning. Important physiological information is contained in frequency patterns of many of these series,...

  18. Adaptive evolution of centromere proteins in plants and animals

    Directory of Open Access Journals (Sweden)

    Henikoff Steven

    2004-08-01

    Full Text Available Abstract Background Centromeres represent the last frontiers of plant and animal genomics. Although they perform a conserved function in chromosome segregation, centromeres are typically composed of repetitive satellite sequences that are rapidly evolving. The nucleosomes of centromeres are characterized by a special H3-like histone (CenH3, which evolves rapidly and adaptively in Drosophila and Arabidopsis. Most plant, animal and fungal centromeres also bind a large protein, centromere protein C (CENP-C, that is characterized by a single 24 amino-acid motif (CENPC motif. Results Whereas we find no evidence that mammalian CenH3 (CENP-A has been evolving adaptively, mammalian CENP-C proteins contain adaptively evolving regions that overlap with regions of DNA-binding activity. In plants we find that CENP-C proteins have complex duplicated regions, with conserved amino and carboxyl termini that are dissimilar in sequence to their counterparts in animals and fungi. Comparisons of Cenpc genes from Arabidopsis species and from grasses revealed multiple regions that are under positive selection, including duplicated exons in some grasses. In contrast to plants and animals, yeast CENP-C (Mif2p is under negative selection. Conclusions CENP-Cs in all plant and animal lineages examined have regions that are rapidly and adaptively evolving. To explain these remarkable evolutionary features for a single-copy gene that is needed at every mitosis, we propose that CENP-Cs, like some CenH3s, suppress meiotic drive of centromeres during female meiosis. This process can account for the rapid evolution and the complexity of centromeric DNA in plants and animals as compared to fungi.

  19. Diversity and dynamics of dominant and rare bacterial taxa in replicate sequencing batch reactors operated under different solids retention time

    KAUST Repository

    Bagchi, Samik

    2014-10-19

    In this study, 16S rRNA gene pyrosequencing was applied in order to provide a better insight on the diversity and dynamics of total, dominant, and rare bacterial taxa in replicate lab-scale sequencing batch reactors (SBRs) operated at different solids retention time (SRT). Rank-abundance curves showed few dominant operational taxonomic units (OTUs) and a long tail of rare OTUs in all reactors. Results revealed that there was no detectable effect of SRT (2 vs. 10 days) on Shannon diversity index and OTU richness of both dominant and rare taxa. Nonmetric multidimensional scaling analysis showed that the total, dominant, and rare bacterial taxa were highly dynamic during the entire period of stable reactor performance. Also, the rare taxa were more dynamic than the dominant taxa despite expected low invasion rates because of the use of sterile synthetic media.

  20. Variation in Copy Number of Ty3/Gypsy Centromeric Retrotransposons in the Genomes of Thinopyrum intermedium and Its Diploid Progenitors

    Science.gov (United States)

    Divashuk, Mikhail G.; Khuat, Thi Mai L.; Kroupin, Pavel Yu.; Kirov, Ilya V.; Romanov, Dmitry V.; Kiseleva, Anna V.; Khrustaleva, Ludmila I.; Alexeev, Dmitry G.; Zelenin, Alexandr S.; Klimushina, Marina V.; Razumova, Olga V.; Karlov, Gennady I.

    2016-01-01

    Speciation and allopolyploidization in cereals may be accompanied by dramatic changes in abundance of centromeric repeated transposable elements. Here we demonstrate that the reverse transcriptase part of Ty3/gypsy centromeric retrotransposon (RT-CR) is highly conservative in the segmental hexaploid Thinopyrum intermedium (JrJvsSt) and its possible diploid progenitors Th. bessarabicum (Jb), Pseudoroegneria spicata (St) and Dasypyrum villosum (V) but the abundance of the repeats varied to a large extent. Fluorescence in situ hybridization (FISH) showed hybridization signals in centromeric region of all chromosomes in the studied species, although the intensity of the signals drastically differed. In Th. intermedium, the strongest signal of RT-CR probe was detected on the chromosomes of Jv, intermediate on Jr and faint on Js and St subgenome suggesting different abundance of RT-CR on the individual chromosomes rather than the sequence specificity of RT-CRs of the subgenomes. RT-CR quantification using real-time PCR revealed that its content per genome in Th. bessarabicum is ~ 2 times and P. spicata is ~ 1,5 times higher than in genome of D. villosum. The possible burst of Ty3/gypsy centromeric retrotransposon in Th. intermedium during allopolyploidization and its role in proper mitotic and meiotic chromosome behavior in a nascent allopolyploid is discussed. PMID:27119343

  1. No longer a nuisance: long non-coding RNAs join CENP-A in epigenetic centromere regulation.

    Science.gov (United States)

    Rošić, Silvana; Erhardt, Sylvia

    2016-04-01

    Centromeres represent the basis for kinetochore formation, and are essential for proper chromosome segregation during mitosis. Despite these essential roles, centromeres are not defined by specific DNA sequences, but by epigenetic means. The histone variant CENP-A controls centromere identity epigenetically and is essential for recruiting kinetochore components that attach the chromosomes to the mitotic spindle during mitosis. Recently, a new player in centromere regulation has emerged: long non-coding RNAs transcribed from repetitive regions of centromeric DNA function in regulating centromeres epigenetically. This review summarizes recent findings on the essential roles that transcription, pericentromeric transcripts, and centromere-derived RNAs play in centromere biology.

  2. Chromosomes. CENP-C reshapes and stabilizes CENP-A nucleosomes at the centromere.

    Science.gov (United States)

    Falk, Samantha J; Guo, Lucie Y; Sekulic, Nikolina; Smoak, Evan M; Mani, Tomoyasu; Logsdon, Glennis A; Gupta, Kushol; Jansen, Lars E T; Van Duyne, Gregory D; Vinogradov, Sergei A; Lampson, Michael A; Black, Ben E

    2015-05-01

    Inheritance of each chromosome depends upon its centromere. A histone H3 variant, centromere protein A (CENP-A), is essential for epigenetically marking centromere location. We find that CENP-A is quantitatively retained at the centromere upon which it is initially assembled. CENP-C binds to CENP-A nucleosomes and is a prime candidate to stabilize centromeric chromatin. Using purified components, we find that CENP-C reshapes the octameric histone core of CENP-A nucleosomes, rigidifies both surface and internal nucleosome structure, and modulates terminal DNA to match the loose wrap that is found on native CENP-A nucleosomes at functional human centromeres. Thus, CENP-C affects nucleosome shape and dynamics in a manner analogous to allosteric regulation of enzymes. CENP-C depletion leads to rapid removal of CENP-A from centromeres, indicating their collaboration in maintaining centromere identity.

  3. Effects of sense and antisense centromere/kinetochore complex protein-B (CENP-B) in cell cycle regulation

    Institute of Scientific and Technical Information of China (English)

    LUO Song; LIN Haiyan; QI Jianguo; WANG Yongchao

    2005-01-01

    This paper investigates the effects of sense and antisense centromere/kinetochore complex protein-B (CENP-B) in cell cycle regulation. Full-length cenpb cDNA was subcloned into pBI-EGFP eukaryotic expression vector in both sense and antisense orientation. HeLa-Tet-Off cells were transfected with sense or antisense cenpb vectors. Sense transfection of HeLa-Tet-Off cells resulted in the formation of a large centromere/kinetochore complex, and apoptosis of cells following several times of cell division. A stable antisense cenpb transfected cell line, named HACPB, was obtained. The centromere/kinetochore complex of HACPB cells became smaller than control HeLa-Tet-Off cells and scattered, and the expression of CENP-B was down-regulated. In addition, delayed cell cycle progression, inhibited malignant phenotype, restrained ability of tumor formation in nude mice, and delayed entry from G2/M phase into next G1 phase were observed in HACPB cells. Furthermore, the expression of cyclin-dependent kinases (CDKs), cyclins, and CDK inhibitors (CKIs) were modulated during different phases of the cell cycle. CENP-B is an essential protein for the maintenance of the structure and function of centromere/kinetochore complex, and plays important roles in cell cycle regulation.

  4. The cotton centromere contains a Ty3-gypsy-like LTR retroelement.

    Directory of Open Access Journals (Sweden)

    Song Luo

    Full Text Available The centromere is a repeat-rich structure essential for chromosome segregation; with the long-term aim of understanding centromere structure and function, we set out to identify cotton centromere sequences. To isolate centromere-associated sequences from cotton, (Gossypium hirsutum we surveyed tandem and dispersed repetitive DNA in the genus. Centromere-associated elements in other plants include tandem repeats and, in some cases, centromere-specific retroelements. Examination of cotton genomic survey sequences for tandem repeats yielded sequences that did not localize to the centromere. However, among the repetitive sequences we also identified a gypsy-like LTR retrotransposon (Centromere Retroelement Gossypium, CRG that localizes to the centromere region of all chromosomes in domestic upland cotton, Gossypium hirsutum, the major commercially grown cotton. The location of the functional centromere was confirmed by immunostaining with antiserum to the centromere-specific histone CENH3, which co-localizes with CRG hybridization on metaphase mitotic chromosomes. G. hirsutum is an allotetraploid composed of A and D genomes and CRG is also present in the centromere regions of other AD cotton species. Furthermore, FISH and genomic dot blot hybridization revealed that CRG is found in D-genome diploid cotton species, but not in A-genome diploid species, indicating that this retroelement may have invaded the A-genome centromeres during allopolyploid formation and amplified during evolutionary history. CRG is also found in other diploid Gossypium species, including B and E2 genome species, but not in the C, E1, F, and G genome species tested. Isolation of this centromere-specific retrotransposon from Gossypium provides a probe for further understanding of centromere structure, and a tool for future engineering of centromere mini-chromosomes in this important crop species.

  5. Polo-like kinase 1 licenses CENP-A deposition at centromeres

    OpenAIRE

    McKinley, Kara L.; Cheeseman, Iain M.

    2014-01-01

    To ensure the stable transmission of the genome during vertebrate cell division, the mitotic spindle must attach to a single locus on each chromosome, termed the centromere. The fundamental requirement for faithful centromere inheritance is the controlled deposition of the centromere-specifying histone, CENP-A. However, the regulatory mechanisms that ensure the precise control of CENP-A deposition have proved elusive. Here, we identify Polo-like kinase 1 (Plk1) as a centromere-localized regul...

  6. Temperature and solids retention time control microbial population dynamics and volatile fatty acid production in replicated anaerobic digesters

    Science.gov (United States)

    Vanwonterghem, Inka; Jensen, Paul D.; Rabaey, Korneel; Tyson, Gene W.

    2015-02-01

    Anaerobic digestion is a widely used technology for waste stabilization and generation of biogas, and has recently emerged as a potentially important process for the production of high value volatile fatty acids (VFAs) and alcohols. Here, three reactors were seeded with inoculum from a stably performing methanogenic digester, and selective operating conditions (37°C and 55°C 12 day and 4 day solids retention time) were applied to restrict methanogenesis while maintaining hydrolysis and fermentation. Replicated experiments performed at each set of operating conditions led to reproducible VFA production profiles which could be correlated with specific changes in microbial community composition. The mesophilic reactor at short solids retention time showed accumulation of propionate and acetate (42 +/- 2% and 15 +/- 6% of CODhydrolyzed, respectively), and dominance of Fibrobacter and Bacteroidales. Acetate accumulation (>50% of CODhydrolyzed) was also observed in the thermophilic reactors, which were dominated by Clostridium. Under all tested conditions, there was a shift from acetoclastic to hydrogenotrophic methanogenesis, and a reduction in methane production by >50% of CODhydrolyzed. Our results demonstrate that shortening the SRT and increasing the temperature are effective strategies for driving microbial communities towards controlled production of high levels of specific volatile fatty acids.

  7. Timeless links replication termination to mitotic kinase activation.

    Science.gov (United States)

    Dheekollu, Jayaraju; Wiedmer, Andreas; Hayden, James; Speicher, David; Gotter, Anthony L; Yen, Tim; Lieberman, Paul M

    2011-05-06

    The mechanisms that coordinate the termination of DNA replication with progression through mitosis are not completely understood. The human Timeless protein (Tim) associates with S phase replication checkpoint proteins Claspin and Tipin, and plays an important role in maintaining replication fork stability at physical barriers, like centromeres, telomeres and ribosomal DNA repeats, as well as at termination sites. We show here that human Tim can be isolated in a complex with mitotic entry kinases CDK1, Auroras A and B, and Polo-like kinase (Plk1). Plk1 bound Tim directly and colocalized with Tim at a subset of mitotic structures in M phase. Tim depletion caused multiple mitotic defects, including the loss of sister-chromatid cohesion, loss of mitotic spindle architecture, and a failure to exit mitosis. Tim depletion caused a delay in mitotic kinase activity in vivo and in vitro, as well as a reduction in global histone H3 S10 phosphorylation during G2/M phase. Tim was also required for the recruitment of Plk1 to centromeric DNA and formation of catenated DNA structures at human centromere alpha satellite repeats. Taken together, these findings suggest that Tim coordinates mitotic kinase activation with termination of DNA replication.

  8. Timeless links replication termination to mitotic kinase activation.

    Directory of Open Access Journals (Sweden)

    Jayaraju Dheekollu

    Full Text Available The mechanisms that coordinate the termination of DNA replication with progression through mitosis are not completely understood. The human Timeless protein (Tim associates with S phase replication checkpoint proteins Claspin and Tipin, and plays an important role in maintaining replication fork stability at physical barriers, like centromeres, telomeres and ribosomal DNA repeats, as well as at termination sites. We show here that human Tim can be isolated in a complex with mitotic entry kinases CDK1, Auroras A and B, and Polo-like kinase (Plk1. Plk1 bound Tim directly and colocalized with Tim at a subset of mitotic structures in M phase. Tim depletion caused multiple mitotic defects, including the loss of sister-chromatid cohesion, loss of mitotic spindle architecture, and a failure to exit mitosis. Tim depletion caused a delay in mitotic kinase activity in vivo and in vitro, as well as a reduction in global histone H3 S10 phosphorylation during G2/M phase. Tim was also required for the recruitment of Plk1 to centromeric DNA and formation of catenated DNA structures at human centromere alpha satellite repeats. Taken together, these findings suggest that Tim coordinates mitotic kinase activation with termination of DNA replication.

  9. Different patterns of evolution in the centromeric and telomeric regions of group A and B haplotypes of the human killer cell Ig-like receptor locus.

    Directory of Open Access Journals (Sweden)

    Chul-Woo Pyo

    Full Text Available The fast evolving human KIR gene family encodes variable lymphocyte receptors specific for polymorphic HLA class I determinants. Nucleotide sequences for 24 representative human KIR haplotypes were determined. With three previously defined haplotypes, this gave a set of 12 group A and 15 group B haplotypes for assessment of KIR variation. The seven gene-content haplotypes are all combinations of four centromeric and two telomeric motifs. 2DL5, 2DS5 and 2DS3 can be present in centromeric and telomeric locations. With one exception, haplotypes having identical gene content differed in their combinations of KIR alleles. Sequence diversity varied between haplotype groups and between centromeric and telomeric halves of the KIR locus. The most variable A haplotype genes are in the telomeric half, whereas the most variable genes characterizing B haplotypes are in the centromeric half. Of the highly polymorphic genes, only the 3DL3 framework gene exhibits a similar diversity when carried by A and B haplotypes. Phylogenetic analysis and divergence time estimates, point to the centromeric gene-content motifs that distinguish A and B haplotypes having emerged ~6 million years ago, contemporaneously with the separation of human and chimpanzee ancestors. In contrast, the telomeric motifs that distinguish A and B haplotypes emerged more recently, ~1.7 million years ago, before the emergence of Homo sapiens. Thus the centromeric and telomeric motifs that typify A and B haplotypes have likely been present throughout human evolution. The results suggest the common ancestor of A and B haplotypes combined a B-like centromeric region with an A-like telomeric region.

  10. Recombination patterns reveal information about centromere location on linkage maps

    DEFF Research Database (Denmark)

    Limborg, Morten T.; McKinney, Garrett J.; Seeb, Lisa W.;

    2016-01-01

    . mykiss) characterized by low and unevenly distributed recombination – a general feature of male meiosis in many species. Further, a high frequency of double crossovers along chromosome arms in barley reduced resolution for locating centromeric regions on most linkage groups. Despite these limitations...

  11. High Throughput Analyses of Budding Yeast ARSs Reveal New DNA Elements Capable of Conferring Centromere-Independent Plasmid Propagation.

    Science.gov (United States)

    Hoggard, Timothy; Liachko, Ivan; Burt, Cassaundra; Meikle, Troy; Jiang, Katherine; Craciun, Gheorghe; Dunham, Maitreya J; Fox, Catherine A

    2016-01-01

    The ability of plasmids to propagate in Saccharomyces cerevisiae has been instrumental in defining eukaryotic chromosomal control elements. Stable propagation demands both plasmid replication, which requires a chromosomal replication origin (i.e., an ARS), and plasmid distribution to dividing cells, which requires either a chromosomal centromere for segregation or a plasmid-partitioning element. While our knowledge of yeast ARSs and centromeres is relatively advanced, we know less about chromosomal regions that can function as plasmid partitioning elements. The Rap1 protein-binding site (RAP1) present in transcriptional silencers and telomeres of budding yeast is a known plasmid-partitioning element that functions to anchor a plasmid to the inner nuclear membrane (INM), which in turn facilitates plasmid distribution to daughter cells. This Rap1-dependent INM-anchoring also has an important chromosomal role in higher-order chromosomal structures that enhance transcriptional silencing and telomere stability. Thus, plasmid partitioning can reflect fundamental features of chromosome structure and biology, yet a systematic screen for plasmid partitioning elements has not been reported. Here, we couple deep sequencing with competitive growth experiments of a plasmid library containing thousands of short ARS fragments to identify new plasmid partitioning elements. Competitive growth experiments were performed with libraries that differed only in terms of the presence or absence of a centromere. Comparisons of the behavior of ARS fragments in the two experiments allowed us to identify sequences that were likely to drive plasmid partitioning. In addition to the silencer RAP1 site, we identified 74 new putative plasmid-partitioning motifs predicted to act as binding sites for DNA binding proteins enriched for roles in negative regulation of gene expression and G2/M-phase associated biology. These data expand our knowledge of chromosomal elements that may function in plasmid

  12. CENP-C facilitates the recruitment of M18BP1 to centromeric chromatin.

    Science.gov (United States)

    Dambacher, Silvia; Deng, Wen; Hahn, Matthias; Sadic, Dennis; Fröhlich, Jonathan; Nuber, Alexander; Hoischen, Christian; Diekmann, Stephan; Leonhardt, Heinrich; Schotta, Gunnar

    2012-01-01

    Centromeres are important structural constituents of chromosomes that ensure proper chromosome segregation during mitosis by providing defined sites for kinetochore attachment. In higher eukaryotes, centromeres have no specific DNA sequence and thus, they are rather determined through epigenetic mechanisms. A fundamental process in centromere establishment is the incorporation of the histone variant CENP-A into centromeric chromatin, which provides a binding platform for the other centromeric proteins. The Mis18 complex, and, in particular, its member M18BP1 was shown to be essential for both incorporation and maintenance of CENP-A. Here we show that M18BP1 displays a cell cycle-regulated association with centromeric chromatin in mouse embryonic stem cells. M18BP1 is highly enriched at centromeric regions from late anaphase through to G1 phase. An interaction screen against 16 core centromeric proteins revealed a novel interaction of M18BP1 with CENP-C. We mapped the interaction domain in M18BP1 to a central region containing a conserved SANT domain and in CENP-C to the C-terminus. Knock-down of CENP-C leads to reduced M18BP1 association and lower CENP-A levels at centromeres, suggesting that CENP-C works as an important factor for centromeric M18BP1 recruitment and thus for maintaining centromeric CENP-A. PMID:22540025

  13. Euchromatic subdomains in rice centromeres are associated with genes and transcription.

    Science.gov (United States)

    Wu, Yufeng; Kikuchi, Shinji; Yan, Huihuang; Zhang, Wenli; Rosenbaum, Heidi; Iniguez, A Leonardo; Jiang, Jiming

    2011-11-01

    The presence of the centromere-specific histone H3 variant, CENH3, defines centromeric (CEN) chromatin, but poorly understood epigenetic mechanisms determine its establishment and maintenance. CEN chromatin is embedded within pericentromeric heterochromatin in most higher eukaryotes, but, interestingly, it can show euchromatic characteristics; for example, the euchromatic histone modification mark dimethylated H3 Lys 4 (H3K4me2) is uniquely associated with animal centromeres. To examine the histone marks and chromatin properties of plant centromeres, we developed a genomic tiling array for four fully sequenced rice (Oryza sativa) centromeres and used chromatin immunoprecipitation-chip to study the patterns of four euchromatic histone modification marks: H3K4me2, trimethylated H3 Lys 4, trimethylated H3 Lys 36, and acetylated H3 Lys 4, 9. The vast majority of the four histone marks were associated with genes located in the H3 subdomains within the centromere cores. We demonstrate that H3K4me2 is not a ubiquitous component of rice CEN chromatin, and the euchromatic characteristics of rice CEN chromatin are hallmarks of the transcribed sequences embedded in the centromeric H3 subdomains. We propose that the transcribed sequences located in rice centromeres may provide a barrier preventing loading of CENH3 into the H3 subdomains. The separation of CENH3 and H3 subdomains in the centromere core may be favorable for the formation of three-dimensional centromere structure and for rice centromere function.

  14. SWI/SNF-like chromatin remodeling factor Fun30 supports point centromere function in S. cerevisiae.

    Directory of Open Access Journals (Sweden)

    Mickaël Durand-Dubief

    2012-09-01

    Full Text Available Budding yeast centromeres are sequence-defined point centromeres and are, unlike in many other organisms, not embedded in heterochromatin. Here we show that Fun30, a poorly understood SWI/SNF-like chromatin remodeling factor conserved in humans, promotes point centromere function through the formation of correct chromatin architecture at centromeres. Our determination of the genome-wide binding and nucleosome positioning properties of Fun30 shows that this enzyme is consistently enriched over centromeres and that a majority of CENs show Fun30-dependent changes in flanking nucleosome position and/or CEN core micrococcal nuclease accessibility. Fun30 deletion leads to defects in histone variant Htz1 occupancy genome-wide, including at and around most centromeres. FUN30 genetically interacts with CSE4, coding for the centromere-specific variant of histone H3, and counteracts the detrimental effect of transcription through centromeres on chromosome segregation and suppresses transcriptional noise over centromere CEN3. Previous work has shown a requirement for fission yeast and mammalian homologs of Fun30 in heterochromatin assembly. As centromeres in budding yeast are not embedded in heterochromatin, our findings indicate a direct role of Fun30 in centromere chromatin by promoting correct chromatin architecture.

  15. Database Replication

    CERN Document Server

    Kemme, Bettina

    2010-01-01

    Database replication is widely used for fault-tolerance, scalability and performance. The failure of one database replica does not stop the system from working as available replicas can take over the tasks of the failed replica. Scalability can be achieved by distributing the load across all replicas, and adding new replicas should the load increase. Finally, database replication can provide fast local access, even if clients are geographically distributed clients, if data copies are located close to clients. Despite its advantages, replication is not a straightforward technique to apply, and

  16. 连续时间动态复制定理的推广与证明%Extension and Proof of the Continuous-Time Dynamic Replication Theorem

    Institute of Scientific and Technical Information of China (English)

    刘海龙; 吴冲锋

    2002-01-01

    This paper extends the continuous-time dynamic replication theorem for incomplete Markets, which is proposed by Bertsimas, Kogan and Lo (1997)[1]. Then this extended dynamic replication theorem is proved using the theory of the stochastic optimal control.%推广了由Bertsimas,Kogan andLo(1997)[1]提出的非完全市场中的连续时间动态复制定理,然后,我们运用随机最优控制理论证明了这个定理.

  17. Effects of solution chemistry and aging time on prion protein adsorption and replication of soil-bound prions.

    Directory of Open Access Journals (Sweden)

    Samuel E Saunders

    Full Text Available Prion interactions with soil may play an important role in the transmission of chronic wasting disease (CWD and scrapie. Prions are known to bind to a wide range of soil surfaces, but the effects of adsorption solution chemistry and long-term soil binding on prion fate and transmission risk are unknown. We investigated HY TME prion protein (PrP(Sc adsorption to soil minerals in aqueous solutions of phosphate buffered saline (PBS, sodium chloride, calcium chloride, and deionized water using western blotting. The replication efficiency of bound prions following adsorption in these solutions was also evaluated by protein misfolding cyclic amplification (PMCA. Aging studies investigated PrP(Sc desorption and replication efficiency up to one year following adsorption in PBS or DI water. Results indicate that adsorption solution chemistry can affect subsequent prion replication or desorption ability, especially after incubation periods of 30 d or longer. Observed effects were minor over the short-term (7 d or less. Results of long-term aging experiments demonstrate that unbound prions or prions bound to a diverse range of soil surfaces can readily replicate after one year. Our results suggest that while prion-soil interactions can vary with solution chemistry, prions bound to soil could remain a risk for transmitting prion diseases after months in the environment.

  18. Genome-wide characterization of centromeric satellites from multiple mammalian genomes.

    Science.gov (United States)

    Alkan, Can; Cardone, Maria Francesca; Catacchio, Claudia Rita; Antonacci, Francesca; O'Brien, Stephen J; Ryder, Oliver A; Purgato, Stefania; Zoli, Monica; Della Valle, Giuliano; Eichler, Evan E; Ventura, Mario

    2011-01-01

    Despite its importance in cell biology and evolution, the centromere has remained the final frontier in genome assembly and annotation due to its complex repeat structure. However, isolation and characterization of the centromeric repeats from newly sequenced species are necessary for a complete understanding of genome evolution and function. In recent years, various genomes have been sequenced, but the characterization of the corresponding centromeric DNA has lagged behind. Here, we present a computational method (RepeatNet) to systematically identify higher-order repeat structures from unassembled whole-genome shotgun sequence and test whether these sequence elements correspond to functional centromeric sequences. We analyzed genome datasets from six species of mammals representing the diversity of the mammalian lineage, namely, horse, dog, elephant, armadillo, opossum, and platypus. We define candidate monomer satellite repeats and demonstrate centromeric localization for five of the six genomes. Our analysis revealed the greatest diversity of centromeric sequences in horse and dog in contrast to elephant and armadillo, which showed high-centromeric sequence homogeneity. We could not isolate centromeric sequences within the platypus genome, suggesting that centromeres in platypus are not enriched in satellite DNA. Our method can be applied to the characterization of thousands of other vertebrate genomes anticipated for sequencing in the near future, providing an important tool for annotation of centromeres. PMID:21081712

  19. Molecular characterization of flow-sorted mammalian centromeres

    Energy Technology Data Exchange (ETDEWEB)

    Hamkalo, B.A.; Henschen, A.; Parseghian, M.H. [Univ. of Calfornia, Irvine, CA (United States). Dept. of Molecular Biology and Biochemistry] [and others

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project involved experiments directed towards developing a molecular characterization of the centromere region of mammalian chromosomes. Attempts to purify this essential chromosomal locus by conventional methods have thus far been unsuccessful. However, preliminary data obtained in collaboration with the National Flow Cytometry Resource (NFCR) showed that it is possible to purify a chromosome fragment that is present in certain cultured mouse cell lines and has all the properties expected of an intact centromere region. To begin sorting this minichromosome for the identification of proteins preferentially associated with centromere regions, standard buffers utilized in chromosome sorting were evaluated for potential effects on maintenance of chromosomal proteins during sorting. The data indicate that the presence of several buffer constituents results in the extraction of all but a few chromosomal proteins. The subsequent use of a magnesium sulfate buffer resulted in the sorting of mouse chromosomes that do not suffer a significant loss of proteins. Several DNA stains were also evaluated for causing protein dissociation, but no significant losses were observed. Although flow-sorted chromosomes have been used extensively for DNA analysis and cloning, this is a pioneering effort by the NFCR, and its collaborators, to exploit chromosome sorting capabilities for the analysis of chromosomal proteins.

  20. Replicating vaccines

    Science.gov (United States)

    Early work on fish immunology and disease resistance demonstrated fish (like animals and humans) that survived infection were typically resistant to re-infection with the same pathogen. The concepts of resistance upon reinfection lead to the research and development of replicating (live) vaccines in...

  1. Optimal Placement of Origins for DNA Replication

    OpenAIRE

    Karschau, Jens; Blow, J. Julian; de Moura, Alessandro P. S.

    2012-01-01

    DNA replication is an essential process in biology and its timing must be robust so that cells can divide properly. Random fluctuations in the formation of replication starting points, called origins, and the subsequent activation of proteins lead to variations in the replication time. We analyse these stochastic properties of DNA and derive the positions of origins corresponding to the minimum replication time. We show that under some conditions the minimization of replication time leads to ...

  2. Holocentromeres in Rhynchospora are associated with genome-wide centromere-specific repeat arrays interspersed among euchromatin.

    Science.gov (United States)

    Marques, André; Ribeiro, Tiago; Neumann, Pavel; Macas, Jiří; Novák, Petr; Schubert, Veit; Pellino, Marco; Fuchs, Jörg; Ma, Wei; Kuhlmann, Markus; Brandt, Ronny; Vanzela, André L L; Beseda, Tomáš; Šimková, Hana; Pedrosa-Harand, Andrea; Houben, Andreas

    2015-11-01

    Holocentric chromosomes lack a primary constriction, in contrast to monocentrics. They form kinetochores distributed along almost the entire poleward surface of the chromatids, to which spindle fibers attach. No centromere-specific DNA sequence has been found for any holocentric organism studied so far. It was proposed that centromeric repeats, typical for many monocentric species, could not occur in holocentrics, most likely because of differences in the centromere organization. Here we show that the holokinetic centromeres of the Cyperaceae Rhynchospora pubera are highly enriched by a centromeric histone H3 variant-interacting centromere-specific satellite family designated "Tyba" and by centromeric retrotransposons (i.e., CRRh) occurring as genome-wide interspersed arrays. Centromeric arrays vary in length from 3 to 16 kb and are intermingled with gene-coding sequences and transposable elements. We show that holocentromeres of metaphase chromosomes are composed of multiple centromeric units rather than possessing a diffuse organization, thus favoring the polycentric model. A cell-cycle-dependent shuffling of multiple centromeric units results in the formation of functional (poly)centromeres during mitosis. The genome-wide distribution of centromeric repeat arrays interspersing the euchromatin provides a previously unidentified type of centromeric chromatin organization among eukaryotes. Thus, different types of holocentromeres exist in different species, namely with and without centromeric repetitive sequences. PMID:26489653

  3. Genome-wide characterization of centromeric satellites from multiple mammalian genomes

    OpenAIRE

    Alkan, Can; Cardone, Maria Francesca; Catacchio, Claudia Rita; Antonacci, Francesca; O'Brien, Stephen J; Ryder, Oliver A.; Purgato, Stefania; Zoli, Monica; Della Valle, Giuliano; Eichler, Evan E; Ventura, Mario

    2011-01-01

    Despite its importance in cell biology and evolution, the centromere has remained the final frontier in genome assembly and annotation due to its complex repeat structure. However, isolation and characterization of the centromeric repeats from newly sequenced species are necessary for a complete understanding of genome evolution and function. In recent years, various genomes have been sequenced, but the characterization of the corresponding centromeric DNA has lagged behind. Here, we present ...

  4. A high-resolution map of nucleosome positioning on a fission yeast centromere

    OpenAIRE

    Song, Jun S.; Liu, Xingkun; Liu, X. Shirley; He, Xiangwei

    2008-01-01

    A key element for defining the centromere identity is the incorporation of a specific histone H3, CENPA, known as Cnp1p in Schizosaccharomyces pombe. Previous studies have suggested that functional S. pombe centromeres lack regularly positioned nucleosomes and may involve chromatin remodeling as a key step of kinetochore assembly. We used tiling microarrays to show that nucleosomes are, in fact, positioned in regular intervals in the core of centromere 2, providing the first high-resolution m...

  5. The Saccharomyces cerevisiae centromere protein Slk19p is required for two successive divisions during meiosis.

    OpenAIRE

    Zeng, X.; Saunders, W S

    2000-01-01

    Meiotic cell division includes two separate and distinct types of chromosome segregation. In the first segregational event the sister chromatids remain attached at the centromere; in the second the chromatids are separated. The factors that control the order of chromosome segregation during meiosis have not yet been identified but are thought to be confined to the centromere region. We showed that the centromere protein Slk19p is required for the proper execution of meiosis in Saccharomyces c...

  6. Licensing of Centromeric Chromatin Assembly through the Mis18α-Mis18β Heterotetramer.

    Science.gov (United States)

    Nardi, Isaac K; Zasadzińska, Ewelina; Stellfox, Madison E; Knippler, Christina M; Foltz, Daniel R

    2016-03-01

    Centromeres are specialized chromatin domains specified by the centromere-specific CENP-A nucleosome. The stable inheritance of vertebrate centromeres is an epigenetic process requiring deposition of new CENP-A nucleosomes by HJURP. We show HJURP is recruited to centromeres through a direct interaction between the HJURP centromere targeting domain and the Mis18α-β C-terminal coiled-coil domains. We demonstrate Mis18α and Mis18β form a heterotetramer through their C-terminal coiled-coil domains. Mis18α-β heterotetramer formation is required for Mis18BP1 binding and centromere recognition. S. pombe contains a single Mis18 isoform that forms a homotetramer, showing tetrameric Mis18 is conserved from fission yeast to humans. HJURP binding disrupts the Mis18α-β heterotetramer and removes Mis18α from centromeres. We propose stable binding of Mis18 to centromeres in telophase licenses them for CENP-A deposition. Binding of HJURP deposits CENP-A at centromeres and facilitates the removal of Mis18, restricting CENP-A deposition to a single event per cell cycle. PMID:26942680

  7. Fission yeast Scm3 mediates stable assembly of Cnp1/CENP-A into centromeric chromatin.

    Science.gov (United States)

    Williams, Jessica S; Hayashi, Takeshi; Yanagida, Mitsuhiro; Russell, Paul

    2009-02-13

    Mis16 and Mis18 are subunits of a protein complex required for incorporation of the histone H3 variant CenH3 (Cnp1/CENP-A) into centromeric chromatin in Schizosaccharomyces pombe and mammals. How the Mis16-Mis18 complex performs this function is unknown. Here, we report that the Mis16-Mis18 complex is required for centromere localization of Scm3(Sp), a Cnp1-binding protein related to Saccharomyces cerevisiae Scm3. Scm3(Sp) is required for centromeric localization of Cnp1, while Scm3(Sp) localizes at centromeres independently of Cnp1. Like the Mis16-Mis18 complex but unlike Cnp1, Scm3(Sp) dissociates from centromeres during mitosis. Inactivation of Scm3(Sp) or Mis18 increases centromere localization of histones H3 and H2A/H2B, which are largely absent from centromeres in wild-type cells. Whereas S. cerevisiae Scm3 is proposed to replace histone H2A/H2B in centromeric nucleosomes, the dynamic behavior of S. pombe Scm3 suggests that it acts as a Cnp1 assembly/maintenance factor that directly mediates the stable deposition of Cnp1 into centromeric chromatin. PMID:19217403

  8. Fission Yeast Scm3 Mediates Stable Assembly of Cnp1 (CENP-A) into Centromeric Chromatin

    Science.gov (United States)

    Williams, Jessica S.; Hayashi, Takeshi; Yanagida, Mitsuhiro; Russell, Paul

    2009-01-01

    Summary Mis16 and Mis18 are subunits of a protein complex required for incorporation of the histone H3 variant CenH3 (Cnp1/CENP-A) into centromeric chromatin in Schizosaccharomyces pombe and mammals. How the Mis16-Mis18 complex performs this function is unknown. Here we report that the Mis16-Mis18 complex is required for centromere localization of Scm3Sp, a Cnp1-binding protein related to Saccharomyces cerevisiae Scm3. Scm3Sp is required for centromeric localization of Cnp1, whilst Scm3Sp localizes at centromeres independently of Cnp1. Like the Mis16-Mis18 complex but unlike Cnp1, Scm3Sp dissociates from centromeres during mitosis. Inactivation of Scm3Sp or Mis18 increases centromere localization of histones H3 and H2A/H2B, which are largely absent from centromeres in wild type cells. Whereas S. cerevisiae Scm3 is proposed to replace histone H2A/H2B in centromeric nucleosomes, the dynamic behavior of S. pombe Scm3 suggests that it acts as a Cnp1 assembly/maintenance factor that directly mediates the stable deposition of Cnp1 into centromeric chromatin. PMID:19217403

  9. Plasmodium falciparum centromeres display a unique epigenetic makeup and cluster prior to and during schizogony.

    Science.gov (United States)

    Hoeijmakers, Wieteke A M; Flueck, Christian; Françoijs, Kees-Jan; Smits, Arne H; Wetzel, Johanna; Volz, Jennifer C; Cowman, Alan F; Voss, Till; Stunnenberg, Hendrik G; Bártfai, Richárd

    2012-09-01

    Centromeres are essential for the faithful transmission of chromosomes to the next generation, therefore being essential in all eukaryotic organisms. The centromeres of Plasmodium falciparum, the causative agent of the most severe form of malaria, have been broadly mapped on most chromosomes, but their epigenetic composition remained undefined. Here, we reveal that the centromeric histone variant PfCENH3 occupies a 4-4.5 kb region on each P. falciparum chromosome, which is devoid of pericentric heterochromatin but harbours another histone variant, PfH2A.Z. These CENH3 covered regions pinpoint the exact position of the centromere on all chromosomes and revealed that all centromeric regions have similar size and sequence composition. Immunofluorescence assay of PfCENH3 strongly suggests that P. falciparum centromeres cluster to a single nuclear location prior to and during mitosis and cytokinesis but dissociate soon after invasion. In summary, we reveal a dynamic association of Plasmodium centromeres, which bear a unique epigenetic signature and conform to a strict structure. These findings suggest that DNA-associated and epigenetic elements play an important role in centromere establishment in this important human pathogen.

  10. The KAT's Out of the Bag: Histone Acetylation Promotes Centromere Assembly.

    Science.gov (United States)

    Palladino, Jason; Mellone, Barbara G

    2016-06-01

    Heterochromatin is incompatible with centromeric chromatin assembly and propagation. In this issue of Developmental Cell, Ohzeki et al. (2016) reveal that a critical role of the Mis18 complex is to transiently recruit the lysine acetyltransferase KAT7 to centromeres to facilitate the removal of H3K9me3 and the deposition of CENP-A. PMID:27270035

  11. Centromere architecture breakdown induced by the viral E3 ubiquitin ligase ICP0 protein of herpes simplex virus type 1.

    Directory of Open Access Journals (Sweden)

    Sylvain Gross

    Full Text Available The viral E3 ubiquitin ligase ICP0 protein has the unique property to temporarily localize at interphase and mitotic centromeres early after infection of cells by the herpes simplex virus type 1 (HSV-1. As a consequence ICP0 induces the proteasomal degradation of several centromeric proteins (CENPs, namely CENP-A, the centromeric histone H3 variant, CENP-B and CENP-C. Following ICP0-induced centromere modification cells trigger a specific response to centromeres called interphase Centromere Damage Response (iCDR. The biological significance of the iCDR is unknown; so is the degree of centromere structural damage induced by ICP0. Interphase centromeres are complex structures made of proximal and distal protein layers closely associated to CENP-A-containing centromeric chromatin. Using several cell lines constitutively expressing GFP-tagged CENPs, we investigated the extent of the centromere destabilization induced by ICP0. We show that ICP0 provokes the disappearance from centromeres, and the proteasomal degradation of several CENPs from the NAC (CENP-A nucleosome associated and CAD (CENP-A Distal complexes. We then investigated the nucleosomal occupancy of the centromeric chromatin in ICP0-expressing cells by micrococcal nuclease (MNase digestion analysis. ICP0 expression either following infection or in cell lines constitutively expressing ICP0 provokes significant modifications of the centromeric chromatin structure resulting in higher MNase accessibility. Finally, using human artificial chromosomes (HACs, we established that ICP0-induced iCDR could also target exogenous centromeres. These results demonstrate that, in addition to the protein complexes, ICP0 also destabilizes the centromeric chromatin resulting in the complete breakdown of the centromere architecture, which consequently induces iCDR.

  12. The roles of histone modifications and small RNA in centromere function.

    Science.gov (United States)

    Ekwall, Karl

    2004-01-01

    Here, epigenetic regulation of centromeric chromatin in fission yeast (Schizosaccharomyces pombe) is reviewed, focussing on the role of histone modifications and the link to RNA interference (RNAi). Fission yeast centromeres are organized into two structurally and functionally distinct domains, both of which are required for centromere function. The central core domain anchors the kinetochore structure while the flanking heterochromatin domain is important for sister centromere cohesion. The chromatin structure of both domains is regulated epigenetically. In the central core domain, the histone H3 variant Cnp1(CENP-A) plays a key role. In the flanking heterochromatin domain, histones are kept underacetylated by the histone deacetylases (HDACs) Clr3, Clr6 and Sir2, and methylated by Clr4 methyltransferase (HMTase) to create a specific binding site for the Swi6 protein. Swi6 then directly mediates cohesin binding to the centromeric heterochromatin. Recently, a surprising link was made between heterochromatin formation and RNAi. PMID:15289661

  13. Identification of noncoding transcripts from within CENP-A chromatin at fission yeast centromeres.

    Science.gov (United States)

    Choi, Eun Shik; Strålfors, Annelie; Castillo, Araceli G; Durand-Dubief, Mickaël; Ekwall, Karl; Allshire, Robin C

    2011-07-01

    The histone H3 variant CENP-A is the most favored candidate for an epigenetic mark that specifies the centromere. In fission yeast, adjacent heterochromatin can direct CENP-A(Cnp1) chromatin establishment, but the underlying features governing where CENP-A(Cnp1) chromatin assembles are unknown. We show that, in addition to centromeric regions, a low level of CENP-A(Cnp1) associates with gene promoters where histone H3 is depleted by the activity of the Hrp1(Chd1) chromatin-remodeling factor. Moreover, we demonstrate that noncoding RNAs are transcribed by RNA polymerase II (RNAPII) from CENP-A(Cnp1) chromatin at centromeres. These analyses reveal a similarity between centromeres and a subset of RNAPII genes and suggest a role for remodeling at RNAPII promoters within centromeres that influences the replacement of histone H3 with CENP-A(Cnp1). PMID:21531710

  14. Structure and function of centromeric and pericentromeric heterochromatin in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Lauriane eSimon

    2015-11-01

    Full Text Available The centromere is a specific chromosomal region where the kinetochore assembles to ensure the faithful segregation of sister chromatids during mitosis and meiosis. Centromeres are defined by a local enrichment of the specific histone variant CenH3 mostly at repetitive satellite sequences. A larger pericentromeric region containing repetitive sequences and transposable elements surrounds the centromere that adopts a particular chromatin state characterized by specific histone variants and post-translational modifications and forms a transcriptionally repressive chromosomal environment. In the model organism Arabidopsis thaliana centromeric and pericentromeric domains form conspicuous heterochromatin clusters called chromocenters in interphase. Here we discuss, using Arabidopsis as example, recent insight into mechanisms involved in maintenance and establishment of centromeric and pericentromeric chromatin signatures as well as in chromocenter formation.

  15. Modeling inhomogeneous DNA replication kinetics.

    Directory of Open Access Journals (Sweden)

    Michel G Gauthier

    Full Text Available In eukaryotic organisms, DNA replication is initiated at a series of chromosomal locations called origins, where replication forks are assembled proceeding bidirectionally to replicate the genome. The distribution and firing rate of these origins, in conjunction with the velocity at which forks progress, dictate the program of the replication process. Previous attempts at modeling DNA replication in eukaryotes have focused on cases where the firing rate and the velocity of replication forks are homogeneous, or uniform, across the genome. However, it is now known that there are large variations in origin activity along the genome and variations in fork velocities can also take place. Here, we generalize previous approaches to modeling replication, to allow for arbitrary spatial variation of initiation rates and fork velocities. We derive rate equations for left- and right-moving forks and for replication probability over time that can be solved numerically to obtain the mean-field replication program. This method accurately reproduces the results of DNA replication simulation. We also successfully adapted our approach to the inverse problem of fitting measurements of DNA replication performed on single DNA molecules. Since such measurements are performed on specified portion of the genome, the examined DNA molecules may be replicated by forks that originate either within the studied molecule or outside of it. This problem was solved by using an effective flux of incoming replication forks at the model boundaries to represent the origin activity outside the studied region. Using this approach, we show that reliable inferences can be made about the replication of specific portions of the genome even if the amount of data that can be obtained from single-molecule experiments is generally limited.

  16. Hepatitis B virus replication

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Hepadnaviruses, including human hepatitis B virus (HBV), replicate through reverse transcription of an RNA intermediate, the pregenomic RNA (pgRNA). Despite this kinship to retroviruses, there are fundamental differences beyond the fact that hepadnavirions contain DNA instead of RNA. Most peculiar is the initiation of reverse transcription: it occurs by protein-priming, is strictly committed to using an RNA hairpin on the pgRNA,ε, as template, and depends on cellular chaperones;moreover, proper replication can apparently occur only in the specialized environment of intact nucleocapsids.This complexity has hampered an in-depth mechanistic understanding. The recent successful reconstitution in the test tube of active replication initiation complexes from purified components, for duck HBV (DHBV),now allows for the analysis of the biochemistry of hepadnaviral replication at the molecular level. Here we review the current state of knowledge at all steps of the hepadnaviral genome replication cycle, with emphasis on new insights that turned up by the use of such cellfree systems. At this time, they can, unfortunately,not be complemented by three-dimensional structural information on the involved components. However, at least for the s RNA element such information is emerging,raising expectations that combining biophysics with biochemistry and genetics will soon provide a powerful integrated approach for solving the many outstanding questions. The ultimate, though most challenging goal,will be to visualize the hepadnaviral reverse transcriptase in the act of synthesizing DNA, which will also have strong implications for drug development.

  17. The Ku70 DNA-repair protein is involved in centromere function in a grasshopper species.

    Science.gov (United States)

    Cabrero, Josefa; Bakkali, Mohammed; Navarro-Domínguez, Beatriz; Ruíz-Ruano, Francisco J; Martín-Blázquez, Rubén; López-León, María Dolores; Camacho, Juan Pedro M

    2013-06-25

    The Ku70 protein is involved in numerous cell functions, the nonhomologous end joining (NHEJ) DNA repair pathway being the best known. Here, we report a novel function for this protein in the grasshopper Eyprepocnemis plorans. We observed the presence of large Ku70 foci on the centromeres of meiotic and mitotic chromosomes during the cell cycle stages showing the highest centromeric activity (i.e., metaphase and anaphase). The fact that colchicine treatment prevented centromeric location of Ku70, suggests a microtubule-dependent centromeric function for Ku70. Likewise, the absence of Ku70 at metaphase-anaphase centromeres from three males whose Ku70 gene had been knocked down using interference RNA, and the dramatic increase in the frequency of polyploid spermatids observed in these males, suggest that the centromeric presence of Ku70 is required for normal cytokinesis in this species. The centromeric function of Ku70 was not observed in 14 other grasshopper and locust species, or in the mouse, thus suggesting that it is an autapomorphy in E. plorans. PMID:23797468

  18. Analysis of centromeres in radiation-induced micronuclei in human peripheral lymphocytes by means of Fish

    International Nuclear Information System (INIS)

    The micronucleus assay is frequently used in mutagenicity testing. Micronuclei can arise either from acentric fragments that fail to be incorporated into daughter nuclei or from whole chromosomes that lag in anaphase due to centromere dysfunction, defective spindle apparatus or complex chromosomal rearrangements. Several studies have shown that many micronuclei which arise spontaneously contain whole chromosomes. Relatively few data are available on the frequency of centromere positive micronuclei following exposure to ionizing radiation. In the present study we have analyzed the occurrence of centromere positive micronuclei in human peripheral lymphocytes of three donors following irradiation with X-rays. The centromeres were made visible with commercially available alpha-satellite probes labelled with biotin and detected with FITC-labelled avidin. Additionally, the micronucleus frequencies per bi-nucleated cells were estimated in Giemsa-stained slides. Our results show that the majority of control micronuclei contain whole chromosomes. With increasing dose the fraction of centromere positive micronuclei decreases indicating that the micronuclei contain predominantly acentric fragments. Individual differences in frequencies of centromere containing micronuclei were observed between the donors. There appears to be a negative correlation between the frequency of micronuclei and centromere within them. Further experiments with more donors are presently being carried out to substantiate this result. (authors)

  19. Nested Ty3-gypsy retrotransposons of a single Beta procumbens centromere contain a putative chromodomain.

    Science.gov (United States)

    Weber, Beatrice; Schmidt, Thomas

    2009-01-01

    LTR retrotransposons belong to a major group of DNA sequences that are often localized in plant centromeres. Using BAC inserts originating from the centromere of a monosomic wild beet (Beta procumbens) chromosome fragment in Beta vulgaris, two complete LTR retrotransposons were identified. Both elements, designated Beetle1 and Beetle2, possess a coding region with genes in the order characteristic for Ty3-gypsy retrotransposons. Beetle1 and Beetle2 have a chromodomain in the C-terminus of the integrase gene and are highly similar to the centromeric retrotransposons (CRs) of rice, maize, and barley. Both retroelements were localized in the centromeric region of B. procumbens chromosomes by fluorescence in-situ hybridization. They can therefore be classified as centromere-specific chromoviruses. PCR analysis using RNA as template indicated that Beetle1 and Beetle2 are transcriptionally active. On the basis of the sequence diversity between the LTR sequences, it was estimated that Beetle1 and Beetle2 transposed within the last 60,000 years and 130,000 years, respectively. The centromeric localization of Beetle1 and Beetle2 and their transcriptional activity combined with high sequence conservation within each family play an important structural role in the centromeres of B. procumbens chromosomes.

  20. Roles of Mis18α in epigenetic regulation of centromeric chromatin and CENP-A loading.

    Science.gov (United States)

    Kim, Ik Soo; Lee, Minkyoung; Park, Koog Chan; Jeon, Yoon; Park, Joo Hyeon; Hwang, Eun Ju; Jeon, Tae Im; Ko, Seoyoung; Lee, Ho; Baek, Sung Hee; Kim, Keun Il

    2012-05-11

    The Mis18 complex has been identified as a critical factor for the centromeric localization of a histone H3 variant, centromeric protein A (CENP-A), which is responsible for the specification of centromere identity in the chromosome. However, the functional role of Mis18 complex is largely unknown. Here, we generated Mis18α conditional knockout mice and found that Mis18α deficiency resulted in lethality at early embryonic stage with severe defects in chromosome segregation caused by mislocalization of CENP-A. Further, we demonstrate Mis18α's crucial role for epigenetic regulation of centromeric chromatin by reinforcing centromeric localization of DNMT3A/3B. Mis18α interacts with DNMT3A/3B, and this interaction is critical for maintaining DNA methylation and hence regulating epigenetic states of centromeric chromatin. Mis18α deficiency led to reduced DNA methylation, altered histone modifications, and uncontrolled noncoding transcripts in centromere region by decreased DNMT3A/3B enrichment. Together, our findings uncover the functional mechanism of Mis18α and its pivotal role in mammalian cell cycle. PMID:22516971

  1. Centromere plasmid: a new genetic tool for the study of Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Shiroh Iwanaga

    Full Text Available The introduction of transgenes into Plasmodium falciparum, a highly virulent human malaria parasite, has been conducted either by single crossover recombination or by using episomal plasmids. However, these techniques remain insufficient because of the low transfection efficiency and the low frequency of recombination. To improve the genetic manipulation of P. falciparum, we developed the centromere plasmid as a new genetic tool. First, we attempted to clone all of the predicted centromeres from P. falciparum into E. coli cells but failed because of the high A/T contents of these sequences. To overcome this difficulty, we identified the common sequence features of the centromere of Plasmodium spp. and designed a small centromere that retained those features. The centromere plasmid constructed with the small centromere sequence, pFCEN, segregated into daughter parasites with approximately 99% efficiency, resulting in the stable maintenance of this plasmid in P. falciparum even in the absence of drug selection. This result demonstrated that the small centromere sequence harboured in pFCEN could function as an actual centromere in P. falciparum. In addition, transgenic parasites were more rapidly generated when using pFCEN than when using the control plasmid, which did not contain the centromere sequence. Furthermore, in contrast to the control plasmid, pFCEN did not form concatemers and, thus, was maintained as a single copy over multiple cell divisions. These unique properties of the pFCEN plasmid will solve the current technical limitations of the genetic manipulation of P. falciparum, and thus, this plasmid will become a standard genetic tool for the study of this parasite.

