WorldWideScience

Sample records for centrifugal fast analyzers

  1. Centrifugal analyzer development

    International Nuclear Information System (INIS)

    The development of the centrifuge fast analyzer (CFA) is reviewed. The development of a miniature CFA with computer data analysis is reported and applications for automated diagnostic chemical and hematological assays are discussed. A portable CFA system with microprocessor was adapted for field assays of air and water samples for environmental pollutants, including ammonia, nitrates, nitrites, phosphates, sulfates, and silica. 83 references

  2. Biochemical Technology Program progress report for the period January 1--June 30, 1976. [Centrifugal analyzers and advanced analytical systems for blood and body fluids

    Energy Technology Data Exchange (ETDEWEB)

    Mrochek, J.E.; Burtis, C.A.; Scott, C.D. (comps.)

    1976-09-01

    This document, which covers the period January 1-June 30, 1976, describes progress in the following areas: (1) advanced analytical techniques for the clinical laboratory, (2) fast clinical analyzers, (3) development of a miniaturized analytical clinical laboratory system, (4) centrifugal fast analyzers for animal toxicological studies, and (5) chemical profile of body fluids.

  3. 21 CFR 862.2140 - Centrifugal chemistry analyzer for clinical use.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Centrifugal chemistry analyzer for clinical use. 862.2140 Section 862.2140 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Instruments § 862.2140 Centrifugal chemistry analyzer for clinical use. (a) Identification. A...

  4. FOMA: A Fast Optical Multichannel Analyzer

    Science.gov (United States)

    Haskovec, J. S.; Bramson, G.; Brooks, N. H.; Perry, M.

    1989-12-01

    A Fast Optical Multichannel Analyzer (FOMA) was built for spectroscopic measurements with fast time resolution on the DIII-D tokamak. The FOMA utilizes a linear photodiode array (RETICON RL 1024 SA) as the detector sensor. An external recharge switch and ultrafast operational amplifiers permit a readout time per pixel of 300 ns. In conjunction with standard CAMAC digitizer and timing modules, a readout time of 500 microns is achieved for the full 1024-element array. Data acquired in bench tests and in actual spectroscopic measurements on the DIII-D tokamak is presented to illustrate the camera's capability.

  5. Fast Pyrolysis of Lignin Using a Pyrolysis Centrifuge Reactor

    DEFF Research Database (Denmark)

    Trinh, Ngoc Trung; Jensen, Peter Arendt; Sárossy, Zsuzsa;

    2013-01-01

    at temperatures of 500−550 °C, reactor gas residence time of 0.8 s, and feed rate of 5.6 g/min. Gas chromatography mass spectrometry and size-exclusion chromatography were used to characterize the Chemical properties of the lignin oils. Acetic acid, levoglucosan, guaiacol, syringols, and p-vinylguaiacol are found...... to be major chemical components in the lignin oil. The maximal yields of 0.62, 0.67, and 0.38 wt % db were obtained for syringol, p-vinylguaiacol, and guaiacol, respectively. The reactor temperature effect was investigated in a range of 450−600 °C and has a considerable effect on the observed chemical......Fast pyrolysis of lignin from an ethanol plant was investigated on a lab scale pyrolysis centrifuge reactor (PCR) with respect to pyrolysis temperature, reactor gas residence time, and feed rate. A maximal organic oil yield of 34 wt % dry basis (db) (bio-oil yield of 43 wt % db) is obtained...

  6. Fast centrifugal partition chromatography as a preparative-scale separation technique for citrus flavones

    Science.gov (United States)

    Fast centrifugal partition chromatography (FCPC) is a preparative-scale separations methodology based on the principles of counter current chromatography. Separations by FCPC are typically achieved with higher recoveries and with lower solvent use compared to conventional column chromatography. HSCP...

  7. Improved method for measurement of inorganic phosphate in serum with a centrifugal analyzer.

    Science.gov (United States)

    Wentz, P W; Savory, J; Cross, R E

    1976-02-01

    A direct mehtod [Clin. Chim. Acta 46, 113 (1973)] for determination of inorganic phosphate in serum was adapted for use with a centrifugal analyzer. Contamination is minimized and analysis rate maximized by doing the reaction in the reagent wells of the transfer disc and by utilizing the high-speed spectrophotometric and data-reduction capabilities of the centrifugal analyzer. Hemolysis, icterus, and moderate lipemia cause no interference. Grossly lipemic sera and sera from patients with plasma cell dyscrasias can be analyzed by incorporating appropriate blanking and dilution techniques. The method exhibits excellent sensitivity and precision and results correlate well with those from a continuous-flow procedure.

  8. [Numerical assessment of impeller features of centrifugal blood pump based on fast hemolysis approximation model].

    Science.gov (United States)

    Shou, Chen; Guo, Yongjun; Su, Lei; Li, Yongqian

    2014-12-01

    The impeller profile, which is one of the most important factors, determines the creation of shear stress which leads to blood hemolysis in the internal flow of centrifugal blood pump. The investigation of the internal flow field in centrifugal blood pump and the estimation of the hemolysis within different impeller profiles will provide information to improve the performance of centrifugal blood pump. The SST kappa-omega with low Reynolds correction was used in our laboratory to study the internal flow fields for four kinds of impellers of centrifugal blood pump. The flow fields included distributions of pressure field, velocity field and shear stress field. In addition, a fast numerical hemolysis approximation was adopted to calculate the normalized index of hemolysis (NIH). The results indicated that the pressure field distribution in all kinds of blood pump were reasonable, but for the log spiral impeller pump, the vortex and backflow were much lower than those of the other pumps, and the high shear stress zone was just about 0.004%, and the NIH was 0.0089.

  9. [Numerical assessment of impeller features of centrifugal blood pump based on fast hemolysis approximation model].

    Science.gov (United States)

    Shou, Chen; Guo, Yongjun; Su, Lei; Li, Yongqian

    2014-12-01

    The impeller profile, which is one of the most important factors, determines the creation of shear stress which leads to blood hemolysis in the internal flow of centrifugal blood pump. The investigation of the internal flow field in centrifugal blood pump and the estimation of the hemolysis within different impeller profiles will provide information to improve the performance of centrifugal blood pump. The SST kappa-omega with low Reynolds correction was used in our laboratory to study the internal flow fields for four kinds of impellers of centrifugal blood pump. The flow fields included distributions of pressure field, velocity field and shear stress field. In addition, a fast numerical hemolysis approximation was adopted to calculate the normalized index of hemolysis (NIH). The results indicated that the pressure field distribution in all kinds of blood pump were reasonable, but for the log spiral impeller pump, the vortex and backflow were much lower than those of the other pumps, and the high shear stress zone was just about 0.004%, and the NIH was 0.0089. PMID:25868241

  10. Measurement of lactate extraction ratio by centrifugal analyzer to assess myocardial ischemia.

    Science.gov (United States)

    Townsend, R M; Gotelli, G; Weingartner, D; Marton, L J

    1977-01-01

    The measurement of blood lactate to determine myocardial lactate extraction ratio requires a high degree of within-run precision, since small changes between arterial and coronary sinus lactate may occur. These changes in man may take place at lactate levels in the normal range, 5-18 mg/dl (0.56-2.00 mmol/l). The authors have developed a method for blood lactate determination utilizing commercially available reagents in a centrifugal analyzer (Centrifichem). Within-run precision in the low normal range, 5.4 mg/dl (0.60 mmol/l), showed a coefficient of variation of 7%. Precision extends to 50 mg/dl (5.55 mmol/l), and agreement with blood lactate values obtained with the Dupont ACA is good. PMID:831458

  11. Centrifugal air-assisted melt agglomeration for fast-release "granulet" design.

    Science.gov (United States)

    Wong, Tin Wui; Musa, Nafisah

    2012-07-01

    Conventional melt pelletization and granulation processes produce round and dense, and irregularly shaped but porous agglomerates respectively. This study aimed to design centrifugal air-assisted melt agglomeration technology for manufacture of spherical and yet porous "granulets" for ease of downstream manufacturing and enhancing drug release. A bladeless agglomerator, which utilized shear-free air stream to mass the powder mixture of lactose filler, polyethylene glycol binder and poorly water-soluble tolbutamide drug into "granulets", was developed. The inclination angle and number of vane, air-impermeable surface area of air guide, processing temperature, binder content and molecular weight were investigated with reference to "granulet" size, shape, texture and drug release properties. Unlike fluid-bed melt agglomeration with vertical processing air flow, the air stream in the present technology moved centrifugally to roll the processing mass into spherical but porous "granulets" with a drug release propensity higher than physical powder mixture, unprocessed drug and dense pellets prepared using high shear mixer. The fast-release attribute of "granulets" was ascribed to porous matrix formed with a high level of polyethylene glycol as solubilizer. The agglomeration and drug release outcomes of centrifugal air-assisted technology are unmet by the existing high shear and fluid-bed melt agglomeration techniques. PMID:22531845

  12. Outline of fast analyzer for MHD equilibrium `FAME`

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, Shinya; Haginoya, Hirofumi; Tsuruoka, Takuya; Aoyagi, Tetsuo; Saito, Naoyuki; Harada, Hiroo; Tani, Keiji [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Watanabe, Hideto

    1994-03-01

    The FAME (Fast Analyzer for Magnetohydrodynamic (MHD) Equilibrium) system has been developed in order to provide more than 100 MHD equilibria in time series which are enough for the non-stationary analysis of the experimental data of JT-60 within about 20 minutes shot interval. The FAME is an MIMD type small scale parallel computer with 20 microprocessors which are connected by a multi-stage switching system. The maximum theoretical speed is 250 MFLOPS. For the software system of FAME, MHD equilibrium analysis code SELENE and its input data production code FBI are tuned up taking the parallel processing into consideration. Consequently, the computational performance of the FAME system becomes more than 7 times faster than the existing general purpose computer FACOM M780-10s. This report summarizes the outline of the FAME system including hardware, soft-ware and peripheral equipments. (author).

  13. Unsteady Fast Random Particle Mesh method for efficient prediction of tonal and broadband noises of a centrifugal fan unit

    OpenAIRE

    Seung Heo; Cheolung Cheong; Taehoon Kim

    2015-01-01

    In this study, efficient numerical method is proposed for predicting tonal and broadband noises of a centrifugal fan unit. The proposed method is based on Hybrid Computational Aero-Acoustic (H-CAA) techniques combined with Unsteady Fast Random Particle Mesh (U-FRPM) method. The U-FRPM method is developed by extending the FRPM method proposed by Ewert et al. and is utilized to synthesize turbulence flow field from unsteady RANS solutions. The H-CAA technique combined with U-FRPM method is appl...

  14. Unsteady Fast Random Particle Mesh method for efficient prediction of tonal and broadband noises of a centrifugal fan unit

    Directory of Open Access Journals (Sweden)

    Seung Heo

    2015-09-01

    Full Text Available In this study, efficient numerical method is proposed for predicting tonal and broadband noises of a centrifugal fan unit. The proposed method is based on Hybrid Computational Aero-Acoustic (H-CAA techniques combined with Unsteady Fast Random Particle Mesh (U-FRPM method. The U-FRPM method is developed by extending the FRPM method proposed by Ewert et al. and is utilized to synthesize turbulence flow field from unsteady RANS solutions. The H-CAA technique combined with U-FRPM method is applied to predict broadband as well as tonal noises of a centrifugal fan unit in a household refrigerator. Firstly, unsteady flow field driven by a rotating fan is computed by solving the RANS equations with Computational Fluid Dynamic (CFD techniques. Main source regions around the rotating fan are identified by examining the computed flow fields. Then, turbulence flow fields in the main source regions are synthesized by applying the U-FRPM method. The acoustic analogy is applied to model acoustic sources in the main source regions. Finally, the centrifugal fan noise is predicted by feeding the modeled acoustic sources into an acoustic solver based on the Boundary Element Method (BEM. The sound spectral levels predicted using the current numerical method show good agreements with the measured spectra at the Blade Pass Frequencies (BPFs as well as in the high frequency range. On the more, the present method enables quantitative assessment of relative contributions of identified source regions to the sound field by comparing predicted sound pressure spectrum due to modeled sources.

  15. Unsteady Fast Random Particle Mesh method for efficient prediction of tonal and broadband noises of a centrifugal fan unit

    Science.gov (United States)

    Heo, Seung; Cheong, Cheolung; Kim, Taehoon

    2015-09-01

    In this study, efficient numerical method is proposed for predicting tonal and broadband noises of a centrifugal fan unit. The proposed method is based on Hybrid Computational Aero-Acoustic (H-CAA) techniques combined with Unsteady Fast Random Particle Mesh (U-FRPM) method. The U-FRPM method is developed by extending the FRPM method proposed by Ewert et al. and is utilized to synthesize turbulence flow field from unsteady RANS solutions. The H-CAA technique combined with U-FRPM method is applied to predict broadband as well as tonal noises of a centrifugal fan unit in a household refrigerator. Firstly, unsteady flow field driven by a rotating fan is computed by solving the RANS equations with Computational Fluid Dynamic (CFD) techniques. Main source regions around the rotating fan are identified by examining the computed flow fields. Then, turbulence flow fields in the main source regions are synthesized by applying the U-FRPM method. The acoustic analogy is applied to model acoustic sources in the main source regions. Finally, the centrifugal fan noise is predicted by feeding the modeled acoustic sources into an acoustic solver based on the Boundary Element Method (BEM). The sound spectral levels predicted using the current numerical method show good agreements with the measured spectra at the Blade Pass Frequencies (BPFs) as well as in the high frequency range. On the more, the present method enables quantitative assessment of relative contributions of identified source regions to the sound field by comparing predicted sound pressure spectrum due to modeled sources.

  16. Dissociation of fast ions analyzed by time-of-flight

    Energy Technology Data Exchange (ETDEWEB)

    Ponciano, C.R.; Ladeia, R.C.C.; Collado, V.M.; Silveira, E.F. da [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Fisica]. E-mail: enio@vdg.fis.puc-rio.br

    2001-09-01

    The fragmentation of metastable ions, having keV of kinetic energy, is analyzed by time-of-flight technique. Assuming isotropic distribution of fragments in a free field region, it is deduced an analytical expression to describe the corresponding peak shapes in linear TOF spectrometers. Metastable ion mean-life and the kinetic energy release (Q-value) are the quantities extracted from data fitting. As an illustration, the dissociation of C{sub 8} H{sub 10} N{sup +} metastable ions, desorbed by {sup 252} Cf fission fragment impact on organic target, is studied. (author)

  17. 浅析化工装置中离心泵汽蚀的有效解决方法%Briefly Analyzing Effective Solution Method for Centrifugal Pump Cavitation in Chemical Production

    Institute of Scientific and Technical Information of China (English)

    陈鹏

    2011-01-01

    简述了离心泵的工作原理和离心泵汽蚀的概念;分析了离心泵汽蚀产生的原因;提出了避免离心泵汽蚀的方法和措施。%Author has briefly described the working principle of centrifugal pump and concept of cavitation of centrifugal pump;has analyzed the caused reason of cavitation of centrifugal pump;has presented the methods and measures to avoid the cavitation of centrifugal pump.

  18. Fast Centrifugal Partition Chromatography Fractionation of Concentrated Agave (Agave salmiana) Sap to Obtain Saponins with Apoptotic Effect on Colon Cancer Cells.

    Science.gov (United States)

    Santos-Zea, Liliana; Fajardo-Ramírez, Oscar R; Romo-López, Irasema; Gutiérrez-Uribe, Janet A

    2016-03-01

    Separation of potentially bioactive components from foods and plant extracts is one of the main challenges for their study. Centrifugal partition chromatography has been a successful technique for the screening and identification of molecules with bioactive potential, such as steroidal saponins. Agave is a source of steroidal saponins with anticancer potential, though the activity of these compounds in concentrated agave sap has not been yet explored. In this study, fast centrifugal partition chromatography (FCPC) was used coupled with in vitro tests on HT-29 cells as a screening procedure to identify apoptotic saponins from an acetonic extract of concentrated agave sap. The three most bioactive fractions obtained by FCPC at partition coefficients between 0.23 and 0.4 contained steroidal saponins, predominantly magueyoside b. Flow cytometry analysis determined that the fraction rich in kammogenin and manogenin glycosides induced apoptosis, but when gentrogenin and hecogenin glycosides were also found in the fraction, a necrotic effect was observed. In conclusion, this study provides the evidence that steroidal saponins in concentrated agave sap were potential inductors of apoptosis and that it was possible to separate them using fast centrifugal partition chromatography.

  19. Fast Centrifugal Partition Chromatography Fractionation of Concentrated Agave (Agave salmiana) Sap to Obtain Saponins with Apoptotic Effect on Colon Cancer Cells.

    Science.gov (United States)

    Santos-Zea, Liliana; Fajardo-Ramírez, Oscar R; Romo-López, Irasema; Gutiérrez-Uribe, Janet A

    2016-03-01

    Separation of potentially bioactive components from foods and plant extracts is one of the main challenges for their study. Centrifugal partition chromatography has been a successful technique for the screening and identification of molecules with bioactive potential, such as steroidal saponins. Agave is a source of steroidal saponins with anticancer potential, though the activity of these compounds in concentrated agave sap has not been yet explored. In this study, fast centrifugal partition chromatography (FCPC) was used coupled with in vitro tests on HT-29 cells as a screening procedure to identify apoptotic saponins from an acetonic extract of concentrated agave sap. The three most bioactive fractions obtained by FCPC at partition coefficients between 0.23 and 0.4 contained steroidal saponins, predominantly magueyoside b. Flow cytometry analysis determined that the fraction rich in kammogenin and manogenin glycosides induced apoptosis, but when gentrogenin and hecogenin glycosides were also found in the fraction, a necrotic effect was observed. In conclusion, this study provides the evidence that steroidal saponins in concentrated agave sap were potential inductors of apoptosis and that it was possible to separate them using fast centrifugal partition chromatography. PMID:26701355

  20. Neutral Particle Analyzer for Studies of Fast Ion Population in Plasma

    CERN Document Server

    Polosatkin, S; Davydenko, V; Clary, R; Fiksel, G; Ivanov, A; Kapitonov, V; Liu, D; Mishagin, V; Tiunov, M; Voskoboynikov, R

    2011-01-01

    Advanced neutral particles analyzer for plasma diagnostic with possibility of simultaneous measurements of energy distributions of D and H ions has developed in the Budker Institute of Nuclear Physics. The analyzer was used in two plasma facilities with injection of fast neutrals - on the MST reversed field pinch (University of Wisconsin) and the field reversed configuration C-2 (Tri Alpha Energy). In this paper, the design of the analyzer, calculation of efficiency of registration, results of analyzer calibration and experimental results from MST and C-2 experiments are presented

  1. Development and calibration of the fast neutral particle analyzer of the Tore Supra tokamak

    International Nuclear Information System (INIS)

    The design and construction of an analyzer for the Tore Supra tokamak fast neutral particles are presented. The energy analysis of the hydrogen and deuterium fast neutrals from the plasma allows the obtention of the plasma ionic temperature. The principle of the analysis is described. The analysis maximal energy is 300 keV for the protons and 150 keV for the deuterons. The measurement of the flow of neutrals in a given energy gap requires the knowledge of the energy of analysis, energy resolution and efficiency of the analyzer. The determination of these parameters needed the utilization of a neutral particle beam of 0 to 50 KeV energy. The energy spectra of the neutrals and the plasma ionic temperature at Tore Supra were obtained

  2. Fast neutron flux analyzer with real-time digital pulse shape discrimination

    Science.gov (United States)

    Ivanova, A. A.; Zubarev, P. V.; Ivanenko, S. V.; Khilchenko, A. D.; Kotelnikov, A. I.; Polosatkin, S. V.; Puryga, E. A.; Shvyrev, V. G.; Sulyaev, Yu. S.

    2016-08-01

    Investigation of subthermonuclear plasma confinement and heating in magnetic fusion devices such as GOL-3 and GDT at the Budker Institute (Novosibirsk, Russia) requires sophisticated equipment for neutron-, gamma- diagnostics and upgrading data acquisition systems with online data processing. Measurement of fast neutron flux with stilbene scintillation detectors raised the problem of discrimination of the neutrons (n) from background cosmic particles (muons) and neutron-induced gamma rays (γ). This paper describes a fast neutron flux analyzer with real-time digital pulse-shape discrimination (DPSD) algorithm FPGA-implemented for the GOL-3 and GDT devices. This analyzer was tested and calibrated with the help of 137Cs and 252Cf radiation sources. The Figures of Merit (FOM) calculated for different energy cuts are presented.

  3. The UNICO Multi-Physics Code to Analyze Transients in Sodium Fast Reactor

    International Nuclear Information System (INIS)

    The Russian multi-physics code UNICO is designed to analyze in detail the temperature and velocity fields in a fast reactor core, under transient conditions. The code is meant to make 3D coupled computation of neutronic, thermal-hydraulic and thermal-mechanic characteristics to the accuracy of each separate core fuel assembly (FA). A core thermal hydraulic model is a set of fuel assemblies installed into an inter-wrapper space. Sodium thermal hydraulics in the core inter-wrapper space is calculated in 3D approximation and the relevant equation system is solved in the triangular difference mesh. Sodium velocity and temperature distributions are taken into account inside each fuel assembly. A 3D FA model is used to calculate the temperature of fuel and steel cladding. Based on the information about the temperature of fuel, fuel element cladding and FA wrappers the core deformation behaviour is analyzed and then the respective changes in neutronic characteristics are calculated. The results of test calculations are given; they confirm the fact that insufficiently correct consideration of spatial distribution of thermal hydraulic parameters in the reactor core can cause appreciable errors (uncertainties). (author)

  4. Multi-purpose fast neutron spectrum analyzer with real-time signal processing

    Energy Technology Data Exchange (ETDEWEB)

    Sulyaev, Yu.S., E-mail: sulyaev@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Puryga, E.A.; Khilchenko, A.D. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Kvashnin, A.N. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Polosatkin, S.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Rovenskikh, A.F. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Burdakov, A.V.; Grishnyaev, E.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation)

    2013-08-21

    Diagnostics of hot ion component of plasma on the products of fusion reactions is widely used on thermonuclear facilities. In case of employment of neutron spectrometers, based on organics scintillators, there is advanced technique developed to eliminate neutron pulses from gamma background—digital pulse shape discrimination. For every DPSD application it is necessary to use the fast (2–5 ns) and precise (12 bit) transient ADC unit with large amount of onboard memory for storing every digitized scintillation pulses during shot time. At present time the duration of hot thermonuclear plasma burning in large tokamaks approximate to 1 min, and this requires very high onboard memory capacity (∼100 GB). This paper describes a neutron spectrum analyzer with real-time DPSD algorithm, implemented to ADC unit. This approach saves about two orders of onboard memory capacity, gives the possibility of instant use of outcome to feedback systems. This analyzer was tested and calibrated with help of {sup 60}Co and {sup 252}Cf radiation sources, and deuterium neutron generator.

  5. Centrifugal pumps

    CERN Document Server

    Anderson, HH

    1981-01-01

    Centrifugal Pumps describes the whole range of the centrifugal pump (mixed flow and axial flow pumps are dealt with more briefly), with emphasis on the development of the boiler feed pump. Organized into 46 chapters, this book discusses the general hydrodynamic principles, performance, dimensions, type number, flow, and efficiency of centrifugal pumps. This text also explains the pumps performance; entry conditions and cavitation; speed and dimensions for a given duty; and losses. Some chapters further describe centrifugal pump mechanical design, installation, monitoring, and maintenance. The

  6. CENTRIFUGAL SEPARATORS

    Science.gov (United States)

    Skarstrom, C.

    1959-03-10

    A centrifugal separator is described for separating gaseous mixtures where the temperature gradients both longitudinally and radially of the centrifuge may be controlled effectively to produce a maximum separation of the process gases flowing through. Tbe invention provides for the balancing of increases and decreases in temperature in various zones of the centrifuge chamber as the result of compression and expansions respectively, of process gases and may be employed effectively both to neutralize harmful temperature gradients and to utilize beneficial temperaturc gradients within the centrifuge.

  7. Centrifugal partition chromatography directly interfaced with mass spectrometry for the fast screening and fractionation of major xanthones in Garcina mangostana.

    Science.gov (United States)

    Destandau, E; Toribio, A; Lafosse, M; Pecher, V; Lamy, C; André, P

    2009-02-27

    Xanthones are well known for their interesting phytochemical properties, which make them attractive to the pharmaceutical and medicinal industry. We have therefore developed a method to analyse the major xanthones in Garcina mangostana. The xanthones were extracted by pressurized liquid extraction with ethanol and separated at the semi-preparative scale by centrifugal partition chromatography (CPC) with a biphasic solvent system consisting of heptane/ethyl acetate/methanol/water (2:1:2:1, v/v/v/v). A CPC-electrospray ionisation MS coupling was performed and used to simultaneously separate and identify the compounds. Thanks to a variable flow splitter and an additional stream of ethanol/1 mol L(-1) ammonium acetate (95:5, v/v), all the compounds were ionised, detected and monitored whatever the solvents used in mobile phase for the CPC separation. The dual mode or elution-extrusion which are less solvent-consuming and faster than the elution mode were used without loss of ionisation and detection. PMID:19147151

  8. Schottky Diode Applications of the Fast Green FCF Organic Material and the Analyze of Solar Cell Characteristics

    Science.gov (United States)

    Çaldiran, Z.; Aydoğan, Ş.; İncekara, Ü.

    2016-05-01

    In this study, a device applications of organic material Fast Green FCF (C37H34N2Na2O10S3Na2) has been investigated. After chemical cleaning process of boron doped H-Si crystals, Al metal was coated on the one surface of crystals by thermal evaporation and fast green organic materials were coated on other surface of crystals with spin coating method (coating parameters; 800 rpm for 60 s). Finally, Ni metal was coated on Fast Green by sputtering and we obtained the Ni/Fast Green FCF/n-Si/Al Schottky type diode. And then we calculated the basic diode parameters of device with current-voltage (I-V) and capacitance- voltage (C-V) measurements at the room temperature. We calculated the ideality factory (n), barrier height (Φb) of rectifing contact from I-V measurements using thermionic emission methods. Furthermore, we calculated ideality factory (n), barrier height (Φb) and series resistance (Rs) of device using Cheung and Norde functions too. The diffusion potential, barrier height, Fermi energy level and donor concentration have been determined from the linear 1/C2-V curves at reverse bias, at room temperature and various frequencies. Besides we measured the current-voltage (I-V) at under light and analyzed the characteristics of the solar cell device.

  9. Analyzing the fast-start performance of northern pike using a mechanical fish

    Science.gov (United States)

    Modarres-Sadeghi, Yahya; Feng, Chengcheng; Bonafilia, Brian; Costain, Andrew

    2011-11-01

    The northern pike is able to achieve an instantaneous acceleration of 245 m/s2 through a two-stage motion. In the first stage the fish curls its body into either a C-shaped or an S-shaped curve (preparatory stage), and in the second stage uncurls it very quickly (propulsive stage) generating high accelerations due to the vortices shed from its tail. We have built a mechanical fish, based on the body profile of a pike, which is capable of performing this two-stage fast-start motion. Movement is governed by servo motors, which pull on cables attached to certain ribs, bending the fish into a C- or an S-shape. The degree of bending and timing of strokes can be controlled, and the fish can perform either a propulsive stroke only or a full stroke consisting of both the preparatory stage and the propulsive stage. The mechanical fish is capable of achieving peak accelerations of around 4 m/s2. We use this fish in order to study the influence of various variables on the observed acceleration. Although the maximum accelerations observed in our mechanical fish are smaller than those of a live fish, the form of the measured acceleration signal as function of time is quite similar to that of a live fish. The hydrodynamic efficiencies are observed to be around 12%, and it is shown that the majority of the thrust is produced at the rear part of the mechanical fish--similarly to the live fish.

  10. Analyzing textual databases using data mining to enable fast product development processes

    International Nuclear Information System (INIS)

    Currently, companies active in the design of high-tech products are confronted with a number of, often conflicting, challenges. Not only do they have to develop increasingly complex products in ever-shorter amounts of time but they also have to produce them cheaply for the local as well as global markets. In order to manage these conflicting trends adequately, as this paper will demonstrate, companies need to have high quality information at the right moment and at the right location. This serves as the motivation of this paper in which various databases within the product life cycle are examined. Due to the fact that unanticipated information plays a more and more dominant role, especially in highly innovative business processes, we focus our attention on textual databases since textual databases offer the best possibility to handle unanticipated free-formatted information. Also their treatment in the literature has thus far been scant. As will be demonstrated in this paper these databases have a huge potential for valuable information. Further, an analysis tool, data mining that could be used to analyse these textual databases so that we could extract information from them quickly and hence be able to access them at the right time when needed, is presented. We also highlight some of the difficulties faced when analyzing textual databases. Thus with the right information from the textual databases and the tools to deliver this information at the right time companies, would definitely be able to shorten development times and hence gain a competitive edge

  11. Centrifugal forces within usually-used magnitude elicited a transitory and reversible change in proliferation and gene expression of osteoblastic cells UMR-106.

    Science.gov (United States)

    Li, Juan; Jiang, Lingyong; Liao, Ga; Chen, Guoping; Liu, Ying; Wang, Jun; Zheng, Yi; Luo, Songjiao; Zhao, Zhihe

    2009-02-01

    Centrifugation is an important step in biochemical and molecular biological researches. But the effects of centrifugal stress on cells are still unclear. In this study, osteoblastic cells UMR-106 were subjected to a moderate centrifugal stress at 209 x g for 10 min. Then the cell proliferation and gene transcription after centrifugation were analyzed with flow cytometry and Real-time RT-PCR techniques, respectively. The result showed that the cell proliferation and mRNA expression of Runx2/Cbfa1, Collagen I and osteocalcin changed shortly after centrifugal loading, but recovered to pre-load levels within 24 h. A dose-response study of exposure cells to centrifugal force at 209, 253 and 301 x g showed that the centrifugal forces within usually-used range can rapidly influenced the mRNA expression of the osteoblast-specific genes, but no statistical differences were found among the three centrifugal magnitudes. And the fast regulation in the investigated genes was proved to be related to increased c-fos mRNA levels and subsequent activation of RTK and integrity of cytoskeleton construction. The result showed that the osteoblastic cells displayed a fast auto-regulation to usually-used centrifugal stress through multiple signal pathways.

  12. Centrifugal pyrocontactor

    Science.gov (United States)

    Chow, Lorac S.; Leonard, Ralph A.

    1993-01-01

    A method for mixing and separating immiscible liquid salts and liquid metals in a centrifugal contractor. The method includes introducing the liquids into an annular mixing zone and intensely mixing the liquids using vertical vanes attached to a rotor cooperating with vertical baffles, a horizontal baffle, and bottom vanes attached to the contactor housing. The liquids enter the contactor in the range of 700-800 degrees Celsius. The liquids are separated in the rotor into a dense phase and a light phase which are discharged from the contactor.

  13. Propagating Spectroscopic Effects through WPL Terms when Using a Fast Laser-Based Open-Path CH4 Analyzer

    Science.gov (United States)

    Burba, George; McDermitt, Dayle; Anderson, Tyler; Komissarov, Anatoly

    2013-04-01

    Eddy flux is computed using a covariance between fast changes in gas density and vertical wind speed. The measured changes in gas density happen due to gas flux itself, thermal expansion and contraction of the sampled gas, water vapor dilution, and pressure-related expansions and contractions. These are standard processes described by the Ideal Gas Law and by the Law of Partial Pressures, and are often called density effects. The gas flux is usually corrected for such density effects using Webb-Pearman-Leuning terms (WPL). When gas density is measured by laser spectroscopy, there are also spectroscopic effects affecting measured gas density depending on fluctuations in temperature, water vapor and pressure, in addition to the density effects. The spectroscopic effects are related to changes in the shape of the absorption line due to changes in gas temperature, pressure and the presence of water vapor. These effects are specific for each specific absorption line, and the measurement technique. The majority of density effects and spectroscopic effects are reduced or eliminated in the closed-path analyzers, when: (a) intake tube is very long, (b) gas sample is dried, and (c) pressure fluctuations are very small. However, the use of long intake tubes and drying of the air sample also lead to a significant increase in power demand, and to increased uncertainties due to excess attenuation of the fluctuations of the gas in the drier. Not drying the air sample leads to a need for applying a density correction for dilution, and spectroscopic corrections for gas absorption due to fast fluctuations in water vapor pressure. For both of these corrections water vapor should be measured accurately at high-speed inside the closed-path device, which increases measurements costs. In addition, current fast closed-path analyzers based on laser spectroscopy have to operate under significantly reduced pressures, and require powerful pumps and grid power (400-1500 Watts). Power demands

  14. Centrifugal pumps

    CERN Document Server

    Gülich, Johann Friedrich

    2014-01-01

    This book gives an unparalleled, up-to-date, in-depth treatment of all kinds of flow phenomena encountered in centrifugal pumps including the complex interactions of fluid flow with vibrations and wear of materials. The scope includes all aspects of hydraulic design, 3D-flow phenomena and partload operation, cavitation, numerical flow calculations, hydraulic forces, pressure pulsations, noise, pump vibrations (notably bearing housing vibration diagnostics and remedies), pipe vibrations, pump characteristics and pump operation, design of intake structures, the effects of highly viscous flows, pumping of gas-liquid mixtures, hydraulic transport of solids, fatigue damage to impellers or diffusers, material selection under the aspects of fatigue, corrosion, erosion-corrosion or hydro-abrasive wear, pump selection, and hydraulic quality criteria. As a novelty, the 3rd ed. brings a fully analytical design method for radial impellers, which eliminates the arbitrary choices inherent to former design procedures. The d...

  15. Analyzing and Solving Problems of Centrifugal Pumps Occurred during the Commissioning of Shell Coal Gasification Plant%Shell煤气化装置离心泵试车问题分析与处理

    Institute of Scientific and Technical Information of China (English)

    尹俊杰; 赵瑞萍

    2012-01-01

    The problems of too great head of delivery, air sinuses, interlock, etc., which occurred to the discharge pump in the Yueyang Coal Gasification Plant, the hot water pump in the Anqing Coal Gasification Plant and the high pressure process water pumps in the Yueyang and Anqing coal gasification plants during the commissioning of these plants were analyzed respectively, taking the centrifugal pumps in the Yueyang and Anqing Shell gasification plants as examples. Relevant programs for solving these problems were proposed based on the theory of fluid handling mechanism. The practice of those programs verified their correctness and rationality. The method for solving problems of centrifugal pumps for chemical plants was thus summarized and can be served as a reference for other similar chemical plants.%针对Shell煤气化装置离心泵的应用,分别分析了岳阳煤气化装置排水泵、安庆煤气化装置热水泵及岳阳和安庆煤气化装置高压工艺水泵在试车过程中出现的扬程偏大、气缚和联锁等问题,结合流体输送机械理论,提出了相应的解决方案,并通过实施后的运行效果,检验了所提方案的正确性与合理性,从而总结出化工装置现场离心泵试车问题的处理方法,可供其他类似项目借鉴.

  16. The Geometric Factor of Electrostatic Plasma Analyzers: A Case Study from the Fast Plasma Investigation for the Magnetospheric Multiscale mission

    Science.gov (United States)

    Collinson, Glyn A.; Dorelli, John Charles; Avanov, Leon A.; Lewis, Gethyn R.; Moore, Thomas E.; Pollock, Craig; Kataria, Dhiren O.; Bedington, Robert; Arridge, Chris S.; Chornay, Dennis J.; Gliese,Ulrik; Mariano, Al.; Barrie, Alexander C; Tucker, Corey; Owen, Christopher J.; Walsh, Andrew P.; Shappirio, Mark D.; Adrian, Mark L.

    2012-01-01

    We report our findings comparing the geometric factor (GF) as determined from simulations and laboratory measurements of the new Dual Electron Spectrometer (DES) being developed at NASA Goddard Space Flight Center as part of the Fast Plasma Investigation on NASA's Magnetospheric Multiscale mission. Particle simulations are increasingly playing an essential role in the design and calibration of electrostatic analyzers, facilitating the identification and mitigation of the many sources of systematic error present in laboratory calibration. While equations for laboratory measurement of the Geometric Factpr (GF) have been described in the literature, these are not directly applicable to simulation since the two are carried out under substantially different assumptions and conditions, making direct comparison very challenging. Starting from first principles, we derive generalized expressions for the determination of the GF in simulation and laboratory, and discuss how we have estimated errors in both cases. Finally, we apply these equations to the new DES instrument and show that the results agree within errors. Thus we show that the techniques presented here will produce consistent results between laboratory and simulation, and present the first description of the performance of the new DES instrument in the literature.

  17. Eddy Covariance Measurements of Methane Flux at Remote Sites with New Low-Power Lightweight Fast Gas Analyzer

    Science.gov (United States)

    Xu, Liukang; Burba, George; Schedlbauer, Jessica; Zona, Donatella; McDermitt, Dayle K.; Anderson, Tyler; Oberbauer, Steven; Oechel, Walter; Komissarov, Anatoly; Riensche, Brad

    2010-05-01

    Majority of natural methane production happens at remote unpopulated areas in ecosystems with little or no infrastructure or easily available grid power, such as arctic and boreal wetlands, tropical mangroves, etc. Present approaches for direct measurements of CH4 fluxes rely on fast closed-path analyzers, which have to work under significantly reduced pressures, and require powerful pumps and grid power. Power and labor demands may be reasons why CH4 flux is often measured at locations with good infrastructure and grid power, and not with high CH4 production. An instrument was developed to allow Eddy Covariance measurements of CH4 flux with power consumption 30-150 times below presently available technologies. This instrument, LI-7700, uses mangroves near La Paz (Mexico) using portable generator, and in bare agricultural field near Mead (Nebraska, USA) during 2005 through 2010. Latest data on CH4 concentration, co-spectra and fluxes, and latest details of instrumental design are examined in this presentation. Overall, hourly methane fluxes ranged from near-zero at night to about 4 mg m-2 h-1 in midday in arctic tundra. Observed fluxes were within the ranges reported in the literature for a number of wetlands in North America, including the Everglades wetlands. Diurnal patterns were similar to those measured by closed-path sensors. The LI-7700 open-path analyzer is a valuable tool for measuring long-term eddy fluxes of methane due to the good frequency response and undisturbed in-situ sampling. It enables long-term deployment of permanent, portable or mobile CH4 flux stations at remote locations with high CH4 production, because it can be powered by a solar panels or a small generator. Authors appreciate help and support provided by the LI-COR Engineering Team, Barrow Arctic Science Consortium (BASC), and numerous colleagues involved in measurements, logistics, and maintenance of the experimental field sites. This project was supported by the Small Business

  18. Centrifugal reciprocating compressor

    Science.gov (United States)

    High, W. H.

    1980-01-01

    Efficient compressor uses centrifugal force to compress gas. System incorporates two coupled dc motors, each driving separate centrifugal reciprocating-compressor assembly. Motors are synchronized to accelerate and decelerate alternately.

  19. Enrichment: centrifuge process

    International Nuclear Information System (INIS)

    This short course is divided into three sections devoted respectively to the physics of the process, some practical problems raised by the design of a centrifuge and the present situation of centrifugation in the World. 31 figs., 18 refs

  20. FAST

    DEFF Research Database (Denmark)

    Zuidmeer-Jongejan, Laurian; Fernandez-Rivas, Montserrat; Poulsen, Lars K.;

    2012-01-01

    ABSTRACT: The FAST project (Food Allergy Specific Immunotherapy) aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT), using subcutaneous injections...... with aqueous food extracts may be effective but has proven to be accompanied by too many anaphylactic side-effects. FAST aims to develop a safe alternative by replacing food extracts with hypoallergenic recombinant major allergens as the active ingredients of SIT. Both severe fish and peach allergy are caused...... by a single major allergen, parvalbumin (Cyp c 1) and lipid transfer protein (Pru p 3), respectively. Two approaches are being evaluated for achieving hypoallergenicity, i.e. site-directed mutagenesis and chemical modification. The most promising hypoallergens will be produced under GMP conditions. After pre...

  1. Centrifuge modeling of monopiles

    DEFF Research Database (Denmark)

    Klinkvort, Rasmus Tofte

    2010-01-01

    To gain a larger knowledge of the monopile foundation concept, centrifuge modeling is used by the geotechnical group at DTU. The centrifuge operated at DTU is a beam centrifuge and was built in 1976. In the recent years it has been upgraded with onboard data acquisition and control systems....... The capabilities of the centrifuge at DTU makes it possible to obtain a scale factor of 85 in experiments which equals a soil volume in prototype scale of a diameter of 40 meters and a depth of 40 meters. This paper describes centrifuge modeling theory, the centrifuge setup at DTU and as an example show results...... from centrifuge tests performed on large diameter piles installed in dry sand....

  2. Analyzing Factors to Improve Service Quality of Local Specialties Restaurants: A Comparison with Fast Food Restaurants in Southern Vietnam

    OpenAIRE

    Lai Wang Wang; Thanh Tuyen Tran

    2014-01-01

    The top fast food restaurant brands like KFC and MacDonald?s have gone global and demonstrated their successful business strategies through providing quick-service and convenience for customers. Meanwhile, local specialty food has recently emerged as a phenomenon attracting customers? attention on traditional value of ethnic food culture. The purpose of this study is to conduct a regional survey in Vietnamese restaurant companies to identify some key factors that make customers interested in ...

  3. CFD Analysis of Centrifugal Pump: A Review

    OpenAIRE

    Narayan P. Jaiswal

    2014-01-01

    The main objective of this work is to understand role of the computational fluid dynamics (CFD) technique in analyzing and predicting the performance of centrifugal pump. Computational Fluid Dynamics (CFD) is the present day state-of-art technique for fluid flow analysis. The critical review of CFD analysis of CFD analysis of centrifugal pump along with future scope for further improvement is presented in this paper. Different solver like ANSYS-CFX, FLUENT etc can be used for ...

  4. Centrifugal pump handbook

    CERN Document Server

    Pumps, Sulzer

    2010-01-01

    This long-awaited new edition is the complete reference for engineers and designers working on pump design and development or using centrifugal pumps in the field. This authoritative guide has been developed with access to the technical expertise of the leading centrifugal pump developer, Sulzer Pumps. In addition to providing the most comprehensive centrifugal pump theory and design reference with detailed material on cavitation, erosion, selection of materials, rotor vibration behavior and forces acting on pumps, the handbook also covers key pumping applications topics and operational

  5. ICECO-CEL: a coupled Eulerian-Lagrangian code for analyzing primary system response in fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.Y.

    1981-02-01

    This report describes a coupled Eulerian-Lagrangian code, ICECO-CEL, for analyzing the response of the primary system during hypothetical core disruptive accidents. The implicit Eulerian method is used to calculate the fluid motion so that large fluid distortion, two-dimensional sliding interface, flow around corners, flow through coolant passageways, and out-flow boundary conditions can be treated. The explicit Lagrangian formulation is employed to compute the response of the containment vessel and other elastic-plastic solids inside the reactor containment. Large displacements, as well as geometrical and material nonlinearities are considered in the analysis. Marker particles are utilized to define the free surface or the material interface and to visualize the fluid motion. The basic equations and numerical techniques used in the Eulerian hydrodynamics and Lagrangian structural dynamics are described. Treatment of the above-core hydrodynamics, sodium spillage, fluid cavitation, free-surface boundary conditions and heat transfer are also presented. Examples are given to illustrate the capabilities of the computer code. Comparisons of the code predictions with available experimental data are also made.

  6. DESIGN INFORMATION REPORT: CENTRIFUGES

    Science.gov (United States)

    In the 1960s, manufacturers began to design centrifuges specifically for wastewater sludge applications. In addition, sludge thickening and dewatering processes were improved with the introduction of polyelectrolytes for chemical sludge conditioning. The report contains a brief d...

  7. ELECTRO-HYDRAULIC SERVO SYSTEM IN THE CENTRIFUGE FIELD

    Institute of Scientific and Technical Information of China (English)

    Dong Longlei; Yan Guirong; Li Ronglin

    2004-01-01

    The mechanical characteristics of the electro-hydraulic servo system in the centrifuge field are analyzed.The hydraulic pressure law in the centrifuge field indicates the existence of the centrifuge hydraulic pressure.The mechanical characteristics of the slide-valve and the dual nozzle flapper valve are studied,and it is found that the centrifuge field can not only increase the driving force or moment of the function units,but also decrease the stability of the components.Finally by applying Gauss minimum constraint principle,the dynamic model of the electro-hydraulic vibrator in the centrifuge field is established,and the mechanical restriction of the system is also presented.The study will be helpful for the realization of the combined vibration and centrifuge test system.

  8. Development of a method for fast and automatic radiocarbon measurement of aerosol samples by online coupling of an elemental analyzer with a MICADAS AMS

    Science.gov (United States)

    Salazar, G.; Zhang, Y. L.; Agrios, K.; Szidat, S.

    2015-10-01

    A fast and automatic method for radiocarbon analysis of aerosol samples is presented. This type of analysis requires high number of sample measurements of low carbon masses, but accepts precisions lower than for carbon dating analysis. The method is based on online Trapping CO2 and coupling an elemental analyzer with a MICADAS AMS by means of a gas interface. It gives similar results to a previously validated reference method for the same set of samples. This method is fast and automatic and typically provides uncertainties of 1.5-5% for representative aerosol samples. It proves to be robust and reliable and allows for overnight and unattended measurements. A constant and cross contamination correction is included, which indicates a constant contamination of 1.4 ± 0.2 μg C with 70 ± 7 pMC and a cross contamination of (0.2 ± 0.1)% from the previous sample. A Real-time online coupling version of the method was also investigated. It shows promising results for standard materials with slightly higher uncertainties than the Trapping online approach.

  9. Geotechnical centrifuge under construction

    Science.gov (United States)

    Richman, Barbara T.

    Modifications are underway at the National Aeronautics and Space Administration (NASA) Ames Research Center in California to transform a centrifuge used in the Apollo space program to the largest geotechnical centrifuge in the free world. The centrifuge, to be finished in August and opened next January, following check out and tuning, will enable geoscientists to model stratigraphic features down to 275 m below the earth's surface. Scientists will be able to model processes that are coupled with body force loading, including earthquake response of earth structures and soil structure interaction; rubbled-bed behavior during in situ coal gasification or in oil shale in situ retorts; behavior of frozen soil; frost heave; behavior of offshore structures; wave-seabed interactions; explosive cratering; and blast-induced liquefaction.The centrifuge will have a load capacity of 900-g-tons (short); that is, it will be able to carry a net soil load of 3 short tons to a centripetal acceleration of 300 times the acceleration caused by gravity. Modified for a total cost of $2.4 million, the centrifuge will have an arm with a 7.6-m radius and a swinging platform or bucket at its end that will be able to carry a payload container measuring 2.1×2.1 m. An additional future input of $500,000 would enable the purchase of a larger bucket that could accommodate a load of up to 20 tons, according to Charles Babendreier, program director for geotechnical engineering at the National Science Foundation. Additional cooling for the motor would also be required. The centrifuge has the capability of accelerating the 20-ton load to 100 g.

  10. Perceived radial translation during centrifugation

    NARCIS (Netherlands)

    Bos, J.E.; Correia Grácio, B.J.

    2015-01-01

    BACKGROUND: Linear acceleration generally gives rise to translation perception. Centripetal acceleration during centrifugation, however, has never been reported giving rise to a radial, inward translation perception. OBJECTIVE: To study whether centrifugation can induce a radial translation percepti

  11. Central centrifugal cicatricial alopecia

    OpenAIRE

    Collin Blattner; Dennis C Polley; Frank Ferritto; Elston, Dirk M

    2013-01-01

    Central centrifugal cicatricial alopecia is a common cause of progressive permanent apical alopecia. This unique form of alopecia includes entities previously know as “hot comb alopecia,” “follicular degeneration syndrome,” “pseudopelade” in African Americans and “central elliptical pseudopelade” in Caucasians. The etiology appears to be multifactorial and the condition occurs in all races.

  12. Centrifugal atomisation of alloys

    Energy Technology Data Exchange (ETDEWEB)

    Li Huiping [School of Mechanical and Materials Engineering, Univ. of Surrey, Guilford (United Kingdom); Dept. of Inorganic Materials, East China Univ. of Science and Technology, Shanghai, SH (China); Tsakiropoulos, P. [School of Mechanical and Materials Engineering, Univ. of Surrey, Guilford (United Kingdom); Johnson, T. [Tetronics Ltd., Faringdon, Oxfordshire (United Kingdom)

    2001-07-01

    Centrifugal atomisation using a rotating disk is described and compared to REP and PREP. Results of calculations of models describing the interaction of a melt with a rotating disk, the formation of thin film on the disk and the break up of the thin film and its atomisation at the edge of the disk are compared with experimental results. (orig.)

  13. 蛋白质快速检测仪测定乳及乳制品中蛋白质%Fast Determination of Protein in Milk and Dairy Products Using Protein Fast Analyzer

    Institute of Scientific and Technical Information of China (English)

    冯旭东; 安卫东; 丁毅; 于爱民; 刘静; 高德江; 王智宏; 于永

    2011-01-01

    A rapid analyzer for the determination of protein were developed. The effects of experimental parameters, including temperature, time, and foreign substances were investigated. Several milk and dairy products were analyzed using the protein fast analyzer. The experimental results showed that protein reagent can react with protein within 1 min at room temperature. The whole process of protein determination in dairy products only takes 5 - 10 min. The protein fast analyzer was applied to the determination of protein in dairy products, the relative error is lower 5% compared to Kjeldahl method and standard amount method of protein in milk power. The relative standard deviation is lower 1%. The determination results of protein were not affected by foreign substances, such as melamine, urea, glycine, ammonium nitrate and so on.%采用研制的蛋白质快速检测仪,系统地考察了温度、时间和干扰物质等因素对蛋白质测定的影响及检测仪的重复性,并将检测仪应用于新鲜乳、纯牛奶、牛奶饮料(核桃、燕麦、红枣)、牛初乳、奶粉、豆奶粉、豆浆粉和鸡蛋等样品中蛋白质的定量测定.实验结果表明,在17~40℃条件下,蛋白质试剂与蛋白质在1 min内即可完成反应,整个蛋白质含量测定过程仅需5~10 min,测定结果的精密度(RSD)小于1%,与凯式定氮法测定结果和标准物质比较,测定结果的相对误差均小于5%,且不受三聚氰胺、尿素、甘氨酸和硝酸铵等非蛋白氮的干扰,表明此仪器具有较好的准确度和重复性,可应用于乳及乳制品中蛋白质的快速定量测定.

  14. Centrifugal unbalance detection system

    Science.gov (United States)

    Cordaro, Joseph V.; Reeves, George; Mets, Michael

    2002-01-01

    A system consisting of an accelerometer sensor attached to a centrifuge enclosure for sensing vibrations and outputting a signal in the form of a sine wave with an amplitude and frequency that is passed through a pre-amp to convert it to a voltage signal, a low pass filter for removing extraneous noise, an A/D converter and a processor and algorithm for operating on the signal, whereby the algorithm interprets the amplitude and frequency associated with the signal and once an amplitude threshold has been exceeded the algorithm begins to count cycles during a predetermined time period and if a given number of complete cycles exceeds the frequency threshold during the predetermined time period, the system shuts down the centrifuge.

  15. Centrifugally decoupling touchdown bearings

    Science.gov (United States)

    Post, Richard F

    2014-06-24

    Centrifugally decoupling mechanical bearing systems provide thin tensioned metallic ribbons contained in a support structure. This assembly rotates around a stationary shaft being centered at low speeds by the action of the metal ribbons. Tension springs are connected on one end to the ribbons and on the other end to the support structure. The ribbons pass through slots in the inner ring of the support structure. The spring preloading thus insures contact (or near-contact) between the ribbons and the shaft at rotation speeds below the transition speed. Above this speed, however, the centrifugal force on the ribbons produces a tensile force on them that exceeds the spring tensile force so that the ribbons curve outward, effectively decoupling them from mechanical contact with the shaft. They still remain, however, in position to act as a touchdown bearing in case of abnormally high transverse accelerations.

  16. Performance in Centrifugal Compressors

    Directory of Open Access Journals (Sweden)

    K. Sato

    1999-01-01

    Full Text Available A 3-D unsteady thin-layer Navier-Stokes code has been used to calculate the flow through a centrifugal compressor stage. The validation of the code for steady flows in centrifugal compressors was conducted for the Krain’s impeller with a vaneless diffuser as a test case and the numerical results were compared with the experimental results. The predicted flow field and performance agreed well with the experimental data. An unsteady stage solution was then conducted with this impeller followed by a generic low-solidity vaned-diffuser to examine the unsteady effects on the impeller performance. The computational results showed a stabilising effect of the blade row interaction.

  17. Age- and Gender-Specific Reference Intervals for Fasting Blood Glucose and Lipid Levels in School Children Measured With Abbott Architect c8000 Chemistry Analyzer.

    Science.gov (United States)

    Tamimi, Waleed; Albanyan, Esam; Altwaijri, Yasmin; Tamim, Hani; Alhussein, Fahad

    2012-04-01

    Reference intervals for pubertal characteristics are influenced by genetic, geographic, dietary and socioeconomic factors. Therefore, the aim of this study was to establish age-specific reference intervals of glucose and lipid levels among local school children. This was cross-sectional study, conducted among Saudi school children. Fasting blood samples were collected from 2149 children, 1138 (53%) boys and 1011 (47%) girls, aged 6 to 18 years old. Samples were analyzed on the Architect c8000 Chemistry System (Abbott Diagnostics, USA) for glucose, cholesterol, triglycerides, HDL and LDL. Reference intervals were established by nonparametric methods between the 2.5th and 97.5th percentiles. Significant differences were observed between boys and girls for cholesterol and triglycerides levels in all age groups (P < 0.02). Only at age 6-7 years and at adolescents, HDL and LDL levels were found to be significant (P < 0.001). No significant differences were seen in glucose levels except at age 12 to 13 years. Saudi children have comparable serum cholesterol levels than their Western counterparts. This may reflect changing dietary habits and increasing affluence in Saudi Arabia. Increased lipid screening is anticipated, and these reference intervals will aid in the early assessment of cardiovascular and diabetes risk in Saudi pediatric populations.

