WorldWideScience

Sample records for centrioles

  1. Atypical Centrioles During Sexual Reproduction

    Directory of Open Access Journals (Sweden)

    Tomer eAvidor-Reiss

    2015-04-01

    Full Text Available Centrioles are conserved, self-replicating, microtubule-based 9-fold symmetric subcellular organelles that are essential for proper cell division and function. Most cells have two centrioles and maintaining this number of centrioles is important for animal development and physiology. However, how animals gain their first two centrioles during reproduction is only partially understood. It is well established that in most animals, the centrioles are contributed to the zygote by the sperm. However, in humans and many animals, the sperm centrioles are modified in their structure and protein composition, or they appear to be missing altogether. In these animals, the origin of the first centrioles is not clear. Here, we review various hypotheses on how centrioles are gained during reproduction and describe specialized functions of the zygotic centrioles. In particular, we discuss a new and atypical centriole found in sperm and zygote, the proximal centriole-like structure (PCL. We also discuss another type of atypical centriole, the zombie centriole, which is degenerated but functional. Together, the presence of centrioles, PCL, and zombie centrioles suggests a universal mechanism of centriole inheritance among animals and new causes of infertility. Since the atypical centrioles of sperm and zygote share similar functions with typical centrioles in somatic cells, they can provide unmatched insight into centriole biology.

  2. Promotion and Suppression of Centriole Duplication Are Catalytically Coupled through PLK4 to Ensure Centriole Homeostasis

    Directory of Open Access Journals (Sweden)

    Minhee Kim

    2016-08-01

    Full Text Available PLK4 is the major kinase driving centriole duplication. Duplication occurs only once per cell cycle, forming one new (or daughter centriole that is tightly engaged to the preexisting (or mother centriole. Centriole engagement is known to block the reduplication of mother centrioles, but the molecular identity responsible for the block remains unclear. Here, we show that the centriolar cartwheel, the geometric scaffold for centriole assembly, forms the identity of daughter centrioles essential for the block, ceasing further duplication of the mother centriole to which it is engaged. To ensure a steady block, we found that the cartwheel requires constant maintenance by PLK4 through phosphorylation of the same substrate that drives centriole assembly, revealing a parsimonious control in which “assembly” and “block for new assembly” are linked through the same catalytic reaction to achieve homeostasis. Our results support a recently deduced model that the cartwheel-bound PLK4 directly suppresses centriole reduplication.

  3. Common themes in centriole and centrosome movements.

    Science.gov (United States)

    Vaughan, Sue; Dawe, Helen R

    2011-01-01

    Centrioles are found in nearly all eukaryotic cells and are required for growth and maintenance of the radial array of microtubules, the mitotic spindle, and cilia and flagella. Different types of microtubule structures are often required at different places in a given cell; centrioles must move around to nucleate these varied structures. Here, we draw together recent data on diverse centriole movements to decipher common themes in how centrioles move. Par proteins establish and maintain the required cellular asymmetry. The actin cytoskeleton facilitates movement of multiple basal bodies. Microtubule forces acting on the cell cortex, and nuclear-cytoskeletal links, are important for positioning individual centrosomes, and during cell division. Knowledge of these common mechanisms can inform the study of centriole movements across biology.

  4. Centriole movements in mammalian epithelial cells during cytokinesis

    OpenAIRE

    Tanke Hans J; Ögmundsdottir Helga M; Vrolijk Johannes; Dirks Roeland W; Jonsdottir Asta; Eyfjörd Jorunn E; Szuhai Karoly

    2010-01-01

    Abstract Background In cytokinesis, when the cleavage furrow has been formed, the two centrioles in each daughter cell separate. It has been suggested that the centrioles facilitate and regulate cytokinesis to some extent. It has been postulated that termination of cytokinesis (abscission) depends on the migration of a centriole to the intercellular bridge and then back to the cell center. To investigate the involvement of centrioles in cytokinesis, we monitored the movements of centrioles in...

  5. SAS-6 assembly templated by the lumen of cartwheel-less centrioles precedes centriole duplication.

    Science.gov (United States)

    Fong, Chii Shyang; Kim, Minhee; Yang, T Tony; Liao, Jung-Chi; Tsou, Meng-Fu Bryan

    2014-07-28

    Centrioles are 9-fold symmetric structures duplicating once per cell cycle. Duplication involves self-oligomerization of the centriolar protein SAS-6, but how the 9-fold symmetry is invariantly established remains unclear. Here, we found that SAS-6 assembly can be shaped by preexisting (or mother) centrioles. During S phase, SAS-6 molecules are first recruited to the proximal lumen of the mother centriole, adopting a cartwheel-like organization through interactions with the luminal wall, rather than via their self-oligomerization activity. The removal or release of luminal SAS-6 requires Plk4 and the cartwheel protein STIL. Abolishing either the recruitment or the removal of luminal SAS-6 hinders SAS-6 (or centriole) assembly at the outside wall of mother centrioles. After duplication, the lumen of engaged mother centrioles becomes inaccessible to SAS-6, correlating with a block for reduplication. These results lead to a proposed model that centrioles may duplicate via a template-based process to preserve their geometry and copy number.

  6. Centrobin-centrosomal protein 4.1-associated protein (CPAP) interaction promotes CPAP localization to the centrioles during centriole duplication.

    Science.gov (United States)

    Gudi, Radhika; Zou, Chaozhong; Dhar, Jayeeta; Gao, Qingshen; Vasu, Chenthamarakshan

    2014-05-30

    Centriole duplication is the process by which two new daughter centrioles are generated from the proximal end of preexisting mother centrioles. Accurate centriole duplication is important for many cellular and physiological events, including cell division and ciliogenesis. Centrosomal protein 4.1-associated protein (CPAP), centrosomal protein of 152 kDa (CEP152), and centrobin are known to be essential for centriole duplication. However, the precise mechanism by which they contribute to centriole duplication is not known. In this study, we show that centrobin interacts with CEP152 and CPAP, and the centrobin-CPAP interaction is critical for centriole duplication. Although depletion of centrobin from cells did not have an effect on the centriolar levels of CEP152, it caused the disappearance of CPAP from both the preexisting and newly formed centrioles. Moreover, exogenous expression of the CPAP-binding fragment of centrobin also caused the disappearance of CPAP from both the preexisting and newly synthesized centrioles, possibly in a dominant negative manner, thereby inhibiting centriole duplication and the PLK4 overexpression-mediated centrosome amplification. Interestingly, exogenous overexpression of CPAP in the centrobin-depleted cells did not restore CPAP localization to the centrioles. However, restoration of centrobin expression in the centrobin-depleted cells led to the reappearance of centriolar CPAP. Hence, we conclude that centrobin-CPAP interaction is critical for the recruitment of CPAP to procentrioles to promote the elongation of daughter centrioles and for the persistence of CPAP on preexisting mother centrioles. Our study indicates that regulation of CPAP levels on the centrioles by centrobin is critical for preserving the normal size, shape, and number of centrioles in the cell.

  7. The presence of centrioles and centrosomes in ovarian mature cystic teratoma cells suggests human parthenotes developed in vitro can differentiate into mature cells without a sperm centriole

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bo Yon, E-mail: boyonlee@gmail.com [Department of Obstetrics and Gynecology, Kyung Hee University Hospital, Kyung Hee University, School of Medicine, Seoul (Korea, Republic of); Shim, Sang Woo; Kim, Young Sun; Kim, Seung Bo [Department of Obstetrics and Gynecology, Kyung Hee University Hospital, Kyung Hee University, School of Medicine, Seoul (Korea, Republic of)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer The sperm centriole is the progenitor of centrosomes in all somatic cells. Black-Right-Pointing-Pointer Centrioles and centrosomes exist in parthenogenetic ovarian teratoma cells. Black-Right-Pointing-Pointer Without a sperm centriole, parthenogenetic oocytes produce centrioles and centrosomes. Black-Right-Pointing-Pointer Parthenogenetic human oocytes can develop and differentiate into mature cells. -- Abstract: In most animals, somatic cell centrosomes are inherited from the centriole of the fertilizing spermatozoa. The oocyte centriole degenerates during oogenesis, and completely disappears in metaphase II. Therefore, the embryos generated by in vitro parthenogenesis are supposed to develop without any centrioles. Exceptional acentriolar and/or acentrosomal developments are possible in mice and in some experimental cells; however, in most animals, the full developmental potential of parthenogenetic cells in vitro and the fate of their centrioles/centrosomes are not clearly understood. To predict the future of in vitro human parthenogenesis, we explored the centrioles/centrosomes in ovarian mature cystic teratoma cells by immunofluorescent staining and transmission electron microscopy. We confirmed the presence of centrioles and centrosomes in these well-known parthenogenetic ovarian tumor cells. Our findings clearly demonstrate that, even without a sperm centriole, parthenotes that develop from activated oocytes can produce their own centrioles/centrosomes, and can even develop into the well-differentiated mature tissue.

  8. Cep63 and cep152 cooperate to ensure centriole duplication.

    Directory of Open Access Journals (Sweden)

    Nicola J Brown

    Full Text Available Centrosomes consist of two centrioles embedded in pericentriolar material and function as the main microtubule organising centres in dividing animal cells. They ensure proper formation and orientation of the mitotic spindle and are therefore essential for the maintenance of genome stability. Centrosome function is crucial during embryonic development, highlighted by the discovery of mutations in genes encoding centrosome or spindle pole proteins that cause autosomal recessive primary microcephaly, including Cep63 and Cep152. In this study we show that Cep63 functions to ensure that centriole duplication occurs reliably in dividing mammalian cells. We show that the interaction between Cep63 and Cep152 can occur independently of centrosome localisation and that the two proteins are dependent on one another for centrosomal localisation. Further, both mouse and human Cep63 and Cep152 cooperate to ensure efficient centriole duplication by promoting the accumulation of essential centriole duplication factors upstream of SAS-6 recruitment and procentriole formation. These observations describe the requirement for Cep63 in maintaining centriole number in dividing mammalian cells and further establish the order of events in centriole formation.

  9. Cep63 and cep152 cooperate to ensure centriole duplication.

    Science.gov (United States)

    Brown, Nicola J; Marjanović, Marko; Lüders, Jens; Stracker, Travis H; Costanzo, Vincenzo

    2013-01-01

    Centrosomes consist of two centrioles embedded in pericentriolar material and function as the main microtubule organising centres in dividing animal cells. They ensure proper formation and orientation of the mitotic spindle and are therefore essential for the maintenance of genome stability. Centrosome function is crucial during embryonic development, highlighted by the discovery of mutations in genes encoding centrosome or spindle pole proteins that cause autosomal recessive primary microcephaly, including Cep63 and Cep152. In this study we show that Cep63 functions to ensure that centriole duplication occurs reliably in dividing mammalian cells. We show that the interaction between Cep63 and Cep152 can occur independently of centrosome localisation and that the two proteins are dependent on one another for centrosomal localisation. Further, both mouse and human Cep63 and Cep152 cooperate to ensure efficient centriole duplication by promoting the accumulation of essential centriole duplication factors upstream of SAS-6 recruitment and procentriole formation. These observations describe the requirement for Cep63 in maintaining centriole number in dividing mammalian cells and further establish the order of events in centriole formation.

  10. Integrity of the Pericentriolar Material Is Essential for Maintaining Centriole Association during M Phase.

    Directory of Open Access Journals (Sweden)

    Mi Young Seo

    Full Text Available A procentriole is assembled next to the mother centriole during S phase and remains associated until M phase. After functioning as a spindle pole during mitosis, the mother centriole and procentriole are separated at the end of mitosis. A close association of the centriole pair is regarded as an intrinsic block to the centriole reduplication. Therefore, deregulation of this process may cause a problem in the centriole number control, resulting in increased genomic instability. Despite its importance for faithful centriole duplication, the mechanism of centriole separation is not fully understood yet. Here, we report that centriole pairs are prematurely separated in cells whose cell cycle is arrested at M phase by STLC. Dispersal of the pericentriolar material (PCM was accompanied. This phenomenon was independent of the separase activity but needed the PLK1 activity. Nocodazole effectively inhibited centriole scattering in STLC-treated cells, possibly by reducing the microtubule pulling force around centrosomes. Inhibition of PLK1 also reduced the premature separation of centrioles and the PCM dispersal as well. These results revealed the importance of PCM integrity in centriole association. Therefore, we propose that PCM disassembly is one of the driving forces for centriole separation during mitotic exit.

  11. The interrelationship between APC/C and Plk1 activities in centriole disengagement

    Directory of Open Access Journals (Sweden)

    Toshiyuki Hatano

    2012-09-01

    Mother–daughter centriole disengagement, the necessary first step in centriole duplication, involves Plk1 activity in early mitosis and separase activity after APC/C activity mediates securin degradation. Plk1 activity is thought to be essential and sufficient for centriole disengagement with separase activity playing a supporting but non-essential role. In separase null cells, however, centriole disengagement is substantially delayed. The ability of APC/C activity alone to mediate centriole disengagement has not been directly tested. We investigate the interrelationship between Plk1 and APC/C activities in disengaging centrioles in S or G2 HeLa and RPE1 cells, cell types that do not reduplicate centrioles when arrested in S phase. Knockdown of the interphase APC/C inhibitor Emi1 leads to centriole disengagement and reduplication of the mother centrioles, though this is slow. Strong inhibition of Plk1 activity, if any, during S does not block centriole disengagement and mother centriole reduplication in Emi1 depleted cells. Centriole disengagement depends on APC/C–Cdh1 activity, not APC/C–Cdc20 activity. Also, Plk1 and APC/C–Cdh1 activities can independently promote centriole disengagement in G2 arrested cells. Thus, Plk1 and APC/C–Cdh1 activities are independent but slow pathways for centriole disengagement. By having two slow mechanisms for disengagement working together, the cell ensures that centrioles will not prematurely separate in late G2 or early mitosis, thereby risking multipolar spindle assembly, but rather disengage in a timely fashion only late in mitosis.

  12. The interrelationship between APC/C and Plk1 activities in centriole disengagement.

    Science.gov (United States)

    Hatano, Toshiyuki; Sluder, Greenfield

    2012-11-15

    Mother-daughter centriole disengagement, the necessary first step in centriole duplication, involves Plk1 activity in early mitosis and separase activity after APC/C activity mediates securin degradation. Plk1 activity is thought to be essential and sufficient for centriole disengagement with separase activity playing a supporting but non-essential role. In separase null cells, however, centriole disengagement is substantially delayed. The ability of APC/C activity alone to mediate centriole disengagement has not been directly tested. We investigate the interrelationship between Plk1 and APC/C activities in disengaging centrioles in S or G2 HeLa and RPE1 cells, cell types that do not reduplicate centrioles when arrested in S phase. Knockdown of the interphase APC/C inhibitor Emi1 leads to centriole disengagement and reduplication of the mother centrioles, though this is slow. Strong inhibition of Plk1 activity, if any, during S does not block centriole disengagement and mother centriole reduplication in Emi1 depleted cells. Centriole disengagement depends on APC/C-Cdh1 activity, not APC/C-Cdc20 activity. Also, Plk1 and APC/C-Cdh1 activities can independently promote centriole disengagement in G2 arrested cells. Thus, Plk1 and APC/C-Cdh1 activities are independent but slow pathways for centriole disengagement. By having two slow mechanisms for disengagement working together, the cell ensures that centrioles will not prematurely separate in late G2 or early mitosis, thereby risking multipolar spindle assembly, but rather disengage in a timely fashion only late in mitosis.

  13. Cdk1 Phosphorylates Drosophila Sas-4 to Recruit Polo to Daughter Centrioles and Convert Them to Centrosomes.

    Science.gov (United States)

    Novak, Zsofia A; Wainman, Alan; Gartenmann, Lisa; Raff, Jordan W

    2016-06-20

    Centrosomes and cilia are organized by a centriole pair comprising an older mother and a younger daughter. Centriole numbers are tightly regulated, and daughter centrioles (which assemble in S phase) cannot themselves duplicate or organize centrosomes until they have passed through mitosis. It is unclear how this mitotic "centriole conversion" is regulated, but it requires Plk1/Polo kinase. Here we show that in flies, Cdk1 phosphorylates the conserved centriole protein Sas-4 during mitosis. This creates a Polo-docking site that helps recruit Polo to daughter centrioles and is required for the subsequent recruitment of Asterless (Asl), a protein essential for centriole duplication and mitotic centrosome assembly. Point mutations in Sas-4 that prevent Cdk1 phosphorylation or Polo docking do not block centriole disengagement during mitosis, but block efficient centriole conversion and lead to embryonic lethality. These observations can explain why daughter centrioles have to pass through mitosis before they can duplicate and organize a centrosome.

  14. The E2F-DP1 Transcription Factor Complex Regulates Centriole Duplication in Caenorhabditis elegans.

    Science.gov (United States)

    Miller, Jacqueline G; Liu, Yan; Williams, Christopher W; Smith, Harold E; O'Connell, Kevin F

    2016-01-15

    Centrioles play critical roles in the organization of microtubule-based structures, from the mitotic spindle to cilia and flagella. In order to properly execute their various functions, centrioles are subjected to stringent copy number control. Central to this control mechanism is a precise duplication event that takes place during S phase of the cell cycle and involves the assembly of a single daughter centriole in association with each mother centriole . Recent studies have revealed that posttranslational control of the master regulator Plk4/ZYG-1 kinase and its downstream effector SAS-6 is key to ensuring production of a single daughter centriole. In contrast, relatively little is known about how centriole duplication is regulated at a transcriptional level. Here we show that the transcription factor complex EFL-1-DPL-1 both positively and negatively controls centriole duplication in the Caenorhabditis elegans embryo. Specifically, we find that down regulation of EFL-1-DPL-1 can restore centriole duplication in a zyg-1 hypomorphic mutant and that suppression of the zyg-1 mutant phenotype is accompanied by an increase in SAS-6 protein levels. Further, we find evidence that EFL-1-DPL-1 promotes the transcription of zyg-1 and other centriole duplication genes. Our results provide evidence that in a single tissue type, EFL-1-DPL-1 sets the balance between positive and negative regulators of centriole assembly and thus may be part of a homeostatic mechanism that governs centriole assembly.

  15. The PLK4-STIL-SAS-6 module at the core of centriole duplication.

    Science.gov (United States)

    Arquint, Christian; Nigg, Erich A

    2016-10-15

    Centrioles are microtubule-based core components of centrosomes and cilia. They are duplicated exactly once during S-phase progression. Central to formation of each new (daughter) centriole is the formation of a nine-fold symmetrical cartwheel structure onto which microtubule triplets are deposited. In recent years, a module comprising the protein kinase polo-like kinase 4 (PLK4) and the two proteins STIL and SAS-6 have been shown to stay at the core of centriole duplication. Depletion of any one of these three proteins blocks centriole duplication and, conversely, overexpression causes centriole amplification. In this short review article, we summarize recent insights into how PLK4, STIL and SAS-6 co-operate in space and time to form a new centriole. These advances begin to shed light on the very first steps of centriole biogenesis.

  16. Centriole behaviour during meiosis of male germ cells of Dermatobia hominis (Diptera:Cuterebridae).

    Science.gov (United States)

    Quagio-Grassiotto, I; de Lello, E

    1996-01-01

    During the meiotic division of Dermatobia hominis spermatogenesis, the centrioles duplicate only in prophase I, giving rise to short cilia which are exposed on the cellular surface. In metaphase I they are internalized and distributed to the daughter cells. Consequently, the secondary spermatocytes have two centrioles which repeat the cycle of cilia externalization followed by internalization. The spermatids receive only one centriole, which changes into a basal body and originates a flagellum. This centriole behaviour seems to be a general feature in insect male germ cell meiosis.

  17. De novo centriole formation in human cells is error-prone and does not require SAS-6 self-assembly.

    Science.gov (United States)

    Wang, Won-Jing; Acehan, Devrim; Kao, Chien-Han; Jane, Wann-Neng; Uryu, Kunihiro; Tsou, Meng-Fu Bryan

    2015-11-26

    Vertebrate centrioles normally propagate through duplication, but in the absence of preexisting centrioles, de novo synthesis can occur. Consistently, centriole formation is thought to strictly rely on self-assembly, involving self-oligomerization of the centriolar protein SAS-6. Here, through reconstitution of de novo synthesis in human cells, we surprisingly found that normal looking centrioles capable of duplication and ciliation can arise in the absence of SAS-6 self-oligomerization. Moreover, whereas canonically duplicated centrioles always form correctly, de novo centrioles are prone to structural errors, even in the presence of SAS-6 self-oligomerization. These results indicate that centriole biogenesis does not strictly depend on SAS-6 self-assembly, and may require preexisting centrioles to ensure structural accuracy, fundamentally deviating from the current paradigm.

  18. SAS-1 is a C2 domain protein critical for centriole integrity in C. elegans.

    Directory of Open Access Journals (Sweden)

    Lukas von Tobel

    2014-11-01

    Full Text Available Centrioles are microtubule-based organelles important for the formation of cilia, flagella and centrosomes. Despite progress in understanding the underlying assembly mechanisms, how centriole integrity is ensured is incompletely understood, including in sperm cells, where such integrity is particularly critical. We identified C. elegans sas-1 in a genetic screen as a locus required for bipolar spindle assembly in the early embryo. Our analysis reveals that sperm-derived sas-1 mutant centrioles lose their integrity shortly after fertilization, and that a related defect occurs when maternal sas-1 function is lacking. We establish that sas-1 encodes a C2 domain containing protein that localizes to centrioles in C. elegans, and which can bind and stabilize microtubules when expressed in human cells. Moreover, we uncover that SAS-1 is related to C2CD3, a protein required for complete centriole formation in human cells and affected in a type of oral-facial-digital (OFD syndrome.

  19. SAS-1 is a C2 domain protein critical for centriole integrity in C. elegans.

    Science.gov (United States)

    von Tobel, Lukas; Mikeladze-Dvali, Tamara; Delattre, Marie; Balestra, Fernando R; Blanchoud, Simon; Finger, Susanne; Knott, Graham; Müller-Reichert, Thomas; Gönczy, Pierre

    2014-11-01

    Centrioles are microtubule-based organelles important for the formation of cilia, flagella and centrosomes. Despite progress in understanding the underlying assembly mechanisms, how centriole integrity is ensured is incompletely understood, including in sperm cells, where such integrity is particularly critical. We identified C. elegans sas-1 in a genetic screen as a locus required for bipolar spindle assembly in the early embryo. Our analysis reveals that sperm-derived sas-1 mutant centrioles lose their integrity shortly after fertilization, and that a related defect occurs when maternal sas-1 function is lacking. We establish that sas-1 encodes a C2 domain containing protein that localizes to centrioles in C. elegans, and which can bind and stabilize microtubules when expressed in human cells. Moreover, we uncover that SAS-1 is related to C2CD3, a protein required for complete centriole formation in human cells and affected in a type of oral-facial-digital (OFD) syndrome.

  20. Phosphorylation of SAS-6 by ZYG-1 is critical for centriole formation in C. elegans embryos.

    Science.gov (United States)

    Kitagawa, Daiju; Busso, Coralie; Flückiger, Isabelle; Gönczy, Pierre

    2009-12-01

    Despite being essential for proper cell division, the mechanisms governing centrosome duplication are incompletely understood and represent an important open question in cell biology. Formation of a new centriole next to each existing one is critical for centrosome duplication. In Caenorhabditis elegans embryos, the proteins SPD-2, ZYG-1, SAS-6, SAS-5, and SAS-4 are essential for centriole formation, but the mechanisms underlying their requirement remain unclear. Here, we demonstrate that the kinase ZYG-1 phosphorylates the coiled-coil protein SAS-6 at serine 123 in vitro. Importantly, we show that this phosphorylation event is crucial for centriole formation in vivo. Furthermore, we establish that such phosphorylation ensures the maintenance of SAS-6 at the emerging centriole. Overall, our findings establish that phosphorylation of the evolutionarily conserved protein SAS-6 is critical for centriole formation and thus for faithful cell division.

  1. Centriolar SAS-7 acts upstream of SPD-2 to regulate centriole assembly and pericentriolar material formation.

    Science.gov (United States)

    Sugioka, Kenji; Hamill, Danielle R; Lowry, Joshua B; McNeely, Marie E; Enrick, Molly; Richter, Alyssa C; Kiebler, Lauren E; Priess, James R; Bowerman, Bruce

    2017-01-16

    The centriole/basal body is a eukaryotic organelle that plays essential roles in cell division and signaling. Among five known core centriole proteins, SPD-2/Cep192 is the first recruited to the site of daughter centriole formation and regulates the centriolar localization of the other components in C. elegans and in humans. However, the molecular basis for SPD-2 centriolar localization remains unknown. Here we describe a new centriole component, the coiled-coil protein SAS-7, as a regulator of centriole duplication, assembly and elongation. We also show that SAS-7 binds SPD-2 and regulates SPD-2 centriolar recruitment, while SAS-7 centriolar localization is SPD-2-independent. Furthermore, pericentriolar material (PCM) formation is abnormal in sas-7 mutants, and the PCM-dependent induction of cell polarity that defines the anterior-posterior body axis frequently fails. We conclude that SAS-7 functions at the earliest step in centriole duplication yet identified and plays important roles in the orchestration of centriole and PCM assembly.

  2. PP2A phosphatase acts upon SAS-5 to ensure centriole formation in C. elegans embryos.

    Science.gov (United States)

    Kitagawa, Daiju; Flückiger, Isabelle; Polanowska, Jolanta; Keller, Debora; Reboul, Jérôme; Gönczy, Pierre

    2011-04-19

    Centrosome duplication occurs once per cell cycle and ensures that the two resulting centrosomes assemble a bipolar mitotic spindle. Centriole formation is fundamental for centrosome duplication. In Caenorhabditis elegans, the evolutionarily conserved proteins SPD-2, ZYG-1, SAS-6, SAS-5, and SAS-4 are essential for centriole formation, but how they function is not fully understood. Here, we demonstrate that Protein Phosphatase 2A (PP2A) is also critical for centriole formation in C. elegans embryos. We find that PP2A subunits genetically and physically interact with the SAS-5/SAS-6 complex. Furthermore, we show that PP2A-mediated dephosphorylation promotes centriolar targeting of SAS-5 and ensures SAS-6 delivery to the site of centriole assembly. We find that PP2A is similarly needed for the presence of HsSAS-6 at centrioles and for centriole formation in human cells. These findings lead us to propose that PP2A-mediated loading of SAS-6 proteins is critical at the onset of centriole formation.

  3. Calmodulin regulates the post-anaphase reposition of centrioles during cytokinesis

    Institute of Scientific and Technical Information of China (English)

    Yue Yue YU; Gu DAI; Fei Yan PAN; Jie CHEN; Chao Jun LI

    2005-01-01

    A transient postanaphase repositioning of the centriole is found to control the completion of cytokinesis.Using a green fluorescent protein-calmodulin fusion protein as a living cell probe,we have previously found that calmodulin is associated with the initiation and progression of cytokinesis.In this study,we further studied the effect of calmodulin on the repositioning of the centriole and subsequent cell cycle progression.When activity of calmodulin is inhibited,the regression of the centriole from the intercellular bridge to the cell center is blocked,and thus the completion of cell division is repressed and two daughter cells are linked by longer cell bridge in perturbed cells.W7 treatment during cytokinesis also results in unfinished cytokinesis and stopped G1 phase.These results suggest that calmodulin activity is required for centriole repositioning and can affect the completion of cytokinesis and cell cycle progression.

  4. The Caenorhabditis elegans protein SAS-5 forms large oligomeric assemblies critical for centriole formation.

    Science.gov (United States)

    Rogala, Kacper B; Dynes, Nicola J; Hatzopoulos, Georgios N; Yan, Jun; Pong, Sheng Kai; Robinson, Carol V; Deane, Charlotte M; Gönczy, Pierre; Vakonakis, Ioannis

    2015-05-29

    Centrioles are microtubule-based organelles crucial for cell division, sensing and motility. In Caenorhabditis elegans, the onset of centriole formation requires notably the proteins SAS-5 and SAS-6, which have functional equivalents across eukaryotic evolution. Whereas the molecular architecture of SAS-6 and its role in initiating centriole formation are well understood, the mechanisms by which SAS-5 and its relatives function is unclear. Here, we combine biophysical and structural analysis to uncover the architecture of SAS-5 and examine its functional implications in vivo. Our work reveals that two distinct self-associating domains are necessary to form higher-order oligomers of SAS-5: a trimeric coiled coil and a novel globular dimeric Implico domain. Disruption of either domain leads to centriole duplication failure in worm embryos, indicating that large SAS-5 assemblies are necessary for function in vivo.

  5. Determination of Mother Centriole Maturation in CPAP-Depleted Cells Using the Ninein Antibody

    OpenAIRE

    Miseon Lee; Kunsoo Rhee

    2015-01-01

    Background Mutations in centrosomal protein genes have been identified in a number of genetic diseases in brain development, including microcephaly. Centrosomal P4.1-associated protein (CPAP) is one of the causal genes implicated in primary microcephaly. We previously proposed that CPAP is essential for mother centriole maturation during mitosis. Methods We immunostained CPAP-depleted cells using the ninein antibody, which selectively detects subdistal appendages in mature mother centrioles. ...

  6. Positioning of centrioles is a conserved readout of Frizzled planar cell polarity signalling.

    Science.gov (United States)

    Carvajal-Gonzalez, Jose Maria; Roman, Angel-Carlos; Mlodzik, Marek

    2016-03-29

    Planar cell polarity (PCP) signalling is a well-conserved developmental pathway regulating cellular orientation during development. An evolutionarily conserved pathway readout is not established and, moreover, it is thought that PCP mediated cellular responses are tissue-specific. A key PCP function in vertebrates is to regulate coordinated centriole/cilia positioning, a function that has not been associated with PCP in Drosophila. Here we report instructive input of Frizzled-PCP (Fz/PCP) signalling into polarized centriole positioning in Drosophila wings. We show that centrioles are polarized in pupal wing cells as a readout of PCP signalling, with both gain and loss-of-function Fz/PCP signalling affecting centriole polarization. Importantly, loss or gain of centrioles does not affect Fz/PCP establishment, implicating centriolar positioning as a conserved PCP-readout, likely downstream of PCP-regulated actin polymerization. Together with vertebrate data, these results suggest a unifying model of centriole/cilia positioning as a common downstream effect of PCP signalling from flies to mammals.

  7. Mutations in PLK4, encoding a master regulator of centriole biogenesis, cause microcephaly, growth failure and retinopathy.

    Science.gov (United States)

    Martin, Carol-Anne; Ahmad, Ilyas; Klingseisen, Anna; Hussain, Muhammad Sajid; Bicknell, Louise S; Leitch, Andrea; Nürnberg, Gudrun; Toliat, Mohammad Reza; Murray, Jennie E; Hunt, David; Khan, Fawad; Ali, Zafar; Tinschert, Sigrid; Ding, James; Keith, Charlotte; Harley, Margaret E; Heyn, Patricia; Müller, Rolf; Hoffmann, Ingrid; Daire, Valérie Cormier; Dollfus, Hélène; Dupuis, Lucie; Bashamboo, Anu; McElreavey, Kenneth; Kariminejad, Ariana; Mendoza-Londono, Roberto; Moore, Anthony T; Saggar, Anand; Schlechter, Catie; Weleber, Richard; Thiele, Holger; Altmüller, Janine; Höhne, Wolfgang; Hurles, Matthew E; Noegel, Angelika Anna; Baig, Shahid Mahmood; Nürnberg, Peter; Jackson, Andrew P

    2014-12-01

    Centrioles are essential for ciliogenesis. However, mutations in centriole biogenesis genes have been reported in primary microcephaly and Seckel syndrome, disorders without the hallmark clinical features of ciliopathies. Here we identify mutations in the genes encoding PLK4 kinase, a master regulator of centriole duplication, and its substrate TUBGCP6 in individuals with microcephalic primordial dwarfism and additional congenital anomalies, including retinopathy, thereby extending the human phenotypic spectrum associated with centriole dysfunction. Furthermore, we establish that different levels of impaired PLK4 activity result in growth and cilia phenotypes, providing a mechanism by which microcephaly disorders can occur with or without ciliopathic features.

  8. A new theory of the origin of cancer: quantum coherent entanglement, centrioles, mitosis, and differentiation.

    Science.gov (United States)

    Hameroff, Stuart R

    2004-11-01

    Malignant cells are characterized by abnormal segregation of chromosomes during mitosis ("aneuploidy"), generally considered a result of malignancy originating in genetic mutations. However, recent evidence supports a century-old concept that maldistribution of chromosomes (and resultant genomic instability) due to abnormalities in mitosis itself is the primary cause of malignancy rather than a mere byproduct. In normal mitosis chromosomes replicate into sister chromatids which are then precisely separated and transported into mirror-like sets by structural protein assemblies called mitotic spindles and centrioles, both composed of microtubules. The elegant yet poorly understood ballet-like movements and geometric organization occurring in mitosis have suggested guidance by some type of organizing field, however neither electromagnetic nor chemical gradient fields have been demonstrated or shown to be sufficient. It is proposed here that normal mirror-like mitosis is organized by quantum coherence and quantum entanglement among microtubule-based centrioles and mitotic spindles which ensure precise, complementary duplication of daughter cell genomes and recognition of daughter cell boundaries. Evidence and theory supporting organized quantum states in cytoplasm/nucleoplasm (and quantum optical properties of centrioles in particular) at physiological temperature are presented. Impairment of quantum coherence and/or entanglement among microtubule-based mitotic spindles and centrioles can result in abnormal distribution of chromosomes, abnormal differentiation and uncontrolled growth, and account for all aspects of malignancy. New approaches to cancer therapy and stem cell production are suggested via non-thermal laser-mediated effects aimed at quantum optical states of centrioles.

  9. Self-assembling SAS-6 multimer is a core centriole building block.

    Science.gov (United States)

    Gopalakrishnan, Jayachandran; Guichard, Paul; Smith, Andrew H; Schwarz, Heinz; Agard, David A; Marco, Sergio; Avidor-Reiss, Tomer

    2010-03-19

    Centrioles are conserved microtubule-based organelles with 9-fold symmetry that are essential for cilia and mitotic spindle formation. A conserved structure at the onset of centriole assembly is a "cartwheel" with 9-fold radial symmetry and a central tubule in its core. It remains unclear how the cartwheel is formed. The conserved centriole protein, SAS-6, is a cartwheel component that functions early in centriole formation. Here, combining biochemistry and electron microscopy, we characterize SAS-6 and show that it self-assembles into stable tetramers, which serve as building blocks for the central tubule. These results suggest that SAS-6 self-assembly may be an initial step in the formation of the cartwheel that provides the 9-fold symmetry. Electron microscopy of centrosomes identified 25-nm central tubules with repeating subunits and show that SAS-6 concentrates at the core of the cartwheel. Recombinant and native SAS-6 self-oligomerizes into tetramers with approximately 6-nm subunits, and these tetramers are components of the centrosome, suggesting that tetramers are the building blocks of the central tubule. This is further supported by the observation that elevated levels of SAS-6 in Drosophila cells resulted in higher order structures resembling central tubule morphology. Finally, in the presence of embryonic extract, SAS-6 tetramers assembled into high density complexes, providing a starting point for the eventual in vitro reconstruction of centrioles.

