WorldWideScience

Sample records for centrifuges

  1. Centrifugation

    International Nuclear Information System (INIS)

    Subbaramajer.

    1983-01-01

    The theoretical analysis of the processes taking place at centrifugal method of isotope separation taking into account the latest investigations, in particular, investigation of velocity field applying the theory of boundary layers in rotating gas is conducted. As a result of using power computers for the solution of hydrodynamics equations by numerical methods sufficiently exact solutions of main hydrodynamic equations, reflecting the real centrifuge construction are derived. The increase of calculation accuracy of the flow field reflected also on the accuracy of the diffusion equation solution. Three parameters of similarity (height of transfer unit, flow, mass transfer coefficient) and their connection with the flow field, elementary separation coefficient in a cetrifugal field and molecular diffusion coefficient is determined. Modified formulas for the separation coefficient and separation centrifuge power taking into account similarity parameter changes over the axis are derived. The possibility of determining the system of controlled parameters optimizing the separation centrifuge power is shown

  2. CENTRIFUGE

    Science.gov (United States)

    Rushing, F.C.

    1960-09-01

    A vibration damping mechanism for damping vibration forces occurring during the operation of a centrifuge is described. The vibration damping mechanism comprises a plurality of nested spaced cylindrical elements surrounding the rotating shaft of the centrifuge. Some of the elements are held substantially stationary while the others are held with respect to a pair of hearings spaced along the rotating shaft. A fluid is retained about the cylindrical elements.

  3. CENTRIFUGE APPARATUS

    Science.gov (United States)

    Skarstrom, C.; Urey, H.C.; Cohen, K.

    1960-08-01

    A high-speed centrifuge for the separation of gaseous isotopes is designed comprising a centrifugal pump mounted on the outlet of a centrifuge bowl and arranged to pump the heavy and light fractions out of the centrifuge bowl in two separate streams.

  4. Plasma centrifuge

    International Nuclear Information System (INIS)

    Ikehata, Takashi; Mase, Hiroshi

    1998-01-01

    The plasma centrifuge is one of statistical isotope separation processes which uses the centrifugal force of a J x B driven rotating plasma in a magnetic field to give rise to the mass-dependent radial transport of isotopic ions. The system has been developed as an alternative to the gas centrifuge because a much higher rotational velocity and separation factor have been achieved. In this review, the physical aspects of the plasma centrifuge followed by the recent experimental achievements are described, especially in comparison with the gas centrifuge. (author)

  5. CENTRIFUGAL SEPARATORS

    Science.gov (United States)

    Skarstrom, C.

    1959-03-10

    A centrifugal separator is described for separating gaseous mixtures where the temperature gradients both longitudinally and radially of the centrifuge may be controlled effectively to produce a maximum separation of the process gases flowing through. Tbe invention provides for the balancing of increases and decreases in temperature in various zones of the centrifuge chamber as the result of compression and expansions respectively, of process gases and may be employed effectively both to neutralize harmful temperature gradients and to utilize beneficial temperaturc gradients within the centrifuge.

  6. Centrifugal pumps

    CERN Document Server

    Anderson, HH

    1981-01-01

    Centrifugal Pumps describes the whole range of the centrifugal pump (mixed flow and axial flow pumps are dealt with more briefly), with emphasis on the development of the boiler feed pump. Organized into 46 chapters, this book discusses the general hydrodynamic principles, performance, dimensions, type number, flow, and efficiency of centrifugal pumps. This text also explains the pumps performance; entry conditions and cavitation; speed and dimensions for a given duty; and losses. Some chapters further describe centrifugal pump mechanical design, installation, monitoring, and maintenance. The

  7. Plasma centrifuges

    International Nuclear Information System (INIS)

    Karchevskij, A.I.; Potanin, E.P.

    2000-01-01

    The review of the most important studies on the isotope separation processes in the rotating plasma is presented. The device is described and the characteristics of operation of the pulse plasma centrifuges with weakly and strongly ionized plasma as well as the stationary plasma centrifuges with the medium weak ionization and devices, applying the stationary vacuum arc with the high ionization rate and the stationary beam-plasma discharge with complete ionization, are presented. The possible mechanisms of the isotope separation in plasma centrifuges are considered. The specific energy consumption for isotope separation in these devices is discussed [ru

  8. Centrifuge apparatus

    Science.gov (United States)

    Sartory, Walter K.; Eveleigh, John W.

    1976-01-01

    A method and apparatus for operating a continuous flow blood separation centrifuge are provided. The hematocrit of the entrant whole blood is continuously maintained at an optimum constant value by the addition of plasma to the entrant blood. The hematocrit of the separated red cells is monitored to indicate the degree of separation taking place, thereby providing a basis for regulating the flow through the centrifuge.

  9. Centrifugal pumps

    CERN Document Server

    Gülich, Johann Friedrich

    2014-01-01

    This book gives an unparalleled, up-to-date, in-depth treatment of all kinds of flow phenomena encountered in centrifugal pumps including the complex interactions of fluid flow with vibrations and wear of materials. The scope includes all aspects of hydraulic design, 3D-flow phenomena and partload operation, cavitation, numerical flow calculations, hydraulic forces, pressure pulsations, noise, pump vibrations (notably bearing housing vibration diagnostics and remedies), pipe vibrations, pump characteristics and pump operation, design of intake structures, the effects of highly viscous flows, pumping of gas-liquid mixtures, hydraulic transport of solids, fatigue damage to impellers or diffusers, material selection under the aspects of fatigue, corrosion, erosion-corrosion or hydro-abrasive wear, pump selection, and hydraulic quality criteria. As a novelty, the 3rd ed. brings a fully analytical design method for radial impellers, which eliminates the arbitrary choices inherent to former design procedures. The d...

  10. Separations by centrifugal phenomena

    International Nuclear Information System (INIS)

    Hsu, H.W.

    1981-01-01

    The technical information presented herein emphasizes the uniqueness of the centrifugal separations methodology and pertinent theory for various kinds of centrifugation. The topics are arranged according to gas, liquid, and solid phases, in the order of increasing densities. Much space is devoted to liquid centrifugation because of the importance of this technique in chemical and biological laboratories. Many separational and characterizational examples are illustrated in detail. The material has been divided into 7 chapters entitled: 1) Introduction, 2) Basic Theory of Centrifugation, 3) Gas Centrifuges, 4) Preparative Liquid Centrifuges, 5) Analytical Liquid Centrifuges, 6) Liquid Centrifuges in Practice, and 7) Mechanical Separations by Centrifuges. Separate abstracts have been prepared for each chapter except the introduction

  11. Enrichment: centrifuge process

    International Nuclear Information System (INIS)

    Soubbaramayer.

    1989-01-01

    This short course is divided into three sections devoted respectively to the physics of the process, some practical problems raised by the design of a centrifuge and the present situation of centrifugation in the World. 31 figs., 18 refs

  12. CENTRIFUGE END CAP

    Science.gov (United States)

    Beams, J.W.; Snoddy, L.B.

    1960-08-01

    An end cap for ultra-gas centrifuges is designed to impart or remove angular momentum to or from the gas and to bring the entering gas to the temperature of the gas inside the centrifuge. The end cap is provided with slots or fins for adjusting the temperature and the angular momentum of the entering gas to the temperature and momentum of the gas in the centrifuge and is constructed to introduce both the inner and the peripheral stream into the centrifuge.

  13. Observations on centrifugation: application to centrifuge development.

    Science.gov (United States)

    Roberts, T; Smith, M; Roberts, B

    1999-11-01

    This report outlines the background to the development of an automated, serial, discrete centrifuge, reporting on the criteria considered essential in such an instrument. We established the criteria by examining the detailed logistics of centrifuge operation in a hospital laboratory. The mean sample load per run, using six centrifuges, was 13.6 samples, and the user-selectable cycle time ranged from 00:01:10 to 00:12:33 (hours:minutes:seconds) with a fixed g value of 1050. During the laboratory working window, (0900-1700), only 50% of the centrifuge capacity was utilized and more than one-third of the sample workload was delayed for >5 min because the centrifuges were not emptied promptly. In addition, 35% of the sample workload was centrifuged for less than the time prescribed in the operational specifications. Based on these findings, we designed a new continuous, serial centrifuge to overcome some of the deficiencies noted in the logistics study. The centrifuge operates continuously, nominally treating 150 samples/h, with a cycle time of 5 min at 1,000 g. The cycle time and g value are variable between limits, and their selection governs the throughput rate. Each sample is centrifuged separately in individual rotors mounted in a sturdy carousel with a periphery that traverses a load/unload station. There is no sample delay because of operator absence, and the capacity is fully utilized. The centrifuge can operate in a stand-alone capacity or has the capability of being integrated into a sample preparation system or as a direct front end for high-throughput analyzers.

  14. Centrifuge modeling of monopiles

    DEFF Research Database (Denmark)

    Klinkvort, Rasmus Tofte

    2010-01-01

    To gain a larger knowledge of the monopile foundation concept, centrifuge modeling is used by the geotechnical group at DTU. The centrifuge operated at DTU is a beam centrifuge and was built in 1976. In the recent years it has been upgraded with onboard data acquisition and control systems....... The capabilities of the centrifuge at DTU makes it possible to obtain a scale factor of 85 in experiments which equals a soil volume in prototype scale of a diameter of 40 meters and a depth of 40 meters. This paper describes centrifuge modeling theory, the centrifuge setup at DTU and as an example show results...... from centrifuge tests performed on large diameter piles installed in dry sand....

  15. Centrifuge design and development

    International Nuclear Information System (INIS)

    Edwards, T.T.; Holmes, M.D.

    1987-01-01

    BNFL has been enriching uranium on an industrial scale using the centrifuge process for over a decade. Together with its Urenco partners, a joint development programme has been and is being vigorously pursued to reduce specific costs, increase output and maintain competitiveness throughout the 1990s. The paper summarises the development of the centrifuge from its earliest concepts through to the centrifuges of today which are jointly designed by the Urenco partners. The potential for further development is also examined. (author)

  16. RESEARCH CENTRIFUGE- ADVANCED TOOL SEPERATION

    OpenAIRE

    Mahajan Ashwini; Prof. B.V. Jain; Dr Surajj Sarode

    2015-01-01

    A centrifuge is a critical piece of equipment for the laboratory. Purpose of this study was to study research centrifuge in detail, its applications, uses in different branches and silent features. Their are two types of research centrifuge study here revolutionary research centrifuge and microprocessor research centrifuge. A centrifuge is a device that separates particles from a solution through use of a rotor. In biology, the particles are usually cells, sub cellular organelles, or large mo...

  17. Centrifuge enrichment program

    International Nuclear Information System (INIS)

    Astley, E.R.

    1976-01-01

    Exxon Nuclear has been active in privately funded research and development of centrifuge enrichment technology since 1972. In October of 1975, Exxon Nuclear submitted a proposal to design, construct, and operate a 3000-MT SWU/yr centrifuge enrichment plant, under the provisions of the proposed Nuclear Fuel Assurance Act of 1975. The U.S. Energy Research and Development Administration (ERDA) accepted the proposal as a basis for negotiation. It was proposed to build a 1000-MT SWU/yr demonstration increment to be operational in 1982; and after successful operation for about one year, expand the facilities into a 3000-MT SWU/yr plant. As part of the overall centrifuge enrichment plant, a dedicated centrifuge manufacturing plant would be constructed; sized to support the full 3000-MT SWU/yr plant. The selection of the centrifuge process by Exxon Nuclear was based on an extremely thorough evaluation of current and projected enrichment technology; results show that the technology is mature and the process will be cost effective. The substantial savings in energy (about 93%) from utilization of the centrifuge option rather than gaseous diffusion is a compelling argument. As part of this program, Exxon Nuclear has a large hardware R and D program, plus a prototype centrifuge manufacturing capability in Malta, New York. To provide a full-scale machine and limited cascade test capability, Exxon Nuclear is constructing a $4,000,000 Centrifuge Test Facility in Richland, Washington. This facility was to initiate operations in the Fall of 1976. Exxon Nuclear is convinced that the centrifuge enrichment process is the rational selection for emergence of a commercial enrichment industry

  18. Centrifugal pump handbook

    CERN Document Server

    Pumps, Sulzer

    2010-01-01

    This long-awaited new edition is the complete reference for engineers and designers working on pump design and development or using centrifugal pumps in the field. This authoritative guide has been developed with access to the technical expertise of the leading centrifugal pump developer, Sulzer Pumps. In addition to providing the most comprehensive centrifugal pump theory and design reference with detailed material on cavitation, erosion, selection of materials, rotor vibration behavior and forces acting on pumps, the handbook also covers key pumping applications topics and operational

  19. Valve for gas centrifuges

    Science.gov (United States)

    Hahs, Charles A.; Burbage, Charles H.

    1984-01-01

    The invention is a pneumatically operated valve assembly for simultaneously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two of the lines so closed. The valve assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  20. Pipeline system for gas centrifuge

    International Nuclear Information System (INIS)

    Masumoto, Tsutomu; Umezawa, Sadao.

    1977-01-01

    Purpose: To enable effective operation for the gas centrifuge cascade system upon failures in the system not by interrupting the operation of all of the centrifuges in the system but by excluding only the failed centrifuges. Constitution: A plurality of gas centrifuges are connected by way of a pipeline and an abnormal detector for the automatic detection of abnormality such as destruction in a vacuum barrel and loss of vacuum is provided to each of the centrifuges. Bypass lines for short-circuitting adjacent centrifuges are provided in the pipelines connecting the centrifuges. Upon generation of abnormality in a centrifuge, a valve disposed in the corresponding bypass is automatically closed or opened by a signal from the abnormal detector to change the gas flow to thereby exclude the centrifuge in abnormality out of the system. This enables to effectively operate the system without interrupting the operation for the entire system. (Moriyama, K.)

  1. SEAL FOR HIGH SPEED CENTRIFUGE

    Science.gov (United States)

    Skarstrom, C.W.

    1957-12-17

    A seal is described for a high speed centrifuge wherein the centrifugal force of rotation acts on the gasket to form a tight seal. The cylindrical rotating bowl of the centrifuge contains a closure member resting on a shoulder in the bowl wall having a lower surface containing bands of gasket material, parallel and adjacent to the cylinder wall. As the centrifuge speed increases, centrifugal force acts on the bands of gasket material forcing them in to a sealing contact against the cylinder wall. This arrangememt forms a simple and effective seal for high speed centrifuges, replacing more costly methods such as welding a closure in place.

  2. Perceived radial translation during centrifugation

    NARCIS (Netherlands)

    Bos, J.E.; Correia Grácio, B.J.

    2015-01-01

    BACKGROUND: Linear acceleration generally gives rise to translation perception. Centripetal acceleration during centrifugation, however, has never been reported giving rise to a radial, inward translation perception. OBJECTIVE: To study whether centrifugation can induce a radial translation

  3. Human Powered Centrifuge

    Science.gov (United States)

    Mulenburg, Gerald M. (Inventor); Vernikos, Joan (Inventor)

    1997-01-01

    A human powered centrifuge has independently established turntable angular velocity and human power input. A control system allows excess input power to be stored as electric energy in a battery or dissipated as heat through a resistors. In a mechanical embodiment, the excess power is dissipated in a friction brake.

  4. Lightweight Shield for Centrifuge

    Science.gov (United States)

    Luper, C.

    1982-01-01

    Centrifuge bowl composed of laminated aluminum offers required combination of high strength at reduced weight. Around outside wall of bowl core of 1/16 inch thick spun aluminum are wrapped two layers of aluminum, each also one-sixteenth inch thick. Layered structure prevents cracks from propagating through wall.

  5. Multifunctional centrifugal grinding unit

    Science.gov (United States)

    Sevostyanov, V. S.; Uralskij, V. I.; Uralskij, A. V.; Sinitsa, E. V.

    2018-03-01

    The article presents scientific and engineering developments of multifunctional centrifugal grinding unit in which the selective effect of grinding bodies on the crushing material is realized, depending on its physical and mechanical characteristics and various schemes for organizing the technological process

  6. Centrifugal blood pump 603

    Indian Academy of Sciences (India)

    Centrifugal blood pump 603 pressure obtained for real blood, as shown in figure 6, is a little higher than that for glycerin aqua Solution with the same viscosity as blood. This may indicate the effect of slight non-. Newtonian turbulent flow. The radial whirl motion of the impeller was observed by dual laser position sensors.

  7. Centrifugal analyzer development

    International Nuclear Information System (INIS)

    Burtis, C.A.; Bauer, M.L.; Bostick, W.D.

    1976-01-01

    The development of the centrifuge fast analyzer (CFA) is reviewed. The development of a miniature CFA with computer data analysis is reported and applications for automated diagnostic chemical and hematological assays are discussed. A portable CFA system with microprocessor was adapted for field assays of air and water samples for environmental pollutants, including ammonia, nitrates, nitrites, phosphates, sulfates, and silica. 83 references

  8. New centrifugation blood culture device.

    Science.gov (United States)

    Dorn, G L; Smith, K

    1978-01-01

    A single-tube blood culture device designed for centrifugation in a tabletop centrifuge is described. Reconstruction experiments using 21 different organisms and human donor blood indicate that excellent recovery can be obtained by centrifugation for 30 min at 3,000 X g. PMID:342539

  9. Flow control arrangements for centrifuges

    International Nuclear Information System (INIS)

    Alderton, G.W.; Davidge, P.C.

    1983-01-01

    In a centrifuge plant for the separation of uranium isotopes, when a centrifuge machine breaks down, light gas is produced. This gas can cause adjacent machines to break down, so propagating the fault. The present invention provides flow control arrangements in gas pipes to the centrifuge, whereby sudden egress of gas from a failed machine is inhibited. (author)

  10. Separation parameters of gas centrifuges

    International Nuclear Information System (INIS)

    May, W.G.

    1977-01-01

    Early work on development of the gas centrifuge for separation of uranium isotopes has recently been reviewed. Several configurations were investigated. The preferred configuration eventually turned out to be a countercurrent centrifuge. In this form, an internal circulation is set up, and as a consequence, light isotope concentrates at one end of the centrifuge, heavy isotope at the other. In many ways the effect resembles the separation obtained in packed columns in the chemical and petroleum industries. It is the purpose of this paper to develop this analogy between countercurrent gas centrifuges and packed towers and to illustrate its usefulness in understanding the separation process in the centrifuge. 8 figures

  11. Centrifugal compressor case study

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, B.

    2010-10-15

    Three centrifugal compressors at a pipeline station were retrofitted with higher head impellers in 2008. The owners of the station experienced vibration problems over the following 2 years that caused transmitter and position failures that were assumed to be flow-induced pulsations. A vibration and pulsation analysis indicated that the shell mode piping vibration excited by the blade pass pulsation was responsible for the failures. This study outlined factors that contributed to the vibration problem. Interferences between the compressor and shell mode piping natural frequencies were predicted, and potential excitation sources were examined. The study demonstrated how centrifugal vibration analyses can be used during the design phase to avoid costly adjustments. Recommendations included the addition of stiffeners to alter the shell modes, and the addition of constrained layer damping material to reduce resonant responses. 2 refs., 1 tab., 12 figs.

  12. Container for centrifuging blood

    International Nuclear Information System (INIS)

    Narra, R.K.

    1982-01-01

    A container is described for use in drawing patient's blood, centrifuging the blood and then labelling the separated red cells with sup(99m)Tc. It consists of a tube with a central chamber and a lower portion provided with an aperture in which a weir is supported and extends into the central chamber. The weir has a central channel. A resilient plug seals the aperture. (author)

  13. Gas Centrifuges and Nuclear Proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Albright, David

    2004-09-15

    Gas centrifuges have been an ideal enrichment method for a wide variety of countries. Many countries have built gas centrifuges to make enriched uranium for peaceful nuclear purposes. Other countries have secretly sought centrifuges to make highly enriched uranium for nuclear weapons. In more recent times, several countries have secretly sought or built gas centrifuges in regions of tension. The main countries that have been of interest in the last two decades have been Pakistan, Iraq, Iran, and North Korea. Currently, most attention is focused on Iran, Pakistan, and North Korea. These states did not have the indigenous abilities to make gas centrifuges, focusing instead on illicit and questionable foreign procurement. The presentation covered the following main sections: Spread of centrifuges through illicit procurement; Role of export controls in stopping proliferation; Increasing the transparency of gas centrifuge programs in non-nuclear weapon states; and, Verified dismantlement of gas centrifuge programs. Gas centrifuges are important providers of low enriched uranium for civil nuclear power reactors. They also pose special nuclear proliferation risks. We all have special responsibilities to prevent the spread of gas centrifuges into regions of tension and to mitigate the consequences of their spread into the Middle East, South Asia, and North Asia.

  14. The magnetic centrifugal mass filter

    International Nuclear Information System (INIS)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-01-01

    Mass filters using rotating plasmas have been considered for separating nuclear waste and spent nuclear fuel. We propose a new mass filter that utilizes centrifugal and magnetic confinement of ions in a way similar to the asymmetric centrifugal trap. This magnetic centrifugal mass filter is shown to be more proliferation resistant than present technology. This filter is collisional and produces well confined output streams, among other advantages.

  15. The magnetic centrifugal mass filter

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, Abraham J.; Fisch, Nathaniel J. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08540 (United States)

    2011-09-15

    Mass filters using rotating plasmas have been considered for separating nuclear waste and spent nuclear fuel. We propose a new mass filter that utilizes centrifugal and magnetic confinement of ions in a way similar to the asymmetric centrifugal trap. This magnetic centrifugal mass filter is shown to be more proliferation resistant than present technology. This filter is collisional and produces well confined output streams, among other advantages.

  16. Centrifuge impact cratering experiment 5

    Science.gov (United States)

    1984-01-01

    Transient crates motions, cratering flow fields, crates dynamics, determining impact conditions from total crater welt, centrifuge quarter-space cratering, and impact cratering mechanics research is documented.

  17. National geotechnical centrifuge

    Science.gov (United States)

    Hallam, J. A.; Kunz, N.; Vallotton, W. C.

    1982-01-01

    A high G-ton centrifuge, able to take a 2700 kg (6000 lb) payload up to 300 G, is described. The stability of dams and embankments, the bearing capacity of soil foundations, and the dynamic behavior of foundations due to vibration of machinery are examples of applications. A power rating of 6,000 kW (9,000 hp) was established for the motor. An acceptable maximum speed of 70 rpm was determined. A speed increase with a ratio of 1:3 is discussed. The isolated tension straps, the anti-spreader bar and the flexwall bucket, and safety precautions are also discussed.

  18. Centrifugal-reciprocating compressor

    Science.gov (United States)

    Higa, W. H. (Inventor)

    1984-01-01

    A centrifugal compressor is described which includes at least one pair of cylinders arranged in coaxial alignment and supported for angular displacement about a common axis of rotation normally disecting a common longitudinal axis of symmetry for the cylinders. The cylinders are characterized by ported closures located at the mutually remote ends thereof through which the cylinders are charged and discharged, and a pair of piston heads seated within the cylinders and supported for floating displacement in compressive strokes in response to unidirectional angular displacement imparted to the cylinders.

  19. Centrifugal precipitation chromatography

    Science.gov (United States)

    Ito, Yoichiro; Lin, Qi

    2009-01-01

    Centrifugal precipitation chromatography separates analytes according their solubility in ammonium sulfate (AS) solution and other precipitants. The separation column is made from a pair of long spiral channels partitioned with a semipermeable membrane. In a typical separation, concentrated ammonium sulfate is eluted through one channel while water is eluted through the other channel in the opposite direction. The countercurrent process forms an exponential AS concentration gradient through the water channel. Consequently, protein samples injected into the water channel is subjected to a steadily increasing AS concentration and at the critical AS concentration they are precipitated and deposited in the channel bed by the centrifugal force. Then the chromatographic separation is started by gradually reducing the AS concentration in the AS channel which lowers the AS gradient concentration in the water channel. This results in dissolution of deposited proteins which are again precipitated at an advanced critical point as they move through the channel. Consequently, proteins repeat precipitation and dissolution through a long channel and finally eluted out from the column in the order of their solubility in the AS solution. The present method has been successfully applied to a number of analytes including human serum proteins, recombinant ketosteroid isomerase, carotenoid cleavage enzymes, plasmid DNA, polysaccharide, polymerized pigments, PEG-protein conjugates, etc. The method is capable to single out the target species of proteins by affinity ligand or immunoaffinity separation. PMID:19541553

  20. Relativistic centrifugal instability

    Science.gov (United States)

    Gourgouliatos, Konstantinos N.; Komissarov, Serguei S.

    2018-03-01

    Near the central engine, many astrophysical jets are expected to rotate about their axis. Further out they are expected to go through the processes of reconfinement and recollimation. In both these cases, the flow streams along a concave surface and hence, it is subject to the centrifugal force. It is well known that such flows may experience the centrifugal instability (CFI), to which there are many laboratory examples. The recent computer simulations of relativistic jets from active galactic nuclei undergoing the process of reconfinement show that in such jets CFI may dominate over the Kelvin-Helmholtz instability associated with velocity shear (Gourgouliatos & Komissarov). In this letter, we generalize the Rayleigh criterion for CFI in rotating fluids to relativistic flows using a heuristic analysis. We also present the results of computer simulations which support our analytic criterion for the case of an interface separating two uniformly rotating cylindrical flows. We discuss the difference between CFI and the Rayleigh-Taylor instability in flows with curved streamlines.

  1. Centrifugal gas separator

    Energy Technology Data Exchange (ETDEWEB)

    Kanagawa, A; Fujii, O; Nakamoto, H

    1970-03-09

    Counter currents in the rotary drum of a centrifugal gas separator are produced by providing, at either end of the drum in the vicinity of the circumferential and central positions, respectively, outflow and inflow holes with a communicating passage external to the drum there between whereby gaseous counter currents are caused to flow within the drum and travel through the passage which is provided with gas flow adjustment means. Furthermore, the space defined by the stationary portion of the passage and the rotor drum is additionally provided with a screw pump or throttling device at either its stationary side or drum side or both in order to produce a radially directed gas flow therewithin. A gas mixture is axially admitted into the drum while centrifugal force and a cooling element provided therebelow cause an increase in gas pressure along and a gaseous flow toward the wall member, whereupon the comparatively high pressured circumferentially distributed gas is extracted from the outlet holes, flows through the external gas passage and back into the lower pressured drum core through the inlet holes, thus producing the desired counter currents. The gases thus separated are withdrawn along axially provided discharge pipes. Accordingly, this invention permits heating elements which were formerly used to produce thermal convection currents to be disposed of and allows the length of the rotor drum to be more efficiently utilized to enhance separation efficiency.

  2. Centrifugal shot blast system

    International Nuclear Information System (INIS)

    1998-02-01

    This report describes a demonstration of Concrete cleaning, Inc., modified centrifugal shot blast technology to remove the paint coating from concrete flooring. This demonstration is part of the Chicago Pile-5 (CP-5) Large-Scale Demonstration Project (LSDP) sponsored by the US Department of Energy (DOE), office of Science and Technology (OST), Deactivation and Decommissioning Focus Area (DDFA). The objective of the LSDP is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East (ANL) CP-5 Research Reactor. The purpose of the LSDP is to demonstrate that using innovative and improved decontamination and decommissioning (D and D) technologies from various sources can result in significant benefits, such as decreased cost and increased health and safety, as compared with baseline D and D technologies. Potential markets exist for the innovative centrifugal shot blast system at the following sites: Fernald Environmental Management Project, Los Alamos, Nevada, Oak Ridge Y-12 and K-25, Paducah, Portsmouth Gaseous Diffusion site, and the Savannah River Site. This information is based on a revision to the OST Linkage Tables dated August 4, 1997

  3. Centrifuges and inertial shear forces

    NARCIS (Netherlands)

    Loon, van J.J.W.A.; Folgering, H.T.E.; Bouten, C.V.C.; Smit, T.H.

    2004-01-01

    Centrifuges are often used in biological studies for 1xg control samples in space flight microgravity experiments as well as in ground based research. Using centrifugation as a tool to generate an Earth like acceleration introduces unwanted inertial shear forces to the sample. Depending on the

  4. Centrifuge treatment of coal tar

    Energy Technology Data Exchange (ETDEWEB)

    L.A. Kazak; V.Z. Kaidalov; L.F. Syrova; O.S. Miroshnichenko; A.S. Minakov [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15

    New technology is required for the removal of water and heavy fractions from regular coal tar. Centrifuges offer the best option. Purification of coal tar by means of centrifuges at OAO NLMK permits the production of pitch coke or electrode pitch that complies with current standards.

  5. NASA low speed centrifugal compressor

    Science.gov (United States)

    Hathaway, Michael D.

    1990-01-01

    The flow characteristics of a low speed centrifugal compressor were examined at NASA Lewis Research Center to improve understanding of the flow in centrifugal compressors, to provide models of various flow phenomena, and to acquire benchmark data for three dimensional viscous flow code validation. The paper describes the objectives, test facilities' instrumentation, and experiment preliminary comparisons.

  6. Gas-centrifuge unit

    International Nuclear Information System (INIS)

    Stark, T.M.

    1977-01-01

    An isotope-enrichment unit is described for separating a gaseous mixture feedstock including a compound of a light nuclear isotope at a predetermined concentration and a compound of a heavy nuclear isotope at a predetermined concentration into at least two unit-output fractions including a waste fraction depleted in the light isotope to a predetermined concentration and a product fraction enriched in the light isotope to a predetermined concentration. The unit comprises a first group of cascades of gas centrifuges, each cascade having an enriching stage, a stripping stage, an input, a light-fraction output, and a heavy-fraction output for separating the gaseous-mixture feed stock into light and heavy gaseous-mixture fractions; and an auxillary cascade

  7. [Galileo and centrifugal force].

    Science.gov (United States)

    Vilain, Christiane

    This work intends to focus on Galileo's study of what is now called "centrifugal force," within the framework of the Second Day of his Dialogo written in 1632, rather than on the previously published commentaries on the topic. Galileo proposes three geometrical demonstrations in order to prove that gravity will always overcome centrifugalforce, and that the potential rotation of the Earth, whatever its speed, cannot in any case project objects beyond it. Each of these demonstrations must consequently contain an error and it has seemed to us that the first one had not been understood up until now. Our analysis offers an opportunity to return to Galileo's geometrical representation of dynamical questions; actually, we get an insight into the sophistication of Galileo's practices more than into his mistakes. Our second point, concerning the historiography of the problem, shows an evolution from anachronic critics to more contextual considerations, in the course of the second half of the twentieth century.

  8. Gas centrifuge purge method

    Science.gov (United States)

    Theurich, Gordon R.

    1976-01-01

    1. In a method of separating isotopes in a high speed gas centrifuge wherein a vertically oriented cylindrical rotor bowl is adapted to rotate about its axis within an evacuated chamber, and wherein an annular molecular pump having an intake end and a discharge end encircles the uppermost portion of said rotor bowl, said molecular pump being attached along its periphery in a leak-tight manner to said evacuated chamber, and wherein end cap closure means are affixed to the upper end of said rotor bowl, and a process gas withdrawal and insertion system enters said bowl through said end cap closure means, said evacuated chamber, molecular pump and end cap defining an upper zone at the discharge end of said molecular pump, said evacuated chamber, molecular pump and rotor bowl defining a lower annular zone at the intake end of said molecular pump, a method for removing gases from said upper and lower zones during centrifuge operation with a minimum loss of process gas from said rotor bowl, comprising, in combination: continuously measuring the pressure in said upper zone, pumping gas from said lower zone from the time the pressure in said upper zone equals a first preselected value until the pressure in said upper zone is equal to a second preselected value, said first preselected value being greater than said second preselected value, and continuously pumping gas from said upper zone from the time the pressure in said upper zone equals a third preselected value until the pressure in said upper zone is equal to a fourth preselected value, said third preselected value being greater than said first, second and fourth preselected values.

  9. Waves in Strong Centrifugal Field

    Science.gov (United States)

    Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.

    Dynamics of waves generated by scopes in gas centrifuges (GC) for isotope separation is considered. The centrifugal acceleration in the GC reaches values of the order of 106g. The centrifugal and Coriolis forces modify essentially the conventional sound waves. Three families of the waves with different polarization and dispersion exist in these conditions. Dynamics of the flow in the model GC Iguasu is investigated numerically. Comparison of the results of the numerical modeling of the wave dynamics with the analytical predictions is performed. New phenomena of the resonances in the GC is found. The resonances occur for the waves polarized along the rotational axis having the smallest dumping due to the viscosity.

  10. Microwave assisted centrifuge and related methods

    Science.gov (United States)

    Meikrantz, David H [Idaho Falls, ID

    2010-08-17

    Centrifuge samples may be exposed to microwave energy to heat the samples during centrifugation and to promote separation of the different components or constituents of the samples using a centrifuge device configured for generating microwave energy and directing the microwave energy at a sample located in the centrifuge.

  11. Uranium enrichment by gas centrifuge

    International Nuclear Information System (INIS)

    Heriot, I.D.

    1988-01-01

    After recalling the physical principles and the techniques of centrifuge enrichment the report describes the centrifuge enrichment programmes of the various countries concerned and compares this technology with other enrichment technologies like gaseous diffusion, laser, aerodynamic devices and chemical processes. The centrifuge enrichment process is said to be able to replace with advantage the existing enrichment facilities in the short and medium term. Future prospects of the process are also described, like recycled uranium enrichment and economic improvements; research and development needs to achieve the economic prospects are also indicated. Finally the report takes note of the positive aspect of centrifuge enrichment as far as safeguards and nuclear safety are concerned. 27 figs, 113 refs

  12. Centar's gas centrifuge enrichment project

    International Nuclear Information System (INIS)

    Abajian, V.V.; Fishman, A.M.

    1976-01-01

    Plans for the building and operating of Centar Associates gas centrifuge uranium enrichment plant are described. Operating costs and machine manufacture are considered. Commitments with the utilities are summarised. (U.K.)

  13. 75 FR 70300 - USEC, Inc.; American Centrifuge Lead Cascade Facility; American Centrifuge Plant; Notice of...

    Science.gov (United States)

    2010-11-17

    ... Centrifuge Lead Cascade Facility; American Centrifuge Plant; Notice of Receipt of a License Transfer... SNM-2011, for the American Centrifuge Lead Cascade Facility and the American Centrifuge Plant... USEC Inc., (the Licensee), for its American Centrifuge Lead Cascade Facility (LCF) and American...

  14. Rotary drum for centrifuge

    International Nuclear Information System (INIS)

    Sakurai, Mitsuo; Ichinoto, Seiichi.

    1972-01-01

    An outwardly concaved metallic end plate is fitted into each end of a metallic rotary drum for a centrifuge until each end face of the drum is brought to bear upon a section of the end plate radially projected in a direction perpendicular to the axis of rotation of the drum, said section being provided at the marginal edge of the end plate. Following completion of the fitting operation, the end plate is welded to the rotary drum. During high speed rotation, the drum contracts axially and expands radially, while the concave end plate, radially tensioned due to the radial expansion of the drum, undergoes a reduction in its degree of concavity resulting in outwardly directed axial displacement of the end plate proper its marginal edge remaining unaffected relative to the drum. Such displacement conpensates for axial contraction of the drum. Since displacement of the end plate and contraction of the drum depend upon the speed of rotation, substantial axial distortion of the drum can be avoided relative to the end plates at both low and high speeds to permit a high degree of balance for the rotary drum. (Ohno, Y.)

  15. Centrifugal gas separator

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, M

    1970-03-27

    A centrifugal gas separator of a highly endurable construction and with improved gas sealing qualities utilizes a cylincrical elastic bellows or similar system in cooperation with a system of dynamic pressure operable gas seals as means for removing separated gases from the interior of the rotor drum, collecting the separated gases in their respective separated gas chambers defined by the corresponding bellows and their supporting stationary wall members, gas seals and rotor end caps, and means for discharging to the exterior of the surrounding cylindrical wall member the gaseous components from their respective separated gas chambers. In the vicinity of the rotary drum motor is a mixed gas chamber and means for providing the gas mixture along a co-axial passage into the rotary drum chamber. Orifices are bored into the end caps of the rotary drum to direct the separated gases into the aforementioned separated gas chambers which, through the action of the gas seals, freely slide upon the rotating drum to collect and thereafter discharge the thus separated gases. Therefore, according to the present invention, helium gas used to prevent separated gas remixture is unnecessary and, furthermore, the gas seals and elastic bellows means provide an air-tight seal superior to that of the contact sealing system of the former art.

  16. Centrifugal gas separator

    International Nuclear Information System (INIS)

    Sakurai, Mitsuo.

    1970-01-01

    A centrifugal gas separator of a highly endurable construction and with improved gas sealing qualities utilizes a cylincrical elastic bellows or similar system in cooperation with a system of dynamic pressure operable gas seals as means for removing separated gases from the interior of the rotor drum, collecting the separated gases in their respective separated gas chambers defined by the corresponding bellows and their supporting stationary wall members, gas seals and rotor end caps, and means for discharging to the exterior of the surrounding cylindrical wall member the gaseous components from their respective separated gas chambers. In the vicinity of the rotary drum motor is a mixed gas chamber and means for providing the gas mixture along a co-axial passage into the rotary drum chamber. Orifices are bored into the end caps of the rotary drum to direct the separated gases into the aforementioned separated gas chambers which, through the action of the gas seals, freely slide upon the rotating drum to collect and thereafter discharge the thus separated gases. Therefore, according to the present invention, helium gas used to prevent separated gas remixture is unnecessary and, furthermore, the gas seals and elastic bellows means provide an air-tight seal superior to that of the contact sealing system of the former art. (K.J. Owens)

  17. Radwaste disposal drum centrifuge

    International Nuclear Information System (INIS)

    Rubin, L.S.; Deltete, C.P.; Crook, M.R.

    1988-01-01

    The drum or processing bowl of the DDC becomes the disposal container when the filling operation is completed. Rehandling of the processed resin is eliminated. By allowing the centrifugally compacted resin to remain in the processing container, extremely efficient waste packaging can be achieved. The dewatering results and volume reductions reported during 1986 were based upon laboratory scale testing sponsored by the Electric Power Research Institute (EPRI) and the Department of Energy (DOE). Since the publication of these preliminary results, additional testing using a full-scale prototype DDC has been completed, again under the auspices of the DOE. Full-scale testing has substantiated the results of earlier testing and has formed the basis for preliminary discussions with the U.S. Nuclear Regulatory Commission (NRC) regarding DDC licensing for radioactive applications. A comprehensive Topical Report and Process Control Program is currently being prepared for submittal to the NRC for review under a utility licensing action. Detailed cost-benefit analyses for actual plant operations have been prepared to substantiate the attractiveness of the DDC. Several methods to physically integrate a DDC into a nuclear power plant have also been developed

  18. Theoretical investigations on plasma centrifuges

    International Nuclear Information System (INIS)

    Hong, S.H.

    1978-01-01

    The theoretical analysis of the steady-state dynamics of plasma centrifuges is dealt with to understand the physics of rotating plasmas and their feasibility for isotope separation. The centrifuge systems under consideration employ cylindrical gas discharge chambers with externally-applied axial magnetic fields. The cathode and anode are symmetric about the cylinder axis and arranged in such a way for each system, i.e., (1) two ring electrodes of different radii in the chamber end plates or (2) two ring electrodes embedded in the mantle of the cylinder. They produce converging and/or diverging current density field lines, which intersect the external magnetic field under a nonvanishing angle. The associated Lorentz forces set the plasma, which is produced through an electrical discharge, into rotation around the cylinder axis. Three boundary-value problems for the coupled partial differential equations of the centrifuge fields are formulated, respectively, on the basis of the magnetogasdynamic equations. The electric field, electrostatic potential, current density, induced magnetic field, and velocity distributions are discussed in terms of the Hartmann number, the Hall coefficient, and the magnetic Reynolds number. The plasma centrifuge analyses presented show that the speeds of plasma rotation up to the order of 10 4 m/sec are achievable at typical conditions. The associated centrifugal forces produce a significant spatial isotope separation, which is somewhat reduced in the viscous boundary layers at the centrifuge walls. The speeds of plasma rotation increase with increasing Hartmann number and Hall coefficient. For small Hall coefficient, the induced azimuthal magnetic field does not affect the plasma rotation. For large volumes of rotating isotope mixtures, a multidischarge centrifuge can be constructed by setting up a large number of centrifuge systems in series

  19. Centrifugal Compressor Aeroelastic Analysis Code

    Science.gov (United States)

    Keith, Theo G., Jr.; Srivastava, Rakesh

    2002-01-01

    Centrifugal compressors are very widely used in the turbomachine industry where low mass flow rates are required. Gas turbine engines for tanks, rotorcraft and small jets rely extensively on centrifugal compressors for rugged and compact design. These compressors experience problems related with unsteadiness of flowfields, such as stall flutter, separation at the trailing edge over diffuser guide vanes, tip vortex unsteadiness, etc., leading to rotating stall and surge. Considerable interest exists in small gas turbine engine manufacturers to understand and eventually eliminate the problems related to centrifugal compressors. The geometric complexity of centrifugal compressor blades and the twisting of the blade passages makes the linear methods inapplicable. Advanced computational fluid dynamics (CFD) methods are needed for accurate unsteady aerodynamic and aeroelastic analysis of centrifugal compressors. Most of the current day industrial turbomachines and small aircraft engines are designed with a centrifugal compressor. With such a large customer base and NASA Glenn Research Center being, the lead center for turbomachines, it is important that adequate emphasis be placed on this area as well. Currently, this activity is not supported under any project at NASA Glenn.

  20. Centrifugation. A theoretical study of oxygen enrichment by centrifugation

    Energy Technology Data Exchange (ETDEWEB)

    Kierkegaard, P.; Raetz, E.

    1998-12-01

    In the present paper we first investigate what happens if we fill a cylinder with air, close it and rotate it. The results show that no matter which peripheral speed is used, it is not possible by means of the radial separation effect alone, to enrich the oxygen concentration from the previous 21% to more then 23.3%, which is of no practical value. In case of a too low enrichment in one centrifuge, the wanted material from this centrifuge can be used as an input for a second centrifuge and so on, in this way forming a cascade of centrifuges. Oxygen will be enriched in each step, until the desired concentration is reached. Cascading was the technology in the very beginning by enrichment plants for uraniumhexaflouride, used for atomic weapons and nuclear power plants. In this study we try to avoid cascading by aiming for higher separation factors. Therefore, we next investigate the possibilities of using a countercurrent centrifuge where in principle the enriched gas is subjected to several centrifugation in the same centrifuge. The calculations show, that in this way it is possible to produce nearly a 100% pure oxygen (polluted with some heavier molecules like argon) in one machine. Our third step was to calculate the amount of oxygen produced per hour. Using a countercurrent centrifuge of the Zippe type, 100 cm high and 20 cm in diameter, it is or will be possible in the near future to produce 17 g enriched air per hour enriched to 50% oxygen. That corresponds to processing 1 m{sup 3} atmospherical air in the period of approximately 24 hours. This is not very impressive. Our fourth step was to estimate the amount of power used for producing this amount of oxygen. A rough, but complicated, estimate shows that the power consumption at the production level will be about the double of the consumption used today. The overall conclusion is, that centrifugation as a production method for oxygen (or nitrogen) will not be competitive with the currently used method in the

  1. The Advanced Gas Centrifuge program

    International Nuclear Information System (INIS)

    Riepe, R.

    1984-01-01

    Although the gas centrifuge process for uranium enrichment is often referred to as a ''new technology,'' it has been under development for approximately 25 years to bring it to its current state of deployment. Centrifuges are now being installed in a new gas centrifuge enrichment plant (GCEP) at Portsmouth, Ohio. The objective of this new plant was to provide additional U.S. uranium enrichment capacity at a production cost comparable to the U.S. diffusion process but requiring much less power per separative work unit (SWU) produced. The current, commercial scale centrifuge technology being installed meets that objective. The objective for new U.S. enrichment capacity has changed. The objective is not to provide more SWUs but to provide cheaper SWUs. The objective is to make the U.S. uranium enrichment enterprise competitive on the international market. Where the U.S. at one time supplied virtually all of the free world SWU demand, the U.S. market share has now dropped to approximately 35% of the foreign free world market. The Advanced Gas Centrifuge (AGC) program provides an avenue for making the U.S. the economically attractive, reliable enrichment supplier

  2. Centrifugal force: a few surprises

    International Nuclear Information System (INIS)

    Abramowicz, M.A.; Max-Planck-Institut fuer Physik und Astrophysik, Garching

    1990-01-01

    The need for a rather fundamental revision in understanding of the nature of the centrifugal force is discussed. It is shown that in general relativity (and contrary to the situation in Newtonian theory) rotation of a reference frame is a necessary but not sufficient condition for the centrifugal force to appear. A sufficient condition for its appearance, in the instantaneously corotating reference frame of a particle, is that the particle motion in space (observed in the global rest frame) differs from a photon trajectory. The direction of the force is the same as that of the gradient of the effective potential for photon motion. In some cases, the centrifugal force will attract towards the axis of rotation. (author)

  3. Centrifugal trapping in the magnetotail

    Directory of Open Access Journals (Sweden)

    D. C. Delcourt

    Full Text Available Particles leaving the neutral sheet in the distant magnetotail at times display adiabatic trajectory sequences characterized by an inflection toward the equator and subsequent mirroring in its vicinity. We demonstrate that this low-latitude mirroring results primarily from a centrifugal deceleration due to the fast direction-changing E×B drift. This effect which we refer to as "centrifugal trapping" appears both in guiding centre and full particle treatments. It thus does not directly relate to nonadiabatic motion. However, pitch angle scattering due to nonadiabatic neutral sheet interaction does play a role in reducing the parallel speed of the particles. We show that centrifugal trapping is an important mechanism for the confinement of the slowest (typically below the equatorial E×B drift speed plasma sheet populations to the midplane vicinity.

  4. Centrifugal trapping in the magnetotail

    Directory of Open Access Journals (Sweden)

    D. C. Delcourt

    1995-03-01

    Full Text Available Particles leaving the neutral sheet in the distant magnetotail at times display adiabatic trajectory sequences characterized by an inflection toward the equator and subsequent mirroring in its vicinity. We demonstrate that this low-latitude mirroring results primarily from a centrifugal deceleration due to the fast direction-changing E×B drift. This effect which we refer to as "centrifugal trapping" appears both in guiding centre and full particle treatments. It thus does not directly relate to nonadiabatic motion. However, pitch angle scattering due to nonadiabatic neutral sheet interaction does play a role in reducing the parallel speed of the particles. We show that centrifugal trapping is an important mechanism for the confinement of the slowest (typically below the equatorial E×B drift speed plasma sheet populations to the midplane vicinity.

  5. Physical simulations using centrifuge techniques

    International Nuclear Information System (INIS)

    Sutherland, H.J.

    1981-01-01

    Centrifuge techniques offer a technique for doing physical simulations of the long-term mechanical response of deep ocean sediment to the emplacement of waste canisters and to the temperature gradients generated by them. Preliminary investigations of the scaling laws for pertinent phenomena indicate that the time scaling will be consistent among them and equal to the scaling factor squared. This result implies that this technique will permit accelerated-life-testing of proposed configurations; i.e, long-term studies may be done in relatively short times. Presently, existing centrifuges are being modified to permit scale model testing. This testing will start next year

  6. New type of centrifugal extractor

    International Nuclear Information System (INIS)

    Miyauchi, T.; Tolich, A.

    1975-01-01

    The main principles of a centrifugal extractor design which can be used in the reprocessing of spent fuel with high degree of burning out are given. The extractor consists of two rotating coaxial cylinders. The contact of liquid phases is done in the circular space between the cylinders. By the cylinder rotating the phases are dispersed and the interface, as well as the extraction rate is increased. The given principles of the extractor design are realized in two simplified laboratory installations. The preliminary data obtained point out that much greater rates of the phases contact are achieved in centrifugal extractors than in extraction columns

  7. Centrifugation and the Manhattan Project

    Science.gov (United States)

    Reed, Cameron

    2009-05-01

    A study of U. S. Army Manhattan Engineer District documents reveals that consideration of centrifugation as a means of uranium enrichment during World War II was considerably more extensive than is commonly appreciated. By the time the centrifuge project was abandoned in early 1944 a full-scale prototype unit had been fabricated and tested at near-production speeds, enrichments of close to theoretically-expected levels had been demonstrated with pilot-plant units, and plans for production plants had been developed. This paper will review the history of this little-known aspect of the Project and examine the circumstances of how it came to be discontinued.

  8. Forces on Centrifugal Pump Impellers

    OpenAIRE

    Jery, Belgacem; Brennen, Christopher E.; Caughey, Thomas K.; Acosta, Allan

    1985-01-01

    Forces are exerted on a centrifugal pump impeller, due to the asymmetry of the flow caused by the volute of diffuser, and to the motion of the center of the impeller whenever the shaft whirls. Recent work in the measurement of these forces as a function of the whirl speed to shaft speed ratio, and the influence of the volute, is reviewed. These forces may be decomposed into a steady force, a static stiffness matrix, a damping matrix and an inertia matrix. It is shown that for centrifugal p...

  9. MEANS FOR DETERMINING CENTRIFUGE ALIGNMENT

    Science.gov (United States)

    Smith, W.Q.

    1958-08-26

    An apparatus is presented for remotely determining the alignment of a centrifuge. The centrifage shaft is provided with a shoulder, upon which two followers ride, one for detecting radial movements, and one upon the shoulder face for determining the axial motion. The followers are attached to separate liquid filled bellows, and a tube connects each bellows to its respective indicating gage at a remote location. Vibrations produced by misalignment of the centrifuge shaft are transmitted to the bellows, and tbence through the tubing to the indicator gage. This apparatus is particularly useful for operation in a hot cell where the materials handled are dangerous to the operating personnel.

  10. 76 FR 9613 - USEC Inc. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Order...

    Science.gov (United States)

    2011-02-18

    ... NUCLEAR REGULATORY COMMISSION [EA-11-013] USEC Inc. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Order Approving Direct Transfer of Licenses and Conforming Amendment I USEC... Centrifuge Lead Cascade Facility (Lead Cascade) and American Centrifuge Plant (ACP), respectively, which...

  11. 77 FR 9273 - USEC Inc. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Direct...

    Science.gov (United States)

    2012-02-16

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0355] USEC Inc. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Direct Transfer of Licenses In the Matter of USEC INC. (American Centrifuge Lead Cascade Facility and American Centrifuge Plant); Order EA-12- [[Page 9274

  12. Life Sciences Centrifuge Facility assessment

    Science.gov (United States)

    Benson, Robert H.

    1994-01-01

    This report provides an assessment of the status of the Centrifuge Facility being developed by ARC for flight on the International Space Station Alpha. The assessment includes technical status, schedules, budgets, project management, performance of facility relative to science requirements, and identifies risks and issues that need to be considered in future development activities.

  13. Laser and gas centrifuge enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Heinonen, Olli [Senior Fellow, Belfer Center for Science and International Affairs, Harvard Kennedy School, Cambridge, Massachusetts (United States)

    2014-05-09

    Principles of uranium isotope enrichment using various laser and gas centrifuge techniques are briefly discussed. Examples on production of high enriched uranium are given. Concerns regarding the possibility of using low end technologies to produce weapons grade uranium are explained. Based on current assessments commercial enrichment services are able to cover the global needs of enriched uranium in the foreseeable future.

  14. Reflection of centrifugal pumps maintenance

    International Nuclear Information System (INIS)

    Mozos Fernandez, V.

    2010-01-01

    The aim of this work is to prove that is not necessary a deep and complex knowledge to manage the centrifugal pumps maintenance. According to the author, only deep but single technical knowledge about causes of breakdowns in the different and simple component parts of the pumps, are required. (Author)

  15. Centrifugal separator cascade connected in zigzag manner

    International Nuclear Information System (INIS)

    Kai, Tsunetoshi; Inoue, Yoshiya; Oya, Akio; Nagakura, Masaaki.

    1974-01-01

    Object: To effectively accommodate centrifugal separators of the entire cascade within the available space in a plant by freely selecting perpendicular direction of connection of the centrifugal separator. Structure: Centrifugal separators are connected in zigzag fashion by using a single header for each stage so that in a rectangular shape the entire cascade is arranged. (Kamimura, M.)

  16. 21 CFR 864.5350 - Microsedimentation centrifuge.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Microsedimentation centrifuge. 864.5350 Section 864.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... § 864.5350 Microsedimentation centrifuge. (a) Identification. A microsedimentation centrifuge is a...

  17. Centrifugal dewatering of acid casein curd: effect of casein manufacturing and centrifugation variables on curd compression in a laboratory centrifuge.

    Science.gov (United States)

    Munro, P A; Van Til, H J

    1988-10-20

    Data relevant to curd compression in a horizontal, solid bowl decanter centrifuge have been obtained by studying the dewatering of acid casein curd in a batch laboratory centrifuge. Analysis of curd compression under centrifugal force predicts a moisture content gradient in the dewatered curd from a maximum at the curd-liquid interface to a minimum at the centrifuge bowl wall. This moisture content gradient was also measured experimentally, and its practical implications are discussed. Increases in centrifugal force, centrifugation time, and centrifugation temperature all caused a marked de crease in dewatered curd moisture content, whereas in creases in precipitation pH and maximum washing temperature caused a smaller decrease in dewatered curd moisture content.

  18. Basic characteristics of centrifuges, (4)

    International Nuclear Information System (INIS)

    Kai, Tsunetoshi

    1977-01-01

    A method of numerically solving the convection-diffusion equation is presented for a binary isotopic gas mixture in the axisymmetric velocity field. A modified Newton's method is employed to perform the numerical integration without the assumptions that the pressure can be estimated from the rigid rotation model and the temperature of gas is uniform. A suitable form of the finite difference equation gives a computationally stable integration with reasonable representation of the molar concentration distribution of isotopic molecules in a rotating cylinder. The method includes a Gaussian elimination procedure which consists of the transformation of the Jacobian matrix to a triangular matrix followed by the backward elimination. Computations are made on UF 6 gas in various centrifuges which have the openings for feed, product and waste on the end plates. Discussions are also presented on gas flows and separative efficiencies for the centrifuges which have baffle plates, skirting plates and bellows. (auth.)

  19. Centrifugal pumps: fundamentals and classification

    International Nuclear Information System (INIS)

    Solar Manuel, A. M.

    2009-01-01

    Centrifugal pumps are usually employed to impulse water to elevate it, dose it or give it pressure or speed. They can be used with clean water or loaded with high solid concentration and don't work properly with air or another gas flow. There are another less used pumps, coming from volumetric or ram pumps to magnetic ones for specific uses. Centrifugal ones are rotokinetic pumps, like peripherical or lateral channel pumps. They work in a different way that non rotational kinetic ones and static ones. The work approaches their pre definition, selection, installation, operation and maintenance. It also review their morphology, hidromechanic principles and the basic elements pumps are made of. (Author)

  20. Centrifuge pellet injector for JET

    International Nuclear Information System (INIS)

    Andelfinger, C.; Buchelt, E.; Jacobi, D.; Lackner, E.; Schilling, H.B.; Ulrich, M.; Weber, G.