  18. Gas Centrifuges and Nuclear Proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Albright, David

    2004-09-15

    Gas centrifuges have been an ideal enrichment method for a wide variety of countries. Many countries have built gas centrifuges to make enriched uranium for peaceful nuclear purposes. Other countries have secretly sought centrifuges to make highly enriched uranium for nuclear weapons. In more recent times, several countries have secretly sought or built gas centrifuges in regions of tension. The main countries that have been of interest in the last two decades have been Pakistan, Iraq, Iran, and North Korea. Currently, most attention is focused on Iran, Pakistan, and North Korea. These states did not have the indigenous abilities to make gas centrifuges, focusing instead on illicit and questionable foreign procurement. The presentation covered the following main sections: Spread of centrifuges through illicit procurement; Role of export controls in stopping proliferation; Increasing the transparency of gas centrifuge programs in non-nuclear weapon states; and, Verified dismantlement of gas centrifuge programs. Gas centrifuges are important providers of low enriched uranium for civil nuclear power reactors. They also pose special nuclear proliferation risks. We all have special responsibilities to prevent the spread of gas centrifuges into regions of tension and to mitigate the consequences of their spread into the Middle East, South Asia, and North Asia.

  19. Centrifugal-reciprocating compressor

    Science.gov (United States)

    Higa, W. H. (Inventor)

    1984-01-01

    A centrifugal compressor is described which includes at least one pair of cylinders arranged in coaxial alignment and supported for angular displacement about a common axis of rotation normally disecting a common longitudinal axis of symmetry for the cylinders. The cylinders are characterized by ported closures located at the mutually remote ends thereof through which the cylinders are charged and discharged, and a pair of piston heads seated within the cylinders and supported for floating displacement in compressive strokes in response to unidirectional angular displacement imparted to the cylinders.

  20. Centrifugal bucket hoist

    OpenAIRE

    Kotačka, Petr

    2014-01-01

    This bachelor thesis deals with an engineering design of a centrifugal bucket elevator with transport height 6.5 metres and transport performance 40 000 kilograms per hour. The thesis focuses especially on a functional calculation of the elevator thanks to which a gear motor, band and bucket are chosen. This is followed by an analysis of a constructional solution with a strength check of a drive shaft and parallel keys as well as a calculation of a service life of bearings. Technical document...

  1. Centrifuge modeling of soil atmosphere interaction

    OpenAIRE

    CAICEDO, B; TRISTANCHO, J; THOREL, Luc

    2010-01-01

    Atmosphere process of infiltration or evaporation affect the behavior of geotechnical structures located near the soil surface. This paper focuses on the drying process of soils due to evaporation. The scaling laws are analyzed and afterwards the results on applying two cycles of heating and cooling on a soil mass are presented. Based on these results, conclusions about the feasibility of reproducing evaporation on centrifuge models are recommended.

  2. Centrifugal shot blast system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    This report describes a demonstration of Concrete cleaning, Inc., modified centrifugal shot blast technology to remove the paint coating from concrete flooring. This demonstration is part of the Chicago Pile-5 (CP-5) Large-Scale Demonstration Project (LSDP) sponsored by the US Department of Energy (DOE), office of Science and Technology (OST), Deactivation and Decommissioning Focus Area (DDFA). The objective of the LSDP is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East (ANL) CP-5 Research Reactor. The purpose of the LSDP is to demonstrate that using innovative and improved decontamination and decommissioning (D and D) technologies from various sources can result in significant benefits, such as decreased cost and increased health and safety, as compared with baseline D and D technologies. Potential markets exist for the innovative centrifugal shot blast system at the following sites: Fernald Environmental Management Project, Los Alamos, Nevada, Oak Ridge Y-12 and K-25, Paducah, Portsmouth Gaseous Diffusion site, and the Savannah River Site. This information is based on a revision to the OST Linkage Tables dated August 4, 1997.

  3. Centrifugal shot blast system

    International Nuclear Information System (INIS)

    This report describes a demonstration of Concrete cleaning, Inc., modified centrifugal shot blast technology to remove the paint coating from concrete flooring. This demonstration is part of the Chicago Pile-5 (CP-5) Large-Scale Demonstration Project (LSDP) sponsored by the US Department of Energy (DOE), office of Science and Technology (OST), Deactivation and Decommissioning Focus Area (DDFA). The objective of the LSDP is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East (ANL) CP-5 Research Reactor. The purpose of the LSDP is to demonstrate that using innovative and improved decontamination and decommissioning (D and D) technologies from various sources can result in significant benefits, such as decreased cost and increased health and safety, as compared with baseline D and D technologies. Potential markets exist for the innovative centrifugal shot blast system at the following sites: Fernald Environmental Management Project, Los Alamos, Nevada, Oak Ridge Y-12 and K-25, Paducah, Portsmouth Gaseous Diffusion site, and the Savannah River Site. This information is based on a revision to the OST Linkage Tables dated August 4, 1997

  4. CALCULATION AND IMPROVEMENT OF DYNAMIC CHARACTERISTICS OF CENTRIFUGE

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The modeling of the rotor-support system of a typical centrifuge is discussed. The impedance matching method, cooperating with Riccati transfer matrix method and modal analysis method are adopted to calculate its dynamic characteristics. The influences of the main parts to the critical speeds are analyzed. Based on the analysis, a critical speed in the operating speed range is tuned successfully, and thus the dynamic characteristics of the centrifuge are much improved.

  5. Numerical Calculation on Cavitation Pressure Pulsation in Centrifugal Pump

    OpenAIRE

    Weidong Shi; Chuan Wang; Wei Wang; Bing Pei

    2014-01-01

    In order to study the internal flow in centrifugal pump when cavitation occurs, numerical calculation of the unsteady flow field in the WP7 automobile centrifugal pump is conducted based on the Navier-Stokes equations with the RNG k-ε turbulence model and Zwart-Gerber-Belamri cavitation model. The distributions of bubble volume fraction and pressure pulsation laws in the pump are analyzed when cavitation occurs. The conclusions are as follows: the bubble volume fraction is larger on the sucti...

  6. Performance analysis of mini centrifugal pump with splitter blades

    Science.gov (United States)

    Shigemitsu, T.; Fukutomi, J.; Wada, T.; Shinohara, H.

    2013-12-01

    Design method for a mini centrifugal pump is not established because the internal flow condition for these small-sized fluid machines is not clarified and conventional theory is not suitable for small-sized pumps. Then, a semi-open impeller for the mini centrifugal pump with 55mm impeller diameter is adopted in this research to take simplicity and maintenance into consideration. Splitter blades are adopted in this research to improve the performance and internal flow condition of mini centrifugal pump having large blade outlet angle. The performance tests are conducted with these rotors in order to investigate the effect of the splitter blades on the performance and internal flow condition of the mini centrifugal pump. A three dimensional steady numerical flow analysis is conducted to analyze rotor, volute efficiency and loss caused by a vortex. It is clarified from the experimental results that the performance of the mini centrifugal pump is improved by the effect of the splitter blades. Flow condition at outlet of the rotor becomes uniform and back flow regions are suppressed in the case with the splitter blades. Further, the volute efficiency increases and the vortex loss decreases. In the present paper, the performance of the mini centrifugal pump is shown and the flow condition is clarified with the results of the experiment and the numerical flow analysis. Furthermore, the performance analyses of the mini centrifugal pumps with and without the splitter blades are conducted.

  7. Centrifugal microfluidics for biomedical applications.

    Science.gov (United States)

    Gorkin, Robert; Park, Jiwoon; Siegrist, Jonathan; Amasia, Mary; Lee, Beom Seok; Park, Jong-Myeon; Kim, Jintae; Kim, Hanshin; Madou, Marc; Cho, Yoon-Kyoung

    2010-07-21

    The centrifugal microfluidic platform has been a focus of academic and industrial research efforts for almost 40 years. Primarily targeting biomedical applications, a range of assays have been adapted on the system; however, the platform has found limited commercial success as a research or clinical tool. Nonetheless, new developments in centrifugal microfluidic technologies have the potential to establish wide-spread utilization of the platform. This paper presents an in-depth review of the centrifugal microfluidic platform, while highlighting recent progress in the field and outlining the potential for future applications. An overview of centrifugal microfluidic technologies is presented, including descriptions of advantages of the platform as a microfluidic handling system and the principles behind centrifugal fluidic manipulation. The paper also discusses a history of significant centrifugal microfluidic platform developments with an explanation of the evolution of the platform as it pertains to academia and industry. Lastly, we review the few centrifugal microfluidic-based sample-to-answer analysis systems shown to date and examine the challenges to be tackled before the centrifugal platform can be more broadly accepted as a new diagnostic platform. In particular, fully integrated, easy to operate, inexpensive and accurate microfluidic tools in the area of in vitro nucleic acid diagnostics are discussed.

  8. Environmental and centrifugal factors influencing the visco-elastic properties of oral biofilms in vitro.

    Science.gov (United States)

    Peterson, Brandon W; Busscher, Henk J; Sharma, Prashant K; van der Mei, Henny C

    2012-01-01

    Centrifugal compaction causes changes in the surface properties of bacterial cells. It has been shown previously that the surface properties of planktonic cells change with increasing centrifugal compaction. This study aimed to analyze the influences of centrifugal compaction and environmental conditions on the visco-elastic properties of oral biofilms. Biofilms were grown out of a layer of initially adhering streptococci, actinomyces or a combination of these. Different uni-axial deformations were induced on the biofilms and the load relaxations were measured over time. Linear-Regression-Analysis demonstrated that both the centrifugation coefficient for streptococci and induced deformation influenced the percentage relaxation. Centrifugal compaction significantly influenced relaxation only upon compression of the outermost 20% of the biofilm (p centrifugal compaction of initially adhering, centrifuged bacteria extend to the visco-elastic properties of biofilms, indicating that the initial bacterial layer influences the structure of the entire biofilm.

  9. Unshrouded Centrifugal Turbopump Impeller

    Science.gov (United States)

    Prueger, George; Williams, Morgan; Chen, Wei; Paris, John; Stewart, Eric; Williams, Robert

    1999-01-01

    The ratio of rocket engine thrust to weight is a limiting constraint in placing more payload into orbit at a low cost. A key component of an engine's overall weight is the turbopump weight, Reducing the turbopump weight can result in significant engine weight reduction and hence, increased delivered payload. There are two main types of pumps: centrifugal and axial pumps. These types of pumps can be further sub-divided into those with shrouds and those without shrouds (unshrouded pumps). Centrifugal pumps can achieve the same pump discharge pressure as an axial pump and it requires fewer pump stages and lower pump weight than an axial pump. Also, with unshrouded centrifugal pumps (impeller), the number of stages and weight can be further reduced. However. there are several issues with regard to using an unshrouded impeller: 1) there is a pump performance penalty due to the front open face recirculation flow; 2) there is a potential pump axial thrust problem from the unbalanced front open face and the back shroud face; and, 3) since test data is very linu'ted for this configuration, there is uncertainty in the magnitude and phase of the rotordynamics forces due to the front impeller passage. The purpose of the paper is to discuss the design of an unshrouded impeller and to examine the design's hydrodynamic performance, axial thrust, and rotordynamics performance. The design methodology will also be discussed. This work will help provide some guidelines for unshrouded impeller design. In particular, the paper will discuss the design of three unshrouded impellers - one with 5 full and 5 partial blades (5+5). one with 6+6 blades and one with 8+8 blades. One of these designs will be selected for actual fabrication and flow test. Computational fluid dynamics (CFD) is used to help design and optimize the unshrouded impeller. The relative pump performance penalty is assessed by comparing the CFD results of the unshrouded impeller with the equivalent shrouded impeller for a

  10. [Galileo and centrifugal force].

    Science.gov (United States)

    Vilain, Christiane

    This work intends to focus on Galileo's study of what is now called "centrifugal force," within the framework of the Second Day of his Dialogo written in 1632, rather than on the previously published commentaries on the topic. Galileo proposes three geometrical demonstrations in order to prove that gravity will always overcome centrifugalforce, and that the potential rotation of the Earth, whatever its speed, cannot in any case project objects beyond it. Each of these demonstrations must consequently contain an error and it has seemed to us that the first one had not been understood up until now. Our analysis offers an opportunity to return to Galileo's geometrical representation of dynamical questions; actually, we get an insight into the sophistication of Galileo's practices more than into his mistakes. Our second point, concerning the historiography of the problem, shows an evolution from anachronic critics to more contextual considerations, in the course of the second half of the twentieth century.

  11. [Galileo and centrifugal force].

    Science.gov (United States)

    Vilain, Christiane

    This work intends to focus on Galileo's study of what is now called "centrifugal force," within the framework of the Second Day of his Dialogo written in 1632, rather than on the previously published commentaries on the topic. Galileo proposes three geometrical demonstrations in order to prove that gravity will always overcome centrifugalforce, and that the potential rotation of the Earth, whatever its speed, cannot in any case project objects beyond it. Each of these demonstrations must consequently contain an error and it has seemed to us that the first one had not been understood up until now. Our analysis offers an opportunity to return to Galileo's geometrical representation of dynamical questions; actually, we get an insight into the sophistication of Galileo's practices more than into his mistakes. Our second point, concerning the historiography of the problem, shows an evolution from anachronic critics to more contextual considerations, in the course of the second half of the twentieth century. PMID:25029818

  12. A vibration model for centrifugal contactors

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, R.A.; Wasserman, M.O.; Wygmans, D.G.

    1992-11-01

    Using the transfer matrix method, we created the Excel worksheet ``Beam`` for analyzing vibrations in centrifugal contactors. With this worksheet, a user can calculate the first natural frequency of the motor/rotor system for a centrifugal contactor. We determined a typical value for the bearing stiffness (k{sub B}) of a motor after measuring the k{sub B} value for three different motors. The k{sub B} value is an important parameter in this model, but it is not normally available for motors. The assumptions that we made in creating the Beam worksheet were verified by comparing the calculated results with those from a VAX computer program, BEAM IV. The Beam worksheet was applied to several contactor designs for which we have experimental data and found to work well.

  13. Vibration analysis of large centrifugal pump rotors

    Science.gov (United States)

    Y Zhao, W.; Ge, J. G.; Ma, D.; Li, C. M.; Bao, S. B.

    2013-12-01

    Through the critical speed of centrifugal pumps, internal flow field and the force of the impeller, we analyze centrifugal pump vibration. Using finite element analysis software ANSYS to calculate the natural frequency of the rotor system and the critical speed; with the help of the Fluent software to simulate pump internal flow field, we conclude that speed increase will not cause intense vibration of the fluid in the pump. Using unsteady numerical simulation we discovered that in an impeller suffering transient radial force cyclical change periodically, as well as the frequency size determined by the product of the impeller speed and number of blades, resonance phenomena should make impeller to transient radial force frequency. If wanting to avoid pump resonance when it is running away, the transient radial force frequency should avoid the frequency range which can cause resonance.

  14. Vibration analysis of large centrifugal pump rotors

    International Nuclear Information System (INIS)

    Through the critical speed of centrifugal pumps, internal flow field and the force of the impeller, we analyze centrifugal pump vibration. Using finite element analysis software ANSYS to calculate the natural frequency of the rotor system and the critical speed; with the help of the Fluent software to simulate pump internal flow field, we conclude that speed increase will not cause intense vibration of the fluid in the pump. Using unsteady numerical simulation we discovered that in an impeller suffering transient radial force cyclical change periodically, as well as the frequency size determined by the product of the impeller speed and number of blades, resonance phenomena should make impeller to transient radial force frequency. If wanting to avoid pump resonance when it is running away, the transient radial force frequency should avoid the frequency range which can cause resonance

  15. A REVIEW PAPER ON DEVELOPMENT OF IMPELLER OF CENTRIFUGAL PUMP USING COMPUTATIONAL FLUID DYNAMICS

    OpenAIRE

    Mr. Nilesh Nemgonda Patil

    2015-01-01

    Nowadays, the centrifugal pumps became very popular because of recent development of high speed electric motors, steam turbines etc.Centrifugal pumps can be single-stage or may be multistage pumps. It depends upon the number of impellers used in the pump. Single stage pump consists of only one impeller while in multistage pumps the impellers are mounted in the series in pumps. These Centrifugal pumps can be analyzed by software code like Computational Fluid Dynamics (CFD).This CFD...

  16. Microwave assisted centrifuge and related methods

    Science.gov (United States)

    Meikrantz, David H [Idaho Falls, ID

    2010-08-17

    Centrifuge samples may be exposed to microwave energy to heat the samples during centrifugation and to promote separation of the different components or constituents of the samples using a centrifuge device configured for generating microwave energy and directing the microwave energy at a sample located in the centrifuge.

  17. CFD Simulation of Annular Centrifugal Extractors

    Directory of Open Access Journals (Sweden)

    S. Vedantam

    2012-01-01

    Full Text Available Annular centrifugal extractors (ACE, also called annular centrifugal contactors offer several advantages over the other conventional process equipment such as low hold-up, high process throughput, low residence time, low solvent inventory and high turn down ratio. The equipment provides a very high value of mass transfer coefficient and interfacial area in the annular zone because of the high level of power consumption per unit volume and separation inside the rotor due to the high g of centrifugal field. For the development of rational and reliable design procedures, it is important to understand the flow patterns in the mixer and settler zones. Computational Fluid Dynamics (CFD has played a major role in the constant evolution and improvements of this device. During the past thirty years, a large number of investigators have undertaken CFD simulations. All these publications have been carefully and critically analyzed and a coherent picture of the present status has been presented in this review paper. Initially, review of the single phase studies in the annular region has been presented, followed by the separator region. In continuation, the two-phase CFD simulations involving liquid-liquid and gas-liquid flow in the annular as well as separator regions have been reviewed. Suggestions have been made for the future work for bridging the existing knowledge gaps. In particular, emphasis has been given to the application of CFD simulations for the design of this equipment.

  18. CFD Analysis of Centrifugal Pump: A Review

    Directory of Open Access Journals (Sweden)

    Narayan P. Jaiswal

    2014-05-01

    Full Text Available The main objective of this work is to understand role of the computational fluid dynamics (CFD technique in analyzing and predicting the performance of centrifugal pump. Computational Fluid Dynamics (CFD is the present day state-of-art technique for fluid flow analysis. The critical review of CFD analysis of CFD analysis of centrifugal pump along with future scope for further improvement is presented in this paper. Different solver like ANSYS-CFX, FLUENT etc can be used for simulations. Shear stress transport model has been found appropriate as turbulence model. Study of pressure contours, velocity contours, flow streamlines etc can be studied by CFD techniques. Unsteady Reynolds Averaged Navier Stokes (URANS equations are solved by solver to get flow simulation results inside centrifugal pump. CFD results has to be validated with testing results or with performance characteristics curves. Performance prediction at design and off-design conditions, parametric study, cavitation analysis, diffuser pump analysis, performance of pump running in turbine mode etc. are possible with CFD simulation techniques.

  19. Uranium enrichment by gas centrifuge

    International Nuclear Information System (INIS)

    After recalling the physical principles and the techniques of centrifuge enrichment the report describes the centrifuge enrichment programmes of the various countries concerned and compares this technology with other enrichment technologies like gaseous diffusion, laser, aerodynamic devices and chemical processes. The centrifuge enrichment process is said to be able to replace with advantage the existing enrichment facilities in the short and medium term. Future prospects of the process are also described, like recycled uranium enrichment and economic improvements; research and development needs to achieve the economic prospects are also indicated. Finally the report takes note of the positive aspect of centrifuge enrichment as far as safeguards and nuclear safety are concerned. 27 figs, 113 refs

  20. Gas centrifugal separator

    International Nuclear Information System (INIS)

    Object: To enhance separating performance by jointly using separating action of impulse wave without increasing peripheral speed of a gas centrifugal separator and lengthening a cylindrical portion thereof. Structure: A mixed gas is introduced into a rotating cylinder from a mixed gas pipe and is separated into gas rich in light component and gas decreased in light component, these gases being taken outside the rotating cylinder through a product opening and a fixed waste pipe, respectively. A fixed product recycling pipe is disposed between an upper end plate and an upper buffer plate of the rotating cylinder the recycling pipe having an opening formed at the leading end so as to oppose to the rotating mixed gas, and the gas introduced from the opening is re-introduced into the central portion of the rotating cylinder for recirculation. A waste pipe is disposed between a lower end plate and a lower buffer plate of the rotating cylinder, and the gas not introduced into the opening of the waste pipe is circulated within the rotating cylinder. (Kamimura, M.)

  1. [The analytical setting of rotary speed of centrifuge rotor and centrifugation time in chemical, biochemical and microbiological practice].

    Science.gov (United States)

    Zolotarev, K V

    2012-08-01

    The researchers happen to face with suspensions in their chemical, biochemical and microbiological practice. The suspensions are the disperse systems with solid dispersed phase and liquid dispersion medium and with dispersed phase particle size > 100 nm (10-7 m). Quite often the necessity occurs to separate solid particles from liquid. To use for this purpose the precipitation in gravitation field can make the process to progress too long. In this respect an effective mode is the precipitation in the field of centrifugal forces--the centrifugation. The rotary speed of centrifuge rotor and centrifugation time can be set analytically using regularities of general dynamics and hydrodynamics. To this effect, should be written and transformed the equation of First and Second Newton Laws for suspension particle being in the field of centrifugal forces and forces of resistance of liquid and vessel wall. The force of liquid resistance depends on particle motion condition in liquid. To determine the regimen the Archimedes and Reynolds numerical dimensionless criteria are to be applied. The article demonstrates the results of these transformations as analytical inverse ratio dependence of centrifugation time from rotary speed. The calculation of series of "rate-time" data permits to choose the optimal data pair on the assumption of centrifuge capacity and practical reasonability. The results of calculations are validated by actual experimental data hence the physical mathematical apparatus can be considered as effective one. The setting progress depends both from parameter (Reynolds criterion) and data series calculation. So, the most convenient way to apply this operation is the programming approach. The article proposes to use the program Microsoft Excel and VBA programming language for this purpose. The possibility to download the file from Internet to use it for fast solution is proposed. PMID:23097986

  2. Centrifugal microfluidic platforms: advanced unit operations and applications.

    Science.gov (United States)

    Strohmeier, O; Keller, M; Schwemmer, F; Zehnle, S; Mark, D; von Stetten, F; Zengerle, R; Paust, N

    2015-10-01

    Centrifugal microfluidics has evolved into a mature technology. Several major diagnostic companies either have products on the market or are currently evaluating centrifugal microfluidics for product development. The fields of application are widespread and include clinical chemistry, immunodiagnostics and protein analysis, cell handling, molecular diagnostics, as well as food, water, and soil analysis. Nevertheless, new fluidic functions and applications that expand the possibilities of centrifugal microfluidics are being introduced at a high pace. In this review, we first present an up-to-date comprehensive overview of centrifugal microfluidic unit operations. Then, we introduce the term "process chain" to review how these unit operations can be combined for the automation of laboratory workflows. Such aggregation of basic functionalities enables efficient fluidic design at a higher level of integration. Furthermore, we analyze how novel, ground-breaking unit operations may foster the integration of more complex applications. Among these are the storage of pneumatic energy to realize complex switching sequences or to pump liquids radially inward, as well as the complete pre-storage and release of reagents. In this context, centrifugal microfluidics provides major advantages over other microfluidic actuation principles: the pulse-free inertial liquid propulsion provided by centrifugal microfluidics allows for closed fluidic systems that are free of any interfaces to external pumps. Processed volumes are easily scalable from nanoliters to milliliters. Volume forces can be adjusted by rotation and thus, even for very small volumes, surface forces may easily be overcome in the centrifugal gravity field which enables the efficient separation of nanoliter volumes from channels, chambers or sensor matrixes as well as the removal of any disturbing bubbles. In summary, centrifugal microfluidics takes advantage of a comprehensive set of fluidic unit operations such as

  3. Hyperbolically Shaped Centrifugal Compressor

    Institute of Scientific and Technical Information of China (English)

    Romuald Puzyrewski; Pawel Flaszy(n)ski

    2003-01-01

    Starting from the classical centrifugal compressor, cone shaped in meridional cross section, two modifications are considered on the basis of results from 2D and 3D flow models. The first modification is the change of the meridional cross section to hyperbolically shaped channel. The second modification, proposed on the basis of 2D axisymmetric solution, concerns the shape of blading. On the strength of this solution the blades are formed as 3D shaped blades, coinciding with the recent tendency in 3D designs. Two aims were considered for the change of meridional compressor shape. The first was to remove the separation zone which appears as the flow tums from axial to radial direction. The second aim is to uniformize the flow at exit of impeller. These two goals were considered within the frame of 2D axisymmetric model. Replacing the cone shaped compressor by a hyperbolically shaped one, the separation at the corner was removed. The disc and shroud shape of the compressor was chosen in the way which satisfies the condition of most uniform flow at the compressor exit. The uniformity of exit flow from the rotor can be considered as the factor which influences the performance of the diffuser following the rotor. In the 2D model a family of stream surfaces of S1 type is given in order to find S2 surfaces which may be identified with the midblade surfaces of compressor blading. A computation of 3D type has been performed in order to establish the relations between 2D and 3D models in the calculation of flow parameters. In the presented example the 2D model appears as the inverse model which leads to 3D shape of blading whereas the 3D model has been used for the direct solution. In the presented example the confrontation of two models, 2D and 3D, leads to a better understanding of the application of these models to the design procedure.

  4. Centrifugation. A theoretical study of oxygen enrichment by centrifugation

    Energy Technology Data Exchange (ETDEWEB)

    Kierkegaard, P.; Raetz, E.

    1998-12-01

    In the present paper we first investigate what happens if we fill a cylinder with air, close it and rotate it. The results show that no matter which peripheral speed is used, it is not possible by means of the radial separation effect alone, to enrich the oxygen concentration from the previous 21% to more then 23.3%, which is of no practical value. In case of a too low enrichment in one centrifuge, the wanted material from this centrifuge can be used as an input for a second centrifuge and so on, in this way forming a cascade of centrifuges. Oxygen will be enriched in each step, until the desired concentration is reached. Cascading was the technology in the very beginning by enrichment plants for uraniumhexaflouride, used for atomic weapons and nuclear power plants. In this study we try to avoid cascading by aiming for higher separation factors. Therefore, we next investigate the possibilities of using a countercurrent centrifuge where in principle the enriched gas is subjected to several centrifugation in the same centrifuge. The calculations show, that in this way it is possible to produce nearly a 100% pure oxygen (polluted with some heavier molecules like argon) in one machine. Our third step was to calculate the amount of oxygen produced per hour. Using a countercurrent centrifuge of the Zippe type, 100 cm high and 20 cm in diameter, it is or will be possible in the near future to produce 17 g enriched air per hour enriched to 50% oxygen. That corresponds to processing 1 m{sup 3} atmospherical air in the period of approximately 24 hours. This is not very impressive. Our fourth step was to estimate the amount of power used for producing this amount of oxygen. A rough, but complicated, estimate shows that the power consumption at the production level will be about the double of the consumption used today. The overall conclusion is, that centrifugation as a production method for oxygen (or nitrogen) will not be competitive with the currently used method in the

  5. Mechanically driven centrifugal pyrolyzer

    Science.gov (United States)

    Linck, Martin Brendan; Bush, Phillip Vann

    2012-03-06

    An apparatus for fast pyrolysis of biomass and other solid organic materials including a vertically oriented cylindrical vessel having a solids outlet proximate the bottom thereof, a vapor outlet, a top wall forming at least one opening, and an adjacent heated side wall. Disposed within the cylindrical vessel and extending through the at least one opening in the top wall is a rotor having a rotatable shaft coincident with the longitudinal axis of the cylindrical vessel to which is attached at least one substantially vertically oriented blade having one edge connected directly or indirectly with the rotatable shaft and having an opposite edge spaced apart from the heated side wall, whereby a non-radial, preferably tangential, force is imparted on the feedstock in the cylindrical vessel. Also disclosed is a method for fast pyrolysis of biomass and other solid organic materials.

  6. DESIGN PARAMETERS OF CENTRIFUGAL COMPRESSOR INDUCER

    Directory of Open Access Journals (Sweden)

    Saim KOÇAK

    1998-03-01

    Full Text Available Design characteristics of centrifugal compressor impellers working with compressible fluids are analyzed, and the design parameters of inducer are defined. The effects of incidence, deviation and deflection angles, relative eddy, rotating stall and Mach number are investigated. The relation between minimum relative Mach number of inducer and flow angle is investigated and it is observed that the minimum Mach number occurs for flow angle values between -680 and -520 . In the design, the effect of a 100 difference in flow angle is found to be less than 1 % on minimum relative Mach number.

  7. Eddy covariance measurements in complex terrain with a new fast response, closed-path analyzer: spectral characteristics and cross-system comparisons

    Science.gov (United States)

    In recent years, a new class of enclosed, closed-path gas analyzers suitable for eddy covariance applications has come to market, designed to combine the advantages of traditional closed-path systems (small density corrections, good performance in poor weather) and open-path syst...

  8. On the Analyzing of Fast Food Slogan from the Processes of Transitivity%基于快餐宣传语的及物性分析

    Institute of Scientific and Technical Information of China (English)

    吴单丹

    2012-01-01

    An excellent slogan will make a product better. The. paper based on the theory of Halliday' s functional grammar, starting from the processes of transitivity; illustrate three popular fast food slogan, namely KFC, McDonald' s and Pizza Hut. The paper concludes that the correct use of words and the transmission of intentionality is most important in a slogan.%优秀的宣传语能对产品的推销起到锦上添花的作用。以功能语言学派代表人物韩礼德的功能语言学理论为基础,从及物性过程的角度出发,分析在中国较著名的三大国外快餐品牌,即肯德基、麦当劳和必胜客的宣传语,认为三者各自运用的不同及物性过程及语言策略,即肯德基的物质过程,麦当劳的心理过程,必胜客的关系过程,这表明及物性能实现文字上的运筹帷幄和意义传达的深入人心,这是宣传语的关键。

  9. Expansion by the introduction of new technology in a market characterized by overcapacity - the success of Urenco centrifuge technology

    International Nuclear Information System (INIS)

    Urenco has successfully developed and deployed centrifuge technology for the enrichment of uranium in a period during which the market changed from a situation of 'threatened undersupply' in the 1970s to one of significant overcapacity. Five generations of centrifuges have been developed, introducing new materials as they became available. The sixth generation of centrifuge currently under development for deployment at the end of the century will be more than twice as fast and an order of magnitude longer than respectively the slowest and shortest pilot plant centrifuges, with an output approaching 50 times higher than that in the pilot plant. Plant operation has exceeded both design lifetimes and failure rates. Urenco has concluded that the economics of this sixth-generation centrifuge are better than any forseeable first generation AVLIS technology and thus, in Urenco's view the centrifuge represents the low risk, proven economic choice for the replacement of GDPs when this becomes necessary. (orig.)

  10. Centrifugation and the Manhattan Project

    Science.gov (United States)

    Reed, Cameron

    2009-05-01

    A study of U. S. Army Manhattan Engineer District documents reveals that consideration of centrifugation as a means of uranium enrichment during World War II was considerably more extensive than is commonly appreciated. By the time the centrifuge project was abandoned in early 1944 a full-scale prototype unit had been fabricated and tested at near-production speeds, enrichments of close to theoretically-expected levels had been demonstrated with pilot-plant units, and plans for production plants had been developed. This paper will review the history of this little-known aspect of the Project and examine the circumstances of how it came to be discontinued.

  11. Centrifugal Model Tests on Railway Embankments of Expansive Soils

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Based on the centrifugal model tests on railway embankments of expansive soil in Nanning-Kunming railway,the author studied several embankments under different physical conditions. The stress and strain states and settlement of the embankments were analyzed, and the obtained results can be used as a reference to field construction.

  12. Quantification of platelets obtained by different centrifugation protocols in SHR rats

    Directory of Open Access Journals (Sweden)

    João Alberto Yazigi Junior

    2015-12-01

    Full Text Available ABSTRACT OBJECTIVE: To quantify the platelet concentration in the blood of SHR rats, by means of different centrifugation protocols, and to evaluate what the most effective method for obtaining platelets is. METHODS: We used 40 male rats of the isogenic SHR lineage. The animals were divided into three groups: control, using whole blood without centrifugation; single centrifugation, using whole blood subjected to a single centrifugation at 200 × gand 400 × g; and double centrifugation, using whole blood subjected one centrifugation at different rotations, followed by collection of whole plasma subjected to another centrifugation at different rotations: 200 × g+ 200 ×g; 200 × g+ 400 × g; 200 × g+ 800 × g; 400 ×g+ 400 × g; 400 × g+ 800 × g. Samples of 3 ml of blood were drawn from each animal by means of cardiac puncture. The blood was stored in Vacutainer collection tubes containing 3.2% sodium citrate. The blood from the control group animals was analyzed without being subjected to centrifugation. After the blood from the other groups of animals had been subjected to centrifugation, the whole plasma was collected and subjected to platelet counting in the lower third of the sample. RESULTS: We obtained greatest platelet enrichment in the subgroup with two centrifugations comprising 400 × gfor 10 min + 400 ×gfor 10 min, in which the mean platelet concentration was 11.30 times higher than that of the control group. CONCLUSION: It was possible to obtain a high platelet concentration using viable simple techniques, by means of centrifugation of whole blood and use of commonly used materials. The most effective method for obtaining platelet concentrate was found in samples subjected to two centrifugations.

  13. The effect of gas fraction on centrifugal pump

    Science.gov (United States)

    Zhu, Z. T.; Wang, Y.; Zhao, L. F.; Ning, C.; Xie, S. F.; Liu, Z. C.

    2015-01-01

    In order to study the multiphase flow field in M125 centrifugal pump, three-dimensional modeling was used for internal flow through three-dimensional software Pro/E. Then based on SST turbulence model combining with Rayleigh-Plesset cavitation model, and structured grid to simulate the hydraulic characteristics of volute and impeller within different gas conditions. The velocity, pressure and gas volume fraction distributions of the interior flow field of volute and impeller were obtained and analyzed, which revealed the effect of gas fractions on the flow characteristic of the centrifugal pump.

  14. Cyber meets nuclear - Stuxnet and the cyberattacks on Iranian centrifuges

    International Nuclear Information System (INIS)

    In 2010 the computer worm Stuxnet attacked the information hardware of the Iranian uranium enrichment program. Stuxnet spread by USB flash drives and attacked SCADA software installed on Windows systems via several zero-day exploits. SCADA configures programmable logic controllers which control in the case of the Iranian centrifuge cascades frequency converter drives to choose the frequency of centrifuge motors. Thus the attackers were able to either change the rotation frequency of the rotor and thereby the separative power of the centrifuge or even destroy the fast spinning centrifuges by stopping and restarting them. The designers of Stuxnet must have had intimate knowledge of the facility design as e.g. the cascade connection scheme was programmed into Stuxnet. Based on this information some calculations of the Iranian cascade regarding the potential to produce highly enriched uranium will be presented using cascade simulation tools. The use of such highly sophisticated computer attacks to sabotage a nuclear program shed a new light on the debate about cyber attacks and the use of information technology for kinetic attacks in general. The talk will address problems the weaponization of information technology poses for international security and will highlight some more recent developments.

  15. Empirical Design Considerations for Industrial Centrifugal Compressors

    OpenAIRE

    Cheng Xu; Amano, Ryoichi S.

    2012-01-01

    Computational Fluid Dynamics (CFD) has been extensively used in centrifugal compressor design. CFD provides further optimisation opportunities for the compressor design rather than designing the centrifugal compressor. The experience-based design process still plays an important role for new compressor developments. The wide variety of design subjects represents a very complex design world for centrifugal compressor designers. Therefore, some basic information for centrifugal design is still ...

  16. Performance of a Centrifugal Slurry Pump

    OpenAIRE

    Hawas Yahya Bajawi; Basharat Salim; Ziyadh Suhibani

    2014-01-01

    The aim of this study was to experimentally investigate the effect of speed, concentration and size of slurry on the performance of a centrifugal pump. For this purpose a facility was built where the performance of a centrifugal slurry pump was examined using aggregate slurry. Three sizes of slurry with three concentrations and at three impeller speeds were used for the performance investigations of a centrifugal slurry pump. As a reference performance the performance of centrifugal slurry pu...

  17. Oscillatory Counter-Centrifugation: Effects of History and Lift Forces

    Science.gov (United States)

    Nadim, Ali

    2014-11-01

    This work is co-authored with my doctoral student Shujing Xu and is dedicated to the memory of my doctoral advisor Howard Brenner who enjoyed thought experiments related to rotating systems. Oscillatory Counter-Centrifugation refers to our theoretical discovery that within a liquid-filled container that rotates in an oscillatory manner about a fixed axis as a rigid body, a suspended particle can be made to migrate on average in the direction opposite to that of ordinary centrifugation. That is, a heavy (or light) particle can move toward (or away from) the rotation axis, when the frequency of oscillations is high enough. In this work we analyze the effects of the Basset history force and the Saffman lift force on particle trajectories and find that the counter-centrifugation phenomenon persists even when these forces are active.

  18. Continuous-Flow Centrifugal Separator

    Science.gov (United States)

    Waldron, Robert D.

    1988-01-01

    Apparatus combines principles of centrifugal and cyclone separators to control movement of solid or liquid particles suspended in flowing gas. Spinning disk contains radial channels, width varys as function of distance from center. Gas flows from outer ring around disk toward center. Particles in gas collected at periphery, center or both.

  19. Centrifugal pumps for rocket engines

    Science.gov (United States)

    Campbell, W. E.; Farquhar, J.

    1974-01-01

    The use of centrifugal pumps for rocket engines is described in terms of general requirements of operational and planned systems. Hydrodynamic and mechanical design considerations and techniques and test procedures are summarized. Some of the pump development experiences, in terms of both problems and solutions, are highlighted.

  20. Laser and gas centrifuge enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Heinonen, Olli [Senior Fellow, Belfer Center for Science and International Affairs, Harvard Kennedy School, Cambridge, Massachusetts (United States)

    2014-05-09

    Principles of uranium isotope enrichment using various laser and gas centrifuge techniques are briefly discussed. Examples on production of high enriched uranium are given. Concerns regarding the possibility of using low end technologies to produce weapons grade uranium are explained. Based on current assessments commercial enrichment services are able to cover the global needs of enriched uranium in the foreseeable future.

  1. Laser and gas centrifuge enrichment

    Science.gov (United States)

    Heinonen, Olli

    2014-05-01

    Principles of uranium isotope enrichment using various laser and gas centrifuge techniques are briefly discussed. Examples on production of high enriched uranium are given. Concerns regarding the possibility of using low end technologies to produce weapons grade uranium are explained. Based on current assessments commercial enrichment services are able to cover the global needs of enriched uranium in the foreseeable future.

  2. 快速血糖仪与全自动生化分析仪检测结果一致性比较%Comparison of the detection results consistency of fast blood glucose meter and automatic biochemical analyzer

    Institute of Scientific and Technical Information of China (English)

    杨晓红

    2015-01-01

    Objective:To compare the detection results consistency of fast blood glucose meter and automatic biochemical analyzer.Methods:40 cases of healthy controls and diabetic patients were selected.They were all given fast blood glucose meter and automatic biochemical analyzer to detect the glucose value.Results:The venous serum glucose values of automatic biochemical analyzer were all higher than the venous whole blood glucose values of fast blood glucose meter,and the difference was no statistically significant(P>0.05).Conclusion:The venous whole blood glucose values of fast blood glucose meter are compared with serum glucose values of automatic biochemical analyzer.Because the specimen sources are consistent,the operation process is simple.So it is suggested that medical institutions can adopt this method for regular comparison experiment.%目的:对快速血糖仪与全自动生化分析仪检测结果的一致性进行比较。方法:选取健康体检和糖尿病患者40例,均采用快速血糖仪和全自动生化分析仪进行血糖值的检测。结果:全自动生化分析仪所测静脉血清血糖值均高于快速血糖仪所测静脉全血血糖值,差异无统计学意义(P>0.05)。结论:快速血糖仪的静脉全血血糖值与全自动生化分析仪的血清血糖值比较,因标本来源一致,操作流程简单,故建议医疗机构可采用此方法进行定期比对实验。

  3. Centrifugal separator devices, systems and related methods

    Science.gov (United States)

    Meikrantz, David H.; Law, Jack D.; Garn, Troy G.; Todd, Terry A.; Macaluso, Lawrence L.

    2012-03-20

    Centrifugal separator devices, systems and related methods are described. More particularly, fluid transfer connections for a centrifugal separator system having support assemblies with a movable member coupled to a connection tube and coupled to a fixed member, such that the movable member is constrained to movement along a fixed path relative to the fixed member are described. Also, centrifugal separator systems including such fluid transfer connections are described. Additionally, methods of installing, removing and/or replacing centrifugal separators from centrifugal separator systems are described.

  4. Design of a centrifugal blood pump: Heart Turcica Centrifugal.

    Science.gov (United States)

    Demir, Onur; Biyikli, Emre; Lazoglu, Ismail; Kucukaksu, Suha

    2011-07-01

    A prototype of a new implantable centrifugal blood pump system named Heart Turcica Centrifugal (HTC) was developed as a left ventricular assist device (LVAD) for the treatment of end-stage cardiac failure. In the development of HTC, effects of blade height and volute tongue profiles on the hydraulic and hemolytic performances of the pump were investigated. As a result, the prototype was manufactured using the best blade height and volute tongue profiles. Performance of the prototype model was experimentally evaluated in a closed-loop flow system using water as the medium. The hydraulic performance requirement of an LVAD (5 L/min flow rate against a pressure difference of 100 mm Hg) was attained at 2800 rpm rotational speed.

  5. [Pay attention to physical test and drafting product standards of the centrifuge apparatus].

    Science.gov (United States)

    Xu, Hui; Jia, Yufei; Li, Haixin; Song, Jinzi

    2010-03-01

    Compare and analyze the standards related to centrifuge apparatus and make corresponding suggestions in allusion to the problems existed in the test method and physical performance during product standard drafting process.

  6. Centrifuge pellet injector for JET

    International Nuclear Information System (INIS)

    An engineering design of a centrifuge pellet injector for JET is reported as part of the Phase I contract number JE 2/9016. A rather detailed design is presented for the mechanical and electronic features. Stress calculations, dynamic behaviour and life estimates are considered. The interfaces to the JET vacuum system and CODAS are discussed. Proposals for the pellet diagnostics (velocity, mass and shape) are presented. (orig.)

  7. Centrifugal pumps and allied machinery

    CERN Document Server

    Anderson, HH

    1994-01-01

    This book will be of vital interest to all engineers and designers concerned with centrifugal pumps and turbines. Including statistical information derived from 20000 pumps and 700 turbines with capacities of 5gpm to 5000000gpm, this book offers the widest range and scope of information currently available. Statistical analyses suggest practical methods of increasing pump performance and provide valuable data for new design aspects.

  8. Expression of myosin heavy-chain mRNA in cultured myoblasts induced by centrifugal force.

    Science.gov (United States)

    Kurokawa, Katsuhide; Sakiyama, Koji; Abe, Shinichi; Hiroki, Emi; Naito, Kaoru; Nakajima, Kazunori; Takeda, Tomotaka; Inoue, Takashi; Ide, Yoshinobu; Ishigami, Keiichi

    2008-11-01

    Ballistic muscle training leads to hypertrophy of fast type fibers and training for endurance induces that of slow type fibers. Numerous studies have been conducted on electrical, extending and magnetic stimulation of cells, but the effect of centrifugal force on cells remains to be investigated. In this study, we investigated the effect of stimulating cultured myoblasts with centrifugal force at different speeds on cell proliferation and myosin heavy-chain (MyHC) mRNA expression in muscle fiber. Stimulation of myoblasts was carried out at 2 different speeds for 20 min using the Himac CT6D, a desk centrifuge, and cells were observed at 1, 3 and 5 days later. Number of cells 1 and 5 days after centrifugal stimulation was significantly larger in the 62.5 x g and 4,170 x g stimulation groups than in the control group. Expression of MyHC-2b mRNA 1 day after centrifugal stimulation was significantly higher in the 2 stimulation groups than in the control group. Almost no expression of MyHC-2a was observed in any group at 1 and 3 days after centrifugal stimulation. However, 5 days after stimulation, MyHC-2a was strongly expressed in the 2 stimulation groups in comparison to the control group. Three days after centrifugal stimulation, expression of MyHC-1 was significantly higher in the 2 stimulation groups than in the control group. The results of this study clarified the effect of different centrifugal stimulation speeds on muscle fiber characteristics, and suggest that centrifugal stimulation of myoblasts enhances cell proliferation.

  9. Analyzing Clickstreams

    DEFF Research Database (Denmark)

    Andersen, Jesper; Giversen, Anders; Jensen, Allan H.;

    On-Line Analytical Processing (OLAP) enables analysts to gain insight into data through fast and interactive access to a variety of possible views on information, organized in a dimensional model. The demand for data integration is rapidly becoming larger as more and more information sources appear...... in modern enterprises. In the data warehousing pproach, selected information is extracted in advance and stored in a repository. This approach is used because of its high performance. However, in many situations a logical (rather than physical) integration of data is preferable. Previous web-based data....... Extensible Markup Language (XML) is fast becoming the new standard for data representation and exchange on the World Wide Web. The rapid emergence of XML data on the web, e.g., business-to-business (B2B) ecommerce, is making it necessary for OLAP and other data analysis tools to handleXML data as well...

  10. Centrifuge facilities at Technical University of Denmark

    DEFF Research Database (Denmark)

    Leth, Caspar Thrane; Krogsbøll, Anette Susanne; Hededal, Ole

    2008-01-01

    The geotechnical group at the Danish Technical University (DTU) operates a geotechnical beam centrifuge. The centrifuge was build in 1976 and has been upgraded through the years, latest with onboard data and control systems. The centrifuge concept involves an increased gravity field in which...... the physical model is placed and tested. The capabilities of the centrifuge at DTU makes it possible to obtain a scale factor of 75-85 in the tests which equals a soil volume in prototype scale of ø40m and a depth of 36 m. The centrifuge facilities at DTU have through the years been used for testing various...... geotechnical issues, such as suction anchors, tension piles in clay, active earth pressures on sheet piles and group effects for lateral loaded piles. The paper describes physical modelling in general, the centrifuge, present setups and shows samples of obtained results....

  11. Empirical Design Considerations for Industrial Centrifugal Compressors

    Directory of Open Access Journals (Sweden)

    Cheng Xu

    2012-01-01

    Full Text Available Computational Fluid Dynamics (CFD has been extensively used in centrifugal compressor design. CFD provides further optimisation opportunities for the compressor design rather than designing the centrifugal compressor. The experience-based design process still plays an important role for new compressor developments. The wide variety of design subjects represents a very complex design world for centrifugal compressor designers. Therefore, some basic information for centrifugal design is still very important. The impeller is the key part of the centrifugal stage. Designing a highly efficiency impeller with a wide operation range can ensure overall stage design success. This paper provides some empirical information for designing industrial centrifugal compressors with a focus on the impeller. A ported shroud compressor basic design guideline is also discussed for improving the compressor range.

  12. Mathematical model of secondary rotor of centrifuge based on magnetic or electromagnetic overhead and bottom viscous damper taking into account flexibility and viscosity of rotor, and program of calculating dynamics of rotor in centrifuge

    International Nuclear Information System (INIS)

    The attempts to development of the rotor-dampers universal model with ability of fast correction of the parameters of mock-up rotor and dampers, their construction were made. The model that takes into account viscous characteristics of the material of the centrifuge rotor and allows research numerically into the rotor behaviour during over-speeding is suggested. The examples of calculations as show good effect of electromagnetic damping on the dynamics of the centrifuge rotor are given

  13. Two-phase (bio)catalytic reactions in a table-top centrifugal contact separator

    NARCIS (Netherlands)

    Kraai, Gerard N.; Zwol, Floris van; Schuur, Boelo; Heeres, Hero J.; Vries, Johannes G. de

    2008-01-01

    A new spin on catalysis: A table-top centrifugal contact separator allows for fast continuous two-phase reactions to be performed by intimately mixing two immiscible phases and then separating them. Such a device has been used to produce biodiesel from sunflower oil and MeOH/NaOMe. A lipase-catalyze

  14. Separation of Protein Crystals from Spores of Bacillus thuringiensis by Ludox Gradient Centrifugation

    OpenAIRE

    Zhu, Yu Sheng; Brookes, Allan; Carlson, Ken; Filner, Philip

    1989-01-01

    A method is described for the purification of Bacillus thuringiensis protein crystals by Ludox gradient centrifugation. This method is simple, inexpensive, fast, and efficient compared with other techniques. It has been successfully used to purify and characterize the protein crystals from several B. thuringiensis strains.

  15. Effect of Centrifugation on Sesame Paste Temperature

    Directory of Open Access Journals (Sweden)

    Ahmad Kouchakzadeh

    2012-01-01

    Full Text Available The sesame seeds were mechanically cold pressed at temperature below 45 then centrifuged. No chemicals were used. The temperature during centrifugation of sesame paste was recorded. Temperatures in less than one hour operation has elevated to 148, 273 and 315 in 1200, 1800 and 2400 G-force centrifugal acceleration, respectively. since the centrifugal accelerations during the process cut at 1200, 1800 and 2400 G-force at about 35, 20 and 10 minutes, respectively. The maximum allowable temperatures raised to about 100 . Linear and quadratics regression model were fitted to data.

  16. Centrifugal separators and related devices and methods

    Science.gov (United States)

    Meikrantz, David H.; Law, Jack D.; Garn, Troy G.; Macaluso, Lawrence L.; Todd, Terry A.

    2012-03-06

    Centrifugal separators and related methods and devices are described. More particularly, centrifugal separators comprising a first fluid supply fitting configured to deliver fluid into a longitudinal fluid passage of a rotor shaft and a second fluid supply fitting sized and configured to sealingly couple with the first fluid supply fitting are described. Also, centrifugal separator systems comprising a manifold having a drain fitting and a cleaning fluid supply fitting are described, wherein the manifold is coupled to a movable member of a support assembly. Additionally, methods of cleaning centrifugal separators are described.

  17. Cavitation Effects in Centrifugal Pumps- A Review

    Directory of Open Access Journals (Sweden)

    Maxime Binama

    2016-05-01

    Full Text Available Cavitation is one of the most challenging fluid flow abnormalities leading to detrimental effects on both the centrifugal pump flow behaviors and physical characteristics. Centrifugal pumps’ most low pressure zones are the first cavitation victims, where cavitation manifests itself in form of pitting on the pump internal solid walls, accompanied by noise and vibration, all leading to the pump hydraulic performance degradation. In the present article, a general description of centrifugal pump performance and related parameters is presented. Based on the literature survey, some light were shed on fundamental cavitation features; where different aspects relating to cavitation in centrifugal pumps were briefly discussed

  18. Virgin Coconut Oil Production by Centrifugation Method

    Directory of Open Access Journals (Sweden)

    Y.C.Wong

    2014-03-01

    Full Text Available The virgin coconut oil (VCO production by centrifugation method was studied. The production of VCO was studied by using various centrifugation speed, temperature and time intervals. The results showed that the yield of VCO was 13.53% at 12000rpm, at 120 minutes. The highest yield of VCO was 13.80% at centrifugation temperature of 40oC. The concentration of lauric acid present in the samples with variables of centrifugation temperatures, speed, and time intervals were 0.4543µg, 6.2367µg, and 6.4894µg respectively.

  19. CFD simulation of centrifugal cells washers.

    Science.gov (United States)

    Kellet, Beth E; Binbing, Han; Dandy, David S; Wickramasinghe, S Ranil

    2004-01-01

    The feasibility of using computational fluid dynamics to guide the design of better centrifuges for processing shed blood is explored here. The velocity field and the rate of protein removal from the shed blood have been studied. The results indicate that computational fluid dynamics could help screen preliminary centrifuge bowl designs thus reducing the number of initial experimental tests required when developing new centrifuge bowls. Though the focus of this work is on washing shed blood the methods developed here are applicable to the design of centrifuge bowls for other blood processing applications. PMID:15133962

  20. Centrifugal quantum states of neutrons

    Science.gov (United States)

    Nesvizhevsky, V. V.; Petukhov, A. K.; Protasov, K. V.; Voronin, A. Yu.

    2008-09-01

    We propose a method for observation of the quasistationary states of neutrons localized near a curved mirror surface. The bounding effective well is formed by the centrifugal potential and the mirror Fermi potential. This phenomenon is an example of an exactly solvable “quantum bouncer” problem that can be studied experimentally. It could provide a promising tool for studying fundamental neutron-matter interactions, as well as quantum neutron optics and surface physics effects. We develop a formalism that describes quantitatively the neutron motion near the mirror surface. The effects of mirror roughness are taken into account.

  1. Polymethylmethacrylate/Polyacrylonitrile Membranes via Centrifugal Spinning as Separator in Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Meltem Yanilmaz

    2015-04-01

    Full Text Available Electrospun nanofiber membranes have been extensively studied as separators in Li-ion batteries due to their large porosity, unique pore structure, and high electrolyte uptake. However, the electrospinning process has some serious drawbacks, such as low spinning rate and high production cost. The centrifugal spinning technique can be used as a fast, cost-effective and safe technique to fabricate high-performance fiber-based separators. In this work, polymethylmethacrylate (PMMA/polyacrylonitrile (PAN membranes with different blend ratios were produced via centrifugal spinning and characterized by using different electrochemical techniques for use as separators in Li-ion batteries. Compared with commercial microporous polyolefin membrane, centrifugally-spun PMMA/PAN membranes had larger ionic conductivity, higher electrochemical oxidation limit, and lower interfacial resistance with lithium. Centrifugally-spun PMMA/PAN membrane separators were assembled into Li/LiFePO4 cells and these cells delivered high capacities and exhibited good cycling performance at room temperature. In addition, cells using centrifugally-spun PMMA/PAN membrane separators showed superior C-rate performance compared to those using microporous polypropylene (PP membranes. It is, therefore, demonstrated that centrifugally-spun PMMA/PAN membranes are promising separator candidate for high-performance Li-ion batteries.

  2. Centrifuge modeling of soil atmosphere interaction using climatic chamber

    OpenAIRE

    CAICEDO, B; TRISTANCHO, J; THOREL, Luc

    2010-01-01

    Soil-atmospheric interaction processes such as infiltration or evaporation can have a significant effect on the behavior of geotechnical structures located near the soil surface. This paper focuses on the drying process of soils due to evaporation. The scaling laws are analyzed and the results of the application of two cycles of heating and cooling on a soil mass are presented. Based on these results, conclusions about the feasibility of reproducing evaporation on centrifuge models are recomm...

  3. Computational and Experimental Study of an Industrial Centrifugal Compressor Volute

    Institute of Scientific and Technical Information of China (English)

    HarriPitkanen; HannuEsa; 等

    2000-01-01

    A centrifugal compressor with a vaneless diffuser was studied experimentally and numericallly.The main target of the study was to analyze the volute flow.Two different volute geometries was studied.The numerical solution was done by using a steady-state RANS code at both design and off-design conditions.Both calculated and measured pressure and velocity distributions are presented.