  10. SAS-4 is recruited to a dynamic structure in newly forming centrioles that is stabilized by the gamma-tubulin-mediated addition of centriolar microtubules.

    Science.gov (United States)

    Dammermann, Alexander; Maddox, Paul S; Desai, Arshad; Oegema, Karen

    2008-02-25

    Centrioles are surrounded by pericentriolar material (PCM), which is proposed to promote new centriole assembly by concentrating gamma-tubulin. Here, we quantitatively monitor new centriole assembly in living Caenorhabditis elegans embryos, focusing on the conserved components SAS-4 and SAS-6. We show that SAS-4 and SAS-6 are coordinately recruited to the site of new centriole assembly and reach their maximum levels during S phase. Centriolar SAS-6 is subsequently reduced by a mechanism intrinsic to the early assembly pathway that does not require progression into mitosis. Centriolar SAS-4 remains in dynamic equilibrium with the cytoplasmic pool until late prophase, when it is stably incorporated in a step that requires gamma-tubulin and microtubule assembly. These results indicate that gamma-tubulin in the PCM stabilizes the nascent daughter centriole by promoting microtubule addition to its outer wall. Such a mechanism may help restrict new centriole assembly to the vicinity of preexisting parent centrioles that recruit PCM.

  11. Apparent diffusive motion of centrin foci in living cells: implications for diffusion-based motion in centriole duplication

    Science.gov (United States)

    Rafelski, Susanne M.; Keller, Lani C.; Alberts, Jonathan B.; Marshall, Wallace F.

    2011-04-01

    The degree to which diffusion contributes to positioning cellular structures is an open question. Here we investigate the question of whether diffusive motion of centrin granules would allow them to interact with the mother centriole. The role of centrin granules in centriole duplication remains unclear, but some proposed functions of these granules, for example, in providing pre-assembled centriole subunits, or by acting as unstable 'pre-centrioles' that need to be captured by the mother centriole (La Terra et al 2005 J. Cell Biol. 168 713-22), require the centrin foci to reach the mother. To test whether diffusive motion could permit such interactions in the necessary time scale, we measured the motion of centrin-containing foci in living human U2OS cells. We found that these centrin foci display apparently diffusive undirected motion. Using the apparent diffusion constant obtained from these measurements, we calculated the time scale required for diffusion to capture by the mother centrioles and found that it would greatly exceed the time available in the cell cycle. We conclude that mechanisms invoking centrin foci capture by the mother, whether as a pre-centriole or as a source of components to support later assembly, would require a form of directed motility of centrin foci that has not yet been observed.

  12. Apparent diffusive motion of centrin foci in living cells: implications for diffusion-based motion in centriole duplication.

    Science.gov (United States)

    Rafelski, Susanne M; Keller, Lani C; Alberts, Jonathan B; Marshall, Wallace F

    2011-04-01

    The degree to which diffusion contributes to positioning cellular structures is an open question. Here we investigate the question of whether diffusive motion of centrin granules would allow them to interact with the mother centriole. The role of centrin granules in centriole duplication remains unclear, but some proposed functions of these granules, for example, in providing pre-assembled centriole subunits, or by acting as unstable 'pre-centrioles' that need to be captured by the mother centriole (La Terra et al 2005 J. Cell Biol. 168 713-22), require the centrin foci to reach the mother. To test whether diffusive motion could permit such interactions in the necessary time scale, we measured the motion of centrin-containing foci in living human U2OS cells. We found that these centrin foci display apparently diffusive undirected motion. Using the apparent diffusion constant obtained from these measurements, we calculated the time scale required for diffusion to capture by the mother centrioles and found that it would greatly exceed the time available in the cell cycle. We conclude that mechanisms invoking centrin foci capture by the mother, whether as a pre-centriole or as a source of components to support later assembly, would require a form of directed motility of centrin foci that has not yet been observed.

  13. SAS-6 engineering reveals interdependence between cartwheel and microtubules in determining centriole architecture.

    Science.gov (United States)

    Hilbert, Manuel; Noga, Akira; Frey, Daniel; Hamel, Virginie; Guichard, Paul; Kraatz, Sebastian H W; Pfreundschuh, Moritz; Hosner, Sarah; Flückiger, Isabelle; Jaussi, Rolf; Wieser, Mara M; Thieltges, Katherine M; Deupi, Xavier; Müller, Daniel J; Kammerer, Richard A; Gönczy, Pierre; Hirono, Masafumi; Steinmetz, Michel O

    2016-04-01

    Centrioles are critical for the formation of centrosomes, cilia and flagella in eukaryotes. They are thought to assemble around a nine-fold symmetric cartwheel structure established by SAS-6 proteins. Here, we have engineered Chlamydomonas reinhardtii SAS-6-based oligomers with symmetries ranging from five- to ten-fold. Expression of a SAS-6 mutant that forms six-fold symmetric cartwheel structures in vitro resulted in cartwheels and centrioles with eight- or nine-fold symmetries in vivo. In combination with Bld10 mutants that weaken cartwheel-microtubule interactions, this SAS-6 mutant produced six- to eight-fold symmetric cartwheels. Concurrently, the microtubule wall maintained eight- and nine-fold symmetries. Expressing SAS-6 with analogous mutations in human cells resulted in nine-fold symmetric centrioles that exhibited impaired length and organization. Together, our data suggest that the self-assembly properties of SAS-6 instruct cartwheel symmetry, and lead us to propose a model in which the cartwheel and the microtubule wall assemble in an interdependent manner to establish the native architecture of centrioles.

  14. CAND1 Promotes PLK4-Mediated Centriole Overduplication and Is Frequently Disrupted in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Nina Korzeniewski

    2012-09-01

    Full Text Available Centrosomes play a crucial role in the maintenance of genome stability by orchestrating bipolar mitotic spindle formation. The centrosome normally duplicates precisely once before mitosis in a process that is extensively regulated by protein degradation including SKP1-Cullin 1 (CUL1-F-box (SCF E3 ubiquitin ligase activity. The core SCF component CUL1 has recently been found to be required to suppress the formation of supernumerary centrosomes and centrioles, the core-forming units of centrosomes. Here, we identify the CUL1-interacting protein cullin-associated and neddylation-dissociated 1 (CAND1 as a novel centrosomal protein with a role in centriole duplication control. CAND1 was found to synergize with Polo-like kinase 4 (PLK4, a master regulator of centriole biogenesis, in the induction of centriole overduplication. We provide evidence that CAND1 functions in this process by increasing PLK4 protein stability. Furthermore, mutants of CUL1 that lack the ability to interact with CAND1 and are unable to assemble functional E3 ubiquitin ligase complexes were impaired in their ability to restrain aberrant daughter centriole synthesis. To corroborate a role of CAND1 in human carcinogenesis, we analyzed a series of prostate adenocarcinomas and found altered expression of CAND1 on the mRNA or protein level in 52.9% and 40.8%, respectively, of the tumor samples analyzed. These results highlight the role of altered SCF components in cancer in general and encourage further studies to explore the SCF-CAND1 axis for the development of novel predictive biomarkers and therapeutic approaches in prostate cancer.

  15. Talpid3-binding centrosomal protein Cep120 is required for centriole duplication and proliferation of cerebellar granule neuron progenitors.

    Directory of Open Access Journals (Sweden)

    Chuanqing Wu

    Full Text Available Granule neuron progenitors (GNPs are the most abundant neuronal type in the cerebellum. GNP proliferation and thus cerebellar development require Sonic hedgehog (Shh secreted from Purkinje cells. Shh signaling occurs in primary cilia originating from the mother centriole. Centrioles replicate only once during a typical cell cycle and are responsible for mitotic spindle assembly and organization. Recent studies have linked cilia function to cerebellar morphogenesis, but the role of centriole duplication in cerebellar development is not known. Here we show that centrosomal protein Cep120 is asymmetrically localized to the daughter centriole through its interaction with Talpid3 (Ta3, another centrosomal protein. Cep120 null mutant mice die in early gestation with abnormal heart looping. Inactivation of Cep120 in the central nervous system leads to both hydrocephalus, due to the loss of cilia on ependymal cells, and severe cerebellar hypoplasia, due to the failed proliferation of GNPs. The mutant GNPs lack Hedgehog pathway activity. Cell biological studies show that the loss of Cep120 results in failed centriole duplication and consequently ciliogenesis, which together underlie Cep120 mutant cerebellar hypoplasia. Thus, our study for the first time links a centrosomal protein necessary for centriole duplication to cerebellar morphogenesis.

  16. Dynein light intermediate chains maintain spindle bipolarity by functioning in centriole cohesion.

    Science.gov (United States)

    Jones, Laura A; Villemant, Cécile; Starborg, Toby; Salter, Anna; Goddard, Georgina; Ruane, Peter; Woodman, Philip G; Papalopulu, Nancy; Woolner, Sarah; Allan, Victoria J

    2014-11-24

    Cytoplasmic dynein 1 (dynein) is a minus end-directed microtubule motor protein with many cellular functions, including during cell division. The role of the light intermediate chains (LICs; DYNC1LI1 and 2) within the complex is poorly understood. In this paper, we have used small interfering RNAs or morpholino oligonucleotides to deplete the LICs in human cell lines and Xenopus laevis early embryos to dissect the LICs' role in cell division. We show that although dynein lacking LICs drives microtubule gliding at normal rates, the LICs are required for the formation and maintenance of a bipolar spindle. Multipolar spindles with poles that contain single centrioles were formed in cells lacking LICs, indicating that they are needed for maintaining centrosome integrity. The formation of multipolar spindles via centrosome splitting after LIC depletion could be rescued by inhibiting Eg5. This suggests a novel role for the dynein complex, counteracted by Eg5, in the maintenance of centriole cohesion during mitosis.

  17. Chronic Exposure to Particulate Chromate Induces Premature Centrosome Separation and Centriole Disengagement in Human Lung Cells

    Science.gov (United States)

    Martino, Julieta; Holmes, Amie L.; Xie, Hong; Wise, Sandra S.; Wise, John Pierce

    2015-01-01

    Particulate hexavalent chromium (Cr(VI)) is a well-established human lung carcinogen. Lung tumors are characterized by structural and numerical chromosome instability. Centrosome amplification is a phenotype commonly found in solid tumors, including lung tumors, which strongly correlates with chromosome instability. Human lung cells exposed to Cr(VI) exhibit centrosome amplification but the underlying phenotypes and mechanisms remain unknown. In this study, we further characterize the phenotypes of Cr(VI)-induced centrosome abnormalities. We show that Cr(VI)-induced centrosome amplification correlates with numerical chromosome instability. We also show chronic exposure to particulate Cr(VI) induces centrosomes with supernumerary centrioles and acentriolar centrosomes in human lung cells. Moreover, chronic exposure to particulate Cr(VI) affects the timing of important centriolar events. Specifically, chronic exposure to particulate Cr(VI) causes premature centriole disengagement in S and G2 phase cells. It also induces premature centrosome separation in interphase. Altogether, our data suggest that chronic exposure to particulate Cr(VI) targets the protein linkers that hold centrioles together. These centriolar linkers are important for key events of the centrosome cycle and their premature disruption might underlie Cr(VI)-induced centrosome amplification. PMID:26293554

  18. A genome-wide RNAi screen to dissect centriole duplication and centrosome maturation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Jeroen Dobbelaere

    2008-09-01

    Full Text Available Centrosomes comprise a pair of centrioles surrounded by an amorphous pericentriolar material (PCM. Here, we have performed a microscopy-based genome-wide RNA interference (RNAi screen in Drosophila cells to identify proteins required for centriole duplication and mitotic PCM recruitment. We analysed 92% of the Drosophila genome (13,059 genes and identified 32 genes involved in centrosome function. An extensive series of secondary screens classified these genes into four categories: (1 nine are required for centriole duplication, (2 11 are required for centrosome maturation, (3 nine are required for both functions, and (4 three genes regulate centrosome separation. These 32 hits include several new centrosomal components, some of which have human homologs. In addition, we find that the individual depletion of only two proteins, Polo and Centrosomin (Cnn can completely block centrosome maturation. Cnn is phosphorylated during mitosis in a Polo-dependent manner, suggesting that the Polo-dependent phosphorylation of Cnn initiates centrosome maturation in flies.

  19. Polo-like kinase 2-dependent phosphorylation of NPM/B23 on serine 4 triggers centriole duplication.

    Science.gov (United States)

    Krause, Annekatrin; Hoffmann, Ingrid

    2010-03-24

    Duplication of the centrosome is well controlled during faithful cell division while deregulation of this process leads to supernumary centrosomes, chromosome missegregation and aneuploidy, a hallmark of many cancer cells. We previously reported that Polo-like kinase 2 (Plk2) is activated near the G1/S phase transition, and regulates the reproduction of centrosomes. In search for Plk2 interacting proteins we have identified NPM/B23 (Nucleophosmin) as a novel Plk2 binding partner. We find that Plk2 and NPM/B23 interact in vitro in a Polo-box dependent manner. An association between both proteins was also observed in vivo. Moreover, we show that Plk2 phosphorylates NPM/B23 on serine 4 in vivo in S-phase. Notably, expression of a non-phosphorylatable NPM/B23 S4A mutant interferes with centriole reduplication in S-phase arrested cells and leads to a dilution of centriole numbers in unperturbed U2OS cells. The corresponding phospho-mimicking mutants have the opposite effect and their expression leads to the accumulation of centrioles. These findings suggest that NPM/B23 is a direct target of Plk2 in the regulation of centriole duplication and that phosphorylation on serine 4 can trigger this process.

  20. Polo-like kinase 2-dependent phosphorylation of NPM/B23 on serine 4 triggers centriole duplication.

    Directory of Open Access Journals (Sweden)

    Annekatrin Krause

    Full Text Available Duplication of the centrosome is well controlled during faithful cell division while deregulation of this process leads to supernumary centrosomes, chromosome missegregation and aneuploidy, a hallmark of many cancer cells. We previously reported that Polo-like kinase 2 (Plk2 is activated near the G1/S phase transition, and regulates the reproduction of centrosomes. In search for Plk2 interacting proteins we have identified NPM/B23 (Nucleophosmin as a novel Plk2 binding partner. We find that Plk2 and NPM/B23 interact in vitro in a Polo-box dependent manner. An association between both proteins was also observed in vivo. Moreover, we show that Plk2 phosphorylates NPM/B23 on serine 4 in vivo in S-phase. Notably, expression of a non-phosphorylatable NPM/B23 S4A mutant interferes with centriole reduplication in S-phase arrested cells and leads to a dilution of centriole numbers in unperturbed U2OS cells. The corresponding phospho-mimicking mutants have the opposite effect and their expression leads to the accumulation of centrioles. These findings suggest that NPM/B23 is a direct target of Plk2 in the regulation of centriole duplication and that phosphorylation on serine 4 can trigger this process.

  1. The homo-oligomerisation of both Sas-6 and Ana2 is required for efficient centriole assembly in flies.

    Science.gov (United States)

    Cottee, Matthew A; Muschalik, Nadine; Johnson, Steven; Leveson, Joanna; Raff, Jordan W; Lea, Susan M

    2015-05-23

    Sas-6 and Ana2/STIL proteins are required for centriole duplication and the homo-oligomerisation properties of Sas-6 help establish the ninefold symmetry of the central cartwheel that initiates centriole assembly. Ana2/STIL proteins are poorly conserved, but they all contain a predicted Central Coiled-Coil Domain (CCCD). Here we show that the Drosophila Ana2 CCCD forms a tetramer, and we solve its structure to 0.8 Å, revealing that it adopts an unusual parallel-coil topology. We also solve the structure of the Drosophila Sas-6 N-terminal domain to 2.9 Å revealing that it forms higher-order oligomers through canonical interactions. Point mutations that perturb Sas-6 or Ana2 homo-oligomerisation in vitro strongly perturb centriole assembly in vivo. Thus, efficient centriole duplication in flies requires the homo-oligomerisation of both Sas-6 and Ana2, and the Ana2 CCCD tetramer structure provides important information on how these proteins might cooperate to form a cartwheel structure.

  2. The Centriole Cartwheel Protein SAS-6 in Trypanosoma brucei Is Required for Probasal Body Biogenesis and Flagellum Assembly.

    Science.gov (United States)

    Hu, Huiqing; Liu, Yi; Zhou, Qing; Siegel, Sara; Li, Ziyin

    2015-09-01

    The centriole in eukaryotes functions as the cell's microtubule-organizing center (MTOC) to nucleate spindle assembly, and its biogenesis requires an evolutionarily conserved protein, SAS-6, which assembles the centriole cartwheel. Trypanosoma brucei, an early branching protozoan, possesses the basal body as its MTOC to nucleate flagellum biogenesis. However, little is known about the components of the basal body and their roles in basal body biogenesis and flagellum assembly. Here, we report that the T. brucei SAS-6 homolog, TbSAS-6, is localized to the mature basal body and the probasal body throughout the cell cycle. RNA interference (RNAi) of TbSAS-6 inhibited probasal body biogenesis, compromised flagellum assembly, and caused cytokinesis arrest. Surprisingly, overexpression of TbSAS-6 in T. brucei also impaired probasal body duplication and flagellum assembly, contrary to SAS-6 overexpression in humans, which produces supernumerary centrioles. Furthermore, we showed that depletion of T. brucei Polo-like kinase, TbPLK, or inhibition of TbPLK activity did not abolish TbSAS-6 localization to the basal body, in contrast to the essential role of Polo-like kinase in recruiting SAS-6 to centrioles in animals. Altogether, these results identified the essential role of TbSAS-6 in probasal body biogenesis and flagellum assembly and suggest the presence of a TbPLK-independent pathway governing basal body duplication in T. brucei.

  3. Mother Centriole Distal Appendages Mediate Centrosome Docking at the Immunological Synapse and Reveal Mechanistic Parallels with Ciliogenesis.

    Science.gov (United States)

    Stinchcombe, Jane C; Randzavola, Lyra O; Angus, Karen L; Mantell, Judith M; Verkade, Paul; Griffiths, Gillian M

    2015-12-21

    Cytotoxic T lymphocytes (CTLs) are highly effective serial killers capable of destroying virally infected and cancerous targets by polarized release from secretory lysosomes. Upon target contact, the CTL centrosome rapidly moves to the immunological synapse, focusing microtubule-directed release at this point [1-3]. Striking similarities have been noted between centrosome polarization at the synapse and basal body docking during ciliogenesis [1, 4-8], suggesting that CTL centrosomes might dock with the plasma membrane during killing, in a manner analogous to primary cilia formation [1, 4]. However, questions remain regarding the extent and function of centrosome polarization at the synapse, and recent reports have challenged its role [9, 10]. Here, we use high-resolution transmission electron microscopy (TEM) tomography analysis to show that, as in ciliogenesis, the distal appendages of the CTL mother centriole contact the plasma membrane directly during synapse formation. This is functionally important as small interfering RNA (siRNA) targeting of the distal appendage protein, Cep83, required for membrane contact during ciliogenesis [11], impairs CTL secretion. Furthermore, the regulatory proteins CP110 and Cep97, which must dissociate from the mother centriole to allow cilia formation [12], remain associated with the mother centriole in CTLs, and neither axoneme nor transition zone ciliary structures form. Moreover, complete centrosome docking can occur in proliferating CTLs with multiple centriole pairs. Thus, in CTLs, centrosomes dock transiently with the membrane, within the cell cycle and without progression into ciliogenesis. We propose that this transient centrosome docking without cilia formation is important for CTLs to deliver rapid, repeated polarized secretion directed by the centrosome.

  4. SAS-6 coiled-coil structure and interaction with SAS-5 suggest a regulatory mechanism in C. elegans centriole assembly.

    Science.gov (United States)

    Qiao, Renping; Cabral, Gabriela; Lettman, Molly M; Dammermann, Alexander; Dong, Gang

    2012-11-14

    The centriole is a conserved microtubule-based organelle essential for both centrosome formation and cilium biogenesis. Five conserved proteins for centriole duplication have been identified. Two of them, SAS-5 and SAS-6, physically interact with each other and are codependent for their targeting to procentrioles. However, it remains unclear how these two proteins interact at the molecular level. Here, we demonstrate that the short SAS-5 C-terminal domain (residues 390-404) specifically binds to a narrow central region (residues 275-288) of the SAS-6 coiled coil. This was supported by the crystal structure of the SAS-6 coiled-coil domain (CCD), which, together with mutagenesis studies, indicated that the association is mediated by synergistic hydrophobic and electrostatic interactions. The crystal structure also shows a periodic charge pattern along the SAS-6 CCD, which gives rise to an anti-parallel tetramer. Overall, our findings establish the molecular basis of the specific interaction between SAS-5 and SAS-6, and suggest that both proteins individually adopt an oligomeric conformation that is disrupted upon the formation of the hetero-complex to facilitate the correct assembly of the nine-fold symmetric centriole.

  5. The SAS-5 N-terminal domain is a tetramer, with implications for centriole assembly in C. elegans.

    Science.gov (United States)

    Shimanovskaya, Ekaterina; Qiao, Renping; Lesigang, Johannes; Dong, Gang

    2013-07-01

    The centriole is a conserved microtubule-based organelle essential for both centrosome formation and cilium biogenesis. It has a unique 9-fold symmetry and its assembly is governed by at least five component proteins (SPD-2, ZYG-1, SAS-5, SAS-6 and SAS-4), which are recruited in a hierarchical order. Recently published structural studies of the SAS-6 N-terminal domain have greatly advanced our understanding of the mechanisms of centriole assembly. However, it remains unclear how the weak interaction between the SAS-6 N-terminal head groups could drive the assembly of a closed ring-like structure, and what determines the stacking of multiple rings on top one another in centriole duplication. We recently reported that SAS-5 binds specifically to a very narrow region of the SAS-6 central coiled coil through its C-terminal domain (CTD, residues 391-404). Here, we further demonstrate by both static light scattering and small angle X-ray scattering that the SAS-5 N-terminal domain (NTD, residues 1-260) forms a tetramer. Specifically, we found that the tetramer is formed by SAS-5 residues 82-260, whereas residues 1-81 are intrinsically disordered. Taking these results together, we propose a working model for SAS-5-mediated assembly of the multi-layered central tube structure.

  6. Disruption of Mks1 localization to the mother centriole causes cilia defects and developmental malformations in Meckel-Gruber syndrome.

    Science.gov (United States)

    Cui, Cheng; Chatterjee, Bishwanath; Francis, Deanne; Yu, Qing; SanAgustin, Jovenal T; Francis, Richard; Tansey, Terry; Henry, Charisse; Wang, Baolin; Lemley, Bethan; Pazour, Gregory J; Lo, Cecilia W

    2011-01-01

    Meckel-Gruber syndrome (MKS) is a recessive disorder resulting in multiple birth defects that are associated with mutations affecting ciliogenesis. We recovered a mouse mutant with a mutation in the Mks1 gene (Mks1(del64-323)) that caused a 260-amino-acid deletion spanning nine amino acids in the B9 domain, a protein motif with unknown function conserved in two other basal body proteins. We showed that, in wild-type cells, Mks1 was localized to the mother centriole from which the cilium was generated. However, in mutant Mks1(del64-323) cells, Mks1 was not localized to the centriole, even though it maintained a punctate distribution. Resembling MKS patients, Mks1 mutants had craniofacial defects, polydactyly, congenital heart defects, polycystic kidneys and randomized left-right patterning. These defects reflected disturbance of functions subserved by motile and non-motile cilia. In the kidney, glomerular and tubule cysts were observed along with short cilia, and cilia were reduced in number to a near-complete loss. Underlying the left-right patterning defects were fewer and shorter nodal cilia, and analysis with fluorescent beads showed no directional flow at the embryonic node. In the cochlea, the stereocilia were mal-patterned, with the kinocilia being abnormally positioned. Together, these defects suggested disruption of planar cell polarity, which is known to regulate node, kidney and cochlea development. In addition, we also showed that Shh signaling was disrupted. Thus, in the neural tube, the floor plate was not specified posteriorly even as expression of the Shh mediator Gli2 increased. By contrast, the Shh signaling domain was expanded in the anterior neural tube and anterior limb bud, consistent with reduced Gli3-repressor (Gli3R) function. The latter probably accounted for the preaxial digit duplication exhibited by the Mks1(del64-323) mutants. Overall, these findings indicate that centriole localization of Mks1 is required for ciliogenesis of motile and

  7. Disruption of Mks1 localization to the mother centriole causes cilia defects and developmental malformations in Meckel-Gruber syndrome

    Directory of Open Access Journals (Sweden)

    Cheng Cui

    2011-01-01

    Meckel-Gruber syndrome (MKS is a recessive disorder resulting in multiple birth defects that are associated with mutations affecting ciliogenesis. We recovered a mouse mutant with a mutation in the Mks1 gene (Mks1del64-323 that caused a 260-amino-acid deletion spanning nine amino acids in the B9 domain, a protein motif with unknown function conserved in two other basal body proteins. We showed that, in wild-type cells, Mks1 was localized to the mother centriole from which the cilium was generated. However, in mutant Mks1del64-323 cells, Mks1 was not localized to the centriole, even though it maintained a punctate distribution. Resembling MKS patients, Mks1 mutants had craniofacial defects, polydactyly, congenital heart defects, polycystic kidneys and randomized left-right patterning. These defects reflected disturbance of functions subserved by motile and non-motile cilia. In the kidney, glomerular and tubule cysts were observed along with short cilia, and cilia were reduced in number to a near-complete loss. Underlying the left-right patterning defects were fewer and shorter nodal cilia, and analysis with fluorescent beads showed no directional flow at the embryonic node. In the cochlea, the stereocilia were mal-patterned, with the kinocilia being abnormally positioned. Together, these defects suggested disruption of planar cell polarity, which is known to regulate node, kidney and cochlea development. In addition, we also showed that Shh signaling was disrupted. Thus, in the neural tube, the floor plate was not specified posteriorly even as expression of the Shh mediator Gli2 increased. By contrast, the Shh signaling domain was expanded in the anterior neural tube and anterior limb bud, consistent with reduced Gli3-repressor (Gli3R function. The latter probably accounted for the preaxial digit duplication exhibited by the Mks1del64-323 mutants. Overall, these findings indicate that centriole localization of Mks1 is required for ciliogenesis of motile and non

  8. Disruption of mouse Cenpj, a regulator of centriole biogenesis, phenocopies Seckel syndrome.

    Directory of Open Access Journals (Sweden)

    Rebecca E McIntyre

    Full Text Available Disruption of the centromere protein J gene, CENPJ (CPAP, MCPH6, SCKL4, which is a highly conserved and ubiquitiously expressed centrosomal protein, has been associated with primary microcephaly and the microcephalic primordial dwarfism disorder Seckel syndrome. The mechanism by which disruption of CENPJ causes the proportionate, primordial growth failure that is characteristic of Seckel syndrome is unknown. By generating a hypomorphic allele of Cenpj, we have developed a mouse (Cenpj(tm/tm that recapitulates many of the clinical features of Seckel syndrome, including intrauterine dwarfism, microcephaly with memory impairment, ossification defects, and ocular and skeletal abnormalities, thus providing clear confirmation that specific mutations of CENPJ can cause Seckel syndrome. Immunohistochemistry revealed increased levels of DNA damage and apoptosis throughout Cenpj(tm/tm embryos and adult mice showed an elevated frequency of micronucleus induction, suggesting that Cenpj-deficiency results in genomic instability. Notably, however, genomic instability was not the result of defective ATR-dependent DNA damage signaling, as is the case for the majority of genes associated with Seckel syndrome. Instead, Cenpj(tm/tm embryonic fibroblasts exhibited irregular centriole and centrosome numbers and mono- and multipolar spindles, and many were near-tetraploid with numerical and structural chromosomal abnormalities when compared to passage-matched wild-type cells. Increased cell death due to mitotic failure during embryonic development is likely to contribute to the proportionate dwarfism that is associated with CENPJ-Seckel syndrome.

  9. Coordinate regulation of the mother centriole component nlp by nek2 and plk1 protein kinases.

    Science.gov (United States)

    Rapley, Joseph; Baxter, Joanne E; Blot, Joelle; Wattam, Samantha L; Casenghi, Martina; Meraldi, Patrick; Nigg, Erich A; Fry, Andrew M

    2005-02-01

    Mitotic entry requires a major reorganization of the microtubule cytoskeleton. Nlp, a centrosomal protein that binds gamma-tubulin, is a G(2)/M target of the Plk1 protein kinase. Here, we show that human Nlp and its Xenopus homologue, X-Nlp, are also phosphorylated by the cell cycle-regulated Nek2 kinase. X-Nlp is a 213-kDa mother centriole-specific protein, implicating it in microtubule anchoring. Although constant in abundance throughout the cell cycle, it is displaced from centrosomes upon mitotic entry. Overexpression of active Nek2 or Plk1 causes premature displacement of Nlp from interphase centrosomes. Active Nek2 is also capable of phosphorylating and displacing a mutant form of Nlp that lacks Plk1 phosphorylation sites. Importantly, kinase-inactive Nek2 interferes with Plk1-induced displacement of Nlp from interphase centrosomes and displacement of endogenous Nlp from mitotic spindle poles, while active Nek2 stimulates Plk1 phosphorylation of Nlp in vitro. Unlike Plk1, Nek2 does not prevent association of Nlp with gamma-tubulin. Together, these results provide the first example of a protein involved in microtubule organization that is coordinately regulated at the G(2)/M transition by two centrosomal kinases. We also propose that phosphorylation by Nek2 may prime Nlp for phosphorylation by Plk1.

  10. A centrosome-autonomous signal that involves centriole disengagement permits centrosome duplication in G2 phase after DNA damage.

    LENUS (Irish Health Repository)

    2010-11-15

    DNA damage can induce centrosome overduplication in a manner that requires G2-to-M checkpoint function, suggesting that genotoxic stress can decouple the centrosome and chromosome cycles. How this happens is unclear. Using live-cell imaging of cells that express fluorescently tagged NEDD1\\/GCP-WD and proliferating cell nuclear antigen, we found that ionizing radiation (IR)-induced centrosome amplification can occur outside S phase. Analysis of synchronized populations showed that significantly more centrosome amplification occurred after irradiation of G2-enriched populations compared with G1-enriched or asynchronous cells, consistent with G2 phase centrosome amplification. Irradiated and control populations of G2 cells were then fused to test whether centrosome overduplication is allowed through a diffusible stimulatory signal, or the loss of a duplication-inhibiting signal. Irradiated G2\\/irradiated G2 cell fusions showed significantly higher centrosome amplification levels than irradiated G2\\/unirradiated G2 fusions. Chicken-human cell fusions demonstrated that centrosome amplification was limited to the irradiated partner. Our finding that only the irradiated centrosome can duplicate supports a model where a centrosome-autonomous inhibitory signal is lost upon irradiation of G2 cells. We observed centriole disengagement after irradiation. Although overexpression of dominant-negative securin did not affect IR-induced centrosome amplification, Plk1 inhibition reduced radiation-induced amplification. Together, our data support centriole disengagement as a licensing signal for DNA damage-induced centrosome amplification.

  11. Direct binding of SAS-6 to ZYG-1 recruits SAS-6 to the mother centriole for cartwheel assembly.

    Science.gov (United States)

    Lettman, Molly M; Wong, Yao Liang; Viscardi, Valeria; Niessen, Sherry; Chen, Sheng-Hong; Shiau, Andrew K; Zhou, Huilin; Desai, Arshad; Oegema, Karen

    2013-05-13

    Assembly of SAS-6 dimers to form the centriolar cartwheel requires the ZYG-1/Plk4 kinase. Here, we show that ZYG-1 recruits SAS-6 to the mother centriole independently of its kinase activity; kinase activity is subsequently required for cartwheel assembly. We identify a direct interaction between ZYG-1 and the SAS-6 coiled coil that explains its kinase activity-independent function in SAS-6 recruitment. Perturbing this interaction, or the interaction between an adjacent segment of the SAS-6 coiled coil and SAS-5, prevented SAS-6 recruitment and cartwheel assembly. SAS-6 mutants with alanine substitutions in a previously described ZYG-1 target site or in 37 other residues, either phosphorylated by ZYG-1 in vitro or conserved in closely related nematodes, all supported cartwheel assembly. We propose that ZYG-1 binding to the SAS-6 coiled coil recruits the SAS-6-SAS-5 complex to the mother centriole, where a ZYG-1 kinase activity-dependent step, whose target is unlikely to be SAS-6, triggers cartwheel assembly.

  12. [Specific features of centriole formation and ciliogenesis in ciliary epithelium cells of respiratory tracts in patients with Kartagener syndrome].

    Science.gov (United States)

    Domaratskiĭ, K E; Uvakina, E V; Volkov, I K; Onishchenko, G E

    2005-01-01

    An electron microscopic study of the ciliary epithelium of respiratory tracts was carried out in children (members of the same family) with Kartagener syndrome, which is a variant of ciliary dyskinesia. It was shown that in the case of both mobile cilia and ciliary dyskinesia in man, centrioles are formed during formation of the ciliary basal bodies predominantly de novo, involving deuterosomes. A wide spectrum of pathological changes was described in literature, such as the absence of dynein arms in the axoneme and disorganization of axoneme structure. In addition to these changes in the ciliary system, we found integration of several ciliary axonemes by the same plasma membrane, running of microtubules from the plasma membrane as bundles, different orientation of basal legs, etc.

  13. LINE-1 Mediated Insertion into Poc1a (Protein of Centriole 1 A Causes Growth Insufficiency and Male Infertility in Mice.

    Directory of Open Access Journals (Sweden)

    Krista A Geister

    2015-10-01

    Full Text Available Skeletal dysplasias are a common, genetically heterogeneous cause of short stature that can result from disruptions in many cellular processes. We report the identification of the lesion responsible for skeletal dysplasia and male infertility in the spontaneous, recessive mouse mutant chagun. We determined that Poc1a, encoding protein of the centriole 1a, is disrupted by the insertion of a processed Cenpw cDNA, which is flanked by target site duplications, suggestive of a LINE-1 retrotransposon-mediated event. Mutant fibroblasts have impaired cilia formation and multipolar spindles. Male infertility is caused by defective spermatogenesis early in meiosis and progressive germ cell loss. Spermatogonial stem cell transplantation studies revealed that Poc1a is essential for normal function of both Sertoli cells and germ cells. The proliferative zone of the growth plate is small and disorganized because chondrocytes fail to re-align after cell division and undergo increased apoptosis. Poc1a and several other genes associated with centrosome function can affect the skeleton and lead to skeletal dysplasias and primordial dwarfisms. This mouse mutant reveals how centrosome dysfunction contributes to defects in skeletal growth and male infertility.