    1983-08-01

    An engineering design of a centrifuge pellet injector for JET is reported as part of the Phase I contract number JE 2/9016. A rather detailed design is presented for the mechanical and electronic features. Stress calculations, dynamic behaviour and life estimates are considered. The interfaces to the JET vacuum system and CODAS are discussed. Proposals for the pellet diagnostics (velocity, mass and shape) are presented. (orig.)

  1. Centrifugal separation of mixture gases

    International Nuclear Information System (INIS)

    Zhou, M.S.; Chen, W.N.; Yin, Y.T.

    2008-01-01

    An attempt for single centrifugal separation of mixtures with different molecular formula was presented in this paper. The mixtures of SF 6 and CCl 3 F, and SF 6 and CCl 4 were chosen as the processing gases, which were prepared in three mass ratios, 0.5, 0.8 and 0.2, respectively. The separating characteristics such as the overall separation factors and the variation of cuts were studied. (author)

  2. Gas centrifuge bibliography 1970 - 1974

    International Nuclear Information System (INIS)

    Lowe, G.E.; Edwards, K.J.

    1978-05-01

    A bibliography, with abstract, is presented of the gas centrifuge literature published during 1970 to 1974. It supplements PG Information Series 25 (CA) which covered the period 1895 to 1970. Following reference to bibliographies, books and pamphlets, and a few items omitted from the previous bibliography, main items are grouped under the headings Reports, Journal articles and Conference papers and are listed chronologically. There are indexes to subject, author, and document number, the latter including the issuing body. (UK)

  3. Centrifugal pumps and allied machinery

    CERN Document Server

    Anderson, HH

    1994-01-01

    This book will be of vital interest to all engineers and designers concerned with centrifugal pumps and turbines. Including statistical information derived from 20000 pumps and 700 turbines with capacities of 5gpm to 5000000gpm, this book offers the widest range and scope of information currently available. Statistical analyses suggest practical methods of increasing pump performance and provide valuable data for new design aspects.

  4. Centrifuge facilities at Technical University of Denmark

    DEFF Research Database (Denmark)

    Leth, Caspar Thrane; Krogsbøll, Anette Susanne; Hededal, Ole

    2008-01-01

    The geotechnical group at the Danish Technical University (DTU) operates a geotechnical beam centrifuge. The centrifuge was build in 1976 and has been upgraded through the years, latest with onboard data and control systems. The centrifuge concept involves an increased gravity field in which...... the physical model is placed and tested. The capabilities of the centrifuge at DTU makes it possible to obtain a scale factor of 75-85 in the tests which equals a soil volume in prototype scale of ø40m and a depth of 36 m. The centrifuge facilities at DTU have through the years been used for testing various...... geotechnical issues, such as suction anchors, tension piles in clay, active earth pressures on sheet piles and group effects for lateral loaded piles. The paper describes physical modelling in general, the centrifuge, present setups and shows samples of obtained results....

  5. Empirical Design Considerations for Industrial Centrifugal Compressors

    Directory of Open Access Journals (Sweden)

    Cheng Xu

    2012-01-01

    Full Text Available Computational Fluid Dynamics (CFD has been extensively used in centrifugal compressor design. CFD provides further optimisation opportunities for the compressor design rather than designing the centrifugal compressor. The experience-based design process still plays an important role for new compressor developments. The wide variety of design subjects represents a very complex design world for centrifugal compressor designers. Therefore, some basic information for centrifugal design is still very important. The impeller is the key part of the centrifugal stage. Designing a highly efficiency impeller with a wide operation range can ensure overall stage design success. This paper provides some empirical information for designing industrial centrifugal compressors with a focus on the impeller. A ported shroud compressor basic design guideline is also discussed for improving the compressor range.

  6. Gas dynamics in strong centrifugal fields

    OpenAIRE

    Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.

    2017-01-01

    Dynamics of waves generated by scopes in gas centrifuges (GC) for isotope separation is considered. The centrifugal acceleration in the GC reaches values of the order of $10^6$g. The centrifugal and Coriolis forces modify essentially the conventional sound waves. Three families of the waves with different polarisation and dispersion exist in these conditions. Dynamics of the flow in the model GC Iguasu is investigated numerically. Comparison of the results of the numerical modelling of the wa...

  7. Decontamination of nuclear fuels with centrifugal separation

    International Nuclear Information System (INIS)

    Ning, Li; Camassa, R.; Ecke, R.; Venneri, F.

    1995-01-01

    The treatment and disposal of nuclear material is a crucial element in today's nuclear power industry. We present a physical process of centrifugal separation that has potential to deal with existing waste and provide opportunities for realizing advanced accelerator-driven power generation. In our proposed process a liquid metal solution containing actinides and fission products is fed through a series of continuous flow centrifuges. We show fundamentals of centrifugation including theory and experiments and estimate how the processing can be optimized

  8. Decontamination of nuclear fuels with centrifugal separation

    International Nuclear Information System (INIS)

    Ning, L.; Camassa, R.; Ecke, R.; Venneri, F.

    1995-01-01

    The treatment and disposal of nuclear material is a crucial element in today's nuclear power industry. We present a physical process of centrifugal separation that has potential to deal with existing waste and provide opportunities for realizing advanced accelerator driven power generation. In our proposed process a liquid metal solution containing actinides and fission products is fed through a series of continuous flow centrifuges. We show fundamentals of centrifugation including theory and experiments and estimate how the processing can be optimized. (authors)

  9. CFD simulation of centrifugal cells washers.

    Science.gov (United States)

    Kellet, Beth E; Binbing, Han; Dandy, David S; Wickramasinghe, S Ranil

    2004-01-01

    The feasibility of using computational fluid dynamics to guide the design of better centrifuges for processing shed blood is explored here. The velocity field and the rate of protein removal from the shed blood have been studied. The results indicate that computational fluid dynamics could help screen preliminary centrifuge bowl designs thus reducing the number of initial experimental tests required when developing new centrifuge bowls. Though the focus of this work is on washing shed blood the methods developed here are applicable to the design of centrifuge bowls for other blood processing applications.

  10. Testing of pyrochemical centrifugal contactors

    International Nuclear Information System (INIS)

    Chow, L.S.; Carls, E.L.; Basco, J.K.; Johnson, T.R.

    1996-01-01

    A centrifugal contactor that performs oxidation and reduction exchange reactions between molten metals and salts at 500 degrees Centigrade has been tested successfully at Argonne National Laboratory (ANL). The design is based on contactors for aqueous- organic systems operation near room temperature. In tests to demonstrate the performance of the pyrocontactor, cadmium and LICl-KCl eutectic salt were the immiscible solvent phases, and rare earths were the distributing solutes. The tests showed that the pyrocontactor mixed and separated the phases well, with stage efficiencies approaching 99% at rotor speeds near 2700 rpm. The contactor ran smoothly and reliably over the entire range of speeds that was tested

  11. Centrifuge modelling of granular flows

    Science.gov (United States)

    Cabrera, Miguel Angel; Wu, Wei

    2015-04-01

    A common characteristic of mass flows like debris flows, rock avalanches and mudflows is that gravity is their main driving force. Gravity defines the intensity and duration of the main interactions between particles and their surrounding media (particle-particle, particle-fluid, fluid-fluid). At the same time, gravity delimits the occurrence of phase separation, inverse segregation, and mass consolidation, among other phenomena. Therefore, in the understanding of the flow physics it is important to account for the scaling of gravity in scaled models. In this research, a centrifuge model is developed to model free surface granular flows down an incline at controlled gravity conditions. Gravity is controlled by the action of an induced inertial acceleration field resulting from the rotation of the model in a geotechnical centrifuge. The characteristics of the induced inertial acceleration field during flow are discussed and validated via experimental data. Flow heights, velocity fields, basal pressure and impact forces are measured for a range of channel inclinations and gravity conditions. Preliminary results enlighten the flow characteristics at variable gravity conditions and open a discussion on the simulation of large scale processes at a laboratory scale. Further analysis on the flow physics brings valuable information for the validation of granular flows rheology.

  12. Solid deuterium centrifuge pellet injector

    International Nuclear Information System (INIS)

    Foster, C.A.

    1982-01-01

    Pellet injectors are needed to fuel long pulse tokamak plasmas and other magnetic confinement devices. For this purpose, an apparatus has been developed that forms 1.3-mm-diam pellets of frozen deuterium at a rate of 40 pellets per second and accelerates them to a speed of 1 km/s. Pellets are formed by extruding a billet of solidified deuterium through a 1.3-mm-diam nozzle at a speed of 5 cm/s. The extruding deuterium is chopped with a razor knife, forming 1.3-mm right circular cylinders of solid deuterium. The pellets are accelerated by synchronously injecting them into a high speed rotating arbor containing a guide track, which carries them from a point near the center of rotation to the periphery. The pellets leave the wheel after 150 0 of rotation at double the tip speed. The centrifuge is formed in the shape of a centrifugal catenary and is constructed of high strength KEVLAR/epoxy composite. This arbon has been spin-tested to a tip speed of 1 km/s

  13. Solid deuterium centrifuge pellet injector

    International Nuclear Information System (INIS)

    Foster, C.A.

    1983-01-01

    Pellet injectors are needed to fuel long pulse tokamak plasmas and other magnetic confinement devices. For this purpose, an apparatus has been developed that forms 1.3-mm-diam pellets of frozen deuterium at a rate of 40 pellets per second and accelerates them to a speed of 1 km/s. Pellets are formed by extruding a billet of solidified deuterium through a 1.3-mm-diam nozzle at a speed of 5 cm/s. The extruding deuterium is chopped with a razor knife, forming 1.3-mm right circular cylinders of solid deuterium. The pellets are accelerated by synchronously injecting them into a high speed rotating arbor containing a guide track, which carries them from a point near the center of rotation to the periphery. The pellets leave the wheel after 150 0 of rotation at double the tip speed. The centrifuge is formed in the shape of a centrifugal catenary and is constructed of high strength Kevlar/epoxy composite. This arbor has been spin-tested to a tip speed of 1 km/s

  14. Rotor for a pyrolysis centrifuge reactor

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a rotor for a pyrolysis centrifuge reactor, said rotor comprising a rotor body having a longitudinal centre axis, and at least one pivotally mounted blade being adapted to pivot around a pivot axis under rotation of the rotor body around the longitudinal centre axis....... Moreover, the present invention relates to a pyrolysis centrifuge reactor applying such a rotor....

  15. Detection methods for centrifugal microfluidic platforms

    DEFF Research Database (Denmark)

    Burger, Robert; Amato, Letizia; Boisen, Anja

    2016-01-01

    Centrifugal microfluidics has attracted much interest from academia as well as industry, since it potentially offers solutions for affordable, user-friendly and portable biosensing. A wide range of so-called fluidic unit operations, e.g. mixing, metering, liquid routing, and particle separation...... for the centrifugal microfluidics platform and cover optical as well as mechanical and electrical detection principles....

  16. Isotopic enrichment in a plasma centrifuge

    International Nuclear Information System (INIS)

    Del Bosco, E.; Dallaqua, R.S.; Ludwig, G.O.; Bittencourt, J.A.

    1987-01-01

    High rotational velocity and centrifugal isotopic separation of carbon in a vacuum-arc plasma centrifuge are presented. Enrichments of up to 390% for 13 C are measured at 6 cm radius with angular rotation frequencies in excess of 1.0 x 10 5 rad/s in an axial magnetic field of 0.12 T

  17. Centrifuge modelling of offshore monopile foundation

    DEFF Research Database (Denmark)

    Klinkvort, Rasmus Tofte; Hededal, Ole

    2010-01-01

    centrifuge tests on a laterally loaded monopile in dry sand. The prototype dimension of the piles was modelled to a diameter of 1 meter and penetration depth on 6 meter. The test series were designed in order to investigate the scaling laws in the centrifuge both for monotonic and cyclic loading...

  18. Modelling of hydrothermal characteristics of centrifugal nozzles

    International Nuclear Information System (INIS)

    Yarkho, A.A.; Omelchenko, M.P.; Borshchev, V.A.

    1990-01-01

    Presented for the first time is a method of recalculating the hydrothermal characteristics of centrifugal nozzles obtained in laboratory conditions for full-scale nozzles. From the experimental hydrothermal characteristics of nozzles observed in the laboratory it is allowed to calculate the hydrothermal characteristics of any other centrifugal nozzle whose diameter and dimensionless geometric characteristic are known

  19. Astronaut Gordon Cooper in centrifuge for tests

    Science.gov (United States)

    1963-01-01

    Astronaut L. Gordon Cooper, prime pilot for the Mercury-Atlas 9 mission, is strapped into the gondola while undergoing tests in the centrifuge at the Naval Air Development Center, Johnsville, Pennsylvania. The centrifuge is used to investigate by simulation the pilot's capability to control the vehicle during the actual flight in its booster and reentry profile.

  20. High frequency dynamics in centrifugal compressors

    NARCIS (Netherlands)

    Twerda, A.; Meulendijks, D.; Smeulers, J.P.M.; Handel, R. van den; Lier, L.J. van

    2008-01-01

    Problems with centrifugal compressors relating to high frequency, i.e. Blade passing frequency (BPF) are increasing. Pulsations and vibrations generated in centrifugal compressors can lead to nuisance, due to strong tonal noise, and even breakdown. In several cases the root cause of a failure or a

  1. Gas-centrifuge unit and centrifugal process for isotope separation

    International Nuclear Information System (INIS)

    Stark, T.M.

    1979-01-01

    An invention involving a process and apparatus for isotope-separation applications such as uranium-isotope enrichment is disclosed which employs cascades of gas centrifuges. A preferred apparatus relates to an isotope-enrichment unit which includes a first group of cascades of gas centrifuges and an auxiliary cascade. Each cascade has an input, a light-fraction output, and a heavy-fraction output for separating a gaseous-mixture feed including a compound of a light nuclear isotope and a compound of a heavy nuclear isotope into light and heavy fractions respectively enriched and depleted in the light isotope. The cascades of the first group have at least one enriching stage and at least one stripping stage. The unit further includes means for introducing a gaseous-mixture feedstock into each input of the first group of cascades, means for withdrawing at least a portion of a product fraction from the light-fraction outputs of the first group of cascades, and means for withdrawing at least a portion of a waste fraction from the heavy-fraction outputs of the first group of cascades. The isotope-enrichment unit also includes a means for conveying a gaseous-mixture from a light-fraction output of a first cascade included in the first group to the input of the auxiliary cascade so that at least a portion of a light gaseous-mixture fraction produced by the first group of cascades is further separated into a light and a heavy fraction by the auxiliary cascade. At least a portion of a product fraction is withdrawn from the light fraction output of the auxiliary cascade. If the light-fraction output of the first cascade and the heavy-fraction output of the auxiliary cascade are reciprocal outputs, the concentraton of the light isotope in the heavy fraction produced by the auxiliary cascade essentially equals the concentration of the light isotope in the gaseous-mixture feedstock

  2. Enhanced infectivity of bluetongue virus in cell culture by centrifugation.

    OpenAIRE

    Sundin, D R; Mecham, J O

    1989-01-01

    The effects of centrifugation of the infection of cell culture with bluetongue virus (BTV) were investigated. Baby hamster kidney cells were infected with BTV with or without centrifugation. Viral antigen was detected by immunofluorescence at 24 h in both centrifuged and noncentrifuged cultures. However, after 24 h of infection, the production of PFU in centrifuged cell cultures was 10- to 20-fold greater than that seen in cultures not centrifuged. In addition, centrifugation enhanced the dir...

  3. Progress in ultra-centrifuge enrichment technology

    International Nuclear Information System (INIS)

    Paul Dawson

    2006-01-01

    Urenco have undertaken a continuous development programme in centrifuge technology for over 35 years. This has seen development from sub-critical machines in the mid 1970's through to the company's world leading TC12 supercritical centrifuge, which has been deployed on a large-scale basis over the last decade. The latest centrifuge to emerge from this programme is Urenco's sixth generation centrifuge, the TC21, which will be commercially deployed from mid-2007 onwards. In recent times Urenco has vested its centrifuge technology in Enrichment Technology Company (ETC) as a vehicle to enable the use of this advanced technology by other operators for commercial purposes. This paper reviews why Urenco and ETC believe this technology represents the best choice for creating new global commercial enrichment capacity and its future development prospects. (author)

  4. Centrifugal and axial compressor control

    CERN Document Server

    McMillan, Gregory K

    2009-01-01

    Control engineers, mechanical engineers and mechanical technicians will learn how to select the proper control systems for axial and centrifugal compressors for proper throughput and surge control, with a particular emphasis on surge control. Readers will learn to understand the importance of transmitter speed, digital controller sample time, and control valve stroking time in helping to prevent surge. Engineers and technicians will find this book to be a highly valuable guide on compressor control schemes and the importance of mitigating costly and sometimes catastrophic surge problems. It can be used as a self-tutorial guide or in the classroom with the book's helpful end-of-chapter questions and exercises and sections for keeping notes.

  5. Centrifugation speed affects light transmission aggregometry.

    Science.gov (United States)

    Merolla, M; Nardi, M A; Berger, J S

    2012-02-01

    Light transmission aggregometry (LTA) is considered the gold standard for investigating platelet activity ex vivo. However, LTA protocols are not standardized, and differences in LTA procedure are a potential source of variance in results. Centrifugation speed is an essential component of platelet preparation in LTA, has yet to be standardized, and may affect platelet aggregation results. We sought to investigate the effect of relative centrifugal force (RCF) intensity on LTA results. Ten healthy controls had venous blood drawn and centrifuged at 150, 200, 300, and 500 g for 10 min. Cell counts in whole blood and platelet-rich plasma (PRP) were measured using a hematology analyzer. LTA was performed using 1.0 μm adenosine diphosphate (ADP) and 0.4 μm epinephrine as an agonist. Aggregation (%) was compared at 60, 120, 180, and 300 s and at maximum aggregation. Centrifugation speed was associated with decreasing platelet count (P centrifuge RCF at 60, 120, 180, 300 s and at maximum aggregation (P centrifugation speed in the interpretation of LTA results, supporting the need for standardization of centrifugation RCF in LTA protocols. © 2011 Blackwell Publishing Ltd.

  6. Centrifuge workers study. Phase II, completion report

    Energy Technology Data Exchange (ETDEWEB)

    Wooten, H.D.

    1994-09-01

    Phase II of the Centrifuge Workers Study was a follow-up to the Phase I efforts. The Phase I results had indicated a higher risk than expected among centrifuge workers for developing bladder cancer when compared with the risk in the general population for developing this same type of cancer. However, no specific agent could be identified as the causative agent for these bladder cancers. As the Phase II Report states, Phase I had been limited to workers who had the greatest potential for exposure to substances used in the centrifuge process. Phase II was designed to expand the survey to evaluate the health of all employees who had ever worked in Centrifuge Program Departments 1330-1339 but who had not been interviewed in Phase I. Employees in analytical laboratories and maintenance departments who provided support services for the Centrifuge Program were also included in Phase II. In December 1989, the Oak Ridge Associated Universities (ORAU), now known as Oak Ridge Institute for Science and Education (ORISE), was contracted to conduct a follow-up study (Phase II). Phase H of the Centrifuge Workers Study expanded the survey to include all former centrifuge workers who were not included in Phase I. ORISE was chosen because they had performed the Phase I tasks and summarized the corresponding survey data therefrom.

  7. Centrifuge workers study. Phase II, completion report

    International Nuclear Information System (INIS)

    Wooten, H.D.

    1994-09-01

    Phase II of the Centrifuge Workers Study was a follow-up to the Phase I efforts. The Phase I results had indicated a higher risk than expected among centrifuge workers for developing bladder cancer when compared with the risk in the general population for developing this same type of cancer. However, no specific agent could be identified as the causative agent for these bladder cancers. As the Phase II Report states, Phase I had been limited to workers who had the greatest potential for exposure to substances used in the centrifuge process. Phase II was designed to expand the survey to evaluate the health of all employees who had ever worked in Centrifuge Program Departments 1330-1339 but who had not been interviewed in Phase I. Employees in analytical laboratories and maintenance departments who provided support services for the Centrifuge Program were also included in Phase II. In December 1989, the Oak Ridge Associated Universities (ORAU), now known as Oak Ridge Institute for Science and Education (ORISE), was contracted to conduct a follow-up study (Phase II). Phase H of the Centrifuge Workers Study expanded the survey to include all former centrifuge workers who were not included in Phase I. ORISE was chosen because they had performed the Phase I tasks and summarized the corresponding survey data therefrom

  8. Gas dynamics in strong centrifugal fields

    Energy Technology Data Exchange (ETDEWEB)

    Bogovalov, S.V.; Kislov, V.A.; Tronin, I.V. [National research nuclear university “MEPhI”, Kashirskoje shosse, 31,115409, Moscow (Russian Federation)

    2015-03-10

    Dynamics of waves generated by scopes in gas centrifuges (GC) for isotope separation is considered. The centrifugal acceleration in the GC reaches values of the order of 106g. The centrifugal and Coriolis forces modify essentially the conventional sound waves. Three families of the waves with different polarisation and dispersion exist in these conditions. Dynamics of the flow in the model GC Iguasu is investigated numerically. Comparison of the results of the numerical modelling of the wave dynamics with the analytical predictions is performed. New phenomena of the resonances in the GC is found. The resonances occur for the waves polarized along the rotational axis having the smallest dumping due to the viscosity.

  9. Plasma instability of a vacuum arc centrifuge

    International Nuclear Information System (INIS)

    Hole, M.J.; Dallaqua, R.S.; Simpson, S.W.; Del Bosco, E.

    2002-01-01

    Ever since conception of the vacuum arc centrifuge in 1980, periodic fluctuations in the ion saturation current and floating potential have been observed in Langmuir probe measurements in the rotation region of a vacuum arc centrifuge. In this work we develop a linearized theoretical model to describe a range of instabilities in the vacuum arc centrifuge plasma column, and then test the validity of the description through comparison with experiment. We conclude that the observed instability is a 'universal' instability, driven by the density gradient, in a plasma with finite conductivity

  10. Some engineering considerations when designing centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Edwards, T.T.

    1982-01-01

    A review is given of the three main areas where flexibility is needed in the design of centrifuge enrichment plants. These are: the need to cope with market requirements, the limitations imposed by currently available centrifuges and ever advancing centrifuge technology. Details of BNFL's experience with centrifuge enrichment at Capenhurst are presented. (U.K.)

  11. Centrifuge advances using HTS magnetic bearings

    Science.gov (United States)

    Werfel, F. N.; Flögel-Delor, U.; Rothfeld, R.; Wippich, D.; Riedel, T.

    2001-05-01

    Passive magnetic bearings are of increasing technical interest. We performed experiments with centrifugal rotors to analyze gyroscopic forces in terms imbalance, rotor elasticity and damping. Centrifuge rotors need to be operated soft and stable without whirling the sediments. In order to evaluate optimal parameters critical and resonance behaviors are investigated. Eccentricities up 2 mm are safely passed by accelerating test wheels. In a simple model we describe the effect of passing critical rotational speeds. Measurements of bearing properties and wheel performance are presented. We have constructed a first prototype centrifuge designed with a HTS double bearing which operates a titanium rotor safely up to 30 000 rpm. A 15 W Stirling cooler serves cryogenics of the YBCO stators. From the experiments design guidelines for centrifugal applications with HTS bearings are given.

  12. Safety aspects of gas centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Hansen, A.H.

    1987-01-01

    Uranium enrichment by gas centrifuge is a commercially proven, viable technology. Gas centrifuge enrichment plant operations pose hazards that are also found in other industries as well as unique hazards as a result of processing and handling uranium hexafluoride and the handling of enriched uranium. Hazards also found in other industries included those posed by the use of high-speed rotating equipment and equipment handling by use of heavy-duty cranes. Hazards from high-speed rotating equipment are associated with the operation of the gas centrifuges themselves and with the operation of the uranium hexafluoride compressors in the tail withdrawal system. These and related hazards are discussed. It is included that commercial gas centrifuge enrichment plants have been designed to operate safely

  13. Thermal analysis of a gas centrifuge

    International Nuclear Information System (INIS)

    Andrade, D.A.; Bastos, J.L.F.; Maiorino, J.R.

    1996-01-01

    The centrifuge separation efficiency is the result of the composition of the centrifuge field to the secondary flow in the axial direction near to the rotor wall. For a given machine, the centrifuge field can not be altered and the effort to augment the separation efficiency should be concentrated on the secondary flow. The secondary flow has a mechanical and a thermal component. The mechanical component is due to the deceleration of the gas at the scoop region. The thermal component is due to the temperature differences at the rotor. This paper presents a thermal model of a centrifuge in order to understand the main heat transfer mechanisms and to establish the boundary conditions for a fluid flow computer code. The heat transfer analysis takes into account conduction at the structure parts of the rotor and shell, radiation with multi-reflections between the rotor and the shell, and convection to the ambient. (author)

  14. Gas centrifuge with driving motor

    Science.gov (United States)

    Dancy, Jr., William H.

    1976-01-01

    1. A centrifuge for separating gaseous constituents of different masses comprising a vertical tubular rotor, means for introducing a gas mixture of different masses into said rotor and means for removing at least one of the gas components from the rotor, a first bearing means supporting said rotor at one end for rotational movement, a support, a damping bearing mounted on said support, a shaft fixed to said rotor at the opposite end and mechanically connecting said rotor to said damping bearing, a cup-shaped tube of electrically conductive, non-magnetic material in coaxial relationship with said shaft, the open end of said tube extending away from said rotor and the closed end of said tube being directly secured to the adjacent end of the rotor, an annular core of magnetic material fixedly mounted on said support so as to be disposed within said tube and around said shaft, and a second annular magnetic core with coils arranged thereon to receive polyphase current to produce a rotating magnetic field traversing the circumference of said tube, fixedly mounted on said support so as to surround said tube, the size of said first annular core and said second annular core being such as to permit limited radial displacement of said shaft and said tube.

  15. Gas centrifuge with driving motor

    International Nuclear Information System (INIS)

    Dancy, W.H. Jr.

    1976-01-01

    A centrifuge for separating gaseous constituents of different masses consists of: a vertical tubular rotor; means for introducing a gas mixture of different masses into the rotor and means for removing at least one of the gas components from the rotor; a first bearing means supporing the rotor at one end; a support; a damping bearing mounted on the support; a shaft fixed to the rotor at the opposite end and mechanically connecting the rotor to the damping bearing; a cup-shaped tube of electrically conductive, non-magnetic material in coaxial relationship with the shaft, the open end of the tube extending away from the rotor, and the closed end of the tube being directly secured to the adjacent end of the rotor; an annular core of magnetic material fixedly mounted on the support so as to be disposed within the tube and around the shaft; and a second annular magnetic core with coils to receive polyphase current to produce a rotating magnetic field traversing the circumference of the tube, fixedly mounted on the support so as to surround the tube, the size of first and the second annular core being such as to permit limited radial displacement of the shaft and the tube

  16. Two-Stage Centrifugal Fan

    Science.gov (United States)

    Converse, David

    2011-01-01

    Fan designs are often constrained by envelope, rotational speed, weight, and power. Aerodynamic performance and motor electrical performance are heavily influenced by rotational speed. The fan used in this work is at a practical limit for rotational speed due to motor performance characteristics, and there is no more space available in the packaging for a larger fan. The pressure rise requirements keep growing. The way to ordinarily accommodate a higher DP is to spin faster or grow the fan rotor diameter. The invention is to put two radially oriented stages on a single disk. Flow enters the first stage from the center; energy is imparted to the flow in the first stage blades, the flow is redirected some amount opposite to the direction of rotation in the fixed stators, and more energy is imparted to the flow in the second- stage blades. Without increasing either rotational speed or disk diameter, it is believed that as much as 50 percent more DP can be achieved with this design than with an ordinary, single-stage centrifugal design. This invention is useful primarily for fans having relatively low flow rates with relatively high pressure rise requirements.

  17. Achieving an ever-improving centrifuge

    International Nuclear Information System (INIS)

    Edwards, T.T.; Wilcox, P.

    1988-01-01

    To ensure that the latest technical innovations can be rapidly incorporated, centrifuge development in the Urenco organization is carried out in different phases simultaneously on different generations of machines. This system has led to progressively increased outputs and reduced specific costs, and with the further known potential available, is expected to maintain Urenco's competitiveness throughout the 1990s. The process of separating isotopes by centrifuge is described. (author)

  18. Centrifuge modelling of contaminant transport processes

    OpenAIRE

    Culligan, P. J.; Savvidou, C.; Barry, D. A.

    1996-01-01

    Over the past decade, research workers have started to investigate problems of subsurface contaminant transport through physical modelling on a geotechnical centrifuge. A major advantage of this apparatus is its ability to model complex natural systems in a controlled laboratory environment In this paper, we discusses the principles and scaling laws related to the centrifugal modelling of contaminant transport, and presents four examples of recent work that has bee...

  19. Horizontal vibrations of piles in a centrifuge

    International Nuclear Information System (INIS)

    Bourdin, B.

    1987-01-01

    The aim of the thesis is the study of soil dynamics for important structures like nuclear power plants, offshore platforms, dams etc. Experimental results of horizontal vibrations on a pile partially anchored in a soil scale model put into a centrifuge are presented. Mechanical similitude conditions from equilibrium equations or rheologic laws are described. After a description of testing equipment (centrifuge, electrodynamic excitator) experimental results are interpreted with a model. Non-linearities on frequency response curves are characterized [fr

  20. 76 FR 50767 - In the Matter of USEC Inc., American Centrifuge Lead Cascade Facility, and American Centrifuge...

    Science.gov (United States)

    2011-08-16

    ...; License Nos. SNM-7003, SNM-2011] In the Matter of USEC Inc., American Centrifuge Lead Cascade Facility, and American Centrifuge Plant; Order Extending the Date by Which the Direct Transfer of Licenses Is To... American Centrifuge Lead Cascade Facility (Lead Cascade) and American Centrifuge Plant (ACP), respectively...

  1. Unexpected properties of the centrifugal force

    International Nuclear Information System (INIS)

    Abramowicz, M.A.

    1990-01-01

    Contrary to what is stated in the Newtonian dynamics, rotation of a reference frame is not sufficient for the occurrence of the centrifugal force. Instead, the necessary and sufficient condition is a motion along a path different from that of a photon trajectory in space. This calls for a rather fundamental change in understanding of the very nature of the centrifugal force. It also has important practical physical consequences: in a strong gravitational field, where light trajectories are substantially curved, centrifugal force is much weaker than the Newtonian theory predicts. In addition, when there are closed (circular) photon trajectories in space, the centrifugal force may reverse its direction - it attracts towards the rotation axis!. The weakening of the centrifugal force in strong gravitational fields and the reversal of its direction in the neighbourhood of close photon trajectories in space fully and clearly explain puzzling examples of counter intuitive behaviour of dynamical effects of rotation found previously by several authors: e.g. reversal of the ellipticity behaviour of the relativistic Maclaurin spheroids (Chandrasekhar and Miller, 1974), reversal of the viscous torque action (Anderson and Lemos, 1988), or the fact that rotation increases internal pressure of a sufficiently compact star (Abramowicz and Wagoner, 1974). Weakening of the centrifugal force implies that rotating neutron stars are less oblate (and probably more stable) than the Newtonian theory predicts. This is important for the recently discussed question of how fast can pulsars spin. (author). 23 refs, 3 figs

  2. Unexpected properties of the centrifugal force

    International Nuclear Information System (INIS)

    Abramowicz, M.A.

    1990-01-01

    Contrary to what is stated in the Newtonian dynamics, rotation of a reference frame is not sufficient for the occurrence of the centrifugal force. Instead, the necessary and sufficient condition is a motion along a path different from that of a photon trajectory in space. This calls for a rather fundamental change in understanding of the very nature of the centrifugal force. It also has important practical physical consequences: in a strong gravitational field, where light trajectories are substantially curved, centrifugal force is much weaker than the Newtonian theory predicts. In addition, when there are closed (circular) photon trajectories in space, the centrifugal force may reverse its direction - it attracts towards the rotation axis. The weakening of the centrifugal force in strong gravitational fields and the reversal of its direction in the neighborhood of close photon trajectories in space fully and clearly explain puzzling examples of counter intuitive behaviour of dynamical effects of rotation found previously by several authors: e.g. reversal of the ellipticity behaviour of the relativistic Maclaurin spheroids (Chandrasekhar and Miller, 1974), reversal of the viscous torque action (Anderson and Lemos, 1988) or the fact that rotation increases internal pressure of a sufficiently compact star (Abramowicz and Wagoner, 1974). Weakening of the centrifugal force implies that rotating neutron stars are less oblate (and probably more stable) than the Newtonian theory predicts. This is important for the recently discussed question of how fast can pulsars spins. (author). 31 refs, 3 figs

  3. Separation of uranium isotopes by gas centrifugation

    International Nuclear Information System (INIS)

    Jordan, I.

    1980-05-01

    The uranium isotope enrichment is studied by means of the countercurrent gas centrifuge driven by thermal convection. A description is given of (a) the transfer and purification of the uranium hexafluoride used as process gas in the present investigation; (b) the countercurrent centrifuge ZG3; (c) the system designed for the introduction and extraction of the process gas from the centrifuge; (d) the measurement of the process gas flow rate through the centrifuge; (e) the determination of the uranium isotopic abundance by mass spectrometry; (f) the operation and mechanical behavior of the centrifuge and (g) the isotope separation experiments, performed, respectively, at total reflux and with production of enriched material. The results from the separation experiments at total reflux are discussed in terms of the enrichment factor variation with the magnitude and flow profile of the countercurrent given by the temperature difference between the rotor covers. As far as the separation experiments with production are concerned, the discussion of their results is presented through the variation of the enrichment factor as a function of the flow rate, the observed asymmetry of the process and the calculated separative power of the centrifuge. (Author) [pt

  4. Enrichment technology. Dependable vendor of gas centrifuges

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    Enrichment Technology is an innovative, high-tech company that develops, manufactures and installs gas centrifuges for enriching uranium. In addition, Enrichment Technology designs enrichment plants that use gas centrifuge technology. This technology offers the most efficient and cost-effective method for enriching uranium yet: high-performance, safe technology that dominates the market with a global share of 45 percent. A determining factor in Enrichment Technology's success is its mission: supplying its customers with safe, reliable technology. Production of the centrifuges requires versatile know-how and collaboration between different departments as well as interdisciplinary teams at the various sites. More than 2000 operators at 8 sites in 5 countries contribute their individual knowledge and personal skills in order to produce this exceptional technology. The head office is in Beaconsfield near London and the operational headquarters are in Almelo in the Netherlands. There are other sites in Germany (Juelich und Gronau), Great Britain (Capenhurst) as well as project sites in the USA and France. Capenhurst is where experienced engineers design new enrichment plants and organise their construction. Centrifuge components are manufactured in Almelo and Juelich, while the pipework needed to connect up the centrifuges is produced at the site in Gronau. In Juelich, highly qualified scientists in interdisciplinary teams are continuously researching ways of improving the current centrifuges. Communication between specialists in the fields of chemistry, physics and engineering forms the basis for the company's success and the key to extending this leading position in the global enrichment market. (orig.)

  5. Theoretical considerations in solid bowl centrifugation

    International Nuclear Information System (INIS)

    Hamilton, R.T.

    1979-01-01

    A combination of literature survey and independent analysis determined three relationships for the prediction of the critical (or minimum recoverable) particle size in a solid bowl centrifuge. The relationships were derived based on three different theories of fluid behavior within the centrifuge; (1) laminar film flow (laminar film model), (2) plug flow (Sharples Model), and parabolic flow (modified Sharples Model). The critical particle size for the centrifuge used in Cs-PTA recovery in the CAW process predicted by the three relationships range from 0.19 to 0.34 μm (1 μm = 10 -6 m). The laminar film model gives the most conservative estimate of critical particle size (0.34 μm) and the resulting relationship is recommended for use to predict solid bowl centrifuge performance. Three correction factors are incorporated into the predictive equations to account for the effects of fluid turbulence near the centrifuge feed point, fluid lag and hindered settling. Of these factors, turbulence near the feed point (which is accounted for by using an effective centrifuge length) has the greatest impact, increasing the predicted critical particle size by 15%, while the combination of fluid lag and hindered settling factors increase the recoverable particle size by 4%. The overall effect of the correction factors is an approximately 20% decrease in centrifuge effectivity. The fraction of solids smaller than the critical size range has not been reliably determined for laboratory or plant prepared Cs-PTA. In addition, the density of Cs-PTA crystals is reported to vary from 3.2 to 12 grams per cubic centimeter

  6. Headlines... Areva on the way toward centrifugation

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    The French industrial group Areva, that gathers Cogema and Framatome-ANP, has entered into a partnership with the British nuclear consortium Urenco for creating ETC (enrichment technology company) in order to replace its uranium enrichment facility (Georges-Besse-I) that is planned to close in 2012 by a new one (George-Besse-II) that will enter into service as early as 2007. The new facility will be based on the centrifugation technique developed by Urenco, this technique will cut the consumption of electricity by 3 in comparison with the gaseous diffusion technique used in the Georges-Besse-I facility. The other asset of the centrifugation technique is that the facility can grow with the number of centrifuges that are set. In 2007 only 7% of the total number of centrifuges will be installed, which will sufficient to satisfy the demand for enriched uranium. The full size of the facility will be reached in 2016 through gradual steps of 10% more centrifuges set every year. (A.C.)

  7. Liquid centrifugation for nuclear waste partitioning

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1992-01-01

    The performance of liquid centrifugation for nuclear waste partitioning is examined for the Accelerator Transmutation of Waste Program currently under study at the Los Alamos National Laboratory. Centrifugation might have application for the separation of the LiF-BeF 2 salt from heavier radioactive materials fission product and actinides in the separation of fission product from actinides, in the isotope separation of fission-product cesium before transmutation of the 137 Cs and 135 Cs, and in the removal of spallation product from the liquid lead target. It is found that useful chemical separations should be possible using existing materials for the centrifuge construction for all four cases with the actinide fraction in fission product perhaps as low as 1 part in 10 7 and the fraction of 137 CS in 133 Cs being as low as a few parts in 10 5 . A centrifuge cascade has the advantage that it can be assembled and operated as a completely closed system without a waste stream except that associated with maintenance or replacement of centrifuge components

  8. Bifurcated equilibria in centrifugally confined plasma

    International Nuclear Information System (INIS)

    Shamim, I.; Teodorescu, C.; Guzdar, P. N.; Hassam, A. B.; Clary, R.; Ellis, R.; Lunsford, R.

    2008-01-01

    A bifurcation theory and associated computational model are developed to account for abrupt transitions observed recently on the Maryland Centrifugal eXperiment (MCX) [R. F. Ellis et al. Phys. Plasmas 8, 2057 (2001)], a supersonically rotating magnetized plasma that relies on centrifugal forces to prevent thermal expansion of plasma along the magnetic field. The observed transitions are from a well-confined, high-rotation state (HR-mode) to a lower-rotation, lesser-confined state (O-mode). A two-dimensional time-dependent magnetohydrodynamics code is used to simulate the dynamical equilibrium states of the MCX configuration. In addition to the expected viscous drag on the core plasma rotation, a momentum loss term is added that models the friction of plasma on the enhanced level of neutrals expected in the vicinity of the insulators at the throats of the magnetic mirror geometry. At small values of the external rotation drive, the plasma is not well-centrifugally confined and hence experiences the drag from near the insulators. Beyond a critical value of the external drive, the system makes an abrupt transition to a well-centrifugally confined state in which the plasma has pulled away from the end insulator plates; more effective centrifugal confinement lowers the plasma mass near the insulators allowing runaway increases in the rotation speed. The well-confined steady state is reached when the external drive is balanced by only the viscosity of the core plasma. A clear hysteresis phenomenon is shown.

  9. Centrifugal acceleration in the magnetotail lobes

    Directory of Open Access Journals (Sweden)

    H. Nilsson

    2010-02-01

    Full Text Available Combined Cluster EFW and EDI measurements have shown that cold ion outflow in the magnetospheric lobes dominates the hydrogen ion outflow from the Earth's atmosphere. The ions have too low kinetic energy to be measurable with particle instruments, at least for the typical spacecraft potential of a sunlit spacecraft in the tenuous lobe plasmas outside a few RE. The measurement technique yields both density and bulk velocity, which can be combined with magnetic field measurements to estimate the centrifugal acceleration experienced by these particles. We present a quantitative estimate of the centrifugal acceleration, and the velocity change with distance which we would expect due to centrifugal acceleration. It is found that the centrifugal acceleration is on average outward with an average value of about of 5 m s−2. This is small, but acting during long transport times and over long distances the cumulative effect is significant, while still consistent with the relatively low velocities estimated using the combination of EFW and EDI data. The centrifugal acceleration should accelerate any oxygen ions in the lobes to energies observable by particle spectrometers. The data set also put constraints on the effectiveness of any other acceleration mechanisms acting in the lobes, where the total velocity increase between 5 and 19 RE geocentric distance is less than 5 km s−1.

  10. Probing molecular potentials with an optical centrifuge

    Science.gov (United States)

    Milner, A. A.; Korobenko, A.; Hepburn, J. W.; Milner, V.

    2017-09-01

    We use an optical centrifuge to excite coherent rotational wave packets in N2O, OCS, and CS2 molecules with rotational quantum numbers reaching up to J ≈465 , 690, and 1186, respectively. Time-resolved rotational spectroscopy at such ultra-high levels of rotational excitation can be used as a sensitive tool to probe the molecular potential energy surface at internuclear distances far from their equilibrium values. Significant bond stretching in the centrifuged molecules results in the growing period of the rotational revivals, which are experimentally detected using coherent Raman scattering. We measure the revival period as a function of the centrifuge-induced rotational frequency and compare it with the numerical calculations based on the known Morse-cosine potentials.

  11. A centrifuge CO2 pellet cleaning system

    International Nuclear Information System (INIS)

    Foster, C.A.; Fisher, P.W.; Nelson, W.D.; Schechter, D.E.

    1993-01-01

    Centrifuge-based cryogenic pellet accelerator technology, originally developed at Oak Ridge National Laboratory (ORNL) for the purpose of refueling fusion reactors with high-speed pellets of frozen deuterium/tritium,is now being developed as a method of cleaning without the use of conventional solvents. In these applications large quantities of pellets made of frozen CO 2 or argon are accelerated in a high-speed rotor. The accelerated pellet stream is used to clean or etch surfaces. The advantage of this system is that the spent pellets and debris resulting from the cleaning process can be filtered leaving only the debris for disposal. This paper discusses the centrifuge CO 2 pellet cleaning system, the physics model of the pellet impacting the surface, the centrifuge apparatus, and some initial cleaning and etching tests

  12. Centrifugal compressor design for electrically assisted boost

    International Nuclear Information System (INIS)

    Yang, M Y; Martinez-Botas, R F; Zhuge, W L; Qureshi, U; Richards, B

    2013-01-01

    Electrically assisted boost is a prominent method to solve the issues of transient lag in turbocharger and remains an optimized operation condition for a compressor due to decoupling from turbine. Usually a centrifugal compressor for gasoline engine boosting is operated at high rotational speed which is beyond the ability of an electric motor in market. In this paper a centrifugal compressor with rotational speed as 120k RPM and pressure ratio as 2.0 is specially developed for electrically assisted boost. A centrifugal compressor including the impeller, vaneless diffuser and the volute is designed by meanline method followed by 3D detailed design. Then CFD method is employed to predict as well as analyse the performance of the design compressor. The results show that the pressure ratio and efficiency at design point is 2.07 and 78% specifically

  13. High Efficiency Centrifugal Compressor for Rotorcraft Applications

    Science.gov (United States)

    Medic, Gorazd; Sharma, Om P.; Jongwook, Joo; Hardin, Larry W.; McCormick, Duane C.; Cousins, William T.; Lurie, Elizabeth A.; Shabbir, Aamir; Holley, Brian M.; Van Slooten, Paul R.

    2017-01-01

    A centrifugal compressor research effort conducted by United Technologies Research Center under NASA Research Announcement NNC08CB03C is documented. The objectives were to identify key technical barriers to advancing the aerodynamic performance of high-efficiency, high work factor, compact centrifugal compressor aft-stages for turboshaft engines; to acquire measurements needed to overcome the technical barriers and inform future designs; to design, fabricate, and test a new research compressor in which to acquire the requisite flow field data. A new High-Efficiency Centrifugal Compressor stage -- splittered impeller, splittered diffuser, 90 degree bend, and exit guide vanes -- with aerodynamically aggressive performance and configuration (compactness) goals were designed, fabricated, and subquently tested at the NASA Glenn Research Center.

  14. Compound drum for a centrifugal separator

    International Nuclear Information System (INIS)

    1972-01-01

    This invention concerns a method for centrifugal separation of UF 6 . The invention provides a composite drum capable of rapid rotation for use in a centrifugal separating arrangement for gaseous materials. The drum is provided with a first drum section comprised of a metal and a second drum section comprised of a fiber-reinforced synthetic material. The second drum section is applied on the outside peripheral surface of the first drum section, where the second drum section is provided with a number of annular components, each of which is shorter than the first drum section

  15. The commercial role for centrifuge enrichment

    International Nuclear Information System (INIS)

    Readle, P.H.; Wilcox, P.

    1987-01-01

    The enrichment market is extremely competitive and capacity greatly exceeds demand. BNFL [British Nuclear Fuels Ltd.] is in a unique position in having commercial experience of the two enrichment technologies currently used industrially: diffusion, and centrifuge enrichment through its associate company Urenco. In addition, BNFL is developing laser enrichment techniques as part of a UK development programme. The paper describes the enrichment market, briefly discusses the relative merits of the various methods of uranium enrichment and concludes that the gas centrifuge will be best able to respond to market needs for at least the remainder of the century. (author)

  16. Centrifugal compressor design options for small turbochargers

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, C. [ITC, San Diego (United States)

    1998-07-01

    Evolutionary development of the small turbocharger centrifugal compressor over the past four decades has resulted in a finely honed turbomachinery component satisfying both thermodynamic and economic constraints. At this penultimate stage of development an appraisal was considered timely of the remaining design options that exist to enhance the performance characteristics and cost reduction features. This paper presents the results of an analytical study of various small centrifugal compressor design options, assessed in merit of both aerodynamic and manufacturing cost attributes, together with recommendations for future research avenues. (author)

  17. Wave-Driven Rotation In Centrifugal Mirrors

    International Nuclear Information System (INIS)

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-01-01

    Centrifugal mirrors use supersonic rotation to provide axial confinement and enhanced stability. Usually the rotation is produced using electrodes, but these electrodes have limited the rotation to the Alfven critical ionization velocity, which is too slow to be useful for fusion. Instead, the rotation could be produced using radio frequency waves. A fixed azimuthal ripple is a simple and efficient wave that could produce rotation by harnessing alpha particle energy. This is an extension of the alpha channeling effect. The alpha particle power and efficiency in a simulated devices is sufficient to produce rotation without external energy input. By eliminating the need for electrodes, this opens new opportunities for centrifugal traps.

  18. Centrifuge Health Monitoring of the 50gTon beam centrifuge at the University of Sheffield

    OpenAIRE

    Cox, C.M.; Black, J.A.; Hakhamanshi, M.; Baker, N.

    2016-01-01

    In order to fully understand scientific test data it is crucial that we first understand the back-ground centrifuge operational environment and its variation with time and centrifugal acceleration. For exam-ple, changes in ambient air temperature or relative humidity in the centrifuge chamber during operation can have a significant impact on the evaporation levels of water from the surface of a clay model. It is vital to un-derstand these temporal changes in order to mitigate drying out of th...

  19. Evaluation of enrichment by centrifugal separation: the future of the centrifugal-separation method

    International Nuclear Information System (INIS)

    Kanagawa, A.

    A gas centrifuge plant for uranium enrichment is considered from the point of view of economic competition with other methods. Characteristics of the method are presented including: energy efficiency, the cascade, the separation coefficient, the equilibrium separation process, and capability as centrifugal pump. The structure of an individual gas centrifuge separator is described including the rotating cylinder, mechanisms for gas injection and extraction, mechanisms for counter-streaming of gas, the axle holder mechanism, the gas sealing mechanism, and the driving mechanism. (U.S.)

  20. Rhie-Chow interpolation in strong centrifugal fields

    Science.gov (United States)

    Bogovalov, S. V.; Tronin, I. V.

    2015-10-01

    Rhie-Chow interpolation formulas are derived from the Navier-Stokes and continuity equations. These formulas are generalized to gas dynamics in strong centrifugal fields (as high as 106 g) occurring in gas centrifuges.

  1. Direct Monte-Carlo Siumulations In a Gas Centrifuge

    National Research Council Canada - National Science Library

    Roblin, Philippe

    2000-01-01

    The study is related to the centrifugation process for isotope separation. In a gas centrifuge, the major part of the rotating gas is modeled by fluid equations with this gas flow described by suitable Navier-Stokes...

  2. Vacuum chamber-free centrifuge with magnetic bearings.

    Science.gov (United States)

    Park, Cheol Hoon; Kim, Soohyun; Kim, Kyung-Soo

    2013-09-01

    Centrifuges are devices that separate particles of different densities and sizes through the application of a centrifugal force. If a centrifuge could be operated under atmospheric conditions, all vacuum-related components such as the vacuum chamber, vacuum pump, diffusion pump, and sealing could be removed from a conventional centrifuge system. The design and manufacturing procedure for centrifuges could then be greatly simplified to facilitate the production of lightweight centrifuge systems of smaller volume. Furthermore, the maintenance costs incurred owing to wear and tear due to conventional ball bearings would be eliminated. In this study, we describe a novel vacuum chamber-free centrifuge supported by magnetic bearings. We demonstrate the feasibility of the vacuum chamber-free centrifuge by presenting experimental results that verify its high-speed support capability and motoring power capacity.

  3. Design of Structural Parameters for Centrifugal Elevator Overspeed Governors

    Directory of Open Access Journals (Sweden)

    Song Yunpu

    2014-01-01

    Full Text Available As an important part of overspeed and fail-safe protection for elevators, the centrifugal elevator overspeed governor is a device for limiting overspeed of elevator cars. This paper researches on the vibration of the centrifugal block, which plays a key role in the performance of this overspeed governor. By performing dynamics analysis on the centrifugal block, the differential equation on the vibration of the centrifugal block is established. Based on this, the paper performs simulation analysis on the influence of systematic parameters such as the speed of the overspeed governor sheave, the mass of centrifugal block, the turning radius of the centrifugal block, the position where the spring acts, and the stiffness of the centrifugal block spring, on the vibration of the centrifugal block, and finds out their specific influence relationship.

  4. Influences of centrifugation on cells and tissues in liposuction aspirates: optimized centrifugation for lipotransfer and cell isolation.

    Science.gov (United States)

    Kurita, Masakazu; Matsumoto, Daisuke; Shigeura, Tomokuni; Sato, Katsujiro; Gonda, Koichi; Harii, Kiyonori; Yoshimura, Kotaro

    2008-03-01

    Although injective autologous fat transplantation is one of the most attractive options for soft-tissue augmentation, problems such as unpredictability and fibrosis resulting from fat necrosis limit its universal acceptance. Centrifugation is one of most common methods for overcoming these difficulties. This study was performed to investigate quantitatively the effects of centrifugation on liposuction aspirates to optimize centrifugal conditions for fat transplantation and isolation of adipose-derived stem cells. Liposuction aspirates, obtained from eight healthy female donors, were either not centrifuged or centrifuged at 400, 700, 1200, 3000, or 4200 g for 3 minutes. The volumes of the oil, adipose, and fluid portions and numbers of blood cells and adipose-derived cells in each portion were examined. The processed adipose tissues (1 ml) were injected into athymic mice, and grafts were harvested and weighed at 4 weeks. Morphologic alterations were observed using light and scanning electron microscopy. Centrifugation concentrated adipose tissues and adipose-derived stem cells in the adipose portion and partly removed red blood cells from the adipose portion. Centrifugation at more than 3000 g significantly damaged adipose-derived stem cells. Centrifugation enhanced graft take per 1 ml centrifuged adipose but reduced calculated graft take per 1 ml adipose before centrifugation. Excessive centrifugation can destroy adipocytes and adipose-derived stem cells, but appropriate centrifugation concentrates them, resulting in enhanced graft take. The authors tentatively recommend 1200 g as an optimized centrifugal force for obtaining good short- and long-term results in adipose transplantation.

  5. Mathematical and physical modeling of rainfall in centrifuge

    OpenAIRE

    CAICEDO, Bernardo; THOREL, Luc; TRISTANCHO, Julian

    2015-01-01

    Rainfall simulation in centrifuge models is important for modelling soil-atmosphere interactions. However, the presence of Coriolis force, drag forces, evaporation and wind within the centrifuge may affect the distribution of rainfall over the model. As a result, development of appropriate centrifuge rain simulators requires a demanding process of experimental trial and error. This paper highlights the key factors involved in controlling rainfall in centrifuge simulations, develops a mathemat...

  6. Centrifugal Pump Experiment for Chemical Engineering Undergraduates

    Science.gov (United States)

    Vanderslice, Nicholas; Oberto, Richard; Marrero, Thomas R.

    2012-01-01

    The purpose of this paper is to describe a Centrifugal Pump Experiment that provided an experiential learning experience to chemical engineering undergraduates at the University of Missouri in the spring of 2010 in the Unit Operations Laboratory course. Lab equipment was used by senior students with computer-based data and control technology. In…

  7. Centrifuge in space fluid flow visualization experiment

    Science.gov (United States)

    Arnold, William A.; Wilcox, William R.; Regel, Liya L.; Dunbar, Bonnie J.

    1993-01-01

    A prototype flow visualization system is constructed to examine buoyancy driven flows during centrifugation in space. An axial density gradient is formed by imposing a thermal gradient between the two ends of the test cell. Numerical computations for this geometry showed that the Prandtl number plays a limited part in determining the flow.

  8. Annular centrifugal contactors for TRPO process test

    International Nuclear Information System (INIS)

    Duan, W.H.; Wang, J.C.; Chen, J.; Zhou, X.Z.; Zhou, J.Z.; Song, C.L.