  4. Dynamical system analysis of unstable flow phenomena in centrifugal blower

    Directory of Open Access Journals (Sweden)

    Garcia David

    2015-09-01

    Full Text Available Methods of dynamical system analysis were employed to analyze unsteady phenomena in a centrifugal blower. Pressure signals gathered at different control points were decomposed into their Principal Components (PCs by means of Singular Spectrum Analysis (SSA. Certain number of PCs was considered in the analysis based on their statistical correlation. Projection of the original signal onto its PCs allowed to draw the phase trajectory that clearly separated non-stable blower working conditions from its regular operation.

  5. Centrifuge modelling of the pushover failure of an electricity transmission tower

    Energy Technology Data Exchange (ETDEWEB)

    Richards, D.J. [Southampton Univ. (United Kingdom). School of Civil Engineering and the Environment; White, D.J. [Western Australia Univ., Crawley, WA (Australia). Centre for Offshore Foundation Systems, Faculty of Engineering, Computing and Mathematics

    2010-04-15

    The foundation systems of broad-based lattice power transmission towers must be designed to resist uplift, lateral and downward forces arising from the tower's weight, and tension within the conductor wires and wind loadings. This study investigated foundation failure mechanisms during the rapid horizontal pushover of a power transmission tower. The centrifuge model tests were designed to simulate a wind gust loading or broken transmission line response. The tower was supported on 4 pad foundations set in clay and backfilled with sand. The loads at each foundation were measured during fast and flow pushover. The influence of tensile resistance mobilized at the underside of the footings was investigated. The measured performance of the tower footings showed good agreement with results obtained from a series of tests conducted to measure a single footing subjected to vertical loading. Tower response was back-analyzed as a simple push-pull model. The calculated uplift capacity of the footing backfill showed good agreement with the observed response of tower footings subjected to slow pushover. The additional capacity mobilized during fast pushover was caused by tensile resistance created by the reverse bearing capacity beneath the base of the footings. 30 refs., 3 tabs., 11 figs.

  6. Centrifugal step emulsification applied for absolute quantification of nucleic acids by digital droplet RPA.

    Science.gov (United States)

    Schuler, Friedrich; Schwemmer, Frank; Trotter, Martin; Wadle, Simon; Zengerle, Roland; von Stetten, Felix; Paust, Nils

    2015-07-01

    Aqueous microdroplets provide miniaturized reaction compartments for numerous chemical, biochemical or pharmaceutical applications. We introduce centrifugal step emulsification for the fast and easy production of monodisperse droplets. Homogenous droplets with pre-selectable diameters in a range from 120 μm to 170 μm were generated with coefficients of variation of 2-4% and zero run-in time or dead volume. The droplet diameter depends on the nozzle geometry (depth, width, and step size) and interfacial tensions only. Droplet size is demonstrated to be independent of the dispersed phase flow rate between 0.01 and 1 μl s(-1), proving the robustness of the centrifugal approach. Centrifugal step emulsification can easily be combined with existing centrifugal microfluidic unit operations, is compatible to scalable manufacturing technologies such as thermoforming or injection moulding and enables fast emulsification (>500 droplets per second and nozzle) with minimal handling effort (2-3 pipetting steps). The centrifugal microfluidic droplet generation was used to perform the first digital droplet recombinase polymerase amplification (ddRPA). It was used for absolute quantification of Listeria monocytogenes DNA concentration standards with a total analysis time below 30 min. Compared to digital droplet polymerase chain reaction (ddPCR), with processing times of about 2 hours, the overall processing time of digital analysis was reduced by more than a factor of 4.

  7. Faults Analysis and Diagnosis of DR J-460 Dish Centrifugal Separator's Helical Gear

    Institute of Scientific and Technical Information of China (English)

    MA Xiao-jian; GAN Xue-hui

    2004-01-01

    The main faults of dish centrifugal separator's helical gear are described in this paper. In order to diagnose the DR J-460 dish centrifugal separator correctly, the vibration is tested with a helical gear under both normal and abnormal conditions. After comparing several general methods of the gear's fault feature extraction, a new convenient and effective method is presented on the basis of analyzing the vibration spectrum under different rotary velocities.

  8. Numerical Optimization of Impeller for Backward-Curved Centrifugal Fan by Response Surface Methodology (RSM)

    OpenAIRE

    Fannian Meng; Quanlin Dong; Yan Wang; Pengfei Wang; Chunxi Zhang

    2013-01-01

    A numerical optimum study on three-dimensional unsteady viscous flow in a centrifugal fan with backward-curved blades was performed. The influence of the inlet angle, the outlet blade angle and blade number on aerodynamic performance of the centrifugal fan was analyzed concerning the whole impeller-volute configuration. Response Surface Methodology (RSM) based on a three-level, three -variable Box-Behnken Design (BBD) was used to evaluate the interactive effects of factors such as inlet blade...

  9. Vibration Characteristics Induced by Cavitation in a Centrifugal Pump with Slope Volute

    OpenAIRE

    Ning Zhang; Minguan Yang; Bo Gao; Zhong Li

    2015-01-01

    Cavitation is one of the instability sources in centrifugal pump, which would cause some unexpected results. The goal of this paper was to analyze the influence of cavitation process on different frequency bands in a centrifugal pump with slope volute. And special attention was paid to low frequency signals, which were often filtered in the reported researches. Results show that at noncavitation condition, vibration level is closely related to flow structure interior pump. At partial flow rat...

  10. Analysis on Energy Conversion of Screw Centrifugal Pump in Impeller Domain Based on Profile Lines

    OpenAIRE

    Hui Quan; Rennian Li; Qingmiao Su; Wei Han; Pengcheng Wang

    2013-01-01

    In order to study the power capability of impeller and energy conversion mechanism of screw centrifugal pump, the methods of theoretical analysis and numerical simulation by computational fluid dynamics theory (CFD) were adopted, specifically discussing the conditions of internal flow such as velocity, pressure, and concentration. When the medium is sand-water two-phase flow and dividing the rim of the lines and wheel lines of screw centrifugal pump to segments to analyze energy conversion ca...

  11. Accuracy assessment on the analysis of unbound drug in plasma by comparing traditional centrifugal ultrafiltration with hollow fiber centrifugal ultrafiltration and application in pharmacokinetic study.

    Science.gov (United States)

    Zhang, Lin; Zhang, Zhi-Qing; Dong, Wei-Chong; Jing, Shao-Jun; Zhang, Jin-Feng; Jiang, Ye

    2013-11-29

    In present study, accuracy assessment on the analysis of unbound drug in plasma was made by comparing traditional centrifugal ultrafiltration (CF-UF) with hollow fiber centrifugal ultrafiltration (HFCF-UF). We used metformin (MET) as a model drug and studied the influence of centrifugal time, plasma condition and freeze-thaw circle times on the ultrafiltrate volume and related effect on the measurement of MET. Our results demonstrated that ultrafiltrate volume was a crucial factor which influenced measurement accuracy of unbound drug in plasma. For traditional CF-UF, the ultrafiltrate volume cannot be well-controlled due to a series of factors. Compared with traditional CF-UF, the ultrafiltrate volume by HFCF-UF can be easily controlled by the inner capacity of the U-shaped hollow fiber inserted into the sample under enough centrifugal force and centrifugal time, which contributes to a more accurate measurement. Moreover, the developed HFCF-UF method achieved a successful application in real plasma samples and exhibited several advantages including high precision, extremely low detection limit and perfect recovery. The HFCF-UF method offers the advantage of highly satisfactory performance in addition to being simple and fast in pretreatment, with these characteristics being consistent with the practicability requirements in current scientific research.

  12. Effect of pumping chamber on performance of non-overload centrifugal pump

    Institute of Scientific and Technical Information of China (English)

    谷云庆; 吴登昊; 牟介刚; 蒋兰芳; 代东顺; 施瀚昱; 郑水华

    2015-01-01

    In order to specify the characteristics of un-overloaded centrifugal pumps, the IH100-65-200 pump was chosen as the model pump. Different calculation models for centrifugal pumps were established under different pumping chamber sectional parameters. In the numerical simulation of the centrifugal pumps flow field, the shaft power, head, efficiency, and the changes of the internal flow field under different sectional areas and sectional shapes were studied with the RNGk−εturbulence model, and the influence of the pumping chamber section characteristics of the non-overloaded centrifugal pumps were analyzed. The results show that sectional areas have a significant impact on the non-overload characteristics of centrifugal pumps. The shaft power and head of centrifugal pump are increasing with a lager sectional area, by which the gradient of head curves decreases. The efficiency is improved under a large flow rate condition, but the head and the efficiency are reduced at a small flow rate. It is also observed that the sectional shapes have less influence on the shaft power, the hydraulic performance and flow field characteristics of a centrifugal pump.

  13. Centrifugal force induces human ligamentum flavum fibroblasts inflammation through activation of JNK and p38 pathways.

    Science.gov (United States)

    Chao, Yuan-Hung; Tsuang, Yang-Hwei; Sun, Jui-Sheng; Sun, Man-Ger; Chen, Ming-Hong

    2012-01-01

    Inflammation has been proposed to be an important causative factor in ligamentum flavum hypertrophy. However, the mechanisms of mechanical load on inflammation of ligamentum flavum remain unclear. In this study, we used an in vitro model of human ligamentum flavum fibroblasts subjected to centrifugal force to elucidate the effects of mechanical load on cultured human ligamentum flavum fibroblasts; we further studied its molecular and biochemical mechanisms. Human ligamentum flavum fibroblasts were obtained from six patients undergoing lumbar spine surgery. Monolayer cultures of human ligamentum flavum fibroblasts were subjected to different magnitudes of centrifugal forces. Cell viability, cell death, biochemical response, and molecular response to centrifugal forces were analyzed. It was found that centrifugal stress significantly suppressed cell viability without inducing cell death. Centrifugal force at 67.1 g/cm(2) for 60 min significantly increases the production of prostaglandin E2 and nitric oxide as well as gene expression of proinflammatory cytokines, including interleukin (IL)-1α, IL-1β and IL-6, showed that centrifugal force-dependent induction of cyclooxygense-2 and inducible NO synthase required JNK and p38 mitogen-activated protein kinase, but not ERK 1/2 activities. This study suggested that centrifugal force does induce inflammatory responses in human ligamentum flavum fibroblasts. The activation of both JNK and p38 mitogen-activated protein kinase mechanotransduction cascades is a crucial intracellular mechanism that mediates cyclooxygense-2/prostaglandin E2 and inducible NO synthase/nitric oxide production.

  14. Centrifuge modelling of offshore monopile foundation

    DEFF Research Database (Denmark)

    Klinkvort, Rasmus Tofte; Hededal, Ole

    2010-01-01

    centrifuge tests on a laterally loaded monopile in dry sand. The prototype dimension of the piles was modelled to a diameter of 1 meter and penetration depth on 6 meter. The test series were designed in order to investigate the scaling laws in the centrifuge both for monotonic and cyclic loading...

  15. Centrifugal innervation of the mammalian olfactory bulb.

    Science.gov (United States)

    Matsutani, Shinji; Yamamoto, Noboru

    2008-12-01

    Although it has been known for decades that the mammalian olfactory bulb receives a substantial number of centrifugal inputs from other regions of the brain, relatively few data have been available on the function of the centrifugal olfactory system. Knowing the role of the centrifugal projection and how it works is of critical importance to fully understanding olfaction. The centrifugal fibers can be classified into two groups, a group that release neuromodulators, such as noradrenaline, serotonin, or acetylcholine, and a group originating in the olfactory cortex. Accumulating evidence suggests that centrifugal neuromodulatory inputs are associated with acquisition of odor memory. Because the distribution of the terminals on these fibers is diffuse and widespread, the neuromodulatory inputs must affect diverse subsets of bulbar neurons at the same time. In contrast, knowledge of the role of centrifugal fibers from the olfactory cortical areas is limited. Judging from recent morphological evidence, these fibers may modify the activity of neurons located in sparse and discrete loci in the olfactory bulb. Given the modular organization of the olfactory bulb, centrifugal fibers from the olfactory cortex may help coordinate the activities of restricted subsets of neurons belonging to distinct functional modules in an odor-specific manner. Because the olfactory cortex receives inputs from limbic and neocortical areas in addition to inputs from the bulb, the centrifugal inputs from the cortex can modulate odor processing in the bulb in response to non-olfactory as well as olfactory cues.

  16. Detection methods for centrifugal microfluidic platforms

    DEFF Research Database (Denmark)

    Burger, Robert; Amato, Letizia; Boisen, Anja

    2016-01-01

    Centrifugal microfluidics has attracted much interest from academia as well as industry, since it potentially offers solutions for affordable, user-friendly and portable biosensing. A wide range of so-called fluidic unit operations, e.g. mixing, metering, liquid routing, and particle separation...... for the centrifugal microfluidics platform and cover optical as well as mechanical and electrical detection principles....

  17. High frequency dynamics in centrifugal compressors

    NARCIS (Netherlands)

    Twerda, A.; Meulendijks, D.; Smeulers, J.P.M.; Handel, R. van den; Lier, L.J. van

    2008-01-01

    Problems with centrifugal compressors relating to high frequency, i.e. Blade passing frequency (BPF) are increasing. Pulsations and vibrations generated in centrifugal compressors can lead to nuisance, due to strong tonal noise, and even breakdown. In several cases the root cause of a failure or a n

  18. Rotor for a pyrolysis centrifuge reactor

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a rotor for a pyrolysis centrifuge reactor, said rotor comprising a rotor body having a longitudinal centre axis, and at least one pivotally mounted blade being adapted to pivot around a pivot axis under rotation of the rotor body around the longitudinal centre axis....... Moreover, the present invention relates to a pyrolysis centrifuge reactor applying such a rotor....

  19. Analysis of filling process of Ti6Al4V alloy melt poured in permanent mold during centrifugal casting process

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Ti6Al4V hip joint was foundered and the filling process of the melt poured in permanent mould during the centrifugal casting process was analyzed and the mathematical model of the filling process was established. Furthermore, the mathematical model was validated with a wax-model experiment. Calculating results show that the centrifugal field has an important influence on the filling process and the melt fills the mould with variational cross-sectional area and inclined angle. The cross-sectional area is in inverse proportion to the filling speed and its decreasing speed becomes fast with increasing rotating speed. The tangential value of the melt cross-sectional free-surface inclined angle is in direct proportion to the filling speed and the inclined angle increases with the filling length. Change curves of the cross-sectional inclined angle and area were obtained by the wax-model experiment when the rotating speeds were 60, 90 and 120  r/min respectively, which shows that the mathematical model is consistent with the experimental results.

  20. Control system modeling of a centrifuge

    International Nuclear Information System (INIS)

    Improved control of a centrifuge can be achieved by using a mathematical model. This model is a linear, time-invariant, second order model which relates the input to the output of the centrifuge. After the Z-transform of the model was taken, a digital computer program was written to implement the model. The model parameters were optimized through correlation of the theoretical output as compared with the actual output of the centrifuge. As a result, a model was developed that simulated the centrifuge. Traditionally, a desired centrifuge output was produced by an input which was determined by trial and error. However, using the model with the desired output curve, the necessary input can be calculated with the digital computer program

  1. Design of centrifugal impeller blades

    Science.gov (United States)

    Betz, A; Flugge-Lotz, I

    1939-01-01

    This paper restricts itself to radial impellers with cylindrical blades since, as Prasil has shown, the flow about an arbitrarily curved surface of revolution may be reduced to this normal form we have chosen by a relatively simple conformal transformation. This method starts from the simple hypotheses of the older centrifugal impeller theory by first assuming an impeller with an infinite number of blades. How the flow is then modified is then investigated. For the computation of flow for a finite number of blades, the approximation method as developed by Munk, Prandtl and Birnbaum, or Glauert is found suitable. The essential idea of this method is to replace the wing by a vortex sheet and compute the flow as the field of these vortices. The shape of the blades is then obtained from the condition that the flow must be along the surface of the blade.

  2. Centrifugal membrane filtration - Task 9

    International Nuclear Information System (INIS)

    The Energy and Environmental Research Center (EERC) has teamed with SpinTek Membrane Systems, Inc., the developer of a centrifugal membrane filtration technology, to demonstrate applications for the SpinTek technology within the US Department of Energy (DOE) Environmental management (EM) Program. The technology uses supported microporous membranes rotating at high rpm, under pressure, to separate suspended and colloidal solids from liquid streams, yielding a solids-free permeate stream and a highly concentrated solids stream. This is a crosscutting technology that falls under the Efficient Separations and Processing Crosscutting Program, with potential application to tank wastes, contaminated groundwater, landfill leachate, and secondary liquid waste streams from other remediation processes, including decontamination and decommissioning systems. Membrane-screening tests were performed with the SpinTek STC-X4 static test cell filtration unit, using five ceramic membranes with different pore size and composition. Based on permeate flux, a 0.25-microm TiO2/Al2O3 membrane was selected for detailed performance evaluation using the SpinTek ST-IIL centrifugal membrane filtration unit with a surrogate tank waste solution. An extended test run of 100 hr performed on a surrogate tank waste solution showed some deterioration in filtration performance, based on flux, apparently due to the buildup of solids near the inner portion of the membrane where relative membrane velocities were low. Continued testing of the system will focus on modifications to the shear pattern across the entire membrane surface to affect improved long-term performance

  3. Centrifugal membrane filtration -- Task 9

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The Energy and Environmental Research Center (EERC) has teamed with SpinTek Membrane Systems, Inc., the developer of a centrifugal membrane filtration technology, to demonstrate applications for the SpinTek technology within the US Department of Energy (DOE) Environmental management (EM) Program. The technology uses supported microporous membranes rotating at high rpm, under pressure, to separate suspended and colloidal solids from liquid streams, yielding a solids-free permeate stream and a highly concentrated solids stream. This is a crosscutting technology that falls under the Efficient Separations and Processing Crosscutting Program, with potential application to tank wastes, contaminated groundwater, landfill leachate, and secondary liquid waste streams from other remediation processes, including decontamination and decommissioning systems. Membrane-screening tests were performed with the SpinTek STC-X4 static test cell filtration unit, using five ceramic membranes with different pore size and composition. Based on permeate flux, a 0.25-{micro}m TiO{sub 2}/Al{sub 2}O{sub 3} membrane was selected for detailed performance evaluation using the SpinTek ST-IIL centrifugal membrane filtration unit with a surrogate tank waste solution. An extended test run of 100 hr performed on a surrogate tank waste solution showed some deterioration in filtration performance, based on flux, apparently due to the buildup of solids near the inner portion of the membrane where relative membrane velocities were low. Continued testing of the system will focus on modifications to the shear pattern across the entire membrane surface to affect improved long-term performance.

  4. Analysis of cantilever NEMS in centrifugal-fluidic systems

    Science.gov (United States)

    Mohsen-Nia, Mohsen; Abadian, Fateme; Abadian, Naeime; Dehkordi, Keivan Mosaiebi; Keivani, Maryam; Abadyan, Mohamadreza

    2016-07-01

    Electromechanical nanocantilevers are promising for using as sensors/detectors in centrifugal-fluidic systems. For this application, the presence of angular speed and electrolyte environment should be considered in the theoretical analysis. Herein, the pull-in instability of the nanocantilever incorporating the effects of angular velocity and liquid media is investigated using a size-dependent continuum theory. Using d’Alembert principle, the angular speed is transformed into an equivalent centrifugal force. The electrochemical and dispersion forces are incorporated considering the corrections due to the presence of electrolyte media. Two different approaches, i.e., the Rayleigh-Ritz method (RRM) and proposing a lumped parameter model (LPM), were applied to analyze the system. The models are validated with the results presented in literature. Impacts of the angular velocity, electrolyte media, dispersion forces, and size effect on the instability characteristics of the nanocantilever are discussed.

  5. Fluidic Analysis in an Annular Centrifugal Contactor for Fuel Reprocessing

    International Nuclear Information System (INIS)

    An annular centrifugal contactor (ACC) is a promising device for fuel reprocessing process, because it offers several advantages—a smaller size, a smaller holdup volume, and a higher separation performance—over conventional contactors such as a mixer-settler and a pulse column. Fluid dynamics and dispersion in an ACC, which has a combined mixer/centrifuge structure, are closely related to its separation performance and capacity, and this information is useful in improving equipment design. In this paper, experimental and computational fluid dynamics (CFD) studies were conducted to analyze fluidic and dispersion behavior in ACCs. Multiphase mixing (water/TBP-dodecane/air) in the annular zone was observed by Particle Imaging Velocimetry, and the change in the fluidic and dispersion behavior was ascertained under several operational conditions. The results of the CFD studies, which considered multiphase turbulent flow in the annular and rotor interior zones, were in a good agreement with the experimental data. (author)

  6. Optimization of centrifugal pump cavitation performance based on CFD

    Science.gov (United States)

    Xie, S. F.; Wang, Y.; Liu, Z. C.; Zhu, Z. T.; Ning, C.; Zhao, L. F.

    2015-01-01

    In order to further improve the cavitation performance of a centrifugal pump, slots on impeller blade near inlet were studied and six groups of hydraulic model were designed. Base on cavitating flow feature inside a centrifugal pump, bubble growth and implosion are calculated from the Rayleigh-Plesset equation which describes the dynamic behavior of spherical bubble and RNG κ-epsilon model was employed to simulate and analyze the internal two-phase flow of the model pump under the same conditions. The simulation results show that slots on blade near inlet could improve the cavitation performance and cavitation performance improvement of the second group was more obvious. Under the same conditions, the pressure on the back of blade near inlet was higher than the pressure on the back of unmodified blade near inlet, and energy distribution in the flow channel between the two blades was more uniform with a small change of head.

  7. Oxygen analyzer

    Science.gov (United States)

    Benner, William H.

    1986-01-01

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N.sub.2), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable oxygen obtained by decomposing the sample at 1135.degree. C., or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135.degree. C. as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N.sub.2, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  8. Centrifuge workers study. Phase II, completion report

    Energy Technology Data Exchange (ETDEWEB)

    Wooten, H.D.

    1994-09-01

    Phase II of the Centrifuge Workers Study was a follow-up to the Phase I efforts. The Phase I results had indicated a higher risk than expected among centrifuge workers for developing bladder cancer when compared with the risk in the general population for developing this same type of cancer. However, no specific agent could be identified as the causative agent for these bladder cancers. As the Phase II Report states, Phase I had been limited to workers who had the greatest potential for exposure to substances used in the centrifuge process. Phase II was designed to expand the survey to evaluate the health of all employees who had ever worked in Centrifuge Program Departments 1330-1339 but who had not been interviewed in Phase I. Employees in analytical laboratories and maintenance departments who provided support services for the Centrifuge Program were also included in Phase II. In December 1989, the Oak Ridge Associated Universities (ORAU), now known as Oak Ridge Institute for Science and Education (ORISE), was contracted to conduct a follow-up study (Phase II). Phase H of the Centrifuge Workers Study expanded the survey to include all former centrifuge workers who were not included in Phase I. ORISE was chosen because they had performed the Phase I tasks and summarized the corresponding survey data therefrom.

  9. Centrifuge workers study. Phase II, completion report

    International Nuclear Information System (INIS)

    Phase II of the Centrifuge Workers Study was a follow-up to the Phase I efforts. The Phase I results had indicated a higher risk than expected among centrifuge workers for developing bladder cancer when compared with the risk in the general population for developing this same type of cancer. However, no specific agent could be identified as the causative agent for these bladder cancers. As the Phase II Report states, Phase I had been limited to workers who had the greatest potential for exposure to substances used in the centrifuge process. Phase II was designed to expand the survey to evaluate the health of all employees who had ever worked in Centrifuge Program Departments 1330-1339 but who had not been interviewed in Phase I. Employees in analytical laboratories and maintenance departments who provided support services for the Centrifuge Program were also included in Phase II. In December 1989, the Oak Ridge Associated Universities (ORAU), now known as Oak Ridge Institute for Science and Education (ORISE), was contracted to conduct a follow-up study (Phase II). Phase H of the Centrifuge Workers Study expanded the survey to include all former centrifuge workers who were not included in Phase I. ORISE was chosen because they had performed the Phase I tasks and summarized the corresponding survey data therefrom

  10. Radioisotope analyzer of barium

    International Nuclear Information System (INIS)

    Principle of operation and construction of radioisotope barium sulphate analyzer type MZB-2 for fast determination of barium sulphate content in barite ores and enrichment products are described. The gauge equipped with Am-241 and a scintillation detector enables measurement of barium sulphate content in prepared samples of barite ores in the range 60% - 100% with the accuracy of 1%. The gauge is used in laboratories of barite mine and ore processing plant. 2 refs., 2 figs., 1 tab. (author)

  11. An Experimental Investigation on the Drying of Sliced Food Products in Centrifugal Fluidized Bed

    Institute of Scientific and Technical Information of China (English)

    M.H.Shi; Y.L.Hao; 等

    1998-01-01

    An experimental investigation on the fluidization and drying characteristics of sliced food products in a centrifugal fluidized bed dryer was carried out,The rotaing speed ranges from 300 rpm to 500 rpm.Sliced potato and radish were used as the testing materials.The results show that the sliced materials can be fluidized well in the centrifugal fluidized bed.The fluidized curve has a maximum value and the critical fluidized velocities vary with the type of the test material,its shape and dimension as well as operating parameters.The sliced food materials can be dried very well and fast in the centrifugal fluidized bed with a large productivity.The factors that influence the drying process were examined and discussed.The final shape and inner structure of the dried products were observed.The water recovery characteristics of the drried products were also investigated.

  12. Fault Detection and Isolation in Centrifugal Pumps

    DEFF Research Database (Denmark)

    Kallesøe, Carsten

    Centrifugal pumps are used in a variety of different applications, such as water supply, wastewater, and different industrial applications. Some pump installations are crucial for the applications to work. Failures can lead to substantial economic losses and can influence the life of many people...... is placed. The topic of this work is Fault Detection and Identification in centrifugal pumps. Different approaches are developed with special focus on robustness. Robustness with respect to disturbances, unknown parts of the system, and parameter variations are considered. All developed algorithms...... are tested on an industrial test setup, showing the usability of the algorithms on a real centrifugal pump....

  13. Gas dynamics in strong centrifugal fields

    Energy Technology Data Exchange (ETDEWEB)

    Bogovalov, S.V.; Kislov, V.A.; Tronin, I.V. [National research nuclear university “MEPhI”, Kashirskoje shosse, 31,115409, Moscow (Russian Federation)

    2015-03-10

    Dynamics of waves generated by scopes in gas centrifuges (GC) for isotope separation is considered. The centrifugal acceleration in the GC reaches values of the order of 106g. The centrifugal and Coriolis forces modify essentially the conventional sound waves. Three families of the waves with different polarisation and dispersion exist in these conditions. Dynamics of the flow in the model GC Iguasu is investigated numerically. Comparison of the results of the numerical modelling of the wave dynamics with the analytical predictions is performed. New phenomena of the resonances in the GC is found. The resonances occur for the waves polarized along the rotational axis having the smallest dumping due to the viscosity.

  14. FAST: FAST Analysis of Sequences Toolbox

    Directory of Open Access Journals (Sweden)

    Travis J. Lawrence

    2015-05-01

    Full Text Available FAST (FAST Analysis of Sequences Toolbox provides simple, powerful open source command-line tools to filter, transform, annotate and analyze biological sequence data. Modeled after the GNU (GNU’s Not Unix Textutils such as grep, cut, and tr, FAST tools such as fasgrep, fascut, and fastr make it easy to rapidly prototype expressive bioinformatic workflows in a compact and generic command vocabulary. Compact combinatorial encoding of data workflows with FAST commands can simplify the documentation and reproducibility of bioinformatic protocols, supporting better transparency in biological data science. Interface self-consistency and conformity with conventions of GNU, Matlab, Perl, BioPerl, R and GenBank help make FAST easy and rewarding to learn. FAST automates numerical, taxonomic, and text-based sorting, selection and transformation of sequence records and alignment sites based on content, index ranges, descriptive tags, annotated features, and in-line calculated analytics, including composition and codon usage. Automated content- and feature-based extraction of sites and support for molecular population genetic statistics makes FAST useful for molecular evolutionary analysis. FAST is portable, easy to install and secure thanks to the relative maturity of its Perl and BioPerl foundations, with stable releases posted to CPAN. Development as well as a publicly accessible Cookbook and Wiki are available on the FAST GitHub repository at https://github.com/tlawrence3/FAST. The default data exchange format in FAST is Multi-FastA (specifically, a restriction of BioPerl FastA format. Sanger and Illumina 1.8+ FastQ formatted files are also supported. FAST makes it easier for non-programmer biologists to interactively investigate and control biological data at the speed of thought.

  15. Modeling of Centrifugal Force Field and the Effect on Filling and Solidification in Centrifugal Casting

    Science.gov (United States)

    Sheng, Wenbin; Ma, Chunxue; Gu, Wanli

    2011-06-01

    Based on the steady flow in a tube, a mathematical model has been established for the consideration of centrifuging force field by combining the equations of continuity, conservation of momentum and general energy. Effects of centrifugal field on the filling and solidification are modeled by two accessional terms: centrifugal force and Chorios force. In addition, the transfer of heat by convection is considered to achieve a coupling calculation of velocity field and temperature field. The solution of pressure item is avoided by introducing the stream function ψ(x,y) and the eddy function ξ(x,y). Corresponding difference formats for the simultaneous equations of centrifugal filling, the accessional terms and the solidifying latent heat have been established by the finite difference technique. Furthermore, the centrifugal filling and solidification processes in a horizontal tube are summarized to interpret the mechanism by which internal defects are formed in centrifugal castings.

  16. Fasting style collapse of a multi-span arch bridge analyze the causes of the box%某多跨空腹式箱形拱桥倒塌成因分析

    Institute of Scientific and Technical Information of China (English)

    饶奇志; 易汉斌; 俞博

    2014-01-01

    In this paper, a box-shaped multi-span arch bridge collapsed fasting accident, for example, ana-lyze the causes of its collapse. First, the bridge collapse accident scene investigation, proved a bit of geologi-cal bridge pier foundation and Conditions; secondly, according to the findings of the arch structure was seized count;moreover, considering the effect of cutting down on the pile bearing capacity of the river bed;the results show that under the riverbed leads to the bridge substructure cut transition from low pile platform for high pile caps, this time the stakes withstand compressive stress is greater than its carrying capacity, the stakes can not bear the weight of the upper structure, leading to the occurrence of arch collapsed.%本文以某多跨空腹式箱形拱桥倒塌事故为例,对其倒塌成因进行了分析。首先,对桥梁倒塌事故现场进行了调查,探明了桥墩基础及桥位地质条件情况;其次,根据调查结果对拱桥结构进行了检算;此外,考虑了河床下切对桩基承载力的影响;分析结果表明,河床下切导致该桥下部结构从低桩承台转变为高桩承台,此时木桩承受的压应力大于其承载能力,木桩已经不能承担上部结构自重的作用,导致拱桥发生倒塌。

  17. Molecular structure and centrifugal distortion in methylthioethyne

    NARCIS (Netherlands)

    Engelsen, D. den

    1969-01-01

    The investigation of the microwave spectra of five isotopic species of methylthioethyne, HCCSCH3 enabled a fairly reliable calculation to be made of bond lengths and angles. The centrifugal distortion parameters are related to molecular vibrations.

  18. Geotechnical Centrifuge Studies of Unsaturated Transport

    Science.gov (United States)

    Smith, R. W.; Mattson, E. D.; Palmer, C. D.

    2007-12-01

    Improved understanding of contaminant migration in heterogeneous, variably saturated porous media is required to better define the long-term stewardship requirements for U.S. Department of Energy (DOE) lands and to assist in the design of effective vadose-zone barriers to contaminant migrations. A geotechnical centrifuge provides an experimental approach to explore vadose zone transport over a wide range of relevant conditions in time frames not possible for conventional bench-top experiments. Our research to date resulted in the design, construction, and testing of in-flight experimental apparatus allowing the replication of traditional bench top unsaturated transport experiments using the 2-meter radius geotechnical centrifuge capabilities at the Idaho National Laboratory. Additionally we conducted a series of unsaturated 1-dimenstional column experiments using conservative tracers to evaluate the effects of increased centrifugal acceleration on derived transport properties and assessing the scaling relationships for these properties. Our experimental results indicated that breakthrough times for a conservative tracer decreased significantly and systematically as a function of increased centrifugal acceleration. Differences between these experimental results and estimates based on predictive scaling rules are due to slight moisture content differences between experiments at different centrifugal accelerations. In contrast, dispersion coefficients varied systemically with centrifugal acceleration in accordance with predictive scaling rules. The results we obtained in this study indicate that the centrifuge technique is a viable experimental method for the study of subsurface processes where gravitational acceleration is important. The geotechnical centrifuge allows experiments to be completed more quickly than tests conducted at 1-gravity and can be used to experimentally address important scaling issues, and permits experiments under a range of conditions that

  19. Towards Centrifugal Compressor Stages Virtual Testing

    OpenAIRE

    Guidotti, Emanuele

    2014-01-01

    Flow features inside centrifugal compressor stages are very complicated to simulate with numerical tools due to the highly complex geometry and varying gas conditions all across the machine. For this reason, a big effort is currently being made to increase the fidelity of the numerical models during the design and validation phases. Computational Fluid Dynamics (CFD) plays an increasing role in the assessment of the performance prediction of centrifugal compressor stages. Historically, CFD wa...

  20. Meridional Considerations of the Centrifugal Compressor Development

    OpenAIRE

    Xu, C.; Amano, R. S.

    2012-01-01

    Centrifugal compressor developments are interested in using optimization procedures that enable compressor high efficiency and wide operating ranges. Recently, high pressure ratio and efficiency of the centrifugal compressors require impeller design to pay attention to both the blade angle distribution and the meridional profile. The geometry of the blades and the meridional profile are very important contributions of compressor performance and structure reliability. This paper presents some ...

  1. CFD Simulation of Annular Centrifugal Extractors

    OpenAIRE

    Vedantam, S.; Wardle, K. E.; Tamhane, T. V.; Ranade, V. V.; Joshi, J. B.

    2012-01-01

    Annular centrifugal extractors (ACE), also called annular centrifugal contactors offer several advantages over the other conventional process equipment such as low hold-up, high process throughput, low residence time, low solvent inventory and high turn down ratio. The equipment provides a very high value of mass transfer coefficient and interfacial area in the annular zone because of the high level of power consumption per unit volume and separation inside the rotor due to the high g of cent...

  2. Finite element analysis of centrifugal impellers

    OpenAIRE

    Sham Sunder, K.

    1981-01-01

    A three-dimensional method of stress analysis using finite element techniques is presented for determining the stress distribution in centrifugal impellers. It can treat all of the three types of loading possible in an inpeller, viz centrifugal, thermal and fluid. The method has no known limitations with regards to the geometric factors such as asymnetry of disk, blade curvature, presence of a cover disk or shroud, single or double sided impeller etc. A comparison of r...

  3. Return Vane Installed in Multistage Centrifugal Pump

    OpenAIRE

    Miyano, Masafumi; Kanemoto, Toshiaki; Kawashima, Daisuke; Wada, Akihiro; Hara, Takashi; Sakoda, Kazuyuki

    2008-01-01

    To optimize the stationary components in the multistage centrifugal pump, the effects of the return vane profile on the performances of the multistage centrifugal pump were investigated experimentally, taking account of the inlet flow conditions for the next stage impeller. The return vane, whose trailing edge is set at the outer wall position of the annular channel downstream of the vane and which discharges the swirl-less flow, gives better pump performances. By equipping such return vane w...

  4. Enrichment technology. Dependable vendor of gas centrifuges

    International Nuclear Information System (INIS)

    Enrichment Technology is an innovative, high-tech company that develops, manufactures and installs gas centrifuges for enriching uranium. In addition, Enrichment Technology designs enrichment plants that use gas centrifuge technology. This technology offers the most efficient and cost-effective method for enriching uranium yet: high-performance, safe technology that dominates the market with a global share of 45 percent. A determining factor in Enrichment Technology's success is its mission: supplying its customers with safe, reliable technology. Production of the centrifuges requires versatile know-how and collaboration between different departments as well as interdisciplinary teams at the various sites. More than 2000 operators at 8 sites in 5 countries contribute their individual knowledge and personal skills in order to produce this exceptional technology. The head office is in Beaconsfield near London and the operational headquarters are in Almelo in the Netherlands. There are other sites in Germany (Juelich und Gronau), Great Britain (Capenhurst) as well as project sites in the USA and France. Capenhurst is where experienced engineers design new enrichment plants and organise their construction. Centrifuge components are manufactured in Almelo and Juelich, while the pipework needed to connect up the centrifuges is produced at the site in Gronau. In Juelich, highly qualified scientists in interdisciplinary teams are continuously researching ways of improving the current centrifuges. Communication between specialists in the fields of chemistry, physics and engineering forms the basis for the company's success and the key to extending this leading position in the global enrichment market. (orig.)

  5. Separation of uranium isotopes by gas centrifugation

    International Nuclear Information System (INIS)

    The uranium isotope enrichment is studied by means of the countercurrent gas centrifuge driven by thermal convection. A description is given of (a) the transfer and purification of the uranium hexafluoride used as process gas in the present investigation; (b) the countercurrent centrifuge ZG3; (c) the system designed for the introduction and extraction of the process gas from the centrifuge; (d) the measurement of the process gas flow rate through the centrifuge; (e) the determination of the uranium isotopic abundance by mass spectrometry; (f) the operation and mechanical behavior of the centrifuge and (g) the isotope separation experiments, performed, respectively, at total reflux and with production of enriched material. The results from the separation experiments at total reflux are discussed in terms of the enrichment factor variation with the magnitude and flow profile of the countercurrent given by the temperature difference between the rotor covers. As far as the separation experiments with production are concerned, the discussion of their results is presented through the variation of the enrichment factor as a function of the flow rate, the observed asymmetry of the process and the calculated separative power of the centrifuge. (Author)

  6. Clinical experience with the Sarns centrifugal pump.

    Science.gov (United States)

    Curtis, J J; Walls, J T; Demmy, T L; Boley, T M; Schmaltz, R A; Goss, C F; Wagner-Mann, C C

    1993-07-01

    Since October 1986, we have had experience with 96 Sarns centrifugal pumps in 72 patients (pts). Heparinless left atrial to femoral artery or aorta bypass was used in 14 pts undergoing surgery on the thoracic aorta with 13 survivors (93%). No paraplegia or device-related complications were observed. In 57 patients, the Sarns centrifugal pump was used as a univentricular (27 pts) or biventricular (30 pts) cardiac assist device for postcardiotomy cardiogenic shock. In these patients, cardiac assist duration ranged from 2 to 434 h with a hospital survival rate of 29% in those requiring left ventricular assist and 13% in those requiring biventricular assist. Although complications were ubiquitous in this mortally ill patient population, in 5,235 pump-hours, no pump thrombosis was observed. Hospital survivors followed for 4 months to 6 years have enjoyed an improved functional class. We conclude that the Sarns centrifugal pump is an effective cardiac assist device when used to salvage patients otherwise unweanable from cardiopulmonary bypass. Partial left ventricular bypass using a centrifugal pump has become our procedure of choice for unloading the left ventricle and for maintenance of distal aortic perfusion pressure when performing surgery on the thoracic aorta. This clinical experience with the Sarns centrifugal pump appears to be similar to that reported with other centrifugal assist devices.

  7. Numerical and experimental investigation of the centrifugal stage axial compressor centrifugal stationary GTE

    OpenAIRE

    Шаровский, Михаил Антонович; Усатенко, Елена Александровна; Шелковский, Михаил Юрьевич; Зубрицкая, Инна Аркадьевна

    2012-01-01

    About increase in efficiency of a centrifugal step of the compressor in low-dimensional GTD with the osetsentrobezhny compressor. Use of the “closed” driving wheel as basic possibility of receiving a highly effective centrifugal step. The gazodinamichesky aspect of its design and manufacturing is considered.

  8. Analysis on the blade inlet pressure fluctuation of the centrifugal pump based on LES

    Science.gov (United States)

    Wang, W. J.; Cui, Y. R.; Wang, Y.; Li, G. D.; Liang, Q. H.; Yin, G.

    2013-12-01

    In order to study the characteristics of the blade inlet pressure fluctuation under unsteady flow in centrifugal pump, a three-dimensional model of a pump ns=50 was built. Based on large eddy simulation (LES), the inner flow field of the pump was simulated by the flow field simulation software Fluent in design condition and off-design conditions. The pressure fluctuation of the monitored points was obtained at the blade suction surface and pressure surface at impeller inlet, which was analyzed by time and frequency domain with Fast Fourier Transformation (FFT). The results show that the pressure fluctuation of inlet and outlet in large flow rate is more obvious than low flow rate. It is easily found that the static pressure of outlet in 1.2Qd condition has five peaks and five valleys, but this phenomenon does not exist in 0.6 Qd condition. In the time domain spectrums, the static pressure curve has five peaks and five valleys that the maximum pressure is positive number and the minimum pressure is negative number. In the frequency domains spectrums, the frequency of FFT factors peak is lower than the blade passing frequency 241.65Hz.

  9. Performance analysis on solid-liquid mixed flow in a centrifugal pump

    Science.gov (United States)

    Ning, C.; Wang, Y.

    2016-05-01

    In order to study the solid-liquid mixed flow hydraulic characteristics of centrifugal pump, the Pro/E software was used for three-dimensional modeling of centrifugal pump chamber. By using the computational fluid dynamics software CFX, the numerical simulation calculation of solid-liquid two-phase flow within whole flow passage of centrifugal pump was conducted. Aim at different particle diameters, the Reynolds-averaged N-S equations with the RNG k-Ɛ turbulence model and SIMPLEC algorithm were used to simulate the two-phase flow respectively on the condition of different volume fraction. The influence of internal flow characteristic on pump performance was analyzed. On the conditions of different particle diameter and different volume fraction, the turbulence kinetic energy and particle concentration are analyzed. It can be found that the erosion velocity ratio on the flow channel wall increases along with the increasing of the volume fraction

  10. Centrifugal acceleration in the magnetotail lobes

    Directory of Open Access Journals (Sweden)

    H. Nilsson

    2010-02-01

    Full Text Available Combined Cluster EFW and EDI measurements have shown that cold ion outflow in the magnetospheric lobes dominates the hydrogen ion outflow from the Earth's atmosphere. The ions have too low kinetic energy to be measurable with particle instruments, at least for the typical spacecraft potential of a sunlit spacecraft in the tenuous lobe plasmas outside a few RE. The measurement technique yields both density and bulk velocity, which can be combined with magnetic field measurements to estimate the centrifugal acceleration experienced by these particles. We present a quantitative estimate of the centrifugal acceleration, and the velocity change with distance which we would expect due to centrifugal acceleration. It is found that the centrifugal acceleration is on average outward with an average value of about of 5 m s−2. This is small, but acting during long transport times and over long distances the cumulative effect is significant, while still consistent with the relatively low velocities estimated using the combination of EFW and EDI data. The centrifugal acceleration should accelerate any oxygen ions in the lobes to energies observable by particle spectrometers. The data set also put constraints on the effectiveness of any other acceleration mechanisms acting in the lobes, where the total velocity increase between 5 and 19 RE geocentric distance is less than 5 km s−1.

  11. A Review of Biomedical Centrifugal Microfluidic Platforms

    Directory of Open Access Journals (Sweden)

    Minghui Tang

    2016-02-01

    Full Text Available Centrifugal microfluidic or lab-on-a-disc platforms have many advantages over other microfluidic systems. These advantages include a minimal amount of instrumentation, the efficient removal of any disturbing bubbles or residual volumes, and inherently available density-based sample transportation and separation. Centrifugal microfluidic devices applied to biomedical analysis and point-of-care diagnostics have been extensively promoted recently. This paper presents an up-to-date overview of these devices. The development of biomedical centrifugal microfluidic platforms essentially covers two categories: (i unit operations that perform specific functionalities, and (ii systems that aim to address certain biomedical applications. With the aim to provide a comprehensive representation of current development in this field, this review summarizes progress in both categories. The advanced unit operations implemented for biological processing include mixing, valving, switching, metering and sequential loading. Depending on the type of sample to be used in the system, biomedical applications are classified into four groups: nucleic acid analysis, blood analysis, immunoassays, and other biomedical applications. Our overview of advanced unit operations also includes the basic concepts and mechanisms involved in centrifugal microfluidics, while on the other hand an outline on reported applications clarifies how an assembly of unit operations enables efficient implementation of various types of complex assays. Lastly, challenges and potential for future development of biomedical centrifugal microfluidic devices are discussed.

  12. Illusory movement of stationary stimuli in the visual periphery: evidence for a strong centrifugal prior in motion processing.

    Science.gov (United States)

    Zhang, Ruyuan; Kwon, Oh-Sang; Tadin, Duje

    2013-03-01

    Visual input is remarkably diverse. Certain sensory inputs are more probable than others, mirroring statistical regularities of the visual environment. The visual system exploits many of these regularities, resulting, on average, in better inferences about visual stimuli. However, by incorporating prior knowledge into perceptual decisions, visual processing can also result in perceptions that do not match sensory inputs. Such perceptual biases can often reveal unique insights into underlying mechanisms and computations. For example, a prior assumption that objects move slowly can explain a wide range of motion phenomena. The prior on slow speed is usually rationalized by its match with visual input, which typically includes stationary or slow moving objects. However, this only holds for foveal and parafoveal stimulation. The visual periphery tends to be exposed to faster motions, which are biased toward centrifugal directions. Thus, if prior assumptions derive from experience, peripheral motion processing should be biased toward centrifugal speeds. Here, in experiments with human participants, we support this hypothesis and report a novel visual illusion where stationary objects in the visual periphery are perceived as moving centrifugally, while objects moving as fast as 7°/s toward fovea are perceived as stationary. These behavioral results were quantitatively explained by a Bayesian observer that has a strong centrifugal prior. This prior is consistent with both the prevalence of centrifugal motions in the visual periphery and a centrifugal bias of direction tuning in cortical area MT, supporting the notion that visual processing mirrors its input statistics.

  13. Neuro-Motor Responses to Daily Centrifugation in Bed-Rested Subjects

    Science.gov (United States)

    Reschke, Millard F.; Somers, Jeffery T.; Krnavek, Jody; Fisher, Elizibeth; Ford, George; Paloski, William H.

    2007-01-01

    It is well known from numerous space flight studies that exposure to micro-g produces both morphological and neural adaptations in the major postural muscles. However, the characteristics and mechanism of these changes, particularly when it may involve the central nervous system are not defined. Furthermore, it is not known what role unloading of the muscular system may have on central changes in sensorimotor function or if centrifugation along the +Gz direction (long body axis) can mitigate both the peripheral changes in muscle function and modification of the central changes in sensorimotor adaptation to the near weightless environment of space flight. The purpose of this specific effort was, therefore, to investigate the efficacy of artificial gravity (AG) as a method for maintaining sensorimotor function in micro-g. Eight male subjects were exposed to daily 1 hr centrifugation during a 21 day 6 degree head-down bed rest study. Seven controls were placed on the centrifuge without rotation. The radius and angular velocity of the centrifuge were adjusted such that each subject experienced a centripetal acceleration of 2.5g at the feet, and approximately 1.0g at the heart. Both the tendon (MSR) and functional stretch reflexes (FSR) were collected using an 80 lb. ft. servomotor controlled via position feedback to provide a dorsiflexion step input to elicit the MSR, and the same step input with a built in 3 sec hold to evoke the FSR. EMG data were obtained from the triceps surae. Supplementary torque, velocity and position data were collected with the EMG responses. All data were digitized and sampled at 4 kHz. Only the MSR data has been analyzed at this time, and preliminary results suggest that those subjects exposed to active centrifugation (treatment group) show only minor changes in MSR peak latency times, either as a function of time spent in bed rest or exposure to centrifugation, while the control subjects show delays in the MSR peak latencies that are

  14. Centrifugal compressor design for electrically assisted boost

    Science.gov (United States)

    Y Yang, M.; Martinez-Botas, R. F.; Zhuge, W. L.; Qureshi, U.; Richards, B.

    2013-12-01

    Electrically assisted boost is a prominent method to solve the issues of transient lag in turbocharger and remains an optimized operation condition for a compressor due to decoupling from turbine. Usually a centrifugal compressor for gasoline engine boosting is operated at high rotational speed which is beyond the ability of an electric motor in market. In this paper a centrifugal compressor with rotational speed as 120k RPM and pressure ratio as 2.0 is specially developed for electrically assisted boost. A centrifugal compressor including the impeller, vaneless diffuser and the volute is designed by meanline method followed by 3D detailed design. Then CFD method is employed to predict as well as analyse the performance of the design compressor. The results show that the pressure ratio and efficiency at design point is 2.07 and 78% specifically.

  15. Analysis of Secondary Flows in Centrifugal Impellers

    Directory of Open Access Journals (Sweden)

    Brun Klaus

    2005-01-01

    Full Text Available Secondary flows are undesirable in centrifugal compressors as they are a direct cause for flow (head losses, create nonuniform meridional flow profiles, potentially induce flow separation/stall, and contribute to impeller flow slip; that is, secondary flows negatively affect the compressor performance. A model based on the vorticity equation for a rotating system was developed to determine the streamwise vorticity from the normal and binormal vorticity components (which are known from the meridional flow profile. Using the streamwise vorticity results and the small shear-large disturbance flow method, the onset, direction, and magnitude of circulatory secondary flows in a shrouded centrifugal impeller can be predicted. This model is also used to estimate head losses due to secondary flows in a centrifugal flow impeller. The described method can be employed early in the design process to develop impeller flow shapes that intrinsically reduce secondary flows rather than using disruptive elements such as splitter vanes to accomplish this task.

  16. Centrifugal compressor design for electrically assisted boost

    International Nuclear Information System (INIS)

    Electrically assisted boost is a prominent method to solve the issues of transient lag in turbocharger and remains an optimized operation condition for a compressor due to decoupling from turbine. Usually a centrifugal compressor for gasoline engine boosting is operated at high rotational speed which is beyond the ability of an electric motor in market. In this paper a centrifugal compressor with rotational speed as 120k RPM and pressure ratio as 2.0 is specially developed for electrically assisted boost. A centrifugal compressor including the impeller, vaneless diffuser and the volute is designed by meanline method followed by 3D detailed design. Then CFD method is employed to predict as well as analyse the performance of the design compressor. The results show that the pressure ratio and efficiency at design point is 2.07 and 78% specifically

  17. Numerical Analysis of Three-Dimensional Unsteady Turbulent Flow in Circular Casing of a High Power Centrifugal Diffuser Pump

    OpenAIRE

    Ji Pei; Shouqi Yuan; Wenjie Wang

    2013-01-01

    For high power centrifugal pump which is usually used in high risk applications, circular casing structure has been adopted to increase the reliability of the pump. This special casing structure can make the flow more complex and cause huge hydraulic losses. In this paper, the periodically unsteady turbulent flow in the circular casing of a high power centrifugal diffuser pump has been investigated numerically by CFD calculation. The velocity distributions in different positions were analyzed...

  18. Measurement of aqueous entrainment in the organic product of 40 mm dia DFRP centrifugal extractor. Contributed Paper RD-01

    International Nuclear Information System (INIS)

    Water content in the organic phase product of 40 mm dia DFRP centrifugal extractor was analyzed by Karlfisher titration technique. Based on the base solubility value of water in the organic phase, the aqueous phase carryover in the organic phase was estimated and was found to vary nearly linearly with O/A. In all the experimental conditions, the entrainment was observed to be lower than flooding limit for centrifugal extractor. (author)

  19. Wave-Driven Rotation In Centrifugal Mirrors

    International Nuclear Information System (INIS)

    Centrifugal mirrors use supersonic rotation to provide axial confinement and enhanced stability. Usually the rotation is produced using electrodes, but these electrodes have limited the rotation to the Alfven critical ionization velocity, which is too slow to be useful for fusion. Instead, the rotation could be produced using radio frequency waves. A fixed azimuthal ripple is a simple and efficient wave that could produce rotation by harnessing alpha particle energy. This is an extension of the alpha channeling effect. The alpha particle power and efficiency in a simulated devices is sufficient to produce rotation without external energy input. By eliminating the need for electrodes, this opens new opportunities for centrifugal traps.

  20. Detection methods for centrifugal microfluidic platforms.

    Science.gov (United States)

    Burger, Robert; Amato, Letizia; Boisen, Anja

    2016-02-15

    Centrifugal microfluidics has attracted much interest from academia as well as industry, since it potentially offers solutions for affordable, user-friendly and portable biosensing. A wide range of so-called fluidic unit operations, e.g. mixing, metering, liquid routing, and particle separation, have been developed and allow automation and integration of complex assay protocols in lab-on-a-disc systems. Besides liquid handling, the detection strategy for reading out the assay is crucial for developing a fully integrated system. In this review, we focus on biosensors and readout methods for the centrifugal microfluidics platform and cover optical as well as mechanical and electrical detection principles.

  1. LISSAT Analysis of a Generic Centrifuge Enrichment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, H; Elayat, H A; O?Connell, W J; Szytel, L; Dreicer, M

    2007-05-31

    The U.S. Department of Energy (DOE) is interested in developing tools and methods for use in designing and evaluating safeguards systems for current and future plants in the nuclear power fuel cycle. The DOE is engaging several DOE National Laboratories in efforts applied to safeguards for chemical conversion plants and gaseous centrifuge enrichment plants. As part of the development, Lawrence Livermore National Laboratory has developed an integrated safeguards system analysis tool (LISSAT). This tool provides modeling and analysis of facility and safeguards operations, generation of diversion paths, and evaluation of safeguards system effectiveness. The constituent elements of diversion scenarios, including material extraction and concealment measures, are structured using directed graphs (digraphs) and fault trees. Statistical analysis evaluates the effectiveness of measurement verification plans and randomly timed inspections. Time domain simulations analyze significant scenarios, especially those involving alternate time ordering of events or issues of timeliness. Such simulations can provide additional information to the fault tree analysis and can help identify the range of normal operations and, by extension, identify additional plant operational signatures of diversions. LISSAT analyses can be used to compare the diversion-detection probabilities for individual safeguards technologies and to inform overall strategy implementations for present and future plants. Additionally, LISSAT can be the basis for a rigorous cost-effectiveness analysis of safeguards and design options. This paper will describe the results of a LISSAT analysis of a generic centrifuge enrichment plant. The paper will describe the diversion scenarios analyzed and the effectiveness of various safeguards systems alternatives.