  14. Epitope of titin A-band-specific monoclonal antibody Tit1 5 H1.1 is highly conserved in several Fn3 domains of the titin molecule. Centriole staining in human, mouse and zebrafish cells

    Directory of Open Access Journals (Sweden)

    Mikelsaar Aavo-Valdur

    2012-09-01

    Full Text Available Abstract Background Previously we have reported on the development of a new mouse anti-titin monoclonal antibody, named MAb Titl 5 H1.1, using the synthetic peptide N-AVNKYGIGEPLESDSVVAK-C which corresponds to an amino acid sequence in the A-region of the titin molecule as immunogen. In the human skeletal muscles, MAb Titl 5 H1.1 reacts specifically with titin in the A-band of the sarcomere and in different non-muscle cell types with nucleus and cytoplasm, including centrioles. In this report we have studied the evolutionary aspects of the binding of MAb Tit1 5 H1.1 with its target antigen (titin. Results We have specified the epitope area of MAb Tit1 5 H1.1 by subpeptide mapping to the hexapeptide N-AVNKYG-C. According to protein databases this amino acid sequence is located in the COOH-terminus of several different Fn3 domains of the A-region of titin molecule in many organisms, such as human being, mouse, rabbit, zebrafish (Danio rerio, and even in sea squirt (Ciona intestinalis. Our immunohisto- and cytochemical studies with MAb Tit1 5 H1.1 in human, mouse and zebrafish tissues and cell cultures showed a striated staining pattern in muscle cells and also staining of centrioles, cytoplasm and nuclei in non-muscle cells. Conclusions The data confirm that titin can play, in addition to the known roles in striated muscle cells also an important role in non-muscle cells as a centriole associated protein. This phenomenon is highly conserved in the evolution and is related to Fn3 domains of the titin molecule. Using titin A-band-specific monoclonal antibody MAb Tit1 5 H1.1 it was possible to locate titin in the sarcomeres of skeletal muscle cells and in the centrioles, cytoplasm and nuclei of non-muscle cells in phylogenetically so distant organisms as Homo sapiens, Mus musculus and zebrafish (Danio rerio.

  15. Auditory hair cell centrioles undergo confined Brownian motion throughout the developmental migration of the kinocilium.

    OpenAIRE

    Lepelletier, Léa; de Monvel, Jacques Boutet; Buisson, Johanna; Desdouets, Chantal; Petit, Christine

    2013-01-01

    Planar polarization of the forming hair bundle, the mechanosensory antenna of auditory hair cells, depends on the poorly characterized center-to-edge displacement of a primary cilium, the kinocilium, at their apical surface. Taking advantage of the gradient of hair cell differentiation along the cochlea, we reconstituted a map of the kinocilia displacements in the mouse embryonic cochlea. We then developed a cochlear organotypic culture and video-microscopy approach to monitor the movements o...

  16. Two Polo-like kinase 4 binding domains in Asterless perform distinct roles in regulating kinase stability

    OpenAIRE

    Klebba, Joseph E.; Galletta, Brian J.; Nye, Jonathan; Plevock, Karen M.; Buster, Daniel W.; Hollingsworth, Natalie A.; Slep, Kevin C.; Rusan, Nasser M.; Rogers, Gregory C.

    2015-01-01

    Plk4 (Polo-like kinase 4) and its binding partner Asterless (Asl) are essential, conserved centriole assembly factors that induce centriole amplification when overexpressed. Previous studies found that Asl acts as a scaffolding protein; its N terminus binds Plk4’s tandem Polo box cassette (PB1-PB2) and targets Plk4 to centrioles to initiate centriole duplication. However, how Asl overexpression drives centriole amplification is unknown. In this paper, we investigated the Asl–Plk4 interaction ...

  17. Production of Basal Bodies in bulk for dense multicilia formation [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Xiumin Yan

    2016-06-01

    Full Text Available Centriole number is normally under tight control and is directly linked to ciliogenesis. In cells that use centrosomes as mitotic spindle poles, one pre-existing mother centriole is allowed to duplicate only one daughter centriole per cell cycle. In multiciliated cells, however, many centrioles are generated to serve as basal bodies of the cilia. Although deuterosomes were observed more than 40 years ago using electron microscopy and are believed to produce most of the basal bodies in a mother centriole-independent manner, the underlying molecular mechanisms have remained unknown until recently. From these findings arise more questions and a call for clarifications that will require multidisciplinary efforts.

  18. Two Polo-like kinase 4 binding domains in Asterless perform distinct roles in regulating kinase stability

    Science.gov (United States)

    Klebba, Joseph E.; Galletta, Brian J.; Nye, Jonathan; Plevock, Karen M.; Buster, Daniel W.; Hollingsworth, Natalie A.; Slep, Kevin C.

    2015-01-01

    Plk4 (Polo-like kinase 4) and its binding partner Asterless (Asl) are essential, conserved centriole assembly factors that induce centriole amplification when overexpressed. Previous studies found that Asl acts as a scaffolding protein; its N terminus binds Plk4’s tandem Polo box cassette (PB1-PB2) and targets Plk4 to centrioles to initiate centriole duplication. However, how Asl overexpression drives centriole amplification is unknown. In this paper, we investigated the Asl–Plk4 interaction in Drosophila melanogaster cells. Surprisingly, the N-terminal region of Asl is not required for centriole duplication, but a previously unidentified Plk4-binding domain in the C terminus is required. Mechanistic analyses of the different Asl regions revealed that they act uniquely during the cell cycle: the Asl N terminus promotes Plk4 homodimerization and autophosphorylation during interphase, whereas the Asl C terminus stabilizes Plk4 during mitosis. Therefore, Asl affects Plk4 in multiple ways to regulate centriole duplication. Asl not only targets Plk4 to centrioles but also modulates Plk4 stability and activity, explaining the ability of overexpressed Asl to drive centriole amplification. PMID:25688134

  19. Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods

    DEFF Research Database (Denmark)

    Jakobsen, Lis; Vanselow, Katja; Skogs, Marie

    2011-01-01

    Centrosomes in animal cells are dynamic organelles with a proteinaceous matrix of pericentriolar material assembled around a pair of centrioles. They organize the microtubule cytoskeleton and the mitotic spindle apparatus. Mature centrioles are essential for biogenesis of primary cilia that media...

  20. Asymmetric spindle pole formation in CPAP-depleted mitotic cells.

    Science.gov (United States)

    Lee, Miseon; Chang, Jaerak; Chang, Sunghoe; Lee, Kyung S; Rhee, Kunsoo

    2014-02-21

    CPAP is an essential component for centriole formation. Here, we report that CPAP is also critical for symmetric spindle pole formation during mitosis. We observed that pericentriolar material between the mitotic spindle poles were asymmetrically distributed in CPAP-depleted cells even with intact numbers of centrioles. The length of procentrioles was slightly reduced by CPAP depletion, but the length of mother centrioles was not affected. Surprisingly, the young mother centrioles of the CPAP-depleted cells are not fully matured, as evidenced by the absence of distal and subdistal appendage proteins. We propose that the selective absence of centriolar appendages at the young mother centrioles may be responsible for asymmetric spindle pole formation in CPAP-depleted cells. Our results suggest that the neural stem cells with CPAP mutations might form asymmetric spindle poles, which results in premature initiation of differentiation.

  1. Centrosome isolation and analysis by mass spectrometry-based proteomics

    DEFF Research Database (Denmark)

    Jakobsen, Lis; Schrøder, Jacob Morville; Larsen, Katja M;

    2013-01-01

    Centrioles are microtubule-based scaffolds that are essential for the formation of centrosomes, cilia, and flagella with important functions throughout the cell cycle, in physiology and during development. The ability to purify centriole-containing organelles on a large scale, combined with advan...... to isolate centrosomes from human cells and strategies to selectively identify and study the properties of the associated proteins using quantitative mass spectrometry-based proteomics.......Centrioles are microtubule-based scaffolds that are essential for the formation of centrosomes, cilia, and flagella with important functions throughout the cell cycle, in physiology and during development. The ability to purify centriole-containing organelles on a large scale, combined...... with advances in protein identification using mass spectrometry-based proteomics, have revealed multiple centriole-associated proteins that are conserved during evolution in eukaryotes. Despite these advances, the molecular basis for the plethora of processes coordinated by cilia and centrosomes is not fully...

  2. 3D-structured illumination microscopy provides novel insight into architecture of human centrosomes

    Directory of Open Access Journals (Sweden)

    Katharina F. Sonnen

    2012-08-01

    Centrioles are essential for the formation of cilia and flagella. They also form the core of the centrosome, which organizes microtubule arrays important for cell shape, polarity, motility and division. Here, we have used super-resolution 3D-structured illumination microscopy to analyse the spatial relationship of 18 centriole and pericentriolar matrix (PCM components of human centrosomes at different cell cycle stages. During mitosis, PCM proteins formed extended networks with interspersed γ-Tubulin. During interphase, most proteins were arranged at specific distances from the walls of centrioles, resulting in ring staining, often with discernible density masses. Through use of site-specific antibodies, we found the C-terminus of Cep152 to be closer to centrioles than the N-terminus, illustrating the power of 3D-SIM to study protein disposition. Appendage proteins showed rings with multiple density masses, and the number of these masses was strongly reduced during mitosis. At the proximal end of centrioles, Sas-6 formed a dot at the site of daughter centriole assembly, consistent with its role in cartwheel formation. Plk4 and STIL co-localized with Sas-6, but Cep135 was associated mostly with mother centrioles. Remarkably, Plk4 formed a dot on the surface of the mother centriole before Sas-6 staining became detectable, indicating that Plk4 constitutes an early marker for the site of nascent centriole formation. Our study provides novel insights into the architecture of human centrosomes and illustrates the power of super-resolution microscopy in revealing the relative localization of centriole and PCM proteins in unprecedented detail.

  3. Re-examining the role of Drosophila Sas-4 in centrosome assembly using two-colour-3D-SIM FRAP.

    Science.gov (United States)

    Conduit, Paul T; Wainman, Alan; Novak, Zsofia A; Weil, Timothy T; Raff, Jordan W

    2015-11-04

    Centrosomes have many important functions and comprise a 'mother' and 'daughter' centriole surrounded by pericentriolar material (PCM). The mother centriole recruits and organises the PCM and templates the formation of the daughter centriole. It has been reported that several important Drosophila PCM-organising proteins are recruited to centrioles from the cytosol as part of large cytoplasmic 'S-CAP' complexes that contain the centriole protein Sas-4. In a previous paper (Conduit et al., 2014b) we showed that one of these proteins, Cnn, and another key PCM-organising protein, Spd-2, are recruited around the mother centriole before spreading outwards to form a scaffold that supports mitotic PCM assembly; the recruitment of Cnn and Spd-2 is dependent on another S-CAP protein, Asl. We show here, however, that Cnn, Spd-2 and Asl are not recruited to the mother centriole as part of a complex with Sas-4. Thus, PCM recruitment in fly embryos does not appear to require cytosolic S-CAP complexes.

  4. Caenorhabditis elegans centriolar protein SAS-6 forms a spiral that is consistent with imparting a ninefold symmetry.

    Science.gov (United States)

    Hilbert, Manuel; Erat, Michèle C; Hachet, Virginie; Guichard, Paul; Blank, Iris D; Flückiger, Isabelle; Slater, Leanne; Lowe, Edward D; Hatzopoulos, Georgios N; Steinmetz, Michel O; Gönczy, Pierre; Vakonakis, Ioannis

    2013-07-09

    Centrioles are evolutionary conserved organelles that give rise to cilia and flagella as well as centrosomes. Centrioles display a characteristic ninefold symmetry imposed by the spindle assembly abnormal protein 6 (SAS-6) family. SAS-6 from Chlamydomonas reinhardtii and Danio rerio was shown to form ninefold symmetric, ring-shaped oligomers in vitro that were similar to the cartwheels observed in vivo during early steps of centriole assembly in most species. Here, we report crystallographic and EM analyses showing that, instead, Caenorhabotis elegans SAS-6 self-assembles into a spiral arrangement. Remarkably, we find that this spiral arrangement is also consistent with ninefold symmetry, suggesting that two distinct SAS-6 oligomerization architectures can direct the same output symmetry. Sequence analysis suggests that SAS-6 spirals are restricted to specific nematodes. This oligomeric arrangement may provide a structural basis for the presence of a central tube instead of a cartwheel during centriole assembly in these species.

  5. Conserved TCP domain of Sas-4/CPAP is essential for pericentriolar material tethering during centrosome biogenesis.

    Science.gov (United States)

    Zheng, Xiangdong; Gooi, Li Ming; Wason, Arpit; Gabriel, Elke; Mehrjardi, Narges Zare; Yang, Qian; Zhang, Xingrun; Debec, Alain; Basiri, Marcus L; Avidor-Reiss, Tomer; Pozniakovsky, Andrei; Poser, Ina; Saric, Tomo; Hyman, Anthony A; Li, Haitao; Gopalakrishnan, Jay

    2014-01-21

    Pericentriolar material (PCM) recruitment to centrioles forms a key step in centrosome biogenesis. Deregulation of this process leads to centrosome aberrations causing disorders, one of which is autosomal recessive primary microcephaly (MCPH), a neurodevelopmental disorder where brain size is reduced. During PCM recruitment, the conserved centrosomal protein Sas-4/CPAP/MCPH6, known to play a role in centriole formation, acts as a scaffold for cytoplasmic PCM complexes to bind and then tethers them to centrioles to form functional centrosomes. To understand Sas-4's tethering role, we determined the crystal structure of its T complex protein 10 (TCP) domain displaying a solvent-exposed single-layer of β-sheets fold. This unique feature of the TCP domain suggests that it could provide an "extended surface-like" platform to tether the Sas-4-PCM scaffold to a centriole. Functional studies in Drosophila, human cells, and human induced pluripotent stem cell-derived neural progenitor cells were used to test this hypothesis, where point mutations within the 9-10th β-strands (β9-10 mutants including a MCPH-associated mutation) perturbed PCM tethering while allowing Sas-4/CPAP to scaffold cytoplasmic PCM complexes. Specifically, the Sas-4 β9-10 mutants displayed perturbed interactions with Ana2, a centrosome duplication factor, and Bld-10, a centriole microtubule-binding protein, suggesting a role for the β9-10 surface in mediating protein-protein interactions for efficient Sas-4-PCM scaffold centriole tethering. Hence, we provide possible insights into how centrosomal protein defects result in human MCPH and how Sas-4 proteins act as a vehicle to tether PCM complexes to centrioles independent of its well-known role in centriole duplication.

  6. Influence of the bn gene on mitosis of immature red blood cells in turkeys.

    Science.gov (United States)

    Searle, B M; Bloom, S E

    1979-01-01

    The binucleated and large mononucleated red blood cells found in the blood of bnbn mutant turkeys result from nondisjunction of chromosomes in bone marrow polychromatic erythrocytes. The major ultrastructural abnormality that is observed in these mutant cells is malpositioning of the centrioles in the cell. This involves failure to assume a normal pole-to-pole position in the center of the cell, and, often, centrioles are seen close together near the cell membrane. In addition to the abnormalities in centrioles, incomplete spindles are formed with large masses of chromatin unattached to microtubules. Cytokinesis is blocked in many instances because large amounts of chromatin remain at the region of the metaphase plate. None of the aforementioned abnormalities were seen in bone marrow cells from genetically normal turkeys. The results of this study suggest that malorientation of the centrioles has adverse effects on chromosome movement in animal cells. The concept that the spatial orientation of the centrioles is fundamental in achieving normal separation of chromosomes during anaphase movement is supported by our work. Finally, the close ultrastructural parallels with the human blood disease congenital dyserythropoietic anemia type I are discussed.

  7. Abnormal expression of centrosome protein (centrin) in spermatozoa of male human infertility

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    To study the relations between male infertility and centrosome protein (centrin) and the functions of centrin in spermatogenesis, the matured spermatozoa of 10 normal male people and 18 male infertility patients were stained by immunofluorescence labeling antibody against centrin. The results showed that two fluorescence signal dots appeared in the normal male spermatozoa and were located at the base of flagellum. They are proximal centriole and distal centriole. However, in some spermatozoa of the male infertility, centrin protein was located abnormally at the base of flagellum and its staining signals were spread, the normal proximal and distal centrioles were confused and could not be recognized separately. These results suggest that abnormality of centrosome protein may be related to male infertility. This discovery may be used as a marker of abnormal sperm and male infertility.

  8. Estrutura fina do espermatozóide de Mellita quinquiesperforata Leske (Echinodermata do litoral norte do Brasil Fine structure of the spermatozoon of the Mellita quinquiesperforata (Echinodermata of the Northern littoral of Brazil

    Directory of Open Access Journals (Sweden)

    Edilson Matos

    2000-09-01

    Full Text Available The fine structure of the spermatozoon in the Mellita quinquiesperforata Leske, 1778 was studied. Collected from the Amazon region, were described by light and transmission electron microscopy. The spermatozoon consisted of a acrosome complex, nucleus, four to six mitochondria, two centrioles and flagellum. The acrosome was composed of a acrosome complex, the acrosomal vesicle and the subacrosomal space. The nucleus are composed by dense material. The middle piece contains 4-6 mitochondria which are arranged around the centrioles, the 9p+0, whose axoneme has the classic 9p+2 microtubular construction.

  9. Polar expeditions--provisioning the centrosome for mitosis.

    Science.gov (United States)

    Blagden, Sarah P; Glover, David M

    2003-06-01

    It is now clear that both centrioles and their surrounding pericentriolar material (PCM) are capable of self-assembly. Whereas centrioles are normally duplicated during G1-S phase, PCM components may be loaded onto centrosomes in both a microtubule-dependent and -independent manner at all stages of the cell cycle. Centrosomes enlarge dramatically after mitotic entry, when both Aurora A and Polo-like kinases cooperate to recruit additional gamma-tubulin ring complexes and microtubule-associated proteins to assist spindle formation.

  10. Centrosome positioning in non-dividing cells.

    Science.gov (United States)

    Barker, Amy R; McIntosh, Kate V; Dawe, Helen R

    2016-07-01

    Centrioles and centrosomes are found in almost all eukaryotic cells, where they are important for organising the microtubule cytoskeleton in both dividing and non-dividing cells. The spatial location of centrioles and centrosomes is tightly controlled and, in non-dividing cells, plays an important part in cell migration, ciliogenesis and immune cell functions. Here, we examine some of the ways that centrosomes are connected to other organelles and how this impacts on cilium formation, cell migration and immune cell function in metazoan cells.

  11. Transmission electron microscopy of apical cells of Sphacelaria spp. (Sphacelariales, Phaeophyceae)

    NARCIS (Netherlands)

    Prud’homme van Reine, W.F.; Star, W.

    1981-01-01

    The ultrastructure of apical cells of six species of Sphacelaria (S. arctica, S. cirrosa, S. nana, S. racemosa, S. radicans, and S. rigidula) is studied here. In most details such as ultrastructure of chloroplasts, mitochondria, microbodies, nuclei and centrioles all Sphacelaria species studied are

  12. Structure of the C. elegans ZYG-1 cryptic polo box suggests a conserved mechanism for centriolar docking of Plk4 kinases.

    Science.gov (United States)

    Shimanovskaya, Ekaterina; Viscardi, Valeria; Lesigang, Johannes; Lettman, Molly M; Qiao, Renping; Svergun, Dmitri I; Round, Adam; Oegema, Karen; Dong, Gang

    2014-08-05

    Plk4 family kinases control centriole assembly. Plk4s target mother centrioles through an interaction between their cryptic polo box (CPB) and acidic regions in the centriolar receptors SPD-2/Cep192 and/or Asterless/Cep152. Here, we report a crystal structure for the CPB of C. elegans ZYG-1, which forms a Z-shaped dimer containing an intermolecular β sheet with an extended basic surface patch. Biochemical and in vivo analysis revealed that electrostatic interactions dock the ZYG-1 CPB basic patch onto the SPD-2-derived acidic region to promote ZYG-1 targeting and new centriole assembly. Analysis of a different crystal form of the Drosophila Plk4 (DmPlk4) CPB suggests that it also forms a Z-shaped dimer. Comparison of the ZYG-1 and DmPlk4 CPBs revealed structural changes in the ZYG-1 CPB that confer selectivity for binding SPD-2 over Asterless-derived acidic regions. Overall, our findings suggest a conserved mechanism for centriolar docking of Plk4 homologs that initiate daughter centriole assembly.

  13. Helkesimastix marina n. sp. (Cercozoa: Sainouroidea superfam. n.) a gliding zooflagellate of novel ultrastructure and unusual ciliary behaviour.

    Science.gov (United States)

    Cavalier-Smith, Thomas; Lewis, Rhodri; Chao, Ema E; Oates, Brian; Bass, David

    2009-08-01

    Unlike Helkesimastix faecicola and H. major, Helkesimastix marina is marine, ingests bacteria, is probably also a cannibal, and differs in cell cycle ciliary behaviour. Daughter kinetids have mirror symmetry; pre-division cilia beat asymmetrically. We sequenced its 18S rDNA and studied its ultrastructure to clarify its taxonomy. Helkesimastix (Helkesimastigidae fam. n.) differs unexpectedly radically from cercomonads, lacking their complex microtubular ciliary roots, grouping not with them but with Sainouridae within Pansomonadida. Longitudinal cortical microtubules emanate from a dense apical centrosomal plate, where a striated rhizoplast attaches the nucleus, and two very short subparallel centrioles attach by dense fibres. The marginally more posterior centriole, attached to the centrosomal plate by a dense forked fibre, bears the long 9+2 gliding posterior cilium and a microtubular root; the left-side, nucleus-attached, left centriole bears an immotile ciliary stump with abnormal axoneme of nine disorganized mainly singlet microtubules, unlike the sainourid anterior papilla. Both transitional regions have a proximal lattice, the posterior centriole with slender hub. Sainouroidea superfam. n. (Sainouridae; Helkesimastigidae) have homologous cytoskeletal geometry. Dorsal Golgi dictyosome and posterior microbody are attached to the nuclear envelope, which has slender micro-invaginations and probably a cortical lattice. Bacteria are digested posteriorly in association with numerous mitochondria with flat cristae.

  14. Molecular phylogeny of Cercomonadidae and kinetid patterns of Cercomonas and Eocercomonas gen. nov. (Cercomonadida, Cercozoa).

    Science.gov (United States)

    Karpov, Serguei A; Bass, David; Mylnikov, Alexander P; Cavalier-Smith, Thomas

    2006-06-01

    Cercomonads are among the most abundant and widespread zooflagellates in soil and freshwater. We cultured 22 strains and report their complete 18S rRNA sequences and light microscopic morphology. Phylogenetic analysis of 51 Cercomonas rRNA genes shows in each previously identified major clade (A, B) two very robust, highly divergent, multi-species subclades (A1, A2; B1, B2). We studied kinetid ultrastructure of five clade A representatives by serial sections. All have two closely associated left ventral posterior microtubular roots, an anterior dorsal root, a microtubule-nucleating left anterior root, and a cone of microtubules passing to the nucleus. Anterior centrioles (=basal bodies, kinetosomes) of A1 have cartwheels; the posterior centriole does not, suggesting it is older, and implying flagellar transformation similar to other bikonts. Strain C-80 (subclade A2) differs greatly, having a dorsal posterior microtubule band, but lacking the A1-specific fibrillar striated root, nuclear extension to the centrioles, centriolar diaphragm, extrusomes; both mature centrioles lack cartwheels. For clade A2 we establish Eocercomonas gen. n., with type Eocercomonas ramosa sp. n., and for clade B1 Paracercomonas gen. n. (type Paracercomonas marina sp. n.). We establish Paracercomonas ekelundi sp. n. for culture SCCAP C1 and propose a Cercomonas longicauda neotype and Cercomonas (=Neocercomonas) jutlandica comb. n. and Paracercomonas (=Cercomonas) metabolica comb. n.

  15. A novel family of katanin-like 2 protein isoforms (KATNAL2), interacting with nucleotide-binding proteins Nubp1 and Nubp2, are key regulators of different MT-based processes in mammalian cells.

    Science.gov (United States)

    Ververis, Antonis; Christodoulou, Andri; Christoforou, Maria; Kamilari, Christina; Lederer, Carsten W; Santama, Niovi

    2016-01-01

    Katanins are microtubule (MT)-severing AAA proteins with high phylogenetic conservation throughout the eukaryotes. They have been functionally implicated in processes requiring MT remodeling, such as spindle assembly in mitosis and meiosis, assembly/disassembly of flagella and cilia and neuronal morphogenesis. Here, we uncover a novel family of katanin-like 2 proteins (KATNAL2) in mouse, consisting of five alternatively spliced isoforms encoded by the Katnal2 genomic locus. We further demonstrate that in vivo these isoforms are able to interact with themselves, with each other and moreover directly and independently with MRP/MinD-type P-loop NTPases Nubp1 and Nubp2, which are integral components of centrioles, negative regulators of ciliogenesis and implicated in centriole duplication in mammalian cells. We find KATNAL2 localized on interphase MTs, centrioles, mitotic spindle, midbody and the axoneme and basal body of sensory cilia in cultured murine cells. shRNAi of Katnal2 results in inefficient cytokinesis and severe phenotypes of enlarged cells and nuclei, increased numbers of centrioles and the manifestation of aberrant multipolar mitotic spindles, mitotic defects, chromosome bridges, multinuclearity, increased MT acetylation and an altered cell cycle pattern. Silencing or stable overexpression of KATNAL2 isoforms drastically reduces ciliogenesis. In conclusion, KATNAL2s are multitasking enzymes involved in the same cell type in critically important processes affecting cytokinesis, MT dynamics, and ciliogenesis and are also implicated in cell cycle progression.

  16. The Caenorhabditis elegans pericentriolar material components SPD-2 and SPD-5 are monomeric in the cytoplasm before incorporation into the PCM matrix

    DEFF Research Database (Denmark)

    Wueseke, Oliver; Bunkenborg, Jakob; Hein, Marco Y;

    2014-01-01

    Centrosomes are the main microtubule-organizing centers in animal cells. Centrosomes consist of a pair of centrioles surrounded by a matrix of pericentriolar material (PCM) that assembles from cytoplasmic components. In Caenorhabditis elegans embryos, interactions between the coiled-coil proteins...

  17. Centrin 3 is an inhibitor of centrosomal Mps1 and antagonizes centrin 2 function

    Science.gov (United States)

    Sawant, Dwitiya B.; Majumder, Shubhra; Perkins, Jennifer L.; Yang, Ching-Hui; Eyers, Patrick A.; Fisk, Harold A.

    2015-01-01

    Centrins are a family of small, calcium-binding proteins with diverse cellular functions that play an important role in centrosome biology. We previously identified centrin 2 and centrin 3 (Cetn2 and Cetn3) as substrates of the protein kinase Mps1. However, although Mps1 phosphorylation sites control the function of Cetn2 in centriole assembly and promote centriole overproduction, Cetn2 and Cetn3 are not functionally interchangeable, and we show here that Cetn3 is both a biochemical inhibitor of Mps1 catalytic activity and a biological inhibitor of centrosome duplication. In vitro, Cetn3 inhibits Mps1 autophosphorylation at Thr-676, a known site of T-loop autoactivation, and interferes with Mps1-dependent phosphorylation of Cetn2. The cellular overexpression of Cetn3 attenuates the incorporation of Cetn2 into centrioles and centrosome reduplication, whereas depletion of Cetn3 generates extra centrioles. Finally, overexpression of Cetn3 reduces Mps1 Thr-676 phosphorylation at centrosomes, and mimicking Mps1-dependent phosphorylation of Cetn2 bypasses the inhibitory effect of Cetn3, suggesting that the biological effects of Cetn3 are due to the inhibition of Mps1 function at centrosomes. PMID:26354417

  18. The excavate protozoan phyla Metamonada Grassé emend. (Anaeromonadea, Parabasalia, Carpediemonas, Eopharyngia) and Loukozoa emend. (Jakobea, Malawimonas): their evolutionary affinities and new higher taxa.

    Science.gov (United States)

    Cavalier-Smith, T

    2003-11-01

    It is argued here that the anaerobic protozoan zooflagellate Parabasalia, Carpediemonas and Eopharyngia (diplomonads, enteromonads, retortamonads) constitute a holophyletic group, for which the existing name Trichozoa is adopted as a new subphylum. Ancestrally, Trichozoa probably had hydrogenosomes, stacked Golgi dictyosomes, three anterior centrioles and one posterior centriole: the typical tetrakont pattern. It is also argued that the closest relatives of Trichozoa are Anaeromonada (Trimastix, oxymonads), and the two groups are classified as subphyla of a revised phylum Metamonada. Returning Parabasalia and Anaeromonadea to Metamonada, as in Grassé's original classification, simplifies classification of the kingdom Protozoa by reducing the number of phyla within infrakingdom Excavata from five to four. Percolozoa (Heterolobosea plus Percolatea classis nov.) and Metamonada are probably both ancestrally quadriciliate with a kinetid of four centrioles attached to the nucleus; the few biciliates among them are probably secondarily derived. Metamonada ancestrally probably had two divergent centriole pairs, whereas, in Percolozoa, all four centrioles are parallel. It is suggested that Discicristata (Percolozoa, Euglenozoa) are holophyletic, ancestrally with two parallel centrioles. In the phylum Loukozoa, Malawimonadea classis nov. is established for Malawimonas (with a new family and order also) and Diphyllatea classis nov., for Diphylleida (Diphylleia, Collodictyon), is transferred back to Apusozoa. A new class, order and family are established for the anaerobic, biciliate, tricentriolar Carpediemonas, transferring it from Loukozoa to Trichozoa because of its triply flanged cilia; like Retortamonas, it may be secondarily biciliate--its unique combination of putative hydrogenosomes and flanged cilia agree with molecular evidence that Carpediemonas is sister to Eopharyngia, diverging before their ancestor lost hydrogenosomes and acquired a cytopharynx. Removal of

  19. A microtubule organizing centre (MTOC) is responsible for the production of the sperm flagellum in Matsucoccus feytaudi (Hemiptera: Coccoidea).

    Science.gov (United States)

    Paoli, Francesco; Roversi, Pio Federico; Gottardo, Marco; Callaini, Giuliano; Mercati, David; Dallai, Romano

    2015-05-01

    A microtubule organizing centre (MTOC) has been described in the spermatid of the hemipteran Matsucoccus feytaudi (Coccoidea). This structure, revealed as a fluorescent ring by treatment with γ-tubulin antibody, gives rise to a bundle of microtubules which surrounds the elongated cylindrical nucleus. This microtubule bundle has been considered an atypical sperm flagellum provided with sperm motility. A comparison of the M. feytaudi MTOC with the material associated with the centriole of Drosophila melanogaster spermatids confirms the great similarity between the two structures, both involved in the nucleation of microtubules. Like the D. melanogaster material associated with the centriole, the M. feytaudi MTOC is a transient structure which disappears or degenerates at the end of spermiogenesis and is no longer visible in the mature sperm.

  20. Centrosome splitting during nuclear elongation in the Drosophila embryo.

    Science.gov (United States)

    Callaini, G; Anselmi, F

    1988-10-01

    In the early Drosophila embryo, nuclear elongation occurs during cellularization of the syncytial blastoderm. This process is closely related to the presence of microtubular bundles forming a basket-like structure surrounding the nuclei. In immunofluorescence observations with antibodies against alpha-tubulin, the microtubules appear to radiate from two bright foci widely separated from each other. We used electron microscopy to show that these foci are true centrosomes constituted by daughter and parent centrioles orthogonally disposed and surrounded by pericentriolar electrondense material. The centrosomes may be observed in the apical region of the blastoderm cells from the beginning of cellularization until the reestablishment of the first postblastodermic mitosis, when they organize the spindle poles. Until this time the dimensions of the procentrioles remain unchanged. The significance of these results is discussed in relation to the known behavior of centrioles in the cell cycle.

  1. Error-prone mammalian female meiosis from silencing the spindle assembly checkpoint without normal interkinetochore tension

    OpenAIRE

    Kolano, Agnieszka; Brunet, Stéphane; Silk, Alain D.; Cleveland, Don W.; Verlhac, Marie-Hélène

    2012-01-01

    It is well established that chromosome segregation in female meiosis I (MI) is error-prone. The acentrosomal meiotic spindle poles do not have centrioles and are not anchored to the cortex via astral microtubules. By Cre recombinase-mediated removal in oocytes of the microtubule binding site of nuclear mitotic apparatus protein (NuMA), which is implicated in anchoring microtubules at poles, we determine that without functional NuMA, microtubules lose connection to MI spindle poles, resulting ...

  2. Basal body structure and composition in the apicomplexans Toxoplasma and Plasmodium.

    Science.gov (United States)

    Francia, Maria E; Dubremetz, Jean-Francois; Morrissette, Naomi S

    2015-01-01

    The phylum Apicomplexa encompasses numerous important human and animal disease-causing parasites, including the Plasmodium species, and Toxoplasma gondii, causative agents of malaria and toxoplasmosis, respectively. Apicomplexans proliferate by asexual replication and can also undergo sexual recombination. Most life cycle stages of the parasite lack flagella; these structures only appear on male gametes. Although male gametes (microgametes) assemble a typical 9+2 axoneme, the structure of the templating basal body is poorly defined. Moreover, the relationship between asexual stage centrioles and microgamete basal bodies remains unclear. While asexual stages of Plasmodium lack defined centriole structures, the asexual stages of Toxoplasma and closely related coccidian apicomplexans contain centrioles that consist of nine singlet microtubules and a central tubule. There are relatively few ultra-structural images of Toxoplasma microgametes, which only develop in cat intestinal epithelium. Only a subset of these include sections through the basal body: to date, none have unambiguously captured organization of the basal body structure. Moreover, it is unclear whether this basal body is derived from pre-existing asexual stage centrioles or is synthesized de novo. Basal bodies in Plasmodium microgametes are thought to be synthesized de novo, and their assembly remains ill-defined. Apicomplexan genomes harbor genes encoding δ- and ε-tubulin homologs, potentially enabling these parasites to assemble a typical triplet basal body structure. Moreover, the UNIMOD components (SAS6, SAS4/CPAP, and BLD10/CEP135) are conserved in these organisms. However, other widely conserved basal body and flagellar biogenesis elements are missing from apicomplexan genomes. These differences may indicate variations in flagellar biogenesis pathways and in basal body arrangement within the phylum. As apicomplexan basal bodies are distinct from their metazoan counterparts, it may be possible to

  3. Centlein mediates an interaction between C-Nap1 and Cep68 to maintain centrosome cohesion.

    Science.gov (United States)

    Fang, Guoliang; Zhang, Dachuan; Yin, Huilong; Zheng, Lu; Bi, Xiaolin; Yuan, Li

    2014-04-15

    Centrosome cohesion, mostly regarded as a proteinaceous linker between parental centrioles, ensures that the interphase centrosome(s) function as a single microtubule-organizing center. Impairment of centrosome cohesion leads to the splitting of centrosomes. Although the list of cohesion proteins is growing, the precise composition and regulation of centrosome cohesion are still largely unknown. In this study, we show that the centriolar protein centlein (also known as CNTLN) localizes to the proximal ends of the centrioles and directly interacts with both C-Nap1 (also known as Cep250) and Cep68. Moreover, centlein complexes with C-Nap1 and Cep68 at the proximal ends of centrioles during interphase and functions as a molecular link between C-Nap1 and Cep68. Depletion of centlein impairs recruitment of Cep68 to the centrosomes and, in turn, results in centrosome splitting. Both centlein and Cep68 are novel Nek2A substrates. Collectively, our data demonstrate that centrosome cohesion is maintained by the newly identified complex of C-Nap1-centlein-Cep68.