  2. High quality maize centromere 10 sequence reveals evidence of frequent recombination events

    Directory of Open Access Journals (Sweden)

    Thomas Kai Wolfgruber

    2016-03-01

    Full Text Available The ancestral centromeres of maize contain long stretches of the tandemly arranged CentC repeat. The abundance of tandem DNA repeats and centromeric retrotransposons (CR have presented a significant challenge to completely assembling centromeres using traditional sequencing methods. Here we report a nearly complete assembly of the 1.85 Mb maize centromere 10 from inbred B73 using PacBio technology and BACs from the reference genome project. The error rates estimated from overlapping BAC sequences are 7 x 10-6 and 5 x 10-5 for mismatches and indels, respectively. The number of gaps in the region covered by the reassembly was reduced from 140 in the reference genome to three. Three expressed genes are located between 92 and 477 kb of the inferred ancestral CentC cluster, which lies within the region of highest centromeric repeat density. The improved assembly increased the count of full-length centromeric retrotransposons from 5 to 55 and revealed a 22.7 kb segmental duplication that occurred approximately 121,000 years ago. Our analysis provides evidence of frequent recombination events in the form of partial retrotransposons, deletions within retrotransposons, chimeric retrotransposons, segmental duplications including higher order CentC repeats, a deleted CentC monomer, centromere-proximal inversions, and insertion of mitochondrial sequences. Double-strand DNA break (DSB repair is the most plausible mechanism for these events and may be the major driver of centromere repeat evolution and diversity. This repair appears to be mediated by microhomology, suggesting that tandem repeats may have evolved to facilitate the repair of frequent DSBs in centromeres.

  3. Identifying Centromeric RNAs Involved in Histone Dynamics In Vivo.

    Science.gov (United States)

    Quénet, D; Sturgill, D; Dalal, Y

    2016-01-01

    Over the last decade, the long accepted dogma that heterochromatin is silent has been challenged by increasing evidence of active transcription in these apocryphally annotated quiescent regions of the genome. The recent discovery of noncoding RNAs (ncRNAs) originating from, or localizing to, centromeres, pericentromeres, and telomeres (ie, constitutive heterochromatin) suggest a potential role for ncRNAs in genome integrity. This new paradigm suggests that ncRNAs may recruit chromatin-binding factors, stabilize the higher order folded state of the chromatin fiber, and participate in regulation of processes such as transcription-mediated nucleosome assembly. Thus, identifying, purifying, and elucidating the function of ncRNAs has the potential to provide key insights into genome organization and is currently a topic of intense experimental investigation. PMID:27372766

  4. Fission Yeast Scm3 Mediates Stable Assembly of Cnp1 (CENP-A) into Centromeric Chromatin

    OpenAIRE

    Williams, Jessica S.; Hayashi, Takeshi; Yanagida, Mitsuhiro; Russell, Paul

    2009-01-01

    Mis16 and Mis18 are subunits of a protein complex required for incorporation of the histone H3 variant CenH3 (Cnp1/CENP-A) into centromeric chromatin in Schizosaccharomyces pombe and mammals. How the Mis16-Mis18 complex performs this function is unknown. Here we report that the Mis16-Mis18 complex is required for centromere localization of Scm3Sp, a Cnp1-binding protein related to Saccharomyces cerevisiae Scm3. Scm3Sp is required for centromeric localization of Cnp1, whilst Scm3Sp localizes a...

  5. Design Optimization of Time- and Cost-Constrained Fault-Tolerant Embedded Systems with Checkpointing and Replication

    DEFF Research Database (Denmark)

    Pop, Paul; Izosimov, Viacheslav; Eles, Petru;

    2009-01-01

    decides the assignment of fault-tolerance policies to processes, the optimal placement of checkpoints and the mapping of processes to processors such that multiple transient faults are tolerated and the timing constraints of the application are satisfied. We present several design optimization approaches...

  6. DATABASE REPLICATION IN HETEROGENOUS PLATFORM

    Directory of Open Access Journals (Sweden)

    Hendro Nindito

    2014-01-01

    Full Text Available The application of diverse database technologies in enterprises today is increasingly a common practice. To provide high availability and survavibality of real-time information, a database replication technology that has capability to replicate databases under heterogenous platforms is required. The purpose of this research is to find the technology with such capability. In this research, the data source is stored in MSSQL database server running on Windows. The data will be replicated to MySQL running on Linux as the destination. The method applied in this research is prototyping in which the processes of development and testing can be done interactively and repeatedly. The key result of this research is that the replication technology applied, which is called Oracle GoldenGate, can successfully manage to do its task in replicating data in real-time and heterogeneous platforms.

  7. SGO1 maintains bovine meiotic and mitotic centromeric cohesions of sister chromatids and directly affects embryo development.

    Directory of Open Access Journals (Sweden)

    Feng-Xia Yin

    Full Text Available Shugoshin (SGO is a critical factor that enforces cohesion from segregation of paired sister chromatids during mitosis and meiosis. It has been studied mainly in invertebrates. Knowledge of SGO(s in a mammalian system has only been reported in the mouse and Hela cells. In this study, the functions of SGO1 in bovine oocytes during meiotic maturation, early embryonic development and somatic cell mitosis were investigated. The results showed that SGO1 was expressed from germinal vesicle (GV to the metaphase II stage. SGO1 accumulated on condensed and scattered chromosomes from pre-metaphase I to metaphase II. The over-expression of SGO1 did not interfere with the process of homologous chromosome separation, although once separated they were unable to move to the opposing spindle poles. This often resulted in the formation of oocytes with 60 replicated chromosomes. Depletion of SGO1 in GV oocytes affected chromosomal separation resulting in abnormal chromosome alignment at a significantly higher proportion than in control oocytes. Knockdown of SGO1 expression significantly decreased the embryonic developmental rate and quality. To further confirm the function(s of SGO1 during mitosis, bovine embryonic fibroblast cells were transfected with SGO1 siRNAs. SGO1 depletion induced the premature dissociation of chromosomal cohesion at the centromere and along the chromosome arm giving rise to abnormal appearing mitotic patterns. The results of this study infer that SGO1 is involved in the centromeric cohesion of sister chromatids and chromosomal movement towards the spindle poles. Depletion of SGO1 causes arrestment of cell division in meiosis and mitosis.

  8. Mislocalization of the Drosophila centromere-specific histone CIDpromotes formation of functional ectopic kinetochores

    Energy Technology Data Exchange (ETDEWEB)

    Heun, Patrick; Erhardt, Sylvia; Blower, Michael D.; Weiss,Samara; Skora, Andrew D.; Karpen, Gary H.

    2006-01-30

    The centromere-specific histone variant CENP-A (CID in Drosophila) is a structural and functional foundation for kinetochore formation and chromosome segregation. Here, we show that overexpressed CID is mislocalized into normally non-centromeric regions in Drosophila tissue culture cells and animals. Analysis of mitoses in living and fixed cells reveals that mitotic delays, anaphase bridges, chromosome fragmentation, and cell and organismal lethality are all direct consequences of CID mislocalization. In addition, proteins that are normally restricted to endogenous kinetochores assemble at a subset of ectopic CID incorporation regions. The presence of microtubule motors and binding proteins, spindle attachments, and aberrant chromosome morphologies demonstrate that these ectopic kinetochores are functional. We conclude that CID mislocalization promotes formation of ectopic centromeres and multicentric chromosomes, which causes chromosome missegregation, aneuploidy, and growth defects. Thus, CENP-A mislocalization is one possible mechanism for genome instability during cancer progression, as well as centromere plasticity during evolution.

  9. The nucleoplasmin homolog NLP mediates centromere clustering and anchoring to the nucleolus.

    Science.gov (United States)

    Padeken, Jan; Mendiburo, María José; Chlamydas, Sarantis; Schwarz, Hans-Jürgen; Kremmer, Elisabeth; Heun, Patrick

    2013-04-25

    Centromere clustering during interphase is a phenomenon known to occur in many different organisms and cell types, yet neither the factors involved nor their physiological relevance is well understood. Using Drosophila tissue culture cells and flies, we identified a network of proteins, including the nucleoplasmin-like protein (NLP), the insulator protein CTCF, and the nucleolus protein Modulo, to be essential for the positioning of centromeres. Artificial targeting further demonstrated that NLP and CTCF are sufficient for clustering, while Modulo serves as the anchor to the nucleolus. Centromere clustering was found to depend on centric chromatin rather than specific DNA sequences. Moreover, unclustering of centromeres results in the spatial destabilization of pericentric heterochromatin organization, leading to partial defects in the silencing of repetitive elements, defects during chromosome segregation, and genome instability.

  10. Organization and Evolution of Primate Centromeric DNA from Whole-Genome Shotgun Sequence Data

    OpenAIRE

    Alkan, Can; Eichler, Evan E.; Ventura, Mario; Archidiacono, Nicoletta; Rocchi, Mariano; Sahinalp, S Cenk

    2007-01-01

    Author Summary Centromeric DNA has been described as the last frontier of genomic sequencing; such regions are typically poorly assembled during the whole-genome shotgun sequence assembly process due to their repetitive complexity. This paper develops a computational algorithm to systematically extract data regarding primate centromeric DNA structure and organization from that ∼5% of sequence that is not included as part of standard genome sequence assemblies. Using this computational approac...

  11. The Domain Structure of Centromeres Is Conserved from Fission Yeast to Humans

    OpenAIRE

    Kniola, Barbara; O'Toole, Eileen; McIntosh, J. Richard; Mellone, Barbara; Allshire, Robin; Mengarelli, Silwa; Hultenby, Kjell; Ekwall, Karl

    2001-01-01

    The centromeric DNA of fission yeast is arranged with a central core flanked by repeated sequences. The centromere-associated proteins, Mis6p and Cnp1p (SpCENP-A), associate exclusively with central core DNA, whereas the Swi6 protein binds the surrounding repeats. Here, electron microscopy and immunofluorescence light microscopy reveal that the central core and flanking regions occupy distinct positions within a heterochromatic domain. An “anchor” structure containing ...

  12. The CHD remodeling factor Hrp1 stimulates CENP-A loading to centromeres

    OpenAIRE

    Walfridsson, Julian; Bjerling, Pernilla; Thalen, Maria; Yoo, Eung-Jae; Park, Sang Dai; Ekwall, Karl

    2005-01-01

    Centromeres of fission yeast are arranged with a central core DNA sequence flanked by repeated sequences. The centromere-associated histone H3 variant Cnp1 (SpCENP-A) binds exclusively to central core DNA, while the heterochromatin proteins and cohesins bind the surrounding outer repeats. CHD (chromo-helicase/ATPase DNA binding) chromatin remodeling factors were recently shown to affect chromatin assembly in vitro. Here, we report that the CHD protein Hrp1 plays a key role at fission yeast ce...

  13. Chromosomal G-dark Bands Determine the Spatial Organization of Centromeric Heterochromatin in the Nucleus

    OpenAIRE

    Carvalho, Célia; Pereira, Henrique M.; Ferreira, João; Pina, Cristina; Mendonça, Denise; Rosa, Agostinho C.; Carmo-Fonseca, Maria

    2001-01-01

    Gene expression can be silenced by proximity to heterochromatin blocks containing centromeric α-satellite DNA. This has been shown experimentally through cis-acting chromosome rearrangements resulting in linear genomic proximity, or through trans-acting changes resulting in intranuclear spatial proximity. Although it has long been been established that centromeres are nonrandomly distributed during interphase, little is known of what determines the three-dimensional organization of these sile...

  14. High Quality Maize Centromere 10 Sequence Reveals Evidence of Frequent Recombination Events.

    Science.gov (United States)

    Wolfgruber, Thomas K; Nakashima, Megan M; Schneider, Kevin L; Sharma, Anupma; Xie, Zidian; Albert, Patrice S; Xu, Ronghui; Bilinski, Paul; Dawe, R Kelly; Ross-Ibarra, Jeffrey; Birchler, James A; Presting, Gernot G

    2016-01-01

    The ancestral centromeres of maize contain long stretches of the tandemly arranged CentC repeat. The abundance of tandem DNA repeats and centromeric retrotransposons (CR) has presented a significant challenge to completely assembling centromeres using traditional sequencing methods. Here, we report a nearly complete assembly of the 1.85 Mb maize centromere 10 from inbred B73 using PacBio technology and BACs from the reference genome project. The error rates estimated from overlapping BAC sequences are 7 × 10(-6) and 5 × 10(-5) for mismatches and indels, respectively. The number of gaps in the region covered by the reassembly was reduced from 140 in the reference genome to three. Three expressed genes are located between 92 and 477 kb from the inferred ancestral CentC cluster, which lies within the region of highest centromeric repeat density. The improved assembly increased the count of full-length CR from 5 to 55 and revealed a 22.7 kb segmental duplication that occurred approximately 121,000 years ago. Our analysis provides evidence of frequent recombination events in the form of partial retrotransposons, deletions within retrotransposons, chimeric retrotransposons, segmental duplications including higher order CentC repeats, a deleted CentC monomer, centromere-proximal inversions, and insertion of mitochondrial sequences. Double-strand DNA break (DSB) repair is the most plausible mechanism for these events and may be the major driver of centromere repeat evolution and diversity. In many cases examined here, DSB repair appears to be mediated by microhomology, suggesting that tandem repeats may have evolved to efficiently repair frequent DSBs in centromeres. PMID:27047500

  15. Replication in Economics

    OpenAIRE

    Hamermesh, Daniel S.

    2007-01-01

    This examination of the role and potential for replication in economics points out the paucity of both pure replication -- checking on others' published papers using their data -- and scientific replication -- using data representing different populations in one's own work or in a Comment. Several controversies in empirical economics illustrate how and how not to behave when replicating others' work. The incentives for replication facing editors, authors and potential replicators are examined...

  16. CenH3 evolution reflects meiotic symmetry as predicted by the centromere drive model.

    Science.gov (United States)

    Zedek, František; Bureš, Petr

    2016-09-15

    The centromere drive model explaining rapid evolution of eukaryotic centromeres predicts higher frequency of positive selection acting on centromeric histone H3 (CenH3) in clades with asymmetric meiosis compared to the clades with only symmetric meiosis. However, despite the impression one might get from the literature, this key prediction of the centromere drive model has not only never been confirmed, but it has never been tested, because all the previous studies dealt only with the presence or absence instead of the frequency of positive selection. To provide evidence for or against different frequencies of positively selected CenH3 in asymmetrics and symmetrics, we have inferred the selective pressures acting on CenH3 in seventeen eukaryotic clades, including plants, animals, fungi, ciliates and apicomplexa, using codon-substitution models, and compared the inferred frequencies between asymmetrics and symmetrics in a quantitative manner. We have found that CenH3 has been evolving adaptively much more frequently in clades with asymmetric meiosis compared with clades displaying only symmetric meiosis which confirms the prediction of centromere drive model. Our findings indicate that the evolution of asymmetric meiosis required CenH3 to evolve adaptively more often to counterbalance the negative consequences of centromere drive.

  17. Centromere and telomere sequence alterations reflect the rapid genome evolution within the carnivorous plant genus Genlisea.

    Science.gov (United States)

    Tran, Trung D; Cao, Hieu X; Jovtchev, Gabriele; Neumann, Pavel; Novák, Petr; Fojtová, Miloslava; Vu, Giang T H; Macas, Jiří; Fajkus, Jiří; Schubert, Ingo; Fuchs, Joerg

    2015-12-01

    Linear chromosomes of eukaryotic organisms invariably possess centromeres and telomeres to ensure proper chromosome segregation during nuclear divisions and to protect the chromosome ends from deterioration and fusion, respectively. While centromeric sequences may differ between species, with arrays of tandemly repeated sequences and retrotransposons being the most abundant sequence types in plant centromeres, telomeric sequences are usually highly conserved among plants and other organisms. The genome size of the carnivorous genus Genlisea (Lentibulariaceae) is highly variable. Here we study evolutionary sequence plasticity of these chromosomal domains at an intrageneric level. We show that Genlisea nigrocaulis (1C = 86 Mbp; 2n = 40) and G. hispidula (1C = 1550 Mbp; 2n = 40) differ as to their DNA composition at centromeres and telomeres. G. nigrocaulis and its close relative G. pygmaea revealed mainly 161 bp tandem repeats, while G. hispidula and its close relative G. subglabra displayed a combination of four retroelements at centromeric positions. G. nigrocaulis and G. pygmaea chromosome ends are characterized by the Arabidopsis-type telomeric repeats (TTTAGGG); G. hispidula and G. subglabra instead revealed two intermingled sequence variants (TTCAGG and TTTCAGG). These differences in centromeric and, surprisingly, also in telomeric DNA sequences, uncovered between groups with on average a > 9-fold genome size difference, emphasize the fast genome evolution within this genus. Such intrageneric evolutionary alteration of telomeric repeats with cytosine in the guanine-rich strand, not yet known for plants, might impact the epigenetic telomere chromatin modification.

  18. A high-resolution map of nucleosome positioning on a fission yeast centromere.

    Science.gov (United States)

    Song, Jun S; Liu, Xingkun; Liu, X Shirley; He, Xiangwei

    2008-07-01

    A key element for defining the centromere identity is the incorporation of a specific histone H3, CENPA, known as Cnp1p in Schizosaccharomyces pombe. Previous studies have suggested that functional S. pombe centromeres lack regularly positioned nucleosomes and may involve chromatin remodeling as a key step of kinetochore assembly. We used tiling microarrays to show that nucleosomes are, in fact, positioned in regular intervals in the core of centromere 2, providing the first high-resolution map of regional centromere chromatin. Nucleosome locations are not disrupted by mutations in kinetochore protein genes cnp1, mis18, mis12, nuf2, mal2; overexpression of cnp1; or the deletion of ams2, which encodes a GATA-like factor participating in CENPA incorporation. Bioinformatics analysis of the centromere sequence indicates certain enriched motifs in linker regions between nucleosomes and reveals a sequence bias in nucleosome positioning. In addition, sequence analysis of nucleosome-free regions identifies novel binding sites of Ams2p. We conclude that centromeric nucleosome positions are stable and may be derived from the underlying DNA sequence. PMID:18411404

  19. Point mutation impairs centromeric CENH3 loading and induces haploid plants.

    Science.gov (United States)

    Karimi-Ashtiyani, Raheleh; Ishii, Takayoshi; Niessen, Markus; Stein, Nils; Heckmann, Stefan; Gurushidze, Maia; Banaei-Moghaddam, Ali Mohammad; Fuchs, Jörg; Schubert, Veit; Koch, Kerstin; Weiss, Oda; Demidov, Dmitri; Schmidt, Klaus; Kumlehn, Jochen; Houben, Andreas

    2015-09-01

    The chromosomal position of the centromere-specific histone H3 variant CENH3 (also called "CENP-A") is the assembly site for the kinetochore complex of active centromeres. Any error in transcription, translation, modification, or incorporation can affect the ability to assemble intact CENH3 chromatin and can cause centromere inactivation [Allshire RC, Karpen GH (2008) Nat Rev Genet 9 (12):923-937]. Here we show that a single-point amino acid exchange in the centromere-targeting domain of CENH3 leads to reduced centromere loading of CENH3 in barley, sugar beet, and Arabidopsis thaliana. Haploids were obtained after cenh3 L130F-complemented cenh3-null mutant plants were crossed with wild-type A. thaliana. In contrast, in a noncompeting situation (i.e., centromeres possessing only mutated or only wild-type CENH3), no uniparental chromosome elimination occurs during early embryogenesis. The high degree of evolutionary conservation of the identified mutation site offers promising opportunities for application in a wide range of crop species in which haploid technology is of interest. PMID:26294252

  20. Centromere and telomere sequence alterations reflect the rapid genome evolution within the carnivorous plant genus Genlisea.

    Science.gov (United States)

    Tran, Trung D; Cao, Hieu X; Jovtchev, Gabriele; Neumann, Pavel; Novák, Petr; Fojtová, Miloslava; Vu, Giang T H; Macas, Jiří; Fajkus, Jiří; Schubert, Ingo; Fuchs, Joerg

    2015-12-01

    Linear chromosomes of eukaryotic organisms invariably possess centromeres and telomeres to ensure proper chromosome segregation during nuclear divisions and to protect the chromosome ends from deterioration and fusion, respectively. While centromeric sequences may differ between species, with arrays of tandemly repeated sequences and retrotransposons being the most abundant sequence types in plant centromeres, telomeric sequences are usually highly conserved among plants and other organisms. The genome size of the carnivorous genus Genlisea (Lentibulariaceae) is highly variable. Here we study evolutionary sequence plasticity of these chromosomal domains at an intrageneric level. We show that Genlisea nigrocaulis (1C = 86 Mbp; 2n = 40) and G. hispidula (1C = 1550 Mbp; 2n = 40) differ as to their DNA composition at centromeres and telomeres. G. nigrocaulis and its close relative G. pygmaea revealed mainly 161 bp tandem repeats, while G. hispidula and its close relative G. subglabra displayed a combination of four retroelements at centromeric positions. G. nigrocaulis and G. pygmaea chromosome ends are characterized by the Arabidopsis-type telomeric repeats (TTTAGGG); G. hispidula and G. subglabra instead revealed two intermingled sequence variants (TTCAGG and TTTCAGG). These differences in centromeric and, surprisingly, also in telomeric DNA sequences, uncovered between groups with on average a > 9-fold genome size difference, emphasize the fast genome evolution within this genus. Such intrageneric evolutionary alteration of telomeric repeats with cytosine in the guanine-rich strand, not yet known for plants, might impact the epigenetic telomere chromatin modification. PMID:26485466

  1. CenH3 evolution reflects meiotic symmetry as predicted by the centromere drive model

    Science.gov (United States)

    Zedek, František; Bureš, Petr

    2016-01-01

    The centromere drive model explaining rapid evolution of eukaryotic centromeres predicts higher frequency of positive selection acting on centromeric histone H3 (CenH3) in clades with asymmetric meiosis compared to the clades with only symmetric meiosis. However, despite the impression one might get from the literature, this key prediction of the centromere drive model has not only never been confirmed, but it has never been tested, because all the previous studies dealt only with the presence or absence instead of the frequency of positive selection. To provide evidence for or against different frequencies of positively selected CenH3 in asymmetrics and symmetrics, we have inferred the selective pressures acting on CenH3 in seventeen eukaryotic clades, including plants, animals, fungi, ciliates and apicomplexa, using codon-substitution models, and compared the inferred frequencies between asymmetrics and symmetrics in a quantitative manner. We have found that CenH3 has been evolving adaptively much more frequently in clades with asymmetric meiosis compared with clades displaying only symmetric meiosis which confirms the prediction of centromere drive model. Our findings indicate that the evolution of asymmetric meiosis required CenH3 to evolve adaptively more often to counterbalance the negative consequences of centromere drive. PMID:27629066

  2. A cell cycle-regulated GATA factor promotes centromeric localization of CENP-A in fission yeast.

    Science.gov (United States)

    Chen, Ee Sin; Saitoh, Shigeaki; Yanagida, Mitsuhiro; Takahashi, Kohta

    2003-01-01

    CENP-A, the centromere-specific histone H3 variant, plays a crucial role in organizing kinetochore chromatin for precise chromosome segregation. We have isolated Ams2, a Daxx-like motif-containing GATA factor, and histone H4, as multicopy suppressors of cnp1-1, an S. pombe CENP-A mutant. While depletion of Ams2 results in the reduction of CENP-A binding to the centromere and chromosome missegregation, increasing its dosage restores association of a CENP-A mutant protein with centromeres. Conversely, overexpression of CENP-A or histone H4 suppresses an ams2 disruptant. The intracellular amount of Ams2 thus affects centromeric nucleosomal constituents. Ams2 is abundant in S phase and associates with chromatin, including the central centromeres through binding to GATA-core sequences. Ams2 is thus a cell cycle-regulated GATA factor that is required for centromere function. PMID:12535531

  3. Establishment of Centromeric Chromatin by the CENP-A Assembly Factor CAL1 Requires FACT-Mediated Transcription.

    Science.gov (United States)

    Chen, Chin-Chi; Bowers, Sarion; Lipinszki, Zoltan; Palladino, Jason; Trusiak, Sarah; Bettini, Emily; Rosin, Leah; Przewloka, Marcin R; Glover, David M; O'Neill, Rachel J; Mellone, Barbara G

    2015-07-01

    Centromeres are essential chromosomal structures that mediate accurate chromosome segregation during cell division. Centromeres are specified epigenetically by the heritable incorporation of the centromeric histone H3 variant CENP-A. While many of the primary factors that mediate centromeric deposition of CENP-A are known, the chromatin and DNA requirements of this process have remained elusive. Here, we uncover a role for transcription in Drosophila CENP-A deposition. Using an inducible ectopic centromere system that uncouples CENP-A deposition from endogenous centromere function and cell-cycle progression, we demonstrate that CENP-A assembly by its loading factor, CAL1, requires RNAPII-mediated transcription of the underlying DNA. This transcription depends on the CAL1 binding partner FACT, but not on CENP-A incorporation. Our work establishes RNAPII passage as a key step in chaperone-mediated CENP-A chromatin establishment and propagation. PMID:26151904

  4. In search of the holy replicator

    OpenAIRE

    Gilbert, David M.

    2004-01-01

    After 40 years of searching for the eukaryotic replicator sequence, it is time to abandon the concept of ‘the’ replicator as a single genetic entity. Here I propose a ‘relaxed replicon model’ in which a positive initiator–replicator interaction is facilitated by a combination of several complex features of chromatin. An important question for the future is whether the positions of replication origins are simply a passive result of local chromatin structure or are actively localized to coordin...

  5. CENP-C recruits M18BP1 to centromeres to promote CENP-A chromatin assembly

    OpenAIRE

    Moree, Ben; Meyer, Corey B.; Fuller, Colin J.; Straight, Aaron F.

    2011-01-01

    Eukaryotic chromosomes segregate by attaching to microtubules of the mitotic spindle through a chromosomal microtubule binding site called the kinetochore. Kinetochores assemble on a specialized chromosomal locus termed the centromere, which is characterized by the replacement of histone H3 in centromeric nucleosomes with the essential histone H3 variant CENP-A (centromere protein A). Understanding how CENP-A chromatin is assembled and maintained is central to understanding chromosome segrega...

  6. Differential Regulation of Strand-Specific Transcripts from Arabidopsis Centromeric Satellite Repeats.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available Centromeres interact with the spindle apparatus to enable chromosome disjunction and typically contain thousands of tandemly arranged satellite repeats interspersed with retrotransposons. While their role has been obscure, centromeric repeats are epigenetically modified and centromere specification has a strong epigenetic component. In the yeast Schizosaccharomyces pombe, long heterochromatic repeats are transcribed and contribute to centromere function via RNA interference (RNAi. In the higher plant Arabidopsis thaliana, as in mammalian cells, centromeric satellite repeats are short (180 base pairs, are found in thousands of tandem copies, and are methylated. We have found transcripts from both strands of canonical, bulk Arabidopsis repeats. At least one subfamily of 180-base pair repeats is transcribed from only one strand and regulated by RNAi and histone modification. A second subfamily of repeats is also silenced, but silencing is lost on both strands in mutants in the CpG DNA methyltransferase MET1, the histone deacetylase HDA6/SIL1, or the chromatin remodeling ATPase DDM1. This regulation is due to transcription from Athila2 retrotransposons, which integrate in both orientations relative to the repeats, and differs between strains of Arabidopsis. Silencing lost in met1 or hda6 is reestablished in backcrosses to wild-type, but silencing lost in RNAi mutants and ddm1 is not. Twenty-four-nucleotide small interfering RNAs from centromeric repeats are retained in met1 and hda6, but not in ddm1, and may have a role in this epigenetic inheritance. Histone H3 lysine-9 dimethylation is associated with both classes of repeats. We propose roles for transcribed repeats in the epigenetic inheritance and evolution of centromeres.

  7. Shugoshin prevents dissociation of cohesin from centromeres during mitosis in vertebrate cells.

    Directory of Open Access Journals (Sweden)

    Barry E McGuinness

    2005-03-01

    Full Text Available Cohesion between sister chromatids is essential for their bi-orientation on mitotic spindles. It is mediated by a multisubunit complex called cohesin. In yeast, proteolytic cleavage of cohesin's alpha kleisin subunit at the onset of anaphase removes cohesin from both centromeres and chromosome arms and thus triggers sister chromatid separation. In animal cells, most cohesin is removed from chromosome arms during prophase via a separase-independent pathway involving phosphorylation of its Scc3-SA1/2 subunits. Cohesin at centromeres is refractory to this process and persists until metaphase, whereupon its alpha kleisin subunit is cleaved by separase, which is thought to trigger anaphase. What protects centromeric cohesin from the prophase pathway? Potential candidates are proteins, known as shugoshins, that are homologous to Drosophila MEI-S332 and yeast Sgo1 proteins, which prevent removal of meiotic cohesin complexes from centromeres at the first meiotic division. A vertebrate shugoshin-like protein associates with centromeres during prophase and disappears at the onset of anaphase. Its depletion by RNA interference causes HeLa cells to arrest in mitosis. Most chromosomes bi-orient on a metaphase plate, but precocious loss of centromeric cohesin from chromosomes is accompanied by loss of all sister chromatid cohesion, the departure of individual chromatids from the metaphase plate, and a permanent cell cycle arrest, presumably due to activation of the spindle checkpoint. Remarkably, expression of a version of Scc3-SA2 whose mitotic phosphorylation sites have been mutated to alanine alleviates the precocious loss of sister chromatid cohesion and the mitotic arrest of cells lacking shugoshin. These data suggest that shugoshin prevents phosphorylation of cohesin's Scc3-SA2 subunit at centromeres during mitosis. This ensures that cohesin persists at centromeres until activation of separase causes cleavage of its alpha kleisin subunit. Centromeric

  8. Myb-domain protein Teb1 controls histone levels and centromere assembly in fission yeast.

    Science.gov (United States)

    Valente, Luis P; Dehé, Pierre-Marie; Klutstein, Michael; Aligianni, Sofia; Watt, Stephen; Bähler, Jürg; Cooper, Julia Promisel

    2013-02-01

    The TTAGGG motif is common to two seemingly unrelated dimensions of chromatin function-the vertebrate telomere repeat and the promoter regions of many Schizosaccharomyces pombe genes, including all of those encoding canonical histones. The essential S. pombe protein Teb1 contains two Myb-like DNA binding domains related to those found in telomere proteins and binds the human telomere repeat sequence TTAGGG. Here, we analyse Teb1 binding throughout the genome and the consequences of reduced Teb1 function. Chromatin immunoprecipitation (ChIP)-on-chip analysis reveals robust Teb1 binding at many promoters, notably including all of those controlling canonical histone gene expression. A hypomorphic allele, teb1-1, confers reduced binding and reduced levels of histone transcripts. Prompted by previously suggested connections between histone expression and centromere identity, we examined localization of the centromeric histone H3 variant Cnp1 and found reduced centromeric binding along with reduced centromeric silencing. These data identify Teb1 as a master regulator of histone levels and centromere identity. PMID:23314747

  9. The Role of Dicentric Chromosome Formation and Secondary Centromere Deletion in the Evolution of Myeloid Malignancy

    Directory of Open Access Journals (Sweden)

    Ruth N. MacKinnon

    2011-01-01

    Full Text Available Dicentric chromosomes have been identified as instigators of the genome instability associated with cancer, but this instability is often resolved by one of a number of different secondary events. These include centromere inactivation, inversion, and intercentromeric deletion. Deletion or excision of one of the centromeres may be a significant occurrence in myeloid malignancy and other malignancies but has not previously been widely recognized, and our reports are the first describing centromere deletion in cancer cells. We review what is known about dicentric chromosomes and the mechanisms by which they can undergo stabilization in both constitutional and cancer genomes. The failure to identify centromere deletion in cancer cells until recently can be partly explained by the standard approaches to routine diagnostic cancer genome analysis, which do not identify centromeres in the context of chromosome organization. This hitherto hidden group of primary dicentric, secondary monocentric chromosomes, together with other unrecognized dicentric chromosomes, points to a greater role for dicentric chromosomes in cancer initiation and progression than is generally acknowledged. We present a model that predicts and explains a significant role for dicentric chromosomes in the formation of unbalanced translocations in malignancy.

  10. Replicability of Experiment

    Directory of Open Access Journals (Sweden)

    John D. Norton

    2015-06-01

    Full Text Available The replicability of experiment is routinely offered as the gold standard of evidence. I argue that it is not supported by a universal principle of replicability in inductive logic. A failure of replication may not impugn a credible experimental result; and a successful replication can fail to vindicate an incredible experimental result. Rather, employing a material approach to inductive inference, the evidential import of successful replication of an experiment is determined by the prevailing background facts. Commonly, these background facts do support successful replication as a good evidential guide and this has fostered the illusion of a deeper, exceptionless principle.

  11. Topology of chromosome centromeres in human sperm nuclei with high levels of DNA damage.

    Science.gov (United States)

    Wiland, Ewa; Fraczek, Monika; Olszewska, Marta; Kurpisz, Maciej

    2016-01-01

    Several studies have shown that the 'poor' sperm DNA quality appears to be an important factor affecting male reproductive ability. In the case of sperm cells from males with the correct somatic karyotype but with deficient spermatogenesis, resulting in a high degree of sperm DNA fragmentation, we observed changes in the preferential topology of the chromosome 7, 9, 15, 18, X and Y centromeres. The changes occurred in radial localization and may have been directly linked to the sperm chromatin damage. This conclusion is mainly based on a comparison of FISH signals that were observed simultaneously in the TUNEL-positive and TUNEL-negative sperm cells. The analyzed cells originated from the same ejaculated sample and FISH was performed on the same slides, after in situ TUNEL reaction. Based on the observed changes and previous data, it appears that the sperm nucleus architecture can be disrupted by a variety of factors and has a negative influence on spermatogenesis at the same time. Often, these factors coexist (e.g. chromosomal translocations, aneuploidies, a higher DNA fragmentation, abnormal seminology), but no direct correlations between the factors were observed. PMID:27558650

  12. Archaeal DNA replication.

    Science.gov (United States)

    Kelman, Lori M; Kelman, Zvi

    2014-01-01

    DNA replication is essential for all life forms. Although the process is fundamentally conserved in the three domains of life, bioinformatic, biochemical, structural, and genetic studies have demonstrated that the process and the proteins involved in archaeal DNA replication are more similar to those in eukaryal DNA replication than in bacterial DNA replication, but have some archaeal-specific features. The archaeal replication system, however, is not monolithic, and there are some differences in the replication process between different species. In this review, the current knowledge of the mechanisms governing DNA replication in Archaea is summarized. The general features of the replication process as well as some of the differences are discussed. PMID:25421597

  13. DNA replication and cancer

    DEFF Research Database (Denmark)

    Boyer, Anne-Sophie; Walter, David; Sørensen, Claus Storgaard

    2016-01-01

    A dividing cell has to duplicate its DNA precisely once during the cell cycle to preserve genome integrity avoiding the accumulation of genetic aberrations that promote diseases such as cancer. A large number of endogenous impacts can challenge DNA replication and cells harbor a battery of pathways...... to promote genome integrity during DNA replication. This includes suppressing new replication origin firing, stabilization of replicating forks, and the safe restart of forks to prevent any loss of genetic information. Here, we describe mechanisms by which oncogenes can interfere with DNA replication thereby...... causing DNA replication stress and genome instability. Further, we describe cellular and systemic responses to these insults with a focus on DNA replication restart pathways. Finally, we discuss the therapeutic potential of exploiting intrinsic replicative stress in cancer cells for targeted therapy....

  14. Characterization of the centromere and pericentromere retrotransposons in Brassica rapa and their distribution in related Brassica species

    NARCIS (Netherlands)

    Lim, K.B.; Yang, T.J.; Hwang, Y.J.; Kim, J.S.; Park, J.Y.; Kwon, S.J.; Kim, J.A.; Choi, B.S.; Lim, M.H.; Jin, M.; Kim, H.I.; Jong, de J.H.S.G.M.; Bancroft, I.; Lim, Y.P.; Park, B.S.

    2007-01-01

    We report the identification and characterization of the major repeats in the centromeric and peri-centromeric heterochromatin of Brassica rapa. The analysis involved the characterization of 88 629 bacterial artificial chromosomes (BAC) end sequences and the complete sequences of two BAC clones. We

  15. Formation of functional CENP-B boxes at diverse locations in repeat units of centromeric DNA in New World monkeys.

    Science.gov (United States)

    Kugou, Kazuto; Hirai, Hirohisa; Masumoto, Hiroshi; Koga, Akihiko

    2016-06-13

    Centromere protein B, which is involved in centromere formation, binds to centromeric repetitive DNA by recognizing a nucleotide motif called the CENP-B box. Humans have large numbers of CENP-B boxes in the centromeric repetitive DNA of their autosomes and X chromosome. The current understanding is that these CENP-B boxes are located at identical positions in the repeat units of centromeric DNA. Great apes also have CENP-B boxes in locations that are identical to humans. The purpose of the present study was to examine the location of CENP-B box in New World monkeys. We recently identified CENP-B box in one species of New World monkeys (marmosets). In this study, we found functional CENP-B boxes in CENP-A-assembled repeat units of centromeric DNA in 2 additional New World monkeys (squirrel monkeys and tamarins) by immunostaining and ChIP-qPCR analyses. The locations of the 3 CENP-B boxes in the repeat units differed from one another. The repeat unit size of centromeric DNA of New World monkeys (340-350 bp) is approximately twice that of humans and great apes (171 bp). This might be, associated with higher-order repeat structures of centromeric DNA, a factor for the observed variation in the CENP-B box location in New World monkeys.

  16. Co-evolving CENP-A and CAL1 Domains Mediate Centromeric CENP-A Deposition across Drosophila Species.

    Science.gov (United States)

    Rosin, Leah; Mellone, Barbara G

    2016-04-18

    Centromeres mediate the conserved process of chromosome segregation, yet centromeric DNA and the centromeric histone, CENP-A, are rapidly evolving. The rapid evolution of Drosophila CENP-A loop 1 (L1) is thought to modulate the DNA-binding preferences of CENP-A to counteract centromere drive, the preferential transmission of chromosomes with expanded centromeric satellites. Consistent with this model, CENP-A from Drosophila bipectinata (bip) cannot localize to Drosophila melanogaster (mel) centromeres. We show that this result is due to the inability of the mel CENP-A chaperone, CAL1, to deposit bip CENP-A into chromatin. Co-expression of bip CENP-A and bip CAL1 in mel cells restores centromeric localization, and similar findings apply to other Drosophila species. We identify two co-evolving regions, CENP-A L1 and the CAL1 N terminus, as critical for lineage-specific CENP-A incorporation. Collectively, our data show that the rapid evolution of L1 modulates CAL1-mediated CENP-A assembly, suggesting an alternative mechanism for the suppression of centromere drive. PMID:27093083

  17. Meiosis-specific loading of the centromere-specific histone CENH3 in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Maruthachalam Ravi

    2011-06-01

    Full Text Available Centromere behavior is specialized in meiosis I, so that sister chromatids of homologous chromosomes are pulled toward the same side of the spindle (through kinetochore mono-orientation and chromosome number is reduced. Factors required for mono-orientation have been identified in yeast. However, comparatively little is known about how meiotic centromere behavior is specialized in animals and plants that typically have large tandem repeat centromeres. Kinetochores are nucleated by the centromere-specific histone CENH3. Unlike conventional histone H3s, CENH3 is rapidly evolving, particularly in its N-terminal tail domain. Here we describe chimeric variants of CENH3 with alterations in the N-terminal tail that are specifically defective in meiosis. Arabidopsis thaliana cenh3 mutants expressing a GFP-tagged chimeric protein containing the H3 N-terminal tail and the CENH3 C-terminus (termed GFP-tailswap are sterile because of random meiotic chromosome segregation. These defects result from the specific depletion of GFP-tailswap protein from meiotic kinetochores, which contrasts with its normal localization in mitotic cells. Loss of the GFP-tailswap CENH3 variant in meiosis affects recruitment of the essential kinetochore protein MIS12. Our findings suggest that CENH3 loading dynamics might be regulated differently in mitosis and meiosis. As further support for our hypothesis, we show that GFP-tailswap protein is recruited back to centromeres in a subset of pollen grains in GFP-tailswap once they resume haploid mitosis. Meiotic recruitment of the GFP-tailswap CENH3 variant is not restored by removal of the meiosis-specific cohesin subunit REC8. Our results reveal the existence of a specialized loading pathway for CENH3 during meiosis that is likely to involve the hypervariable N-terminal tail. Meiosis-specific CENH3 dynamics may play a role in modulating meiotic centromere behavior.

  18. Physical Characterization of human centromeric regions using transformation-associated recombination cloning technology

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir Larionov, Ph D

    2007-06-05

    A special interest in the organization of human centromeric DNA was stimulated a few years ago when two independent groups succeeded in reconstituting a functional human centromere, using constructs carrying centromere-specific alphoid DNA arrays. This work demonstrated the importance of DNA components in mammalian centromeres and opened a way for studying the structural requirements for de novo kinetochore formation and for construction of human artificial chromosomes (HACs) with therapeutic potential. To elucidate the structural requirements for formation of HACs with a functional kinetochore, we developed a new method for cloning of large DNA fragments for human centromeric regions that can be used as a substrate for HAC formation. This method exploits in vivo recombination in yeast (TAR cloning). In addition, a new strategy for the construction of alphoid DNA arrays was developed in our lab. The strategy involves the construction of uniform or hybrid synthetic alphoid DNA arrays by the RCA-TAR technique. This technique comprises two steps: rolling circle amplification of an alphoid DNA dimer and subsequent assembling of the amplified fragments by in vivo homologous recombination in yeast (Figure 1). Using this system, we constructed a set of different synthetic alphoid DNA arrays with a predetermined sequence varying in size from 30 to 140 kb and demonstrated that some of the arrays are competent in HAC formation. Because any nucleotide can be changed in a dimer before its amplification, this new technique is optimal for identifying the structural requirements for de novo kinetochore formation in HACs. Moreover, the technique makes possible to introduce into alphoid DNA arrays recognition sites for DNA-binding proteins. We have made the following progress on the studying of human centromeric regions using transformation-associated recombination cloning technology: i) minimal size of alphoid DNA array required for de novo kinetochore formation was estimated; ii

  19. System-wide Analysis of SUMOylation Dynamics in Response to Replication Stress Reveals Novel Small Ubiquitin-like Modified Target Proteins and Acceptor Lysines Relevant for Genome Stability

    DEFF Research Database (Denmark)

    Xiao, Zhenyu; Chang, Jer-Gung; Hendriks, Ivo A;

    2015-01-01

    Genotoxic agents can cause replication fork stalling in dividing cells due to DNA lesions, eventually leading to replication fork collapse when the damage is not repaired. Small Ubiquitin-like Modifiers (SUMOs) are known to counteract replication stress, nevertheless, only a small number of relev......Genotoxic agents can cause replication fork stalling in dividing cells due to DNA lesions, eventually leading to replication fork collapse when the damage is not repaired. Small Ubiquitin-like Modifiers (SUMOs) are known to counteract replication stress, nevertheless, only a small number...... that consists of interacting replication factors, transcriptional regulators, DNA damage response factors including MDC1, ATR-interacting protein ATRIP, the Bloom syndrome protein and the BLM-binding partner RMI1, the crossover junction endonuclease EME1, BRCA1 and CHAF1A. Furthermore, centromeric proteins...

  20. Novel Centromeric Loci of the Wine and Beer Yeast Dekkera bruxellensis CEN1 and CEN2

    DEFF Research Database (Denmark)

    Ishchuk, Olena P.; Vojvoda Zeljko, Tanja; Schifferdecker, Anna J.;

    2016-01-01

    The wine and beer yeast Dekkera bruxellensis thrives in environments that are harsh and limiting, especially in concentrations with low oxygen and high ethanol. Its different strains' chromosomes greatly vary in number (karyotype). This study isolates two novel centromeric loci (CEN1 and CEN2...

  1. Correlation between centromere protein-F autoantibodies and cancer analyzed by enzyme-linked immunosorbent assay

    DEFF Research Database (Denmark)

    Welner, Simon; Trier, Nicole Hartwig; Morten Frisch, Morten;

    2013-01-01

    Centromere protein-F (CENP-F) is a large nuclear protein of 367 kDa, which is involved in multiple mitosis-related events such as proper assembly of the kinetochores, stabilization of heterochromatin, chromosome alignment and mitotic checkpoint signaling. Several studies have shown a correlation...

  2. Survivin mediates targeting of the chromosomal passenger complex to the centromere and midbody

    NARCIS (Netherlands)

    Vader, G; Kauw, JJW; Medema, RH; Lens, SMA

    2006-01-01

    The chromosomal passenger complex (CPC) coordinates chromosomal and cytoskeletal events of mitosis. The enzymatic core of this complex (Aurora-B) is guided through the mitotic cell by its companion chromosomal passenger proteins, inner centromere protein (INCENP), Survivin and Borealin/Dasra-B, ther

  3. Inter-domain Cooperation in INCENP Promotes Aurora B Relocation from Centromeres to Microtubules

    Directory of Open Access Journals (Sweden)

    Armando van der Horst

    2015-07-01

    Full Text Available The chromosomal passenger complex is essential for error-free chromosome segregation and proper execution of cytokinesis. To coordinate nuclear division with cytoplasmic division, its enzymatic subunit, Aurora B, relocalizes from centromeres in metaphase to the spindle midzone in anaphase. In budding yeast, this requires dephosphorylation of the microtubule-binding (MTB domain of the INCENP analog Sli15. The mechanistic basis for this relocalization in metazoans is incompletely understood. We demonstrate that the putative coiled-coil domain within INCENP drives midzone localization of Aurora B via a direct, electrostatic interaction with microtubules. Furthermore, we provide evidence that the CPC multimerizes via INCENP’s centromere-targeting domain (CEN box, which increases the MTB affinity of INCENP. In (prometaphase, the MTB affinity of INCENP is outcompeted by the affinity of its CEN box for centromeres, while at anaphase onset—when the histone mark H2AT120 is dephosphorylated—INCENP and Aurora B switch from centromere to microtubule localization.

  4. Centromere localization and function of Mis18 requires Yippee-like domain-mediated oligomerization.

    Science.gov (United States)

    Subramanian, Lakxmi; Medina-Pritchard, Bethan; Barton, Rachael; Spiller, Frances; Kulasegaran-Shylini, Raghavendran; Radaviciute, Guoda; Allshire, Robin C; Arockia Jeyaprakash, A

    2016-04-01

    Mis18 is a key regulator responsible for the centromere localization of the CENP-A chaperone Scm3 in Schizosaccharomyces pombe and HJURP in humans, which establishes CENP-A chromatin that defines centromeres. The molecular and structural determinants of Mis18 centromere targeting remain elusive. Here, by combining structural, biochemical, and yeast genetic studies, we show that the oligomerization of S. pombe Mis18, mediated via its conserved N-terminal Yippee-like domain, is crucial for its centromere localization and function. The crystal structure of the N-terminal Yippee-like domain reveals a fold containing a cradle-shaped pocket that is implicated in protein/nucleic acid binding, which we show is required for Mis18 function. While the N-terminal Yippee-like domain forms a homodimer in vitro and in vivo, full-length Mis18, including the C-terminal α-helical domain, forms a homotetramer in vitro We also show that the Yippee-like domains of human Mis18α/Mis18β interact to form a heterodimer, implying a conserved structural theme for Mis18 regulation. PMID:26921242

  5. Polo-like kinase 1 licenses CENP-A deposition at centromeres.

    Science.gov (United States)

    McKinley, Kara L; Cheeseman, Iain M

    2014-07-17

    To ensure the stable transmission of the genome during vertebrate cell division, the mitotic spindle must attach to a single locus on each chromosome, termed the centromere. The fundamental requirement for faithful centromere inheritance is the controlled deposition of the centromere-specifying histone, CENP-A. However, the regulatory mechanisms that ensure the precise control of CENP-A deposition have proven elusive. Here, we identify polo-like kinase 1 (Plk1) as a centromere-localized regulator required to initiate CENP-A deposition in human cells. We demonstrate that faithful CENP-A deposition requires integrated signals from Plk1 and cyclin-dependent kinase (CDK), with Plk1 promoting the localization of the key CENP-A deposition factor, the Mis18 complex, and CDK inhibiting Mis18 complex assembly. By bypassing these regulated steps, we uncoupled CENP-A deposition from cell-cycle progression, resulting in mitotic defects. Thus, CENP-A deposition is controlled by a two-step regulatory paradigm comprised of Plk1 and CDK that is crucial for genomic integrity. PMID:25036634

  6. Loss of pRB causes centromere dysfunction and chromosomal instability.

    Science.gov (United States)

    Manning, Amity L; Longworth, Michelle S; Dyson, Nicholas J

    2010-07-01

    Chromosome instability (CIN) is a common feature of tumor cells. By monitoring chromosome segregation, we show that depletion of the retinoblastoma protein (pRB) causes rates of missegregation comparable with those seen in CIN tumor cells. The retinoblastoma tumor suppressor is frequently inactivated in human cancers and is best known for its regulation of the G1/S-phase transition. Recent studies have shown that pRB inactivation also slows mitotic progression and promotes aneuploidy, but reasons for these phenotypes are not well understood. Here we describe the underlying mitotic defects of pRB-deficient cells that cause chromosome missegregation. Analysis of mitotic cells reveals that pRB depletion compromises centromeric localization of CAP-D3/condensin II and chromosome cohesion, leading to an increase in intercentromeric distance and deformation of centromeric structure. These defects promote merotelic attachment, resulting in failure of chromosome congression and an increased propensity for lagging chromosomes following mitotic delay. While complete loss of centromere function or chromosome cohesion would have catastrophic consequences, these more moderate defects allow pRB-deficient cells to proliferate but undermine the fidelity of mitosis, leading to whole-chromosome gains and losses. These observations explain an important consequence of RB1 inactivation, and suggest that subtle defects in centromere function are a frequent source of merotely and CIN in cancer.

  7. Genetic and physical mapping of two centromere-proximal regions of chromosome IV in Aspergillus nidulans

    DEFF Research Database (Denmark)

    Aleksenko, Alexei Y.; Nielsen, Michael Lynge; Clutterbuck, A.J.

    2001-01-01

    revision of the genetic map of the chromosome, including the position of the centromere, Comparison of physical and genetic maps indicates that meiotic recombination is low in subcentromeric DNA, its frequency being reduced from 1 crossover per 0.8 Mb to approximately 1 crossover per 5 Mb per meiosis...

  8. Controlled rereplication at DNA replication origins

    OpenAIRE

    Gómez, María

    2008-01-01

    No-more-than-once per cell cycle initiation of DNA replication is a golden rule to maintain genome stability and guarantee cell survival. In our recent work we discovered that small genome fragments of about 200 bp are repeatedly synthesised at human DNA replication origins at the time of origin firing during S phase in normal cells. Rereplicated DNA fragments coincide physical and temporarily with replication origin activity, implying that their generation is intimately associated with the i...

  9. Replication licensing and the DNA damage checkpoint

    OpenAIRE

    Cook, Jeanette Gowen

    2009-01-01

    Accurate and timely duplication of chromosomal DNA requires that replication be coordinated with processes that ensure genome integrity. Significant advances in determining how the earliest steps in DNA replication are affected by DNA damage have highlighted some of the mechanisms to establish that coordination. Recent insights have expanded the relationship between the ATM and ATR-dependent checkpoint pathways and the proteins that bind and function at replication origins. These findings sug...

  10. Mitotic regulator Mis18β interacts with and specifies the centromeric assembly of molecular chaperone holliday junction recognition protein (HJURP).

    Science.gov (United States)

    Wang, Jianyu; Liu, Xing; Dou, Zhen; Chen, Liang; Jiang, Hao; Fu, Chuanhai; Fu, Guosheng; Liu, Dan; Zhang, Jiancun; Zhu, Tongge; Fang, Jingwen; Zang, Jianye; Cheng, Jinke; Teng, Maikun; Ding, Xia; Yao, Xuebiao

    2014-03-21

    The centromere is essential for precise and equal segregation of the parental genome into two daughter cells during mitosis. CENP-A is a unique histone H3 variant conserved in eukaryotic centromeres. The assembly of CENP-A to the centromere is mediated by Holliday junction recognition protein (HJURP) in early G1 phase. However, it remains elusive how HJURP governs CENP-A incorporation into the centromere. Here we show that human HJURP directly binds to Mis18β, a component of the Mis18 complex conserved in the eukaryotic kingdom. A minimal region of HJURP for Mis18β binding was mapped to residues 437-460. Depletion of Mis18β by RNA interference dramatically impaired HJURP recruitment to the centromere, indicating the importance of Mis18β in HJURP loading. Interestingly, phosphorylation of HJURP by CDK1 weakens its interaction with Mis18β, consistent with the notion that assembly of CENP-A to the centromere is achieved after mitosis. Taken together, these data define a novel molecular mechanism underlying the temporal regulation of CENP-A incorporation into the centromere by accurate Mis18β-HJURP interaction. PMID:24519934

  11. Mitotic Regulator Mis18β Interacts with and Specifies the Centromeric Assembly of Molecular Chaperone Holliday Junction Recognition Protein (HJURP)*

    Science.gov (United States)

    Wang, Jianyu; Liu, Xing; Dou, Zhen; Chen, Liang; Jiang, Hao; Fu, Chuanhai; Fu, Guosheng; Liu, Dan; Zhang, Jiancun; Zhu, Tongge; Fang, Jingwen; Zang, Jianye; Cheng, Jinke; Teng, Maikun; Ding, Xia; Yao, Xuebiao

    2014-01-01

    The centromere is essential for precise and equal segregation of the parental genome into two daughter cells during mitosis. CENP-A is a unique histone H3 variant conserved in eukaryotic centromeres. The assembly of CENP-A to the centromere is mediated by Holliday junction recognition protein (HJURP) in early G1 phase. However, it remains elusive how HJURP governs CENP-A incorporation into the centromere. Here we show that human HJURP directly binds to Mis18β, a component of the Mis18 complex conserved in the eukaryotic kingdom. A minimal region of HJURP for Mis18β binding was mapped to residues 437–460. Depletion of Mis18β by RNA interference dramatically impaired HJURP recruitment to the centromere, indicating the importance of Mis18β in HJURP loading. Interestingly, phosphorylation of HJURP by CDK1 weakens its interaction with Mis18β, consistent with the notion that assembly of CENP-A to the centromere is achieved after mitosis. Taken together, these data define a novel molecular mechanism underlying the temporal regulation of CENP-A incorporation into the centromere by accurate Mis18β-HJURP interaction. PMID:24519934

  12. Regulation of beta cell replication

    DEFF Research Database (Denmark)

    Lee, Ying C; Nielsen, Jens Høiriis

    2008-01-01

    Beta cell mass, at any given time, is governed by cell differentiation, neogenesis, increased or decreased cell size (cell hypertrophy or atrophy), cell death (apoptosis), and beta cell proliferation. Nutrients, hormones and growth factors coupled with their signalling intermediates have been...... suggested to play a role in beta cell mass regulation. In addition, genetic mouse model studies have indicated that cyclins and cyclin-dependent kinases that determine cell cycle progression are involved in beta cell replication, and more recently, menin in association with cyclin-dependent kinase...... inhibitors has been demonstrated to be important in beta cell growth. In this review, we consider and highlight some aspects of cell cycle regulation in relation to beta cell replication. The role of cell cycle regulation in beta cell replication is mostly from studies in rodent models, but whether...