  2. Capabilities of Numerical Simulation of Multiphase Flows in Centrifugal Pumps using Modern CFD Software

    CERN Document Server

    Kochevsky, A N

    2005-01-01

    The paper describes capabilities of numerical simulation of liquid flows with solid and/or gas admixtures in centrifugal pumps using modern commercial CFD software packages, with the purpose to predict performance curves of the pumps treating such media. In particular, the approaches and multiphase flow models available in the package CFX-5 are described; their advantages and disadvantages are analyzed.

  3. Review on Development of Centrifuge for Scientific Tests%科学试验用离心机发展综述

    Institute of Scientific and Technical Information of China (English)

    黎启胜; 许元恒; 罗龙

    2015-01-01

    ABSTRACT:Firstly, the paper introduced the development history and current status of four types of centrifuges for scientific tests in China, including Duty Experiment Centrifuge, Geotechnical Centrifuge, Human Centrifuge and Precise Centrifuge. Secondly, according to the developers of centrifuges, the review introduced in details the current status of centrifuges for scientific tests used in different countries all over the world using examples. At last, the development trends of centrifuges for scientific tests were analyzed, and five development directions were proposed, including centrifuge for ocean engineering, gigantic geotechnical centrifuge, flight simulator of high exactness, centrifuge for composite environment examination and centrifuge of high precision.%分别阐述了国内例行试验离心机、土工离心机、载人离心机和精密离心机等四类科学试验用离心机的发展历史和现状;从研制单位角度出发,通过实例分别对世界各国科学试验用离心机的现状进行了详细的介绍;最后对科学试验用离心机的发展趋势作了剖析,提出了海工离心机、巨型土工离心机、高保真飞行模拟器、复合环境试验离心机和高精密离心机等五个发展方向。

  4. Noise reduction for centrifugal fan with non-isometric forward-swept blade impeller

    Institute of Scientific and Technical Information of China (English)

    Jianfeng MA; Datong QI; Yijun MAO

    2008-01-01

    To reduce the noise of the T9-19No.4A centri-fugal fan, whose impeller has equidistant forward-swept blades, two new impellers with different blade spacing were designed and an experimental study was conducted. Both the fan's aerodynamic performance and noise were measured when the two redesigned impellers were com-pared with the original ones. The test results are discussed in detail and the effect of the noise reduction method for a centrifugal fan using impellers with non-isometric for-ward-swept blades was analyzed, which can serve as a reference for researches on reduction of fan noise.

  5. AIChe equipment testing procedure centrifugal compressors : a guide to performance evaluation and site testing

    CERN Document Server

    AIChE

    2013-01-01

    With its engineer-tested procedures and thorough explanations, Centrifugal Compressors is an essential text for anyone engaged in implementing new technology in equipment design, identifying process problems, and optimizing equipment performance.  This condensed book presents a step by step approach to preparing for, planning, executing, and analyzing tests of centrifugal compressors, with an emphasis on methods that can be conducted on-site and with an acknowledgement of the strengths and limitations of these methods. The book opens with an extensive and detailed section offering definitions

  6. CALCULATION OF SPLITTING VANES AND INNER FLOW ANALYSIS FOR CENTRIFUGAL PUMP IMPELLER

    Institute of Scientific and Technical Information of China (English)

    Pan Zhongyong; Yuan Shouqi; Li Hong; Cao Weidong

    2004-01-01

    The calculation method for vane numbers is obtained on the intention that it should have no back flow area in the flow passage of centrifugal passage.Then a criterion that the design of splitting vanes of centrifugal compound impeller should ensure that the back flow area ratio be the minimum is proposed.On the basis of the criterion, the slippery theory is used as one of CFD methods to analyze the inner flow field of the impeller of various kinds of splitting vanes design, therefore, the optimized design of splitting vanes is obtained and which agrees with that of some testing results.

  7. MODEL OF CENTRIFUGAL EFFECT AND ATTITUDE MANEUVER STABILITY OF A COUPLED RIGID-FLEXIBLE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-bin; WANG Zhao-lin; WANG Tian-shu; LIU Ning

    2005-01-01

    The influences of nonlinear centrifugal force to large overall attitude motion of coupled rigid-flexible system was investigated. First the nonlinear model of the coupled rigidflexible system was deduced from the idea of "cenlrifugal potential field", and then the dynamic effects of the nonlinear centrifugal force to system attitude motion were analyzed by approximate calculation; At last, the Lyapunov function based on energy norm was selected,in the condition that only the measured values of attitude and attitude speed are available,and it is proved that the PD feedback control law can ensure the attitude stability during large angle maneuver.

  8. Application of Time-Frequency Analysis to Transient Data from Centrifuge Earthquake Testing

    Directory of Open Access Journals (Sweden)

    David E. Newland

    2000-01-01

    Full Text Available Centrifuge model experiments have generated complex transient vibration data. New algorithms for time-frequency analysis using harmonic wavelets provide a good method of analyzing these data. We describe how the experimental data have been collected and show typical time-frequency maps obtained by the harmonic wavelet algorithm. Some preliminary comments on the interpretation of these maps are given in terms of the physics of the underlying model. Important features of the motion that are not otherwise apparent emerge from the analysis. Later papers will deal with their more detailed interpretation and their implications for centrifuge modeling.

  9. Centrifugal Sieve for Size-Segregation/ Beneficiation of Regolith Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Utilizing centrifugal force as the primary body-force, combined with both shearing flow and vibratory motion the proposed centrifugal-sieve separators can provide...

  10. Robust Design Optimization Method for Centrifugal Impellers under Surface Roughness Uncertainties Due to Blade Fouling

    Institute of Scientific and Technical Information of China (English)

    JU Yaping; ZHANG Chuhua

    2016-01-01

    Blade fouling has been proved to be a great threat to compressor performance in operating stage. The current researches on fouling-induced performance degradations of centrifugal compressors are based mainly on simplified roughness models without taking into account the realistic factors such as spatial non-uniformity and randomness of the fouling-induced surface roughness. Moreover, little attention has been paid to the robust design optimization of centrifugal compressor impellers with considerations of blade fouling. In this paper, a multi-objective robust design optimization method is developed for centrifugal impellers under surface roughness uncertainties due to blade fouling. A three-dimensional surface roughness map is proposed to describe the nonuniformity and randomness of realistic fouling accumulations on blades. To lower computational cost in robust design optimization, the support vector regression (SVR) metamodel is combined with the Monte Carlo simulation (MCS) method to conduct the uncertainty analysis of fouled impeller performance. The analyzed results show that the critical fouled region associated with impeller performance degradations lies at the leading edge of blade tip. The SVR metamodel has been proved to be an efficient and accurate means in the detection of impeller performance variations caused by roughness uncertainties. After design optimization, the robust optimal design is found to be more efficient and less sensitive to fouling uncertainties while maintaining good impeller performance in the clean condition. This research proposes a systematic design optimization method for centrifugal compressors with considerations of blade fouling, providing a practical guidance to the design of advanced centrifugal compressors.

  11. Robust design optimization method for centrifugal impellers under surface roughness uncertainties due to blade fouling

    Science.gov (United States)

    Ju, Yaping; Zhang, Chuhua

    2016-03-01

    Blade fouling has been proved to be a great threat to compressor performance in operating stage. The current researches on fouling-induced performance degradations of centrifugal compressors are based mainly on simplified roughness models without taking into account the realistic factors such as spatial non-uniformity and randomness of the fouling-induced surface roughness. Moreover, little attention has been paid to the robust design optimization of centrifugal compressor impellers with considerations of blade fouling. In this paper, a multi-objective robust design optimization method is developed for centrifugal impellers under surface roughness uncertainties due to blade fouling. A three-dimensional surface roughness map is proposed to describe the nonuniformity and randomness of realistic fouling accumulations on blades. To lower computational cost in robust design optimization, the support vector regression (SVR) metamodel is combined with the Monte Carlo simulation (MCS) method to conduct the uncertainty analysis of fouled impeller performance. The analyzed results show that the critical fouled region associated with impeller performance degradations lies at the leading edge of blade tip. The SVR metamodel has been proved to be an efficient and accurate means in the detection of impeller performance variations caused by roughness uncertainties. After design optimization, the robust optimal design is found to be more efficient and less sensitive to fouling uncertainties while maintaining good impeller performance in the clean condition. This research proposes a systematic design optimization method for centrifugal compressors with considerations of blade fouling, providing a practical guidance to the design of advanced centrifugal compressors.

  12. System-level network simulation for robust centrifugal-microfluidic lab-on-a-chip systems.

    Science.gov (United States)

    Schwarz, I; Zehnle, S; Hutzenlaub, T; Zengerle, R; Paust, N

    2016-05-10

    Centrifugal microfluidics shows a clear trend towards a higher degree of integration and parallelization. This trend leads to an increase in the number and density of integrated microfluidic unit operations. The fact that all unit operations are processed by the same common spin protocol turns higher integration into higher complexity. To allow for efficient development anyhow, we introduce advanced lumped models for network simulations in centrifugal microfluidics. These models consider the interplay of centrifugal and Euler pressures, viscous dissipation, capillary pressures and pneumatic pressures. The simulations are fast and simple to set up and allow for the precise prediction of flow rates as well as switching and valving events. During development, channel and chamber geometry variations due to manufacturing tolerances can be taken into account as well as pipetting errors, variations of contact angles, compliant chamber walls and temperature variations in the processing device. As an example of considering these parameters during development, we demonstrate simulation based robustness analysis for pneumatic siphon valving in centrifugal microfluidics. Subsequently, the influence of liquid properties on pumping and valving is studied for four liquids relevant for biochemical analysis, namely, water (large surface tension), blood plasma (large contact angle hysteresis), ethanol/water (highly wetting) and glycerine/water (highly viscous). In a second example, we derive a spin protocol to attain a constant flow rate under varying pressure conditions. Both examples show excellent agreement with experimental validations. PMID:27095248

  13. System-level network simulation for robust centrifugal-microfluidic lab-on-a-chip systems.

    Science.gov (United States)

    Schwarz, I; Zehnle, S; Hutzenlaub, T; Zengerle, R; Paust, N

    2016-05-10

    Centrifugal microfluidics shows a clear trend towards a higher degree of integration and parallelization. This trend leads to an increase in the number and density of integrated microfluidic unit operations. The fact that all unit operations are processed by the same common spin protocol turns higher integration into higher complexity. To allow for efficient development anyhow, we introduce advanced lumped models for network simulations in centrifugal microfluidics. These models consider the interplay of centrifugal and Euler pressures, viscous dissipation, capillary pressures and pneumatic pressures. The simulations are fast and simple to set up and allow for the precise prediction of flow rates as well as switching and valving events. During development, channel and chamber geometry variations due to manufacturing tolerances can be taken into account as well as pipetting errors, variations of contact angles, compliant chamber walls and temperature variations in the processing device. As an example of considering these parameters during development, we demonstrate simulation based robustness analysis for pneumatic siphon valving in centrifugal microfluidics. Subsequently, the influence of liquid properties on pumping and valving is studied for four liquids relevant for biochemical analysis, namely, water (large surface tension), blood plasma (large contact angle hysteresis), ethanol/water (highly wetting) and glycerine/water (highly viscous). In a second example, we derive a spin protocol to attain a constant flow rate under varying pressure conditions. Both examples show excellent agreement with experimental validations.

  14. Design Optimization of Centrifugal Pump Using Radial Basis Function Metamodels

    OpenAIRE

    Yu Zhang; Jinglai Wu; Yunqing Zhang; Liping Chen

    2014-01-01

    Optimization design of centrifugal pump is a typical multiobjective optimization (MOO) problem. This paper presents an MOO design of centrifugal pump with five decision variables and three objective functions, and a set of centrifugal pumps with various impeller shroud shapes are studied by CFD numerical simulations. The important performance indexes for centrifugal pump such as head, efficiency, and required net positive suction head (NPSHr) are investigated, and the results indicate that th...

  15. Development of centrifuge modeling for evaluating the mechanisms of collapse above underground openings

    International Nuclear Information System (INIS)

    Improved prediction of surface collapse above an underground cavity is important in many LLNL programs, including Nuclear Test. To improve the predictive capability, LLNL must better understand the mechanisms involved in the process of collapse. The research aims to develop the centrifuge technique for modeling mechanisms of underground collapse in soil. The authors will also evaluate the adequacy of existing constitutive or flow models of soils for modeling underground collapse. During FY 86, using the centrifuge at University of California, Davis, the authors developed the basic centrifugal modeling technique, conducted experiments, and modeled the process on a computer. In FY 87, they continued to develop the experimental method and analyze results. Results to date have shown that the model dimensions are not necessarily the critical dimensions (i.e., those determining the adequacy of the model). Rather, the critical dimension is the diameter of the chimney above the opening that develops during collapse

  16. Influence of Prewhirl Regulation by Inlet Guide Vanes on Cavitation Performance of a Centrifugal Pump

    Directory of Open Access Journals (Sweden)

    Lei Tan

    2014-02-01

    Full Text Available The influence of prewhirl regulation by inlet guide vanes (IGVs on a centrifugal pump performance is investigated experimentally and numerically. The experimental results show that IGVs can obviously change the head and increase the efficiency of the tested centrifugal pump over a wide range of flow rates. Although the cavitation performance is degraded, the variation of the cavitation critical point is less than 0.5 m. Movement of the computed three-dimensional streamlines in suction pipe and impeller are analyzed in order to reveal the mechanism how the IGVs realize the prewhirl regulation. The calculated results show that the influence of IGVs on the cavitation performance of centrifugal pump is limited by a maximum total pressure drop of 1777 Pa, about 7.6% of the total pressure at the suction pipe inlet for a prewhirl angle of 24°.

  17. Enlarging the operation range of a centrifugal compressor by cutting vanes based on CFD

    Science.gov (United States)

    Mo, J. T.; Gu, C. H.; Pan, X. H.; Y Zheng, S.

    2013-12-01

    Many centrifugal compressors are liable to insufficient operation range. The purpose of this paper is to enlarge the operation range of a centrifugal compressor used in turbocharger by cutting vanes. Some numerical works have been done based on CFD. The comparison of the calculated and measured results shows good agreement. The overall performance characteristics of the centrifugal compressor with different cutted vanes are observed and analyzed. The performance characteristic curves show that cutting vanes can increase the operation range by more than 50% with the loss of the highest efficiency limited in 1%. The flow fields are also shown in this paper and related explanations about the change of the performance characteristics curves are given. Shock wave is also detected in the simulation, and some related characteristics are summed up.

  18. Numerical Optimization of Impeller for Backward-Curved Centrifugal Fan by Response Surface Methodology (RSM

    Directory of Open Access Journals (Sweden)

    Fannian Meng

    2013-08-01

    Full Text Available A numerical optimum study on three-dimensional unsteady viscous flow in a centrifugal fan with backward-curved blades was performed. The influence of the inlet angle, the outlet blade angle and blade number on aerodynamic performance of the centrifugal fan was analyzed concerning the whole impeller-volute configuration. Response Surface Methodology (RSM based on a three-level, three -variable Box-Behnken Design (BBD was used to evaluate the interactive effects of factors such as inlet blade angle (37°-41°, outlet blade angle (61°-65° and number of blade (10-14 on the efficiency. The optimum factors deriving via RSM were: inlet blade angle 37°, outlet blade angle 61.7° and blade number 14. The maximum efficiency was 93.7%, under optimum conditions. The method of reliable CFD technique in combination with RSM can be effectively applied to the improvement and experiment design of centrifugal fans.

  19. Flow instability of a centrifugal pump determined using the energy gradient method

    Science.gov (United States)

    Li, Yi; Dong, Wenlong; He, Zhaohui; Huang, Yuanmin; Jiang, Xiaojun

    2015-02-01

    The stability of the centrifugal pump has not been well revealed because of the complexity of internal flow. To analyze the flow characteristics of a centrifugal pump operating at low capacity, methods of numerical simulation and experimental research were adopted in this paper. Characteristics of the inner flow were obtained. Standard k-ɛ turbulence models were used to calculate the inner flow of the pump under off-design conditions. The distribution of the energy gradient function K was obtained by three-dimensional numerical simulation at different flow rates. The relative velocity component was acquired from the absolute velocity obtained in particle image velocimetry. By comparing with experimental results, it was found that flow instability occurs at the position of maximum K. The flow stability reduces with an increasing flow rate. The research results provide a theoretical basis for the optimization design of a centrifugal pump.

  20. Numerical Study of a Fuel Centrifugal Pump with Variable Impeller Width for Aero-engines

    Science.gov (United States)

    Wang, Bin; Guan, Huasheng; Ye, Zhifeng

    2015-12-01

    As typical pump with large flow rate and high reliability, centrifugal pumps in fuel system of aero-engines mostly regulate flow rate by flow bypass, which leads to low efficiency and large fuel temperature rise especially at low flow rate. An innovative fuel centrifugal pump with variable impeller width is a more effective way to regulate flow rate than flow bypass. To find external characteristics of the centrifugal pump with variable impeller width proposed in this paper, flow domain within the pump is simulated numerically and some primary performance parameters and their correlation are analyzed. Results show that flow rate of the pump can be regulated by variable impeller width and that efficiency for this scheme is higher than that for flow bypass. The higher outlet static pressure the pump runs at, the wider range of flow rates can be obtained with stronger nonlinear relationship between flow rate and impeller width.

  1. Differential white cell count by centrifugal microfluidics.

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Gregory Jon; Tentori, Augusto M.; Schaff, Ulrich Y.

    2010-07-01

    We present a method for counting white blood cells that is uniquely compatible with centrifugation based microfluidics. Blood is deposited on top of one or more layers of density media within a microfluidic disk. Spinning the disk causes the cell populations within whole blood to settle through the media, reaching an equilibrium based on the density of each cell type. Separation and fluorescence measurement of cell types stained with a DNA dye is demonstrated using this technique. The integrated signal from bands of fluorescent microspheres is shown to be proportional to their initial concentration in suspension. Among the current generation of medical diagnostics are devices based on the principle of centrifuging a CD sized disk functionalized with microfluidics. These portable 'lab on a disk' devices are capable of conducting multiple assays directly from a blood sample, embodied by platforms developed by Gyros, Samsung, and Abaxis. [1,2] However, no centrifugal platform to date includes a differential white blood cell count, which is an important metric complimentary to diagnostic assays. Measuring the differential white blood cell count (the relative fraction of granulocytes, lymphocytes, and monocytes) is a standard medical diagnostic technique useful for identifying sepsis, leukemia, AIDS, radiation exposure, and a host of other conditions that affect the immune system. Several methods exist for measuring the relative white blood cell count including flow cytometry, electrical impedance, and visual identification from a stained drop of blood under a microscope. However, none of these methods is easily incorporated into a centrifugal microfluidic diagnostic platform.

  2. APPLICATION ANALYSIS REPORT: RETECH PLASMA CENTRIFUGAL FURNACE

    Science.gov (United States)

    This document is an evaluation of the performance of the Retech, Inc. Plasma Centrifugal Furnace (PCF) and its applicability as a treatment for soils contaminated with organic and/or inorganic compounds. Both the technical and economic aspectsof the technology were examined. A...

  3. Centrifugal Pump Experiment for Chemical Engineering Undergraduates

    Science.gov (United States)

    Vanderslice, Nicholas; Oberto, Richard; Marrero, Thomas R.

    2012-01-01

    The purpose of this paper is to describe a Centrifugal Pump Experiment that provided an experiential learning experience to chemical engineering undergraduates at the University of Missouri in the spring of 2010 in the Unit Operations Laboratory course. Lab equipment was used by senior students with computer-based data and control technology. In…

  4. Performance of a Centrifugal Slurry Pump

    Directory of Open Access Journals (Sweden)

    Hawas Yahya Bajawi

    2014-02-01

    Full Text Available The aim of this study was to experimentally investigate the effect of speed, concentration and size of slurry on the performance of a centrifugal pump. For this purpose a facility was built where the performance of a centrifugal slurry pump was examined using aggregate slurry. Three sizes of slurry with three concentrations and at three impeller speeds were used for the performance investigations of a centrifugal slurry pump. As a reference performance the performance of centrifugal slurry pump was also tested with clean water. The performance of pump has been reported as variations of head, power and efficiency at various flow rates along with the system characteristics of the pump. The results reveal that the pump performance is grossly affected by the type of slurry, its concentration and size. Besides this the variation in speed also affects the performance as is observed in pumps with water. The maximum decrease in the head, with respect to clear water, at the operating point was found to be 47% for aggregate for size 20 mm, 15% concentration and 2600 rpm. The maximum decrement in efficiency at operating point for aggregate was found to be 47% for 4 mm size, 15% concentration and at 2200 rpm. The power increment requirement for aggregate was 9% for 4 mm size, 15% concentration and 2600 rpm.

  5. Positive feedback stabilization of centrifugal compressor surge

    NARCIS (Netherlands)

    Willems, Frank; Heemels, W.P.M.H.; Jager, de Bram; Stoorvogel, Anton A.

    2002-01-01

    Stable operation of axial and centrifugal compressors is limited towards low mass flows due to the occurrence of surge. The stable operating region can be enlarged by active control. In this study, we use a control valve which is fully closed in the desired operating point and only opens to stabiliz

  6. Flow Pattern Characterization for a Centrifugal Impeller

    Science.gov (United States)

    Benavides, Efrén M.

    2014-08-01

    This paper proposes a model for characterizing the flow pattern of a centrifugal impeller attending to the severity of the reverse flow. The model assumes 1) a definition of an escaping particle as the one that flows in every operational point from the trailing edge towards the leading edge of the impeller blades, and 2) a characterization of flow where an operational point is said to have a theoretical flow pattern if it is not possible to establish a fully-reversed escaping particle on it. Therefore, the first part of the article is focused on defining an escaping particle for a centrifugal compressor. The model locates over the map of a centrifugal impeller the line that splits the map in two regions: the region on the right hand side, where a theoretical flow pattern can exist, and the region on the left, where a theoretical flow pattern cannot exist. Therefore, the locus of this line marks a frontier where the expected performance of the impeller cannot be sustained as high as expected. The second part of the article uses a high-performance commercial centrifugal impeller wheel for contrasting the model. A qualitative characterization of the surge line, conclusions and discussions are presented.

  7. 14 CFR 35.35 - Centrifugal load tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Centrifugal load tests. 35.35 Section 35.35... STANDARDS: PROPELLERS Tests and Inspections § 35.35 Centrifugal load tests. The applicant must demonstrate... to twice the maximum centrifugal load to which the propeller would be subjected during operation...

  8. Bacterial Cell Surface Damage Due to Centrifugal Compaction

    NARCIS (Netherlands)

    Peterson, Brandon W.; Sharma, Prashant K.; van der Mei, Henny C.; Busscher, Henk J.

    2012-01-01

    Centrifugal damage has been known to alter bacterial cell surface properties and interior structures, including DNA. Very few studies exist on bacterial damage caused by centrifugation because of the difficulty in relating centrifugation speed and container geometry to the damage caused. Here, we pr

  9. Review on Stress Corrosion and Corrosion Fatigue Failure of Centrifugal Compressor Impeller

    Institute of Scientific and Technical Information of China (English)

    SUN Jiao; CHEN Songying; QU Yanpeng; LI Jianfeng

    2015-01-01

    Corrosion failure, especially stress corrosion cracking and corrosion fatigue, is the main cause of centrifugal compressor impeller failure. And it is concealed and destructive. This paper summarizes the main theories of stress corrosion cracking and corrosion fatigue and its latest developments, and it also points out that existing stress corrosion cracking theories can be reduced to the anodic dissolution (AD), the hydrogen-induced cracking (HIC), and the combined AD and HIC mechanisms. The corrosion behavior and the mechanism of corrosion fatigue in the crack propagation stage are similar to stress corrosion cracking. The effects of stress ratio, loading frequency, and corrosive medium on the corrosion fatigue crack propagation rate are analyzed and summarized. The corrosion behavior and the mechanism of stress corrosion cracking and corrosion fatigue in corrosive environments, which contain sulfide, chlorides, and carbonate, are analyzed. The working environments of the centrifugal compressor impeller show the behavior and the mechanism of stress corrosion cracking and corrosion fatigue in different corrosive environments. The current research methods for centrifugal compressor impeller corrosion failure are analyzed. Physical analysis, numerical simulation, and the fluid-structure interaction method play an increasingly important role in the research on impeller deformation and stress distribution caused by the joint action of aerodynamic load and centrifugal load.

  10. Review on stress corrosion and corrosion fatigue failure of centrifugal compressor impeller

    Science.gov (United States)

    Sun, Jiao; Chen, Songying; Qu, Yanpeng; Li, Jianfeng

    2015-03-01

    Corrosion failure, especially stress corrosion cracking and corrosion fatigue, is the main cause of centrifugal compressor impeller failure. And it is concealed and destructive. This paper summarizes the main theories of stress corrosion cracking and corrosion fatigue and its latest developments, and it also points out that existing stress corrosion cracking theories can be reduced to the anodic dissolution (AD), the hydrogen-induced cracking (HIC), and the combined AD and HIC mechanisms. The corrosion behavior and the mechanism of corrosion fatigue in the crack propagation stage are similar to stress corrosion cracking. The effects of stress ratio, loading frequency, and corrosive medium on the corrosion fatigue crack propagation rate are analyzed and summarized. The corrosion behavior and the mechanism of stress corrosion cracking and corrosion fatigue in corrosive environments, which contain sulfide, chlorides, and carbonate, are analyzed. The working environments of the centrifugal compressor impeller show the behavior and the mechanism of stress corrosion cracking and corrosion fatigue in different corrosive environments. The current research methods for centrifugal compressor impeller corrosion failure are analyzed. Physical analysis, numerical simulation, and the fluid-structure interaction method play an increasingly important role in the research on impeller deformation and stress distribution caused by the joint action of aerodynamic load and centrifugal load.

  11. Design and test of a high pressure centrifugal compressor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Ho; Han, Chak Heui; Paeng, Ki Seok; Chen, Seung Bae [Samsung Techwin, Changwon (Korea, Republic of); Kim, Yong Ryun [Agency for Defense Development, Daejeon (Korea, Republic of)

    2005-07-01

    This paper presents an aerodynamic design, flow analysis and performance test of a pressure ratio 4:1 centrifugal compressor for gas turbine engine. The compressor is made up of a centrifugal impeller, a two-stage diffuser consisted of radial and axial types. The impeller has a 45 degree backswept angle and the design running tip clearance is 5% of impeller exit height. Three-dimensional numerical analysis is performed to analyze the flows in the impeller, diffuser and deswirler considering the impeller tip clearance. Test module and rig facilities for the compressor stage performance test are designed and fabricated. The overall compressor stage performances as well as the static pressure fields on the impeller and diffuser are measured. Two diffusers of wedge and airfoil types are tested with an impeller. The calculation and test results show that flow fields downstream the deswirler at the design and off-design points are highly nonuniform and the airfoil diffuser has the better aerodynamic characteristics than those of wedge diffuser.

  12. Impeller inlet geometry effect on performance improvement for centrifugal pumps

    International Nuclear Information System (INIS)

    This research treats the effect of impeller inlet geometry on performance improvement for a boiler feed pump, who is a centrifugal pump having specific speed of 183 m.m3min-1.min-1 and close type impeller with exit diameter of 450 mm. The hydraulic performance and cavitation performance of the pump have been tested experimentally. In order to improve the pump, five impellers have been considered by extending the blade leading edge or applying much larger blade angle at impeller inlet compared with the original impeller. The 3-D turbulent flow inside those pumps has been analyzed basing on RNG k-ε turbulence model and VOF cavitation model. It is noted that the numerical results are fairly good compared with the experiments. Based on the experimental test and numerical simulation, the following conclusions can be drawn: (1) Impeller inlet geometry has important influence on performance improvement in the case of centrifugal pump. Favorite effects on performance improvement have been achieved by both extending the blade leading edge and applying much larger blade angle at impeller inlet: (2) It is suspected that the extended leading edge have favorite effect for improving hydraulic performance, and the much larger blade angle at impeller inlet have favorite effect for improving cavitation performance for the test pump: (3) Uniform flow upstream of impeller inlet is helpful for improving cavitation performance of the pump

  13. Numerical Study of Unsteady Flow in Centrifugal Cold Compressor

    Science.gov (United States)

    Zhang, Ning; Zhang, Peng; Wu, Jihao; Li, Qing

    In helium refrigeration system, high-speed centrifugal cold compressor is utilized to pumped gaseous helium from saturated liquid helium tank at low temperature and low pressure for producing superfluid helium or sub-cooled helium. Stall and surge are common unsteady flow phenomena in centrifugal cold compressors which severely limit operation range and impact efficiency reliability. In order to obtain the installed range of cold compressor, unsteady flow in the case of low mass flow or high pressure ratio is investigated by the CFD. From the results of the numerical analysis, it can be deduced that the pressure ratio increases with the decrease in reduced mass flow. With the decrease of the reduced mass flow, backflow and vortex are intensified near the shroud of impeller. The unsteady flow will not only increase the flow loss, but also damage the compressor. It provided a numerical foundation of analyzing the effect of unsteady flow field and reducing the flow loss, and it is helpful for the further study and able to instruct the designing.

  14. Design and Characterization of a Centrifugal Compressor Surge Test Rig

    Directory of Open Access Journals (Sweden)

    Kin Tien Lim

    2011-01-01

    Full Text Available A detailed description of a new centrifugal compressor surge test rig is presented. The objective of the design and development of the rig is to study the surge phenomenon in centrifugal compression systems and to investigate a novel method of surge control by active magnetic bearing servo actuation of the impeller axial tip clearance. In this paper, we focus on the design, initial setup, and testing of the rig. The latter two include the commissioning of the rig and the experimental characterization of the compressor performance. The behavior of the compressor during surge is analyzed by driving the experimental setup into surge. Two fundamental frequencies, 21 Hz and 7 Hz, connected to the surge oscillation in the test rig are identified, and the observed instability is categorized according to the intensity of pressure fluctuations. Based on the test results, the excited pressure waves are clearly the result of surge and not stall. Also, they exhibit the characteristics of mild and classic surge instead of deep surge. Finally, the change in the compressor performance due to variation in the impeller tip clearance is experimentally examined, and the results support the potential of the tip clearance modulation for the control of compressor surge. This is the first such demonstration of the feasibility of surge control of a compressor using active magnetic bearings.

  15. Five-week use of a monopivot centrifugal blood pump as a right ventricular assist device in severe dilated cardiomyopathy.

    Science.gov (United States)

    Inoue, Takamichi; Kitamura, Tadashi; Torii, Shinzo; Hanayama, Naoji; Oka, Norihiko; Itatani, Keiichi; Tomoyasu, Takahiro; Irisawa, Yusuke; Shibata, Miyuki; Hayashi, Hidenori; Ono, Minoru; Miyaji, Kagami

    2014-03-01

    Right heart failure is a critical complication in patients requiring mechanical ventricular support. However, it is often difficult to provide adequate right ventricular support in the acute phase. A 41-year-old woman diagnosed with dilated cardiomyopathy with severe right heart failure underwent implantation of a paracorporeal pulsatile left ventricular assist device (LVAD, Nipro Corporation, Tokyo, Japan) and a MERA monopivot centrifugal pump (Senko Medical Instrument Manufacturing Co., Ltd., Tokyo, Japan) as a right ventricular assist device (RVAD). The patient developed ischemic enteritis 3 weeks after surgery, necessitating fasting and reversal of anticoagulation therapy. A target international normalized ratio of 1.5 was selected, and aspirin administration was discontinued. Following recovery without thromboembolic events, the patient failed the RVAD discontinuation test. Five weeks after surgery, the monopivot centrifugal pump was exchanged for a pulsatile pump. No thrombus was evident on the centrifugal pump. The patient was undergoing cardiac rehabilitation at the time of this writing and awaiting heart transplantation.

  16. Centrifugal Sieve for Gravity-Level-Independent Size Segregation of Granular Materials

    Science.gov (United States)

    Walton, Otis R.; Dreyer, Christopher; Riedel, Edward

    2013-01-01

    Conventional size segregation or screening in batch mode, using stacked vibrated screens, is often a time-consuming process. Utilization of centrifugal force instead of gravity as the primary body force can significantly shorten the time to segregate feedstock into a set of different-sized fractions. Likewise, under reduced gravity or microgravity, a centrifugal sieve system would function as well as it does terrestrially. When vibratory and mechanical blade sieving screens designed for terrestrial conditions were tested under lunar gravity conditions, they did not function well. The centrifugal sieving design of this technology overcomes the issues that prevented sieves designed for terrestrial conditions from functioning under reduced gravity. These sieves feature a rotating outer (cylindrical or conical) screen wall, rotating fast enough for the centrifugal forces near the wall to hold granular material against the rotating screen. Conventional centrifugal sieves have a stationary screen and rapidly rotating blades that shear the granular solid near the stationary screen, and effect the sieving process assisted by the airflow inside the unit. The centrifugal sieves of this new design may (or may not) have an inner blade or blades, moving relative to the rotating wall screen. Some continuous flow embodiments would have no inner auger or blades, but achieve axial motion through vibration. In all cases, the shearing action is gentler than conventional centrifugal sieves, which have very high velocity differences between the stationary outer screen and the rapidly rotating blades. The new design does not depend on airflow in the sieving unit, so it will function just as well in vacuum as in air. One advantage of the innovation for batch sieving is that a batch-mode centrifugal sieve may accomplish the same sieving operation in much less time than a conventional stacked set of vibrated screens (which utilize gravity as the primary driving force for size separation

  17. Meridional Considerations of the Centrifugal Compressor Development

    Directory of Open Access Journals (Sweden)

    C. Xu

    2012-01-01

    Full Text Available Centrifugal compressor developments are interested in using optimization procedures that enable compressor high efficiency and wide operating ranges. Recently, high pressure ratio and efficiency of the centrifugal compressors require impeller design to pay attention to both the blade angle distribution and the meridional profile. The geometry of the blades and the meridional profile are very important contributions of compressor performance and structure reliability. This paper presents some recent studies of meridional impacts of the compressor. Studies indicated that the meridional profiles of the impeller impact the overall compressor efficiency and pressure ratio at the same rotational speed. Proper meridional profiles can improve the compressor efficiency and increase the overall pressure ratio at the same blade back curvature.

  18. High stability design for new centrifugal compressor

    Science.gov (United States)

    Kanki, H.; Katayama, K.; Morii, S.; Mouri, Y.; Umemura, S.; Ozawa, U.; Oda, T.

    1989-01-01

    It is essential that high-performance centrifugal compressors be free of subsynchronous vibrations. A new high-performance centrifugal compressor has been developed by applying the latest rotordynamics knowledge and design techniques: (1) To improve the system damping, a specially designed oil film seal was developed. This seal attained a damping ratio three times that of the conventional design. The oil film seal contains a special damper ring in the seal cartridge. (2) To reduce the destabilizing effect of the labyrinth seal, a special swirl canceler (anti-swirl nozzle) was applied to the balance piston seal. (3) To confirm the system damping margin, the dynamic simulation rotor model test and the full load test applied the vibration exciting test in actual load conditions.

  19. Condensing Heat Recovery of Centrifugal Chiller

    Institute of Scientific and Technical Information of China (English)

    GONG Guang-cai; JIAO Jun-jun; WANG Li-ping; ZENG Wei

    2009-01-01

    To a kind of centrifugal water chiUer with R22 and about 1745 kW of cooling capacity.a heat exchanger was added between the outlet of compressor and original condenser to get part of or all the condensing heat.Condensing heat can be recovered by compound condensing method,which adopts air-cooling model+wa-ter-cooling model or water-cooling model+water-cooling model at the condensing side of the system.By exergy analysis and experiment research on compound condensing heat recovery of centrifugal chiller,the results are ob-tained that the capability of the whole system increases,the energy efficiency ratio (EER) becomes 3.2~5.0 from 2.2~3.4, which implies the EER increases about 1.0~1.5,the exergy efficiency increases about 10%,and the chiller runs more stably after reformation.

  20. Research on the effect of wear-ring clearances to the axial and radial force of a centrifugal pump

    Science.gov (United States)

    Zhao, W. G.; Y He, M.; Qi, C. X.; Li, Y. B.

    2013-12-01

    Varying of the wear-ring clearance not only has a distinct effect on the volumetric loss of the centrifugal pump, but also on the performance of the centrifugal pump including the axial and radial forces. Comparing with the experimental studies, numerical simulation methods have some special advantages, such as the low cost, fast and high efficiency, and convenient to get the detailed structure of the internal flow characteristics, so it has been widely used in the fluid machinery study in recent years. In order to study the effect of wear-ring clearance on the force performance of the centrifugal pump, based on the Reynolds Time-Averaged N-S equations and RNG k-ε turbulence model, a centrifugal pump with three variable styles of the wear-rings was simulated: Only the clearance of the front wear-ring was changed, only the clearance of the back wear-ring was changed and both were changed. Comparing with the experiment, numerical results show a good agreement. In the three changing styles of the clearance, the variable of the clearance of front wear-ring has the most influence on the axial force of the centrifugal pump, while has tiny effect on the radial force for all the conditions.

  1. Centrifugal shot blasting. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    1999-07-01

    At the US Department of Energy (DOE) Fernald Environmental Management Project (FEMP), the Facilities Closure and Demolition Projects Integrated Remedial Design/Remedial Action (RD/RA) work plan calls for the removal of one inch (1 in) depth of concrete surface in areas where contamination with technetium-99 has been identified. This report describes a comparative demonstration between two concrete removal technologies: an innovative system using Centrifugal Shot Blasting (CSB) and a modified baseline technology called a rotary drum planer.

  2. Aerodynamic instabilities in transonic centrifugal compressor

    OpenAIRE

    Buffaz, Nicolas; Trébinjac, Isabelle

    2014-01-01

    International audience This paper presents the analysis of the instabilities inception in a transonic centrifugal com-pressor for different rotation speeds. The analysis was conducted from experimental results obtained with unsteady pressure sensors implanted in the inducer, vaneless diffuser and vaned diffuser. Beyond the stability limit the compressor enters into a deep surge without any precursor, whatever the speed. The surge process is initiated in the vaned diffuser by a massive boun...

  3. Submarine landslide flows simulation through centrifuge modelling

    OpenAIRE

    Gue, Chang Shin

    2012-01-01

    Landslides occur both onshore and offshore. However, little attention has been given to offshore landslides (submarine landslides). Submarine landslides have significant impacts and consequences on offshore and coastal facilities. The unique characteristics of submarine landslides include large mass movements and long travel distances at very gentle slopes. This thesis is concerned with developing centrifuge scaling laws for submarine landslide flows through the study of modell...

  4. Development of centrifuge modelling in geotechnics

    OpenAIRE

    J. Garnier

    2006-01-01

    In order to satisfy similitude conditions, physical modelling in the field of geotechnics requires major facilities, such as shaking tables, calibration chambers and centrifuges. The rapid expansion of centifuge modelling since the beginning of the 1980's can be explained by technological developments in computing, electronics and mechanics as well by enhanced knowledge in the areas of scaling laws, thanks to recent research work on both the properties of reconstituted soils and similitude co...

  5. Centrifugal shot blasting. Innovative technology summary report

    International Nuclear Information System (INIS)

    At the US Department of Energy (DOE) Fernald Environmental Management Project (FEMP), the Facilities Closure and Demolition Projects Integrated Remedial Design/Remedial Action (RD/RA) work plan calls for the removal of one inch (1 in) depth of concrete surface in areas where contamination with technetium-99 has been identified. This report describes a comparative demonstration between two concrete removal technologies: an innovative system using Centrifugal Shot Blasting (CSB) and a modified baseline technology called a rotary drum planer

  6. Potential flow through centrifugal pumps and turbines

    Science.gov (United States)

    Sorensen, E

    1941-01-01

    The methods of conformal transformation up to the present have been applied to the potential flows in the rotation of solid bodies only to a limited extent. This report deals with aspects of centrifugal pumps and turbines such as: the complex potential for rotation, potential for the flow due to the blade rotation, velocities at the blade tip, comparison with "infinite number of blades," and a variable number of blades.

  7. CENTRIFUGAL VIBRATION TEST OF RC PILE FOUNDATION

    Science.gov (United States)

    Higuchi, Shunichi; Tsutsumiuchi, Takahiro; Otsuka, Rinna; Ito, Koji; Ejiri, Joji

    It is necessary that nonlinear responses of structures are clarified by soil-structure interaction analysis for the purpose of evaluating the seismic performances of underground structure or foundation structure. In this research, centrifuge shake table tests of reinforced concrete pile foundation installed in the liquefied ground were conducted. Then, finite element analyses for the tests were conducted to confirm an applicability of the analytical method by comparing the experimental results and analytical results.

  8. Stable isotope enrichment using a plasma centrifuge

    Science.gov (United States)

    Krishnan, Mahadevan; Bures, Brian; Madden, Robert

    2012-10-01

    A primary goal of the Department of Energy's Isotope Development and Production for Research and Applications Program (Isotope Program) within the Office of Nuclear Physics (NP) is to produce isotopes that are in short supply in the U.S. and of which there exists no or insufficient domestic commercial production capability. A vacuum arc plasma centrifuge is a rigid rotor column of metal plasma in which centrifugal forces re-distribute ions radially according to their mass/charge ratio. Early work demonstrated rotation at 2 million rpm and separation of various stable isotopes. The spinning plasma column had a Gaussian flux profile, peaked on the rigid rotor axis. This work adopts a more efficient approach, with the plasma created as a hollow column, wherein the flux is concentrated at larger radii where the centrifugal action is highest. By tailoring the vacuum arc discharge geometry, the rotation rate can also be increased to ˜10 million rpm. Data from Cu, Al and other metal plasmas will be presented and discussed in light of enriched stable isotopes needed for research and medicine.

  9. Centrifugal compressor design choices for chillers

    Energy Technology Data Exchange (ETDEWEB)

    Brasz, J.J. [United Technologies Carrier, New York, NY (United States)

    1999-07-01

    The use of centrifugal compressors in the air conditioning and refrigeration industry is currently limited to large water cooled chillers varying in size from about 0.5 to 6 MW cooling capacity. These systems are primarily used for comfort or process cooling applications. All systems try to chill relatively large amounts of indoor or process water by a few degrees Celsius in a refrigerant evaporator. The heat removed from the chilled water is released together with the heat of compression in a refrigerant condenser to cooling tower water, from where it is discharged to the atmosphere. Different centrifugal compressor design concepts are used by the various chiller manufacturers: single-stage versus multi-stage, vaneless versus vaned diffuser, hermetic versus open-drive motors, shrouded versus open impellers, fixed versus variable diffuser geometry, low- versus high-pressure refrigerant. This variability seems strange for a mature industry like the air conditioning and refrigeration industry. This paper will show that the reason for this variability is the product compromise between the various conflicting system requirements with respect to size, cost, efficiency and refrigerant choice. The different system applications of the chillers (e.g. comfort cooling in a equatorial region versus process cooling in a moderate climate zone) play another major role in selecting an optimal centrifugal compression concept. Some general recommendations will be given for applications where a clear choice can be made. (Author)

  10. Compact, Automated Centrifugal Slide-Staining System

    Science.gov (United States)

    Feeback, Daniel L.; Clarke, Mark S. F.

    2004-01-01

    The Directional Acceleration Vector-Driven Displacement of Fluids (DAVD-DOF) system, under development at the time of reporting the information for this article, would be a relatively compact, automated, centrifugally actuated system for staining blood smears and other microbiological samples on glass microscope slides in either a microgravitational or a normal Earth gravitational environment. The DAVD-DOF concept is a successor to the centrifuge-operated slide stainer (COSS) concept, which was reported in Slide-Staining System for Microgravity or Gravity (MSC-22949), NASA Tech Briefs, Vol. 25, No. 1 (January, 2001), page 64. The COSS includes reservoirs and a staining chamber that contains a microscope slide to which a biological sample is affixed. The staining chamber is sequentially filled with and drained of staining and related liquids from the reservoirs by use of a weighted plunger to force liquid from one reservoir to another at a constant level of hypergravity maintained in a standard swing-bucket centrifuge. In the DAVD-DOF system, a staining chamber containing a sample would also be sequentially filled and emptied, but with important differences. Instead of a simple microscope slide, one would use a special microscope slide on which would be fabricated a network of very small reservoirs and narrow channels connected to a staining chamber (see figure). Unlike in the COSS, displacement of liquid would be effected by use of the weight of the liquid itself, rather than the weight of a plunger.

  11. EM Task 9 - Centrifugal Membrane Filtration

    International Nuclear Information System (INIS)

    This project is designed to establish the utility of a novel centrifugal membrane filtration technology for the remediation of liquid mixed waste streams at US Department of Energy (DOE) facilities in support of the DOE Environmental Management (EM) program. The Energy and Environmental Research Center (EERC) has teamed with SpinTek Membrane Systems, Inc., a small business and owner of the novel centrifugal membrane filtration technology, to establish the applicability of the technology to DOE site remediation and the commercial viability of the technology for liquid mixed waste stream remediation. The technology is a uniquely configured process that makes use of ultrafiltration and centrifugal force to separate suspended and dissolved solids from liquid waste streams, producing a filtered water stream and a low-volume contaminated concentrate stream. This technology has the potential for effective and efficient waste volume minimization, the treatment of liquid tank wastes, the remediation of contaminated groundwater plumes, and the treatment of secondary liquid waste streams from other remediation processes, as well as the liquid waste stream generated during decontamination and decommissioning activities

  12. Shallow water model for horizontal centrifugal casting

    Science.gov (United States)

    Boháček, J.; Kharicha, A.; Ludwig, A.; Wu, M.

    2012-07-01

    A numerical model was proposed to simulate the solidification process of an outer shell of work roll made by the horizontal centrifugal casting technique. Shallow water model was adopted to solve the 2D average flow dynamics of melt spreading and the average temperature distribution inside the centrifugal casting mould by considering the centrifugal force, Coriolis force, viscous force due to zero velocity on the mould wall, gravity, and energy transport by the flow. Additionally, a 1D sub-model was implemented to consider the heat transfer in the radial direction from the solidifying shell to the mould. The solidification front was tracked by fulfilling the Stefan condition. Radiative and convective heat losses were included from both, the free liquid surface and the outer wall of the mould. Several cases were simulated with the following assumed initial conditions: constant height of the liquid metal (10, 20, and 30 mm), uniform temperature of the free liquid surface (1755 K). The simulation results have shown that while the solidification front remained rather flat, the free surface was disturbed by waves. The amplitude of waves increased with the liquid height. Free surface waves diminished as the solidification proceeded.

  13. DETECTION OF CAVITATION IN CENTRIFUGAL PUMP BY VIBRATION METHODS

    Institute of Scientific and Technical Information of China (English)

    NI Yongyan; YUAN Shouqi; PAN Zhongyong; YUAN Jianping

    2008-01-01

    For the purpose of detecting the cavitation of centrifugal pump onsite and real time, the vibration signals on varied operation conditions of both cavitation and non-cavitation obtained through acceleration sensors were analyzed. When cavitation occurs, the cavities near the leading edge of the blade will appear periodic oscillating, which will induce quasi-synchronous vibration. The frequency of the quasi-synchronous vibration symmetrically appears on the two sides of the blade passing frequency, by which the cavitation incipiency can be detected. During the developing process of the cavitation, as the severe complexity of the unsteady flow, it is very difficult to detect the development of cavitation by classical analysis methods. Fractal method of Higuchi is successfully used for detecting the incipiency, fully development of cavitation and the development between them.

  14. A Novel Aerodynamic Design Method for Centrifugal Compressor Impeller

    Directory of Open Access Journals (Sweden)

    Mahdi Nili-Ahmadabadi

    2014-01-01

    Full Text Available This paper describes a new quasi-3D design method for centrifugal compressor impeller. The method links up a novel inverse design algorithm, called Ball-Spine Algorithm (BSA, and a quasi-3D analysis. Euler equation is solved on the impeller meridional plane. The unknown boundaries (hub and shroud of numerical domain are iteratively modified by BSA until a target pressure distribution in flow passage is reached. To validate the quasi-3D analysis code, existing compressor impeller is investigated experimentally. Comparison between the quasi-3D analysis and the experimental results shows good agreement. Also, a full 3D Navier-Stokes code is used to analyze the existing and designed compressor numerically. The results show that the momentum decrease near the shroud wall in the existing compressor is removed by hub-shroud modifications resulting an improvement in performance by 0.6 percent.

  15. Transient analysis of charging system with centrifugal charging pumps

    International Nuclear Information System (INIS)

    The CARD (CVCS Analysis for Design) code has been developed for the transient analysis of the letdown and charging system of Korea Standard Nuclear Power Plant. The computer code has been already verified and validated by comparing with actual test results. Analyzed in this paper are the flow and pressure transients in the charging line. The sensitivity studies are performed to select the acceptable control parameters of charging line backpressure controller and seal injection flow controller. In addition, the seal injection system transient is evaluated for the pressurizer auxiliary spray operation. It is shown that the charging line backpressure controller control parameters yield a significant effect on the charging system stability. The results obtained from this study will be used to verify the system design and to select the optimum control parameters for the charging system with centrifugal charging pumps

  16. Numerical and experimental studies of hydraulic noise induced by surface dipole sources in a centrifugal pump

    Institute of Scientific and Technical Information of China (English)

    刘厚林; 戴菡葳; 丁剑; 谈明高; 王勇; 黄浩钦

    2016-01-01

    The influences of the four different surface dipole sources in a centrifugal pump on the acoustic calculating accuracy are studied in this paper, by using the CFD combined with the Lighthill acoustic analogy methods. Firstly, the unsteady flow in the pump is solved based on the large eddy simulation method and the pressure pulsations on the four different surfaces are obtained. The four surfaces include the volute surface, the discharge pipe surface, the inner surface of the pump cavity, and the interfaces between the impeller and the stationary parts as well as the outer surface of the impeller. Then, the software Sysnoise is employed to interpolate the pressure fluctuations onto the corresponding surfaces of the acoustic model. The Fast Fourier Transform with a Hanning window is used to analyze the pressure fluctuations and transform them into the surface dipole sources. The direct boundary element method is applied to calculate the noise radiated from the dipole sources. And the predicted sound pressure level is compared with the experi- mental data. The results show that the pressure fluctuations on the discharge pipe surface and the outer surface of the impeller have little effect on the acoustic simulation results. The pressure pulsations on the inner surface of the pump cavity play an important role in the internal flow and the acoustic simulation. The acoustic calculating error can be reduced by about 7% through considering the effect of the pump cavity. The sound pressure distributions show that the sound pressure level increases with the growing flow rate, with the largest magnitude at the tongue zone.

  17. High Resolution Melting Analyzer Based on High Throughout Fast Detection of Weak Fluorescence%基于高通量微弱荧光快速检测的高分辨熔解曲线分析仪

    Institute of Scientific and Technical Information of China (English)

    彭年才; 张镇西; 李政; 赵玉龙; 蒋庄德

    2012-01-01

    高分辨熔解(HRM)曲线分析技术是近年发展起来的一种用于基因突变检测和单核苷酸多态性(SNP)分析的新方法,它通过实时监测PCR产物升温过程中双链DNA饱和染料的荧光强度变化来分析核酸序列的微小差异.根据HRM分析仪对荧光检测的时间和灵敏度需求,提出基于光开关阵列的多路高速荧光激发和检测模块实现高通量的微弱荧光快速检测;并根据HRM荧光数据特点,对原始荧光曲线进行滤波、基线探测、归一化和对温度微分等处理,从熔解曲线两端的线形区域自动提取基线作为归一化的标准,可以在不损失曲线形态特征信息的情况下获得更为精确的熔解温度,从而实现不同基因型熔解曲线的快速、准确识别.%High resolution melting curves analysis (HRM) is a recently developed powerful technique for the detection of gene mutations and SNP analysis. Monitoring the changes in fluorescence from saturated dye labeled on dsDNA. as a PCR products (amplicons) are melted, the minor difference of nucleic acid sequence can be discriminated. Here fast fluorescence detection system based on fiber-optics switch array is designed for fulfilling the requirements of speed and sensitivity. High-density fluorescence data are processed by a series of procedure, such as smoothed, automatic baseline detection, normalizing and differential to temperature, different gene types could be recognized quickly and correctly by the high resolution melting curves.

  18. Hydraulic design and pre-whirl regulation law of inlet guide vane for centrifugal pump

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A new hydraulic design method of three-dimensional guide vane for centrifugal pump is proposed on the assumption that the fluid at the outlet of guide vane satisfies the uniform velocity moment condition.The geometry of blade is controlled by the distributed rule of blade angles along the meridional streamline which is described by a fourth-order polynomial.Experiment results demonstrate that the designed guide vane can overcome the drawback of two-dimensional guide vane,enlarge the high efficiency scope and improve the hydraulic performance of centrifugal pump on the off-design operation conditions.In comparison with the performance of the centrifugal pump without inlet guide vane,the peak value of efficiency can be enhanced by 2.13% after the three-dimensional guide vane was being installed.The three-dimensional entire flow field of the centrifugal pump with inlet guide vane is simulated,and the basic principle and mechanism of inlet guide vane pre-whirl regulation are analyzed.The validity of design method has been proved.

  19. Pressure Pulsation Signal Analysis for Centrifugal Compressor Blade Crack Determination

    OpenAIRE

    Hongkun Li; Xuefeng Zhang; Xiaowen Zhang; Shuhua Yang; Fujian Xu

    2014-01-01

    Blade is a key piece of component for centrifugal compressor. But blade crack could usually occur as blade suffers from the effect of centrifugal forces, gas pressure, friction force, and so on. It could lead to blade failure and centrifugal compressor closing down. Therefore, it is important for blade crack early warning. It is difficult to determine blade crack as the information is weak. In this research, a pressure pulsation (PP) sensor installed in vicinity to the crack area is used to d...

  20. Numerical Investigations on the Transient Performance of a Centrifugal Pump

    OpenAIRE

    Asim, Taimoor; Mishra, Rakesh

    2015-01-01

    Centrifugal pumps are an integral part of plants used in process industries. The flow structure within a centrifugal pump is very complex due to the interaction between the rotating impeller and the geometric features around it. In the present study, numerical investigations on a centrifugal pump have been carried out using a Computational Fluid Dynamics (CFD) based solver. This study employs finite volume technique in order to analyse the influence of variations in the rotational speed of th...

  1. Latex Micro-balloon Pumping in Centrifugal Microfluidic Platforms

    OpenAIRE

    Aeinehvand, Mohammad Mahdi; Ibrahim, Fatimah; Al-Faqheri, Wisam; Thio, Tzer Hwai Gilbert; Kazemzadeh, Amin; Wadi harun, Sulaiman; Madou, Marc

    2014-01-01

    Centrifugal microfluidic platforms have emerged as point-of-care diagnostic tools. However, the unidirectional nature of the centrifugal force limits the available space for multi-stepped processes on a single microfluidics disc. To overcome this limitation, a passive pneumatic pumping method actuated at high rotational speeds has been previously proposed to pump liquid against the centrifugal force. In this paper, a novel micro-balloon pumping method that relies on elastic energy stored in a...