    2005-01-01

    The TRPO process has been developed in China for removing TRU elements from high-level liquid waste (HLLW) since 1980s. Centrifugal contactors have several advantages such as low hold-up volume, short residence time, low solvent degradation, small space requirements and short start-up time. Therefore, they are favored for both the reprocessing of spent fuel and the treatment of HLLW. In order to meet study on the TRPO test, a series of annular centrifugal contactors have been developed in Institute of Nuclear and -New Energy Technology, Tsinghua University, China (INET). In particular, the 10-mm annular centrifugal contactor for the laboratory-scale test has been applied successfully in the cold and hot tests of the TRPO process. The 70-mm annular centrifugal contactor for the industry-scale test has two new design characteristics, namely a modular design and an overflow structure. The modular design makes the contactor to be disassembled and assembled fast by simply moving the modules up and down. With the overflow structure, even though one stage or non-adjacent stages of the multi-stage cascade in operation are ceased to work, the cascade can continue to operate. Both the hydraulic performance and the mass-transfer efficiency of these contactors are excellent, and the extraction stage efficiency is greater than 95% at suitable operating conditions.

  9. Preparation of targets by a centrifugal method

    International Nuclear Information System (INIS)

    Richaud, J.P.

    1979-01-01

    For β and γ in-beam spectroscopy measurements, a centrifugal technique has been developed to produce targets of powdered isotopic materials. Plastic or metallic backings and suitable organic solutions are described. With this method, targets in the range 1-50 mg/cm 2 have been obtained. (orig.)

  10. Engineering design of centrifugal casting machine

    Science.gov (United States)

    Kusnowo, Roni; Gunara, Sophiadi

    2017-06-01

    Centrifugal casting is a metal casting process in which metal liquid is poured into a rotating mold at a specific temperature. Given round will generate a centrifugal force that will affect the outcome of the casting. Casting method is suitable in the manufacture of the casting cylinder to obtain better results. This research was performed to design a prototype machine by using the concept of centrifugal casting. The design method was a step-by-step systematic approach in the process of thinking to achieve the desired goal of realizing the idea and build bridges between idea and the product. Design process was commenced by the conceptual design phase and followed by the embodiment design stage and detailed design stage. With an engineering design process based on the method developed by G. E. Dieter, draft prototype of centrifugal casting machine with dimension of 550×450×400 mm, ¼ HP motor power, pulley and belt mechanism, diameter of 120-150mm, simultaneously with the characteristics of simple casting product, easy manufacture and maintenance, and relatively inexpensive, was generated.

  11. Pressure distribution in centrifugal dental casting.

    Science.gov (United States)

    Nielsen, J P

    1978-02-01

    Equations are developed for liquid metal pressure in centrifugal dental casting, given the instantaneous rotational velocity, density, and certain dimensions of the casting machine and casting pattern. A "reference parabola" is introduced making the fluid pressure concept more understandable. A specially designed specimen demonstrates experimentally the reference parabola at freezing.

  12. Gas centrifuge bibliography 1983-1986

    International Nuclear Information System (INIS)

    Lowe, G.E.; McLeod, D.F.; Roberts, P.

    1987-03-01

    A bibliography is presented of the gas centrifuge literature published from 1983-1986 inclusive. It supplements PG Information Series 25(CA), BNFL Information Series 15(CA), BNFL Information Series 23 (CA), and BNFL Information Series 27(CA), which together cover the period 1895-1982. The main arrangement is chronological and there are author, report number, and subject indexes. (U.K.)

  13. Fault Detection and Isolation in Centrifugal Pumps

    DEFF Research Database (Denmark)

    Kallesøe, Carsten

    Centrifugal pumps are used in a variety of different applications, such as water supply, wastewater, and different industrial applications. Some pump installations are crucial for the applications to work. Failures can lead to substantial economic losses and can influence the life of many people...

  14. A high pressure centrifugal oxygen compressor

    International Nuclear Information System (INIS)

    Larsen, L.P.

    1986-01-01

    The application of a centrifugal compressor train to 5860 kPa(g) (850 psig) for a coal gasification plant is discussed. Special considerations in the application, installation, and operation of the equipment are presented. Discussion includes such topics as compressor controls, machinery protection, noise, personnel safety, and operation of the equipment

  15. Positive feedback stabilization of centrifugal compressor surge

    NARCIS (Netherlands)

    Willems, Frank; Heemels, W.P.M.H.; de Jager, Bram; Stoorvogel, Antonie Arij

    Stable operation of axial and centrifugal compressors is limited towards low mass flows due to the occurrence of surge. The stable operating region can be enlarged by active control. In this study, we use a control valve which is fully closed in the desired operating point and only opens to

  16. Positive feedback stabilization of centrifugal compressor surge

    NARCIS (Netherlands)

    Willems, F.P.T.; Heemels, W.P.M.H.; Jager, de A.G.; Stoorvogel, A.A.

    2002-01-01

    Stable operation of axial and centrifugal compressors is limited towards low mass flows due to the occurrence of surge. The stable operating region can be enlarged by active control. In this study, we use a control valve which is fully closed in the desired operating point and only opens to

  17. Differential white cell count by centrifugal microfluidics.

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Gregory Jon; Tentori, Augusto M.; Schaff, Ulrich Y.

    2010-07-01

    We present a method for counting white blood cells that is uniquely compatible with centrifugation based microfluidics. Blood is deposited on top of one or more layers of density media within a microfluidic disk. Spinning the disk causes the cell populations within whole blood to settle through the media, reaching an equilibrium based on the density of each cell type. Separation and fluorescence measurement of cell types stained with a DNA dye is demonstrated using this technique. The integrated signal from bands of fluorescent microspheres is shown to be proportional to their initial concentration in suspension. Among the current generation of medical diagnostics are devices based on the principle of centrifuging a CD sized disk functionalized with microfluidics. These portable 'lab on a disk' devices are capable of conducting multiple assays directly from a blood sample, embodied by platforms developed by Gyros, Samsung, and Abaxis. [1,2] However, no centrifugal platform to date includes a differential white blood cell count, which is an important metric complimentary to diagnostic assays. Measuring the differential white blood cell count (the relative fraction of granulocytes, lymphocytes, and monocytes) is a standard medical diagnostic technique useful for identifying sepsis, leukemia, AIDS, radiation exposure, and a host of other conditions that affect the immune system. Several methods exist for measuring the relative white blood cell count including flow cytometry, electrical impedance, and visual identification from a stained drop of blood under a microscope. However, none of these methods is easily incorporated into a centrifugal microfluidic diagnostic platform.

  18. Centrifugal Blower for Personal Air Ventilation System (PAVS) - Phase 1

    Science.gov (United States)

    2015-02-01

    3  FIGURE 5: PHOTO & PERFORMANCE PLOT OF EXISTING CENTRIFUGAL COMPRESSOR ...aerodynamically similar to an existing centrifugal compressor pictured in Figure 5. The performance plot of this compressor demonstrates a high...blade tip diameter at impeller exit Figure 5: Photo & Performance plot of existing centrifugal compressor 70% 75% 65% 60%   6

  19. Bacterial Cell Surface Damage Due to Centrifugal Compaction

    NARCIS (Netherlands)

    Peterson, Brandon W.; Sharma, Prashant K.; van der Mei, Henny C.; Busscher, Henk J.

    Centrifugal damage has been known to alter bacterial cell surface properties and interior structures, including DNA. Very few studies exist on bacterial damage caused by centrifugation because of the difficulty in relating centrifugation speed and container geometry to the damage caused. Here, we

  20. Radial loads and axial thrusts on centrifugal pumps

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The proceedings of a seminar organised by the Power Industries Division of the IMechE are presented in this text. Complete contents: Review of parameters influencing hydraulic forces on centrifugal impellers; The effect of fluid forces at various operation conditions on the vibrations of vertical turbine pumps; A review of the pump rotor axial equilibrium problem - some case studies; Dynamic hydraulic loading on a centrifugal pump impeller; Experimental research on axial thrust loads of double suction centrifugal pumps; A comparison of pressure distribution and radial loads on centrifugal pumps; A theoretical and experimental investigation of axial thrusts within a multi-stage centrifugal pump

  1. Performance prediction of industrial centrifuges using scale-down models.

    Science.gov (United States)

    Boychyn, M; Yim, S S S; Bulmer, M; More, J; Bracewell, D G; Hoare, M

    2004-12-01

    Computational fluid dynamics was used to model the high flow forces found in the feed zone of a multichamber-bowl centrifuge and reproduce these in a small, high-speed rotating disc device. Linking the device to scale-down centrifugation, permitted good estimation of the performance of various continuous-flow centrifuges (disc stack, multichamber bowl, CARR Powerfuge) for shear-sensitive protein precipitates. Critically, the ultra scale-down centrifugation process proved to be a much more accurate predictor of production multichamber-bowl performance than was the pilot centrifuge.

  2. Experimental study of multi-component separation by gas centrifuge

    International Nuclear Information System (INIS)

    Zhou, M.S.; Liang, X.W.; Chen, W.N.; Yin, Y.T.

    2006-01-01

    Stable isotopes are applied in many areas and most stable isotopes are multi-component, This paper presents experimental results of several stable isotopes separation conducted in Tsinghua University by using ultra-speed gas centrifuges. Xe, WF 6 , TeF 6 , SiHCl 3 , SiF 4 were chosen as the process gases. By adjusting some of the centrifuge's parameters, the suitable centrifuge parameters for different process gas separations were found and the overall unit separation factors γ 0 were obtained by means of single gas centrifuge separation. The experimental results show that with appropriate process gases, stable isotope separation by gas centrifuge was effective. (authors)

  3. Synchronization of Budding Yeast by Centrifugal Elutriation.

    Science.gov (United States)

    Rosebrock, Adam P

    2017-01-03

    In yeast, cell size is normally tightly linked to cell cycle progression. Centrifugal elutriation is a method that fractionates cells based on the physical properties of cell size-fluid drag and buoyant density. Using a specially modified centrifuge and rotor system, cells can be physically separated into one or more cohorts of similar size and therefore cell cycle position. Small G 1 daughters are collected first, followed by successively larger cells. Elutriated populations can be analyzed immediately or can be returned to medium and permitted to synchronously progress through the cell cycle. This protocol describes two different elutriation methods. In the first, one or more fractions of synchronized cells are obtained from an asynchronous starting population, reincubated, and followed prospectively across a time series. In the second, an asynchronous starting population is separated into multiple fractions of similarly sized cells, and each cohort of similarly sized cells can be analyzed separately without further growth. © 2017 Cold Spring Harbor Laboratory Press.

  4. Waves in strong centrifugal fields: dissipationless gas

    Science.gov (United States)

    Bogovalov, S. V.; Kislov, V. A.; Tronin, I. V.

    2015-04-01

    Linear waves are investigated in a rotating gas under the condition of strong centrifugal acceleration of the order 106 g realized in gas centrifuges for separation of uranium isotopes. Sound waves split into three families of the waves under these conditions. Dispersion equations are obtained. The characteristics of the waves strongly differ from the conventional sound waves on polarization, velocity of propagation and distribution of energy of the waves in space for two families having frequencies above and below the frequency of the conventional sound waves. The energy of these waves is localized in rarefied region of the gas. The waves of the third family were not specified before. They propagate exactly along the rotational axis with the conventional sound velocity. These waves are polarized only along the rotational axis. Radial and azimuthal motions are not excited. Energy of the waves is concentrated near the wall of the rotor where the density of the gas is largest.

  5. Quasi-conical centrifugal ion trap

    International Nuclear Information System (INIS)

    Golikov, Yu.K.; Solov'ev, K.V.; Grigor'ev, D.V.; Flegontova, E.Yu.

    1999-01-01

    This paper describes a new excellent ion trap that principally differs from the classic hyperbolic one by its action. The action is based on the axisymmetric electrostatic quasi-conical field with the following potential type: F=F 0 [ln r - r 2 /2+z 2 ], where r, z are cylindrical dimensionless coordinates. The radial potential run (f=ln r-r 2 /2), in this case, is exactly presented by the approximation function f a =ar 2 +b/r 2 +c. In addition, there are some ranges of r (for example, 0.6< r<0.35), in which the concurrence accuracy value is above 0.5%. The paper presents the theory of particles dynamics in the centrifugal trap. Basic correlation for resolution ratios and sensitivity values are developed. Recommendations on the centrifugal trap design implementation, including the recording system, are given

  6. Instability of a Vacuum Arc Centrifuge

    International Nuclear Information System (INIS)

    Hole, M.J.; Dallaqua, R.S.; Bosco, E. del; Simpson, S.W.

    2003-01-01

    Ever since conception of the Vacuum Arc Centrifuge (VAC) in 1980, periodic fluctuations in the ion saturation current and floating potential have been observed in Langmuir probe measurements in the rotation region of a VAC. Our theoretical and experimental research suggests that these fluctuations are in fact a pressure-gradient driven drift mode. In this work, we summarise the properties of a theoretical model describing the range of instabilities in the VAC plasma column, present theoretical predictions and compare with detailed experiments conducted on the PCEN centrifuge at the Brazilian National Space Research Institute (INPE). We conclude that the observed instability is a 'universal' instability, driven by the density-gradient, in a plasma with finite conductivity

  7. Separative performance transients in a gas centrifuge

    International Nuclear Information System (INIS)

    Olander, D.R.

    1979-01-01

    A general method has been developed to calculate the behavior of the exit compositions from a gas centrifuge under unsteady conditions. The method utilizes the basic enrichment gradient equations derived by Cohen, which, in this case, contain time derivatives of the partial 235 U inventories. These partial differential equations are converted to ordinary differential equations by a linear approximation to the axial concentration distribution for use in the inventory terms only. With this simplification, analytical solution is possible for the feed concentration transient. The transient driven by a change in the feed flow rate, however, requires numerical solution. For analysis of ideal cascades in the unsteady state, the transient flow and separation characteristics of the centrifuge must be combined with total uranium and 235 U material balances on each stage

  8. Continuous centrifuge decelerator for polar molecules.

    Science.gov (United States)

    Chervenkov, S; Wu, X; Bayerl, J; Rohlfes, A; Gantner, T; Zeppenfeld, M; Rempe, G

    2014-01-10

    Producing large samples of slow molecules from thermal-velocity ensembles is a formidable challenge. Here we employ a centrifugal force to produce a continuous molecular beam with a high flux at near-zero velocities. We demonstrate deceleration of three electrically guided molecular species, CH3F, CF3H, and CF3CCH, with input velocities of up to 200  m s(-1) to obtain beams with velocities below 15  m s(-1) and intensities of several 10(9)  mm(-2) s(-1). The centrifuge decelerator is easy to operate and can, in principle, slow down any guidable particle. It has the potential to become a standard technique for continuous deceleration of molecules.

  9. A vibration model for centrifugal contactors

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, R.A.; Wasserman, M.O.; Wygmans, D.G.

    1992-11-01

    Using the transfer matrix method, we created the Excel worksheet ``Beam`` for analyzing vibrations in centrifugal contactors. With this worksheet, a user can calculate the first natural frequency of the motor/rotor system for a centrifugal contactor. We determined a typical value for the bearing stiffness (k{sub B}) of a motor after measuring the k{sub B} value for three different motors. The k{sub B} value is an important parameter in this model, but it is not normally available for motors. The assumptions that we made in creating the Beam worksheet were verified by comparing the calculated results with those from a VAX computer program, BEAM IV. The Beam worksheet was applied to several contactor designs for which we have experimental data and found to work well.

  10. LMR [liquid metal reactor] centrifugal pump coastdowns

    International Nuclear Information System (INIS)

    Dunn, F.E.; Malloy, D.J.

    1987-01-01

    A centrifugal pump model which describes the interrelationships of the pump discharge flowrate, pump speed, shaft torque and dynamic head has been implemented based upon existing models. Specifically, the pump model is based upon the dimensionless-homologous pump theory of Wylie and Streeter. Given data from a representative pump, homologous theory allows one to predict the transient characteristics of similarly sized pumps. This homologous pump model has been implemented into both the one-dimensional SASSYS-1 systems analysis code and the three-dimensional COMMIX-1A code. Comparisons have been made both against other pump models (CRBR) and actual pump coastdown data (EBR-II and FFTF). Agreement with this homologous pump model has been excellent. Additionally, these comparisons indicate the validity of applying the medium size pump data of Wylie and Streeter to a range of typical LMR centrifugal pumps

  11. A vibration model for centrifugal contactors

    International Nuclear Information System (INIS)

    Leonard, R.A.; Wasserman, M.O.; Wygmans, D.G.

    1992-11-01

    Using the transfer matrix method, we created the Excel worksheet ''Beam'' for analyzing vibrations in centrifugal contactors. With this worksheet, a user can calculate the first natural frequency of the motor/rotor system for a centrifugal contactor. We determined a typical value for the bearing stiffness (k B ) of a motor after measuring the k B value for three different motors. The k B value is an important parameter in this model, but it is not normally available for motors. The assumptions that we made in creating the Beam worksheet were verified by comparing the calculated results with those from a VAX computer program, BEAM IV. The Beam worksheet was applied to several contactor designs for which we have experimental data and found to work well

  12. High stability design for new centrifugal compressor

    Science.gov (United States)

    Kanki, H.; Katayama, K.; Morii, S.; Mouri, Y.; Umemura, S.; Ozawa, U.; Oda, T.

    1989-01-01

    It is essential that high-performance centrifugal compressors be free of subsynchronous vibrations. A new high-performance centrifugal compressor has been developed by applying the latest rotordynamics knowledge and design techniques: (1) To improve the system damping, a specially designed oil film seal was developed. This seal attained a damping ratio three times that of the conventional design. The oil film seal contains a special damper ring in the seal cartridge. (2) To reduce the destabilizing effect of the labyrinth seal, a special swirl canceler (anti-swirl nozzle) was applied to the balance piston seal. (3) To confirm the system damping margin, the dynamic simulation rotor model test and the full load test applied the vibration exciting test in actual load conditions.

  13. Meridional Considerations of the Centrifugal Compressor Development

    Directory of Open Access Journals (Sweden)

    C. Xu

    2012-01-01

    Full Text Available Centrifugal compressor developments are interested in using optimization procedures that enable compressor high efficiency and wide operating ranges. Recently, high pressure ratio and efficiency of the centrifugal compressors require impeller design to pay attention to both the blade angle distribution and the meridional profile. The geometry of the blades and the meridional profile are very important contributions of compressor performance and structure reliability. This paper presents some recent studies of meridional impacts of the compressor. Studies indicated that the meridional profiles of the impeller impact the overall compressor efficiency and pressure ratio at the same rotational speed. Proper meridional profiles can improve the compressor efficiency and increase the overall pressure ratio at the same blade back curvature.

  14. CENTRIFUGAL VIBRATION TEST OF RC PILE FOUNDATION

    Science.gov (United States)

    Higuchi, Shunichi; Tsutsumiuchi, Takahiro; Otsuka, Rinna; Ito, Koji; Ejiri, Joji

    It is necessary that nonlinear responses of structures are clarified by soil-structure interaction analysis for the purpose of evaluating the seismic performances of underground structure or foundation structure. In this research, centrifuge shake table tests of reinforced concrete pile foundation installed in the liquefied ground were conducted. Then, finite element analyses for the tests were conducted to confirm an applicability of the analytical method by comparing the experimental results and analytical results.

  15. Analysis of performance for centrifugal steam compressor

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Seung Hwan; Ryu, Chang Kook; Ko, Han Seo [Sungkyunkwan University, Suwon (Korea, Republic of)

    2016-12-15

    In this study, mean streamline and Computational fluid dynamics (CFD) analyses were performed to investigate the performance of a small centrifugal steam compressor using a latent heat recovery technology. The results from both analysis methods showed good agreement. The compression ratio and efficiency of steam were found to be related with those of air by comparing the compression performances of both gases. Thus, the compression performance of steam could be predicted by the compression performance of air using the developed dimensionless parameters.

  16. Uranium enrichment by centrifuge in Japan

    International Nuclear Information System (INIS)

    Watanabe, T.; Murase, T.

    1977-01-01

    The demand for enriched uranium is on the increase with nuclear power capacity in which the LWR predominates and is estimated to exceed the supply from the present facilities in the world in less than ten years. Therefore, the basic strategy for enriched uranium is investigated on the following three-point long-range program in Japan: 1. To continue negotiations to extend the current allocation by the long-term contract; 2. To seek active participation in international enrichment projects; and 3. To make efforts to develop uranium enrichment technology and to construct inland facilities. On this basis, a vigorous development program of gas centrigue process for industrialization was launched out in 1972 as a national project. Ever since substantial progress in this field has been made and development works have been increased year after year. At present, a concrete plan of a pilot plant is taking shape. Up to now, several types of centrifuges were developed, of which some were completed as prototype models, and subjected to life tests and also to extensive earthquake-resistivity tests for the characteristics of Japanese geological condition. An enrichment plant is composed of so many centrifuges that the installation and piping system of centrifuges is an important factor which has an effect on plant economy and reliability. Two types of the experimental cascade were constructed in Japan. One has been in operation since 1973, and the other since 1975. Valuable empirical data have been accumulated on cascade characteristics, maintenance scheme and so on. It will be important for the coming plants to have a flexibility to escalation of labor and energy cost, or to variation of the separative work requirement and further. An economic prospect of centrifuge enrichment process is presented

  17. Centrifugal shot blasting. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-07-01

    At the US Department of Energy (DOE) Fernald Environmental Management Project (FEMP), the Facilities Closure and Demolition Projects Integrated Remedial Design/Remedial Action (RD/RA) work plan calls for the removal of one inch (1 in) depth of concrete surface in areas where contamination with technetium-99 has been identified. This report describes a comparative demonstration between two concrete removal technologies: an innovative system using Centrifugal Shot Blasting (CSB) and a modified baseline technology called a rotary drum planer

  18. Analysis of performance for centrifugal steam compressor

    International Nuclear Information System (INIS)

    Kang, Seung Hwan; Ryu, Chang Kook; Ko, Han Seo

    2016-01-01

    In this study, mean streamline and Computational fluid dynamics (CFD) analyses were performed to investigate the performance of a small centrifugal steam compressor using a latent heat recovery technology. The results from both analysis methods showed good agreement. The compression ratio and efficiency of steam were found to be related with those of air by comparing the compression performances of both gases. Thus, the compression performance of steam could be predicted by the compression performance of air using the developed dimensionless parameters

  19. Axial forces in centrifugal compressor couplings

    Science.gov (United States)

    Ivanov, A. N.; Ivanov, N. M.; Yun, V. K.

    2017-08-01

    The article presents the results of the theoretical and experimental investigation of axial forces arising in the toothed and plate couplings of centrifugal compressor shaft lines. Additional loads on the thrust bearing are considered that can develop in the toothed couplings as a result of coupled rotors misalignment. Design relationships to evaluate the level of axial forces and recommendations for their reduction in the operating conditions are given.

  20. Wave-driven countercurrent plasma centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, Abraham J; Fisch, Nathaniel J [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08540 (United States)

    2009-11-15

    A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the {alpha} channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided.

  1. Wave-driven countercurrent plasma centrifuge

    International Nuclear Information System (INIS)

    Fetterman, Abraham J; Fisch, Nathaniel J

    2009-01-01

    A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the α channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided.

  2. Wave-driven Countercurrent Plasma Centrifuge

    International Nuclear Information System (INIS)

    Fetterman, A.J.; Fisch, N.J.

    2009-01-01

    A method for driving rotation and a countercurrent flow in a fully ionized plasma centrifuge is described. The rotation is produced by radiofrequency waves near the cyclotron resonance. The wave energy is transferred into potential energy in a manner similar to the α channeling effect. The countercurrent flow may also be driven by radiofrequency waves. By driving both the rotation and the flow pattern using waves instead of electrodes, physical and engineering issues may be avoided

  3. Thermally-controlled centrifuge for isotopic separation

    International Nuclear Information System (INIS)

    Cenedese, A.; Cunsolo, D.

    1976-01-01

    Among the various methods proposed to obtain lighter component enrichment in the isotopic separation of uranium, ultracentrifugation is becoming more and more interesting today, as this process becomes a useful alternate method to gaseous diffusion. The ultracentrifuge main gas-dynamic features are investigated in the present study. In particular, the field inside the centrifuge has been subdivided into three axial zones: an internal central zone, characterized by an essentially axial flow; two external zones, near the two caps of the centrifuge; two intermediate zones, of a length of the order of the radius. For the analytical solution the linearized Navier-Stokes equations have been considered. The central zone flow is solved by separating the independent variables; the corresponding eigenvalue problem has been solved numerically. A series of eigensolutions which satisfy boundary conditions at the walls of the cylinder has been calculated. An integral method for the superimposition of the above mentioned eigensolutions is proposed in order to satisfy the conditions at the tops for thermally-controlled centrifuges. (author)

  4. Multiple-isotope separation in gas centrifuge

    International Nuclear Information System (INIS)

    Wood, Houston G.; Mason, T.C.; Soubbaramayer

    1996-01-01

    In previous works, the Onsager's pancake equation was used to provide solution to the internal counter-current flow field, which is necessary to calculate solutions to the isotope transport equation. The diffusion coefficient was assumed to be constant which is a good approximation for gases with large molecular weights, and small differences in the molecular weights of the various isotopes. A new optimization strategy was presented for determining the operating parameters of a gas centrifuge to be used for multiple-component isotope separation. Scoop drag, linear wall temperature gradient, the feed rate ant the cut have been chosen as operating parameters for the optimization. The investigation was restricted to a single centrifuge, and the problem of cascading for multiple-isotope separation was not addressed. The model describing the flow and separation phenomena in centrifuge includes a set of equations describing the fluid dynamics of the counter-current flow and the diffusion equations written for each isotope of the mixture. In this paper, an optimization algorithm is described and applied to an example for the re enrichment of spent reactor uranium

  5. EM Task 9 - Centrifugal Membrane Filtration

    International Nuclear Information System (INIS)

    Stevens, B.G.; Stepan, D.J.; Hetland, M.D.

    1998-01-01

    This project is designed to establish the utility of a novel centrifugal membrane filtration technology for the remediation of liquid mixed waste streams at US Department of Energy (DOE) facilities in support of the DOE Environmental Management (EM) program. The Energy and Environmental Research Center (EERC) has teamed with SpinTek Membrane Systems, Inc., a small business and owner of the novel centrifugal membrane filtration technology, to establish the applicability of the technology to DOE site remediation and the commercial viability of the technology for liquid mixed waste stream remediation. The technology is a uniquely configured process that makes use of ultrafiltration and centrifugal force to separate suspended and dissolved solids from liquid waste streams, producing a filtered water stream and a low-volume contaminated concentrate stream. This technology has the potential for effective and efficient waste volume minimization, the treatment of liquid tank wastes, the remediation of contaminated groundwater plumes, and the treatment of secondary liquid waste streams from other remediation processes, as well as the liquid waste stream generated during decontamination and decommissioning activities

  6. Solvent extraction studies in miniature centrifugal contactors

    International Nuclear Information System (INIS)

    Siczek, A.A.; Meisenhelder, J.H.; Bernstein, G.J.; Steindler, M.J.

    1980-01-01

    A miniature short-residence-time centrifugal solvent extraction contactor and an eight-stage laboratory minibank of centrifugal contactors were used for testing the possibility of utilizing kinetic effects for improving the separation of uranium from ruthenium and zirconium in the Purex process. Results of these tests showed that a small improvement found in ruthenium and zirconium decontamination in single-stage solvent extraction tests was lost in the multistage extraction tests- in fact, the extent of saturation of the solvent by uranium, rather than the stage residence time, controlled the extent of ruthenium and zirconium extraction. In applying the centrifugal contactor to the Purex process, the primary advantages would be less radiolytic damage to the solvent, high troughput, reduced solvent inventory, and rapid attainment of steady-state operating conditions. The multistage mini contactor was also tested to determine the suitability of short-residence-time contactors for use with the Civex and Thorex processes and was found to be compatible with the requirements of these processes. (orig.) [de

  7. Environmental applications of the centrifugal fast analyzer

    International Nuclear Information System (INIS)

    Goldstein, G.; Strain, J.E.; Bowling, J.L.

    1975-12-01

    The centrifugal fast analyzer (GeMSAEC Fast Analyzer) was applied to the analysis of pollutants in air and water. Since data acquisition and processing are computer controlled, considerable effort went into devising appropriate software. A modified version of the standard FOCAL interpreter was developed which includes special machine language functions for data timing, acquisition, and storage, and also permits chaining together of programs stored on a disk. Programs were written and experimental procedures developed to implement spectrophotometric, turbidimetric, kinetic (including initial-rate, fixed-time, and variable-time techniques), and chemiluminescence methods of analysis. Analytical methods were developed for the following elements and compounds: SO 2 , O 3 , Ca, Cr, Cu, Fe, Mg, Se(IV), Zn, Cl - , I - , NO 2 - , PO 4 -3 , S -2 , and SO 4 -2 . In many cases, standard methods could be adapted to the centrifugal analyzer, in others new methods were employed. In general, analyses performed with the centrifugal fast analyzer were faster, more precise, and more accurate than with conventional instrumentation

  8. Unsteady flow measurements in centrifugal compressors

    International Nuclear Information System (INIS)

    Bammert, K.; Mobarak, A.; Rautenberg, M.

    1976-01-01

    Centrifugal compressors and blowers are often used for recycling the coolant gas in gas-cooled reactors. To achieve the required high pressure ratios, highly loaded centrifugal compressors are built. The paper deals with unsteady flow measurements on highly loaded centrifugal impellers. Measurements of the approaching flow have been done with hot wires. The method of measurement enabled us to get the velocity distribution across the pitch ahead of the inducer. The static pressure signals along the shroud line has been discussed on the basis of some theoretical considerations. Accordingly the form of flow in the impeller and the wave flow or separation zones in the impeller can now be better interpreted. The importance of the unsteady nature of the relative flow, especially at impeller exit, is clearly demonstrated. Measurements with high responsive total pressure probes in the vicinity of impeller exit and the subsequent calculations have shown, that the instantaneous energy transfer at a certain point after the impeller may differ by more than 30% from the Euler work. Lastly, unsteady pressure measurements along the shroud line have been performed during surge and rotating stall. The surge signal have been analyzed in more detail and the mechanism of flow rupture and pressure recovery during a surge cycle is thoroughly discussed. (orig.) [de

  9. Spin doctors: new innovations for centrifugal apheresis.

    Science.gov (United States)

    Kambic, H E; Nosé, Y

    1997-08-01

    The preparation of plasma from blood has a long history dating back to the early 1900s when the concept of blood washing replaced the traditional blood letting. Over the next 57 years landmark discoveries such as centrifugal and membrane filtration systems led to different and rapid plasma, solute, and cell separation. These were not singular events but rather events influenced by the converging chemical, physiological, and engineering advances that have characterized the latter half of the 20th century. These events have led to entire new fields of biomedical research. The biotechnology for on-line plasma separation and plasma treatment has opened a new era, expanding the application of extracorporeal technology to modern therapeutic medicine. The association of biochemical or cellular abnormalities with various disease states provides the rationale for therapeutic plasma exchange (the removal of large amounts of patient's plasma, alone or with replacement with crystalloid) and therapeutic cytopheresis (removal of cellular elements). The purpose of this review is to provide a historical picture of the innovative ideas of the spin doctors and their devices, which predate the centrifugal blood and cell separators commonplace to any hospital or blood bank worldwide. The emphasis is to define the historical events and their impacts on the development of centrifugal devices and apheresis technologies.

  10. Kinetically limited differential centrifugation as an inexpensive and readily available alternative to centrifugal elutriation.

    Science.gov (United States)

    Tan, Jinwang; Lee, Byung-Doo; Polo-Parada, Luis; Sengupta, Shramik

    2012-08-01

    When separating two species with similar densities but differing sedimentation velocities (because of differences in size), centrifugal elutriation is generally the method of choice. However, a major drawback to this approach is the requirement for specialized equipment. Here, we present a new method that achieves similar separations using standard benchtop centrifuges by loading the seperands as a layer on top of a dense buffer of a specified length, and running the benchtop centrifugation process for a calculated amount of time, thereby ensuring that all faster moving species are collected at the bottom, while all slower moving species remain in the buffer. We demonstrate the use of our procedure to isolate bacteria from blood culture broth (a mixture of bacterial growth media, blood, and bacteria).

  11. Instabilities expected to exist in a gas centrifuge

    International Nuclear Information System (INIS)

    Sakurai, Takeo

    1977-01-01

    A typical counter current type centrifuge of long bowl geometry is schematically shown. At first glance, the main flow field in this centrifuge can be taken as a swirling pipe flow. Taking in mind the operating gas (uranium hexafluoride) the temperature of which is 20 deg C and the peripheral pressure 10 torrs, the density and pressure obey the barometric relation in which the gravity is replaced by the centrifugal acceleration; in a thermally driven centrifuge, an additional weak temperature gradient appears along the axial direction. These situations are similar to those in the earth's atmosphere. So, it is stressed that the interior of a gas centrifuge is a new kind of rotating atmosphere and offers a 'new face' in the field of geophysical fluid dynamics. Instabilities in inviscid case and the destabilizing effects of the diffusivity are thus discussed together with the effects of the mechanical vibrations of the centrifuge, and vortex breakdown phenomena

  12. Subjective stress factors in centrifuge training for military aircrews.

    Science.gov (United States)

    Lin, Pei-Chun; Wang, Jenhung; Li, Shih-Chin

    2012-07-01

    This study investigates stress-influence factors perceived by military aircrews undergoing centrifuge training, which lowers the incidence of G-induced loss of consciousness (G-LOC) for the crews of high-performance combat aircrafts. We used questionnaires to assess the subjective stress-influence factors of crews undergoing centrifuge training. Professionals in aviation physiology identified attributes measuring the perceived stress induced by centrifuge training, which were segmented into three constructs by factor analysis, theory lecture, centrifuge equipment, and physical fitness. Considerable interpenetration was discernible between these factors and military rank, age, length of service, flight hours accrued, and type of aircraft piloted. Identifying and quantifying the perceived stressors experienced in human-use centrifuge training enables aviators, astronauts, and air forces of the world to determine which constructs perceptibly increase or alleviate the perceived stress undergone by trainees when partaking in centrifuge training. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  13. Method and refrigerants for replacing existing refrigerants in centrifugal compressors

    International Nuclear Information System (INIS)

    Kopko, W.L.

    1991-01-01

    This patent describes a method for replacing an existing refrigerant in a centrifugal compressor. It comprises selecting a desired impeller Mach number for the centrifugal compressor; selecting a base refrigerant constituent; combining at least one additive refrigerant constituent with the base refrigerant constituent to form a replacement refrigerant having at least one physical or chemical property different from the existing refrigerant and substantially providing the desired impeller Mach number in the centrifugal compressor; and replacing the existing refrigerant with the replacement refrigerant

  14. Flow and separation in gas centrifuge with Beams type circulation

    International Nuclear Information System (INIS)

    Ajsen, Eh.M.; Borisevich, V.D.; Levin, E.V.

    1992-01-01

    Structure of the secondary circulation flows in the working chamber of gas centrifuge for uranium isotope separation is studied using the numerical methods. Influence of the circulation thermal component on the centrifuge efficiency is analyzed. The contribution of useful component concentration difference of binary isotope mixture in feeding flows to the centrifuge efficiency is determined. Dependence of concentration optimal difference, whereby the maximum efficiency is achieved, on temperature distribution on the rotor side wall is found

  15. Effects of centrifugation on gonadal and adrenocortical steroids in rats

    Science.gov (United States)

    Kakihana, R.; Butte, J. C.

    1980-01-01

    Many endocrine systems are sensitive to external changes in the environment. Both the pituitary adrenal and pituitary gonadal systems are affected by stress including centrifugation stress. The effect of centrifugation on the pituitary gonadal and pituitary adrenocortical systems was examined by measuring the gonadal and adrenal steroids in the plasma and brain following different duration and intensity of centrifugation stress in rats. Two studies were completed and the results are presented. The second study was carried out to describe the developmental changes of brain, plasma and testicular testosterone and dihydrotestosterone in Sprague Dawley rats so that the effect of centrifugation stress on the pituitary gonadal syatem could be better evaluated in future studies.

  16. Separative power of an optimised concurrent gas centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Bogovalov, Sergey; Boman, Vladimir [National Research Nuclear University (MEPHI), Moscow (Russian Federation)

    2016-06-15

    The problem of separation of isotopes in a concurrent gas centrifuge is solved analytically for an arbitrary binary mixture of isotopes. The separative power of the optimised concurrent gas centrifuges for the uranium isotopes equals to δU = 12.7 (V/700 m/s)2(300 K/T)(L/1 m) kg·SWU/yr, where L and V are the length and linear velocity of the rotor of the gas centrifuge and T is the temperature. This equation agrees well with the empirically determined separative power of optimised counter-current gas centrifuges.

  17. The gas centrifuge, uranium enrichment and nuclear proliferation

    International Nuclear Information System (INIS)

    Chapman, A.

    1988-01-01

    The author considers the consequences for controlling nuclear proliferation of the emergence of the gas centrifuge method for enriching uranium and succeeds in the difficult and delicate task of saying enough about gas centrifuge techniques for readers to judge, what may be involved in fully embracing gas centrifuge enrichment within the constraints of an anti-proliferation strategy, whilst at the same time saying nothing that could be construed as encouraging an interest in the gas centrifuge route to highly enriched uranium where none had before existed. (author)

  18. Autobalancing and FDIR for a space-based centrifuge prototype

    Science.gov (United States)

    Wilson, Edward; Mah, Robert W.

    2005-01-01

    This report summarizes centrifuge-related work performed at the Smart Systems Research Laboratory at NASA Ames Research Center's Computational Sciences Division from 1995 through 2003. The goal is to develop an automated system that will sense an imbalance (both static and dynamic3) in a centrifuge and issue control commands to drive counterweights to eliminate the effects of the imbalance. This autobalancing development began when the ISS centrifuge design was not yet finalized, and was designed to work with the SSRL Centrifuge laboratory prototype, constructed in 1993-1995. Significant differences between that prototype and the current International Space Station (ISS) Centrifuge design are that: the spin axis for the SSRL Centrifuge prototype can translate freely in x and y, but not wobble, whereas the ISS centrifuge spin axis has 3 translational and two rotational degrees of freedom, supported by a vibration 34. The imbalance sensors are strained gauges both in the rotor and the stator, measuring the imbalance forces, whereas the ISS centrifuge uses eddy current displacement sensors to measure the displacements resulting from imbalance. High fidelity autobalancing and FDIR systems (for both counterweights and strain gauges) are developed and tested in MATLAB simulation, for the SSRL Centrifuge configuration. Hardware implementation of the autobalancing technology was begun in 1996, but was terminated due to lack of funding. The project lay dormant until 2001-2002 when the FDIR capability was added.

  19. Research on the development of the centrifugal spinning

    Directory of Open Access Journals (Sweden)

    Zhang Zhiming

    2017-01-01

    Full Text Available Centrifugal spinning is a new and efficient method to produce nanofibers quickly. It makes use of the centrifugal force instead of high voltage to produce the nanofibers. The centrifugal spinning has many advantages such as no high voltage, high yield, simple structure, no pollution and can be applied to high polymer material, ceramic and metal material. In order to have more understand about this novel nanofibers formation method, this paper introduces the method of centrifugal spinning and the effect of rotation speed, the properties of material such as viscosity and solvent evaporation, collector distance which have an impact on nanofibers morphology and diameter were also analyzed.

  20. Characteristics of centrifugal rapid contactor, (3)

    International Nuclear Information System (INIS)

    Nakanishi, Mitsuo; Hirayama, Hiroshi; Takasu, Nobuyuki; Takeda, Hiroshi; Hoshino, Tadaya

    1979-01-01

    Organic solvent yields the degradation product as a result of irradiation, in the extraction process of spent fuel reprocessing. The development of a centrifugal rapid contactor is required for the reduction of the solvent degradation by shortening the contact time. The effects of fine solid particles were investigated with a SGN-Robatel LX-208N contactor, following the uranium extraction and re-extraction performance tests. It was found as the experimental result that the considerable quantity of solids accumulated in the rotor of the centrifugal contactor. As for this experimental apparatus, the flow diagram for the centrifugal rapid contactor and auxiliary apparatuses is shown, which are the same system used for the uranium extraction and re-extraction tests. The schematic diagram, the typical stage construction and fluid transfer path of the LX-208 contactor are illustrated. The main specifications of the LX-208 contactor are as follows: the internal diameter of a rotating bowl 200 mm, the material SUS 316, the number of stages 8, and the total hold-up volume of the contactor 1.8 l. Most tests were carried out with aqueous feed only, because white Alundum is easily deposited in the rotor, and the particle concentration in effluent stream becomes undetectable when organic and aqueous feeds are supplied simultaneously. As the experimental results, the correlation of Alundum concentration in effluent and running time, the effect of rotor speed on effluent stream concentration, the particle size distribution curves for No. 6000 and No. 8000 white Alundum, the effect of flow rate on effluent stream concentration and the effect of flow rate on particle size distribution for both No. 6000 and No. 8000 white Alundum are presented. (Nakai, Y.)

  1. EM Task 9 - Centrifugal membrane filtration

    International Nuclear Information System (INIS)

    Stepan, Daniel J.; Stevens, Bradley G.; Hetland, Melanie D.

    1999-01-01

    The overall project consists of several integrated research phases related to the applicability, continued development, demonstration, and commercialization of the SpinTek centrifugal membrane filtration process. Work performed during this reporting period consisted of Phase 2 evaluation of the SpinTek centrifugal membrane filtration technology and Phase 3, Technology Partnering. During Phase 1 testing conducted at the EERC using the SpinTek ST-IIL unit operating on a surrogate tank waste, a solids cake developed on the membrane surface. The solids cake was observed where linear membrane velocities were less than 17.5 ft/s and reduced the unobstructed membrane surface area up to 25%, reducing overall filtration performance. The primary goal of the Phase 2 research effort was to enhance filtration performance through the development and testing of alternative turbulence promoter designs. The turbulence promoters were designed to generate a shear force across the entire membrane surface sufficient to maintain a self-cleaning membrane capability and improve filtration efficiency and long-term performance. Specific Phase 2 research activities included the following: System modifications to accommodate an 11-in.-diameter, two-disk rotating membrane assembly; Development and fabrication of alternative turbulence promoter designs; Testing and evaluation of the existing and alternative turbulence promoters under selected operating conditions using a statistically designed test matrix; and Data reduction and analysis; The objective of Phase 3 research was to demonstrate the effectiveness of SpinTek's centrifugal membrane filtration as a pretreatment to remove suspended solids from a liquid waste upstream of 3M's WWL cartridge technology for the selective removal of technetium (Tc)

  2. Development of a 3D circular microfluidic centrifuge for the separation of mixed particles by using their different centrifuge times

    International Nuclear Information System (INIS)

    Jeon, H J; Kim, D I; Kim, M J; Nguyen, X D; Park, D H; Go, J S

    2015-01-01

    This paper presents a circular microfluidic centrifuge with two inlets and two outlets to separate mixed microparticles with a specially designed sample injection hole. To separate the mixed particles, it uses a rotational flow, generated in a chamber by counter primary flows in the microchannels. The shape and sizes of the circular microfluidic centrifuge have been designed through numerical evaluation to have a large relative centrifugal force. The difference of centrifuge times of the mixed particles of 1 μm and 6 μm was determined to be 8.2 s at an inlet Reynolds number of 500 and a sample Reynolds number of 20. In the experiment, this was measured to be about 10 s. From the separation of the two polymer particles analogous to the representative sizes of platelets and red blood cells, the circular microfluidic centrifuge shows a potential to separate human blood cells size-selectively by using the difference of centrifuge times. (paper)

  3. Rotational spectroscopy with an optical centrifuge.

    Science.gov (United States)

    Korobenko, Aleksey; Milner, Alexander A; Hepburn, John W; Milner, Valery

    2014-03-07

    We demonstrate a new spectroscopic method for studying electronic transitions in molecules with extremely broad range of angular momentum. We employ an optical centrifuge to create narrow rotational wave packets in the ground electronic state of (16)O2. Using the technique of resonance-enhanced multi-photon ionization, we record the spectrum of multiple ro-vibrational transitions between X(3)Σg(-) and C(3)Πg electronic manifolds of oxygen. Direct control of rotational excitation, extending to rotational quantum numbers as high as N ≳ 120, enables us to interpret the complex structure of rotational spectra of C(3)Πg beyond thermally accessible levels.

  4. Gas centrifuge bibliography 1980-1982

    International Nuclear Information System (INIS)

    Lowe, G.E.; Morrison, M.

    1983-06-01

    A bibliography, with abstract, is presented of the gas centrifuge literature published from 1980 to 1982 inclusive. It supplements PG Information Series 25 (CA), BNFL Information Series 15 (CA) and BNFL Information Series 23 (CA), which covered the periods 1895 to 1970, 1970 to 1974, and 1975 to 1979 respectively. After bibliographies and books and pamphlets, the main list is arranged chronologically under the headings, Reports, Journal articles, and Conference papers. Items omitted from the earlier bibliographies or received too late for inclusion in this, have been listed separately. There are author, report number and subject indexes. (U.K.)

  5. Isotopic enrichment in a plasma centrifuge

    International Nuclear Information System (INIS)

    Del Bosco, E.; Dallaqua, R.S.; Ludwig, G.O.; Bittencourt, J.A.

    1986-05-01

    A rotating fully ionized plasma column was produced in a vacuum-arc centrifuge. The apparatus is described and new results for the rotational velocity and isotope enrichment of carbon and metal plasmas are shown. The ion rotation velocity is derived from electrostatic probes measurents and from the azimuthal displacement of the material deposited behind of a narrow slit. The isotope enrichment is measured with a modified quadrupole mass spectrometer, which determines, in situ, the relative abundance of the isotopes at the end of the plasm column at various radil positions. (Author) [pt

  6. Rotordynamic Forces on Centrifugal Pump Impellers

    OpenAIRE

    Franz, R.; Arndt, N.; Caughey, T. K.; Brennen, C. E.; Acosta, A. J.

    1987-01-01

    The asymmetric flow around an impeller in a volute exerts a force upon the impeller. To study the rotordynamic force on an impeller which is vibrating around its machine axis of rotation, the impeller, mounted on a dynamometer, is made to whirl in a circular orbit within the volute. The measured force is expressed as the sum of a steady radial force and an unsteady force due to the eccentric motion of the impeller. These forces were measured in separate tests on a centrifugal pump with rad...

  7. Development of liquid nitrogen Centrifugal Pump

    International Nuclear Information System (INIS)

    Abe, M; Sagiyama, R; Tsuchiya, H; Takayama, T; Torii, Y; Nakamura, M; Hoshino, Y; Odashima, Y

    2009-01-01

    Usually liquid nitrogen (LN 2 ) transfer from a container to a laboratory equipment takes place by applying pressure to the container to push out liquid or pouring liquid into the cryostat directly by lifting the container. In order to overcome inconvenience of pressuring or lifting containers, we have been developing the Liquid Nitrogen Centrifugal Pump of a small electric turbine pump. Significant advantages that both reducing time to fill LN 2 and controlling the flow rate of liquid into the cryostat are obtained by introducing this pump. We have achieved the lift of about 800mm with the vessel's opening diameter of 28mm.

  8. DESIGN PARAMETERS OF CENTRIFUGAL COMPRESSOR INDUCER

    Directory of Open Access Journals (Sweden)

    Saim KOÇAK

    1998-03-01

    Full Text Available Design characteristics of centrifugal compressor impellers working with compressible fluids are analyzed, and the design parameters of inducer are defined. The effects of incidence, deviation and deflection angles, relative eddy, rotating stall and Mach number are investigated. The relation between minimum relative Mach number of inducer and flow angle is investigated and it is observed that the minimum Mach number occurs for flow angle values between -680 and -520 . In the design, the effect of a 100 difference in flow angle is found to be less than 1 % on minimum relative Mach number.

  9. Low-temperature centrifugal helium compressor

    International Nuclear Information System (INIS)

    Kawada, M.; Togo, S.; Akiyama, Y.; Wada, R.

    1974-01-01

    A centrifugal helium compressor with gas bearings, which can be operated at the temperature of liquid nitrogen, has been investigated. This compressor has the advantages that the compression ratio should be higher than the room temperature operation and that the contamination of helium could be eliminated. The outer diameter of the rotor is 112 mm. The experimental result for helium gas at low temperature shows a flow rate of 47 g/s and a compression ratio of 1.2 when the inlet pressure was 1 ata and the rotational speed 550 rev/s. The investigation is now focused on obtaining a compression ratio of 1.5. (author)

  10. Solidification microstructure of centrifugally cast Inconel 625

    Directory of Open Access Journals (Sweden)

    Silvia Barella

    2017-07-01

    Full Text Available Centrifugal casting is a foundry process allowing the production of near net-shaped axially symmetrical components. The present study focuses on the microstructural characterization of centrifugally cast alloys featuring different chemical compositions for the construction of spheres applied in valves made of alloy IN625 for operation at high pressure. Control of the solidification microstructure is needed to assure the reliability of the castings. Actually, a Ni-base superalloy such as this one should have an outstanding combination of mechanical properties, high temperature stability and corrosion resistance. Alloys such as IN625 are characterised by a large amount of alloying elements and a wide solidification range, so they can be affected by micro-porosity defects, related to the shrinkage difference between the matrix and the secondary reinforcing phases (Nb-rich carbides and Laves phase. In this study, the microstructure characterization was performed as a function of the applied heat treatments and it was coupled with a calorimetric analysis in order to understand the mechanism ruling the formation of micro-porosities that can assure alloy soundness. The obtained results show that the presence of micro-porosities is governed by morphology and by the size of the secondary phases, and the presence of the observed secondary phases is detrimental to corrosion resistance.

  11. Theory and experiments on centrifuge cratering

    International Nuclear Information System (INIS)

    Schmidt, R.M.; Holsapple, K.A.

    1980-01-01

    Centrifuge experimental techniques provide possibilities for laboratory simulation of ground motion and cratering effects due to explosive loadings. The results of a similarity analysis for the thermomechanical response of a continuun show that increased gravity is a necessary condition for subscale testing when identical materials for both model and prototype are being used. The general similarity requirements for this type of subscale testing are examined both theoretically and experimentally. The similarity analysis is used to derive the necessary and sufficient requirements due to the general balance and jump equations and gives relations among all the scale factors for size, density, stress, body forces, internal energy, heat supply, heat conduction, heat of detonation, and time. Additional constraints due to specific choices of material constitutive equations are evaluated separately. The class of consitutive equations that add no further requirements is identified. For this class of materials, direct simulation of large-scale cratering events at small scale on the centrifuge is possible and independent of the actual constitutive equations. For a rare-independent soil it is shown that a small experiment at gravity g and energy E is similar to a large event at 1 G but with energy equal to g 3 E. Consequently, experiments at 500 G with 8 grams of explosives can be used to

  12. Centrifugal separator. [for production of enriched U

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, J; Fujita, S I

    1970-02-25

    In a centrifugal separator of the concurrent flow through type, a rotating member having an inner and outer cylinder with an air gap therebetween is supported within a frame. A mixture to be separated is supplied to the interior of the inner cylinder through a hollow shaft inserted coaxially within the rotatable portion of a driving apparatus, with one end of the rotatable portion attached to the common inlet end cap of the cylinders which are thereby rotated. There are provided holes at the upper end of the inner cylinder through which the mixture enters the air gap to undergo separation, with the thus separated lighter component entering a separate chamber at the lower end of the inner cylinder through holes provided therein to thereafter be discharged from the outlet end thereof, while the heavier component is discharged from the outlet end of the outer cylinder through holes provided therein. The separated gases then enter their respective chambers within the frame for final removal where they are isolated from each other by sealing means to prevent remixture. Efficiency is heightened and, since no other complicated means are necessary for dividing and removing the separated components, the structure of the present centrifuge can be simplified and reduced in size.

  13. Centrifugally Spun Recycled PET: Processing and Characterization

    Directory of Open Access Journals (Sweden)

    Phu Phong Vo

    2018-06-01

    Full Text Available Centrifugal spinning, which is a high-productivity fiber fabrication technique, was used to produce a value-added product from recycled poly(ethylene terephthalate (rPET. In the present study, rPET fibers, with fiber diameters ranging from submicron to micrometer in scale, were fabricated by spinning a solution of rPET in a mixture of dichloromethane and trifluoroacetic acid. The influence of the polymer solution concentration (the viscosity, the rotational speed of the spinneret, and the inner diameter of the needles on the formation and morphology and mechanical properties of the fibers were examined through scanning electron microscopy and using a tensile testing machine. The thermal behaviors of fibrous mats with various average diameters were also investigated through differential scanning calorimetry. The smoothest and smallest fibers, with an average diameter of 619 nm, were generated using an rPET solution of 10 wt % under a rotation speed of 15,000 rpm using needles having an inner diameter of 160 μm. The fibrous mats have an average tensile strength and modulus of 4.3 MPa and 34.4 MPa, respectively. The productivity and the mechanical properties indicate that centrifugal spinning is an effective technique to fabricate high-value product from rPET.

  14. Some aversive characteristics of centrifugally generated gravity.

    Science.gov (United States)

    Altman, F.

    1973-01-01

    The effective weight of rats was manipulated by centrifugation. Two effective weight levels were obtained. In three escape avoidance conditions a lever press produced a change from a base level of 2.1 g to a response level of 1.1 g. In a punishment condition a response produced a change from a 1.1 g level to a 2.1 g level and in an extinction condition responses had no effect on the 2.1 g effective weight level present. All changes took 30 sec and were maintained for an additional 10 sec before a return to base level was initiated. When responses occurred closer together than the 40 sec, they delayed the return to base level by 40 sec. This 40 sec interval is referred to as response-contingent-time. The response rate and amount of response-contingent-time served as the data. The results confirmed previous data that centrifugation is aversive. The results are interpreted as indicating that the aversiveness is attributable to the increase in effective weight, and that rats can discriminate the different angular velocity-radius of rotation combinations used.

  15. Centrifugally Stimulated Exospheric Ion Escape at Mercury

    Science.gov (United States)

    Delcourt, Dominique; Seki, K.; Terada, N.; Moore, Thomas E.

    2012-01-01

    We investigate the transport of ions in the low-altitude magnetosphere magnetosphere of Mercury. We show that, because of small spatial scales, the centrifugal effect due to curvature of the E B drift paths can lead to significant particle energization in the parallel direction. We demonstrate that because of this effect, ions with initial speed smaller than the escape speed such as those produced via thermal desorption can overcome gravity and escape into the magnetosphere. The escape route of this low-energy exosphere originating material is largely controlled by the magnetospheric convection rate. This escape route spreads over a narrower range of altitudes when the convection rate increases. Bulk transport of low-energy planetary material thus occurs within a limited region of space once moderate magnetospheric convection is established. These results suggest that, via release of material otherwise gravitationally trapped, the E B related centrifugal acceleration is an important mechanism for the net supply of plasma to the magnetosphere of Mercury.