  13. Centromere localization for Bighead Carp (Aristichthys nobilis through half-tetrad analysis in diploid gynogenetic families.

    Directory of Open Access Journals (Sweden)

    Chuankun Zhu

    Full Text Available Gene-centromere (G-C mapping provides insights into structural and behavioural properties of chromosomes. In this study, G-C mapping using microsatellite markers and meiogynogenetic (meiotic gynogenetic families were performed in bighead carp (Aristichthys nobilis, 2N = 48, which belongs to Cyprinidae. A total of 218 microsatellites were selected across 24 linkage groups (LGs of a recently well-defined genetic linkage map for bighead carp, with 151 being heterozygous in at least one of six dams in diploid meiogynogenetic families. After tests for Mendelian segregation in two diploid control families, 103 microsatellites were used for G-C distance calculation in 383 gynogens. The second division segregation frequency (y was computed through half-tetrad analyses, and the values ranged from 0 to 0.97 (mean 0.40. High G-C recombination frequencies (over 0.667 were observed in 18 (17.5% of the loci examined, which revealed a low level of chiasma interferences compared with other fishes studied previously. Distribution of G-C distances across LGs ranged from 0 cM to 48.5 cM (mean 20 cM under the assumption of complete interference. All 24 centromeres were localized according to their closest-related microsatellites at 95% confident intervals. The average distance between centromeres and their closest-linked markers was 6.1 cM with 15 out of 24 LGs having a distance below 5 cM. Based on the centromere positions in this study, we proposed a formula of 24 m/sm+24 t/st chromosomes with 92 arms for bighead carp, which was mostly in accordance with a previously reported karyotype for bighead carp (24 m/sm+24 st. These results of centromere localization provide a basic framework and important resources for genetics and comparative genomics studies in bighead carp and its closely-related cyprinid species.

  14. Centromere localization for Bighead Carp (Aristichthys nobilis) through half-tetrad analysis in diploid gynogenetic families.

    Science.gov (United States)

    Zhu, Chuankun; Sun, Yanhong; Yu, Xiaomu; Tong, Jingou

    2013-01-01

    Gene-centromere (G-C) mapping provides insights into structural and behavioural properties of chromosomes. In this study, G-C mapping using microsatellite markers and meiogynogenetic (meiotic gynogenetic) families were performed in bighead carp (Aristichthys nobilis, 2N = 48), which belongs to Cyprinidae. A total of 218 microsatellites were selected across 24 linkage groups (LGs) of a recently well-defined genetic linkage map for bighead carp, with 151 being heterozygous in at least one of six dams in diploid meiogynogenetic families. After tests for Mendelian segregation in two diploid control families, 103 microsatellites were used for G-C distance calculation in 383 gynogens. The second division segregation frequency (y) was computed through half-tetrad analyses, and the values ranged from 0 to 0.97 (mean 0.40). High G-C recombination frequencies (over 0.667) were observed in 18 (17.5%) of the loci examined, which revealed a low level of chiasma interferences compared with other fishes studied previously. Distribution of G-C distances across LGs ranged from 0 cM to 48.5 cM (mean 20 cM) under the assumption of complete interference. All 24 centromeres were localized according to their closest-related microsatellites at 95% confident intervals. The average distance between centromeres and their closest-linked markers was 6.1 cM with 15 out of 24 LGs having a distance below 5 cM. Based on the centromere positions in this study, we proposed a formula of 24 m/sm+24 t/st chromosomes with 92 arms for bighead carp, which was mostly in accordance with a previously reported karyotype for bighead carp (24 m/sm+24 st). These results of centromere localization provide a basic framework and important resources for genetics and comparative genomics studies in bighead carp and its closely-related cyprinid species. PMID:24376614

  15. Characterization of centromeric histone H3 (CENH3 variants in cultivated and wild carrots (Daucus sp..

    Directory of Open Access Journals (Sweden)

    Frank Dunemann

    Full Text Available In eukaryotes, centromeres are the assembly sites for the kinetochore, a multi-protein complex to which spindle microtubules are attached at mitosis and meiosis, thereby ensuring segregation of chromosomes during cell division. They are specified by incorporation of CENH3, a centromere specific histone H3 variant which replaces canonical histone H3 in the nucleosomes of functional centromeres. To lay a first foundation of a putative alternative haploidization strategy based on centromere-mediated genome elimination in cultivated carrots, in the presented research we aimed at the identification and cloning of functional CENH3 genes in Daucus carota and three distantly related wild species of genus Daucus varying in basic chromosome numbers. Based on mining the carrot transcriptome followed by a subsequent PCR-based cloning, homologous coding sequences for CENH3s of the four Daucus species were identified. The ORFs of the CENH3 variants were very similar, and an amino acid sequence length of 146 aa was found in three out of the four species. Comparison of Daucus CENH3 amino acid sequences with those of other plant CENH3s as well as their phylogenetic arrangement among other dicot CENH3s suggest that the identified genes are authentic CENH3 homologs. To verify the location of the CENH3 protein in the kinetochore regions of the Daucus chromosomes, a polyclonal antibody based on a peptide corresponding to the N-terminus of DcCENH3 was developed and used for anti-CENH3 immunostaining of mitotic root cells. The chromosomal location of CENH3 proteins in the centromere regions of the chromosomes could be confirmed. For genetic localization of the CENH3 gene in the carrot genome, a previously constructed linkage map for carrot was used for mapping a CENH3-specific simple sequence repeat (SSR marker, and the CENH3 locus was mapped on the carrot chromosome 9.

  16. MOLECULAR REPLICATOR DYNAMICS

    OpenAIRE

    BÄRBEL M. R. STADLER; Stadler, Peter F

    2003-01-01

    Template-dependent replication at the molecular level is the basis of reproduction in nature. A detailed understanding of the peculiarities of the chemical reaction kinetics associated with replication processes is therefore an indispensible prerequisite for any understanding of evolution at the molecular level. Networks of interacting self-replicating species can give rise to a wealth of different dynamical phenomena, from competitive exclusion to permanent coexistence, from global stability...

  17. Spatial regulation and organization of DNA replication within the nucleus

    OpenAIRE

    Natsume, Toyoaki; Tanaka, Tomoyuki U.

    2009-01-01

    Duplication of chromosomal DNA is a temporally and spatially regulated process. The timing of DNA replication initiation at various origins is highly coordinated; some origins fire early and others late during S phase. Moreover, inside the nuclei, the bulk of DNA replication is physically organized in replication factories, consisting of DNA polymerases and other replication proteins. In this review article, we discuss how DNA replication is organized and regulated spatially within the nucleu...

  18. Transgenerational propagation and quantitative maintenance of paternal centromeres depends on Cid/Cenp-A presence in Drosophila sperm.

    Directory of Open Access Journals (Sweden)

    Nitika Raychaudhuri

    Full Text Available In Drosophila melanogaster, as in many animal and plant species, centromere identity is specified epigenetically. In proliferating cells, a centromere-specific histone H3 variant (CenH3, named Cid in Drosophila and Cenp-A in humans, is a crucial component of the epigenetic centromere mark. Hence, maintenance of the amount and chromosomal location of CenH3 during mitotic proliferation is important. Interestingly, CenH3 may have different roles during meiosis and the onset of embryogenesis. In gametes of Caenorhabditis elegans, and possibly in plants, centromere marking is independent of CenH3. Moreover, male gamete differentiation in animals often includes global nucleosome for protamine exchange that potentially could remove CenH3 nucleosomes. Here we demonstrate that the control of Cid loading during male meiosis is distinct from the regulation observed during the mitotic cycles of early embryogenesis. But Cid is present in mature sperm. After strong Cid depletion in sperm, paternal centromeres fail to integrate into the gonomeric spindle of the first mitosis, resulting in gynogenetic haploid embryos. Furthermore, after moderate depletion, paternal centromeres are unable to re-acquire normal Cid levels in the next generation. We conclude that Cid in sperm is an essential component of the epigenetic centromere mark on paternal chromosomes and it exerts quantitative control over centromeric Cid levels throughout development. Hence, the amount of Cid that is loaded during each cell cycle appears to be determined primarily by the preexisting centromeric Cid, with little flexibility for compensation of accidental losses.

  19. Spatial regulation and organization of DNA replication within the nucleus.

    Science.gov (United States)

    Natsume, Toyoaki; Tanaka, Tomoyuki U

    2010-01-01

    Duplication of chromosomal DNA is a temporally and spatially regulated process. The timing of DNA replication initiation at various origins is highly coordinated; some origins fire early and others late during S phase. Moreover, inside the nuclei, the bulk of DNA replication is physically organized in replication factories, consisting of DNA polymerases and other replication proteins. In this review article, we discuss how DNA replication is organized and regulated spatially within the nucleus and how this spatial organization is linked to temporal regulation. We focus on DNA replication in budding yeast and fission yeast and, where applicable, compare yeast DNA replication with that in bacteria and metazoans.

  20. Self-replicating systems.

    Science.gov (United States)

    Clixby, Gregory; Twyman, Lance

    2016-05-01

    Over the past 25 years, there has been a surge of development in research towards self-replication and self-replicating systems. The interest in these systems relates to one of the most fundamental questions posed in all fields of science - How did life on earth begin? Investigating how the self-replication process evolved may hold the key to understanding the emergence and evolution of living systems and, ultimately, gain a clear insight into the origin of life on earth. This introductory review aims to highlight the fundamental prerequisites of self-replication along with the important research that has been conducted over the past few decades. PMID:27086507

  1. Two distinct pathways responsible for the loading of CENP-A to centromeres in the fission yeast cell cycle

    OpenAIRE

    Takahashi, Kohta; Takayama, Yuko; Masuda, Fumie; Kobayashi, Yasuyo; Saitoh, Shigeaki

    2005-01-01

    CENP-A is a centromere-specific histone H3 variant that is- essential for faithful chromosome segregation in all eukaryotes thus far investigated. We genetically identified two factors, Ams2 and Mis6, each of which is required for the correct centromere localization of SpCENP-A (Cnp1), the fission yeast homologue of CENP-A. Ams2 is a cell-cycle-regulated GATA factor that localizes on the nuclear chromatin, including on centromeres, during the S phase. Ams2 may be responsible for the replicati...

  2. Esperanto for histones: CENP-A, not CenH3, is the centromeric histone H3 variant.

    Science.gov (United States)

    Earnshaw, W C; Allshire, R C; Black, B E; Bloom, K; Brinkley, B R; Brown, W; Cheeseman, I M; Choo, K H A; Copenhaver, G P; Deluca, J G; Desai, A; Diekmann, S; Erhardt, S; Fitzgerald-Hayes, M; Foltz, D; Fukagawa, T; Gassmann, R; Gerlich, D W; Glover, D M; Gorbsky, G J; Harrison, S C; Heun, P; Hirota, T; Jansen, L E T; Karpen, G; Kops, G J P L; Lampson, M A; Lens, S M; Losada, A; Luger, K; Maiato, H; Maddox, P S; Margolis, R L; Masumoto, H; McAinsh, A D; Mellone, B G; Meraldi, P; Musacchio, A; Oegema, K; O'Neill, R J; Salmon, E D; Scott, K C; Straight, A F; Stukenberg, P T; Sullivan, B A; Sullivan, K F; Sunkel, C E; Swedlow, J R; Walczak, C E; Warburton, P E; Westermann, S; Willard, H F; Wordeman, L; Yanagida, M; Yen, T J; Yoda, K; Cleveland, D W

    2013-04-01

    The first centromeric protein identified in any species was CENP-A, a divergent member of the histone H3 family that was recognised by autoantibodies from patients with scleroderma-spectrum disease. It has recently been suggested to rename this protein CenH3. Here, we argue that the original name should be maintained both because it is the basis of a long established nomenclature for centromere proteins and because it avoids confusion due to the presence of canonical histone H3 at centromeres.

  3. Replicating animal mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Emily A. McKinney

    2013-01-01

    Full Text Available The field of mitochondrial DNA (mtDNA replication has been experiencing incredible progress in recent years, and yet little is certain about the mechanism(s used by animal cells to replicate this plasmid-like genome. The long-standing strand-displacement model of mammalian mtDNA replication (for which single-stranded DNA intermediates are a hallmark has been intensively challenged by a new set of data, which suggests that replication proceeds via coupled leading-and lagging-strand synthesis (resembling bacterial genome replication and/or via long stretches of RNA intermediates laid on the mtDNA lagging-strand (the so called RITOLS. The set of proteins required for mtDNA replication is small and includes the catalytic and accessory subunits of DNA polymerase y, the mtDNA helicase Twinkle, the mitochondrial single-stranded DNA-binding protein, and the mitochondrial RNA polymerase (which most likely functions as the mtDNA primase. Mutations in the genes coding for the first three proteins are associated with human diseases and premature aging, justifying the research interest in the genetic, biochemical and structural properties of the mtDNA replication machinery. Here we summarize these properties and discuss the current models of mtDNA replication in animal cells.

  4. Cloning of human centromeres by transformation-associated recombination in yeast and generation of functional human artificial chromosomes

    OpenAIRE

    Kouprina, N.; Ebersole, T.; Koriabine, M.; Pak, E; Rogozin, I. B.; Katoh, M; Oshimura, M; Ogi, K; Peredelchuk, M.; Solomon, G; Brown, W.; Barrett, J. C.; Larionov, V

    2003-01-01

    Human centromeres remain poorly characterized regions of the human genome despite their importance for the maintenance of chromosomes. In part this is due to the difficulty of cloning of highly repetitive DNA fragments and distinguishing chromosome-specific clones in a genomic library. In this work we report the highly selective isolation of human centromeric DNA using transformation-associated recombination (TAR) cloning. A TAR vector with alphoid DNA monomers as targeting sequences was used...

  5. Mapping autonomously replicating sequence elements in a 73-kb region of chromosome II of the fission yeast, Schizosaccharomyces pombe

    Indian Academy of Sciences (India)

    Vinay Kumar Srivastava; Dharani Dhar Dubey

    2007-08-01

    Autonomously replicating sequence (ARS) elements are the genetic determinants of replication origin function in yeasts. They can be easily identified as the plasmids containing them transform yeast cells at a high frequency. As the first step towards identifying all potential replication origins in a 73-kb region of the long arm of fission yeast chromosome II, we have mapped five new ARS elements using systematic subcloning and transformation assay. 2D analysis of one of the ARS plasmids that showed highest transformation frequency localized the replication origin activity within the cloned genomic DNA. All the new ARS elements are localized in two clusters in centromere proximal 40 kb of the region. The presence of at least six ARS elements, including the previously reported ars727, is suggestive of a higher origin density in this region than that predicted earlier using a computer based search.

  6. CENP-C recruits M18BP1 to centromeres to promote CENP-A chromatin assembly.

    Science.gov (United States)

    Moree, Ben; Meyer, Corey B; Fuller, Colin J; Straight, Aaron F

    2011-09-19

    Eukaryotic chromosomes segregate by attaching to microtubules of the mitotic spindle through a chromosomal microtubule binding site called the kinetochore. Kinetochores assemble on a specialized chromosomal locus termed the centromere, which is characterized by the replacement of histone H3 in centromeric nucleosomes with the essential histone H3 variant CENP-A (centromere protein A). Understanding how CENP-A chromatin is assembled and maintained is central to understanding chromosome segregation mechanisms. CENP-A nucleosome assembly requires the Mis18 complex and the CENP-A chaperone HJURP. These factors localize to centromeres in telophase/G1, when new CENP-A chromatin is assembled. The mechanisms that control their targeting are unknown. In this paper, we identify a mechanism for recruiting the Mis18 complex protein M18BP1 to centromeres. We show that depletion of CENP-C prevents M18BP1 targeting to metaphase centromeres and inhibits CENP-A chromatin assembly. We find that M18BP1 directly binds CENP-C through conserved domains in the CENP-C protein. Thus, CENP-C provides a link between existing CENP-A chromatin and the proteins required for new CENP-A nucleosome assembly. PMID:21911481

  7. Identification of a centromeric exchange of acrocentric chromosomes by fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Yu, C.W.; Immken, L.; Curry, C.J.R. [UCSF, Fresno, CA (United States)] [and others

    1994-09-01

    Exchanges of the peri-centromeric area of acrocentric chromosomes are difficult to identify using the conventional cytogenetic techniques. Fluorescence in situ hybridization (FISH) provides a new way for precisely identifying such rearrangements. Here we report a case of centromeric rearrangement in an amniotic fluid specimen with an extra marker chromosome. M.G., a 41-year-old G1, was referred for advanced maternal age. Chromosome studies revealed a 47,XX +mar karyotype. The marker appeared to be bi-satallited with a single C band. Chromosome studies from the parents were normal. The parents elected to terminate the pregnancy. Anatomical examination of the abortus revealed a very short neck, posteriorly rotated ears, high set cecum, absent hepatic lobation and low abdominal kidneys with short ureters. FISH studies with alpha-satellite probes of 13/21, 14/22, and 15, and the DiGeorge probe, indicated that there is a translocation of 21 alpha-satellite to the 22, and that the marker chromosome probably consists of 14/22 alpha-satellite material. FISH analysis of the parents chromosome revealed that father had the translocation of 21 alpha-satellite to the 22 as well. Exchanges of centromeric material among the acrocentric chromosomes may not be an uncommon event in humans. Although it probably has no clinical significance, it may result in non-disjunction or marker chromosome formation from an uncommon satellite association. With the use of FISH techniques, exchanges involving the centromeric regions of acrocentric chromosomes can be identified.

  8. Heterochromatin and RNAi Are Required to Establish CENP-A Chromatin at Centromeres

    OpenAIRE

    Folco, Hernan Diego; Pidoux, Alison L.; Urano, Takeshi; Allshire, Robin C.

    2008-01-01

    Heterochromatin is defined by distinct posttranslational modifications on histones, such as methylation of histone H3 at lysine 9 (H3K9), which allows heterochromatin protein 1 (HP1)-related chromodomain proteins to bind. Heterochromatin is frequently found near CENP-A chromatin, which is the key determinant of kinetochore assembly. We have discovered that the RNA interference (RNAi)-directed heterochromatin flanking the central kinetochore domain at fission yeast centromeres is required to p...

  9. CENP-A exceeds microtubule attachment sites in centromere clusters of both budding and fission yeast

    OpenAIRE

    Coffman, Valerie C.; Wu, Pengcheng; Parthun, Mark R.; Wu, Jian-Qiu

    2011-01-01

    The stoichiometries of kinetochores and their constituent proteins in yeast and vertebrate cells were determined using the histone H3 variant CENP-A, known as Cse4 in budding yeast, as a counting standard. One Cse4-containing nucleosome exists in the centromere (CEN) of each chromosome, so it has been assumed that each anaphase CEN/kinetochore cluster contains 32 Cse4 molecules. We report that anaphase CEN clusters instead contained approximately fourfold more Cse4 in Saccharomyces cerevisiae...

  10. Chromatin Immunoprecipitation of Replication Factors Moving with the Replication Fork

    OpenAIRE

    Rapp, Jordan B.; Ansbach, Alison B.; Noguchi, Chiaki; Noguchi, Eishi

    2009-01-01

    Replication of chromosomes involves a variety of replication proteins including DNA polymerases, DNA helicases, and other accessory factors. Many of these proteins are known to localize at replication forks and travel with them as components of the replisome complex. Other proteins do not move with replication forks but still play an essential role in DNA replication. Therefore, in order to understand the mechanisms of DNA replication and its controls, it is important to examine localization ...

  11. ParB Partition Proteins: Complex Formation and Spreading at Bacterial and Plasmid Centromeres.

    Science.gov (United States)

    Funnell, Barbara E

    2016-01-01

    In bacteria, active partition systems contribute to the faithful segregation of both chromosomes and low-copy-number plasmids. Each system depends on a site-specific DNA binding protein to recognize and assemble a partition complex at a centromere-like site, commonly called parS. Many plasmid, and all chromosomal centromere-binding proteins are dimeric helix-turn-helix DNA binding proteins, which are commonly named ParB. Although the overall sequence conservation among ParBs is not high, the proteins share similar domain and functional organization, and they assemble into similar higher-order complexes. In vivo, ParBs "spread," that is, DNA binding extends away from the parS site into the surrounding non-specific DNA, a feature that reflects higher-order complex assembly. ParBs bridge and pair DNA at parS and non-specific DNA sites. ParB dimers interact with each other via flexible conformations of an N-terminal region. This review will focus on the properties of the HTH centromere-binding protein, in light of recent experimental evidence and models that are adding to our understanding of how these proteins assemble into large and dynamic partition complexes at and around their specific DNA sites. PMID:27622187

  12. Shearing of the CENP-A dimerization interface mediates plasticity in the octameric centromeric nucleosome.

    Science.gov (United States)

    Winogradoff, David; Zhao, Haiqing; Dalal, Yamini; Papoian, Garegin A

    2015-11-25

    The centromeric nucleosome is a key epigenetic determinant of centromere identity and function. Consequently, deciphering how CENP-A containing nucleosomes contribute structurally to centromere function is a fundamental question in chromosome biology. Here, we performed microsecond timescale all-atom molecular dynamics (MD) simulations of CENP-A and H3 nucleosomes, and report that the octameric CENP-A core particles and nucleosomes display different dynamics from their canonical H3-containing counterparts. The most significant motion observed is within key interactions at the heart of the CENP-A octameric core, wherein shearing of contacts within the CENP-A:CENP-A' dimerization interface results in a weaker four helix bundle, and an extrusion of 10-30 bp of DNA near the pseudo-dyad. Coupled to other local and global fluctuations, the CENP-A nucleosome occupies a more rugged free energy landscape than the canonical H3 nucleosome. Taken together, our data suggest that CENP-A encodes enhanced distortability to the octameric nucleosome, which may allow for enhanced flexing of the histone core in vivo.

  13. Modeling DNA Replication.

    Science.gov (United States)

    Bennett, Joan

    1998-01-01

    Recommends the use of a model of DNA made out of Velcro to help students visualize the steps of DNA replication. Includes a materials list, construction directions, and details of the demonstration using the model parts. (DDR)

  14. Abiotic self-replication.

    Science.gov (United States)

    Meyer, Adam J; Ellefson, Jared W; Ellington, Andrew D

    2012-12-18

    The key to the origins of life is the replication of information. Linear polymers such as nucleic acids that both carry information and can be replicated are currently what we consider to be the basis of living systems. However, these two properties are not necessarily coupled. The ability to mutate in a discrete or quantized way, without frequent reversion, may be an additional requirement for Darwinian evolution, in which case the notion that Darwinian evolution defines life may be less of a tautology than previously thought. In this Account, we examine a variety of in vitro systems of increasing complexity, from simple chemical replicators up to complex systems based on in vitro transcription and translation. Comparing and contrasting these systems provides an interesting window onto the molecular origins of life. For nucleic acids, the story likely begins with simple chemical replication, perhaps of the form A + B → T, in which T serves as a template for the joining of A and B. Molecular variants capable of faster replication would come to dominate a population, and the development of cycles in which templates could foster one another's replication would have led to increasingly complex replicators and from thence to the initial genomes. The initial genomes may have been propagated by RNA replicases, ribozymes capable of joining oligonucleotides and eventually polymerizing mononucleotide substrates. As ribozymes were added to the genome to fill gaps in the chemistry necessary for replication, the backbone of a putative RNA world would have emerged. It is likely that such replicators would have been plagued by molecular parasites, which would have been passively replicated by the RNA world machinery without contributing to it. These molecular parasites would have been a major driver for the development of compartmentalization/cellularization, as more robust compartments could have outcompeted parasite-ridden compartments. The eventual outsourcing of metabolic

  15. Histone modifications: Cycling with chromosomal replication

    DEFF Research Database (Denmark)

    Thon, Genevieve

    2008-01-01

    Histone modifications tend to be lost during chromosome duplication. Several recent studies suggest that the RNA interference pathway becomes active during the weakened transcriptional repression occurring at centromeres in S phase, resulting in the re-establishment of histone modifications...

  16. KAT7/HBO1/MYST2 Regulates CENP-A Chromatin Assembly by Antagonizing Suv39h1-Mediated Centromere Inactivation

    OpenAIRE

    Ohzeki, Jun-ichirou; Shono, Nobuaki; Otake, Koichiro; Martins, Nuno M. C.; Kugou, Kazuto; Kimura, Hiroshi; Nagase, Takahiro; Larionov, Vladimir; Earnshaw, William C.; Masumoto, Hiroshi

    2016-01-01

    Summary Centromere chromatin containing histone H3 variant CENP-A is required for accurate chromosome segregation as a foundation for kinetochore assembly. Human centromere chromatin assembles on a part of the long α-satellite (alphoid) DNA array, where it is flanked by pericentric heterochromatin. Heterochromatin spreads into adjacent chromatin and represses gene expression, and it can antagonize centromere function or CENP-A assembly. Here, we demonstrate an interaction between CENP-A assem...

  17. Dynamic replication of Web contents

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The phenomenal growth of the World Wide Web has brought huge increase in the traffic to the popular web sites.Long delays and denial of service experienced by the end-users,especially during the peak hours,continues to be the common problem while accessing popular sites.Replicating some of the objects at multiple sites in a distributed web-server environment is one of the possible solutions to improve the response time/Iatency. The decision of what and where to replicate requires solving a constraint optimization problem,which is NP-complete in general.In this paper, we consider the problem of placing copies of objects in a distributed web server system to minimize the cost of serving read and write requests when the web servers have Iimited storage capacity.We formulate the problem as a 0-1 optimization problem and present a polynomial time greedy algorithm with backtracking to dynamically replicate objects at the appropriate sites to minimize a cost function.To reduce the solution search space,we present necessary condi tions for a site to have a replica of an object jn order to minimize the cost function We present simulation resuIts for a variety of problems to illustrate the accuracy and efficiency of the proposed algorithms and compare them with those of some well-known algorithms.The simulation resuIts demonstrate the superiority of the proposed algorithms.

  18. Detrimental incorporation of excess Cenp-A/Cid and Cenp-C into Drosophila centromeres is prevented by limiting amounts of the bridging factor Cal1

    OpenAIRE

    Schittenhelm, R B; F. Althoff; Heidmann, S; Lehner, C F

    2010-01-01

    Propagation of centromere identity during cell cycle progression in higher eukaryotes depends critically on the faithful incorporation of a centromere-specific histone H3 variant encoded by CENPA in humans and cid in Drosophila. Cenp-A/Cid is required for the recruitment of Cenp-C, another conserved centromere protein. With yeast three-hybrid experiments, we demonstrate that the essential Drosophila centromere protein Cal1 can link Cenp-A/Cid and Cenp-C. Cenp-A/Cid and Cenp-C interact with th...

  19. Identification and Preliminary Analysis of Several Centromere-associated Bacterial Artificial Chromosome Clones from a Diploid Wheat Library

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Although the centromeres of some plants have been investigated previously, our knowledge of the wheat centromere is still very limited. To understand the structure and function of the wheat centromere, we used two centromeric repeats (RCS1 and CCS1-5ab) to obtain some centromere-associated bacterial artificial chromosome (BAC) clones in 32 RCS1-related BAC clones that had been screened out from a diploid wheat (Triticum boeoticum Boiss.; 2n=2x=14) BAC library. Southern hybridization results indicated that, of the 32 candidates,there were 28 RCS1-positive clones. Based on gel blot patterns, the frequency of RCS1 was approximately one copy every 69.4 kb in these 28 RCS1-positive BAC clones. More bands were detected when the same filter was probed with CCS1-5ab. Furthermore, the CCS1 bands covered all the bands detected by RCS1, which suggests that some CCS1 repeats were distributed together with RCS1. The frequency of CCS1 families was once every 35.8 kb, nearly twice that of RCS1. Fluorescence in situ hybridization (FISH) analysis indicated that the five BAC clones containing RCS1 and CCS1 sequences all detected signals at the centromeric regions in hexaploid wheat, but the signal intensities on the A-genome chromosomes were stronger than those on the B- and/or D-genome chromosomes. The FISH analysis among nine Triticeae cereals indicated that there were A-genomespecific (or rich) sequences dispersing on chromosome arms in the BAC clone TbBAC5. In addition, at the interphase cells, the centromeres of diploid species usually clustered at one pole and formed a ring-like allocation in the period before metaphase.

  20. Investigating variation in replicability: A "Many Labs" replication project

    NARCIS (Netherlands)

    Klein, R.A.; Ratliff, K.A.; Vianello, M.; Adams, R.B.; Bahnik, S.; Bernstein, M.J.; Bocian, K.; Brandt, M.J.; Brooks, B.; Brumbaugh, C.C.; Cemalcilar, Z.; Chandler, J.; Cheong, W.; Davis, W.E.; Devos, T.; Eisner, M.; Frankowska, N.; Furrow, D.; Galliani, E.M.; Hasselman, F.W.; Hicks, J.A.; Hovermale, J.F.; Hunt, S.J.; Huntsinger, J.R.; IJzerman, H.; John, M.S.; Joy-Gaba, J.A.; Kappes, H.B.; Krueger, L.E.; Kurtz, J.; Levitan, C.A.; Mallett, R.K.; Morris, W.L.; Nelson, A.J.; Nier, J.A.; Packard, G.; Pilati, R.; Rutchick, A.M.; Schmidt, K.; Skorinko, J.L.M.; Smith, R.; Steiner, T.G.; Storbeck, J.; Van Swol, L.M.; Thompson, D.; Veer, A.E. van 't; Vaughn, L.A.; Vranka, M.; Wichman, A.L.; Woodzicka, J.A.; Nosek, B.A.

    2014-01-01

    Although replication is a central tenet of science, direct replications are rare in psychology. This research tested variation in the replicability of 13 classic and contemporary effects across 36 independent samples totaling 6,344 participants. In the aggregate, 10 effects replicated consistently.

  1. Visualizing Single-molecule DNA Replication with Fluorescence Microscopy

    NARCIS (Netherlands)

    Tanner, Nathan A.; Loparo, Joseph J.; Oijen, Antoine M. van

    2009-01-01

    We describe a simple fluorescence microscopy-based real-time method for observing DNA replication at the single-molecule level. A circular, forked DNA template is attached to a functionalized glass coverslip and replicated extensively after introduction of replication proteins and nucleotides. The g

  2. Schmallenberg virus circulation in culicoides in Belgium in 2012: field validation of a real time RT-PCR approach to assess virus replication and dissemination in midges.

    Directory of Open Access Journals (Sweden)

    Nick De Regge

    Full Text Available Indigenous Culicoides biting midges are suggested to be putative vectors for the recently emerged Schmallenberg virus (SBV based on SBV RNA detection in field-caught midges. Furthermore, SBV replication and dissemination has been evidenced in C. sonorensis under laboratory conditions. After SBV had been detected in Culicoides biting midges from Belgium in August 2011, it spread all over the country by the end of 2011, as evidenced by very high between-herd seroprevalence rates in sheep and cattle. This study investigated if a renewed SBV circulation in midges occurred in 2012 in the context of high seroprevalence in the animal host population and evaluated if a recently proposed realtime RT-PCR approach that is meant to allow assessing the vector competence of Culicoides for SBV and bluetongue virus under laboratory conditions was applicable to field-caught midges. Therefore midges caught with 12 OVI traps in four different regions in Belgium between May and November 2012, were morphologically identified, age graded, pooled and tested for the presence of SBV RNA by realtime RT-PCR. The results demonstrate that although no SBV could be detected in nulliparous midges caught in May 2012, a renewed but short lived circulation of SBV in parous midges belonging to the subgenus Avaritia occured in August 2012 at all four regions. The infection prevalence reached up to 2.86% in the south of Belgium, the region where a lower seroprevalence was found at the end of 2011 than in the rest of the country. Furthermore, a frequency analysis of the Ct values obtained for 31 SBV-S segment positive pools of Avaritia midges showed a clear bimodal distribution with peaks of Ct values between 21-24 and 33-36. This closely resembles the laboratory results obtained for SBV infection of C. sonorensis and implicates indigenous midges belonging to the subgenus Avaritia as competent vectors for SBV.

  3. Asynchronous replication and autosome-pair non-equivalence in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Devkanya Dutta

    Full Text Available A number of mammalian genes exhibit the unusual properties of random monoallelic expression and random asynchronous replication. Such exceptional genes include genes subject to X inactivation and autosomal genes including odorant receptors, immunoglobulins, interleukins, pheromone receptors, and p120 catenin. In differentiated cells, random asynchronous replication of interspersed autosomal genes is coordinated at the whole chromosome level, indicative of chromosome-pair non-equivalence. Here we have investigated the replication pattern of the random asynchronously replicating genes in undifferentiated human embryonic stem cells, using fluorescence in situ hybridization based assay. We show that allele-specific replication of X-linked genes and random monoallelic autosomal genes occur in human embryonic stem cells. The direction of replication is coordinated at the whole chromosome level and can cross the centromere, indicating the existence of autosome-pair non-equivalence in human embryonic stem cells. These results suggest that epigenetic mechanism(s that randomly distinguish between two parental alleles are emerging in the cells of the inner cell mass, the source of human embryonic stem cells.

  4. ADDING A NEW SITE IN AN EXISTING ORACLE MULTIMASTER REPLICATION WITHOUT QUIESCING THE REPLICATION

    Directory of Open Access Journals (Sweden)

    Hakik Paci

    2011-09-01

    Full Text Available This paper presents a new solution, which adds a new database server on an existing Oracle MultimasterData replication system with Online Instantiation method. During this time the system is down, because wecannot execute DML statements on replication objects but we can only make queries. The time for addingthe new database server depends on the number of objects, on the replication group and on the networkconditions. We propose to add a new layer between replication objects and the database sessions, whichcontain DML statements. The layer eliminates the system down time exploiting our developed packages.The packages will be active only during the addition of a new site process and will modify all DMLstatements and queries based on replication objects.

  5. Mathematical Framework for A Novel Database Replication Algorithm

    Directory of Open Access Journals (Sweden)

    Divakar Singh Yadav

    2013-10-01

    Full Text Available In this paper, the detailed overview of the database replication is presented. Thereafter, PDDRA (Pre-fetching based dynamic data replication algorithm algorithm as recently published is detailed. In this algorithm, further, modifications are suggested to minimize the delay in data replication. Finally a mathematical framework is presented to evaluate mean waiting time before a data can be replicated on the requested site.

  6. A sensitive real-time PCR based assay to estimate the impact of amino acid substitutions on the competitive replication fitness of human immunodeficiency virus type 1 in cell culture.

    Science.gov (United States)

    Liu, Yi; Holte, Sarah; Rao, Ushnal; McClure, Jan; Konopa, Philip; Swain, J Victor; Lanxon-Cookson, Erinn; Kim, Moon; Chen, Lennie; Mullins, James I

    2013-04-01

    Fixation of mutations in human immunodeficiency virus type 1 (HIV-1), such as those conferring drug resistance and immune escape, can result in a change in replication fitness. To assess these changes, a real-time TaqMan PCR detection assay and statistical methods for data analysis were developed to estimate sensitively relative viral fitness in competitive viral replication experiments in cell culture. Chimeric viruses with the gene of interest in an HIV-1NL4-3 backbone were constructed in two forms, vifA (native vif gene in NL4-3) and vifB (vif gene with six synonymous nucleotide differences from vifA). Subsequently, mutations of interest were introduced into the chimeric viruses in NL4-3VifA backbones, and the mutants were competed against the chimera with the isogenic viral sequence in the NL4-3VifB backbone in cell culture. In order to assess subtle fitness differences, culture supernatants were sampled longitudinally, and the viruses differentially quantified using vifA- and vifB-specific primers in real-time PCR assays. Based on an exponential net growth model, the growth rate of each virus was determined and the fitness cost of the mutation(s) distinguishing the two viruses represented as the net growth rate difference between the mutant and the native variants. Using this assay, the fitness impact of eight amino acid substitutions was quantitated at highly conserved sites in HIV-1 Gag and Env. PMID:23201292

  7. Growing Through Innovation Replicability

    DEFF Research Database (Denmark)

    Hsuan, Juliana; Lévesque, Moren

    2012-01-01

    We propose a formal model of firm growth through replication that considers the extent of the investment to adapt routines as replication unfolds and the portion of this investment that goes toward innovation in the routines. The use of these two investment constructs brings about four types...... of growth policies. We use a utility function that considers proxies for both growth and failure potential to uncover the role played in selecting these policies by the economic environment of the targeted market for expansion. Our analysis further reveals the importance of the innovation...

  8. Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres.

    Science.gov (United States)

    Hayashi, Takeshi; Fujita, Yohta; Iwasaki, Osamu; Adachi, Yoh; Takahashi, Kohta; Yanagida, Mitsuhiro

    2004-09-17

    Centromeres contain specialized chromatin that includes the centromere-specific histone H3 variant, spCENP-A/Cnp1. Here we report identification of five fission yeast centromere proteins, Mis14-18. Mis14 is recruited to kinetochores independently of CENP-A, and, conversely, CENP-A does not require Mis14 to associate with centromeres. In contrast, Mis15, Mis16 (strong similarity with human RbAp48 and RbAp46), Mis17, and Mis18 are all part of the CENP-A recruitment pathway. Mis15 and Mis17 form an evolutionarily conserved complex that also includes Mis6. Mis16 and Mis18 form a complex and maintain the deacetylated state of histones specifically in the central core of centromeres. Mis16 and Mis18 are the most upstream factors in kinetochore assembly as they can associate with kinetochores in all kinetochore mutants except for mis18 and mis16, respectively. RNAi knockdown in human cells shows that Mis16 function is conserved as RbAp48 and RbAp46 are both required for localization of human CENP-A. PMID:15369671

  9. The CENP-A N-tail confers epigenetic stability to centromeres via the CENP-T branch of the CCAN in fission yeast.

    Science.gov (United States)

    Folco, H Diego; Campbell, Christopher S; May, Karen M; Espinoza, Celso A; Oegema, Karen; Hardwick, Kevin G; Grewal, Shiv I S; Desai, Arshad

    2015-02-01

    In most eukaryotes, centromeres are defined epigenetically by presence of the histone H3 variant CENP-A [1-3]. CENP-A-containing chromatin recruits the constitutive centromere-associated network (CCAN) of proteins, which in turn directs assembly of the outer kinetochore to form microtubule attachments and ensure chromosome segregation fidelity [4-6]. Whereas the mechanisms that load CENP-A at centromeres are being elucidated, the functions of its divergent N-terminal tail remain enigmatic [7-12]. Here, we employ the well-studied fission yeast centromere [13-16] to investigate the function of the CENP-A (Cnp1) N-tail. We show that alteration of the N-tail does not affect Cnp1 loading at centromeres, outer kinetochore formation, or spindle checkpoint signaling but nevertheless elevates chromosome loss. N-tail mutants exhibited synthetic lethality with an altered centromeric DNA sequence, with rare survivors harboring chromosomal fusions in which the altered centromere was epigenetically inactivated. Elevated centromere inactivation was also observed for N-tail mutants with unaltered centromeric DNA sequences. N-tail mutants specifically reduced localization of the CCAN proteins Cnp20/CENP-T and Mis6/CENP-I, but not Cnp3/CENP-C. Overexpression of Cnp20/CENP-T suppressed defects in an N-tail mutant, suggesting a link between reduced CENP-T recruitment and the observed centromere inactivation phenotype. Thus, the Cnp1 N-tail promotes epigenetic stability of centromeres in fission yeast, at least in part via recruitment of the CENP-T branch of the CCAN. PMID:25619765

  10. Replication landscape of the human genome.

    Science.gov (United States)

    Petryk, Nataliya; Kahli, Malik; d'Aubenton-Carafa, Yves; Jaszczyszyn, Yan; Shen, Yimin; Silvain, Maud; Thermes, Claude; Chen, Chun-Long; Hyrien, Olivier

    2016-01-01

    Despite intense investigation, human replication origins and termini remain elusive. Existing data have shown strong discrepancies. Here we sequenced highly purified Okazaki fragments from two cell types and, for the first time, quantitated replication fork directionality and delineated initiation and termination zones genome-wide. Replication initiates stochastically, primarily within non-transcribed, broad (up to 150 kb) zones that often abut transcribed genes, and terminates dispersively between them. Replication fork progression is significantly co-oriented with the transcription. Initiation and termination zones are frequently contiguous, sometimes separated by regions of unidirectional replication. Initiation zones are enriched in open chromatin and enhancer marks, even when not flanked by genes, and often border 'topologically associating domains' (TADs). Initiation zones are enriched in origin recognition complex (ORC)-binding sites and better align to origins previously mapped using bubble-trap than λ-exonuclease. This novel panorama of replication reveals how chromatin and transcription modulate the initiation process to create cell-type-specific replication programs. PMID:26751768

  11. Cytological identification of an isotetrasomic in rice and its application to centromere mapping

    Institute of Scientific and Technical Information of China (English)

    CHENGZHUKUAN; HENGXIUYU; 等

    1997-01-01

    The aneuploid with isochromosome or telochromosome is ideal material for exploring the position of centromere in lingkage map.For obtaining these aneuploids in rice,the primary trisomics from triplo-1 to triplo-12 and the aneuploids derived from a triploid of indica rice variety Zhongxiao 3037 were carefully investigated.From the offsprings of triplo-10,a primary trisomic of chromosome 10 of the variety,an isotetrasomic “triplo-10-1” was obtained.Cytological investigation revealed that a pair of extra isochromosomes of triplo-10-1 were come from the short arm of chromosome 10.In the offsprings of the isotetrasomic,a secondary trisomic “triplo-10-2”,in which the extra-chromosome was an isochromosome derived from the short arm of chromosome 10,was identified.With the isotetrasomic,secondary trisomic,primary trisomic and diploid of variety Zhongxiao 3037,different molecular markers were used for exploring the position of the centromere of chromosome 10.Based on the DNA dosage effect,it was verified that the molecular markers G1125,G333 and L169 were Located on the short arm,G1084 and other 16 available molecular markers were on the long arm of chromosome 10.So the centromere of chromosome 10 was located somewhere between G1125 and G1084 according to the RFLP linkage map given by Kurata et al[1].The distance from G1125 to G1084 was about 3.2cM.

  12. RNA Pol II promotes transcription of centromeric satellite DNA in beetles.

    Directory of Open Access Journals (Sweden)

    Zeljka Pezer

    Full Text Available Transcripts of centromeric satellite DNAs are known to play a role in heterochromatin formation as well as in establishment of the kinetochore. However, little is known about basic mechanisms of satellite DNA expression within constitutive heterochromatin and its regulation. Here we present comprehensive analysis of transcription of abundant centromeric satellite DNA, PRAT from beetle Palorus ratzeburgii (Coleoptera. This satellite is characterized by preservation and extreme sequence conservation among evolutionarily distant insect species. PRAT is expressed in all three developmental stages: larvae, pupae and adults at similar level. Transcripts are abundant comprising 0.033% of total RNA and are heterogeneous in size ranging from 0.5 kb up to more than 5 kb. Transcription proceeds from both strands but with 10 fold different expression intensity and transcripts are not processed into siRNAs. Most of the transcripts (80% are not polyadenylated and remain in the nucleus while a small portion is exported to the cytoplasm. Multiple, irregularly distributed transcription initiation sites as well as termination sites have been mapped within the PRAT sequence using primer extension and RLM-RACE. The presence of cap structure as well as poly(A tails in a portion of the transcripts indicate RNA polymerase II-dependent transcription and a putative polymerase II promoter site overlaps the most conserved part of the PRAT sequence. The treatment of larvae with alpha-amanitin decreases the level of PRAT transcripts at concentrations that selectively inhibit pol II activity. In conclusion, stable, RNA polymerase II dependant transcripts of abundant centromeric satellite DNA, not regulated by RNAi, have been identified and characterized. This study offers a basic understanding of expression of highly abundant heterochromatic DNA which in beetle species constitutes up to 50% of the genome.

  13. Chromosome size-correlated and chromosome size-uncorrelated homogenization of centromeric repetitive sequences in New World quails.

    Science.gov (United States)

    Ishishita, Satoshi; Tsuruta, Yuri; Uno, Yoshinobu; Nakamura, Atsushi; Nishida, Chizuko; Griffin, Darren K; Tsudzuki, Masaoki; Ono, Tamao; Matsuda, Yoichi

    2014-04-01

    Many families of centromeric repetitive DNA sequences isolated from Struthioniformes, Galliformes, Falconiformes, and Passeriformes are localized primarily to microchromosomes. However, it is unclear whether chromosome size-correlated homogenization is a common characteristic of centromeric repetitive sequences in Aves. New World and Old World quails have the typical avian karyotype comprising chromosomes of two distinct sizes, and C-positive heterochromatin is distributed in centromeric regions of most autosomes and the whole W chromosome. We isolated six types of centromeric repetitive sequences from three New World quail species (Colinus virginianus, CVI; Callipepla californica, CCA; and Callipepla squamata, CSQ; Odontophoridae) and one Old World quail species (Alectoris chukar, ACH; Phasianidae), and characterized the sequences by nucleotide sequencing, chromosome in situ hybridization, and filter hybridization. The 385-bp CVI-MspI, 591-bp CCA-BamHI, 582-bp CSQ-BamHI, and 366-bp ACH-Sau3AI fragments exhibited tandem arrays of the monomer unit, and the 224-bp CVI-HaeIII and 135-bp CCA-HaeIII fragments were composed of minisatellite-like and microsatellite-like repeats, respectively. ACH-Sau3AI was a homolog of the chicken nuclear membrane repeat sequence, whose homologs are common in Phasianidae. CVI-MspI, CCA-BamHI, and CSQ-BamHI showed high homology and were specific to the Odontophoridae. CVI-MspI was localized to microchromosomes, whereas CVI-HaeIII, CCA-BamHI, and CSQ-BamHI were mapped to almost all chromosomes. CCA-HaeIII was localized to five pairs of macrochromosomes and most microchromosomes. ACH-Sau3AI was distributed in three pairs of macrochromosomes and all microchromosomes. Centromeric repetitive sequences may be homogenized in chromosome size-correlated and -uncorrelated manners in New World quails, although there may be a mechanism that causes homogenization of centromeric repetitive sequences primarily between microchromosomes, which is commonly

  14. Identification of a high frequency of chromosomal rearrangements in the centromeric regions of prostate cancer patients

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The aim of the present investigation was to study the major chromosomal aberrations (CA) like deletion, translocation,inversion and mosaic in prostate cancer patients of Tamilnadu, Southern India. Totally 45 blood samples were collected from various hospitals in Tamilnadu, Southern India. Equal numbers of normal healthy subjects were chosen after signing a consent form. Volunteers provided blood samples (5 ml) to establish leukocyte cultures. Cytogenetic studies were performed by using Giemsa-banding technique and finally the results were ensured by spectral karyotyping (SKY) technique. In the present investigation, major CA like deletion, translocation, inversion and mosaic were identified in experimental subjects. Results showed frequent CA in chromosomes 1, 3, 5, 6, 7, 9, 13, 16, 18 and X. In comparison with experimental subjects, the control subjects exhibited very low levels of major CA (P<0.05). In the present study, the high frequency of centromeric rearrangements indicates a potential role for mitotic irregularities associated with the centromere in prostate cancer tumorigenesis. Identification of chromosome alterations may be helpful in understanding the molecular basis of the disease in better manner.

  15. Characterization of the oncogenic function of centromere protein F in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yongdong; Liu, Lulu; Zeng, Tingting; Zhu, Ying-Hui [State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou (China); Li, Jiangchao [Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou (China); Chen, Leilei [Department of Clinical Oncology, The University of Hong Kong, Pokfulam, Hong Kong (China); Li, Yan; Yuan, Yun-Fei [State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou (China); Ma, Stephanie, E-mail: stefma@hku.hk [Department of Clinical Oncology, The University of Hong Kong, Pokfulam, Hong Kong (China); State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong (China); Guan, Xin-Yuan, E-mail: xyguan@hkucc.hku.hk [State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou (China); Department of Clinical Oncology, The University of Hong Kong, Pokfulam, Hong Kong (China); State Key Laboratory for Liver Research, The University of Hong Kong, Pokfulam, Hong Kong (China)

    2013-07-12

    Highlights: •Overexpression of CENPF is frequently detected in HCC. •Upregulation of CENPF serves as an independent prognosis factor in HCC patients. •CENPF functions as an oncogene in HCC by promoting cell G2/M transition. -- Abstract: Centromere protein F (CENPF) is an essential nuclear protein associated with the centromere-kinetochore complex and plays a critical role in chromosome segregation during mitosis. Up-regulation of CENPF expression has previously been detected in several solid tumors. In this study, we aim to study the expression and functional role of CENPF in hepatocellular carcinoma (HCC). We found CENPF was frequently overexpressed in HCC as compared with non-tumor tissue. Up-regulated CENPF expression in HCC was positively correlated with serum AFP, venous invasion, advanced differentiation stage and a shorter overall survival. Cox regression analysis found that overexpression of CENPF was an independent prognosis factor in HCC. Functional studies found that silencing CENPF could decrease the ability of the cells to proliferate, form colonies and induce tumor formation in nude mice. Silencing CENPF also resulted in the cell cycle arrest at G2/M checkpoint by down-regulating cell cycle proteins cdc2 and cyclin B1. Our data suggest that CENPF is frequently overexpressed in HCC and plays a critical role in driving HCC tumorigenesis.

  16. Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres.

    Science.gov (United States)

    Folco, Hernan Diego; Pidoux, Alison L; Urano, Takeshi; Allshire, Robin C

    2008-01-01

    Heterochromatin is defined by distinct posttranslational modifications on histones, such as methylation of histone H3 at lysine 9 (H3K9), which allows heterochromatin protein 1 (HP1)-related chromodomain proteins to bind. Heterochromatin is frequently found near CENP-A chromatin, which is the key determinant of kinetochore assembly. We have discovered that the RNA interference (RNAi)-directed heterochromatin flanking the central kinetochore domain at fission yeast centromeres is required to promote CENP-A(Cnp1) and kinetochore assembly over the central domain. The H3K9 methyltransferase Clr4 (Suv39); the ribonuclease Dicer, which cleaves heterochromatic double-stranded RNA to small interfering RNA (siRNA); Chp1, a component of the RNAi effector complex (RNA-induced initiation of transcriptional gene silencing; RITS); and Swi6 (HP1) are required to establish CENP-A(Cnp1) chromatin on naïve templates. Once assembled, CENP-A(Cnp1) chromatin is propagated by epigenetic means in the absence of heterochromatin. Thus, another, potentially conserved, role for centromeric RNAi-directed heterochromatin has been identified. PMID:18174443

  17. Organization and evolution of primate centromeric DNA from whole-genome shotgun sequence data.

    Directory of Open Access Journals (Sweden)

    Can Alkan

    2007-09-01

    Full Text Available The major DNA constituent of primate centromeres is alpha satellite DNA. As much as 2%-5% of sequence generated as part of primate genome sequencing projects consists of this material, which is fragmented or not assembled as part of published genome sequences due to its highly repetitive nature. Here, we develop computational methods to rapidly recover and categorize alpha-satellite sequences from previously uncharacterized whole-genome shotgun sequence data. We present an algorithm to computationally predict potential higher-order array structure based on paired-end sequence data and then experimentally validate its organization and distribution by experimental analyses. Using whole-genome shotgun data from the human, chimpanzee, and macaque genomes, we examine the phylogenetic relationship of these sequences and provide further support for a model for their evolution and mutation over the last 25 million years. Our results confirm fundamental differences in the dispersal and evolution of centromeric satellites in the Old World monkey and ape lineages of evolution.

  18. Point Mutations in Centromeric Histone Induce Post-zygotic Incompatibility and Uniparental Inheritance.

    Directory of Open Access Journals (Sweden)

    Sundaram Kuppu

    2015-09-01

    Full Text Available The centromeric histone 3 variant (CENH3, aka CENP-A is essential for the segregation of sister chromatids during mitosis and meiosis. To better define CENH3 functional constraints, we complemented a null allele in Arabidopsis with a variety of mutant alleles, each inducing a single amino acid change in conserved residues of the histone fold domain. Many of these transgenic missense lines displayed wild-type growth and fertility on self-pollination, but exhibited frequent post-zygotic death and uniparental inheritance when crossed with wild-type plants. The failure of centromeres marked by these missense mutation in the histone fold domain of CENH3 reproduces the genome elimination syndromes described with chimeric CENH3 and CENH3 from diverged species. Additionally, evidence that a single point mutation is sufficient to generate a haploid inducer provide a simple one-step method for the identification of non-transgenic haploid inducers in existing mutagenized collections of crop species. As proof of the extreme simplicity of this approach to create haploid-inducing lines, we performed an in silico search for previously identified point mutations in CENH3 and identified an Arabidopsis line carrying the A86V substitution within the histone fold domain. This A87V non-transgenic line, while fully fertile on self-pollination, produced postzygotic death and uniparental haploids when crossed to wild type.