  2. 离心泵故障诊断及实例分析%Fault Diagnosis and Case Analysis of Centrifugal Pumps

    Institute of Scientific and Technical Information of China (English)

    侯志广

    2014-01-01

    With the actual operation state of the centrifugal pumps at Qianan Steel as the background and through taking examples, the typical faults of centrifugal pumps and treatment solutions during operation process are analyzed, to provide reference for fault diag-nosis of centrifugal pumps.%以迁钢离心泵的实际运行情况为背景,通过举例分析了离心泵在工作过程中的典型故障及解决方案,为离心泵故障的诊断提供参考。

  3. Automated and miniaturized detection of biological threats with a centrifugal microfluidic system

    Science.gov (United States)

    Mark, D.; van Oordt, T.; Strohmeier, O.; Roth, G.; Drexler, J.; Eberhard, M.; Niedrig, M.; Patel, P.; Zgaga-Griesz, A.; Bessler, W.; Weidmann, M.; Hufert, F.; Zengerle, R.; von Stetten, F.

    2012-06-01

    The world's growing mobility, mass tourism, and the threat of terrorism increase the risk of the fast spread of infectious microorganisms and toxins. Today's procedures for pathogen detection involve complex stationary devices, and are often too time consuming for a rapid and effective response. Therefore a robust and mobile diagnostic system is required. We present a microstructured LabDisk which performs complex biochemical analyses together with a mobile centrifugal microfluidic device which processes the LabDisk. This portable system will allow fully automated and rapid detection of biological threats at the point-of-need.

  4. High-Throughput DNA Array for SNP Detection of KRAS Gene Using a Centrifugal Microfluidic Device.

    Science.gov (United States)

    Sedighi, Abootaleb; Li, Paul C H

    2016-01-01

    Here, we describe detection of single nucleotide polymorphism (SNP) in genomic DNA samples using a NanoBioArray (NBA) chip. Fast DNA hybridization is achieved in the chip when target DNAs are introduced to the surface-arrayed probes using centrifugal force. Gold nanoparticles (AuNPs) are used to assist SNP detection at room temperature. The parallel setting of sample introduction in the spiral channels of the NBA chip enables multiple analyses on many samples, resulting in a technique appropriate for high-throughput SNP detection. The experimental procedure, including chip fabrication, probe array printing, DNA amplification, hybridization, signal detection, and data analysis, is described in detail.

  5. Separative power of an optimised concurrent gas centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Bogovalov, Sergey; Boman, Vladimir [National Research Nuclear University (MEPHI), Moscow (Russian Federation)

    2016-06-15

    The problem of separation of isotopes in a concurrent gas centrifuge is solved analytically for an arbitrary binary mixture of isotopes. The separative power of the optimised concurrent gas centrifuges for the uranium isotopes equals to δU = 12.7 (V/700 m/s)2(300 K/T)(L/1 m) kg·SWU/yr, where L and V are the length and linear velocity of the rotor of the gas centrifuge and T is the temperature. This equation agrees well with the empirically determined separative power of optimised counter-current gas centrifuges.

  6. [Design and optimization of a centrifugal pump for CPCR].

    Science.gov (United States)

    Pei, J; Tan, X; Chen, K; Li, X

    2000-06-01

    Requirements for an optimal centrifugal pump, the vital component in the equipment for cardiopulmonary cerebral resuscitation(CPCR), have been presented. The performance of the Sarns centrifugal pump (Sarns, Inc./3M, Ann arbor, MI, U.S.A) was tested. The preliminarily optimized model for CPCR was designed according to the requirements of CPCR and to the comparison and analysis of several clinically available centrifugal pumps. The preliminary tests using the centrifugal pump made in our laboratory(Type CPCR-I) have confirmed the design and the optimization.

  7. Effects of centrifugation on gonadal and adrenocortical steroids in rats

    Science.gov (United States)

    Kakihana, R.; Butte, J. C.

    1980-01-01

    Many endocrine systems are sensitive to external changes in the environment. Both the pituitary adrenal and pituitary gonadal systems are affected by stress including centrifugation stress. The effect of centrifugation on the pituitary gonadal and pituitary adrenocortical systems was examined by measuring the gonadal and adrenal steroids in the plasma and brain following different duration and intensity of centrifugation stress in rats. Two studies were completed and the results are presented. The second study was carried out to describe the developmental changes of brain, plasma and testicular testosterone and dihydrotestosterone in Sprague Dawley rats so that the effect of centrifugation stress on the pituitary gonadal syatem could be better evaluated in future studies.

  8. Computer simulation for centrifugal mold filling of precision titanium castings

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Computer simulation codes were developed based on a proposed mathematical model for centrifugal mold filling processes and previous computer software for 3D mold filling and solidification of castings (CASM-3D for Windows). Sample simulations were implemented for mold filling processes of precision titanium castings under gravity and different centrifugal casting techniques. The computation results show that the alloy melt has a much stronger mold filling ability for thin section castings under a centrifugal force field than that only under the gravity. A "return back" mold filling manner is showed to be a reasonable technique for centrifugal casting processes, especially for thin section precision castings.

  9. Characteristics of centrifugal rapid contactor, (3)

    International Nuclear Information System (INIS)

    Organic solvent yields the degradation product as a result of irradiation, in the extraction process of spent fuel reprocessing. The development of a centrifugal rapid contactor is required for the reduction of the solvent degradation by shortening the contact time. The effects of fine solid particles were investigated with a SGN-Robatel LX-208N contactor, following the uranium extraction and re-extraction performance tests. It was found as the experimental result that the considerable quantity of solids accumulated in the rotor of the centrifugal contactor. As for this experimental apparatus, the flow diagram for the centrifugal rapid contactor and auxiliary apparatuses is shown, which are the same system used for the uranium extraction and re-extraction tests. The schematic diagram, the typical stage construction and fluid transfer path of the LX-208 contactor are illustrated. The main specifications of the LX-208 contactor are as follows: the internal diameter of a rotating bowl 200 mm, the material SUS 316, the number of stages 8, and the total hold-up volume of the contactor 1.8 l. Most tests were carried out with aqueous feed only, because white Alundum is easily deposited in the rotor, and the particle concentration in effluent stream becomes undetectable when organic and aqueous feeds are supplied simultaneously. As the experimental results, the correlation of Alundum concentration in effluent and running time, the effect of rotor speed on effluent stream concentration, the particle size distribution curves for No. 6000 and No. 8000 white Alundum, the effect of flow rate on effluent stream concentration and the effect of flow rate on particle size distribution for both No. 6000 and No. 8000 white Alundum are presented. (Nakai, Y.)

  10. EM Task 9 - Centrifugal membrane filtration

    International Nuclear Information System (INIS)

    The overall project consists of several integrated research phases related to the applicability, continued development, demonstration, and commercialization of the SpinTek centrifugal membrane filtration process. Work performed during this reporting period consisted of Phase 2 evaluation of the SpinTek centrifugal membrane filtration technology and Phase 3, Technology Partnering. During Phase 1 testing conducted at the EERC using the SpinTek ST-IIL unit operating on a surrogate tank waste, a solids cake developed on the membrane surface. The solids cake was observed where linear membrane velocities were less than 17.5 ft/s and reduced the unobstructed membrane surface area up to 25%, reducing overall filtration performance. The primary goal of the Phase 2 research effort was to enhance filtration performance through the development and testing of alternative turbulence promoter designs. The turbulence promoters were designed to generate a shear force across the entire membrane surface sufficient to maintain a self-cleaning membrane capability and improve filtration efficiency and long-term performance. Specific Phase 2 research activities included the following: System modifications to accommodate an 11-in.-diameter, two-disk rotating membrane assembly; Development and fabrication of alternative turbulence promoter designs; Testing and evaluation of the existing and alternative turbulence promoters under selected operating conditions using a statistically designed test matrix; and Data reduction and analysis; The objective of Phase 3 research was to demonstrate the effectiveness of SpinTek's centrifugal membrane filtration as a pretreatment to remove suspended solids from a liquid waste upstream of 3M's WWL cartridge technology for the selective removal of technetium (Tc)

  11. Analyzing Spacecraft Telecommunication Systems

    Science.gov (United States)

    Kordon, Mark; Hanks, David; Gladden, Roy; Wood, Eric

    2004-01-01

    Multi-Mission Telecom Analysis Tool (MMTAT) is a C-language computer program for analyzing proposed spacecraft telecommunication systems. MMTAT utilizes parameterized input and computational models that can be run on standard desktop computers to perform fast and accurate analyses of telecommunication links. MMTAT is easy to use and can easily be integrated with other software applications and run as part of almost any computational simulation. It is distributed as either a stand-alone application program with a graphical user interface or a linkable library with a well-defined set of application programming interface (API) calls. As a stand-alone program, MMTAT provides both textual and graphical output. The graphs make it possible to understand, quickly and easily, how telecommunication performance varies with variations in input parameters. A delimited text file that can be read by any spreadsheet program is generated at the end of each run. The API in the linkable-library form of MMTAT enables the user to control simulation software and to change parameters during a simulation run. Results can be retrieved either at the end of a run or by use of a function call at any time step.

  12. Effects of Impeller-Diffuser Interaction on Centrifugal Compressor Performance

    Science.gov (United States)

    Tan, Choon S.

    2003-01-01

    This research program focuses on characterizing the effect of impeller-diffuser interactions in a centrifugal compressor stage on its performance using unsteady threedimensional Reynolds-averaged Navier-Stokes simulations. The computed results show that the interaction between the downstream diffuser pressure field and the impeller tip clearance flow can account for performance changes in the impeller. The magnitude of performance change due to this interaction was examined for an impeller with varying tip clearance followed by a vaned or vaneless diffuser. The impact of unsteady impeller-diffuser interaction, primarily through the impeller tip clearance flow, is reflected through a time-averaged change in impeller loss, blockage and slip. The results show that there exists a tip clearance where the beneficial effect of the impeller-diffuser interaction on the impeller performance is at a maximum. A flow feature that consists of tip flow back leakage was shown to occur at design speed for the centrifugal compressor stage. This flow phenomenon is described as tip flow that originates in one passage, flows downstream of the impeller trailing edge and then returns to upstream of the impeller trailing edge of a neighboring passage. Such a flow feature is a source of loss in the impeller. A hypothesis is put forth to show that changing the diffuser vane count and changing impeller-diffuser gap has an analogous effect on the impeller performance. The centrifugal compressor stage was analyzed using diffusers of different vane counts, producing an impeller performance trend similar to that when the impeller-diffuser gap was varied, thus supporting the hypothesis made. This has the implication that the effect impeller performance associated with changing the impeller-diffuser gap and changing diffuser vane count can be described by the non-dimensional ratio of impeller-diffuser gap to diffuser vane pitch. A procedure is proposed and developed for isolating impeller passage

  13. Rotational spectroscopy with an optical centrifuge

    CERN Document Server

    Korobenko, Aleksey; Hepburn, John W; Milner, Valery

    2013-01-01

    We demonstrate a new spectroscopic method for studying electronic transitions in molecules with extremely broad range of angular momentum. We employ an optical centrifuge to create narrow rotational wave packets in the ground electronic state of $^{16}$O$_2$. Using the technique of resonance-enhanced multi-photon ionization, we record the spectrum of multiple ro-vibrational transitions between $X^3\\Sigma_{g}^{-}$ and $C^3\\Pi_{g}$ electronic manifolds of oxygen. Direct control of rotational excitation, extending to rotational quantum numbers as high as $N\\gtrsim 120$, enables us to interpret the complex structure of rotational spectra of $C^3\\Pi_{g}$ beyond thermally accessible levels.

  14. Gas centrifuge bibliography 1980-1982

    International Nuclear Information System (INIS)

    A bibliography, with abstract, is presented of the gas centrifuge literature published from 1980 to 1982 inclusive. It supplements PG Information Series 25 (CA), BNFL Information Series 15 (CA) and BNFL Information Series 23 (CA), which covered the periods 1895 to 1970, 1970 to 1974, and 1975 to 1979 respectively. After bibliographies and books and pamphlets, the main list is arranged chronologically under the headings, Reports, Journal articles, and Conference papers. Items omitted from the earlier bibliographies or received too late for inclusion in this, have been listed separately. There are author, report number and subject indexes. (U.K.)

  15. Rotordynamic Forces on Centrifugal Pump Impellers

    OpenAIRE

    Franz, R.; Arndt, N.; Caughey, T. K.; Brennen, C. E.; Acosta, A.J

    1987-01-01

    The asymmetric flow around an impeller in a volute exerts a force upon the impeller. To study the rotordynamic force on an impeller which is vibrating around its machine axis of rotation, the impeller, mounted on a dynamometer, is made to whirl in a circular orbit within the volute. The measured force is expressed as the sum of a steady radial force and an unsteady force due to the eccentric motion of the impeller. These forces were measured in separate tests on a centrifugal pump with rad...

  16. THERMODYNAMIC DESIGN OF CENTRIFUGAL COMPRESSOR FOR TURBOCHARGER

    OpenAIRE

    Sonawane Shubham*, Sondkar Pratik, Qasim Siddiqui, Phirke Indraneel, Prof. R. P. Kakde

    2016-01-01

    The purpose of a turbocharger is to increase the power output of an engine by supplying compressed air to the engine intake manifold so that fuel can be burnt efficiently. In this work, thermodynamic design of a high pressure ratio centrifugal compressor, for 75 kW class engines, was carried out. A pressure ratio of 2.8 was considered with a compressor rotational speed of 60,000 RPM. The compressor was designed for vane less diffuser. The impeller designs were obtained using ci...

  17. Design and Prototyping of Micro Centrifugal Compressor

    Institute of Scientific and Technical Information of China (English)

    Shimpei Mizuki; Gaku Minorikawa; Toshiyuki Hirano; Yuichiro Asaga; Naoki Yamaguchi; Yutaka Ohta; Eisuke Outa

    2003-01-01

    In order to establish the design methodology of ultra micro centrifugal compressor, which is the most important component of ultra micro gas turbine unit, a 10 times of the final target size model was designed, prototyped and tested. The problems to be solved for downsizing were examined and 2-dimensional impeller was chosen as the first model due to its productivity. The conventional 1D prediction method, CFD and the inverse design were attempted. The prototyped compressor was driven by using a turbocharger and the performance characteristics were measured.

  18. Impeller blade design method for centrifugal compressors

    Science.gov (United States)

    Jansen, W.; Kirschner, A. M.

    1974-01-01

    The design of a centrifugal impeller with blades that are aerodynamically efficient, easy to manufacture, and mechanically sound is discussed. The blade design method described here satisfies the first two criteria and with a judicious choice of certain variables will also satisfy stress considerations. The blade shape is generated by specifying surface velocity distributions and consists of straight-line elements that connect points at hub and shroud. The method may be used to design radially elemented and backward-swept blades. The background, a brief account of the theory, and a sample design are described.

  19. Theory and experiments on centrifuge cratering

    Science.gov (United States)

    Schmidt, R. M.; Holsapple, K. A.

    1980-01-01

    Centrifuge experimental techniques provide possibilities for laboratory simulation of ground motion and cratering effects due to explosive loadings. The results of a similarity analysis for the thermomechanical response of a continuum show that increased gravity is a necessary condition for subscale testing when identical materials for both model and prototype are being used. The general similarity requirements for this type of subscale testing are examined both theoretically and experimentally. The similarity analysis is used to derive the necessary and sufficient requirements due to the general balance and jump equations and gives relations among all the scale factors for size, density, stress, body forces, internal energy, heat supply, heat conduction, heat of detonation, and time. Additional constraints due to specific choices of material constitutive equations are evaluated separately. The class of constitutive equations that add no further requirements is identified. For this class of materials, direct simulation of large-scale cratering events at small scale on the centrifuge is possible and independent of the actual constitutive equations. For a rate-independent soil it is shown that a small experiment at gravity g and energy E is similar to a large event at 1 G but with energy equal to g3E. Consequently, experiments at 500 G with 8 grams of explosives can be used to simulate a kiloton in the field. A series of centrifuge experiments was performed to validate the derived similarity requirements and to determine the practicality of applying the technique to dry granular soils having little or no cohesion. Ten shots using Ottawa sand at various gravities confirmed reproducibility of results in the centrifuge environment, provided information on particle size effects, and demonstrated the applicability of the derived similitude requirements. These experiments used 0.5-4 grams of pentaerythritol-tetranitrate (PETN) and 1.7 grams of lead-azide explosives. They

  20. Hydrodynamic and mass transfer studies in 50 mm centrifugal extractor

    International Nuclear Information System (INIS)

    Solvent extraction is promising unit operation in reprocessing of closed nuclear fuel cycle. Unlike thermal reactor in fast reactor spent fuel reprocessing criticality and radiation damage problems are severe. This leads to the degradation of solvent and increase its inventory. To address these challenges solvent extraction equipment with small hold up and fast separation is required. Hence, centrifugal extractors are inevitable. In mass transfer studies extraction operation was carried at constant rotor speed 3000 rpm and constant flow ratio of 1 for 30%TBP and nearly 4N HNO3 system by varying total throughput from 50 ml/min to 1500 ml/min. In mass transfer studies stripping operation was carried at constant rotor speed 3000 rpm and constant flow rate of 500 ml/min for loaded TBP and slightly acidified RO water system by varying A/O flow ratio from 0.1 to 10. Mass transfer efficiency for both the cases was found to be nearly 100%. In mass transfer studies stripping operation was carried at constant total throughput of 500 ml/min and constant A/O flow ratio of 1 for rotor speeds 1500, 2000, 3000 and 4000 rpm. Mass transfer efficiency was found to slightly dependent on rotor speed. In hydrodynamics flooding limit was found under no mass transfer conditions for A/O flow ratios from 0.1 to 10 at 2500, 3000 and 3500 rpm. Maximum possible throughput was found to be ≅ 110 lph. Modeling of flooding behavior was found to be difficult

  1. A fluorescence-based centrifugal microfluidic system for parallel detection of multiple allergens

    Science.gov (United States)

    Chen, Q. L.; Ho, H. P.; Cheung, K. L.; Kong, S. K.; Suen, Y. K.; Kwan, Y. W.; Li, W. J.; Wong, C. K.

    2010-02-01

    This paper reports a robust polymer based centrifugal microfluidic analysis system that can provide parallel detection of multiple allergens in vitro. Many commercial food products (milk, bean, pollen, etc.) may introduce allergy to people. A low-cost device for rapid detection of allergens is highly desirable. With this as the objective, we have studied the feasibility of using a rotating disk device incorporating centrifugal microfluidics for performing actuationfree and multi-analyte detection of different allergen species with minimum sample usage and fast response time. Degranulation in basophils or mast cells is an indicator to demonstrate allergic reaction. In this connection, we used acridine orange (AO) to demonstrate degranulation in KU812 human basophils. It was found that the AO was released from granules when cells were stimulated by ionomycin, thus signifying the release of histamine which accounts for allergy symptoms [1-2]. Within this rotating optical platform, major microfluidic components including sample reservoirs, reaction chambers, microchannel and flow-control compartments are integrated into a single bio-compatible polydimethylsiloxane (PDMS) substrate. The flow sequence and reaction time can be controlled precisely. Sequentially through varying the spinning speed, the disk may perform a variety of steps on sample loading, reaction and detection. Our work demonstrates the feasibility of using centrifugation as a possible immunoassay system in the future.

  2. NUMERICAL SIMULATION OF THE FLOW IN THE CENTRIFUGAL PUMP WITHIN VANE AND VANELESS DIFFUSER

    Directory of Open Access Journals (Sweden)

    K. Melih GÜLEREN

    2004-03-01

    Full Text Available In this study, the flow in a 5-bladed centrifugal pump within vaned and vaneless diffuser is analyzed numerically. The method contains of assumption as steady, incompressible and viscous flow solved according to 2-D Navier-Stokes equations relating finite volume technique. The pump used in this study runs at 890 rpm, its impeller diameter is approximately 20 cm and it has back-swept blade geometry. The jet-wake flow structures within the impeller and diffuser passages are investigated elaborately and in addition to this, the effects of vaned and vaneless diffuser of the pump are analyzed. The results are shown as velocity vectors, pressure and turbulent kinetic energy distributions in centrifugal pump, beside the performance curves. Moreover, the results are compared with available experimental data which is seen good agreement.

  3. Theoretical Study of Fluid Forces on a Centrifugal Impeller Rotating and Whirling in a Volute

    OpenAIRE

    Tsujimoto, Y; Acosta, A.J; Brennen, C. E.

    1988-01-01

    Fluid forces on a rotating and whirling centrifugal impeller in a volute are analyzed with the assumption of a two-dimensional rotational, inviscid flow. For simplicity, the flow is assumed to be perfectly guided by the impeller vanes. The theory predicts the tangential and the radial force on the whirling impeller as functions of impeller geometry, volute spacing, and whirl ratio. A good qualitative agreement with experiment is found.

  4. OPTIMIZING IMPELLER GEOMETRY FOR PERFORMANCE ENHANCEMENT OF A CENTRIFUGAL BLOWER USING THE TAGUCHI QUALITY CONCEPT

    OpenAIRE

    R RAGOTH SINGH; M.Nataraj

    2012-01-01

    As the diffusion of flow process is highly complex in centrifugal blower operation, it is necessary to design / develop the geometry of impeller and casing to reduce the flow losses significantly. In the present study, the methodology to find near optimum combination of blower operating variables for performance enhancement were analyzed using computational fluid dynamics(CFD). Taguchi orthogonal array (OA) based design of experiments (DoE) technique determines the required experimental trial...

  5. Influence of Splitter Blades on the Cavitation Performance of a Double Suction Centrifugal Pump

    OpenAIRE

    Wei Yang; Ruofu Xiao; Fujun Wang; Yulin Wu

    2014-01-01

    In order to study the influence of splitter blades on double suction centrifugal pumps two impellers with and without splitter blades were investigated numerically and experimentally. Three-dimensional turbulence simulations with and without full cavitation model were applied to simulate the flow in the two pumps with different impellers. The simulation results agreed with the experiment results and the internal flows were analyzed. Both the numerical and experimental results show that by add...

  6. Centrifugally Stimulated Exospheric Ion Escape at Mercury

    Science.gov (United States)

    Delcourt, Dominique; Seki, K.; Terada, N.; Moore, Thomas E.

    2012-01-01

    We investigate the transport of ions in the low-altitude magnetosphere magnetosphere of Mercury. We show that, because of small spatial scales, the centrifugal effect due to curvature of the E B drift paths can lead to significant particle energization in the parallel direction. We demonstrate that because of this effect, ions with initial speed smaller than the escape speed such as those produced via thermal desorption can overcome gravity and escape into the magnetosphere. The escape route of this low-energy exosphere originating material is largely controlled by the magnetospheric convection rate. This escape route spreads over a narrower range of altitudes when the convection rate increases. Bulk transport of low-energy planetary material thus occurs within a limited region of space once moderate magnetospheric convection is established. These results suggest that, via release of material otherwise gravitationally trapped, the E B related centrifugal acceleration is an important mechanism for the net supply of plasma to the magnetosphere of Mercury.

  7. Postcardiotomy centrifugal assist: a single surgeon's experience.

    Science.gov (United States)

    Curtis, Jack J; McKenney-Knox, Charlotte A; Wagner-Mann, Colette C

    2002-11-01

    Because of the infrequent application of cardiac assist devices for postcardiotomy heart failure, most published reports include the results of learning curves from multiple surgeons. Between October 1986 and June 2001, a single surgeon used 35 Sarns Centrifugal Pumps as ventricular assist devices in 21 patients with severe hemodynamic compromise after open heart surgery (0.88% incidence). Patients' ages ranged from 39 to 77 (mean, 59.6 years). Three patients required right ventricular assist devices, 4 left ventricular assist devices, and 14 had biventricular assist devices. For all, the indication for application was inability to wean from cardiopulmonary bypass despite multiple inotropes and intraaortic balloon pumping. All were expected to be intraoperative deaths without further mechanical assistance. Patients were assisted from 2 to 434 h (median, 48 h). Fifteen patients (71.4%) were weaned from device(s), and 11 patients (52.4%) were hospital survivors. Actuarial survival in those dismissed from the hospital was 78% at 5 years and 39% at 10 years. Patients facing certain demise after cardiac surgery can be salvaged with temporary centrifugal mechanical assist. Results are competitive with that achieved with more sophisticated devices. Hospital survivors enjoy reasonable longevity.

  8. PARTICLE DISTRIBUTION IN CENTRIFUGAL ACCELERATING FIELDS

    Institute of Scientific and Technical Information of China (English)

    Yu Sirong; Zhang Xinping; He Zhenming; Liu Yaohui

    2003-01-01

    Based on continuum theory and moving law of particles, a model is presented to obtain gradient distribution of particles in centrifugal accelerating field, by which the particle distribution in gradient composite material can be predicted. The simulation shows with increases in rotating time, four regions gradually appear from the internal periphery to the external one, they are free region, transition region, steady region and surface reinforced region,and the latest three regions are defined as a rich region. Finally, the steady region disappears, and the rich region only includes transition region and surface reinforced region. The influences of centrifugal acceleration coefficient G,primary volume fraction (0,pouring temperature (p and density difference between the particle and the metal matrix on particles gradient distribution are studied in detail. The results of the theoretical analysis agree with experiment ones. Both of analysis and experiment results indicate that with the increase in G and (p, the particle distribution becomes more centralized and the consistence of particle in the surface periphery becomes larger.

  9. Some aversive characteristics of centrifugally generated gravity.

    Science.gov (United States)

    Altman, F.

    1973-01-01

    The effective weight of rats was manipulated by centrifugation. Two effective weight levels were obtained. In three escape avoidance conditions a lever press produced a change from a base level of 2.1 g to a response level of 1.1 g. In a punishment condition a response produced a change from a 1.1 g level to a 2.1 g level and in an extinction condition responses had no effect on the 2.1 g effective weight level present. All changes took 30 sec and were maintained for an additional 10 sec before a return to base level was initiated. When responses occurred closer together than the 40 sec, they delayed the return to base level by 40 sec. This 40 sec interval is referred to as response-contingent-time. The response rate and amount of response-contingent-time served as the data. The results confirmed previous data that centrifugation is aversive. The results are interpreted as indicating that the aversiveness is attributable to the increase in effective weight, and that rats can discriminate the different angular velocity-radius of rotation combinations used.

  10. Preliminary Study of a Novel Compact R718 Water Chiller With Integration of a Single Stage Centrifugal Compressor and Two-Phase Ejectors

    OpenAIRE

    Sarevski, Milan Nikola; Sarevski, Vasko Nikola

    2012-01-01

    A novel compact R718 water chiller with integration of a centrifugal compressor stage and two phase ejectors as a second stage compression device is proposed. The paper describes the investigations of this R718 refrigerating cycle. The limitations of the R718 centrifugal compressor stage pressure ratio are discussed, and possibilities for introduction of two-phase ejectors in the R718 refrigerating systems with direct evaporation and condensation are analyzed. The complex thermal and flow phe...

  11. 离心泵的性能特点及应用研究%Performance characteristics and Application Research of centrifugal pump

    Institute of Scientific and Technical Information of China (English)

    徐志鹏

    2016-01-01

    In the production of petroleum and petrochemical,the application of centrifugal pump is very wide,so the application of centrifugal pump is of great significance. This paper briefly introduces the performance characteristics of centrifugal pump,centrifugal pump selection and energy saving,centrifugal pump installation,centrifugal pump and the failure of the centrifugal pump and the elimination measures are discussed and analyzed in detail.%在石油和石化生产中,离心泵的应用非常广泛,因此对离心泵的应用研究具有重要意义。文中介绍了离心泵的性能特点,从离心泵的选型、离心泵的安装、离心泵的运行以及离心泵的故障及排除措施等几个方面进行了详细的论述和分析。

  12. Optimization Method of Design Parameters on Centrifugal Refrigerating Compressor%离心式制冷压缩机设计参数优化方法

    Institute of Scientific and Technical Information of China (English)

    袁杰; 喻锑; 黄睿

    2014-01-01

    The centrifugal refrigerating compressor is the most important component of centrifugal chiller . The efficiency of centrifugal compressor is one of the factors which determine the centrifugal chiller COP. This paper discusses the centrifugal compressor performance and the optimization of design parameters by analyzing the design parameters of centrifugal refrigerating compressors. The performance test of a centrifugal chiller verified the corresponding design program.%离心式制冷压缩机是冷水机组中最重要的部件,离心式压缩机的效率是离心式冷水机组能效水平高低的决定性因素之一。本文通过对离心式制冷压缩机设计参数的分析,探讨了离心式压缩机的性能及其设计参数的优化方法,并通过离心式冷水机组的性能试验验证了相应的设计方案。

  13. Numerical study of a high-speed miniature centrifugal compressor

    Science.gov (United States)

    Li, Xiaoyi

    A miniature centrifugal compressor is a key component of reverse Brayton cycle cryogenic cooling system. The system is commonly used to generate a low cryogenic temperature environment for electronics to increase their efficiency, or generate, store and transport cryogenic liquids, such as liquid hydrogen and oxygen, where space limit is also an issue. Because of space limitation, the compressor is composed of a radial IGV, a radial impeller and an axial-direction diffuser (which reduces the radial size because of smaller diameter). As a result of reduction in size, rotating speed of the impeller is as high as 313,000 rpm, and Helium is used as the working fluid, in order to obtain the required static pressure ratio/rise. Two main characteristics of the compressor---miniature and high-speed, make it distinct from conventional compressors. Higher compressor efficiency is required to obtain a higher COP (coefficient of performance) system. Even though miniature centrifugal compressors start to draw researchers' attention in recent years, understanding of the performance and loss mechanism is still lacking. Since current experimental techniques are not advanced enough to capture details of flow at miniature scale, numerical methods dominate miniature turbomachinery study. This work numerically studied a high speed miniature centrifugal compressor with commercial CFD code. The overall performance of the compressor was predicted with consideration of interaction between blade rows by using sliding mesh model. The law of similarity of turbomachinery was validated for small scale machines. It was found that the specific ratio effect needs to be considered when similarity law is applied. But Reynolds number effect can be neglected. The loss mechanism of each component was analyzed. Loss due to turning bend was significant in each component. Tip leakage loss of small scale turbomachines has more impact on the impeller performance than that of large scale ones. Because the

  14. High Efficiency Centrifugal Compressor for Rotorcraft Applications

    Science.gov (United States)

    Medic, Gorazd; Sharma, Om P.; Jongwook, Joo; Hardin, Larry W.; McCormick, Duane C.; Cousins, William T.; Lurie, Elizabeth A.; Shabbir, Aamir; Holley, Brian M.; Van Slooten, Paul R.

    2014-01-01

    The report "High Efficiency Centrifugal Compressor for Rotorcraft Applications" documents the work conducted at UTRC under the NRA Contract NNC08CB03C, with cost share 2/3 NASA, and 1/3 UTRC, that has been extended to 4.5 years. The purpose of this effort was to identify key technical barriers to advancing the state-of-the-art of small centrifugal compressor stages; to delineate the measurements required to provide insight into the flow physics of the technical barriers; to design, fabricate, install, and test a state-of-the-art research compressor that is representative of the rear stage of an axial-centrifugal aero-engine; and to acquire detailed aerodynamic performance and research quality data to clarify flow physics and to establish detailed data sets for future application. The design activity centered on meeting the goal set outlined in the NASA solicitation-the design target was to increase efficiency at higher work factor, while also reducing the maximum diameter of the stage. To fit within the existing Small Engine Components Test Facility at NASA Glenn Research Center (GRC) and to facilitate component re-use, certain key design parameters were fixed by UTRC, including impeller tip diameter, impeller rotational speed, and impeller inlet hub and shroud radii. This report describes the design effort of the High Efficiency Centrifugal Compressor stage (HECC) and delineation of measurements, fabrication of the compressor, and the initial tests that were performed. A new High-Efficiency Centrifugal Compressor stage with a very challenging reduction in radius ratio was successfully designed, fabricated and installed at GRC. The testing was successful, with no mechanical problems and the running clearances were achieved without impeller rubs. Overall, measured pressure ratio of 4.68, work factor of 0.81, and at design exit corrected flow rate of 3 lbm/s met the target requirements. Polytropic efficiency of 85.5 percent and stall margin of 7.5 percent were

  15. Three-dimensional unsteady flow and forces in centrifugal impellers with circumferential distortion of the outlet static pressure

    Energy Technology Data Exchange (ETDEWEB)

    Fatsis, A.; Pierret, S.; Braembussche, R. van den [von Karman Inst. for Fluid Dynamics, Rhode-St.-Genese (Belgium). Turbomachinery Dept.

    1997-01-01

    This paper describes the numerical investigation of the centrifugal impeller response to downstream static pressure distortions imposed by volutes at off-design operations. An unsteady three-dimensional Euler solver with nonreflecting upstream and downstream boundary conditions and phase-lagged periodicity conditions is used for this purpose. The mechanisms governing the unsteady flow field are analyzed. A parametric study shows the influence of the acoustic Strouhal number on the amplitude of the flow perturbations. Radial forces calculated on backward leaned and radial ending centrifugal impellers show nonnegligible influence of the impeller geometry.

  16. Numerical Research about Influence of Blade Outlet Angle on Flow-Induced Noise and Vibration for Centrifugal Pump

    OpenAIRE

    Ailing Yang; Dapeng Lang; Guoping Li; Eryun Chen; Ren Dai

    2014-01-01

    A hybrid numerical method was used to calculate the flow-induced noise and vibration of the centrifugal pump in the paper. The unsteady flows inside the centrifugal pumps with different blade outlet angles were simulated firstly. The unsteady pressure on the inner surface of the volute and the unsteady force applied on the impeller were analyzed. Then the vibration of the volute and sound field were calculated based on an acoustic-vibro-coupling method. The results show that the pump head has...

  17. Separative power of an optimised concurrent gas centrifuge

    CERN Document Server

    Bogovalov, S V

    2015-01-01

    The problem of separation of uranium isotopes in a concurrent gas centrifuge is solved analytically. Separative power of the optimized concurrent gas centrifuges equals to $\\delta U=12.7(V/700~{\\rm m/s})^2 (300 ~{\\rm K}/T)L, ~{\\rm kg ~SWU/yr}$, where $L$ and $V$ are the length and linear velocity of the rotor of the gas centrifuge, $T$ is the temperature. This formula well agrees with an empirical separative power of counter current gas centrifuges. The optimal value of the separative power is not unique on the plane $(p_w,v_z)$, where $p_w$ is pressure at the wall of the rotor and $v_z$ is axial velocity of the gas. This value is constant on a line defined by the equation $p_wv_z=constant$. Equations defining the mass flux and the electric power necessary to support the rotation of the gas centrifuge are obtained.

  18. Recent advances in centrifugal contactors design

    International Nuclear Information System (INIS)

    Advances in thedesign of the Argonne centrifugal contactor for solvent extaction are being realized as these contactors are built, tested, and used to implement the TRUEX process for the cleanup of nuclear waste liquids. These advances include (1) using off-the-shelf, face-mounted motors, (2) modifying the contractor so that relatively volatile solvents can be used, (3) adding a high-level liquid detector that can be used to alert the plant operator of process upsets, (4) providing secondary feed ports, (5) optimizing support frame design, (6) maintaining a linear design with external interstage lines so the stages can be allocated as needed for extraction, scrub, strip, and solvent cleanup operations, and (7) developing features that facilitate contractor operation in remote facilities. 11 refs., 8 figs

  19. Centrifugal acceleration of plasma in pulsar magnetosphere

    Indian Academy of Sciences (India)

    R T Gangadhara; V Krishna

    2003-12-01

    We present a relativistic model for the centrifugal acceleration of plasma bunches and the coherent radio emission in pulsar magnetosphere. We find that rotation broadens the width of leading component compared to the width of trailing component. We explain this difference in the component widths using the nested cone emission geometry. We estimate the effect of pulsar spin on the Stokes parameters, and find that the inclination between the rotation and magnetic axes can introduce an asymmetry in the circular polarization of the conal components. We analyse the single pulse polarization data of PSR B0329+54 at 606 MHz, and find that in its conal components, one sense of circular polarization dominates in the leading component while the other sense dominates in the trailing component. Our simulation shows that changing the sign of the impact parameter changes the sense of circular polarization as well as the swing of polarization angle.

  20. [Hemodynamic analysis of a centrifugal blood pump].

    Science.gov (United States)

    Wang, Yang; Yang, Ming; Xu, Zihao; Zhuang, Xiaoqi; Li, Qilei; Xu, Liang

    2015-01-01

    This paper built the mathematical model of a centrifugal blood pump, which was designed by ourselves, combined it with that of the human cardiovascular system and simulated the coupling system using Matlab. Then we set up the experiment platform, linked the blood pump to mock human cardiovascular system in case of three-stage heart failure, and measured aortic pressure and flow under different speed. The comparison between experiment results and simulation results not only indicates the coupling model is correct and the blood pump works well, but also shows that with the increase of blood pump speed, the pulsation of aortic pressure and flow will be reduced, this situation will affect the structure and function of blood vessels.

  1. Stability of centrifugal pump characteristic curve

    OpenAIRE

    Chmatil, Ľuboš

    2011-01-01

    Předložená diplomová práce obsahuje teoretický rozbor charakteristik odstředíveho čerpadla, podmínky stability Y(Q) charakteristiky, výpočet charakteristiky ßč(ns), úpravy vedúce k stabilizaci spirálního telesa a oběžného kola, návrh spirály, obežného kola a následný výpočet v programe Fluent. This master's thesis includes theoretical analysis of characteristics of a centrifugal pump, conditions of stability of Y(Q) characteristic, calculation of characteristics ßč(ns), modifications leadi...

  2. Rotordynamic forces on centrifugal pump impellers

    Science.gov (United States)

    Franz, R.; Arndt, N.; Caughey, T. K.; Brennen, C. E.; Acosta, A. J.

    1987-01-01

    The asymmetric flow around an impeller in a volute exerts a force upon the impeller. To study the rotordynamic force on an impeller which is vibrating around its machine axis of rotation, the impeller, mounted on a dynamometer, is made to whirl in a circular orbit within the volute. The measured force is expressed as the sum of a steady radial force and an unsteady force due to the eccentric motion of the impeller. These forces were measured in separate tests on a centrifugal pump with radically increased shroud clearance, a two-dimensional impeller, and an impeller with an inducer, the impeller of the HPOTP (High Pressure Oxygen Turbopump) of the SSME (Space Shuttle Main Engine). In each case, a destabilizing force was observed over a region of positive whirl.

  3. [Hemodynamic analysis of a centrifugal blood pump].

    Science.gov (United States)

    Wang, Yang; Yang, Ming; Xu, Zihao; Zhuang, Xiaoqi; Li, Qilei; Xu, Liang

    2015-01-01

    This paper built the mathematical model of a centrifugal blood pump, which was designed by ourselves, combined it with that of the human cardiovascular system and simulated the coupling system using Matlab. Then we set up the experiment platform, linked the blood pump to mock human cardiovascular system in case of three-stage heart failure, and measured aortic pressure and flow under different speed. The comparison between experiment results and simulation results not only indicates the coupling model is correct and the blood pump works well, but also shows that with the increase of blood pump speed, the pulsation of aortic pressure and flow will be reduced, this situation will affect the structure and function of blood vessels. PMID:26027287

  4. Potential commercial applications of centrifuge technology

    International Nuclear Information System (INIS)

    As part of an effort to prevent the loss of and maximize the use of unique developments of the centrifuge program, this document identifies and briefly describes unclassified technologies potentially available for transfer. In addition, this document presents a preliminary plan for action needed to carry out the transfer activity. Continuing efforts will provide additional descriptions of technologies which have applications that are not as apparent or as obvious as those presented here. Declassification of some of the program information, now classified as restricted data, would permit the descriptions of additional technologies which have significant commercial potential. The following are major areas of technology where transfer opportunities exist: biomedical; separation; motors and control systems; materials; vacuum; dynamics and balancing; and diagnostics and instrumentation

  5. A Novel Fabrication Method for Functionally Graded Materials under Centrifugal Force: The Centrifugal Mixed-Powder Method

    Directory of Open Access Journals (Sweden)

    Eri Miura-Fujiwara

    2009-12-01

    Full Text Available One of the fabrication methods for functionally graded materials (FGMs is a centrifugal solid-particle method, which is an application of the centrifugal casting technique. However, it is the difficult to fabricate FGMs containing nano-particles by the centrifugal solid-particle method. Recently, we proposed a novel fabrication method, which we have named the centrifugal mixed-powder method, by which we can obtain FGMs containing nano-particles. Using this processing method, Cu-based FGMs containing SiC particles and Al-based FGMs containing TiO2 nano-particles on their surfaces have been fabricated. In this article, the microstructure and mechanical property of Cu/SiC and Al/TiO2 FGMs, fabricated by the centrifugal mixed-powder method are reviewed.

  6. PhosphoSiteAnalyzer

    DEFF Research Database (Denmark)

    Bennetzen, Martin V; Cox, Jürgen; Mann, Matthias;

    2012-01-01

    Phosphoproteomic experiments are routinely conducted in laboratories worldwide, and because of the fast development of mass spectrometric techniques and efficient phosphopeptide enrichment methods, researchers frequently end up having lists with tens of thousands of phosphorylation sites for furt...

  7. Multiphase flow modeling in centrifugal partition chromatography.

    Science.gov (United States)

    Adelmann, S; Schwienheer, C; Schembecker, G

    2011-09-01

    The separation efficiency in Centrifugal Partition Chromatography (CPC) depends on selection of a suitable biphasic solvent system (distribution ratio, selectivity factor, sample solubility) and is influenced by hydrodynamics in the chambers. Especially the stationary phase retention, the interfacial area for mass transfer and the flow pattern (backmixing) are important parameters. Their relationship with physical properties, operating parameters and chamber geometry is not completely understood and predictions are hardly possible. Experimental flow visualization is expensive and two-dimensional only. Therefore we simulated the flow pattern using a volume-of-fluid (VOF) method, which was implemented in OpenFOAM®. For the three-dimensional simulation of a rotating FCPC®-chamber, gravitational centrifugal and Coriolis forces were added to the conservation equation. For experimental validation the flow pattern of different solvent systems was visualized with an optical measurement system. The amount of mobile phase in a chamber was calculated from gray scale values of videos recorded by an image processing routine in ImageJ®. To visualize the flow of the stationary phase polyethylene particles were used to perform a qualitative particle image velocimetry (PIV) analysis. We found a good agreement between flow patterns and velocity profiles of experiments and simulations. By using the model we found that increasing the chamber depth leads to higher specific interfacial area. Additionally a circular flow in the stationary phase was identified that lowers the interfacial area because it pushes the jet of mobile phase to the chamber wall. The Coriolis force alone gives the impulse for this behavior. As a result the model is easier to handle than experiments and allows 3D prediction of hydrodynamics in the chamber. Additionally it can be used for optimizing geometry and operating parameters for given physical properties of solvent systems. PMID:21324465

  8. Analysis of centrifugal convection in rotating pipes

    Science.gov (United States)

    Shtern, Vladimir; Zimin, Valery; Hussain, Fazle

    2001-08-01

    New exact solutions, obtained for centrifugal convection of a compressible fluid in pipes and annular pipes, explain axially elongated counterflow and energy separation—poorly understood phenomena occurring in vortex devices, e.g., hydrocyclones and Ranque tubes. Centrifugal acceleration (which can be up to 106 times gravity in practical vortex tubes), combined with an axial gradient of temperature (even small), induces an intense flow from the cold end to the hot end along the pipe wall and a backflow near the axis. To account for large density variations in vortex devices, we use the axial temperature gradient as a small parameter instead of the Boussinesq approximation. For weak pipe rotation, the swirl is of solid-body type and solutions are compact: vz/vza=1-4y2+3y4 and (T-Tw)/(Ta-Tw)=(1-y2)3; where y=r/rw, the subscripts w and a denote values of axial velocity vz, temperature T, and radial distance r, at the wall and on the axis. The axial gradient of pressure, being proportional to 3y2-1, has opposite directions near the wall, y=1, and near the axis, y=0; this explains the counterflow. With increasing pipe rotation, the flow starts to converge to the axis. This causes important new effects: (i) the density and swirl velocity maxima occur away from the wall (vortex core formation), (ii) the temperature near the axis becomes lower than near the wall (the Ranque effect), (iii) the axial gradient of temperature drops from the wall to the axis, and (iv) the total axial heat flux (Nu) reaches its maximum Numax≈4000 and then decreases as swirl increases. These features can be exploited for the development of a micro-heat-exchanger, e.g., for cooling computer chips.

  9. Hemocompatibility of Axial Versus Centrifugal Pump Technology in Mechanical Circulatory Support Devices.

    Science.gov (United States)

    Schibilsky, David; Lenglinger, Matthias; Avci-Adali, Meltem; Haller, Christoph; Walker, Tobias; Wendel, Hans Peter; Schlensak, Christian

    2015-08-01

    The hemocompatible properties of rotary blood pumps commonly used in mechanical circulatory support (MCS) are widely unknown regarding specific biocompatibility profiles of different pump technologies. Therefore, we analyzed the hemocompatibility indicating markers of an axial flow and a magnetically levitated centrifugal device within an in vitro mock loop. The HeartMate II (HM II; n = 3) device and a CentriMag (CM; n = 3) adult pump were investigated in a human whole blood mock loop for 360 min using the MCS devices as a driving component. Blood samples were analyzed by enzyme-linked immunosorbent assay for markers of coagulation, complement system, and inflammatory response. There was a time-dependent activation of the coagulation (thrombin-antithrombin complexes [TAT]), complement (SC5b-9), and inflammation system (polymorphonuclear [PMN] elastase) in both groups. The mean value of TAT (CM: 4.0 μg/L vs. 29.4 μg/L, P centrifugal CM device showed significantly lower activation of coagulation and inflammation than that of the HM II axial flow pump. Both HM II and CM have demonstrated an acceptable hemocompatibility profile in patients. However, there is a great opportunity to gain a clinical benefit by developing techniques to lower the blood surface interaction within both pump technologies and a magnetically levitated centrifugal pump design might be superior.

  10. Hemocompatibility of Axial Versus Centrifugal Pump Technology in Mechanical Circulatory Support Devices.

    Science.gov (United States)

    Schibilsky, David; Lenglinger, Matthias; Avci-Adali, Meltem; Haller, Christoph; Walker, Tobias; Wendel, Hans Peter; Schlensak, Christian

    2015-08-01

    The hemocompatible properties of rotary blood pumps commonly used in mechanical circulatory support (MCS) are widely unknown regarding specific biocompatibility profiles of different pump technologies. Therefore, we analyzed the hemocompatibility indicating markers of an axial flow and a magnetically levitated centrifugal device within an in vitro mock loop. The HeartMate II (HM II; n = 3) device and a CentriMag (CM; n = 3) adult pump were investigated in a human whole blood mock loop for 360 min using the MCS devices as a driving component. Blood samples were analyzed by enzyme-linked immunosorbent assay for markers of coagulation, complement system, and inflammatory response. There was a time-dependent activation of the coagulation (thrombin-antithrombin complexes [TAT]), complement (SC5b-9), and inflammation system (polymorphonuclear [PMN] elastase) in both groups. The mean value of TAT (CM: 4.0 μg/L vs. 29.4 μg/L, P centrifugal CM device showed significantly lower activation of coagulation and inflammation than that of the HM II axial flow pump. Both HM II and CM have demonstrated an acceptable hemocompatibility profile in patients. However, there is a great opportunity to gain a clinical benefit by developing techniques to lower the blood surface interaction within both pump technologies and a magnetically levitated centrifugal pump design might be superior. PMID:26234452

  11. A straight path centrifugal blood pump concept in the Capiox centrifugal pump.

    Science.gov (United States)

    Kijima, T; Oshiyama, H; Horiuchi, K; Nogawa, A; Hamasaki, H; Amano, N; Nojiri, C; Fukasawa, H; Akutsu, T

    1993-07-01

    This article describes comparative studies of a newly developed "straight path" centrifugal pump (Capiox centrifugal pump) targeted for open-heart surgery and circulatory support. A unique straight path design of the rotor was very effective in reducing the pump's rotational speed and prime volume. This pump was evaluated for hydraulics, hemolysis, depriming characteristics, cavitation, and heat generation. Two commercially available centrifugal pumps, the Biomedicus cone-type pump and the Sarns 3M impeller-type pump, were used as controls. The new pump required the lowest pump speed to produce the same flow rates under the same pressure loads and demonstrated the lowest hemolysis and the lowest temperature rise with the outlet clamped. The air volume required to deprime the new pump was one-third to one-half that for the other pumps, and no sign of cavitation was observed even if a small amount of air was introduced to the pump inlet under a negative pressure of 200 mm Hg.

  12. Comparison of Fast-Food and Non-Fast-Food Children's Menu Items

    Science.gov (United States)

    Serrano, Elena L.; Jedda, Virginia B.

    2009-01-01

    Objective: Compare the macronutrient content of children's meals sold by fast-food restaurants (FFR) and non-fast-food restaurants (NFF). Design: All restaurants within the designated city limits were surveyed. Non-fast-food children's meals were purchased, weighed, and analyzed using nutrition software. All fast-food children's meals were…

  13. Fast pyrolysis of lignin, macroalgae and sewage sludge

    OpenAIRE

    Trinh, Ngoc Trung; Dam-Johansen, Kim; Jensen, Peter Arendt

    2013-01-01

    In the last twenty years, the fast pyrolysis process has been explored to produce bio-oil from biomass. Fast pyrolysis is a thermal conversion technology that is performed at a temperatures of 450 - 600 ºC, high biomass heating ratess (100 - 2000 K/s), a short gas residence time (less than 2 s) with no presence of oxygen. Fast pyrolysis can convert a large fraction of the biomass to bio-oil, and smaller fractions of char and gas. The pyrolysis centrifuge reactor (PCR) has been developed at th...

  14. 对矿用离心式水泵的操作和维护分析%Analysis of Operation and Maintenance of Mining Centrifugal Pumps

    Institute of Scientific and Technical Information of China (English)

    景忠玉

    2016-01-01

    在矿井建设和生产过程中,离心式水泵承担着排水的重要任务,正确使用以及维护离心式水泵对于矿井的安全生产起着决定性作用。主要分析了离心式水泵的工作原理和工作部件,提出了一系列操作和维护的有效措施。%In the process of mine construction and production ,centrifugal water pumps play an important role in drainage ,the correct use and maintenance of centrifugal water pumps are the decisive factor .This article mainly analyzed the working principle and working parts of centrifugal pumps ,then put forward a series of effective measures for the operation and maintenance of centrifugal pumps .

  15. Tensile behavior of CF8-CPF8-304H and CF8M-CPF8M-316H stainless steel static and centrifugal castings

    Energy Technology Data Exchange (ETDEWEB)

    McEnerney, J.W.; Sikka, V.K.; Booker, M.K.

    1981-10-01

    We have analyzed the tensile behavior of 11 heats of grades CF8-CPF8-304H and 13 heats of grades CF8M-CPF8M-316H static and centrifugal castings from room temperature to 650/sup 0/C. Except for anomalous conditions, the centrifugal castings exhibited uniform composition. All CPF8-304H centrifugal castings contained only radial columnar grains, but some CPF8M-316H castings had columnar, banded, or equiaxed structures. Ultimate tensile strength and total elongation were the properties in which castings showed the most inferiority to wrought material. With increasing ferrite content, 0.2% yield strength and ultimate tensile strength increased while uniform elongation, total elongation, and reduction of area decreased. Although centrifugal castings did not exhibit significant end-to-end variation in tensile behavior, the 0.2% yield strength displayed anisotropy, with axial and circumferential values being greater than radial.

  16. Extreme temperature events analyzed with Fast Fourier Transform

    OpenAIRE

    Saa Requejo, Antonio; Tarquis Alfonso, Ana Maria; García Moreno, Rosario; Diaz Alvarez, Maria Cruz; Burgaz, Fernando

    2011-01-01

    Extreme weather and climate events have received increased attention in the last few years, due to the often large loss of agriculture business and exponentially increasing costs associated with them and insurance planning. This increased attention raises the question as to whether extreme weather and climate events are truly increasing, whether this is only a perceived increase exacerbated by enhanced media coverage, or both. There are a number of ways extreme climate events can be defined, ...

  17. Tropic responses of Phycomyces sporangiophores to gravitational and centrifugal stimuli.

    Science.gov (United States)

    DENNISON, D S

    1961-09-01

    A low-speed centrifuge was used to study the tropic responses of Phycomyces sporangiophores in darkness to the stimulus of combined gravitational and centrifugal forces. If this stimulus is constant the response is a relatively slow tropic reaction, which persists for up to 12 hours. The response is accelerated by increasing the magnitude of the gravitational-centrifugal force. A wholly different tropic response, the transient response, is elicited by an abrupt change in the gravitational-centrifugal stimulus. The transient response has a duration of only about 6 min. but is characterized by a high bending speed (about 5 degrees /min.). An analysis of the distribution of the transient response along the growing zone shows that the active phase of the response has a distribution similar to that of the light sensitivity for the light-growth and phototropic responses. Experiments in which sporangiophores are centrifuged in an inert dense fluid indicate that the sensory mechanism of the transient response is closely related to the physical deformation of the growing zone caused by the action of the gravitational-centrifugal force on the sporangiophore as a whole. However, the response to a steady gravitational-centrifugal force is most likely not connected with this deformation, but is probably triggered by the shifting of regions or particles of differing density relative to one another inside the cell. PMID:13721903

  18. Purification of Sardinella sp., Oil: Centrifugation and Bentonite Adsorbent

    Directory of Open Access Journals (Sweden)

    S.H. Suseno

    2014-01-01

    Full Text Available Centrifugation and purification using adsorbents is one example of a fish oil refining techniques applied to reduce impurities of fish oil. The study aimed to determine the sardine oil quality before treatment, to determine yield of fish oil after centrifugation treatment and to determine the influence of centrifugation speed and bentonite concentration on sardine oil quality. Factorial design with two factors was used in this study. Level of free fatty acid and peroxide value before purification was 35.53% and 170 mEq/kg. Yield of fish oil after centrifugation treatment has been ranged from 17.42±3.56 to 76.33±0.21%. The best treatment which could reduce the peroxide value and total oxidation was a treatment with centrifugation speed at 6500 rpm and bentonite concentration at 3%. Peroxide value and total oxidation of its treatment was 25.00±0.00 and 51.43±0.01 mEq/kg. The lowest value of p-anisidine was 1.29±0.05 mEq/kg and its value could be found in a treatment with centrifugation speed at 4500 rpm and bentonite concentration at 5%. The level of free fatty acid after purification process was ranged from 27.35 to 34.69%. Oil clarity tended to increase with the increase of centrifugation speed and adsorbent concentration.