  4. Cellular Mechanisms of Ciliary Length Control

    Directory of Open Access Journals (Sweden)

    Jacob Keeling

    2016-01-01

    Full Text Available Cilia and flagella are evolutionarily conserved, membrane-bound, microtubule-based organelles on the surface of most eukaryotic cells. They play important roles in coordinating a variety of signaling pathways during growth, development, cell mobility, and tissue homeostasis. Defects in ciliary structure or function are associated with multiple human disorders called ciliopathies. These diseases affect diverse tissues, including, but not limited to the eyes, kidneys, brain, and lungs. Many processes must be coordinated simultaneously in order to initiate ciliogenesis. These include cell cycle, vesicular trafficking, and axonemal extension. Centrioles play a central role in both cell cycle progression and ciliogenesis, making the transition between basal bodies and mitotic spindle organizers integral to both processes. The maturation of centrioles involves a functional shift from cell division toward cilium nucleation which takes place concurrently with its migration and fusion to the plasma membrane. Several proteinaceous structures of the distal appendages in mother centrioles are required for this docking process. Ciliary assembly and maintenance requires a precise balance between two indispensable processes; so called assembly and disassembly. The interplay between them determines the length of the resulting cilia. These processes require a highly conserved transport system to provide the necessary substances at the tips of the cilia and to recycle ciliary turnover products to the base using a based microtubule intraflagellar transport (IFT system. In this review; we discuss the stages of ciliogenesis as well as mechanisms controlling the lengths of assembled cilia.

  5. Ultrastructure of Allapsa vibrans and the body plan of Glissomonadida (Cercozoa).

    Science.gov (United States)

    Cavalier-Smith, Thomas; Oates, Brian

    2012-03-01

    Biciliate, gliding zooflagellate Cercozoa are globally the most abundant and genetically diverse predators in soil (glissomonads and cercomonads). We present the first detailed ultrastructural study of a phylogenetically well-characterized glissomonad, Allapsa vibrans. There are two ventral posterior centriolar roots as in Cercomonadida, but fewer other microtubular roots. Allapsa's centriolar roots and rhizoplast basically resemble those of the less well studied glissomonads Bodomorpha and Neoheteromita. The posterior centriole of Allapsa attaches laterally to the base of the anterior centriole and to the nucleus by striated fibrillar connectors and nests in a shallow cup-like ventrolateral depression; two broad fans of single microtubules line the cup's posterior and inner side. The anterior centriole has a dorsal two-microtubule root and probably also a singlet root. Its medium-length ciliary transition zones have a proximal hub-lattice and a prominent dense distal transverse plate/collar complex. Golgi bodies are anterior/paranuclear; isodiametric extrusomes are anterior mid-ventral. Tubulicristate mitochondria attach to the nucleus, as do prominent microbodies. We characterize the body plan of glissomonads, comparing it with other Sarcomonadea: their sister group (Pansomonadida) and the phylogenetically more distant Cercomonadida. We discuss glissomonad radiation into families Sandonidae, Proleptomonadidae, Dujardinidae, Bodomorphidae and Allapsidae, establishing Aurigamonadidae fam. n. for the amoeboflagellate pansomonad Aurigamonas.

  6. Sperm structure of Limoniidae and their phylogenetic relationship with Tipulidae (Diptera, Nematocera).

    Science.gov (United States)

    Dallai, Romano; Lombardo, Bianca Maria; Mercati, David; Vanin, Stefano; Lupetti, Pietro

    2008-01-01

    The sperm ultrastructure of a few species of Limoniidae (Limonia nigropunctata; L. nubeculosa; Chionea n. sp.; C. alpina; C. lutescens) was studied. The two species of Limonia have a monolayered acrosome with crystallized material, a three-lobed nucleus in cross section, a ring of centriole adjunct material and a flagellum which consists of a 9+9+1 axoneme and a single mitochondrial derivative. The central axonemal tubule is provided with 15 protofilaments in its tubular wall, while the accessory tubules have 13 protofilaments and are flanked by the electron-dense intertubular material. The three species of Chionea share a monolayered acrosome, a nucleus with two longitudinal grooves, a centriole adjunct material which surrounds the centriole and the initial part of the axoneme. The axoneme is of conventional type, with 9+9+2 microtubular pattern, with accessory tubules provided with 13 protofilaments and intertubular material. However, in C. lutescens the accessory tubules start with 15 protofilaments and transform into a tubule with 13 protofilaments. These data are discussed in the light of the phylogenetic relationship between Limoniidae and Tipulidae. For this purpose, the sperm ultrastructure of Nephrotoma appendiculata was also considered comparatively.

  7. Reinvestigation of the ultrastructure of spermiogenesis and the spermatozoon of Hymenolepis nana (Cestoda, Cyclophyllidea), parasite of the small intestine of Rattus rattus.

    Science.gov (United States)

    Bâ, C T; Marchand, B

    1992-09-01

    Spermiogenesis in Hymenolepsis nana begins with the formation of a differentiation zone. This is limited at the front by arched membranes, is surrounded by cortical microtubules associated with 12 crested-like bodies, and contains a single centriole made up of doublets. The distal centriole gives rise to a flagellum that grows at the same pace as the cortical microtubules. Migration of the nucleus takes place after the formation of the flagellum. It is followed by the separation of the old spermatid from the residual cytoplasm. The mature H. nana spermatozoon is filiform and lacks mitochondria. The axoneme, of the 9 + "1" pattern of the Platyhelminthes, does not reach the extremities of the spermatozoon. The nucleus is electron dense and is in close contact with the axoneme around which it coils in a spiral making an angle of 10 degrees to 15 degrees with the spermatozoon axis. The cortical microtubules follow a 10 degrees to 15 degrees helicoidal path along almost their whole length, except at their posterior extremity, where they are parallel to the spermatozoon axis. H. nana is distinguished by the early development of 12 crested-like bodies of different lengths and by the existence of a single centriole in the differentiation zone. Such a high number of crested-like bodies had never previously been reported in a cestode.

  8. Spermatic characteristics and sperm evolution on the subfamily Stevardiinae (Ostariophysi: Characiformes: Characidae

    Directory of Open Access Journals (Sweden)

    Clarianna Martins Baicere-Silva

    Full Text Available The monophyly and phylogenetic relationships among the members of Clade A characids (sensu Malabarba & Weitzman, later redefined and named as the Stevardiinae (sensu Mirande, have been primarily supported by traditional morphological and molecular data. Herein were examined, described and compared spermiogenesis and sperm ultrastructure of 12 species of the genera Boehlkea, Bryconacidnus, Bryconamericus, Creagrutus, Cyanocharax, Hemibrycon, Knodus, Odontostoechus, Piabina, and Rhinobrycon in order to evaluate possible phylogenetic signals and their potential use in recovering relationships of the Stevardiinae. All examined species demonstrated a nuclear rotation equal or less than 95º resulting in a lateral position of the double nuclear fossa and flagellum. In all species, sperm nuclei are slightly elongate toward the flagellum, the proximal centriole is partially inside the nuclear fossa and lies anterior and oblique to the distal centriole, and the midpiece is short and strongly asymmetric. All species analyzed herein and other species previously examined for these systems in the Stevardiinae share homologous sperm characteristics as evidenced by spermiogenesis, further supporting the monophyly of this clade. Spermatozoa of the Stevardiinae further show three morphotypes (M1, M2, M3 of arrangement of centrioles, flagellum, nucleus and midpiece, hypothesized as successively derived in a series of transformation from the most basal morphotype (M1.

  9. Failed cytokinesis of neural progenitors in citron kinase-deficient rats leads to multiciliated neurons.

    Science.gov (United States)

    Anastas, Sara B; Mueller, Dorit; Semple-Rowland, Susan L; Breunig, Joshua J; Sarkisian, Matthew R

    2011-02-01

    Most, if not all, cortical neurons possess a single primary cilium; however, little is known about the mechanisms that control neuronal ciliogenesis. The Citron kinase-deficient (Citron-K(fh/fh)) rat, a model in which failed cytokinesis during development produces cortical neurons containing multiple cellular organelles, provides a unique system in which to examine the relationship between centriole inheritance and neuronal ciliogenesis. In this study, we analyzed the cerebral cortex of these animals using immunohistochemistry, serial confocal, and electron microscopy to determine if the multinucleated neurons present in the cortex of these animals also possess multiple centrioles and cilia. We found that neurons containing multiple nuclei possessed multiple centrioles and cilia whose lengths varied across cortical regions. Despite the presence of multiple cilia, we found that perinatal expression of adenylyl cyclase III, a cilia-specific marker, and somatostatin receptor 3, a receptor enriched in cilia, were preserved in developing Citron-K(fh/fh) brain. Together, these results show that multinucleated neurons arising from defective cytokinesis can extend multiple cilia.

  10. CENP-W plays a role in maintaining bipolar spindle structure.

    Directory of Open Access Journals (Sweden)

    Agnieszka Kaczmarczyk

    Full Text Available The CENP-W/T complex was previously reported to be required for mitosis. HeLa cells depleted of CENP-W displayed profound mitotic defects, with mitotic timing delay, disorganized prometaphases and multipolar spindles as major phenotypic consequences. In this study, we examined the process of multipolar spindle formation induced by CENP-W depletion. Depletion of CENP-W in HeLa cells labeled with histone H2B and tubulin fluorescent proteins induced rapid fragmentation of originally bipolar spindles in a high proportion of cells. CENP-W depletion was associated with depletion of Hec1 at kinetochores. The possibility of promiscuous centrosomal duplication was ruled out by immunofluorescent examination of centrioles. However, centrioles were frequently observed to be abnormally split. In addition, a large proportion of the supernumerary poles lacked centrioles, but were positively stained with different centrosomal markers. These observations suggested that perturbation in spindle force distribution caused by defective kinetochores could contribute to a mechanical mechanism for spindle pole disruption. 'Spindle free' nocodazole arrested cells did not exhibit pole fragmentation after CENP-W depletion, showing that pole fragmentation is microtubule dependent. Inhibition of centrosome separation by monastrol reduced the incidence of spindle pole fragmentation, indicating that Eg5 plays a role in spindle pole disruption. Surprisingly, CENP-W depletion rescued the monopolar spindle phenotype of monastrol treatment, with an increased frequency of bipolar spindles observed after CENP-W RNAi. We overexpressed the microtubule cross-linking protein TPX2 to create spindle poles stabilized by the microtubule cross-linking activity of TPX2. Spindle pole fragmentation was suppressed in a TPX2-dependent fashion. We propose that CENP-W, by influencing proper kinetochore assembly, particularly microtubule docking sites, can confer spindle pole resistance to traction

  11. Sperm-cell ultrastructure of North American sturgeons. IV. The pallid sturgeon (Scaphirhynchus albus Forbes and Richardson, 1905)

    Science.gov (United States)

    DiLauro, M.N.; Walsh, R.A.; Peiffer, M.; Bennett, R.M.

    2001-01-01

    Sperm-cell morphology and ultrastructure in the pallid sturgeon (Scaphirhynchus albus) were examined using transmission and scanning electron microscopy. Metrics and structure were compared with similar metrics obtained from other published descriptions of sturgeon sperm cells. General morphology was found to be similar to that of sperm cells of the white (Acipenser transmontanus), lake (A. fulvescens), stellate (A. stellatus), Chinese (A. sinensis), Russian (A. gueldenstaedti colchicus), and shortnose (A. brevirostrum) sturgeons, which all shared a gradual tapering of the nuclear diameter from posterior to anterior, unlike that of the Atlantic sturgeon (A. oxyrhynchus). The sperm cell of the pallid sturgeon was similar in size to that of the Atlantic sturgeon, being only slightly larger. The sperm cell of the pallid sturgeon differed from those of other sturgeons chiefly in the acrosomal region, where the posterolateral projections (PLP) have the shape of an acute triangle and are arranged in a spiral about the longitudinal axis of the cell. The PLP were longer than those of other sturgeons, being twice the length of those of the Atlantic sturgeon and 58% longer than those of the lake sturgeon. Also, in cross section the acrosome had the shape of a hollow cone rather than the cap of an oak tree acorn, as was found in ultrastructural studies of other sturgeons. In addition, we were able to confirm that the structural arrangement of the distal centriole of the midpiece is identical with that of the proximal centriole: nine sets of microtubular triplets around the periphery of the centriole. This information is of potential use to fishery biologists, forensic biologists, zoologists, reproductive physiologists, taxonomists, evolutionary biologists, and aquaculturists.

  12. Spermatogenesis and sperm ultrastructure in the polychaete genus Ophryotrocha (Dorvilleidae)

    Science.gov (United States)

    Pfannenstiel, Hans-Dieter; Grünig, Charlotte

    1990-06-01

    The details of spermatogenesis and spermiogenesis are described for Ophryotrocha puerilis. The ultrastructure of mature sperm is shown for O. puerilis, O. hartmanni, O. gracilis, O. diadema, O. labronica, and O. notoglandulata. Clusters of sixteen cells each are proliferated by two stem cells in each setigerous segment of O. puerilis representing the very early stages of both oogenesis and spermatogenesis. In each spermatocyte-I cluster, the cells are interconnected by cytoplasmic bridges. Early, clusters are enveloped by peritoneal sheath cells. These transient gonad walls break down prior to meiosis. The meiotic processes may start in the clusters with the cells still interconnected, or during breakdown of the original cluster, giving rise to smaller subclusters of both spermatocytes I and spermatocytes II with various numbers of cells. Finally, spermatid tetrads are present. As spermiogenesis progresses, the tetrads disintegrate. Golgi vesicles in both spermatocytes and spermatids contain electron-dense material, presumably preacrosomal. The acrosome is formed by such vesicles. In the six species studied here, the acrosomes appear to be of a similar overall structure but are of different shape. Centrioles are usually located beneath the acrosome. The distal centriole forms the basal body of a flagellum-like cytoplasmic process. The microtubules of these flagellar equivalents do not show a normal ciliar arrangement. The flagellar equivalent appears to be non-motile. In O. hartmanni and in O. notoglandulata, a flagellar equivalent is missing. Microtubules originating from the proximal end of the distal centriole stretch to the nuclear envelope. This feature appears to be especially conspicuous in O. puerilis and in O. labronica. In O. labronica and in O. notoglandulata, bundles of microtubules paralleling the cell perimeter appear to stabilise the sperm. Various numbers of mitochondria are either randomly distributed around the nucleus or accumulate on one side

  13. A comparative overview of the sperm centriolar complex in mammals and birds: Variations on a theme.

    Science.gov (United States)

    Soley, John T

    2016-06-01

    This paper presents an overview of the structure, function and anomalies of the sperm centriolar complex (CC) on a comparative basis between mammals and birds. The information is based on selected references from the literature supplemented by original observations on spermiogenesis and sperm structure in disparate mammalian (cheetah and cane rat) and avian (ostrich, rhea and emu) species. Whereas the basic structure of the CC (a diplosome surrounded by pericentriolar material) is similar in Aves and Mammalia, certain differences are apparent. Centriole reduction does not generally occur in birds, but when present as in oscines, involves the loss of the proximal centriole. In ratites, the distal centriole forms the core of the entire midpiece and incorporates the outer dense fibres in addition to initiating axoneme formation. The elements of the connecting piece are not segmented in birds and less complex in basic design than in mammals. The functions of the various components of the CC appear to be similar in birds and mammals. Despite obvious differences in sperm head shape, the centrosomal anomalies afflicting both vertebrate groups demonstrate structural uniformity across species and display a similar range of defects. Most abnormalities result from defective migration and alignment of the CC relative to the nucleus. The most severe manifestation is that of acephalic sperm, while angled tail attachment, abaxial and multiflagellate sperm reflect additional defective forms. The stump-tail defect is not observed in birds. A comparison of defective sperm formation and centrosomal dysfunction at the molecular level is currently difficult owing to the paucity of relevant information on avian sperm.

  14. CENP-W plays a role in maintaining bipolar spindle structure.

    Science.gov (United States)

    Kaczmarczyk, Agnieszka; Sullivan, Kevin F

    2014-01-01

    The CENP-W/T complex was previously reported to be required for mitosis. HeLa cells depleted of CENP-W displayed profound mitotic defects, with mitotic timing delay, disorganized prometaphases and multipolar spindles as major phenotypic consequences. In this study, we examined the process of multipolar spindle formation induced by CENP-W depletion. Depletion of CENP-W in HeLa cells labeled with histone H2B and tubulin fluorescent proteins induced rapid fragmentation of originally bipolar spindles in a high proportion of cells. CENP-W depletion was associated with depletion of Hec1 at kinetochores. The possibility of promiscuous centrosomal duplication was ruled out by immunofluorescent examination of centrioles. However, centrioles were frequently observed to be abnormally split. In addition, a large proportion of the supernumerary poles lacked centrioles, but were positively stained with different centrosomal markers. These observations suggested that perturbation in spindle force distribution caused by defective kinetochores could contribute to a mechanical mechanism for spindle pole disruption. 'Spindle free' nocodazole arrested cells did not exhibit pole fragmentation after CENP-W depletion, showing that pole fragmentation is microtubule dependent. Inhibition of centrosome separation by monastrol reduced the incidence of spindle pole fragmentation, indicating that Eg5 plays a role in spindle pole disruption. Surprisingly, CENP-W depletion rescued the monopolar spindle phenotype of monastrol treatment, with an increased frequency of bipolar spindles observed after CENP-W RNAi. We overexpressed the microtubule cross-linking protein TPX2 to create spindle poles stabilized by the microtubule cross-linking activity of TPX2. Spindle pole fragmentation was suppressed in a TPX2-dependent fashion. We propose that CENP-W, by influencing proper kinetochore assembly, particularly microtubule docking sites, can confer spindle pole resistance to traction forces exerted by

  15. Ultrastructure of spermatozoa of tench Tinca tinca observed by means of scanning and transmission electron microscopy.

    Science.gov (United States)

    Psenicka, M; Rodina, M; Nebesarova, J; Linhart, O

    2006-09-15

    Structure of tench (Tinca tinca L.) spermatozoa was investigated by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Spermatozoa of 26.1+/-3.8 microm total length possessed typical primitive simple structure, called "aqua sperm", without acrosomal head structures. It was probably the smallest spermatozoon described among cyprinid fishes. Heads were mostly composed of dense and slightly granular material, which appeared to be fairly homogeneous except for the occasional appearance of vacuoles. The midpiece remained separated from the flagellum by the cytoplasmic channel; it was cylindric/cone-shaped, 0.86+/-0.27 microm in length and 1.17+/-0.24 microm in width at proximal part. The proximal centriole was located in the "implantation fossa". The distal centriole appeared almost tangential to the nucleus and it functioned as a basal body for the flagellum. It had an orientation of 140 degrees with respect to the distal centriole. The sperm flagellum with 25.45+/-2.47 microm of total length had no any fin. The diameter of the flagellum perpendicular to the plane of the doublet of central microtubules was 173.67+/-20.45 nm and horizontal plane of the central microtubules was 200.71+/-20.45 nm. Peripheral doublets and the central doublet of microtubules measured 23.39+/-3.18 and 35.88+/-4.44 nm in width, respectively. The diameter of a microtubule was only 9.14+/-2.97 nm. A vesicle was attached to the most basal region of the flagellum and located just under plasma membrane of the flagellum.

  16. Organelle-cytoskeleton relationships in fibroblasts: mitochondria, Golgi apparatus, and endoplasmic reticulum in phases of movement and growth

    DEFF Research Database (Denmark)

    Couchman, J R; Rees, D A

    1982-01-01

    by the actions of both colchicine and dihydrocytochalasin B showing that orientation and translocation depend on a co-ordinate interaction of microtubules and microfilamentous meshwork around the centrioles as origin. The Golgi apparatus and endoplasmic reticulum do not rearrange dramatically during...... the phenotypic conversion, although the locomotory cells are characterized by a zone close to the leading lamella, which is completely free from these organelles. The form and distribution of the Golgi apparatus, but not the endoplasmic reticulum, was sensitive to microtubule disruption but was also shown...

  17. Gradual meiosis-to-mitosis transition in the early mouse embryo.

    Science.gov (United States)

    Courtois, Aurélien; Hiiragi, Takashi

    2012-01-01

    The transition from meiosis to mitosis is a fundamental process to guarantee the successful development of the embryo. In the mouse, the transition includes extensive reorganisation of the division machinery, centrosome establishment and changes in spindle proprieties and characteristic. Recent findings indicate that this transition is gradual and lasts until the late blastocyst stage. In-depth knowledge of the mechanisms underlying the transition would provide new insight into de novo centrosome formation and regulation of spindle size and proprieties. Here, we review recent advances in the understanding of acentrosomal spindle formation, centriole establishment and the meiosis-to-mitosis transition in the mouse pre-implantation embryo.

  18. The primary cilium as a multiple cellular signaling scaffold in development and disease

    Directory of Open Access Journals (Sweden)

    Hyuk Wan Ko*

    2012-08-01

    Full Text Available Primary cilia, single hair-like appendage on the surface of themost mammalian cells, were once considered to be vestigialcellular organelles for a past century because of their tinystructure and unknown function. Although they lack ancestralmotility function of cilia or flagella, they share common groundwith multiciliated motile cilia and flagella on internal structuresuch as microtubule based nine outer doublets nucleated from thebase of mother centrioles called basal body. Making cilia,ciliogenesis, in cells depends on the cell cycle stage due to reuseof centrioles for cell division forming mitotic spindle pole (Mphase and assembling cilia from basal body (starting G1 phaseand maintaining most of interphase. Ciliary assembly requiredtwo conflicting processes such as assembly and disassembly andbalance between these two processes determines the length ofcilia. Both process required highly conserved transport system tosupply needed substance to grow tip of cilia and bring ciliaryturnover product back to the base of cilia using motor protein,kinesin and dynein, and transport protein complex, IFT particles.Disruption of ciliary structure or function causes multiple humandisorder called ciliopathies affecting disease of diverse ciliatedtissues ranging from eye, kidney, respiratory tract and brain.Recent explosion of research on the primary cilia and theirinvolvement on animal development and disease attracts scientificinterest on how extensively the function of cilia related to specificcell physiology and signaling pathway. In this review, I introducegeneral features of primary cilia and recent progress inunderstanding of the ciliary length control and signaling pathwaystransduced through primary cilia in vertebrates.

  19. Morphology and phylogeny of Sainouron acronematica sp. n. and the ultrastructural unity of Cercozoa.

    Science.gov (United States)

    Cavalier-Smith, Thomas; Lewis, Rhodri; Chao, Ema E; Oates, Brian; Bass, David

    2008-10-01

    Sainouron are soil zooflagellates of obscure taxonomy. We studied the ultrastructure of S. acronematica sp. n. and sequenced its extremely divergent 18S rDNA and that of Cholamonas cyrtodiopsidis (here grouped as new family Sainouridae) to clarify their phylogeny. Ultrastructurally similar, they weakly group together, deeply within Monadofilosa. Sainouron has three cytoplasmic microtubules; all organelles specifically link to them or the nucleus. Mature centrioles have fibrous rhizoplasts. The posterior centriole bearing the motile cilium (with cortical filaments) has a transitional hub-lattice; a dense spiral fibre links its thicker rhizoplast and triplets; its ciliary root has two microtubules: mt1, underlying the plasma membrane, initiates at the spiral fibre; mt2, laterally attached to mt1 and nucleus, initiates in the amorphous centrosomal region. The anterior younger cilium, an immotile stub with submembrane skeleton as in Cholamonas, lacks axoneme, microtubular root, rhizoplasts and spiral fibre, but becomes the posterior one every cell cycle. The nuclear envelope donates coated vesicles directly to the Golgi, which makes kinetocyst-type extrusomes, concentrated at the cell anterior for extrusion into phagosomes. Ciliary transition region proximal hub-lattices (postulated to contain centrin) and distal nonagonal fibres are cercozoan synapomorphies, found with slight structural variation in all flagellate Cercozoa, but not in outgroups.

  20. Paracercomonas kinetid ultrastructure, origins of the body plan of Cercomonadida, and cytoskeleton evolution in Cercozoa.

    Science.gov (United States)

    Cavalier-Smith, Thomas; Karpov, Sergey A

    2012-01-01

    Serial section reconstruction shows that kinetid ultrastructure in two genetically divergent Paracercomonas (P. virgaria, P. metabolica) is basically similar, differing somewhat from clade A cercomonads. Paracercomonas (Paracercomonadidae fam. n.) have a posterior root (dp1) attached to the posterior centriole, unlike Cercomonadidae (here revised to include only Eocercomonas, Cercomonas, Filomonas gen. n., and Neocercomonas), which belong in clade A (new suborder Cercomonadina) with Cavernomonas (Cavernomonadidae fam. n.). Whether dp1 is serially homologous to anterior root da is unclear. The common ancestor of Cercomonadida probably had five microtubular roots, two fibrillar microtubule-nucleating centres generating microtubular cones, and striated connectors between obtusely angled centrioles. Our new data leave the question of holophyly versus polyphyly of Cercomonadida unresolved, but clarify cercozoan root diversity and homologies. Ventral root vp1 is throughout Cercozoa; vp2 might be restricted to the new superclass Ventrifilosa plus Sarcomonadea. Though cercozoan microtubular arrangements differ substantially from others within the kingdom Chromista, the microtubular root numbering system used for other chromists and Plantae is applicable to them; in doing this we found that the single anterior root of excavates (probably ancestral to Chromista, Plantae and unikonts) and Euglenozoa corresponds with R3 (not R4 as previously thought) of corticate eukaryotes (Chromista plus Plantae).

  1. Spermiogenesis and spermatozoon ultrastructure of Diplodiscus subclavatus (Pallas, 1760) (Paramphistomoidea, Diplodiscidae), an intestinal fluke of the pool frog Rana lessonae (Amphibia, Anura).

    Science.gov (United States)

    Bakhoum, A J S; Torres, J; Shimalov, V V; Bâ, C T; Miquel, J

    2011-01-01

    Spermiogenesis in Diplodiscus subclavatus begins with the formation of the zone of differentiation presenting two centrioles associated with striated roots and an intercentriolar body. The latter presents seven electron-dense layers with a fine central plate and three plates on both sides. The external pair of these electron-dense layers is formed by a granular row. Each centriole develops into a free flagellum, both of them growing orthogonally in relation to the median cytoplasmic process. After the flagellar rotation and before the proximodistal fusion of both flagella with the median cytoplasmic process four attachment zones were already observed in several cross-sections indicating the area of fusion. Spinelike bodies are also observed in the differentiation zone before the fusion of flagella. Finally, the constriction of the ring of arched membranes gives rise to the young spermatozoon that detaches from the residual cytoplasm. The mature spermatozoon of D. subclavatus shows all the classical characters observed in Digenea spermatozoa such as two axonemes of different length of the 9+"1" trepaxonematan pattern, nucleus, mitochondrion, two bundles of parallel cortical microtubules and granules of glycogen. However, some peculiarities such as a well-developed lateral expansion associated with external ornamentation of the plasma membrane and spinelike bodies combined with their area of appearance distinguish the ultrastructural organization of the sperm cells of D. subclavatus from those of other digeneans.

  2. Differential localization and functional specialization of centrin analogs in the parasitic ciliate Trichodina pediculus.

    Science.gov (United States)

    Viguès, Bernard; Colombet, Jonathan; Damaj, Raghida

    2016-09-01

    Trichodinids are ciliated protozoans that reversibly attach to the tegument of marine and freshwater host-organisms via an adhesive disc. In this study, we have used permeabilized cell models of Trichodina pediculus to examine the distribution of centrins, a Ca(2+)-binding protein associated with centrioles and/or contractile filamentous structures in a large number of protists. The previous finding that filamentous material of the adhesive disc comprised a 23-kDa centrin analog suggested that this protein might be a disc-specific isoform. This possibility was explored through immunolabeling methods using two distinct antibodies, anti-ecto-endoplasmic boundary (EEB) and anti-Hscen2 previously shown to react respectively with centrin-based filament networks and with centrioles. Immunofluorescence microscopy showed that anti-EEB reacts with filamentous material of the disc but not with basal bodies. Conversely, anti-Hscen2 cross-reacted with basal bodies but failed to label any type of structure occurring in the disc area. More detailed data on localization of this protein was obtained by immunoelectron microscopy showing gold particles deposits in the lumen of basal bodies. The different patterns revealed by this immunochemical approach suggest that the two protein antigens concerned by this study are distinct centrin isoforms that presumably perform organelle-specific function in the ciliate T. pediculus.

  3. Structure and formation of the unusual sperm of Patelloida latistrigata (Mollusca : Patellogastropoda): implications for fertilization biology.

    Science.gov (United States)

    Hodgson, Alan N; Hodgson, Valerie; Eckelbarger, Kevin J

    2012-04-01

    The structure of the spermatozoa and spermatogenesis of the lottiid limpet Patelloida latistrigata is described by transmission electron microscopy. Although the lengths of the spermatozoa (about 60 μm) and their head region (about 12 μm) are similar to those of other patellogastropods, the structure of the sperm head and midpiece are very different. The head consists of an unusually large acrosome (about 11-μm long) with a broad posterior invagination that houses the relatively small nucleus. The midpiece mitochondria, which are rather elongate with large folded tubular cristae, are housed in a cytoplasmic sheath posterior to the nucleus. The proximal centriole is unusually elongate (about 2-μm long). The axoneme that emerges from the distal centriole is surrounded anteriorly by the cytoplasmic sheath in which the cytoplasmic side of the plasma membrane has electron-dense material. The flagellum is enlarged at its terminal end. Spermatogenesis is similar to that described for other patellogastropods. Patelloida latistrigata, therefore, has spermatozoa that seem to meet the morphological criteria of ent-aquasperm, which raises the question of whether fertilization is truly external in this limpet. However, it is also possible that the modifications to the sperm are linked to unknown specializations of the egg or egg envelope.

  4. Edouard Chatton (1883-1947) and the dinoflagellate protists: concepts and models.

    Science.gov (United States)

    Soyer-Gobillard, Marie-Odile

    2006-09-01

    Edouard Chatton contributed to our knowledge of single-celled protoctists, especially ciliates and dinoflagellates, free-living and/or symbiotic, in relation to the marine invertebrate animals in which they reside. More than the description of many new families, genera and species, and of their life cycles, he anticipated several major concepts of cell biology, including the fundamental difference between prokaryote and eukaryote protists, long time before the advent of electron microscopy. These concepts included: the reproductive ability of the kinetosome-centriole system; the homology of the kinetosome with the mitotic centriole of animal cells; and the different kinds of mitotic systems. Chatton trained more than thirty student collaborators, among them Andre Lwoff, who won the 1965 Nobel Prize in Physiology or Medicine. Later, the great cell biologist Hans Ris and I completed Chatton's light microscopy descriptions on syndinian mitosis dinoflagellate. We had at our disposal sophisticated electron microscopes as well as biochemical and molecular techniques and thus succeeded in corroborating the correct interpretation by Chatton of chromosome structure and mitotic cytology.

  5. Casein kinase II is required for proper cell division and acts as a negative regulator of centrosome duplication in Caenorhabditis elegans embryos

    Science.gov (United States)

    Medley, Jeffrey C.; Kabara, Megan M.; Stubenvoll, Michael D.; DeMeyer, Lauren E.

    2017-01-01

    ABSTRACT Centrosomes are the primary microtubule-organizing centers that orchestrate microtubule dynamics during the cell cycle. The correct number of centrosomes is pivotal for establishing bipolar mitotic spindles that ensure accurate segregation of chromosomes. Thus, centrioles must duplicate once per cell cycle, one daughter per mother centriole, the process of which requires highly coordinated actions among core factors and modulators. Protein phosphorylation is shown to regulate the stability, localization and activity of centrosome proteins. Here, we report the function of Casein kinase II (CK2) in early Caenorhabditis elegans embryos. The catalytic subunit (KIN-3/CK2α) of CK2 localizes to nuclei, centrosomes and midbodies. Inactivating CK2 leads to cell division defects, including chromosome missegregation, cytokinesis failure and aberrant centrosome behavior. Furthermore, depletion or inhibiting kinase activity of CK2 results in elevated ZYG-1 levels at centrosomes, restoring centrosome duplication and embryonic viability to zyg-1 mutants. Our data suggest that CK2 functions in cell division and negatively regulates centrosome duplication in a kinase-dependent manner. PMID:27881437

  6. Molecular basis of the STIL coiled coil oligomerization explains its requirement for de-novo formation of centrosomes in mammalian cells.

    Science.gov (United States)

    David, Ahuvit; Amartely, Hadar; Rabinowicz, Noa; Shamir, Mai; Friedler, Assaf; Izraeli, Shai

    2016-04-14

    The STIL protein is essential for centriole replication and for the non-templated, de novo centriole biogenesis that is required for mammalian embryogenesis. Here we performed quantitative biophysical and structural analysis of the central short coiled coil domain (CCD) of STIL that is critical for its function. Using biophysical, biochemical and cell biology approaches, we identified the specific residues in the CCD that mediate the oligomerization, centrosomal localization and protein interactions of STIL. We characterized the structural properties of the coiled coil peptide using circular dichroism spectroscopy and size exclusion chromatography. We identified two regions in this domain, containing eight hydrophobic residues, which mediate the coiled coil oligomerization. Mutations in these residues destabilized the coiled coil thermodynamically but in most cases did not affect its secondary structure. Reconstituting mouse embryonic fibroblasts lacking endogenous Stil, we show that STIL oligomerization mediated by these residues is not only important for the centrosomal functions of STIL during the canonical duplication process but also for de-novo formation of centrosomes.

  7. The disassembly and reassembly of functional centrosomes in vitro

    Science.gov (United States)

    Schnackenberg, Bradley J.; Khodjakov, Alexey; Rieder, Conly L.; Palazzo, Robert E.

    1998-01-01

    Animal cells contain a single centrosome that nucleates and organizes a polarized array of microtubules which functions in many cellular processes. In most cells the centrosome is composed of two centrioles surrounded by an ill-defined “cloud” of pericentriolar material. Recently, γ-tubulin-containing 25-nm diameter ring structures have been identified as likely microtubule nucleation sites within the pericentriolar material of isolated centrosomes. Here we demonstrate that when Spisula centrosomes are extracted with 1.0 M KI they lose their microtubule nucleation potential and appear by three-dimensional electron microscopy as a complex lattice, built from 12- to 15-nm thick elementary fiber(s), that lack centrioles and 25-nm rings. Importantly, when these remnants are incubated in extracts prepared from Spisula oocytes they recover their 25-nm rings, γ-tubulin, and microtubule nucleation potential. This recovery process occurs in the absence of microtubules, divalent cations, and nucleotides. Thus, in animals the centrosome is structurally organized around a KI-insoluble filament-based “centromatrix” that serves as a scaffold to which those proteins required for microtubule nucleation bind, either directly or indirectly, in a divalent cation and nucleotide independent manner. PMID:9689074

  8. Carysfort Nursing Home, 7 Arkendale Road, Glenageary, Co. Dublin.

    LENUS (Irish Health Repository)

    2010-11-15

    DNA damage can induce centrosome overduplication in a manner that requires G2-to-M checkpoint function, suggesting that genotoxic stress can decouple the centrosome and chromosome cycles. How this happens is unclear. Using live-cell imaging of cells that express fluorescently tagged NEDD1\\/GCP-WD and proliferating cell nuclear antigen, we found that ionizing radiation (IR)-induced centrosome amplification can occur outside S phase. Analysis of synchronized populations showed that significantly more centrosome amplification occurred after irradiation of G2-enriched populations compared with G1-enriched or asynchronous cells, consistent with G2 phase centrosome amplification. Irradiated and control populations of G2 cells were then fused to test whether centrosome overduplication is allowed through a diffusible stimulatory signal, or the loss of a duplication-inhibiting signal. Irradiated G2\\/irradiated G2 cell fusions showed significantly higher centrosome amplification levels than irradiated G2\\/unirradiated G2 fusions. Chicken-human cell fusions demonstrated that centrosome amplification was limited to the irradiated partner. Our finding that only the irradiated centrosome can duplicate supports a model where a centrosome-autonomous inhibitory signal is lost upon irradiation of G2 cells. We observed centriole disengagement after irradiation. Although overexpression of dominant-negative securin did not affect IR-induced centrosome amplification, Plk1 inhibition reduced radiation-induced amplification. Together, our data support centriole disengagement as a licensing signal for DNA damage-induced centrosome amplification.