  16. Design, Development and Analysis of Centrifugal Blower

    Science.gov (United States)

    Baloni, Beena Devendra; Channiwala, Salim Abbasbhai; Harsha, Sugnanam Naga Ramannath

    2018-06-01

    Centrifugal blowers are widely used turbomachines equipment in all kinds of modern and domestic life. Manufacturing of blowers seldom follow an optimum design solution for individual blower. Although centrifugal blowers are developed as highly efficient machines, design is still based on various empirical and semi empirical rules proposed by fan designers. There are different methodologies used to design the impeller and other components of blowers. The objective of present study is to study explicit design methodologies and tracing unified design to get better design point performance. This unified design methodology is based more on fundamental concepts and minimum assumptions. Parametric study is also carried out for the effect of design parameters on pressure ratio and their interdependency in the design. The code is developed based on a unified design using C programming. Numerical analysis is carried out to check the flow parameters inside the blower. Two blowers, one based on the present design and other on industrial design, are developed with a standard OEM blower manufacturing unit. A comparison of both designs is done based on experimental performance analysis as per IS standard. The results suggest better efficiency and more flow rate for the same pressure head in case of the present design compared with industrial one.

  17. Wave Augmented Diffusers for Centrifugal Compressors

    Science.gov (United States)

    Paxson, Daniel E.; Skoch, Gary J.

    1998-01-01

    A conceptual device is introduced which would utilize unsteady wave motion to slow and turn flows in the diffuser section of a centrifugal compressor. The envisioned device would substantially reduce the size of conventional centrifugal diffusers by eliminating the relatively large ninety degree bend needed to turn the flow from the radial/tangential to the axial direction. The bend would be replaced by a wall and the flow would instead exit through a series of rotating ports located on a disk, adjacent to the diffuser hub, and fixed to the impeller shaft. The ports would generate both expansion and compression waves which would rapidly transition from the hub/shroud (axial) direction to the radial/tangential direction. The waves would in turn induce radial/tangential and axial flow. This paper presents a detailed description of the device. Simplified cycle analysis and performance results are presented which were obtained using a time accurate, quasi-one-dimensional CFD code with models for turning, port flow conditions, and losses due to wall shear stress. The results indicate that a periodic wave system can be established which yields diffuser performance comparable to a conventional diffuser. Discussion concerning feasibility, accuracy, and integration follow.

  18. Experimental Investigation of Centrifugal Compressor Stabilization Techniques

    Science.gov (United States)

    Skoch, Gary J.

    2003-01-01

    Results from a series of experiments to investigate techniques for extending the stable flow range of a centrifugal compressor are reported. The research was conducted in a high-speed centrifugal compressor at the NASA Glenn Research Center. The stabilizing effect of steadily flowing air-streams injected into the vaneless region of a vane-island diffuser through the shroud surface is described. Parametric variations of injection angle, injection flow rate, number of injectors, injector spacing, and injection versus bleed were investigated for a range of impeller speeds and tip clearances. Both the compressor discharge and an external source were used for the injection air supply. The stabilizing effect of flow obstructions created by tubes that were inserted into the diffuser vaneless space through the shroud was also investigated. Tube immersion into the vaneless space was varied in the flow obstruction experiments. Results from testing done at impeller design speed and tip clearance are presented. Surge margin improved by 1.7 points using injection air that was supplied from within the compressor. Externally supplied injection air was used to return the compressor to stable operation after being throttled into surge. The tubes, which were capped to prevent mass flux, provided 9.3 points of additional surge margin over the baseline surge margin of 11.7 points.

  19. Centrifugal acceleration of the polar wind

    Science.gov (United States)

    Horwitz, J. L.; Ho, C. W.; Scarbro, H. D.; Wilson, G. R.; Moore, T. E.

    1994-01-01

    The effect of parallel ion acceleration associated with convection was first applied to energization of test particle polar ions by Cladis (1986). However, this effect is typically neglected in 'self-consistent' models of polar plasma outflow, apart from the fluid simulation by Swift (1990). Here we include approximations for this acceleration, which we broadly characterize as centrifugal in nature, in our time-dependent, semikinetic model of polar plasma outflow and describe the effects on the bulk parameter profiles and distribution functions of H+ and O+. For meridional convection across the pole the approximate parallel force along a polar magnetic field line may be written as F(sub cent, pole) = 1.5m(E(sub i))/B(sub i))squared (r(squared)/r(sup 3)(sub i)) where m is ion mass, r is geometric distance; and E(sub i), B(sub i) and r(sub i) refer to the electric and magnetic field magnitudes and geocentric distance at the ionosphere, respectively. For purely longitudinal convection along a constant L shell the parallel force is F(cent. long) = F(sub cent, pole)(1 - (r/(r(sub i)L))(sup 3/2)/(1 - 3r/(4 r(sub i)L))(sup 5/2). For high latitudes the difference between these two cases is relatively unimportant below approximately 5 R(sub E). We find that the steady state O+ bulk velocities and parallel temperatures strongly increase and decrease, respectively, with convection strength. In particular, the bulk velocities increase from near 0 km/s at 4000 km altitude to approximately 10 km/s at 5 R(sub E) geocentric distance for 50-mV/m ionospheric convection electric field. However, the centrifugal effect on the steady O+ density profiles depends on the exobase ion and electron temperatures: for low-base temperatures (T(sub i) = T(sub e) = 3000 K) the O+ density at high altitudes increases greatly with convection, while for higher base temperatures (T(sub i) = 5000 K, T(sub e) = 9000 K), the high-altitude O+ density decreases somewhat as convection is enhanced. The

  20. Implementation of centrifuge testing of expansive soils for pavement design.

    Science.gov (United States)

    2017-03-01

    The novel centrifuge-based method for testing of expansive soils from project 5-6048-01 was implemented into : use for the determination of the Potential Vertical Rise (PVR) of roadways that sit on expansive subgrades. The : centrifuge method was mod...

  1. Experimental study of xenon isotopes production by gas centrifuge

    International Nuclear Information System (INIS)

    Zhou Mingsheng; Liang Xiongwen; Zhang Yonggang; Dong Jinping

    2006-01-01

    The gas centrifuge technology is studied for the separation of Xe isotopes. The nature Xe is chosen as processing gas. A four-state cascade is designed to separate 124 Xe to a concentration of being greater than 65% in three separation runs. 124 Xe can be enriched to a concentration 99% in more separation runs using a cascade of more gas centrifuges. (authors)

  2. Modeling centrifugal cell washers using computational fluid dynamics.

    Science.gov (United States)

    Kellet, Beth E; Han, Binbing; Dandy, David S; Wickramasinghe, S Ranil

    2004-11-01

    Reinfusion of shed blood during surgery could avoid the need for blood transfusions. Prior to reinfusion of the red blood cells, the shed blood must be washed in order to remove leukocytes, platelets, and other contaminants. Further, the hematocrit of the washed blood must be increased. The feasibility of using computational fluid dynamics (CFD) to guide the design of better centrifuges for processing shed blood is explored here. The velocity field within a centrifuge bowl and the rate of protein removal from the shed blood has been studied. The results obtained indicate that CFD could help screen preliminary centrifuge bowl designs, thus reducing the number of initial experimental tests required when developing new centrifuge bowls. Although the focus of this work is on washing shed blood, the methods developed here are applicable to the design of centrifuge bowls for other blood-processing applications.

  3. Effect of science laboratory centrifuge of space station environment

    Science.gov (United States)

    Searby, Nancy

    1990-01-01

    It is argued that it is essential to have a centrifuge operating during manned space station operations. Background information and a rationale for the research centrifuge are given. It is argued that we must provide a controlled acceleration environment for comparison with microgravity studies. The lack of control groups in previous studies throws into question whether the obseved effects were the result of microgravity or not. The centrifuge could be used to provide a 1-g environment to supply specimens free of launch effects for long-term studies. With the centrifuge, the specimens could be immediately transferred to microgravity without undergoing gradual acclimation. Also, the effects of artificial gravity on humans could be investigated. It is also argued that the presence of the centrifuge on the space station will not cause undo vibrations or other disturbing effects.

  4. Development of uranium enrichment technology by gas centrifugation

    International Nuclear Information System (INIS)

    Sibata, Tomofumi; Kai, Tsunetoshi

    1996-01-01

    The development of a gas-centrifuge for uranium enrichment has been conducted by Power Reactor and Nuclear Fuel Development Corporation in Japan after the first several years' fruitless works, the R and D works came to the point and continuing rapid improvements of centrifuges have started, Cascade tests were given with C-1 and C-2 cascade experimental facilities. Life, reliability and feasibility tests were given with the pilot plant and the demonstration plant. As a result of these works, the private commercial plant has started the operation. Although the main efforts were devoted to the development of metal rotor centrifuges in the course mentioned above, composite material rotor centrifuges have also been developed in parallel to achieve higher performance. Promising results have been being obtained with cascade test facilities on the pilot plant scale. Furthermore, R and D works are being proceeded on more excellent and advanced centrifuges. (author)

  5. Multistage centrifugal extractor of E92 model

    International Nuclear Information System (INIS)

    Wang Houheng; Xing Zhifu; Liu Xiangyan; Liu Shi; Wan Yi; Liang Kui; Hu Benyue

    1987-01-01

    The E92 Model multistage centrifugal extractor has been developed for the recovery of uranium and plutonium from spent nuclear reactor fuel. It offers the following advantages: shorter residence time, low hlod-up, less space required, and simplified startup and shutdown procedures, etc. Experiments on performaces of hydraulics, mass-transfer and crud discharging have proved that this unit provides a wide range of operation. The total flow rate can very from 300 to 450 L/h at organic to aqueous flow ratio of 1 to 5. The unit is designed for ratio of oranic to aqueous phase densities at a range of 0.75 to 0.85. Overall extraction and back-extraction efficiencies which is great than 99.99% were achieved using natural uranium as feed. Experiments showed that mechanical assembling and disassembling of the unit could be rapidly carried out. A run continuning up to 500 hours was stable

  6. Closed continuous-flow centrifuge rotor

    Science.gov (United States)

    Breillatt, Jr., Julian P.; Remenyik, Carl J.; Sartory, Walter K.; Thacker, Louis H.; Penland, William Z.

    1976-01-01

    A blood separation centrifuge rotor having a generally parabolic core disposed concentrically and spaced apart within a housing having a similarly shaped cavity. Blood is introduced through a central inlet and into a central passageway enlarged downwardly to decrease the velocity of the entrant blood. Septa are disposed inside the central passageway to induce rotation of the entrant blood. A separation chamber is defined between the core and the housing wherein the whole blood is separated into red cell, white cell, and plasma zones. The zones are separated by annular splitter blades disposed within the separation chamber. The separated components are continuously removed through conduits communicating through a face seal to the outside of the rotor.

  7. Recent advances in centrifugal contactors design

    International Nuclear Information System (INIS)

    Leonard, R.A.

    1987-10-01

    Advances in thedesign of the Argonne centrifugal contactor for solvent extaction are being realized as these contactors are built, tested, and used to implement the TRUEX process for the cleanup of nuclear waste liquids. These advances include (1) using off-the-shelf, face-mounted motors, (2) modifying the contractor so that relatively volatile solvents can be used, (3) adding a high-level liquid detector that can be used to alert the plant operator of process upsets, (4) providing secondary feed ports, (5) optimizing support frame design, (6) maintaining a linear design with external interstage lines so the stages can be allocated as needed for extraction, scrub, strip, and solvent cleanup operations, and (7) developing features that facilitate contractor operation in remote facilities. 11 refs., 8 figs

  8. Potential commercial applications of centrifuge technology

    International Nuclear Information System (INIS)

    1985-08-01

    As part of an effort to prevent the loss of and maximize the use of unique developments of the centrifuge program, this document identifies and briefly describes unclassified technologies potentially available for transfer. In addition, this document presents a preliminary plan for action needed to carry out the transfer activity. Continuing efforts will provide additional descriptions of technologies which have applications that are not as apparent or as obvious as those presented here. Declassification of some of the program information, now classified as restricted data, would permit the descriptions of additional technologies which have significant commercial potential. The following are major areas of technology where transfer opportunities exist: biomedical; separation; motors and control systems; materials; vacuum; dynamics and balancing; and diagnostics and instrumentation

  9. Algorithm for Controlling a Centrifugal Compressor

    Science.gov (United States)

    Benedict, Scott M.

    2004-01-01

    An algorithm has been developed for controlling a centrifugal compressor that serves as the prime mover in a heatpump system. Experimental studies have shown that the operating conditions for maximum compressor efficiency are close to the boundary beyond which surge occurs. Compressor surge is a destructive condition in which there are instantaneous reversals of flow associated with a high outlet-to-inlet pressure differential. For a given cooling load, the algorithm sets the compressor speed at the lowest possible value while adjusting the inlet guide vane angle and diffuser vane angle to maximize efficiency, subject to an overriding requirement to prevent surge. The onset of surge is detected via the onset of oscillations of the electric current supplied to the compressor motor, associated with surge-induced oscillations of the torque exerted by and on the compressor rotor. The algorithm can be implemented in any of several computer languages.

  10. A variational principle for the plasma centrifuge

    International Nuclear Information System (INIS)

    Ludwig, G.O.

    1986-09-01

    A variational principle is derived which describes the stationary state of the plasma column in a plasma centrifuge. Starting with the fluid equations in a rotating frame the theory is developed using the method of irreversible thermodynamics. This formulation easily leads to an expression for the density distribution of the l-species at sedimentation equilibrium, taking into account the effect of the electric and magnetic forces. Assuming stationary boundary conditions and rigid rotation nonequilibrium states the condition for thermodynamic stability integrated over the volume of the system reduces, under certain restrictions, to the principle of minimum entropy production in the stationary state. This principle yields a variational problem which is equivalent to the original problem posed by the stationary fluid equations. The variational method is useful in achieving approximate solutions that give the electric potential and current distributions in the rotating plasma column consistent with an assumed plasma density profile. (Author) [pt

  11. Multiphase flow modeling in centrifugal partition chromatography.

    Science.gov (United States)

    Adelmann, S; Schwienheer, C; Schembecker, G

    2011-09-09

    The separation efficiency in Centrifugal Partition Chromatography (CPC) depends on selection of a suitable biphasic solvent system (distribution ratio, selectivity factor, sample solubility) and is influenced by hydrodynamics in the chambers. Especially the stationary phase retention, the interfacial area for mass transfer and the flow pattern (backmixing) are important parameters. Their relationship with physical properties, operating parameters and chamber geometry is not completely understood and predictions are hardly possible. Experimental flow visualization is expensive and two-dimensional only. Therefore we simulated the flow pattern using a volume-of-fluid (VOF) method, which was implemented in OpenFOAM®. For the three-dimensional simulation of a rotating FCPC®-chamber, gravitational centrifugal and Coriolis forces were added to the conservation equation. For experimental validation the flow pattern of different solvent systems was visualized with an optical measurement system. The amount of mobile phase in a chamber was calculated from gray scale values of videos recorded by an image processing routine in ImageJ®. To visualize the flow of the stationary phase polyethylene particles were used to perform a qualitative particle image velocimetry (PIV) analysis. We found a good agreement between flow patterns and velocity profiles of experiments and simulations. By using the model we found that increasing the chamber depth leads to higher specific interfacial area. Additionally a circular flow in the stationary phase was identified that lowers the interfacial area because it pushes the jet of mobile phase to the chamber wall. The Coriolis force alone gives the impulse for this behavior. As a result the model is easier to handle than experiments and allows 3D prediction of hydrodynamics in the chamber. Additionally it can be used for optimizing geometry and operating parameters for given physical properties of solvent systems. Copyright © 2011 Elsevier B

  12. Centrifuge separation effect on bacterial indicator reduction in dairy manure.

    Science.gov (United States)

    Liu, Zong; Carroll, Zachary S; Long, Sharon C; Roa-Espinosa, Aicardo; Runge, Troy

    2017-04-15

    Centrifugation is a commonly applied separation method for manure processing on large farms to separate solids and nutrients. Pathogen reduction is also an important consideration for managing manure. Appropriate treatment reduces risks from pathogen exposure when manure is used as soil amendments or the processed liquid stream is recycled to flush the barn. This study investigated the effects of centrifugation and polymer addition on bacterial indicator removal from the liquid fraction of manure slurries. Farm samples were taken from a manure centrifuge processing system. There were negligible changes of quantified pathogen indicator concentrations in the low-solids centrate compared to the influent slurry. To study if possible improvements could be made to the system, lab scale experiments were performed investigating a range of g-forces and flocculating polymer addition. The results demonstrated that polymer addition had a negligible effect on the indicator bacteria levels when centrifuged at high g forces. However, the higher g force centrifugation was capable of reducing bacterial indicator levels up to two-log 10 in the liquid stream of the manure, although at speeds higher than typical centrifuge operations currently used for manure processing applications. This study suggests manure centrifuge equipment could be redesigned to provide pathogen reduction to meet emerging issues, such as zoonotic pathogen control. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Tropic responses of Phycomyces sporangiophores to gravitational and centrifugal stimuli.

    Science.gov (United States)

    DENNISON, D S

    1961-09-01

    A low-speed centrifuge was used to study the tropic responses of Phycomyces sporangiophores in darkness to the stimulus of combined gravitational and centrifugal forces. If this stimulus is constant the response is a relatively slow tropic reaction, which persists for up to 12 hours. The response is accelerated by increasing the magnitude of the gravitational-centrifugal force. A wholly different tropic response, the transient response, is elicited by an abrupt change in the gravitational-centrifugal stimulus. The transient response has a duration of only about 6 min. but is characterized by a high bending speed (about 5 degrees /min.). An analysis of the distribution of the transient response along the growing zone shows that the active phase of the response has a distribution similar to that of the light sensitivity for the light-growth and phototropic responses. Experiments in which sporangiophores are centrifuged in an inert dense fluid indicate that the sensory mechanism of the transient response is closely related to the physical deformation of the growing zone caused by the action of the gravitational-centrifugal force on the sporangiophore as a whole. However, the response to a steady gravitational-centrifugal force is most likely not connected with this deformation, but is probably triggered by the shifting of regions or particles of differing density relative to one another inside the cell.

  14. Centrifugal Casting Features/Metallurgical Characterization of Aluminum Alloys

    International Nuclear Information System (INIS)

    Chirita, G.; Soares, D.; Cruz, D.; Silva, F. S.; Stefanescu, I.

    2008-01-01

    This paper deals with the study of centrifugal effects on aluminium castings under high G values. Most of the studies in this domain (FGMs obtained by centrifugal casting) deal with functionally graded composites reinforced with a solid phase such as silicon particles or others. However, in this study it will be shown that unreinforced aluminium alloys may be significantly influenced by the centrifugal effect and that functionally graded castings are also obtained. It has been observed that the centrifugal effect may increase in some alloys, depending on the relative position in the castings, the rupture strength by approx. 50%, and rupture strain by about 300%, as compared to the gravity casting technique. The Young's modulus may also increase by about 20%. It has also been reported that in vertical centrifugal castings there are mainly three aspects that affect the components thus obtained, namely: fluid dynamics; vibration (inherent to the system); and centrifugal force. These features have a different effect on the castings depending on the aluminium alloy. In this paper, an analysis of the most important effects of the centrifugal casting process on metallurgical features is conducted. A solidification characterization at several points along the mould will be made in order to have an accurate idea of both the fluid dynamics inside the mould during the casting and the solidification behavior in different parts of the component. These two analyses will be related to the metallurgical properties (phase distribution; SDAS; eutectic silicon content and shape, pores density and shape) along the component and mainly along the direction of the centrifugal pressure. A comparison between castings obtained by both centrifugal casting technique and gravity casting technique is made for reference (gravity casting)

  15. The American Gas Centrifuge Past, Present, and Future

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Dean

    2004-09-15

    The art of gas centrifugation was born in 1935 at the University of Virginia when Dr. Jesse Beams demonstrated experimentally the separation of chlorine isotopes using an ultra-high speed centrifuge. Dr. Beam’s experiment initiated work that created a rich history of scientific and engineering accomplishment in the United States in the art of isotope separation and even large scale biological separation by centrifugation. The early history of the gas centrifuge development was captured in a lecture and documented by Dr. Jesse Beams in 1975. Much of Dr. Beams lecture material is used in this paper up to the year 1960. Following work by Dr. Gernot Zippe at the University of Virginia between 1958 and 1960, the US government embarked on a centrifuge development program that ultimately led to the start of construction of the Gas Centrifuge Enrichment Plant in Piketon Ohio in the late 1970’s. The government program was abandoned in 1985 after investing in the construction of two of six planned process buildings, a complete supply chain for process and centrifuge parts, and the successful manufacture and brief operation of an initial complement of production machines that would have met 15 percent of the planned capacity of the constructed process buildings. A declining market for enriched uranium, a glut of uranium enrichment capacity worldwide, and the promise of a new laser based separation process factored in the decision to stop the government program. By the late 1990’s it had become evident that gas centrifugation held the best promise to produce enriched uranium at low cost. In1999, the United States Enrichment Corporation undertook an initiative to revive the best of the American centrifuge technology that had been abandoned fourteen years earlier. This is an exciting story and one that when complete will enable the United States to maintain its domestic supply and to be highly competitive in the world market for this important energy commodity. (auth)

  16. PARAMETRIC DIAGNOSTICS OF THE CENTRIFUGAL SUPERCHARGER'S TECHNICAL CONDITION DURING OPERATION

    Directory of Open Access Journals (Sweden)

    Regina A. Khuramshina

    2017-01-01

    Full Text Available Abstract. Objectives The main aim is to develop a mathematical model of a centrifugal compressor and carry out a parametric diagnostics of a centrifugal supercharger's technical condition during operation. Methods  A model is proposed for calculating the thermodynamic properties of natural gas, reducing the parameters of a centrifugal compressor to the initial conditions and to the rotation frequency, as well as the integral indicators of the supercharger's technical state. The technical state of the gas path of the centrifugal supercharger of the compressor unit is determined by the parametric diagnostic method. Results  The software implementation of the mathematical model of centrifugal compressor is carried out using a DVIGwT PC. The analysis of calculations indicates that the model is appropriate, with the error being due to taking into account the properties of iso-butane and i-hexane, in contrast with the VNIIGAZ technique. The evaluation studies of a centrifugal compressor's state are indicative of the presence or absence of its defects. Conclusion  Among a number of the diagnostic methods for evaluating a centrifugal supercharger, the most effective is vibrodiagnostics. However, the search for malfunctions and nascent defects in the flowing part of the centrifugal compressor cannot be limited only to vibrodiagnostic data, which provides about 60% of the reliable information about the state of the gas-air tract. About 20% of the compressor's malfunctions and approximately half of the dangerous modes of the supercharger's flow-through part is detected using thermogasdynamic parametric analysis (parametric diagnostics. The main difficulty of the control over the technical state of the flow-through part of the centrifugal supercharger is in the complication of the quantitative evaluation of the processes taking place in the supercharger, which leads to problems in providing reliable diagnosis during a reasonable period of time.

  17. Separation of Nanoparticles in Aqueous Multiphase Systems through Centrifugation

    KAUST Repository

    Akbulut, Ozge; Mace, Charles R.; Martinez, Ramses V.; Kumar, Ashok A.; Nie, Zhihong; Patton, Matthew R.; Whitesides, George M.

    2012-01-01

    This paper demonstrates the use of aqueous multiphase systems (MuPSs) as media for rate-zonal centrifugation to separate nanoparticles of different shapes and sizes. The properties of MuPSs do not change with time or during centrifugation; this stability facilitates sample collection after separation. A three-phase system demonstrates the separation of the reaction products (nanorods, nanospheres, and large particles) of a synthesis of gold nanorods, and enriches the nanorods from 48 to 99% in less than ten minutes using a benchtop centrifuge. © 2012 American Chemical Society.

  18. Fluid dynamic interaction between water hammer and centrifugal pumps

    International Nuclear Information System (INIS)

    Ismaier, A.; Schluecker, E.

    2009-01-01

    Centrifugal pumps generate in piping systems noticeable pressure pulsations. In this paper the dynamic interaction between water hammer and pressure pulsations is presented. The experimental investigations were performed at a piping system with nominal diameter DN 100 (respectively NPS 4) and 75 m total length, built at the Institute for Process Technology and Machinery. Different measurements at this testing facility show that pulsating centrifugal pumps can damp pressure surges generated by fast valve closing. It is also shown that 1-dimensional fluid codes can be used to calculate this phenomenon. Furthermore it is presented that pressure surges pass centrifugal pumps almost unhindered, because they are hydraulic open.

  19. Modern gas centrifuge and rarefied-gas dynamics

    International Nuclear Information System (INIS)

    Lowry, R.A.; Halle, E.V.; Wood, H.G. III.

    1981-01-01

    Today, the modern gas centrifuge appears to be the preferred method for the enrichment of the isotopes of uranium on a commercial scale. That this is the case is the result of diligent development programs pursued in this country as well as in the UK, Germany, and the Netherlands over the several decades since the end of WW II. The theoretical modelling of gas centrifuge performance has made notable advances. However, the theoretical work has been based primarily on continuum fluid dynamics considerations. Centrifuge problems involving rarefied gas dynamics considerations are discussed in this paper

  20. Numerical simulation of the unsteady progress in centrifuge

    International Nuclear Information System (INIS)

    Wei Chunlin; Zeng Shi

    2006-01-01

    Unsteady flow equations for the centrifuge are solved on a staggered grid by a finite volume method. The transient process that the axial flow in the centrifuge is established under a steady thermal driving. It can be concluded that the influence which causes the perturbing fluid is different at the beginning and the end of the processing. The flow is caused by the imbalance of temperature which turns to be caused by the imbalance of pressure. The results show that the numerical simulation is effective at the unsteady fluid in a centrifuge. (authors)

  1. Separation of Nanoparticles in Aqueous Multiphase Systems through Centrifugation

    KAUST Repository

    Akbulut, Ozge

    2012-08-08

    This paper demonstrates the use of aqueous multiphase systems (MuPSs) as media for rate-zonal centrifugation to separate nanoparticles of different shapes and sizes. The properties of MuPSs do not change with time or during centrifugation; this stability facilitates sample collection after separation. A three-phase system demonstrates the separation of the reaction products (nanorods, nanospheres, and large particles) of a synthesis of gold nanorods, and enriches the nanorods from 48 to 99% in less than ten minutes using a benchtop centrifuge. © 2012 American Chemical Society.

  2. Rotating stall simulation for axial and centrifugal compressors

    Science.gov (United States)

    Halawa, Taher; Gadala, Mohamed S.

    2017-05-01

    This study presents a numerical simulation of the rotating stall phenomenon in axial and centrifugal compressors with detailed descriptions of stall precursors and its development with time. Results showed that the vaneless region of the centrifugal compressor is the most critical location affected by stall. It was found that the tip leakage flow and the back flow impingement are the main cause of the stall development at the impeller exit area for centrifugal compressors. The results of the axial compressor simulations indicated that the early separated flow combined with the tip leakage flow can block the impeller passages during stall.

  3. Centrifugal Spinning and Its Energy Storage Applications

    Science.gov (United States)

    Yao, Lu

    -/micro-fiber production method to substitute electrospinning in industrial production. Recently, centrifugal spinning has gained researchers' attention. The centrifugal spinning method avoids the use of high voltage supply and can work with concentrated solutions, and most importantly, it can increase the production rate of nano-/micro-fibers to at least two orders or magnitude higher than that of electrospinning. This novel fiber fabrication approach is mostly used in tissue engineering field, and it can be potentially applied in preparing electrodes for SIBs and EDLCs. In the present work, we firstly study the influence of solution intrinsic properties and operational parameters using polyacrylonitrile as an example, and establish the processing-structure relationships for this spinning technique. We then use this novel spinning method to prepare porous carbon nanofibers (PCNFs), SnO2 microfibers and lithium-substituted sodium layered transition metal oxide fibers and use them as electrodes for EDLCs and SIBs. The as-prepared PCNFs, SnO2 microfibers and lithiumsubstituted sodium layered transition metal oxide fibers exhibit good electrochemical performance. It is therefore demonstrated that centrifugal spinning can be a promising nano- /micro-fiber preparation approach for mass production of electrode materials used in energy storage applications.

  4. Anomalous Centrifugal Distortion in NH_2

    Science.gov (United States)

    Martin-Drumel, Marie-Aline; Pirali, Olivier; Coudert, L. H.

    2017-06-01

    The NH2 radical spectrum, first observed by Herzberg and Ramsay, is dominated by a strong Renner-Teller effect giving rise to two electronic states: the bent X ^{2}B_1 ground state and the quasi-linear A ^{2}A_1 excited state. The NH2 radical has been the subject of numerous high-resolution investigations and its electronic and ro-vibrational transitions have been measured. Using synchrotron radiation, new rotational transitions have been recently recorded and a value of the rotational quantum number N as large as 26 could be reached. In the X ^{2}B_1 ground state, the NH2 radical behaves like a triatomic molecule displaying spin-rotation splittings. Due to the lightness of the molecule, a strong coupling between the overall rotation and the bending mode arises whose effects increase with N and lead to the anomalous centrifugal distortion evidenced in the new measurements.^d In this talk the Bending-Rotation approach developed to account for the anomalous centrifugal distortion of the water molecule is modified to include spin-rotation coupling and applied to the fitting of high-resolution data pertaining to the ground electronic state of NH2. A preliminary line position analysis of the available data^{c,d} allowed us to account for 1681 transitions with a unitless standard deviation of 1.2. New transitions could also be assigned in the spectrum recorded by Martin-Drumel et al.^d In the talk, the results obtained with the new theoretical approach will be compared to those retrieved with a Watson-type Hamiltonian and the effects of the vibronic coupling between the ground X ^{2}B_1 and the excited A ^{2}A_1 electronic state will be discussed. Herzberg and Ramsay, J. Chem. Phys. 20 (1952) 347 Dressler and Ramsay, Phil. Trans. R. Soc. A 25 (1959) 553 Hadj Bachir, Huet, Destombes, and Vervloet, J. Molec. Spectrosc. 193 (1999) 326 McKellar, Vervloet, Burkholder, and Howard, J. Molec. Spectrosc. 142 (1990) 319 Morino and Kawaguchi, J. Molec. Spectrosc. 182 (1997) 428

  5. Simulation of ultra-long term behavior in HLW near-field by centrifugal model test. Part 1. Development of centrifugal equipment and centrifuge model test method

    International Nuclear Information System (INIS)

    Nishimoto, Soshi; Okada, Tetsuji; Sawada, Masataka

    2011-01-01

    The objective of this paper is to develop a centrifugal equipment which can continuously be run for a long time and a model test method in order to evaluate a long term behavior which is a coupled thermo-hydro-mechanical processes in the high level wastes geological disposal repository and the neighborhood (called 'near-field'). The centrifugal equipment of CRIEPI, 'CENTURY5000-THM', developed in the present study is able to run continuously up to six months. Therefore, a long term behavior in the near-field can be simulated in a short term, for instance, the behavior for 5000 equivalent years can be simulated in six months by centrifugalizing 100 G using a 1/100 size model. We carried out a test using a nylon specimen in a centrifugal force field of 30 G and confirmed the operations of CENTURY5000-THM, control and measurement for 11 days. As the results, it was able to control the stress in the pressure vessel and measure the values of strain, temperature and pressure. And, as a result of scanning the small model of near-field including the metal overpack, bentonite buffer and rock by a medical X-rays CT scanner, the internal structure of the model was able to be evaluated when the metal artifact was reduced. From these results, the evaluation for a long term behavior of a disposal repository by the method of centrifugal model test became possible. (author)

  6. Effect of centrifugal transverse wakefield for microbunch in bend

    International Nuclear Information System (INIS)

    Stupakov, G.V.

    1999-01-01

    We calculate centrifugal force for a short bunch in vacuum moving in a circular orbit and estimate the emittance growth of the beam in a bend due to this force. copyright 1999 American Institute of Physics

  7. Sludge behavior in centrifugal contactor operation for nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Sakamoto, Atsushi; Sano, Yuichi; Takeuchi, Masayuki; Okamura, Nobuo; Koizumi, Kenji

    2015-01-01

    The Japan Atomic Energy Agency (JAEA) has been developing the centrifugal contactor for spent fuel reprocessing. In this study, we investigated the sludge behavior in centrifugal contactors at three different scales. The operational conditions (the flow rate and rotor speed) were varied. Most insoluble particles such as sludge remained in the rotor via centrifugal force. The capture ratio of sludge in the contactor was measured as a function of particle size at various flow rates, rotor speeds, and contactor scales. The sludge adhered and accumulated inside the rotor as the operational time increased, and the operational conditions influenced the capture ratio of the sludge; a lower flow rate and higher rotor speed increased the capture ratio. The results confirmed that Stokes' law can be applied to estimate the experimental result on the behavior of the capture ratio for centrifugal contactors with different scales. (author)

  8. Fluid dynamics and mass transfer in a gas centrifuge

    International Nuclear Information System (INIS)

    Conlisk, A.T.; Foster, M.R.; Walker, J.D.A.

    1982-01-01

    The fluid motion, temperature distribution and the mass-transfer problem of a binary gas mixture in a rapidly rotating centrifuge are investigated. Solutions for the velocity, temperature and mass-fraction fields within the centrifuge are obtained for mechanically or thermally driven centrifuges. For the mass-transfer problem, a detailed analysis of the fluid-mechanical boundary layers is required, and, in particular, mass fluxes within the boundary layers are obtained for a wide range of source-sink geometries. Solutions to the mass-transfer problem are obtained for moderately and strongly forced flows in the container; the dependence of the separation (or enrichment) factor on centrifuge configuration, rotational speed and fraction of the volumetric flow rate extracted at the product port (the cut) are predicted. (author)

  9. Surface-Enhanced Raman Spectroscopy Integrated Centrifugal Microfluidics Platform

    DEFF Research Database (Denmark)

    Durucan, Onur

    This PhD thesis demonstrates (i) centrifugal microfluidics disc platform integrated with Au capped nanopillar (NP) substrates for surface-enhanced Raman spectroscopy (SERS) based sensing, and (ii) novel sample analysis concepts achieved by synergistical combination of sensing techniques and minia......This PhD thesis demonstrates (i) centrifugal microfluidics disc platform integrated with Au capped nanopillar (NP) substrates for surface-enhanced Raman spectroscopy (SERS) based sensing, and (ii) novel sample analysis concepts achieved by synergistical combination of sensing techniques...... dense array of NP structures. Furthermore, the wicking assisted nanofiltration procedure was accomplished in centrifugal microfluidics platform and as a result additional sample purification was achieved through the centrifugation process. In this way, the Au coated NP substrate was utilized...

  10. Detection of outliers in gas centrifuge experimental data

    International Nuclear Information System (INIS)

    Andrade, Monica C.V.; Nascimento, Claudio A.O.

    2005-01-01

    Isotope separation in a gas centrifuge is a very complex process. Development and optimization of a gas centrifuge requires experimentation. These data contain experimental errors, and like other experimental data, there may be some gross errors, also known as outliers. The detection of outliers in gas centrifuge experimental data may be quite complicated because there is not enough repetition for precise statistical determination and the physical equations may be applied only on the control of the mass flows. Moreover, the concentrations are poorly predicted by phenomenological models. This paper presents the application of a three-layer feed-forward neural network to the detection of outliers in a very extensive experiment for the analysis of the separation performance of a gas centrifuge. (author)

  11. Centrifuge Modelling of Two Civil-Environmental Problems

    National Research Council Canada - National Science Library

    Goodings, Deborah

    2001-01-01

    Research Problem 1: Frost heave and thaw induced settlement in silt and silty clay developing over a year have been modelled correctly using a geotechnical centrifuge with tests requiring less than a day...

  12. Initial Earthquake Centrifuge Model Experiments for the Study of Liquefaction

    National Research Council Canada - National Science Library

    Steedman, R

    1998-01-01

    .... These are intended to gather data suitable for the development of improved design approaches for the prediction of liquefaction under earthquake loading using the new centrifuge facility at the WES...

  13. Experimental study on enriching 12C by centrifuge method

    International Nuclear Information System (INIS)

    Xiao Huaxian

    1994-07-01

    The diamond made from the highly enriched 12 C, whose thermal conductivity and electric insulativity are much better than that of natural diamond, has widely uses in new and high technology. In many enriching 12 C methods, the gas centrifuge method is superior to others. After selecting the appropriate process gas and solving key problems, such as feed and extract, the separation experiments are performed by a single stage of centrifuge. To increase the separation capacity of single machine, various parameters in the centrifugal separation are optimized, and appropriate mechanical drive, thermal drive, hold-up and process parameters are selected. The optimal operating condition of single machine is also obtained in the cascade. Thus, highly enriched 12 C is produced in the centrifuge cascade

  14. Effect of sludge behavior on performance of centrifugal contactor

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, A.; Sano, Y.; Takeuchi, M. [Japan Atomic Energy Agency - JAEA, 4-33 Muramatsu Tokai-mura Naka-gun Ibaraki-pref. 319-1194 (Japan)

    2016-07-01

    The Japan Atomic Energy Agency has been developing an annular centrifugal contactor for solvent extraction in spent fuel reprocessing, which allows the mixing of aqueous and organic phases in the annular area and their separation from the mixed phase in the rotor. The effects of sludge behavior on the performance of a centrifugal contactor were investigated. Sludge accumulation during the operation of the centrifugal contactor was observed only in the rotor. Based on the sludge accumulation behavior, the effects of rotor sludge accumulation on the performance of phase separation and extraction were investigated using several types of rotors, which simulated different sludge accumulation levels in the separation area. It was confirmed that rotor sludge accumulation would affect the phase separation performance but not the extraction performance. This can be explained by the structure of the centrifugal contactor, wherein the extraction reaction and phase separation mainly proceed in the housing and rotor, respectively.

  15. Convective instabilities in liquid centrifugation for nuclear wastes separation

    Energy Technology Data Exchange (ETDEWEB)

    Camassa, R. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    The separation of fission products from liquid solutions using centrifugal forces may prove an effective alternative to chemical processing in cases where radioactive materials necessitate minimal mixed-waste products or when allowing access to sophisticated chemical processing is undesirable. This investigation is a part of the effort to establish the feasibility of using liquid centrifugation for nuclear waste separation in the Accelerator Driven Energy Production (ADEP) program. A number of fundatmental issues in liquid centrifugation with radioactive elements need to be addressed in order to validate the approach and provide design criteria for experimental liquid salt (LiF and BeF{sub 2}) centrifuge. The author concentrates on one such issue, the possible onset of convective instabilities which could inhibit separation.

  16. DEM simulation of granular flows in a centrifugal acceleration field

    Science.gov (United States)

    Cabrera, Miguel Angel; Peng, Chong; Wu, Wei

    2017-04-01

    The main purpose of mass-flow experimental models is abstracting distinctive features of natural granular flows, and allow its systematic study in the laboratory. In this process, particle size, space, time, and stress scales must be considered for the proper representation of specific phenomena [5]. One of the most challenging tasks in small scale models, is matching the range of stresses and strains among the particle and fluid media observed in a field event. Centrifuge modelling offers an alternative to upscale all gravity-driven processes, and it has been recently employed in the simulation of granular flows [1, 2, 3, 6, 7]. Centrifuge scaling principles are presented in Ref. [4], collecting a wide spectrum of static and dynamic models. However, for the case of kinematic processes, the non-uniformity of the centrifugal acceleration field plays a major role (i.e., Coriolis and inertial effects). In this work, we discuss a general formulation for the centrifugal acceleration field, implemented in a discrete element model framework (DEM), and validated with centrifuge experimental results. Conventional DEM simulations relate the volumetric forces as a function of the gravitational force Gp = mpg. However, in the local coordinate system of a rotating centrifuge model, the cylindrical centrifugal acceleration field needs to be included. In this rotating system, the centrifugal acceleration of a particle depends on the rotating speed of the centrifuge, as well as the position and speed of the particle in the rotating model. Therefore, we obtain the formulation of centrifugal acceleration field by coordinate transformation. The numerical model is validated with a series of centrifuge experiments of monodispersed glass beads, flowing down an inclined plane at different acceleration levels and slope angles. Further discussion leads to the numerical parameterization necessary for simulating equivalent granular flows under an augmented acceleration field. The premise of

  17. Zero-ODP Refrigerants for Low Tonnage Centrifugal Chiller Systems

    National Research Council Canada - National Science Library

    Gui, Fulin

    1996-01-01

    ..., HFC-236cb, HFC-236fa, HFC-245cb, and HFC-254cb, for centrifugal chiller applications. We took into account the thermodynamic properties of the refrigerant and aerodynamic properties of the impeller compression process to this evaluation...

  18. Centrifuge Facility for the International Space Station Alpha

    Science.gov (United States)

    Johnson, Catherine C.; Hargens, Alan R.

    1994-01-01

    The Centrifuge Facility planned for the International Space Station Alpha has under-one considerable redesign over the past year, primarily because the Station is now viewed as a 10 year mission rather than a 30 year mission and because of the need to simply the design to meet budget constraints and a 2000 launch date. The basic elements of the Centrifuge Facility remain the same, i.e., a 2.5 m diameter centrifuge, a micro-g holding unit, plant and animal habitats, a glovebox and a service unit. The centrifuge will still provide the full range of artificial gravity from 0.01 a to 2 - as originally planned; however, the extractor to permit withdrawal of habitats from the centrifuge without stopping the centrifuge has been eliminated. The specimen habitats have also been simplified and are derived from other NASA programs. The Plant Research Unit being developed by the Gravitational Biology Facility will be used to house plants in the Centrifuge Facility. Although not as ambitious as the Centrifuge Facility plant habitat, it will provide much better environmental control and lighting than the current Shuttle based Plant Growth Facility. Similarly, rodents will be housed in the Advanced Animal Habitat being developed for the Shuttle program. The Centrifuge Facility and ISSA will provide the opportunity to perform repeatable, high quality science. The long duration increments available on the Station will permit multigeneration studies on both plants and animals which have not previously been possible. The Centrifuge Facility will accommodate sufficient number of specimens to permit statistically significant sampling of specimens to investigate the time course of adaptation to altered gravity environments. The centrifuge will for the first time permit investigators to use gravity itself as a tool to investigate fundamental processes, to investigate the intensity and duration of gravity to maintain normal structure and function, to separate the effects of micro-g from

  19. Centrifugally Driven Rayleigh-Taylor Instability

    Science.gov (United States)

    Scase, Matthew; Hill, Richard

    2017-11-01

    The instability that develops at the interface between two fluids of differing density due to the rapid rotation of the system may be considered as a limit of high-rotation rate Rayleigh-Taylor instability. Previously the authors have considered the effect of rotation on a gravitationally dominated Rayleigh-Taylor instability and have shown that some growth modes of instability may be suppressed completely by the stabilizing effect of rotation (Phys. Rev. Fluids 2:024801, Sci. Rep. 5:11706). Here we consider the case of very high rotation rates and a negligible gravitational field. The initial condition is of a dense inner cylinder of fluid surrounded by a lighter layer of fluid. As the system is rotated about the generating axis of the cylinder, the dense inner fluid moves away from the axis and the familiar bubbles and spikes of Rayleigh-Taylor instability develop at the interface. The system may be thought of as a ``fluid-fluid centrifuge''. By developing a model based on an Orr-Sommerfeld equation, we consider the effects of viscosity, surface tension and interface diffusion on the growth rate and modes of instability. We show that under particular circumstances some modes may be stabilized. School of Mathematical Sciences.

  20. High efficiency, variable geometry, centrifugal cryogenic pump

    International Nuclear Information System (INIS)

    Forsha, M.D.; Nichols, K.E.; Beale, C.A.

    1994-01-01

    A centrifugal cryogenic pump has been developed which has a basic design that is rugged and reliable with variable speed and variable geometry features that achieve high pump efficiency over a wide range of head-flow conditions. The pump uses a sealless design and rolling element bearings to achieve high reliability and the ruggedness to withstand liquid-vapor slugging. The pump can meet a wide range of variable head, off-design flow requirements and maintain design point efficiency by adjusting the pump speed. The pump also has features that allow the impeller and diffuser blade heights to be adjusted. The adjustable height blades were intended to enhance the pump efficiency when it is operating at constant head, off-design flow rates. For small pumps, the adjustable height blades are not recommended. For larger pumps, they could provide off-design efficiency improvements. This pump was developed for supercritical helium service, but the design is well suited to any cryogenic application where high efficiency is required over a wide range of head-flow conditions

  1. Central centrifugal cicatricial alopecia: challenges and solutions

    Directory of Open Access Journals (Sweden)

    Herskovitz I

    2016-08-01

    Full Text Available Ingrid Herskovitz, Mariya Miteva Department of Dermatology and Cutaneous Surgery, University of Miami L Miller School of Medicine, Miami, FL, USA Abstract: Central centrifugal cicatricial alopecia (CCCA is the most common scarring alopecia among African American women. Data about epidemiology, etiology, genetic inheritance, and management are scarce and come from individual reports or small series. CCCA has been associated with hot combing and traumatic hair styling for years; however, studies fail to confirm it as the sole etiologic factor. It has been shown in a small series that CCCA can be inherited in an autosomal dominant fashion, with a partial penetrance and a strong modifying effect of hairstyling and sex. CCCA presents clinically as a central area of progressive irreversible hair loss that expands to the periphery. A patchy form has also been described. Dermoscopy is helpful to identify the optimal site for the biopsy, which establishes the diagnosis. Well-designed randomized controlled trials are needed to discover the optimal management. At this point, patients are advised to avoid traction and chemical treatments; topical and intralesional steroids, calcineurin inhibitors, and minoxidil can be helpful in halting the progression. Keywords: hair loss, alopecia, dermatoscopy, dermoscopy, trichoscopy, black scalp, African American, scarring alopecia

  2. Wave Augmented Diffuser for Centrifugal Compressor

    Science.gov (United States)

    Skoch, Gary J. (Inventor); Paxson, Daniel E. (Inventor)

    2001-01-01

    A wave augmented diffuser for a centrifugal compressor surrounds the outlet of an impeller that rotates on a drive shaft having an axis of rotation. The impeller brings flow in in an axial direction and imparts kinetic energy to the flow discharging it in radial and tangential directions. The flow is discharged into a plurality of circumferentially disposed wave chambers. The wave chambers are periodically opened and closed by a rotary valve such that the flow through the diffuser is unsteady. The valve includes a plurality of valve openings that are periodically brought into and out of fluid communication with the wave chambers. When the wave chambers are closed, a reflected compression wave moves upstream towards the diffuser bringing the flow into the wave chamber to rest. This action recovers the kinetic energy from the flow and limits any boundary layer growth. The flow is then discharged in an axial direction through an opening in the valve plate when the valve plate is rotated to an open position. The diffuser thus efficiently raises the static pressure of the fluid and discharges an axially directed flow at a radius that is predominantly below the maximum radius of the diffuser.

  3. Centrifugal compressor tip clearance and impeller flow

    Energy Technology Data Exchange (ETDEWEB)

    Jaatinen-Varri, Ahti; Tiainen, Jonna; Turunen-Saaresti, Teemu; Gronman, Aki; Ameli, Alireza; Backman, Jari [Laboratory of Fluid Dynamics, LUT School of Energy Systems, Lappeenranta University of Technology, Lappeenranta (Finland); Engeda, Abraham [Turbomachinery Laboratory, Dept. of Mechanical Engineering, Michigan State University, East Lansing (United States)

    2016-11-15

    Compressors consume a considerable portion of the electricity used in the industrial sector. Hence, improvements in compressor efficiency lead to energy savings and reduce environmental impacts. The efficiency of an unshrouded centrifugal compressor suffers from leakage flow over the blade tips. The effect of tip leakage flow on the passage flow differs between the full and splitter blade passages. In this study, the differences in the flow fields between the full and splitter blade passages were studied numerically in detail. An industrial high-speed compressor with a design pressure ratio of 1.78 was modelled. Numerical studies were conducted with six different tip clearances and three different diffuser widths. The results show that increasing tip clearance considerably increases the reversed flow into the impeller with an unpinched diffuser. The reversed flow then partly mixes into the flow in the same blade passage it entered the impeller and the rest migrates over the blade, mixing with the tip clearance flow. Furthermore, as the reversed and clearance flow mix into the wake, the wake is weakened. As pinch reduces both the reversed flow and clearance flow, the passage wakes are stronger with pinches. However, the pinch is beneficial as the losses at the impeller outlet decrease.

  4. The analysis on centrifugal compressor rotating stall

    International Nuclear Information System (INIS)

    Kim, Ji Hwan; Kim, Kwang Ho; Shin, You Hwan

    2003-01-01

    In the present study, the performance characteristics and the number of stall cell during rotating stall of a centrifugal air compressor were experimentally investigated. Rotating stall in the vaneless diffuser were investigated by measuring unsteady pressure fluctuations at several different diffuser radius using a high frequency pressure transducer. The number of stall cell and their rotational speeds are distinctive features of the rotating stall phenomenon. The present study is mainly forced on the analysis for the stall cell number and its propagation speed unstable operating region of the compressor. The interpretation method of visualization is based on the pressure distribution in the circumference pressure fields while plotting the pressure and its harmonics variations in time in polar coordinates. To obtain the visualize the existence rotating stall, auto-correlation function and the frequency spectra of the pressure fluctuations were measured at r/r2=1.52. When the flow coefficient is lower than 0.150, the static pressure at impeller inlet is higher than that at inlet duct of the compressor. And the flow coefficient is lower than 0.086, several stall cell groups of discrete frequencies are observed

  5. Centrifugal compressor tip clearance and impeller flow

    International Nuclear Information System (INIS)

    Jaatinen-Varri, Ahti; Tiainen, Jonna; Turunen-Saaresti, Teemu; Gronman, Aki; Ameli, Alireza; Backman, Jari; Engeda, Abraham

    2016-01-01

    Compressors consume a considerable portion of the electricity used in the industrial sector. Hence, improvements in compressor efficiency lead to energy savings and reduce environmental impacts. The efficiency of an unshrouded centrifugal compressor suffers from leakage flow over the blade tips. The effect of tip leakage flow on the passage flow differs between the full and splitter blade passages. In this study, the differences in the flow fields between the full and splitter blade passages were studied numerically in detail. An industrial high-speed compressor with a design pressure ratio of 1.78 was modelled. Numerical studies were conducted with six different tip clearances and three different diffuser widths. The results show that increasing tip clearance considerably increases the reversed flow into the impeller with an unpinched diffuser. The reversed flow then partly mixes into the flow in the same blade passage it entered the impeller and the rest migrates over the blade, mixing with the tip clearance flow. Furthermore, as the reversed and clearance flow mix into the wake, the wake is weakened. As pinch reduces both the reversed flow and clearance flow, the passage wakes are stronger with pinches. However, the pinch is beneficial as the losses at the impeller outlet decrease

  6. NECESSARY CONDITIONS OF STABILITY MOVING PARTS OF ROTOR CENTRIFUGE

    OpenAIRE

    Strackeljan, Jens; Babenko, Andriy; Lavrenko, Iaroslav

    2014-01-01

    Design features of modern centrifuges studied. Revealed that their rotors are movable elements that revolve around horizontal axes. The dynamics of these moving parts of laboratory centrifuge considered. Using the Lagrange equation of the second kind the resulting differential equations of their motion considered. The modeling visualization of motion using the software package RecurDyn was made. The results that obtained by the research package RecurDyn and analytically showed that their moti...

  7. Centrifugal microfluidic platforms: advanced unit operations and applications.

    Science.gov (United States)

    Strohmeier, O; Keller, M; Schwemmer, F; Zehnle, S; Mark, D; von Stetten, F; Zengerle, R; Paust, N

    2015-10-07

    Centrifugal microfluidics has evolved into a mature technology. Several major diagnostic companies either have products on the market or are currently evaluating centrifugal microfluidics for product development. The fields of application are widespread and include clinical chemistry, immunodiagnostics and protein analysis, cell handling, molecular diagnostics, as well as food, water, and soil analysis. Nevertheless, new fluidic functions and applications that expand the possibilities of centrifugal microfluidics are being introduced at a high pace. In this review, we first present an up-to-date comprehensive overview of centrifugal microfluidic unit operations. Then, we introduce the term "process chain" to review how these unit operations can be combined for the automation of laboratory workflows. Such aggregation of basic functionalities enables efficient fluidic design at a higher level of integration. Furthermore, we analyze how novel, ground-breaking unit operations may foster the integration of more complex applications. Among these are the storage of pneumatic energy to realize complex switching sequences or to pump liquids radially inward, as well as the complete pre-storage and release of reagents. In this context, centrifugal microfluidics provides major advantages over other microfluidic actuation principles: the pulse-free inertial liquid propulsion provided by centrifugal microfluidics allows for closed fluidic systems that are free of any interfaces to external pumps. Processed volumes are easily scalable from nanoliters to milliliters. Volume forces can be adjusted by rotation and thus, even for very small volumes, surface forces may easily be overcome in the centrifugal gravity field which enables the efficient separation of nanoliter volumes from channels, chambers or sensor matrixes as well as the removal of any disturbing bubbles. In summary, centrifugal microfluidics takes advantage of a comprehensive set of fluidic unit operations such as

  8. Sand characterization by combined centrifuge and laboratory tests

    OpenAIRE

    GAUDIN, C; SCHNAID, F; GARNIER, J

    2005-01-01

    The purpose of this paper is to evaluate new methods of interpretation of in situ tests in sand from correlations established from centrifuge and laboratory data. Emphasis is given to methods that are based on the combination of measurements from independent tests, such as the ratio of the elastic stiffness to ultimate strenght and the ratio of cone resistance and limit pressure. For that purpose, a series of centrifuge tests using a cone penetrometer and a cone pressuremeter was carried out ...

  9. Experimental Study on Noise Characteristic of Centrifugal Compressor Surge

    OpenAIRE

    Yang, Qichao; Zhao, Yuanyang; SHU, Yue; LI, Xiaosa; LI, Liansheng

    2016-01-01

    The centrifugal air compressor test rig is was designed and established. The experimental study was carried out on the surge characteristics of centrifugal compressor including the pressure in the pipe and the noise characteristics under different rotation speed. The tested results showed that both the suction pressure and discharge pressure fluctuation increase under surge condition and the amplitude of discharge pressure fluctuation is significantly higher than that of suction pressure. In ...