  19. Separation of Nanoparticles in Aqueous Multiphase Systems through Centrifugation

    KAUST Repository

    Akbulut, Ozge

    2012-08-08

    This paper demonstrates the use of aqueous multiphase systems (MuPSs) as media for rate-zonal centrifugation to separate nanoparticles of different shapes and sizes. The properties of MuPSs do not change with time or during centrifugation; this stability facilitates sample collection after separation. A three-phase system demonstrates the separation of the reaction products (nanorods, nanospheres, and large particles) of a synthesis of gold nanorods, and enriches the nanorods from 48 to 99% in less than ten minutes using a benchtop centrifuge. © 2012 American Chemical Society.

  20. SiO2/polyacrylonitrile membranes via centrifugal spinning as a separator for Li-ion batteries

    Science.gov (United States)

    Yanilmaz, Meltem; Lu, Yao; Li, Ying; Zhang, Xiangwu

    2015-01-01

    Centrifugal spinning is a fast, cost-effective and safe alternative to the electrospinning technique, which is commonly used for making fiber-based separator membranes. In this work, SiO2/polyacrylonitrile (PAN) membranes were produced by using centrifugal spinning and they were characterized by using different electrochemical techniques for use as separators in Li-ion batteries. SiO2/PAN membranes exhibited good wettability and high ionic conductivity due to their highly porous fibrous structure. Compared with commercial microporous polyolefin membranes, SiO2/PAN membranes had larger liquid electrolyte uptake, higher electrochemical oxidation limit, and lower interfacial resistance with lithium. SiO2/PAN membrane separators were assembled into lithium/lithium iron phosphate cells and these cells delivered high capacities and exhibited good cycling performance at room temperature. In addition, cells using SiO2/PAN membranes showed superior C-rate performance compared to those using microporous PP membrane.

  1. Methods for Analyzing Social Media

    DEFF Research Database (Denmark)

    Jensen, Jakob Linaa

    2013-01-01

    Social media is becoming increasingly attractive for users. It is a fast way to communicate ideas and a key source of information. It is therefore one of the most influential mediums of communication of our time and an important area for audience research. The growth of social media invites many...... new questions such as: How can we analyze social media? Can we use traditional audience research methods and apply them to online content? Which new research strategies have been developed? Which ethical research issues and controversies do we have to pay attention to? This book focuses on research...... strategies and methods for analyzing social media and will be of interest to researchers and practitioners using social media, as well as those wanting to keep up to date with the subject....

  2. Axial and Centrifugal Compressor Mean Line Flow Analysis Method

    Science.gov (United States)

    Veres, Joseph P.

    2009-01-01

    This paper describes a method to estimate key aerodynamic parameters of single and multistage axial and centrifugal compressors. This mean-line compressor code COMDES provides the capability of sizing single and multistage compressors quickly during the conceptual design process. Based on the compressible fluid flow equations and the Euler equation, the code can estimate rotor inlet and exit blade angles when run in the design mode. The design point rotor efficiency and stator losses are inputs to the code, and are modeled at off design. When run in the off-design analysis mode, it can be used to generate performance maps based on simple models for losses due to rotor incidence and inlet guide vane reset angle. The code can provide an improved understanding of basic aerodynamic parameters such as diffusion factor, loading levels and incidence, when matching multistage compressor blade rows at design and at part-speed operation. Rotor loading levels and relative velocity ratio are correlated to the onset of compressor surge. NASA Stage 37 and the three-stage NASA 74-A axial compressors were analyzed and the results compared to test data. The code has been used to generate the performance map for the NASA 76-B three-stage axial compressor featuring variable geometry. The compressor stages were aerodynamically matched at off-design speeds by adjusting the variable inlet guide vane and variable stator geometry angles to control the rotor diffusion factor and incidence angles.

  3. Isolation of Methoxyfuranocoumarins From Ammi majus by Centrifugal Partition Chromatography.

    Science.gov (United States)

    Bartnik, Magdalena; Mazurek, Anna Katarzyna

    2016-01-01

    Pure methoxyfuranocoumarins were isolated from Ammi majus L. by use of low-pressure column chromatography (LPCC) followed by centrifugal partition chromatography (CPC). The concentrated petroleum ether extract from fruits of A. majus was fractionated on a silica gel column using a gradient of ethyl acetate in dichloromethane (0-80%, v/v). Coumarin-rich fractions were analyzed by thin-layer chromatography (TLC) and high-performance liquid chromatography with diode array detection (HPLC/DAD). Xanthotoxin (8-MOP) and isopimpinellin (isoP), structurally similar compounds, were isolated in one fraction (FR6). To avoid multistep and long-lasting TLC preparation, optimization of CPC conditions has been performed. In one run, an effective separation of 8-MOP and isoP was achieved. The two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (10 : 8 : 10 : 9; v/v) in an ascending mode (the aqueous phase was a stationary phase, and the organic phase was a mobile phase), with flow rate 3 mL/min and rotation speed 1,600 r.p.m., was used. The identification and high purities of isolated 8-MOP (98.7%) and isoP (100%) were confirmed by HPLC/DAD assay, when compared with standards. The developed CPC method could be applied to the effective isolation of 8-MOP and isoP from plant extracts. The high purity of obtained compounds makes possible further exploitation of these components in biological studies.

  4. Numerical analysis of the internal flow field in screw centrifugal blood pump based on CFD

    Science.gov (United States)

    Han, W.; Han, B. X.; Y Wang, H.; Shen, Z. J.

    2013-12-01

    As to the impeller blood pump, the high speed of the impeller, the local high shear force of the flow field and the flow dead region are the main reasons for blood damage. The screw centrifugal pump can effectively alleviate the problems of the high speed and the high shear stress for the impeller. The softness and non-destructiveness during the transfer process can effectively reduce the extent of the damage. By using CFD software, the characteristics of internal flow are analyzed in the screw centrifugal pump by exploring the distribution rules of the velocity, pressure and shear deformation rate of the blood when it flows through the impeller and the destructive effects of spiral blades on blood. The results show that: the design of magnetic levitation solves the sealing problems; the design of regurgitation holes solves the problem of the flow dead zone; the magnetic levitated microcirculation screw centrifugal pump can effectively avoid the vortex, turbulence and high shear forces generated while the blood is flowing through the pump. Since the distribution rules in the velocity field, pressure field and shear deformation rate of the blood in the blood pump are comparatively uniform and the gradient change is comparatively small, the blood damage is effectively reduced.

  5. Rotordynamic forces generated by discharge-to-suction leakage flows in centrifugal pumps

    Institute of Scientific and Technical Information of China (English)

    LIU Quan-zhong; WANG Hong-jie; LIU Zhan-sheng

    2009-01-01

    In order to investigate the flow-induced vibration in the shroud passage of centrifugal pump and pre-dict rotordynamic forces of centrifugal pump rotor system,an analysis of rotordynamic forces arising from shrou-ded centnlugal pump is presented.CFD techniques were utilized to analyze the full three-dimensional viscous,primary/secondary flow field in a centrifugal pump impeller to determine rotordynamic forces. Multiple quasi-steady solutions of an eccentric three-dimensional model at different whirl frequency ratios yielded the rotordy-namic forces. The skew-symmetric stiffness,damping,and mass matrices were obtained by second-order least-squares analysis.Simulation of the coupled primary/secondary flow field was conducted,and the complex flow characteristcs.in the flow field of a shroud passage were achieved including the mean velocity and pressure,as well as the eddy in a large scale of flow field due to viscosity.The rotordynamic force coefficients were calculat-ed,and the results were in good agreement with those of experiment except for the direct inertial coefficient without the consideration of whirling forces from the impeller primary flow passage.

  6. Optimization of Centrifugal Pump Characteristic Dimensions for Mechanical Circulatory Support Devices.

    Science.gov (United States)

    Korakianitis, Theodosios; Rezaienia, Mohammad A; Paul, Gordon M; Rahideh, Akbar; Rothman, Martin T; Mozafari, Sahand

    2016-01-01

    The application of artificial mechanical pumps as heart assist devices impose power and size limitations on the pumping mechanism, and therefore requires careful optimization of pump characteristics. Typically new pumps are designed by relying on the performance of other previously designed pumps of known performance using concepts of fluid dynamic similarity. Such data are readily available for industrial pumps, which operate in Reynolds numbers region of 10. Heart assist pumps operate in Reynolds numbers of 10. There are few data available for the design of centrifugal pumps in this characteristic range. This article develops specific speed versus specific diameter graphs suitable for the design and optimization of these smaller centrifugal pumps concentrating in dimensions suitable for ventricular assist devices (VADs) and mechanical circulatory support (MCS) devices. A combination of experimental and numerical techniques was used to measure and analyze the performance of 100 optimized pumps designed for this application. The data are presented in the traditional Cordier diagram of nondimensional specific speed versus specific diameter. Using these data, nine efficient designs were selected to be manufactured and tested in different operating conditions of flow, pressure, and rotational speed. The nondimensional results presented in this article enable preliminary design of centrifugal pumps for VADs and MCS devices.

  7. Centrifugal Microfluidic System for Nucleic Acid Amplification and Detection.

    Science.gov (United States)

    Miao, Baogang; Peng, Niancai; Li, Lei; Li, Zheng; Hu, Fei; Zhang, Zengming; Wang, Chaohui

    2015-11-04

    We report here the development of a rapid PCR microfluidic system comprising a double-shaft turntable and centrifugal-based disc that rapidly drives the PCR mixture between chambers set at different temperatures, and the bidirectional flow improved the space utilization of the disc. Three heating resistors and thermistors maintained uniform, specific temperatures for the denaturation, annealing, and extension steps of the PCR. Infrared imaging showed that there was little thermal interference between reaction chambers; the system enabled the cycle number and reaction time of each step to be independently adjusted. To validate the function and efficiency of the centrifugal microfluidic system, a 350-base pair target gene from the hepatitis B virus was amplified and quantitated by fluorescence detection. By optimizing the cycling parameters, the reaction time was reduced to 32 min as compared to 120 min for a commercial PCR machine. DNA samples with concentrations ranging from 10 to 10⁶ copies/mL could be quantitatively analyzed using this system. This centrifugal-based microfluidic platform is a useful system and possesses industrialization potential that can be used for portable diagnostics.

  8. Study of a centrifugal blood pump in a mock loop system.

    Science.gov (United States)

    Uebelhart, Beatriz; da Silva, Bruno Utiyama; Fonseca, Jeison; Bock, Eduardo; Leme, Juliana; da Silva, Cibele; Leão, Tarcísio; Andrade, Aron

    2013-11-01

    An implantable centrifugal blood pump (ICBP) is being developed to be used as a ventricular assist device (VAD) in patients with severe cardiovascular diseases. The ICBP system is composed of a centrifugal pump, a motor, a controller, and a power supply. The electricity source provides power to the controller and to a motor that moves the pump's rotor through magnetic coupling. The centrifugal pump is composed of four parts: external conical house, external base, impeller, and impeller base. The rotor is supported by a pivot bearing system, and its impeller base is responsible for sheltering four permanent magnets. A hybrid cardiovascular simulator (HCS) was used to evaluate the ICBP's performance. A heart failure (HF) (when the heart increases beat frequency to compensate for decrease in blood flow) was simulated in the HCS. The main objective of this work is to analyze changes in physiological parameters such as cardiac output, blood pressure, and heart rate in three situations: healthy heart, HF, and HF with left circulatory assistance by ICBP. The results showed that parameters such as aortic pressure and cardiac output affected by the HF situation returned to normal values when the ICBP was connected to the HCS. In conclusion, the test results showed satisfactory performance for the ICBP as a VAD.

  9. Vibration Characteristics Induced by Cavitation in a Centrifugal Pump with Slope Volute

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    2015-01-01

    Full Text Available Cavitation is one of the instability sources in centrifugal pump, which would cause some unexpected results. The goal of this paper was to analyze the influence of cavitation process on different frequency bands in a centrifugal pump with slope volute. And special attention was paid to low frequency signals, which were often filtered in the reported researches. Results show that at noncavitation condition, vibration level is closely related to flow structure interior pump. At partial flow rates, especially low flow rates, vibration level increases rapidly with the onset of rotating stall. At cavitation condition, it is proved that cavitation process has a significant impact on low frequency signals. With cavitation number decreasing, vibration level first rises to a local maximum, then it drops to a local minimum, and finally it rises again. At different flow rates, vibration trends in variable frequency bands differ obviously. Critical point inferred from vibration level is much larger than that from 3% head drop, which indicates that cavitation occurs much earlier than that reflected in head curve. Also, it is noted that high frequency signals almost increase simultaneously with cavitation occurring, which can be used to detect cavitation in centrifugal pump.

  10. Use of CFD Analyses to Predict Disk Friction Loss of Centrifugal Compressor Impellers

    Science.gov (United States)

    Cho, Leesang; Lee, Seawook; Cho, Jinsoo

    To improve the total efficiency of centrifugal compressors, it is necessary to reduce disk friction loss, which is expressed as the power loss. In this study, to reduce the disk friction loss due to the effect of axial clearance and surface roughness is analyzed and methods to reduce disk friction loss are proposed. The rotating reference frame technique using a commercial CFD tool (FLUENT) is used for steady-state analysis of the centrifugal compressor. Numerical results of the CFD analysis are compared with theoretical results using established experimental empirical equations. The disk friction loss of the impeller is decreased in line with increments in axial clearance until the axial clearance between the impeller disk and the casing is smaller than the boundary layer thickness. In addition, the disk friction loss of the impeller is increased in line with the increments in surface roughness in a similar pattern as that of existing experimental empirical formulas. The disk friction loss of the impeller is more affected by the surface roughness than the change of the axial clearance. To minimize disk friction loss on the centrifugal compressor impeller, the axial clearance and the theoretical boundary layer thickness should be designed to be the same. The design of the impeller requires careful consideration in order to optimize axial clearance and minimize surface roughness.

  11. Optimization of Centrifugal Pump Characteristic Dimensions for Mechanical Circulatory Support Devices.

    Science.gov (United States)

    Korakianitis, Theodosios; Rezaienia, Mohammad A; Paul, Gordon M; Rahideh, Akbar; Rothman, Martin T; Mozafari, Sahand

    2016-01-01

    The application of artificial mechanical pumps as heart assist devices impose power and size limitations on the pumping mechanism, and therefore requires careful optimization of pump characteristics. Typically new pumps are designed by relying on the performance of other previously designed pumps of known performance using concepts of fluid dynamic similarity. Such data are readily available for industrial pumps, which operate in Reynolds numbers region of 10. Heart assist pumps operate in Reynolds numbers of 10. There are few data available for the design of centrifugal pumps in this characteristic range. This article develops specific speed versus specific diameter graphs suitable for the design and optimization of these smaller centrifugal pumps concentrating in dimensions suitable for ventricular assist devices (VADs) and mechanical circulatory support (MCS) devices. A combination of experimental and numerical techniques was used to measure and analyze the performance of 100 optimized pumps designed for this application. The data are presented in the traditional Cordier diagram of nondimensional specific speed versus specific diameter. Using these data, nine efficient designs were selected to be manufactured and tested in different operating conditions of flow, pressure, and rotational speed. The nondimensional results presented in this article enable preliminary design of centrifugal pumps for VADs and MCS devices. PMID:27258221

  12. Blade design loads on the flow exciting force in centrifugal pump

    Science.gov (United States)

    Xu, Y.; Yang, A. L.; Langand, D. P.; Dai, R.

    2012-11-01

    The three-dimensional viscous flow field of two centrifugal pumps, which have the same volute, design head, design flow rate and rotational speed but the blade design load, are analyzed based on large eddy simulation. The comparisons are implemented including the hydraulic efficiencies, flow field characteristics, pressure pulsations and unsteady forces applied on the impellers to investigate the effect of the design blade load on hydraulic performance and flow exciting force. The numerical results show that the efficiency of the pump, the impeller blade of which has larger design load, is improved by 1.1%~2.9% compared to the centrifugal pump with lower blade design load. The pressure fluctuation of the pump with high design load is more remarkable. Its maximum amplitude of coefficient of static pressure is higher by 43% than the latter. At the same time the amplitude of unsteady radial force is increased by 11.6% in the time domain. The results also imply that the blade design load is an important factor on the excitation force in centrifugal pumps.

  13. Confusion around the tidal force and the centrifugal force

    CERN Document Server

    Matsuda, Takuya; Boffin, Henri M J

    2015-01-01

    We discuss the tidal force, whose notion is sometimes misunderstood in the public domain literature. We discuss the tidal force exerted by a secondary point mass on an extended primary body such as the Earth. The tidal force arises because the gravitational force exerted on the extended body by the secondary mass is not uniform across the primary. In the derivation of the tidal force, the non-uniformity of the gravity is essential, and inertial forces such as the centrifugal force are not needed. Nevertheless, it is often asserted that the tidal force can be explained by the centrifugal force. If we literally take into account the centrifugal force, it would mislead us. We therefore also discuss the proper treatment of the centrifugal force.

  14. Experimental study on cavitation in centrifugal pump impellers

    International Nuclear Information System (INIS)

    Investigations concerning cavitation in centrifugal impellers were carried out in a closed circuit. The value of net positive suction head (NPSH) at different head drops and at breakdown were used to verify the affinity laws

  15. MULTIOBJECT OPTIMIZATION OF A CENTRIFUGAL IMPELLER USING EVOLUTIONARY ALGORITHMS

    Institute of Scientific and Technical Information of China (English)

    Li Jun; Liu Lijun; Feng Zhenping

    2004-01-01

    Application of the multiobjective evolutionary algorithms to the aerodynamic optimization design of a centrifugal impeller is presented. The aerodynamic performance of a centrifugal impeller is evaluated by using the three-dimensional Navier-Stokes solutions. The typical centrifugal impeller is redesigned for maximization of the pressure rise and blade load and minimization of the rotational total pressure loss at the given flow conditions. The B閦ier curves are used to parameterize the three-dimensional impeller blade shape. The present method obtains many reasonable Pareto optimal designs that outperform the original centrifugal impeller. Detailed observation of the certain Pareto optimal design demonstrates the feasibility of the present multiobjective optimization method tool for turbomachinery design.

  16. TECHNOLOGY EVALUATION REPORT: RETECH'S PLASMA CENTRIFUGAL FURNACE - VOLUME I

    Science.gov (United States)

    A demonstration of the Retech, Inc. Plasma Centrifugal Furnace (PCF) was conducted under the Superfund Innovative Technology Evaluation (SITE) Program at the Department of Energy's (DOE's) Component Development and Integration Facility in Butte, Montana. The furnace uses heat gen...

  17. Centrifuging Step-Screw Conveyor for Regolith Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A variety of ISRU operations will utilize lunar regolith as feedstock. The proposed centrifuging step-screw conveyor concept will provide a well controlled robust,...

  18. Fluent-based numerical simulation of flow centrifugal fan

    Institute of Scientific and Technical Information of China (English)

    LI Xian-zhang

    2011-01-01

    Testing centrifugal fan flow field by physical laboratory is difficult because the testing system is complex and the workload is heavy, and the results observed by naked-eye deviates far from the actual value. To address this problem, the computational fluid dynamics software FLUENT was applied to establish three-dimensional model of the centrifugal fan. The numeral model was verified by comparing simulation data to experimental data. The pressure centrifugal fan and the speed changes in distribution in centrifugal fan was simulated by computational fluid dynamics software FLUENT. The simulation results show that the gas flow velocity in the impeller increases with impeller radius increase. Static pressure gradually increases when gas from the fan access is imported through fan impeller leaving fans.

  19. Investigation on complete characteristics and hydraulic transient of centrifugal pump

    International Nuclear Information System (INIS)

    An improved method was developed to obtain the complete characteristic of centrifugal pump. The conversion formula of complete characteristics is established based on the normal performance curve. An example was presented to illuminate the new method, and the complete characteristic curves of 14SA-10 centrifugal pump were obtained by the new method. The hydraulic transient of the centrifugal pump failure and start-up was simulated by method of characteristics (MOC), which quote the complete characteristics data. The results show that the inversion method is available to obtain the complete pump characteristic curves provided the normal performance curve. For hydraulic transient simulation, more accurate numerical result can be obtained, if the new model is adopted to convert the experimental normal performance curve to complete characteristics curve of centrifugal pump

  20. Measurement of ground shock in explosive centrifuge model tests

    International Nuclear Information System (INIS)

    Los Alamos National Laboratory has begun a project to simulate the formation and collapse of underground cavities produced by nuclear explosions using chemical explosions at much smaller scale on a large geotechnical centrifuge. Use of a centrifuge for this project presents instrumentation challenges which are not encountered in tests at similar scale off of the centrifuge. Electromagnetic velocity measuring methods which have been very successfully applied to such models at 1 g would be very difficult, if not impossible, to implement at 100 g. We are investigating the feasibility of other techniques for monitoring the ground shock in small-scale tests including accelerometers, stress gauges, dynamic strain meters and small, mutual-inductance particle velocity gauges. Initial results indicate that some of these techniques can be adapted for centrifuge applications. 17 references, 4 figures

  1. Application of Vane Cutting of Centrifugal Pump to Save Energy%离心泵叶轮切削节能改造应用

    Institute of Scientific and Technical Information of China (English)

    杨程; 杨东旭; 王长友

    2014-01-01

    Due to difference between the design of centrifugal pump and production op-eration of the thermal power plant, operation and equipment modification of the water pump led to deviation of the centrifugal pump performance curve from high efficiency range, result-ing in big waste of electricity. Thus the performance parameters of the centrifugal pump needed to be corrected with minimum replacement of parts and minimum cost. A fast and reliable energy saving method for the centrifugal pump was obtained by experiment of turning of centrifugal pump vanes to modify operation condition.%由于离心泵设计与热电厂生产运行中的差距,在水泵运行和设备改造带来了离心泵性能曲线与高效区的偏离,带来了电能的极大浪费,这就需要通过更改最少的部件和最低的成本,使离心泵性能参数得到校正。通过车削离心泵叶轮切割的试验及方法,改变运行工况,得出快捷、可靠的离心泵节能方法。

  2. Central centrifugal cicatricial alopecia: challenges and solutions.

    Science.gov (United States)

    Herskovitz, Ingrid; Miteva, Mariya

    2016-01-01

    Central centrifugal cicatricial alopecia (CCCA) is the most common scarring alopecia among African American women. Data about epidemiology, etiology, genetic inheritance, and management are scarce and come from individual reports or small series. CCCA has been associated with hot combing and traumatic hair styling for years; however, studies fail to confirm it as the sole etiologic factor. It has been shown in a small series that CCCA can be inherited in an autosomal dominant fashion, with a partial penetrance and a strong modifying effect of hairstyling and sex. CCCA presents clinically as a central area of progressive irreversible hair loss that expands to the periphery. A patchy form has also been described. Dermoscopy is helpful to identify the optimal site for the biopsy, which establishes the diagnosis. Well-designed randomized controlled trials are needed to discover the optimal management. At this point, patients are advised to avoid traction and chemical treatments; topical and intralesional steroids, calcineurin inhibitors, and minoxidil can be helpful in halting the progression. PMID:27574457

  3. Failure analysis of a polymer centrifugal impeller

    Directory of Open Access Journals (Sweden)

    Nikhil K. Kar

    2015-10-01

    Full Text Available A failure analysis investigation was performed on a fractured polymer impeller used in a respiratory blower. Light microscopy, scanning electron microscopy and finite element analysis techniques were utilized to characterize the mode(s of failure and fracture surfaces. A radial split down the impeller center was observed with symmetric fracture faces about the impeller bore. Fractographic analysis revealed brittle fracture features including Wallner lines, mirror, mist and hackle features stemming from the impeller bore, emanating radially outward. Crazed fibrils and faint fatigue striations suggest that intermittent load cycling led to initiation, and rapid propagation of multiple crack fronts originating along the impeller lip. Finite element analysis revealed a flexural condition induces localized stresses along the impeller lip. Significant wear features were also observed within the impeller bore, which may have contributed to premature failure of the impeller. The brittle fracture morphology and defects within the impeller bore suggest that premature failure occurred because of multiple interacting factors including: intermittently high centrifugal velocities, imbalance bore and shaft conditions, defects within the bore caused by machining, and stress concentrations along the circumference of the impeller lip.

  4. Investigation of Flow in a Centrifugal Pump

    Science.gov (United States)

    Fischer, Karl

    1946-01-01

    The investigation of the flow in a centrifugal pump indicated that the flow patterns in frictional fluid are fundamentally different from those in frictionless fluid. In particular, the dead air space adhering to the section side undoubtedly causes a reduction of the theoretically possible delivery head. The velocity distribution over a parallel circle is also subjected to a noticeable change as a result of the incomplete filling of the passages. The relative velocity on the pressure side of the vane, which for passages completely filled with active flow would differ little from zero even at comparatively lower than normal delivery volume, is increased, so that no rapid reverse flow occurs on the pressure side of the vane even for smaller delivery volume. It was established, further, that the flow ceases to be stationary for very small quantities of water. The inflow to the impeller can be regarded as radial for the operating range an question. The velocity triangles at the exit are subjected to a significant alteration in shape ae a result of the increased peripheral velocity, which may be of particular importance in the determination of the guide vane entrance angle.

  5. Central centrifugal cicatricial alopecia: challenges and solutions.

    Science.gov (United States)

    Herskovitz, Ingrid; Miteva, Mariya

    2016-01-01

    Central centrifugal cicatricial alopecia (CCCA) is the most common scarring alopecia among African American women. Data about epidemiology, etiology, genetic inheritance, and management are scarce and come from individual reports or small series. CCCA has been associated with hot combing and traumatic hair styling for years; however, studies fail to confirm it as the sole etiologic factor. It has been shown in a small series that CCCA can be inherited in an autosomal dominant fashion, with a partial penetrance and a strong modifying effect of hairstyling and sex. CCCA presents clinically as a central area of progressive irreversible hair loss that expands to the periphery. A patchy form has also been described. Dermoscopy is helpful to identify the optimal site for the biopsy, which establishes the diagnosis. Well-designed randomized controlled trials are needed to discover the optimal management. At this point, patients are advised to avoid traction and chemical treatments; topical and intralesional steroids, calcineurin inhibitors, and minoxidil can be helpful in halting the progression.

  6. Central centrifugal cicatricial alopecia: challenges and solutions

    Directory of Open Access Journals (Sweden)

    Herskovitz I

    2016-08-01

    Full Text Available Ingrid Herskovitz, Mariya Miteva Department of Dermatology and Cutaneous Surgery, University of Miami L Miller School of Medicine, Miami, FL, USA Abstract: Central centrifugal cicatricial alopecia (CCCA is the most common scarring alopecia among African American women. Data about epidemiology, etiology, genetic inheritance, and management are scarce and come from individual reports or small series. CCCA has been associated with hot combing and traumatic hair styling for years; however, studies fail to confirm it as the sole etiologic factor. It has been shown in a small series that CCCA can be inherited in an autosomal dominant fashion, with a partial penetrance and a strong modifying effect of hairstyling and sex. CCCA presents clinically as a central area of progressive irreversible hair loss that expands to the periphery. A patchy form has also been described. Dermoscopy is helpful to identify the optimal site for the biopsy, which establishes the diagnosis. Well-designed randomized controlled trials are needed to discover the optimal management. At this point, patients are advised to avoid traction and chemical treatments; topical and intralesional steroids, calcineurin inhibitors, and minoxidil can be helpful in halting the progression. Keywords: hair loss, alopecia, dermatoscopy, dermoscopy, trichoscopy, black scalp, African American, scarring alopecia

  7. Centrifugal Liquid/Gas Separator With Phase Detectors

    Science.gov (United States)

    Schneider, Steven J.

    1994-01-01

    Centrifugal liquid/gas separator that includes phase (liquid or gas) detectors helps ensure exclusiveness of each phase at its assigned outlet. Acoustic sensors in centrifugal liquid/gas separator measure speeds of sound in nominally pure liquid and nominally pure gas at liquid and gas outlets respectively. When speed of sound is that of pure liquid or gas, valve opens to let liquid or gas flow out.

  8. Design Method for Channel Diffusers of Centrifugal Compressors

    OpenAIRE

    Mykola Kalinkevych; Andriy Skoryk

    2013-01-01

    The design method for channel diffusers of centrifugal compressors, which is based on the solving of the inverse problem of gas dynamics, is presented in the paper. The concept of the design is to provide high pressure recovery of the diffuser by assuming the preseparation condition of the boundary layer along one of the channel surfaces. The channel diffuser was designed with the use of developed method to replace the vaned diffuser of the centrifugal compressor model stage. The numerical si...

  9. Design and Characterization of a Centrifugal Compressor Surge Test Rig

    OpenAIRE

    Kin Tien Lim; Se Young Yoon; Christopher P. Goyne; Zongli Lin; Allaire, Paul E.

    2011-01-01

    A detailed description of a new centrifugal compressor surge test rig is presented. The objective of the design and development of the rig is to study the surge phenomenon in centrifugal compression systems and to investigate a novel method of surge control by active magnetic bearing servo actuation of the impeller axial tip clearance. In this paper, we focus on the design, initial setup, and testing of the rig. The latter two include the commissioning of the rig and the experimental characte...

  10. Non Adiabatic Centrifugal Compressor Gas Dynamic Performance Definition

    OpenAIRE

    Soldatova, Kristina

    2014-01-01

    Most centrifugal compressors operate in conditions with negligible heat transfer (adiabatic compression). Their plant tests conditions are similar or close to adiabatic conditions. Test regulations establish measures to diminish influence of a heat transfer “compressor body – atmospheric air” to an exit temperature. Therefore a temperature rise in a compressor is used to calculate a work input coefficient and efficiency. Unlike it high pressure centrifugal compressors of gas turbines and supe...

  11. Investigation of CFD calculation method of a centrifugal pump with unshrouded impeller

    Science.gov (United States)

    Wu, Dazhuan; Yang, Shuai; Xu, Binjie; Liu, Qiaoling; Wu, Peng; Wang, Leqin

    2014-03-01

    Currently, relatively large errors are found in numerical results in some low-specific-speed centrifugal pumps with unshrouded impeller because the effect of clearances and holes are not accurately modeled. Establishing an accurate analytical model to improve performance prediction accuracy is therefore necessary. In this paper, a three-dimensional numerical simulation is conducted to predict the performance of a low-specific-speed centrifugal pump, and the modeling, numerical scheme, and turbulent selection methods are discussed. The pump performance is tested in a model pump test bench, and flow rate, head, power and efficiency of the pump are obtained. The effect of taking into consideration the back-out vane passage, clearance, and balance holes is analyzed by comparing it with experimental results, and the performance prediction methods are validated by experiments. The analysis results show that the pump performance can be accurately predicted by the improved method. Ignoring the back-out vane passage in the calculation model of unshrouded impeller is found to generate better numerical results. Further, the calculation model with the clearances and balance holes can obviously enhance the numerical accuracy. The application of disconnect interface can reduce meshing difficulty but increase the calculation error at the off-design operating point at the same time. Compared with the standard k-ɛ, renormalization group k-ɛ, and Spalart-Allmars models, the Realizable k-ɛ model demonstrates the fastest convergent speed and the highest precision for the unshrouded impeller flow simulation. The proposed modeling and numerical simulation methods can improve the performance prediction accuracy of the low-specific-speed centrifugal pumps, and the modeling method is especially suitable for the centrifugal pump with unshrouded impeller.

  12. Analysis and Improvement of Centrifugal Pump Com-mon Fault%关于离心泵常见故障的解析和改进

    Institute of Scientific and Technical Information of China (English)

    吴正军

    2014-01-01

    In recent years , with the progress and development of petroleum industry , centrifugal pumps as common oil equipment , often appear some fault in the production process and affect work efficiency . Therefore , strengthening centrifugal pumps common breakdown maintenance and doing a good job management are very important . This article mainly analyzes common faults of centrifugal pump in using process , expounds the importance of strengthening centrifugal pump maintenance and repair , and put forward some maintenance techniques and methods in accordance with present research and analysis on the common problem of centrifugal pump , hoping that through such analysis and research , it can realize the strategic target for optimization of centrifugal pump efficiency .%本文主要分析了离心泵在使用过程中常见的故障,阐述了加强离心泵维护和修理的重要性,提出一些离心泵检维修技术和方法。希望通过本文的分析、研究,能实现优化离心泵运行效率的战略目标。

  13. Centrifugal potential energy : an astounding renewable energy concept

    Energy Technology Data Exchange (ETDEWEB)

    Oduniyi, I.A. [Aled Conglomerate Nigeria Ltd., Lagos (Nigeria)

    2010-07-01

    A new energy concept known as centrifugal potential energy was discussed. This new energy concept is capable of increasing the pressure, temperature and enthalpy of a fluid, without having to apply work or heat transfer to the fluid. It occurs through a change in the centrifugal potential energy of the flowing fluid in a rotating frame of reference or a centrifugal force field, where work is performed internally by the centrifugal weight of the fluid. This energy concept has resulted in new energy equations, such as the Rotational Frame Bernoulli's Equation for liquids and the Rotational Frame Steady-Flow Energy Equation for gases. Applications of these equations have been incorporated into the design of centrifugal field pumps and compressors. Rather than compressing a fluid with a physical load transfer, these devices can compress a fluid via the effect of centrifugal force applied to the object. A large amount of energy is therefore produced when this high pressure compressed working fluid expands in a turbine. When water is used as the working fluid, it could reach renewable energy densities in the range of 25-100 kJ/kg of water. When atmospheric air is used, it could reach energy densities in the range of 500-1,500 kJ/kg of air.

  14. A wireless centrifuge force microscope (CFM) enables multiplexed single-molecule experiments in a commercial centrifuge

    Science.gov (United States)

    Hoang, Tony; Patel, Dhruv S.; Halvorsen, Ken

    2016-08-01

    The centrifuge force microscope (CFM) was recently introduced as a platform for massively parallel single-molecule manipulation and analysis. Here we developed a low-cost and self-contained CFM module that works directly within a commercial centrifuge, greatly improving accessibility and ease of use. Our instrument incorporates research grade video microscopy, a power source, a computer, and wireless transmission capability to simultaneously monitor many individually tethered microspheres. We validated the instrument by performing single-molecule force shearing of short DNA duplexes. For a 7 bp duplex, we observed over 1000 dissociation events due to force dependent shearing from 2 pN to 12 pN with dissociation times in the range of 10-100 s. We extended the measurement to a 10 bp duplex, applying a 12 pN force clamp and directly observing single-molecule dissociation over an 85 min experiment. Our new CFM module facilitates simple and inexpensive experiments that dramatically improve access to single-molecule analysis.

  15. A wireless centrifuge force microscope (CFM) enables multiplexed single-molecule experiments in a commercial centrifuge.

    Science.gov (United States)

    Hoang, Tony; Patel, Dhruv S; Halvorsen, Ken

    2016-08-01

    The centrifuge force microscope (CFM) was recently introduced as a platform for massively parallel single-molecule manipulation and analysis. Here we developed a low-cost and self-contained CFM module that works directly within a commercial centrifuge, greatly improving accessibility and ease of use. Our instrument incorporates research grade video microscopy, a power source, a computer, and wireless transmission capability to simultaneously monitor many individually tethered microspheres. We validated the instrument by performing single-molecule force shearing of short DNA duplexes. For a 7 bp duplex, we observed over 1000 dissociation events due to force dependent shearing from 2 pN to 12 pN with dissociation times in the range of 10-100 s. We extended the measurement to a 10 bp duplex, applying a 12 pN force clamp and directly observing single-molecule dissociation over an 85 min experiment. Our new CFM module facilitates simple and inexpensive experiments that dramatically improve access to single-molecule analysis. PMID:27587129

  16. Parametric representation of centrifugal pump homologous curves

    Energy Technology Data Exchange (ETDEWEB)

    Veloso, Marcelo A.; Mattos, Joao R.L. de, E-mail: velosom@cdtn.br, E-mail: jrmattos@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    Essential for any mathematical model designed to simulate flow transient events caused by pump operations is the pump performance data. The performance of a centrifugal pump is characterized by four basic quantities: the rotational speed, the volumetric flow rate, the dynamic head, and the hydraulic torque. The curves showing the relationships between these four variables are called the pump characteristic curves. The characteristic curves are empirically developed by the pump manufacturer and uniquely describe head and torque as functions of volumetric flow rate and rotation speed. Because of comprising a large amount of points, this configuration is not suitable for computational purposes. However, it can be converted to a simpler form by the development of the homologous curves, in which dynamic head and hydraulic torque ratios are expressed as functions of volumetric flow and rotation speed ratios. The numerical use of the complete set of homologous curves requires specification of sixteen partial curves, being eight for the dynamic head and eight for the hydraulic torque. As a consequence, the handling of homologous curves is still somewhat complicated. In solving flow transient problems that require the pump characteristic data for all the operation zones, the parametric form appears as the simplest way to deal with the homologous curves. In this approach, the complete characteristics of a pump can be described by only two closed curves, one for the dynamic head and other for the hydraulic torque, both in function of a single angular coordinate defined adequately in terms of the quotient between volumetric flow ratio and rotation speed ratio. The usefulness and advantages of this alternative method are demonstrated through a practical example in which the homologous curves for a pump of the type used in the main coolant loops of a pressurized water reactor (PWR) are transformed to the parametric form. (author)

  17. Isolation of Guttiferones from Renewable Parts of Symphonia globulifera by Centrifugal Partition Chromatography.

    Science.gov (United States)

    Cottet, Kevin; Fromentin, Yann; Kritsanida, Marina; Grougnet, Raphaël; Odonne, Guillaume; Duplais, Christophe; Michel, Sylvie; Lallemand, Marie-Christine

    2015-11-01

    The aim of this study was to investigate the species Symphonia globulifera, a source of polycyclic polyprenylated acyl phloroglucinols such as guttiferone A, which is known to exhibit a variety of biological activities including noticeable antileishmanial properties. Our goal was the identification and the quantification of guttiferone A in different renewable parts of S. globulifera and its preparative isolation. To the best of our knowledge, there is no data concerning its mechanism of action. Consequently, it is particularly interesting to isolate it in gram quantities in order to establish structure activity relationship studies. After performing high-performance liquid chromatography profiles detecting the presence of guttiferone A and proceeding to its quantification, a centrifugal partition chromatography methodology using a two-phase solvent system of cyclohexane/ethyl acetate/methanol/water (20 :  1 :  20 : 1, v/v/v/v) was applied to each extract. In conclusion, a centrifugal partition chromatography system has been developed to ensure a fast, reliable, and scalable way to isolate, with a high level of purity, guttiferone A from five renewable parts of S. globulifera. Moreover, this methodology can be extended to the isolation of other polycyclic polyprenylated acyl phloroglucinols such as guttiferones B, C, and D. PMID:26393938

  18. Numerical simulation of dynamic flow characteristics in a centrifugal water pump with three-vaned diffuser

    Directory of Open Access Journals (Sweden)

    Zhi-Jun Shuai

    2015-08-01

    Full Text Available The complex three-dimensional turbulent flow field in a centrifugal water pump with three asymmetrical diffusers was numerically simulated. The characteristics of pressure and force fluctuations inside the model pump were investigated. Fast Fourier transformation was performed to obtain the spectra of pressure and force fluctuations. It indicates that the dominant frequency of pressure fluctuations is the blade passing frequency in all the sub-domains inside the pump and the first blade passing frequency energy (first order of blade passing frequency is the most significant. The dominant frequency of pressure fluctuations at the location of diffuser outlet is featured by low frequency (less than 1 Hz, which may be due to the locally generated eddy structures. Besides, the dominant frequency force fluctuations on the impeller blades are also the blade passing frequency. The existence of the three asymmetrical diffusers has damping effect on the pressure fluctuation amplitude and energy amplitude of pressure fluctuations in the diffuser domain dramatically, which indicates that the diffusers can effectively control the hydraulically excited vibration in the pump. Besides, the prediction of the dominant frequency of pressure fluctuations inside the pump can help to utilize the pump effectively and to extend the pump life. The main findings of this work can provide prediction of the pump performance and information for further optimal design of centrifugal pumps as well.

  19. A sedimentation study of graphene oxide in aqueous solution using gradient differential centrifugation.

    Science.gov (United States)

    Huang, Jing-Jing; Yuan, Yong J

    2016-04-28

    This work involved the study of sedimentation of graphene oxide (GO) in aqueous solution by gradient differential centrifugation. GO sheets of size varying from 400 nm to 1100 nm were separated with layer numbers ranging from 2-17. Semiquantitative analysis of FT-IR spectra was conducted based on statistical variance, in which relative oxidation and hydration degrees were numeralized. Combining XRD, optical microscopy and particle size measurements, the dominant effects of hydration and d-spacing on GO sediment in aqueous solution were observed. However, lateral particle shifting showed a relatively insignificant influence even though it has much larger effects on the GO weight compared with the GO thickness. Highly oxidized GO sheets were highly hydrated and had the tendency to face more severe resistance in aqueous sedimentation. Larger d-spacing allowed more water molecules to enter into interlayers and thus improved the degree of hydration, the lower density and the lower sedimentation velocity of GO sheets. However, fast sedimentation could be found in both large and small GO sheets due to the relatively non-dominant effect from lateral size shifting. The underlying mechanism was further probed by the mathematical modeling process. Our study reveals the potential limitations of current theory for explaining GO sedimentation and also demonstrates the effectiveness of gradient differential centrifugation for sorting GO sheets varying in hydration degree and thickness. PMID:27086748

  20. Effects of centrifugal modification of magnetohydrodynamic equilibrium on resistive wall mode stability

    Science.gov (United States)

    Shiraishi, J.; Aiba, N.; Miyato, N.; Yagi, M.

    2014-08-01

    Toroidal rotation effects are self-consistently taken into account not only in the linear magnetohydrodynamic (MHD) stability analysis but also in the equilibrium calculation. The MHD equilibrium computation is affected by centrifugal force due to the toroidal rotation. To study the toroidal rotation effects on resistive wall modes (RWMs), a new code has been developed. The RWMaC modules, which solve the electromagnetic dynamics in vacuum and the resistive wall, have been implemented in the MINERVA code, which solves the Frieman-Rotenberg equation that describes the linear ideal MHD dynamics in a rotating plasma. It is shown that modification of MHD equilibrium by the centrifugal force significantly reduces growth rates of RWMs with fast rotation in the order of M2 = 0.1 where M is the Mach number. Moreover, it can open a stable window which does not exist under the assumption that the rotation affects only the linear dynamics. The rotation modifies the equilibrium pressure gradient and current density profiles, which results in the change of potential energy including rotational effects.

  1. Quantitative Index and Abnormal Alarm Strategy Using Sensor-Dependent Vibration Data for Blade Crack Identification in Centrifugal Booster Fans.

    Science.gov (United States)

    Chen, Jinglong; Sun, Hailiang; Wang, Shuai; He, Zhengjia

    2016-01-01

    Centrifugal booster fans are important equipment used to recover blast furnace gas (BFG) for generating electricity, but blade crack faults (BCFs) in centrifugal booster fans can lead to unscheduled breakdowns and potentially serious accidents, so in this work quantitative fault identification and an abnormal alarm strategy based on acquired historical sensor-dependent vibration data is proposed for implementing condition-based maintenance for this type of equipment. Firstly, three group dependent sensors are installed to acquire running condition data. Then a discrete spectrum interpolation method and short time Fourier transform (STFT) are applied to preliminarily identify the running data in the sensor-dependent vibration data. As a result a quantitative identification and abnormal alarm strategy based on compound indexes including the largest Lyapunov exponent and relative energy ratio at the second harmonic frequency component is proposed. Then for validation the proposed blade crack quantitative identification and abnormality alarm strategy is applied to analyze acquired experimental data for centrifugal booster fans and it has successfully identified incipient blade crack faults. In addition, the related mathematical modelling work is also introduced to investigate the effects of mistuning and cracks on the vibration features of centrifugal impellers and to explore effective techniques for crack detection. PMID:27171083

  2. Quantitative Index and Abnormal Alarm Strategy Using Sensor-Dependent Vibration Data for Blade Crack Identification in Centrifugal Booster Fans

    Directory of Open Access Journals (Sweden)

    Jinglong Chen

    2016-05-01

    Full Text Available Centrifugal booster fans are important equipment used to recover blast furnace gas (BFG for generating electricity, but blade crack faults (BCFs in centrifugal booster fans can lead to unscheduled breakdowns and potentially serious accidents, so in this work quantitative fault identification and an abnormal alarm strategy based on acquired historical sensor-dependent vibration data is proposed for implementing condition-based maintenance for this type of equipment. Firstly, three group dependent sensors are installed to acquire running condition data. Then a discrete spectrum interpolation method and short time Fourier transform (STFT are applied to preliminarily identify the running data in the sensor-dependent vibration data. As a result a quantitative identification and abnormal alarm strategy based on compound indexes including the largest Lyapunov exponent and relative energy ratio at the second harmonic frequency component is proposed. Then for validation the proposed blade crack quantitative identification and abnormality alarm strategy is applied to analyze acquired experimental data for centrifugal booster fans and it has successfully identified incipient blade crack faults. In addition, the related mathematical modelling work is also introduced to investigate the effects of mistuning and cracks on the vibration features of centrifugal impellers and to explore effective techniques for crack detection.

  3. Quantitative Index and Abnormal Alarm Strategy Using Sensor-Dependent Vibration Data for Blade Crack Identification in Centrifugal Booster Fans.

    Science.gov (United States)

    Chen, Jinglong; Sun, Hailiang; Wang, Shuai; He, Zhengjia

    2016-05-09

    Centrifugal booster fans are important equipment used to recover blast furnace gas (BFG) for generating electricity, but blade crack faults (BCFs) in centrifugal booster fans can lead to unscheduled breakdowns and potentially serious accidents, so in this work quantitative fault identification and an abnormal alarm strategy based on acquired historical sensor-dependent vibration data is proposed for implementing condition-based maintenance for this type of equipment. Firstly, three group dependent sensors are installed to acquire running condition data. Then a discrete spectrum interpolation method and short time Fourier transform (STFT) are applied to preliminarily identify the running data in the sensor-dependent vibration data. As a result a quantitative identification and abnormal alarm strategy based on compound indexes including the largest Lyapunov exponent and relative energy ratio at the second harmonic frequency component is proposed. Then for validation the proposed blade crack quantitative identification and abnormality alarm strategy is applied to analyze acquired experimental data for centrifugal booster fans and it has successfully identified incipient blade crack faults. In addition, the related mathematical modelling work is also introduced to investigate the effects of mistuning and cracks on the vibration features of centrifugal impellers and to explore effective techniques for crack detection.

  4. Quantitative Index and Abnormal Alarm Strategy Using Sensor-Dependent Vibration Data for Blade Crack Identification in Centrifugal Booster Fans

    Science.gov (United States)

    Chen, Jinglong; Sun, Hailiang; Wang, Shuai; He, Zhengjia

    2016-01-01

    Centrifugal booster fans are important equipment used to recover blast furnace gas (BFG) for generating electricity, but blade crack faults (BCFs) in centrifugal booster fans can lead to unscheduled breakdowns and potentially serious accidents, so in this work quantitative fault identification and an abnormal alarm strategy based on acquired historical sensor-dependent vibration data is proposed for implementing condition-based maintenance for this type of equipment. Firstly, three group dependent sensors are installed to acquire running condition data. Then a discrete spectrum interpolation method and short time Fourier transform (STFT) are applied to preliminarily identify the running data in the sensor-dependent vibration data. As a result a quantitative identification and abnormal alarm strategy based on compound indexes including the largest Lyapunov exponent and relative energy ratio at the second harmonic frequency component is proposed. Then for validation the proposed blade crack quantitative identification and abnormality alarm strategy is applied to analyze acquired experimental data for centrifugal booster fans and it has successfully identified incipient blade crack faults. In addition, the related mathematical modelling work is also introduced to investigate the effects of mistuning and cracks on the vibration features of centrifugal impellers and to explore effective techniques for crack detection. PMID:27171083

  5. Numerical investigation of influence of tip leakage flow on secondary flow in transonic centrifugal compressor at design condition

    Science.gov (United States)

    Kaneko, Masanao; Tsujita, Hoshio

    2015-04-01

    In a centrifugal compressor, the leakage flow through the tip clearance generates the tip leakage vortex by the interaction with the main flow, and consequently makes the flow in the impeller passage more complex by the interaction with the passage vortex. In addition, the tip leakage vortex interacts with the shock wave on the suction surface near the blade tip in the transonic centrifugal compressor impeller. Therefore, the detailed examination for the influence of the tip leakage vortex becomes seriously important to improve the aerodynamic performance especially for the transonic centrifugal compressor. In this study, the flows in the transonic centrifugal compressor with and without the tip clearance at the design condition were analyzed numerically by using the commercial CFD code. The computed results revealed that the tip leakage vortex induced by the high loading at the blade tip around the leading edge affected the loss generation by the reduction or the suppression of the shock wave on the suction surface of the blade.

  6. Holographic analysis of the microstructure of atomized liquid issuing from centrifugal injectors

    Science.gov (United States)

    Weclas, M.

    Holographs of sprays of atomized water issuing from centrifugal injectors have been analyzed, and the results are reported. The atomization spectrum was characterized by the presence of a principal maximum of distribution and distinct local maxima. Those extremum values occurred for the same droplet diameters, independently of the size of the injector and of the supply pressure. The character of the spectrum is independent of the distance from the injector outlet at any cross section of the spray. Most of the droplets are 20 to 60 microns in diameter, and the number of droplets within the 60 to 280 micron interval increases with increasing supply pressure.

  7. Study on rotational frequency noise in a centrifugal compressor for automobile turbochargers

    Science.gov (United States)

    Wakaki, Daichi; Sakuka, Yuta; Yamasaki, Nobuhiko; Yamagata, Akihiro

    2014-02-01

    The rotational frequency noise (also known as the pulsation noise) due to the mistuning of impeller blade rows introduced at the manufacturing stage of the impellers is observed in the small-sized centrifugal compressor for automobile turbochargers. The present paper addresses the elucidation of the generating mechanism and parameter dependency such as the kind and degree of mistuning. In order to analyze numerically the rotational frequency noise due to mistuning, the unsteady computational fluid dynamics (CFD) of the whole compressor including volute is executed, and the resultant time history of the pressure is fed into the spectral analysis.

  8. Flow in the Low Specific Speed Centrifugal Pump with Circular Casing

    OpenAIRE

    Matsui, Jun; Kurokawa, Junichi; Choi, Young-Do; Nishino, Kouichi

    2006-01-01

    The internal flow of a centrifugal pump with semi-open impeller, whose type-number is O.244, is measured by PIV method and analyzed numerically The head and efficiency of a pump that has a circular casing with a very small radius are almost same as those of the spiral casing. Even at the best efficiency point, the internal flow in the pump of circular casing is asymmetric. The flow goes out from the impeller only at the exhaust area of the casing. Also, there is a very strong unsteady flow ne...

  9. Research on the noise induced by cavitation under the asymmetric cavitation condition in a centrifugal pump

    Science.gov (United States)

    Lu, J. X.; Yuan, S. Q.; Yuan, J. P.; Ren, X. D.; Pei, J.; Si, Q. R.

    2015-12-01

    An experimental investigation has been carried out to research the noise induced by cavitation under the asymmetric cavitation (AC) condition in a centrifugal pump. The acoustic pressure signals at the pump inlet and outlet were measured respectively during the development of cavitation in a closed hydraulic test rig. It could be found that both the pump inlet and outlet acoustic pressures changed obviously with the development of cavitation. The time domain and the power spectrum density of the pump inlet and outlet acoustic pressure pulsations were analyzed. The broadband pulses of the acoustic pressure pulsations were found and the reasons for the phenomenon were given.

  10. [Comparison between the centrifugation on MPA C10 (Roche Diagnostics) and the centrifugation according recommendations of GEHT (Groupe d'étude de l'hémostase et de la thrombose) for the daily hemostasis assays].

    Science.gov (United States)

    Flamant, Fabrice; Borg, Jeanne-Yvonne; Lenormand, Bernard; Le Cam-Duchez, Véronique

    2014-01-01

    Actually, many laboratories tend to acquire pre analytic automates to prepare specimens for analysis. For haemostasis, these pre analytical modules are not always in agreement with the recommendations from the Groupe d'étude de l'hémostase et de la thrombose (GEHT). For example in the MPA C10 module (Roche Diagnostics) the speed of centrifugation was not rather fast compared with the GEHT recommandations. Then, to be able to use this automate for routine coagulation assays, we compared results of Quick time, activated partial prothombin time, fibrinogen, factor II, factor V, factor VII, factor X and antithrombin levels and unfractioned heparin anti-Xa activity measurement after MPA (1,885 g - 999 sec) or GEHT (2,500 g - 900 sec) protocol of centrifugation. First, we verified platelet counts: in 82% of specimens, the platelet counts were under 10.10(9)/L after centrifugation on MPA module. Moreover, a good correlation was observed in all comparisons. Then we concluded the MPA C10 module was usable for routine coagulation tests.