  19. Regulatory cross-talk links Vibrio cholerae chromosome II replication and segregation.

    Directory of Open Access Journals (Sweden)

    Yoshiharu Yamaichi

    2011-07-01

    Full Text Available There is little knowledge of factors and mechanisms for coordinating bacterial chromosome replication and segregation. Previous studies have revealed that genes (and their products that surround the origin of replication (oriCII of Vibrio cholerae chromosome II (chrII are critical for controlling the replication and segregation of this chromosome. rctB, which flanks one side of oriCII, encodes a protein that initiates chrII replication; rctA, which flanks the other side of oriCII, inhibits rctB activity. The chrII parAB2 operon, which is essential for chrII partitioning, is located immediately downstream of rctA. Here, we explored how rctA exerts negative control over chrII replication. Our observations suggest that RctB has at least two DNA binding domains--one for binding to oriCII and initiating replication and the other for binding to rctA and thereby inhibiting RctB's ability to initiate replication. Notably, the inhibitory effect of rctA could be alleviated by binding of ParB2 to a centromere-like parS site within rctA. Furthermore, by binding to rctA, ParB2 and RctB inversely regulate expression of the parAB2 genes. Together, our findings suggest that fluctuations in binding of the partitioning protein ParB2 and the chrII initiator RctB to rctA underlie a regulatory network controlling both oriCII firing and the production of the essential chrII partitioning proteins. Thus, by binding both RctB and ParB2, rctA serves as a nexus for regulatory cross-talk coordinating chrII replication and segregation.

  20. Chromatin replication and epigenome maintenance

    DEFF Research Database (Denmark)

    Alabert, Constance; Groth, Anja

    2012-01-01

    initiates, whereas the replication process itself disrupts chromatin and challenges established patterns of genome regulation. Specialized replication-coupled mechanisms assemble new DNA into chromatin, but epigenome maintenance is a continuous process taking place throughout the cell cycle. If DNA...

  1. Detection of replication-defective hepatitis A virus based on the correlation between real-time polymerase chain reaction and ELISA in situ results

    Directory of Open Access Journals (Sweden)

    Alyne Moraes Costa

    2013-02-01

    Full Text Available ELISA in situ can be used to titrate hepatitis A virus (HAV particles and real-time polymerase chain reaction (RT-PCR has been shown to be a fast method to quantify the HAV genome. Precise quantification of viral concentration is necessary to distinguish between infectious and non-infectious particles. The purpose of this study was to compare cell culture and RT-PCR quantification results and determine whether HAV genome quantification can be correlated with infectivity. For this purpose, three stocks of undiluted, five-fold diluted and 10-fold diluted HAV were prepared to inoculate cells in a 96-well plate. Monolayers were then incubated for seven, 10 and 14 days and the correlation between the ELISA in situ and RT-PCR results was evaluated. At 10 days post-incubation, the highest viral load was observed in all stocks of HAV via RT-PCR (10(5 copies/mL (p = 0.0002, while ELISA revealed the highest quantity of particles after 14 days (optical density = 0.24, p < 0.001. At seven days post-infection, there was a significant statistical correlation between the results of the two methods, indicating equivalents titres of particles and HAV genome during this period of infection. The results reported here indicate that the duration of growth of HAV in cell culture must be taken into account to correlate genome quantification with infectivity.

  2. Replication Research and Special Education

    Science.gov (United States)

    Travers, Jason C.; Cook, Bryan G.; Therrien, William J.; Coyne, Michael D.

    2016-01-01

    Replicating previously reported empirical research is a necessary aspect of an evidence-based field of special education, but little formal investigation into the prevalence of replication research in the special education research literature has been conducted. Various factors may explain the lack of attention to replication of special education…

  3. Replication studies in longevity

    DEFF Research Database (Denmark)

    Varcasia, O; Garasto, S; Rizza, T;

    2001-01-01

    In Danes we replicated the 3'APOB-VNTR gene/longevity association study previously carried out in Italians, by which the Small alleles (less than 35 repeats) had been identified as frailty alleles for longevity. In Danes, neither genotype nor allele frequencies differed between centenarians and 20......-sex interaction relevant to Long alleles (more than 37 repeats). The different findings in Denmark and Italy suggest that gene/longevity associations are population-specific, and heavily affected by the population-specific genetic and environmental history....

  4. Differential binding partners of the Mis18α/β YIPPEE domains regulates the Mis18 complex recruitment to centromeres

    Science.gov (United States)

    Knippler, Christina M.; Foltz, Daniel R.

    2016-01-01

    The Mis18 complex specifies the site of new CENP-A nucleosome assembly by recruiting the CENP-A specific assembly factor HJURP (Holliday junction recognition protein). The human Mis18 complex consists of Mis18α, Mis18β and Mis18 binding protein 1 (Mis18BP1/hsKNL2). Although Mis18α and Mis18β are highly homologous proteins, we find that their conserved YIPPEE domains mediate distinct interactions that are essential to link new CENP-A deposition to existing centromeres. We find that Mis18α directly interacts with the N-terminus of Mis18BP1; whereas, Mis18β directly interacts with CENP-C during G1 phase, revealing that these proteins have evolved to serve distinct functions in centromeres of higher eukaryotes. The N-terminus of Mis18BP1, containing both the Mis18α and CENP-C binding domains, is necessary and sufficient for centromeric localization. Therefore, the Mis18 complex contains dual CENP-C recognition motifs that are combinatorially required to generate robust centromeric localization that leads to CENP-A deposition. PMID:27239045

  5. Differential Binding Partners of the Mis18α/β YIPPEE Domains Regulate Mis18 Complex Recruitment to Centromeres

    Directory of Open Access Journals (Sweden)

    Madison E. Stellfox

    2016-06-01

    Full Text Available The Mis18 complex specifies the site of new CENP-A nucleosome assembly by recruiting the CENP-A-specific assembly factor HJURP (Holliday junction recognition protein. The human Mis18 complex consists of Mis18α, Mis18β, and Mis18 binding protein 1 (Mis18BP1/hsKNL2. Although Mis18α and Mis18β are highly homologous proteins, we find that their conserved YIPPEE domains mediate distinct interactions that are essential to link new CENP-A deposition to existing centromeres. We find that Mis18α directly interacts with the N terminus of Mis18BP1, whereas Mis18β directly interacts with CENP-C during G1 phase, revealing that these proteins have evolved to serve distinct functions in centromeres of higher eukaryotes. The N terminus of Mis18BP1, containing both the Mis18α and CENP-C binding domains, is necessary and sufficient for centromeric localization. Therefore, the Mis18 complex contains dual CENP-C recognition motifs that are combinatorially required to generate robust centromeric localization that leads to CENP-A deposition.

  6. Differential Binding Partners of the Mis18α/β YIPPEE Domains Regulate Mis18 Complex Recruitment to Centromeres.

    Science.gov (United States)

    Stellfox, Madison E; Nardi, Isaac K; Knippler, Christina M; Foltz, Daniel R

    2016-06-01

    The Mis18 complex specifies the site of new CENP-A nucleosome assembly by recruiting the CENP-A-specific assembly factor HJURP (Holliday junction recognition protein). The human Mis18 complex consists of Mis18α, Mis18β, and Mis18 binding protein 1 (Mis18BP1/hsKNL2). Although Mis18α and Mis18β are highly homologous proteins, we find that their conserved YIPPEE domains mediate distinct interactions that are essential to link new CENP-A deposition to existing centromeres. We find that Mis18α directly interacts with the N terminus of Mis18BP1, whereas Mis18β directly interacts with CENP-C during G1 phase, revealing that these proteins have evolved to serve distinct functions in centromeres of higher eukaryotes. The N terminus of Mis18BP1, containing both the Mis18α and CENP-C binding domains, is necessary and sufficient for centromeric localization. Therefore, the Mis18 complex contains dual CENP-C recognition motifs that are combinatorially required to generate robust centromeric localization that leads to CENP-A deposition. PMID:27239045

  7. Mutations in Z8T824 Are Associated with Immunodeficiency, Centromeric Instability, and Facial Anomalies Syndrome Type 2

    NARCIS (Netherlands)

    de Greef, Jessica C.; Wang, Jun; Balog, Judit; den Dunnen, Johan T.; Frants, Rune R.; Straasheijm, Kirsten R.; Aytekin, Caner; van der Burg, Mirjam; Duprez, Laurence; Ferster, Alina; Gennery, Andrew R.; Gimelli, Giorgio; Reisli, Ismail; Schuetz, Catharina; Schulz, Ansgar; Smeets, Dominique F. C. M.; Sznajer, Yves; Wijmenga, Cisca; van Eggermond, Maria C.; van Ostaijen-ten Dam, Monique M.; Lankester, Arjan C.; van Tol, Maarten J. D.; van den Elsen, Peter J.; Weemaes, Corry M.; van der Maarel, Silvere M.

    2011-01-01

    Autosomal-recessive immunodeficiency, centromeric instability, and facial anomalies (ICE) syndrome is mainly characterized by recurrent, often fatal, respiratory and gastrointestinal infections. About 50% of patients carry mutations in the DNA methyltransferase 3B gene (DNMT3B) (ICF1). The remaining

  8. Genome-wide mapping of cytosine methylation revealed dynamic DNA methylation patterns associated with genes and centromeres in rice.

    Science.gov (United States)

    Yan, Huihuang; Kikuchi, Shinji; Neumann, Pavel; Zhang, Wenli; Wu, Yufeng; Chen, Feng; Jiang, Jiming

    2010-08-01

    We conducted genome-wide mapping of cytosine methylation using methylcytosine immunoprecipitation combined with Illumina sequencing. The chromosomal distribution pattern of methylated DNA is similar to the heterochromatin distribution pattern on rice chromosomes. The DNA methylation patterns of rice genes are similar to those in Arabidopsis thaliana, including distinct methylation patterns asssociated with gene bodies and promoters. The DNA sequences in the core domains of rice Cen4, Cen5 and Cen8 showed elevated methylation levels compared with sequences in the pericentromeric regions. In addition, elevated methylation levels were associated with the DNA sequences in the CENH3-binding subdomains, compared with the sequences in the flanking H3 subdomains. In contrast, the centromeric domain of Cen11, which is composed exclusively of centromeric satellite DNA, is hypomethylated compared with the pericentromeric domains. Thus, the DNA sequences associated with functional centromeres can be either hypomethylated or hypermethylated. The methylation patterns of centromeric DNA appear to be correlated with the composition of the associated DNA sequences. We propose that both hypomethylation and hypermethylation of CENH3-associated DNA sequences can serve as epigenetic marks to distinguish where CENH3 deposition will occur within the surrounding H3 chromatin.

  9. Microsatellite-centromere mapping in Japanese scallop ( Patinopecten yessoensis) through half-tetrad analysis in gynogenetic diploid families

    Science.gov (United States)

    Li, Qi; Qi, Mingjun; Nie, Hongtao; Kong, Lingfeng; Yu, Hong

    2016-06-01

    Gene-centromere mapping is an essential prerequisite for understanding the composition and structure of genomes. Half-tetrad analysis is a powerful tool for mapping genes and understanding chromosomal behavior during meiosis. The Japanese scallop ( Patinopecten yessoensis), a cold-tolerant species inhabiting the northwestern Pacific coast, is a commercially important marine bivalve in Asian countries. In this study, inheritance of 32 informative microsatellite loci was examined in 70-h D-shaped larvae of three induced meiogynogenetic diploid families of P. yessoensis for centromere mapping using half-tetrad analysis. The ratio of gynogenetic diploids was proven to be 100%, 100% and 96% in the three families, respectively. Inheritance analysis in the control crosses showed that 51 of the 53 genotypic ratios observed were in accordance with Mendelian expectations at the 5% level after Bonferroni correction. Seven of the 32 microsatellite loci showed the existence of null alleles in control crosses. The second division segregation frequency ( y) of the microsatellite loci ranged from 0.07 to 0.85 with a mean of 0.38, suggesting the existence of positive interference after a single chiasma formation in some chromosomes in the scallop. Microsatellite-centromere distances ranged from 4 cM to 42 cM under the assumption of complete interference. Information on the positions of centromeres in relation to the microsatellite loci will represent a contribution towards the assembly of genetic maps in the commercially important scallop species.

  10. A systemic increase in the recombination frequency upon local infection of Arabidopsis thaliana plants with oilseed rape mosaic virus depends on plant age, the initial inoculum concentration and the time for virus replication

    Directory of Open Access Journals (Sweden)

    Youli eYao

    2013-03-01

    Full Text Available In the past, we showed that local infection of tobacco leaves with either Tobacco mosaic virus (TMV or Oilseed rape mosaic virus (ORMV resulted in a systemic increase in the homologous recombination frequency (HRF. Later on, we showed that a similar phenomenon occurs in Arabidopsis thaliana plants infected with ORMV. Here, we tested whether the time of removing the infected leaves as well as viral titer have any effect on the degree of changes in HRF in systemic tissues. An increase in HRF in systemic non-infected tissues was more pronounced when the infected leaves were detached from the infected plants at 60-96 hours post infection, rather than at earlier time. Next, we found that exposure to higher concentrations of inoculum was much more efficient in triggering an increase in HRF than exposure to lower concentrations. Finally, we showed that older plants exhibited a higher increase in HRF than younger plants. We found that an increase in genome instability in systemic tissues of locally infected plants depends on plant age, the concentration of initial inoculums and the time of viral replication.

  11. High-Resolution Replication Profiles Define the Stochastic Nature of Genome Replication Initiation and Termination

    Directory of Open Access Journals (Sweden)

    Michelle Hawkins

    2013-11-01

    Full Text Available Eukaryotic genome replication is stochastic, and each cell uses a different cohort of replication origins. We demonstrate that interpreting high-resolution Saccharomyces cerevisiae genome replication data with a mathematical model allows quantification of the stochastic nature of genome replication, including the efficiency of each origin and the distribution of termination events. Single-cell measurements support the inferred values for stochastic origin activation time. A strain, in which three origins were inactivated, confirmed that the distribution of termination events is primarily dictated by the stochastic activation time of origins. Cell-to-cell variability in origin activity ensures that termination events are widely distributed across virtually the whole genome. We propose that the heterogeneity in origin usage contributes to genome stability by limiting potentially deleterious events from accumulating at particular loci.

  12. Centromere pairing by a plasmid-encoded type I ParB protein

    DEFF Research Database (Denmark)

    Ringgaard, Simon; Löwe, Jan; Gerdes, Kenn

    2007-01-01

    over the nucleoid. ParB ribbon-helix-helix dimers bind cooperatively to direct repeats in parC1 and parC2. Using four different assays we obtain solid evidence that ParB can pair parC1- and parC2-encoding DNA fragments in vitro. Convincingly, electron microscopy revealed that ParB mediates binary...... pairing of parC fragments. In addition to binary complexes, ParB mediated the formation of higher order complexes consisting of several DNA fragments joined by ParB at centromere site parC. N-terminal truncated versions of ParB still possessing specific DNA binding activity were incompetent in pairing...

  13. Isolation and molecular characterization of a highly polymorphic centromeric tandem repeat in the family Falconidae.

    Science.gov (United States)

    Longmire, J L; Lewis, A K; Brown, N C; Buckingham, J M; Clark, L M; Jones, M D; Meincke, L J; Meyne, J; Ratliff, R L; Ray, F A

    1988-01-01

    An abundant tandem repeat has been cloned from genomic DNA of the merlin (Falco columbarius). The cloned sequence is 174 bp in length, and maps by in situ hybridization to the centromeric regions of several of the large chromosomes within the merlin karyotype. Complementary sequences have been identified within a variety of falcon species; these sequences are either absent or in very low copy number in the family Accipitridae. The cloned merlin repeat reveals highly polymorphic restriction patterns in the peregrine falcon (Falco peregrinus). These polymorphisms, which have been shown to be stably inherited within a family of captive peregrines, can be used to differentiate the Greenland and Argentina populations of this endangered raptor species.

  14. Detection and Automated Scoring of Dicentric Chromosomes in Nonstimulated Lymphocyte Prematurely Condensed Chromosomes After Telomere and Centromere Staining

    Energy Technology Data Exchange (ETDEWEB)

    M' kacher, Radhia [Laboratoire de Radiobiologie et Oncologie, Commissariat à l' Energie Atomique, Fontenay-aux-Roses (France); El Maalouf, Elie [Laboratoire de Radiobiologie et Oncologie, Commissariat à l' Energie Atomique, Fontenay-aux-Roses (France); Laboratoire Modélisation Intelligence Processus Systèmes (MIPS)–Groupe TIIM3D, Université de Haute-Alsace, Mulhouse (France); Terzoudi, Georgia [Laboratory of Radiobiology & Biodosimetry, National Center for Scientific Research Demokritos, Athens (Greece); Ricoul, Michelle [Laboratoire de Radiobiologie et Oncologie, Commissariat à l' Energie Atomique, Fontenay-aux-Roses (France); Heidingsfelder, Leonhard [MetaSystems, Altlussheim (Germany); Karachristou, Ionna [Laboratory of Radiobiology & Biodosimetry, National Center for Scientific Research Demokritos, Athens (Greece); Laplagne, Eric [Pole Concept, Paris (France); Hempel, William M. [Laboratoire de Radiobiologie et Oncologie, Commissariat à l' Energie Atomique, Fontenay-aux-Roses (France); Colicchio, Bruno; Dieterlen, Alain [Laboratoire Modélisation Intelligence Processus Systèmes (MIPS)–Groupe TIIM3D, Université de Haute-Alsace, Mulhouse (France); Pantelias, Gabriel [Laboratory of Radiobiology & Biodosimetry, National Center for Scientific Research Demokritos, Athens (Greece); Sabatier, Laure, E-mail: laure.sabatier@cea.fr [Laboratoire de Radiobiologie et Oncologie, Commissariat à l' Energie Atomique, Fontenay-aux-Roses (France)

    2015-03-01

    Purpose: To combine telomere and centromere (TC) staining of premature chromosome condensation (PCC) fusions to identify dicentrics, centric rings, and acentric chromosomes, making possible the realization of a dose–response curve and automation of the process. Methods and Materials: Blood samples from healthy donors were exposed to {sup 60}Co irradiation at varying doses up to 8 Gy, followed by a repair period of 8 hours. Premature chromosome condensation fusions were carried out, and TC staining using peptide nucleic acid probes was performed. Chromosomal aberration (CA) scoring was carried out manually and automatically using PCC-TCScore software, developed in our laboratory. Results: We successfully optimized the hybridization conditions and image capture parameters, to increase the sensitivity and effectiveness of CA scoring. Dicentrics, centric rings, and acentric chromosomes were rapidly and accurately detected, leading to a linear-quadratic dose–response curve by manual scoring at up to 8 Gy. Using PCC-TCScore software for automatic scoring, we were able to detect 95% of dicentrics and centric rings. Conclusion: The introduction of TC staining to the PCC fusion technique has made possible the rapid scoring of unstable CAs, including dicentrics, with a level of accuracy and ease not previously possible. This new approach can be used for biological dosimetry in radiation emergency medicine, where the rapid and accurate detection of dicentrics is a high priority using automated scoring. Because there is no culture time, this new approach can also be used for the follow-up of patients treated by genotoxic therapy, creating the possibility to perform the estimation of induced chromosomal aberrations immediately after the blood draw.

  15. Detection and Automated Scoring of Dicentric Chromosomes in Nonstimulated Lymphocyte Prematurely Condensed Chromosomes After Telomere and Centromere Staining

    International Nuclear Information System (INIS)

    Purpose: To combine telomere and centromere (TC) staining of premature chromosome condensation (PCC) fusions to identify dicentrics, centric rings, and acentric chromosomes, making possible the realization of a dose–response curve and automation of the process. Methods and Materials: Blood samples from healthy donors were exposed to 60Co irradiation at varying doses up to 8 Gy, followed by a repair period of 8 hours. Premature chromosome condensation fusions were carried out, and TC staining using peptide nucleic acid probes was performed. Chromosomal aberration (CA) scoring was carried out manually and automatically using PCC-TCScore software, developed in our laboratory. Results: We successfully optimized the hybridization conditions and image capture parameters, to increase the sensitivity and effectiveness of CA scoring. Dicentrics, centric rings, and acentric chromosomes were rapidly and accurately detected, leading to a linear-quadratic dose–response curve by manual scoring at up to 8 Gy. Using PCC-TCScore software for automatic scoring, we were able to detect 95% of dicentrics and centric rings. Conclusion: The introduction of TC staining to the PCC fusion technique has made possible the rapid scoring of unstable CAs, including dicentrics, with a level of accuracy and ease not previously possible. This new approach can be used for biological dosimetry in radiation emergency medicine, where the rapid and accurate detection of dicentrics is a high priority using automated scoring. Because there is no culture time, this new approach can also be used for the follow-up of patients treated by genotoxic therapy, creating the possibility to perform the estimation of induced chromosomal aberrations immediately after the blood draw

  16. Immunohistochemical Assessment of Expression of Centromere Protein—A (CENPA) in Human Invasive Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Rajput, Ashish B. [Department of Pathology and Molecular Medicine, Queen' s University, Kingston, ON K7L 3N6 (Canada); Hu, Nianping [Cancer Research institute, Queen' s University, Kingston, ON K7L 3N6 (Canada); Varma, Sonal; Chen, Chien-Hung [Department of Pathology and Molecular Medicine, Queen' s University, Kingston, ON K7L 3N6 (Canada); Ding, Keyue [NCIC Clinical Trials Group, Queen' s University, Kingston, ON K7L 3N6 (Canada); Park, Paul C. [Department of Pathology and Molecular Medicine, Queen' s University, Kingston, ON K7L 3N6 (Canada); Chapman, Judy-Anne W. [NCIC Clinical Trials Group, Queen' s University, Kingston, ON K7L 3N6 (Canada); SenGupta, Sandip K. [Department of Pathology and Molecular Medicine, Queen' s University, Kingston, ON K7L 3N6 (Canada); Madarnas, Yolanda [Cancer Research institute, Queen' s University, Kingston, ON K7L 3N6 (Canada); Department of Oncology, Cancer Center of Southeastern Ontario, Kingston, ON K7L 2V7 (Canada); Elliott, Bruce E.; Feilotter, Harriet E., E-mail: feilotth@kgh.kari.net [Department of Pathology and Molecular Medicine, Queen' s University, Kingston, ON K7L 3N6 (Canada)

    2011-12-06

    Abnormal cell division leading to the gain or loss of entire chromosomes and consequent genetic instability is a hallmark of cancer. Centromere protein –A (CENPA) is a centromere-specific histone-H3-like variant gene involved in regulating chromosome segregation during cell division. CENPA is one of the genes included in some of the commercially available RNA based prognostic assays for breast cancer (BCa)—the 70 gene signature MammaPrint{sup ®} and the five gene Molecular Grade Index (MGI{sup SM}). Our aim was to assess the immunohistochemical (IHC) expression of CENPA in normal and malignant breast tissue. Clinically annotated triplicate core tissue microarrays of 63 invasive BCa and 20 normal breast samples were stained with a monoclonal antibody against CENPA and scored for percentage of visibly stained nuclei. Survival analyses with Kaplan–Meier (KM) estimate and Cox proportional hazards regression models were applied to assess the associations between CENPA expression and disease free survival (DFS). Average percentage of nuclei visibly stained with CENPA antibody was significantly higher (p = 0.02) in BCa than normal tissue. The 3-year DFS in tumors over-expressing CENPA (>50% stained nuclei) was 79% compared to 85% in low expression tumors (<50% stained nuclei). On multivariate analysis, IHC expression of CENPA showed weak association with DFS (HR > 60.07; p = 0.06) within our small cohort. To the best of our knowledge, this is the first published report evaluating the implications of increased IHC expression of CENPA in paraffin embedded breast tissue samples. Our finding that increased CENPA expression may be associated with shorter DFS in BCa supports its exploration as a potential prognostic biomarker.

  17. Immunohistochemical Assessment of Expression of Centromere Protein—A (CENPA in Human Invasive Breast Cancer

    Directory of Open Access Journals (Sweden)

    Bruce E. Elliott

    2011-12-01

    Full Text Available Abnormal cell division leading to the gain or loss of entire chromosomes and consequent genetic instability is a hallmark of cancer. Centromere protein –A (CENPA is a centromere-specific histone-H3-like variant gene involved in regulating chromosome segregation during cell division. CENPA is one of the genes included in some of the commercially available RNA based prognostic assays for breast cancer (BCa—the 70 gene signature MammaPrint® and the five gene Molecular Grade Index (MGISM. Our aim was to assess the immunohistochemical (IHC expression of CENPA in normal and malignant breast tissue. Clinically annotated triplicate core tissue microarrays of 63 invasive BCa and 20 normal breast samples were stained with a monoclonal antibody against CENPA and scored for percentage of visibly stained nuclei. Survival analyses with Kaplan–Meier (KM estimate and Cox proportional hazards regression models were applied to assess the associations between CENPA expression and disease free survival (DFS. Average percentage of nuclei visibly stained with CENPA antibody was significantly higher (p = 0.02 in BCa than normal tissue. The 3-year DFS in tumors over-expressing CENPA (>50% stained nuclei was 79% compared to 85% in low expression tumors ( 60.07; p = 0.06 within our small cohort. To the best of our knowledge, this is the first published report evaluating the implications of increased IHC expression of CENPA in paraffin embedded breast tissue samples. Our finding that increased CENPA expression may be associated with shorter DFS in BCa supports its exploration as a potential prognostic biomarker.

  18. The CENP-A N-Tail Confers Epigenetic Stability to Centromeres via the CENP-T Branch of the CCAN in Fission Yeast

    OpenAIRE

    Folco, H. Diego; Campbell, Christopher S.; May, Karen M; Espinoza, Celso A; Oegema, Karen; Hardwick, Kevin G.; Grewal, Shiv I. S.; Desai, Arshad

    2015-01-01

    In most eukaryotes, centromeres are defined epigenetically by presence of the histone H3 variant CENP-A [1-3]. CENP-A containing chromatin recruits the constitutive centromere-associated network (CCAN) of proteins, which in turn directs assembly of the outer kinetochore to form microtubule attachments and ensure chromosome segregation fidelity [4-6]. While the mechanisms that load CENP-A at centromeres are being elucidated, the functions of its divergent N-terminal tail remain enigmatic [7-12...

  19. Replicated Spectrographs in Astronomy

    CERN Document Server

    Hill, Gary J

    2014-01-01

    As telescope apertures increase, the challenge of scaling spectrographic astronomical instruments becomes acute. The next generation of extremely large telescopes (ELTs) strain the availability of glass blanks for optics and engineering to provide sufficient mechanical stability. While breaking the relationship between telescope diameter and instrument pupil size by adaptive optics is a clear path for small fields of view, survey instruments exploiting multiplex advantages will be pressed to find cost-effective solutions. In this review we argue that exploiting the full potential of ELTs will require the barrier of the cost and engineering difficulty of monolithic instruments to be broken by the use of large-scale replication of spectrographs. The first steps in this direction have already been taken with the soon to be commissioned MUSE and VIRUS instruments for the Very Large Telescope and the Hobby-Eberly Telescope, respectively. MUSE employs 24 spectrograph channels, while VIRUS has 150 channels. We compa...

  20. SUMO and KSHV Replication

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Pei-Ching [Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan (China); Kung, Hsing-Jien, E-mail: hkung@nhri.org.tw [Institute for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan (China); Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616 (United States); UC Davis Cancer Center, University of California, Davis, CA 95616 (United States); Division of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan (China)

    2014-09-29

    Small Ubiquitin-related MOdifier (SUMO) modification was initially identified as a reversible post-translational modification that affects the regulation of diverse cellular processes, including signal transduction, protein trafficking, chromosome segregation, and DNA repair. Increasing evidence suggests that the SUMO system also plays an important role in regulating chromatin organization and transcription. It is thus not surprising that double-stranded DNA viruses, such as Kaposi’s sarcoma-associated herpesvirus (KSHV), have exploited SUMO modification as a means of modulating viral chromatin remodeling during the latent-lytic switch. In addition, SUMO regulation allows the disassembly and assembly of promyelocytic leukemia protein-nuclear bodies (PML-NBs), an intrinsic antiviral host defense, during the viral replication cycle. Overcoming PML-NB-mediated cellular intrinsic immunity is essential to allow the initial transcription and replication of the herpesvirus genome after de novo infection. As a consequence, KSHV has evolved a way as to produce multiple SUMO regulatory viral proteins to modulate the cellular SUMO environment in a dynamic way during its life cycle. Remarkably, KSHV encodes one gene product (K-bZIP) with SUMO-ligase activities and one gene product (K-Rta) that exhibits SUMO-targeting ubiquitin ligase (STUbL) activity. In addition, at least two viral products are sumoylated that have functional importance. Furthermore, sumoylation can be modulated by other viral gene products, such as the viral protein kinase Orf36. Interference with the sumoylation of specific viral targets represents a potential therapeutic strategy when treating KSHV, as well as other oncogenic herpesviruses. Here, we summarize the different ways KSHV exploits and manipulates the cellular SUMO system and explore the multi-faceted functions of SUMO during KSHV’s life cycle and pathogenesis.

  1. Reorganization of chromosome architecture in replicative cellular senescence.

    Science.gov (United States)

    Criscione, Steven W; De Cecco, Marco; Siranosian, Benjamin; Zhang, Yue; Kreiling, Jill A; Sedivy, John M; Neretti, Nicola

    2016-02-01

    Replicative cellular senescence is a fundamental biological process characterized by an irreversible arrest of proliferation. Senescent cells accumulate a variety of epigenetic changes, but the three-dimensional (3D) organization of their chromatin is not known. We applied a combination of whole-genome chromosome conformation capture (Hi-C), fluorescence in situ hybridization, and in silico modeling methods to characterize the 3D architecture of interphase chromosomes in proliferating, quiescent, and senescent cells. Although the overall organization of the chromatin into active (A) and repressive (B) compartments and topologically associated domains (TADs) is conserved between the three conditions, a subset of TADs switches between compartments. On a global level, the Hi-C interaction matrices of senescent cells are characterized by a relative loss of long-range and gain of short-range interactions within chromosomes. Direct measurements of distances between genetic loci, chromosome volumes, and chromatin accessibility suggest that the Hi-C interaction changes are caused by a significant reduction of the volumes occupied by individual chromosome arms. In contrast, centromeres oppose this overall compaction trend and increase in volume. The structural model arising from our study provides a unique high-resolution view of the complex chromosomal architecture in senescent cells. PMID:26989773

  2. Efficient usage of Adabas replication

    CERN Document Server

    Storr, Dieter W

    2011-01-01

    In today's IT organization replication becomes more and more an essential technology. This makes Software AG's Event Replicator for Adabas an important part of your data processing. Setting the right parameters and establishing the best network communication, as well as selecting efficient target components, is essential for successfully implementing replication. This book provides comprehensive information and unique best-practice experience in the field of Event Replicator for Adabas. It also includes sample codes and configurations making your start very easy. It describes all components ne

  3. The Inner Centromere Protein (INCENP) Coil Is a Single α-Helix (SAH) Domain That Binds Directly to Microtubules and Is Important for Chromosome Passenger Complex (CPC) Localization and Function in Mitosis.

    Science.gov (United States)

    Samejima, Kumiko; Platani, Melpomeni; Wolny, Marcin; Ogawa, Hiromi; Vargiu, Giulia; Knight, Peter J; Peckham, Michelle; Earnshaw, William C

    2015-08-28

    The chromosome passenger complex (CPC) is a master regulator of mitosis. Inner centromere protein (INCENP) acts as a scaffold regulating CPC localization and activity. During early mitosis, the N-terminal region of INCENP forms a three-helix bundle with Survivin and Borealin, directing the CPC to the inner centromere where it plays essential roles in chromosome alignment and the spindle assembly checkpoint. The C-terminal IN box region of INCENP is responsible for binding and activating Aurora B kinase. The central region of INCENP has been proposed to comprise a coiled coil domain acting as a spacer between the N- and C-terminal domains that is involved in microtubule binding and regulation of the spindle checkpoint. Here we show that the central region (213 residues) of chicken INCENP is not a coiled coil but a ∼ 32-nm-long single α-helix (SAH) domain. The N-terminal half of this domain directly binds to microtubules in vitro. By analogy with previous studies of myosin 10, our data suggest that the INCENP SAH might stretch up to ∼ 80 nm under physiological forces. Thus, the INCENP SAH could act as a flexible "dog leash," allowing Aurora B to phosphorylate dynamic substrates localized in the outer kinetochore while at the same time being stably anchored to the heterochromatin of the inner centromere. Furthermore, by achieving this flexibility via an SAH domain, the CPC avoids a need for dimerization (required for coiled coil formation), which would greatly complicate regulation of the proximity-induced trans-phosphorylation that is critical for Aurora B activation.

  4. Charter School Replication. Policy Guide

    Science.gov (United States)

    Rhim, Lauren Morando

    2009-01-01

    "Replication" is the practice of a single charter school board or management organization opening several more schools that are each based on the same school model. The most rapid strategy to increase the number of new high-quality charter schools available to children is to encourage the replication of existing quality schools. This policy guide…

  5. Plasticity and epigenetic inheritance of centromere-specific histone H3 (CENP-A)-containing nucleosome positioning in the fission yeast.

    Science.gov (United States)

    Yao, Jianhui; Liu, Xingkun; Sakuno, Takeshi; Li, Wenzhu; Xi, Yuanxin; Aravamudhan, Pavithra; Joglekar, Ajit; Li, Wei; Watanabe, Yoshinori; He, Xiangwei

    2013-06-28

    Nucleosomes containing the specific histone H3 variant CENP-A mark the centromere locus on each chromatin and initiate kinetochore assembly. For the common type of regional centromeres, little is known in molecular detail of centromeric chromatin organization, its propagation through cell division, and how distinct organization patterns may facilitate kinetochore assembly. Here, we show that in the fission yeast S. pombe, a relatively small number of CENP-A/Cnp1 nucleosomes are found within the centromeric core and that their positioning relative to underlying DNA varies among genetically homogenous cells. Consistent with the flexible positioning of Cnp1 nucleosomes, a large portion of the endogenous centromere is dispensable for its essential activity in mediating chromosome segregation. We present biochemical evidence that Cnp1 occupancy directly correlates with silencing of the underlying reporter genes. Furthermore, using a newly developed pedigree analysis assay, we demonstrated the epigenetic inheritance of Cnp1 positioning and quantified the rate of occasional repositioning of Cnp1 nucleosomes throughout cell generations. Together, our results reveal the plasticity and the epigenetically inheritable nature of centromeric chromatin organization. PMID:23661703

  6. Differential repetitive DNA composition in the centromeric region of chromosomes of Amazonian lizard species in the family Teiidae

    OpenAIRE

    Carvalho, Natalia; Carmo,Edson; NEVES,ROGERIO; Schneider, Carlos Henrique; Gross, Maria Claudia

    2016-01-01

    Differences in heterochromatin distribution patterns and its composition were observed in Amazonian teiid species. Studies have shown repetitive DNA harbors heterochromatic blocks which are located in centromeric and telomeric regions in Ameiva ameiva (Linnaeus, 1758), Kentropyx calcarata (Spix, 1825), Kentropyx pelviceps (Cope, 1868), and Tupinambis teguixin (Linnaeus, 1758). In Cnemidophorus sp.1, repetitive DNA has multiple signals along all chromosomes. The aim of this study was to charac...

  7. Maximum-likelihood method identifies meiotic restitution mechanism from heterozygosity transmission of centromeric loci: application in citrus

    Science.gov (United States)

    Cuenca, José; Aleza, Pablo; Juárez, José; García-Lor, Andrés; Froelicher, Yann; Navarro, Luis; Ollitrault, Patrick

    2015-01-01

    Polyploidisation is a key source of diversification and speciation in plants. Most researchers consider sexual polyploidisation leading to unreduced gamete as its main origin. Unreduced gametes are useful in several crop breeding schemes. Their formation mechanism, i.e., First-Division Restitution (FDR) or Second-Division Restitution (SDR), greatly impacts the gametic and population structures and, therefore, the breeding efficiency. Previous methods to identify the underlying mechanism required the analysis of a large set of markers over large progeny. This work develops a new maximum-likelihood method to identify the unreduced gamete formation mechanism both at the population and individual levels using independent centromeric markers. Knowledge of marker-centromere distances greatly improves the statistical power of the comparison between the SDR and FDR hypotheses. Simulating data demonstrated the importance of selecting markers very close to the centromere to obtain significant conclusions at individual level. This new method was used to identify the meiotic restitution mechanism in nineteen mandarin genotypes used as female parents in triploid citrus breeding. SDR was identified for 85.3% of 543 triploid hybrids and FDR for 0.6%. No significant conclusions were obtained for 14.1% of the hybrids. At population level SDR was the predominant mechanisms for the 19 parental mandarins. PMID:25894579

  8. Maximum-likelihood method identifies meiotic restitution mechanism from heterozygosity transmission of centromeric loci: application in citrus.

    Science.gov (United States)

    Cuenca, José; Aleza, Pablo; Juárez, José; García-Lor, Andrés; Froelicher, Yann; Navarro, Luis; Ollitrault, Patrick

    2015-04-20

    Polyploidisation is a key source of diversification and speciation in plants. Most researchers consider sexual polyploidisation leading to unreduced gamete as its main origin. Unreduced gametes are useful in several crop breeding schemes. Their formation mechanism, i.e., First-Division Restitution (FDR) or Second-Division Restitution (SDR), greatly impacts the gametic and population structures and, therefore, the breeding efficiency. Previous methods to identify the underlying mechanism required the analysis of a large set of markers over large progeny. This work develops a new maximum-likelihood method to identify the unreduced gamete formation mechanism both at the population and individual levels using independent centromeric markers. Knowledge of marker-centromere distances greatly improves the statistical power of the comparison between the SDR and FDR hypotheses. Simulating data demonstrated the importance of selecting markers very close to the centromere to obtain significant conclusions at individual level. This new method was used to identify the meiotic restitution mechanism in nineteen mandarin genotypes used as female parents in triploid citrus breeding. SDR was identified for 85.3% of 543 triploid hybrids and FDR for 0.6%. No significant conclusions were obtained for 14.1% of the hybrids. At population level SDR was the predominant mechanisms for the 19 parental mandarins.

  9. Pyrimidine Pool Disequilibrium Induced by a Cytidine Deaminase Deficiency Inhibits PARP-1 Activity, Leading to the Under Replication of DNA.

    Directory of Open Access Journals (Sweden)

    Simon Gemble

    2015-07-01

    Full Text Available Genome stability is jeopardized by imbalances of the dNTP pool; such imbalances affect the rate of fork progression. For example, cytidine deaminase (CDA deficiency leads to an excess of dCTP, slowing the replication fork. We describe here a novel mechanism by which pyrimidine pool disequilibrium compromises the completion of replication and chromosome segregation: the intracellular accumulation of dCTP inhibits PARP-1 activity. CDA deficiency results in incomplete DNA replication when cells enter mitosis, leading to the formation of ultrafine anaphase bridges between sister-chromatids at "difficult-to-replicate" sites such as centromeres and fragile sites. Using molecular combing, electron microscopy and a sensitive assay involving cell imaging to quantify steady-state PAR levels, we found that DNA replication was unsuccessful due to the partial inhibition of basal PARP-1 activity, rather than slower fork speed. The stimulation of PARP-1 activity in CDA-deficient cells restores replication and, thus, chromosome segregation. Moreover, increasing intracellular dCTP levels generates under-replication-induced sister-chromatid bridges as efficiently as PARP-1 knockdown. These results have direct implications for Bloom syndrome (BS, a rare genetic disease combining susceptibility to cancer and genomic instability. BS results from mutation of the BLM gene, encoding BLM, a RecQ 3'-5' DNA helicase, a deficiency of which leads to CDA downregulation. BS cells thus have a CDA defect, resulting in a high frequency of ultrafine anaphase bridges due entirely to dCTP-dependent PARP-1 inhibition and independent of BLM status. Our study describes previously unknown pathological consequences of the distortion of dNTP pools and reveals an unexpected role for PARP-1 in preventing DNA under-replication and chromosome segregation defects.

  10. Overexpression of centromere protein H is significantly associated with breast cancer progression and overall patient survival

    Institute of Scientific and Technical Information of China (English)

    Wen-Ting Liao; Yan Feng; Men-Lin Li; Guang-Lin Liu; Man-Zhi Li; Mu-Sheng Zeng; Li-Bing Song

    2011-01-01

    Breast cancer is one of the leading causes of cancer death worldwide.This study aimed to analyze the expression of centromere protein H (CENP-H) in breast cancer and to correlate it with clinicopathologic data,including patient survival.Using reverse transcription-polymerase chain reaction and Westem blotting to detect the expression of CENP-H in normal mammary epithelial cells,immortalized mammary epithelial cell lines,and breast cancer cell lines,we observed that the mRNA and protein levels of CENP-H were higher in breast cancer cell lines and in immortalized mammary epithelial cells than in normal mammary epithelial cells.We next examined CENP-H expression in 307 paraffin-embedded archived samples of clinicopathologically characterized breast cancer using immunohistochemistry,and detected high CENP-H expression in 134 (43.6%) samples.Statistical analysis showed that CENP-H expression was related with clinical stage (P = 0.001),T classification (P = 0.032),N classification (P =0.018),and Ki-67 (P<0.001).Patients with high CENP-H expression had short overall survival.Multivariate analysis showed that CENP-H expression was an independent prognostic indicator for patient survival.Our results suggest that CENP-H protein is a valuable marker of breast cancer progression and prognosis.

  11. CENP-A exceeds microtubule attachment sites in centromere clusters of both budding and fission yeast.

    Science.gov (United States)

    Coffman, Valerie C; Wu, Pengcheng; Parthun, Mark R; Wu, Jian-Qiu

    2011-11-14

    The stoichiometries of kinetochores and their constituent proteins in yeast and vertebrate cells were determined using the histone H3 variant CENP-A, known as Cse4 in budding yeast, as a counting standard. One Cse4-containing nucleosome exists in the centromere (CEN) of each chromosome, so it has been assumed that each anaphase CEN/kinetochore cluster contains 32 Cse4 molecules. We report that anaphase CEN clusters instead contained approximately fourfold more Cse4 in Saccharomyces cerevisiae and ~40-fold more CENP-A (Cnp1) in Schizosaccharomyces pombe than predicted. These results suggest that the number of CENP-A molecules exceeds the number of kinetochore-microtubule (MT) attachment sites on each chromosome and that CENP-A is not the sole determinant of kinetochore assembly sites in either yeast. In addition, we show that fission yeast has enough Dam1-DASH complex for ring formation around attached MTs. The results of this study suggest the need for significant revision of existing CEN/kinetochore architectural models. PMID:22084306

  12. Differential Chromosomal Localization of Centromeric Histone CENP-A Contributes to Nematode Programmed DNA Elimination.

    Science.gov (United States)

    Kang, Yuanyuan; Wang, Jianbin; Neff, Ashley; Kratzer, Stella; Kimura, Hiroshi; Davis, Richard E

    2016-08-30

    The stability of the genome is paramount to organisms. However, diverse eukaryotes carry out programmed DNA elimination in which portions or entire chromsomes are lost in early development or during sex determination. During early development of the parasitic nematode, Ascaris suum, 13% of the genome is eliminated. How different genomic segments are reproducibly retained or discarded is unknown. Here, we show that centromeric histone CENP-A localization plays a key role in this process. We show that Ascaris chromosomes are holocentric during germline mitoses, with CENP-A distributed along their length. Prior to DNA elimination in the four-cell embryo, CENP-A is significantly diminished in chromosome regions that will be lost. This leads to the absence of kinetochores and microtubule attachment sites necessary for chromosome segregation, resulting in loss of these regions upon mitosis. Our data suggest that changes in CENP-A localization specify which portions of chromosomes will be lost during programmed DNA elimination. PMID:27545882

  13. A BAC library of Beta vulgaris L. for the targeted isolation of centromeric DNA and molecular cytogenetics of Beta species.

    Science.gov (United States)

    Jacobs, Gunnar; Dechyeva, Daryna; Wenke, Torsten; Weber, Beatrice; Schmidt, Thomas

    2009-03-01

    We constructed a sugar beet (Beta vulgaris) bacterial artificial chromosome (BAC) library of the monosomic addition line PAT2. This chromosomal mutant carries a single additional chromosome fragment (minichromosome) derived from the wild beet Beta patellaris. Restriction analysis of the mutant line by pulsed-field gel electrophoresis was used to determine HindIII as a suitable enzyme for partial digestion of genomic DNA to generate large-insert fragments which were cloned into the vector pCC1. The library consists of 36,096 clones with an average insert size of 120 kb, and 2.2% of the clones contain mitochondrial or chloroplast DNA. Based on a haploid genome size of 758 Mbp, the library represents 5.7 genome equivalents providing the probability of 99.67% that any sequence of the PAT2 genome can be found in the library. Hybridization to high-density filters was used to isolate 89 BACs containing arrays of the centromere-associated satellite repeats pTS5 and pTS4.1. Using the identified BAC clones in fluorescent in situ hybridization experiments with PAT2 and Beta patellaris chromosome spreads their wild beet origin and centromeric localization was demonstrated. Multi-colour FISH with differently labelled satellite repeats pTS5 and pTS4.1 was used to investigate the large-scale organization of the centromere of the PAT2 minichromosome in detail. FISH studies showed that the centromeric satellite pTS5 is flanked on both sides by pTS4.1 arrays and the arms of the minichromosome are terminated by the Arabidopsis-type telomeric sequences. FISH with a BAC, selected from high-density filters after hybridization with an RFLP marker of the genetic linkage group I, demonstrated that it is feasible to correlate genetic linkage groups with chromosomes. Therefore, the PAT2 BAC library provides a useful tool for the characterization of Beta centromeres and a valuable resource for sugar beet genome analysis.

  14. New tool for biological dosimetry: Reevaluation and automation of the gold standard method following telomere and centromere staining

    Energy Technology Data Exchange (ETDEWEB)

    M’kacher, Radhia [Laboratoire de Radiobiologie et Oncologie (LRO), Commissariat à l’Energie Atomique (CEA), Route du Panorama, 92265 Fontenay-aux-Roses (France); Maalouf, Elie E.L. [Laboratoire de Radiobiologie et Oncologie (LRO), Commissariat à l’Energie Atomique (CEA), Route du Panorama, 92265 Fontenay-aux-Roses (France); Laboratoire MIPS – Groupe TIIM3D, Université de Haute-Alsace, F-68093 Mulhouse (France); Ricoul, Michelle [Laboratoire de Radiobiologie et Oncologie (LRO), Commissariat à l’Energie Atomique (CEA), Route du Panorama, 92265 Fontenay-aux-Roses (France); Heidingsfelder, Leonhard [MetaSystems GmbH, Robert-Bosch-Str. 6, 68804 Altlussheim (Germany); Laplagne, Eric [Pole Concept, 61 Rue Erlanger, 75016 Paris (France); Cuceu, Corina; Hempel, William M. [Laboratoire de Radiobiologie et Oncologie (LRO), Commissariat à l’Energie Atomique (CEA), Route du Panorama, 92265 Fontenay-aux-Roses (France); Colicchio, Bruno; Dieterlen, Alain [Laboratoire MIPS – Groupe TIIM3D, Université de Haute-Alsace, F-68093 Mulhouse (France); Sabatier, Laure, E-mail: laure.sabatier@cea.fr [Laboratoire de Radiobiologie et Oncologie (LRO), Commissariat à l’Energie Atomique (CEA), Route du Panorama, 92265 Fontenay-aux-Roses (France)

    2014-12-15

    Graphical abstract: - Highlights: • We have applied telomere and centromere (TC) staining to the scoring of dicentrics. • TC staining renders the scoring of dicentrics more rapid and robust. • TC staining allows the scoring of not only dicentrics but all chromosomal anomalies. • TC staining has led to a reevaluation of the radiation dose–response curve. • TC staining allows automation of the scoring of chromosomal aberations. • Automated scoring of dicentrics after TC staining was as efficient as manual scoring. - Abstract: Purpose: The dicentric chromosome (dicentric) assay is the international gold-standard method for biological dosimetry and classification of genotoxic agents. The introduction of telomere and centromere (TC) staining offers the potential to render dicentric scoring more efficient and robust. In this study, we improved the detection of dicentrics and all unstable chromosomal aberrations (CA) leading to a significant reevaluation of the dose–effect curve and developed an automated approach following TC staining. Material and methods: Blood samples from 16 healthy donors were exposed to {sup 137}Cs at 8 doses from 0.1 to 6 Gy. CA were manually and automatically scored following uniform (Giemsa) or TC staining. The detection of centromeric regions and telomeric sequences using PNA probes allowed the detection of all unstable CA: dicentrics, centric and acentric rings, and all acentric fragments (with 2, 4 or no telomeres) leading to the precise quantification of estimated double strand breaks (DSB). Results: Manual scoring following TC staining revealed a significantly higher frequency of dicentrics (p < 10{sup −3}) (up to 30%) and estimated DSB (p < 10{sup −4}) compared to uniform staining due to improved detection of dicentrics with centromeres juxtaposed with other centromeres or telomeres. This improvement permitted the development of the software, TCScore, that detected 95% of manually scored dicentrics compared to 50% for

  15. Regulation of Replication Recovery and Genome Integrity

    DEFF Research Database (Denmark)

    Colding, Camilla Skettrup

    Preserving genome integrity is essential for cell survival. To this end, mechanisms that supervise DNA replication and respond to replication perturbations have evolved. One such mechanism is the replication checkpoint, which responds to DNA replication stress and acts to ensure replication pausing...

  16. International Expansion through Flexible Replication

    DEFF Research Database (Denmark)

    Jonsson, Anna; Foss, Nicolai Juul

    2011-01-01

    Business organizations may expand internationally by replicating a part of their value chain, such as a sales and marketing format, in other countries. However, little is known regarding how such “international replicators” build a format for replication, or how they can adjust it in order to adapt...... to local environments and under the impact of new learning. To illuminate these issues, we draw on a longitudinal in-depth study of Swedish home furnishing giant IKEA, involving more than 70 interviews. We find that IKEA has developed organizational mechanisms that support an ongoing learning process aimed...... at frequent modification of the format for replication. Another finding is that IKEA treats replication as hierarchical: lower-level features (marketing efforts, pricing, etc.) are allowed to vary across IKEA stores in response to market-based learning, while higher-level features (fundamental values, vision...

  17. Systematic determination of replication activity type highlights interconnections between replication, chromatin structure and nuclear localization.

    Directory of Open Access Journals (Sweden)

    Shlomit Farkash-Amar

    Full Text Available DNA replication is a highly regulated process, with each genomic locus replicating at a distinct time of replication (ToR. Advances in ToR measurement technology enabled several genome-wide profiling studies that revealed tight associations between ToR and general genomic features and a remarkable ToR conservation in mammals. Genome wide studies further showed that at the hundreds kb-to-megabase scale the genome can be divided into constant ToR regions (CTRs in which the replication process propagates at a faster pace due to the activation of multiple origins and temporal transition regions (TTRs in which the replication process propagates at a slower pace. We developed a computational tool that assigns a ToR to every measured locus and determines its replication activity type (CTR versus TTR. Our algorithm, ARTO (Analysis of Replication Timing and Organization, uses signal processing methods to fit a constant piece-wise linear curve to the measured raw data. We tested our algorithm and provide performance and usability results. A Matlab implementation of ARTO is available at http://bioinfo.cs.technion.ac.il/people/zohar/ARTO/. Applying our algorithm to ToR data measured in multiple mouse and human samples allowed precise genome-wide ToR determination and replication activity type characterization. Analysis of the results highlighted the plasticity of the replication program. For example, we observed significant ToR differences in 10-25% of the genome when comparing different tissue types. Our analyses also provide evidence for activity type differences in up to 30% of the probes. Integration of the ToR data with multiple aspects of chromosome organization characteristics suggests that ToR plays a role in shaping the regional chromatin structure. Namely, repressive chromatin marks, are associated with late ToR both in TTRs and CTRs. Finally, characterization of the differences between TTRs and CTRs, with matching ToR, revealed that TTRs are

  18. The DNA damage checkpoint response to replication stress: A Game of Forks.

    Directory of Open Access Journals (Sweden)

    Rachel eJossen

    2013-03-01

    Full Text Available Conditions challenging replication fork progression, collectively referred to as replication stress, represent a major source of genomic instability and are associated to cancer onset. The replication checkpoint, a specialized branch of the DNA damage checkpoint, monitors fork problems and triggers a cellular response aimed at preserving genome integrity. Here, we review the mechanisms by which the replication checkpoint monitors and responds to replication stress, focusing on the checkpoint-mediated pathways contributing to protect replication fork integrity. We discuss how cells achieve checkpoint signaling inactivation once replication stress is overcome and how a failure to timely revert checkpoint-mediated changes in cellular physiology might impact on replication dynamics and genome integrity. We also highlight the checkpoint function as an anti-cancer barrier preventing cells malignant transformation following oncogene-induced replication stress.