  10. Improved g-level calculations for coil planet centrifuges.

    Science.gov (United States)

    van den Heuvel, Remco N A M; König, Carola S

    2011-09-09

    Calculation of the g-level is often used to compare CCC centrifuges, either against each other or to allow for comparison with other centrifugal techniques. This study shows the limitations of calculating the g-level in the traditional way. Traditional g-level calculations produce a constant value which does not accurately reflect the dynamics of the coil planet centrifuge. This work has led to a new equation which can be used to determine the improved non-dimensional values. The new equations describe the fluctuating radial and tangential g-level associated with CCC centrifuges and the mean radial g-level value. The latter has been found to be significantly different than that determined by the traditional equation. This new equation will give a better understanding of forces experienced by sample components and allows for more accurate comparison between centrifuges. Although the new equation is far better than the traditional equation for comparing different types of centrifuges, other factors such as the mixing regime may need to be considered to improve the comparison further. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Centrifugal potential energy : an astounding renewable energy concept

    Energy Technology Data Exchange (ETDEWEB)

    Oduniyi, I.A. [Aled Conglomerate Nigeria Ltd., Lagos (Nigeria)

    2010-07-01

    A new energy concept known as centrifugal potential energy was discussed. This new energy concept is capable of increasing the pressure, temperature and enthalpy of a fluid, without having to apply work or heat transfer to the fluid. It occurs through a change in the centrifugal potential energy of the flowing fluid in a rotating frame of reference or a centrifugal force field, where work is performed internally by the centrifugal weight of the fluid. This energy concept has resulted in new energy equations, such as the Rotational Frame Bernoulli's Equation for liquids and the Rotational Frame Steady-Flow Energy Equation for gases. Applications of these equations have been incorporated into the design of centrifugal field pumps and compressors. Rather than compressing a fluid with a physical load transfer, these devices can compress a fluid via the effect of centrifugal force applied to the object. A large amount of energy is therefore produced when this high pressure compressed working fluid expands in a turbine. When water is used as the working fluid, it could reach renewable energy densities in the range of 25-100 kJ/kg of water. When atmospheric air is used, it could reach energy densities in the range of 500-1,500 kJ/kg of air.

  12. Flow induced vibrations in gas tube assembly of centrifuge

    International Nuclear Information System (INIS)

    Alam, M.; Atta, M.A.; Mirza, J.A.; Khan, A.Q.

    1986-01-01

    A centrifuge essentially consists of a rotor rotating at very high speed. Gas tube assembly, located at the center of the rotor, is used to introduce feed gas into the rotor and remove product and waste streams from it. The gas tube assembly is thus a static component, the product and waste scoops of which are lying in the high pressure region of a fluid rotating at very high speed. This can cause flow induced vibrations in the gas tube assembly. Such vibrations affect not only the mechanical stability of the gas tube assembly but may also reduce the separative power of the centrifuge. In a cascade, if some of the centrifuges have gas tube vibration, then cascade performance will be affected. A theoretical analysis of the effect of waste tube vibrations on product and waste flow rates and pressures in the centrifuge is presented. A simple stage consisting of two centrifuges, in which one has tube vibration, is considered for this purpose. The results are compared with experiment. It is shown that waste tube vibration generates oscillations in waste and product flow rates that are observable outside the centrifuge. (author)

  13. Effect of Centrifuge Temperature on Routine Coagulation Tests.

    Science.gov (United States)

    Yazar, Hayrullah; Özdemir, Fatma; Köse, Elif

    2018-01-01

    This study investigated the effects of cooled and standard centrifuges on the results of coagulation tests to examine the effects of centrifugation temperature. Equal-volume blood samples from each patient were collected at the same time intervals and subjected to standard (25°C) and cooled centrifugation (2-4°C). Subsequently, the prothrombin time (PT), international normalized ratio (INR), activated partial thromboplastin time (aPTT), fibrinogen, and D-dimer values were determined in runs with the same lot numbers in the same coagulation device using the Dia-PT R (PT and INR), Dia-PTT-liquid (aPTT), Dia-FIB (fibrinogen), and Dia-D-dimer kits, respectively. The study enrolled 771 participants. The PT was significantly (p centrifuges were as follows: PT 10.30 versus 10.50 s; PT (INR) 1.04 versus 1.09 s; APTT 28.90 versus 29.40 s; fibrinogen 321.5 versus 322.1 mg/dL; and D-dimer 179.5 versus 168.7 µg FEU/mL. There were significant differences (p centrifuges. Centrifuge temperature can have a significant effect on the results of coagulation tests. However, broad and specific disease-based studies are needed. © 2018 S. Karger AG, Basel.

  14. Considerations on safeguards approach for small centrifuge enrichment facilities

    International Nuclear Information System (INIS)

    Vicens, Hugo E.; Marzo, Marco A.; Nunes, Vitorio E.

    2004-01-01

    The safeguards' objectives for enrichment facilities encompass the detection of the diversion of declared nuclear material and of facility misuse. The safeguard's approach presently applied for commercial centrifuge enrichment facilities is based on the Hexa partite Project and seems not to be directly applicable to cases of small plants. Since ABACC started its operation one of the main problems faced was the application of safeguards to small centrifuge enrichment plants for testing centrifuges in cascade mode or for small LEU production. These plants consist of a few fully independent cascades, does not operate in a routine basis and panels prevent visual access to the centrifuges and their surroundings for preserving sensitive information. For such plants misuse scenarios seems to dominate, particularly those associated with feeding the plant with undeclared LEU. This paper presents a concise analysis of misuse strategies in small centrifuge facility and alternative safeguard's approach, describing the main control elements to be applied. The particularities arising from the existence of panels or boxes covering the centrifuges are specifically addressed. Two alternatives approaches based on the application of a transitory perimeter control to increase the effectiveness of unannounced inspection and on the application of permanent perimeter control are presented. (author)

  15. Fabrication of Al/Diamond Particles Functionally Graded Materials by Centrifugal Sintered-Casting Method

    International Nuclear Information System (INIS)

    Watanabe, Yoshimi; Shibuya, Masafumi; Sato, Hisashi

    2013-01-01

    The continuous graded structure of functionally graded materials (FGMs) can be created under a centrifugal force. Centrifugal sintered-casting (CSC) method, proposed by the authors, is one of the fabrication methods of FGM under centrifugal force. This method is a combination of the centrifugal sintering method and centrifugal casting method. In this study, Al/diamond particle FGM was fabricated by the proposed method.

  16. Quantification of platelets obtained by different centrifugation protocols in SHR rats

    OpenAIRE

    João Alberto Yazigi Junior; João Baptista Gomes dos Santos; Bruno Rodrigues Xavier; Marcela Fernandes; Sandra Gomes Valente; Vilnei Mattiolli Leite

    2015-01-01

    ABSTRACT OBJECTIVE: To quantify the platelet concentration in the blood of SHR rats, by means of different centrifugation protocols, and to evaluate what the most effective method for obtaining platelets is. METHODS: We used 40 male rats of the isogenic SHR lineage. The animals were divided into three groups: control, using whole blood without centrifugation; single centrifugation, using whole blood subjected to a single centrifugation at 200 × gand 400 × g; and double centrifugation, usin...

  17. A wireless centrifuge force microscope (CFM) enables multiplexed single-molecule experiments in a commercial centrifuge.

    Science.gov (United States)

    Hoang, Tony; Patel, Dhruv S; Halvorsen, Ken

    2016-08-01

    The centrifuge force microscope (CFM) was recently introduced as a platform for massively parallel single-molecule manipulation and analysis. Here we developed a low-cost and self-contained CFM module that works directly within a commercial centrifuge, greatly improving accessibility and ease of use. Our instrument incorporates research grade video microscopy, a power source, a computer, and wireless transmission capability to simultaneously monitor many individually tethered microspheres. We validated the instrument by performing single-molecule force shearing of short DNA duplexes. For a 7 bp duplex, we observed over 1000 dissociation events due to force dependent shearing from 2 pN to 12 pN with dissociation times in the range of 10-100 s. We extended the measurement to a 10 bp duplex, applying a 12 pN force clamp and directly observing single-molecule dissociation over an 85 min experiment. Our new CFM module facilitates simple and inexpensive experiments that dramatically improve access to single-molecule analysis.

  18. Polar representation of centrifugal pump homologous curves

    International Nuclear Information System (INIS)

    Veloso, Marcelo Antonio; Mattos, Joao Roberto Loureiro de

    2008-01-01

    Essential for any mathematical model designed to simulate flow transient events caused by pump operations is the pump performance data. The performance of a centrifugal pump is characterized by four basic parameters: the rotational speed, the volumetric flow rate, the dynamic head, and the hydraulic torque. Any one of these quantities can be expressed as a function of any two others. The curves showing the relationships between these four variables are called the pump characteristic curves, also referred to as four-quadrant curves. The characteristic curves are empirically developed by the pump manufacturer and uniquely describe head and torque as functions of volumetric flow rate and rotation speed. Because of comprising a large amount of points, the four-quadrant configuration is not suitable for computational purposes. However, it can be converted to a simpler form by the development of the homologous curves, in which dynamic head and hydraulic torque ratios are expressed as functions of volumetric flow and rotation speed ratios. The numerical use of the complete set of homologous curves requires specification of sixteen partial curves, being eight for the dynamic head and eight for the hydraulic torque. As a consequence, the handling of homologous curves is still somewhat complicated. In solving flow transient problems that require the pump characteristic data for all the operation zones, the polar form appears as the simplest way to represent the homologous curves. In the polar method, the complete characteristics of a pump can be described by only two closed curves, one for the dynamic head and other for the hydraulic torque, both in function of a single angular coordinate defined adequately in terms of the quotient between volumetric flow ratio and rotation speed ratio. The usefulness and advantages of this alternative method are demonstrated through a practical example in which the homologous curves for a pump of the type used in the main coolant loops of a

  19. Parametric representation of centrifugal pump homologous curves

    International Nuclear Information System (INIS)

    Veloso, Marcelo A.; Mattos, Joao R.L. de

    2015-01-01

    Essential for any mathematical model designed to simulate flow transient events caused by pump operations is the pump performance data. The performance of a centrifugal pump is characterized by four basic quantities: the rotational speed, the volumetric flow rate, the dynamic head, and the hydraulic torque. The curves showing the relationships between these four variables are called the pump characteristic curves. The characteristic curves are empirically developed by the pump manufacturer and uniquely describe head and torque as functions of volumetric flow rate and rotation speed. Because of comprising a large amount of points, this configuration is not suitable for computational purposes. However, it can be converted to a simpler form by the development of the homologous curves, in which dynamic head and hydraulic torque ratios are expressed as functions of volumetric flow and rotation speed ratios. The numerical use of the complete set of homologous curves requires specification of sixteen partial curves, being eight for the dynamic head and eight for the hydraulic torque. As a consequence, the handling of homologous curves is still somewhat complicated. In solving flow transient problems that require the pump characteristic data for all the operation zones, the parametric form appears as the simplest way to deal with the homologous curves. In this approach, the complete characteristics of a pump can be described by only two closed curves, one for the dynamic head and other for the hydraulic torque, both in function of a single angular coordinate defined adequately in terms of the quotient between volumetric flow ratio and rotation speed ratio. The usefulness and advantages of this alternative method are demonstrated through a practical example in which the homologous curves for a pump of the type used in the main coolant loops of a pressurized water reactor (PWR) are transformed to the parametric form. (author)

  20. Flow Range of Centrifugal Compressor Being Extended

    Science.gov (United States)

    Skoch, Gary J.

    2001-01-01

    General Aviation will benefit from turbine engines that are both fuel-efficient and reliable. Current engines fall short of their potential to achieve these attributes. The reason is compressor surge, which is a flow stability problem that develops when the compressor is subjected to conditions that are outside of its operating range. Compressor surge can occur when fuel flow to the engine is increased, temporarily back pressuring the compressor and pushing it past its stability limit, or when the compressor is subjected to inlet flow-field distortions that may occur during takeoff and landing. Compressor surge can result in the loss of an aircraft. As a result, engine designers include a margin of safety between the operating line of the engine and the stability limit line of the compressor. Unfortunately, the most efficient operating line for the compressor is usually closer to its stability limit line than it is to the line that provides an adequate margin of safety. A wider stable flow range will permit operation along the most efficient operating line of the compressor, improving the specific fuel consumption of the engine and reducing emissions. The NASA Glenn Research Center is working to extend the stable flow range of the compressor. Significant extension has been achieved in axial compressors by injecting air upstream of the compressor blade rows. Recently, the technique was successfully applied to a 4:1 pressure ratio centrifugal compressor by injecting streams of air into the diffuser. Both steady and controlled unsteady injection were used to inject air through the diffuser shroud surface and extend the range. Future work will evaluate the effect of air injection through the diffuser hub surface and diffuser vanes with the goal of maximizing the range extension while minimizing the amount of injected air that is required.

  1. Designing and analysis study of uranium enrichment with gas centrifuge

    International Nuclear Information System (INIS)

    Tsunetoshi Kai

    2006-01-01

    This note concerns a designing and analysis study of uranium enrichment with a gas centrifuge. At first, one dimensional model is presented and a conventional analytical method is applied to grasp the general idea of a centrifuge performance. Secondly, two-dimensional numerical method is adopted to describe the diffusion phenomena with assumption of simple flow patterns. Parametric surveys are made on the dimension of a centrifuge rotor, the gas feed, withdrawal and circulation system, and operation variables such as feed flow rate, cut and so on. Thirdly, full numerical solutions are obtained for the flow and diffusion equations in static state, using a modified version of the Newton method without neglect of any non-linear term. The numerical results are compared with the experimental data made by Beams et al. and Zippe, and found to be in good agreement. Further, the theoretical pressure and separative power are compared respectively with experimental ones on a comparatively recent centrifuge. The results reveal that the characteristics of separation performance of a centrifuge can be fully described by the present method. Some of inevitable problems are tackled regarding UF 6 gas isotope separation by centrifugation. To examine the influence of the extraneous light gas, the diffusion equations for ternary mixture are solved and also the flow field of binary mixture with large mass difference is obtained to simultaneously solve the Navier-Stokes equations and the diffusion equation.for binary case. Since the gas in the interior region of the rotor is so rarefied that the Navier-Stokes equations cease to be valid, the Burnett equations are solved.for gas flow in a rotating cylinder. Considering that the uranium recovered at a reprocessing plant includes 236 U besides 235 U and 238 U, the concentration distributions of the ternary gas isotopes are determined and a value function is defined for the evaluation of separative work for the multi-component mixture

  2. [The analytical setting of rotary speed of centrifuge rotor and centrifugation time in chemical, biochemical and microbiological practice].

    Science.gov (United States)

    Zolotarev, K V

    2012-08-01

    The researchers happen to face with suspensions in their chemical, biochemical and microbiological practice. The suspensions are the disperse systems with solid dispersed phase and liquid dispersion medium and with dispersed phase particle size > 100 nm (10-7 m). Quite often the necessity occurs to separate solid particles from liquid. To use for this purpose the precipitation in gravitation field can make the process to progress too long. In this respect an effective mode is the precipitation in the field of centrifugal forces--the centrifugation. The rotary speed of centrifuge rotor and centrifugation time can be set analytically using regularities of general dynamics and hydrodynamics. To this effect, should be written and transformed the equation of First and Second Newton Laws for suspension particle being in the field of centrifugal forces and forces of resistance of liquid and vessel wall. The force of liquid resistance depends on particle motion condition in liquid. To determine the regimen the Archimedes and Reynolds numerical dimensionless criteria are to be applied. The article demonstrates the results of these transformations as analytical inverse ratio dependence of centrifugation time from rotary speed. The calculation of series of "rate-time" data permits to choose the optimal data pair on the assumption of centrifuge capacity and practical reasonability. The results of calculations are validated by actual experimental data hence the physical mathematical apparatus can be considered as effective one. The setting progress depends both from parameter (Reynolds criterion) and data series calculation. So, the most convenient way to apply this operation is the programming approach. The article proposes to use the program Microsoft Excel and VBA programming language for this purpose. The possibility to download the file from Internet to use it for fast solution is proposed.

  3. Effect of centrifugation on dynamic susceptibility of magnetic fluids

    International Nuclear Information System (INIS)

    Pshenichnikov, Alexander; Lebedev, Alexander; Lakhtina, Ekaterina; Kuznetsov, Andrey

    2017-01-01

    Highlights: • Six samples of magnetic fluid were obtained by centrifuging two base ferrocolloids. • Aggregates in magnetic fluids are main reason of dynamic susceptibility dispersion. • Centrifugation is an effective way of changing the dynamic susceptibility. - Abstract: The dispersive composition, dynamic susceptibility and spectrum of times of magnetization relaxation for six samples of magnetic fluid obtained by centrifuging two base colloidal solutions of the magnetite in kerosene was investigated experimentally. The base solutions differed by the concentration of the magnetic phase and the width of the particle size distribution. The procedure of cluster analysis allowing one to estimate the characteristic sizes of aggregates with uncompensated magnetic moments was described. The results of the magnetogranulometric and cluster analyses were discussed. It was shown that centrifugation has a strong effect on the physical properties of the separated fractions, which is related to the spatial redistribution of particles and multi-particle aggregates. The presence of aggregates in magnetic fluids is interpreted as the main reason of low-frequency (0.1–10 kHz) dispersion of the dynamic susceptibility. The obtained results count in favor of using centrifugation as an effective means of changing the dynamic susceptibility over wide limits and obtaining fluids with the specified type of susceptibility dispersion.

  4. A fuzzy controlled three-phase centrifuge for waste separation

    International Nuclear Information System (INIS)

    Parkinson, W.J.; Smith, R.E.; Miller, N.

    1998-02-01

    The three-phase centrifuge technology discussed in this paper was developed by Neal Miller, president of Centech, Inc. The three-phase centrifuge is an excellent device for cleaning up oil field and refinery wastes which are typically composed of hydrocarbons, water, and solids. The technology is unique. It turns the waste into salable oil, reusable water, and landfill-able solids. No secondary waste is produced. The problem is that only the inventor can set up and run the equipment well enough to provide an optimal cleanup. Demand for this device has far exceeded a one man operation. There is now a need for several centrifuges to be operated at different locations at the same time. This has produced a demand for an intelligent control system, one that could replace a highly skilled operator, or at least supplement the skills of a less experienced operator. The control problem is ideally suited to fuzzy logic, since the centrifuge is a highly complicated machine operated entirely by the skill and experience of the operator. A fuzzy control system was designed for and used with the centrifuge

  5. Separative properties of counter-current beams type centrifuge, (2)

    International Nuclear Information System (INIS)

    Todo, Fukuzo

    1975-01-01

    One-time through scheme is studied, which would produce the highest overall centrifuge efficiency among the three different flow schemes of enriching, stripping and one-time through. If the ''optimum concentration method'' is applied to the one-time through centrifuge, the machine will be able to obtain a very high efficiency at small gas flow rates. A proposed arrangement of centrifuges for this method is shown. The efficiency of this method will be more than 15--20% higher than obtainable with enriching scheme. When the radial gas flow rate near the end caps in the rotor is increased to about 10% of the total gas feed rate, the efficiency was found to decrease by only 1%. The efficiency appears to be almost independent of small amounts of refluxing gas flow. Since a separation method having a high efficiency at small gas flow rates is required for large-scale gas centrifuge plants, the one-time through centrifuge is promising, provided the optimum concentration method is adopted. (auth.)

  6. Preflight screening techniques for centrifuge-simulated suborbital spaceflight.

    Science.gov (United States)

    Pattarini, James M; Blue, Rebecca S; Castleberry, Tarah L; Vanderploeg, James M

    2014-12-01

    Historically, space has been the venue of the healthy individual. With the advent of commercial spaceflight, we face the novel prospect of routinely exposing spaceflight participants (SPFs) with multiple comorbidities to the space environment. Preflight screening procedures must be developed to identify those individuals at increased risk during flight. We examined the responses of volunteers to centrifuge accelerations mimicking commercial suborbital spaceflight profiles to evaluate how potential SFPs might tolerate such forces. We evaluated our screening process for medical approval of subjects for centrifuge participation for applicability to commercial spaceflight operations. All registered subjects completed a medical questionnaire, physical examination, and electrocardiogram. Subjects with identified concerns including cardiopulmonary disease, hypertension, and diabetes were required to provide documentation of their conditions. There were 335 subjects who registered for the study, 124 who completed all prescreening, and 86 subjects who participated in centrifuge trials. Due to prior medical history, five subjects were disqualified, most commonly for psychiatric reasons or uncontrolled medical conditions. Of the subjects approved, four individuals experienced abnormal physiological responses to centrifuge profiles, including one back strain and three with anxiety reactions. The screening methods used were judged to be sufficient to identify individuals physically capable of tolerating simulated suborbital flight. Improved methods will be needed to identify susceptibility to anxiety reactions. While severe or uncontrolled disease was excluded, many subjects successfully participated in centrifuge trials despite medical histories of disease that are disqualifying under historical spaceflight screening regimes. Such screening techniques are applicable for use in future commercial spaceflight operations.

  7. Theory of uranium enrichment by the gas centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Olander, D R [California Univ., Berkeley (USA). Lawrence Berkeley Lab.; California Univ., Berkeley (USA). Dept. of Nuclear Engineering)

    1981-01-01

    Onsager's analysis of the hydrodynamics of fluid circulation in the boundary layer on the rotor wall of a gas centrifuge is reviewed. The description of the flow in the boundary layers on the top and bottom end caps due to Carrier and Maslen is summarized. The method developed by Wood and Morton of coupling the flow models in the rotor wall and end cap boundary layers to complete the hydrodynamic analysis of the centrifuge is presented. Mechanical and thermal methods of driving the internal gas circulation are described. The isotope enrichment which results from the superposition of the elementary separation effect due to the centrifugal field in the gas and its internal circulation is analyzed by the Onsager-Cohen theory. The performance function representing the optimized separative power of a centrifuge as a function of throughput and cut is calculated for several simplified internal flow models. The use of asymmetric ideal cascades to exploit the distinctive features of centrifuge performance functions is illustrated.

  8. Effect of centrifugation on dynamic susceptibility of magnetic fluids

    Energy Technology Data Exchange (ETDEWEB)

    Pshenichnikov, Alexander, E-mail: pshenichnikov@icmm.ru; Lebedev, Alexander; Lakhtina, Ekaterina; Kuznetsov, Andrey

    2017-06-15

    Highlights: • Six samples of magnetic fluid were obtained by centrifuging two base ferrocolloids. • Aggregates in magnetic fluids are main reason of dynamic susceptibility dispersion. • Centrifugation is an effective way of changing the dynamic susceptibility. - Abstract: The dispersive composition, dynamic susceptibility and spectrum of times of magnetization relaxation for six samples of magnetic fluid obtained by centrifuging two base colloidal solutions of the magnetite in kerosene was investigated experimentally. The base solutions differed by the concentration of the magnetic phase and the width of the particle size distribution. The procedure of cluster analysis allowing one to estimate the characteristic sizes of aggregates with uncompensated magnetic moments was described. The results of the magnetogranulometric and cluster analyses were discussed. It was shown that centrifugation has a strong effect on the physical properties of the separated fractions, which is related to the spatial redistribution of particles and multi-particle aggregates. The presence of aggregates in magnetic fluids is interpreted as the main reason of low-frequency (0.1–10 kHz) dispersion of the dynamic susceptibility. The obtained results count in favor of using centrifugation as an effective means of changing the dynamic susceptibility over wide limits and obtaining fluids with the specified type of susceptibility dispersion.

  9. Development of centrifugal contactor for FBR fuel reprocessing

    International Nuclear Information System (INIS)

    Washiya, Tadahiro; Takeuchi, Masayuki; Suganuma, Takashi; Aose, Shinichi; Ogino, Hideki

    2003-01-01

    In the Feasibility Study on Commercialized Fast Reactor Cycle Systems, the aqueous reprocessing technology is nominated as a candidate for future reprocessing system, which supposes to apply a centrifugal contactor in the extraction process. For the reprocessing plant, the centrifugal contactor has great advantages such as reducing solvent degradation, improving of equipment utilization rate, compact designing of equipment layout and critical safety domination. From these advantages, the centrifugal contactor is crucial equipment in the aqueous reprocessing process. Since 1985, JNC has been developing the centrifugal contactor. The single unit development has been accomplished and basic characteristics such as extraction performance, fluidic performance and remote maintenance performance have been determined. A durability test has been conducted for high longevity, with consideration given to the nitric acid mist and estimation of the equipment lifetime. System test equipment with centrifugal contactors of engineering scale was installed, and uranium test was conducted. Up to now, a standard flow sheet test in the extraction process and mal-operation test assuming the one stage shutdown condition have been performed. (author)

  10. Centrifuge modelling - migration of radionuclides from engineered trenches

    International Nuclear Information System (INIS)

    Dean, E.T.R.; Schofield, A.N.

    1991-12-01

    This report provides an overview of some centrifuge small-scale physical model tests and 1g experimental and theoretical work relating to the sub-surface migration of a model pollutant (sodium chloride) from a notional prototype surface landfill of width 25 metres and depth 3 metres cut into a 20 metre deep layer of nominally uniform soil overlying a more permeable base layer. An introduction is given to the application of geotechnical centrifuge modelling techniques to pollutant migration studies. Experiments performed at 1/100th scale using the Cambridge 10 metre diameter Geotechnical Beam Centrifuge simulating transport through silt over prototype time periods of around 35 years, are summarised. Comparisons of data with calculations using early versions of the POLLUTE and MIGRATE computer codes are presented. An experiment at 1/400th scale using the new Cambridge Geotechnical Drum Centrifuge, involving transport through clay over a prototype time period of around 1000 years, is described. Potential future uses of centrifuge modelling techniques to simulate long-term migration through more complex hydrological environments are also discussed. (author)

  11. Unattended safeguards instrumentation at centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Smith, L. Eric; Lebrun, Alain R.; Labella, Rocco

    2014-01-01

    As global uranium enrichment capacity under international safeguards expands, the International Atomic Energy Agency (IAEA) is challenged to develop effective safeguards approaches at gaseous centrifuge enrichment plants, particularly high‑capacity plants, while working within budgetary constraints. New safeguards approaches should meet the high‑level verification objectives for such facilities (i.e., timely detection of: diversion of declared material, excess production beyond declared amounts, and production of enrichment levels higher than declared), but should also strive for efficiency advantages in implementation, for both the IAEA and operators. Under the Agency’s State- level approach to safeguards implementation, the Agency needs a flexible toolbox of technologies, allowing tailoring of safeguards measures for each individual enrichment facility. In this paper, the potential roles and development status for three different types of unattended measurement instrumentation are discussed. On‑Line Enrichment Monitors (OLEM) could provide continuous enrichment measurement for 100% of the declared gas flowing through unit header pipes. Unattended Cylinder Verification Stations (UCVS) could provide unattended verification of the declared uranium mass and enrichment of 100% of the cylinders moving through the plant, but also apply and verify an ‘NDA Fingerprint’ to preserve verification knowledge on the contents of each cylinder throughout its life in the facility. Sharing of the operator’s load cell signals from feed and withdrawal stations could count all cylinders introduced to the process and provide periodic monitoring of the uranium mass balance for in‑process material. The integration of load cell, OLEM and UCVS data streams offers the possibility for 100% verification of declared cylinder flow, and enables the periodic verification of the declared 235 U mass balance in the plant. These new capabilities would enhance the IAEA

  12. Monodisperse Multidimensional Nanostructures via Centrifugal Separation

    Science.gov (United States)

    Shin, Yu Jin

    Anisotropic nanomaterials, including zero-dimensional metallic nanoparticles (MNPs), one-dimensional single-walled carbon nanotubes (SWCNTs), and two-dimensional few-layer black phosphorous (FL-P) exhibit interesting structure-dependent properties that could be exploited in biomedicine, plasmonics, and optoelectronics. In this thesis, centrifugation sorting of these nanomaterials is utilized for structure refinement, investigation of structure-dependent optical response, and applications in biomedical imaging and plasmonics. Nobel NMPs show unique shape- and size-dependent optical properties. Controlled synthetic methods are developed to manipulate the structure of these NMPs, but intrinsically produce dispersions of polydisperse NPs with various shape and size, and synthetic byproducts. Here, we describe a facile strategy for separating small (edge length 80%) and subsequently achieve a 2.5 fold enhancement in refractive index sensitivity, comparable to the unsorted mixture. This shallow DGC approach is robust and reliable, and therefore can be applied to other metal nanostructures for concomitant improvements in plasmonic properties and applications. Using the identical separation strategy in the previous study, we are able to enrich gold nanostars as a function of branch number. In particular, we explore different variants of density gradient media to ensure compatibility with the star shape and colloid stability. We determine that sucrose is compatible with nanostars stability and surface functionalizaton. The refined population of gold stars are functionalized with Gd(III)-DNA to act as MRI contrast agents, and thus enables us to investigate how populations of nanostars with different branch numbers contribute to the relaxivity of surface bound Gd(III)-DNA. It is shown that the increased relaxivity of DNA-Gd star is correlated with increased number of star branches, not with increased size of the stars. Therefore, shape is a new parameter which can be tuned in

  13. Separation of gold nanorods by viscosity gradient centrifugation

    International Nuclear Information System (INIS)

    Dong, Suli; Wang, Yawei; Li, Xiaogang; Zhang, Qingquan; Liu, Xiaojun; Tu, Yang; Liang, Aiye

    2016-01-01

    Size-uniform gold nanorods (Au-NRs) are used in biosensing, bioimaging, photothermal therapy, drug and gene delivery, and controlled release. Monodisperse Au-NRs are usually obtained by separation steps following their synthesis, and centrifugation is widely used because of the ease of operation, high recovery, and the good availability of equipment. So far, the effect of viscosity on the separation of Au-NRs has not been investigated. We have developed a method for separation of monodisperse Au-NRs that is based on centrifugation in a viscosity gradient. Monodisperse Au-NRs obtained from gold nanoparticles were obtained by centrifugation in viscosity gradient adjusted with poly(2-ethyl-2-oxazoline). Au-NRs in sizes ranging from 25.6 to 26.1 nm in effective radius can be separated 5500 g within 5 min, which appears to be the fastest method for separation of Au-NRs. (author)

  14. Numerical optimization for separation power of gas centrifuge

    International Nuclear Information System (INIS)

    Jiang Dongjun; Zeng Shi; Liu Bing

    2012-01-01

    In order to obtain higher separation power of the gas centrifuge, the code was developed to solve the flow-field of the counter-current to acquire the separation power, which was integrated with the iSight software, so a numerical optimization model for separation power was presented, in which the driver conditions and the geometry parameters of the waste baffle were optimized to get the maximum separation power using the sequential quadratic programming arithmetic, and the 12% higher results was acquired, which shows the feasibility of this method. The results also note that the separation power of gas centrifuge is sensitive to the driver conditions and the structure parameters of the waste baffle, so it is necessary to perform the optimization calculation for the certain gas centrifuge model. (authors)

  15. Detection of outliers in a gas centrifuge experimental data

    Directory of Open Access Journals (Sweden)

    M. C. V. Andrade

    2005-09-01

    Full Text Available Isotope separation with a gas centrifuge is a very complex process. Development and optimization of a gas centrifuge requires experimentation. These data contain experimental errors, and like other experimental data, there may be some gross errors, also known as outliers. The detection of outliers in gas centrifuge experimental data is quite complicated because there is not enough repetition for precise statistical determination and the physical equations may be applied only to control of the mass flow. Moreover, the concentrations are poorly predicted by phenomenological models. This paper presents the application of a three-layer feed-forward neural network to the detection of outliers in analysis of performed on a very extensive experiment.

  16. Uranium enrichment in Europe by the gas centrifuge process

    International Nuclear Information System (INIS)

    Severin, D.J.E.

    1975-01-01

    To begin with, this lesson gives an outline of the expected energy demand of the Western World and the concentration of the European companies participating in uranium enrichment by the gas centrifuge method. Next, a) the principles of the gas centrifuge method are outlined, b) its advantages over other industrial processes are stressed, and c) the characteristic data of complete plants are given. The existing German, Dutch, and British pilot plants are mentioned as examples for the perfected state of the process. The Capenhurst (UK) and Almedo (NL) demonstration plants, each with a capacity of 200 t SW/a, will have been extended to 2 x 1.000 t SW/a by 1982. Finally, economic data of the gas centrifuge process are given. The term 'separative work' is explained in an annex. (GG) [de

  17. Centrifuge Techniques and Apparatus for Transport Experiments in Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Earl D. Mattson; Carl D. Paler; Robert W. Smith; Markus Flury

    2010-06-01

    This paper describes experimental approaches and apparatus that we have developed to study solute and colloid transport in porous media using Idaho National Laboratory's 2-m radius centrifuge. The ex-perimental techniques include water flux scaling with applied acceleration at the top of the column and sub-atmospheric pressure control at the column base, automation of data collection, and remote experimental con-trol over the internet. These apparatus include a constant displacement piston pump, a custom designed liquid fraction collector based on switching valve technology, and modified moisture monitoring equipment. Suc-cessful development of these experimental techniques and equipment is illustrated through application to transport of a conservative tracer through unsaturated sand column, with centrifugal acceleration up to 40 gs. Development of such experimental equipment that can withstand high accelerations enhances the centrifuge technique to conduct highly controlled unsaturated solute/colloid transport experiments and allows in-flight liquid sample collection of the effluent.

  18. Space Station Centrifuge: A Requirement for Life Science Research

    Science.gov (United States)

    Smith, Arthur H.; Fuller, Charles A.; Johnson, Catherine C.; Winget, Charles M.

    1992-01-01

    A centrifuge with the largest diameter that can be accommodated on Space Station Freedom is required to conduct life science research in the microgravity environment of space. (This was one of the findings of a group of life scientists convened at the University of California, Davis, by Ames Research Center.) The centrifuge will be used as a research tool to understand how gravity affects biological processes; to provide an on-orbit one-g control; and to assess the efficacy of using artificial gravity to counteract the deleterious biological effect of space flight. The rationale for the recommendation and examples of using ground-based centrifugation for animal and plant acceleration studies are presented. Included are four appendixes and an extensive bibliography of hypergravity studies.

  19. Advances in post-fermented wine clarification by centrifugal technology

    Directory of Open Access Journals (Sweden)

    Giacomo Costagli

    2016-11-01

    Full Text Available Wine clarification processes are deeply determined by complex interaction of wine constituents and application of available technologies as well as use of fining agents. Among others, centrifuge is a consolidated technique applied for many separation duties in the winery. Important advances on improvement of the performance of centrifugal technology have beeen focused on gentle wine treatment, minimal dissolved oxygen and significant reduction of energy consumption helping to dispel old beliefs on a technique considered to be traditional. This paper reviews the development of technology and recent advances on centrifuge improvement and aims to show, through field experimental observation, the importance of removing a portion of particles responsible of haze in the light of very low level of dissolved oxygen and complementarity of alternative recent techniques of wine filtration like cross-flow microfiltration.

  20. Design Optimization of a Centrifugal Fan with Splitter Blades

    Science.gov (United States)

    Heo, Man-Woong; Kim, Jin-Hyuk; Kim, Kwang-Yong

    2015-05-01

    Multi-objective optimization of a centrifugal fan with additionally installed splitter blades was performed to simultaneously maximize the efficiency and pressure rise using three-dimensional Reynolds-averaged Navier-Stokes equations and hybrid multi-objective evolutionary algorithm. Two design variables defining the location of splitter, and the height ratio between inlet and outlet of impeller were selected for the optimization. In addition, the aerodynamic characteristics of the centrifugal fan were investigated with the variation of design variables in the design space. Latin hypercube sampling was used to select the training points, and response surface approximation models were constructed as surrogate models of the objective functions. With the optimization, both the efficiency and pressure rise of the centrifugal fan with splitter blades were improved considerably compared to the reference model.

  1. Simulations of overall flow in gas centrifuge considering feed jet

    International Nuclear Information System (INIS)

    He Liang; Jiang Dongjun; Ying Chuntong

    2010-01-01

    A coupled method for the numerical solution of the flow in rapidly rotating gas centrifuge was presented. An iteration process of DSMC and CFD was performed to analyze the overall flow in radial direction, in which DSMC was adopted to simulate the rarefied region, and CFD was adopted to the counter-current of gas centrifuge to discrete the model equations. It was applied to simulate the 2D symmetrical flow model considering the rarefied region with the feed jet flow. A series of illustrative numerical examples were given. The flow structures of the feed jet in the rarefied gas flow region were shown. The results suggest that DSMC CFD coupled method is competent to the simulations of overall flow in a gas centrifuge. (authors)

  2. Model tests of geosynthetic reinforced slopes in a geotechnical centrifuge

    International Nuclear Information System (INIS)

    Aklik, P.

    2012-01-01

    Geosynthetic-reinforced slopes and walls became very popular in recent years because of their financial, technical, and ecological advantages. Centrifuge modelling is a powerful tool for physical modelling of reinforced slopes and offers the advantage to observe the failure mechanisms of the slopes. In order to replicate the gravity induced stresses of a prototype structure in a geometrically 1/N reduced model, it is necessary to test the model in a gravitational field N times larger than that of the prototype structure. In this dissertation, geotextile-reinforced slope models were tested in a geotechnical centrifuge to identify the possible failure mechanisms. Slope models were tested by varying slope inclination, tensile strengths of the geotextiles, and overlapping lengths. Photographs of the geotextile reinforced slope models in flight were taken with a digital camera and the soil deformations of geotextile reinforced slopes were evaluated with Particle Image Velocimetry (PIV). The experimental results showed that failure of the centrifuge models initiated at midheight of the slope, and occurred due to geotextile breakage instead of pullout. The location of the shear surface is independent of the tensile strength of the geotextile; it is dependent on the shear strength of the soil. It is logical to see that the required acceleration of the centrifuge at slope failure was decreased with increasing slope inclination. An important contribution to the stability of the slope models was provided by the overlapping of the geotextile layers. It has a secondary reinforcement effect when it was prolonged and passed through the shear surface. Moreover, the location of the shear surface observed with PIV analysis exactly matches the tears of the retrieved geotextiles measured carefully after the centrifuge testing. It is concluded that PIV is an efficient tool to instrument the slope failures in a geotechnical centrifuge.(author) [de

  3. High-speed centrifugation induces aggregation of extracellular vesicles.

    Science.gov (United States)

    Linares, Romain; Tan, Sisareuth; Gounou, Céline; Arraud, Nicolas; Brisson, Alain R

    2015-01-01

    Plasma and other body fluids contain cell-derived extracellular vesicles (EVs), which participate in physiopathological processes and have potential biomedical applications. In order to isolate, concentrate and purify EVs, high-speed centrifugation is often used. We show here, using electron microscopy, receptor-specific gold labelling and flow cytometry, that high-speed centrifugation induces the formation of EV aggregates composed of a mixture of EVs of various phenotypes and morphologies. The presence of aggregates made of EVs of different phenotypes may lead to erroneous interpretation concerning the existence of EVs harbouring surface antigens from different cell origins.

  4. Multiplexed single-molecule force spectroscopy using a centrifuge.

    Science.gov (United States)

    Yang, Darren; Ward, Andrew; Halvorsen, Ken; Wong, Wesley P

    2016-03-17

    We present a miniature centrifuge force microscope (CFM) that repurposes a benchtop centrifuge for high-throughput single-molecule experiments with high-resolution particle tracking, a large force range, temperature control and simple push-button operation. Incorporating DNA nanoswitches to enable repeated interrogation by force of single molecular pairs, we demonstrate increased throughput, reliability and the ability to characterize population heterogeneity. We perform spatiotemporally multiplexed experiments to collect 1,863 bond rupture statistics from 538 traceable molecular pairs in a single experiment, and show that 2 populations of DNA zippers can be distinguished using per-molecule statistics to reduce noise.

  5. Simplified simulation of multicomponent isotope separation by gas centrifuge

    International Nuclear Information System (INIS)

    Guo Zhixiong; Ying Chuntong

    1995-01-01

    The expressions of diffusion equation for multicomponent isotope separation by gas centrifuge are derived by utilizing the simplified diffusion transport vector. A method of radial averaging which was restricted to a binary mixture is extended to multicomponent isotope mixtures by using an iterative scheme. A numerical analysis of tetradic UF 6 or SF 6 gas isotope separation by centrifuge is discussed when a special model of velocity distribution is given. The dependence of mutual separation factor for the components on their molecular weights' difference is obtained. Some aspects of the given model of gas fluid are also discussed

  6. Centrifuge modelling of a laterally cyclic loaded pile

    DEFF Research Database (Denmark)

    Klinkvort, Rasmus Tofte; Leth, Caspar Thrane; Hededal, Ole

    2010-01-01

    A total number of 9 static and 6 cyclic centrifuge tests on laterally loaded piles in very dense, dry sand was erformed. The prototype dimensions of the piles were 1 meter in diameter and penetration depths varying from 6 to 10 meters. The static tests were used to investigate the initial subgrade...... reaction modulus and as a reference for cyclic tests. For the cyclic tests the accumulation of deflections and the change in secant stiffness of the soil from repetitive loading were investigated. From all the tests carried out accumulations of deflections were seen. rom the centrifuge tests it was seen...

  7. An Investigation of Backflow Phenomenon in Centrifugal Compressors

    Science.gov (United States)

    Benser, William A; Moses, Jason J

    1945-01-01

    Report presents the results of an investigation conducted to determine the nature and the extent of the reversal of flow, which occurs at the inlet of centrifugal compressors over a considerable portion of the operating range. Qualitative studies of this flow reversal were made by lampblack patterns taken on a mixed-flow-type impeller and by tuft studies made on a conventional centrifugal compressor. Quantitative studies were made on a compressor specially designed to enable survey of angularity of flow, static and total pressures, and temperatures to be taken very close to the impeller front housing.

  8. High-speed centrifugation induces aggregation of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Romain Linares

    2015-12-01

    Full Text Available Plasma and other body fluids contain cell-derived extracellular vesicles (EVs, which participate in physiopathological processes and have potential biomedical applications. In order to isolate, concentrate and purify EVs, high-speed centrifugation is often used. We show here, using electron microscopy, receptor-specific gold labelling and flow cytometry, that high-speed centrifugation induces the formation of EV aggregates composed of a mixture of EVs of various phenotypes and morphologies. The presence of aggregates made of EVs of different phenotypes may lead to erroneous interpretation concerning the existence of EVs harbouring surface antigens from different cell origins.

  9. Review of noise reduction methods for centrifugal fans

    Science.gov (United States)

    Neise, W.

    1981-11-01

    Several methods for the reduction of centrifugal fan noise are presented, the most of which are aimed at a lower blade passage frequency level. The methods are grouped into five categories: casing modifications to increase the distance between impeller and cutoff, the introduction of a phase shift of the source pressure fluctuations, impeller modifications, radial clearance between impeller eye and inlet nozzle, and acoustical measures. Resonators mounted at the cutoff of centrifugal fans appear to be a highly efficient and simple means of reducing the blade passage tone, and the method can be used for new fan construction and existing installations without affecting the aerodynamic performance of the fan.

  10. Elements for modeling and design of centrifugal compressor housings

    International Nuclear Information System (INIS)

    Magoia, J.E.; Calderon, T.

    1990-01-01

    Various aspects of the structural analysis of centrifugal compressor housings are studied. These are usually used in different kinds of nuclear sites. Multiple areas of the analysis are evaluated with elastic models based on finite elements: sensitivity to different variables, quality of models on facing theoretical solutions and performed measurements. The development of an excentric bar element improved for the rigidized plate model, is included. The definition of criteria for a more efficient structural analysis as well as recommendations for the design of centrifugal compressor housings concludes the work. (Author) [es

  11. Design Method for Channel Diffusers of Centrifugal Compressors

    Directory of Open Access Journals (Sweden)

    Mykola Kalinkevych

    2013-01-01

    Full Text Available The design method for channel diffusers of centrifugal compressors, which is based on the solving of the inverse problem of gas dynamics, is presented in the paper. The concept of the design is to provide high pressure recovery of the diffuser by assuming the preseparation condition of the boundary layer along one of the channel surfaces. The channel diffuser was designed with the use of developed method to replace the vaned diffuser of the centrifugal compressor model stage. The numerical simulation of the diffusers was implemented by means of CFD software. Obtained gas dynamic characteristics of the designed diffuser were compared to the base vaned diffuser of the compressor stage.

  12. The Maryland Centrifugal Experiment (MCX): Centrifugal Confinement and Velocity Shear Stabilization of Plasmas in Shaped Open Magnetic Systems

    International Nuclear Information System (INIS)

    Hassam, Adil; Ellis, Richard F.

    2012-01-01

    The Maryland Centrifugal Experiment (MCX) Project has investigated the concepts of centrifugal plasma confinement and stabilization of instabilities by velocity shear. The basic requirement is supersonic plasma rotation about a shaped, open magnetic field. Overall, the MCX Project attained three primary goals that were set out at the start of the project. First, supersonic rotation at Mach number up to 2.5 was obtained. Second, turbulence from flute interchange modes was found considerably reduced from conventional. Third, plasma pressure was contained along the field, as evidenced by density drops of x10 from the center to the mirror throats.

  13. Seismic soil-structure interaction: Analysis and centrifuge model studies

    International Nuclear Information System (INIS)

    Finn, W.D.L.; Ledbetter, R.H.; Beratan, L.L.

    1986-01-01

    A method for nonlinear dynamic effective stress analysis applicable to soil-structure interaction problems is introduced. Full interaction including slip between structure and foundation is taken into account and the major factors that must be considered when computing dynamic soil response are included. An experimental investigation using simulated earthquake tests on centrifuged geotechnical models was conducted to obtain prototype response data of foundation soils carrying both surface and embedded structures and to validate the dynamic effective stress analysis. The centrifuge tests were conducted in the Geotechnical Centrifuge at Cambridge University, England. Horizontal and vertical accelerations were measured at various points on structures and in the sand foundation. Seismically induced pore water pressure changes were also measured at various locations in the foundation. Computer plots of the data were obtained while the centrifuge was in flight and representative samples are presented. The results clearly show the pronounced effect of increasing pore water pressures on dynamic response. It is demonstrated that a coherent picture of dynamic response of soil-structure systems is provided by dynamic effective stress nonlinear analysis. On the basis of preliminary results, it appears that the effects of pore water pressure can be predicted. (orig.)

  14. Experiments with background gas in a vacuum arc centrifuge

    International Nuclear Information System (INIS)

    Dallaqua, R.S.; Simpson, S.W.; Del Bosco, E.

    1996-01-01

    Since promising isotope separation results were first reported by Krishnan et al. in 1981, a range of vacuum arc centrifuge experiments have been conducted in laboratories around the world. The PCEN (Plasma CENtrifuge) vacuum arc centrifuge at the Brazilian National Institute for Space Research has been used for isotope separation studies with cathode materials of carbon and magnesium and also to investigate the performance in terms of the rotational velocity attained for different cathode materials. Here, a vacuum arc centrifuge has been operated with an initial filling gas of either argon or hydrogen for pressures ranging from 10 -3 to 10 -1 Pa. The angular velocity ω of the plasma has been determined by cross-correlating the signals from potential probes, and the electron temperature T has been deduced from Langmuir probe data. At high gas pressures and early times during the 14 ms plasma lifetime, high-frequency nonuniformities frequently observed in the vacuum discharge disappear, suggesting that the associated instability is suppressed. Under the same conditions, nonuniformities rotating with much lower angular velocities are observed in the plasma. Temperatures are reduced in the presence of the background gas, and the theoretical figure of merit for separation proportional to ω 2 /T is increased compared to its value in the vacuum discharge for both argon and hydrogen gas fillings

  15. Dictionary of centrifugal pumps. 3. rev. ed. Kreiselpumpen Lexikon

    Energy Technology Data Exchange (ETDEWEB)

    Holzenberger, K; Jung, K [comps.

    1989-01-01

    This technical dictionary was brought up to date of the state of the art. The terminology was supplemented with terms referring to centrifugal pumps. There are now almost 700 terms, with their English and French translations. To facilitate usage all the terms of books are listed in alphabetical order at the end of the book. (RHM).

  16. Design of a piezoelectric shaker for centrifuge testing

    Science.gov (United States)

    Canclini, J. G.; Henderson, J. M.

    1979-01-01

    The design of a prototype piezoelectric shaker and its development to date is described. Although certain design problems remain to be solved, the piezoelectric system shows promise for adaptation to a larger payload system, such as the proposed geotechnical centrifuge at the Ames Research Center.

  17. Polybutadiene latex particle size distribution analysis utilizing a disk centrifuge

    NARCIS (Netherlands)

    Verdurmen, E.M.F.J.; Albers, J.G.; German, A.L.

    1994-01-01

    Polybutadiene (I) latexes prepd. by emulsifier-free emulsion polymn. and having particle diam. 50-300 nm for both unimodal and bimodal particles size distributions were analyzed by the line-start (LIST) method in a Brookhaven disk centrifuge photosedimentometer. A special spin fluid was designed to

  18. Model Based Fault Detection in a Centrifugal Pump Application

    DEFF Research Database (Denmark)

    Kallesøe, Carsten; Cocquempot, Vincent; Izadi-Zamanabadi, Roozbeh

    2006-01-01

    A model based approach for fault detection in a centrifugal pump, driven by an induction motor, is proposed in this paper. The fault detection algorithm is derived using a combination of structural analysis, observer design and Analytical Redundancy Relation (ARR) design. Structural considerations...

  19. Centrifugally driven microfluidic disc for detection of chromosomal translocations

    DEFF Research Database (Denmark)

    Brøgger, Anna Line; Kwasny, Dorota; Bosco, Filippo G.

    2012-01-01

    and prognosis of patients. In this work we demonstrate a novel, centrifugally-driven microfluidic system for controlled manipulation of oligonucleotides and subsequent detection of chromosomal translocations. The device is fabricated in the form of a disc with capillary burst microvalves employed to control...

  20. Centrifuge modelling of rigid piles in soft clay

    DEFF Research Database (Denmark)

    Klinkvort, R.T.; Poder, M.; Truong, P.

    2016-01-01

    of this study is to employ centrifuge modelling in order to derive experimental p-y curves for rigid piles embedded in over-consolidated soft clay. A kaolin clay sample was prepared and pre-consolidated by applying a constant pressure at the soil surface, while different over-consolidation ratios were achieved...

  1. Centrifuge modeling of LNAPL transport in partially saturated sand

    NARCIS (Netherlands)

    Esposito, G.; Allersma, H.G.B.; Selvadurai, A.P.S.

    1999-01-01

    Model tests were performed at the Geotechnical Centrifuge Facility of Delft University of Technology, The Netherlands, to examine the mechanics of light nonaqueous phase liquid (LNAPL) movement in a partially saturated porous granular medium. The experiment simulated a 2D spill of LNAPL in an

  2. Control of molecular rotation with an optical centrifuge

    Science.gov (United States)

    Korobenko, Aleksey

    2017-04-01

    The main purpose of this work is the experimental study of the applicability of an optical centrifuge - a novel tool, utilizing non-resonant broadband laser radiation to excite molecular rotation - to produce and control molecules in extremely high rotational states, so called molecular ``super rotors'', and to study their optical, magnetic, acoustic, hydrodynamic and quantum mechanical properties.

  3. Cyber meets nuclear - Stuxnet and the cyberattacks on Iranian centrifuges

    Energy Technology Data Exchange (ETDEWEB)

    Englert, Matthias [IANUS, TU Darmstadt (Germany)

    2013-07-01

    In 2010 the computer worm Stuxnet attacked the information hardware of the Iranian uranium enrichment program. Stuxnet spread by USB flash drives and attacked SCADA software installed on Windows systems via several zero-day exploits. SCADA configures programmable logic controllers which control in the case of the Iranian centrifuge cascades frequency converter drives to choose the frequency of centrifuge motors. Thus the attackers were able to either change the rotation frequency of the rotor and thereby the separative power of the centrifuge or even destroy the fast spinning centrifuges by stopping and restarting them. The designers of Stuxnet must have had intimate knowledge of the facility design as e.g. the cascade connection scheme was programmed into Stuxnet. Based on this information some calculations of the Iranian cascade regarding the potential to produce highly enriched uranium will be presented using cascade simulation tools. The use of such highly sophisticated computer attacks to sabotage a nuclear program shed a new light on the debate about cyber attacks and the use of information technology for kinetic attacks in general. The talk will address problems the weaponization of information technology poses for international security and will highlight some more recent developments.

  4. Plasma rotation in plasma centrifuge with an annular gap

    International Nuclear Information System (INIS)

    Lee, H.Y.; Hong, S.H.

    1982-01-01

    The steady-state rotation of plasma centrifuge is theoretically analyzed to understand the physics of rotating plasma and its feasibility for isotope separation. The centriguge system under consideration consists of an annular gap between coaxial cylindrical anode and cathod in the presence of an externally-applied axial magnetic field. A problem for coupled partial differential equations describing centrifuge fields is formulated on the basis of the magnetohydrodynamic equations. Two-dimensional solutions are found analytically in the form of Fourier-Bessel series. The current density and velocity distributions are discussed in terms of the Hartmann number and the geometrical parameter of the system. At typical conditions, rotational speeds of the plasma up to the order of 10 4 m/sec are achievable, and increase either with increasing Hartmann number, or with increasing ratio of the axial length to the inner radius of the cylinder. In view of much higher speeds of rotation which can be achieved in plasma centrifuge, it is expected that its efficiency is superior to mechanically driven gas centrifuges. (Author)

  5. Can centrifugation affect the morphology of polyethylene wear debris ?

    Czech Academy of Sciences Publication Activity Database

    Zolotarevova, E.; Fejfarková, Z.; Entlicher, G.; Lapčíková, Monika; Šlouf, Miroslav; Pokorný, D.; Sosna, A.

    2008-01-01

    Roč. 265, 11-12 (2008), s. 1914-1917 ISSN 0043-1648 R&D Projects: GA MŠk 2B06096 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyethyelene wear particles * total joint replacement * centrifugation Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.509, year: 2008

  6. Ocular torsion before and after 1 hour centrifugation

    NARCIS (Netherlands)

    Groen, E.; Graaf, B. de; Bles, W.; Bos, J.E.

    1996-01-01

    To assess a possible otolith contribution to effects observed following prolonged expo-sure to hyper gravity, we used video-oculography to measure ocular torsion during static and dynamic conditions of lateral body tilt (roll) before and after one hour of centrifugation with a Gx-load of 3G. Static

  7. Ocular torsion before and after 1 hour centrifugation

    NARCIS (Netherlands)

    Groen, Eric; De Graaf, Bernd; Bles, Willem; Bos, Jelte E.

    1996-01-01

    To assess a possible otolith contribution to effects observed following prolonged exposure to hypergravity, we used video oculography to measure ocular torsion during static and dynamic conditions of lateral body tilt (roll) before and after t h of centrifugation with a G(x)-load of 3 G. Static tilt

  8. Numerical analysis on centrifugal compressor with membrane type dryer

    Science.gov (United States)

    Razali, M. A.; Zulkafli, M. F.; Mat Isa, N.; Subari, Z.