  9. SAS-4 Protein in Trypanosoma brucei Controls Life Cycle Transitions by Modulating the Length of the Flagellum Attachment Zone Filament.

    Science.gov (United States)

    Hu, Huiqing; Zhou, Qing; Li, Ziyin

    2015-12-18

    The evolutionarily conserved centriole/basal body protein SAS-4 regulates centriole duplication in metazoa and basal body duplication in flagellated and ciliated organisms. Here, we report that the SAS-4 homolog in the flagellated protozoan Trypanosoma brucei, TbSAS-4, plays an unusual role in controlling life cycle transitions by regulating the length of the flagellum attachment zone (FAZ) filament, a specialized cytoskeletal structure required for flagellum adhesion and cell morphogenesis. TbSAS-4 is concentrated at the distal tip of the FAZ filament, and depletion of TbSAS-4 in the trypomastigote form disrupts the elongation of the new FAZ filament, generating cells with a shorter FAZ associated with a longer unattached flagellum and repositioned kinetoplast and basal body, reminiscent of epimastigote-like morphology. Further, we show that TbSAS-4 associates with six additional FAZ tip proteins, and depletion of TbSAS-4 disrupts the enrichment of these FAZ tip proteins at the new FAZ tip, suggesting a role of TbSAS-4 in maintaining the integrity of this FAZ tip protein complex. Together, these results uncover a novel function of TbSAS-4 in regulating the length of the FAZ filament to control basal body positioning and life cycle transitions in T. brucei.

  10. Sas-4 provides a scaffold for cytoplasmic complexes and tethers them in a centrosome.

    Science.gov (United States)

    Gopalakrishnan, Jayachandran; Mennella, Vito; Blachon, Stephanie; Zhai, Bo; Smith, Andrew H; Megraw, Timothy L; Nicastro, Daniela; Gygi, Steven P; Agard, David A; Avidor-Reiss, Tomer

    2011-06-21

    Centrosomes are conserved organelles that are essential for accurate cell division and cilium formation. A centrosome consists of a pair of centrioles surrounded by a protein network of pericentriolar material (PCM) that is essential for the centrosome's function. In this study, we show that Sas-4 provides a scaffold for cytoplasmic complexes (named S-CAP), which include CNN, Asl and D-PLP, proteins that are all found in the centrosomes at the vicinity of the centriole. When Sas-4 is absent, nascent procentrioles are unstable and lack PCM, and functional centrosomes are not generated. When Sas-4 is mutated, so that it cannot form S-CAP complexes, centrosomes are present but with dramatically reduced levels of PCM. Finally, purified S-CAP complexes or recombinant Sas-4 can bind centrosomes stripped of PCM, whereas recombinant CNN or Asl cannot. In summary, PCM assembly begins in the cytosol where Sas-4 provides a scaffold for pre-assembled cytoplasmic complexes before tethering of the complexes in a centrosome.

  11. Structure of the SAS-6 cartwheel hub from Leishmania major.

    Science.gov (United States)

    van Breugel, Mark; Wilcken, Rainer; McLaughlin, Stephen H; Rutherford, Trevor J; Johnson, Christopher M

    2014-01-01

    Centrioles are cylindrical cell organelles with a ninefold symmetric peripheral microtubule array that is essential to template cilia and flagella. They are built around a central cartwheel assembly that is organized through homo-oligomerization of the centriolar protein SAS-6, but whether SAS-6 self-assembly can dictate cartwheel and thereby centriole symmetry is unclear. Here we show that Leishmania major SAS-6 crystallizes as a 9-fold symmetric cartwheel and provide the X-ray structure of this assembly at a resolution of 3.5 Å. We furthermore demonstrate that oligomerization of Leishmania SAS-6 can be inhibited by a small molecule in vitro and provide indications for its binding site. Our results firmly establish that SAS-6 can impose cartwheel symmetry on its own and indicate how this process might occur mechanistically in vivo. Importantly, our data also provide a proof-of-principle that inhibition of SAS-6 oligomerization by small molecules is feasible. DOI: http://dx.doi.org/10.7554/eLife.01812.001.

  12. A SAS-6-like protein suggests that the Toxoplasma conoid complex evolved from flagellar components.

    Science.gov (United States)

    de Leon, Jessica Cruz; Scheumann, Nicole; Beatty, Wandy; Beck, Josh R; Tran, Johnson Q; Yau, Candace; Bradley, Peter J; Gull, Keith; Wickstead, Bill; Morrissette, Naomi S

    2013-07-01

    SAS-6 is required for centriole biogenesis in diverse eukaryotes. Here, we describe a novel family of SAS-6-like (SAS6L) proteins that share an N-terminal domain with SAS-6 but lack coiled-coil tails. SAS6L proteins are found in a subset of eukaryotes that contain SAS-6, including diverse protozoa and green algae. In the apicomplexan parasite Toxoplasma gondii, SAS-6 localizes to the centriole but SAS6L is found above the conoid, an enigmatic tubulin-containing structure found at the apex of a subset of alveolate organisms. Loss of SAS6L causes reduced fitness in Toxoplasma. The Trypanosoma brucei homolog of SAS6L localizes to the basal-plate region, the site in the axoneme where the central-pair microtubules are nucleated. When endogenous SAS6L is overexpressed in Toxoplasma tachyzoites or Trypanosoma trypomastigotes, it forms prominent filaments that extend through the cell cytoplasm, indicating that it retains a capacity to form higher-order structures despite lacking a coiled-coil domain. We conclude that although SAS6L proteins share a conserved domain with SAS-6, they are a functionally distinct family that predates the last common ancestor of eukaryotes. Moreover, the distinct localization of the SAS6L protein in Trypanosoma and Toxoplasma adds weight to the hypothesis that the conoid complex evolved from flagellar components.

  13. Cilia and polycystic kidney disease, kith and kin.

    Science.gov (United States)

    Huang, Liwei; Lipschutz, Joshua H

    2014-06-01

    In the past decade, cilia have been found to play important roles in renal cystogenesis. Many genes, such as PKD1 and PKD2 which, when mutated, cause autosomal dominant polycystic kidney disease (ADPKD), have been found to localize to primary cilia. The cilium functions as a sensor to transmit extracellular signals into the cell. Abnormal cilia structure and function are associated with the development of polyscystic kidney disease (PKD). Cilia assembly includes centriole migration to the apical surface of the cell, ciliary vesicle docking and fusion with the cell membrane at the intended site of cilium outgrowth, and microtubule growth from the basal body. This review summarizes the most recent advances in cilia and PKD research, with special emphasis on the mechanisms of cytoplasmic and intraciliary protein transport during ciliogenesis.

  14. Holographic View of the Brain Memory Mechanism Based on Evanescent Superluminal Photons

    Directory of Open Access Journals (Sweden)

    Takaaki Musha

    2012-08-01

    Full Text Available D. Pollen and M. Trachtenberg proposed the holographic brain theory to help explain the existence of photographic memories in some people. They suggested that such individuals had more vivid memories because they somehow could access a very large region of their memory holograms. Hameroff suggested in his paper that cylindrical neuronal microtubule cavities, or centrioles, function as waveguides for the evanescent photons for quantum signal processing. The supposition is that microtubular structures of the brain function as a coherent fiber bundle set used to store holographic images, as would a fiber-optic holographic system. In this paper, the author proposes that superluminal photons propagating inside the microtubules via evanescent waves could provide the access needed to record or retrieve a quantum coherent entangled holographic memory.

  15. Tangentially migrating neurons assemble a primary cilium that promotes their reorientation to the cortical plate.

    Science.gov (United States)

    Baudoin, Jean-Pierre; Viou, Lucie; Launay, Pierre-Serge; Luccardini, Camilla; Espeso Gil, Sergio; Kiyasova, Vera; Irinopoulou, Théano; Alvarez, Chantal; Rio, Jean-Paul; Boudier, Thomas; Lechaire, Jean-Pierre; Kessaris, Nicoletta; Spassky, Nathalie; Métin, Christine

    2012-12-20

    In migrating neurons, the centrosome nucleates and anchors a polarized network of microtubules that directs organelle movements. We report here that the mother centriole of neurons migrating tangentially from the medial ganglionic eminence (MGE) assembles a short primary cilium and exposes this cilium to the cell surface by docking to the plasma membrane in the leading process. Primary cilia are built by intraflagellar transport (IFT), which is also required for Sonic hedgehog (Shh) signal transduction in vertebrates. We show that Shh pathway perturbations influenced the leading process morphology and dynamics of MGE cells. Whereas Shh favored the exit of MGE cells away from their tangential migratory paths in the developing cortex, cyclopamine or invalidation of IFT genes maintained MGE cells in the tangential paths. Our findings show that signals transmitted through the primary cilium promote the escape of future GABAergic interneurons from their tangential routes to colonize the cortical plate.

  16. Myosin domain evolution and the primary divergence of eukaryotes.

    Science.gov (United States)

    Richards, Thomas A; Cavalier-Smith, Thomas

    2005-08-25

    Eukaryotic cells have two contrasting cytoskeletal and ciliary organizations. The simplest involves a single cilium-bearing centriole, nucleating a cone of individual microtubules (probably ancestral for unikonts: animals, fungi, Choanozoa and Amoebozoa). In contrast, bikonts (plants, chromists and all other protozoa) were ancestrally biciliate with a younger anterior cilium, converted every cell cycle into a dissimilar posterior cilium and multiple ciliary roots of microtubule bands. Here we show by comparative genomic analysis that this fundamental cellular dichotomy also involves different myosin molecular motors. We found 37 different protein domain combinations, often lineage-specific, and many previously unidentified. The sequence phylogeny and taxonomic distribution of myosin domain combinations identified five innovations that strongly support unikont monophyly and the primary bikont/unikont bifurcation. We conclude that the eukaryotic cenancestor (last common ancestor) had a cilium, mitochondria, pseudopodia, and myosins with three contrasting domain combinations and putative functions.

  17. The Centrosome Undergoes Plk1-Independent Interphase Maturation during Inflammation and Mediates Cytokine Release.

    Science.gov (United States)

    Vertii, Anastassiia; Ivshina, Maria; Zimmerman, Wendy; Hehnly, Heidi; Kant, Shashi; Doxsey, Stephen

    2016-05-23

    Cytokine production is a necessary event in the immune response during inflammation and is associated with mortality during sepsis, autoimmune disorders, cancer, and diabetes. Stress-activated MAP kinase signaling cascades that mediate cytokine synthesis are well established. However, the downstream fate of cytokines before they are secreted remains elusive. We report that pro-inflammatory stimuli lead to recruitment of pericentriolar material, specifically pericentrin and γ-tubulin, to the centrosome. This is accompanied by enhanced microtubule nucleation and enrichment of the recycling endosome component FIP3, all of which are hallmarks of centrosome maturation during mitosis. Intriguingly, centrosome maturation occurs during interphase in an MLK-dependent manner, independent of the classic mitotic kinase, Plk1. Centrosome disruption by chemical prevention of centriole assembly or genetic ablation of pericentrin attenuated interleukin-6, interleukin-10, and MCP1 secretion, suggesting that the centrosome is critical for cytokine production. Our results reveal a function of the centrosome in innate immunity.

  18. Ultrastructure of the spermatogenesis of the cockle Anadara granosa L. (Bivalvia: Arcidae)

    Science.gov (United States)

    Suwanjarat, J.

    1999-11-01

    In this paper spermatogenesis and sperm ultrastructure of the cockle Anadara granosa are studied using transmission electron microscopy. The spermatocyte presents electron-dense vesicles and the arising axoneme that begins to form the flagellum. During spermatid differentiation, proacrosomal vesicles appear to migrate towards the presumptive anterior pole of the nucleus; eventually these vesicles become acrosome. The spermatozoon of Anadara granosa is of the primitive type. The acrosome, situated at the apex of the nucleus, is cap-shaped and deeply invaginated at the inner side. The spherical nucleus of the spermatozoon contains dense granular chromatin and shows invagination at the posterior poles. The centriole shows the classic nine triplets of microtubules. The middle piece consists of the centriolar complex surrounded by five giant mitochondria. It is shown that the ultrastructure of spermatozoa and spermiogenesis of Anadara granosa reveals a number of features that are common among bivalves.

  19. POC1A truncation mutation causes a ciliopathy in humans characterized by primordial dwarfism.

    Science.gov (United States)

    Shaheen, Ranad; Faqeih, Eissa; Shamseldin, Hanan E; Noche, Ramil R; Sunker, Asma; Alshammari, Muneera J; Al-Sheddi, Tarfa; Adly, Nouran; Al-Dosari, Mohammed S; Megason, Sean G; Al-Husain, Muneera; Al-Mohanna, Futwan; Alkuraya, Fowzan S

    2012-08-10

    Primordial dwarfism (PD) is a phenotype characterized by profound growth retardation that is prenatal in onset. Significant strides have been made in the last few years toward improved understanding of the molecular underpinning of the limited growth that characterizes the embryonic and postnatal development of PD individuals. These include impaired mitotic mechanics, abnormal IGF2 expression, perturbed DNA-damage response, defective spliceosomal machinery, and abnormal replication licensing. In three families affected by a distinct form of PD, we identified a founder truncating mutation in POC1A. This gene is one of two vertebrate paralogs of POC1, which encodes one of the most abundant proteins in the Chlamydomonas centriole proteome. Cells derived from the index individual have abnormal mitotic mechanics with multipolar spindles, in addition to clearly impaired ciliogenesis. siRNA knockdown of POC1A in fibroblast cells recapitulates this ciliogenesis defect. Our findings highlight a human ciliopathy syndrome caused by deficiency of a major centriolar protein.

  20. Primary Cilia, Signaling Networks and Cell Migration

    DEFF Research Database (Denmark)

    Veland, Iben Rønn

    Primary cilia are microtubule-based, sensory organelles that emerge from the centrosomal mother centriole to project from the surface of most quiescent cells in the human body. Ciliary entry is a tightly controlled process, involving diffusion barriers and gating complexes that maintain a unique...... this controls directional cell migration as a physiological response. The ciliary pocket is a membrane invagination with elevated activity of clathrin-dependent endocytosis (CDE). In paper I, we show that the primary cilium regulates TGF-β signaling and the ciliary pocket is a compartment for CDE...... on formation of the primary cilium and CDE at the pocket region. The ciliary protein Inversin functions as a molecular switch between canonical and non-canonical Wnt signaling. In paper II, we show that Inversin and the primary cilium control Wnt signaling and are required for polarization and cell migration...

  1. Spermatozoal ultrastructures of two marine perciform teleost fishes, the goatfish, Paraupeneus spilurus (Mullidae) and the rabbitfish, Siganus fuscescens (Siganidae) from Taiwan.

    Science.gov (United States)

    Gwo, J-C; Yang, W-T; Kuo, M-C; Takemura, A; Cheng, H-Y

    2004-02-01

    Mature spermatozoa of two perciform teleost fishes, Paraupeneus spilurus (Mullidae) and Siganus fuscescens (Siganidae) from Taiwan were examined using transmission and scanning electron microscopy. Despite the fact that spermatozoa of both species are of the primitive type, the results of the present study highlight the potential application of spermatozoal morphology in studies of fish phylogenetic relationships. To our knowledge, the flattened nucleus observed in P. spilurus spermatozoa is reported for the first time. Several features common to Sigandae spermatozoa-the unusual almost parallel situation of the centrioles, the arrangement of mitochondria and the near absence of shallow nuclear fossa-are significantly different from other common teleost sperm types. These unique features may be synapomorphies for the Siganidae and Mullidae and evidently contribute to the study of phylogenetic relationships in teleosts.

  2. STED super-resolution microscopy in Drosophila tissue and in mammalian cells

    Science.gov (United States)

    Lau, Lana; Lee, Yin Loon; Matis, Maja; Axelrod, Jeff; Stearns, Tim; Moerner, W. E.

    2011-03-01

    Far-field super-resolution microscopy is a rapidly emerging method that is opening up opportunities for biological imaging beyond the optical diffraction limit. We have implemented a Stimulated Emission Depletion (STED) microscope to image single dye, cell, and tissue samples with 50-80 nm resolution. First, we compare the STED performance imaging single molecules of several common dyes and report a novel STED dye. Then we apply STED to image planar cell polarity protein complexes in intact fixed Drosophila tissue for the first time. Finally, we present a preliminary study of the centrosomal protein Cep164 in mammalian cells. Our images suggest that Cep164 is arranged in a nine-fold symmetric pattern around the centriole, consistent with findings suggested by cryoelectron tomography. Our work demonstrates that STED microscopy can be used for superresolution imaging in intact tissue and provides ultrastructural information in biological samples as an alternative to immuno-electron microscopy.

  3. Centriolar CPAP/SAS-4 Imparts Slow Processive Microtubule Growth.

    Science.gov (United States)

    Sharma, Ashwani; Aher, Amol; Dynes, Nicola J; Frey, Daniel; Katrukha, Eugene A; Jaussi, Rolf; Grigoriev, Ilya; Croisier, Marie; Kammerer, Richard A; Akhmanova, Anna; Gönczy, Pierre; Steinmetz, Michel O

    2016-05-23

    Centrioles are fundamental and evolutionarily conserved microtubule-based organelles whose assembly is characterized by microtubule growth rates that are orders of magnitude slower than those of cytoplasmic microtubules. Several centriolar proteins can interact with tubulin or microtubules, but how they ensure the exceptionally slow growth of centriolar microtubules has remained mysterious. Here, we bring together crystallographic, biophysical, and reconstitution assays to demonstrate that the human centriolar protein CPAP (SAS-4 in worms and flies) binds and "caps" microtubule plus ends by associating with a site of β-tubulin engaged in longitudinal tubulin-tubulin interactions. Strikingly, we uncover that CPAP activity dampens microtubule growth and stabilizes microtubules by inhibiting catastrophes and promoting rescues. We further establish that the capping function of CPAP is important to limit growth of centriolar microtubules in cells. Our results suggest that CPAP acts as a molecular lid that ensures slow assembly of centriolar microtubules and, thereby, contributes to organelle length control.

  4. Pericentriolar Targeting of the Mouse Mammary Tumor Virus GAG Protein.

    Directory of Open Access Journals (Sweden)

    Guangzhi Zhang

    Full Text Available The Gag protein of the mouse mammary tumor virus (MMTV is the chief determinant of subcellular targeting. Electron microscopy studies show that MMTV Gag forms capsids within the cytoplasm and assembles as immature particles with MMTV RNA and the Y box binding protein-1, required for centrosome maturation. Other betaretroviruses, such as Mason-Pfizer monkey retrovirus (M-PMV, assemble adjacent to the pericentriolar region because of a cytoplasmic targeting and retention signal in the Matrix protein. Previous studies suggest that the MMTV Matrix protein may also harbor a similar cytoplasmic targeting and retention signal. Herein, we show that a substantial fraction of MMTV Gag localizes to the pericentriolar region. This was observed in HEK293T, HeLa human cell lines and the mouse derived NMuMG mammary gland cells. Moreover, MMTV capsids were observed adjacent to centrioles when expressed from plasmids encoding either MMTV Gag alone, Gag-Pro-Pol or full-length virus. We found that the cytoplasmic targeting and retention signal in the MMTV Matrix protein was sufficient for pericentriolar targeting, whereas mutation of the glutamine to alanine at position 56 (D56/A resulted in plasma membrane localization, similar to previous observations from mutational studies of M-PMV Gag. Furthermore, transmission electron microscopy studies showed that MMTV capsids accumulate around centrioles suggesting that, similar to M-PMV, the pericentriolar region may be a site for MMTV assembly. Together, the data imply that MMTV Gag targets the pericentriolar region as a result of the MMTV cytoplasmic targeting and retention signal, possibly aided by the Y box protein-1 required for the assembly of centrosomal microtubules.

  5. Ultrastructure of spermatozoa of Onthophagus taurus (Coleoptera, Scarabaeidae) exhibits heritable variation

    Science.gov (United States)

    Werner, Michael; Simmons, Leigh W.

    2011-03-01

    Sperm competition is thought to be an important selective pressure shaping sperm form and function. However, few studies have moved beyond gross examinations of sperm morphology. Sperm length is subject to sexual selection via sperm competition in the scarab beetle Onthophagus taurus. Here, the structure and ultrastructure of spermatozoa in this species were investigated using light and electron microscopy. Spermatozoa were found to be filiform, measuring about 1,200 mm in length. The sperm head consists of a three-layered acrosome and a nuclear region bearing the anterior extension of the centriole adjunct. Acrosome and nuclear regions are bilaterally symmetric, with their axes of symmetry being orthogonal to each other. Head and flagellar structures are connected by a well-developed centriole adjunct. The sperm heads are asymmetrically surrounded by accessory material and embedded into the cytoplasm of the spermatocyst cell. The accessory material is produced inside the spermatids and then transferred to the outside due to a new membrane formed around the sperm's organelles. The old spermatid membrane separates the accessory material from the cyst cell. The flagellum contains a 9+9+2 axoneme, two accessory bodies, and two mitochondrial derivatives of unequal size. The major mitochondrial derivative is significantly larger than the minor one. The axoneme is arranged in a sinusoidal manner parallel along the major mitochondrial derivative. The spermatozoa show no progressive motility when released in buffer solution which is likely to be the result of the flagellar arrangement and the structure of the major mitochondrial derivative. The cross-sectional area of the minor and the major mitochondrial derivatives show different patterns of genetic variation. The data provide the first estimates of genetic variation in sperm ultrastructure for any species, and give evidence for the persistence of genetic variation in ultrastructure required for the rapid and divergent

  6. A histological study of testis development and ultrastructural features of spermatogenesis in cultured Acrossocheilus fasciatus.

    Science.gov (United States)

    Fu, Su-Yan; Jiang, Jian-Hu; Yang, Wan-Xi; Zhu, Jun-Quan

    2016-02-01

    Testis development and ultrastructural features of spermatogenesis in Acrossocheilus fasciatus (Cypriniformes, Barbinae), a commercial stream fish, were studied using light and electron microscopy. The reproduction cycle in A. fasciatus testes is classified into six successive stages from Stage I to Stage VI. Based on an analysis of previous results, May to July can be confirmed as the best breeding season for A. fasciatus males. During this time, the A. fasciatus testes are in Stage V and the sperm in males is most abundant. In the first reproductive cycle, sexually mature male testes return to Stage III in October, subsequently overwintering at this stage. In the lobular-type testes of A. fasciatus, cystic type spermatogenesis occurs with restricted spermatogonia. All spermatogenic cells at different stages are distributed along the seminiferous lobules, which contain spermatogonia, spermatocytes, spermatids and spermatozoa. At the end of spermatogenesis, spermatogenic cysts open to release spermatozoa into the lobule lumen. Ultrastructural observation of A. fasciatus spermiogenesis reveals that electron-dense substances appear at the different stages of germ cells, from primary spermatogonia to secondary spermatocytes. We have termed these dense substances as "nuage" when free in the cytoplasm or adjacent to the nuclear envelope, while those close to the mitochondria are called inter-mitochondrial cement. The spermatozoa in A. fasciatus can be classified as type I due to the presence of nuclear rotation. Although the nuclear chromatin in the head of sperm was highly condensed, no acrosome was formed. The cytoplasmic canal, a common ultrastructural feature of Teleostei spermatozoa, was also present in the midpiece. In addition, numerous fused mitochondria were observed. The distal centriole and proximal centriole constituting the centriolar complex were oriented incompletely perpendicular to each other. The flagellum showed a typical 9+2 arrangement pattern

  7. Role of delta-tubulin and the C-tubule in assembly of Paramecium basal bodies

    Directory of Open Access Journals (Sweden)

    Beisson Janine

    2001-03-01

    Full Text Available Abstract Background A breakthrough in the understanding of centriole assembly was provided by the characterization of the UNI3 gene in Chlamydomonas. Deletion of this gene, found to encode a novel member of the tubulin superfamily, delta-tubulin, results in the loss of the C-tubule, in the nine microtubule triplets which are the hallmark of centrioles and basal bodies. Delta-tubulin homologs have been identified in the genomes of mammals and protozoa, but their phylogenetic relationships are unclear and their function is not yet known. Results Using the method of gene-specific silencing, we have inactivated the Paramecium delta-tubulin gene, which was recently identified. This inactivation leads to loss of the C-tubule in all basal bodies, without any effect on ciliogenesis. This deficiency does not directly affect basal body duplication, but perturbs the cortical cytoskeleton, progressively leading to mislocalization and loss of basal bodies and to altered cell size and shape. Furthermore, additional loss of B- and even A-tubules at one or more triplet sites are observed: around these incomplete cylinders, the remaining doublets are nevertheless positioned according to the native ninefold symmetry. Conclusions The fact that in two distinct phyla, delta-tubulin plays a similar role provides a new basis for interpreting phylogenetic relationships among delta-tubulins. The role of delta-tubulin in C-tubule assembly reveals that tubulins contribute subtle specificities at microtubule nucleation sites. Our observations also demonstrate the existence of a prepattern for the ninefold symmetry of the organelle which is maintained even if less than 9 triplets develop.

  8. Multiple requirements of PLK1 during mouse oocyte maturation.

    Directory of Open Access Journals (Sweden)

    Petr Solc

    Full Text Available Polo-like kinase 1 (PLK1 orchestrates multiple events of cell division. Although PLK1 function has been intensively studied in centriole-containing and rapidly cycling somatic cells, much less is known about its function in the meiotic divisions of mammalian oocytes, which arrest for a long period of time in prophase before meiotic resumption and lack centrioles for spindle assembly. Here, using specific small molecule inhibition combined with live mouse oocyte imaging, we comprehensively characterize meiotic PLK1's functions. We show that PLK1 becomes activated at meiotic resumption on microtubule organizing centers (MTOCs and later at kinetochores. PLK1 is required for efficient meiotic resumption by promoting nuclear envelope breakdown. PLK1 is also needed to recruit centrosomal proteins to acentriolar MTOCs to promote normal spindle formation, as well as for stable kinetochore-microtubule attachment. Consequently, PLK1 inhibition leads to metaphase I arrest with misaligned chromosomes activating the spindle assembly checkpoint (SAC. Unlike in mitosis, the metaphase I arrest is not bypassed by the inactivation of the SAC. We show that PLK1 is required for the full activation of the anaphase promoting complex/cyclosome (APC/C by promoting the degradation of the APC/C inhibitor EMI1 and is therefore essential for entry into anaphase I. Moreover, our data suggest that PLK1 is required for proper chromosome segregation and the maintenance of chromosome condensation during the meiosis I-II transition, independently of the APC/C. Thus, our results define the meiotic roles of PLK1 in oocytes and reveal interesting differential requirements of PLK1 between mitosis and oocyte meiosis in mammals.

  9. SmSak, the second Polo-like kinase of the helminth parasite Schistosoma mansoni: conserved and unexpected roles in meiosis.

    Directory of Open Access Journals (Sweden)

    Thavy Long

    Full Text Available Polo-like kinases (Plks are a family of conserved regulators of a variety of events throughout the cell cycle, expanded from one Plk in yeast to five Plks in mammals (Plk1-5. Plk1 is the best characterized member of the Plk family, homolog to the founding member Polo of Drosophila, and plays a major role in cell cycle progression by triggering G2/M transition. Plk4/Sak (for Snk (Serum-inducible kinase akin kinase is a unique member of the family, structurally distinct from other Plk members, with essential functions in centriole duplication. The genome of the trematode parasite Schistosoma mansoni contains only two Plk genes encoding SmPlk1 and SmSak. SmPlk1 has been shown already to be required for gametogenesis and parasite reproduction. In this work, in situ hybridization indicated that the structurally conserved Plk4 protein, SmSak, was largely expressed in schistosome female ovary and vitellarium. Expression of SmSak in Xenopus oocytes confirmed its Plk4 conserved function in centriole amplification. Moreover, analysis of the function of SmSak in meiosis progression of G2-blocked Xenopus oocytes indicated that, in contrast to SmPlk1, SmSak cannot induce G2/M transition in the absence of endogenous Plk1 (Plx1. Unexpectedly, meiosis progression was spontaneously observed in Plx1-depleted oocytes co-expressing SmSak and SmPlk1. Molecular interaction between SmSak and SmPlk1 was confirmed by co-immunoprecipitation of both proteins. These data indicate that Plk1 and Plk4 proteins have the potential to interact and cross-activate in cells, thus attributing for the first time a potential role of Plk4 proteins in meiosis/mitosis entry. This unexpected role of SmSak in meiosis could be relevant to further consider the function of this novel Plk in schistosome reproduction.

  10. Centrosomal protein Cep63, an important protein involved in cell division%中心体蛋白Cep63——参与细胞分裂的重要蛋白

    Institute of Scientific and Technical Information of China (English)

    徐朝阳; 孙莹璞

    2013-01-01

    电子显微镜下,中心体由中心粒和中心粒周围物质组成.中心粒周围物质由一系列纤维和蛋白质组成,这些蛋白质是中心体执行其功能的基础.作为中心体蛋白家族的一名成员,Cep63的研究近年取得了很大的进展.在有丝分裂周期的各个阶段,Cep63都定位在中心体内,其与Cep152和Cep57一起,在中心粒近端形成一个环状结构,对中心体复制、纺锤体组装和G2/M转换起到重要作用.在多种肿瘤组织内发现Cep63表达的异常,其缺陷还会导致小头畸形的发生.鉴于Cep63在有丝分裂中的重要地位,研究其在减数分裂中的定位和功能,探讨卵母细胞体外成熟机制,对生殖医学的发展具有重要意义.%Under the electron microscope,the eentrosome consists of centriole and peri-centriolar material (PCM) . PCM is composed of a series of proteins and fibers. Most of the centrosome function are carried out by these proteins.As a member of centrosomal proteins family,the Cep63 has been studied with great progress in recent years.The Cep63 is ahnost exclusively localized to centrosomes throughout the cell cycle.Together with Cep152 and Cep57,they form a ring-like structure,which lies around the proximal end of centriole,and functions in centrosome duplication,spindle assemble and G2 / M transition mechanism.Abnormal expression of Cep63 has been reported to be associated with several kinds of tumors and primary microcephaly.In view of the role of Cep63 in mitosis,the study of its location and function in meiosis will favor the exploration of the oocyte maturation mechanism in vitro,and eventually may help for the development of reproductive medicine in the future.

  11. Mutations in the gene encoding IFT dynein complex component WDR34 cause Jeune asphyxiating thoracic dystrophy.

    Science.gov (United States)

    Schmidts, Miriam; Vodopiutz, Julia; Christou-Savina, Sonia; Cortés, Claudio R; McInerney-Leo, Aideen M; Emes, Richard D; Arts, Heleen H; Tüysüz, Beyhan; D'Silva, Jason; Leo, Paul J; Giles, Tom C; Oud, Machteld M; Harris, Jessica A; Koopmans, Marije; Marshall, Mhairi; Elçioglu, Nursel; Kuechler, Alma; Bockenhauer, Detlef; Moore, Anthony T; Wilson, Louise C; Janecke, Andreas R; Hurles, Matthew E; Emmet, Warren; Gardiner, Brooke; Streubel, Berthold; Dopita, Belinda; Zankl, Andreas; Kayserili, Hülya; Scambler, Peter J; Brown, Matthew A; Beales, Philip L; Wicking, Carol; Duncan, Emma L; Mitchison, Hannah M

    2013-11-01

    Bidirectional (anterograde and retrograde) motor-based intraflagellar transport (IFT) governs cargo transport and delivery processes that are essential for primary cilia growth and maintenance and for hedgehog signaling functions. The IFT dynein-2 motor complex that regulates ciliary retrograde protein transport contains a heavy chain dynein ATPase/motor subunit, DYNC2H1, along with other less well functionally defined subunits. Deficiency of IFT proteins, including DYNC2H1, underlies a spectrum of skeletal ciliopathies. Here, by using exome sequencing and a targeted next-generation sequencing panel, we identified a total of 11 mutations in WDR34 in 9 families with the clinical diagnosis of Jeune syndrome (asphyxiating thoracic dystrophy). WDR34 encodes a WD40 repeat-containing protein orthologous to Chlamydomonas FAP133, a dynein intermediate chain associated with the retrograde intraflagellar transport motor. Three-dimensional protein modeling suggests that the identified mutations all affect residues critical for WDR34 protein-protein interactions. We find that WDR34 concentrates around the centrioles and basal bodies in mammalian cells, also showing axonemal staining. WDR34 coimmunoprecipitates with the dynein-1 light chain DYNLL1 in vitro, and mining of proteomics data suggests that WDR34 could represent a previously unrecognized link between the cytoplasmic dynein-1 and IFT dynein-2 motors. Together, these data show that WDR34 is critical for ciliary functions essential to normal development and survival, most probably as a previously unrecognized component of the mammalian dynein-IFT machinery.

  12. NEK1 mutations cause short-rib polydactyly syndrome type majewski.

    Science.gov (United States)

    Thiel, Christian; Kessler, Kristin; Giessl, Andreas; Dimmler, Arno; Shalev, Stavit A; von der Haar, Sigrun; Zenker, Martin; Zahnleiter, Diana; Stöss, Hartmut; Beinder, Ernst; Abou Jamra, Rami; Ekici, Arif B; Schröder-Kress, Nadja; Aigner, Thomas; Kirchner, Thomas; Reis, André; Brandstätter, Johann H; Rauch, Anita

    2011-01-01

    Defects of ciliogenesis have been implicated in a wide range of human phenotypes and play a crucial role in signal transduction and cell-cycle coordination. We used homozygosity mapping in two families with autosomal-recessive short-rib polydactyly syndrome Majewski type to identify mutations in NEK1 as an underlying cause of this lethal osteochondrodysplasia. NEK1 encodes a serine/threonine kinase with proposed function in DNA double-strand repair, neuronal development, and coordination of cell-cycle-associated ciliogenesis. We found that absence of functional full-length NEK1 severely reduces cilia number and alters ciliar morphology in vivo. We further substantiate a proposed digenic diallelic inheritance of ciliopathies by the identification of heterozygous mutations in NEK1 and DYNC2H1 in an additional family. Notably, these findings not only increase the broad spectrum of ciliar disorders, but suggest a correlation between the degree of defective microtubule or centriole elongation and organization and the severity of the resulting phenotype.

  13. Error-prone mammalian female meiosis from silencing the spindle assembly checkpoint without normal interkinetochore tension.