  19. Where does DNA replication start in archaea?

    OpenAIRE

    Vas, Amit; Leatherwood, Janet

    2000-01-01

    Genome-wide measures of DNA strand composition have been used to find archaeal DNA replication origins. Archaea seem to replicate using a single origin (as do eubacteria) even though archaeal replication factors are more like those of eukaryotes.

  20. Universal Temporal Profile of Replication Origin Activation in Eukaryotes

    Science.gov (United States)

    Goldar, Arach

    2011-03-01

    The complete and faithful transmission of eukaryotic genome to daughter cells involves the timely duplication of mother cell's DNA. DNA replication starts at multiple chromosomal positions called replication origin. From each activated replication origin two replication forks progress in opposite direction and duplicate the mother cell's DNA. While it is widely accepted that in eukaryotic organisms replication origins are activated in a stochastic manner, little is known on the sources of the observed stochasticity. It is often associated to the population variability to enter S phase. We extract from a growing Saccharomyces cerevisiae population the average rate of origin activation in a single cell by combining single molecule measurements and a numerical deconvolution technique. We show that the temporal profile of the rate of origin activation in a single cell is similar to the one extracted from a replicating cell population. Taking into account this observation we exclude the population variability as the origin of observed stochasticity in origin activation. We confirm that the rate of origin activation increases in the early stage of S phase and decreases at the latter stage. The population average activation rate extracted from single molecule analysis is in prefect accordance with the activation rate extracted from published micro-array data, confirming therefore the homogeneity and genome scale invariance of dynamic of replication process. All these observations point toward a possible role of replication fork to control the rate of origin activation.

  1. A Binary Replication Strategy for Large-scale Mobile Environments

    Directory of Open Access Journals (Sweden)

    Azween Abdullah

    2009-05-01

    Full Text Available An important challenge to database researchers in mobile computing environments is to provide a data replication solution that maintains the consistency and improves the availability of replicated data. This paper addresses this problem for large scale mobile environments. Our solution represents a new binary hybrid replication strategy in terms of its components and approach. The new strategy encompasses two components: replication architecture to provide a solid infrastructure for improving data availability and a multi-agent based replication method to propagate recent updates between the components of the replication architecture in a manner that improves availability of last updates and achieves the consistency of data. The new strategy is a hybrid of both pessimistic and optimistic replication approaches in order to exploit the features of each. These features are supporting higher availability of recent updates and lower rate of inconsistencies as well as supporting the mobility of users. To model and analyze the stochastic behavior of the replicated system using our strategy, the research developed Stochastic Petri net (SPN model. Then the Continuous Time Markov Chain (CTMC is derived from the developed SPN and the Markov chain theory is used to obtain the steady state probabilities.

  2. 植物着丝粒结构及进化的研究进展%Research Progress on Structure and Evolution of Plant Centromeres

    Institute of Scientific and Technical Information of China (English)

    刘青

    2015-01-01

    植物着丝粒是染色体重要结构域,介导动粒装配。不同物种间着丝粒重复序列快速趋异进化,着丝粒功能保守,确保有丝分裂和减数分裂过程中染色体正确分离和准确传递。伴随染色质免疫共沉淀技术(Chromatin immunoprecipitation, ChIP)、ChIP与高密度芯片相结合技术(ChIP-chip)、ChIP与高通量测序相结合技术(ChIP-seq)的应用,植物着丝粒研究获得里程碑式进展:某些模式植物着丝粒DNA序列、蛋白质结构、功能获得大量新认识;着丝粒基本蛋白质组蛋白H3被用来界定着丝粒大小和边界;某些非着丝粒区域被激活为新着丝粒,在世代传递中保持稳定性。本文对植物着丝粒结构、功能、进化研究进行了综述,并探讨了植物着丝粒研究存在的问题。%The plant centromere is the most important chromosome domain mediating the assembly of kinetochore. The rapid divergent evolution of centromeric repeat sequences and function conservation of centromeres among different species ensure correct segregation and faithful transmission of chromosome in mitosis and meiosis. Along with the development of chromatin immunoprecipitation (ChIP), ChIP-chip, and ChIP-sequencing (ChIP-seq) technologies, three milestone discoveries have achieved in plant centromere research since the last 20 years, such as a lot of new knowledge on the structure, function, and evolution of centromeres from model plants, the fundamental kinetochore protein CENH3 used to delimiting the size and boundaries of centromere, the neocentromeres activated from non-centromeric regions stably transmitted to subsequent generations. The research progress on structure, function, and evolution of plant centromeres are reviewed and the remaining questions of plant centromere studies are discussed.

  3. Epigenetic Histone Marks of Extended Meta-Polycentric Centromeres of Lathyrus and Pisum Chromosomes.

    Science.gov (United States)

    Neumann, Pavel; Schubert, Veit; Fuková, Iva; Manning, Jasper E; Houben, Andreas; Macas, Jiří

    2016-01-01

    Species of the legume genera Lathyrus and Pisum possess chromosomes that exhibit a unique structure of their centromeric regions, which is clearly apparent during metaphase by the formation of extended primary constrictions which span up to a third of the length of the chromosome. In addition, these species express two different variants of the CenH3 protein which are co-localized in multiple domains along the poleward surface of the primary constrictions. Here, we show that the constrictions represent a distinct type of chromatin differing from the chromosome arms. In metaphase, histone phosphorylation patterns including H3S10ph, H3S28ph, and H3T3ph were observed along the entire constriction, in a way similar to holocentric chromosomes. On the other hand, distribution of phosphorylated H2AT120 was different from that previously reported from either, holocentric and monocentric chromosomes, occurring at chromatin surrounding but not overlapping CenH3 domains. Since some of these phosphorylations play a role in chromatid cohesion, it can be assumed that they facilitate correct chromosome segregation by ensuring that multiple separate CenH3 domains present on the same chromatid are oriented toward the same pole. The constrictions also displayed distinct patterns of histone methylation marks, being enriched in H3K9me2 and depleted in H3K4me3 and H3K27me2 compared to the chromosome arms. Super-resolution fluorescence microscopy revealed that although both CenH3 protein variants are present in all CenH3 domains detected on metaphase chromosomes, they are only partially co-localized while there are chromatin subdomains which are mostly made of only one CenH3 variant. Taken together, these data revealed specific features of extended primary constrictions of Lathyrus and Pisum and support the idea that they may represent an intermediate stage between monocentric and holocentric chromosomes. PMID:26973677

  4. Epigenetic histone marks of extended meta-polycentric centromeres of Lathyrus and Pisum chromosomes

    Directory of Open Access Journals (Sweden)

    Pavel eNeumann

    2016-03-01

    Full Text Available Species of the legume genera Lathyrus and Pisum possess chromosomes that exhibit a unique structure of their centromeric regions, which is clearly apparent during metaphase by the formation of extended primary constrictions which span up to a third of the length of the chromosome. In addition, these species express two different variants of the CenH3 protein which are co-localized in multiple domains along the poleward surface of the primary constrictions. Here we show that the constrictions represent a distinct type of chromatin differing from the chromosome arms. In metaphase, histone phosphorylation patterns including H3S10ph, H3S28ph and H3T3ph were observed along the entire constriction, in a way similar to holocentric chromosomes. On the other hand, distribution of phosphorylated H2AT120 was different from that previously reported from either, holocentric and monocentric chromosomes, occurring at chromatin surrounding but not overlapping CenH3 domains. Since some of these phosphorylations play a role in chromatid cohesion, it can be assumed that they facilitate correct chromosome segregation by ensuring that multiple separate CenH3 domains present on the same chromatid are oriented towards the same pole. The constrictions also displayed distinct patterns of histone methylation marks, being enriched in H3K9me2 and depleted in H3K4me3 and H3K27me2 compared to the chromosome arms. High resolution fluorescence microscopy revealed that although both CenH3 protein variants are present in all CenH3 domains detected on metaphase chromosomes, they are only partially co-localized while there are chromatin subdomains which are mostly made of only one CenH3 variant. Taken together, these data revealed specific features of extended primary constrictions of Lathyrus and Pisum and support the idea that they may represent an intermediate stage between monocentric and holocentric chromosomes.

  5. KAT7/HBO1/MYST2 Regulates CENP-A Chromatin Assembly by Antagonizing Suv39h1-Mediated Centromere Inactivation.

    Science.gov (United States)

    Ohzeki, Jun-Ichirou; Shono, Nobuaki; Otake, Koichiro; Martins, Nuno M C; Kugou, Kazuto; Kimura, Hiroshi; Nagase, Takahiro; Larionov, Vladimir; Earnshaw, William C; Masumoto, Hiroshi

    2016-06-01

    Centromere chromatin containing histone H3 variant CENP-A is required for accurate chromosome segregation as a foundation for kinetochore assembly. Human centromere chromatin assembles on a part of the long α-satellite (alphoid) DNA array, where it is flanked by pericentric heterochromatin. Heterochromatin spreads into adjacent chromatin and represses gene expression, and it can antagonize centromere function or CENP-A assembly. Here, we demonstrate an interaction between CENP-A assembly factor M18BP1 and acetyltransferase KAT7/HBO1/MYST2. Knocking out KAT7 in HeLa cells reduced centromeric CENP-A assembly. Mitotic chromosome misalignment and micronuclei formation increased in the knockout cells and were enhanced when the histone H3-K9 trimethylase Suv39h1 was overproduced. Tethering KAT7 to an ectopic alphoid DNA integration site removed heterochromatic H3K9me3 modification and was sufficient to stimulate new CENP-A or histone H3.3 assembly. Thus, KAT7-containing acetyltransferases associating with the Mis18 complex provides competence for histone turnover/exchange activity on alphoid DNA and prevents Suv39h1-mediated heterochromatin invasion into centromeres. PMID:27270040

  6. Diversification of self-replicating molecules

    Science.gov (United States)

    Sadownik, Jan W.; Mattia, Elio; Nowak, Piotr; Otto, Sijbren

    2016-03-01

    How new species emerge in nature is still incompletely understood and difficult to study directly. Self-replicating molecules provide a simple model that allows us to capture the fundamental processes that occur in species formation. We have been able to monitor in real time and at a molecular level the diversification of self-replicating molecules into two distinct sets that compete for two different building blocks (‘food’) and so capture an important aspect of the process by which species may arise. The results show that the second replicator set is a descendant of the first and that both sets are kinetic products that oppose the thermodynamic preference of the system. The sets occupy related but complementary food niches. As diversification into sets takes place on the timescale of weeks and can be investigated at the molecular level, this work opens up new opportunities for experimentally investigating the process through which species arise both in real time and with enhanced detail.

  7. Dynamics of pre-replication complex proteins during the cell division cycle.

    OpenAIRE

    Prasanth, Supriya G.; Méndez, Juan; Prasanth, Kannanganattu V.; Stillman, Bruce

    2004-01-01

    Replication of the human genome every time a cell divides is a highly coordinated process that ensures accurate and efficient inheritance of the genetic information. The molecular mechanism that guarantees that many origins of replication fire only once per cell-cycle has been the area of intense research. The origin recognition complex (ORC) marks the position of replication origins in the genome and serves as the landing pad for the assembly of a multiprotein, pre-replicative complex (pre-R...

  8. Differential repetitive DNA composition in the centromeric region of chromosomes of Amazonian lizard species in the family Teiidae.

    Science.gov (United States)

    Carvalho, Natalia D M; Carmo, Edson; Neves, Rogerio O; Schneider, Carlos Henrique; Gross, Maria Claudia

    2016-01-01

    Differences in heterochromatin distribution patterns and its composition were observed in Amazonian teiid species. Studies have shown repetitive DNA harbors heterochromatic blocks which are located in centromeric and telomeric regions in Ameiva ameiva (Linnaeus, 1758), Kentropyx calcarata (Spix, 1825), Kentropyx pelviceps (Cope, 1868), and Tupinambis teguixin (Linnaeus, 1758). In Cnemidophorus sp.1, repetitive DNA has multiple signals along all chromosomes. The aim of this study was to characterize moderately and highly repetitive DNA sequences by C ot1-DNA from Ameiva ameiva and Cnemidophorus sp.1 genomes through cloning and DNA sequencing, as well as mapping them chromosomally to better understand its organization and genome dynamics. The results of sequencing of DNA libraries obtained by C ot1-DNA showed that different microsatellites, transposons, retrotransposons, and some gene families also comprise the fraction of repetitive DNA in the teiid species. FISH using C ot1-DNA probes isolated from both Ameiva ameiva and Cnemidophorus sp.1 showed these sequences mainly located in heterochromatic centromeric, and telomeric regions in Ameiva ameiva, Kentropyx calcarata, Kentropyx pelviceps, and Tupinambis teguixin chromosomes, indicating they play structural and functional roles in the genome of these species. In Cnemidophorus sp.1, C ot1-DNA probe isolated from Ameiva ameiva had multiple interstitial signals on chromosomes, whereas mapping of C ot1-DNA isolated from the Ameiva ameiva and Cnemidophorus sp.1 highlighted centromeric regions of some chromosomes. Thus, the data obtained showed that many repetitive DNA classes are part of the genome of Ameiva ameiva, Cnemidophorus sp.1, Kentroyx calcarata, Kentropyx pelviceps, and Tupinambis teguixin, and these sequences are shared among the analyzed teiid species, but they were not always allocated at the same chromosome position. PMID:27551343

  9. Defects of mitochondrial DNA replication.

    Science.gov (United States)

    Copeland, William C

    2014-09-01

    Mitochondrial DNA is replicated by DNA polymerase γ in concert with accessory proteins such as the mitochondrial DNA helicase, single-stranded DNA binding protein, topoisomerase, and initiating factors. Defects in mitochondrial DNA replication or nucleotide metabolism can cause mitochondrial genetic diseases due to mitochondrial DNA deletions, point mutations, or depletion, which ultimately cause loss of oxidative phosphorylation. These genetic diseases include mitochondrial DNA depletion syndromes such as Alpers or early infantile hepatocerebral syndromes, and mitochondrial DNA deletion disorders, such as progressive external ophthalmoplegia, ataxia-neuropathy, or mitochondrial neurogastrointestinal encephalomyopathy. This review focuses on our current knowledge of genetic defects of mitochondrial DNA replication (POLG, POLG2, C10orf2, and MGME1) that cause instability of mitochondrial DNA and mitochondrial disease.

  10. Mimiviruses: Replication, Purification, and Quantification.

    Science.gov (United States)

    Abrahão, Jônatas Santos; Oliveira, Graziele Pereira; Ferreira da Silva, Lorena Christine; Dos Santos Silva, Ludmila Karen; Kroon, Erna Geessien; La Scola, Bernard

    2016-01-01

    The aim of this protocol is to describe the replication, purification, and titration of mimiviruses. These viruses belong to the Mimiviridae family, the first member of which was isolated in 1992 from a cooling tower water sample collected during an outbreak of pneumonia in a hospital in Bradford, England. In recent years, several new mimiviruses have been isolated from different environmental conditions. These giant viruses are easily replicated in amoeba of the Acanthamoeba genus, its natural host. Mimiviruses present peculiar features that make them unique viruses, such as the particle and genome size and the genome's complexity. The discovery of these viruses rekindled discussions about their origin and evolution, and the genetic and structural complexity opened up a new field of study. Here, we describe some methods utilized for mimiviruses replication, purification, and titration. © 2016 by John Wiley & Sons, Inc. PMID:27153385

  11. Differential binding partners of the Mis18α/β YIPPEE domains regulates the Mis18 complex recruitment to centromeres

    OpenAIRE

    Madison E. Stellfox; Isaac K. Nardi; Christina M. Knippler; Daniel R. Foltz

    2016-01-01

    The Mis18 complex specifies the site of new CENP-A nucleosome assembly by recruiting the CENP-A-specific assembly factor HJURP (Holliday junction recognition protein). The human Mis18 complex consists of Mis18α, Mis18β, and Mis18 binding protein 1 (Mis18BP1/hsKNL2). Although Mis18α and Mis18β are highly homologous proteins, we find that their conserved YIPPEE domains mediate distinct interactions that are essential to link new CENP-A deposition to existing centromeres. We find that Mis18α dir...

  12. An analysis of the gene expression of a centromere constitutive protein CenpG affected by antisense CenpB

    Institute of Scientific and Technical Information of China (English)

    Liang Qianjin; He Dacheng; Wang Yongchao

    2005-01-01

    By means of indirect immunofluorescence (IIF), indirect immunofluorescence-flow cytometry (IIF FCM) and Western blot, the gene expression level and localization and distribution of CenpG in HeLa-Tet Off cell with the inhibition of the exuorescence is much less; (2) CenpG expresses less; (3) the CenpG antigenicity is inhibited by around 79%. It is suggested that the effects of antisense CenpB onCenpGare highly consistent to that on its own sense CenpB gene, disclosing the rather close relation between these two centromere proteins.

  13. Kinetic model of DNA replication in eukaryotic organisms

    CERN Document Server

    Herrick, J; Bensimon, A; Herrick, John; Bechhoefer, John; Bensimon, Aaron

    2001-01-01

    We formulate a kinetic model of DNA replication that quantitatively describes recent results on DNA replication in the in vitro system of Xenopus laevis prior to the mid-blastula transition. The model describes well a large amount of different data within a simple theoretical framework. This allows one, for the first time, to determine the parameters governing the DNA replication program in a eukaryote on a genome-wide basis. In particular, we have determined the frequency of origin activation in time and space during the cell cycle. Although we focus on a specific stage of development, this model can easily be adapted to describe replication in many other organisms, including budding yeast.

  14. Inferring the spatiotemporal DNA replication program from noisy data

    Science.gov (United States)

    Baker, A.; Bechhoefer, J.

    2014-03-01

    We generalize a stochastic model of DNA replication to the case where replication-origin-initiation rates vary locally along the genome and with time. Using this generalized model, we address the inverse problem of inferring initiation rates from experimental data concerning replication in cell populations. Previous work based on curve fitting depended on arbitrarily chosen functional forms for the initiation rate, with free parameters that were constrained by the data. We introduce a nonparametric method of inference that is based on Gaussian process regression. The method replaces specific assumptions about the functional form of the initiation rate with more general prior expectations about the smoothness of variation of this rate, along the genome and in time. Using this inference method, we recover, with high precision, simulated replication schemes from noisy data that are typical of current experiments.

  15. Performance analysis of static locking in replicated distributed database systems

    Science.gov (United States)

    Kuang, Yinghong; Mukkamala, Ravi

    1991-01-01

    Data replications and transaction deadlocks can severely affect the performance of distributed database systems. Many current evaluation techniques ignore these aspects, because it is difficult to evaluate through analysis and time consuming to evaluate through simulation. Here, a technique is discussed that combines simulation and analysis to closely illustrate the impact of deadlock and evaluate performance of replicated distributed databases with both shared and exclusive locks.

  16. Cellular factors required for papillomavirus DNA replication.

    OpenAIRE

    Melendy, T; Sedman, J; Stenlund, A

    1995-01-01

    In vitro replication of papillomavirus DNA has been carried out with a combination of purified proteins and partially purified extracts made from human cells. DNA synthesis requires the viral E1 protein and the papillomavirus origin of replication. The E2 protein stimulates DNA synthesis in a binding site-independent manner. Papillomavirus DNA replication is also dependent on the cellular factors replication protein A, replication factor C, and proliferating-cell nuclear antigen as well as a ...

  17. Deciphering DNA replication dynamics in eukaryotic cell populations in relation with their averaged chromatin conformations

    Science.gov (United States)

    Goldar, A.; Arneodo, A.; Audit, B.; Argoul, F.; Rappailles, A.; Guilbaud, G.; Petryk, N.; Kahli, M.; Hyrien, O.

    2016-03-01

    We propose a non-local model of DNA replication that takes into account the observed uncertainty on the position and time of replication initiation in eukaryote cell populations. By picturing replication initiation as a two-state system and considering all possible transition configurations, and by taking into account the chromatin’s fractal dimension, we derive an analytical expression for the rate of replication initiation. This model predicts with no free parameter the temporal profiles of initiation rate, replication fork density and fraction of replicated DNA, in quantitative agreement with corresponding experimental data from both S. cerevisiae and human cells and provides a quantitative estimate of initiation site redundancy. This study shows that, to a large extent, the program that regulates the dynamics of eukaryotic DNA replication is a collective phenomenon that emerges from the stochastic nature of replication origins initiation.

  18. A NASP (N1/N2)-related protein, Sim3, binds CENP-A and is required for its deposition at fission yeast centromeres

    OpenAIRE

    Dunleavy, Elaine M; Pidoux, Alison L.; Monet, Marie; Bonilla, Carolina; Richardson, William; Hamilton, Georgina L.; Ekwall, Karl; McLaughlin, Paul J.; Allshire, Robin C.

    2007-01-01

    A defining feature of centromeres is the presence of the histone H3 variant CENP-A(Cnp1). It is not known how CENP-A(Cnp1) is specifically delivered to, and assembled into, centromeric chromatin. Through a screen for factors involved in kinetochore integrity in fission yeast, we identified Sim3. Sim3 is homologous to known histone binding proteins NASP(Human) and N1/N2(Xenopus) and aligns with Hif1(S. cerevisiae), defining the SHNi-TPR family. Sim3 is distributed throughout the nucleoplasm, y...

  19. Human chromosome pellicle antibody recognizing centromere protein—C (CENP0C),the main component of the kinetochore

    Institute of Scientific and Technical Information of China (English)

    XIEYONG; ZUMEINI; 等

    1997-01-01

    Recently the antichromosome antisera from several sclerogerma patients have been found to recognize the pellicle of metaphase and anaphase chromosomes.In order to identify the pellicle components,we used these antichromosome antisera to screen a human embryonic cDNA library.The sequences of the positive clones are identical to the cDNA gene sequence of CENP-C (centromere protein C),a human centromere autoantigen.This result suggusts that CENP-C is a component of the pellicle of human metaphase and anaphase chromosomes.

  20. The replication-transcription conflict

    OpenAIRE

    Soultanas, Panos

    2011-01-01

    In response to environmental and nutritional stimuli, a whole array of proteins remodel genome architecture, activate or transcribe genes, suppress genes, repair lesions and base-modifications, faithfully replicate and safely separate the parental and daughter genomes during cell division. Negotiating and resolving conflicts of genome trafficking is essential for genome stability.

  1. Covert Reinforcement: A Partial Replication.

    Science.gov (United States)

    Ripstra, Constance C.; And Others

    A partial replication of an investigation of the effect of covert reinforcement on a perceptual estimation task is described. The study was extended to include an extinction phase. There were five treatment groups: covert reinforcement, neutral scene reinforcement, noncontingent covert reinforcement, and two control groups. Each subject estimated…

  2. Cellular Responses to Replication Problems

    NARCIS (Netherlands)

    M. Budzowska (Magdalena)

    2008-01-01

    textabstractDuring every S-phase cells need to duplicate their genomes so that both daughter cells inherit complete copies of genetic information. It is a tremendous task, given the large sizes of mammalian genomes and the required precision of DNA replication. A major threat to the accuracy and eff

  3. Hyperthermia stimulates HIV-1 replication.

    Directory of Open Access Journals (Sweden)

    Ferdinand Roesch

    Full Text Available HIV-infected individuals may experience fever episodes. Fever is an elevation of the body temperature accompanied by inflammation. It is usually beneficial for the host through enhancement of immunological defenses. In cultures, transient non-physiological heat shock (42-45°C and Heat Shock Proteins (HSPs modulate HIV-1 replication, through poorly defined mechanisms. The effect of physiological hyperthermia (38-40°C on HIV-1 infection has not been extensively investigated. Here, we show that culturing primary CD4+ T lymphocytes and cell lines at a fever-like temperature (39.5°C increased the efficiency of HIV-1 replication by 2 to 7 fold. Hyperthermia did not facilitate viral entry nor reverse transcription, but increased Tat transactivation of the LTR viral promoter. Hyperthermia also boosted HIV-1 reactivation in a model of latently-infected cells. By imaging HIV-1 transcription, we further show that Hsp90 co-localized with actively transcribing provirus, and this phenomenon was enhanced at 39.5°C. The Hsp90 inhibitor 17-AAG abrogated the increase of HIV-1 replication in hyperthermic cells. Altogether, our results indicate that fever may directly stimulate HIV-1 replication, in a process involving Hsp90 and facilitation of Tat-mediated LTR activity.

  4. Biomarkers of replicative senescence revisited

    DEFF Research Database (Denmark)

    Nehlin, Jan

    2016-01-01

    of telomere length and associated damage, and the accompanying changes that take place elicit signals that have an impact on a number of molecules and downstream events. Precise measurements of replicative senescence biomarkers in biological samples from individuals could be clinically associated...

  5. Crinivirus replication and host interactions

    Directory of Open Access Journals (Sweden)

    Zsofia A Kiss

    2013-05-01

    Full Text Available Criniviruses comprise one of the genera within the family Closteroviridae. Members in this family are restricted to the phloem and rely on whitefly vectors of the genera Bemisia and/or Trialeurodes for plant-to-plant transmission. All criniviruses have bipartite, positive-sense ssRNA genomes, although there is an unconfirmed report of one having a tripartite genome. Lettuce infectious yellows virus (LIYV is the type species of the genus, the best studied so far of the criniviruses and the first for which a reverse genetics system was available. LIYV RNA 1 encodes for proteins predicted to be involved in replication, and alone is competent for replication in protoplasts. Replication results in accumulation of cytoplasmic vesiculated membranous structures which are characteristic of most studied members of the Closteroviridae. These membranous structures, often referred to as BYV-type vesicles, are likely sites of RNA replication. LIYV RNA 2 is replicated in trans when co-infecting cells with RNA 1, but is temporally delayed relative to RNA1. Efficient RNA 2 replication also is dependent on the RNA 1-encoded RNA binding protein, P34. No LIYV RNA 2-encoded proteins have been shown to affect RNA replication, but at least four, CP, CPm, Hsp70h, and p59 are virion structural components and CPm is a determinant of whitefly transmissibility. Roles of other LIYV RNA 2-encoded proteins are largely as yet unknown, but P26 is a non-virion protein that accumulates in cells as characteristic plasmalemma deposits which in plants are localized within phloem parenchyma and companion cells over plasmodesmata connections to sieve elements. The two remaining crinivirus-conserved RNA 2-encoded proteins are P5 and P9. P5 is 39 amino acid protein and is encoded at the 5’ end of RNA 2 as ORF1 and is part of the hallmark closterovirus gene array. The orthologous gene in BYV has been shown to play a role in cell-to-cell movement and indicated to be localized to the

  6. Immunodeficiency, Centromeric instability, Facial anomalies (ICF) syndrome, due to ZBTB24 mutations, presenting with large cerebral cyst

    Science.gov (United States)

    Cerbone, Manuela; Wang, Jun; Van der Maarel, Silvère M.; d’Amico, Alessandra; d’Agostino, Antonio; Romano, Alfonso; Brunetti-Pierri, Nicola

    2012-01-01

    The Immunodeficiency, Centromeric instability, Facial anomalies (ICF) syndrome is an autosomal recessive disease presenting with immunodeficiency secondary to hypo- or agammaglobulinemia, developmental delay, and facial anomalies. Centromeric instability is the cytogenetic hallmark of the disorder which results from targeted chromosomal rearrangements related to a genomic methylation defect. We describe a patient carrying a homozygous mutation of the ZBTB24 gene, which has been recently shown to be responsible for ICF syndrome type 2. Our patient presented with intellectual disability, multiple café-au-lait spots, and a large cerebral arachnoidal cyst. Although laboratory signs of impaired immune function, such as reduced serum IgM were detected, our patient did not present clinical manifestations of immunodeficiency. Brain malformations have not been reported so far in ICF syndrome and it can be speculated that ZBTB24 mutations may alter cerebral development. Nevertheless, we cannot rule out that the presence of the cerebral cyst in the patient is coincidental. In summary, our patient illustrates that clinical evidence of immunodeficiency is not a universal feature of ICF2 syndrome type 2 and suggests that brain malformations may be present in other ICF cases. PMID:22786748

  7. Hsk1- and SCF(Pof3)-dependent proteolysis of S. pombe Ams2 ensures histone homeostasis and centromere function.

    Science.gov (United States)

    Takayama, Yuko; Mamnun, Yasmine M; Trickey, Michelle; Dhut, Susheela; Masuda, Fumie; Yamano, Hiroyuki; Toda, Takashi; Saitoh, Shigeaki

    2010-03-16

    Schizosaccharomyces pombe GATA factor Ams2 is responsible for cell cycle-dependent transcriptional activation of all the core histone genes peaking at G1/S phase. Intriguingly, its own protein level also fluctuates concurrently. Here, we show that Ams2 is ubiquitylated and degraded through the SCF (Skp1-Cdc53/Cullin-1-F-box) ubiquitin ligase, in which F box protein Pof3 binds this protein. Ams2 is phosphorylated at multiple sites, which is required for SCF(Pof3)-dependent proteolysis. Hsk1/Cdc7 kinase physically associates with and phosphorylates Ams2. Even mild overexpression of Ams2 induces constitutive histone expression and chromosome instability, and its toxicity is exaggerated when Hsk1 function is compromised. This is partly attributable to abnormal incorporation of canonical H3 into the central CENP-A/Cnp1-rich centromere, thereby reversing specific chromatin structures to apparently normal nucleosomes. We propose that Hsk1 plays a vital role during post S phase in genome stability via SCF(Pof3)-mediated degradation of Ams2, thereby maintaining centromere integrity. PMID:20230746

  8. Microsatellite marker analysis of an anther-derived potato family: skewed segregation and gene-centromere mapping.

    Science.gov (United States)

    Chani, Eduard; Ashkenazi, Varda; Hillel, Jossi; Veilleux, Richard E

    2002-04-01

    Segregation patterns of polymorphic simple sequence repeat (SSR) primer pairs were investigated in monoploid potato families derived from anther culture. A total of 14 primers developed from the sequences in the database, as well as from a genomic library of potato, was used. Distorted segregation was observed for seven (50%) polymorphic loci among monoploids derived from an interspecific hybrid. Similar distortion was observed for only one of five loci that could be contrasted between the two monoploid families. Segregation distortion was less common in the sexually derived backcross population between the interspecific hybrid and either of its parents. One locus could be putatively linked to a lethal allele because it showed distorted segregation in both monoploid families, a group of 70 heterozygous diploids derived from unreduced gametes through anther culture, and a backcross population. These diploids were used to map the polymorphic SSR markers with respect to the centromeres using half-tetrad analysis. The majority of the SSR loci mapped more than 33 cM from the centromere, suggesting the occurrence of a single crossover per chromosome arm. PMID:11962620

  9. A comparative approach to elucidate chloroplast genome replication

    Directory of Open Access Journals (Sweden)

    Krishnan Neeraja M

    2009-05-01

    Full Text Available Abstract Background Electron microscopy analyses of replicating chloroplast molecules earlier predicted bidirectional Cairns replication as the prevalent mechanism, perhaps followed by rounds of a rolling circle mechanism. This standard model is being challenged by the recent proposition of homologous recombination-mediated replication in chloroplasts. Results We address this issue in our current study by analyzing nucleotide composition in genome regions between known replication origins, with an aim to reveal any adenine to guanine deamination gradients. These gradual linear gradients typically result from the accumulation of deaminations over the time spent single-stranded by one of the strands of the circular molecule during replication and can, therefore, be used to model the course of replication. Our linear regression analyses on the nucleotide compositions of the non-coding regions and the synonymous third codon position of coding regions, between pairs of replication origins, reveal the existence of significant adenine to guanine deamination gradients in portions overlapping the Small Single Copy (SSC and the Large Single Copy (LSC regions between inverted repeats. These gradients increase bi-directionally from the center of each region towards the respective ends, suggesting that both the strands were left single-stranded during replication. Conclusion Single-stranded regions of the genome and gradients in time that these regions are left single-stranded, as revealed by our nucleotide composition analyses, appear to converge with the original bi-directional dual displacement loop model and restore evidence for its existence as the primary mechanism. Other proposed faster modes such as homologous recombination and rolling circle initiation could exist in addition to this primary mechanism to facilitate homoplasmy among the intra-cellular chloroplast population

  10. Hyperthermia stimulates HIV-1 replication.

    OpenAIRE

    Ferdinand Roesch; Oussama Meziane; Anna Kula; Sébastien Nisole; Françoise Porrot; Ian Anderson; Fabrizio Mammano; Ariberto Fassati; Alessandro Marcello; Monsef Benkirane; Olivier Schwartz

    2012-01-01

    International audience HIV-infected individuals may experience fever episodes. Fever is an elevation of the body temperature accompanied by inflammation. It is usually beneficial for the host through enhancement of immunological defenses. In cultures, transient non-physiological heat shock (42-45°C) and Heat Shock Proteins (HSPs) modulate HIV-1 replication, through poorly defined mechanisms. The effect of physiological hyperthermia (38-40°C) on HIV-1 infection has not been extensively inve...

  11. Fluorescence In Situ Hybridization (FISH-Based Karyotyping Reveals Rapid Evolution of Centromeric and Subtelomeric Repeats in Common Bean (Phaseolus vulgaris and Relatives

    Directory of Open Access Journals (Sweden)

    Aiko Iwata-Otsubo

    2016-04-01

    Full Text Available Fluorescence in situ hybridization (FISH-based karyotyping is a powerful cytogenetics tool to study chromosome organization, behavior, and chromosome evolution. Here, we developed a FISH-based karyotyping system using a probe mixture comprised of centromeric and subtelomeric satellite repeats, 5S rDNA, and chromosome-specific BAC clones in common bean, which enables one to unambiguously distinguish all 11 chromosome pairs. Furthermore, we applied the karyotyping system to several wild relatives and landraces of common bean from two distinct gene pools, as well as other related Phaseolus species, to investigate repeat evolution in the genus Phaseolus. Comparison of karyotype maps within common bean indicates that chromosomal distribution of the centromeric and subtelomeric satellite repeats is stable, whereas the copy number of the repeats was variable, indicating rapid amplification/reduction of the repeats in specific genomic regions. In Phaseolus species that diverged approximately 2–4 million yr ago, copy numbers of centromeric repeats were largely reduced or diverged, and chromosomal distributions have changed, suggesting rapid evolution of centromeric repeats. We also detected variation in the distribution pattern of subtelomeric repeats in Phaseolus species. The FISH-based karyotyping system revealed that satellite repeats are actively and rapidly evolving, forming genomic features unique to individual common bean accessions and Phaseolus species.

  12. Quantification, by solid-phase minisequencing, of the telomeric and centromeric copies of the survival motor neuron gene in families with spinal muscular atrophy

    DEFF Research Database (Denmark)

    Schwartz, M; Sørensen, N; Hansen, F J;

    1997-01-01

    In an analysis of 30 families affected by spinal muscular atrophy (SMA) we have used the solid-phase minisequencing method to determine the ratio between the number of telomeric and centromeric copies of the survival motor neuron gene (SMN and cBCD541 respectively) on normal and SMA chromosomes...

  13. Construction and characterization of a BAC library for the molecular dissection of a single wild beet centromere and sugar beet (Beta vulgaris) genome analysis.

    Science.gov (United States)

    Gindullis, F; Dechyeva, D; Schmidt, T

    2001-10-01

    We have constructed a sugar beet bacterial artificial chromosome (BAC) library of the chromosome mutant PRO1. This Beta vulgaris mutant carries a single chromosome fragment of 6-9 Mbp that is derived from the wild beet Beta procumbens and is transmitted efficiently in meiosis and mitosis. The library consists of 50,304 clones, with an average insert size of 125 kb. Filter hybridizations revealed that approximately 3.1% of the clones contain mitochondrial or chloroplast DNA. Based on a haploid genome size of 758 Mbp, the library represents eight genome equivalents. Thus, there is a greater than 99.96% probability that any sequence of the PROI genome can be found in the library. Approximately 0.2% of the clones hybridized with centromeric sequences of the PRO1 minichromosome. Using the identified BAC clones in fluorescence in situ hybridization experiments with PRO1 and B. procumbens chromosome spreads, their wild-beet origin and centromeric localization were demonstrated. Comparative Southern hybridization of pulsed-field separated PROI DNA and BAC inserts indicate that the centromeric region of the minichromosome is represented by overlapping clones in the library. Therefore, the PRO1 BAC library provides a useful tool for the characterization of a single plant centromere and is a valuable resource for sugar beet genome analysis.

  14. Fluorescence In Situ Hybridization (FISH)-Based Karyotyping Reveals Rapid Evolution of Centromeric and Subtelomeric Repeats in Common Bean (Phaseolus vulgaris) and Relatives.

    Science.gov (United States)

    Iwata-Otsubo, Aiko; Radke, Brittany; Findley, Seth; Abernathy, Brian; Vallejos, C Eduardo; Jackson, Scott A

    2016-01-01

    Fluorescence in situ hybridization (FISH)-based karyotyping is a powerful cytogenetics tool to study chromosome organization, behavior, and chromosome evolution. Here, we developed a FISH-based karyotyping system using a probe mixture comprised of centromeric and subtelomeric satellite repeats, 5S rDNA, and chromosome-specific BAC clones in common bean, which enables one to unambiguously distinguish all 11 chromosome pairs. Furthermore, we applied the karyotyping system to several wild relatives and landraces of common bean from two distinct gene pools, as well as other related Phaseolus species, to investigate repeat evolution in the genus Phaseolus Comparison of karyotype maps within common bean indicates that chromosomal distribution of the centromeric and subtelomeric satellite repeats is stable, whereas the copy number of the repeats was variable, indicating rapid amplification/reduction of the repeats in specific genomic regions. In Phaseolus species that diverged approximately 2-4 million yr ago, copy numbers of centromeric repeats were largely reduced or diverged, and chromosomal distributions have changed, suggesting rapid evolution of centromeric repeats. We also detected variation in the distribution pattern of subtelomeric repeats in Phaseolus species. The FISH-based karyotyping system revealed that satellite repeats are actively and rapidly evolving, forming genomic features unique to individual common bean accessions and Phaseolus species. PMID:26865698

  15. Lack of independent prognostic and predictive value of centromere 17 copy number changes in breast cancer patients with known HER2 and TOP2A status

    DEFF Research Database (Denmark)

    Nielsen, Kirsten Vang; Ejlertsen, Bent; Møller, Susanne;

    2011-01-01

    The clinical benefit of anthracyclines has been connected to HER2 status, TOP2A status and centromere 17 copy numbers (CEN-17). Data from a clinical trial randomizing patients to anthracyclines was used to assess whether the number of CEN-17 in breast cancers may predict incremental responsivenes...

  16. Genome-wide alterations of the DNA replication program during tumor progression

    Science.gov (United States)

    Arneodo, A.; Goldar, A.; Argoul, F.; Hyrien, O.; Audit, B.

    2016-08-01

    Oncogenic stress is a major driving force in the early stages of cancer development. Recent experimental findings reveal that, in precancerous lesions and cancers, activated oncogenes may induce stalling and dissociation of DNA replication forks resulting in DNA damage. Replication timing is emerging as an important epigenetic feature that recapitulates several genomic, epigenetic and functional specificities of even closely related cell types. There is increasing evidence that chromosome rearrangements, the hallmark of many cancer genomes, are intimately associated with the DNA replication program and that epigenetic replication timing changes often precede chromosomic rearrangements. The recent development of a novel methodology to map replication fork polarity using deep sequencing of Okazaki fragments has provided new and complementary genome-wide replication profiling data. We review the results of a wavelet-based multi-scale analysis of genomic and epigenetic data including replication profiles along human chromosomes. These results provide new insight into the spatio-temporal replication program and its dynamics during differentiation. Here our goal is to bring to cancer research, the experimental protocols and computational methodologies for replication program profiling, and also the modeling of the spatio-temporal replication program. To illustrate our purpose, we report very preliminary results obtained for the chronic myelogeneous leukemia, the archetype model of cancer. Finally, we discuss promising perspectives on using genome-wide DNA replication profiling as a novel efficient tool for cancer diagnosis, prognosis and personalized treatment.

  17. Evaluating replicability of laboratory experiments in economics.

    Science.gov (United States)

    Camerer, Colin F; Dreber, Anna; Forsell, Eskil; Ho, Teck-Hua; Huber, Jürgen; Johannesson, Magnus; Kirchler, Michael; Almenberg, Johan; Altmejd, Adam; Chan, Taizan; Heikensten, Emma; Holzmeister, Felix; Imai, Taisuke; Isaksson, Siri; Nave, Gideon; Pfeiffer, Thomas; Razen, Michael; Wu, Hang

    2016-03-25

    The replicability of some scientific findings has recently been called into question. To contribute data about replicability in economics, we replicated 18 studies published in the American Economic Review and the Quarterly Journal of Economics between 2011 and 2014. All of these replications followed predefined analysis plans that were made publicly available beforehand, and they all have a statistical power of at least 90% to detect the original effect size at the 5% significance level. We found a significant effect in the same direction as in the original study for 11 replications (61%); on average, the replicated effect size is 66% of the original. The replicability rate varies between 67% and 78% for four additional replicability indicators, including a prediction market measure of peer beliefs. PMID:26940865

  18. Replication of micro and nano surface geometries

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Hocken, R.J.; Tosello, Guido

    2011-01-01

    The paper describes the state-of-the-art in replication of surface texture and topography at micro and nano scale. The description includes replication of surfaces in polymers, metals and glass. Three different main technological areas enabled by surface replication processes are presented......: manufacture of net-shape micro/nano surfaces, tooling (i.e. master making), and surface quality control (metrology, inspection). Replication processes and methods as well as the metrology of surfaces to determine the degree of replication are presented and classified. Examples from various application areas...... are given including replication for surface texture measurements, surface roughness standards, manufacture of micro and nano structured functional surfaces, replicated surfaces for optical applications (e.g. optical gratings), and process chains based on combinations of repeated surface replication steps....

  19. Mutator phenotypes due to DNA replication infidelity

    OpenAIRE

    Arana, Mercedes E.; Kunkel, Thomas A.

    2010-01-01

    This article considers the fidelity of DNA replication performed by eukaryotic DNA polymerases involved in replicating the nuclear genome. DNA replication fidelity can vary widely depending on the DNA polymerase, the composition of the error, the flanking sequence, the presence of DNA damage and the ability to correct errors. As a consequence, defects in processes that determine DNA replication fidelity can confer strong mutator phenotypes whose specificity can help determine the molecular na...

  20. Possible applications for replicating HIV 1 vectors

    OpenAIRE

    Das, Atze T.; Jeeninga, Rienk E.; Berkhout, Ben

    2010-01-01

    Since its discovery some 25 years ago, much has been learned about HIV type 1 and the molecular details of its replication cycle. This insight has been used to develop lentiviral vector systems that have advantages over conventional retroviral vector systems. For safety reasons, the lentiviral vector systems are replication incompetent and the risk of generating a replication competent virus has been minimized. Nevertheless, there may be certain applications for replication competent HIV base...

  1. Schizosaccharomyces pombe centromere protein Mis19 links Mis16 and Mis18 to recruit CENP-A through interacting with NMD factors and the SWI/SNF complex.

    Science.gov (United States)

    Hayashi, Takeshi; Ebe, Masahiro; Nagao, Koji; Kokubu, Aya; Sajiki, Kenichi; Yanagida, Mitsuhiro

    2014-07-01

    CENP-A is a centromere-specific variant of histone H3 that is required for accurate chromosome segregation. The fission yeast Schizosaccharomyces pombe and mammalian Mis16 and Mis18 form a complex essential for CENP-A recruitment to centromeres. It is unclear, however, how the Mis16-Mis18 complex achieves this function. Here, we identified, by mass spectrometry, novel fission yeast centromere proteins Mis19 and Mis20 that directly interact with Mis16 and Mis18. Like Mis18, Mis19 and Mis20 are localized at the centromeres during interphase, but not in mitosis. Inactivation of Mis19 in a newly isolated temperature-sensitive mutant resulted in CENP-A delocalization and massive chromosome missegregation, whereas Mis20 was dispensable for proper chromosome segregation. Mis19 might be a bridge component for Mis16 and Mis18. We isolated extragenic suppressor mutants for temperature-sensitive mis18 and mis19 mutants and used whole-genome sequencing to determine the mutated sites. We identified two groups of loss-of-function suppressor mutations in non-sense-mediated mRNA decay factors (upf2 and ebs1), and in SWI/SNF chromatin-remodeling components (snf5, snf22 and sol1). Our results suggest that the Mis16-Mis18-Mis19-Mis20 CENP-A-recruiting complex, which is functional in the G1-S phase, may be counteracted by the SWI/SNF chromatin-remodeling complex and non-sense-mediated mRNA decay, which may prevent CENP-A deposition at the centromere. PMID:24774534

  2. Schizosaccharomyces pombe centromere protein Mis19 links Mis16 and Mis18 to recruit CENP-A through interacting with NMD factors and the SWI/SNF complex.

    Science.gov (United States)

    Hayashi, Takeshi; Ebe, Masahiro; Nagao, Koji; Kokubu, Aya; Sajiki, Kenichi; Yanagida, Mitsuhiro

    2014-07-01

    CENP-A is a centromere-specific variant of histone H3 that is required for accurate chromosome segregation. The fission yeast Schizosaccharomyces pombe and mammalian Mis16 and Mis18 form a complex essential for CENP-A recruitment to centromeres. It is unclear, however, how the Mis16-Mis18 complex achieves this function. Here, we identified, by mass spectrometry, novel fission yeast centromere proteins Mis19 and Mis20 that directly interact with Mis16 and Mis18. Like Mis18, Mis19 and Mis20 are localized at the centromeres during interphase, but not in mitosis. Inactivation of Mis19 in a newly isolated temperature-sensitive mutant resulted in CENP-A delocalization and massive chromosome missegregation, whereas Mis20 was dispensable for proper chromosome segregation. Mis19 might be a bridge component for Mis16 and Mis18. We isolated extragenic suppressor mutants for temperature-sensitive mis18 and mis19 mutants and used whole-genome sequencing to determine the mutated sites. We identified two groups of loss-of-function suppressor mutations in non-sense-mediated mRNA decay factors (upf2 and ebs1), and in SWI/SNF chromatin-remodeling components (snf5, snf22 and sol1). Our results suggest that the Mis16-Mis18-Mis19-Mis20 CENP-A-recruiting complex, which is functional in the G1-S phase, may be counteracted by the SWI/SNF chromatin-remodeling complex and non-sense-mediated mRNA decay, which may prevent CENP-A deposition at the centromere.

  3. DNA Replication Reaches the Breaking Point

    OpenAIRE

    Petrini, John H.J.

    2009-01-01

    DNA strand breaks that result in stalled or damaged replication forks can be detrimental to the DNA replication process. In this issue, Doksani et al. (2009) examine the impact of a single double-stranded DNA break on replication in the budding yeast, Saccharomyces cerevisiae.

  4. Exploiting replicative stress to treat cancer

    DEFF Research Database (Denmark)

    Dobbelstein, Matthias; Sørensen, Claus Storgaard

    2015-01-01

    DNA replication in cancer cells is accompanied by stalling and collapse of the replication fork and signalling in response to DNA damage and/or premature mitosis; these processes are collectively known as 'replicative stress'. Progress is being made to increase our understanding of the mechanisms...

  5. Statistical analysis of 3D images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei.

    Directory of Open Access Journals (Sweden)

    Philippe Andrey

    Full Text Available In eukaryotes, the interphase nucleus is organized in morphologically and/or functionally distinct nuclear "compartments". Numerous studies highlight functional relationships between the spatial organization of the nucleus and gene regulation. This raises the question of whether nuclear organization principles exist and, if so, whether they are identical in the animal and plant kingdoms. We addressed this issue through the investigation of the three-dimensional distribution of the centromeres and chromocenters. We investigated five very diverse populations of interphase nuclei at different differentiation stages in their physiological environment, belonging to rabbit embryos at the 8-cell and blastocyst stages, differentiated rabbit mammary epithelial cells during lactation, and differentiated cells of Arabidopsis thaliana plantlets. We developed new tools based on the processing of confocal images and a new statistical approach based on G- and F- distance functions used in spatial statistics. Our original computational scheme takes into account both size and shape variability by comparing, for each nucleus, the observed distribution against a reference distribution estimated by Monte-Carlo sampling over the same nucleus. This implicit normalization allowed similar data processing and extraction of rules in the five differentiated nuclei populations of the three studied biological systems, despite differences in chromosome number, genome organization and heterochromatin content. We showed that centromeres/chromocenters form significantly more regularly spaced patterns than expected under a completely random situation, suggesting that repulsive constraints or spatial inhomogeneities underlay the spatial organization of heterochromatic compartments. The proposed technique should be useful for identifying further spatial features in a wide range of cell types.

  6. Replication domains are self-interacting structural chromatin units of human chromosomes

    Science.gov (United States)

    Arneodo, Alain

    2011-03-01

    In higher eukaryotes, the absence of specific sequence motifs marking the origins of replication has been a serious hindrance to the understanding of the mechanisms that regulate the initiation and the maintenance of the replication program in different cell types. In silico analysis of nucleotide compositional skew has predicted the existence, in the germline, of replication N-domains bordered by putative replication origins and where the skew decreases rather linearly as the signature of a progressive inversion of the average fork polarity. Here, from the demonstration that the average fork polarity can be directly extracted from the derivative of replication timing profiles, we develop a wavelet-based pattern recognition methodology to delineate replication U-domains where the replication timing profile is shaped as a U and its derivative as a N. Replication U-domains are robustly found in seven cell lines as covering a significant portion (40-50%) of the human genome where the replication timing data actually displays some plasticity between cell lines. The early replication initiation zones at U-domains borders are found to be hypersensitive to DNase I cleavage, to be associated with transcriptional activity and to present a significant enrichment in insular-binding proteins CTCF, the hallmark of an open chromatin structure. A comparative analysis of genome-wide chromatin interaction (HiC) data shows that replication-U domains correspond to self-interacting structural high order chromatin units of megabase characteristic size. Taken together, these findings provide evidence that the epigenetic compartmentalization of the human genome into autonomous replication U-domains comes along with an extensive remodelling of the threedimensional chromosome architecture during development or in specific diseases. The observed cell specific conservation of the replication timing between the human and mouse genomes strongly suggests that this chromosome organization into

  7. Lipid Membranes in Poxvirus Replication

    Directory of Open Access Journals (Sweden)

    Jason P. Laliberte

    2010-04-01

    Full Text Available Poxviruses replicate in the cytoplasm, where they acquire multiple lipoprotein membranes. Although a proposal that the initial membrane arises de novo has not been substantiated, there is no accepted explanation for its formation from cellular membranes. A subsequent membrane-wrapping step involving modified trans-Golgi or endosomal cisternae results in a particle with three membranes. These wrapped virions traverse the cytoplasm on microtubules; the outermost membrane is lost during exocytosis, the middle one is lost just prior to cell entry, and the remaining membrane fuses with the cell to allow the virus core to enter the cytoplasm and initiate a new infection.

  8. Mis17 Is a Regulatory Module of the Mis6-Mal2-Sim4 Centromere Complex That Is Required for the Recruitment of CenH3/CENP-A in Fission Yeast

    OpenAIRE

    Yoshiharu Shiroiwa; Takeshi Hayashi; Yohta Fujita; Alejandro Villar-Briones; Nobuyasu Ikai; Kojiro Takeda; Masahiro Ebe; Mitsuhiro Yanagida

    2011-01-01

    BACKGROUND: The centromere is the chromosome domain on which the mitotic kinetochore forms for proper segregation. Deposition of the centromeric histone H3 (CenH3, CENP-A) is vital for the formation of centromere-specific chromatin. The Mis6-Mal2-Sim4 complex of the fission yeast S. pombe is required for the recruitment of CenH3 (Cnp1), but its function remains obscure. METHODOLOGY/PRINCIPAL FINDINGS: Mass spectrometry was performed on the proteins precipitated with Mis6- and Mis17-FLAG. The ...

  9. How Xenopus laevis embryos replicate reliably: investigating the random-completion problem

    CERN Document Server

    Yang, Scott Cheng-Hsin

    2008-01-01

    DNA synthesis in \\textit{Xenopus} frog embryos initiates stochastically in time at many sites (origins) along the chromosome. Stochastic initiation implies fluctuations in the time to complete and may lead to cell death if replication takes longer than the cell cycle time ($\\approx 25$ min). Surprisingly, although the typical replication time is about 20 min, \\textit{in vivo} experiments show that replication fails to complete only about 1 in 300 times. How is replication timing accurately controlled despite the stochasticity? Biologists have proposed two solutions to this "random-completion problem." The first solution uses randomly located origins but increases their rate of initiation as S phase proceeds, while the second uses regularly spaced origins. In this paper, we investigate the random-completion problem using a type of model first developed to describe the kinetics of first-order phase transitions. Using methods from the field of extreme-value statistics, we derive the distribution of replication-c...

  10. Self-replication of DNA rings

    Science.gov (United States)

    Kim, Junghoon; Lee, Junwye; Hamada, Shogo; Murata, Satoshi; Ha Park, Sung

    2015-06-01

    Biology provides numerous examples of self-replicating machines, but artificially engineering such complex systems remains a formidable challenge. In particular, although simple artificial self-replicating systems including wooden blocks, magnetic systems, modular robots and synthetic molecular systems have been devised, such kinematic self-replicators are rare compared with examples of theoretical cellular self-replication. One of the principal reasons for this is the amount of complexity that arises when you try to incorporate self-replication into a physical medium. In this regard, DNA is a prime candidate material for constructing self-replicating systems due to its ability to self-assemble through molecular recognition. Here, we show that DNA T-motifs, which self-assemble into ring structures, can be designed to self-replicate through toehold-mediated strand displacement reactions. The inherent design of these rings allows the population dynamics of the systems to be controlled. We also analyse the replication scheme within a universal framework of self-replication and derive a quantitative metric of the self-replicability of the rings.