  11. Hydrodynamic and mass transfer studies in 50 mm centrifugal extractor. Contributed Paper ED-05

    International Nuclear Information System (INIS)

    Centrifugal extractors (CE) are inevitable for fast reactor fuel reprocessing applications due to their small holdup, short residence time and small footprint. Extraction and stripping experiments (mass transfer) were carried on a 50 mm dia CE bowl to check the effects of speed, throughput and A/O ratio on mass transfer efficiency. Mass transfer experiment results showed that efficiency varies between 95 to 100% for different throughputs and operating speeds, and between 90 to 100% with respect to different A/O ratios. In hydrodynamic experiments, flooding limit was found under no mass transfer conditions for different A/O ratios from 0.1 to 10 at speeds 2000, 2500, 3000, 3500 and 4000 rpm. Maximum possible throughput was found to be ∼110 L/h. Modeling of flooding behavior was found to be difficult. (author)

  12. Predicting performance of radial flow type impeller of centrifugal pump using CFD

    International Nuclear Information System (INIS)

    The main objective of this work is to use the computational fluid dynamics (CFD) technique in analyzing and predicting the performance of a radial flow-type impeller of centrifugal pump. The impeller analyzed is at the following design condition: flow rate of 528 m3/hr: speed of 1450 rpm: and head of 20 m or specific speed (Ns) of 3033 1/min in US-Units. The first stage involves the mesh generation and refinement on domain of the designed impeller. The second stage deals with the identification of initial and boundary conditions of the mesh-equipped module. In the final stage, various results are calculated and analyzed for factors affecting impeller performance. The results indicate that the total head rise of the impeller at the design point is approximately 19.8 m. The loss coefficient of the impeller is 0.015 when 0.6 < Q/Qdesign < 1.2. Maximum hydraulic efficiency of impeller is 0.98 at Q/Qdesign = 0.7. Based on the comparison of the theoretical head coefficient and static pressure rise coefficient between simulation results and experimental data, from previous work reported in the literature [Guelich, Kreiselpumpen, Springer, Berlin, 2004], it is possible to use this method to simulate the performance of a radial-flow type impeller of a centrifugal pump

  13. Scaling up debris-flow experiments on a centrifuge

    Science.gov (United States)

    Hung, C.; Capart, H.; Crone, T. J.; Grinspum, E.; Hsu, L.; Kaufman, D.; Li, L.; Ling, H.; Reitz, M. D.; Smith, B.; Stark, C. P.

    2013-12-01

    Boundary forces generated by debris flows can be powerful enough to erode bedrock and cause considerable damage to infrastructure during runout. Formulation of an erosion-rate law for debris flows is therefore a high priority, and it makes sense to build such a law around laboratory experiments. However, running experiments big enough to generate realistic boundary forces is a logistical challenge to say the least [1]. One alternative is to run table-top simulations with unnaturally weak but fast-eroding pseudo-bedrock, another is to extrapolate from micro-erosion of natural substrates driven by unnaturally weak impacts; hybrid-scale experiments have also been conducted [2]. Here we take a different approach in which we scale up granular impact forces by running our experiments under enhanced gravity in a geotechnical centrifuge [3]. Using a 40cm-diameter rotating drum [2] spun at up to 100g, we generate debris flows with an effective depth of over several meters. By varying effective gravity from 1g to 100g we explore the scaling of granular flow forces and the consequent bed and wall erosion rates. The velocity and density structure of these granular flows is monitored using laser sheets, high-speed video, and particle tracking [4], and the progressive erosion of the boundary surfaces is measured by laser scanning. The force structures and their fluctuations within the granular mass and at the boundaries are explored with contact dynamics numerical simulations that mimic the lab experimental conditions [5]. In this presentation we summarize these results and discuss how they can contribute to the formulation of debris-flow erosion law. [1] Major, J. J. (1997), Journal of Geology 105: 345-366, doi:10.1086/515930 [2] Hsu, L. (2010), Ph.D. thesis, University of California, Berkeley [3] Brucks, A., et al (2007), Physical Review E 75, 032301, doi:10.1103/PhysRevE.75.032301 [4] Spinewine, B., et al (2011), Experiments in Fluids 50: 1507-1525, doi: 10.1007/s00348

  14. A fuzzy controlled three-phase centrifuge for waste separation

    International Nuclear Information System (INIS)

    The three-phase centrifuge technology discussed in this paper was developed by Neal Miller, president of Centech, Inc. The three-phase centrifuge is an excellent device for cleaning up oil field and refinery wastes which are typically composed of hydrocarbons, water, and solids. The technology is unique. It turns the waste into salable oil, reusable water, and landfill-able solids. No secondary waste is produced. The problem is that only the inventor can set up and run the equipment well enough to provide an optimal cleanup. Demand for this device has far exceeded a one man operation. There is now a need for several centrifuges to be operated at different locations at the same time. This has produced a demand for an intelligent control system, one that could replace a highly skilled operator, or at least supplement the skills of a less experienced operator. The control problem is ideally suited to fuzzy logic, since the centrifuge is a highly complicated machine operated entirely by the skill and experience of the operator. A fuzzy control system was designed for and used with the centrifuge

  15. Comparative analysis of discrete exosome fractions obtained by differential centrifugation

    DEFF Research Database (Denmark)

    Jeppesen, Dennis Kjølhede; Hvam, Michael L; Primdahl-Bengtson, Bjarke;

    2014-01-01

    BACKGROUND: Cells release a mixture of extracellular vesicles, amongst these exosomes, that differ in size, density and composition. The standard isolation method for exosomes is centrifugation of fluid samples, typically at 100,000×g or above. Knowledge of the effect of discrete ultracentrifugat......BACKGROUND: Cells release a mixture of extracellular vesicles, amongst these exosomes, that differ in size, density and composition. The standard isolation method for exosomes is centrifugation of fluid samples, typically at 100,000×g or above. Knowledge of the effect of discrete...... ultracentrifugation speeds on the purification from different cell types, however, is limited. METHODS: We examined the effect of applying differential centrifugation g-forces ranging from 33,000×g to 200,000×g on exosome yield and purity, using 2 unrelated human cell lines, embryonic kidney HEK293 cells and bladder...... of phenol red and cleared by 200,000×g overnight centrifugation. The centrifugation tube fill level impacted the sedimentation efficacy. Comparative analysis by NTA, protein quantification, and detection of exosomal and contamination markers identified differences in vesicle size, concentration...

  16. Experience with the Sarns centrifugal pump in postcardiotomy ventricular failure.

    Science.gov (United States)

    Curtis, J J; Walls, J T; Schmaltz, R; Boley, T M; Nawarawong, W; Landreneau, R J

    1992-09-01

    The reported clinical use of the Sarns centrifugal pump (Sarns, Inc./3M, Ann Arbor, Mich.) as a cardiac assist device for postcardiotomy ventricular failure is limited. During a 25-month period ending November 1988, we used 40 Sarns centrifugal pumps as univentricular or biventricular cardiac assist devices in 27 patients who could not be weaned from cardiopulmonary bypass despite maximal pharmacologic and intraaortic balloon support. Eighteen men and nine women with a mean age of 60.4 years (28 to 83) required assistance. Left ventricular assist alone was used in 12 patients, right ventricular assist in 2, and biventricular assist in 13. The duration of assist ranged from 2 to 434 hours (median 45). Centrifugal assist was successful in weaning 100% of the patients. Ten of 27 patients (37%) improved hemodynamically, allowing removal of the device(s), and 5 of 27 (18.5%) survived hospitalization. Survival of patients requiring left ventricular assist only was 33.3% (4/12). Complications were common and included renal failure, hemorrhage, coagulopathy, ventricular arrhythmias, sepsis, cerebrovascular accident, and wound infection. During 3560 centrifugal pump hours, no pump thrombosis was observed. The Sarns centrifugal pump is an effective assist device when used to salvage patients who otherwise cannot be weaned from cardiopulmonary bypass. Statistical analysis of preoperative patient characteristics, operative risk factors, and postoperative complications failed to predict which patients would be weaned from cardiac assist or which would survive.

  17. Centrifuge modelling - migration of radionuclides from engineered trenches

    International Nuclear Information System (INIS)

    This report provides an overview of some centrifuge small-scale physical model tests and 1g experimental and theoretical work relating to the sub-surface migration of a model pollutant (sodium chloride) from a notional prototype surface landfill of width 25 metres and depth 3 metres cut into a 20 metre deep layer of nominally uniform soil overlying a more permeable base layer. An introduction is given to the application of geotechnical centrifuge modelling techniques to pollutant migration studies. Experiments performed at 1/100th scale using the Cambridge 10 metre diameter Geotechnical Beam Centrifuge simulating transport through silt over prototype time periods of around 35 years, are summarised. Comparisons of data with calculations using early versions of the POLLUTE and MIGRATE computer codes are presented. An experiment at 1/400th scale using the new Cambridge Geotechnical Drum Centrifuge, involving transport through clay over a prototype time period of around 1000 years, is described. Potential future uses of centrifuge modelling techniques to simulate long-term migration through more complex hydrological environments are also discussed. (author)

  18. Sample of CFD optimization of a centrifugal compressor stage

    Science.gov (United States)

    Galerkin, Y.; Drozdov, A.

    2015-08-01

    Industrial centrifugal compressor stage is a complicated object for gas dynamic design when the goal is to achieve maximum efficiency. The Authors analyzed results of CFD performance modeling (NUMECA Fine Turbo calculations). Performance prediction in a whole was modest or poor in all known cases. Maximum efficiency prediction was quite satisfactory to the contrary. Flow structure in stator elements was in a good agreement with known data. The intermediate type stage “3D impeller + vaneless diffuser+ return channel” was designed with principles well proven for stages with 2D impellers. CFD calculations of vaneless diffuser candidates demonstrated flow separation in VLD with constant width. The candidate with symmetrically tampered inlet part b3 / b2 = 0,73 appeared to be the best. Flow separation takes place in the crossover with standard configuration. The alternative variant was developed and numerically tested. The obtained experience was formulated as corrected design recommendations. Several candidates of the impeller were compared by maximum efficiency of the stage. The variant with gas dynamic standard principles of blade cascade design appeared to be the best. Quasi - 3D non-viscid calculations were applied to optimize blade velocity diagrams - non-incidence inlet, control of the diffusion factor and of average blade load. “Geometric” principle of blade formation with linear change of blade angles along its length appeared to be less effective. Candidates’ with different geometry parameters were designed by 6th math model version and compared. The candidate with optimal parameters - number of blades, inlet diameter and leading edge meridian position - is 1% more effective than the stage of the initial design.

  19. Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics

    DEFF Research Database (Denmark)

    Bruun, Esben; Ambus, Per; Egsgaard, Helge;

    2012-01-01

    and by fast pyrolysis (FP) using a Pyrolysis Centrifuge Reactor (PCR). After 65 days of soil incubation, 2.9% and 5.5% of the SP- and FP-biochar C, respectively, was lost as CO2, significantly less than the 53% C-loss observed when un-pyrolyzed feedstock straw was incubated. Whereas the SP-biochar appeared...

  20. Fault diagnosis of monoblock centrifugal pump using SVM

    Directory of Open Access Journals (Sweden)

    V. Muralidharan

    2014-09-01

    Full Text Available Monoblock centrifugal pumps are employed in variety of critical engineering applications. Continuous monitoring of such machine component becomes essential in order to reduce the unnecessary break downs. At the outset, vibration based approaches are widely used to carry out the condition monitoring tasks. Particularly fuzzy logic, support vector machine (SVM and artificial neural networks were employed for continuous monitoring and fault diagnosis. In the present study, the application of SVM algorithm in the field of fault diagnosis and condition monitoring is discussed. The continuous wavelet transforms were calculated for different families and at different levels. The computed transformation coefficients form the feature set for the classification of good and faulty conditions of the components of centrifugal pump. The classification accuracies of different continuous wavelet families at different levels were calculated and compared to find the best wavelet for the fault diagnosis of the monoblock centrifugal pump.

  1. Investigation of Surge Behavior in a Micro Centrifugal Compressor

    Institute of Scientific and Technical Information of China (English)

    Shimpei MIZUKI; Yuichiro ASAGA; Yushi ONO; Hoshio TSUJITA

    2006-01-01

    This paper reports the experimental and theoretical study of the surge occurred in prototyping an ultra micro centrifugal compressor. As the first step, the 10 times size model of an ultra micro centrifugal compressor having the 40 mm outer diameter was designed and manufactured. The detailed experimental investigations for the transient behavior of surge with several different values of B parameter were carried out. The experimental results during the surge were compared with those obtained by the non-linear lumped parameter theory in order to validate the effectiveness of the theoretical surge model for the micro centrifugal compressor. As a result, the quite different behavior of the surge appeared for the different values of B both in the experiment and in the analysis.

  2. Space Station Centrifuge: A Requirement for Life Science Research

    Science.gov (United States)

    Smith, Arthur H.; Fuller, Charles A.; Johnson, Catherine C.; Winget, Charles M.

    1992-01-01

    A centrifuge with the largest diameter that can be accommodated on Space Station Freedom is required to conduct life science research in the microgravity environment of space. (This was one of the findings of a group of life scientists convened at the University of California, Davis, by Ames Research Center.) The centrifuge will be used as a research tool to understand how gravity affects biological processes; to provide an on-orbit one-g control; and to assess the efficacy of using artificial gravity to counteract the deleterious biological effect of space flight. The rationale for the recommendation and examples of using ground-based centrifugation for animal and plant acceleration studies are presented. Included are four appendixes and an extensive bibliography of hypergravity studies.

  3. Centrifuge Techniques and Apparatus for Transport Experiments in Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Earl D. Mattson; Carl D. Paler; Robert W. Smith; Markus Flury

    2010-06-01

    This paper describes experimental approaches and apparatus that we have developed to study solute and colloid transport in porous media using Idaho National Laboratory's 2-m radius centrifuge. The ex-perimental techniques include water flux scaling with applied acceleration at the top of the column and sub-atmospheric pressure control at the column base, automation of data collection, and remote experimental con-trol over the internet. These apparatus include a constant displacement piston pump, a custom designed liquid fraction collector based on switching valve technology, and modified moisture monitoring equipment. Suc-cessful development of these experimental techniques and equipment is illustrated through application to transport of a conservative tracer through unsaturated sand column, with centrifugal acceleration up to 40 gs. Development of such experimental equipment that can withstand high accelerations enhances the centrifuge technique to conduct highly controlled unsaturated solute/colloid transport experiments and allows in-flight liquid sample collection of the effluent.

  4. Parametric performance evaluation of a hydraulic centrifugal pump

    Science.gov (United States)

    Heo, M. W.; Y Kim, K.; Ma, S. B.; Yoo, I. S.; Choi, W. C.; Kim, J. H.; Choi, Y. S.

    2014-03-01

    Parametric study of a hydraulic centrifugal pump with backward curved blades has been performed numerically using three-dimensional Reynolds-averaged Navier-Stokes equations. The shear stress transport turbulence model was used for analysis of turbulence. The finite volume method and an unstructured grid system were used for the numerical solution. The optimal grid system in the computational domain was selected through a grid dependency test. Tested parameters were related to the geometry of the impeller and volute: seven variables defining the hub and shroud contours and the blades angle of impeller, and two variables defining the inlet width and expansion angle of volute. The effects of these parameters on the hydrodynamic performance of the centrifugal pump have been investigated. It was found that the centrifugal water pump with the twisted blades has the enhancing efficiency compared to the straight blades pump.

  5. Design Optimization of a Centrifugal Fan with Splitter Blades

    Science.gov (United States)

    Heo, Man-Woong; Kim, Jin-Hyuk; Kim, Kwang-Yong

    2015-05-01

    Multi-objective optimization of a centrifugal fan with additionally installed splitter blades was performed to simultaneously maximize the efficiency and pressure rise using three-dimensional Reynolds-averaged Navier-Stokes equations and hybrid multi-objective evolutionary algorithm. Two design variables defining the location of splitter, and the height ratio between inlet and outlet of impeller were selected for the optimization. In addition, the aerodynamic characteristics of the centrifugal fan were investigated with the variation of design variables in the design space. Latin hypercube sampling was used to select the training points, and response surface approximation models were constructed as surrogate models of the objective functions. With the optimization, both the efficiency and pressure rise of the centrifugal fan with splitter blades were improved considerably compared to the reference model.

  6. Design Method for Single-Blade Centrifugal Pump Impeller

    Science.gov (United States)

    Nishi, Yasuyuki; Fujiwara, Ryota; Fukutomi, Junichiro

    The sewage pumps are demanded a high pump efficiency and a performance in passing foreign bodies. Therefore, the impeller used by these usages requires the large passed particle size (minimum particle size in the pump). However, because conventional design method of pump impeller results in small impeller exit width, it is difficult to be applied to the design of single-blade centrifugal pump impeller which is used as a sewage pump. This paper proposes a design method for single-blade centrifugal pump impeller. As a result, the head curve of the impeller designed by the proposed design method satisfied design specifications, and pump efficiency was over 62% more than conventional single-blade centrifugal pump impeller. By comparing design values with CFD analysis values, the suction velocity ratio of the design parameter agreed well with each other, but the relative velocity ratio did not agree due to the influence of the backflow of the impeller entrance.

  7. Centrifugally activated bearing for high-speed rotating machinery

    Science.gov (United States)

    Post, Richard F.

    1994-01-01

    A centrifugally activated bearing is disclosed. The bearing includes an annular member that extends laterally and radially from a central axis. A rotating member that rotates about the central axis relative to the annular member is also included. The rotating member has an interior chamber that surrounds the central axis and in which the annular member is suspended. Furthermore, the interior chamber has a concave shape for retaining a lubricant therein while the rotating member is at rest and for retaining a lubricant therein while the rotating member is rotating. The concave shape is such that while the rotating member is rotating a centrifugal force causes a lubricant to be forced away from the central axis to form a cylindrical surface having an axis collinear with the central axis. This centrifugally displaced lubricant provides restoring forces to counteract lateral displacement during operation.

  8. The Intermodulation Lockin Analyzer

    CERN Document Server

    Tholen, Erik A; Forchheimer, Daniel; Schuler, Vivien; Tholen, Mats O; Hutter, Carsten; Haviland, David B

    2011-01-01

    Nonlinear systems can be probed by driving them with two or more pure tones while measuring the intermodulation products of the drive tones in the response. We describe a digital lock-in analyzer which is designed explicitly for this purpose. The analyzer is implemented on a field-programmable gate array, providing speed in analysis, real-time feedback and stability in operation. The use of the analyzer is demonstrated for Intermodulation Atomic Force Microscopy. A generalization of the intermodulation spectral technique to arbitrary drive waveforms is discussed.

  9. Simulation and experiment of the effect of clearance of impeller wear-rings on the performance of centrifugal pump

    International Nuclear Information System (INIS)

    The effect of clearance of impeller wear-rings on the performance of a centrifugal pump was investigated numerically and experimentally. The whole flow field model including front and back shrouds of pump was designed so as to accurately calculate the head and efficiency of the centrifugal pump. Based on RNG k-ε turbulence model, three wear-rings schemes were established, and the effects of clearance of impeller wear-rings on the hydraulic efficiency and mechanical efficiency of the centrifugal pump was analyzed, chiefly from the turbulent kinetic energy, vorticity and radial force angles. According to the results, it can be drawn that the head and total efficiency of the centrifugal pump increase as the clearance value of wear-rings narrows. The following reasons may account for it: firstly, as the clearance value of wear-rings declines, the turbulent kinetic energy and energy dissipation decrease within the impeller, and the impact of secondary flow at the inlet of impeller on the mainstream weakens slowly, which leads to a lower hydraulic loss, thus a higher hydraulic efficiency; secondly, radial force decreases with the clearance value of wear-rings, so the eccentric whirl of centrifugal pump is dampened, which results in a lower mechanical loss and a higher mechanical efficiency; thirdly, the front shroud leakage diminishes with the clearance value of wear-rings, therefore, the volume loss is reduced and volume efficiency improved. Finally, the first wear-ring scheme of impeller is adopted after comprehensive comparison of these three wear-ring schemes, because its efficiency is highest and it satisfies the requirements of the engineering application.

  10. Numerical and experimental study on flow-induced noise at blade-passing frequency in centrifugal pumps

    Science.gov (United States)

    Yang, Jun; Yuan, Shouqi; Yuan, Jianping; Si, Qiaorui; Pei, Ji

    2014-05-01

    With the increasing noise pollution, low noise optimization of centrifugal pimps has become a hot topic. However, experimental study on this problem is unacceptable for industrial applications due to unsustainable cost. A hybrid method that couples computational fluid dynamics (CFD) with computational aeroacoustic software is used to predict the flow-induced noise of pumps in order to minimize the noise of centrifugal pumps in actual projects. Under Langthjem's assumption that the blade surface pressure is the main flow-induced acoustic source in centrifugal pumps, the blade surface pressure pulsation is considered in terms of the acoustical sources and simulated using CFX software. The pressure pulsation and noise distribution in the near-cutoff region are examined for the blade-passing frequency (BPF) noise, and the sound pressure level (SPL) reached peaks near the cutoff that corresponded with the pressure pulsation in this region. An experiment is performed to validate this prediction. Four hydrophones are fixed to the inlet and outlet ports of the test pump to measure the flow-induced noise from the four-port model. The simulation results for the noise are analyzed and compared with the experimental results. The variation in the calculated noise with changes in the flow agreed well with the experimental results. When the flow rate was increased, the SPL first decreased and reached the minimum near the best efficient point (BEP); it then increased when the flow rate was further increased. The numerical and experimental results confirmed that the BPF noise generated by a blade-rotating dipole roughly reflects the acoustic features of centrifugal pumps. The noise simulation method in current study has a good feasibility and suitability, which could be adopted in engineering design to predict and optimize the hydroacoustic behavior of centrifugal pumps.

  11. Urinary excretion of LH and testosterone from male rats during exposure to increased gravity: post-spaceflight and centrifugation

    Science.gov (United States)

    Ortiz, R. M.; Wade, C. E.; Morey-Holton, E.

    2000-01-01

    A dissociation between plasma luteinizing hormone (LH) and testosterone (T) appears to exist during exposure to altered gravity. The pulsatile nature of LH release and the diurnal variability of T secretion may mask or bias the effects of altered gravity on the pituitary-gonadal axis when analyzing plasma concentrations. Therefore, we examined the relationship between the excretion of urinary LH and T in male Sprague-Dawley rats during exposure to increased gravity upon return to Earth following a 14-day spaceflight (n = 6) and by 12 days of centrifugation at 2g (n = 8). Excreted LH and T were elevated on the first 3 days postflight. Excreted T was elevated between Days 1 and 8 of centrifugation; however, excreted LH was reduced on Days 2 and 3 compared with control animals. Excreted LH and T were significantly correlated (R = 0.731 and 0.706, respectively) in postspaceflight and centrifuged animals. Correlation curves had similar slopes (0.0213 and 0.023, respectively), but different y-intercepts (-1.43 and 3.32, respectively). The sustained increase in excreted T during centrifugation suggests that the pituitary-gonadal axis in postspaceflight animals may adapt quicker to increased gravity. The upward shift in the correlation curve exhibited by the centrifuged animals suggests that the sensitivity of LH-induced T release is increased in these animals. The previous dissociation between plasma LH and T during altered gravity was not observed in the present study in which excreted LH and T were measured.

  12. An in-line spectrophotometer on a centrifugal microfluidic platform for real-time protein determination and calibration.

    Science.gov (United States)

    Ding, Zhaoxiong; Zhang, Dongying; Wang, Guanghui; Tang, Minghui; Dong, Yumin; Zhang, Yixin; Ho, Ho-Pui; Zhang, Xuping

    2016-09-21

    In this paper, an in-line, low-cost, miniature and portable spectrophotometric detection system is presented and used for fast protein determination and calibration in centrifugal microfluidics. Our portable detection system is configured with paired emitter and detector diodes (PEDD), where the light beam between both LEDs is collimated with enhanced system tolerance. It is the first time that a physical model of PEDD is clearly presented, which could be modelled as a photosensitive RC oscillator. A portable centrifugal microfluidic system that contains a wireless port in real-time communication with a smartphone has been built to show that PEDD is an effective strategy for conducting rapid protein bioassays with detection performance comparable to that of a UV-vis spectrophotometer. The choice of centrifugal microfluidics offers the unique benefits of highly parallel fluidic actuation at high accuracy while there is no need for a pump, as inertial forces are present within the entire spinning disc and accurately controlled by varying the spinning speed. As a demonstration experiment, we have conducted the Bradford assay for bovine serum albumin (BSA) concentration calibration from 0 to 2 mg mL(-1). Moreover, a novel centrifugal disc with a spiral microchannel is proposed for automatic distribution and metering of the sample to all the parallel reactions at one time. The reported lab-on-a-disc scheme with PEDD detection may offer a solution for high-throughput assays, such as protein density calibration, drug screening and drug solubility measurement that require the handling of a large number of reactions in parallel.

  13. An in-line spectrophotometer on a centrifugal microfluidic platform for real-time protein determination and calibration.

    Science.gov (United States)

    Ding, Zhaoxiong; Zhang, Dongying; Wang, Guanghui; Tang, Minghui; Dong, Yumin; Zhang, Yixin; Ho, Ho-Pui; Zhang, Xuping

    2016-09-21

    In this paper, an in-line, low-cost, miniature and portable spectrophotometric detection system is presented and used for fast protein determination and calibration in centrifugal microfluidics. Our portable detection system is configured with paired emitter and detector diodes (PEDD), where the light beam between both LEDs is collimated with enhanced system tolerance. It is the first time that a physical model of PEDD is clearly presented, which could be modelled as a photosensitive RC oscillator. A portable centrifugal microfluidic system that contains a wireless port in real-time communication with a smartphone has been built to show that PEDD is an effective strategy for conducting rapid protein bioassays with detection performance comparable to that of a UV-vis spectrophotometer. The choice of centrifugal microfluidics offers the unique benefits of highly parallel fluidic actuation at high accuracy while there is no need for a pump, as inertial forces are present within the entire spinning disc and accurately controlled by varying the spinning speed. As a demonstration experiment, we have conducted the Bradford assay for bovine serum albumin (BSA) concentration calibration from 0 to 2 mg mL(-1). Moreover, a novel centrifugal disc with a spiral microchannel is proposed for automatic distribution and metering of the sample to all the parallel reactions at one time. The reported lab-on-a-disc scheme with PEDD detection may offer a solution for high-throughput assays, such as protein density calibration, drug screening and drug solubility measurement that require the handling of a large number of reactions in parallel. PMID:27531134

  14. Fractionation of secondary metabolites of orange (Citrus sinensis L.) leaves by fast centrifugal partition chromatography

    Science.gov (United States)

    Conventional HPLC provides ready detection of the major phenolic compounds in methanol extracts of orange leaves, yet conventional HPLC also shows the presence of many more compounds, to an extent where extensive peak overlap prevents distinct peak detection and reliable quantitation. A more complet...

  15. Fractionation of the secondary metabolites of orange (Citrus sinensis L.) leaves by fast centrifugal partition chromatography

    Science.gov (United States)

    There is interest in the detection of changes in secondary metabolites in orange leaves in response to citrus greening disease. Conventional HPLC analysis readily provides detection of major phenolic compounds, but further, more detailed chromatographic analyses show many more compounds, to an exten...

  16. Experimental characterization and modelling of a cavitating centrifugal pump operating in fast start-up conditions

    OpenAIRE

    Duplaa, Sébastien; COUTIER-DELGOSHA, Olivier; DAZIN, Antoine; BOIS, Gérard; CAIGNAERT, Guy

    2010-01-01

    International audience The start-up of rocket engine turbopumps is generally performed only in a few seconds. It implies that these pumps reach their nominal operating conditions after only a few rotations. During these first rotations of the blades, the flow evolution in the pump is governed by transient phenomena, based mainly on the flow rate and rotation speed evolution. These phenomena progressively become negligible when the steady behavior is reached. The pump transient behaviour in...

  17. Miniature mass analyzer

    CERN Document Server

    Cuna, C; Lupsa, N; Cuna, S; Tuzson, B

    2003-01-01

    The paper presents the concept of different mass analyzers that were specifically designed as small dimension instruments able to detect with great sensitivity and accuracy the main environmental pollutants. The mass spectrometers are very suited instrument for chemical and isotopic analysis, needed in environmental surveillance. Usually, this is done by sampling the soil, air or water followed by laboratory analysis. To avoid drawbacks caused by sample alteration during the sampling process and transport, the 'in situ' analysis is preferred. Theoretically, any type of mass analyzer can be miniaturized, but some are more appropriate than others. Quadrupole mass filter and trap, magnetic sector, time-of-flight and ion cyclotron mass analyzers can be successfully shrunk, for each of them some performances being sacrificed but we must know which parameters are necessary to be kept unchanged. To satisfy the miniaturization criteria of the analyzer, it is necessary to use asymmetrical geometries, with ion beam obl...

  18. Analyzing in the present

    DEFF Research Database (Denmark)

    Revsbæk, Line; Tanggaard, Lene

    2015-01-01

    the interdependency between researcher and researched. On this basis, we advocate an explicit “open-state-of mind” listening as a key aspect of analyzing qualitative material, often described only as a matter of reading transcribed empirical materials, reading theory, and writing. The article contributes......The article presents a notion of “analyzing in the present” as a source of inspiration in analyzing qualitative research materials. The term emerged from extensive listening to interview recordings during everyday commuting to university campus. Paying attention to the way different parts...... of various interviews conveyed diverse significance to the listening researcher at different times became a method of continuously opening up the empirical material in a reflexive, breakdown-oriented process of analysis. We argue that situating analysis in the present of analyzing emphasizes and acknowledges...

  19. Analyzing binding data.

    Science.gov (United States)

    Motulsky, Harvey J; Neubig, Richard R

    2010-07-01

    Measuring the rate and extent of radioligand binding provides information on the number of binding sites, and their affinity and accessibility of these binding sites for various drugs. This unit explains how to design and analyze such experiments.

  20. Software Design Analyzer System

    Science.gov (United States)

    Tausworthe, R. C.

    1985-01-01

    CRISP80 software design analyzer system a set of programs that supports top-down, hierarchic, modular structured design, and programing methodologies. CRISP80 allows for expression of design as picture of program.

  1. Secondary Containment Design for a High Speed Centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, K.W.

    1999-03-01

    Secondary containment for high speed rotating machinery, such as a centrifuge, is extremely important for operating personnel safety. Containment techniques can be very costly, ungainly and time consuming to construct. A novel containment concept is introduced which is fabricated out of modular sections of polycarbonate glazed into a Unistrut metal frame. A containment study for a high speed centrifuge is performed which includes the development of parameters for secondary containment design. The Unistrut/polycarbonate shield framing concept is presented including design details and proof testing procedures. The economical fabrication and modularity of the design indicates a usefulness for this shielding system in a wide variety of containment scenarios.

  2. Deep eutectic solvents in countercurrent and centrifugal partition chromatography.

    Science.gov (United States)

    Roehrer, Simon; Bezold, Franziska; García, Eva Marra; Minceva, Mirjana

    2016-02-19

    Deep eutectic solvents (DESs) were evaluated as solvents in centrifugal partition chromatography, a liquid-liquid chromatography separation technology. To this end, the partition coefficients of ten natural compounds of different hydrophobicity were determined in non-aqueous biphasic systems containing DES. The influence of the composition of DESs and the presence of water in the biphasic system on the partition coefficient were also examined. In addition, several process relevant physical properties of the biphasic system, such as the density and viscosity of the phases, were measured. A mixture of three to four hydrophobic compounds was successfully separated in a centrifugal partition extractor using a heptane/ethanol/DES biphasic system.

  3. Centrifuge modelling of a laterally cyclic loaded pile

    DEFF Research Database (Denmark)

    Klinkvort, Rasmus Tofte; Leth, Caspar Thrane; Hededal, Ole

    2010-01-01

    A total number of 9 static and 6 cyclic centrifuge tests on laterally loaded piles in very dense, dry sand was erformed. The prototype dimensions of the piles were 1 meter in diameter and penetration depths varying from 6 to 10 meters. The static tests were used to investigate the initial subgrade...... reaction modulus and as a reference for cyclic tests. For the cyclic tests the accumulation of deflections and the change in secant stiffness of the soil from repetitive loading were investigated. From all the tests carried out accumulations of deflections were seen. rom the centrifuge tests it was seen...

  4. Aspiration spiral-flow type centrifugal flotation machine

    Institute of Scientific and Technical Information of China (English)

    陈文义

    2002-01-01

    Aspiration spiral flow type centrifugal flotation machine takes full advantage of centrifugal force field and gravitational field, and strengthens flotation of coal slurry. As a new-type flotation machine of high efficiency, its key component is bubble generator. Which completes the process of ore pulp inflation and liberalization. The design, parameters and working principle of bubble generator provide the design of the same device in similar equipment with reference. The result of industrial operation shows that this machine is of such features as small occupational area, greater concentration ratio, high processing capacity, high efficiency and lower investment etc.

  5. Design Method for Channel Diffusers of Centrifugal Compressors

    Directory of Open Access Journals (Sweden)

    Mykola Kalinkevych

    2013-01-01

    Full Text Available The design method for channel diffusers of centrifugal compressors, which is based on the solving of the inverse problem of gas dynamics, is presented in the paper. The concept of the design is to provide high pressure recovery of the diffuser by assuming the preseparation condition of the boundary layer along one of the channel surfaces. The channel diffuser was designed with the use of developed method to replace the vaned diffuser of the centrifugal compressor model stage. The numerical simulation of the diffusers was implemented by means of CFD software. Obtained gas dynamic characteristics of the designed diffuser were compared to the base vaned diffuser of the compressor stage.

  6. Open-cycle centrifugal vapor-compression heat pump

    Science.gov (United States)

    Burgmeier, L. R.; Horner, J. E.

    1987-11-01

    The objectives of the program were: (1) to develop an open cycle, high lift, centrifugal steam compressor system that can be efficiently retrofitted to existing multi-effect and high temperature differential evaporators while maintaining the cost benefits of a single stage centrifugal compressor, and (2) to demonstrate the energy saving cost benefits of driving the compressor with a natural gas fueled gas turbine engine. The turbine exhaust was to be used for final drying of the product that was evaporated. The installation of the system is described along with the test activities through May 1987.

  7. On the characteristics of centrifugal-reciprocating machines. [cryogenic coolers

    Science.gov (United States)

    Higa, W. H.

    1980-01-01

    A method of compressing helium gas for cryogenic coolers is presented which uses centrifugal force to reduce the forces on the connecting rod and crankshaft in the usual reciprocating compressor. This is achieved by rotating the piston-cylinder assembly at a speed sufficient for the centrifugal force on the piston to overcome the compressional force due to the working fluid. The rotating assembly is dynamically braked in order to recharge the working space with fluid. The intake stroke consists of decelerating the rotating piston-cylinder assembly and the exhaust stroke consists of accelerating the assembly.

  8. Blade Crack Detection of Centrifugal Fan Using Adaptive Stochastic Resonance

    OpenAIRE

    Bingbing Hu; Bing Li

    2015-01-01

    Centrifugal fans are widely used in various industries as a kind of turbo machinery. Among the components of the centrifugal fan, the impeller is a key part because it is used to transform kinetic energy into pressure energy. Crack in impeller’s blades is one of the serious hidden dangers. It is important to detect the cracks in the blades as early as possible. Based on blade vibration signals, this research applies an adaptive stochastic resonance (ASR) method to diagnose crack fault in cent...

  9. Flow in a Low Specific Speed Centrifugal Pump Using PIV

    OpenAIRE

    Cui Dai; Liang Dong

    2013-01-01

    The interflow plays important roles in centrifugal pump design. In order to study the effect of rotation and z-axis on internal flow, two-dimensional particle image velocimetry (PIV) measurements have been performed to measure the steady velocity field on three planes in all impeller passages of a low specific-speed centrifugal pump. The results show that the relative velocity flows in blade passages are obviously different in terms of the positions of the blade relative to the tongue. The in...

  10. Deep eutectic solvents in countercurrent and centrifugal partition chromatography.

    Science.gov (United States)

    Roehrer, Simon; Bezold, Franziska; García, Eva Marra; Minceva, Mirjana

    2016-02-19

    Deep eutectic solvents (DESs) were evaluated as solvents in centrifugal partition chromatography, a liquid-liquid chromatography separation technology. To this end, the partition coefficients of ten natural compounds of different hydrophobicity were determined in non-aqueous biphasic systems containing DES. The influence of the composition of DESs and the presence of water in the biphasic system on the partition coefficient were also examined. In addition, several process relevant physical properties of the biphasic system, such as the density and viscosity of the phases, were measured. A mixture of three to four hydrophobic compounds was successfully separated in a centrifugal partition extractor using a heptane/ethanol/DES biphasic system. PMID:26810802

  11. Apparatus and method for centrifugation and robotic manipulation of samples

    Science.gov (United States)

    Vellinger, John C. (Inventor); Ormsby, Rachel A. (Inventor); Kennedy, David J. (Inventor); Thomas, Nathan A. (Inventor); Shulthise, Leo A. (Inventor); Kurk, Michael A. (Inventor); Metz, George W. (Inventor)

    2007-01-01

    A device for centrifugation and robotic manipulation of specimen samples, including incubating eggs, and uses thereof are provided. The device may advantageously be used for the incubation of avian, reptilian or any type of vertebrate eggs. The apparatus comprises a mechanism for holding samples individually, rotating them individually, rotating them on a centrifuge collectively, injecting them individually with a fixative or other chemical reagent, and maintaining them at controlled temperature, relative humidity and atmospheric composition. The device is applicable to experiments involving entities other than eggs, such as invertebrate specimens, plants, microorganisms and molecular systems.

  12. Axial and centrifugal pump meanline performance analysis

    Science.gov (United States)

    Veres, Joseph P.

    1994-01-01

    A meanline pump flow modeling method has been developed to provide a fast capability for modeling pumps of cryogenic rocket engines. Based on this method, a meanline pump flow code (PUMPA) has been written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The design point rotor efficiency is obtained from empirically derived correlations of loss to rotor specific speed. The rapid input setup and computer run time for the meanline pump flow code makes it an effective analysis and conceptual design tool. The map generation capabilities of the PUMPA code provide the information needed for interfacing with a rocket engine system modeling code.

  13. Identify the Rotating Stall in Centrifugal Compressors by Fractal Dimension in Reconstructed Phase Space

    Directory of Open Access Journals (Sweden)

    Le Wang

    2015-11-01

    Full Text Available Based on phase space reconstruction and fractal dynamics in nonlinear dynamics, a method is proposed to extract and analyze the dynamics of the rotating stall in the impeller of centrifugal compressor, and some numerical examples are given to verify the results as well. First, the rotating stall of an existing low speed centrifugal compressor (LSCC is numerically simulated, and the time series of pressure in the rotating stall is obtained at various locations near the impeller outlet. Then, the phase space reconstruction is applied to these pressure time series, and a low-dimensional dynamical system, which the dynamics properties are included in, is reconstructed. In phase space reconstruction, C–C method is used to obtain the key parameters, such as time delay and the embedding dimension of the reconstructed phase space. Further, the fractal characteristics of the rotating stall are analyzed in detail, and the fractal dimensions are given for some examples to measure the complexity of the flow in the post-rotating stall. The results show that the fractal structures could reveal the intrinsic dynamics of the rotating stall flow and could be considered as a characteristic to identify the rotating stall.

  14. Quality evaluation of energy consumed in flow regulation method by speed variation in centrifugal pumps

    Science.gov (United States)

    Morales, S.; Culman, M.; Acevedo, C.; Rey, C.

    2014-06-01

    Nowadays, energy efficiency and the Electric Power Quality are two inseparable issues in the evaluation of three-phase induction motors, framed within the program of Rational and Efficient Use of Energy (RUE).The use of efficient energy saving devices has been increasing significantly in RUE programs, for example the use of variable frequency drives (VFD) in pumping systems.The overall objective of the project was to evaluate the impact on power quality and energy efficiency in a centrifugal pump driven by an induction three-phase motor, using the flow control method of speed variation by VFD. The fundamental purpose was to test the opinions continuously heard about the use of flow control methods in centrifugal pumps, analyzing the advantages and disadvantages that have been formulated deliberately in order to offer support to the industry in taking correct decisions. The VFD changes the speed of the motor-pump system increasing efficiency compared to the classical methods of regulation. However, the VFD originates conditions that degrade the quality of the electric power supplied to the system and therefore its efficiency, due to the nonlinearity and presence of harmonic currents. It was possible to analyze the power quality, ensuring that the information that comes to the industry is generally biased.

  15. Numerical Simulation of Cavitation in a Centrifugal Pump at Low Flow Rate

    Institute of Scientific and Technical Information of China (English)

    TAN Lei; CAO Shu-Liang; WANG Yu-Ming; ZHU Bao-Shan

    2012-01-01

    Based on the full cavitation model which adopts homogeneous flow supposition and considering the compressibility effect on cavitation flow to modify the re-normalization group k-e turbulence model by the density function,a computational model is developed to simulate cavitation flow of a centrifugal pump at low flow rate.The NavierStokes equation is solved with the SIMPLEC algorithm.The calculated curves of net positive suction head available (NPSHa) HNPSHa agree well with the experimental data.The critical point of cavitation in centrifugal pump can be predicted precisely,and the NPSH critical values derived from simulation are consistent with the experimental data.Thus the veracity and reliability of this computational model are verified.Based on the result of numerical simulation,the distribution of vapor volume fraction in the impeller and pressure at the impeller inlet are analyzed.Cavities first appear on the suction side of the blade head near the front shroud.A large number of cavities block the impeller channels,which leads to the sudden drop of head at the cavitation critical point.With the reduction of NPSHa,the distribution of pressure at the impeller inlet is more uniform.%Based on the full cavitation model which adopts homogeneous Sow supposition and considering the compressibility effect on cavitation Row to modify the re-normalization group κ-ε turbulence model by the density function, a computational model is developed to simulate cavitation Bow of a centrifugal pump at low Bow rate. The Navier-Stokes equation is solved with the SIMPLEC algorithm. The calculated curves of net positive suction head available (NPSHa) Hnpshs agree well with the experimental data. The critical point of cavitation in centrifugal pump can be predicted precisely, and the NPSH critical values derived from simulation are consistent with the experimental data. Thus the veracity and reliability of this computational model are veriBed. Based on the result of numerical

  16. Mechanism of Gas Intrusion into Molten Metal during Horizontal Centrifugal Casting

    Institute of Scientific and Technical Information of China (English)

    NI Feng; ZHANG Xhan-ling; YANG Di-xin; BI Xiao-qin; ZHANG Yong-zhen

    2004-01-01

    A mechanism of gas intrusion into molten metal during horizontal centrifugal casting was introduced .Based upon this concept, a special pouring method was suggested ,which can effectively prevent the pinhole defects in horizontal centrifugal castings.

  17. Effects of centrifugation stress on pituitary-gonadal function in male rats

    Science.gov (United States)

    Gray, G. D.; Smith, E. R.; Damassa, D. A.; Davidson, J. M.

    1980-01-01

    The effects of centrifugation for various lengths of time on circulating levels of luteinizing hormone (LH) and testosterone in male rats were investigated. In a chronic 52-day experiment, centrifugation at 4.1 G significantly reduced LH and testosterone levels for the entire period. Centrifugation at 2.3 G had less effect inasmuch as LH levels were not significantly decreased and testosterone levels were significantly reduced only during the first few days of centrifugation. In more acute experiments, centrifugation at 4.1 G for 4 h resulted in reduced testosterone levels, whereas centrifugation for 15 min did not significantly alter the hormone levels. These results indicate that centrifugation can decrease circulating LH and testosterone levels if the gravitational force is of sufficient magnitude and is maintained for a period of hours. Chronic centrifugation may also inhibit the acute excitatory response of LH to handling and ether stress.

  18. Total organic carbon analyzer

    Science.gov (United States)

    Godec, Richard G.; Kosenka, Paul P.; Smith, Brian D.; Hutte, Richard S.; Webb, Johanna V.; Sauer, Richard L.

    1991-01-01

    The development and testing of a breadboard version of a highly sensitive total-organic-carbon (TOC) analyzer are reported. Attention is given to the system components including the CO2 sensor, oxidation reactor, acidification module, and the sample-inlet system. Research is reported for an experimental reagentless oxidation reactor, and good results are reported for linearity, sensitivity, and selectivity in the CO2 sensor. The TOC analyzer is developed with gravity-independent components and is designed for minimal additions of chemical reagents. The reagentless oxidation reactor is based on electrolysis and UV photolysis and is shown to be potentially useful. The stability of the breadboard instrument is shown to be good on a day-to-day basis, and the analyzer is capable of 5 sample analyses per day for a period of about 80 days. The instrument can provide accurate TOC and TIC measurements over a concentration range of 20 ppb to 50 ppm C.

  19. Analyzing radioligand binding data.

    Science.gov (United States)

    Motulsky, Harvey; Neubig, Richard

    2002-08-01

    Radioligand binding experiments are easy to perform, and provide useful data in many fields. They can be used to study receptor regulation, discover new drugs by screening for compounds that compete with high affinity for radioligand binding to a particular receptor, investigate receptor localization in different organs or regions using autoradiography, categorize receptor subtypes, and probe mechanisms of receptor signaling, via measurements of agonist binding and its regulation by ions, nucleotides, and other allosteric modulators. This unit reviews the theory of receptor binding and explains how to analyze experimental data. Since binding data are usually best analyzed using nonlinear regression, this unit also explains the principles of curve fitting with nonlinear regression.

  20. Current Situation and Prospects of Development in Structures of Centrifugal Compressors%离心压缩机结构形式发展现状与展望

    Institute of Scientific and Technical Information of China (English)

    王学军; 郑治国; 葛丽玲

    2015-01-01

    In this article, the developing progress of structure of centrifugal compressor was analyzed and discussed, and the categories of the structures were summarized. The structural features were described respectively for single shaft centrifugal compressor, integrally geared centrifugal compressor, and composite structure of driver and centrifugal compressor. Then, the developing prospect of structural forms of centrifugal compressor was forecasted.%对离心压缩机结构形式的发展历程进行了讨论、分析,并归纳了离心压缩机的结构分类。分别以单轴式离心压缩机、组装式离心压缩机和原动机-离心压缩机组合结构三大类离心压缩机为对象详细阐述各类压缩机的结构特点。最后指出了离心压缩机结构形式发展方向。

  1. 磁悬浮离心式冷水机组的发展及应用%Development and Application of Centrifugal Magnetic Suspension Water Chiller

    Institute of Scientific and Technical Information of China (English)

    钱华梅

    2015-01-01

    Application of magnetic levitating bearing in centrifugal water chillers is introduced, a new type of centrifugal magnetic suspension water chiller is given out. Compared with the traditional centrifugal chiller, the characteristics of centrifugal magnetic suspension water chiller, such as no oil circuit fault, low noise, ultra high performance coefficient in partial load, energy conservation and environmental protection are showed. At last, through analyzing the operation cost of engineering examples, the good energy conservation effect of centrifugal magnetic suspension water chiller is further introduced.%介绍了磁悬浮轴承应用于离心式冷水机组,诞生了一种新型的磁悬浮离心式冷水机组,并与传统离心式冷水机组对比,显示了磁悬浮离心式冷水机组无油路故障、噪声低、部分负荷时有超高的性能系数、节能环保等特点。最后通过工程实例进行了运行费用分析,更进一步说明磁悬浮离心式冷水机组有很好的节能效果。

  2. Dynamic actuator for Soil-Structure Interaction physical modelling in centrifuge

    OpenAIRE

    CABRERA, Miguel; Caicedo, Bernardo; THOREL, Luc

    2014-01-01

    Dynamic interactions in centrifuge modelling are often induced with external or not controlled sources. This paper presents a method to study Soil-Structure Interaction in centrifuge, with the use of a dynamic actuator developed for centrifuge testing. The dynamic actuator is employed into the model giving the possibility to test the dynamic response of a wind turbine structure, without any additional supporting accessory. The centrifuge soil model was instrumented in order to measure the wav...

  3. Effect of inner structure of centrifugal separator on particle classification performance

    OpenAIRE

    Yamamoto, Tetsuya; Watanabe, Natsuko; Fukui, Kunihiro; Yoshida, Hideto

    2009-01-01

    This study investigated the effects of the inner structure of a centrifugal separator on particle classification performance. The typical inner structure of centrifugal separators is as follows: a blade, which consists of two orthogonal plates. is inserted into the centrifugal separator to create rigid fluid and particle rotations. The results of the present study demonstrate that centrifugal separator performance was significantly improved by attachment of a cylinder to the center of a conve...

  4. The Review on Energy Saving Technology Development and Prospect of Centrifugal Pump%离心泵的节能技术发展及前景分析

    Institute of Scientific and Technical Information of China (English)

    凌素琴; 陈勇; 刘莉

    2014-01-01

    It analyzes the current main problems of domestic energy saving technology in centrifugal pump manu -facture , presents the detail technical way for centrifugal pump energy saving from the pump design , manufactur-ing, the system cooperation with connection accessories , the integration of mechanical and electrical instrument development and application .Finally it describes the prospect of energy saving technology for centrifugal pump .%分析了目前国内离心泵在节能方面存在的主要问题,分别从单泵的设计和制造、系统的连接附件配合、机电仪一体化发展以及使用方面有针对性地提出了离心泵节能的技术途径,并对离心泵节能技术客观地进行了前景分析。

  5. On the Regulation Method of Working Conditions for Marine Centrifugal%浅析船用离心泵工况调节的方法

    Institute of Scientific and Technical Information of China (English)

    吴国强

    2014-01-01

    By analyzing the changes in the operating point of a centrifugal pump, centrifugal proposed four common condi-tion adjustment method, and an example of how the real ship work carried out on the different uses of centrifugal pumps regu-late working conditions, which operate on the real ship crew played a very good role in guiding.%文章通过分析离心泵工况点的变化情况,提出了离心泵四种常用的工况调节方法,并举例在实船工作中如何对不同用途的离心泵进行工况调节的,这对船员实船操作起到了很好的指导性作用。

  6. Analyzing Workforce Education. Monograph.

    Science.gov (United States)

    Texas Community & Technical Coll. Workforce Education Consortium.

    This monograph examines the issue of task analysis as used in workplace literacy programs, debating the need for it and how to perform it in a rapidly changing environment. Based on experiences of community colleges in Texas, the report analyzes ways that task analysis can be done and how to implement work force education programs more quickly.…

  7. List mode multichannel analyzer

    Science.gov (United States)

    Archer, Daniel E.; Luke, S. John; Mauger, G. Joseph; Riot, Vincent J.; Knapp, David A.

    2007-08-07

    A digital list mode multichannel analyzer (MCA) built around a programmable FPGA device for onboard data analysis and on-the-fly modification of system detection/operating parameters, and capable of collecting and processing data in very small time bins (<1 millisecond) when used in histogramming mode, or in list mode as a list mode MCA.

  8. Analyzing business models

    DEFF Research Database (Denmark)

    Nielsen, Christian

    2014-01-01

    , because the costs of processing and analyzing it exceed the benefits indicating bounded rationality. Hutton (2002) concludes that the analyst community’s inability to raise important questions on quality of management and the viability of its business model inevitably led to the Enron debacle. There seems...

  9. Thermal hydrodynamic analysis of a countercurrent gas centrifuge

    International Nuclear Information System (INIS)

    The influence of the thermal countercurrent on the separative performance of countercurrent centrifuges is treated in this work. The methodology used consists in modeling the gas flow inside the rotor under thermal boundary conditions supplied by the structural thermal model. The gas flow model, also called hydrodynamical model, is based on the Finite Volume Method for cylindrical geometry with azimuthal symmetry. The structural thermal model is based on the Nodal Method and take into account simultaneously, the conduction convection and radiation phenomena. The procedure adopted for this study consisted in the definition of the operational and geometric conditions of a centrifuge which was used as a pattern to the accomplished analysis. This configuration, called 'Standard Centrifuge', was used for the accomplishment of several simulations where the importance of the realistic boundary thermal conditions for the numerical evaluation of the centrifuge separative capacity was evidenced. A selective alteration for the optical properties based on simple engineering procedures was proposed. An improvement of 5% was obtained with this alteration. (author)

  10. Centrifuge modeling of LNAPL transport in partially saturated sand

    NARCIS (Netherlands)

    Esposito, G.; Allersma, H.G.B.; Selvadurai, A.P.S.

    1999-01-01

    Model tests were performed at the Geotechnical Centrifuge Facility of Delft University of Technology, The Netherlands, to examine the mechanics of light nonaqueous phase liquid (LNAPL) movement in a partially saturated porous granular medium. The experiment simulated a 2D spill of LNAPL in an unsatu

  11. Centrifugal impeller operating at a very low temperature

    International Nuclear Information System (INIS)

    Several compression stages working at very low temperatures (approximately= 4 K) and low pressures (approximately= 10 mb) have been calculated, assembled and tested. Good thermodynamic efficiencies (approximately= 0,55) and compression ratios (approximately= 3) are obtained. A compression stage is constituted by a centrifugal impeller surrounded by a static diffuser

  12. Centrifuge modelling of rigid piles in soft clay

    DEFF Research Database (Denmark)

    Klinkvort, R.T.; Poder, M.; Truong, P.;

    2016-01-01

    of this study is to employ centrifuge modelling in order to derive experimental p-y curves for rigid piles embedded in over-consolidated soft clay. A kaolin clay sample was prepared and pre-consolidated by applying a constant pressure at the soil surface, while different over-consolidation ratios were achieved...

  13. Model Based Fault Detection in a Centrifugal Pump Application

    DEFF Research Database (Denmark)

    Kallesøe, Carsten; Cocquempot, Vincent; Izadi-Zamanabadi, Roozbeh

    2006-01-01

    A model based approach for fault detection in a centrifugal pump, driven by an induction motor, is proposed in this paper. The fault detection algorithm is derived using a combination of structural analysis, observer design and Analytical Redundancy Relation (ARR) design. Structural considerations...

  14. Liquid egg white pasteurization using a centrifugal UV irradiator

    Science.gov (United States)

    Studies are lacking on UV nonthermal pasteurization of liquid egg white (LEW). The objective of this study was to inactivate Escherichia coli using a UV irradiator that centrifugally formed a thin film of LEW on the inside of a rotating cylinder. The LEW was inoculated with E. coli K12 to approximat...

  15. DEMONSTRATION BULLETIN: THE PLASMA CENTRIFUGAL FURNACE RETECH, INC.

    Science.gov (United States)

    The plasma centrifugal furnace is a thermal technology which uses the heat generated from a plasma torch to decontaminate metal and organic contaminated waste. This is accomplished by melting metal-bearing solids and, in the process, thermally destroying organic contaminants. The...

  16. Pasteurization of grapefruit juice using a centrifugal ultraviolet light irradiator

    Science.gov (United States)

    The pharmaceutical industry uses UV irradiators to inactivate viruses in liquids without heat. The penetration depth of UV in some liquids, such as serum plasma, can be short. To overcome this, very thin films may be produced by centrifugal force, small diameter tubing, or other means. Many liquid f...

  17. Centrifugally driven microfluidic disc for detection of chromosomal translocations

    DEFF Research Database (Denmark)

    Brøgger, Anna Line; Kwasny, Dorota; Bosco, Filippo G.;

    2012-01-01

    and prognosis of patients. In this work we demonstrate a novel, centrifugally-driven microfluidic system for controlled manipulation of oligonucleotides and subsequent detection of chromosomal translocations. The device is fabricated in the form of a disc with capillary burst microvalves employed to control...