    Science.gov (United States)

    Kolano, Agnieszka; Brunet, Stéphane; Silk, Alain D; Cleveland, Don W; Verlhac, Marie-Hélène

    2012-07-03

    It is well established that chromosome segregation in female meiosis I (MI) is error-prone. The acentrosomal meiotic spindle poles do not have centrioles and are not anchored to the cortex via astral microtubules. By Cre recombinase-mediated removal in oocytes of the microtubule binding site of nuclear mitotic apparatus protein (NuMA), which is implicated in anchoring microtubules at poles, we determine that without functional NuMA, microtubules lose connection to MI spindle poles, resulting in highly disorganized early spindle assembly. Subsequently, very long spindles form with hyperfocused poles. The kinetochores of homologs make attachments to microtubules in these spindles but with reduced tension between them and accompanied by alignment defects. Despite this, the spindle assembly checkpoint is normally silenced and the advance to anaphase I and first polar body extrusion takes place without delay. Females without functional NuMA in oocytes are sterile, producing aneuploid eggs with altered chromosome number. These findings establish that in mammalian MI, the spindle assembly checkpoint is unable to sustain meiotic arrest in the presence of one or few misaligned and/or misattached kinetochores with reduced interkinetochore tension, thereby offering an explanation for why MI in mammals is so error-prone.

  14. A unique ball-shaped Golgi apparatus in the rat pituitary gonadotrope: its functional implications in relation to the arrangement of the microtubule network.

    Science.gov (United States)

    Watanabe, Tsuyoshi; Sakai, Yuko; Koga, Daisuke; Bochimoto, Hiroki; Hira, Yoshiki; Hosaka, Masahiro; Ushiki, Tatsuo

    2012-08-01

    In polarized exocrine cells, the Golgi apparatus is cup-shaped and its convex and concave surfaces are designated as cis and trans faces, functionally confronting the rough endoplasmic reticulum and the cell surface, respectively. To clarify the morphological characteristics of the Golgi apparatus in non-polarized endocrine cells, the investigators immunocytochemically examined its precise architecture in pituitary gonadotropes, especially in relation to the arrangement of the intracellular microtubule network. The Golgi apparatus in the gonadotropes was not cup-shaped but ball-shaped or spherical, and its outer and inner surfaces were the cis and trans faces, respectively. Centrioles were situated at the center of the Golgi apparatus, from which radiating microtubules isotropically extended to the cell periphery through the gaps in the spherical wall of the Golgi stack. The shape of the Golgi apparatus and the arrangement of microtubules demonstrated in the present study could explain the microtubule-dependent movements of tubulovesicular carriers and granules within the gonadotropes. Furthermore, the spherical shape of the Golgi apparatus possibly reflects the highly symmetrical arrangement of microtubule arrays, as well as the poor polarity in the cell surface of pituitary gonadotropes.

  15. TTBK2: A Tau Protein Kinase beyond Tau Phosphorylation

    Directory of Open Access Journals (Sweden)

    Jung-Chi Liao

    2015-01-01

    Full Text Available Tau tubulin kinase 2 (TTBK2 is a kinase known to phosphorylate tau and tubulin. It has recently drawn much attention due to its involvement in multiple important cellular processes. Here, we review the current understanding of TTBK2, including its sequence, structure, binding sites, phosphorylation substrates, and cellular processes involved. TTBK2 possesses a casein kinase 1 (CK1 kinase domain followed by a ~900 amino acid segment, potentially responsible for its localization and substrate recruitment. It is known to bind to CEP164, a centriolar protein, and EB1, a microtubule plus-end tracking protein. In addition to autophosphorylation, known phosphorylation substrates of TTBK2 include tau, tubulin, CEP164, CEP97, and TDP-43, a neurodegeneration-associated protein. Mutations of TTBK2 are associated with spinocerebellar ataxia type 11. In addition, TTBK2 is essential for regulating the growth of axonemal microtubules in ciliogenesis. It also plays roles in resistance of cancer target therapies and in regulating glucose and GABA transport. Reported sites of TTBK2 localization include the centriole/basal body, the midbody, and possibly the mitotic spindles. Together, TTBK2 is a multifunctional kinase involved in important cellular processes and demands augmented efforts in investigating its functions.

  16. Chirality of the cytoskeleton in the origins of cellular asymmetry.

    Science.gov (United States)

    Satir, Peter

    2016-12-19

    Self-assembly of two important components of the cytoskeleton of eukaryotic cells, actin microfilaments and microtubules (MTs) results in polar filaments of one chirality. As is true for bacterial flagella, in actin microfilaments, screw direction is important for assembly processes and motility. For MTs, polar orientation within the cell is paramount. The alignment of these elements in the cell cytoplasm gives rise to emergent properties, including the potential for cell differentiation and specialization. Complex MTs with a characteristic chirality are found in basal bodies and centrioles; this chirality is preserved in cilia. In motile cilia, it is reflected in the direction of the effective stroke. The positioning of the basal body or cilia on the cell surface depends on polarity proteins. In evolution, survival depends on global polarity information relayed to the cell in part by orientation of the MT and actin filament cytoskeletons and the chirality of the basal body to determine left and right coordinates within a defined anterior-posterior cell and tissue axis.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.

  17. Phosphorylation of CPAP by Aurora-A Maintains Spindle Pole Integrity during Mitosis

    Directory of Open Access Journals (Sweden)

    En-Ju Chou

    2016-03-01

    Full Text Available CPAP is required for centriole elongation during S/G2 phase, but the role of CPAP in mitosis is incompletely understood. Here, we show that CPAP maintains spindle pole integrity through its phosphorylation by Aurora-A during mitosis. Depletion of CPAP induced a prolonged delay in mitosis, pericentriolar material (PCM dispersion, and multiple mitotic abnormalities. Further studies demonstrated that CPAP directly interacts with and is phosphorylated by Aurora-A at serine 467 during mitosis. Interestingly, the dispersal of the PCM was effectively rescued by ectopic expression of wild-type CPAP or a phospho-mimic CPAP-S467D mutant, but not a non-phosphorylated CPAP-S467A mutant. Finally, we found that CPAP-S467D has a low affinity for microtubule binding but a high affinity for PCM proteins. Together, our results support a model wherein CPAP is required for proper mitotic progression, and phosphorylation of CPAP by Aurora-A is essential for maintaining spindle pole integrity.

  18. Planomonadida ord. nov. (Apusozoa): ultrastructural affinity with Micronuclearia podoventralis and deep divergences within Planomonas gen. nov.

    Science.gov (United States)

    Cavalier-Smith, Thomas; Chao, Ema E; Stechmann, Alexandra; Oates, Brian; Nikolaev, Sergei

    2008-10-01

    Gliding zooflagellates previously misidentified as Ancyromonas sigmoides, Metopion or Heteromita constitute a new genus Planomonas. Three new Planomonas species (marine P. micra and P. mylnikovi: freshwater P. limna) have extremely divergent 18S rRNA and subtly but consistently different light microscopic morphology, distinguishable from P. (=Ancyromonas) melba comb. nov. and P. (=Bodo) cephalopora comb. nov. Ultrastructurally, P. micra and P. mylnikovi have a sub-plasma membrane dense pellicular layer (except in the ventral feeding pocket whose rim is supported by microtubules), kinetocysts, and flat mitochondrial cristae. Centrioles, connected at approximately 80 degrees by short fibres, have a dense amorphous distal plate below a double axosome and four microtubular roots. Microbody, mitochondrion, and dictyosomes associate with the nucleus. Longitudinal cytokinesis is slow and peculiar; ciliary transformation is from anterior to posterior as in other bikonts. Planomonads, like the non-flagellate Micronuclearia (here grouped with planomonads as Hilomonadea cl. nov.), have an indistinguishable single dense pellicular layer, not a double layer like apusomonads (comprising emended class Thecomonadea, phylum Apusozoa). We also sequenced 18S rDNA for Planomonas howeae sp. nov. and Micronuclearia podoventralis, plus actin genes of P. micra, Micronuclearia, Amastigmonas marina. All were analysed phylogenetically; the Planomonas clade is ancient, diverse and robust: it sometimes groups weakly as sister to Micronuclearia.

  19. Ultrastructural study of spermatogenesis in Phoronopsis harmeri (Lophophorata, Phoronida)

    Science.gov (United States)

    Reunov, Arkadiy; Klepal, Waltraud

    2004-02-01

    The process of sperm development in Phoronopsis harmeri was studied by electron microscopy. Developing spermatogenical cells are aggregated around the capillaries of the haemal plexus. The spermatogonia, which are situated around the capillary walls of the caeca, are remarkable for the presence of germ-line vesicles and contain their centrioles near the cell membrane. The spermatocytes and spermatids are flagellated cells arranged in clusters. During spermiogenesis the basal body/flagellum complex migrates to the apical pole of the spermatid. The acrosome-like structure arises from material produced by the Golgi complex. It lacks a surrounding membrane and has a fibrillar content. The nucleus elongates and the condensation of chromatin is caused by an activation of 'initiation centres'. The late spermatid and the spermatozoon appear as two-armed 'V'-shaped cells in which one arm contains the nucleus and posteriorly located mitochondria, and the other one is the axoneme. Spermatogenesis of P. harmeri is an interesting example of gamete differentiation where advanced sperm structure is combined with a plesiomorphic pattern of sperm development characterized as 'flagellate spermatogenesis'.

  20. Primary cilium - antenna-like structure on the surface of most mammalian cell types

    Science.gov (United States)

    Dvorak, J.; Sitorova, V.; Hadzi Nikolov, D.; Mokry, J.; Richter, I.; Kasaova, L.; Filip, S.; Ryska, A.; Petera, J.

    2011-12-01

    The primary cilium is a sensory solitary non-motile microtubule-based organelle protruding in the quiescent phase of the cell cycle from the surface of the majority of human cells, including embryonic cells, stem cells and stromal cells of malignant tumors. The presence of a primary cilium on the surface of a cell is transient, limited to the quiescent G1(G0) phase and the beginning of the S phase of the cell cycle. The primary cilium is formed from the mother centriole. Primary cilia are key coordinators of signaling pathways during development and tissue homeostasis and, when deffective, they are a major cause of human diseases and developmental disorders, now commonly referred to as ciliopathies. Most cancer cells do not possess a primary cilium. The loss of the primary cilium is a regular feature of neoplastic transformation in the majority of solid tumors. The primary cilium could serve as a tumor suppressor organelle. The aim of this paper was to provide a review of the current knowledge of the primary cilium.

  1. Spermatogenesis in Anthozoa: differentiation of the spermatid.

    Science.gov (United States)

    Lyke, E B; Robson, E A

    1975-01-01

    The fine structure of spermatids has been examined in Calliactis, Protanthea, Gonactinia and Parazoanthus (Cnidaria, Anthozoa). The sperm cells are relatively simple and lack distinct acrosomes. Their nuclei, spherical in the zoanthid, in the actinians are slendertipped cones. Condensation of the chromatin is interpreted in terms of progressive coiling of densely-stained filaments and the elimination of nucleoplasm. Nuclear elongation occurs in the absence of microtubules. A well-developed centriolar complex is attached to the nuclear envelope by fibres and in this area (that of a shallow fossa in actinian spern) the nuclear membranes seem to be thickened. The centrioles are surrounded by a mitochondrial collar, especially pronounced in Calliactis. In contact with the mitochondria and nucleus is a ring of lipid-containing vesicles 300-700 nm in diameter. A system of densely-staining vesicles 150-300 nm in size corresponds to the "pro-acrosomal vesicles" described for other coelenterates. They are scattered in the peripheral cytoplasm and are regarded as derivatives of the endoplasmic reticulum. Problems of organelle function and of differentiation during spermiogenesis are discussed.

  2. Establishment and mitotic characterization of new Drosophila acentriolar cell lines from DSas-4 mutant

    Directory of Open Access Journals (Sweden)

    Nicolas Lecland

    2013-01-01

    In animal cells the centrosome is commonly viewed as the main cellular structure driving microtubule (MT assembly into the mitotic spindle apparatus. However, additional pathways, such as those mediated by chromatin and augmin, are involved in the establishment of functional spindles. The molecular mechanisms involved in these pathways remain poorly understood, mostly due to limitations inherent to current experimental systems available. To overcome these limitations we have developed six new Drosophila cell lines derived from Drosophila homozygous mutants for DSas-4, a protein essential for centriole biogenesis. These cells lack detectable centrosomal structures, astral MT, with dispersed pericentriolar proteins D-PLP, Centrosomin and γ-tubulin. They show poorly focused spindle poles that reach the plasma membrane. Despite being compromised for functional centrosome, these cells could successfully undergo mitosis. Live-cell imaging analysis of acentriolar spindle assembly revealed that nascent MTs are nucleated from multiple points in the vicinity of chromosomes. These nascent MTs then grow away from kinetochores allowing the expansion of fibers that will be part of the future acentriolar spindle. MT repolymerization assays illustrate that acentriolar spindle assembly occurs “inside-out” from the chromosomes. Colchicine-mediated depolymerization of MTs further revealed the presence of a functional Spindle Assembly Checkpoint (SAC in the acentriolar cells. Finally, pilot RNAi experiments open the potential use of these cell lines for the molecular dissection of anastral pathways in spindle and centrosome assembly.

  3. A nano-reference-system based on two orthogonal (molecular micro-goniometers: the centrosome of animal cells.

    Directory of Open Access Journals (Sweden)

    Regolini Marco

    2014-12-01

    Full Text Available The centrosome, because of 9-fold-symmetry of its orthogonalcentrioles and their circumferential polarity (nonequivalence of the nine centriolarblades,each one molecularly distinguishable, constitutes a biological discrete interface, composed of two orthogonal macromolecular protractors, capable of recognizing and decoding morphogenetic instructions, translating them and delivering targeted molecular complexes into their expected 3D real location in the cell: like an interface or a wiring device, the centrosome recognizes each targeting sequence, matches it with the corresponding receptor, soconnectingit with the correctly-oriented microtubule, directed and targeted towards the desired definite cortical compartment.Morphogenetic geometric instructions (DNA coded are translated by the centrosome into actual locations in cells, and, as a consequence, macromolecules, labeled by DNA geometric signals, can be correctly delivered into their programmed cell locations. In addition, the centrosome (the most chiral and enantiomorphous cell structure plays a geometric key role in left-right patterning: axial centriole circumferential polarity, if reversely oriented, constitutes a likely molecular base for bilateral symmetry.

  4. Primary cilia in the basal cells of equine epididymis: a serendipitous finding.

    Science.gov (United States)

    Arrighi, Silvana

    2013-04-01

    Occurrence of a solitary cilium was an unexpected discovery while studying the ultrastructure of epididymal epithelium in equidae. Primary cilia were detected in epididymal basal cells of all individuals of the equines studied - horses, donkey and mules - independently from age and tract of the duct, emerging from the basal cell surface and insinuating into the intercellular spaces. More rarely solitary cilia occurred also at the luminal surface of the principal cells. The ciliary apparatus was constituted by a structurally typical basal body continuous with the finger-like ciliary shaft extending from the cell surface, and an adjacent centriole oriented at right angles to the basal body. The cilium was structured as the typical primary, non-motile cilia found in many mammalian cells, having a 9+0 microtubular pattern. The basal diplosome was randomly associated with other cellular organelles including the Golgi complex, the endoplasmic reticulum, the microfilament network, the plasma membrane, vesicles and pits. Primary ciliogenesis is a new and unexpected finding in the epididymal epithelium. A monitoring role of luminal factors and extracellular liquids might be attributed to this organelle, likely acting as chemical receptor of the luminal environment, thus modulating the epithelial function by a cell-to-cell crosstalk involving the entire epithelium.

  5. Mutation in CEP63 co-segregating with developmental dyslexia in a Swedish family.

    Science.gov (United States)

    Einarsdottir, Elisabet; Svensson, Idor; Darki, Fahimeh; Peyrard-Janvid, Myriam; Lindvall, Jessica M; Ameur, Adam; Jacobsson, Christer; Klingberg, Torkel; Kere, Juha; Matsson, Hans

    2015-11-01

    Developmental dyslexia is the most common learning disorder in children. Problems in reading and writing are likely due to a complex interaction of genetic and environmental factors, resulting in reduced power of studies of the genetic factors underlying developmental dyslexia. Our approach in the current study was to perform exome sequencing of affected and unaffected individuals within an extended pedigree with a familial form of developmental dyslexia. We identified a two-base mutation, causing a p.R229L amino acid substitution in the centrosomal protein 63 kDa (CEP63), co-segregating with developmental dyslexia in this pedigree. This mutation is novel, and predicted to be highly damaging for the function of the protein. 3D modelling suggested a distinct conformational change caused by the mutation. CEP63 is localised to the centrosome in eukaryotic cells and is required for maintaining normal centriole duplication and control of cell cycle progression. We found that a common polymorphism in the CEP63 gene had a significant association with brain white matter volume. The brain regions were partly overlapping with the previously reported region influenced by polymorphisms in the dyslexia susceptibility genes DYX1C1 and KIAA0319. We hypothesise that CEP63 is particularly important for brain development and might control the proliferation and migration of cells when those two events need to be highly coordinated.

  6. Constraints on the evolution of asexual reproduction.

    Science.gov (United States)

    Engelstädter, Jan

    2008-11-01

    Sexual reproduction is almost ubiquitous among multicellular organisms even though it entails severe fitness costs. To resolve this apparent paradox, an extensive body of research has been devoted to identifying the selective advantages of recombination that counteract these costs. Yet, how easy is it to make the transition to asexual reproduction once sexual reproduction has been established for a long time? The present review approaches this question by considering factors that impede the evolution of parthenogenesis in animals. Most importantly, eggs need a diploid chromosome set in most species in order to develop normally. Next, eggs may need to be activated by sperm, and sperm may also contribute centrioles and other paternal factors to the zygote. Depending on how diploidy is achieved mechanistically, further problems may arise in offspring that stem from 'inbreeding depression' or inappropriate sex determination systems. Finally, genomic imprinting is another well-known barrier to the evolution of asexuality in mammals. Studies on species with occasional, deficient parthenogenesis indicate that the relative importance of these constraints may vary widely. The intimate evolutionary relations between haplodiploidy and parthenogenesis as well as implications for the clade selection hypothesis of the maintenance of sexual reproduction are also discussed.

  7. The Primary Cilium in Cell Signaling and Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Michaud III, Edward J [ORNL; Yoder, Bradley [University of Alabama, Birmingham

    2006-01-01

    The primary cilium is a microtubule-based antenna-like structure that emanates from the surface of virtually all cells in the mammalian body. It is anchored to the cell by the basal body, which develops from the mother centriole of the centrosome in a manner that is coordinately regulated with the cell cycle. The primary cilium is a sensory organelle that receives both mechanical and chemical signals from other cells and the environment, and transmits these signals to the nucleus to elicit a cellular response. Recent studies revealed that multiple components of the Sonic hedgehog and plateletderived growth factor receptor-A signal transduction pathways localize to the primary cilium, and that loss of the cilium blocks ligand-induced signaling by both pathways. In light of the major role that these pathways play in numerous types of cancer, we anticipate that the emerging discoveries being made about the function of the primary cilium in signaling pathways that are critical for embryonic development and tissue homeostasis in adults will also provide novel insights into the molecular mechanisms of carcinogenesis. (Cancer Res 2006; 66 13): 6463-7)

  8. Targeting of Fzr/Cdh1 for timely activation of the APC/C at the centrosome during mitotic exit.

    Science.gov (United States)

    Meghini, Francesco; Martins, Torcato; Tait, Xavier; Fujimitsu, Kazuyuki; Yamano, Hiroyuki; Glover, David M; Kimata, Yuu

    2016-08-25

    A multi-subunit ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C), regulates critical cellular processes including the cell cycle. To accomplish its diverse functions, APC/C activity must be precisely regulated in time and space. The interphase APC/C activator Fizzy-related (Fzr or Cdh1) is localized at centrosomes in animal cells. However, neither the mechanism of its localization nor its importance is clear. Here we identify the centrosome component Spd2 as a major partner of Fzr in Drosophila. The localization of Fzr to the centriole during interphase depends on direct interaction with Spd2. By generating Spd2 mutants unable to bind Fzr, we show that centrosomal localization of Fzr is essential for optimal APC/C activation towards its centrosomal substrate Aurora A. Finally, we show that Spd2 is also a novel APC/C(Fzr) substrate. Our study is the first to demonstrate the critical importance of distinct subcellular pools of APC/C activators in the spatiotemporal control of APC/C activity.

  9. The conserved Wdr8-hMsd1/SSX2IP complex localises to the centrosome and ensures proper spindle length and orientation

    Science.gov (United States)

    Hori, Akiko; Morand, Agathe; Ikebe, Chiho; Frith, David; Snijders, Ambrosius P.; Toda, Takashi

    2015-01-01

    The centrosome plays a pivotal role in a wide range of cellular processes and its dysfunction is causally linked to many human diseases including cancer and developmental and neurological disorders. This organelle contains more than one hundred components, and yet many of them remain uncharacterised. Here we identified a novel centrosome protein Wdr8, based upon the structural conservation of the fission yeast counterpart. We showed that Wdr8 constitutively localises to the centrosome and super resolution microscopy uncovered that this protein is enriched at the proximal end of the mother centriole. Furthermore, we identified hMsd1/SSX2IP, a conserved spindle anchoring protein, as one of Wdr8 interactors by mass spectrometry. Wdr8 formed a complex and partially colocalised with hMsd1/SSX2IP. Intriguingly, knockdown of Wdr8 or hMsd1/SSX2IP displayed very similar mitotic defects, in which spindle microtubules became shortened and misoriented. Indeed, Wdr8 depletion resulted in the reduced recruitment of hMsd1/SSX2IP to the mitotic centrosome, though the converse is not true. Together, we propose that the conserved Wdr8-hMsd1/SSX2IP complex plays a critical role in controlling proper spindle length and orientation. PMID:26545777

  10. CHARACTER OF TUMOR ASSOCIATED PROTEIN RECOGNIZED BY MONOCLONAL ANTIBODY AGAINST YUNNAN GEJIU LUNG CANCER

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objectives: To identify and characterize lung cancer associated protein N35 and attempt to learn the prospective possibility of the clinical application of the protein N35. Methods: Immunoprecipitation, immunoblotting, differential centrifigation and subcellular assay, immunohistochemistry, N-glycanase digestion, mitotic cell immunoflourescence and multiple methods of affinity chromatography have been used with the monoclonal antibody N-35 to detect the distribution of the protein N35 among the various cancer cell lines and normal human tissue, the relationship between the protein N35 and glycoprotein, the location of the subcellular structure and chromosomal domain of the protein N35,the most effective way of purification of tumor associated protein N35. Results: The protein N35 is a glycoprotein, distributes to the human lung cancer cell line GLC-82, human cervical cancer cell line Hela, human hepatic cancer cell line HepG-2 and human breast cancer cell line PMC with different relative molecular mass(Mr), but no expression of the protein ingredient in normal human fresh tissue; concentrates at the nuclei significantly ,much more than at the mitochondrail and membrane, locates at the centriole of the chromosomal domain. Conclusions: The lung cancer associated protein N35 might be expressed only by the cancer cells and related with the proliferation of cancer cells as a role of tumor cell growth regulator.

  11. Phosphorylation of CPAP by Aurora-A Maintains Spindle Pole Integrity during Mitosis.

    Science.gov (United States)

    Chou, En-Ju; Hung, Liang-Yi; Tang, Chieh-Ju C; Hsu, Wen-Bin; Wu, Hsin-Yi; Liao, Pao-Chi; Tang, Tang K

    2016-03-29

    CPAP is required for centriole elongation during S/G2 phase, but the role of CPAP in mitosis is incompletely understood. Here, we show that CPAP maintains spindle pole integrity through its phosphorylation by Aurora-A during mitosis. Depletion of CPAP induced a prolonged delay in mitosis, pericentriolar material (PCM) dispersion, and multiple mitotic abnormalities. Further studies demonstrated that CPAP directly interacts with and is phosphorylated by Aurora-A at serine 467 during mitosis. Interestingly, the dispersal of the PCM was effectively rescued by ectopic expression of wild-type CPAP or a phospho-mimic CPAP-S467D mutant, but not a non-phosphorylated CPAP-S467A mutant. Finally, we found that CPAP-S467D has a low affinity for microtubule binding but a high affinity for PCM proteins. Together, our results support a model wherein CPAP is required for proper mitotic progression, and phosphorylation of CPAP by Aurora-A is essential for maintaining spindle pole integrity.

  12. Fidgetin-like 1 is a ciliogenesis-inhibitory centrosome protein.

    Science.gov (United States)

    Zhao, Xiaoyu; Jin, Miaomiao; Wang, Mengzhu; Sun, Lili; Hong, Xuejiao; Cao, Ying; Wang, Chunguang

    2016-09-01

    Fidgetin-like 1 (FIGL-1) is a homolog of fidgetin, an AAA protein that was identified as the protein encoded by the gene mutated in fidget mice. Because the phenotypes of fidget mice are reminiscent of the phenotypes of ciliopathy diseases, and because fidgetin has microtubule-severing activity, we hypothesize that these proteins participate in cilia-related processes. Indeed, overexpression of FIGL-1 interfered with ciliogenesis in cultured cells. In particular, overexpressed FIGL-1 strongly accumulated at the centrosome, and, when highly expressed, perturbed the localization of centrosomal proteins such as pericentrin, CP110, and centrin. Using a polyclonal antibody against human FIGL-1, we found that endogenous FIGL-1 localized preferentially around the mother centriole. Consistently, depletion of FIGL-1 by shRNA treatment enhanced ciliogenesis in HEK293T cells. By checking the integrity of the cytoplasmic microtubule network in FIGL-1-overexpressing cells, we found that FIGL-1 probably has microtubule-severing activity, as suggested by its sequence homology with other microtubule-severing proteins. Furthermore, we showed that overexpression of FIGL-1 in zebrafish embryo decreased the length of cilia and perturbed the heart laterality. Taken together, these results demonstrate that FIGL-1 is a new centrosomal protein and inhibits ciliogenesis. These results extend the already long list of centrosomal proteins and provide new insights into the regulation of ciliogenesis.

  13. Meier-Gorlin syndrome mutations disrupt an Orc1 CDK inhibitory domain and cause centrosome reduplication.

    Science.gov (United States)

    Hossain, Manzar; Stillman, Bruce

    2012-08-15

    Like DNA replication, centrosomes are licensed to duplicate once per cell division cycle to ensure genetic stability. In addition to regulating DNA replication, the Orc1 subunit of the human origin recognition complex controls centriole and centrosome copy number. Here we report that Orc1 harbors a PACT centrosome-targeting domain and a separate domain that differentially inhibits the protein kinase activities of Cyclin E-CDK2 and Cyclin A-CDK2. A cyclin-binding motif (Cy motif) is required for Orc1 to bind Cyclin A and inhibit Cyclin A-CDK2 kinase activity but has no effect on Cyclin E-CDK2 kinase activity. In contrast, Orc1 inhibition of Cyclin E-CDK2 kinase activity occurs by a different mechanism that is affected by Orc1 mutations identified in Meier-Gorlin syndrome patients. The cyclin/CDK2 kinase inhibitory domain of Orc1, when tethered to the PACT domain, localizes to centrosomes and blocks centrosome reduplication. Meier-Gorlin syndrome mutations that disrupt Cyclin E-CDK2 kinase inhibition also allow centrosome reduplication. Thus, Orc1 contains distinct domains that control centrosome copy number and DNA replication. We suggest that the Orc1 mutations present in some Meier-Gorlin syndrome patients contribute to the pronounced microcephaly and dwarfism observed in these individuals by altering centrosome duplication in addition to DNA replication defects.

  14. FISH detection of ribosomal cistrons and assortment-distortion for X and B chromosomes in Dichroplus pratensis (Acrididae).

    Science.gov (United States)

    Bidau, C J; Rosato, M; Martí, D A

    2004-01-01

    Assortment-distortion with respect to the X and NOR activity of a rare mitotically stable B chromosome (B(N)), was examined in 16 males of Dichroplus pratensis (Acrididae: Melanoplinae) from Argentine populations. In 1B individuals, the X and B associate preferentially during prophase I reaching a maximum level of association at zygotene. Frequency of X/B association remains relatively high up to diplotene-diakinesis and decreases steeply towards metaphase I. The percent X/B association at each stage is positively influenced by association at the previous stage, and interindividual variability in X/B association decreases as the frequency of association increases. Both chromosomes tended to preferentially orientate toward the same pole at MI (mean ratio of 16 individuals, 1.50:1) which determined an excess of XB and 00 second spermatocytes over X0 and 0B ones (1.39:1). No significant differences occurred between the MI, AI and MII assortment ratios. Fluorescent in situ hybridisation (FISH) confirmed that the B chromosome carries ribosomal genes and helped to establish that, during spermiogenesis, both the B and the normal NOR-bearing chromosome (S8) are clustered near the centriole adjunct region of spermatids. However, FISH failed to reveal the existence of inactive ribosomal cistrons in the X chromosome, as previously suggested, thus providing no support to a simple origin of the B from the X.

  15. The sperm of Matsucoccus feytaudi (Insecta, Coccoidea): Can the microtubular bundle be considered as a true flagellum?

    Science.gov (United States)

    Paoli, Francesco; Roversi, Pio Federico; Benassai, Daniele; Squarcini, Michele; Mercati, David; Dallai, Romano

    2015-03-01

    In the present work the spermiogenesis and sperm structure of Matsucoccus feytaudi, a primary pest of the maritime pine in southern eastern Europe, is studied. In addition to the already known characteristics of coccid sperm, such as the absence of the acrosome and mitochondria, and the presence of a bundle of microtubules responsible for sperm motility, a peculiar structure from which the microtubule bundle takes origin is described. Such a structure--a short cylinder provided with a central hub surrounded by several microtubules with a dense wall--is regarded as a Microtubule Organizing Centre (MTOC). During spermiogenesis, quartets of fused spermatids are formed; from each spermatid, a bundle of microtubules, generated by the MTOC, projects from the cell surface. Each cell has two centrioles, suggesting the lack of a meiotic process and the occurrence of parthenogenesis. At the end of the spermiogenesis, when the cysts containing bundles of sperm are formed, part of the nuclear material together with the MTOC structure is eliminated. Based on the origin of the microtubular bundle from the MTOC, the nature of the bundle as a flagellum is discussed.

  16. Caenorhabditis elegans glutamylating enzymes function redundantly in male mating.

    Science.gov (United States)

    Chawla, Daniel G; Shah, Ruchi V; Barth, Zachary K; Lee, Jessica D; Badecker, Katherine E; Naik, Anar; Brewster, Megan M; Salmon, Timothy P; Peel, Nina

    2016-09-15

    Microtubule glutamylation is an important modulator of microtubule function and has been implicated in the regulation of centriole stability, neuronal outgrowth and cilia motility. Glutamylation of the microtubules is catalyzed by a family of tubulin tyrosine ligase-like (TTLL) enzymes. Analysis of individual TTLL enzymes has led to an understanding of their specific functions, but how activities of the TTLL enzymes are coordinated to spatially and temporally regulate glutamylation remains relatively unexplored. We have undertaken an analysis of the glutamylating TTLL enzymes in C. elegans We find that although all five TTLL enzymes are expressed in the embryo and adult worm, loss of individual enzymes does not perturb microtubule function in embryonic cell divisions. Moreover, normal dye-filling, osmotic avoidance and male mating behavior indicate the presence of functional amphid cilia and male-specific neurons. A ttll-4(tm3310); ttll-11(tm4059); ttll-5(tm3360) triple mutant, however, shows reduced male mating efficiency due to a defect in the response step, suggesting that these three enzymes function redundantly, and that glutamylation is required for proper function of the male-specific neurons.

  17. A closed conformation of the Caenorhabditis elegans separase–securin complex

    Science.gov (United States)

    Bachmann, Gudrun; Richards, Mark W.; Winter, Anja; Beuron, Fabienne; Morris, Edward

    2016-01-01

    The protease separase plays a key role in sister chromatid disjunction and centriole disengagement. To maintain genomic stability, separase activity is strictly regulated by binding of an inhibitory protein, securin. Despite its central role in cell division, the separase and securin complex is poorly understood at the structural level. This is partly owing to the difficulty of generating a sufficient quantity of homogeneous, stable protein. Here, we report the production of Caenorhabditis elegans separase–securin complex, and its characterization using biochemical methods and by negative staining electron microscopy. Single particle analysis generated a density map at a resolution of 21–24 Å that reveals a close, globular structure of complex connectivity harbouring two lobes. One lobe matches closely a homology model of the N-terminal HEAT repeat domain of separase, whereas the second lobe readily accommodates homology models of the separase C-terminal death and caspase-like domains. The globular structure of the C. elegans separase–securin complex contrasts with the more elongated structure previously described for the Homo sapiens complex, which could represent a different functional state of the complex, suggesting a mechanism for the regulation of separase activity through conformational change. PMID:27249343

  18. “Stop Ne(c)king around”: How interactomics contributes to functionally characterize Nek family kinases

    Institute of Scientific and Technical Information of China (English)

    Gabriela; Vaz; Meirelles; Arina; Marina; Perez; Edmárcia; Elisa; de; Souza; Ferna; Luisa; Basei; Priscila; Ferreira; Papa; Talita; Diniz; Melo; Hanchuk; Vanessa; Bomfim; Cardoso; Jrg; Kobarg

    2014-01-01

    Aside from Polo and Aurora, a third but less studied kinase family involved in mitosis regulation is the never in mitosis-gene A(NIMA)-related kinases(Neks). The founding member of this family is the sole member NIMA of Aspergillus nidulans, which is crucial for the initiation of mitosis in that organism. All 11 human Neks have been functionally assigned to one of the three core functions established for this family in mammals:(1) centrioles/mitosis;(2) primary ciliary function/ciliopathies; and(3) DNA damage response(DDR). Recent findings, especially on Nek 1 and 8, showed however, that several Neks participate in parallel in at least two of these contexts: primary ciliary function and DDR. In the core section of this in-depth review, we report the current detailed functional knowledge on each of the 11 Neks. In the discussion, we return to the cross-connections among Neks and point out how our and other groups’ functional and interactomics studies revealed that most Neks interact with protein partners associated with two if not all three of the functional contexts. We then raise the hypothesis that Neks may be the connecting regulatory elements that allow the cell to fine tune and synchronize the cellular events associated with these three core functions. The new and exciting findings on the Nek family open new perspectives and should allow the Neks to finally claim the attention they deserve in the field of kinases and cell cycle biology.

  19. Oscillatory fluid flow influences primary cilia and microtubule mechanics.

    Science.gov (United States)

    Espinha, Lina C; Hoey, David A; Fernandes, Paulo R; Rodrigues, Hélder C; Jacobs, Christopher R

    2014-07-01

    Many tissues are sensitive to mechanical stimuli; however, the mechanotransduction mechanism used by cells remains unknown in many cases. The primary cilium is a solitary, immotile microtubule-based extension present on nearly every mammalian cell which extends from the basal body. The cilium is a mechanosensitive organelle and has been shown to transduce fluid flow-induced shear stress in tissues, such as the kidney and bone. The majority of microtubules assemble from the mother centriole (basal body), contributing significantly to the anchoring of the primary cilium. Several studies have attempted to quantify the number of microtubules emanating from the basal body and the results vary depending on the cell type. It has also been shown that cellular response to shear stress depends on microtubular integrity. This study hypothesizes that changing the microtubule attachment of primary cilia in response to a mechanical stimulus could change primary cilia mechanics and, possibly, mechanosensitivity. Oscillatory fluid flow was applied to two different cell types and the microtubule attachment to the ciliary base was quantified. For the first time, an increase in microtubules around primary cilia both with time and shear rate in response to oscillatory fluid flow stimulation was demonstrated. Moreover, it is presented that the primary cilium is required for this loading-induced cellular response. This study has demonstrated a new role for the cilium in regulating alterations in the cytoplasmic microtubule network in response to mechanical stimulation, and therefore provides a new insight into how cilia may regulate its mechanics and thus the cells mechanosensitivity.