    2017-09-01

    Moisture content is a common phenomenon in industrial processes especially in oil and gas industries. This contaminant has a lot of disadvantages which can lead to mechanical failure DEC (Deposition, Erosion & Corrosion) problems. To overcome DEC problem, this study proposed to design a centrifugal compressor with a membrane type dryer to reduce moisture content of a gas. The effectiveness of such design has been analyzed in this study using Computational Fluid Dynamics (CFD) approach. Numerical scheme based on multiphase flow technique is used in ANSYS Fluent software to evaluate the moisture content of the gas. Through this technique, two kind of centrifugal compressor, with and without membrane type dryer has been tested. The results show that the effects of pressure on dew point temperature of the gas change the composition of its moisture content, where high value lead more condensation to occur. However, with the injection of cool dry gas through membrane type dryer in the centrifugal compressor, the pressure and temperature of moisture content as well as mass fraction of H2O in centrifugal compressor show significant reduction.

  9. Quasi‐steady centrifuge method for unsaturated hydraulic properties

    Science.gov (United States)

    Caputo, Maria C.; Nimmo, John R.

    2005-01-01

    We have developed the quasi‐steady centrifuge (QSC) method as a variation of the steady state centrifuge method that can be implemented simply and inexpensively with greater versatility in terms of sample size and other features. It achieves these advantages by somewhat relaxing the criterion for steadiness of flow through the sample. This compromise entails an increase in measurement uncertainty but to a degree that is tolerable in most applications. We have tested this new approach with an easily constructed apparatus to establish a quasi‐steady flow of water in unsaturated porous rock samples spinning in a centrifuge, obtaining measurements of unsaturated hydraulic conductivity and water retention that agree with results of other methods. The QSC method is adaptable to essentially any centrifuge suitable for hydrogeologic applications, over a wide range of sizes and operating speeds. The simplified apparatus and greater adaptability of this method expands the potential for exploring situations that are common in nature but have been the subject of few laboratory investigations.

  10. Development of centrifugal contactors [Paper No. : IIIB-5

    International Nuclear Information System (INIS)

    Koganti, S.B.; Nagarajan, S.; Balasubramanian, G.R.

    1979-01-01

    Development of short residence contactors is one of the main objectives of Reprocessing Programme for fast reactor fuels in Reactor Research Centre, Kalpakkam. Paper discusses the suitability of centrifugal contactor as one of the candidate solvent contactors. Description of various stages of development of this work in the Reprocessing Development Laboratory, RRC and also characteristics of small contactor developed are given. (author)

  11. Quasi-steady centrifuge method for unsaturated hydraulic properties

    Science.gov (United States)

    Caputo, Maria C.; Nimmo, John R.

    2005-11-01

    We have developed the quasi-steady centrifuge (QSC) method as a variation of the steady state centrifuge method that can be implemented simply and inexpensively with greater versatility in terms of sample size and other features. It achieves these advantages by somewhat relaxing the criterion for steadiness of flow through the sample. This compromise entails an increase in measurement uncertainty but to a degree that is tolerable in most applications. We have tested this new approach with an easily constructed apparatus to establish a quasi-steady flow of water in unsaturated porous rock samples spinning in a centrifuge, obtaining measurements of unsaturated hydraulic conductivity and water retention that agree with results of other methods. The QSC method is adaptable to essentially any centrifuge suitable for hydrogeologic applications, over a wide range of sizes and operating speeds. The simplified apparatus and greater adaptability of this method expands the potential for exploring situations that are common in nature but have been the subject of few laboratory investigations.

  12. Inhibition of pneumococcal autolysis in lysis-centrifugation blood culture.

    OpenAIRE

    Lehtonen, O P

    1986-01-01

    The recovery of Streptococcus pneumoniae from the Isolator lysis-centrifugation blood culture has been low in many studies. The poor survival of pneumococci was not due to toxicity of the Isolator medium but to autolysis before plating. This autolysis was completely inhibited by adding 10 mM phosphorylcholine to the Isolator medium.

  13. Analysis of heat transfer in a centrifugal film evaporator

    NARCIS (Netherlands)

    Bruin, S.

    1970-01-01

    Heat transfer in a centrifugal film evaporator with a conical heating surface is analyzed. Two regions of transfer can be distinguished: an entrance region, where the temp. profile in the film develops, and an evapn. region, where \\"surface evapn.\\" takes place. Relations are derived for liq.-film

  14. Thermal hydrodynamic analysis of a countercurrent gas centrifuge

    International Nuclear Information System (INIS)

    Andrade, Delvonei Alves de

    1999-01-01

    The influence of the thermal countercurrent on the separative performance of countercurrent centrifuges is treated in this work. The methodology used consists in modeling the gas flow inside the rotor under thermal boundary conditions supplied by the structural thermal model. The gas flow model, also called hydrodynamical model, is based on the Finite Volume Method for cylindrical geometry with azimuthal symmetry. The structural thermal model is based on the Nodal Method and take into account simultaneously, the conduction convection and radiation phenomena. The procedure adopted for this study consisted in the definition of the operational and geometric conditions of a centrifuge which was used as a pattern to the accomplished analysis. This configuration, called 'Standard Centrifuge', was used for the accomplishment of several simulations where the importance of the realistic boundary thermal conditions for the numerical evaluation of the centrifuge separative capacity was evidenced. A selective alteration for the optical properties based on simple engineering procedures was proposed. An improvement of 5% was obtained with this alteration. (author)

  15. Toxic waste treatment with sliding centrifugal plasma reactor

    International Nuclear Information System (INIS)

    Pacheco, J.; Pacheco, M.; Valdivia, R.; Ramos, F.; Duran, M.; Hidalgo, M.; Cruz, A.; Martinez, J. C.; Martinez, R.; De la Cruz, S.; Flores, T.; Vidal, E.; Escobar, S.; Garduno, M.; Garcia, M.; Portillo, J.; Torres, C.; Estrada, N.; Velazquez, S.; Vasquez, C.

    2008-01-01

    The aim is to develop technology for hazardous waste treatment, including the building and putting into operation of a prototype based on a sliding centrifugal plasma technology to demonstrate its ability to degradation taking in account the existing environmental standards. (Author)

  16. The effect of balance holes to centrifugal pump performance

    Science.gov (United States)

    Babayigit, O.; Ozgoren, M.; Aksoy, M. H.; Kocaaslan, O.

    2017-07-01

    The aim of this study is to analyze of a centrifugal pump with and without balance holes by using ANSYS-Fluent software. The pump used in the study is a commercial centrifugal pump consisting of two stages that is a model of Sempa Pump Company. Firstly, models of impeller, diffuser, suction and discharge sections of the centrifugal pump were separately drawn using Ansys and Solidworks software. Later, grid structures were generated on the flow volume of the pump. Turbulent flow volume was numerically solved by realizable k-є turbulence model. The flow analyses were focused on the centrifugal pump performance and the flow characteristics under different operational conditions with/without balance holes. Distributions of flow characteristics such as velocity and pressure distributions in the flow volume were also determined, numerically. The results of Computational Fluid Dynamics (CFD) with/without balance holes for the pump head and hydraulic efficiency on the design flow rate of 80 m3/h were found to be 81.5/91.3 m and 51.9/65.3%, respectively.

  17. Why have we stopped research on liquid centrifugal separation

    International Nuclear Information System (INIS)

    Li, N.

    1996-01-01

    Using high-temperature high-speed liquid centrifuges for lanthanides and actinides separation was originally proposed as a physical separation method in the Los Alamos ADTT/ATW concept [C. Bowman, LA-UR-92-1065 (1992)]. The authors investigated centrifugal separation in a concerted effort of experiments, theoretical analysis and numerical simulations. They discovered that owing to the ionic-composition-dependence of the sedimentation coefficients for the fission products and actinides, separation by grouping of molecular densities would not work in general in the molten salt environment. Alternatively the lanthanides and actinides could be transferred to a liquid metal carrier (e.g. bismuth) via reductive extraction and then separated by liquid centrifuges, but the material and technical challenges are severe. Meanwhile the authors have established that the reductive extraction procedure itself can be used for desired separations. Unlike conventional aqueous-based reprocessing technologies, reductive extraction separation uses only reagent (Li) that reconstitutes carrier salts (LiF-BeF 2 ) and a processing medium (Bi) that can be continuously recycled and reused, with a nearly-pure fission products waste stream. The processing units are compact and reliable, and can be built at relatively low cost while maintaining high throughput. Therefore the research effort on developing liquid centrifuges for separations in ADTT/ATW was terminated in late 1995. This paper will discuss the various aspects involved in reaching this decision

  18. Centrifugal turbocompressor with contactless sealing for H-2 S

    International Nuclear Information System (INIS)

    Peculea, M.; Balint, I.; Hirean, I.; Dumitrescu, C.; Pitigoi, Gh.; Balanuca, C.

    1995-01-01

    This paper reports the development of a centrifugal turbocompressor with contactless sealing for H 2 S specially designed for the ROMAG Drobeta heavy water plant. The bench-scale experiments are described and the resulted main characteristics are given. For this equipment an asymmetric automatic anti-pumping protection system has been developed and patented

  19. Dynamic model including piping acoustics of a centrifugal compression system

    NARCIS (Netherlands)

    Helvoirt, van J.; Jager, de A.G.

    2007-01-01

    This paper deals with low frequency pulsation phenomena in full-scale centrifugal compression systems associated with compressor surge. The Greitzer lumped parameter model is applied to describe the dynamic behavior of an industrial compressor test rig and experimental evidence is provided for the

  20. Surge control of the electrically driven centrifugal compressor

    NARCIS (Netherlands)

    Boinov, K.O.; Lomonova, E.A.; Vandenput, A.J.A.; Tyagounov, A.

    2006-01-01

    This paper presents a method of the energy efficiency and the operational performance improvement of the electrically driven air compression system. The key innovation of the proposed method-the active surge suppression of the centrifugal compressor by means of the speed control of the electrical

  1. Modeling and identification of centrifugal compressor dynamics with approximate realizations

    NARCIS (Netherlands)

    Helvoirt, van J.; Jager, de A.G.; Steinbuch, M.; Smeulers, J.P.M.

    2005-01-01

    This paper deals with the parameter identification of a model for the dynamic behavior of a large industrial centrifugal compression system. Experimental results are presented to evaluate a new approach for determining the parameters of the modified version of the well-known Greitzer model. This

  2. Artificial gravity: head movements during short-radius centrifugation

    NARCIS (Netherlands)

    Young, L. R.; Hecht, H.; Lyne, L. E.; Sienko, K. H.; Cheung, C. C.; Kavelaars, J.

    2001-01-01

    Short-radius centrifugation is a potential countermeasure to long-term weightlessness. Unfortunately, head movements in a rotating environment induce serious discomfort, non-compensatory vestibulo-ocular reflexes, and subjective illusions of body tilt. In two experiments we investigated the effects

  3. Pasteurization of grapefruit juice using a centrifugal ultraviolet light irradiator

    Science.gov (United States)

    The pharmaceutical industry uses UV irradiators to inactivate viruses in liquids without heat. The penetration depth of UV in some liquids, such as serum plasma, can be short. To overcome this, very thin films may be produced by centrifugal force, small diameter tubing, or other means. Many liquid f...

  4. Cooling device for leaking fluid from a centrifugal pump

    International Nuclear Information System (INIS)

    Raymond, J.R.; Thomson, C.I.

    1978-01-01

    The patented device consists of an integrated heat exchanger in a centrifugal primary cooling circuit pump whose purpose is to cool the coolant medium which leaks along the pump shaft so that the shaft seals are not damaged. The cooling water passes through spirally arranged banks of tubes round the shaft, with baffle plates to direct the leaking coolant. (JIW)

  5. 21 CFR 864.9285 - Automated cell-washing centrifuge for immuno-hematology.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated cell-washing centrifuge for immuno... Establishments That Manufacture Blood and Blood Products § 864.9285 Automated cell-washing centrifuge for immuno-hematology. (a) Identification. An automated cell-washing centrifuge for immuno-hematology is a device used...

  6. Medical incidences during centrifuge training and F-16 flying in the Netherlands

    NARCIS (Netherlands)

    Holewijn, M.

    1996-01-01

    A survey in the NAMC database containing the records of centrifuge runs of candidate and experienced pilots revealed that in 15.1% of the centrifuge training sessions, a run was stopped. The major reasons were motion sickness (31%), fatigue (28%), and arrhythmias (22%). During centrifuge training at

  7. A novel technique using the Hendrickx centrifuge for extracting winter sporangia of Synchytrium endobioticum from soil

    NARCIS (Netherlands)

    Wander, J.G.N.; Berg, van den W.; Boogert, van den P.H.J.F.; Lamers, J.G.; Leeuwen, van G.C.M.; Hendrickx, G.; Bonants, P.J.M.

    2007-01-01

    A zonal centrifugation method, known as the Hendrickx centrifuge technique, was tested for routine detection of winter sporangia of Synchytrium endobioticum in soil. In four experiments the ability of the Hendrickx centrifuge to extract the sporangia from soil was compared with a method used by the

  8. 40 CFR Appendix - Alternative Organic HAP Emissions Limits for Open Molding, Centrifugal Casting, and SMC...

    Science.gov (United States)

    2010-07-01

    ... Limits for Open Molding, Centrifugal Casting, and SMC Manufacturing Operations Where the Standards Are..., Table 5 Alternative Organic HAP Emissions Limits for Open Molding, Centrifugal Casting, and SMC... casting—CR/HS 3,4 A vent system that moves heated air through the mold 27 lb/ton. 8. Centrifugal casting...

  9. Design and construction of a two-stage centrifugal pump | Nordiana ...

    African Journals Online (AJOL)

    Centrifugal pumps are widely used in moving liquids from one location to another in homes, offices and industries. Due to the ever increasing demand for centrifugal pumps it became necessary to design and construction of a two-stage centrifugal pump. The pump consisted of an electric motor, a shaft, two rotating impellers ...

  10. Inertial shear forces and the use of centrifuges in gravity research. What is the proper control?

    NARCIS (Netherlands)

    Loon, van J.J.W.A.; Folgering, H.T.E.; Bouten, C.V.C.; Veldhuijzen, J.P.; Smit, T.H.

    2003-01-01

    Centrifuges are used for 1×g controls in space flight microgravity experiments and in ground based research. Using centrifugation as a tool to generate an Earth like acceleration introduces unwanted inertial shear forces to the sample. Depending on the centrifuge and the geometry of the experiment

  11. Return to Flying Duties Following Centrifuge or Vibration Exposures

    Science.gov (United States)

    Scheuring, Richard A.; Clarke, Jonathan; Jones, Jeffrey A.

    2009-01-01

    Introduction: In an effort to determine the human performance limits for vibration in spacecraft being developed by NASA, astronauts were evaluated during a simulated launch profile in a centrifuge/vibration environment and separate vibration-only simulation. Current USAF and Army standards for return to flight following centrifuge exposures require 12-24 hours to pass before a crewmember may return to flying duties. There are no standards on vibration exposures and return to flying duties. Based on direct observation and provocative neurological testing of the astronauts, a new standard for return to flying duties following centrifuge and/or vibration exposures was established. Methods: 13 astronaut participants were exposed to simulated launch profiles in a + 3.5 Gx bias centrifuge/vibration environment and separately on a vibration table at the NASA-Ames Research Center. Each subject had complete neurological evaluations pre- and post-exposure for the centrifuge/vibration runs with the NASA neurological function rating scale (NFRS). Subjects who participated in the vibration-only exposures had video oculography performed with provocative maneuvers in addition to the NFRS. NFRS evaluations occurred immediately following each exposure and at 1 hour post-run. Astronauts who remained symptomatic at 1 hour had repeat NFRS performed at 1 hour intervals until the crewmember was asymptomatic. Results: Astronauts in the centrifuge/vibration study averaged a 3-5 point increase in NFRS scores immediately following exposure but returned to baseline 3 hours post-run. Subjects exposed to the vibration-only simulation had a 1-3 point increase following exposure and returned to baseline within 1-2 hours. Pre- and post- vibration exposure video oculography did not reveal any persistent ocular findings with provocative testing 1 hour post-exposure. Discussion: Based on direct observations and objective measurement of neurological function in astronauts following simulated launch

  12. Dysrhythmias in Laypersons During Centrifuge-Simulated Suborbital Spaceflight.

    Science.gov (United States)

    Suresh, Rahul; Blue, Rebecca S; Mathers, Charles H; Castleberry, Tarah L; Vanderploeg, James M

    2017-11-01

    There are limited data on cardiac dysrhythmias in laypersons during hypergravity exposure. We report layperson electrocardiograph (ECG) findings and tolerance of dysrhythmias during centrifuge-simulated suborbital spaceflight. Volunteers participated in varied-length centrifuge training programs of 2-7 centrifuge runs over 0.5-2 d, culminating in two simulated suborbital spaceflights of combined +Gz and +Gx (peak +4.0 Gz, +6.0 Gx, duration 5 s). Monitors recorded pre- and post-run mean arterial blood pressure (MAP), 6-s average heart rate (HR) collected at prespecified points during exposures, documented dysrhythmias observed on continuous 3-lead ECG, self-reported symptoms, and objective signs of intolerance on real-time video monitoring. Participating in the study were 148 subjects (43 women). Documented dysrhythmias included sinus pause (N = 5), couplet premature ventricular contractions (N = 4), bigeminy (N = 3), accelerated idioventricular rhythm (N = 1), and relative bradycardia (RB, defined as a transient HR drop of >20 bpm; N = 63). None were associated with subjective symptoms or objective signs of acceleration intolerance. Episodes of RB occurred only during +Gx exposures. Subjects had a higher post-run vs. pre-run MAP after all exposures, but demonstrated no difference in pre- and post-run HR. RB was more common in men, younger individuals, and subjects experiencing more centrifuge runs. Dysrhythmias in laypersons undergoing simulated suborbital spaceflight were well tolerated, though RB was frequently noted during short-duration +Gx exposure. No subjects demonstrated associated symptoms or objective hemodynamic sequelae from these events. Even so, heightened caution remains warranted when monitoring dysrhythmias in laypersons with significant cardiopulmonary disease or taking medications that modulate cardiac conduction.Suresh R, Blue RS, Mathers CH, Castleberry TL, Vanderploeg JM. Dysrhythmias in laypersons during centrifuge-stimulated suborbital

  13. An experiment to test centrifugal confinement for fusion

    International Nuclear Information System (INIS)

    Ellis, R.F.; Hassam, A.B.; Messer, S.; Osborn, B.R.

    2001-01-01

    The basic idea of centrifugal confinement is to use centrifugal forces from supersonic rotation to augment conventional magnetic confinement. Optimizing this 'knob' results in a fusion device that features four advantages: steady state, no disruptions, superior cross-field confinement, and a simpler coil configuration. The idea rests on two prongs: first, centrifugal forces can confine plasmas to desired regions of shaped magnetic fields; second, the accompanying large velocity shear can stabilize even magnetohydrodynamic (MHD) instabilities. A third feature is that the velocity shear also viscously heats the plasma; no auxiliary heating is necessary to reach fusion temperatures. Regarding transport, the velocity shear can also quell microturbulence, leading to fully classical confinement, as there are no neoclassical effects. Classical parallel electron transport then sets the confinement time. These losses are minimized by a large Pastukhov factor resulting from the deep centrifugal potential well: at Mach 4-5, the Lawson criterion is accessible. One key issue is whether velocity shear will be sufficient by itself to stabilize MHD interchanges. Numerical simulations indicate that laminar equilibria can be obtained at Mach numbers of 4-5 but that the progression toward laminarity with increasing Mach number is accompanied by residual convection from the interchanges. The central goal of the Maryland Centrifugal Torus (MCT) [R. F. Ellis et al., Bull. Am. Phys. Soc. 44, 48 (1998)] is to obtain MHD stability from velocity shear. As an assist to accessing laminarity, MCT will incorporate two unique features: plasma elongation and toroidal magnetic field. The former raises velocity shear efficiency, and modest magnetic shear should suppress residual convection

  14. Role of centrifugal and charge effects of the mass separation in a plasma centrifuge with crossed fields

    International Nuclear Information System (INIS)

    Zhdanov, V.M.; Karchevskii, A.I.; Lukovnikov, A.I.; Potanin, E.P.

    1982-01-01

    The coefficients of mass separation have been calculated for gas mixtures in crossed electric and magnetic fields. The initial kinetic equations have been derived, and the contribution of centrifugal and charge separation mechanisms to mass separation in a weakly ionized plasma has been assessed

  15. A comparison of two centrifuge techniques for constructing vulnerability curves: insight into the 'open-vessel' artifact.

    Science.gov (United States)

    Yin, Pengxian; Meng, Feng; Liu, Qing; An, Rui; Cai, Jing; Du, Guangyuan

    2018-03-30

    A vulnerability curve (VC) describes the extent of xylem cavitation resistance. Centrifuges have been used to generate VCs for decades via static- and flow-centrifuge methods. Recently, the validity of the centrifuge techniques has been questioned. Researchers have hypothesized that the centrifuge techniques might yield unreliable VCs due to the open-vessel artifact. However, other researchers reject this hypothesis. The focus of the dispute is centred on whether exponential VCs are more reliable when the static-centrifuge method is used than with the flow-centrifuge method. To further test the reliability of the centrifuge technique, two centrifuges were manufactured to simulate the static- and flow-centrifuge methods. VCs of three species with open vessels of known lengths were constructed using the two centrifuges. The results showed that both centrifuge techniques produced invalid VCs for Robinia because the water flow through stems under mild tension in centrifuges led to an increasing loss of water conductivity. Additionally, the injection of water in the flow-centrifuge exacerbated the loss of water conductivity. However, both centrifuge techniques yielded reliable VCs for Prunus, regardless of the presence of open vessels in the tested samples. We conclude that centrifuge techniques can be used in species with open vessels only when the centrifuge produces a VC that matches the bench-dehydration VC. This article is protected by copyright. All rights reserved.

  16. Multiphase CFD simulation of a solid bowl centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Romani Fernandez, X.; Nirschl, H. [Universitaet Karlsruhe, Institut fuer MVM, Karlsruhe (Germany)

    2009-05-15

    This study presents some results from the numerical simulation of the flow in an industrial solid bowl centrifuge used for particle separation in industrial fluid processing. The computational fluid dynamics (CFD) software Fluent was used to simulate this multiphase flow. Simplified two-dimensional and three-dimensional geometries were built and meshed from the real centrifuge geometry. The CFD results show a boundary layer of axially fast moving fluid at the gas-liquid interface. Below this layer there is a thin recirculation. The obtained tangential velocity values are lower than the ones for the rigid-body motion. Also, the trajectories of the solid particles are evaluated. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  17. Optimization of centrifugal pump cavitation performance based on CFD

    International Nuclear Information System (INIS)

    Xie, S F; Wang, Y; Liu, Z C; Zhu, Z T; Ning, C; Zhao, L F

    2015-01-01

    In order to further improve the cavitation performance of a centrifugal pump, slots on impeller blade near inlet were studied and six groups of hydraulic model were designed. Base on cavitating flow feature inside a centrifugal pump, bubble growth and implosion are calculated from the Rayleigh-Plesset equation which describes the dynamic behavior of spherical bubble and RNG κ-ε model was employed to simulate and analyze the internal two-phase flow of the model pump under the same conditions. The simulation results show that slots on blade near inlet could improve the cavitation performance and cavitation performance improvement of the second group was more obvious. Under the same conditions, the pressure on the back of blade near inlet was higher than the pressure on the back of unmodified blade near inlet, and energy distribution in the flow channel between the two blades was more uniform with a small change of head

  18. DSMC simulation of feed jet flow in gas centrifuge

    International Nuclear Information System (INIS)

    Jiang Dongjun; Zeng Shi

    2011-01-01

    Feed jet flow acts an important role for the counter-current in gas centrifuge. Direct simulation Monte-Carlo (DSMC) method was adopted to simulate the structure of the radial feed jet model. By setting the proper boundary conditions and the collision model of molecules, the flow distributions of the 2D radial feed jet were acquired under different feed conditions, including the wave structure of feed jet and the profile of the flow parameters. The analyses of the calculation results note the following flow phenomena: Near the radial outflow boundary, the obvious peaks of the flow parameters exist; higher speed of feed gas brings stronger influence on the flow field of the centrifuge; including the density, pressure and velocity of the gas, the distribution of the temperature is affected by the feed jet, at the outflow boundary, temperature to double times of the average value. (authors)

  19. Practical considerations in realizing a magnetic centrifugal mass filter

    Energy Technology Data Exchange (ETDEWEB)

    Gueroult, Renaud; Fisch, Nathaniel J. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)

    2012-12-15

    The magnetic centrifugal mass filter concept represents a variation on the plasma centrifuge, with applications that are particularly promising for high-throughput separation of ions with large mass differences. A number of considerations, however, constrain the parameter space in which this device operates best. The rotation speed, magnetic field intensity, and ion temperature are constrained by the ion confinement requirements. Collisions must also be large enough to eject ions, but small enough not to eject them too quickly. The existence of favorable regimes meeting these constraints is demonstrated by a single-particle orbit code. As an example of interest, it is shown that separation factors of about 2.3 are achievable in a single pass when separating Aluminum from Strontium ions.

  20. CENTAR gas centrifuge enrichment project: economics and engineering considerations

    International Nuclear Information System (INIS)

    Fishman, A.M.

    1977-01-01

    Description of some economic and engineering considerations of the CENTAR Associates' 3000000 SWU/yr gas centrifuge uranium enrichment plant project. The need for uranium enrichment facilities is discussed, and the advantages of using the centrifuge process rather than the presently used gaseous diffusion process are reviewed. A description of the CENTAR plant is given, highlighting the major features of the facility. Since the centiruges to be used in the plant account for approximately 50% of the capital cost of the project, the philosophy of their manufacture and procurement is discussed. Various design considerations which bear upon process economics are presented to give the reader an appreciation of the subtleties of the technology and the flexibility possible in plant design. Special attention is given to meeting the needs of the utility customer at the lowest possible cost

  1. Product Evaluation Task Force Phase Two report for centrifuge cake

    International Nuclear Information System (INIS)

    Francis, A.J.; Davies, A.

    1990-01-01

    It has been proposed that all Intermediate Level Wastes arising at Sellafield should be encapsulated prior to ultimate disposal. The Product Evaluation Task Force (PETF) was set up to investigate possible encapsulants and to produce and adequate data base to justify the preferred matrices. Three possible types of encapsulants for Centrifuge Cake;- Inorganic cements, Polymer cements, and Polymers, are evaluated using the Kepner Tregoe decision analysis technique. This technique provides a methodology for scoring and ranking alternative options and evaluating any risks associated with an option. The analysis shows that for all four stages of waste management operations ie. Storage Transport, handling and emplacement Disposal, and Process, cement matrices are considerably superior to other potential matrices. A matrix, consisting of nine parts Blast Furnace Slag (BFS) to one part Ordinary Portland Cement (OPC) is recommended as the preferred matrix for Phase 3 studies on Centrifuge Cake. (author)

  2. Effect of piping systems on surge in centrifugal compressors

    International Nuclear Information System (INIS)

    Tamaki, Hideaki

    2008-01-01

    There is a possibility that the exchange of the piping system may change the surge characteristic of a compressor. The piping system of a plant is not always the same as that of a test site. Then it is important to evaluate the effect of piping systems on surge characteristics in centrifugal compressors. Several turbochargers combined with different piping systems were tested. The lumped parameter model which was simplified to be solved easily was applied for the prediction of surge point. Surge lines were calculated with the linearlized lumped parameter model. The difference between the test and calculated results was within 10 %. Trajectory of surge cycle was also examined by solving the lumped parameter model. Mild surge and deep surge were successfully predicted. This study confirmed that the lumped parameter model was a very useful tool to predict the effect of piping systems on surge characteristics in centrifugal compressors, even though that was a simple model

  3. Reverse-Tangent Injection in a Centrifugal Compressor

    Science.gov (United States)

    Skoch, Gary J.

    2007-01-01

    Injection of working fluid into a centrifugal compressor in the reverse tangent direction has been invented as a way of preventing flow instabilities (stall and surge) or restoring stability when stall or surge has already commenced. The invention applies, in particular, to a centrifugal compressor, the diffuser of which contains vanes that divide the flow into channels oriented partly radially and partly tangentially. In reverse-tangent injection, a stream or jet of the working fluid (the fluid that is compressed) is injected into the vaneless annular region between the blades of the impeller and the vanes of the diffuser. As used here, "reverse" signifies that the injected flow opposes (and thereby reduces) the tangential component of the velocity of the impeller discharge. At the same time, the injected jet acts to increase the radial component of the velocity of the impeller discharge.

  4. Numerical Calculation of the Flow in a Centrifugal Compressor Volute

    International Nuclear Information System (INIS)

    Seong, Seon Mo; Kang, Shin Hyoung; Cho, Kyung Seok; Kim, Woo June

    2007-01-01

    Flows in the centrifugal compressor volute with circular cross section are numerically investigated. The computational domain contained inlet passage, impeller, radial and axial diffuser, and volute. The volute grid for the calculation utilized a multi-block arrangement to form a butterfly grid and flow calculations are performed using commercial CFD software, CFX-TASCflow. The centrifugal compressor of this study has the inlet passage like steps and axial diffuser after radial diffuser because of the shape of the motor cooling fins and installation constraints. Due to this feature the swirling flow pattern is different from the other investigations. The loss in through the inlet passage was considerable and the flow inside volute is very complex and three dimensional with strong vortex and recirculation through volute tongue

  5. Experiment of a centrifugal pump during changing speed operation

    International Nuclear Information System (INIS)

    Yuan, H J; Wu, Y L; Liu, S H; Shao, J

    2012-01-01

    In this paper, a method of changing rotational speed of impeller periodically as the pulsatile working condition is developed to realize pulse outputs both of flow discharge and of head for a centrifugal pump through experiment. The performance of the centrifugal pump under pulsatile working operation condition is measured which indicates this model pump could produce desired pulse flow under such condition. Flow patterns at four testing points under pulsatile conditions are obtained by means of the particle image velocimetry (PIV) technology both with laser induced fluorescence (LIF) particles and refractive index matched (RIM) fluid. Results of PIV measurement show the distributions of velocity, streamlines, and the principal Reynolds normal stress (PRNS). Under the design flow rate condition, the relative velocity in the blade channel distributes smoothly and decreases from inlet to exit. And at the impeller exit, the relative velocity is lower close to suction side than that near pressure side of blade in most of blade channels.

  6. Enantioseparations in counter-current chromatography and centrifugal partition chromatography.

    Science.gov (United States)

    Foucault, A P

    2001-01-12

    Examples of chiral separations in counter-current chromatography (CCC) and centrifugal partition chromatography (CPC) are not numerous, due to the difficulty of finding chiral selectors highly selective in the liquid phase as well as a combination of solvents that does not destroy the selectivity and retains the capacity to elute chiral isomers of interest. New ideas and new chiral selectors generally come from other separation techniques, as will be highlighted in this review.

  7. Tolerance of centrifuge-simulated suborbital spaceflight by medical condition.

    Science.gov (United States)

    Blue, Rebecca S; Pattarini, James M; Reyes, David P; Mulcahy, Robert A; Garbino, Alejandro; Mathers, Charles H; Vardiman, Johnené L; Castleberry, Tarah L; Vanderploeg, James M

    2014-07-01

    We examined responses of volunteers with known medical disease to G forces in a centrifuge to evaluate how potential commercial spaceflight participants (SFPs) might tolerate the forces of spaceflight despite significant medical history. Volunteers were recruited based upon suitability for each of five disease categories (hypertension, cardiovascular disease, diabetes, lung disease, back or neck problems) or a control group. Subjects underwent seven centrifuge runs over 2 d. Day 1 consisted of two +G(z) runs (peak = +3.5 G(z), Run 2) and two +G(x), runs (peak = +6.0 G(x), Run 4). Day 2 consisted of three runs approximating suborbital spaceflight profiles (combined +G(x) and +G(z), peak = +6.0 G(x)/+4.0 G(z)). Data collected included blood pressure, electrocardiogram, pulse oximetry, neurovestibular exams, and post-run questionnaires regarding motion sickness, disorientation, grayout, and other symptoms. A total of 335 subjects registered for participation, of which 86 (63 men, 23 women, age 20-78 yr) participated in centrifuge trials. The most common causes for disqualification were weight and severe and uncontrolled medical or psychiatric disease. Five subjects voluntarily withdrew from the second day of testing: three for anxiety reasons, one for back strain, and one for time constraints. Maximum hemodynamic values recorded included HR of 192 bpm, systolic BP of 217 mmHg, and diastolic BP of 144 mmHg. Common subjective complaints included grayout (69%), nausea (20%), and chest discomfort (6%). Despite their medical history, no subject experienced significant adverse physiological responses to centrifuge profiles. These results suggest that most individuals with well-controlled medical conditions can withstand acceleration forces of launch and re-entry profiles of current commercial spaceflight vehicles.

  8. Laser tracker TSPI uncertainty quantification via centrifuge trajectory

    Science.gov (United States)

    Romero, Edward; Paez, Thomas; Brown, Timothy; Miller, Timothy

    2009-08-01

    Sandia National Laboratories currently utilizes two laser tracking systems to provide time-space-position-information (TSPI) and high speed digital imaging of test units under flight. These laser trackers have been in operation for decades under the premise of theoretical accuracies based on system design and operator estimates. Advances in optical imaging and atmospheric tracking technology have enabled opportunities to provide more precise six degree of freedom measurements from these trackers. Applying these technologies to the laser trackers requires quantified understanding of their current errors and uncertainty. It was well understood that an assortment of variables contributed to laser tracker uncertainty but the magnitude of these contributions was not quantified and documented. A series of experiments was performed at Sandia National Laboratories large centrifuge complex to quantify TSPI uncertainties of Sandia National Laboratories laser tracker III. The centrifuge was used to provide repeatable and economical test unit trajectories of a test-unit to use for TSPI comparison and uncertainty analysis. On a centrifuge, testunits undergo a known trajectory continuously with a known angular velocity. Each revolution may represent an independent test, which may be repeated many times over for magnitudes of data practical for statistical analysis. Previously these tests were performed at Sandia's rocket sled track facility but were found to be costly with challenges in the measurement ground truth TSPI. The centrifuge along with on-board measurement equipment was used to provide known ground truth position of test units. This paper discusses the experimental design and techniques used to arrive at measures of laser tracker error and uncertainty.

  9. Analysis and simulation of centrifugal pendulum vibration absorbers

    OpenAIRE

    Smith, Emma

    2015-01-01

    When environmental laws are constricted and downsizing of engines has become the reality of the vehicle industry, there needs to be a solution for the rise in torsion vibrations in the drivetrain. These increased levels of torsion vibrations are mostly due to excitations from the firing pulses, which in turn have become increased due to higher cylinder pressures. One of the solutions for further dampening the system is to add a centrifugal pendulum absorber to the flywheel, and predicting the...

  10. Potential constants and centrifugal distortion constants of octahedral hexafluoride molecules

    Energy Technology Data Exchange (ETDEWEB)

    Manivannan, G [Government Thirumagal Mill' s Coll., Gudiyattam, Tamil Nadu (India)

    1981-04-01

    The kinetic constants method outlined by Thirugnanasambandham (1964) based on Wilson's (1955) group theory has been adapted in evaluating the potential constants for SF/sub 6/, SeF/sub 6/, WF/sub 6/, IrF/sub 6/, UF/sub 6/, NpF/sub 6/, and PuF/sub 6/ using the experimentally observed vibrational frequency data. These constants are used to calculate the centrifugal distortion constants for the first time.

  11. Information system for IAEA inspectors at a centrifuge enrichment plant

    International Nuclear Information System (INIS)

    Baker, A.L.; Tape, J.W.; Picard, R.R.; Strittmatter, R.B.

    1985-01-01

    An information system has been developed to aid International Atomic Energy Agency (IAEA) inspectors at the Portsmouth Gas Centrifuge Plant in the US. This system is designed to provide the inspectors with data storage, data analysis, and data evaluation and decision capabilities with minimal impact on the plant operations. The techniques and methodologies developed for this specific case are described with discussion of their general applicability to IAEA inspections at all types of facilities. 7 refs

  12. Hydraulic performance of a multistage array of advanced centrifugal contactors

    International Nuclear Information System (INIS)

    Hodges, M.E.

    1984-01-01

    The hydraulic characteristics of an advanced design centrifugal contactor array have been determined at the Savannah River Laboratory (SRL). The advanced design utilizes couette mixing (Taylor vortices) in the annulus between the rotating and stationary bowls. Excellent phase separation over a wide range of flow conditions was obtained. Interfaces within an entire eight-stage array were controlled with a single weir air pressure. 2 references, 5 figures

  13. An alternative arrangement of metered dosing fluid using centrifugal pump

    Science.gov (United States)

    Islam, Md. Arafat; Ehsan, Md.

    2017-06-01

    Positive displacement dosing pumps are extensively used in various types of process industries. They are widely used for metering small flow rates of a dosing fluid into a main flow. High head and low controllable flow rates make these pumps suitable for industrial flow metering applications. However their pulsating flow is not very suitable for proper mixing of fluids and they are relatively more expensive to buy and maintain. Considering such problems, alternative techniques to control the fluid flow from a low cost centrifugal pump is practiced. These include - throttling, variable speed drive, impeller geometry control and bypass control. Variable speed drive and impeller geometry control are comparatively costly and the flow control by throttling is not an energy efficient process. In this study an arrangement of metered dosing flow was developed using a typical low cost centrifugal pump using bypass flow technique. Using bypass flow control technique a wide range of metered dosing flows under a range of heads were attained using fixed pump geometry and drive speed. The bulk flow returning from the system into the main tank ensures better mixing which may eliminate the need of separate agitators. Comparative performance study was made between the bypass flow control arrangement of centrifugal pump and a diaphragm type dosing pump. Similar heads and flow rates were attainable using the bypass control system compared to the diaphragm dosing pump, but using relatively more energy. Geometrical optimization of the centrifugal pump impeller was further carried out to make the bypass flow arrangement more energy efficient. Although both the systems run at low overall efficiencies but the capital cost could be reduced by about 87% compared to the dosing pump. The savings in capital investment and lower maintenance cost very significantly exceeds the relatively higher energy cost of the bypass system. This technique can be used as a cost effective solution for

  14. Impeller Design of a Centrifugal Fan with Blade Optimization

    OpenAIRE

    Lee, Yu-Tai; Ahuja, Vineet; Hosangadi, Ashvin; Slipper, Michael E.; Mulvihill, Lawrence P.; Birkbeck, Roger; Coleman, Roderick M.

    2011-01-01

    A method is presented for redesigning a centrifugal impeller and its inlet duct. The double-discharge volute casing is a structural constraint and is maintained for its shape. The redesign effort was geared towards meeting the design volute exit pressure while reducing the power required to operate the fan. Given the high performance of the baseline impeller, the redesign adopted a high-fidelity CFD-based computational approach capable of accounting for all aerodynamic losses. The present eff...

  15. Dynamical system analysis of unstable flow phenomena in centrifugal blower

    Directory of Open Access Journals (Sweden)

    Garcia David

    2015-09-01

    Full Text Available Methods of dynamical system analysis were employed to analyze unsteady phenomena in a centrifugal blower. Pressure signals gathered at different control points were decomposed into their Principal Components (PCs by means of Singular Spectrum Analysis (SSA. Certain number of PCs was considered in the analysis based on their statistical correlation. Projection of the original signal onto its PCs allowed to draw the phase trajectory that clearly separated non-stable blower working conditions from its regular operation.

  16. On the efficiency of a fluid-fluid centrifugal separation

    International Nuclear Information System (INIS)

    Apazidis, N.

    1984-05-01

    Efficiency of a separation process of two immiscible incompressible fluids of different densities occuring under the influence of a combined centrifugal and gravitational force field is investigated. The analysis is based on the set of equations for a rotating two-phase flow of a mixture as presented by Greenspan (1983). The geometry of the separation process is considered and the total flow of the separated phases evaluated. (author)

  17. Production of titanium alloy powders by vacuum fusion-centrifugation

    International Nuclear Information System (INIS)

    Decours, Jacques; Devillard, Jacques; Sainfort, G.

    1975-01-01

    This work presents a method of preparing powdered TA6V and TA6Z5D alloys by fusion-centrifugation under electron bombardment. An industrial capacity apparatus for the production of metallic powders is described and the characteristics of the powders obtained are presented. Solid parts were shaped by sintering and drawing at temperatures between 850 and 1100 deg C. The structure and mechanical properties of the cold densified products before and after heat treatment are compared [fr

  18. Investigation on Thrust and Moment Coefficients of a Centrifugal Turbomachine

    Directory of Open Access Journals (Sweden)

    Bo Hu

    2018-04-01

    Full Text Available In radial pumps and turbines, the centrifugal through-flow in both the front and the back chambers is quite common. It strongly impacts the core swirl ratio, pressure distribution, axial thrust and frictional torque. In order to investigate these relationships experimentally, a test rig was designed at the University of Duisburg-Essen and described in this paper. Based on both the experimental and numerical results, correlations are determined to predict the impacts of the centrifugal through-flow on the core swirl ratio, the thrust coefficient and the moment coefficient. Two correlations respectively are determined to associate the core swirl ratio with the local through-flow coefficient for both Batchelor type flow and Stewartson type flow. The correlations describing the thrust coefficient and the moment coefficient in a rotor-stator cavity with centripetal through-flow (Hu et al., 2017 are modified for the case of centrifugal through-flow. The Daily and Nece diagram distinguishing between different flow regimes in rotor-stator cavities is extended with a through-flow coordinate into 3D. The achieved results provide a comprehensive data base which is intended to support the calculation of axial thrust and moment coefficients during the design process of radial pumps and turbines in a more accurate manner.

  19. Massively Parallel Single-Molecule Manipulation Using Centrifugal Force

    Science.gov (United States)

    Wong, Wesley; Halvorsen, Ken

    2011-03-01

    Precise manipulation of single molecules has led to remarkable insights in physics, chemistry, biology, and medicine. However, two issues that have impeded the widespread adoption of these techniques are equipment cost and the laborious nature of making measurements one molecule at a time. To meet these challenges, we have developed an approach that enables massively parallel single- molecule force measurements using centrifugal force. This approach is realized in the centrifuge force microscope, an instrument in which objects in an orbiting sample are subjected to a calibration-free, macroscopically uniform force- field while their micro-to-nanoscopic motions are observed. We demonstrate high- throughput single-molecule force spectroscopy with this technique by performing thousands of rupture experiments in parallel, characterizing force-dependent unbinding kinetics of an antibody-antigen pair in minutes rather than days. Currently, we are taking steps to integrate high-resolution detection, fluorescence, temperature control and a greater dynamic range in force. With significant benefits in efficiency, cost, simplicity, and versatility, single-molecule centrifugation has the potential to expand single-molecule experimentation to a wider range of researchers and experimental systems.

  20. Effect of centrifugation on dynamic susceptibility of magnetic fluids

    Science.gov (United States)

    Pshenichnikov, Alexander; Lebedev, Alexander; Lakhtina, Ekaterina; Kuznetsov, Andrey

    2017-06-01

    The dispersive composition, dynamic susceptibility and spectrum of times of magnetization relaxation for six samples of magnetic fluid obtained by centrifuging two base colloidal solutions of the magnetite in kerosene was investigated experimentally. The base solutions differed by the concentration of the magnetic phase and the width of the particle size distribution. The procedure of cluster analysis allowing one to estimate the characteristic sizes of aggregates with uncompensated magnetic moments was described. The results of the magnetogranulometric and cluster analyses were discussed. It was shown that centrifugation has a strong effect on the physical properties of the separated fractions, which is related to the spatial redistribution of particles and multi-particle aggregates. The presence of aggregates in magnetic fluids is interpreted as the main reason of low-frequency (0.1-10 kHz) dispersion of the dynamic susceptibility. The obtained results count in favor of using centrifugation as an effective means of changing the dynamic susceptibility over wide limits and obtaining fluids with the specified type of susceptibility dispersion.

  1. Centrifuge: rapid and sensitive classification of metagenomic sequences.

    Science.gov (United States)

    Kim, Daehwan; Song, Li; Breitwieser, Florian P; Salzberg, Steven L

    2016-12-01

    Centrifuge is a novel microbial classification engine that enables rapid, accurate, and sensitive labeling of reads and quantification of species on desktop computers. The system uses an indexing scheme based on the Burrows-Wheeler transform (BWT) and the Ferragina-Manzini (FM) index, optimized specifically for the metagenomic classification problem. Centrifuge requires a relatively small index (4.2 GB for 4078 bacterial and 200 archaeal genomes) and classifies sequences at very high speed, allowing it to process the millions of reads from a typical high-throughput DNA sequencing run within a few minutes. Together, these advances enable timely and accurate analysis of large metagenomics data sets on conventional desktop computers. Because of its space-optimized indexing schemes, Centrifuge also makes it possible to index the entire NCBI nonredundant nucleotide sequence database (a total of 109 billion bases) with an index size of 69 GB, in contrast to k-mer-based indexing schemes, which require far more extensive space. © 2016 Kim et al.; Published by Cold Spring Harbor Laboratory Press.

  2. Centrifuge in Free Fall: Combustion at Partial Gravity

    Science.gov (United States)

    Ferkul, Paul

    2017-01-01

    A centrifuge apparatus is developed to study the effect of variable acceleration levels in a drop tower environment. It consists of a large rotating chamber, within which the experiment is conducted. NASA Glenn Research Center 5.18-second Zero-Gravity Facility drop tests were successfully conducted at rotation rates up to 1 RPS with no measurable effect on the overall Zero-Gravity drop bus. Arbitrary simulated gravity levels from zero to 1-g (at a radius of rotation 30 cm) were produced. A simple combustion experiment was used to exercise the capabilities of the centrifuge. A total of 23 drops burning a simulated candle with heptane and ethanol fuel were performed. The effect of gravity level (rotation rate) and Coriolis force on the flames was observed. Flames became longer, narrower, and brighter as gravity increased. The Coriolis force tended to tilt the flames to one side, as expected, especially as the rotation rate was increased. The Zero-Gravity Centrifuge can be a useful tool for other researchers interested in the effects of arbitrary partial gravity on experiments, especially as NASA embarks on future missions which may be conducted in non-Earth gravity.

  3. Calculations of the Acceleration of Centrifugal Loading on Adherent Cells

    Science.gov (United States)

    Chen, Kang; Song, Yang; Liu, Qing; Zhang, Chunqiu

    2017-07-01

    Studies have shown that the morphology and function of living cells are greatly affected by the state of different high acceleration. Based on the centrifuge, we designed a centrifugal cell loading machine for the mechanical biology of cells under high acceleration loading. For the machine, the feasibility of the experiment was studied by means of constant acceleration or variable acceleration loading in the Petri dish fixture and/or culture flask. Here we analyzed the distribution of the acceleration of the cells with the change of position and size of the culturing device quantitatively. It is obtained that Petri dish fixture and/or culture flask can be used for constant acceleration loading by experiments; the centripetal acceleration of the adherent cells increases with the increase of the distance between the rotor center of the centrifuge and the fixture of the Petri dish and the size of the fixture. It achieves the idea that the general biology laboratory can conduct the study of mechanical biology at high acceleration. It also provides a basis for more accurate study of the law of high acceleration on mechanobiology of cells.

  4. Evolutionary Optimization of Centrifugal Nozzles for Organic Vapours

    Science.gov (United States)

    Persico, Giacomo

    2017-03-01

    This paper discusses the shape-optimization of non-conventional centrifugal turbine nozzles for Organic Rankine Cycle applications. The optimal aerodynamic design is supported by the use of a non-intrusive, gradient-free technique specifically developed for shape optimization of turbomachinery profiles. The method is constructed as a combination of a geometrical parametrization technique based on B-Splines, a high-fidelity and experimentally validated Computational Fluid Dynamic solver, and a surrogate-based evolutionary algorithm. The non-ideal gas behaviour featuring the flow of organic fluids in the cascades of interest is introduced via a look-up-table approach, which is rigorously applied throughout the whole optimization process. Two transonic centrifugal nozzles are considered, featuring very different loading and radial extension. The use of a systematic and automatic design method to such a non-conventional configuration highlights the character of centrifugal cascades; the blades require a specific and non-trivial definition of the shape, especially in the rear part, to avoid the onset of shock waves. It is shown that the optimization acts in similar way for the two cascades, identifying an optimal curvature of the blade that both provides a relevant increase of cascade performance and a reduction of downstream gradients.

  5. Centrifugal vacuum casting for fuel cladding tube blanks

    International Nuclear Information System (INIS)

    Zelenskii, V.F.; Neklyudov, I.M.; Chernyi, B.P.; Zeidlits, M.P.; Vanzha, A.F.; Rubashko, V.G.; Ryabchikov, L.N.; Smirnov, Y.K.; Bespalova, V.R.; Mashkarova, V.T.; Rybal'chenko, N.D.

    1990-01-01

    An advanced technique for making tube blanks with an acceptable level of nonmetallic inclusions is vacuum induction melting combined with centrifugal casting, as the latter gives a cylindrical casting having an axial hole, while the cast metal has elevated density and contains fewer nonmetallic inclusions than does the metal cast in a stationary mold. The reduction in the nonmetallic inclusions occurs because of increased rates of floating up in the rotating mold on account of the centrifugal force and the rejection to the inner surface. One can choose the parameters such as the pouring speed, rotational speed, mold cooling, and liquid-metal temperature and can introduce a deoxidizer to remove the nonmetallic inclusions or reduce the grain size of them and produce an appropriate cast structure and obtain a metal whose quality is the same as that on vacuum induction melting with secondary arc remelting. For these purposes, the authors have developed centrifugal-casting machines for use under vacuum or in inert gases with horizontal and vertical mold rotation axes

  6. The AQK network and the libyan proliferation with centrifuges

    International Nuclear Information System (INIS)

    Lucase-Gouley, S.; Louvet, P.

    2006-01-01

    This review paper investigates the role of the Abdul Qader Khan (AQK) network in the attempt of Libya to possess nuclear weapons, in the light of the open literature and of the acts of justice that are now public in different countries. In December 2003, Colonel Khadafi was obliged to abandon his nuclear weapons program after the boarding and inspection of the BBC China. Rapidly the international community was aware that the centrifuge technology and components were obtained through the AQK network. Described as a 'nuclear supermarket' by the head of the IAEA, Mohammed El Baradei, the network organized and developed initially by AQK to supply the Pakistani nuclear program was diverted to fulfill its personal ambitions. The centrifuge technology, components, documentation and the fabrication unit, named Project 1001, which have been bought and sent to Libya are reviewed. The implementation of fabrication units of centrifuge components in Malaysia and South-Africa are explicated. This paper studies the difficulties encountered by the international export control relative to the screening companies involved and the organization of the network. Finally, the important features that still remain unknown and remain of concern are listed here. (authors)

  7. Prenatal centrifugation: A model for fetal programming of adult weight?

    Science.gov (United States)

    Baer, Lisa A.; Rushing, Linda; Wade, Charles E.; Ronca, April E.

    2005-08-01

    'Fetal programming' is a newly emerging field that is revealing astounding insights into the prenatal origins of adult disease, including metabolic, endocrine, and cardiovascular pathophysiology. In the present study, we tested the hypothesis that rat pups conceived, gestated and born at 2-g have significantly reduced birth weights and increased adult body weights as compared to 1-g controls. Offspring were produced by mating young adult male and female rats that were adapted to 2-g centrifugation. Female rats underwent conception, pregnancy and birth at 2-g. Newborn pups in the 2-g condition were removed from the centrifuge and fostered to non-manipulated, newly parturient dams maintained at 1-g. Comparisons were made with 1-g stationary controls, also cross- fostered at birth. As compared to 1-g controls, birth weights of pups gestated and born at 2-g were significantly reduced. Pup body weights were significantly reduced until Postnatal day (P)12. Beginning on P63, body weights of 2-g-gestated offspring exceeded those of 1-g controls by 7-10%. Thus, prenatal rearing at 2-g restricts neonatal growth and increases adult body weight. Collectively, these data support the hypothesis that 2-g centrifugation alters the intrauterine milieu, thereby inducing persistent changes in adult phenotype.

  8. Evaluation of amides and centrifugation temperature in boar semen cryopreservation.

    Science.gov (United States)

    Bianchi, I; Calderam, K; Maschio, E F; Madeira, E M; da Rosa Ulguim, R; Corcini, C D; Bongalhardo, D C; Corrêa, E K; Lucia, T; Deschamps, J C; Corrêa, M N

    2008-03-15

    Two experiments were conducted to evaluate the use of amides as cryoprotectants and two centrifugation temperatures (15 or 24 degrees C) in boar semen cryopreservation protocols. Semen was diluted in BTS, cooled centrifuged, added to cooling extenders, followed by the addition of various cryoprotectants. In experiment 1, mean (+/-S.E.M.) sperm motility for 5% dimethylformamide (DMF; 50.6+/-1.9%) and 5% dimethylacetamide (DMA; 53.8+/-1.7%) were superior (P0.05). In experiment 2, we tested MF, DMF, and DMA at 3, 5, and 7%. Sperm motility and membrane integrity were higher for 5% DMA (53.8+/-1.7 and 50.9+/-1.9%) and 5% DMF (50.6+/-1.9 and 47.9+/-2.1%), in comparison with 7% DMF and all MF concentrations (P0.05). In conclusion, boar semen was successfully cryopreserved by replacement of glycerol with amides (especially 5% DMA) and centrifugation at 15 degrees C, with benefits for post-thaw sperm motility and membrane integrity.

  9. A 'smart' tube holder enables real-time sample monitoring in a standard lab centrifuge.

    Science.gov (United States)

    Hoang, Tony; Moskwa, Nicholas; Halvorsen, Ken

    2018-01-01

    The centrifuge is among the oldest and most widely used pieces of laboratory equipment, with significant applications that include clinical diagnostics and biomedical research. A major limitation of laboratory centrifuges is their "black box" nature, limiting sample observation to before and after centrifugation. Thus, optimized protocols require significant trial and error, while unoptimized protocols waste time by centrifuging longer than necessary or material due to incomplete sedimentation. Here, we developed an instrumented centrifuge tube receptacle compatible with several commercial benchtop centrifuges that can provide real-time sample analysis during centrifugation. We demonstrated the system by monitoring cell separations during centrifugation for different spin speeds, concentrations, buffers, cell types, and temperatures. We show that the collected data are valuable for analytical purposes (e.g. quality control), or as feedback to the user or the instrument. For the latter, we verified an adaptation where complete sedimentation turned off the centrifuge and notified the user by a text message. Our system adds new functionality to existing laboratory centrifuges, saving users time and providing useful feedback. This add-on potentially enables new analytical applications for an instrument that has remained largely unchanged for decades.