  11. Rapid, Semiquantitative Assay To Discriminate among Compounds with Activity against Replicating or Nonreplicating Mycobacterium tuberculosis

    OpenAIRE

    Gold, Ben; Roberts, Julia; Ling, Yan; Quezada, Landys Lopez; Glasheen, Jou; Ballinger, Elaine; Somersan-Karakaya, Selin; Warrier, Thulasi; Warren, J. David; Nathan, Carl

    2015-01-01

    The search for drugs that can kill replicating and nonreplicating Mycobacterium tuberculosis faces practical bottlenecks. Measurement of CFU and discrimination of bacteriostatic from bactericidal activity are costly in compounds, supplies, labor, and time. Testing compounds against M. tuberculosis under conditions that prevent the replication of M. tuberculosis often involves a second phase of the test in which conditions are altered to permit the replication of bacteria that survived the fir...

  12. DNA Replication via Entanglement Swapping

    CERN Document Server

    Pusuluk, Onur

    2010-01-01

    Quantum effects are mainly used for the determination of molecular shapes in molecular biology, but quantum information theory may be a more useful tool to understand the physics of life. Molecular biology assumes that function is explained by structure, the complementary geometries of molecules and weak intermolecular hydrogen bonds. However, both this assumption and its converse are possible if organic molecules and quantum circuits/protocols are considered as hardware and software of living systems that are co-optimized during evolution. In this paper, we try to model DNA replication as a multiparticle entanglement swapping with a reliable qubit representation of nucleotides. In the model, molecular recognition of a nucleotide triggers an intrabase entanglement corresponding to a superposition state of different tautomer forms. Then, base pairing occurs by swapping intrabase entanglements with interbase entanglements.

  13. Therapeutic targeting of replicative immortality.

    Science.gov (United States)

    Yaswen, Paul; MacKenzie, Karen L; Keith, W Nicol; Hentosh, Patricia; Rodier, Francis; Zhu, Jiyue; Firestone, Gary L; Matheu, Ander; Carnero, Amancio; Bilsland, Alan; Sundin, Tabetha; Honoki, Kanya; Fujii, Hiromasa; Georgakilas, Alexandros G; Amedei, Amedeo; Amin, Amr; Helferich, Bill; Boosani, Chandra S; Guha, Gunjan; Ciriolo, Maria Rosa; Chen, Sophie; Mohammed, Sulma I; Azmi, Asfar S; Bhakta, Dipita; Halicka, Dorota; Niccolai, Elena; Aquilano, Katia; Ashraf, S Salman; Nowsheen, Somaira; Yang, Xujuan

    2015-12-01

    One of the hallmarks of malignant cell populations is the ability to undergo continuous proliferation. This property allows clonal lineages to acquire sequential aberrations that can fuel increasingly autonomous growth, invasiveness, and therapeutic resistance. Innate cellular mechanisms have evolved to regulate replicative potential as a hedge against malignant progression. When activated in the absence of normal terminal differentiation cues, these mechanisms can result in a state of persistent cytostasis. This state, termed "senescence," can be triggered by intrinsic cellular processes such as telomere dysfunction and oncogene expression, and by exogenous factors such as DNA damaging agents or oxidative environments. Despite differences in upstream signaling, senescence often involves convergent interdependent activation of tumor suppressors p53 and p16/pRB, but can be induced, albeit with reduced sensitivity, when these suppressors are compromised. Doses of conventional genotoxic drugs required to achieve cancer cell senescence are often much lower than doses required to achieve outright cell death. Additional therapies, such as those targeting cyclin dependent kinases or components of the PI3K signaling pathway, may induce senescence specifically in cancer cells by circumventing defects in tumor suppressor pathways or exploiting cancer cells' heightened requirements for telomerase. Such treatments sufficient to induce cancer cell senescence could provide increased patient survival with fewer and less severe side effects than conventional cytotoxic regimens. This positive aspect is countered by important caveats regarding senescence reversibility, genomic instability, and paracrine effects that may increase heterogeneity and adaptive resistance of surviving cancer cells. Nevertheless, agents that effectively disrupt replicative immortality will likely be valuable components of new combinatorial approaches to cancer therapy. PMID:25869441

  14. Replicator equations, maximal cliques, and graph isomorphism.

    Science.gov (United States)

    Pelillo, M

    1999-11-15

    We present a new energy-minimization framework for the graph isomorphism problem that is based on an equivalent maximum clique formulation. The approach is centered around a fundamental result proved by Motzkin and Straus in the mid-1960s, and recently expanded in various ways, which allows us to formulate the maximum clique problem in terms of a standard quadratic program. The attractive feature of this formulation is that a clear one-to-one correspondence exists between the solutions of the quadratic program and those in the original, combinatorial problem. To solve the program we use the so-called replicator equations--a class of straightforward continuous- and discrete-time dynamical systems developed in various branches of theoretical biology. We show how, despite their inherent inability to escape from local solutions, they nevertheless provide experimental results that are competitive with those obtained using more elaborate mean-field annealing heuristics. PMID:10578039

  15. Security in a Replicated Metadata Catalogue

    CERN Document Server

    Koblitz, B

    2007-01-01

    The gLite-AMGA metadata has been developed by NA4 to provide simple relational metadata access for the EGEE user community. As advanced features, which will be the focus of this presentation, AMGA provides very fine-grained security also in connection with the built-in support for replication and federation of metadata. AMGA is extensively used by the biomedical community to store medical images metadata, digital libraries, in HEP for logging and bookkeeping data and in the climate community. The biomedical community intends to deploy a distributed metadata system for medical images consisting of various sites, which range from hospitals to computing centres. Only safe sharing of the highly sensitive metadata as provided in AMGA makes such a scenario possible. Other scenarios are digital libraries, which federate copyright protected (meta-) data into a common catalogue. The biomedical and digital libraries have been deployed using a centralized structure already for some time. They now intend to decentralize ...

  16. Metadata Control Agent approach for Replication in Grid Environments

    Directory of Open Access Journals (Sweden)

    P. SunilGavaskar

    2013-10-01

    Full Text Available since grid environment is dynamic, network latency and user requests may change. In order to provide better communication, access time and fault tolerant in decentralized systems, the replication is a technique to reduce access time, storage space. The objective of the work is to propose an agent control approach for Heterogeneous environments using the Agents for storing objects as replicas in decentralized environments. Our idea minimizes the more replicas (i.e. causes overhead on response time and update cost, therefore maintaining suitable number of replicas is important. Fixed replicas provides file access structure to identify the esteem files and gives optimal replication location, which minimize replication issues like access time and update cost by assuming a given traffic pattern. In this context we present the Agents as replicas to maintain a suitable scalable architecture. The solution uses fewer replicas, which lead to fewer agents as a result of that frequent updating is possible. Our tests show that the proposed strategy outperforms previous solutions in terms of replication issues.

  17. DNA primase acts as a molecular brake in DNA replication

    NARCIS (Netherlands)

    Lee, Jong-Bong; Hite, Richard K.; Hamdan, Samir M.; Xie, X. Sunney; Richardson, Charles C.; Oijen, Antoine M. van

    2006-01-01

    A hallmark feature of DNA replication is the coordination between the continuous polymerization of nucleotides on the leading strand and the discontinuous synthesis of DNA on the lagging strand. This synchronization requires a precisely timed series of enzymatic steps that control the synthesis of a

  18. Failure to Replicate the "Work Ethic" Effect in Pigeons

    Science.gov (United States)

    Vasconcelos, Marco; Urcuioli, Peter J.; Lionello-DeNolf, Karen M.

    2007-01-01

    We report six unsuccessful attempts to replicate the "work ethic" phenomenon reported by Clement, Feltus, Kaiser, and Zentall (2000). In Experiments 1-5, pigeons learned two simultaneous discriminations in which the S+ and S- stimuli were obtained by pecking an initial stimulus once or multiple (20 or 40) times. Subsequent preference tests between…

  19. Dengue virus binding and replication by platelets.

    Science.gov (United States)

    Simon, Ayo Y; Sutherland, Michael R; Pryzdial, Edward L G

    2015-07-16

    Dengue virus (DENV) infection causes ∼200 million cases of severe flulike illness annually, escalating to life-threatening hemorrhagic fever or shock syndrome in ∼500,000. Although thrombocytopenia is typical of both mild and severe diseases, the mechanism triggering platelet reduction is incompletely understood. As a probable initiating event, direct purified DENV-platelet binding was followed in the current study by quantitative reverse transcription-polymerase chain reaction and confirmed antigenically. Approximately 800 viruses specifically bound per platelet at 37°C. Fewer sites were observed at 25°C, the blood bank storage temperature (∼350 sites), or 4°C, known to attenuate virus cell entry (∼200 sites). Dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) and heparan sulfate proteoglycan were implicated as coreceptors because only the combination of anti-DC-SIGN and low-molecular-weight heparin prevented binding. Interestingly, at 37°C and 25°C, platelets replicated the positive sense single-stranded RNA genome of DENV by up to ∼4-fold over 7 days. Further time course experiments demonstrated production of viral NS1 protein, which is known to be highly antigenic in patient serum. The infectivity of DENV intrinsically decayed in vitro, which was moderated by platelet-mediated generation of viable progeny. This was shown using a transcription inhibitor and confirmed by freeze-denatured platelets being incapable of replicating the DENV genome. For the first time, these data demonstrate that platelets directly bind DENV saturably and produce infectious virus. Thus, expression of antigen encoded by DENV is a novel consideration in the pathogen-induced thrombocytopenia mechanism. These results furthermore draw attention to the possibility that platelets may produce permissive RNA viruses in addition to DENV.

  20. Delay Scheduling Based Replication Scheme for Hadoop Distributed File System

    Directory of Open Access Journals (Sweden)

    S. Suresh

    2015-03-01

    Full Text Available The data generated and processed by modern computing systems burgeon rapidly. MapReduce is an important programming model for large scale data intensive applications. Hadoop is a popular open source implementation of MapReduce and Google File System (GFS. The scalability and fault-tolerance feature of Hadoop makes it as a standard for BigData processing. Hadoop uses Hadoop Distributed File System (HDFS for storing data. Data reliability and faulttolerance is achieved through replication in HDFS. In this paper, a new technique called Delay Scheduling Based Replication Algorithm (DSBRA is proposed to identify and replicate (dereplicate the popular (unpopular files/blocks in HDFS based on the information collected from the scheduler. Experimental results show that, the proposed method achieves 13% and 7% improvements in response time and locality over existing algorithms respectively.

  1. Federated SPARQL Queries Processing with Replicated Fragments

    OpenAIRE

    Montoya, Gabriela; Skaf-Molli, Hala; Molli, Pascal; Vidal, Maria-Esther

    2015-01-01

    Federated query engines allow to consume linked data from SPARQL endpoints. Replicating data fragments from different sources allows to reorganize data to better fit federated query processing of data consumers. However, existing federated query engines poorly support replication. In this paper, we propose a replication-aware federated query engine that extends state-of-art federated query engine ANAPSID and FedX with Fedra, a source selection strategy that approximates the source selection p...

  2. Replicating organizational knowledge: principles or templates?

    OpenAIRE

    Baden-Fuller, Charles; Winter, Sidney G.

    2005-01-01

    We discuss how firms can replicate practices and knowledge embedded in practices by following principles, with no direct reference to an extant working example (template). Definitions are provided for the key concepts of templates, principles, and background knowledge. We address the challenges of providing operational measures for successful replication, and for comparing the efficacy of principles and templates. By using two longitudinal case studies of replication across the units of two m...

  3. Do transcriptional enhancers also augment DNA replication?

    OpenAIRE

    O'Connor, D T; Subramani, S

    1988-01-01

    Enhancers are DNA elements that augment transcription in cis, independent of distance and orientation. Evidence such as hormone dependent neoplastic cell growth and the stimulation of viral replication by sequences present in enhancers suggests that enhancers may also directly affect DNA replication. We tested this hypothesis in recombinant plasmids by asking whether sequences that stimulated DNA replication shared the properties of transcriptional enhancers. The homologous simian virus 40 (S...

  4. Persistent HIV-1 replication during antiretroviral therapy

    OpenAIRE

    Martinez-Picado, Javier; Deeks, Steven G

    2016-01-01

    Purpose of review The present review will highlight some of the recent findings regarding the capacity of HIV-1 to replicate during antiretroviral therapy (ART). Recent findings Although ART is highly effective at inhibiting HIV replication, it is not curative. Several mechanisms contribute to HIV persistence during ART, including HIV latency, immune dysfunction, and perhaps persistent low-level spread of the virus to uninfected cells (replication). The success in curing HIV will depend on ef...

  5. Chromosome banding and DNA replication patterns in bird karyotypes.

    Science.gov (United States)

    Schmid, M; Enderle, E; Schindler, D; Schempp, W

    1989-01-01

    The karyotypes of the domestic chicken (Gallus domesticus), Japanese quail (Coturnix coturnix), and griffon vulture (Gyps fulvus) were studied with a variety of banding techniques. The DNA replication patterns of bird chromosomes, analyzed by incorporation of 5-bromodeoxyuridine (BrdU) and deoxythymidine (dT), are presented here for the first time. In particular, the time sequence of replication of the ZZ/ZW sex chromosomes throughout the S-phase was meticulously analyzed. BrdU and dT incorporation are very useful methods to identify homoeologies between karyotypes, as well as rearrangements that occurred in the macroautosomes during speciation. The Z chromosomes of the three birds displayed the same replication patterns, indicating a high degree of evolutionary conservation. In the homogametic male, BrdU and dT incorporation revealed no evidence of asynchronous replication between euchromatic bands in the ZZ pair. The same was true of the three Z chromosomes in a triploid-diploid chimeric chicken embryo. Minor replication asynchronies between the homologous ZZ or ZZZ chromosomes were restricted to heterochromatic C-bands. These results confirm that, in the ZZ male/ZW female sex-determining system of birds, dosage compensation for Z-linked genes does not occur by inactivation of one of the two Z chromosomes in the homogametic male. The heterochromatic W chromosomes of the three species showed bright labeling with distamycin A/mithramycin counterstain-enhanced fluorescence and exhibited significantly delayed DNA replication. The nucleolus organizers of birds, frequently located in microchromosomes, were also distinguished by bright distamycin A/mithramycin fluorescence. PMID:2630186

  6. Regulation of chromosomal replication in Caulobacter crescentus.

    Science.gov (United States)

    Collier, Justine

    2012-03-01

    The alpha-proteobacterium Caulobacter crescentus is characterized by its asymmetric cell division, which gives rise to a replicating stalked cell and a non-replicating swarmer cell. Thus, the initiation of chromosomal replication is tightly regulated, temporally and spatially, to ensure that it is coordinated with cell differentiation and cell cycle progression. Waves of DnaA and CtrA activities control when and where the initiation of DNA replication will take place in C. crescentus cells. The conserved DnaA protein initiates chromosomal replication by directly binding to sites within the chromosomal origin (Cori), ensuring that DNA replication starts once and only once per cell cycle. The CtrA response regulator represses the initiation of DNA replication in swarmer cells and in the swarmer compartment of pre-divisional cells, probably by competing with DnaA for binding to Cori. CtrA and DnaA are controlled by multiple redundant regulatory pathways that include DNA methylation-dependent transcriptional regulation, temporally regulated proteolysis and the targeting of regulators to specific locations within the cell. Besides being critical regulators of chromosomal replication, CtrA and DnaA are also master transcriptional regulators that control the expression of many genes, thus connecting DNA replication with other events of the C. crescentus cell cycle.

  7. Comparison of three replication strategies in complex multicellular organisms: Asexual replication, sexual replication with identical gametes, and sexual replication with distinct sperm and egg gametes

    Science.gov (United States)

    Tannenbaum, Emmanuel

    2008-01-01

    This paper studies the mutation-selection balance in three simplified replication models. The first model considers a population of organisms replicating via the production of asexual spores. The second model considers a sexually replicating population that produces identical gametes. The third model considers a sexually replicating population that produces distinct sperm and egg gametes. All models assume diploid organisms whose genomes consist of two chromosomes, each of which is taken to be functional if equal to some master sequence, and defective otherwise. In the asexual population, the asexual diploid spores develop directly into adult organisms. In the sexual populations, the haploid gametes enter a haploid pool, where they may fuse with other haploids. The resulting immature diploid organisms then proceed to develop into mature organisms. Based on an analysis of all three models, we find that, as organism size increases, a sexually replicating population can only outcompete an asexually replicating population if the adult organisms produce distinct sperm and egg gametes. A sexual replication strategy that is based on the production of large numbers of sperm cells to fertilize a small number of eggs is found to be necessary in order to maintain a sufficiently low cost for sex for the strategy to be selected for over a purely asexual strategy. We discuss the usefulness of this model in understanding the evolution and maintenance of sexual replication as the preferred replication strategy in complex, multicellular organisms.

  8. Cells and prions: a license to replicate.

    Science.gov (United States)

    Nuvolone, Mario; Aguzzi, Adriano; Heikenwalder, Mathias

    2009-08-20

    Prion diseases are neurodegenerative, infectious disorders characterized by the aggregation of a misfolded isoform of the cellular prion protein (PrP(C)). The infectious agent - termed prion - is mainly composed of misfolded PrP(Sc). In addition to the central nervous system prions can colonize secondary lymphoid organs and inflammatory foci. Follicular dendritic cells are important extraneural sites of prion replication. However, recent data point to a broader range of cell types that can replicate prions. Here, we review the state of the art in regards to peripheral prion replication, neuroinvasion and the determinants of prion replication competence. PMID:19527722

  9. Ideas are Not Replicators but Minds Are

    OpenAIRE

    Gabora, Liane M

    2004-01-01

    An idea is not a replicator because it does not consist of coded self-assembly instructions. It may retain structure as it passes from one individual to another, but does not replicate it. The cultural replicator is not an idea but an associatively-structured network of them that together form an internal model of the world, or worldview. A worldview is a primitive, uncoded replicator, like the autocatalytic sets of polymers widely believed to be the earliest form of life. Primitive replicato...

  10. Recombination and Speciation: Loci Near Centromeres Are More Differentiated Than Loci Near Telomeres Between Subspecies of the European Rabbit (Oryctolagus cuniculus)

    OpenAIRE

    Carneiro, Miguel; Ferrand, Nuno; Nachman, Michael W

    2009-01-01

    Recent empirical and theoretical studies suggest that regions of restricted recombination play an important role in the formation of new species. To test this idea, we studied nucleotide variation in two parapatric subspecies of the European rabbit (Oryctolagus cuniculus). We surveyed five loci near centromeres, where recombination is expected to be suppressed, and five loci near telomeres, where recombination is expected to be higher. We analyzed this multilocus data set using a divergence-w...

  11. Replication of simulated prebiotic amphiphile vesicles controlled by experimental lipid physicochemical properties

    International Nuclear Information System (INIS)

    We present a new embodiment of the graded autocatalysis replication domain (GARD) for the growth, replication and evolution of lipid vesicles based on a semi-empirical foundation using experimentally measured kinetic values of selected extant lipid species. Extensive simulations using this formalism elucidated the details of the dependence of the replication and properties of the vesicles on the physicochemical properties and concentrations of the lipids, both in the environment and in the vesicle. As expected, the overall concentration and number of amphiphilic components strongly affect average replication time. Furthermore, variations in acyl chain length and unsaturation of vesicles also influence replication rate, as do the relative concentrations of individual lipid types. Understanding of the dependence of replication rates on physicochemical parameters opens a new direction in the study of prebiotic vesicles and lays the groundwork for future studies involving the competition between lipid vesicles for available amphiphilic monomers

  12. Replication of the R6K plasmid during the Escherichia coli cell cycle.

    OpenAIRE

    Keasling, J.D.; Palsson, B O; Cooper, S.

    1992-01-01

    The cell-cycle replication pattern of the R6K plasmid has been investigated by using the membrane-elution technique to produce cells labelled at different times during the division cycle and scintillation counting for quantitative analysis of radioactive plasmid DNA. The high-copy plasmid R6K replicates exponentially in a cell-cycle-independent manner. A mini-R6K plasmid deleted for the ori alpha origin of replication also replicates, exponentially in a cell-cycle-independent manner.

  13. Result Analysis and Benefits of Detecting Replicate Documents Using MD5 Hash Function

    Directory of Open Access Journals (Sweden)

    Pushpendra Singh Tomar

    2011-12-01

    Full Text Available The definition of what constitutes a replicate has somewhat different interpretations. For instance, some define a replicate as having the exact syntactic terms and sequence, whether having formatting differences or not. In effect, there are either no difference or only formatting differences and the contents of the data are exactly the same. In any case, data replication happens all the time. In large data warehouses, data replication is an inevitable phenomenon as millions of data are gathered at very short intervals. In this paper we provide a detail result analysis on the basis of our approach and the previous one.

  14. Result Analysis and Benefits of Detecting Replicate Documents Using MD5 Hash Function

    Directory of Open Access Journals (Sweden)

    Mr. Pushpendra Singh Tomar

    2011-09-01

    Full Text Available The definition of what constitutes a replicate has somewhat different interpretations. For instance, some define a replicate as having the exact syntactic terms and sequence, whether having formatting differences or not. In effect, there are either no difference or only formatting differences and the contents of the data are exactly the same. In any case, data replication happens all the time. In large data warehouses, data replication is an inevitable phenomenon as millions of data are gathered at very short intervals. In this paper we provide a detail result analysis on the basis of our approach and the previous one.

  15. Preferential recruitment of the maternal centromere-specific histone H3 (CENH3) in oat (Avena sativa L.) × pearl millet (Pennisetum glaucum L.) hybrid embryos.

    Science.gov (United States)

    Ishii, Takayoshi; Sunamura, Naohiro; Matsumoto, Ayaka; Eltayeb, Amin Elsadig; Tsujimoto, Hisashi

    2015-12-01

    Chromosome elimination occurs frequently in interspecific hybrids between distantly related species in Poaceae. However, chromosomes from both parents behave stably in a hybrid of female oat (Avena sativa L.) pollinated by pearl millet (Pennisetum glaucum L.). To analyze the chromosome behavior in this hybrid, we cloned the centromere-specific histone H3 (CENH3) genes of oat and pearl millet and produced a pearl millet-specific anti-CENH3 antibody. Application of this antibody together with a grass species common anti-CENH3 antibody revealed the dynamic CENH3 composition of the hybrid cells before and after fertilization. Despite co-expression of CENH3 genes encoded by oat and pearl millet, only an oat-type CENH3 was incorporated into the centromeres of both species in the hybrid embryo. Oat CENH3 enables a functional centromere in pearl millet chromosomes in an oat genetic background. Comparison of CENH3 genes among Poaceae species that show chromosome elimination in interspecific hybrids revealed that the loop 1 regions of oat and pearl millet CENH3 exhibit exceptionally high similarity.

  16. Identification of imprinted genes using a novel screening method based on asynchronous DNA replication

    Energy Technology Data Exchange (ETDEWEB)

    Kawame, H.; Hansen, R.S.; Gartler, S.M. [Univ. of Washington, Seattle, WA (United States)

    1994-09-01

    Genomic imprinting refers to the process of epigenetic change that occurs during germ cell development that results in either maternal- or paternal-specific gene expression. Identification of imprinted genes is of primary importance to the understanding of imprinting mechanisms and the role of specific imprinted genes in human disease. Recently, it has been established that chromosomal regions known to contain imprinted genes replicate asynchronously. We propose a novel screening method to identify imprinted genes based on replication asynchrony as a marker for imprinted domains. Dividing human cells were pulse-labeled with BrdU and separated into different fractions of S-phase by flow cytometry. A library of late-replicating inter-Alu sequences should be enriched in gene-associated sequences that replicate early on one chromosome and late on the other homologue. Clones were analyzed for replication timing by hybridization to inter-Alu replication profiles. Candidates for replication asynchrony exhibited broad or biphasic replication timing, and these were analyzed for chromosomal location by hybridizations to inter-Alu products from a hybrid mapping panel. Initial screening of 123 clones resulted in 3 asynchronously-replicating clones that localized to single chromosomes. Chromosome 17 and chromosome 19 candidates might be located in regions thought to be imprinted by synteny with mouse chromosomes. A chromosome 15 clone was further characterized because of its possible localization to the Prader-Willi/Angelman locus. This sequence was localized outside the region deleted in Prader-Willi patients, and was found to be expressed in human cell lines. Replication asynchrony for this sequence appears to be polymorphic because cells derived from some individuals indicated synchronous replication. This appears to be the first example of a polymorphism in replication asynchrony.

  17. Genome-wide studies highlight indirect links between human replication origins and gene regulation.

    Science.gov (United States)

    Cadoret, Jean-Charles; Meisch, Françoise; Hassan-Zadeh, Vahideh; Luyten, Isabelle; Guillet, Claire; Duret, Laurent; Quesneville, Hadi; Prioleau, Marie-Noëlle

    2008-10-14

    To get insights into the regulation of replication initiation, we systematically mapped replication origins along 1% of the human genome in HeLa cells. We identified 283 origins, 10 times more than previously known. Origin density is strongly correlated with genomic landscapes, with clusters of closely spaced origins in GC-rich regions and no origins in large GC-poor regions. Origin sequences are evolutionarily conserved, and half of them map within or near CpG islands. Most of the origins overlap transcriptional regulatory elements, providing further evidence of a connection with gene regulation. Moreover, we identify c-JUN and c-FOS as important regulators of origin selection. Half of the identified replication initiation sites do not have an open chromatin configuration, showing the absence of a direct link with gene regulation. Replication timing analyses coupled with our origin mapping suggest that a relatively strict origin-timing program regulates the replication of the human genome.

  18. Direct observation of enzymes replicating DNA using a single-molecule DNA stretching assay

    NARCIS (Netherlands)

    Kulczyk, A.W.; Tanner, N.A.; Loparo, J.J.; Richardson, C.C.; Oijen, A.M. van

    2010-01-01

    We describe a method for observing real time replication of individual DNA molecules mediated by proteins of the bacteriophage replication system. Linearized lambda DNA is modified to have a biotin on the end of one strand, and a digoxigenin moiety on the other end of the same strand. The biotinylat

  19. Depletion of Cellular Pre-Replication Complex Factors Results in Increased Human Cytomegalovirus DNA Replication

    OpenAIRE

    Tamara Evans Braun; Emma Poole; John Sinclair

    2012-01-01

    Although HCMV encodes many genes required for the replication of its DNA genome, no HCMV-encoded orthologue of the origin binding protein, which has been identified in other herpesviruses, has been identified. This has led to speculation that HCMV may use other viral proteins or possibly cellular factors for the initiation of DNA synthesis. It is also unclear whether cellular replication factors are required for efficient replication of viral DNA during or after viral replication origin recog...

  20. Replication and Robustness in Developmental Research

    Science.gov (United States)

    Duncan, Greg J.; Engel, Mimi; Claessens, Amy; Dowsett, Chantelle J.

    2014-01-01

    Replications and robustness checks are key elements of the scientific method and a staple in many disciplines. However, leading journals in developmental psychology rarely include explicit replications of prior research conducted by different investigators, and few require authors to establish in their articles or online appendices that their key…

  1. A new fuzzy optimal data replication method for data grid

    Directory of Open Access Journals (Sweden)

    Zeinab Ghilavizadeh

    2013-03-01

    Full Text Available These days, There are several applications where we face with large data set and it has become an important part of common resources in different scientific areas. In fact, there are many applications where there are literally huge amount of information handled either in terabyte or in petabyte. Many scientists apply huge amount of data distributed geographically around the world through advanced computing systems. The huge volume data and calculations have created new problems in accessing, processing and distribution of data. The challenges of data management infrastructure have become very difficult under a large amount of data, different geographical spaces, and complicated involved calculations. Data Grid is a remedy to all mentioned problems. In this paper, a new method of dynamic optimal data replication in data grid is introduced where it reduces the total job execution time and increases the locality in accessibilities by detecting and impacting the factors influencing the data replication. Proposed method is composed of two main phases. During the first phase is the phase of file application and replication operation. In this phase, we evaluate three factors influencing the data replication and determine whether the requested file can be replicated or it can be used from distance. In the second phase or the replacement phase, the proposed method investigates whether there is enough space in the destination to store the requested file or not. In this phase, the proposed method also chooses a replica with the lowest value for deletion by considering three replica factors to increase the performance of system. The results of simulation also indicate the improved performance of our proposed method compared with other replication methods represented in the simulator Optorsim.

  2. Condensin HEAT subunits required for DNA repair, kinetochore/centromere function and ploidy maintenance in fission yeast.

    Directory of Open Access Journals (Sweden)

    Xingya Xu

    Full Text Available Condensin, a central player in eukaryotic chromosomal dynamics, contains five evolutionarily-conserved subunits. Two SMC (structural maintenance of chromosomes subunits contain ATPase, hinge, and coiled-coil domains. One non-SMC subunit is similar to bacterial kleisin, and two other non-SMC subunits contain HEAT (similar to armadillo repeats. Here we report isolation and characterization of 21 fission yeast (Schizosaccharomyces pombe mutants for three non-SMC subunits, created using error-prone mutagenesis that resulted in single-amino acid substitutions. Beside condensation, segregation, and DNA repair defects, similar to those observed in previously isolated SMC and cnd2 mutants, novel phenotypes were observed for mutants of HEAT-repeats containing Cnd1 and Cnd3 subunits. cnd3-L269P is hypersensitive to the microtubule poison, thiabendazole, revealing defects in kinetochore/centromere and spindle assembly checkpoints. Three cnd1 and three cnd3 mutants increased cell size and doubled DNA content, thereby eliminating the haploid state. Five of these mutations reside in helix B of HEAT repeats. Two non-SMC condensin subunits, Cnd1 and Cnd3, are thus implicated in ploidy maintenance.

  3. Recommendations for Replication Research in Special Education: A Framework of Systematic, Conceptual Replications

    Science.gov (United States)

    Coyne, Michael D.; Cook, Bryan G.; Therrien, William J.

    2016-01-01

    Special education researchers conduct studies that can be considered replications. However, they do not often refer to them as replication studies. The purpose of this article is to consider the potential benefits of conceptualizing special education intervention research within a framework of systematic, conceptual replication. Specifically, we…

  4. Inferring the Spatiotemporal DNA Replication Program from Noisy Biological Data

    Science.gov (United States)

    Bechhoefer, John; Baker, Antoine

    2014-03-01

    We generalize a stochastic model of DNA replication to the case where replication-origin-initiation rates vary locally along the genome and with time. Using this generalized model, we address the inverse problem of inferring initiation rates from experimental data concerning replication in cell populations. Previous work based on curve fitting depended on arbitrarily chosen functional forms for the initiation rate, with free parameters that were constrained by the data. We introduce a model-free, non-parametric method of inference that is based on Gaussian process regression. The method replaces specific assumptions about the functional form of initiation rate with more general prior expectations about the smoothness of variation of this rate, along the genome and in time. Using this inference method, we show that we can recover with high precision simulated replication schemes with data that are typical of current experiments. The method of Gaussian process regression can be profitably applied to a wide range of physical and biological problems. Supported by NSERC (Canada).

  5. Persistent HIV-1 replication during antiretroviral therapy

    Science.gov (United States)

    Martinez-Picado, Javier; Deeks, Steven G.

    2016-01-01

    Purpose of review The present review will highlight some of the recent findings regarding the capacity of HIV-1 to replicate during antiretroviral therapy (ART). Recent findings Although ART is highly effective at inhibiting HIV replication, it is not curative. Several mechanisms contribute to HIV persistence during ART, including HIV latency, immune dysfunction, and perhaps persistent low-level spread of the virus to uninfected cells (replication). The success in curing HIV will depend on efficiently targeting these three aspects. The degree to which HIV replicates during ART remains controversial. Most studies have failed to find any evidence of HIV evolution in blood, even with samples collected over many years, although a recent very intensive study of three individuals suggested that the virus population does shift, at least during the first few months of therapy. Stronger but still not definitive evidence for replication comes from a series of studies in which standard regimens were intensified with an integration inhibitor, resulting in changes in episomal DNA (blood) and cell-associated RNA (tissue). Limited drug penetration within tissues and the presence of immune sanctuaries have been argued as potential mechanisms allowing HIV to spread during ART. Mathematical models suggest that HIV replication and evolution is possible even without the selection of fully drug-resistant variants. As persistent HIV replication could have clinical consequences and might limit the efficacy of curative interventions, determining if HIV replicates during ART and why, should remain a key focus of the HIV research community. Summary Residual viral replication likely persists in lymphoid tissues, at least in a subset of individuals. Abnormal levels of immune activation might contribute to sustain virus replication. PMID:27078619

  6. Chromosomal context and replication properties of ARS plasmids in Schizosaccharomyces pombe

    Indian Academy of Sciences (India)

    Aditya S Pratihar; Vishnu P Tripathi; Mukesh P Yadav; Dharani D Dubey

    2015-12-01

    Short, specific DNA sequences called as Autonomously Replicating Sequence (ARS) elements function as plasmid as well as chromosomal replication origins in yeasts. As compared to ARSs, different chromosomal origins vary greatly in their efficiency and timing of replication probably due to their wider chromosomal context. The two Schizosaccharomyces pombe ARS elements, ars727 and ars2OO4, represent two extremities in their chromosomal origin activity - ars727 is inactive and late replicating, while ars2OO4 is a highly active, early-firing origin. To determine the effect of chromosomal context on the activity of these ARS elements, we have cloned them with their extended chromosomal context as well as in the context of each other in both orientations and analysed their replication efficiency by ARS and plasmid stability assays. We found that these ARS elements retain their origin activity in their extended/altered context. However, deletion of a 133-bp region of the previously reported ars727-associated late replication enforcing element (LRE) caused advancement in replication timing of the resulting plasmid. These results confirm the role of LRE in directing plasmid replication timing and suggest that the plasmid origin efficiency of ars2OO4 or ars727 remains unaltered by the extended chromosomal context.

  7. Parasites Sustain and Enhance RNA-Like Replicators through Spatial Self-Organisation.

    Directory of Open Access Journals (Sweden)

    Enrico Sandro Colizzi

    2016-04-01

    Full Text Available In a prebiotic RNA world, parasitic behaviour may be favoured because template dependent replication happens in trans, thus being altruistic. Spatially extended systems are known to reduce harmful effects of parasites. Here we present a spatial system to show that evolution of replication is (indirectly enhanced by strong parasites, and we characterise the phase transition that leads to this mode of evolution. Building on the insights of this analysis, we identify two scenarios, namely periodic disruptions and longer replication time-span, in which speciation occurs and an evolved parasite-like lineage enables the evolutionary increase of replication rates in replicators. Finally, we show that parasites co-evolving with replicators are selected to become weaker, i.e. worse templates for replication when the duration of replication is increased. We conclude that parasites may not be considered a problem for evolution in a prebiotic system, but a degree of freedom that can be exploited by evolution to enhance the evolvability of replicators, by means of emergent levels of selection.

  8. Parasites Sustain and Enhance RNA-Like Replicators through Spatial Self-Organisation.

    Science.gov (United States)

    Colizzi, Enrico Sandro; Hogeweg, Paulien

    2016-04-01

    In a prebiotic RNA world, parasitic behaviour may be favoured because template dependent replication happens in trans, thus being altruistic. Spatially extended systems are known to reduce harmful effects of parasites. Here we present a spatial system to show that evolution of replication is (indirectly) enhanced by strong parasites, and we characterise the phase transition that leads to this mode of evolution. Building on the insights of this analysis, we identify two scenarios, namely periodic disruptions and longer replication time-span, in which speciation occurs and an evolved parasite-like lineage enables the evolutionary increase of replication rates in replicators. Finally, we show that parasites co-evolving with replicators are selected to become weaker, i.e. worse templates for replication when the duration of replication is increased. We conclude that parasites may not be considered a problem for evolution in a prebiotic system, but a degree of freedom that can be exploited by evolution to enhance the evolvability of replicators, by means of emergent levels of selection.

  9. Data from Investigating Variation in Replicability: A “Many Labs” Replication Project

    Directory of Open Access Journals (Sweden)

    Richard A. Klein

    2014-04-01

    Full Text Available This dataset is from the Many Labs Replication Project in which 13 effects were replicated across 36 samples and over 6,000 participants. Data from the replications are included, along with demographic variables about the participants and contextual information about the environment in which the replication was conducted. Data were collected in-lab and online through a standardized procedure administered via an online link. The dataset is stored on the Open Science Framework website. These data could be used to further investigate the results of the included 13 effects or to study replication and generalizability more broadly.

  10. Minority games, evolving capitals and replicator dynamics

    International Nuclear Information System (INIS)

    We discuss a simple version of the minority game (MG) in which agents hold only one strategy each, but in which their capitals evolve dynamically according to their success and in which the total trading volume varies in time accordingly. This feature is known to be crucial for MGs to reproduce stylized facts of real market data. The stationary states and phase diagram of the model can be computed, and we show that the ergodicity breaking phase transition common for MGs, and marked by a divergence of the integrated response, is present also in this simplified model. An analogous majority game turns out to be relatively void of interesting features, and the total capital is found to diverge in time. Introducing a restraining force leads to a model akin to the replicator dynamics of evolutionary game theory, and we demonstrate that here a different type of phase transition is observed. Finally we briefly discuss the relation of this model with one strategy per player to more sophisticated minority games with dynamical capitals and several trading strategies per agent

  11. Minority games, evolving capitals and replicator dynamics

    Science.gov (United States)

    Galla, Tobias; Zhang, Yi-Cheng

    2009-11-01

    We discuss a simple version of the minority game (MG) in which agents hold only one strategy each, but in which their capitals evolve dynamically according to their success and in which the total trading volume varies in time accordingly. This feature is known to be crucial for MGs to reproduce stylized facts of real market data. The stationary states and phase diagram of the model can be computed, and we show that the ergodicity breaking phase transition common for MGs, and marked by a divergence of the integrated response, is present also in this simplified model. An analogous majority game turns out to be relatively void of interesting features, and the total capital is found to diverge in time. Introducing a restraining force leads to a model akin to the replicator dynamics of evolutionary game theory, and we demonstrate that here a different type of phase transition is observed. Finally we briefly discuss the relation of this model with one strategy per player to more sophisticated minority games with dynamical capitals and several trading strategies per agent.

  12. Targeting DNA Replication Stress for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2016-08-01

    Full Text Available The human cellular genome is under constant stress from extrinsic and intrinsic factors, which can lead to DNA damage and defective replication. In normal cells, DNA damage response (DDR mediated by various checkpoints will either activate the DNA repair system or induce cellular apoptosis/senescence, therefore maintaining overall genomic integrity. Cancer cells, however, due to constitutive growth signaling and defective DDR, may exhibit “replication stress” —a phenomenon unique to cancer cells that is described as the perturbation of error-free DNA replication and slow-down of DNA synthesis. Although replication stress has been proven to induce genomic instability and tumorigenesis, recent studies have counterintuitively shown that enhancing replicative stress through further loosening of the remaining checkpoints in cancer cells to induce their catastrophic failure of proliferation may provide an alternative therapeutic approach. In this review, we discuss the rationale to enhance replicative stress in cancer cells, past approaches using traditional radiation and chemotherapy, and emerging approaches targeting the signaling cascades induced by DNA damage. We also summarize current clinical trials exploring these strategies and propose future research directions including the use of combination therapies, and the identification of potential new targets and biomarkers to track and predict treatment responses to targeting DNA replication stress.

  13. Targeting DNA Replication Stress for Cancer Therapy

    Science.gov (United States)

    Zhang, Jun; Dai, Qun; Park, Dongkyoo; Deng, Xingming

    2016-01-01

    The human cellular genome is under constant stress from extrinsic and intrinsic factors, which can lead to DNA damage and defective replication. In normal cells, DNA damage response (DDR) mediated by various checkpoints will either activate the DNA repair system or induce cellular apoptosis/senescence, therefore maintaining overall genomic integrity. Cancer cells, however, due to constitutive growth signaling and defective DDR, may exhibit “replication stress” —a phenomenon unique to cancer cells that is described as the perturbation of error-free DNA replication and slow-down of DNA synthesis. Although replication stress has been proven to induce genomic instability and tumorigenesis, recent studies have counterintuitively shown that enhancing replicative stress through further loosening of the remaining checkpoints in cancer cells to induce their catastrophic failure of proliferation may provide an alternative therapeutic approach. In this review, we discuss the rationale to enhance replicative stress in cancer cells, past approaches using traditional radiation and chemotherapy, and emerging approaches targeting the signaling cascades induced by DNA damage. We also summarize current clinical trials exploring these strategies and propose future research directions including the use of combination therapies, and the identification of potential new targets and biomarkers to track and predict treatment responses to targeting DNA replication stress. PMID:27548226

  14. Study on the micro-replication of shark skin

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Direct replication of creatural scarfskins to form biomimetic surfaces with relatively vivid morphology is a new attempt of the bio-replicated forming technology at animal body. Taking shark skins as the replication templates, and the micro-embossing and micro-molding as the material forming methods, the micro-replicating technology of the outward morphology on shark skins was demonstrated. The preliminary analysis on replication precision indicates that the bio-replicated forming technology can replicate the outward morphology of the shark scales with good precision, which validates the application of the bio-replicated forming technology in the direct morphology replication of the firm creatural scarfskins.

  15. Replicated Data Management for Mobile Computing

    CERN Document Server

    Douglas, Terry

    2008-01-01

    Managing data in a mobile computing environment invariably involves caching or replication. In many cases, a mobile device has access only to data that is stored locally, and much of that data arrives via replication from other devices, PCs, and services. Given portable devices with limited resources, weak or intermittent connectivity, and security vulnerabilities, data replication serves to increase availability, reduce communication costs, foster sharing, and enhance survivability of critical information. Mobile systems have employed a variety of distributed architectures from client-server

  16. Replication and Analysis of Ebbinghaus' Forgetting Curve.

    Directory of Open Access Journals (Sweden)

    Jaap M J Murre

    Full Text Available We present a successful replication of Ebbinghaus' classic forgetting curve from 1880 based on the method of savings. One subject spent 70 hours learning lists and relearning them after 20 min, 1 hour, 9 hours, 1 day, 2 days, or 31 days. The results are similar to Ebbinghaus' original data. We analyze the effects of serial position on forgetting and investigate what mathematical equations present a good fit to the Ebbinghaus forgetting curve and its replications. We conclude that the Ebbinghaus forgetting curve has indeed been replicated and that it is not completely smooth but most probably shows a jump upwards starting at the 24 hour data point.

  17. What Should Researchers Expect When They Replicate Studies? A Statistical View of Replicability in Psychological Science.

    Science.gov (United States)

    Patil, Prasad; Peng, Roger D; Leek, Jeffrey T

    2016-07-01

    A recent study of the replicability of key psychological findings is a major contribution toward understanding the human side of the scientific process. Despite the careful and nuanced analysis reported, the simple narrative disseminated by the mass, social, and scientific media was that in only 36% of the studies were the original results replicated. In the current study, however, we showed that 77% of the replication effect sizes reported were within a 95% prediction interval calculated using the original effect size. Our analysis suggests two critical issues in understanding replication of psychological studies. First, researchers' intuitive expectations for what a replication should show do not always match with statistical estimates of replication. Second, when the results of original studies are very imprecise, they create wide prediction intervals-and a broad range of replication effects that are consistent with the original estimates. This may lead to effects that replicate successfully, in that replication results are consistent with statistical expectations, but do not provide much information about the size (or existence) of the true effect. In this light, the results of the Reproducibility Project: Psychology can be viewed as statistically consistent with what one might expect when performing a large-scale replication experiment. PMID:27474140

  18. Anti-centromere antibody-seropositive Sjögren's syndrome differs from conventional subgroup in clinical and pathological study

    Directory of Open Access Journals (Sweden)

    Ida Hiroaki

    2010-07-01

    Full Text Available Abstract Background To clarify the clinicopathological characteristics of primary Sjögren's syndrome (pSS with anti-centromere antibody (ACA. Methods Characteristics of 14 patients of pSS with ACA were evaluated. All patients were anti-SS-A/Ro and SS-B/La antibodies negative (ACA+ group without sclerodactyly. The prevalence of Raynaud's phenomenon (RP, titer of IgG and focus score (FS in the minor salivary glands (MSGs were determined. Quantification analysis of Azan Mallory staining was performed to detect collagenous fiber. Forty eight patients in whom ACA was absent were chosen as the conventional (ACA- pSS group. Results Prevalence of ACA+ SS patients was 14 out of 129 (10.85% pSS patients. RP was observed in 61.5% of the patients with ACA. The level of IgG in the ACA+ group was significantly lower than that of the ACA- group (p = 0.018. Statistical difference was also found in the FS of MSGs from the ACA+ group (1.4 ± 1.0 as compared with the ACA- group (2.3 ± 1.6 (p = 0.035. In contrast, the amount of fibrous tissue was much higher in the ACA+ group (65052.2 ± 14520.6 μm2 versus 26251.3 ± 14249.8 μm2 (p = 1.3 × 10-12. Conclusions Low cellular infiltration but with an increase in fibrous tissues may explain the clinical feature of a high prevalence of RP and normal IgG concentration in ACA+ pSS.

  19. LHCb Data Replication During SC3

    CERN Multimedia

    Smith, A

    2006-01-01

    LHCb's participation in LCG's Service Challenge 3 involves testing the bulk data transfer infrastructure developed to allow high bandwidth distribution of data across the grid in accordance with the computing model. To enable reliable bulk replication of data, LHCb's DIRAC system has been integrated with gLite's File Transfer Service middleware component to make use of dedicated network links between LHCb computing centres. DIRAC's Data Management tools previously allowed the replication, registration and deletion of files on the grid. For SC3 supplementary functionality has been added to allow bulk replication of data (using FTS) and efficient mass registration to the LFC replica catalog.Provisional performance results have shown that the system developed can meet the expected data replication rate required by the computing model in 2007. This paper details the experience and results of integration and utilisation of DIRAC with the SC3 transfer machinery.

  20. Molecular Mechanisms of DNA Replication Checkpoint Activation

    Directory of Open Access Journals (Sweden)

    Bénédicte Recolin

    2014-03-01

    Full Text Available The major challenge of the cell cycle is to deliver an intact, and fully duplicated, genetic material to the daughter cells. To this end, progression of DNA synthesis is monitored by a feedback mechanism known as replication checkpoint that is untimely linked to DNA replication. This signaling pathway ensures coordination of DNA synthesis with cell cycle progression. Failure to activate this checkpoint in response to perturbation of DNA synthesis (replication stress results in forced cell division leading to chromosome fragmentation, aneuploidy, and genomic instability. In this review, we will describe current knowledge of the molecular determinants of the DNA replication checkpoint in eukaryotic cells and discuss a model of activation of this signaling pathway crucial for maintenance of genomic stability.

  1. Energy Proportionality for Disk Storage Using Replication

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinoh; Rotem, Doron

    2010-09-09

    Energy saving has become a crucial concern in datacenters as several reports predict that the anticipated energy costs over a three year period will exceed hardware acquisition. In particular, saving energy for storage is of major importance as storage devices (and cooling them off) may contribute over 25 percent of the total energy consumed in a datacenter. Recent work introduced the concept of energy proportionality and argued that it is a more relevant metric than just energy saving as it takes into account the tradeoff between energy consumption and performance. In this paper, we present a novel approach, called FREP (Fractional Replication for Energy Proportionality), for energy management in large datacenters. FREP includes areplication strategy and basic functions to enable flexible energy management. Specifically, our method provides performance guarantees by adaptively controlling the power states of a group of disks based on observed and predicted workloads. Our experiments, using a set of real and synthetic traces, show that FREP dramatically reduces energy requirements with a minimal response time penalty.

  2. Replicating chromatin: a tale of histones

    DEFF Research Database (Denmark)

    Groth, Anja

    2009-01-01

    Chromatin serves structural and functional roles crucial for genome stability and correct gene expression. This organization must be reproduced on daughter strands during replication to maintain proper overlay of epigenetic fabric onto genetic sequence. Nucleosomes constitute the structural...... reassembly on nascent DNA strands. The aim of this review is to discuss how histones - new and old - are handled at the replication fork, highlighting new mechanistic insights and revisiting old paradigms....

  3. Surface Micro Topography Replication in Injection Moulding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Hansen, Hans Nørgaard; Kjær, Erik Michael

    2005-01-01

    The surface micro topography of injection moulded plastic parts can be important for aesthetical and technical reasons. The quality of replication of mould surface topography onto the plastic surface depends among other factors on the process conditions. A study of this relationship has been...... carried out with rough EDM (electrical discharge machining) mould surfaces, a PS grade, and by applying established three-dimensional topography parameters. Significant quantitative relationships between process parameters and topography parameters were established. It further appeared that replication...

  4. The Anisotropy of Replicated Aluminum Foams

    OpenAIRE

    Furman, Eugeny L.; Arcady B. Finkelstein; Maxim L. Cherny

    2014-01-01

    The replication casting process gives the open-cell aluminum foams that can be used in many industrial applications as well as in filtering technology. The essential requirement for filters is the uniformity of filtering degree which is defined by the minimal pore size. However the structure of replication castings is often inhomogeneous and the minimal pore radius is decreasing in the direction of melt infiltration. The objective of this investigation is to study the dynamics of melt impregn...

  5. Database Replication Using Generalized Snapshot Isolation

    OpenAIRE

    Elnikety, Sameh; Pedone, Fernando; Zwaenepoel, Willy

    2005-01-01

    Generalized snapshot isolation extends snapshot isolation as used in Oracle and other databases in a manner suitable for replicated databases. While (conventional) snapshot isolation requires that transactions observe the “latest” snapshot of the database, generalized snapshot isolation allows the use of “older” snapshots, facilitating a replicated implementation. We show that many of the desirable properties of snapshot isolation remain. In particular, read-only transactions never block or a...

  6. Autogenesis: the evolution of replicative systems.

    Science.gov (United States)

    Csányi, V; Kampis, G

    1985-05-21

    Questions concerning the nature and origin of living systems and the hierarchy of their evolutionary processes are considered, and several problems which arise in connection with formerly developed theories--the autopoiesis of Maturana & Varela, the POL theory of Haukioja and the earlier developed evolutionary theory of Csányi--are discussed. The organization of living systems, the use of informational terms and the question how reproduction can enter into their characterization, problems of autonomy and identity are included in the list. It is suggested that replication--a copying process achieved by a special network of interrelatedness of components and component-producing processes that produces the same network as that which produced them--characterizes the living organization. The information "used" in this copying process, whether it is stored by special means or distributed in the whole system, is called replicative information. A theoretical model is introduced for the spontaneous emergence of replicative organization, called autogenesis. Autogenesis commences in a system by an organized "small" subsystem, referred to as AutoGenetic System Precursor (AGSP), which conveys replicative information to the system. During autogenesis, replicative information increases in system and compartment(s) form. A compartment is the co-replicating totality of components. The end state of autogenesis is an invariantly self-replicating organization which is unable to undergo further intrinsic organizational changes. It is suggested that replicative unities--such as living organisms--evolve via autogenesis. Levels of evolution emerge as a consequence of the relative autonomy of the autogenetic unities. On the next level they can be considered as components endowed with functions and a new autogenetic process can commence. Thus evolution proceeds towards its end state through the parallel autogenesis of the various levels. In terms of applications, ontogenesis is dealt with

  7. Widening Disparity and its Suppression in a Stochastic Replicator Model

    CERN Document Server

    Sakaguchi, Hidetsugu

    2016-01-01

    Winner-take-all phenomena are observed in various competitive systems. We find similar phenomena in replicator models with randomly fluctuating growth rates. The disparity between winners and losers increases indefinitely, even if all elements are statistically equivalent. A lognormal distribution describes well the nonstationary time evolution. If a nonlinear load corresponding to progressive taxation is introduced, a stationary distribution is obtained and disparity widening is suppressed.

  8. Dual role of autophagy in HIV-1 replication and pathogenesis

    OpenAIRE

    Killian M

    2012-01-01

    Abstract Autophagy, the major mechanism for degrading long-lived intracellular proteins and organelles, is essential for eukaryotic cell homeostasis. Autophagy also defends the cell against invasion by microorganisms and has important roles in innate and adaptive immunity. Increasingly evident is that HIV-1 replication is dependent on select components of autophagy. Fittingly, HIV-1 proteins are able to modulate autophagy to maximize virus production. At the same time, HIV-1 proteins appear t...

  9. Cathepsin B & L are not required for ebola virus replication.

    Directory of Open Access Journals (Sweden)

    Andrea Marzi

    Full Text Available Ebola virus (EBOV, family Filoviridae, emerged in 1976 on the African continent. Since then it caused several outbreaks of viral hemorrhagic fever in humans with case fatality rates up to 90% and remains a serious Public Health concern and biothreat pathogen. The most pathogenic and best-studied species is Zaire ebolavirus (ZEBOV. EBOV encodes one viral surface glycoprotein (GP, which is essential for replication, a determinant of pathogenicity and an important immunogen. GP mediates viral entry through interaction with cellular surface molecules, which results in the uptake of virus particles via macropinocytosis. Later in this pathway endosomal acidification activates the cysteine proteases Cathepsin B and L (CatB, CatL, which have been shown to cleave ZEBOV-GP leading to subsequent exposure of the putative receptor-binding and fusion domain and productive infection. We studied the effect of CatB and CatL on in vitro and in vivo replication of EBOV. Similar to previous findings, our results show an effect of CatB, but not CatL, on ZEBOV entry into cultured cells. Interestingly, cell entry by other EBOV species (Bundibugyo, Côte d'Ivoire, Reston and Sudan ebolavirus was independent of CatB or CatL as was EBOV replication in general. To investigate whether CatB and CatL have a role in vivo during infection, we utilized the mouse model for ZEBOV. Wild-type (control, catB(-/- and catL(-/- mice were equally susceptible to lethal challenge with mouse-adapted ZEBOV with no difference in virus replication and time to death. In conclusion, our results show that CatB and CatL activity is not required for EBOV replication. Furthermore, EBOV glycoprotein cleavage seems to be mediated by an array of proteases making targeted therapeutic approaches difficult.