  20. Tubulin nucleotide status controls Sas-4-dependent pericentriolar material recruitment.

    Science.gov (United States)

    Gopalakrishnan, Jayachandran; Chim, Yiu-Cheung Frederick; Ha, Andrew; Basiri, Marcus L; Lerit, Dorothy A; Rusan, Nasser M; Avidor-Reiss, Tomer

    2012-08-01

    Regulated centrosome biogenesis is required for accurate cell division and for maintaining genome integrity. Centrosomes consist of a centriole pair surrounded by a protein network known as pericentriolar material (PCM). PCM assembly is a tightly regulated, critical step that determines the size and capability of centrosomes. Here, we report a role for tubulin in regulating PCM recruitment through the conserved centrosomal protein Sas-4. Tubulin directly binds to Sas-4; together they are components of cytoplasmic complexes of centrosomal proteins. A Sas-4 mutant, which cannot bind tubulin, enhances centrosomal protein complex formation and has abnormally large centrosomes with excessive activity. These results suggest that tubulin negatively regulates PCM recruitment. Whereas tubulin-GTP prevents Sas-4 from forming protein complexes, tubulin-GDP promotes it. Thus, the regulation of PCM recruitment by tubulin depends on its GTP/GDP-bound state. These results identify a role for tubulin in regulating PCM recruitment independent of its well-known role as a building block of microtubules. On the basis of its guanine-bound state, tubulin can act as a molecular switch in PCM recruitment.

  1. An essential role of the basal body protein SAS-6 in Plasmodium male gamete development and malaria transmission.

    Science.gov (United States)

    Marques, Sara R; Ramakrishnan, Chandra; Carzaniga, Raffaella; Blagborough, Andrew M; Delves, Michael J; Talman, Arthur M; Sinden, Robert E

    2015-02-01

    Gametocytes are the sole Plasmodium parasite stages that infect mosquitoes; therefore development of functional gametes is required for malaria transmission. Flagellum assembly of the Plasmodium male gamete differs from that of most other eukaryotes in that it is intracytoplasmic but retains a key conserved feature: axonemes assemble from basal bodies. The centriole/basal body protein SAS-6 normally regulates assembly and duplication of these organelles and its depletion causes severe flagellar/ciliary abnormalities in a diverse array of eukaryotes. Since basal body and flagellum assembly are intimately coupled to male gamete development in Plasmodium, we hypothesized that SAS-6 disruption may cause gametogenesis defects and perturb transmission. We show that Plasmodium berghei sas6 knockouts display severely abnormal male gametogenesis presenting reduced basal body numbers, axonemal assembly defects and abnormal nuclear allocation. The defects in gametogenesis reduce fertilization and render Pbsas6 knockouts less infectious to mosquitoes. Additionally, we show that lack of Pbsas6 blocks transmission from mosquito to vertebrate host, revealing an additional yet undefined role in ookinete to sporulating oocysts transition. These findings underscore the vulnerability of the basal body/SAS-6 to malaria transmission blocking interventions.

  2. Polo-like kinase phosphorylation determines Caenorhabditis elegans centrosome size and density by biasing SPD-5 toward an assembly-competent conformation

    Science.gov (United States)

    Wueseke, Oliver; Zwicker, David; Schwager, Anne; Wong, Yao Liang; Oegema, Karen; Jülicher, Frank; Hyman, Anthony A.

    2016-01-01

    ABSTRACT Centrosomes are major microtubule-organizing centers composed of centrioles surrounded by an extensive proteinacious layer called the pericentriolar material (PCM). In Caenorhabditis elegans embryos, the mitotic PCM expands by Polo-like kinase 1 (PLK-1) phosphorylation-accelerated assembly of SPD-5 molecules into supramolecular scaffolds. However, how PLK-1 phosphorylation regulates SPD-5 assembly is not known. We found that a mutant version of SPD-5 that is insensitive to PLK-1 phosphorylation (SPD-54A) could localize to PCM but was unable to rescue the reduction in PCM size and density when wild-type SPD-5 levels were decreased. In vitro, purified SPD-54A self-assembled into functional supramolecular scaffolds over long time scales, suggesting that phosphorylation only controls the rate of SPD-5 scaffold assembly. Furthermore, the SPD-5 scaffold, once assembled, remained intact and supported microtubule nucleation in the absence of PLK-1 activity in vivo. We conclude that PLK-1 is required for rapid assembly of the PCM scaffold but not for scaffold maintenance or function. Based on this idea, we developed a theoretical model that adequately predicted PCM growth rates in different mutant conditions in vivo. We propose that PLK-1 phosphorylation-dependent conversion of SPD-5 into an assembly-competent form underlies PCM formation in vivo and that the rate of this conversion determines final PCM size and density. PMID:27591191

  3. A closed conformation of the Caenorhabditis elegans separase-securin complex.

    Science.gov (United States)

    Bachmann, Gudrun; Richards, Mark W; Winter, Anja; Beuron, Fabienne; Morris, Edward; Bayliss, Richard

    2016-04-01

    The protease separase plays a key role in sister chromatid disjunction and centriole disengagement. To maintain genomic stability, separase activity is strictly regulated by binding of an inhibitory protein, securin. Despite its central role in cell division, the separase and securin complex is poorly understood at the structural level. This is partly owing to the difficulty of generating a sufficient quantity of homogeneous, stable protein. Here, we report the production of Caenorhabditis elegans separase-securin complex, and its characterization using biochemical methods and by negative staining electron microscopy. Single particle analysis generated a density map at a resolution of 21-24 Å that reveals a close, globular structure of complex connectivity harbouring two lobes. One lobe matches closely a homology model of the N-terminal HEAT repeat domain of separase, whereas the second lobe readily accommodates homology models of the separase C-terminal death and caspase-like domains. The globular structure of the C. elegans separase-securin complex contrasts with the more elongated structure previously described for the Homo sapiens complex, which could represent a different functional state of the complex, suggesting a mechanism for the regulation of separase activity through conformational change.

  4. Organizational changes of the daughter basal complex during the parasite replication of Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Ke Hu

    2008-01-01

    Full Text Available The apicomplexans are a large group of parasitic protozoa, many of which are important human and animal pathogens, including Plasmodium falciparum and Toxoplasma gondii. These parasites cause disease only when they replicate, and their replication is critically dependent on the proper assembly of the parasite cytoskeletons during cell division. In addition to their importance in pathogenesis, the apicomplexan parasite cytoskeletons are spectacular structures. Therefore, understanding the cytoskeletal biogenesis of these parasites is important not only for parasitology but also of general interest to broader cell biology. Previously, we found that the basal end of T. gondii contains a novel cytoskeletal assembly, the basal complex, a cytoskeletal compartment constructed in concert with the daughter cortical cytoskeleton during cell division. This study focuses on key events during the biogenesis of the basal complex using high resolution light microscopy, and reveals that daughter basal complexes are established around the duplicated centrioles independently of the structural integrity of the daughter cortical cytoskeleton, and that they are dynamic "caps" at the growing ends of the daughters. Compartmentation and polarization of the basal complex is first revealed at a late stage of cell division upon the recruitment of an EF-hand containing calcium binding protein, TgCentrin2. This correlates with the constriction of the basal complex, a process that can be artificially induced by increasing cellular calcium concentration. The basal complex is therefore likely to be a new kind of centrin-based contractile apparatus.

  5. The Plk1 target Kizuna stabilizes mitotic centrosomes to ensure spindle bipolarity.

    Science.gov (United States)

    Oshimori, Naoki; Ohsugi, Miho; Yamamoto, Tadashi

    2006-10-01

    Formation of a bipolar spindle is essential for faithful chromosome segregation at mitosis. Because centrosomes define spindle poles, defects in centrosome number and structural organization can lead to a loss of bipolarity. In addition, microtubule-mediated pulling and pushing forces acting on centrosomes and chromosomes are also important for bipolar spindle formation. Polo-like kinase 1 (Plk1) is a highly conserved Ser/Thr kinase that has essential roles in the formation of a bipolar spindle with focused poles. However, the mechanism by which Plk1 regulates spindle-pole formation is poorly understood. Here, we identify a novel centrosomal substrate of Plk1, Kizuna (Kiz), depletion of which causes fragmentation and dissociation of the pericentriolar material from centrioles at prometaphase, resulting in multipolar spindles. We demonstrate that Kiz is critical for establishing a robust mitotic centrosome architecture that can endure the forces that converge on the centrosomes during spindle formation, and suggest that Plk1 maintains the integrity of the spindle poles by phosphorylating Kiz.

  6. Downregulation of Protein 4.1R impairs centrosome function,bipolar spindle organization and anaphase

    Energy Technology Data Exchange (ETDEWEB)

    Spence, Jeffrey R.; Go, Minjoung M.; Bahmanyar, S.; Barth,A.I.M.; Krauss, Sharon Wald

    2006-03-17

    Centrosomes nucleate and organize interphase MTs and areinstrumental in the assembly of the mitotic bipolar spindle. Here wereport that two members of the multifunctional protein 4.1 family havedistinct distributions at centrosomes. Protein 4.1R localizes to maturecentrioles whereas 4.1G is a component of the pericentriolar matrixsurrounding centrioles. To selectively probe 4.1R function, we used RNAinterference-mediated depletion of 4.1R without decreasing 4.1Gexpression. 4.1R downregulation reduces MT anchoring and organization atinterphase and impairs centrosome separation during prometaphase.Metaphase chromosomes fail to properly condense/align and spindleorganization is aberrant. Notably 4.1R depletion causes mislocalizationof its binding partner NuMA (Nuclear Mitotic Apparatus Protein),essential for spindle pole focusing, and disrupts ninein. Duringanaphase/telophase, 4.1R-depleted cells have lagging chromosomes andaberrant MT bridges. Our data provide functional evidence that 4.1R makescrucial contributions to centrosome integrity and to mitotic spindlestructure enabling mitosis and anaphase to proceed with the coordinatedprecision required to avoid pathological events.

  7. PCM1 Depletion Inhibits Glioblastoma Cell Ciliogenesis and Increases Cell Death and Sensitivity to Temozolomide

    Directory of Open Access Journals (Sweden)

    Lan B. Hoang-Minh

    2016-10-01

    Full Text Available A better understanding of the molecules implicated in the growth and survival of glioblastoma (GBM cells and their response to temozolomide (TMZ, the standard-of-care chemotherapeutic agent, is necessary for the development of new therapies that would improve the outcome of current GBM treatments. In this study, we characterize the role of pericentriolar material 1 (PCM1, a component of centriolar satellites surrounding centrosomes, in GBM cell proliferation and sensitivity to genotoxic agents such as TMZ. We show that PCM1 is expressed around centrioles and ciliary basal bodies in patient GBM biopsies and derived cell lines and that its localization is dynamic throughout the cell cycle. To test whether PCM1 mediates GBM cell proliferation and/or response to TMZ, we used CRISPR/Cas9 genome editing to generate primary GBM cell lines depleted of PCM1. These PCM1-depleted cells displayed reduced AZI1 satellite protein localization and significantly decreased proliferation, which was attributable to increased apoptotic cell death. Furthermore, PCM1-depleted lines were more sensitive to TMZ toxicity than control lines. The increase in TMZ sensitivity may be partly due to the reduced ability of PCM1-depleted cells to form primary cilia, as depletion of KIF3A also ablated GBM cells' ciliogenesis and increased their sensitivity to TMZ while preserving PCM1 localization. In addition, the co-depletion of KIF3A and PCM1 did not have any additive effect on TMZ sensitivity. Together, our data suggest that PCM1 plays multiple roles in GBM pathogenesis and that associated pathways could be targeted to augment current or future anti-GBM therapies.

  8. Mitochondrial genome regulates mitotic fidelity by maintaining centrosomal homeostasis.

    Science.gov (United States)

    Donthamsetty, Shashikiran; Brahmbhatt, Meera; Pannu, Vaishali; Rida, Padmashree C G; Ramarathinam, Sujatha; Ogden, Angela; Cheng, Alice; Singh, Keshav K; Aneja, Ritu

    2014-01-01

    Centrosomes direct spindle morphogenesis to assemble a bipolar mitotic apparatus to enable error-free chromosome segregation and preclude chromosomal instability (CIN). Amplified centrosomes, a hallmark of cancer cells, set the stage for CIN, which underlies malignant transformation and evolution of aggressive phenotypes. Several studies report CIN and a tumorigenic and/or aggressive transformation in mitochondrial DNA (mtDNA)-depleted cells. Although several nuclear-encoded proteins are implicated in centrosome duplication and spindle organization, the involvement of mtDNA encoded proteins in centrosome amplification (CA) remains elusive. Here we show that disruption of mitochondrial function by depletion of mtDNA induces robust CA and mitotic aberrations in osteosarcoma cells. We found that overexpression of Aurora A, Polo-like kinase 4 (PLK4), and Cyclin E was associated with emergence of amplified centrosomes. Supernumerary centrosomes in rho0 (mtDNA-depleted) cells resulted in multipolar mitoses bearing "real" centrosomes with paired centrioles at the multiple poles. This abnormal phenotype was recapitulated by inhibition of respiratory complex I in parental cells, suggesting a role for electron transport chain (ETC) in maintaining numeral centrosomal homeostasis. Furthermore, rho0 cells displayed a decreased proliferative capacity owing to a G 2/M arrest. Downregulation of nuclear-encoded p53 in rho0 cells underscores the importance of mitochondrial and nuclear genome crosstalk and may perhaps underlie the observed mitotic aberrations. By contrast, repletion of wild-type mtDNA in rho0 cells (cybrid) demonstrated a much lesser extent of CA and spindle multipolarity, suggesting partial restoration of centrosomal homeostasis. Our study provides compelling evidence to implicate the role of mitochondria in regulation of centrosome duplication, spindle architecture, and spindle pole integrity.

  9. Genetically determined patozoospermia. Literature review and research results

    Directory of Open Access Journals (Sweden)

    E. E. Bragina

    2015-01-01

    Full Text Available Genetic factors (chromosomal aberrations and point mutations are the cause of infertility in 10–15 % of men with impaired fertility. Homogeneous structural and functional defects in the sperm or the total terato-, asthenozoospermia – rare cases of genetically determined male infertility, are autosomal recessive diseases. Currently, described 4 types of «syndromic» spermopatology. 1. Primary ciliary dyskinesia (PCD in men with total asthenozoospermia. Affects axoneme structures (microtubules, dynein arms, radial spokes. It identified more than 20 chromosomal loci responsible for the development of the PCD. 2. Dysplasia of the fibrous sheath of sperm tail in men with asthenozoospermia. The shortened and thickened sperm tail observed with disorganization of vertical columns and cross ribs of the fibrous sheath. Candidate genes – genes family ACAP. 3. Globozoospermia in men with teratozoospermia characterized by the presence of sperm with round heads, primary lack of acrosome and disorganization middle part of the flagellum. Found mutations or deletions of genes SPATA16, PICK1 and DPY19L2. 4. Syndrome decapitated spermatozoa in men with teratozoospermia (microcephaly. Abnormalities in the spermiogenesis development of connecting part jf the tail and proximal (morphologically normal centrioles.In 2012–2014 years we have studied the ultrastructure of 2267 semen samples of men with impaired fertility. Globozoospermia revealed in 7 patients, dysplasia of the fibrous sheath – 13, decapitated sperm – in one. PCD was revealed in 4 patients (lack of axoneme dynein arms was found in 1 patient, absence of axoneme radial spokes – in 3 patients.The problem of genetically determined patozoospermya must be taken into account when the assisted reproductive technologies practises. There are few cases of successful assisted reproductive technologies with sperm of these patients. We don»t know the etiological factors of syndromic spermopatologe, so

  10. Biciliated ependymal cell proliferation contributes to spinal cord growth.

    Science.gov (United States)

    Alfaro-Cervello, Clara; Soriano-Navarro, Mario; Mirzadeh, Zaman; Alvarez-Buylla, Arturo; Garcia-Verdugo, Jose Manuel

    2012-10-15

    Two neurogenic regions have been described in the adult brain, the lateral ventricle subventricular zone and the dentate gyrus subgranular zone. It has been suggested that neural stem cells also line the central canal of the adult spinal cord. Using transmission and scanning electron microscopy and immunostaining, we describe here the organization and cell types of the central canal epithelium in adult mice. The identity of dividing cells was determined by 3D ultrastructural reconstructions of [(3) H]thymidine-labeled cells and confocal analysis of bromodeoxyuridine labeling. The most common cell type lining the central canal had two long motile (9+2) cilia and was vimentin+, CD24+, FoxJ1+, Sox2+, and CD133+, but nestin- and glial fibrillary acidic protein (GFAP)-. These biciliated ependymal cells of the central canal (Ecc) resembled E2 cells of the lateral ventricles, but their basal bodies were different from those of E2 or E1 cells. Interestingly, we frequently found Ecc cells with two nuclei and four cilia, suggesting they are formed by incomplete cytokinesis or cell fusion. GFAP+ astrocytes with a single cilium and an orthogonally oriented centriole were also observed. The majority of dividing cells corresponded to biciliated Ecc cells. Central canal proliferation was most common during the active period of spinal cord growth. Pairs of labeled Ecc cells were observed within the central canal in adult mice 2.5 weeks post labeling. Our work suggests that the vast majority of postnatal dividing cells in the central canal are Ecc cells and their proliferation is associated with the growth of the spinal cord.

  11. Predation and eukaryote cell origins: a coevolutionary perspective.

    Science.gov (United States)

    Cavalier-Smith, T

    2009-02-01

    Cells are of only two kinds: bacteria, with DNA segregated by surface membrane motors, dating back approximately 3.5Gy; and eukaryotes, which evolved from bacteria, possibly as recently as 800-850My ago. The last common ancestor of eukaryotes was a sexual phagotrophic protozoan with mitochondria, one or two centrioles and cilia. Conversion of bacteria (=prokaryotes) into a eukaryote involved approximately 60 major innovations. Numerous contradictory ideas about eukaryogenesis fail to explain fundamental features of eukaryotic cell biology or conflict with phylogeny. Data are best explained by the intracellular coevolutionary theory, with three basic tenets: (1) the eukaryotic cytoskeleton and endomembrane system originated through cooperatively enabling the evolution of phagotrophy; (2) phagocytosis internalised DNA-membrane attachments, unavoidably disrupting bacterial division; recovery entailed the evolution of the nucleus and mitotic cycle; (3) the symbiogenetic origin of mitochondria immediately followed the perfection of phagotrophy and intracellular digestion, contributing greater energy efficiency and group II introns as precursors of spliceosomal introns. Eukaryotes plus their archaebacterial sisters form the clade neomura, which evolved from a radically modified derivative of an actinobacterial posibacterium that had replaced the ancestral eubacterial murein peptidoglycan by N-linked glycoproteins, radically modified its DNA-handling enzymes, and evolved cotranslational protein secretion, but not the isoprenoid-ether lipids of archaebacteria. I focus on this phylogenetic background and on explaining how in response to novel phagotrophic selective pressures and ensuing genome internalisation this prekaryote evolved efficient digestion of prey proteins by retrotranslocation and 26S proteasomes, then internal digestion by phagocytosis, lysosomes, and peroxisomes, and eukaryotic vesicle trafficking and intracellular compartmentation.

  12. Morphology and ultrastructure of Brachymystax lenok tsinlingensis spermatozoa by scanning and transmission electron microscopy.

    Science.gov (United States)

    Guo, Wei; Shao, Jian; Li, Ping; Wu, Jinming; Wei, Qiwei

    2016-08-01

    This study was conducted to investigate Brachymystax lenok tsinlingensis spermatozoa cell morphology and ultrastructure through scanning and transmission electron microscopy. Findings revealed that the spermatozoa can be differentiated into three major parts: a spherical head without an acrosome, a short mid-piece, and a long, cylindrical flagellum. The mean length of the spermatozoa was 36.11±2.84μm, with a spherical head length of 2.78±0.31μm. The mean anterior and posterior head widths were 2.20±0.42μm and 2.55±0.53μm, respectively. The nuclear fossa was positioned at the base of the nucleus that contained the anterior portion of flagellum and a centriolar complex (proximal and distal centrioles). The short mid-piece was located laterally to the nucleus and possessed just one spherical mitochondrion with a mean diameter of 0.65±0.14μm. The spermatozoa flagellum was long and cylindrical, and could be separated into two parts: a long main-piece and a short end-piece. The main piece of the flagellum had short irregular side-fins. The axoneme composed the typical '9+2' microtubular doublet structure and was enclosed by the cell membran e. This study confirmed that B. lenok tsinlingensis spermatozoa can be categorized as teleostean "Type I" spermatozoa; 'primitive' or 'ect-aquasperm type' spermatozoa. To the best of the authers knowledge, this was the first study conducted on the morphology and ultrastructure of B. lenok tsinlingensis spermatozoa.

  13. CDC25B overexpression stabilises centrin 2 and promotes the formation of excess centriolar foci.

    Directory of Open Access Journals (Sweden)

    Rose Boutros

    Full Text Available CDK-cyclin complexes regulate centriole duplication and microtubule nucleation at specific cell cycle stages, although their exact roles in these processes remain unclear. As the activities of CDK-cyclins are themselves positively regulated by CDC25 phosphatases, we investigated the role of centrosomal CDC25B during interphase. We report that overexpression of CDC25B, as is commonly found in human cancer, results in a significant increase in centrin 2 at the centrosomes of interphase cells. Conversely, CDC25B depletion causes a loss of centrin 2 from the centrosome, which can be rescued by treatment with the proteasome inhibitor MG132. CDC25B overexpression also promotes the formation of excess centrin 2 "foci". These foci can accumulate other centrosome proteins, including γ-tubulin and PCM-1, and can function as microtubule organising centres, indicating that these represent functional centrosomes. Formation of centrin 2 foci can be blocked by specific inhibition of CDK2 but not CDK1. CDK2-mediated phosphorylation of Monopolar spindle 1 (Mps1 at the G1/S transition is essential for the initiation of centrosome duplication, and Mps1 is reported to phosphorylate centrin 2. Overexpression of wild-type or non-degradable Mps1 exacerbated the formation of excess centrin 2 foci induced by CDC25B overexpression, while kinase-dead Mps1 has a protective effect. Together, our data suggest that CDC25B, through activation of a centrosomal pool of CDK2, stabilises the local pool of Mps1 which in turn regulates the level of centrin 2 at the centrosome. Overexpression of CDC25B may therefore contribute to tumourigenesis by perturbing the natural turnover of centrosome proteins such as Mps1 and centrin 2, thus resulting in the de novo assembly of extra-numerary centrosomes and potentiating chromosome instability.

  14. GSK3β-Dzip1-Rab8 cascade regulates ciliogenesis after mitosis.

    Science.gov (United States)

    Zhang, Boyan; Zhang, Tingting; Wang, Guopeng; Wang, Gang; Chi, Wangfei; Jiang, Qing; Zhang, Chuanmao

    2015-04-01

    The primary cilium, which disassembles before mitotic entry and reassembles after mitosis, organizes many signal transduction pathways that are crucial for cell life and individual development. However, how ciliogenesis is regulated during the cell cycle remains largely unknown. Here we show that GSK3β, Dzip1, and Rab8 co-regulate ciliogenesis by promoting the assembly of the ciliary membrane after mitosis. Immunofluorescence and super-resolution microscopy showed that Dzip1 was localized to the periciliary diffusion barrier and enriched at the mother centriole. Knockdown of Dzip1 by short hairpin RNAs led to failed ciliary localization of Rab8, and Rab8 accumulation at the basal body. Dzip1 preferentially bound to Rab8GDP and promoted its dissociation from its inhibitor GDI2 at the pericentriolar region, as demonstrated by sucrose gradient centrifugation of purified basal bodies, immunoprecipitation, and acceptor-bleaching fluorescence resonance energy transfer assays. By means of in vitro phosphorylation, in vivo gel shift, phospho-peptide identification by mass spectrometry, and GST pulldown assays, we demonstrated that Dzip1 was phosphorylated by GSK3β at S520 in G0 phase, which increased its binding to GDI2 to promote the release of Rab8GDP at the cilium base. Moreover, ciliogenesis was inhibited by overexpression of the GSK3β-nonphosphorylatable Dzip1 mutant or by disabling of GSK3β by specific inhibitors or knockout of GSK3β in cells. Collectively, our data reveal a unique cascade consisting of GSK3β, Dzip1, and Rab8 that regulates ciliogenesis after mitosis.

  15. Centrosomes and the art of mitotic spindle maintenance.

    Science.gov (United States)

    Hinchcliffe, Edward H

    2014-01-01

    The assembly of a bipolar spindle lies at the heart of mitotic chromosome segregation. In animal somatic cells, the process of spindle assembly involves multiple complex interactions between various cellular compartments, including an emerging antiparallel microtubule network, microtubule-associated motor proteins and spindle assembly factors, the cell's cortex, and the chromosomes themselves. The result is a dynamic structure capable of aligning pairs of sister chromatids, sensing chromosome misalignment, and generating force to segregate the replicated genome into two daughters. Because the centrosome lies at the center of the array of microtubule minus-ends, and the essential one-to-two duplication of the centrosome prior to mitosis is linked to cell cycle progression, this organelle has long been implicated as a device to generate spindle bipolarity. However, this classic model for spindle assembly is challenged by observations and experimental manipulations demonstrating that acentrosomal cells can and do form bipolar spindles, both mitotic and meiotic. Indeed, recent comprehensive proteomic analysis of centrosome-dependent versus independent mitotic spindle assembly mechanisms reveals a large, common set of genes required for both processes, with very few genes needed to differentiate between the two. While these studies cast doubt on an absolute role for the centrosome in establishing spindle polarity, it is clear that having too few or too many centrosomes results in abnormal chromosome segregation and aneuploidy. Here we review the case both for and against the role of the centrioles and centrosomes in ensuring proper assembly of a bipolar spindle, an essential element in the maintenance of genomic stability.

  16. Pharmacological inhibition of Polo Like Kinase 2 (PLK2) does not cause chromosomal damage or result in the formation of micronuclei

    Energy Technology Data Exchange (ETDEWEB)

    Fitzgerald, Kent, E-mail: Kent.fitzgerald@elan.com [Pharmacological Sciences, Elan Pharmaceuticals Inc., 180 Oyster Point Boulevard, South San Francisco, CA 94080 (United States); Bergeron, Marcelle, E-mail: Marcelle.bergeron@elan.com [Pharmacological Sciences, Elan Pharmaceuticals Inc., 180 Oyster Point Boulevard, South San Francisco, CA 94080 (United States); Willits, Christopher, E-mail: Chris.willits@elan.com [Pharmacological Sciences, Elan Pharmaceuticals Inc., 180 Oyster Point Boulevard, South San Francisco, CA 94080 (United States); Bowers, Simeon, E-mail: Simeon.bowers@elan.com [Chemistry, Elan Pharmaceuticals Inc., 180 Oyster Point Boulevard, South San Francisco, CA 94080 (United States); Aubele, Danielle L., E-mail: Danielle.aubele@elan.com [Chemistry, Elan Pharmaceuticals Inc., 180 Oyster Point Boulevard, South San Francisco, CA 94080 (United States); Goldbach, Erich, E-mail: Erich.goldbach@elan.com [Drug Metabolism and Pharmacokinetics, Elan Pharmaceuticals Inc., 180 Oyster Point Boulevard, South San Francisco, CA 94080 (United States); Tonn, George, E-mail: George.tonn@elan.com [Drug Metabolism and Pharmacokinetics, Elan Pharmaceuticals Inc., 180 Oyster Point Boulevard, South San Francisco, CA 94080 (United States); Ness, Daniel, E-mail: Dan.ness@elan.com [Nonclinical Safety Evaluation, Elan Pharmaceuticals Inc., 180 Oyster Point Boulevard, South San Francisco, CA 94080 (United States); Olaharski, Andrew, E-mail: andrew.olaharski@agios.com [Nonclinical Safety Evaluation, Elan Pharmaceuticals Inc., 180 Oyster Point Boulevard, South San Francisco, CA 94080 (United States)

    2013-05-15

    Polo Like Kinase 2 (PLK2) phosphorylates α-synuclein and is considered a putative therapeutic target for Parkinson's disease. Several lines of evidence indicate that PLK2 is involved with proper centriole duplication and cell cycle regulation, inhibition of which could impact chromosomal integrity during mitosis. The objectives of the series of experiments presented herein were to assess whether specific inhibition of PLK2 is genotoxic and determine if PLK2 could be considered a tractable pharmacological target for Parkinson's disease. Several selective PLK2 inhibitors, ELN 582175 and ELN 582646, and their inactive enantiomers, ELN 582176 and ELN 582647, did not significantly increase the number of micronuclei in the in vitro micronucleus assay. ELN 582646 was administered to male Sprague Dawley rats in an exploratory 14-day study where flow cytometric analysis of peripheral blood identified a dose-dependent increase in the number of micronucleated reticulocytes. A follow-up investigative study demonstrated that ELN 582646 administered to PLK2 deficient and wildtype mice significantly increased the number of peripheral micronucleated reticulocytes in both genotypes, suggesting that ELN 582646-induced genotoxicity is not through the inhibition of PLK2. Furthermore, significant reduction of retinal phosphorylated α-synuclein levels was observed at three non-genotoxic doses, additional data to suggest that pharmacological inhibition of PLK2 is not the cause of the observed genotoxicity. These data, in aggregate, indicate that PLK2 inhibition is a tractable CNS pharmacological target that does not cause genotoxicity at doses and exposures that engage the target in the sensory retina. - Highlights: • Active and inactive enantiomers test negative in the in vitro micronucleus test. • ELN 582646 significantly increased micronuclei at 100 and 300 mg/kg/day doses. • ELN 582646 significantly increased micronuclei in PLK2 knockout mice. • ELN 582646

  17. Deficiency in origin licensing proteins impairs cilia formation: implications for the aetiology of Meier-Gorlin syndrome.

    Directory of Open Access Journals (Sweden)

    Tom Stiff

    Full Text Available Mutations in ORC1, ORC4, ORC6, CDT1, and CDC6, which encode proteins required for DNA replication origin licensing, cause Meier-Gorlin syndrome (MGS, a disorder conferring microcephaly, primordial dwarfism, underdeveloped ears, and skeletal abnormalities. Mutations in ATR, which also functions during replication, can cause Seckel syndrome, a clinically related disorder. These findings suggest that impaired DNA replication could underlie the developmental defects characteristic of these disorders. Here, we show that although origin licensing capacity is impaired in all patient cells with mutations in origin licensing component proteins, this does not correlate with the rate of progression through S phase. Thus, the replicative capacity in MGS patient cells does not correlate with clinical manifestation. However, ORC1-deficient cells from MGS patients and siRNA-mediated depletion of origin licensing proteins also have impaired centrosome and centriole copy number. As a novel and unexpected finding, we show that they also display a striking defect in the rate of formation of primary cilia. We demonstrate that this impacts sonic hedgehog signalling in ORC1-deficient primary fibroblasts. Additionally, reduced growth factor-dependent signaling via primary cilia affects the kinetics of cell cycle progression following cell cycle exit and re-entry, highlighting an unexpected mechanism whereby origin licensing components can influence cell cycle progression. Finally, using a cell-based model, we show that defects in cilia function impair chondroinduction. Our findings raise the possibility that a reduced efficiency in forming cilia could contribute to the clinical features of MGS, particularly the bone development abnormalities, and could provide a new dimension for considering developmental impacts of licensing deficiency.

  18. Spermatogenesis in the rock oyster, Saccostrea forskali (Gmelin, 1791).

    Science.gov (United States)

    Nuurai, Parinyaporn; Panasophonkul, Sasiporn; Tinikul, Yotsawan; Sobhon, Prasert; Wanichanon, Ratanasate

    2016-02-01

    Morphology of the differentiating spermatogenic cells of the rock oyster Saccostrea forskali (Bivalve: Ostreidae) was investigated by light and transmission electron microscopy. The testis is formed by several branching acini containing developing spermatogenic cells, classified into 7 stages based on nuclear characteristics, patterns of chromatin condensation and cytoplasmic contents. The spermatogonium is characterized by a euchromatic nucleus with a prominent nucleolus. The cytoplasm contains several round granulo-fibrillar dense bodies surrounded by numerous mitochondria. The round nucleus of the primary spermatocyte contains patches of electron-dense heterochromatin, numerous proacrosomal vesicles, ribosomes and mitochondria. The secondary spermatocytes contain a reticulated chromatin pattern and reduced number of proacrosomal vesicles. The early spermatids contain a small amount of euchromatin among dense patches of heterochromatin. A large single acrosomal vesicle is located in the posterior part of the cell. The middle spermatid is characterized by the migration of an acrosomal vesicle to the anterior part of the nucleus. The late spermatids contain highly condensed heterochromatin blocks and the acrosomal vesicle becomes cup-shaped and invaginated at the basal part. The spermatozoon contains a barrel-shaped head covered with the cup-like acrosome. At this stage, the subacrosomal space contains an axial rod in subacrosomal materials. Three to four transverse bands appear at the anterior region of the acrosome. The middle piece consists of spherical mitochondria surrounding the proximal and distal centrioles. The flagellum consists of 9+2 axonemal microtubule doublets surrounded by the plasma membrane. Our electron microscopic study of spermatogenesis in the S. forskali provides important new information on the mechanism of development of spermatogenesis of this species.

  19. Human SAS-6 C-Terminus Nucleates and Promotes Microtubule Assembly in Vitro by Binding to Microtubules.

    Science.gov (United States)

    Gupta, Hindol; Badarudeen, Binshad; George, Athira; Thomas, Geethu Emily; Gireesh, K K; Manna, Tapas K

    2015-10-20

    Centrioles are essential components of the animal centrosome and play crucial roles in the formation of cilia and flagella. They are cylindrical structures composed of nine triplet microtubules organized around a central cartwheel. Recent studies have identified spindle assembly abnormal protein SAS-6 as a critical component necessary for formation of the cartwheel. However, the molecular details of how the cartwheel participates in centriolar microtubule assembly have not been clearly understood. In this report, we show that the C-terminal tail (residues 470-657) of human SAS-6, HsSAS-6 C, the region that has been shown to extend toward the centriolar wall where the microtubule triplets are organized, nucleated and induced microtubule polymerization in vitro. The N-terminus (residues 1-166) of HsSAS-6, the domain known to be involved in formation of the central hub of the cartwheel, did not, however, exert any effect on microtubule polymerization. HsSAS-6 C bound to the microtubules and localized along the lengths of the microtubules in vitro. Microtubule pull-down and coimmunoprecipitation (Co-IP) experiments with S-phase synchronized HeLa cell lysates showed that the endogenous HsSAS-6 coprecipitated with the microtubules, and it mediated interaction with tubulin. Isothermal calorimetry titration and size exclusion chromatography showed that HsSAS-6 C bound to the αβ-tubulin dimer in vitro. The results demonstrate that HsSAS-6 possesses an intrinsic microtubule assembly promoting activity and further implicate that its outer exposed C-terminal tail may play critical roles in microtubule assembly and stabilizing microtubule attachment with the centriolar cartwheel.