  10. Influence of the centrifuge time of primary plasma tubes on routine coagulation testing.

    Science.gov (United States)

    Lippi, Giuseppe; Salvagno, Gian Luca; Montagnana, Martina; Manzato, Franco; Guidi, Gian Cesare

    2007-07-01

    Preparation of blood specimens is a major bottleneck in the laboratory throughput. Reliable strategies for reducing the time required for specimen processing without affecting quality should be acknowledged, especially for laboratories performing stat analyses. The present investigation was planned to establish a minimal suitable centrifuge time for primary samples collected for routine coagulation testing. Five sequential primary vacuum tubes containing 0.109 mol/l buffered trisodium citrate were collected from 10 volunteers and were immediately centrifuged on a conventional centrifuge at 1500 x g, at room temperature for 1, 2, 5, 10 and 15 min, respectively. Hematological and routine coagulation testing, including prothrombin time, activated partial thromboplastin time and fibrinogen, were performed. The centrifugation time was inversely associated with residual blood cell elements in plasma, especially platelets. Statistically significant variations from the reference 15-min centrifuge specimens were observed for fibrinogen in samples centrifuged for 5 min at most and for the activated partial thromboplastin time in samples centrifuged for 2 min at most. Meaningful biases related to the desirable bias were observed for fibrinogen in samples centrifuged for 2 min at most, and for the activated partial thromboplastin time in samples centrifuged for 1 min at most. According to our experimental conditions, a 5-10 min centrifuge time at 1500 x g may be suitable for primary tubes collected for routine coagulation testing.

  11. Influence of centrifuge brake on residual platelet count and routine coagulation tests in citrated plasma.

    Science.gov (United States)

    Daves, Massimo; Giacomuzzi, Katia; Tagnin, Enrico; Jani, Erika; Adcock Funk, Dorothy M; Favaloro, Emmanuel J; Lippi, Giuseppe

    2014-04-01

    Sample centrifugation is an essential step in the coagulation laboratory, as clotting tests are typically performed on citrated platelet (PLT) poor plasma (PPP). Nevertheless, no clear indication has been provided as to whether centrifugation of specimens should be performed with the centrifuge brake set to on or off. Fifty consecutive sodium citrate anticoagulated samples were collected and divided into two aliquots. The former was centrifuged as for Clinical Laboratory Standards Institute (CLSI) guidelines with the centrifuge brake set to on, whereas the latter was centrifuged again as for CLSI guidelines, but with the brake set to off. In the PPP of all samples, a PLT count was performed, followed by the analysis of activated partial thromboplastin time (APTT), prothrombin time (PT) and fibrinogen (FBG). The PLT count after samples centrifugation was substantially reduced, either with centrifuge brake set to on or off (5 ± 1 versus 3 ± 1 × 10/l; P = 0.009). The frequency of samples exceeding a PLT count less than 10 × 10/l was nearly double in samples centrifuged with the brake on than in those with the brake off (14 versus 8%; P centrifuge brake set to on (mean bias 0.2 s; P centrifuge brake set to on (mean bias 0.29 g/l; P centrifugation for routine coagulation testing should be preferably performed with the centrifuge brake set to off for providing a better quality specimen.

  12. Effect of centrifugation and washing on adipose graft viability: a new method to improve graft efficiency.

    Science.gov (United States)

    Hoareau, Laurence; Bencharif, Karima; Girard, Anne-Claire; Gence, Lydie; Delarue, Pierre; Hulard, Olivier; Festy, Franck; Roche, Regis

    2013-05-01

    Adipose tissue grafting is a promising method in the field of surgical filling. We studied the effect of centrifugation on fat grafts, and we propose an optimised protocol for the improvement of adipose tissue viability. Adipose tissue was subjected to different centrifugations, and the volumes of interstitial liquid and oil released were measured to choose the optimal condition. Tissue from this condition was then compared to tissue obtained from two traditional techniques: strong centrifugation (commonly 3 min at 3000 rpm/900 g), and decantation, by injecting into immunodeficient mice. The cytokine interleukin-6 (IL-6) and chemokine monocyte chemotactic protein-1 (MCP-1) were assayed 24 h post-injection, and after 1 month of grafting the state of the lipografts was evaluated through macroscopic and histological analysis, with oil gap area measurement. Strong centrifugation (900 g, 1800 g) is deleterious for adipose tissue because it leads to until threefold more adipocyte death compared to low centrifugation (100 g, 400 g). In addition, mice injected with strong centrifuged and non-centrifuged adipose tissue have higher rates of blood IL-6 and MCP-1, compared to those grafted with soft centrifuged fat. Moreover, extensive lipid vacuoles were detectable on histological sections of the non-centrifuged lipografts, whereas lipografts from soft centrifugation contain a higher amount of connective tissue containing collagen fibres. It is necessary to wash and centrifuge adipose tissue before reinjection in order to remove infiltration liquid and associated toxic molecules, which in the long term are deleterious for the graft. However, strong centrifugation is not recommended since it leads very quickly to greater adipocyte death. Thus, soft centrifugation (400 g/1 min), preceded by washings, seems to be the most appropriate protocol for the reinjection of adipose tissue. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published

  13. Water Drainage from Unsaturated Soils in a Centrifuge Permeameter

    Science.gov (United States)

    Ornelas, G.; McCartney, J.; Zhang, M.

    2013-12-01

    This study involves an analysis of water drainage from an initially saturated silt layer in a centrifuge permeameter to evaluate the hydraulic properties of the soil layer in unsaturated conditions up to the point where the water phase becomes discontinuous. These properties include the soil water retention curve (SWRC) and the hydraulic conductivity function (HCF). The hydraulic properties of unsaturated silt are used in soil-atmosphere interaction models that take into account the role of infiltration and evaporation of water from soils due to atmospheric interaction. These models are often applied in slope stability analyses, landfill cover design, aquifer recharge analyses, and agricultural engineering. The hydraulic properties are also relevant to recent research concerning geothermal heating and cooling, as they can be used to assess the insulating effects of soil around underground heat exchangers. This study employs a high-speed geotechnical centrifuge to increase the self-weight of a compacted silt specimen atop a filter plate. Under a centrifuge acceleration of N times earth's gravity, the concept of geometric similitude indicates that the water flow process in a small-scale soil layer will be similar to those in a soil layer in the field that is N times thicker. The centrifuge acceleration also results in an increase in the hydraulic gradient across the silt specimen, which causes water to flow out of the pores following Darcy's law. The drainage test was performed until the rate of liquid water flow out of the soil layer slowed to a negligible level, which corresponds to the transition point at which further water flow can only occur due to water vapor diffusion following Fick's law. The data from the drainage test in the centrifuge were used to determine the SWRC and HCF at different depths in the silt specimen, which compared well with similar properties defined using other laboratory tests. The transition point at which liquid water flow stopped (and

  14. Extraction of soil solution by drainage centrifugation-effects of centrifugal force and time of centrifugation on soil moisture recovery and solute concentration in soil moisture of loess subsoils.

    Science.gov (United States)

    Fraters, Dico; Boom, Gerard J F L; Boumans, Leo J M; de Weerd, Henk; Wolters, Monique

    2017-02-01

    The solute concentration in the subsoil beneath the root zone is an important parameter for leaching assessment. Drainage centrifugation is considered a simple and straightforward method of determining soil solution chemistry. Although several studies have been carried out to determine whether this method is robust, hardly any results are available for loess subsoils. To study the effect of centrifugation conditions on soil moisture recovery and solute concentration, we sampled the subsoil (1.5-3.0 m depth) at commercial farms in the loess region of the Netherlands. The effect of time (20, 35, 60, 120 and 240 min) on recovery was studied at two levels of the relative centrifugal force (733 and 6597g). The effect of force on recovery was studied by centrifugation for 35 min at 117, 264, 733, 2932, 6597 and 14,191g. All soil moisture samples were chemically analysed. This study shows that drainage centrifugation offers a robust, reproducible and standardised way for determining solute concentrations in mobile soil moisture in silt loam subsoils. The centrifugal force, rather than centrifugation time, has a major effect on recovery. The maximum recovery for silt loams at field capacity is about 40%. Concentrations of most solutes are fairly constant with an increasing recovery, as most solutes, including nitrate, did not show a change in concentration with an increasing recovery.

  15. Gas centrifuge uranium enrichment programme in the United States of America

    International Nuclear Information System (INIS)

    Gestson, D.K.

    1983-01-01

    The technology of uranium enrichment using the gas centrifuge is fully proven as a result of over twenty years of research. The high performance of the centrifuge has been confirmed, and its reliability established, through detailed evaluation of a series of centrifuge designs. The baseline centrifuge for the Gas Centrifuge Enrichment Plant (GCEP) is now in commercial production by three qualified manufacturers. It will be ready for installation in GCEP on schedule. The GCEP construction is also on schedule, with two process buildings expected to start operation in 1988 and 1989. Development and demonstration of the Set IV advanced gas centrifuge is under way and it is expected to be ready for installation in Process Building 3 in early 1989. (author)

  16. Spectroscopy of molecules in very high rotational states using an optical centrifuge.

    Science.gov (United States)

    Yuan, Liwei; Toro, Carlos; Bell, Mack; Mullin, Amy S

    2011-01-01

    We have developed a high power optical centrifuge for measuring the spectroscopy of molecules in extreme rotational states. The optical centrifuge has a pulse energy that is more than 2 orders of magnitude greater than in earlier instruments. The large pulse energy allows us to drive substantial number densities of molecules to extreme rotational states in order to measure new spectroscopic transitions that are not accessible with traditional methods. Here we demonstrate the use of the optical centrifuge for measuring IR transitions of N2O from states that have been inaccessible until now. In these studies, the optical centrifuge drives N2O molecules into states with J ~ 200 and we use high resolution transient IR probing to measure the appearance of population in states with J = 93-99 that result from collisional cooling of the centrifuged molecules. High resolution Doppler broadened line profile measurements yield information about the rotational and translational energy distributions in the optical centrifuge.

  17. Optimization of Power Consumption for Centrifugation Process Based on Attenuation Measurements

    Science.gov (United States)

    Salim, M. S.; Abd Malek, M. F.; Sabri, Naseer; Omar, M. Iqbal bin; Mohamed, Latifah; Juni, K. M.

    2013-04-01

    The main objective of this research is to produce a mathematical model that allows decreasing the electrical power consumption of centrifugation process based on attenuation measurements. The centrifugation time for desired separation efficiency may be measured to determine the power consumed of laboratory centrifuge device. The power consumption is one of several parameters that affect the system reliability and productivity. Attenuation measurements of wave propagated through blood sample during centrifugation process were used indirectly to measure the power consumption of device. A mathematical model for power consumption was derived and used to modify the speed profile of centrifuge controller. The power consumption model derived based on attenuation measurements has successfully save the power consumption of centrifugation process keeping high separation efficiency. 18kW.h monthly for 100 daily time device operation had been saved using the proposed model.

  18. Enriched surface acidity for surfactant-free suspensions of carboxylated carbon nanotubes purified by centrifugation

    Directory of Open Access Journals (Sweden)

    Elizabeth I. Braun

    2016-06-01

    Full Text Available It is well known that surfactant-suspended carbon nanotube (CNT samples can be purified by centrifugation to decrease agglomerates and increase individually-dispersed CNTs. However, centrifugation is not always part of protocols to prepare CNT samples used in biomedical applications. Herein, using carboxylated multi-walled CNTs (cMWCNTs suspended in water without a surfactant, we developed a Boehm titrimetric method for the analysis of centrifuged cMWCNT suspensions and used it to show that the surface acidity of oxidized carbon materials in aqueous cMWCNT suspensions was enriched by ∼40% by a single low-speed centrifugation step. This significant difference in surface acidity between un-centrifuged and centrifuged cMWCNT suspensions has not been previously appreciated and is important because the degree of surface acidity is known to affect the interactions of cMWCNTs with biological systems.

  19. Optimization of Power Consumption for Centrifugation Process Based on Attenuation Measurements

    International Nuclear Information System (INIS)

    Salim, M S; Iqbal bin Omar, M; Malek, M F Abd; Mohamed, Latifah; Sabri, Naseer; Juni, K M

    2013-01-01

    The main objective of this research is to produce a mathematical model that allows decreasing the electrical power consumption of centrifugation process based on attenuation measurements. The centrifugation time for desired separation efficiency may be measured to determine the power consumed of laboratory centrifuge device. The power consumption is one of several parameters that affect the system reliability and productivity. Attenuation measurements of wave propagated through blood sample during centrifugation process were used indirectly to measure the power consumption of device. A mathematical model for power consumption was derived and used to modify the speed profile of centrifuge controller. The power consumption model derived based on attenuation measurements has successfully save the power consumption of centrifugation process keeping high separation efficiency. 18kW.h monthly for 100 daily time device operation had been saved using the proposed model.

  20. Development and industrial application of gas centrifuges to uranium enrichment in the USSR

    International Nuclear Information System (INIS)

    Abbakumov, E.I.; Bazhenov, V.A.; Verbin, Yu.V.

    1989-01-01

    Review of state and studies in the field of gaseous diffusion technology and centrifugal method of uranium enrichment in the USSR is given. Domestic industrial gas centrifuges, forming to-day the main part of separation capacities in the USSR, are noted for low specific energy consumption and high reliability. Centrifugal technology in the USSR is applied both to uranium enrichment (including one for export) and to separation of isotopes of other chemical elements

  1. Mathematical Modeling of Nonstationary Separation Processes in Gas Centrifuge Cascade for Separation of Multicomponent Isotope Mixtures

    Directory of Open Access Journals (Sweden)

    Orlov Alexey

    2016-01-01

    Full Text Available This article presents results of development of the mathematical model of nonstationary separation processes occurring in gas centrifuge cascades for separation of multicomponent isotope mixtures. This model was used for the calculation parameters of gas centrifuge cascade for separation of germanium isotopes. Comparison of obtained values with results of other authors revealed that developed mathematical model is adequate to describe nonstationary separation processes in gas centrifuge cascades for separation of multicomponent isotope mixtures.

  2. Mathematical Modeling of Nonstationary Separation Processes in Gas Centrifuge Cascade for Separation of Multicomponent Isotope Mixtures

    OpenAIRE

    Orlov Alexey; Ushakov Anton; Sovach Victor

    2016-01-01

    This article presents results of development of the mathematical model of nonstationary separation processes occurring in gas centrifuge cascades for separation of multicomponent isotope mixtures. This model was used for the calculation parameters of gas centrifuge cascade for separation of germanium isotopes. Comparison of obtained values with results of other authors revealed that developed mathematical model is adequate to describe nonstationary separation processes in gas centrifuge casca...

  3. Mathematical model of nonstationary hydraulic processes in gas centrifuge cascade for separation of multicomponent isotope mixtures

    OpenAIRE

    Orlov, Aleksey Alekseevich; Ushakov, Anton; Sovach, Victor

    2017-01-01

    The article presents results of development of a mathematical model of nonstationary hydraulic processes in gas centrifuge cascade for separation of multicomponent isotope mixtures. This model was used for the calculation parameters of gas centrifuge cascade for separation of silicon isotopes. Comparison of obtained values with results of other authors revealed that developed mathematical model is adequate to describe nonstationary hydraulic processes in gas centrifuge cascades for separation...

  4. Quantification of platelets obtained by different centrifugation protocols in SHR rats

    Directory of Open Access Journals (Sweden)

    João Alberto Yazigi Junior

    2015-12-01

    Full Text Available ABSTRACT OBJECTIVE: To quantify the platelet concentration in the blood of SHR rats, by means of different centrifugation protocols, and to evaluate what the most effective method for obtaining platelets is. METHODS: We used 40 male rats of the isogenic SHR lineage. The animals were divided into three groups: control, using whole blood without centrifugation; single centrifugation, using whole blood subjected to a single centrifugation at 200 × gand 400 × g; and double centrifugation, using whole blood subjected one centrifugation at different rotations, followed by collection of whole plasma subjected to another centrifugation at different rotations: 200 × g+ 200 ×g; 200 × g+ 400 × g; 200 × g+ 800 × g; 400 ×g+ 400 × g; 400 × g+ 800 × g. Samples of 3 ml of blood were drawn from each animal by means of cardiac puncture. The blood was stored in Vacutainer collection tubes containing 3.2% sodium citrate. The blood from the control group animals was analyzed without being subjected to centrifugation. After the blood from the other groups of animals had been subjected to centrifugation, the whole plasma was collected and subjected to platelet counting in the lower third of the sample. RESULTS: We obtained greatest platelet enrichment in the subgroup with two centrifugations comprising 400 × gfor 10 min + 400 ×gfor 10 min, in which the mean platelet concentration was 11.30 times higher than that of the control group. CONCLUSION: It was possible to obtain a high platelet concentration using viable simple techniques, by means of centrifugation of whole blood and use of commonly used materials. The most effective method for obtaining platelet concentrate was found in samples subjected to two centrifugations.

  5. Onsager's pancake approximation for the fluid dynamics of a gas centrifuge

    International Nuclear Information System (INIS)

    Wood, H.G. III; Morton, J.B.

    1980-01-01

    A previously unpublished theory for describing the internal flow in a gas centrifuge is presented. The theory is based on boundary layer type arguments on the side walls of the centrifuge with the additional approximation of neglecting radial diffusion of radial momentum. The effects of the top and bottom end caps are incorporated through Ekman layer solutions. The results are presented in a form amenable to numerical calculations. Some sample calculations are presented for the special case of a centrifuge with a linear temperature profile on the wall and the top and bottom of the centrifuge at the same temperature as the corresponding end of the side wall

  6. Onsager's pancake approximation for the fluid dynamics of a gas centrifuge

    International Nuclear Information System (INIS)

    Wood, H.G.

    1980-01-01

    A previously unpublished theory for describing the internal flow in a gas centrifuge is presented. The theory is based on boundary-layer-type arguments on the side walls of the centrifuge with the additional approximation of neglecting radial diffusion of radial momentum. The effects of the top and bottom end caps are incorporated through Ekman-layer solutions. The results are presented in a form amenable to numerical calculations. Some sample calculations are presented for the special case of a centrifuge with a linear temperature profile on the wall and the top and bottom of the centrifuge at the same temperature as the corresponding end of the side wall. (author)

  7. Cardiac arrhythmias during aerobatic flight and its simulation on a centrifuge.

    Science.gov (United States)

    Zawadzka-Bartczak, Ewelina K; Kopka, Lech H

    2011-06-01

    It is well known that accelerations during centrifuge training and during flight can provoke cardiac arrhythmias. Our study was designed to investigate both the similarities and differences between heart rhythm disturbances during flights and centrifuge tests. There were 40 asymptomatic, healthy pilots who performed two training flights and were also tested in a human centrifuge according to a program of rapid onset rate acceleration (ROR) and of centrifuge simulation of the actual acceleration experienced in flight (Simulation). During the flight and centrifuge tests ECG was monitored with the Holter method. ECG was examined for heart rhythm changes and disturbances. During flights, premature ventricular contractions (PVCs) were found in 25% of the subjects, premature supraventricular contractions (PSVCs) and PVCs with bigeminy in 5%, and pairs of PVCs in 2.5% of subjects. During the centrifuge tests, PVCs were experienced by 45% of the subjects, PSVCs and pairs of PVCs by 7.5%, and PVCs with bigeminy by 2.5%. Sinus bradycardia was observed during flights and centrifuge tests in 7.5% of subjects. Comparative evaluation of electrocardiographic records in military pilots during flights and centrifuge tests demonstrated that: 1) there were no clinically significant arrhythmias recorded; and 2) the frequency and kind of heart rhythm disturbances during aerobatic flight and its simulation on a centrifuge were not identical and did not occur repetitively in the same persons during equal phases of the tests.

  8. The standard centrifuge method accurately measures vulnerability curves of long-vesselled olive stems.

    Science.gov (United States)

    Hacke, Uwe G; Venturas, Martin D; MacKinnon, Evan D; Jacobsen, Anna L; Sperry, John S; Pratt, R Brandon

    2015-01-01

    The standard centrifuge method has been frequently used to measure vulnerability to xylem cavitation. This method has recently been questioned. It was hypothesized that open vessels lead to exponential vulnerability curves, which were thought to be indicative of measurement artifact. We tested this hypothesis in stems of olive (Olea europea) because its long vessels were recently claimed to produce a centrifuge artifact. We evaluated three predictions that followed from the open vessel artifact hypothesis: shorter stems, with more open vessels, would be more vulnerable than longer stems; standard centrifuge-based curves would be more vulnerable than dehydration-based curves; and open vessels would cause an exponential shape of centrifuge-based curves. Experimental evidence did not support these predictions. Centrifuge curves did not vary when the proportion of open vessels was altered. Centrifuge and dehydration curves were similar. At highly negative xylem pressure, centrifuge-based curves slightly overestimated vulnerability compared to the dehydration curve. This divergence was eliminated by centrifuging each stem only once. The standard centrifuge method produced accurate curves of samples containing open vessels, supporting the validity of this technique and confirming its utility in understanding plant hydraulics. Seven recommendations for avoiding artefacts and standardizing vulnerability curve methodology are provided. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  9. Microfluidic size separation of cells and particles using a swinging bucket centrifuge.

    Science.gov (United States)

    Yeo, Joo Chuan; Wang, Zhiping; Lim, Chwee Teck

    2015-09-01

    Biomolecular separation is crucial for downstream analysis. Separation technique mainly relies on centrifugal sedimentation. However, minuscule sample volume separation and extraction is difficult with conventional centrifuge. Furthermore, conventional centrifuge requires density gradient centrifugation which is laborious and time-consuming. To overcome this challenge, we present a novel size-selective bioparticles separation microfluidic chip on a swinging bucket minifuge. Size separation is achieved using passive pressure driven centrifugal fluid flows coupled with centrifugal force acting on the particles within the microfluidic chip. By adopting centrifugal microfluidics on a swinging bucket rotor, we achieved over 95% efficiency in separating mixed 20 μm and 2 μm colloidal dispersions from its liquid medium. Furthermore, by manipulating the hydrodynamic resistance, we performed size separation of mixed microbeads, achieving size efficiency of up to 90%. To further validate our device utility, we loaded spiked whole blood with MCF-7 cells into our microfluidic device and subjected it to centrifugal force for a mere duration of 10 s, thereby achieving a separation efficiency of over 75%. Overall, our centrifugal microfluidic device enables extremely rapid and label-free enrichment of different sized cells and particles with high efficiency.

  10. Modeling industrial centrifugation of mammalian cell culture using a capillary based scale-down system.

    Science.gov (United States)

    Westoby, Matthew; Rogers, Jameson K; Haverstock, Ryan; Romero, Jonathan; Pieracci, John

    2011-05-01

    Continuous-flow centrifugation is widely utilized as the primary clarification step in the recovery of biopharmaceuticals from cell culture. However, it is a challenging operation to develop and characterize due to the lack of easy to use, small-scale, systems that can be used to model industrial processes. As a result, pilot-scale continuous centrifugation is typically employed to model large-scale systems requiring a significant amount of resources. In an effort to reduce resource requirements and create a system which is easy to construct and utilize, a capillary shear device, capable of producing energy dissipation rates equivalent to those present in the feed zones of industrial disk stack centrifuges, was developed and evaluated. When coupled to a bench-top, batch centrifuge, the capillary device reduced centrate turbidity prediction error from 37% to 4% compared to using a bench-top centrifuge alone. Laboratory-scale parameters that are analogous to those routinely varied during industrial-scale continuous centrifugation were identified and evaluated for their utility in emulating disk stack centrifuge performance. The resulting relationships enable bench-scale process modeling of continuous disk stack centrifuges using an easily constructed, scalable, capillary shear device coupled to a typical bench-top centrifuge. Copyright © 2010 Wiley Periodicals, Inc.

  11. The duration of effect of centrifuge concentrated intravitreal triamcinolone acetonide.

    Science.gov (United States)

    Ober, Michael D; Valijan, Sevak

    2013-04-01

    To estimate the duration of activity for intravitreal triamcinolone injected with a new technique using centrifuge concentration (Centrifuge concentrated IntraVitreal Triamcinolone, C-IVT). All injections were performed by a single surgeon (M.D.O.) using a 30-gauge needle. A vial of Triesence (triamcinolone; Alcon Laboratories, Fort Worth, TX) was drawn into a 1-mL syringe and the plunger cut off. The contents were spun in a centrifuge, and a second plunger was placed. Records of all patients receiving C-IVT with 0.05 mL or 0.1 mL from January 1, 2009, through December 31, 2009, were retrospectively reviewed. Eighty-four injections from 69 eyes of 57 patients were included. Sixty-nine injections from 54 eyes of 44 patients received 0.05 mL of C-IVT, whereas 15 injections from 15 eyes of 13 patients received 0.1 mL of C-IVT. Triamcinolone acetonide was still visualized in the vitreous on an average of 5.0 ± 2.4 months (median 5 months) after 0.05 mL of C-IVT and 8.3 ± 4.0 months (median 8 months) after 0.1 mL of C-IVT during follow-up visits. The longest duration recorded was 14 months for the 0.05-mL group and 18 months for the 0.l-mL group. The C-IVT results in a long duration of effect that seems to be greater than previously published techniques. It may be considered for patients requiring chronic steroid therapy, in which the benefits of long-term intravitreal steroids are believed to outweigh their risk.

  12. Flow visualization in models of high speed centrifugal separators

    International Nuclear Information System (INIS)

    Lagerstedt, T.; Nabo, O.

    1987-01-01

    The modern centrifugal separator is a fluid machine where the high ''G'' forces set up by rotation are utilized to separate phases of different densities. The fluid dynamics of the separator is complex and poorly known. Hundred years of (practical) experience has, however, turned the separator into an efficient machine. The present report shows how straight forward visualization experiments in model rigs provide valuable information on the flow inside the separator. The report concentrates on describing the flow between the closely spaced discs in a separator disc stack

  13. Experimental studies of two-stage centrifugal dust concentrator

    Science.gov (United States)

    Vechkanova, M. V.; Fadin, Yu M.; Ovsyannikov, Yu G.

    2018-03-01

    The article presents data of experimental results of two-stage centrifugal dust concentrator, describes its design, and shows the development of a method of engineering calculation and laboratory investigations. For the experiments, the authors used quartz, ceramic dust and slag. Experimental dispersion analysis of dust particles was obtained by sedimentation method. To build a mathematical model of the process, dust collection was built using central composite rotatable design of the four factorial experiment. A sequence of experiments was conducted in accordance with the table of random numbers. Conclusion were made.

  14. Gas centrifuge power supplies (inverters): Key components and subassemblies

    International Nuclear Information System (INIS)

    1987-08-01

    This document was prepared to serve as a guide for export control officials in their interpretation, understanding, and implementation of exports laws that relate to the international trigger list entry for gas centrifuge power supplies (also known as frequency changers, convertors, or inverters) and parts, components, and subassemblies of such power supplies. Particular emphasis is placed on descriptions of the key parts, components, and subassemblies of such power supplies, which were previously unspecified, so as to clarify the intent of the international trigger list entry

  15. Centrifuge-operated specimen staining method and apparatus

    Science.gov (United States)

    Clarke, Mark S. F. (Inventor); Feeback, Daniel L. (Inventor)

    1999-01-01

    A method of staining preselected, mounted specimens of either biological or nonbiological material enclosed within a staining chamber where the liquid staining reagents are applied and removed from the staining chamber using hypergravity as the propelling force. In the preferred embodiment, a spacecraft-operated centrifuge and method of diagnosing biological specimens while in orbit, characterized by hermetically sealing a shell assembly. The assembly contains slide stain apparatus with computer control therefor, the operative effect of which is to overcome microgravity, for example on board an International Space Station.

  16. Quantum versus classical dynamics in the optical centrifuge

    Science.gov (United States)

    Armon, Tsafrir; Friedland, Lazar

    2017-09-01

    The interplay between classical and quantum-mechanical evolution in the optical centrifuge (OC) is discussed. The analysis is based on the quantum-mechanical formalism starting from either the ground state or a thermal ensemble. Two resonant mechanisms are identified, i.e., the classical autoresonance and the quantum-mechanical ladder climbing, yielding different dynamics and rotational excitation efficiencies. The rotating-wave approximation is used to analyze the two resonant regimes in the associated dimensionless two-parameter space and calculate the OC excitation efficiency. The results show good agreement between numerical simulations and theory and are relevant to existing experimental setups.

  17. Projected uranium measurement uncertainties for the Gas Centrifuge Enrichment Plant

    International Nuclear Information System (INIS)

    Younkin, J.M.

    1979-02-01

    An analysis was made of the uncertainties associated with the measurements of the declared uranium streams in the Portsmouth Gas Centrifuge Enrichment Plant (GCEP). The total uncertainty for the GCEP is projected to be from 54 to 108 kg 235 U/year out of a measured total of 200,000 kg 235 U/year. The systematic component of uncertainty of the UF 6 streams is the largest and the dominant contributor to the total uncertainty. A possible scheme for reducing the total uncertainty is given

  18. Optimization of the cascade with gas centrifuges for uranium enrichment

    International Nuclear Information System (INIS)

    Ozaki, N.; Harada, I.

    1976-01-01

    Computer programs to optimize the step and tapered-step cascades with gas centrifuges are developed. The 'Complex Method', one of the direct search method, is employed to find the optimum of the nonlinear function of several variables within a constrained region. The separation characteristics of the optimized step and tapered-step cascades are discussed in comparison with that of the ideal cascade. The local optima of the cascade profile, the convergence of the object function, and the stopping criterion for the optimization trial are also discussed. (author)

  19. Advanced liquid radwaste decontamination by using a centrifuge system

    International Nuclear Information System (INIS)

    Tscheschlok, K.; Szukala, M.

    1999-01-01

    Waste water streams basically include undissolved suspended solids which contain almost the main part of the activated products. The centrifuge system, called LRS (Liquid Radwaste Treatment System), is able to remove these solids from the liquid content and fills the dewatered product into disposal containers. For this purpose a chemical pre-treatment step is often used for selective precipitation of special radionuclides and flocculents to agglomerate smaller sized particles (colloids) to make them separatable with the LRS. The plant arrangement, the process optimization and the collected operational experiences are described. 2 refs., 1 tab., 8 figs

  20. OFF-DESIGN OPERATION OF IMPELLER OF THE CENTRIFUGAL COMPRESSOR

    Directory of Open Access Journals (Sweden)

    Saim KOÇAK

    2004-02-01

    Full Text Available Inducer and discharge dimensions of impellers of centrifugal compressor are determined as a preliminary design. Blockage factor and inducer dimensionless mass flow are exercised in relation with the relative Mach number. The equation which will be based o off-design calculation, related with the discharge relative Mach number are iterated until it will equal to inducer dimensionless mass flow rate. Then discharge relative Mach number for off-design works is obtained. The results calculated in accordance with pressure, temperature and density are seen to be similar with the theoretical parameters.

  1. A network application for modeling a centrifugal compressor performance map

    Science.gov (United States)

    Nikiforov, A.; Popova, D.; Soldatova, K.

    2017-08-01

    The approximation of aerodynamic performance of a centrifugal compressor stage and vaneless diffuser by neural networks is presented. Advantages, difficulties and specific features of the method are described. An example of a neural network and its structure is shown. The performances in terms of efficiency, pressure ratio and work coefficient of 39 model stages within the range of flow coefficient from 0.01 to 0.08 were modeled with mean squared error 1.5 %. In addition, the loss and friction coefficients of vaneless diffusers of relative widths 0.014-0.10 are modeled with mean squared error 2.45 %.

  2. Extended residence time centrifugal contactor design modification and centrifugal contactor vane plate valving apparatus for extending mixing zone residence time

    Science.gov (United States)

    Wardle, Kent E.

    2017-06-06

    The present invention provides an annular centrifugal contactor, having a housing adapted to receive a plurality of flowing liquids; a rotor on the interior of the housing; an annular mixing zone, wherein the annular mixing zone has a plurality of fluid retention reservoirs with ingress apertures near the bottom of the annular mixing zone and egress apertures located above the ingress apertures of the annular mixing zone; and an adjustable vane plate stem, wherein the stem can be raised to restrict the flow of a liquid into the rotor or lowered to increase the flow of the liquid into the rotor.

  3. Seismic soil structure interaction: analysis and centrifuge model studies

    International Nuclear Information System (INIS)

    Finn, W.D.L.; Ledbetter, R.H.; Beratan, L.L.

    1985-01-01

    A method for non-linear dynamic effective stress analysis is introduced which is applicable to soil-structure interaction problems. Full interaction including slip between structure and foundation is taken into account and the major factors are included which must be considered when computing dynamic soil response. An experimental investigation was conducted using simulated earthquake tests on centrifuged geotechnical models in order to obtain prototype response data of foundation soils carrying both surface and embedded structures and to validate the dynamic effective stress analysis. Horizontal and vertical accelerations were measured at various points on structures and in the sand foundation. Seismically-induced pore water pressure changes were also measured at various locations in the foundation. Computer plots of the data were obtained while the centrifuge was in flight and representative samples are presented. The results show clearly the pronounced effect that increasing pore water pressures have on dynamic response. It is demonstrated that a coherent picture of dynamic response of soil-structure systems is provided by dynamic effective stress non-linear analysis. Based on preliminary results, it appears that the pore water pressure effects can be predicted

  4. Losses and blade tip clearance for a centrifugal compressor

    Directory of Open Access Journals (Sweden)

    Oana DUMITRESCU

    2018-06-01

    Full Text Available The present paper presents the numerical analysis for a transonic centrifugal compressor using steady state CFD. The blade tip clearance effect over the position of shock waves, tip losses and the performances of the impeller are studied. Numerical simulations have been performed using RANS modelling, with the k-omega SST turbulence model (Shear Stress Transport. Eight cases were taken into consideration for the impeller with the following blade tip clearances values: 0 mm, 0.1 mm, 0.3 mm, 0.4 mm, 0.5mm, 0.7 mm, 1 mm, 2 mm, at the same operating conditions. For the entire stage only seven cases were studied, without the value for 0.1 mm because of its abnormal behaviour, as can be seen in the case of the impeller simulations. Results showed that the position of the shock wave does not change with the increase of the tip clearance. Aerodynamic losses due to shock wave, secondary flow and turbulence can be seen in the polytropic efficiency of the centrifugal impeller and the difference between the two extreme cases is about 3.2 %.

  5. Online Monitoring of Large Centrifugal Pumps in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel, Efenji A.; Faragalla, Mohamed M.; Awwal, Arigi M.; Lee, Yong-kwan [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2016-10-15

    Online Monitoring detects and diagnoses incipient faults, performs predictive maintenance, and can estimate the Remaining Useful Life (RUL) of Active and Passive Components before they fail. In an effort towards assisting Utility Partners to be proactive in the management of their Assets, the Electric Power Research Institute (EPRI) collaborated with the Idaho National Laboratory (INL) to develop a Fleet-Wide Prognostic and Health Monitoring (FW-PHM) Software Suite. The FW-PHM is a web based diagnostic tools and databases designed for use in commercial NPP. The AFS development process as designed by EPRI can be adapted to Large Centrifugal Pumps (LCP) in Nuclear Power Plants (NPP). For the purpose of this endeavor, the set of LCP considered are Safety Class-Motor Driven-Vertical Centrifugal Pumps for primary flow which includes Safety Injection, Containment Spray, and Residual Heat Removal. Fault Signatures of the LCP for OLM has been developed following the INCOSE V-model systems development approach. The fault types, fault features, and their detection methods and effectiveness for the LCP were established by diligently following the guidelines recommended by EPRI. An optimization of the FS for OLM has been suggested for implementation. As a way of extending this work, a Cost-Benefit Analysis between OLM and the conventional Periodic Maintenance for the LCP in NPP is proposed.

  6. Online Monitoring of Large Centrifugal Pumps in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Emmanuel, Efenji A.; Faragalla, Mohamed M.; Awwal, Arigi M.; Lee, Yong-kwan

    2016-01-01

    Online Monitoring detects and diagnoses incipient faults, performs predictive maintenance, and can estimate the Remaining Useful Life (RUL) of Active and Passive Components before they fail. In an effort towards assisting Utility Partners to be proactive in the management of their Assets, the Electric Power Research Institute (EPRI) collaborated with the Idaho National Laboratory (INL) to develop a Fleet-Wide Prognostic and Health Monitoring (FW-PHM) Software Suite. The FW-PHM is a web based diagnostic tools and databases designed for use in commercial NPP. The AFS development process as designed by EPRI can be adapted to Large Centrifugal Pumps (LCP) in Nuclear Power Plants (NPP). For the purpose of this endeavor, the set of LCP considered are Safety Class-Motor Driven-Vertical Centrifugal Pumps for primary flow which includes Safety Injection, Containment Spray, and Residual Heat Removal. Fault Signatures of the LCP for OLM has been developed following the INCOSE V-model systems development approach. The fault types, fault features, and their detection methods and effectiveness for the LCP were established by diligently following the guidelines recommended by EPRI. An optimization of the FS for OLM has been suggested for implementation. As a way of extending this work, a Cost-Benefit Analysis between OLM and the conventional Periodic Maintenance for the LCP in NPP is proposed

  7. Acute spinal injury after centrifuge training in asymptomatic fighter pilots.

    Science.gov (United States)

    Kang, Kyung-Wook; Shin, Young Ho; Kang, Seungcheol

    2015-04-01

    Many countries have hypergravity training centers using centrifuges for pilots to cope with a high gravity (G) environment. The high G training carries potential risk for the development of spinal injury. However, no studies evaluated the influence of centrifuge training on the spines of asymptomatic fighter pilots on a large scale. Study subjects were 991 male fighter pilots with high G training at one institution. Subject variables included information about physical characteristics, flight hours of pilots prior to the training, and G force exposure related factors during training. The two dependent variables were whether the pilots developed acute spinal injury after training and the severity of the injury (major/minor). The incidence of acute spinal injury after high G training was 2.3% (23 of 991 subjects). There were 19 subjects who developed minor injury and 4 subjects who developed a herniated intervertebral disc, which is considered a major injury. In multivariate analysis, only the magnitude of G force during training was significantly related to the development of acute spinal injury. However, there was no significant factor related to the severity of the injury. These results suggest that high G training could cause negative effects on fighter pilots' spines. The magnitude of G force during training seemed to be the most significant factor affecting the occurrence of acute spinal injury.

  8. Numerical modeling and optimization of the Iguassu gas centrifuge

    Science.gov (United States)

    Bogovalov, S. V.; Borman, V. D.; Borisevich, V. D.; Tronin, V. N.; Tronin, I. V.

    2017-07-01

    The full procedure of the numerical calculation of the optimized parameters of the Iguassu gas centrifuge (GC) is under discussion. The procedure consists of a few steps. On the first step the problem of a hydrodynamical flow of the gas in the rotating rotor of the GC is solved numerically. On the second step the problem of diffusion of the binary mixture of isotopes is solved. The separation power of the gas centrifuge is calculated after that. On the last step the time consuming procedure of optimization of the GC is performed providing us the maximum of the separation power. The optimization is based on the BOBYQA method exploring the results of numerical simulations of the hydrodynamics and diffusion of the mixture of isotopes. Fast convergence of calculations is achieved due to exploring of a direct solver at the solution of the hydrodynamical and diffusion parts of the problem. Optimized separative power and optimal internal parameters of the Iguassu GC with 1 m rotor were calculated using the developed approach. Optimization procedure converges in 45 iterations taking 811 minutes.

  9. Centrifuge modeling of rocking-isolated inelastic RC bridge piers.

    Science.gov (United States)

    Loli, Marianna; Knappett, Jonathan A; Brown, Michael J; Anastasopoulos, Ioannis; Gazetas, George

    2014-12-01

    Experimental proof is provided of an unconventional seismic design concept, which is based on deliberately underdesigning shallow foundations to promote intense rocking oscillations and thereby to dramatically improve the seismic resilience of structures. Termed rocking isolation , this new seismic design philosophy is investigated through a series of dynamic centrifuge experiments on properly scaled models of a modern reinforced concrete (RC) bridge pier. The experimental method reproduces the nonlinear and inelastic response of both the soil-footing interface and the structure. To this end, a novel scale model RC (1:50 scale) that simulates reasonably well the elastic response and the failure of prototype RC elements is utilized, along with realistic representation of the soil behavior in a geotechnical centrifuge. A variety of seismic ground motions are considered as excitations. They result in consistent demonstrably beneficial performance of the rocking-isolated pier in comparison with the one designed conventionally. Seismic demand is reduced in terms of both inertial load and deck drift. Furthermore, foundation uplifting has a self-centering potential, whereas soil yielding is shown to provide a particularly effective energy dissipation mechanism, exhibiting significant resistance to cumulative damage. Thanks to such mechanisms, the rocking pier survived, with no signs of structural distress, a deleterious sequence of seismic motions that caused collapse of the conventionally designed pier. © 2014 The Authors Published by John Wiley & Sons Ltd.

  10. Analysis of cavitation behaviour in a centrifugal pump

    International Nuclear Information System (INIS)

    He, M; Zhou, L J; Guo, Q; Fu, L P; Wang, Z W

    2012-01-01

    Cavitation is a well-known problem in centrifugal pumps, causing serious damage and substantial head losses. However, the reason for the sudden head drop in cavitation curves is not fully understood. In this paper, the transient three-dimensional cavitating flow field in a centrifugal pump was calculated using RNG k-ε turbulence model and Rayleigh Plesset cavitation model. The NPSH-H curve and the cavitation development in the whole passage were predicted. The blade loading and energy transfer are analyzed for various cavitation conditions. The results show that the existing of the cavities changes the load distribution on blades. With the decrease of NPSH the loads on blades tend to increases in the rear part but decreases in the front part. If NPSH is not so low, sometimes the overall torque may increase slightly, thus the head may also increase slightly. But if the NPSH become low and reach a threshold value, the overall torque will also decrease. At the same time, the energy dissipation in the vortices increases greatly because of the growth of the cavities. These two reasons make the head drop rapidly.

  11. LISSAT Analysis of a Generic Centrifuge Enrichment Plant

    International Nuclear Information System (INIS)

    Lambert, H; Elayat, H A; O'Connell, W J; Szytel, L; Dreicer, M

    2007-01-01

    The U.S. Department of Energy (DOE) is interested in developing tools and methods for use in designing and evaluating safeguards systems for current and future plants in the nuclear power fuel cycle. The DOE is engaging several DOE National Laboratories in efforts applied to safeguards for chemical conversion plants and gaseous centrifuge enrichment plants. As part of the development, Lawrence Livermore National Laboratory has developed an integrated safeguards system analysis tool (LISSAT). This tool provides modeling and analysis of facility and safeguards operations, generation of diversion paths, and evaluation of safeguards system effectiveness. The constituent elements of diversion scenarios, including material extraction and concealment measures, are structured using directed graphs (digraphs) and fault trees. Statistical analysis evaluates the effectiveness of measurement verification plans and randomly timed inspections. Time domain simulations analyze significant scenarios, especially those involving alternate time ordering of events or issues of timeliness. Such simulations can provide additional information to the fault tree analysis and can help identify the range of normal operations and, by extension, identify additional plant operational signatures of diversions. LISSAT analyses can be used to compare the diversion-detection probabilities for individual safeguards technologies and to inform overall strategy implementations for present and future plants. Additionally, LISSAT can be the basis for a rigorous cost-effectiveness analysis of safeguards and design options. This paper will describe the results of a LISSAT analysis of a generic centrifuge enrichment plant. The paper will describe the diversion scenarios analyzed and the effectiveness of various safeguards systems alternatives

  12. Cantilever Beam Natural Frequencies in Centrifugal Inertia Field

    Science.gov (United States)

    Jivkov, V. S.; Zahariev, E. V.

    2018-03-01

    In the advanced mechanical science the well known fact is that the gravity influences on the natural frequencies and modes even for the vertical structures and pillars. But, the condition that should be fulfilled in order for the gravity to be taken into account is connected with the ration between the gravity value and the geometrical cross section inertia. The gravity is related to the earth acceleration but for moving structures there exist many other acceleration exaggerated forces and such are forces caused by the centrifugal accelerations. Large rotating structures, as wind power generators, chopper wings, large antennas and radars, unfolding space structures and many others are such examples. It is expected, that acceleration based forces influence on the structure modal and frequency properties, which is a subject of the present investigations. In the paper, rotating beams are subject to investigations and modal and frequency analysis is carried out. Analytical dependences for the natural resonances are derived and their dependences on the angular velocity and centrifugal accelerations are derived. Several examples of large rotating beams with different orientations of the rotating shaft are presented. Numerical experiments are conducted. Time histories of the beam tip deflections, that depict the beam oscillations are presented.

  13. Linearized thin-wing theory of gas-centrifuge scoops

    International Nuclear Information System (INIS)

    Sakurai, T.

    1981-01-01

    A steady hypersonic rotating flow of a perfect gas past a system of thin stationary scoops in a gas centrifuge of annulus type is studied. The gas is assumed inviscid; its ratio of specific heats is assumed to be approximately 1. The scoops are set at zero angle of attack and are periodic with respect to the azimuthal variable. The flow is assumed to be a three-dimensional small perturbation on a basic state of rigid-body rotation. New scaling laws are proposed as appropriate to realistic operating conditions of gas centrifuges. Basic equations, boundary conditions and shock conditions are linearized for a weakly hypersonic flow by an analytical procedure similar to that used in the thin-wing approximation in high speed aerodynamics. The solution of the basic equations is obtained by the eigenfunction expansion method. The solution provides a simple addition theorem for the scoop drag which makes the resultant drag of a system of several scoops equal to the product of the number of scoops and the drag of a standard system with a single scoop. The solution makes it clear that despite the above addition theorem, the scoops interact in their effects on the flow. (author)

  14. Development of the centrifugal pellet injector for JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Kizu, Kaname; Hiratsuka, Hajime; Ichige, Hisashi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    2001-03-01

    For core fueling of JT-60U plasmas, a repetitive pellet injector which centrifugally accelerates D{sub 2} cubic pellets using a straight rod has been developed. This centrifugal pellet injector can eject trains of up to 40 cubic pellets at frequencies of 1-10 Hz and velocities of 0.3-1.0 km/s. The average pellet mass is 3.6x10{sup 20} atoms/pellet below 0.7 m/s. Key techniques for the development were a mesh structured acceleration component for removing gas sublimated from the pellet and a funnel with an appropriate angle connected just behind the acceleration chamber for introducing the pellet to plasma without destruction. Using the mesh structured components, the horizontal angular distribution of pellets ejected became narrow, because irregular pellet motion caused by sublimated gas was reduced. To investigate the performance of the injector, pellet injection experiments from the low magnetic field side (LFS) were conducted using ohmic heating plasmas. Central fueling and enhanced fueling rate have been observed. D{alpha} intensity around the divertor region was reduced in a pellet injection plasma compared to gas puffing, indicating low recycling rate was maintained with the pellet injection. (author)

  15. Development of the centrifugal pellet injector for JT-60U

    International Nuclear Information System (INIS)

    Kizu, Kaname; Hiratsuka, Hajime; Ichige, Hisashi

    2001-03-01

    For core fueling of JT-60U plasmas, a repetitive pellet injector which centrifugally accelerates D 2 cubic pellets using a straight rod has been developed. This centrifugal pellet injector can eject trains of up to 40 cubic pellets at frequencies of 1-10 Hz and velocities of 0.3-1.0 km/s. The average pellet mass is 3.6x10 20 atoms/pellet below 0.7 m/s. Key techniques for the development were a mesh structured acceleration component for removing gas sublimated from the pellet and a funnel with an appropriate angle connected just behind the acceleration chamber for introducing the pellet to plasma without destruction. Using the mesh structured components, the horizontal angular distribution of pellets ejected became narrow, because irregular pellet motion caused by sublimated gas was reduced. To investigate the performance of the injector, pellet injection experiments from the low magnetic field side (LFS) were conducted using ohmic heating plasmas. Central fueling and enhanced fueling rate have been observed. Dα intensity around the divertor region was reduced in a pellet injection plasma compared to gas puffing, indicating low recycling rate was maintained with the pellet injection. (author)

  16. Vacuum-arc plasma centrifuge applied to stable isotope separation

    International Nuclear Information System (INIS)

    Del Bosco, E.

    1989-09-01

    This work describes the results of a vacuum-arc plasma centrifuge experiment. A plasma centrifuge is an apparatus where a plasma column is produced due to the interaction of an electric current with an externally applied magnetic field, sup(→)J x sup(→)B. Among the applications of a rotating plasma, this work deals particularly with its utilization in an isotope enrichment device. The main characteristics of the plasma produced in this experiment are presented, with special attention to the plasma column rotation and the isotope enrichment. The analysis of the results is performed using a fluid model for a completely ionized rigid body rotating plasma column in steady state equilibrium. The main results are: a) rotation frequency of the plasma column in the range 2 x 10 sup(4) to 3 x 10 sup(5) rad/s; b) enrichment of 10 to 30% for the magnesium isotopes, and of 290 to 490% for the carbon 13 isotope; c) rigid body rotation of the plasma column only for radii smaller than the characteristic radius of the plasma column. re; d) linear dependence of the rotation frequency upon the magnetic field strength only for r < re; e) existence of an optimum value of the magnetic field for maximum enrichment; and f) dependence of the rotation frequency upon the inverse of the atomic mass. (author)

  17. High-efficiency design optimization of a centrifugal pump

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Man Woong; Ma, Sang Bum; Shim, Hyeon Seok; Kim, Kwang Yong [Dept. of Mechanical Engineering, Inha University, Incheon (Korea, Republic of)

    2016-09-15

    Design optimization of a backward-curved blades centrifugal pump with specific speed of 150 has been performed to improve hydraulic performance of the pump using surrogate modeling and three-dimensional steady Reynolds-averaged Navier-Stokes analysis. The shear stress transport model was used for the analysis of turbulence. Four geometric variables defining the blade hub inlet angle, hub contours, blade outlet angle, and blade angle profile of impeller were selected as design variables, and total efficiency of the pump at design flow rate was set as the objective function for the optimization. Thirty-six design points were chosen using the Latin hypercube sampling, and three different surrogate models were constructed using the objective function values calculated at these design points. The optimal point was searched from the constructed surrogate model by using sequential quadratic programming. The optimum designs of the centrifugal pump predicted by the surrogate models show considerable increases in efficiency compared to a reference design. Performance of the best optimum design was validated compared to experimental data for total efficiency and head.

  18. Performance Optimization of Centrifugal Pump for Crude Oil Delivery

    Directory of Open Access Journals (Sweden)

    S.A.I. Bellary

    2018-02-01

    Full Text Available Crude oil transport is an essential task in oil and gas industries, where centrifugal pumps are extensively used. The design of a centrifugal pump involves a number of independent parameters which affect the pump performance. Altering some of the parameters within a realistic range improves pump performance and saves a significant amount of energy. The present research investigated the pump characteristics by modifying the number of blades and the exit blade-angles. Reynolds-Averaged Navier-Stokes equations with standard k-ε two-equation turbulence closure were used for steady and incompressible flow of crude oil through the pump. The experimental set-up was installed and the pump performance calculated numerically  was compared with the experiments.   The investigations showed that the number of blades and the exit blade-angles have a significant influence on the head, shaft power, and efficiency. The vortical flow structures, recirculation and reverse flow characteristics around the impeller were investigated to explain the flow dynamics of impeller and casing. A larger number of blades on the rotor showed dominant streamlined flow without any wake phenomena. The combined effect of the number of blades and exit blade angle has led to an increase in head and efficiency through the parametric optimization.

  19. Effect of inlet straighteners on centrifugal fan performance

    Energy Technology Data Exchange (ETDEWEB)

    Bayomi, N.N.; Abdel Hafiz, A. [Faculty of Engineering, Mataria, Helwan University, 11718 Masaken, El-Helmia, Cairo (Egypt); Osman, A.M. [Faculty of Engineering, Shoubra, Zagazig University, Cairo (Egypt)

    2006-11-15

    The use of straighteners in the inlet duct of centrifugal fans is suggested for eliminating any inlet distortion. An experimental investigation was performed to study the effect of inlet straighteners on the performance characteristics of centrifugal fans. Two types of straighteners were used, circular tubes and zigzag cross section, with different lengths. Circular tubes with different diameters have been investigated. The study was conducted on three types of fans, namely radial, backward with exit blade angles 60{sup o} and 75{sup o} and forward with 105{sup o} and 120{sup o}. The results confirm that the inlet straighteners exhibit different effects on the fan performance for the different blade angles. Accordingly, the results indicate the selection of long circular tube straighteners with large diameter for radial blades, long zigzag type for backward 60{sup o} blade angle and short zigzag type for backward 75{sup o} blade angle. Generally, good improvements in efficiency are observed for radial and backward blades on account of a slight drop in static head. In addition, an increase in the flow margin up to 12% and a decrease in the noise level from 3 to 5dB are indicated compared to the free inlet condition. On the contrary, unfavorable influences are exerted on the forward fan performance. (author)

  20. Effect of attack angle on flow characteristic of centrifugal fan

    Science.gov (United States)

    Wu, Y.; Dou, H. S.; Wei, Y. K.; Chen, X. P.; Chen, Y. N.; Cao, W. B.

    2016-05-01

    In this paper, numerical simulation is performed for the performance and internal flow of a centrifugal fan with different operating conditions using steady three-dimensional incompressible Navier-Stokes equations coupled with the RNG k-e turbulent model. The performance curves, the contours of static pressure, total pressure, radial velocity, relative streamlines and turbulence intensity at different attack angles are obtained. The distributions of static pressure and velocity on suction surface and pressure surface in the same impeller channel are compared for various attack angles. The research shows that the efficiency of the centrifugal fan is the highest when the attack angle is 8 degree. The main reason is that the vortex flow in the impeller is reduced, and the jet-wake pattern is weakened at the impeller outlet. The pressure difference between pressure side and suction side is smooth and the amplitude of the total pressure fluctuation is low along the circumferential direction. These phenomena may cause the loss reduced for the attack angle of about 8 degree.