  10. Conditionally replicating HIV and SIV variants.

    Science.gov (United States)

    Das, Atze T; Berkhout, Ben

    2016-05-01

    Conditionally replicating human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) variants that can be switched on and off at will are attractive tools for HIV and SIV research. We constructed HIV and SIV variants in which the natural transcription control mechanism was replaced by the doxycycline (dox)-inducible Tet-On gene expression mechanism. These HIV-rtTA and SIV-rtTA variants are fully replication-competent, but replication is critically dependent on dox administration. We here describe how the dox-dependent virus variants may improve the safety of live-attenuated virus vaccines and how they can be used to study the immune responses that correlate with vaccine-induced protection. Furthermore, we review how these variants were initially designed and subsequently optimized by spontaneous viral evolution. These efforts yielded efficiently replicating and tightly dox-controlled HIV-rtTA and SIV-rtTA variants that replicate in a variety of cell and tissue culture systems, and in human immune system (HIS) mice and macaques, respectively. These viruses can be used as a tool in HIV and SIV biology studies and in vaccine research. We review how HIV-rtTA and SIV-rtTA were used to study the role of the viral TAR and Tat elements in virus replication. PMID:25982510

  11. Commercial Building Partnerships Replication and Diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Antonopoulos, Chrissi A.; Dillon, Heather E.; Baechler, Michael C.

    2013-09-16

    This study presents findings from survey and interview data investigating replication efforts of Commercial Building Partnership (CBP) partners that worked directly with the Pacific Northwest National Laboratory (PNNL). PNNL partnered directly with 12 organizations on new and retrofit construction projects, which represented approximately 28 percent of the entire U.S. Department of Energy (DOE) CBP program. Through a feedback survey mechanism, along with personal interviews, PNNL gathered quantitative and qualitative data relating to replication efforts by each organization. These data were analyzed to provide insight into two primary research areas: 1) CBP partners’ replication efforts of technologies and approaches used in the CBP project to the rest of the organization’s building portfolio (including replication verification), and, 2) the market potential for technology diffusion into the total U.S. commercial building stock, as a direct result of the CBP program. The first area of this research focused specifically on replication efforts underway or planned by each CBP program participant. Factors that impact replication include motivation, organizational structure and objectives firms have for implementation of energy efficient technologies. Comparing these factors between different CBP partners revealed patterns in motivation for constructing energy efficient buildings, along with better insight into market trends for green building practices. The second area of this research develops a diffusion of innovations model to analyze potential broad market impacts of the CBP program on the commercial building industry in the United States.

  12. Chikungunya triggers an autophagic process which promotes viral replication

    Directory of Open Access Journals (Sweden)

    Briant Laurence

    2011-09-01

    Full Text Available Abstract Background Chikungunya Virus (ChikV surprised by a massive re-emerging outbreak in Indian Ocean in 2006, reaching Europe in 2007 and exhibited exceptional severe physiopathology in infants and elderly patients. In this context, it is important to analyze the innate immune host responses triggered against ChikV. Autophagy has been shown to be an important component of the innate immune response and is involved in host defense elimination of different pathogens. However, the autophagic process was recently observed to be hijacked by virus for their own replication. Here we provide the first evidence that hallmarks of autophagy are specifically found in HEK.293 infected cells and are involved in ChikV replication. Methods To test the capacity of ChikV to mobilize the autophagic machinery, we performed fluorescence microscopy experiments on HEK.GFP.LC3 stable cells, and followed the LC3 distribution during the time course of ChikV infection. To confirm this, we performed electron microscopy on HEK.293 infected cells. To test the effect of ChikV-induced-autophagy on viral replication, we blocked the autophagic process, either by pharmacological (3-MA or genetic inhibition (siRNA against the transcript of Beclin 1, an autophagic protein, and analyzed the percentage of infected cells and the viral RNA load released in the supernatant. Moreover, the effect of induction of autophagy by Rapamycin on viral replication was tested. Results The increasing number of GFP-LC3 positive cells with a punctate staining together with the enhanced number of GFP-LC3 dots per cell showed that ChikV triggered an autophagic process in HEK.293 infected cells. Those results were confirmed by electron microscopy analysis since numerous membrane-bound vacuoles characteristic of autophagosomes were observed in infected cells. Moreover, we found that inhibition of autophagy, either by biochemical reagent and RNA interference, dramatically decreases ChikV replication

  13. Dynamics of Escherichia coli Chromosome Segregation during Multifork Replication

    DEFF Research Database (Denmark)

    Nielsen, Henrik Jørck; Youngren, Brenda; Hansen, Flemming G.;

    2007-01-01

    Slowly growing Escherichia coli cells have a simple cell cycle, with replication and progressive segregation of the chromosome completed before cell division. In rapidly growing cells, initiation of replication occurs before the previous replication rounds are complete. At cell division...

  14. Reliability analysis of a replication with limited number of journaling files

    International Nuclear Information System (INIS)

    Recently, replication mechanisms using journaling files have been widely used for the server systems. We have already discussed the model of asynchronous replication system using journaling files [8]. This paper formulates a stochastic model of a server system with replication considering the number of transmitting journaling files. The server updates the storage database and transmits the journaling file when a client requests the data update. The server transmits the database content to a backup site either at a constant time or after a constant number of transmitting journaling files. We derive the expected number of the replication and of transmitting journaling files. Further, we calculate the expected cost and discuss optimal replication interval to minimize it. Finally, numerical examples are given

  15. Advance in Research of Centromeres in the Meiotic Process%着丝粒及其在减数分裂中的作用研究进展

    Institute of Scientific and Technical Information of China (English)

    张峰; 林娟; 赵军

    2013-01-01

    Centromeres are the important functional elements of chromosomes in eukaryotes, their roles played in mitosis and meiosis processes have been paid more and more attentions. Though the chromosomes vary greatly in DNA sequences, their roles are conserved in all eukaryotic organisms, which make sure the faithful segregation of chromosomes and correct cell division. With the continuous development of molecular biology techniques, we have a deep understanding of the functions of centromeres. Here we review the function of centromeres during the meiotic progress.%着丝粒作为真核生物染色体的重要结构之一,是有丝分裂和减数分裂过程中重要的功能元件,其所起到的重要作用越来越受到人们的重视。在整个真核生物类群中,尽管不同物种之间着丝粒的DNA序列相差极大,但是其功能却是相当保守,这确保了着丝粒在调控细胞分裂和染色单体分离过程中能够正常行使其功能,除此之外,人们还发现着丝粒蛋白不仅在细胞的有丝分裂中起作用,还在减数分裂中起着重要的作用。

  16. Finding gene clusters for a replicated time course study

    OpenAIRE

    Qin, Li-Xuan; Breeden, Linda; Self, Steven G.

    2014-01-01

    Background Finding genes that share similar expression patterns across samples is an important question that is frequently asked in high-throughput microarray studies. Traditional clustering algorithms such as K-means clustering and hierarchical clustering base gene clustering directly on the observed measurements and do not take into account the specific experimental design under which the microarray data were collected. A new model-based clustering method, the clustering of regression model...

  17. Genome instability induced by structured DNA and replication fork restart

    OpenAIRE

    Schalbetter, Stephanie

    2012-01-01

    DNA replication is a central mechanism to all forms of life. Errors occurring during DNA replication can result in mutagenesis and genome rearrangements, which can cause various diseases. In this work I have investigated the stability of direct tandem repeats (TRs) in the context of replication and replication-associated repair mechanisms. During DNA replication the replication fork encounters many obstacles, such as DNA-protein barriers, secondary DNA structures and DNA lesions. How and if r...

  18. Replication protein A: directing traffic at the intersection of replication and repair

    OpenAIRE

    Oakley, Greg G.; Patrick, Steve M.

    2010-01-01

    Since the initial discovery of replication protein A (RPA) as a DNA replication factor, much progress has been made on elucidating critical roles for RPA in other DNA metabolic pathways. RPA has been shown to be required for DNA replication, DNA repair, DNA recombination, and the DNA damage response pathway with roles in checkpoint activation. This review summarizes the current understanding of RPA structure, phosphorylation and protein-protein interactions in mediating these DNA metabolic pr...

  19. The Study of Detecting Replicate Documents Using MD5 Hash Function

    Directory of Open Access Journals (Sweden)

    Pushpendra Singh Tomar

    2011-12-01

    Full Text Available A great deal of the Web is replicate or near- replicate content. Documents may be served in different formats: HTML, PDF, and Text for different audiences. Documents may get mirrored to avoid delays or to provide fault tolerance. Algorithms for detecting replicate documents are critical in applications where data is obtained from multiple sources. The removal of replicate documents is necessary, not only to reduce runtime, but also to improve search accuracy. Today, search engine crawlers are retrieving billions of unique URL’s, of which hundreds of millions are replicates of some form. Thus, quickly identifying replicate detection expedites indexing and searching. One vendor’s analysis of 1.2 billion URL’s resulted in 400 million exact replicates found with a MD5 hash. Reducing the collection sizes by tens of percentage point’s results in great savings in indexing time and a reduction in the amount of hardware required to support the system. Last and probably more significant, users benefit by eliminating replicate results. By efficiently presenting only unique documents, user satisfaction is likely to increase.

  20. The Study of Detecting Replicate Documents Using MD5 Hash Functio

    Directory of Open Access Journals (Sweden)

    Mr. Pushpendra Singh Tomar

    2011-09-01

    Full Text Available A great deal of the Web is replicate or near- replicate content. Documents may be served in different formats: HTML, PDF, and Text for different audiences. Documents may get mirrored to avoid delays or to provide fault tolerance. Algorithms for detecting replicate documents are critical in applications where data is obtained from multiple sources. The removal of replicate documents is necessary, not only to reduce runtime, but also to improve search accuracy. Today, search engine crawlers are retrieving billions of unique URL’s, of which hundreds of millions are replicates of some form. Thus, quickly identifying replicate detection expedites indexing and searching. One vendor’s analysis of 1.2 billion URL’s resulted in 400 million exact replicates found with a MD5 hash. Reducing the collection sizes by tens of percentage point’s results in great savings in indexing time and a reduction in the amount of hardware required to support the system. Last and probably more significant, users benefit by eliminating replicate results. By efficiently presenting only unique documents, user satisfaction is likely to increase.

  1. Managing Single-Stranded DNA during Replication Stress in Fission Yeast

    Directory of Open Access Journals (Sweden)

    Sarah A. Sabatinos

    2015-09-01

    Full Text Available Replication fork stalling generates a variety of responses, most of which cause an increase in single-stranded DNA. ssDNA is a primary signal of replication distress that activates cellular checkpoints. It is also a potential source of genome instability and a substrate for mutation and recombination. Therefore, managing ssDNA levels is crucial to chromosome integrity. Limited ssDNA accumulation occurs in wild-type cells under stress. In contrast, cells lacking the replication checkpoint cannot arrest forks properly and accumulate large amounts of ssDNA. This likely occurs when the replication fork polymerase and helicase units are uncoupled. Some cells with mutations in the replication helicase (mcm-ts mimic checkpoint-deficient cells, and accumulate extensive areas of ssDNA to trigger the G2-checkpoint. Another category of helicase mutant (mcm4-degron causes fork stalling in early S-phase due to immediate loss of helicase function. Intriguingly, cells realize that ssDNA is present, but fail to detect that they accumulate ssDNA, and continue to divide. Thus, the cellular response to replication stalling depends on checkpoint activity and the time that replication stress occurs in S-phase. In this review we describe the signs, signals, and symptoms of replication arrest from an ssDNA perspective. We explore the possible mechanisms for these effects. We also advise the need for caution when detecting and interpreting data related to the accumulation of ssDNA.

  2. Replication program of active and inactive multigene families in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, K.S.; Dhar, V.; Brown, E.H.; Iqbal, M.A.; Stuart, S.; Didamo, V.T.; Schildkraut, C.L.

    1988-05-01

    In a comprehensive study, the temporal replication of tissue-specific genes and flanking sequences was compared in nine cells lines exhibiting different tissue-specific functions. Some of the rules the authors determined for the replication of these tissue specific genes include the following. (i) Actively transcribed genes usually replicate during the first quarter of the S phase. (ii) Some immunoglobulin genes replicate during the first half of S phase even when no transcriptional activity is detected but appear to replicate even earlier in cell lines where they are transcribed. (iii) Nontranscribed genes can replicate during any interval of S phase. (iv) Multigene families arranged in clusters of 250 kilobases or less define a temporal compartment comprising approximately one-quarter of S phase. While these rules, and others that are discussed, apply to the tissue-specific genes studied here, all tissue-specific genes may not follow this pattern. In addition, housekeeping genes did not follow some of these rules. These results provide the first molecular evidence that the coordinate timing of replication of contiguous sequences within a multigene family is a general property of the mammalian genome. The relationship between replication very early during S phase and the transcriptional activity within a chromosomal domain is discussed.

  3. DNA deformability changes of single base pair mutants within CDE binding sites in S. Cerevisiae centromere DNA correlate with measured chromosomal loss rates and CDE binding site symmetries

    Directory of Open Access Journals (Sweden)

    Marx Kenneth A

    2006-03-01

    Full Text Available Abstract Background The centromeres in yeast (S. cerevisiae are organized by short DNA sequences (125 bp on each chromosome consisting of 2 conserved elements: CDEI and CDEIII spaced by a CDEII region. CDEI and CDEIII are critical sequence specific protein binding sites necessary for correct centromere formation and following assembly with proteins, are positioned near each other on a specialized nucleosome. Hegemann et al. BioEssays 1993, 15: 451–460 reported single base DNA mutants within the critical CDEI and CDEIII binding sites on the centromere of chromosome 6 and quantitated centromere loss of function, which they measured as loss rates for the different chromosome 6 mutants during cell division. Olson et al. Proc Natl Acad Sci USA 1998, 95: 11163–11168 reported the use of protein-DNA crystallography data to produce a DNA dinucleotide protein deformability energetic scale (PD-scale that describes local DNA deformability by sequence specific binding proteins. We have used the PD-scale to investigate the DNA sequence dependence of the yeast chromosome 6 mutants' loss rate data. Each single base mutant changes 2 PD-scale values at that changed base position relative to the wild type. In this study, we have utilized these mutants to demonstrate a correlation between the change in DNA deformability of the CDEI and CDEIII core sites and the overall experimentally measured chromosome loss rates of the chromosome 6 mutants. Results In the CDE I and CDEIII core binding regions an increase in the magnitude of change in deformability of chromosome 6 single base mutants with respect to the wild type correlates to an increase in the measured chromosome loss rate. These correlations were found to be significant relative to 105 Monte Carlo randomizations of the dinucleotide PD-scale applied to the same calculation. A net loss of deformability also tends to increase the loss rate. Binding site position specific, 4 data-point correlations were also

  4. Genetics and biology of human ovarian teratomas. II. Molecular analysis of origin of nondisjunction and gene-centromere mapping of chromosome I markers.

    OpenAIRE

    Deka, R; Chakravarti, A; Surti, U; Hauselman, E; Reefer, J; Majumder, P P; Ferrell, R E

    1990-01-01

    Chromosomal heteromorphisms and DNA polymorphisms have been utilized to identify the mechanisms that lead to formation of human ovarian teratomas and to construct a gene-centromere map of chromosome 1 by using those teratomas that arise by meiotic nondisjunction. Of 61 genetically informative ovarian teratomas, 21.3% arose by nondisjunction at meiosis I, and 39.3% arose by meiosis II nondisjunction. Eight polymorphic marker loci on chromosome 1p and one marker on 1q were used to estimate a ge...

  5. Identification of replication factor C from Saccharomyces cerevisiae: a component of the leading-strand DNA replication complex.

    OpenAIRE

    Fien, K; Stillman, B

    1992-01-01

    A number of proteins have been isolated from human cells on the basis of their ability to support DNA replication in vitro of the simian virus 40 (SV40) origin of DNA replication. One such protein, replication factor C (RFC), functions with the proliferating cell nuclear antigen (PCNA), replication protein A (RPA), and DNA polymerase delta to synthesize the leading strand at a replication fork. To determine whether these proteins perform similar roles during replication of DNA from origins in...

  6. 植物着丝粒区串联重复序列的研究进展%Research Progress of Tandem Repetitive Sequence in the Centromere of Plant

    Institute of Scientific and Technical Information of China (English)

    郝薇薇; 周岩

    2013-01-01

      着丝粒是细胞染色体的重要结构组成,控制姊妹染色单体的结合、动粒的组装和纺锤丝的附着,确保真核生物细胞在有丝分裂和减数分裂过程中染色体的正常分离及遗传信息的稳定传递。植物着丝粒DNA序列主要由反转录转座子和串联重复序列构成。串联重复序列在着丝粒功能实现和基因组进化过程中起重要作用。随着测序技术的成熟,近年来对串联重复序列的研究取得了很大的进展。综述了植物串联重复序列结构、分析方法及在进化中的作用,以期为相关研究提供参考。%Centromeres are the important domains of chromosomes that are responsible for sister chromatid cohesion, kinetochore assembly and spindle attachment, and are essential for proper chromosome segregation during mitosis and meiosis. Satellite DNA and retrotransposons are the most abundant DNA elements found in plant centromere regions. Centromeric tandem repeat play an important role in the centromere function and genome evolution. The study of centromeric tandem repeats got great progress for the development of sequencing technology. This paper introduces the development of centromeric tandem repeat of plants.

  7. Dynamics of Escherichia coli chromosome segregation during multifork replication.

    Science.gov (United States)

    Nielsen, Henrik J; Youngren, Brenda; Hansen, Flemming G; Austin, Stuart

    2007-12-01

    Slowly growing Escherichia coli cells have a simple cell cycle, with replication and progressive segregation of the chromosome completed before cell division. In rapidly growing cells, initiation of replication occurs before the previous replication rounds are complete. At cell division, the chromosomes contain multiple replication forks and must be segregated while this complex pattern of replication is still ongoing. Here, we show that replication and segregation continue in step, starting at the origin and progressing to the replication terminus. Thus, early-replicated markers on the multiple-branched chromosomes continue to separate soon after replication to form separate protonucleoids, even though they are not segregated into different daughter cells until later generations. The segregation pattern follows the pattern of chromosome replication and does not follow the cell division cycle. No extensive cohesion of sister DNA regions was seen at any growth rate. We conclude that segregation is driven by the progression of the replication forks.

  8. Spacetime replication of continuous variable quantum information

    Science.gov (United States)

    Hayden, Patrick; Nezami, Sepehr; Salton, Grant; Sanders, Barry C.

    2016-08-01

    The theory of relativity requires that no information travel faster than light, whereas the unitarity of quantum mechanics ensures that quantum information cannot be cloned. These conditions provide the basic constraints that appear in information replication tasks, which formalize aspects of the behavior of information in relativistic quantum mechanics. In this article, we provide continuous variable (CV) strategies for spacetime quantum information replication that are directly amenable to optical or mechanical implementation. We use a new class of homologically constructed CV quantum error correcting codes to provide efficient solutions for the general case of information replication. As compared to schemes encoding qubits, our CV solution requires half as many shares per encoded system. We also provide an optimized five-mode strategy for replicating quantum information in a particular configuration of four spacetime regions designed not to be reducible to previously performed experiments. For this optimized strategy, we provide detailed encoding and decoding procedures using standard optical apparatus and calculate the recovery fidelity when finite squeezing is used. As such we provide a scheme for experimentally realizing quantum information replication using quantum optics.

  9. COPI is required for enterovirus 71 replication.

    Directory of Open Access Journals (Sweden)

    Jianmin Wang

    Full Text Available Enterovirus 71 (EV71, a member of the Picornaviridae family, is found in Asian countries where it causes a wide range of human diseases. No effective therapy is available for the treatment of these infections. Picornaviruses undergo RNA replication in association with membranes of infected cells. COPI and COPII have been shown to be involved in the formation of picornavirus-induced vesicles. Replication of several picornaviruses, including poliovirus and Echovirus 11 (EV11, is dependent on COPI or COPII. Here, we report that COPI, but not COPII, is required for EV71 replication. Replication of EV71 was inhibited by brefeldin A and golgicide A, inhibitors of COPI activity. Furthermore, we found EV71 2C protein interacted with COPI subunits by co-immunoprecipitation and GST pull-down assay, indicating that COPI coatomer might be directed to the viral replication complex through viral 2C protein. Additionally, because the pathway is conserved among different species of enteroviruses, it may represent a novel target for antiviral therapies.

  10. Extremal dynamics in random replicator ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Kärenlampi, Petri P., E-mail: petri.karenlampi@uef.fi

    2015-10-02

    The seminal numerical experiment by Bak and Sneppen (BS) is repeated, along with computations with replicator models, including a greater amount of features. Both types of models do self-organize, and do obey power-law scaling for the size distribution of activity cycles. However species extinction within the replicator models interferes with the BS self-organized critical (SOC) activity. Speciation–extinction dynamics ruins any stationary state which might contain a steady size distribution of activity cycles. The BS-type activity appears as a dissimilar phenomenon in comparison to speciation–extinction dynamics in the replicator system. No criticality is found from the speciation–extinction dynamics. Neither are speciations and extinctions in real biological macroevolution known to contain any diverging distributions, or self-organization towards any critical state. Consequently, biological macroevolution probably is not a self-organized critical phenomenon. - Highlights: • Extremal Dynamics organizes random replicator ecosystems to two phases in fitness space. • Replicator systems show power-law scaling of activity. • Species extinction interferes with Bak–Sneppen type mutation activity. • Speciation–extinction dynamics does not show any critical phase transition. • Biological macroevolution probably is not a self-organized critical phenomenon.

  11. Ribosome biogenesis in replicating cells: Integration of experiment and theory.

    Science.gov (United States)

    Earnest, Tyler M; Cole, John A; Peterson, Joseph R; Hallock, Michael J; Kuhlman, Thomas E; Luthey-Schulten, Zaida

    2016-10-01

    Ribosomes-the primary macromolecular machines responsible for translating the genetic code into proteins-are complexes of precisely folded RNA and proteins. The ways in which their production and assembly are managed by the living cell is of deep biological importance. Here we extend a recent spatially resolved whole-cell model of ribosome biogenesis in a fixed volume [Earnest et al., Biophys J 2015, 109, 1117-1135] to include the effects of growth, DNA replication, and cell division. All biological processes are described in terms of reaction-diffusion master equations and solved stochastically using the Lattice Microbes simulation software. In order to determine the replication parameters, we construct and analyze a series of Escherichia coli strains with fluorescently labeled genes distributed evenly throughout their chromosomes. By measuring these cells' lengths and number of gene copies at the single-cell level, we could fit a statistical model of the initiation and duration of chromosome replication. We found that for our slow-growing (120 min doubling time) E. coli cells, replication was initiated 42 min into the cell cycle and completed after an additional 42 min. While simulations of the biogenesis model produce the correct ribosome and mRNA counts over the cell cycle, the kinetic parameters for transcription and degradation are lower than anticipated from a recent analytical time dependent model of in vivo mRNA production. Describing expression in terms of a simple chemical master equation, we show that the discrepancies are due to the lack of nonribosomal genes in the extended biogenesis model which effects the competition of mRNA for ribosome binding, and suggest corrections to parameters to be used in the whole-cell model when modeling expression of the entire transcriptome. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 735-751, 2016. PMID:27294303

  12. A genetic screen for replication initiation defective (rid mutants in Schizosaccharomyces pombe

    Directory of Open Access Journals (Sweden)

    Locovei Alexandra M

    2010-08-01

    Full Text Available Abstract In fission yeast the intra-S phase and DNA damage checkpoints are activated in response to inhibition of DNA replication or DNA damage, respectively. The intra-S phase checkpoint responds to stalled replication forks leading to the activation of the Cds1 kinase that both delays cell cycle progression and stabilizes DNA replication forks. The DNA damage checkpoint, that operates during the G2 phase of the cell cycle delays mitotic progression through activation of the checkpoint kinase, Chk1. Delay of the cell cycle is believed to be essential to allow time for either replication restart (in S phase or DNA damage repair (in G2. Previously, our laboratory showed that fission yeast cells deleted for the N-terminal half of DNA polymerase ε (Cdc20 are delayed in S phase, but surprisingly require Chk1 rather than Cds1 to maintain cell viability. Several additional DNA replication mutants were then tested for their dependency on Chk1 or Cds1 when grown under semi-permissive temperatures. We discovered that mutants defective in DNA replication initiation are sensitive only to loss of Chk1, whilst mutations that inhibit DNA replication elongation are sensitive to loss of both Cds1 and Chk1. To confirm that the Chk1-sensitive, Cds1-insensitive phenotype (rid phenotype is specific to mutants defective in DNA replication initiation, we completed a genetic screen for cell cycle mutants that require Chk1, but not Cds1 to maintain cell viability when grown at semi-permissive temperatures. Our screen identified two mutants, rid1-1 and rid2-1, that are defective in Orc1 and Mcm4, respectively. Both mutants show defects in DNA replication initiation consistent with our hypothesis that the rid phenotype is replication initiation specific. In the case of Mcm4, the mutation has been mapped to a highly conserved region of the protein that appears to be required for DNA replication initiation, but not elongation. Therefore, we conclude that the cellular

  13. Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure.

    Directory of Open Access Journals (Sweden)

    Nicolas M Berbenetz

    2010-09-01

    Full Text Available Eukaryotic DNA replication origins differ both in their efficiency and in the characteristic time during S phase when they become active. The biological basis for these differences remains unknown, but they could be a consequence of chromatin structure. The availability of genome-wide maps of nucleosome positions has led to an explosion of information about how nucleosomes are assembled at transcription start sites, but no similar maps exist for DNA replication origins. Here we combine high-resolution genome-wide nucleosome maps with comprehensive annotations of DNA replication origins to identify patterns of nucleosome occupancy at eukaryotic replication origins. On average, replication origins contain a nucleosome depleted region centered next to the ACS element, flanked on both sides by arrays of well-positioned nucleosomes. Our analysis identified DNA sequence properties that correlate with nucleosome occupancy at replication origins genome-wide and that are correlated with the nucleosome-depleted region. Clustering analysis of all annotated replication origins revealed a surprising diversity of nucleosome occupancy patterns. We provide evidence that the origin recognition complex, which binds to the origin, acts as a barrier element to position and phase nucleosomes on both sides of the origin. Finally, analysis of chromatin reconstituted in vitro reveals that origins are inherently nucleosome depleted. Together our data provide a comprehensive, genome-wide view of chromatin structure at replication origins and suggest a model of nucleosome positioning at replication origins in which the underlying sequence occludes nucleosomes to permit binding of the origin recognition complex, which then (likely in concert with nucleosome modifiers and remodelers positions nucleosomes adjacent to the origin to promote replication origin function.

  14. Replication and characterization of the compound eye of a fruit fly for imaging purpose

    International Nuclear Information System (INIS)

    In this work, we report the replication and characterization of the compound eye of a fruit fly for imaging purpose. In the replication, soft lithography method was employed to replicate the compound eye of a fruit fly into a UV-curable polymer. The method was demonstrated to be effective and the compound eye is replicated into the polymer (NOA78) where each ommatidium has a diameter of about 30 μm and a sag height of about 7 μm. To characterize its optical property, the point spread function of the compound eye was tested and a NA of 0.386 has been obtained for the replicated polymeric ommatidium. Comparing with the NA of a real fruit fly ommatidium which was measured to be about 0.212, the replicated polymeric ommatidium has a much larger NA due to the refractive index of NOA78 is much higher than that of the material used to form the real fruit fly ommatidium. Furthermore, the replicated compound eye was used to image a photomask patterned with grating structures to test its imaging property. It is shown that the grating with a line width of 20 μm can be clearly imaged. The image of the grating formed by the replicated compound eye was shrunk by about 10 times and therefore a line width of about 2.2 μm in the image plane has been obtained, which is close to the diffraction limited resolution calculated through the measured NA. In summary, the replication method demonstrated is effective and the replicated compound eye has the great potential in optical imaging.

  15. PTEN Controls the DNA Replication Process through MCM2 in Response to Replicative Stress

    Directory of Open Access Journals (Sweden)

    Jiawen Feng

    2015-11-01

    Full Text Available PTEN is a tumor suppressor frequently mutated in human cancers. PTEN inhibits the phosphatidylinositol 3-kinase (PI3K-AKT cascade, and nuclear PTEN guards the genome by multiple mechanisms. Here, we report that PTEN physically associates with the minichromosome maintenance complex component 2 (MCM2, which is essential for DNA replication. Specifically, PTEN dephosphorylates MCM2 at serine 41 (S41 and restricts replication fork progression under replicative stress. PTEN disruption results in unrestrained fork progression upon replication stalling, which is similar to the phenotype of cells expressing the phosphomimic MCM2 mutant S41D. Moreover, PTEN is necessary for prevention of chromosomal aberrations under replication stress. This study demonstrates that PTEN regulates DNA replication through MCM2 and loss of PTEN function leads to replication defects and genomic instability. We propose that PTEN plays a critical role in maintaining genetic stability through a replication-specific mechanism, and this is a crucial facet of PTEN tumor suppressor activity.

  16. Synchronization of DNA array replication kinetics

    Science.gov (United States)

    Manturov, Alexey O.; Grigoryev, Anton V.

    2016-04-01

    In the present work we discuss the features of the DNA replication kinetics at the case of multiplicity of simultaneously elongated DNA fragments. The interaction between replicated DNA fragments is carried out by free protons that appears at the every nucleotide attachment at the free end of elongated DNA fragment. So there is feedback between free protons concentration and DNA-polymerase activity that appears as elongation rate dependence. We develop the numerical model based on a cellular automaton, which can simulate the elongation stage (growth of DNA strands) for DNA elongation process with conditions pointed above and we study the possibility of the DNA polymerases movement synchronization. The results obtained numerically can be useful for DNA polymerase movement detection and visualization of the elongation process in the case of massive DNA replication, eg, under PCR condition or for DNA "sequencing by synthesis" sequencing devices evaluation.

  17. Evolution of Database Replication Technologies for WLCG

    Science.gov (United States)

    Baranowski, Zbigniew; Lobato Pardavila, Lorena; Blaszczyk, Marcin; Dimitrov, Gancho; Canali, Luca

    2015-12-01

    In this article we summarize several years of experience on database replication technologies used at WLCG and we provide a short review of the available Oracle technologies and their key characteristics. One of the notable changes and improvement in this area in recent past has been the introduction of Oracle GoldenGate as a replacement of Oracle Streams. We report in this article on the preparation and later upgrades for remote replication done in collaboration with ATLAS and Tier 1 database administrators, including the experience from running Oracle GoldenGate in production. Moreover, we report on another key technology in this area: Oracle Active Data Guard which has been adopted in several of the mission critical use cases for database replication between online and offline databases for the LHC experiments.

  18. Extremal dynamics in random replicator ecosystems

    Science.gov (United States)

    Kärenlampi, Petri P.

    2015-10-01

    The seminal numerical experiment by Bak and Sneppen (BS) is repeated, along with computations with replicator models, including a greater amount of features. Both types of models do self-organize, and do obey power-law scaling for the size distribution of activity cycles. However species extinction within the replicator models interferes with the BS self-organized critical (SOC) activity. Speciation-extinction dynamics ruins any stationary state which might contain a steady size distribution of activity cycles. The BS-type activity appears as a dissimilar phenomenon in comparison to speciation-extinction dynamics in the replicator system. No criticality is found from the speciation-extinction dynamics. Neither are speciations and extinctions in real biological macroevolution known to contain any diverging distributions, or self-organization towards any critical state. Consequently, biological macroevolution probably is not a self-organized critical phenomenon.

  19. Replicating Cardiovascular Condition-Birth Month Associations

    Science.gov (United States)

    Li, Li; Boland, Mary Regina; Miotto, Riccardo; Tatonetti, Nicholas P.; Dudley, Joel T.

    2016-01-01

    Independent replication is vital for study findings drawn from Electronic Health Records (EHR). This replication study evaluates the relationship between seasonal effects at birth and lifetime cardiovascular condition risk. We performed a Season-wide Association Study on 1,169,599 patients from Mount Sinai Hospital (MSH) to compute phenome-wide associations between birth month and CVD. We then evaluated if seasonal patterns found at MSH matched those reported at Columbia University Medical Center. Coronary arteriosclerosis, essential hypertension, angina, and pre-infarction syndrome passed phenome-wide significance and their seasonal patterns matched those previously reported. Atrial fibrillation, cardiomyopathy, and chronic myocardial ischemia had consistent patterns but were not phenome-wide significant. We confirm that CVD risk peaks for those born in the late winter/early spring among the evaluated patient populations. The replication findings bolster evidence for a seasonal birth month effect in CVD. Further study is required to identify the environmental and developmental mechanisms. PMID:27624541

  20. Evolution of Database Replication Technologies for WLCG

    CERN Document Server

    Baranowski, Zbigniew; Blaszczyk, Marcin; Dimitrov, Gancho; Canali, Luca

    2015-01-01

    In this article we summarize several years of experience on database replication technologies used at WLCG and we provide a short review of the available Oracle technologies and their key characteristics. One of the notable changes and improvement in this area in recent past has been the introduction of Oracle GoldenGate as a replacement of Oracle Streams. We report in this article on the preparation and later upgrades for remote replication done in collaboration with ATLAS and Tier 1 database administrators, including the experience from running Oracle GoldenGate in production. Moreover, we report on another key technology in this area: Oracle Active Data Guard which has been adopted in several of the mission critical use cases for database replication between online and offline databases for the LHC experiments.

  1. Transcriptional Response of Human Neurospheres to Helper-Dependent CAV-2 Vectors Involves the Modulation of DNA Damage Response, Microtubule and Centromere Gene Groups.

    Directory of Open Access Journals (Sweden)

    Stefania Piersanti

    Full Text Available Brain gene transfer using viral vectors will likely become a therapeutic option for several disorders. Helper-dependent (HD canine adenovirus type 2 vectors (CAV-2 are well suited for this goal. These vectors are poorly immunogenic, efficiently transduce neurons, are retrogradely transported to afferent structures in the brain and lead to long-term transgene expression. CAV-2 vectors are being exploited to unravel behavior, cognition, neural networks, axonal transport and therapy for orphan diseases. With the goal of better understanding and characterizing HD-CAV-2 for brain therapy, we analyzed the transcriptomic modulation induced by HD-CAV-2 in human differentiated neurospheres derived from midbrain progenitors. This 3D model system mimics several aspects of the dynamic nature of human brain. We found that differentiated neurospheres are readily transduced by HD-CAV-2 and that transduction generates two main transcriptional responses: a DNA damage response and alteration of centromeric and microtubule probes. Future investigations on the biochemistry of processes highlighted by probe modulations will help defining the implication of HD-CAV-2 and CAR receptor binding in enchaining these functional pathways. We suggest here that the modulation of DNA damage genes is related to viral DNA, while the alteration of centromeric and microtubule probes is possibly enchained by the interaction of the HD-CAV-2 fibre with CAR.

  2. Role of Ctf3 and COMA subcomplexes in meiosis: Implication in maintaining Cse4 at the centromere and numeric spindle poles.

    Science.gov (United States)

    Agarwal, Meenakshi; Mehta, Gunjan; Ghosh, Santanu K

    2015-03-01

    During mitosis and meiosis, kinetochore, a conserved multi-protein complex, connects microtubule with the centromere and promotes segregation of the chromosomes. In budding yeast, central kinetochore complex named Ctf19 has been implicated in various functions and is believed to be made up of three biochemically distinct subcomplexes: COMA, Ctf3 and Iml3-Chl4. In this study, we aimed to identify whether Ctf3 and COMA subcomplexes have any unshared function at the kinetochore. Our data suggests that both these subcomplexes may work as a single functional unit without any unique functions, which we tested. Analysis of severity of the defects in the mutants suggests that COMA is epistatic to Ctf3 subcomplex. Interestingly, we noticed that these subcomplexes affect the organization of mitotic and meiotic kinetochores with subtle differences and they promote maintenance of Cse4 at the centromeres specifically during meiosis which is similar to the role of Mis6 (Ctf3 homolog) in fission yeast during mitosis. Interestingly, analysis of ctf3Δ and ctf19Δ mutants revealed a novel role of Ctf19 complex in regulation of SPB cohesion and duplication in meiosis.

  3. Improvement of replication fidelity in injection moulding of nano structures using an induction heating system

    DEFF Research Database (Denmark)

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano;

    2014-01-01

    In today’s industry, applications involving surface pattering with sub-μm scale structures have shown a high interest. The replication of these structures by injection molding leads to special requirements for the mold in order to ensure proper replication and an acceptable cycle time. A tool ins...... quantitatively characterized by atomic force microscopy comparing the measurement in the nickel insert with the corresponding polymer nano-features. The experimental results show that the use of the induction heating system is an efficient way to improve the pattern replication....

  4. The replication of expansive production knowledge

    DEFF Research Database (Denmark)

    Wæhrens, Brian Vejrum; Yang, Cheng; Madsen, Erik Skov

    2012-01-01

    ; and (2) rather than being viewed as alternative approaches, templates and principles should be seen as complementary once the transfer motive moves beyond pure replication. Research limitations – The concepts introduced in this paper were derived from two Danish cases. While acceptable for theory...... exploration, the small sample size is an obvious limitation for generalisation. Practical implications – A roadmap for knowledge transfer within the replication of a production line is suggested, which, together with four managerial suggestions, provides strong support and clear directions to managers...

  5. Research on Distributed Dynamic Replication Management Policy

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xu; LU Xian-liang; HOU Meng-shu; WU Jin

    2005-01-01

    This paper introduces replication management policies in distributed file system, and presents a novel decentralized dynamic replication management mechanism based on accessing frequency detecting named FDRM. In FDRM, in order to provide better system performance and reduce network traffic, system nodes scan their local replicas to monitor replicas' access pattern, and makes decision independently to add, delete or migrate replicas. In addition, the scanning interval of a replica is variable according to the accessing frequency to that replica, which makes FDRM more sensitive to the change of system behaviors, so that one can get better performance with less system overhead. Experiments show the efficiency and performance improvement of FSRM.

  6. Surface Microstructure Replication in Injection Moulding

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Arlø, Uffe Rolf

    2005-01-01

    In recent years polymer components with surface microstructures have been in rising demand for applications such as lab-on-a-chip and optical components. Injection moulding has proven to be a feasible and efficient way to manufacture such components. In injection moulding the mould surface...... moulding of surface microstructures. Emphasis is put on the ability to replicate surface microstructures under normal injection moulding conditions, notably with low cost materials at low mould temperatures. The replication of surface microstructures in injection moulding has been explored...

  7. Replication technology for photonic band gap applications

    Science.gov (United States)

    Grigaliunas, V.; Kopustinskas, V.; Meskinis, S.; Margelevicius, M.; Mikulskas, I.; Tomasiunas, R.

    2001-06-01

    Replication technology was applied for photonic structure fabrication in silicon substrate. It was revealed, that thin thermoplastic polymer layers on silicon substrates may be patterned by hot embossing technique for dry etching masking. Ni mold used for plain hot embossing into polymer layers was fabricated by Ni electrochemical deposition on the reference silicon surface structure, which was obtained by direct electron beam (EB) writing and SF 6/N 2 reactive ion etching (RIE) technique. It is shown that the shape of replicated photonic structures is determined by RIE parameters.

  8. Replication, recombination, and repair: going for the gold.

    Science.gov (United States)

    Klein, Hannah L; Kreuzer, Kenneth N

    2002-03-01

    DNA recombination is now appreciated to be integral to DNA replication and cell survival. Recombination allows replication to successfully maneuver through the roadblocks of damaged or collapsed replication forks. The signals and controls that permit cells to transition between replication and recombination modes are now being identified.

  9. Origin of replication of the DNA of a herpesvirus (pseudorabies).

    OpenAIRE

    Ben-Porat, T; Veach, R A

    1980-01-01

    During the first round of the replication of pseudorabies virus DNA, replicating DNA is mainly in the form of circles. The main origin of replication is located inthe region of the molecule bearing the inverted repeat. Replication proceeds unidirectionally from the origin.

  10. Low cost management of replicated data in fault-tolerant distributed systems

    Science.gov (United States)

    Joseph, Thomas A.; Birman, Kenneth P.

    1990-01-01

    Many distributed systems replicate data for fault tolerance or availability. In such systems, a logical update on a data item results in a physical update on a number of copies. The synchronization and communication required to keep the copies of replicated data consistent introduce a delay when operations are performed. A technique is described that relaxes the usual degree of synchronization, permitting replicated data items to be updated concurrently with other operations, while at the same time ensuring that correctness is not violated. The additional concurrency thus obtained results in better response time when performing operations on replicated data. How this technique performs in conjunction with a roll-back and a roll-forward failure recovery mechanism is also discussed.

  11. Tomato yellow leaf curl virus: No evidence for replication in the insect vector Bemisia tabaci.

    Science.gov (United States)

    Sánchez-Campos, Sonia; Rodríguez-Negrete, Edgar A; Cruzado, Lucía; Grande-Pérez, Ana; Bejarano, Eduardo R; Navas-Castillo, Jesús; Moriones, Enrique

    2016-01-01

    Begomovirus ssDNA plant virus (family Geminiviridae) replication within the Bemisia tabaci vector is controversial. Transovarial transmission, alteration to whitefly biology, or detection of viral transcripts in the vector are proposed as indirect evidence of replication of tomato yellow leaf curl virus (TYLCV). Recently, contrasting direct evidence has been reported regarding the capacity of TYLCV to replicate within individuals of B. tabaci based on quantitave PCR approaches. Time-course experiments to quantify complementary and virion sense viral nucleic acid accumulation within B. tabaci using a recently implemented two step qPCR procedure revealed that viral DNA quantities did not increase for time points up to 96 hours after acquisition of the virus. Our findings do not support a recent report claiming TYLCV replication in individuals of B. tabaci. PMID:27476582

  12. Regulation of eukaryotic DNA replication and nuclear structure

    Institute of Scientific and Technical Information of China (English)

    WUJIARUI

    1999-01-01

    In eukaryote,nuclear structure is a key component for the functions of eukaryotic cells.More and more evidences show that the nuclear structure plays important role in regulating DNA replication.The nuclear structure provides a physical barrier for the replication licensing,participates in the decision where DNA replication initiates,and organizes replication proteins as replication factory for DNA replication.Through these works,new concepts on the regulation of DNA replication have emerged,which will be discussed in this minireview.

  13. Cloning of an origin of DNA replication of Xenopus laevis

    International Nuclear Information System (INIS)

    DNA fragments of Xenopus laevis, the African frog, were cloned in the EcoRI site of the Eschrichia coli plasmid pACYC189 and tested for ability to initiate and complete replication of the recombinant plasmid when injected into unfertilized eggs of X. laevis. After measurement of the [3H]-thymidine incorporation per egg for a number of recombinant plasmids, pSW14 and pSW9, which respectively contain a small segment (550 base pairs) and several kilobases of frog DNA, were selected for more extensive analysis. In spite of the small size of th segment in pSW14, it incorporates in 2 hr at least 3 times as much labeled thymidine as either pSW9 or the vector alone. To determine the number of replications of pSW14, a novel method was employed. The results showed that about 50% of the labeled, supercoiled DNA recovered from eggs after 4 hr was sensitive to EcoRI digestion, which indicates that most of the DNA that incorporated [3H]thymidine had replicated twice during the 4 hr in the unfertilized eggs of X. laevis. We conclude the pSW14 has a functional origin in the Xenopus DNA segment

  14. AcMNPV As A Model for Baculovirus DNA Replication

    Institute of Scientific and Technical Information of China (English)

    Eric B. Carstens

    2009-01-01

    Baculoviruses were first identified as insect-specific pathogens, and it was this specificity that lead to their use as safe, target specific biological pesticides. For the past 30 years, AcMNPV has served as the subject of intense basic molecular research into the baculovirus infectious cycle including the interaction of the virus with a continuous insect cell line derived from Spodoptera frugiperda. The studies on baculoviruese have led to an in-depth understanding of the physical organization of the viral genomes including many complete genomic sequences, the time course of gene expression, and the application of this basic research to the use of baculoviruses not only as insecticides, but also as a universal eukaryotic protein expression system, and a potential vector in gene therapy. A great deal has also been discovered about the viral genes required for the replication of the baculovirus genome, while much remains to be learned about the mechanism of viral DNA replication. This report outlines the current knowledge of the factors involved in baculovirus DNA replication, using data on AcMNPV as a model for most members of the Baculoviridae.

  15. Replication banding and molecular studies of a mosaic, unbalanced dic(X;15)(Xpter {yields} Xq26.1::15p11 {yields} 15qter)

    Energy Technology Data Exchange (ETDEWEB)

    Scheuerle, A.; Ledbetter, D.H.; Greenberg, F. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1995-05-08

    We present a patient with a chromosomal mosaicism involving the X chromosome. One cell line is 45,X and the other has a de novo paternally derived dicentric X;15 translocation. Her karyotype is therefore 45,X/45,X,dic(X;15)(Xpter {yields} Xq26.1::15p11 {yields} 15qter) based on G-banding. The presence of 2 centromeres on the derivative X was confirmed by fluorescence in situ hybridization (FISH) and a deletion of Xq26.1 {yields} qter was confirmed by polymerase chain reaction (PCR) using DXS52 and DXYS154. Replication banding studies indicate that the derivative X is late replicating. Based on these studies, it is unclear whether inactivation has spread to proximal 15q. The patient has a unique phenotype distinct from Ullrich-Turner or Prader-Willi syndromes, but includes ataxia and language delay which are commonly seen in Angelman syndrome. These findings are contrary to those anticipated since deficiency of paternal genes at 15q12 typically leads to Prader-Willi syndrome. Molecular analysis of PCR-based polymorphisms of chromosomes 15 and X indicates that uniparental disomy is not present for the X chromosome or chromosome 15 in either cell line. It is hypothesized that her phenotype results from the interaction of the 2 abnormal genotypes. Each abnormality may be diluted by the mosaicism and, in the derivative X line, by the possible variation among cells of inactivation spreading to chromosome 15. 18 refs., 6 figs., 1 tab.

  16. HSF1 overexpression enhances oncolytic effect of replicative adenovirus

    Directory of Open Access Journals (Sweden)

    Deng Youwen

    2010-05-01

    Full Text Available Abstract Background E1B55kD deleted oncolytic adenovirus was designed to achieve cancer-specific cytotoxicity, but showed limitations in clinical study. To find a method to increase its efficacy, we investigated the correlation between oncolytic effect of such oncolytic adenovirus Adel55 and intracellular heat shock transcription factor 1 (HSF1 activity. Methods In the present study, human breast cancer cell line Bcap37 was stably transfected with constitutively active HSF1 (cHSF1 or HSF1 specific siRNA (HSF1i to establish increased or decreased HSF1 expression levels. Cytotoxicity of Adel55 was analyzed in these cell lines in vitro and in vivo. Furthermore, Adel55 incorporated with cHSF1 (Adel55-cHSF1 was used to treat various tumor xenografts. Results Adel55 could achieve more efficient oncolysis in cHSF1 transfected Bcap37 cells, both in vitro and in vivo. However, inhibition of HSF1 expression by HSF1i could rescue Bcap37 cell line from oncolysis by Adel55. A time course study of viral replication established a correlation between higher replication of Adel55 and cytolysis or tumor growth inhibition. Then, we constructed Adel55-cHSF1 for tumor gene therapy and demonstrated that it is more potent than Adel55 itself in oncolysis and replication in both Bcap37 and SW620 xenografts. Conclusions cHSF1 enhances the Adel55 cell-killing potential through increasing the viral replication and is a potential therapeutic implication to augment the potential of E1B55kD deleted oncolytic adenovirus by increasing its burst.

  17. Three-dimensional morphology, ultrastructure, and replication of Mycoplasma felis.

    Science.gov (United States)

    Boatman, E S; Kenny, G E

    1970-01-01

    The morphology and replication of Mycoplasma felis in relation to growth phase in culture were studied by electron microscopy. The organisms showed 1.0 to 1.45-hr doubling times with typical bacterial-type growth curves when grown in dialysate broth supplemented with horse serum. Organisms were fixed for electron microscopy by using Veronal acetate-buffered 0.8% OsO(4) (pH 6.1) in 20% sucrose. The morphology of exponential-phase organisms differed markedly from that of stationary or death-phase organisms, which were essentially large round forms with either dispersed or abnormally aggregated cytoplasm. Plasticine models prepared from serial sections of organisms in exponential phase showed the organisms to be either disc-shaped, triangular, horseshoe-shaped, or multilobular. A central "hole" was frequently present in these structures and could be visualized in the lobular forms as an interconnecting circular membrane. The inner surface of this membrane often showed contact with a small membranous body about 0.12 mum in diameter. The significance of this body is unknown. The morphology of the various shapes was confirmed by using the phosphotungstic acid and critical point methods. When the ratios of the various forms in exponential-phase cultures were determined, it was found that a replication sequence could be proposed which accounted for not only the volume increase required to accommodate deoxyribonucleic acid (DNA) replication but also the distribution of that DNA. Although it is likely that DNA replication in M. felis is a binary process, it appears that the mechanism for production of new cells need not be a binary process. PMID:5411752

  18. Origin DNA Melting and Unwinding in DNA Replication

    OpenAIRE

    Gai, Dahai; Chang, Y Paul; Chen, Xiaojiang S.

    2010-01-01

    Genomic DNA replication is a necessary step in the life cycles of all organisms. To initiate DNA replication, the double-stranded DNA (dsDNA) at the origin of replication must be separated or melted; this melted region is propagated and a mature replication fork is formed. To accomplish origin recognition, initial DNA melting, and the eventual formation of a replication fork, coordinated activity of initiators, helicases, and other cellular factors are required. In this review, we focus on re...

  19. A moving DNA replication factory in Caulobacter crescentus

    OpenAIRE

    Jensen, Rasmus B.; Wang, Sherry C.; Shapiro, Lucy

    2001-01-01

    The in vivo intracellular location of components of the Caulobacter replication apparatus was visualized during the cell cycle. Replisome assembly occurs at the chromosomal origin located at the stalked cell pole, coincident with the initiation of DNA replication. The replisome gradually moves to midcell as DNA replication proceeds and disassembles upon completion of DNA replication. Although the newly replicated origin regions of the chromosome are rapidly moved to opposite cell poles by an ...

  20. Understanding replication of experiments in software engineering: a classification

    OpenAIRE

    Gómez Gómez, Omar Salvador; Juristo Juzgado, Natalia; Vegas Hernández, Sira

    2014-01-01

    Context: Replication plays an important role in experimental disciplines. There are still many uncertain- ties about how to proceed with replications of SE experiments. Should replicators reuse the baseline experiment materials? How much liaison should there be among the original and replicating experiment- ers, if any? What elements of the experimental configuration can be changed for the experiment to be considered a replication rather than a new experiment? Objective: To improve our unders...

  1. Visualization and measurement of ATP levels in living cells replicating hepatitis C virus genome RNA.

    Directory of Open Access Journals (Sweden)

    Tomomi Ando

    Full Text Available Adenosine 5'-triphosphate (ATP is the primary energy currency of all living organisms and participates in a variety of cellular processes. Although ATP requirements during viral lifecycles have been examined in a number of studies, a method by which ATP production can be monitored in real-time, and by which ATP can be quantified in individual cells and subcellular compartments, is lacking, thereby hindering studies aimed at elucidating the precise mechanisms by which viral replication energized by ATP is controlled. In this study, we investigated the fluctuation and distribution of ATP in cells during RNA replication of the hepatitis C virus (HCV, a member of the Flaviviridae family. We demonstrated that cells involved in viral RNA replication actively consumed ATP, thereby reducing cytoplasmic ATP levels. Subsequently, a method to measure ATP levels at putative subcellular sites of HCV RNA replication in living cells was developed by introducing a recently-established Förster resonance energy transfer (FRET-based ATP indicator, called ATeam, into the NS5A coding region of the HCV replicon. Using this method, we were able to observe the formation of ATP-enriched dot-like structures, which co-localize with non-structural viral proteins, within the cytoplasm of HCV-replicating cells but not in non-replicating cells. The obtained FRET signals allowed us to estimate ATP concentrations within HCV replicating cells as ∼5 mM at possible replicating sites and ∼1 mM at peripheral sites that did not appear to be involved in HCV replication. In contrast, cytoplasmic ATP levels in non-replicating Huh-7 cells were estimated as ∼2 mM. To our knowledge, this is the first study to demonstrate changes in ATP concentration within cells during replication of the HCV genome and increased ATP levels at distinct sites within replicating cells. ATeam may be a powerful tool for the study of energy metabolism during replication of the viral genome.