  20. 紧密角管藻雄配子的超微结构%Ultrastructure of male gametes in Cerataulina compacta

    Institute of Scientific and Technical Information of China (English)

    王团老; 林均民; 胡韧; 杨听林; 谢宏

    2001-01-01

    紧密角管藻精子发生是由精母细胞减数分裂先产生双鞭毛体,然后双鞭毛体分裂形成单鞭毛的精子.精子鞭毛器的结构包括鞭毛轴丝和基体,鞭毛轴丝含有9对二联体组成的周位微管,但无中央微管,属于“9+0”微管构型,基体靠近细胞核,由9对二联体周位微管和中央结构组成“车轮”状结构,在过渡区存在基板.精原细胞、双鞭毛体和精子的细胞器组成及结构与营养细胞相似,在生殖细胞中未发现高尔基体,却存在电子致密体.%The spermatogenesis of Cerataulina compacta was that the spermatocytes first produced biflagellate cells through miosis and then the biflagellate cells divided into uniflagellate sperms.The flagellar apparatus included flagellar axoneme and basal body.The axoneme consisted of 9 doublet microtubules, lacking central tubules,which was “9+0” frib pattern, paraxial swellings were found in axoneme,their structures were not clear.The basal body attached to nucleus contained 9 doublet microtubules,which were extended from axoneme, and a central structure to construct a “wheel”pattern, it was a focus of microtubules,possibly functioning as a centriole.Within axoneme and basal body there was a basal plate.The composition and structure of organella in spermatocytes、biflagellate cells and sperms was similar to those in vegetative cells,no Golgi body was found in the sexual cells, but containing high electon-dense bodies.

  1. A new method for predicting the subcellular localization of eukaryotic proteins with both single and multiple sites: Euk-mPLoc 2.0.

    Directory of Open Access Journals (Sweden)

    Kuo-Chen Chou

    Full Text Available Information of subcellular locations of proteins is important for in-depth studies of cell biology. It is very useful for proteomics, system biology and drug development as well. However, most existing methods for predicting protein subcellular location can only cover 5 to 12 location sites. Also, they are limited to deal with single-location proteins and hence failed to work for multiplex proteins, which can simultaneously exist at, or move between, two or more location sites. Actually, multiplex proteins of this kind usually posses some important biological functions worthy of our special notice. A new predictor called "Euk-mPLoc 2.0" is developed by hybridizing the gene ontology information, functional domain information, and sequential evolutionary information through three different modes of pseudo amino acid composition. It can be used to identify eukaryotic proteins among the following 22 locations: (1 acrosome, (2 cell wall, (3 centriole, (4 chloroplast, (5 cyanelle, (6 cytoplasm, (7 cytoskeleton, (8 endoplasmic reticulum, (9 endosome, (10 extracell, (11 Golgi apparatus, (12 hydrogenosome, (13 lysosome, (14 melanosome, (15 microsome (16 mitochondria, (17 nucleus, (18 peroxisome, (19 plasma membrane, (20 plastid, (21 spindle pole body, and (22 vacuole. Compared with the existing methods for predicting eukaryotic protein subcellular localization, the new predictor is much more powerful and flexible, particularly in dealing with proteins with multiple locations and proteins without available accession numbers. For a newly-constructed stringent benchmark dataset which contains both single- and multiple-location proteins and in which none of proteins has pairwise sequence identity to any other in a same location, the overall jackknife success rate achieved by Euk-mPLoc 2.0 is more than 24% higher than those by any of the existing predictors. As a user-friendly web-server, Euk-mPLoc 2.0 is freely accessible at http

  2. Molecular phylogeny of centrohelid heliozoa, a novel lineage of bikont eukaryotes that arose by ciliary loss.

    Science.gov (United States)

    Cavalier-Smith, Thomas; Chao, Ema E-Y

    2003-04-01

    Recent molecular and cellular evidence indicates that eukaryotes comprise three major lineages: the probably ancestrally uniciliate protozoan phylum Amoebozoa; the ancestrally posteriorly uniciliate opisthokont clade (animals, Choanozoa, and fungi); and a very diverse ancestrally biciliate clade, the bikonts-plants, chromalveolates, and excavate and rhizarian Protozoa. As Heliozoa are the only eukaryote phylum not yet placed on molecular sequence trees, we have sequenced the 18S rRNA genes of three centrohelid heliozoa, Raphidiophrys ambigua, Heterophrys marina, and Chlamydaster sterni, to investigate their phylogenetic position. Phylogenetic analysis by distance and maximum likelihood methods allowing for intersite rate variation and invariable sites confirms that centrohelid heliozoa are a robust clade that does not fall within any other phyla. In particular, they are decisively very distant from the heterokont pedinellid chromists, at one time thought to be related to heliozoa, and lack the unique heterokont signature sequence. They also appear not to be specifically related to either Amoebozoa or Radiolaria, with which they have sometimes been classified, so it is desirable to retain Heliozoa as a separate protozoan phylum. Even though centrohelids have no cilia or centrioles, the centrohelid clade branches among the bikont eukaryotes, but there is no strong bootstrap support for any particular position. Distance trees usually place centrohelids as sisters to haptophytes, whereas parsimony puts them as sisters to red algae, but there is no reason to think that either position is correct; both have very low bootstrap support. Quartet puzzling places them with fairly low support as sisters to the apusozoan zooflagellate Ancyromonas. As Ancyromonas is the only other eukaryote that shares the character combination of flat plate-like mitochondrial cristae and kinetocyst-type extrusomes with centrohelids, this position is biologically plausible, but because of weak

  3. Mitotic arrest of female germ cells during prenatal oogenesis. A colcemid-like, non-apoptotic cell death.

    Science.gov (United States)

    Wartenberg, H; Ihmer, A; Schwarz, S; Miething, A; Viebahn, C

    2001-11-01

    The sequence of events and a possible reason for germ cell death during oogenesis in the prenatal ovary were studied in rat and mouse embryos. ED 14-22 rat and ED 14-16 mouse embryos were studied using semithin sections for light microscopy and serial ultrathin sections for electron microscopy. In addition, the rat material was 3H-thymidine labelled for historadioautography and cytospin preparations of freshly obtained gonads were immunohistochemically analysed. During the transition from the proliferating oogonial stage to the meiotic prophase about 16% of the postmitotic oocytes do not pass the initial meiotic checkpoint on ED 18/19 in the rat (ED 15/16 in the mouse). These germ cells first show structural signs of mitosis; the diploid number of 'super-condensed' chromosomes are globally formed and are concentrated in the center of the cell. Although the germ cells show all morphological signs of living cells they never have mitotic spindles; the micro-tubulus-organisation-centres (MTOCs) are found peripherally and become concentrated, forming a single centrosomal body (acentriolar MTOC) as detected by immunohistochemistry for the centrosomal protein MPM2 and gamma-tubulin. EM studies show 25 nm tubule-like profiles within the MTOC bodies. The centrioles frequently lie separate from the MTOC material or are not present at all; the germ cells are apparently arrested in a prophase- or metaphase-like stage when they have reached the postmitotic G2/preleptotenal transition and are unable to enter meiosis. Forty-eight to 72 h after the first mitotically arrested germ cells are found, degeneration is seen in these germ cells. This second event, the germ cell death proper, shows neither criteria of apoptosis (cell shrinkage, marginal condensation of chromatin, DNA fragmentation) nor signs of necrosis (cell swelling, pycnosis, inflammation). Both arrested pro- and metaphase-like stages are found with signs of cell death and phagocytosis. The morphological signs of

  4. Tubulinlike protein from Spirochaeta bajacaliforniensis

    Science.gov (United States)

    Bermudes, D.; Fracek, S. P. Jr; Laursen, R. A.; Margulis, L.; Obar, R.; Tzertzinis, G.

    1987-01-01

    Tubulin proteins are the fundamental subunits of all polymeric microtubule-based eukaryotic structures. Long, hollow structures each composed of 13 protofilaments as revealed by electron microscopy, microtubules (240 angstroms in diameter) are nearly ubiquitous in eukaryotes. These proteins have been the subject of intense biochemical and biophysical interest since the early 1970s and are of evolutionary interest as well. If tubulin-based structures (i.e., neurotubules, mitotic spindle tubules, centrioles, kinetosomes, axonemes, etc.) evolved from spirochetes by way of motility symbioses, tubulin homologies with spirochete proteins should be detectable. Tubulin proteins are widely thought to be limited to eukaryotes. Yet both azotobacters and spirochetes have shown immunological cross-reactivity with anitubulin antibodies. In neither of these studies was tubulin isolated nor any specific antigen identified as responsible for the immunoreactivity. Furthermore, although far less uniform in structure than eukaryotic microtubules, various cytoplasmic fibers and tubules (as seen by electron microscopy) have been reported in several types of prokaryotes (e.g., Spirochaeta; large termite spirochetes; treponemes; cyanobacteria; and Azotobacter. This work forms a part of our long-range study of the possible prokaryotic origin of tubulin and microtubules. Spirochetes are helically shaped gram-negative motile prokaryotes. They differ from all other bacteria in that the position of their flagella is periplasmic: their flagella lie between the inner and outer membranes of the gram-negative cell wall. Some of the largest spirochetes have longitudinally aligned 240 angstroms microtubules. Unfortunately, in spite of many attempts, all of the larger spirochetes (family Pillotaceae) with well-defined cytoplasmic tubules and antitubulin immunoreactivity are not cultivable. However, a newly described spirochete species (Spirochaeta bajacaliforniensis) possessing cytoplasmic fibers

  5. Correlation between primary cilium and Wnt signaling pathway%初级纤毛与Wnt信号通路相关性研究进展

    Institute of Scientific and Technical Information of China (English)

    张蔓丽; 卢彦平; 李亚里

    2015-01-01

    Primary cilium is a microtubule-based organelle,which develops from the mother centriole of the centrosome. It is an antenna-like structure that anchors at the cell membrance, protruding from the cell surface. Primary cilium acts as a sensory organelle that receives different kinds of signals from the environment and transmits signals to cells to elicit cellular responses. Recent studies have revealed that primary cilium play an important role in transmitting Wnt signaling, which is critical for embryonic development. Dysfunction of primary cilium deregulates Wnt signaling, causing a series of patho-logical changes in different organs of the embryo, resulting in ciliopathies. In this review, we summarize correlation among primary cilium,Wnt/β-catenin signaling,Wnt/PCP signaling and ciliopathies. Current therapies in ciliopathies are also dis-cussed. Highlights on these researches will encourage the development of Wnt-associated diagnostic tools and therapy for ciliopathies.%初级纤毛是一类以微管为基础结构的细胞器,其来源于细胞的母中心粒,锚定在细胞膜并如“天线”般突出细胞表面。作为细胞感受器,初级纤毛从环境中接受各种信号,传导至细胞内引起细胞反应。近期的研究表明,初级纤毛对与胚胎发育密切相关的 Wnt信号通路的传导起重要作用。纤毛的损害可造成 Wnt信号通路的异常,并引起胚胎中多类脏器一系列的病理改变,导致初级纤毛相关疾病的发生。文章主要阐述了初级纤毛与Wnt/β-catenin、Wnt/PCP通路及初级纤毛相关疾病之间的关系,并对初级纤毛相关疾病的治疗进行了初步探讨。对初级纤毛与Wnt信号通路关系的深入研究将有助于人们对该类疾病的进一步诊断和治疗。

  6. Knockdown of SCF(Skp2 function causes double-parked accumulation in the nucleus and DNA re-replication in Drosophila plasmatocytes.

    Directory of Open Access Journals (Sweden)

    Paul T Kroeger

    Full Text Available In Drosophila, circulating hemocytes are derived from the cephalic mesoderm during the embryonic wave of hematopoiesis. These cells are contributed to the larva and persist through metamorphosis into the adult. To analyze this population of hemocytes, we considered data from a previously published RNAi screen in the hematopoietic niche, which suggested several members of the SCF complex play a role in lymph gland development. eater-Gal4;UAS-GFP flies were crossed to UAS-RNAi lines to knockdown the function of all known SCF complex members in a plasmatocyte-specific fashion, in order to identify which members are novel regulators of plasmatocytes. This specific SCF complex contains five core members: Lin-19-like, SkpA, Skp2, Roc1a and complex activator Nedd8. The complex was identified by its very distinctive large cell phenotype. Furthermore, these large cells stained for anti-P1, a plasmatocyte-specific antibody. It was also noted that the DNA in these cells appeared to be over-replicated. Gamma-tubulin and DAPI staining suggest the cells are undergoing re-replication as they had multiple centrioles and excessive DNA content. Further experimentation determined enlarged cells were BrdU-positive indicating they have progressed through S-phase. To determine how these cells become enlarged and undergo re-replication, cell cycle proteins were analyzed by immunofluorescence. This analysis identified three proteins that had altered subcellular localization in these enlarged cells: Cyclin E, Geminin and Double-parked. Previous research has shown that Double-parked must be degraded to exit S-phase, otherwise the DNA will undergo re-replication. When Double-parked was titrated from the nucleus by an excess of its inhibitor, geminin, the enlarged cells and aberrant protein localization phenotypes were partially rescued. The data in this report suggests that the SCF(Skp2 complex is necessary to ubiquitinate Double-parked during plasmatocyte cell division

  7. Fine structure of bat deep posterior lingual glands (von Ebner's)

    Science.gov (United States)

    Azzali, G; Gatti, R; Bucci, G; Orlandini, G

    1989-10-01

    We studied the morphology and ultrastructure of the bat (Pipistrellus k.k. and Rhinolophus f.e.) deep posterior lingual glands (Ebner's glands) during hibernation, summer and after stimulation with pilocarpine. Ebner's glands are formed by serous tubulo-alveolar adenomeres and by an excretory system organized in intercalated ducts, long excretory ducts and a main excretory duct. The latter opens in the vallum which surrounds the circumvallate papillae and in the groove of the foliate papillae. The secretory cells, which lack basal folds, show abundant and dense granules (PAS+, Alcian blue -), microvilli (scarce during hibernation), a Golgi apparatus (well developed during summer and after stimulation with pilocarpine), a large nucleus and RER cisternae stacked at the basal pole. Centrioles, lipid droplets, heterogeneous bodies (in content and density, probably lipofuscin bodies), lysosomal multivesicular bodies and large, dense granules with a microcrystalline structure were also encountered. The lateral membranes of adjacent cells are joined by desmosomes; their interdigitations are neither numerous nor prominent during summer. Microfilaments, often gathered in small bundles, lie in the lateral, peripheral cytoplasm without any relation with desmosomes. In summer and particularly after stimulation with pilocarpine, the apical pole of the secretory cells is characterized by many long microvilli, pedunculated hyaloplasmic protrusions and secretory granules. During hibernation the lumen is filled with secretory material. Myoepithelial cells are arranged among secretory cells or between them and the basal lamina. The short intercalated ducts show similarities with the analogous ducts of the parotid gland. Striated ducts are absent. Excretory ducts are endowed with: a) an inner layer of cuboidal cells characterized by poorly developed cytoplasmic organelles, rare dense granules and a few small microvilli; b) an outer layer of basal cells lying on the basal lamina

  8. 大黄鱼(Pseudosciaena crocea)精子冷冻前后的活力及超微结构变化%VITALITY AND ULTRASTRUCTURE OBSERVATION OF FRESH AND CRYOPRESERVATED SPERM IN PSEUDOSCIAENA CROCEA

    Institute of Scientific and Technical Information of China (English)

    程顺; 闫家强; 竺俊全; 姜建湖; 吴雄飞; 史会来

    2013-01-01

    采用两步降温法超低温冷冻保存大黄鱼精子,并用透射电镜技术研究了精子的超微结构损伤.结果表明,大黄鱼冻精的激活率、运动时间及寿命与鲜精相比无显著差异.鲜精中28.5%的精子形态结构异常,冻精中37%的精子形态结构异常.形态结构正常的精子表现为质膜与核膜结构完整、无膨胀现象,袖套、轴丝及中心粒结构正常,线粒体形态完整、嵴较发达;形态结构异常的精子表现为质膜破裂、脱落,质膜膨胀,核膜破裂、脱落,核局部受损伤,线粒体膨胀、嵴退化或消失,线粒体移位或脱落.结果显示,以Cortland溶液为稀释液,10% DMSO为抗冻剂,对大黄鱼精子具有较好的抗冻保护作用.%A two-step cooling procedure was employed to cryopreserve Pseudosciaena crocea sperm, and the sperm ultrastructure after which was observed under transmission electron microscopy. The results show that there were no significant differences between frozen-thawed sperm and fresh sperm by comparing the activation rate, moving time and life-span. Both the fresh sperm and cryopreserved sperm had ultrastructural damages in various degree. The deformation rate of the fresh and cryopreservated sperms were 28.5% and 37%, respectively. The following aspects of cryopreserved sperm with normal morphology was observed: the plasma and nuclear membrane; the sleeve, axoneme and centriole; the mitochondrion obtained integrity and with well-developed cristae. On the contrary, the sperm cryodamages were observed as follows: swelled or disrupted plasma and nuclear membrane; partially damaged nucleus; the swelled, dislocated or disarticulated mitochondrion with degenerated or vanished cristae. The results show that Cortland solutions and 10% DMSO are the best choice for extender and cryoprotecant, which are helpful for improving the frozen-thawed P. crocea sperm quality.

  9. The centrosome and its mode of inheritance: the reduction of the centrosome during gametogenesis and its restoration during fertilization.

    Science.gov (United States)

    Schatten, G

    1994-10-01

    Neither the restoration of the centrosome during fertilization nor its reduction during gametogenesis is fully understood, but both are pivotal events in development. During each somatic cell cycle, the chromosomes, cytoplasm, and centrosomes duplicate in interphase, and all three split in two during each cell division. While it has long been recognized that both the sperm and the egg contribute equal haploid genomes during fertilization and that the vast majority of the cytoplasm is contributed by the egg, the relative contributions of the centrosome by each gamete are still in question. This article explores centrosome inheritance patterns and considers nine integral and secondarily derived activities of the centrosome. Boveri once hypothesized that "The ripe egg possesses all of the elements necessary for development save an active division-center. The sperm, on the other hand, possesses such a center but lacks the protoplasmic substratum in which to operate. In this respect the egg and sperm are complementary structures; their union in syngamy thus restores to each the missing element necessary to further development." This article reviews the evidence gathered from 11 experimental strategies used to test this theory. While the majority of these approaches supports the hypothesis that the sperm introduces the centrosome at fertilization, the pattern did not reveal itself as universal, since parthenogenesis occurs in nature and can be induced artificially, since centrosome and centriole form de novo in extracts from unfertilized eggs and since the centrosome is derived from maternal sources during fertilization in some systems--notably, in mice. Models of the centrosome are proposed, along with speculative mechanisms which might lead to the cloaking of the reproducing element of the maternal centrosome during oogenesis and the retention of this structure by the paternal centrosome during spermatogenesis. Proteins essential for microtubule nucleation, like gamma

  10. Abnormal kinetochore-generated pulling forces from expressing a N-terminally modified Hec1.

    Directory of Open Access Journals (Sweden)

    Marta Mattiuzzo

    Full Text Available BACKGROUND: Highly Expressed in Cancer protein 1 (Hec1 is a constituent of the Ndc80 complex, a kinetochore component that has been shown to have a fundamental role in stable kinetochore-microtubule attachment, chromosome alignment and spindle checkpoint activation at mitosis. HEC1 RNA is found up-regulated in several cancer cells, suggesting a role for HEC1 deregulation in cancer. In light of this, we have investigated the consequences of experimentally-driven Hec1 expression on mitosis and chromosome segregation in an inducible expression system from human cells. METHODOLOGY/PRINCIPAL FINDINGS: Overexpression of Hec1 could never be obtained in HeLa clones inducibly expressing C-terminally tagged Hec1 or untagged Hec1, suggesting that Hec1 cellular levels are tightly controlled. On the contrary, a chimeric protein with an EGFP tag fused to the Hec1 N-terminus accumulated in cells and disrupted mitotic division. EGFP- Hec1 cells underwent altered chromosome segregation within multipolar spindles that originated from centriole splitting. We found that EGFP-Hec1 assembled a mutant Ndc80 complex that was unable to rescue the mitotic phenotypes of Hec1 depletion. Kinetochores harboring EGFP-Hec1 formed persisting lateral microtubule-kinetochore interactions that recruited the plus-end depolymerase MCAK and the microtubule stabilizing protein HURP on K-fibers. In these conditions the plus-end kinesin CENP-E was preferentially retained at kinetochores. RNAi-mediated CENP-E depletion further demonstrated that CENP-E function was required for multipolar spindle formation in EGFP-Hec1 expressing cells. CONCLUSIONS/SIGNIFICANCE: Our study suggests that modifications on Hec1 N-terminal tail can alter kinetochore-microtubule attachment stability and influence Ndc80 complex function independently from the intracellular levels of the protein. N-terminally modified Hec1 promotes spindle pole fragmentation by CENP-E-mediated plus-end directed kinetochore

  11. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa.

    Science.gov (United States)

    Cavalier-Smith, T

    2002-03-01

    Eukaryotes and archaebacteria form the clade neomura and are sisters, as shown decisively by genes fragmented only in archaebacteria and by many sequence trees. This sisterhood refutes all theories that eukaryotes originated by merging an archaebacterium and an alpha-proteobacterium, which also fail to account for numerous features shared specifically by eukaryotes and actinobacteria. I revise the phagotrophy theory of eukaryote origins by arguing that the essentially autogenous origins of most eukaryotic cell properties (phagotrophy, endomembrane system including peroxisomes, cytoskeleton, nucleus, mitosis and sex) partially overlapped and were synergistic with the symbiogenetic origin of mitochondria from an alpha-proteobacterium. These radical innovations occurred in a derivative of the neomuran common ancestor, which itself had evolved immediately prior to the divergence of eukaryotes and archaebacteria by drastic alterations to its eubacterial ancestor, an actinobacterial posibacterium able to make sterols, by replacing murein peptidoglycan by N-linked glycoproteins and a multitude of other shared neomuran novelties. The conversion of the rigid neomuran wall into a flexible surface coat and the associated origin of phagotrophy were instrumental in the evolution of the endomembrane system, cytoskeleton, nuclear organization and division and sexual life-cycles. Cilia evolved not by symbiogenesis but by autogenous specialization of the cytoskeleton. I argue that the ancestral eukaryote was uniciliate with a single centriole (unikont) and a simple centrosomal cone of microtubules, as in the aerobic amoebozoan zooflagellate Phalansterium. I infer the root of the eukaryote tree at the divergence between opisthokonts (animals, Choanozoa, fungi) with a single posterior cilium and all other eukaryotes, designated 'anterokonts' because of the ancestral presence of an anterior cilium. Anterokonts comprise the Amoebozoa, which may be ancestrally unikont, and a vast

  12. Schistosoma mansoni polo-like kinases and their function in control of mitosis and parasite reproduction

    Directory of Open Access Journals (Sweden)

    Colette Dissous

    2011-06-01

    Full Text Available Polo-like kinases are important regulators of cell cycle progression and mitosis. They constitute a family of conserved serine/threonine kinases which are highly related in their catalytic domains and contain polo boxes involved in protein-protein interactions and subcellular localization. In mammals, five Plks (Plk 1-5 encompass diverse roles in centrosome dynamics, spindle formation, intra S-phase and G2/M checkpoints and DNA damage response. Plk1 is a key positive regulator of mitosis and is overexpressed in various types of cancers. Plk4 is a divergent member of the Plk family, with essential functions in centriole duplication. Homozygous disruption of Plk1 or Plk4 in mice is lethal in embryos. Two Plk members SmPlk1 and SmSak, homologous to Plk1 and Plk4 respectively, are present in the parasitic platyhelminth Schistosoma mansoni. Structural and functional analyses of SmPlk1 have demonstrated its conserved function in the regulation of cell cycle G2/M transition in Xenopus oocytes. The anti-cancer drug BI 2536 (the most potent and selective Plk1 inhibitor inhibits specifically the catalytic activity of SmPlk1 and induced profound alterations in schistosome gonads, indicating a role of SmPlk1 in parasite gametogenesis and its potential as a novel chemotherapeutic target against schistosomiasis. Functions of SmSak in cell cycle regulation and schistosome gonad development are currently investigatedQuinases do tipo Polo ("polo-like" são importantes reguladores da progressão do ciclo celular e da mitose. Elas constituem uma família de serina/treonina quinases que são altamente relacionadas entre si no seu domínio catalítico e contêm blocos "polo" envolvidos com interações proteína-proteína e com localização subcelular. Em mamíferos, cinco Plks (Plk 1-5 englobam diversos papéis na dinâmica do centrossomo, formação do fuso, "checkpoints" dentro da fase S e da transição G2/M, e na resposta aos danos do DNA. Plk1 é um regulador

  13. 条纹锯精子超微结构及其入卵过程的电镜观察%Observations on the Spermatozoon, Egg and Fertilization Process of Centropristis striata Using the Electronic Microscopic Technique

    Institute of Scientific and Technical Information of China (English)

    陈超; 贾瑞锦; 李炎璐; 吴雷明; 宋振鑫; 赵从明; 吴坚

    2014-01-01

    To explore the fertilization mechanism of Centropristis striata and improve the fertilization rate, the ultrastructure of spermatozoon and egg and the fertilization process were observed using the scanning electron microscope (SEM) and transmission electron microscope (TEM). The results showed that the sperm of C. striata was mainly composed of the following three parts:1) head;mainly consisted with nucleus and without the acrosomal structure;2) midpiece;consisted with mitochondrion, centriolar complex (including proximal centriole and matrix) and sleeve structure; and 3) tail; consisted with axoneme that is surrounded by plasma membrane. The axoneme of C. striata was consistent with the typical“9+2”structure in most fish. The eggs were spherical, colorless, and transparent with the diameter at (0.950±0.039) mm, which belonged to pelagic eggs. A big grain of oil ball (0.182 ± 0.011mm in diameter) was observed in the egg. Overlapping curves were observed on the surface of the eggs, on which the tiny holes with different sizes (0.246±0.103 µm) were evenly distributed. A completely-opened fertilization hole was in the central part of the funneled area at the animal pole. The shell of the egg included plasma membrane, vitelline membrane and shell membrane. The shell was filled with cytoplasm. The fertilization process of C. striata was short. The sperm penetrated into the egg through the micropyle in 10 seconds after insemination. The morphological feature of the fertilized egg changed after that, and the fertilization cone and fertilization plug were observed. Finally, about 60 s after insemination, the fertilization hole closed to prevent the penetration of other sperms. This study may provide theoretical foundation to improve the fertilization rate of C. striata artificial breeding.%采用扫描和透射电镜技术对自然成熟的条纹锯精子、卵子及精子入卵过程进行观察。观察结果显示,其精子由头部、中段和尾部三部分

  14. 雏鸵鸟卵巢的形态学研究%Morphological study of the ovary in ostrich chicks

    Institute of Scientific and Technical Information of China (English)

    王岩; 彭克美; 庄茹菲; 赵洪娟

    2013-01-01

    为了解雏鸵鸟卵巢组织结构的形态学特点,采用解剖学及组织化学和透射电镜技术对90d非洲雏鸵鸟卵巢组织结构进行研究.结果表明:非洲雏鸵鸟卵巢内主要由原始卵泡、初级卵泡和次级卵泡组成,未出现成熟卵泡,各级卵泡卵母细胞的胞核大多为圆形,内有异染色质颗粒,核孔较明显,卵母细胞的胞质内有卵黄颗粒,胞质内含粗面内质网、线粒体、中心粒等细胞器;次级卵泡有一些特殊的超微结构,皮质颗粒出现在次级卵泡的卵母细胞内,并且主要位于靠近核周的胞质内,次级卵泡的卵黄膜较明显,并且形成放射带.另外,雏鸵鸟卵巢内网、连接网和外网上皮细胞的嗜碱性依次增强.结果提示,雏鸵鸟卵巢内次级卵泡的颗粒细胞的胞质内细胞器比初级卵泡的更丰富,尤其是具管状嵴的线粒体数量较多.雏鸵鸟卵巢内有卵巢网存在.%The aim of this study was to reveal the tissue structure characters of the ovary in ostrich chicks. Healthy 90-day-old ostrich chicks were used in this study. This study was based on the anatomy traits, microstructure and ultrastructure of the ovary in ostrich chicks under both histochemical and transmission electron microscopical methods. The results showed that the ovary of ostrich chicks contained primordial follicles, primary follicles and secondary follicles,but no mature follicles. The oocytes in every grade of follicle were large, with an obvious nuclear pore and a heterochromatin mitochondria,centriole,etc. Some unique ultrastructural characteristics were observed in the secondary follicle,such as the cortical granule, which was located in cytoplasm beside the nucleus appeared first in the oocyte. Zona radiata appeared, and formed an obvious vitelline membrane. Additionally, our results showed that there were intraovarian rete, connecting rete, and extraovarian rete in the ovaries of ostrich chicks. Basophilic staining was observed

  15. Studies on ultrastructure of spermatoazoon and cytological change of nuclear behavior on fertilization in Meretrix lamarkii%斧文蛤精子超微结构与受精过程的细胞学变化

    Institute of Scientific and Technical Information of China (English)

    董迎辉; 林志华; 姚韩韩

    2011-01-01

    The ultrastructure of spermatozoon and the cytological change of fertilization process in Meretrix lamarkii were systematically studied by electron microscope and fluorescence microscope.The results indicated that the mature spermatozoon (45.2 - 47.7 μm in total length) of M.lamarkii, belonging to the primitive type, consists of head, middle piece and tail.The head, like a long cocoon in shape (2.5 μm in length) ,is composed of acrosome and nucleus.The acrosome is conical in shape and has a subacrosomal space inside.Nucleuses are cylindrical with fine-grained dense chromatin, having from nuclear pocket and posterior nuclear pocket.The centriolar complex, including proximal and distal centrioles, and surrounding 5 spherical mitochondrias, make up the short middle piece.The tail, a whip-like flagellum,consists of axoneme that is a typical “9 +2” microtubular structure and wrapped by an wavy plasma membrane.The cytological change of nuclear behavior during fertilization and early cleavage was observed under the fluorescence microscope.Like most of marine mollusks, the unfertilized mature eggs of M.lamarkii were globular and remained at the metaphase of the first maturation division.At water temperature of 27 - 28 ℃, artificial insemination was conducted.6 min after fertilization, sperm has penetrated into cytoplasm of egg and activated the maturation division.The fertilized eggs released the first polar body about 12 -15 min and the second polar body about 20 - 25 min after fertilization.About 30 min, sperm nucleus and the haploid female nucleus developed into the male and female pronuclei.35 min, the male and female pronuclei matched into an association nucleus after their chromosomes formed respectively in the center of egg.40 - 45 min, the chromosomes were separated equally into two daughter cells which are different obviously in size.55 -60 min, the second cleavage finished and formed four daughter cells, one big and three small.The process of the second

  16. Bioinformatics research of CD44 and epithelial cell adhesion molecule related genes and pathways in colorectal cancer%结直肠癌中CD44和上皮细胞黏附分子相关基因与通路的生物信息学研究

    Institute of Scientific and Technical Information of China (English)

    马敏星; 周瑞; 张嘉刚; 马洪卫; 陶文惠; 赵秋; 李瑾

    2016-01-01

    Objective To investigate genes and involved biological processes closely associated with stem cell markers of colorectal cancer-epithelial cell adhesion molecule (EpCAM) + and CD44+.Methods By the bioinformatics method,with microarray data of colorectal cancer from gene expression omnibus (GEO) database and R2 platform,the genes significantly related with CD44 and EpCAM expression were screened out.The differences in expression of related genes were analyzed on the basis of gender,family history of cancer,alcohol and Dukes stage.The expression of related genes in colorectal cancer was compared with that of other tumors and healthy subjects.At same time,the pathways of the genes and Kyoto encyclopedia of genes and genomes (KEGG) of CD44 and EpCAM significantly related genes were analyzed with gene ontology (GO) and KEGG method.Single factor analysis of variance and Chi-square test of four-fold table with correction for continuity were used for statistical analysis by R2 platform embedded statistical tools.Results The expressions of CD44 and EpCAM were detected in all 315 colorectal cancer samples.A total of 888 and 6 316 genes were screened out which were significantly associated with CD44 and EpCAM expression.CD44 was positively correlated with EpCAM.There was no obvious correlation between the expression of five genes which expressed in all 315 tissues and gender family history of cancer,alcohol and Dukes stage (all P>0.05).By further compared with the expression in other tumors and tissues,the expressions of two genes solute carrier family 12,member 2 (SLC12A2) and proteome of centriole 1 centriolar protein B (POC1B) in colorectal tumor were significantly higher than that in other tumors (F=289.422、128.456,all P<0.01),and its expression in colorectal cancer was obviously higher than that in tissues of health subjects (F=349.519、128.456,all P<0.01).GO analysis indicated there were 15 GO semantics related with both CD44 and EpCAM.The genes related with CD

  17. Sobre a morfologia e ciclo evolutivo dos flagelados do genero Metasaccinobaculus n. gen. (Polymastigina, Oxymonadidae do termita Kalotermes (Neotermes Wagneri, Desneux, 1904, com a descrição de duas espécies novas

    Directory of Open Access Journals (Sweden)

    Gilberto de Freitas

    1945-10-01

    fibrils. The axostyle is a ribbon-like structure, vigorously undulating when living, intensily stained by iron haematein and eosin, and fixed posteriorly to the body wall through a special tube-like stru¬cture. The system of chromophobic fibrils is contituted by rostellar fibrils which connect the undulating portion of the axostyle to the tip of the rostellum. The other system referred to as independent chromoprobic fibrils takes origin at the distal end of the rostellum perhaps in granules there found, runs back¬ward through this organelle and reaches the body, where it suffers sub-di¬visions into thinner bundles. The nucleus presents the chromatin arranged in large, thick and irregular structures: there is no karyosome. The young form is much smaller and its undulating axostyle is relatively very large in relation to the size of the body. It is attached to the body wall at posterior end. During growth, this point moves foreward. Near the point where the tube-like structure is fastened to the surface of the body, a sheath can be observed, constituted by a great number of very fine hyaline strands. The endoplasm is deeply chromophile, but free from brown spheres, which makes their appearence after the fixation of the organism. The nucleus, at the early stages, exhibit very thin granules of chromatin with a uniform dispersion. One or more structures surrounded by a clear halo and simulating a karyosome can be seen at this stage; nevertheless they soon disappear. 4 — Before mitosis which is quite similar to that of Oxymonas grandis the nucleus migrates to the posterior end of the body, due to the degenera¬tion of the neuromotor organellae. The nuclear membrane persists during the whole process. A central spindle develops within the nucleus as a straight rod, reaches the nuclear membrane assuming a convex barrel shape, and suffering a torsion in opposite sense on each pole. At sites where centrioles must lie, a clear circular space can be seen, the spindle fibrils