  1. Impeller inlet geometry effect on performance improvement for centrifugal pumps

    International Nuclear Information System (INIS)

    Luo, Xianwu; Zhang, Yao; Peng, Junqi; Xu, Hongyuan; Yu, Weiping

    2008-01-01

    This research treats the effect of impeller inlet geometry on performance improvement for a boiler feed pump, who is a centrifugal pump having specific speed of 183 m.m 3 min -1 .min -1 and close type impeller with exit diameter of 450 mm. The hydraulic performance and cavitation performance of the pump have been tested experimentally. In order to improve the pump, five impellers have been considered by extending the blade leading edge or applying much larger blade angle at impeller inlet compared with the original impeller. The 3-D turbulent flow inside those pumps has been analyzed basing on RNG k-ε turbulence model and VOF cavitation model. It is noted that the numerical results are fairly good compared with the experiments. Based on the experimental test and numerical simulation, the following conclusions can be drawn: (1) Impeller inlet geometry has important influence on performance improvement in the case of centrifugal pump. Favorite effects on performance improvement have been achieved by both extending the blade leading edge and applying much larger blade angle at impeller inlet: (2) It is suspected that the extended leading edge have favorite effect for improving hydraulic performance, and the much larger blade angle at impeller inlet have favorite effect for improving cavitation performance for the test pump: (3) Uniform flow upstream of impeller inlet is helpful for improving cavitation performance of the pump

  2. Impeller inlet geometry effect on performance improvement for centrifugal pumps

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xianwu; Zhang, Yao; Peng, Junqi; Xu, Hongyuan [Tsinghua University, Beijing (China); Yu, Weiping [Zhejiang Pump Works, Zhejiang (China)

    2008-10-15

    This research treats the effect of impeller inlet geometry on performance improvement for a boiler feed pump, who is a centrifugal pump having specific speed of 183 m.m{sup 3}min{sup -1}.min{sup -1} and close type impeller with exit diameter of 450 mm. The hydraulic performance and cavitation performance of the pump have been tested experimentally. In order to improve the pump, five impellers have been considered by extending the blade leading edge or applying much larger blade angle at impeller inlet compared with the original impeller. The 3-D turbulent flow inside those pumps has been analyzed basing on RNG k-{epsilon} turbulence model and VOF cavitation model. It is noted that the numerical results are fairly good compared with the experiments. Based on the experimental test and numerical simulation, the following conclusions can be drawn: (1) Impeller inlet geometry has important influence on performance improvement in the case of centrifugal pump. Favorite effects on performance improvement have been achieved by both extending the blade leading edge and applying much larger blade angle at impeller inlet: (2) It is suspected that the extended leading edge have favorite effect for improving hydraulic performance, and the much larger blade angle at impeller inlet have favorite effect for improving cavitation performance for the test pump: (3) Uniform flow upstream of impeller inlet is helpful for improving cavitation performance of the pump

  3. Design and test of a high pressure centrifugal compressor

    International Nuclear Information System (INIS)

    Choi, Jae Ho; Han, Chak Heui; Paeng, Ki Seok; Chen, Seung Bae; Kim, Yong Ryun

    2005-01-01

    This paper presents an aerodynamic design, flow analysis and performance test of a pressure ratio 4:1 centrifugal compressor for gas turbine engine. The compressor is made up of a centrifugal impeller, a two-stage diffuser consisted of radial and axial types. The impeller has a 45 degree backswept angle and the design running tip clearance is 5% of impeller exit height. Three-dimensional numerical analysis is performed to analyze the flows in the impeller, diffuser and deswirler considering the impeller tip clearance. Test module and rig facilities for the compressor stage performance test are designed and fabricated. The overall compressor stage performances as well as the static pressure fields on the impeller and diffuser are measured. Two diffusers of wedge and airfoil types are tested with an impeller. The calculation and test results show that flow fields downstream the deswirler at the design and off-design points are highly nonuniform and the airfoil diffuser has the better aerodynamic characteristics than those of wedge diffuser

  4. Prediction of active control of subsonic centrifugal compressor rotating stall

    Science.gov (United States)

    Lawless, Patrick B.; Fleeter, Sanford

    1993-01-01

    A mathematical model is developed to predict the suppression of rotating stall in a centrifugal compressor with a vaned diffuser. This model is based on the employment of a control vortical waveform generated upstream of the impeller inlet to damp weak potential disturbances that are the early stages of rotating stall. The control system is analyzed by matching the perturbation pressure in the compressor inlet and exit flow fields with a model for the unsteady behavior of the compressor. The model was effective at predicting the stalling behavior of the Purdue Low Speed Centrifugal Compressor for two distinctly different stall patterns. Predictions made for the effect of a controlled inlet vorticity wave on the stability of the compressor show that for minimum control wave magnitudes, on the order of the total inlet disturbance magnitude, significant damping of the instability can be achieved. For control waves of sufficient amplitude, the control phase angle appears to be the most important factor in maintaining a stable condition in the compressor.

  5. Flow in a Low Specific Speed Centrifugal Pump Using PIV

    Directory of Open Access Journals (Sweden)

    Cui Dai

    2013-01-01

    Full Text Available The interflow plays important roles in centrifugal pump design. In order to study the effect of rotation and z-axis on internal flow, two-dimensional particle image velocimetry (PIV measurements have been performed to measure the steady velocity field on three planes in all impeller passages of a low specific-speed centrifugal pump. The results show that the relative velocity flows in blade passages are obviously different in terms of the positions of the blade relative to the tongue. The interaction between the impeller and tongue changes the occurrence and development of low velocity region with time. From shroud to hub, the relative velocity gradually increases, and the minimum value moves toward the suction surface. On the midplane, the magnitude increases with increased flow rate from pressure surface to suction surface, while at the shroud and hub, the measured velocity first increases with decreased flow rate from the blade pressure surface to nearly ζ = 0.5 to 0.6.

  6. Cardio-postural interactions and short-arm centrifugation.

    Science.gov (United States)

    Blaber, Andrew; Goswami, Nandu; Xu, Da; Laurin, Alexendre

    INTRODUCTION: We are interested in mechanisms associated with orthostatic tolerance. In previous studies we have shown that postural muscles in the calf contribute to both posture and blood pressure regulation during orthostatic stress. In this study we investigated the relationship between cardiovascular and postural muscle control before, during and after short arm human centrifuge (SAHC) up to 2.2 G. METHODS: Eleven healthy young subjects (6 m, 5 f), with no history of cardiovascular disease, falls or orthostatic hypotension, participated. All were familiarized with the SAHC with 10 minutes at 1-G at the feet. Each subject was instrumented in the supine position on the SAHC for beat-to-beat ECG and blood pressure (Portapres derived SBP). Bilateral lower leg EMG was collected from four leg postural muscles: tibialis anterior, medial gastrocnemius, lateral gastrocnemius, and medial soleus. Transdermal differential recording of signals was performed using an 8-channel EMG system, (Myosystem 1200, Noraxon Inc., Arizona, USA). Postural sway data of the body COP was computed from the force and moment data collected with a force platform (Accusway, AMTI, MA, USA). Before and after SAHC, the subject stood on a force platform with their gaze fixed on a point at eye level, closed their eyes and stood quietly for 5 min. A final stand was conducted 30 min after centrifugation with supine rest in between. During clockwise centrifugation (10-min 1g and 10-min 2.2g at the foot) the subjects’ head was hooded and in the dark. The subject’s body was restrained into the rotation arm with a parachute harness and given additional body support with a foot-plate. ECG, EMG and BP data were collected throughout and centre of pressure trajectory (COP) collected during the stand test. Subjects were requested to relax and not to voluntarily contract the leg muscles; however, they were not to suppress contractions as they occurred involuntarily or by reflex. A Continuous Wavelet

  7. 21 CFR 864.9275 - Blood bank centrifuge for in vitro diagnostic use.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Blood bank centrifuge for in vitro diagnostic use. 864.9275 Section 864.9275 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Manufacture Blood and Blood Products § 864.9275 Blood bank centrifuge for in vitro diagnostic use. (a...

  8. Preparation of leukocyte-poor platelet concentrates from buffy coats. I. Special inserts for centrifuge cups

    NARCIS (Netherlands)

    Pietersz, R. N.; Reesink, H. W.; Dekker, W. J.; Fijen, F. J.

    1987-01-01

    A special insert was developed for centrifuge cups in order to prepare leukocyte-poor platelet concentrates from buffy coats by using quadruple citrate phosphate dextrose-saline adenine glucose mannitol systems from different manufacturers. Each centrifuge cup could contain up to 4 sets of double

  9. Empirical approach based on centrifuge testing for cyclic deformations of laterally loaded piles in sand

    DEFF Research Database (Denmark)

    Truong, P.; Lehane, B. M.; Zania, Varvara

    2018-01-01

    A systematic study into the response of monopiles to lateral cyclic loading in medium dense and dense sand was performed in beam and drum centrifuge tests. The centrifuge tests were carried out at different cyclic load and magnitude ratios, while the cyclic load sequence was also varied...

  10. Coalescence and compression in centrifuged emulsions studied with in situ optical microscopy

    NARCIS (Netherlands)

    Krebs, T.; Ershov, D.S.; Schroën, C.G.P.H.; Boom, R.M.

    2013-01-01

    We report an experimental method to investigate droplet dynamics in centrifuged emulsions and its application to study droplet compression and coalescence. The experimental setup permits in situ monitoring of an ensemble of droplets in a centrifuged monolayer of monodisperse emulsion droplets using

  11. Platelet concentration of plateletrich plasma from dogs, obtained through three centrifugation speeds

    Directory of Open Access Journals (Sweden)

    Vanessa Couto de Magalhães Ferraz

    2007-12-01

    Full Text Available The platelets release at least 4 growth factors (Platelet Derived Growth Factor. ²1 and ²2 Transforming Growth Factors and Insulin-like Growth Factor which are responsible for the migration and activation of cells that will start the reparation of soft tissues and bones. The Platelet Rich Plasma is an autogenous source for Growth Factors, obtained by platelet concentration by centrifuging total blood. This study aimed the comparison of platelet concentrations in plasma centrifuged in three different centrifugation speeds (1300, 1600 e 3200rpm, for the production of platelet rich plasma. Blood was drowned from 15 dogs, 40ml of each, and these were divided into four groups and centrifuged at 800rpm. Then the first group was centrifuged at 1300rpm, the second at 1600rpm, the third at 3200rpm and the last was used as control, named plasma. The mean percentage increase in the platelet concentration for each technique was: 1300 - 183%, 1600 - 210% and 3200 - 222%. But in centrifugation at 3200 rpm, platelets presented altered morphology and different sizes in every sample studied, which was understood as severe cell damage. It was concluded that the best technique for the preparation of the platelet rich plasma in dogs consisted of the previous centrifugation of the blood at 800rpm for ten minutes, and then the plasma should be separated. This plasma is then submitted to a second centrifugation of 1600rpm for 10 minutes, and the platelet poor plasma is separated and discharged.

  12. Centrifuge enrichment plants. (Latest citations from the NTIS bibliographic database). Published Search

    International Nuclear Information System (INIS)

    1993-09-01

    The bibliography contains citations concerning the design, control, monitoring, and safety of centrifuge enrichment plants. Power supplies, enrichment plant safeguards, facility design, cascade heater test loops to monitor the enrichment process, inspection strategies, and the socioeconomic effects of centrifuge enrichment plants are examined. Radioactive waste disposal problems are considered. (Contains a minimum of 171 citations and includes a subject term index and title list.)

  13. Isolation of Mycobacterium chelonei with the lysis-centrifugation blood culture technique.

    OpenAIRE

    Fojtasek, M F; Kelly, M T

    1982-01-01

    Mycobacterium chelonei was isolated from a patient by the lysis-centrifugation and the conventional two-bottle blood culture methods. The lysis-centrifugation method was significantly more sensitive and rapid than the conventional method in detecting and isolating this organism; quantitations done by this method were useful for monitoring response to therapy.

  14. 77 FR 65360 - Grant of Authority for Subzone Status (Centrifugal and Submersible Pumps); Auburn, NY

    Science.gov (United States)

    2012-10-26

    ... Status (Centrifugal and Submersible Pumps); Auburn, NY Pursuant to its authority under the Foreign-Trade... authority to establish a special-purpose subzone at the centrifugal and submersible pump manufacturing and... submersible pumps and related controllers at the Xylem Water Systems U.S.A., LLC, facilities located in Auburn...

  15. THEORETICAL FLOW MODEL THROUGH A CENTRIFUGAL PUMP USED FOR WATER SUPPLY IN AGRICULTURE IRRIGATION

    Directory of Open Access Journals (Sweden)

    SCHEAUA Fanel Dorel

    2017-05-01

    motion of the rotor. A theoretical model for calculating the flow of the working fluid through the interior of a centrifugal pump model is presented in this paper as well as the numerical analysis on the virtual model performed with the ANSYS CFX software in order to highlight the flow parameters and flow path-lines that are formed during centrifugal pump operation.

  16. Study on flow fields in high specific speed centrifugal compressor with unpinched vaneless diffuser

    International Nuclear Information System (INIS)

    Tamaki, Hideaki

    2013-01-01

    Performance of centrifugal compressors strongly depends on their internal flow fields. CFD has become indispensable tool for getting the information about flow fields in centrifugal compressors. CFD codes are usually validated by some representative data or compared with calculated results by other CFD codes, in order to ensure their accuracies. However, learning their accuracies for all types of centrifugal compressor's specifications requires continuous works that compare experimental data obtained in developmental processes of various types of centrifugal compressors with CFD results. A prediction of a performance and a flow field of a centrifugal compressor by CFD is relatively accurate when the impact of separation and secondary flow on that flow field is weak, i.e. near design condition. Centrifugal compressors are deemed to have a wide operating range alongside high efficiencies at design points. Hence the prediction accuracy of CFD at off design conditions, where the impacts of separation and secondary flow on the flow field are strong, is critical for the design of the centrifugal compressors. This study therefore investigated the prediction accuracy of CFD using a centrifugal compressor whose geometry was intentionally changed to have a distorted flow field over a whole operating range, i.e. from choke to surge.

  17. Study on flow fields in high specific speed centrifugal compressor with unpinched vaneless diffuser

    Energy Technology Data Exchange (ETDEWEB)

    Tamaki, Hideaki [IHI Corporation, Yokoham (Japan)

    2013-06-15

    Performance of centrifugal compressors strongly depends on their internal flow fields. CFD has become indispensable tool for getting the information about flow fields in centrifugal compressors. CFD codes are usually validated by some representative data or compared with calculated results by other CFD codes, in order to ensure their accuracies. However, learning their accuracies for all types of centrifugal compressor's specifications requires continuous works that compare experimental data obtained in developmental processes of various types of centrifugal compressors with CFD results. A prediction of a performance and a flow field of a centrifugal compressor by CFD is relatively accurate when the impact of separation and secondary flow on that flow field is weak, i.e. near design condition. Centrifugal compressors are deemed to have a wide operating range alongside high efficiencies at design points. Hence the prediction accuracy of CFD at off design conditions, where the impacts of separation and secondary flow on the flow field are strong, is critical for the design of the centrifugal compressors. This study therefore investigated the prediction accuracy of CFD using a centrifugal compressor whose geometry was intentionally changed to have a distorted flow field over a whole operating range, i.e. from choke to surge.

  18. Evaluation of a reduced centrifugation time and higher centrifugal force on various general chemistry and immunochemistry analytes in plasma and serum.

    Science.gov (United States)

    Møller, Mette F; Søndergaard, Tove R; Kristensen, Helle T; Münster, Anna-Marie B

    2017-09-01

    Background Centrifugation of blood samples is an essential preanalytical step in the clinical biochemistry laboratory. Centrifugation settings are often altered to optimize sample flow and turnaround time. Few studies have addressed the effect of altering centrifugation settings on analytical quality, and almost all studies have been done using collection tubes with gel separator. Methods In this study, we compared a centrifugation time of 5 min at 3000 ×  g to a standard protocol of 10 min at 2200 ×  g. Nine selected general chemistry and immunochemistry analytes and interference indices were studied in lithium heparin plasma tubes and serum tubes without gel separator. Results were evaluated using mean bias, difference plots and coefficient of variation, compared with maximum allowable bias and coefficient of variation used in laboratory routine quality control. Results For all analytes except lactate dehydrogenase, the results were within the predefined acceptance criteria, indicating that the analytical quality was not compromised. Lactate dehydrogenase showed higher values after centrifugation for 5 min at 3000 ×  g, mean bias was 6.3 ± 2.2% and the coefficient of variation was 5%. Conclusions We found that a centrifugation protocol of 5 min at 3000 ×  g can be used for the general chemistry and immunochemistry analytes studied, with the possible exception of lactate dehydrogenase, which requires further assessment.

  19. A paper-polymer centrifugal device for low-cost sample pre-concentration and colorimetric lateral flow assay enhancement

    CSIR Research Space (South Africa)

    Wiederoder, MS

    2016-10-01

    Full Text Available This study describes a novel hybrid paper-polymer centrifugal microfluidic device for pre-concentration of E.coli and lateral flow immunoassay enhancement for water quality verification. The device balances rotational centrifugal force...

  20. The potential of centrifugal casting for the production of near net shape uranium parts

    International Nuclear Information System (INIS)

    Robertson, E.

    1993-09-01

    This report was written to provide a detailed summary of a literature survey on the near net shape casting process of centrifugal casting. Centrifugal casting is one potential casting method which could satisfy the requirements of the LANL program titled Near Net Shape Casting of Uranium for Reduced Environmental, Safety and Health Impact. In this report, centrifugal casting techniques are reviewed and an assessment of the ability to achieve the near net shape and waste minimization goals of the LANL program by using these techniques is made. Based upon the literature reviewed, it is concluded that if properly modified for operation within a vacuum, vertical or horizontal centrifugation could be used to safely cast uranium for the production of hollow, cylindrical parts. However, for the production of components of geometries other than hollow tubes, vertical centrifugation could be combined with other casting methods such as semi-permanent mold or investment casting

  1. Hydraulic and separation characteristics of an industrial gas centrifuge calculated with neural networks

    Science.gov (United States)

    Butov, Vladimir; Timchenko, Sergey; Ushakov, Ivan; Golovkov, Nikita; Poberezhnikov, Andrey

    2018-03-01

    Single gas centrifuge (GC) is generally used for the separation of binary mixtures of isotopes. Processes taking place within the centrifuge are complex and non-linear. Their characteristics can change over time with long-term operation due to wear of the main structural elements of the GC construction. The paper is devoted to the determination of basic operation parameters of the centrifuge with the help of neural networks. We have developed a method for determining the parameters of the industrial GC operation by processing statistical data. In this work, we have constructed a neural network that is capable of determining the main hydraulic and separation characteristics of the gas centrifuge, depending on the geometric dimensions of the gas centrifuge, load value, and rotor speed.

  2. Automated cellular sample preparation using a Centrifuge-on-a-Chip.

    Science.gov (United States)

    Mach, Albert J; Kim, Jae Hyun; Arshi, Armin; Hur, Soojung Claire; Di Carlo, Dino

    2011-09-07

    The standard centrifuge is a laboratory instrument widely used by biologists and medical technicians for preparing cell samples. Efforts to automate the operations of concentration, cell separation, and solution exchange that a centrifuge performs in a simpler and smaller platform have had limited success. Here, we present a microfluidic chip that replicates the functions of a centrifuge without moving parts or external forces. The device operates using a purely fluid dynamic phenomenon in which cells selectively enter and are maintained in microscale vortices. Continuous and sequential operation allows enrichment of cancer cells from spiked blood samples at the mL min(-1) scale, followed by fluorescent labeling of intra- and extra-cellular antigens on the cells without the need for manual pipetting and washing steps. A versatile centrifuge-analogue may open opportunities in automated, low-cost and high-throughput sample preparation as an alternative to the standard benchtop centrifuge in standardized clinical diagnostics or resource poor settings.

  3. Smoothed Particle Hydro-dynamic Analysis of Improvement in Sludge Conveyance Efficiency of Screw Decanter Centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dae Woong [Korea Testing and Research Institute, Kwachun (Korea, Republic of)

    2015-03-15

    A centrifuge works on the principle that particles with different densities will separate at a rate proportional to the centrifugal force during high-speed rotation. Dense particles are quickly precipitated, and particles with relatively smaller densities are precipitated more slowly. A decanter-type centrifuge is used to remove, concentrate, and dehydrate sludge in a water treatment process. This is a core technology for measuring the sludge conveyance efficiency improvement. In this study, a smoothed particle hydro-dynamic analysis was performed for a decanter centrifuge used to convey sludge to evaluate the efficiency improvement. This analysis was applied to both the original centrifugal model and the design change model, which was a ball-plate rail model, to evaluate the sludge transfer efficiency.

  4. Differential centrifugation of leucocytes and platelets applied to 111In-leucocyte labelling

    International Nuclear Information System (INIS)

    Mountford, P.J.

    1986-01-01

    Platelet contamination of 111 In-leucocytes can be minimized by centrifugation of leucocyte-rich plasma before labelling. The differential recovery of leucocytes and platelets from centrifugation depends on various biological and physical factors. Experimental measurements have been made of the effect of some of these factors. The ratio of leucocyte-to-platelet recovery was increased by using more than one centrifugation, and by using a low relative centrifugal force (RCF). To extend the study, a method of calculating cell recovery from centrifugation was developed, based on the experimental results. Calculations indicated that this ratio was at a maximum at around 85g RCF, and was least affected by changes in the suspension medium viscosity. At 85g, leucocyte recovery was incomplete, but calculations indicated that there was a preferential recovery of granulocytes which was subsequently verified by experiment. (author)

  5. Pengaruh Fungsi Advence Centrifugal dan Putaran Terhadap Konsumsi Bahan Bakar pada Motor Toyota Tipe 4K

    Directory of Open Access Journals (Sweden)

    Paryono Paryono

    2009-02-01

    Full Text Available Kesalahan yang sering dilakukan oleh pengelola bengkel mobil dan mekaniknya adalah pada waktu melaksanakan pekerjaan tune up. Mereka hanya menyetel saat pengapian dan platina saja tanpa mengontrol fungsi advance centrifugal. Penelitian ini bertujuan untuk mengetahui perbedaan konsumsi bahan-bakar pada motor bensin saat advance centrifugal bekerja normal dan macet pada putaran menengah dan tinggi. Sebagai obyek penelitian digunakan motor Toyota Type 4K yang telah diservis sesuai dengan standar industri. Hasil pengujian menunjukkan bahwa putaran motor dan kondisi advance centrifugal ada interaksi yang signifikan dengan F rasio = 82,975 dan P lebih kecil 0,05 terhadap konsumsi bensin pada motor Toyota Type 4K. Hal ini berarti bahwa pada berbagai putaran motor dengan kondisi advance centrifugal bekerja normal, konsumsi bensin pada motor Toyota Type 4K lebih irit jika dibandingkan dengan kondisi advance centrifugal yang macet.

  6. Smoothed Particle Hydro-dynamic Analysis of Improvement in Sludge Conveyance Efficiency of Screw Decanter Centrifuge

    International Nuclear Information System (INIS)

    Park, Dae Woong

    2015-01-01

    A centrifuge works on the principle that particles with different densities will separate at a rate proportional to the centrifugal force during high-speed rotation. Dense particles are quickly precipitated, and particles with relatively smaller densities are precipitated more slowly. A decanter-type centrifuge is used to remove, concentrate, and dehydrate sludge in a water treatment process. This is a core technology for measuring the sludge conveyance efficiency improvement. In this study, a smoothed particle hydro-dynamic analysis was performed for a decanter centrifuge used to convey sludge to evaluate the efficiency improvement. This analysis was applied to both the original centrifugal model and the design change model, which was a ball-plate rail model, to evaluate the sludge transfer efficiency.

  7. An Optimal Design Method of Centrifugal Compressors in Consideration of the Efficiency and the Noise

    International Nuclear Information System (INIS)

    Ha, K. G.; Sung, S. M.; Kang, S. H.

    2007-01-01

    A centrifugal compressor is a principal part of the fuelcell vehicles, aircraft and home appliances. Therefore not only efficiency but also compact size and a low operation RPM for noise reducing turn into important criteria of centrifugal compressors design. But those criteria are in conflict each other often. In the case of a RPM in particular, it is profitable to lower the RPM for a noise reduction and an endurance. But for a compact size and a light weight, the reverse has a beneficial effect undoubtedly. So it is necessary to introduce a new optimization concept in the centrifugal compressor design. An one dimensional optimal design method for the centrifugal compressor considering a impeller, a vaneless diffuser and a volute at a time is described. The new optimization process and underlying design methods of centrifugal compressors and some optimal design results are included in the paper

  8. Inertial particle focusing in serpentine channels on a centrifugal platform

    Science.gov (United States)

    Shamloo, Amir; Mashhadian, Ali

    2018-01-01

    Inertial particle focusing as a powerful passive method is widely used in diagnostic test devices. It is common to use a curved channel in this approach to achieve particle focusing through balancing of the secondary flow drag force and the inertial lift force. Here, we present a focusing device on a disk based on the interaction of secondary flow drag force, inertial lift force, and centrifugal forces to focus particles. By choosing a channel whose cross section has a low aspect ratio, the mixing effect of the secondary flow becomes negligible. To calculate inertial lift force, which is exerted on the particle from the fluid, the interaction between the fluid and particle is investigated accurately through implementation of 3D Direct Numerical Solution (DNS) method. The particle focusing in three serpentine channels with different corner angles of 75°, 85°, and 90° is investigated for three polystyrene particles with diameters of 8 μm, 9.9 μm, and 13 μm. To show the simulation reliability, the results obtained from the simulations of two examples, namely, particle focusing and centrifugal platform, are verified against experimental counterparts. The effects of angular velocity of disk on the fluid velocity and on the focusing parameters are studied. Fluid velocity in a channel with corner angle of 75° is greater than two other channels. Furthermore, the particle equilibrium positions at the cross section of channel are obtained at the outlet. There are two equilibrium positions located at the centers of the long walls. Finally, the effect of particle density on the focusing length is investigated. A particle with a higher density and larger diameter is focused in a shorter length of the channel compared to its counterpart with a lower density and shorter diameter. The channel with a corner angle of 90° has better focusing efficiency compared to other channels. This design focuses particles without using any pump or sheath flow. Inertial particle focusing

  9. Effects of Impeller-Diffuser Interaction on Centrifugal Compressor Performance

    Science.gov (United States)

    Tan, Choon S.

    2003-01-01

    This research program focuses on characterizing the effect of impeller-diffuser interactions in a centrifugal compressor stage on its performance using unsteady threedimensional Reynolds-averaged Navier-Stokes simulations. The computed results show that the interaction between the downstream diffuser pressure field and the impeller tip clearance flow can account for performance changes in the impeller. The magnitude of performance change due to this interaction was examined for an impeller with varying tip clearance followed by a vaned or vaneless diffuser. The impact of unsteady impeller-diffuser interaction, primarily through the impeller tip clearance flow, is reflected through a time-averaged change in impeller loss, blockage and slip. The results show that there exists a tip clearance where the beneficial effect of the impeller-diffuser interaction on the impeller performance is at a maximum. A flow feature that consists of tip flow back leakage was shown to occur at design speed for the centrifugal compressor stage. This flow phenomenon is described as tip flow that originates in one passage, flows downstream of the impeller trailing edge and then returns to upstream of the impeller trailing edge of a neighboring passage. Such a flow feature is a source of loss in the impeller. A hypothesis is put forth to show that changing the diffuser vane count and changing impeller-diffuser gap has an analogous effect on the impeller performance. The centrifugal compressor stage was analyzed using diffusers of different vane counts, producing an impeller performance trend similar to that when the impeller-diffuser gap was varied, thus supporting the hypothesis made. This has the implication that the effect impeller performance associated with changing the impeller-diffuser gap and changing diffuser vane count can be described by the non-dimensional ratio of impeller-diffuser gap to diffuser vane pitch. A procedure is proposed and developed for isolating impeller passage

  10. A Numerical Study of the Impact of Radial Baffles in solid Bowl Centrifuges Using computational Fluid Dynamics

    OpenAIRE

    Romani, Xiana; Nirschl, Hermann

    2010-01-01

    Centrifugal separation equipment, such as solid bowl centrifuges, is used to carry out an effective separation of fine particles from industrial fluids. Knowledge of the streams and sedimentation behavior inside solid bowl centrifuges is necessary to determine the geometry and the process parameters that lead to an optimal performance. Regarding a given industrial centrifuge geometry, a grid was built to calculate numerically the multiphase flow of water, air, and particles with a computation...

  11. Experience with environmental sampling at gas centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Ekenstam, G. af; Bush, W.; Janov, J.; Kuhn, E.; Ryjinski, M.

    2001-01-01

    Environmental sampling has been used routinely by the IAEA since 1996 after the IAEA Board of Governors approved it in March 1995 as a new technique to strengthen safeguards and improve efficiency. In enrichment plants it is used to confirm that there has been no production of highly enriched uranium (HEU), or production of uranium at above the declared enrichment. The use of environmental sampling is based on the assumption that every process, no matter how leak tight, will release small amounts of process material to the environment. Even though these releases of nuclear material are extremely small in gas centrifuge enrichment plants, and well below levels of concern from a health physics and safety standpoint, they are detectable and their analysis provides an indication of the enrichment of the material that has been processed in the plant. The environmental samples at enrichment plants are collected by swiping selected areas of the plant with squares of cotton cloth (10x10 cm) from sampling kits prepared in ultra clean condition. The squares of cotton cloth sealed in plastic bags are sent for analysis to the Network Analytical Laboratories. The analysis includes the measurement of the uranium isotopic composition in uranium-containing particles by Thermal lonization Mass Spectroscopy (TIMS) or Secondary ION Mass Spectroscopy (SIMS). Since the implementation of environmental sampling, swipes have been collected from 240 sampling points at three gas centrifuge plants of URENCO, which have a total throughput of more than 8,000 tonnes of uranium per year. The particle analysis results generally reflected the known operational history of the plants and confirmed that they had only been operated to produce uranium with enrichment less than 5% 235 U. The information about the content of the minor isotopes 234 U and 236 U also indicates that depleted and recycled uranium were sometimes used as feed materials in some plants. An example is given of the TIMS particle

  12. Capture into resonance and phase space dynamics in optical centrifuge

    Science.gov (United States)

    Armon, Tsafrir; Friedland, Lazar

    2016-05-01

    The process of capture of a molecular enesemble into rotational resonance in the optical centrifuge is investigated. The adiabaticity and phase space incompressibility are used to find the resonant capture probability in terms of two dimensionless parameters P1 , 2 characterising the driving strength and the nonlinearity, and related to three characteristic time scales in the problem. The analysis is based on the transformation to action-angle variables and the single resonance approximation, yielding reduction of the three-dimensional rotation problem to one degree of freedom. The analytic results for capture probability are in a good agreement with simulations. The existing experiments satisfy the validity conditions of the theory. This work was supported by the Israel Science Foundation Grant 30/14.

  13. Dynamic response of high speed centrifuge for reprocessing plant

    International Nuclear Information System (INIS)

    Rajput, Gaurav; Satish Kumar, V.; Selvaraj, T.; Ananda Rao, S.M.; Ravisankar, A.

    2012-01-01

    The standard for balancing the rotating bowl describes only the details about the selection of balance quality grade and the permissible residual unbalance for different operating speeds. This paper presents the effects of unbalance on the rotating bowl of high speed centrifuge used in reprocessing of spent nuclear fuel. In this study, the residual unbalance is evaluated for different recommended balancing grades in accordance with the ISO 1940. This unbalance mass generates dynamic force which acts on the rotor. The dynamic response of the rotor like displacements and stresses under this dynamic force are studied by numerical simulation. Finally, the effect of residual unbalance on the rotating bowl performance for different balancing grades is discussed. The experimental measurements are also carried out for the case of G 1.0 grade balanced rotating bowl to validate the resonance frequency as well as vibration amplitudes. (author)

  14. Cancellation of the centrifugal space-charge force

    International Nuclear Information System (INIS)

    Lee, E.P.

    1990-01-01

    The transverse dynamics of high-energy electrons confined in curved geometry are examined, including the effects of space-charge-induced fields. Attention is restricted to the centrifugal-space-charge force, which is the result of noncancellation of beam-induced transverse electric and magnetic fields in the curved geometry. This force is shown to be nearly cancelled in the evaluation of the horizontal tune and chromaticity by another, often overlooked term in the equation of motion. The additional term is the consequence of oscillations of the kinetic energy, which accompany betatron oscillations in the beam-induced electric potential. In curved geometry this term is of first order in the amplitude of the radial oscillation. A highly simplified system model is employed so that physical effects appear in as clear a form as possible. We assume azimuthal and median plane symmetry, static fields, and ultrarelativistic particle velocity (1/γ 2 ->0). (author) 9 refs

  15. Pressure recovery in a diffuser for gas centrifuge

    International Nuclear Information System (INIS)

    Hanzawa, Masatoshi; Takashima, Yoichi; Mikami, Hisashi

    1977-01-01

    The pressure recovery of supersonic flow at very low density was studied in a vane-island type diffuser for gas centrifuge. A tester of diffuser with a rapidly rotating cylinder was used in experiments. Wall static pressures were measured at many points in the diffuser to observe the static pressure distribution. The change of pressure distribution with back pressure and the effect of flow rate were investigated. Pressure distribution showed that the pressure recovery occurred in the converging section. The pressure ratio increased linearly with the back pressure in this experimental range and the effect of flow rate was not observed. A numerical analysis of the pressure recovery in the channel section of the diffuser was made by applying the finite difference method to the slender-channel equations. The pressure distribution obtained in experiments could be explained as a result of supersonic compression with reverse flow. (auth.)

  16. Over all separation factors for stable isotopes by gas centrifuge

    International Nuclear Information System (INIS)

    Chuntong Ying; Nie Yuguang; Zeng Shi; Shang Xiuyong; Wood, Houston G.

    1999-01-01

    The separation factor for the elements with molar wight differences, γ 0 , is an important characteristic parameter for separation of varied isotopes. Besides the dependence on construction parameters of the gas centrifuge it depends on many variables. Some of them are operation conditions, such as feeding flow rate F, pressure at wall p w , temperature T 0 and distribution temperature on the wall and others. Separation factor γ 0 depends on physical properties, such as molar weight M, viscosity μ, product of ρD, where ρ is density of working media and D is its diffusion coefficient. It was taken four examples: UF 6 , WF 6 , OsO 4 and Xe [ru

  17. [Hemolysis Performance Analysis of the Centrifugal Maglev Blood Pump].

    Science.gov (United States)

    Wang, Yiwen; Zhang, Fan; Fang, Yuan; Dong, Baichuan; Zhou, Liang

    2016-05-01

    In order to analyze and study the hemolysis performance of the centrifugal maglev blood pump, which was designed by ourselves, this paper built the mathematical model and computational fluid dynamics analyzed it using Fluent. Then we set up the in vitro hemolysis experiment platform, in case of the design condition, the content of free hemoglobin and hematocrit in plasma were measured in a certain time interval, and calculated the normalized index of hemolysis of the blood pump. The numerical simulation results show the internal static pressure distribution is smooth inside the pump, the wal shear stress inside the pump is less than 150 Pa. Therefore, the red blood cel damage and exposure time is independent. The normalized index of hemolysis is (0.002 9±0.000 7) mg/L, which is in accordance with human physiological requirement.

  18. Centrifugal stretching along the ground state band of 168Hf

    International Nuclear Information System (INIS)

    Costin, A.; Pietralla, N.; Reese, M.; Moeller, O.; Ai, H.; Casten, R. F.; Heinz, A.; McCutchan, E. A.; Meyer, D. A.; Qian, J.; Werner, V.; Dusling, K.; Fitzpatrick, C. R.; Guerdal, G.; Petkov, P.; Rainovski, G.

    2009-01-01

    The lifetimes of the J π =4 + , 6 + , 8 + , and 10 + levels along the ground state band in 168 Hf were measured by means of the recoil distance Doppler shift (RDDS) method using the New Yale Plunger Device (NYPD) and the SPEEDY detection array at Wright Nuclear Structure Laboratory of Yale University. Excited states in 168 Hf were populated using the 124 Sn( 48 Ti,4n) fusion evaporation reaction. The new lifetime values are sufficiently precise to clearly prove the increase of quadrupole deformation as a function of angular momentum in the deformed nucleus 168 Hf. The data agree with the predictions from the geometrical confined β-soft (CBS) rotor model that involves centrifugal stretching in a soft potential

  19. Rotor-to-stator rub vibration in centrifugal compressor

    Science.gov (United States)

    Gao, J. J.; Qi, Q. M.

    1985-01-01

    One example of excessive vibration encountered during loading of a centrifugal compressor train (H type compressor with HP casing) is discussed. An investigation was made of the effects of the dynamic load on the bearing stiffness and the rotor-bearing system critical speed. The high vibration occurred at a "threshold load," but the machine didn't run smoothly due to rubs even when it had passed through the threshold load. The acquisition and discussion of the data taken in the field as well as a description of the case history which utilizes background information to identify the malfunction conditions is presented. The analysis shows that the failures, including full reverse precession rub and exact one half subharmonic vibration, were caused by the oversize bearings and displacement of the rotor center due to foundation deformation and misalignment between gear shafts, etc. The corrective actions taken to alleviate excessive vibration and the problems which remain to be solved are also presented.

  20. Concrete Cleaning, Inc. centrifugal shot blaster: Baseline report; Summary

    International Nuclear Information System (INIS)

    1997-01-01

    The centrifugal shot blaster is an electronically operated shot-blast machine that removes layer of concrete of varying depths. Hardened steel shot propelled at a high rate of speed abrades the surface of the concrete. The depth of material removed is determined by the rate of speed the machine is traveling and the volume of shot being fired into the blast chamber. The steel shot is reused until it is pulverized to dust, which is deposited in the waste container with the concrete being removed. Debris is continually vacuumed by a large dust collection system attached to the shot blaster. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust

  1. Systems approach used in the Gas Centrifuge Enrichment Plant

    International Nuclear Information System (INIS)

    Rooks, W.A. Jr.

    1982-01-01

    A requirement exists for effective and efficient transfer of technical knowledge from the design engineering team to the production work force. Performance-Based Training (PBT) is a systematic approach to the design, development, and implementation of technical training. This approach has been successfully used by the US Armed Forces, industry, and other organizations. The advantages of the PBT approach are: cost-effectiveness (lowest life-cycle training cost), learning effectiveness, reduced implementation time, and ease of administration. The PBT process comprises five distinctive and rigorous phases: Analysis of Job Performance, Design of Instructional Strategy, Development of Training Materials and Instructional Media, Validation of Materials and Media, and Implementation of the Instructional Program. Examples from the Gas Centrifuge Enrichment Plant (GCEP) are used to illustrate the application of PBT

  2. Fast Pyrolysis of Lignin Using a Pyrolysis Centrifuge Reactor

    DEFF Research Database (Denmark)

    Trinh, Ngoc Trung; Jensen, Peter Arendt; Sárossy, Zsuzsa

    2013-01-01

    Fast pyrolysis of lignin from an ethanol plant was investigated on a lab scale pyrolysis centrifuge reactor (PCR) with respect to pyrolysis temperature, reactor gas residence time, and feed rate. A maximal organic oil yield of 34 wt % dry basis (db) (bio-oil yield of 43 wt % db) is obtained...... at temperatures of 500−550 °C, reactor gas residence time of 0.8 s, and feed rate of 5.6 g/min. Gas chromatography mass spectrometry and size-exclusion chromatography were used to characterize the Chemical properties of the lignin oils. Acetic acid, levoglucosan, guaiacol, syringols, and p-vinylguaiacol are found...... components and molecular mass distribution of the lignin oils. The obtained lignin oil has a very different components composition when compared to a beech wood oil....

  3. Centrifuge modelling of drained lateral pile - soil response

    DEFF Research Database (Denmark)

    Klinkvort, Rasmus Tofte

    of rigid piles. The tests have been performed in homogeneously dense dry or saturated Fontainebleau sand in order to mimic simplified drained offshore soil conditions. Approximately half of the tests have been carried out to investigate the centrifuge procedure in order to create a methodology of testing...... tests were used to investigate the pile - soil interaction to gain a better in-sight into the complex problem. A monotonic test series was carried out initially and then pile - soil interaction curves were deduced from these tests and compared with methodologies used today. The results indicate...... that the current methodologies can be improved and a modification to the methodology has been proposed. Secondly, a cyclic test series was carried out. The accumulation of displacement and the change in secant stiffness of the total response of these tests were evaluated. A simple mathematical model was proposed...

  4. Systems approach used in the Gas Centrifuge Enrichment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Rooks, W.A. Jr.

    1982-01-01

    A requirement exists for effective and efficient transfer of technical knowledge from the design engineering team to the production work force. Performance-Based Training (PBT) is a systematic approach to the design, development, and implementation of technical training. This approach has been successfully used by the US Armed Forces, industry, and other organizations. The advantages of the PBT approach are: cost-effectiveness (lowest life-cycle training cost), learning effectiveness, reduced implementation time, and ease of administration. The PBT process comprises five distinctive and rigorous phases: Analysis of Job Performance, Design of Instructional Strategy, Development of Training Materials and Instructional Media, Validation of Materials and Media, and Implementation of the Instructional Program. Examples from the Gas Centrifuge Enrichment Plant (GCEP) are used to illustrate the application of PBT.

  5. Effect of Bearing Housings on Centrifugal Pump Rotor Dynamics

    Science.gov (United States)

    Yashchenko, A. S.; Rudenko, A. A.; Simonovskiy, V. I.; Kozlov, O. M.

    2017-08-01

    The article deals with the effect of a bearing housing on rotor dynamics of a barrel casing centrifugal boiler feed pump rotor. The calculation of the rotor model including the bearing housing has been performed by the method of initial parameters. The calculation of a rotor solid model including the bearing housing has been performed by the finite element method. Results of both calculations highlight the need to add bearing housings into dynamic analyses of the pump rotor. The calculation performed by modern software packages is more a time-taking process, at the same time it is a preferred one due to a graphic editor that is employed for creating a numerical model. When it is necessary to view many variants of design parameters, programs for beam modeling should be used.

  6. A cryogenic axial-centrifugal compressor for superfluid helium refrigeration

    CERN Document Server

    Decker, L; Schustr, P; Vins, M; Brunovsky, I; Lebrun, P; Tavian, L

    1997-01-01

    CERN's new project, the Large Hadron Collider (LHC), will use superfluid helium as coolant for its high-field superconducting magnets and therefore require large capacity refrigeration at 1.8 K. This may only be achieved by subatmospheric compression of gaseous helium at cryogenic temperature. To stimulate development of this technology, CERN has procured from industry prototype Cold Compressor Units (CCU). This unit is based on a cryogenic axial-centrifugal compressor, running on ceramic ball bearings and driven by a variable-frequency electrical motor operating under low-pressure helium at ambient temperature. The machine has been commissioned and is now in operation. After describing basic constructional features of the compressor, we report on measured performance.

  7. Operational Experience with a Cryogenic Axial-Centrifugal Compressor

    CERN Document Server

    Decker, L; Löhlein, K; Purtschert, W; Ziegler, B L; Lebrun, P; Tavian, L; Brunovsky, I; Tucek, L

    1998-01-01

    The Large Hadron Collider (LHC), presently under construction at CERN, requires large refrigeration capacity at 1.8 K. Compression of gaseous helium at cryogenic temperatures is therefore inevitable. Together with subcontractors, Linde Kryotechnik has developed a prototype machine. This unit is based on a cryogenic axial-centrifugal compressor, running on ceramic ball bearings and driven by a variable-frequency electrical motor operating at ambient temperature. Integrated in a test facility for superconducting magnets the machine has been commissioned without major problems and successfully gone through the acceptance test in autumn 1995. Subsequent steps were initiated to improve efficiency of this prototype. This paper describes operating experience gained so far and reports on measured performance prior to and after constructional modifications.

  8. Performance Improvement of a Centrifugal Compressor by Passive Means

    Directory of Open Access Journals (Sweden)

    N. Sitaram

    2012-01-01

    Full Text Available The present experimental investigation deals with performance improvement of a low-speed centrifugal compressor by inexpensive passive means such as turbulence generator placed at different positions and partial shroud near the rotor blade tip. The experiments are carried out at three values of tip clearance, namely 2.2%, 5.1%, and 7.9% of rotor blade height at the exit. Performance tests are carried out for a total of 13 configurations. From these measurements, partial shroud is found to give the best performance. The improvement in the compressor performance may be due to the reduction of tip leakage flows by the small extension of partial shroud (2 mm on the pressure surface side. Although there is nominal change in performance due to turbulence generator (TG, TG has beneficial effect of increased operating range.

  9. Analysis of Vaneless Diffuser Stall Instability in a Centrifugal Compressor

    Directory of Open Access Journals (Sweden)

    Elias Sundström

    2017-11-01

    Full Text Available Numerical simulations based on the large eddy simulation approach were conducted with the aim to explore vaneless diffuser rotating stall instability in a centrifugal compressor. The effect of the impeller blade passage was included as an inlet boundary condition with sufficiently low flow angle relative to the tangent to provoke the instability and cause circulation in the diffuser core flow. Flow quantities, velocity and pressure, were extracted to accumulate statistics for calculating mean velocity and mean Reynolds stresses in the wall-to-wall direction. The paper focuses on the assessment of the complex response of the system to the velocity perturbations imposed, the resulting pressure gradient and flow curvature effects.

  10. Deterministic blade row interactions in a centrifugal compressor stage

    Science.gov (United States)

    Kirtley, K. R.; Beach, T. A.

    1991-01-01

    The three-dimensional viscous flow in a low speed centrifugal compressor stage is simulated using an average passage Navier-Stokes analysis. The impeller discharge flow is of the jet/wake type with low momentum fluid in the shroud-pressure side corner coincident with the tip leakage vortex. This nonuniformity introduces periodic unsteadiness in the vane frame of reference. The effect of such deterministic unsteadiness on the time-mean is included in the analysis through the average passage stress, which allows the analysis of blade row interactions. The magnitude of the divergence of the deterministic unsteady stress is of the order of the divergence of the Reynolds stress over most of the span, from the impeller trailing edge to the vane throat. Although the potential effects on the blade trailing edge from the diffuser vane are small, strong secondary flows generated by the impeller degrade the performance of the diffuser vanes.

  11. Origins of hydrodynamic forces on centrifugal pump impellers

    Science.gov (United States)

    Adkins, Douglas R.; Brennen, Christopher E.

    1987-01-01

    Hydrodynamic interactions that occur between a centrifugal pump impeller and volute are experimentally and theoretically investigated. The theoretical analysis considers the inability of the blades to perfectly guide the flow through the impeller, and also includes a quasi-one dimensional treatment of the flow in the volute. The disturbance at the impeller discharge and the resulting forces are determined by the theoretical model. The model is then extended to obtain the hydrodynamic force perturbations that are caused by the impeller whirling eccentrically in the volute. Under many operating conditions, these force perturbations were found to be destablizing. Comparisons are made between the theoretical model and the experimental measurements of pressure distributions and radial forces on the impeller. The theoretical model yields fairly accurate predictions of the radial forces caused by the flow through the impeller. However, it was found that the pressure acting on the front shroud of the impeller has a substantial effect on the destablizing hydrodynamic forces.

  12. Performance of a centrifugal pump running in inverse mode

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, J. [Universidad de Extramadura, Badajoz (Spain). Departamento de Electronica e Ingenieria Electromecanica; Blanco, E.; Parrondo, J. [Oviedo Univ. (Spain). Departamento de Energia; Stickland, M.; Scanlon, T.J. [Strathclyde Univ., Glasgow (United Kingdom). Dept. of Mechanical Engineering

    2004-08-01

    This paper presents the functional characterization of a centrifugal pump used as a turbine. It shows the characteristics of the machine involved at several rotational speeds, comparing the respective flows and heads. In this way, it is possible to observe the influence of the rotational speed on efficiency, as well as obtaining the characteristics at constant head and runaway speed. Also, the forces actuating on the impeller were studied. An uncertainty analysis was made to assess the accuracy of the results. The research results indicate that the turbine characteristics can be predicted to some extent from the pump characteristics, that water flows out of the runner free of swirl flow at the best efficiency point, and that radial stresses are lower than in pump mode. (author)

  13. Method of operating a centrifugal plasma arc furnace

    International Nuclear Information System (INIS)

    Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.

    1998-01-01

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe 3 O 4 . Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe 2 O 3 . Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs

  14. 10 CFR Appendix B to Part 110 - Illustrative List of Gas Centrifuge Enrichment Plant Components Under NRC's Export Licensing...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Illustrative List of Gas Centrifuge Enrichment Plant... 110—Illustrative List of Gas Centrifuge Enrichment Plant Components Under NRC's Export Licensing Authority 1. Assemblies and components especially designed or prepared for use in gas centrifuges. Note: The...

  15. A Laboratory Experiment to Demonstrate the Principles of Sedimentation in a Centrifuge: Estimation of Radius and Settling Velocity of Bacteria

    Science.gov (United States)

    Riley, Erin; Felse, P. Arthur

    2017-01-01

    Centrifugation is a major unit operation in chemical and biotechnology industries. Here we present a simple, hands-on laboratory experiment to teach the basic principles of centrifugation and to explore the shear effects of centrifugation using bacterial cells as model particles. This experiment provides training in the use of a bench-top…

  16. 40 CFR 63.5810 - What are my options for meeting the standards for open molding and centrifugal casting operations...

    Science.gov (United States)

    2010-07-01

    ... standards for open molding and centrifugal casting operations at new and existing sources? 63.5810 Section... § 63.5810 What are my options for meeting the standards for open molding and centrifugal casting... (d) of this section to meet the standards for open molding or centrifugal casting operations in Table...

  17. Lithospheric-scale centrifuge models of pull-apart basins

    Science.gov (United States)

    Corti, Giacomo; Dooley, Tim P.

    2015-11-01

    We present here the results of the first lithospheric-scale centrifuge models of pull-apart basins. The experiments simulate relative displacement of two lithospheric blocks along two offset master faults, with the presence of a weak zone in the offset area localising deformation during strike-slip displacement. Reproducing the entire lithosphere-asthenosphere system provides boundary conditions that are more realistic than the horizontal detachment in traditional 1 g experiments and thus provide a better approximation of the dynamic evolution of natural pull-apart basins. Model results show that local extension in the pull-apart basins is accommodated through development of oblique-slip faulting at the basin margins and cross-basin faults obliquely cutting the rift depression. As observed in previous modelling studies, our centrifuge experiments suggest that the angle of offset between the master fault segments is one of the most important parameters controlling the architecture of pull-apart basins: the basins are lozenge shaped in the case of underlapping master faults, lazy-Z shaped in case of neutral offset and rhomboidal shaped for overlapping master faults. Model cross sections show significant along-strike variations in basin morphology, with transition from narrow V- and U-shaped grabens to a more symmetric, boxlike geometry passing from the basin terminations to the basin centre; a flip in the dominance of the sidewall faults from one end of the basin to the other is observed in all models. These geometries are also typical of 1 g models and characterise several pull-apart basins worldwide. Our models show that the complex faulting in the upper brittle layer corresponds at depth to strong thinning of the ductile layer in the weak zone; a rise of the base of the lithosphere occurs beneath the basin, and maximum lithospheric thinning roughly corresponds to the areas of maximum surface subsidence (i.e., the basin depocentre).

  18. Shunted Piezoelectric Vibration Damping Analysis Including Centrifugal Loading Effects

    Science.gov (United States)

    Min, James B.; Duffy, Kirsten P.; Provenza, Andrew J.

    2011-01-01

    Excessive vibration of turbomachinery blades causes high cycle fatigue problems which require damping treatments to mitigate vibration levels. One method is the use of piezoelectric materials as passive or active dampers. Based on the technical challenges and requirements learned from previous turbomachinery rotor blades research, an effort has been made to investigate the effectiveness of a shunted piezoelectric for the turbomachinery rotor blades vibration control, specifically for a condition with centrifugal rotation. While ample research has been performed on the use of a piezoelectric material with electric circuits to attempt to control the structural vibration damping, very little study has been done regarding rotational effects. The present study attempts to fill this void. Specifically, the objectives of this study are: (a) to create and analyze finite element models for harmonic forced response vibration analysis coupled with shunted piezoelectric circuits for engine blade operational conditions, (b) to validate the experimental test approaches with numerical results and vice versa, and (c) to establish a numerical modeling capability for vibration control using shunted piezoelectric circuits under rotation. Study has focused on a resonant damping control using shunted piezoelectric patches on plate specimens. Tests and analyses were performed for both non-spinning and spinning conditions. The finite element (FE) shunted piezoelectric circuit damping simulations were performed using the ANSYS Multiphysics code for the resistive and inductive circuit piezoelectric simulations of both conditions. The FE results showed a good correlation with experimental test results. Tests and analyses of shunted piezoelectric damping control, demonstrating with plate specimens, show a great potential to reduce blade vibrations under centrifugal loading.

  19. Numerical modeling of centrifuge cyclic lateral pile load experiments

    Science.gov (United States)

    Gerolymos, Nikos; Escoffier, Sandra; Gazetas, George; Garnier, Jacques

    2009-03-01

    To gain insight into the inelastic behavior of piles, the response of a vertical pile embedded in dry sand and subjected to cyclic lateral loading was studied experimentally in centrifuge tests conducted in Laboratoire Central des Ponts et Chaussées. Three types of cyclic loading were applied, two asymmetric and one symmetric with respect to the unloaded pile. An approximately square-root variation of soil stiffness with depth was obtained from indirect in-flight density measurements, laboratory tests on reconstituted samples, and well-established empirical correlations. The tests were simulated using a cyclic nonlinear Winkler spring model, which describes the full range of inelastic phenomena, including separation and re-attachment of the pile from and to the soil. The model consists of three mathematical expressions capable of reproducing a wide variety of monotonic and cyclic experimental p-y curves. The physical meaning of key model parameters is graphically explained and related to soil behavior. Comparisons with the centrifuge test results demonstrate the general validity of the model and its ability to capture several features of pile-soil interaction, including: soil plastification at an early stage of loading, “pinching” behavior due to the formation of a relaxation zone around the upper part of the pile, and stiffness and strength changes due to cyclic loading. A comparison of the p-y curves derived from the test results and the proposed model, as well as those from the classical curves of Reese et al. (1974) for sand, is also presented.

  20. A review of centrifugal testing of gasoline contamination and remediation.

    Science.gov (United States)

    Meegoda, Jay N; Hu, Liming

    2011-08-01

    Leaking underground storage tanks (USTs) containing gasoline represent a significant public health hazard. Virtually undetectable to the UST owner, gasoline leaks can contaminate groundwater supplies. In order to develop remediation plans one must know the extent of gasoline contamination. Centrifugal simulations showed that in silty and sandy soils gasoline moved due to the physical process of advection and was retained as a pool of free products above the water table. However, in clayey soils there was a limited leak with lateral spreading and without pooling of free products above the water table. Amount leaked depends on both the type of soil underneath the USTs and the amount of corrosion. The soil vapor extraction (SVE) technology seems to be an effective method to remove contaminants from above the water table in contaminated sites. In-situ air sparging (IAS) is a groundwater remediation technology for contamination below the water table, which involves the injection of air under pressure into a well installed into the saturated zone. However, current state of the art is not adequate to develop a design guide for site implementation. New information is being currently generated by both centrifugal tests as well as theoretical models to develop a design guide for IAS. The petroleum contaminated soils excavated from leaking UST sites can be used for construction of highway pavements, specifically as sub-base material or blended and used as hot or cold mix asphalt concrete. Cost analysis shows that 5% petroleum contaminated soils is included in hot or cold mix asphalt concrete can save US$5.00 production cost per ton of asphalt produced.