  2. Representation dimension of m-replicated algebras

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Let A be a finite-dimensional hereditary algebra over an algebraically closed field and A(m) be the m-replicated algebra of A.We prove that the representation dimension of A(m) is at most 3,and that the dominant dimension of A(m) is at least m.

  3. Suppression of Coronavirus Replication by Cyclophilin Inhibitors

    Directory of Open Access Journals (Sweden)

    Takashi Sasaki

    2013-05-01

    Full Text Available Coronaviruses infect a variety of mammalian and avian species and cause serious diseases in humans, cats, mice, and birds in the form of severe acute respiratory syndrome (SARS, feline infectious peritonitis (FIP, mouse hepatitis, and avian infectious bronchitis, respectively. No effective vaccine or treatment has been developed for SARS-coronavirus or FIP virus, both of which cause lethal diseases. It has been reported that a cyclophilin inhibitor, cyclosporin A (CsA, could inhibit the replication of coronaviruses. CsA is a well-known immunosuppressive drug that binds to cellular cyclophilins to inhibit calcineurin, a calcium-calmodulin-activated serine/threonine-specific phosphatase. The inhibition of calcineurin blocks the translocation of nuclear factor of activated T cells from the cytosol into the nucleus, thus preventing the transcription of genes encoding cytokines such as interleukin-2. Cyclophilins are peptidyl-prolyl isomerases with physiological functions that have been described for many years to include chaperone and foldase activities. Also, many viruses require cyclophilins for replication; these include human immunodeficiency virus, vesicular stomatitis virus, and hepatitis C virus. However, the molecular mechanisms leading to the suppression of viral replication differ for different viruses. This review describes the suppressive effects of CsA on coronavirus replication.

  4. Campus Values in Mate Selection: A Replication

    Science.gov (United States)

    Hudson, John W.; Henze, lura F.

    1969-01-01

    Replicates research by Hill (1939) and McGinnis (1956) through use of questionnaire with random sample on four campuses. Concludes that values expressed currently and a generation ago show remarkable consistency. Revised version of paper presented at Rocky Muntain Social Science Association, Denver, Colorado, 1968. (CJ)

  5. Replication and analysis of Ebbinghaus' forgetting curve

    NARCIS (Netherlands)

    J.M.J. Murre; J. Dros

    2015-01-01

    We present a successful replication of Ebbinghaus’ classic forgetting curve from 1880 based on the method of savings. One subject spent 70 hours learning lists and relearning them after 20 min, 1 hour, 9 hours, 1 day, 2 days, or 31 days. The results are similar to Ebbinghaus' original data. We analy

  6. Replication and Inhibitors of Enteroviruses and Parechoviruses.

    Science.gov (United States)

    van der Linden, Lonneke; Wolthers, Katja C; van Kuppeveld, Frank J M

    2015-08-01

    The Enterovirus (EV) and Parechovirus genera of the picornavirus family include many important human pathogens, including poliovirus, rhinovirus, EV-A71, EV-D68, and human parechoviruses (HPeV). They cause a wide variety of diseases, ranging from a simple common cold to life-threatening diseases such as encephalitis and myocarditis. At the moment, no antiviral therapy is available against these viruses and it is not feasible to develop vaccines against all EVs and HPeVs due to the great number of serotypes. Therefore, a lot of effort is being invested in the development of antiviral drugs. Both viral proteins and host proteins essential for virus replication can be used as targets for virus inhibitors. As such, a good understanding of the complex process of virus replication is pivotal in the design of antiviral strategies goes hand in hand with a good understanding of the complex process of virus replication. In this review, we will give an overview of the current state of knowledge of EV and HPeV replication and how this can be inhibited by small-molecule inhibitors. PMID:26266417

  7. Replication and Inhibitors of Enteroviruses and Parechoviruses

    Directory of Open Access Journals (Sweden)

    Lonneke van der Linden

    2015-08-01

    Full Text Available The Enterovirus (EV and Parechovirus genera of the picornavirus family include many important human pathogens, including poliovirus, rhinovirus, EV-A71, EV-D68, and human parechoviruses (HPeV. They cause a wide variety of diseases, ranging from a simple common cold to life-threatening diseases such as encephalitis and myocarditis. At the moment, no antiviral therapy is available against these viruses and it is not feasible to develop vaccines against all EVs and HPeVs due to the great number of serotypes. Therefore, a lot of effort is being invested in the development of antiviral drugs. Both viral proteins and host proteins essential for virus replication can be used as targets for virus inhibitors. As such, a good understanding of the complex process of virus replication is pivotal in the design of antiviral strategies goes hand in hand with a good understanding of the complex process of virus replication. In this review, we will give an overview of the current state of knowledge of EV and HPeV replication and how this can be inhibited by small-molecule inhibitors.

  8. Chemistry: Small molecular replicators go organic

    Science.gov (United States)

    Taylor, Annette F.

    2016-09-01

    The emergence of complex, dynamic molecular behaviour might have had a role in the origin of life. Such behaviour has now been seen in a reaction network involving small, organic, self-replicating molecules of biological relevance. See Letter p.656

  9. Methylation: a regulator of HIV-1 replication?

    OpenAIRE

    Jeang Kuan-Teh; Yedavalli Venkat RK

    2007-01-01

    Abstract Recent characterizations of methyl transferases as regulators of cellular processes have spurred investigations into how methylation events might influence the HIV-1 life cycle. Emerging evidence suggests that protein-methylation can positively and negatively regulate HIV-1 replication. How DNA- and RNA- methylation might impact HIV-1 is also discussed.

  10. Impact of Chromatin on HIV Replication

    OpenAIRE

    Agosto, Luis M.; Matthew Gagne; Henderson, Andrew J.

    2015-01-01

    Chromatin influences Human Immunodeficiency Virus (HIV) integration and replication. This review highlights critical host factors that influence chromatin structure and organization and that also impact HIV integration, transcriptional regulation and latency. Furthermore, recent attempts to target chromatin associated factors to reduce the HIV proviral load are discussed.

  11. The replication of expansive production knowledge

    DEFF Research Database (Denmark)

    Wæhrens, Brian Vejrum; Yang, Cheng; Madsen, Erik Skov

    2012-01-01

    exploration, the small sample size is an obvious limitation for generalisation. Practical implications – A roadmap for knowledge transfer within the replication of a production line is suggested, which, together with four managerial suggestions, provides strong support and clear directions to managers...

  12. Chromatin challenges during DNA replication and repair

    DEFF Research Database (Denmark)

    Groth, Anja; Rocha, Walter; Verreault, Alain;

    2007-01-01

    the challenge of maintenance, cells have evolved efficient nucleosome-assembly pathways and chromatin-maturation mechanisms that reproduce chromatin organization in the wake of DNA replication and repair. The aim of this Review is to describe how these pathways operate and to highlight how the epigenetic...

  13. Distributed Databases Management Using Replication Method

    OpenAIRE

    Mircea Petrini

    2009-01-01

    Over the last several years, research into fully distributed database has slowly but surely found its way into commercial products. Today, many of the mainstream enterprise database products offer at least some level of transparent distributed database access. This paper studies the replication method as a component of the distributed databases management.

  14. A conditionally replicating HIV-1 vector interferes with wild-type HIV-1 replication and spread.

    OpenAIRE

    Dropulić, B; Hĕrmánková, M; Pitha, P M

    1996-01-01

    Defective-interfering viruses are known to modulate virus pathogenicity. We describe conditionally replicating HIV-1 (crHIV) vectors that interfere with wild-type HIV-1 (wt-HIV) replication and spread. crHIV vectors are defective-interfering HIV genomes that do not encode viral proteins and replicate only in the presence of wt-HIV helper virus. In cells that contain both wt-HIV and crHIV genomes, the latter are shown to have a selective advantage for packaging into progeny virions because the...

  15. Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53

    OpenAIRE

    Osborn, Alexander J.; Elledge, Stephen J.

    2003-01-01

    When DNA replication is stalled, a signal transduction pathway is activated that promotes the stability of stalled forks and resumption of DNA synthesis. In budding yeast, this pathway includes the kinases Mec1 and Rad53. Here we report that the Mediator protein Mrc1, which is required for normal DNA replication and for activation of Rad53, is present at replication forks. Mrc1 initially binds early-replicating sequences and moves along chromatin with the replication f...

  16. Study on the micro-replication of shark skin

    Institute of Scientific and Technical Information of China (English)

    HAN Xin; ZHANG DeYuan

    2008-01-01

    Direct replication of creatural scarfskins to form biomimetic surfaces with relatively vivid morphology is a new attempt of the bio-replicated forming technology at animal body.Taking shark skins as the replication templates,and the micro-em-bossing and micro-molding as the material forming methods,the micro-replicating technology of the outward morphology on shark skins was demonstrated.The pre-liminary analysis on replication precision indicates that the bio-replicated forming technology can replicate the outward morphology of the shark scales with good precision,which validates the application of the bio-replicated forming technology in the direct morphology replication of the firm creatural scarfskins.

  17. REPLICATION STRATEGY BASED ON DATA RELATIONSHIP IN GRID COMPUTING

    Directory of Open Access Journals (Sweden)

    Yuhanis Yusof

    2013-11-01

    Full Text Available This study discusses the utilization of three types of relationships in performing data replication. As grid computing offers the ability of sharing huge amount of resources, resource availability is an important issue to be addressed. The undertaken approach combines the viewpoint of user, system and the grid itself in ensuring resource availability. The realization of the proposed strategy is demonstrated via OptorSim and evaluation is made based on execution time, storage usage, network bandwidth and computing element usage. Results suggested that the proposed strategy produces a better outcome than an existing method even though various job workload is introduced.

  18. High-throughput mapping of origins of replication in human cells.

    Science.gov (United States)

    Lucas, Isabelle; Palakodeti, Aparna; Jiang, Yanwen; Young, David J; Jiang, Nan; Fernald, Anthony A; Le Beau, Michelle M

    2007-08-01

    Mapping origins of replication has been challenging in higher eukaryotes. We have developed a rapid, genome-wide method to map origins of replication in asynchronous human cells by combining the nascent strand abundance assay with a highly tiled microarray platform, and we validated the technique by two independent assays. We applied this method to analyse the enrichment of nascent DNA in three 50-kb regions containing known origins of replication in the MYC, lamin B2 (LMNB2) and haemoglobin beta (HBB) genes, a 200-kb region containing the rare fragile site, FRAXA, and a 1,075-kb region on chromosome 22; we detected most of the known origins and also 28 new origins. Surprisingly, the 28 new origins were small in size and located predominantly within genes. Our study also showed a strong correlation between origin replication timing and chromatin acetylation.

  19. Mis17 is a regulatory module of the Mis6-Mal2-Sim4 centromere complex that is required for the recruitment of CenH3/CENP-A in fission yeast.

    Directory of Open Access Journals (Sweden)

    Yoshiharu Shiroiwa

    Full Text Available BACKGROUND: The centromere is the chromosome domain on which the mitotic kinetochore forms for proper segregation. Deposition of the centromeric histone H3 (CenH3, CENP-A is vital for the formation of centromere-specific chromatin. The Mis6-Mal2-Sim4 complex of the fission yeast S. pombe is required for the recruitment of CenH3 (Cnp1, but its function remains obscure. METHODOLOGY/PRINCIPAL FINDINGS: Mass spectrometry was performed on the proteins precipitated with Mis6- and Mis17-FLAG. The results together with the previously identified Sim4- and Mal2-TAP precipitated proteins indicated that the complex contains 12 subunits, Mis6, Sim4, Mal2, Mis15, Mis17, Cnl2, Fta1-4, Fta6-7, nine of which have human centromeric protein (CENP counterparts. Domain dissection indicated that the carboxy-half of Mis17 is functional, while its amino-half is regulatory. Overproduction of the amino-half caused strong negative dominance, which led to massive chromosome missegregation and hypersensitivity to the histone deacetylase inhibitor TSA. Mis17 was hyperphosphorylated and overproduction-induced negative dominance was abolished in six kinase-deletion mutants, ssp2 (AMPK, ppk9 (AMPK, ppk15 (Yak1, ppk30 (Ark1, wis4 (Ssk2, and lsk1 (P-TEFb. CONCLUSIONS: Mis17 may be a regulatory module of the Mis6 complex. Negative dominance of the Mis17 fragment is exerted while the complex and CenH3 remain at the centromere, a result that differs from the mislocalization seen in the mis17-362 mutant. The known functions of the kinases suggest an unexpected link between Mis17 and control of the cortex actin, nutrition, and signal/transcription. Possible interpretations are discussed.

  20. Anaphase onset before complete DNA replication with intact checkpoint responses

    DEFF Research Database (Denmark)

    Torres-Rosell, Jordi; De Piccoli, Giacomo; Cordon-Preciado, Violeta;

    2007-01-01

    Cellular checkpoints prevent mitosis in the presence of stalled replication forks. Whether checkpoints also ensure the completion of DNA replication before mitosis is unknown. Here, we show that in yeast smc5-smc6 mutants, which are related to cohesin and condensin, replication is delayed, most...... significantly at natural replication-impeding loci like the ribosomal DNA gene cluster. In the absence of Smc5-Smc6, chromosome nondisjunction occurs as a consequence of mitotic entry with unfinished replication despite intact checkpoint responses. Eliminating processes that obstruct replication fork...

  1. The Tat protein of human immunodeficiency virus-1 enhances hepatitis C virus replication through interferon gamma-inducible protein-10

    Directory of Open Access Journals (Sweden)

    Qu Jing

    2012-04-01

    Full Text Available Abstract Background Co-infection with human immunodeficiency virus-1 (HIV-1 and hepatitis C virus (HCV is associated with faster progression of liver disease and an increase in HCV persistence. However, the mechanism by which HIV-1 accelerates the progression of HCV liver disease remains unknown. Results HIV-1/HCV co-infection is associated with increased expression of interferon gamma-induced protein-10 (IP-10 mRNA in peripheral blood mononuclear cells (PBMCs. HCV RNA levels were higher in PBMCs of patients with HIV-1/HCV co-infection than in patients with HCV mono-infection. HIV-1 Tat and IP-10 activated HCV replication in a time-dependent manner, and HIV-1 Tat induced IP-10 production. In addition, the effect of HIV-1 Tat on HCV replication was blocked by anti-IP-10 monoclonal antibody, demonstrating that the effect of HIV-1 Tat on HCV replication depends on IP-10. Taken together, these results suggest that HIV-1 Tat protein activates HCV replication by upregulating IP-10 production. Conclusions HIV-1/HCV co-infection is associated with increased expression of IP-10 mRNA and replication of HCV RNA. Furthermore, both HIV-1 Tat and IP-10 activate HCV replication. HIV-1 Tat activates HCV replication by upregulating IP-10 production. These results expand our understanding of HIV-1 in HCV replication and the mechanism involved in the regulation of HCV replication mediated by HIV-1 during co-infection.

  2. The Solution to Science's Replication Crisis

    CERN Document Server

    Knuteson, Bruce

    2016-01-01

    The solution to science's replication crisis is a new ecosystem in which scientists sell what they learn from their research. In each pairwise transaction, the information seller makes (loses) money if he turns out to be correct (incorrect). Responsibility for the determination of correctness is delegated, with appropriate incentives, to the information purchaser. Each transaction is brokered by a central exchange, which holds money from the anonymous information buyer and anonymous information seller in escrow, and which enforces a set of incentives facilitating the transfer of useful, bluntly honest information from the seller to the buyer. This new ecosystem, capitalist science, directly addresses socialist science's replication crisis by explicitly rewarding accuracy and penalizing inaccuracy.

  3. Entropy involved in fidelity of DNA replication

    CERN Document Server

    Arias-Gonzalez, J Ricardo

    2012-01-01

    Information has an entropic character which can be analyzed within the Statistical Theory in molecular systems. R. Landauer and C.H. Bennett showed that a logical copy can be carried out in the limit of no dissipation if the computation is performed sufficiently slowly. Structural and recent single-molecule assays have provided dynamic details of polymerase machinery with insight into information processing. We introduce a rigorous characterization of Shannon Information in biomolecular systems and apply it to DNA replication in the limit of no dissipation. Specifically, we devise an equilibrium pathway in DNA replication to determine the entropy generated in copying the information from a DNA template in the absence of friction. Both the initial state, the free nucleotides randomly distributed in certain concentrations, and the final state, a polymerized strand, are mesoscopic equilibrium states for the nucleotide distribution. We use empirical stacking free energies to calculate the probabilities of incorpo...

  4. Accounting for PDMS shrinkage when replicating structures

    International Nuclear Information System (INIS)

    Polydimethylsiloxane (PDMS) is a widely used material for fabrication of microfluidic devices and for replication of micro- and nanotextured surfaces. Shrinkage of PDMS in the fabrication process can lead to leaking devices and poor alignment of layers. However, corrections to the mold master are seldom applied to counteract the shrinkage of PDMS. Also, to perform metrological measurements using replica techniques one has to take the shrinkage into account. Thus we report a study of the shrinkage of PDMS with several different mixing ratios and curing temperatures. The shrinkage factor, with its associated uncertainty, for PDMS in the range 40 to 120 °C is provided. By applying this correction factor, it is possible to replicate structures with a standard uncertainty of less than 0.2% in lateral dimensions using typical curing temperatures and PDMS mixing ratios in the range 1:6 to 1:20 (agent:base). (technical note)

  5. Experimental Replication of an Aeroengine Combustion Instability

    Science.gov (United States)

    Cohen, J. M.; Hibshman, J. R.; Proscia, W.; Rosfjord, T. J.; Wake, B. E.; McVey, J. B.; Lovett, J.; Ondas, M.; DeLaat, J.; Breisacher, K.

    2000-01-01

    Combustion instabilities in gas turbine engines are most frequently encountered during the late phases of engine development, at which point they are difficult and expensive to fix. The ability to replicate an engine-traceable combustion instability in a laboratory-scale experiment offers the opportunity to economically diagnose the problem (to determine the root cause), and to investigate solutions to the problem, such as active control. The development and validation of active combustion instability control requires that the causal dynamic processes be reproduced in experimental test facilities which can be used as a test bed for control system evaluation. This paper discusses the process through which a laboratory-scale experiment was designed to replicate an instability observed in a developmental engine. The scaling process used physically-based analyses to preserve the relevant geometric, acoustic and thermo-fluid features. The process increases the probability that results achieved in the single-nozzle experiment will be scalable to the engine.

  6. Surface micro topography replication in injection moulding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf

    , the topography itself, and other factors were also investigated. The experimental work is based on a multi-purpose experimental injection mould with a collection of test surface inserts manufactured by EDM (electrical discharge machining). Experimental production took place with an injection moulding machine......Thermoplastic injection moulding is a widely used industrial process that involves surface generation by replication. The surface topography of injection moulded plastic parts can be important for aesthetical or technical reasons. With the emergence of microengineering and nanotechnology additional...... in a clean room environment. The mould and the injection moulding machine were fitted with transducers for subsequent process analysis. A total of 13 different plastic material grades were applied. Topographical characterisation was performed with an optical laser focus detection instrument. Replication...

  7. Studies on Prion Replication in Spleen

    OpenAIRE

    Raeber, Alex J.; Fabio Montrasio; Ivan Hegyi; Rico Frigg; Klein, Michael A.; Adriano Aguzzi; Charles Weissmann

    2001-01-01

    Some of the early events following scrapie infection take place in the lymphoreticular system (LRS) and result in significant replication of prions in lymphoid organs. The identity of the cells in the LRS that produce prions and their role in neuroinvasion are still unknown. We find that in the spleen of scrapie-infected mice, prions are associated with T and B cells and to a somewhat lesser degree with the stroma, which contains the follicular dendritic cells (FDC's); curiously, no infectivi...

  8. The Maximum Principle for Replicator Equations

    OpenAIRE

    K. Sigmund

    1984-01-01

    By introducing a non-Euclidean metric on the unit simplex, it is possible to identify an interesting class of gradient systems within the ubiquitous "replicator equations" of evolutionary biomathematics. In the case of homogeneous potentials, this leads to maximum principles governing the increase of the average fitness, both in population genetics and in chemical kinetics. This research was carried out as part of the Dynamics of Macrosystems Feasibility Study in the System and Decision ...

  9. The Anisotropy of Replicated Aluminum Foams

    Directory of Open Access Journals (Sweden)

    Eugeny L. Furman

    2014-01-01

    Full Text Available The replication casting process gives the open-cell aluminum foams that can be used in many industrial applications as well as in filtering technology. The essential requirement for filters is the uniformity of filtering degree which is defined by the minimal pore size. However the structure of replication castings is often inhomogeneous and the minimal pore radius is decreasing in the direction of melt infiltration. The objective of this investigation is to study the dynamics of melt impregnation of the porous medium by vacuum suction to identify the possibility of reducing the anisotropy. Theoretical data illustrate the processes at the boundary between melt and gas medium. The experiments were carried out using the replication aluminum samples produced according to commercial technology. It was found that the permeability coefficient varies throughout the height of castings. A method for estimation of pressure on the line of melt movement was proposed. The resistance of NaCl layer and circular vents of the mold causes the inhomogeneity of castings. Finally the ways of minimizing the anisotropy were offered.

  10. Centromere-tethered Mps1 pombe homolog (Mph1) kinase is a sufficient marker for recruitment of the spindle checkpoint protein Bub1, but not Mad1.

    Science.gov (United States)

    Ito, Daisuke; Saito, Yu; Matsumoto, Tomohiro

    2012-01-01

    The spindle checkpoint delays the onset of anaphase until all of the chromosomes properly achieve bipolar attachment to the spindle. It has been shown that unattached kinetochores are the site that emits a signal for activation of the checkpoint. Although the components of the checkpoint such as Bub1, Mad1 and Mad2 selectively accumulate at unattached kinetochores, the answer to how they recognize unattached kinetochores has remained elusive. Mps1 pombe homolog (Mph1) kinase has been shown to function upstream of most of the components of the checkpoint and thus it is thought to recognize unattached kinetochores by itself and recruit other components. In this study we have expressed a fusion protein of Mph1 and Ndc80 (a kinetochore protein of the outer plate) and shown that the fusion protein arrests cell cycle progression in a spindle-checkpoint\\x{2013}dependent manner in fission yeast. When expression of Mad2 is turned off, the cells grow normally with Mph1 constitutively localized at centromeres/kinetochores. Under this condition, Bub1 can be found with Mph1 throughout the cell cycle, indicating that localization of Mph1 at centromeres/kinetochores is sufficient to recruit Bub1. In contrast, Mad1 is found to transiently localize at kinetochores, which are presumably unattached to the spindle, but soon it dissociates from kinetochores. We propose that Mph1 is a sufficient marker for recruitment of Bub1. Mad1, in contrast, requires an additional condition/component for stable association with kinetochores. PMID:22184248

  11. The spatiotemporal program of DNA replication is associated with specific combinations of chromatin marks in human cells.

    Directory of Open Access Journals (Sweden)

    Franck Picard

    2014-05-01

    Full Text Available The duplication of mammalian genomes is under the control of a spatiotemporal program that orchestrates the positioning and the timing of firing of replication origins. The molecular mechanisms coordinating the activation of about [Formula: see text] predicted origins remain poorly understood, partly due to the intrinsic rarity of replication bubbles, making it difficult to purify short nascent strands (SNS. The precise identification of origins based on the high-throughput sequencing of SNS constitutes a new methodological challenge. We propose a new statistical method with a controlled resolution, adapted to the detection of replication origins from SNS data. We detected an average of 80,000 replication origins in different cell lines. To evaluate the consistency between different protocols, we compared SNS detections with bubble trapping detections. This comparison demonstrated a good agreement between genome-wide methods, with 65% of SNS-detected origins validated by bubble trapping, and 44% of bubble trapping origins validated by SNS origins, when compared at the same resolution. We investigated the interplay between the spatial and the temporal programs of replication at fine scales. We show that most of the origins detected in regions replicated in early S phase are shared by all the cell lines investigated whereas cell-type-specific origins tend to be replicated in late S phase. We shed a new light on the key role of CpG islands, by showing that 80% of the origins associated with CGIs are constitutive. Our results further show that at least 76% of CGIs are origins of replication. The analysis of associations with chromatin marks at different timing of cell division revealed new potential epigenetic regulators driving the spatiotemporal activity of replication origins. We highlight the potential role of H4K20me1 and H3K27me3, the coupling of which is correlated with increased efficiency of replication origins, clearly identifying those

  12. Transcription regulatory elements are punctuation marks for DNA replication.

    Science.gov (United States)

    Mirkin, Ekaterina V; Castro Roa, Daniel; Nudler, Evgeny; Mirkin, Sergei M

    2006-05-01

    Collisions between DNA replication and transcription significantly affect genome organization, regulation, and stability. Previous studies have described collisions between replication forks and elongating RNA polymerases. Although replication collisions with the transcription-initiation or -termination complexes are potentially even more important because most genes are not actively transcribed during DNA replication, their existence and mechanisms remained unproven. To address this matter, we have designed a bacterial promoter that binds RNA polymerase and maintains it in the initiating mode by precluding the transition into the elongation mode. By using electrophoretic analysis of replication intermediates, we have found that this steadfast transcription-initiation complex inhibits replication fork progression in an orientation-dependent manner during head-on collisions. Transcription terminators also appeared to attenuate DNA replication, but in the opposite, codirectional orientation. Thus, transcription regulatory signals may serve as "punctuation marks" for DNA replication in vivo. PMID:16670199

  13. Big Data Archives: Replication and synchronizing on a large scale

    Science.gov (United States)

    King, T. A.; Walker, R. J.

    2015-12-01

    Modern data archives provide unique challenges to replication and synchronization because of their large size. We collect more digital information today than any time before and the volume of data collected is continuously increasing. Some of these data are from unique observations, like those from planetary missions that should be preserved for use by future generations. In addition data from NASA missions are considered federal records and must be retained. While the data may be stored on resilient hardware (i.e. RAID systems) they also must be protected from local or regional disasters. Meeting this challenge requires creating multiple copies. This task is complicated by the fact that new data are constantly being added creating what are called "active archives". Having reliable, high performance tools for replicating and synchronizing active archives in a timely fashion is critical to preservation of the data. When archives were smaller using tools like bbcp, rsync and rcp worked fairly well. While these tools are affective they are not optimized for synchronizing big data archives and their poor performance at scale lead us to develop a new tool designed specifically for big data archives. It combines the best features of git, bbcp, rsync and rcp. We call this tool "Mimic" and we discuss the design of the tool, performance comparisons and its use at NASA's Planetary Plasma Interactions (PPI) Node of the Planetary Data System (PDS).

  14. DESIGN SAMPLING AND REPLICATION ASSIGNMENT UNDER FIXED COMPUTING BUDGET

    Institute of Scientific and Technical Information of China (English)

    Loo Hay LEE; Ek Peng CHEW

    2005-01-01

    For many real world problems, when the design space is huge and unstructured, and time consuming simulation is needed to estimate the performance measure, it is important to decide how many designs to sample and how long to run for each design alternative given that we have only a fixed amount of computing time. In this paper, we present a simulation study on how the distribution of the performance measures and distribution of the estimation errors/noises will affect the decision.From the analysis, it is observed that when the underlying distribution of the noise is bounded and if there is a high chance that we can get the smallest noise, then the decision will be to sample as many as possible, but if the noise is unbounded, then it will be important to reduce the noise level first by assigning more replications for each design. On the other hand, if the distribution of the performance measure indicates that we will have a high chance of getting good designs, the suggestion is also to reduce the noise level, otherwise, we need to sample more designs so as to increase the chances of getting good designs. For the special case when the distributions of both the performance measures and noise are normal, we are able to estimate the number of designs to sample, and the number of replications to run in order to obtain the best performance.

  15. Adenovirus E1A/E1B Transformed Amniotic Fluid Cells Support Human Cytomegalovirus Replication

    Directory of Open Access Journals (Sweden)

    Natascha Krömmelbein

    2016-02-01

    Full Text Available The human cytomegalovirus (HCMV replicates to high titers in primary human fibroblast cell cultures. A variety of primary human cells and some tumor-derived cell lines do also support permissive HCMV replication, yet at low levels. Cell lines established by transfection of the transforming functions of adenoviruses have been notoriously resistant to HCMV replication and progeny production. Here, we provide first-time evidence that a permanent cell line immortalized by adenovirus type 5 E1A and E1B (CAP is supporting the full HCMV replication cycle and is releasing infectious progeny. The CAP cell line had previously been established from amniotic fluid cells which were likely derived from membranes of the developing fetus. These cells can be grown under serum-free conditions. HCMV efficiently penetrated CAP cells, expressed its immediate-early proteins and dispersed restrictive PML-bodies. Viral DNA replication was initiated and viral progeny became detectable by electron microscopy in CAP cells. Furthermore, infectious virus was released from CAP cells, yet to lower levels compared to fibroblasts. Subviral dense bodies were also secreted from CAP cells. The results show that E1A/E1B expression in transformed cells is not generally repressive to HCMV replication and that CAP cells may be a good substrate for dense body based vaccine production.

  16. An evolutionary conserved early replicating segment on the sex chromosomes of man and the great apes.

    Science.gov (United States)

    Weber, B; Schempp, W; Wiesner, H

    1986-01-01

    Replication studies on prometaphase chromosomes of man, the chimpanzee, the pygmy chimpanzee, the gorilla, and the orangutan reveal great interspecific homologies between the autosomes. The early replicating X chromosomes clearly show a high degree of conservation of both the pattern and the time course of replication. An early replicating segment on the short arm of the X chromosomes of man (Xp22.3) which escapes inactivation can be found on the X chromosomes of the great apes as well. Furthermore, the most early replicating segment on the Y chromosomes of all species tested appears to be homologous to this segment on the X chromosomes. Therefore, these early replicating segments in the great apes may correspond to the pseudoautosomal segment proposed to exist in man. From further cytogenetic characterization of the Y chromosomes it is evident that structural alterations have resulted in an extreme divergence in both the euchromatic and heterochromatic parts. It is assumed, therefore, that, in contrast to the X chromosomes, the Y chromosomes have undergone a rapid evolution within the higher primates. PMID:3096642

  17. Distinct Contributions of Replication and Transcription to Mutation Rate Variation of Human Genomes

    KAUST Repository

    Cui, Peng

    2012-03-23

    Here, we evaluate the contribution of two major biological processes—DNA replication and transcription—to mutation rate variation in human genomes. Based on analysis of the public human tissue transcriptomics data, high-resolution replicating map of Hela cells and dbSNP data, we present significant correlations between expression breadth, replication time in local regions and SNP density. SNP density of tissue-specific (TS) genes is significantly higher than that of housekeeping (HK) genes. TS genes tend to locate in late-replicating genomic regions and genes in such regions have a higher SNP density compared to those in early-replication regions. In addition, SNP density is found to be positively correlated with expression level among HK genes. We conclude that the process of DNA replication generates stronger mutational pressure than transcription-associated biological processes do, resulting in an increase of mutation rate in TS genes while having weaker effects on HK genes. In contrast, transcription-associated processes are mainly responsible for the accumulation of mutations in highly-expressed HK genes.

  18. The Meaning of Failed Replications: A Review and Proposal

    OpenAIRE

    Clemens, Michael A.

    2015-01-01

    The welcome rise of replication tests in economics has not been accompanied by a single, clear definition of replication. A discrepant replication, in current usage of the term, can signal anything from an unremarkable disagreement over methods to scientific incompetence or misconduct. This paper proposes an unambiguous definition of replication, one that reflects currently common but unstandardized use. It contrasts this definition with decades of unsuccessful attempts to standardize termino...

  19. Checkpoint responses to replication stalling: inducing tolerance and preventing mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kai, Mihoko; Wang, Teresa S.-F

    2003-11-27

    Replication mutants often exhibit a mutator phenotype characterized by point mutations, single base frameshifts, and the deletion or duplication of sequences flanked by homologous repeats. Mutation in genes encoding checkpoint proteins can significantly affect the mutator phenotype. Here, we use fission yeast (Schizosaccharomyces pombe) as a model system to discuss the checkpoint responses to replication perturbations induced by replication mutants. Checkpoint activation induced by a DNA polymerase mutant, aside from delay of mitotic entry, up-regulates the translesion polymerase DinB (Pol{kappa}). Checkpoint Rad9-Rad1-Hus1 (9-1-1) complex, which is loaded onto chromatin by the Rad17-Rfc2-5 checkpoint complex in response to replication perturbation, recruits DinB onto chromatin to generate the point mutations and single nucleotide frameshifts in the replication mutator. This chain of events reveals a novel checkpoint-induced tolerance mechanism that allows cells to cope with replication perturbation, presumably to make possible restarting stalled replication forks. Fission yeast Cds1 kinase plays an essential role in maintaining DNA replication fork stability in the face of DNA damage and replication fork stalling. Cds1 kinase is known to regulate three proteins that are implicated in maintaining replication fork stability: Mus81-Eme1, a hetero-dimeric structure-specific endonuclease complex; Rqh1, a RecQ-family helicase involved in suppressing inappropriate recombination during replication; and Rad60, a protein required for recombinational repair during replication. These Cds1-regulated proteins are thought to cooperatively prevent mutagenesis and maintain replication fork stability in cells under replication stress. These checkpoint-regulated processes allow cells to survive replication perturbation by preventing stalled replication forks from degenerating into deleterious DNA structures resulting in genomic instability and cancer development.

  20. Sleeping Beauty transposon-based system for rapid generation of HBV-replicating stable cell lines.

    Science.gov (United States)

    Wu, Yong; Zhang, Tian-Ying; Fang, Lin-Lin; Chen, Zi-Xuan; Song, Liu-Wei; Cao, Jia-Li; Yang, Lin; Yuan, Quan; Xia, Ning-Shao

    2016-08-01

    The stable HBV-replicating cell lines, which carry replication-competent HBV genome stably integrated into the genome of host cell, are widely used to evaluate the effects of antiviral agents. However, current methods to generate HBV-replicating cell lines, which are mostly dependent on random integration of foreign DNA via plasmid transfection, are less-efficient and time-consuming. To address this issue, we constructed an all-in-one Sleeping Beauty transposon system (denoted pTSMP-HBV vector) for robust generation of stable cell lines carrying replication-competent HBV genome of different genotype. This vector contains a Sleeping Beauty transposon containing HBV 1.3-copy genome with an expression cassette of the SV40 promoter driving red fluorescent protein (mCherry) and self-cleaving P2A peptide linked puromycin resistance gene (PuroR). In addition, a PGK promoter-driven SB100X hyperactive transposase cassette is placed in the outside of the transposon in the same plasmid.The HBV-replicating stable cells could be obtained from pTSMP-HBV transfected HepG2 cells by red fluorescence-activated cell sorting and puromycin resistant cell selection within 4-week. Using this system, we successfully constructed four cell lines carrying replication-competent HBV genome of genotypes A-D. The replication and viral protein expression profiles of these cells were systematically characterized. In conclusion, our study provides a high-efficiency strategy to generate HBV-replicating stable cell lines, which may facilitate HBV-related virological study.

  1. Sleeping Beauty transposon-based system for rapid generation of HBV-replicating stable cell lines.

    Science.gov (United States)

    Wu, Yong; Zhang, Tian-Ying; Fang, Lin-Lin; Chen, Zi-Xuan; Song, Liu-Wei; Cao, Jia-Li; Yang, Lin; Yuan, Quan; Xia, Ning-Shao

    2016-08-01

    The stable HBV-replicating cell lines, which carry replication-competent HBV genome stably integrated into the genome of host cell, are widely used to evaluate the effects of antiviral agents. However, current methods to generate HBV-replicating cell lines, which are mostly dependent on random integration of foreign DNA via plasmid transfection, are less-efficient and time-consuming. To address this issue, we constructed an all-in-one Sleeping Beauty transposon system (denoted pTSMP-HBV vector) for robust generation of stable cell lines carrying replication-competent HBV genome of different genotype. This vector contains a Sleeping Beauty transposon containing HBV 1.3-copy genome with an expression cassette of the SV40 promoter driving red fluorescent protein (mCherry) and self-cleaving P2A peptide linked puromycin resistance gene (PuroR). In addition, a PGK promoter-driven SB100X hyperactive transposase cassette is placed in the outside of the transposon in the same plasmid.The HBV-replicating stable cells could be obtained from pTSMP-HBV transfected HepG2 cells by red fluorescence-activated cell sorting and puromycin resistant cell selection within 4-week. Using this system, we successfully constructed four cell lines carrying replication-competent HBV genome of genotypes A-D. The replication and viral protein expression profiles of these cells were systematically characterized. In conclusion, our study provides a high-efficiency strategy to generate HBV-replicating stable cell lines, which may facilitate HBV-related virological study. PMID:27091097

  2. Chromatin Dynamics During DNA Replication and Uncharacterized Replication Factors determined by Nascent Chromatin Capture (NCC) Proteomics

    Science.gov (United States)

    Alabert, Constance; Bukowski-Wills, Jimi-Carlo; Lee, Sung-Bau; Kustatscher, Georg; Nakamura, Kyosuke; de Lima Alves, Flavia; Menard, Patrice; Mejlvang, Jakob; Rappsilber, Juri; Groth, Anja

    2014-01-01

    SUMMARY To maintain genome function and stability, DNA sequence and its organization into chromatin must be duplicated during cell division. Understanding how entire chromosomes are copied remains a major challenge. Here, we use Nascent Chromatin Capture (NCC) to profile chromatin proteome dynamics during replication in human cells. NCC relies on biotin-dUTP labelling of replicating DNA, affinity-purification and quantitative proteomics. Comparing nascent chromatin with mature post-replicative chromatin, we provide association dynamics for 3995 proteins. The replication machinery and 485 chromatin factors like CAF-1, DNMT1, SUV39h1 are enriched in nascent chromatin, whereas 170 factors including histone H1, DNMT3, MBD1-3 and PRC1 show delayed association. This correlates with H4K5K12diAc removal and H3K9me1 accumulation, while H3K27me3 and H3K9me3 remain unchanged. Finally, we combine NCC enrichment with experimentally derived chromatin probabilities to predict a function in nascent chromatin for 93 uncharacterized proteins and identify FAM111A as a replication factor required for PCNA loading. Together, this provides an extensive resource to understand genome and epigenome maintenance. PMID:24561620

  3. Geminin: a major DNA replication safeguard in higher eukaryotes

    DEFF Research Database (Denmark)

    Melixetian, Marina; Helin, Kristian

    2004-01-01

    Eukaryotes have evolved multiple mechanisms to restrict DNA replication to once per cell cycle. These mechanisms prevent relicensing of origins of replication after initiation of DNA replication in S phase until the end of mitosis. Most of our knowledge of mechanisms controlling prereplication...

  4. Links between replication, recombination and genome instability in eukaryotes

    OpenAIRE

    Flores-Rozas, Hernan; Kolodner, Richard D.

    2000-01-01

    Double-strand breaks in DNA can be repaired by homologous recombination including break-induced replication. In this reaction, the end of a broken DNA invades an intact chromosome and primes DNA replication resulting in the synthesis of an intact chromosome. Break-induced replication has also been suggested to cause different types of genome rearrangements.

  5. (+)RNA viruses rewire cellular pathways to build replication organelles

    NARCIS (Netherlands)

    Belov, G.A.; Kuppeveld, F.J.M. van

    2012-01-01

    Positive-strand RNA [(+)RNA] viruses show a significant degree of conservation of their mechanisms of replication. The universal requirement of (+)RNA viruses for cellular membranes for genome replication, and the formation of membranous replication organelles with similar architecture, suggest that

  6. Uncoupling of Sister Replisomes during Eukaryotic DNA Replication

    NARCIS (Netherlands)

    Yardimci, Hasan; Loveland, Anna B.; Habuchi, Satoshi; van Oijen, Antoine M.; Walter, Johannes C.

    2010-01-01

    The duplication of eukaryotic genomes involves the replication of DNA from multiple origins of replication. In S phase, two sister replisomes assemble at each active origin, and they replicate DNA in opposite directions. Little is known about the functional relationship between sister replisomes. So

  7. Assembling semiconductor nanocomposites using DNA replication technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Heimer, Brandon W.; Crown, Kevin K.; Bachand, George David

    2005-11-01

    Deoxyribonucleic acid (DNA) molecules represent Nature's genetic database, encoding the information necessary for all cellular processes. From a materials engineering perspective, DNA represents a nanoscale scaffold with highly refined structure, stability across a wide range of environmental conditions, and the ability to interact with a range of biomolecules. The ability to mass-manufacture functionalized DNA strands with Angstrom-level resolution through DNA replication technology, however, has not been explored. The long-term goal of the work presented in this report is focused on exploiting DNA and in vitro DNA replication processes to mass-manufacture nanocomposite materials. The specific objectives of this project were to: (1) develop methods for replicating DNA strands that incorporate nucleotides with ''chemical handles'', and (2) demonstrate attachment of nanocrystal quantum dots (nQDs) to functionalized DNA strands. Polymerase chain reaction (PCR) and primer extension methodologies were used to successfully synthesize amine-, thiol-, and biotin-functionalized DNA molecules. Significant variability in the efficiency of modified nucleotide incorporation was observed, and attributed to the intrinsic properties of the modified nucleotides. Noncovalent attachment of streptavidin-coated nQDs to biotin-modified DNA synthesized using the primer extension method was observed by epifluorescence microscopy. Data regarding covalent attachment of nQDs to amine- and thiol-functionalized DNA was generally inconclusive; alternative characterization tools are necessary to fully evaluate these attachment methods. Full realization of this technology may facilitate new approaches to manufacturing materials at the nanoscale. In addition, composite nQD-DNA materials may serve as novel recognition elements in sensor devices, or be used as diagnostic tools for forensic analyses. This report summarizes the results obtained over the course of this 1-year

  8. Simulation Studies in Data Replication Strategies

    Institute of Scientific and Technical Information of China (English)

    HarveyB.Newman; IosifC.Legrand

    2001-01-01

    The aim of this work is to present the simulation studies in evaluating different data replication strategies between Regional Centers.The simulation Framework developed within the "Models of Networked Analysis at Rgional Centers”(MONARC) project,as a design and optimization tool for large scale distributed systems,has been used for these modeling studies.Remote client-serer access to database servers as well as ftp-like data transfers have been ralistically simulated and the performance and limitations are presented as a function of the characteristics of the protocol used and the network parameters.

  9. Accounting for PDMS shrinkage when replicating structures

    DEFF Research Database (Denmark)

    Madsen, Morten Hannibal; Feidenhans'l, Nikolaj Agentoft; Hansen, Poul-Erik;

    2014-01-01

    are seldom applied to counteract the shrinkage of PDMS. Also, to perform metrological measurements using replica techniques one has to take the shrinkage into account. Thus we report a study of the shrinkage of PDMS with several different mixing ratios and curing temperatures. The shrinkage factor, with its...... associated uncertainty, for PDMS in the range 40 to 120 °C is provided. By applying this correction factor, it is possible to replicate structures with a standard uncertainty of less than 0.2% in lateral dimensions using typical curing temperatures and PDMS mixing ratios in the range 1:6 to 1:20 (agent:base)....

  10. Role of Polymer Loops in DNA Replication

    CERN Document Server

    Jun, S; Jun, Suckjoon; Bechhoefer, John

    2003-01-01

    Loop formation in long molecules occurs many places in nature, from solutions of carbon nanotubes to polymers inside a cell. In this article, we review theoretical studies of the static and dynamic properties of polymer loops. For example, long polymers must search many configurations to find a "target" binding site, while short polymers are stiff and resist bending. In between, there is an optimal loop size, which balances the entropy of long loops against the energetic cost of short loops. We show that such simple pictures of loop formation can explain several long-standing observations in DNA replication, quantitatively.

  11. Replicator dynamics with diffusion on multiplex networks

    Science.gov (United States)

    Requejo, R. J.; Díaz-Guilera, A.

    2016-08-01

    In this study we present an extension of the dynamics of diffusion in multiplex graphs, which makes the equations compatible with the replicator equation with mutations. We derive an exact formula for the diffusion term, which shows that, while diffusion is linear for numbers of agents, it is necessary to account for nonlinear terms when working with fractions of individuals. We also derive the transition probabilities that give rise to such macroscopic behavior, completing the bottom-up description. Finally, it is shown that the usual assumption of constant population sizes induces a hidden selective pressure due to the diffusive dynamics, which favors the increase of fast diffusing strategies.

  12. REPEAT AFTER ME: THE VALUE OF REPLICATION

    Directory of Open Access Journals (Sweden)

    Ronald Macaulay

    2003-05-01

    Full Text Available The past forty years have seen a variety of sociolinguistic investigations, producing interesting results. However, there is always a risk that some of these results may have given a misleading picture of the situation because of a design flaw in the project or some effect of ignored factors. One way of testing any claims is through a replication of the original study. This paper examines three claims made about discourse variation, showing how separate studies can either support or challenge those claims.

  13. The IFITMs Inhibit Zika Virus Replication

    OpenAIRE

    George Savidis; Jill M. Perreira; Jocelyn M. Portmann; Paul Meraner; Zhiru Guo; Sharone Green; Abraham L. Brass

    2016-01-01

    Zika virus has emerged as a severe health threat with a rapidly expanding range. The IFITM family of restriction factors inhibits the replication of a broad range of viruses, including the closely related flaviruses West Nile virus and dengue virus. Here, we show that IFITM1 and IFITM3 inhibit Zika virus infection early in the viral life cycle. Moreover, IFITM3 can prevent Zika-virus-induced cell death. These results suggest that strategies to boost the actions and/or levels of the IFITMs mig...

  14. The IFITMs Inhibit Zika Virus Replication

    Directory of Open Access Journals (Sweden)

    George Savidis

    2016-06-01

    Full Text Available Zika virus has emerged as a severe health threat with a rapidly expanding range. The IFITM family of restriction factors inhibits the replication of a broad range of viruses, including the closely related flaviruses West Nile virus and dengue virus. Here, we show that IFITM1 and IFITM3 inhibit Zika virus infection early in the viral life cycle. Moreover, IFITM3 can prevent Zika-virus-induced cell death. These results suggest that strategies to boost the actions and/or levels of the IFITMs might be useful for inhibiting a broad range of emerging viruses.

  15. The Nature of Stability in Replicating Systems

    Directory of Open Access Journals (Sweden)

    Addy Pross

    2011-02-01

    Full Text Available We review the concept of dynamic kinetic stability, a type of stability associated specifically with replicating entities, and show how it differs from the well-known and established (static kinetic and thermodynamic stabilities associated with regular chemical systems. In the process we demonstrate how the concept can help bridge the conceptual chasm that continues to separate the physical and biological sciences by relating the nature of stability in the animate and inanimate worlds, and by providing additional insights into the physicochemical nature of abiogenesis.

  16. The IFITMs Inhibit Zika Virus Replication.

    Science.gov (United States)

    Savidis, George; Perreira, Jill M; Portmann, Jocelyn M; Meraner, Paul; Guo, Zhiru; Green, Sharone; Brass, Abraham L

    2016-06-14

    Zika virus has emerged as a severe health threat with a rapidly expanding range. The IFITM family of restriction factors inhibits the replication of a broad range of viruses, including the closely related flaviruses West Nile virus and dengue virus. Here, we show that IFITM1 and IFITM3 inhibit Zika virus infection early in the viral life cycle. Moreover, IFITM3 can prevent Zika-virus-induced cell death. These results suggest that strategies to boost the actions and/or levels of the IFITMs might be useful for inhibiting a broad range of emerging viruses. PMID:27268505

  17. Replication of association between ADAM33 polymorphisms and psoriasis.

    Directory of Open Access Journals (Sweden)

    Valérie Siroux

    Full Text Available Polymorphisms in ADAM33, the first gene identified in asthma by positional cloning, have been recently associated with psoriasis. No replication study of this association has been published so far. Data available in the French EGEA study (Epidemiological study on Genetics and Environment of Asthma, bronchial hyperresponsivensess and Atopy give the opportunity to attempt to replicate the association between ADAM33 and psoriasis in 2002 individuals. Psoriasis (n = 150 has been assessed by questionnaire administered by an interviewer and a sub-sample of subjects with early-onset psoriasis (n = 74 has been identified based on the age of the subjects at time of interview (<40 years. Nine SNPs in ADAM33 and 11 SNPs in PSORS1 were genotyped. Association analysis was conducted by using two methods, GEE regression-based method and a likelihood-based method (LAMP program. The rs512625 SNP in ADAM33 was found associated with psoriasis at p = 0.01, the usual threshold required for replication (OR [95% CI] for heterozygotes compared to the reference group of homozygotes for the most frequent allele = 0.61 [0.42;0.89]. The rs628977 SNP, which was not in linkage disequilibrium with rs512625, was significantly associated with early-onset psoriasis (p = 0.01, OR [95% CI] for homozygotes for the minor allele compared to the reference group = 2.52 [1.31;4.86]. Adjustment for age, sex, asthma and a PSORS1 SNP associated with psoriasis in the EGEA data did not change the significance of these associations. This suggests independent effects of ADAM33 and PSORS1 on psoriasis. This is the first study that replicates an association between genetic variants in ADAM33 and psoriasis. Interestingly, the 2 ADAM33 SNPs associated with psoriasis in the present analysis were part of the 3-SNPs haplotypes showing the strongest associations in the initial study. The identification of a pleiotropic effect of ADAM33 on asthma and psoriasis may contribute to the understanding of

  18. Replication fidelity improvement of PMMA microlens array based on weight evaluation and optimization

    Science.gov (United States)

    Jiang, Bing-yan; Shen, Long-jiang; Peng, Hua-jiang; Yin, Xiang-lin

    2007-12-01

    High replication fidelity is a prerequisite of high quality plastic microlens array in injection molding. But, there's not an economical and practical method to evaluate and improve the replication fidelity until now. Based on part weight evaluation and optimization, this paper presents a new method of replication fidelity improvement. Firstly, a simplified analysis model of PMMA micro columns arrays (5×16) with 200μm diameter was set up. And then, Flow (3D) module of Moldflow MPI6.0 based on Navier-Stokes equations was used to calculate the weight of the micro columns arrays in injection molding. The effects of processing parameters (melt temperature, mold temperature, injection time, packing pressure and packing time) on the part weight were investigated in the simulations. The simulation results showed that the mold temperature and the injection time have important effects on the filling of micro columns; the optimal mold temperature and injection time for better replication fidelity could be determined by the curves of mold temperature vs part weight and injection time vs part weight. At last, the effects of processing parameters on part weight of micro columns array were studied experimentally. The experimental results showed that the increase of melt temperature and mold temperature can make the packing pressure transfer to micro cavity more effectively through runner system, and increase the part weight. From the observation results of the image measuring apparatus, it was discovered that the higher the part weight, the better the filling of the microstructures. In conclusion, part weight can be used to evaluate the replication fidelity of micro-feature structured parts primarily; which is an economical and practical method to improve the replication fidelity of microlens arrays based on weight evaluation and optimization.

  19. Materials Chemistry and Performance of Silicone-Based Replicating Compounds.

    Energy Technology Data Exchange (ETDEWEB)

    Brumbach, Michael T.; Mirabal, Alex James; Kalan, Michael; Trujillo, Ana B; Hale, Kevin

    2014-11-01

    Replicating compounds are used to cast reproductions of surface features on a variety of materials. Replicas allow for quantitative measurements and recordkeeping on parts that may otherwise be difficult to measure or maintain. In this study, the chemistry and replicating capability of several replicating compounds was investigated. Additionally, the residue remaining on material surfaces upon removal of replicas was quantified. Cleaning practices were tested for several different replicating compounds. For all replicating compounds investigated, a thin silicone residue was left by the replica. For some compounds, additional inorganic species could be identified in the residue. Simple solvent cleaning could remove some residue.

  20. Legionella pneumophila-Derived Outer Membrane Vesicles Promote Bacterial Replication in Macrophages.

    Science.gov (United States)

    Jung, Anna Lena; Stoiber, Cornelia; Herkt, Christina E; Schulz, Christine; Bertrams, Wilhelm; Schmeck, Bernd

    2016-04-01

    The formation and release of outer membrane vesicles (OMVs) is a phenomenon of Gram-negative bacteria. This includes Legionella pneumophila (L. pneumophila), a causative agent of severe pneumonia. Upon its transmission into the lung, L. pneumophila primarily infects and replicates within macrophages. Here, we analyzed the influence of L. pneumophila OMVs on macrophages. To this end, differentiated THP-1 cells were incubated with increasing doses of Legionella OMVs, leading to a TLR2-dependent classical activation of macrophages with the release of pro-inflammatory cytokines. Inhibition of TLR2 and NF-κB signaling reduced the induction of pro-inflammatory cytokines. Furthermore, treatment of THP-1 cells with OMVs prior to infection reduced replication of L. pneumophila in THP-1 cells. Blocking of TLR2 activation or heat denaturation of OMVs restored bacterial replication in the first 24 h of infection. With prolonged infection-time, OMV pre-treated macrophages became more permissive for bacterial replication than untreated cells and showed increased numbers of Legionella-containing vacuoles and reduced pro-inflammatory cytokine induction. Additionally, miRNA-146a was found to be transcriptionally induced by OMVs and to facilitate bacterial replication. Accordingly, IRAK-1, one of miRNA-146a's targets, showed prolonged activation-dependent degradation, which rendered THP-1 cells more permissive for Legionella replication. In conclusion, L. pneumophila OMVs are initially potent pro-inflammatory stimulators of macrophages, acting via TLR2, IRAK-1, and NF-κB, while at later time points, OMVs facilitate L. pneumophila replication by miR-146a-dependent IRAK-1 suppression. OMVs might thereby promote spreading of L. pneumophila in the host. PMID:27105429