  18. Latex micro-balloon pumping in centrifugal microfluidic platforms.

    Science.gov (United States)

    Aeinehvand, Mohammad Mahdi; Ibrahim, Fatimah; Harun, Sulaiman Wadi; Al-Faqheri, Wisam; Thio, Tzer Hwai Gilbert; Kazemzadeh, Amin; Madou, Marc

    2014-03-01

    Centrifugal microfluidic platforms have emerged as point-of-care diagnostic tools. However, the unidirectional nature of the centrifugal force limits the available space for multi-step processes on a single microfluidic disc. To overcome this limitation, a passive pneumatic pumping method actuated at high rotational speeds has been previously proposed to pump liquid against the centrifugal force. In this paper, a novel micro-balloon pumping method that relies on elastic energy stored in a latex membrane is introduced. It operates at low rotational speeds and pumps a larger volume of liquid towards the centre of the disc. Two different micro-balloon pumping mechanisms have been designed to study the pump performance at a range of rotational frequencies from 0 to 1500 rpm. The behaviour of the micro-balloon pump on the centrifugal microfluidic platforms has been theoretically analysed and compared with the experimental data. The experimental data show that the developed pumping method dramatically decreases the required rotational speed to pump liquid compared to the previously developed pneumatic pumping methods. It also shows that within a range of rotational speed, a desirable volume of liquid can be stored and pumped by adjusting the size of the micro-balloon.

  19. Pasteurization of Grapefruit Juice using a Centrifugal Ultraviolet Light Device

    Science.gov (United States)

    The pharmaceutical industry uses UV devices to nonthermally inactivate viruses in liquids. To overcome the low penetration depth of UV in some liquids, such as serum plasma, thin films are formed by centrifugal force. Liquid foods also have low UV penetration depths. Studies are lacking on nontherma...

  20. Pressure Pulsation Signal Analysis for Centrifugal Compressor Blade Crack Determination

    Directory of Open Access Journals (Sweden)

    Hongkun Li

    2014-01-01

    Full Text Available Blade is a key piece of component for centrifugal compressor. But blade crack could usually occur as blade suffers from the effect of centrifugal forces, gas pressure, friction force, and so on. It could lead to blade failure and centrifugal compressor closing down. Therefore, it is important for blade crack early warning. It is difficult to determine blade crack as the information is weak. In this research, a pressure pulsation (PP sensor installed in vicinity to the crack area is used to determine blade crack according to blade vibration transfer process analysis. As it cannot show the blade crack information clearly, signal analysis and empirical mode decomposition (EMD are investigated for feature extraction and early warning. Firstly, signal filter is carried on PP signal around blade passing frequency (BPF based on working process analysis. Then, envelope analysis is carried on to filter the BPF. In the end, EMD is carried on to determine the characteristic frequency (CF for blade crack. Dynamic strain sensor is installed on the blade to determine the crack CF. Simulation and experimental investigation are carried on to verify the effectiveness of this method. The results show that this method can be helpful for blade crack classification for centrifugal compressors.

  1. Centrifugal pumping of gas-liquid mixtures: a mechanistic approach

    Energy Technology Data Exchange (ETDEWEB)

    Estevam, Valdir [PETROBRAS, Rio de Janeiro, RJ (Brazil); Franca, Fernando A. [Universidade Estadual de Campinas, SP (Brazil); Alhanati, Francisco J.S. [C-Fer Technologies, Edmonton, Alberta (Canada)

    2004-07-01

    Centrifugal pumps are known to show a 'surging' behavior at certain conditions of free gas and liquid flow rate at the intake. In the 'surging region' on a pump characteristic curve, the head generated is significantly lower than if the pump were handling a gas-liquid homogeneous mixture. The surging happens, as one shows in this paper, due to the existence of a gas pocket, referred as 'elongated bubble', at the pump impeller inlet region. Therefore, to be able to predict the performance of centrifugal pumps under two-phase conditions, one has to disclose and model the mechanisms that set existence of the elongated bubble at the impeller inlet, besides calculating its length inside the impeller. This paper reports on the results of experimental and mechanistic modelling work conducted with the objective of better predicting the gas-liquid performance of centrifugal pumps under all range of conditions, including those characterized by 'surging'. The focus was on small diameter centrifugal pumps used to produce oil wells. A mechanistic two-fluid model devised to calculate the head generated by the pump was developed. The predictions of the model show good agreement with data collected for this study, and with data recently collected by other research organizations. (author)

  2. The cavitation behavior with short length blades in centrifugal pump

    Energy Technology Data Exchange (ETDEWEB)

    Thai, Quangnha; Lee, Chang Jin [Konkuk University, Seoul (Korea, Republic of)

    2010-10-15

    A CFD code with 2-D cascade model was developed to predict the cavitation behavior around the impeller blades of impeller in a centrifugal pump. The governing equations are the two-phase Reynolds Averaged Navier-Stokes equations in a homogeneous form in which both liquid and vapor phases are treated as incompressible fluid. To close the model, a standard k-{epsilon} turbulence model is introduced. And the mass transfer rates between liquid and vapor phases are implemented as well. The validations are carried out by comparing with reference data in impeller of a centrifugal pump impeller. The cavitation characteristics of current centrifugal pumps is tested at an on design point (V=8 m/s) and two off-design points (V=20 m/s and V=30 m/s), respectively. The criteria of cavitation and flow instability around blades are presented. The results show that the current centrifugal pump can safely operate without cavitation at on-design point. Also, the simulation shows cavitation develops inhomogeneously among the blades at off-design points. Moreover, the effects of additional blades in the impeller are studied as well. From the numerical results, it is expected that a half-length blade is the optimum configuration as additional blades in cavitation point of view

  3. Blade Crack Detection of Centrifugal Fan Using Adaptive Stochastic Resonance

    Directory of Open Access Journals (Sweden)

    Bingbing Hu

    2015-01-01

    Full Text Available Centrifugal fans are widely used in various industries as a kind of turbo machinery. Among the components of the centrifugal fan, the impeller is a key part because it is used to transform kinetic energy into pressure energy. Crack in impeller’s blades is one of the serious hidden dangers. It is important to detect the cracks in the blades as early as possible. Based on blade vibration signals, this research applies an adaptive stochastic resonance (ASR method to diagnose crack fault in centrifugal fan. The ASR method, which can utilize the optimization ability of the grid search method and adaptively realize the optimal stochastic resonance system matching input signals, may weaken the noise and highlight weak characteristic and thus can diagnose the fault accurately. A centrifugal fan test rig is established and experiments with three cases of blades are conducted. In comparison with the ensemble empirical mode decomposition (EEMD analysis and the traditional Fourier transform method, the experiment verified the effectiveness of the current method in blade crack detection.

  4. Prediction of performance of centrifugal pumps during starts under pressure

    Science.gov (United States)

    Rostafinski, W.

    1969-01-01

    Method which calculates start-up characteristics of centrifugal pumps reveals a capacity to predict pressure drop characteristics of pumps with vaned diffusers. Calculations are based on pump geometry, design-point flow, speed, and pressure rise, and the pump characteristic within range of approximately ten percent of the design-point flow.

  5. Measurements of the rotordynamic shroud forces for centrifugal pumps

    Science.gov (United States)

    Guinzburg, A.; Brennen, C. E.; Acosta, A. J.; Caughey, T. K.

    1990-01-01

    An experiment was designed to measure the rotordynamic shroud forces on a centrifugal pump impeller. The measurements were done for various whirl/impeller speed ratios and for different flow rates. A destabilizing tangential force was measured for small positive whirl ratios and this force decreased with increasing flow rate.

  6. Synthesis and Analytical Centrifugation of Magnetic Model Colloids

    NARCIS (Netherlands)

    Luigjes, B.

    2012-01-01

    This thesis is a study of the preparation and thermodynamic properties of magnetic colloids. First, two types of magnetic model colloids are investigated: composite colloids and single-domain nanoparticles. Thermodynamics of magnetic colloids is studied using analytical centrifugation, including a s

  7. 21 CFR 864.9275 - Blood bank centrifuge for in vitro diagnostic use.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Blood bank centrifuge for in vitro diagnostic use... Manufacture Blood and Blood Products § 864.9275 Blood bank centrifuge for in vitro diagnostic use. (a) Identification. A blood bank centrifuge for in vitro diagnostic use is a device used only to separate blood...

  8. Enhancement of invasiveness of Yersinia enterocolitica and Escherichia coli in HEp-2 cells by centrifugation.

    OpenAIRE

    Vesikari, T; Bromirska, J; Mäki, M

    1982-01-01

    Centrifugation enhanced the infectivity of invasive Escherichia coli and Yersinia enterocolitica for HEp-2 cells. Noninvasive bacteria were not endocytosed after centrifugation. The centrifugation procedure may increase the sensitivity of testing for bacterial invasiveness in cell culture without causing false-positive results.

  9. Fast food tips

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000105.htm Fast food tips To use the sharing features on this ... fast food. When You Go to a Fast Food Restaurant Knowing the amount of calories, fat, and ...

  10. Effects of inlet radius and bell mouth radius on flow rate and sound quality of centrifugal blower

    International Nuclear Information System (INIS)

    The effect of inlet radius and bell mouth radius on flow rate of centrifugal blower were numerically simulated using a commercial CFD program, FLUENT. In this research, a total of eight numerical models were prepared by combining different values of bell mouth radii and inlet radii (the cross section of bell mouth was chosen as a circular arc in this research). The frozen rotor method combined with a realizable k-epsilon turbulence model and non-equilibrium wall function was used to simulate the three-dimensional flow inside the centrifugal blowers. The inlet radius was then revealed to have significant impact on flow rate with the maximum difference between analyzed models was about 4.5% while the bell mouth radius had about 3% impact on flow rate. Parallel experiments were carried out to confirm the results of CFD analysis. The CFD results were thereafter validated owning to the good agreement between CFD results and the parallel experiment results. In addition to performance analysis, noise experiments were carried out to analyze the dependence of sound quality on inlet radius and bell mouth radius with different flow rate. The noise experiment results showed that the loudness and sharpness value of different models were quite similar, which mean the inlet radius and the bell mouth radius didn't have a clear impact on sound quality of centrifugal blower

  11. Stress Analysis of the Centrifugal Pump Pipe%离心泵管道应力浅析

    Institute of Scientific and Technical Information of China (English)

    江浩

    2014-01-01

    结合离心泵管口受力要求及应力分析原则,分析与探讨如何建立离心泵管道应力计算模型,涉及泵的模拟、管道计算温度的选取、泵与储罐之间的柔性连接,以及泵管口受力和力矩的控制途径等。%Combine the force requirements and stress principles of the centrifugal pump pipe nozzle ,analyze and discuss how to establish the stress calculation model of the centrifugal pump ,w hich including the pump simulation ,pipe calculated temperature option , flexible connection between the pump and tank ,and control ways for pump pipe nozzle force and moment of force .

  12. Comparative analysis of discrete exosome fractions obtained by differential centrifugation

    Directory of Open Access Journals (Sweden)

    Dennis K. Jeppesen

    2014-11-01

    Full Text Available Background: Cells release a mixture of extracellular vesicles, amongst these exosomes, that differ in size, density and composition. The standard isolation method for exosomes is centrifugation of fluid samples, typically at 100,000×g or above. Knowledge of the effect of discrete ultracentrifugation speeds on the purification from different cell types, however, is limited. Methods: We examined the effect of applying differential centrifugation g-forces ranging from 33,000×g to 200,000×g on exosome yield and purity, using 2 unrelated human cell lines, embryonic kidney HEK293 cells and bladder carcinoma FL3 cells. The fractions were evaluated by nanoparticle tracking analysis (NTA, total protein quantification and immunoblotting for CD81, TSG101, syntenin, VDAC1 and calreticulin. Results: NTA revealed the lowest background particle count in Dulbecco's Modified Eagle's Medium media devoid of phenol red and cleared by 200,000×g overnight centrifugation. The centrifugation tube fill level impacted the sedimentation efficacy. Comparative analysis by NTA, protein quantification, and detection of exosomal and contamination markers identified differences in vesicle size, concentration and composition of the obtained fractions. In addition, HEK293 and FL3 vesicles displayed marked differences in sedimentation characteristics. Exosomes were pelleted already at 33,000×g, a g-force which also removed most contaminating microsomes. Optimal vesicle-to-protein yield was obtained at 67,000×g for HEK293 cells but 100,000×g for FL3 cells. Relative expression of exosomal markers (TSG101, CD81, syntenin suggested presence of exosome subpopulations with variable sedimentation characteristics. Conclusions: Specific g-force/k factor usage during differential centrifugation greatly influences the purity and yield of exosomes. The vesicle sedimentation profile differed between the 2 cell lines.

  13. Lear CAN analyzer

    OpenAIRE

    Peiró Ibañez, Felipe

    2013-01-01

    Since it was introduced in the automotive industry, the protocol CAN (Controller Area Network) has been widely used for its benefits. This has led many companies to offer several hardware and software solutions in order to monitor the communications that gives this protocol. The current master thesis presents the Lear CAN Analyzer as a software tool developed within the company LEAR Corporation. It is designed to be used in the automobile industry as a complement or substitute for other co...

  14. Analyzing business process management

    OpenAIRE

    Skjæveland, Børge

    2013-01-01

    Within the Oil & Gas Industry, the market is constantly growing more competitive, forcing companies to continually adapt to changes. Companies need to cut costs and improve the business efficiency. One way of successfully managing these challenges is to implement business process management in the organization. This thesis will analyze how Oceaneering Asset Integrity AS handled the implementation of a Business Process Management System and the effects it had on the employees. The main goal...

  15. Bond graph modeling of centrifugal compression systems

    OpenAIRE

    Uddin, Nur; Gravdahl, Jan Tommy

    2015-01-01

    A novel approach to model unsteady fluid dynamics in a compressor network by using a bond graph is presented. The model is intended in particular for compressor control system development. First, we develop a bond graph model of a single compression system. Bond graph modeling offers a different perspective to previous work by modeling the compression system based on energy flow instead of fluid dynamics. Analyzing the bond graph model explains the energy flow during compressor surge. Two pri...

  16. Detailed Surface Analysis Of Incremental Centrifugal Barrel Polishing (CBP) Of Single-Crystal Niobium Samples

    Energy Technology Data Exchange (ETDEWEB)

    Palczewski, Ari D.; Tian, Hui; Trofimova, Olga; Reece, Charles E.

    2011-07-01

    We performed Centrifugal Barrel Polishing (CBP) on single crystal niobium samples/coupons housed in a stainless steel sample holder following the polishing recipe developed at Fermi Lab (FNAL) in 2011 \\cite{C. A. Cooper 2011}. Post CBP, the sample coupons were analyzed for surface roughness, crystal composition and structure, and particle contamination. Following the initial analysis each coupon was high pressure rinsed (HRP) and analyzed for the effectiveness of contamination removal. We were able to obtain the mirror like surface finish after the final stage of tumbling, although some defects and embedded particles remained. In addition, standard HPR appears to have little effect on removing embedded particles which remain after each tumbling step, although final polishing media removal was partially affected by standard/extended HPR.

  17. IPv6 Protocol Analyzer

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    With the emerging of next generation Intemet protocol (IPv6), it is expected to replace the current version of Internet protocol (IPv4) that will be exhausted in the near future. Besides providing adequate address space, some other new features are included into the new 128 bits of IP such as IP auto configuration, quality of service, simple routing capability, security, mobility and multicasting. The current protocol analyzer will not be able to handle IPv6 packets. This paper will focus on developing protocol analyzer that decodes IPv6 packet. IPv6 protocol analyzer is an application module,which is able to decode the IPv6 packet and provide detail breakdown of the construction of the packet. It has to understand the detail construction of the IPv6, and provide a high level abstraction of bits and bytes of the IPv6 packet.Thus it increases network administrators' understanding of a network protocol,helps he/she in solving protocol related problem in a IPv6 network environment.

  18. A Comparison of Lignin, Macroalgae, Wood and Straw Fast Pyrolysis

    DEFF Research Database (Denmark)

    Trinh, Ngoc Trung; Jensen, Peter Arendt; Dam-Johansen, Kim;

    2013-01-01

    A fast pyrolysis study on lignin and macroalgae (non-conventional biomass) and wood and straw (conventional biomass) were carried out in a pyrolysis centrifugal reactor at pyrolysis temperature of 550 ºC. The product distributions and energy recoveries were measured and compared among these bioma......A fast pyrolysis study on lignin and macroalgae (non-conventional biomass) and wood and straw (conventional biomass) were carried out in a pyrolysis centrifugal reactor at pyrolysis temperature of 550 ºC. The product distributions and energy recoveries were measured and compared among...... these biomasses. The fast pyrolysis of macroalgae showed a promising result with a bio-oil yield of 65 wt% dry ash free basis (daf) and 76 % energy recovery in the bio-oil while the lignin fast pyrolysis provides a bio-oil yield of 47 wt% daf and energy recovery in bio-oil of 45 %. The physiochemical properties...... of the bio-oils were characterized with respect to higher heating value (HHV), molecular mass distribution, viscosity, pH, density, thermal behaviors, elemental concentrations, phase separation and aging. The lignin and macroalgae oil properties were different compared to those of the wood and straw oils...

  19. A gas filter correlation analyzer for methane

    Science.gov (United States)

    Sebacher, D. I.

    1978-01-01

    A fast-response instrument for monitoring CH4 was designed and tested using a modified nondispersive infrared technique. An analysis of the single-beam rotating-cell system is presented along with the signal processing circuit. A calibration of the instrument shows that the technique can be used to measure CH4 concentrations as small as 5 ppm-m and the effects of interfering gases are analyzed.

  20. Effects of different ways of fasting in experimental animals

    OpenAIRE

    Zari Naderi Ghalenoie; Shahrzad Hessami Arani; Mohammad Amin Kerachian

    2015-01-01

    While fasting has been practiced for centuries, its beneficial effects was unknown until recently. This review tries to analyze the current literature of how fasting and intermittent fasting (IF) could affect clinical pathological parameters, learning, mood and brain plasticity. The effects of different ways of fasting on metabolism and stress were also explored. Animal experiments have elucidated fasting and IF could exert positive effects on learning, mood and brain, plus metabolic function...

  1. Nuclear elasticity applied to giant resonances of fast rotating nuclei

    International Nuclear Information System (INIS)

    Isoscalar giant resonances in fast rotating nuclei are investigated within the framework of nuclear elasticity by solving the equation of motion of elastic nuclear medium in a rotating frame of reference. Both Coriolis and centrifugal forces are taken into account. The nuclear rotation removes completely the azimuthal degeneracy of the giant resonance energies. Realistic large values of the angular velocity, which are still small as compared to the giant resonance frequencies, are briefly reviewed in relation to allowed high angular momenta. It is shown that for the A=150 region, the Coriolis force is dominating for small values (< ∼ 0.05) of the ratio of angular velocity to resonance frequency, whereas the centrifugal force plays a prominent part in the shift of the split resonance energies for larger values of the ratio. Typical examples of the resonance energies and their fragmentation due to both rotation and deformation are given

  2. Fluorescence analyzer for lignin

    Science.gov (United States)

    Berthold, John W.; Malito, Michael L.; Jeffers, Larry

    1993-01-01

    A method and apparatus for measuring lignin concentration in a sample of wood pulp or black liquor comprises a light emitting arrangement for emitting an excitation light through optical fiber bundles into a probe which has an undiluted sensing end facing the sample. The excitation light causes the lignin concentration to produce fluorescent emission light which is then conveyed through the probe to analyzing equipment which measures the intensity of the emission light. Measures a This invention was made with Government support under Contract Number DOE: DE-FC05-90CE40905 awarded by the Department of Energy (DOE). The Government has certain rights in this invention.

  3. Analyzing Chinese Financial Reporting

    Institute of Scientific and Technical Information of China (English)

    SABRINA; ZHANG

    2008-01-01

    If the world’s capital markets could use a harmonized accounting framework it would not be necessary for a comparison between two or more sets of accounting standards. However,there is much to do before this becomes reality.This article aims to pres- ent a general overview of China’s General Accepted Accounting Principles(GAAP), U.S.General Accepted Accounting Principles and International Financial Reporting Standards(IFRS),and to analyze the differ- ences among IFRS,U.S.GAAP and China GAAP using fixed assets as an example.

  4. Numerical Investigations of Unsteady Flow in a Centrifugal Pump with a Vaned Diffuser

    Directory of Open Access Journals (Sweden)

    Olivier Petit

    2013-01-01

    Full Text Available Computational fluid dynamics (CFD analyses were made to study the unsteady three-dimensional turbulence in the ERCOFTAC centrifugal pump test case. The simulations were carried out using the OpenFOAM Open Source CFD software. The test case consists of an unshrouded centrifugal impeller with seven blades and a radial vaned diffuser with 12 vanes. A large number of measurements are available in the radial gap between the impeller and the diffuse, making this case ideal for validating numerical methods. Results of steady and unsteady calculations of the flow in the pump are compared with the experimental ones, and four different turbulent models are analyzed. The steady simulation uses the frozen rotor concept, while the unsteady simulation uses a fully resolved sliding grid approach. The comparisons show that the unsteady numerical results accurately predict the unsteadiness of the flow, demonstrating the validity and applicability of that methodology for unsteady incompressible turbomachinery flow computations. The steady approach is less accurate, with an unphysical advection of the impeller wakes, but accurate enough for a crude approximation. The different turbulence models predict the flow at the same level of accuracy, with slightly different results.

  5. Simulation and analysis of multi-stage centrifugal fractional extraction process of 4-nitrobenzene glycine enantiomers☆

    Institute of Scientific and Technical Information of China (English)

    Ping Wen; Kewen Tang; Jicheng Zhou; Panliang Zhang

    2015-01-01

    Based on the interfacial ligand exchange model and the law of conservation of mass, the multi-stage enantioselective liquid–liquid extraction model has been established to analyze and discuss on multi-stage centrifugal fractional extraction process of 4-nitrobenzene glycine (PGL) enantiomers. The influence of phase ratio, extractant concentra-tion, and PF6−concentration on the concentrations of enantiomers in the extract and raffinate was investigated by experiment and simulation. A good agreement between model and experiment was obtained. On this basis, the influence of many parameters such as location of stage, concentration levels, extractant excess, and number of stages on the symmetric separation performance was simulated. The optimal location of feed stage is the middle of fractional extraction equipment. The feed flow must satisfy a restricted relationship on flow ratios and the liquid throughout of centrifugal device. For desired purity specification, the required flow ratios decrease with extractant concentration and increase with PF6−concentration. When the number of stages is 18 stages at extractant excess of 1.0 or 14 stages at extractant excess of 2.0, the eeeq (equal enantiomeric excess) can reach to 99%.

  6. Application of modified k-ω model to predicting cavitating flow in centrifugal pump

    Directory of Open Access Journals (Sweden)

    Hou-lin LIU

    2013-07-01

    Full Text Available Considering the compressibility of the cavity in the cavitating flow, this paper presents a modified k-ω model for predicting the cavitating flow in a centrifugal pump, in which the modified k-ω model and Schnerr-Sauer cavitation model were combined with ANSYS CFX. To evaluate the modified and standard k-ω models, numerical simulations were performed with these two models, respectively, and the calculation results were compared with the experimental data. Numerical simulations were executed with three different values of the flow coefficient, and the simulation results of the modified k-ω model showed agreement with most of the experimental data. The cavitating flow in the centrifugal pump obtained by the modified k-ω model at the design flow coefficient of 0.102, was analyzed. When the cavitation number decreases, the cavity initially generates on the suction side of the blade near the leading edge and then expands to the outlet of the impeller, and the decrease of the total pressure coefficient mainly occurs upstream of the impeller passage, while the downstream remains almost unaffected by the development of cavitation.

  7. Centrifugal blood pump for temporary ventricular assist devices with low priming and ceramic bearings.

    Science.gov (United States)

    Leme, Juliana; da Silva, Cibele; Fonseca, Jeison; da Silva, Bruno Utiyama; Uebelhart, Beatriz; Biscegli, José F; Andrade, Aron

    2013-11-01

    A new model of centrifugal blood pump for temporary ventricular assist devices has been developed and evaluated. The design of the device is based on centrifugal pumping principles and the usage of ceramic bearings, resulting in a pump with reduced priming (35 ± 2 mL) that can be applied for up to 30 days. Computational fluid dynamic (CFD) analysis is an efficient tool to optimize flow path geometry, maximize hydraulic performance, and minimize shear stress, consequently decreasing hemolysis. Initial studies were conducted by analyzing flow behavior with different impellers, aiming to determine the best impeller design. After CFD studies, rapid prototyping technology was used for production of pump prototypes with three different impellers. In vitro experiments were performed with those prototypes, using a mock loop system composed of Tygon tubes, oxygenator, digital flow meter, pressure monitor, electronic driver, and adjustable clamp for flow control, filled with a solution (1/3 water, 1/3 glycerin, 1/3 alcohol) simulating blood viscosity and density. Flow-versus-pressure curves were obtained for rotational speeds of 1000, 1500, 2000, 2500, and 3000 rpm. As the next step, the CFD analysis and hydrodynamic performance results will be compared with the results of flow visualization studies and hemolysis tests.

  8. Behavior of Non-metallic Inclusions in Centrifugal Induction Electroslag Castings

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    (para)In order to know the behavior of non-metallic inclusions in centrifugal induction electroslag castings (CIESC), non-metallic inclusions in 5CrMnMo and 4Cr5MoSiV1 were qualitatively and quantitatively analyzed. The largest size of inclusions in the casting and the thermodynamic possibility of TiN precipitation in steel were also calculated. The results show that sulfide inclusions are evenly distributed and the content is low. The amount of oxide inclusions in CIESC 4Cr5MoSiV1 steel is close to the ESR steel and lower than that in the EAF steel, and there are some differences along radial direction. Nitride inclusions are fine and the diameter of the largest one is 3~4um. With the increase of the centrifugal machine's rotational speed, the ratio of round inclusions increases and the ratio of sharp inclusions decreases. According to the experiment and the calculation results, it is pointed out that the largest diameter of non-metallic inclusions in the CIESC 4Cr5MoSiV1 casting is only 6.6mu, and [N%][Ti%] in 4Cr5MoSiV1 steel should be controlled less than 4.4~#U00d7tex010^{-5} in order to further reduce the amount and size of TiN inclusions.

  9. The carbon fiber development for uranium centrifuges: a Brazilian cooperative research

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, Paulo Cesar Beltrao de, E-mail: p.queiroz@ctmsp.mar.mil.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Zouain, Desiree Moraes, E-mail: dmzouain@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    This paper analyzes both the carbon fiber-based development for uranium centrifuges and the research project that supports its development effort over time. The carbon fiber-based engineering properties make it a valuable supply for high technologic products. Nevertheless, its fabrication occurs only in few developed countries and there is no production in Brazil. In addition, the carbon fiber-based products have dual applications: they can be used by the civilian and military industry. Therefore, there are international restrictions related to its use and applications that justify the internal development. Moreover, the Brazilian Navy centrifuges for uranium enrichment were developed using carbon-fiber which contains polyacrylonitrile (PAN) as an imported raw material. The PAN properties of low weight, high tensile strength increase the isotopic separation efficiency. The Brazilian financial scenario surrounded by the international uncertain economy shows that combined creative project solutions are more effective. Therefore, the Navy's Technological Center in Sao Paulo (CTMSP), the University of Campinas (UNICAMP), the University of Sao Paulo (USP), the RADICIFIBRAS Company, and the Brazilian FINEP agency, which is responsible for the project financial support, established a partnership aiming the development of a domestic PAN-based carbon fiber industry. The innovative project solutions adopted and the results of this partnership are presented here. (author)

  10. Computational Fluid Dynamics Ventilation Study for the Human Powered Centrifuge at the International Space Station

    Science.gov (United States)

    Son, Chang H.

    2012-01-01

    The Human Powered Centrifuge (HPC) is a facility that is planned to be installed on board the International Space Station (ISS) to enable crew exercises under the artificial gravity conditions. The HPC equipment includes a "bicycle" for long-term exercises of a crewmember that provides power for rotation of HPC at a speed of 30 rpm. The crewmember exercising vigorously on the centrifuge generates the amount of carbon dioxide of about two times higher than a crewmember in ordinary conditions. The goal of the study is to analyze the airflow and carbon dioxide distribution within Pressurized Multipurpose Module (PMM) cabin when HPC is operating. A full unsteady formulation is used for airflow and CO2 transport CFD-based modeling with the so-called sliding mesh concept when the HPC equipment with the adjacent Bay 4 cabin volume is considered in the rotating reference frame while the rest of the cabin volume is considered in the stationary reference frame. The rotating part of the computational domain includes also a human body model. Localized effects of carbon dioxide dispersion are examined. Strong influence of the rotating HPC equipment on the CO2 distribution detected is discussed.

  11. CFD Ventilation Study for the Human Powered Centrifuge at the International Space Station

    Science.gov (United States)

    Son, Chang H.

    2011-01-01

    The Human Powered Centrifuge (HPC) is a hyper gravity facility that will be installed on board the International Space Station (ISS) to enable crew exercises under the artificial gravity conditions. The HPC equipment includes a bicycle for long-term exercises of a crewmember that provides power for rotation of HPC at a speed of 30 rpm. The crewmember exercising vigorously on the centrifuge generates the amount of carbon dioxide of several times higher than a crewmember in ordinary conditions. The goal of the study is to analyze the airflow and carbon dioxide distribution within Pressurized Multipurpose Module (PMM) cabin. The 3D computational model included PMM cabin. The full unsteady formulation was used for airflow and CO2 transport modeling with the so-called sliding mesh concept is considered in the rotating reference frame while the rest of the cabin volume is considered in the stationary reference frame. The localized effects of carbon dioxide dispersion are examined. Strong influence of the rotating HPC equipment on the CO2 distribution is detected and discussed.

  12. Numerical simulation of cavitation effects influenced by centrifugal pump inlet parameters

    Science.gov (United States)

    Zhao, L. F.; Wang, Y.; Ning, C.; Liu, Z. C.; Zhu, Z. T.; Xie, S. F.

    2015-01-01

    Cavitation has great influence on performance of the centrifugal pump. However, there is still no effective design to overcome this problem. Blade leading edge of centrifugal pump impeller is the initial position of cavitation. The leading edge geometry shape not only has a great influence on the cavitation inception and its development, but also a great influence on the flow state near the impeller inlet. In this paper, the numerical simulation method is adopted. Cavitation of four different models (including rectangular-shape blade model, circular-arc-shape blade model, elliptical-shape blade model and cusp-shape blade model) are simulated under the same condition by changing the NPSHA value. The influence of different blade models on cavitation performance is analyzed. The results show that the deviation between the simulated data and experimental data is within the deviation range. The head of rectangular-shape blade model and circular-arc-shape blade model are higher than those of elliptical-shape blade model and cusp-shape blade model. However, the head of rectangular-shape blade model and circular-arc-shape blade model is smaller than the latter under the low effective cavitation margin. What's more, the head of the models with trimmed blade are higher than the head of the models with untrimmed blade under the working condition but are smaller under the low effective cavitation margin.

  13. Influence of blade outlet angle on performance of low-specific-speed centrifugal pump

    Science.gov (United States)

    Cui, Baoling; Wang, Canfei; Zhu, Zuchao; Jin, Yingzi

    2013-04-01

    In order to analyze the influence of blade outlet angle on inner flow field and performance of low-specific-speed centrifugal pump, the flow field in the pump with different blade outlet angles 32.5° and 39° was numerically calculated. The external performance experiment was also carried out on the pump. Based on SIMPLEC algorithm, time-average N-S equation and the rectified k-ɛ turbulent model were adopted during the process of computation. The distributions of velocity and pressure in pumps with different blade outlet angles were obtained by calculation. The numerical results show that backflow areas exist in the two impellers, while the inner flow has a little improvement in the impeller with larger blade outlet angle. Blade outlet angle has a certain influence on the static pressure near the long-blade leading edge and tongue, but it has little influence on the distribution of static pressure in the passages of impeller. The experiment results show that the low-specific-speed centrifugal pump with larger blade outlet angle has better hydraulic performance.

  14. The carbon fiber development for uranium centrifuges: a Brazilian cooperative research

    International Nuclear Information System (INIS)

    This paper analyzes both the carbon fiber-based development for uranium centrifuges and the research project that supports its development effort over time. The carbon fiber-based engineering properties make it a valuable supply for high technologic products. Nevertheless, its fabrication occurs only in few developed countries and there is no production in Brazil. In addition, the carbon fiber-based products have dual applications: they can be used by the civilian and military industry. Therefore, there are international restrictions related to its use and applications that justify the internal development. Moreover, the Brazilian Navy centrifuges for uranium enrichment were developed using carbon-fiber which contains polyacrylonitrile (PAN) as an imported raw material. The PAN properties of low weight, high tensile strength increase the isotopic separation efficiency. The Brazilian financial scenario surrounded by the international uncertain economy shows that combined creative project solutions are more effective. Therefore, the Navy's Technological Center in Sao Paulo (CTMSP), the University of Campinas (UNICAMP), the University of Sao Paulo (USP), the RADICIFIBRAS Company, and the Brazilian FINEP agency, which is responsible for the project financial support, established a partnership aiming the development of a domestic PAN-based carbon fiber industry. The innovative project solutions adopted and the results of this partnership are presented here. (author)

  15. Ring Image Analyzer

    Science.gov (United States)

    Strekalov, Dmitry V.

    2012-01-01

    Ring Image Analyzer software analyzes images to recognize elliptical patterns. It determines the ellipse parameters (axes ratio, centroid coordinate, tilt angle). The program attempts to recognize elliptical fringes (e.g., Newton Rings) on a photograph and determine their centroid position, the short-to-long-axis ratio, and the angle of rotation of the long axis relative to the horizontal direction on the photograph. These capabilities are important in interferometric imaging and control of surfaces. In particular, this program has been developed and applied for determining the rim shape of precision-machined optical whispering gallery mode resonators. The program relies on a unique image recognition algorithm aimed at recognizing elliptical shapes, but can be easily adapted to other geometric shapes. It is robust against non-elliptical details of the image and against noise. Interferometric analysis of precision-machined surfaces remains an important technological instrument in hardware development and quality analysis. This software automates and increases the accuracy of this technique. The software has been developed for the needs of an R&TD-funded project and has become an important asset for the future research proposal to NASA as well as other agencies.

  16. Field Deployable DNA analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, E; Christian, A; Marion, J; Sorensen, K; Arroyo, E; Vrankovich, G; Hara, C; Nguyen, C

    2005-02-09

    This report details the feasibility of a field deployable DNA analyzer. Steps for swabbing cells from surfaces and extracting DNA in an automatable way are presented. Since enzymatic amplification reactions are highly sensitive to environmental contamination, sample preparation is a crucial step to make an autonomous deployable instrument. We perform sample clean up and concentration in a flow through packed bed. For small initial samples, whole genome amplification is performed in the packed bed resulting in enough product for subsequent PCR amplification. In addition to DNA, which can be used to identify a subject, protein is also left behind, the analysis of which can be used to determine exposure to certain substances, such as radionuclides. Our preparative step for DNA analysis left behind the protein complement as a waste stream; we determined to learn if the proteins themselves could be analyzed in a fieldable device. We successfully developed a two-step lateral flow assay for protein analysis and demonstrate a proof of principle assay.

  17. Residual gas analyzer calibration

    Science.gov (United States)

    Lilienkamp, R. H.

    1972-01-01

    A technique which employs known gas mixtures to calibrate the residual gas analyzer (RGA) is described. The mass spectra from the RGA are recorded for each gas mixture. This mass spectra data and the mixture composition data each form a matrix. From the two matrices the calibration matrix may be computed. The matrix mathematics requires the number of calibration gas mixtures be equal to or greater than the number of gases included in the calibration. This technique was evaluated using a mathematical model of an RGA to generate the mass spectra. This model included shot noise errors in the mass spectra. Errors in the gas concentrations were also included in the valuation. The effects of these errors was studied by varying their magnitudes and comparing the resulting calibrations. Several methods of evaluating an actual calibration are presented. The effects of the number of gases in then, the composition of the calibration mixture, and the number of mixtures used are discussed.

  18. Analyzing architecture articles

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In the present study, we express the quality, function, and characteristics of architecture to help people comprehensively understand what architecture is. We also reveal the problems and conflict found in population, land, water resources, pollution, energy, and the organization systems in construction. China’s economy is transforming. We should focus on the cities, architectural environment, energy conservation, emission-reduction, and low-carbon output that will result in successful green development. We should macroscopically and microscopically analyze the development, from the natural environment to the artificial environment; from the relationship between human beings and nature to the combination of social ecology in cities, and farmlands. We must learn to develop and control them harmoniously and scientifically to provide a foundation for the methods used in architecture research.

  19. PDA: Pooled DNA analyzer

    Directory of Open Access Journals (Sweden)

    Lin Chin-Yu

    2006-04-01

    Full Text Available Abstract Background Association mapping using abundant single nucleotide polymorphisms is a powerful tool for identifying disease susceptibility genes for complex traits and exploring possible genetic diversity. Genotyping large numbers of SNPs individually is performed routinely but is cost prohibitive for large-scale genetic studies. DNA pooling is a reliable and cost-saving alternative genotyping method. However, no software has been developed for complete pooled-DNA analyses, including data standardization, allele frequency estimation, and single/multipoint DNA pooling association tests. This motivated the development of the software, 'PDA' (Pooled DNA Analyzer, to analyze pooled DNA data. Results We develop the software, PDA, for the analysis of pooled-DNA data. PDA is originally implemented with the MATLAB® language, but it can also be executed on a Windows system without installing the MATLAB®. PDA provides estimates of the coefficient of preferential amplification and allele frequency. PDA considers an extended single-point association test, which can compare allele frequencies between two DNA pools constructed under different experimental conditions. Moreover, PDA also provides novel chromosome-wide multipoint association tests based on p-value combinations and a sliding-window concept. This new multipoint testing procedure overcomes a computational bottleneck of conventional haplotype-oriented multipoint methods in DNA pooling analyses and can handle data sets having a large pool size and/or large numbers of polymorphic markers. All of the PDA functions are illustrated in the four bona fide examples. Conclusion PDA is simple to operate and does not require that users have a strong statistical background. The software is available at http://www.ibms.sinica.edu.tw/%7Ecsjfann/first%20flow/pda.htm.

  20. Considerations in designing a centrifugal atomiser for metal powder production

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y.Y. [Department of Engineering, The University of Liverpool, Liverpool L69 3GH (United Kingdom)]. E-mail: y.y.zhao@livepool.ac.uk

    2006-07-01

    In centrifugal atomisation for metal powder production, the key to the control of the particle sizes is the design of the atomiser. This paper studies the main issues concerned in designing a centrifugal atomiser and provides guidance on the selection of an electric motor, radius of atomiser, slope angle of atomiser wall and flow rate of cooling water. In the selection of the atomiser radius, the power and material constraints as well as the hydraulic jump radius need to be considered. A cup atomiser with a slope angle of 60-70{sup o} would result in small spray droplets and thus a fine powder. The water cooling system needs to be assessed by examining the heat flow in the solid metal layer and in the atomiser.

  1. Concept for a short arm human centrifuge onbord ISS.

    Science.gov (United States)

    Kuebler, Ulrich; Grinberg, Anna; Kern, Peter

    Astrium is presently performing for ESA a definition study about the accommodation of a short arm human centrfiuge into a spacecraft. A scientific workshop has been part of the study with the goal to define from various research fields (e.g. cardiovascular, gravitational biology, neuroscience, bone/muscle) requirements for such an artificial gravity system on ISS. As a second step the requirements were consolidated to a set of common specfications for the developemnt of a centrifuge system serving as integrated countermeasure for longterm exposure to g. The presentation will focus on the scientific requirements and the respective translation into technical requirement, finally leading to a centrifuge concept, including accommodation possi-bilities onbord ISS.

  2. Centrifuge modeling of PGD response of buried pipe

    Institute of Scientific and Technical Information of China (English)

    Michael O'Rourke; Vikram Gadicherla; Tarek Abdoun

    2005-01-01

    A new centrifuge based method for determining the response of continuous buried pipe to PGD is presented.The physical characteristics of the RPI's 100 g-ton geotechnical centrifuge and the current lifeline experiment split-box are described: The split-box contains the model pipeline and surrounding soil and is manufactured such that half can be offset, in flight, simulating PGD. In addition, governing similitude relations which allow one to determine the physical characteristics,(diameter, wall thickness and material modulus of elasticity) of the model pipeline are presented. Finally, recorded strains induced in two buried pipes with prototype diameters of 0.63 m and 0.95 m (24 and 36 inch) subject to 0.6 and 2.0 meters (2and 6 feet) of full scale fault offsets and presented and compared to corresponding FE results.

  3. Stage-efficiency of centrifugal extractor used in nuclear industry

    Institute of Scientific and Technical Information of China (English)

    吴秋林; 景山; 王兴海; 宋崇立

    2003-01-01

    The stage-efficiency of a single-stage prototype (d70) centrifugal extractor and the cascade is tested by HNO3-Nd3+ and 30%TRPO-kerosene system. The experimental results of the single-stage centrifugal extractor show that the carryover of the two phases decreases with increasing ratio of the two flow rate and rotation rate and the stage efficiency increases with not only decreasing total flow rate but also increasing rotor speed. However, the experimental results of the cascade show that the average stage efficiency of the cascade increases with not only decreasing total flow rate but also increasing rotor speed in both three-stage mode and two-stage mode.

  4. Massively parallel single-molecule manipulation using centrifugal force

    CERN Document Server

    Halvorsen, Ken

    2009-01-01

    Precise manipulation of single molecules has already led to remarkable insights in physics, chemistry, biology and medicine. However, widespread adoption of single-molecule techniques has been impeded by equipment cost and the laborious nature of making measurements one molecule at a time. We have solved these issues with a new approach: massively parallel single-molecule force measurements using centrifugal force. This approach is realized in a novel instrument that we call the Centrifuge Force Microscope (CFM), in which objects in an orbiting sample are subjected to a calibration-free, macroscopically uniform force-field while their micro-to-nanoscopic motions are observed. We demonstrate high-throughput single-molecule force spectroscopy with this technique by performing thousands of rupture experiments in parallel, characterizing force-dependent unbinding kinetics of an antibody-antigen pair in minutes rather than days. Additionally, we verify the force accuracy of the instrument by measuring the well-est...

  5. Numerical investigation of suction vortices behavior in centrifugal pump

    Energy Technology Data Exchange (ETDEWEB)

    An, Young Joon; Shin, Byeong Rog [Changwon National University, Changwon (Korea, Republic of)

    2011-03-15

    A numerical simulation on suction vortices behavior in a centrifugal pump was carried out to investigate their influence on the internal flow through impellers including formation and shedding of cavitation by using a finite-volume method and k-{omega} Shear Stress Transport turbulence model. For cavitating flow, a two phase homogeneous cavitation model was used. A full three-dimensional flow in a single section centrifugal pump consisting of a six blade impeller and shroud ring was computed with structured mesh. A constant suction vortex is imposed as a boundary condition. Vortices behavior was investigated according to the variation of flow rates of two pump systems with and without suction vortices. From the results, suction vortices induced biased flow structure and more cavitations, especially at the low flow rate condition. Complicated internal flow phenomena through impellers such as formation of cavitations, growing and shedding of the vortex, flow separation and flow unsteadiness due to the suction vortices are investigated and discussed.

  6. Numerical investigation of suction vortices behavior in centrifugal pump

    International Nuclear Information System (INIS)

    A numerical simulation on suction vortices behavior in a centrifugal pump was carried out to investigate their influence on the internal flow through impellers including formation and shedding of cavitation by using a finite-volume method and k-ω Shear Stress Transport turbulence model. For cavitating flow, a two phase homogeneous cavitation model was used. A full three-dimensional flow in a single section centrifugal pump consisting of a six blade impeller and shroud ring was computed with structured mesh. A constant suction vortex is imposed as a boundary condition. Vortices behavior was investigated according to the variation of flow rates of two pump systems with and without suction vortices. From the results, suction vortices induced biased flow structure and more cavitations, especially at the low flow rate condition. Complicated internal flow phenomena through impellers such as formation of cavitations, growing and shedding of the vortex, flow separation and flow unsteadiness due to the suction vortices are investigated and discussed

  7. Flow generation in a novel centrifugal diffuser test device

    Science.gov (United States)

    Vidos, P.

    1983-09-01

    Recognition of the need to develop optimum diffusers for advanced centrifugal compressors, resulted in the design and manufacture of a novel low-speed test facility for centrifugal diffuser testing. The CDTD was designed to allow the flow angle and wall boundary profiles into the test diffuser to be controlled by variable geometry in the flow generator. The present study reports on the design of the flow generator and the analysis of the internal flow using a NASA computer code (MERIDL). First test results are given and are compared with the results of a control volume analysis. The flow angle control technique was found to work effectively but to give somewhat smaller angles (by 4 deg) than were predicted. It was concluded that the information obtained would allow scaling of the device; however, an analysis code was needed which would accept the real physical boundary conditions.

  8. A centrifugal pump concept designed for multiple use in space

    Science.gov (United States)

    Wunderlich, E.; Wulz, H. G.

    A centrifugal pump concept was elaborated for a multiple application in future spacecrafts. Based on this concept a prototype of a small centrifugal pump was manufactured and comprehensively tested. The model pump has been approved in different test series with the fluids liquid ammonia and demineralized water. The design of the model pump was driven by strict requirements of COLUMBUS, namely long life, noiseless operation, minimum mass and low energy consumption. Because of its modular design and as a result of selected materials of multiple compatibility, this pump is suited for the delivery of various further fluids, such as freons, hydrocarbons, propellants (hydrazine) etc.. It is also capable of pumping corrosive or toxic fluids for laboratory processes in space. The wide speed range from about 1,00 to 20,000 rpm which corresponds to a flow from about 1 to 20 l/min, permits an energy saving adaption and flow control.

  9. Dynamical System Analysis of Unsteady Phenomena in Centrifugal Compressor

    Institute of Scientific and Technical Information of China (English)

    YasuyukiKomatsubara; ShimpeiMizuki

    1997-01-01

    Surge and rotating stall occurring in a centrifugal compressor system are investigated by using a phase portrait reconstruction method.From experimentally measured time series of data,the method clarified the cyclic behavior of surge.For rotating stall,there still remain problems in the phase portrait due to the chaotic behavior.However,the results obtained by the present method are able to provide new insights to the modelings for surge and rotating stall.Surge and roatting stall occurring in a centrifugal compressor system are investigated by using a phase portrait reconstruction method.From experimentally measured time series of data,the method clarified the cylcic behavior of surge.For rotating stall,there still remain problems in the phase portrait due to the chaotic behavior.However,the results obtained by the present method are able to provide new insights to the modelings for surge and rotating stall.

  10. Waste minimization and resource recovery using centrifugation and thermal desorption

    International Nuclear Information System (INIS)

    Separation and Recovery Systems, Inc. (SRS) provides on-site waste minimization and resource recovery using its state-of-the-art MX-1500 centrifuge and MX-2000 thermal desorber. The MX-1500 can process over 450 feed tons of material per day, resulting in centrifuged cake containing 20% to 60% by weight. The MX-2000 is a hollow-flite thermal processor indirectly heated by either steam or hot oil. SRS has dewatered and/or deoiled over 1,000,000 feed tons of material in the refining, chemical, and energy industries using the MX-1500. SRS estimates that over 300,000 barrels of reusable oil have been recovered from that material. Additionally, SRS has dried and/or detoxified over 150,000 wet tons of solids or soil to regulatory or customer-specified limits using the MX-2000

  11. Centrifuge Modeling of Piles Subjected to Lateral Loads

    Science.gov (United States)

    Brant, Logan; Ling, Hoe I.

    There are many applications where piles are employed to absorb and deflect lateral impact loads. Structural elements of this type are used to protect infrastructure and are commonly found at marine sites. A series of model tests have been conducted using Columbia University's centrifuge facility to better understand the performance of piles subjected to these loading conditions. A device was designed to install and laterally load single model piles during centrifuge flight. This device uniquely contains two lateral loading systems, one which allows static testing and another appropriate for dynamic tests. This research examines the behavior of tubular steel piles embedded within dry or saturated soil and subjected to varied rates of lateral loading. This investigation provides insight on the contribution of lateral loading rates to the behavior of piles.

  12. Research on Three-Dimensional Unsteady Turbulent Flow in Multistage Centrifugal Pump and Performance Prediction Based on CFD

    Directory of Open Access Journals (Sweden)

    Zhi-jian Wang

    2013-01-01

    Full Text Available The three-dimensional flow physical model of any stage of the 20BZ4 multistage centrifugal pump is built which includes inlet region, impeller flow region, guide-vane flow region and exit region. The three-dimensional unsteady turbulent flow numerical model is created based on Navier-Stoke solver and standard k-ε turbulent equations. The method of multireference frame (MRF and SIMPLE algorithm are used to simulate the flow in multistage centrifugal pump based on FLUENT software. The distributions of relative velocity, absolute velocity, static pressure, and total pressure in guide vanes and impellers under design condition are analyzed. The simulation results show that the flow in impeller is mostly uniform, without eddy, backflow, and separation flow, and jet-wake phenomenon appears only along individual blades. There is secondary flow at blade end and exit of guide vane. Due to the different blade numbers of guide vane and impeller, the total pressure distribution is asymmetric. This paper also simulates the flow under different working conditions to predict the hydraulic performances of centrifugal pump and external characteristics including flow-lift, flow-shaft power, and flow-efficiency are attained. The simulation results are compared with the experimental results, and because of the mechanical losses and volume loss ignored, there is a little difference between them.

  13. Studies of the impact of prerotation problem of the secondary impeller on performance of multi-stage centrifugal pumps

    International Nuclear Information System (INIS)

    In engineering practice, part of the multi-stage centrifugal pumps is designed without space guide vanes due to the size restrictions and the volute is distorted much in shape. In these pumps, tangential velocity of the fluid at the outlet of the first-stage impeller is so great that it has caused a prerotation problem which will affect the inlet flow conditions of the secondary impeller leading to serious efficiency and head decline of the secondary impeller. The head problem of the second stage in multi-stage centrifugal pumps caused by prerotation at the entrance of the second stage was analyzed and the internal hydraulic performance was optimized by setting clapboards in the volute in this paper. CFD numerical simulation method combined with experiment was applied to predict the effect of internal clapboards on the performance of the centrifugal pump. The original prototype was transformed according to the simulation result and tested to verify the optimization work. The experiment result shows that hydraulic performance is remarkably improved compared with the original one and the prerotation problem is basically solved.

  14. Centrifugal casting processes of manufacturing in situ functionally gradient composite materials of Al-19Si-5Mg alloy

    Institute of Scientific and Technical Information of China (English)

    XIE Yong; LIU Changming; ZHAI Yanbo; WANG Kai; LING Xuedong

    2009-01-01

    Cylindrical components of in situ functionally gradient composite materials of Al-19Si-5Mg alloy were manufactured by centrifugal casting. Microstructure characteristics of the manufactured components were observed and the effects of the used process factors on these character-istics were analyzed. The results of observations shows that, in thickness, the components possess microstructures accumulating lots of Mg2Si particles and a portion of primary silicon particles in the inner layer, a little Mg2Si and primary silicon particles in the outer layer, and without any Mg2Si and primary silicon particle in the middle layer. The results of the analysis indicate that the rotation rate of centrifugal casting, mould temperature, and melt pouring temperature have evidently affected the accumulation of the second phase particles. Also, the higher the centrifugal rotation rate, mould temperature, and melt pouring temperature are, the more evident in the inner layer the degree of accumulation of Mg2Si and primary silicon particles is.

  15. Dynamic Actuator for Centrifuge Modeling of Soil-Structure Interaction

    OpenAIRE

    CABRERA, Miguel Angel; Caicedo, Bernardo; THOREL, Luc

    2012-01-01

    This paper presents a new dynamic actuator useful to study soil-structure interactions in a centrifuge. This new dynamic apparatus is based on an amplified piezoelectric actuator. Using this device it is possible to create vibrations in the soil sample of different frequencies and amplitudes. The dynamic actuator consists of a set of weights in a single degree of freedom system plus a piezoelectric actuator and a piezoelectric load cell, which measures the dynamic load. A description of the d...

  16. Centrifugal effects in a weakly ionized rotating gas

    International Nuclear Information System (INIS)

    The author deals with a weakly ionized gas rotating under the influence of the Lorentz force in a cylindrical vessel. This force occurs if an electrical current flows across a magnetic field. The investigation concerns the possibility to bring a neutral gas into rotation by a relatively small number of charged particles (ions and electrons) on which the Lorentz force is acting. Also the possibility to use the centrifugal force, due to the rotation of the gas, for mass separation, is discussed. (Auth.)

  17. Origins of hydrodynamic forces on centrifugal pump impellers

    OpenAIRE

    Adkins, Douglas R.; Brennen, Christopher E.

    1986-01-01

    Hydrodynamic interactions that occur between a centrifugal pump impeller and volute are experimentally and theoretically investigated. The theoretical analysis considers the inability of the blades to perfectly guide the flow through the impeller, and also includes a quasi-one dimensional treatment of the flow in the volute. The disturbance at the impeller discharge and the resulting forces are determined by the theoretical model. The model is then extended to obtain the hydrodynamic force pe...

  18. Analyses of Hydrodynamic Radial Forces on Centrifugal Pump Impellers

    OpenAIRE

    Adkins, D. R.; Brennen, C. E.

    1988-01-01

    Hydrodynamic interactions that occur between a centrifugal pump impeller and a volute are experimentally and theoretically investigates. The theoretical analysis considers the inability of the blades to perfectly guide the flow through the impeller, and also includes a quasi-one dimensional treatment of flow in the volute. Flow disturbances at the impeller discharge and the resulting forces are determined by the theoretical model. The model is then extended to obtain the hydrodynamic force...

  19. Centrifugal stretching of 170Hf in the interacting boson model

    Directory of Open Access Journals (Sweden)

    Werner V.

    2014-03-01

    Full Text Available We present the results of a recent experiment to deduce lifetimes of members of the ground state rotational band of 170Hf, which show the effect of centrifugal stretching in this deformed isotope. Results are compared to the geometrical confined beta-soft(CBS rotor model, as well as to the interacting boson model (IBM. Two methods to correct for effects due to the finite valence space within the IBM are proposed.

  20. Purification of crime scene DNA extracts using centrifugal filter devices

    OpenAIRE

    Norén, Lina; Hedell, Ronny; Ansell, Ricky; Hedman, Johannes

    2013-01-01

    BACKGROUND: The success of forensic DNA analysis is limited by the size, quality and purity of biological evidence found at crime scenes. Sample impurities can inhibit PCR, resulting in partial or negative DNA profiles. Various DNA purification methods are applied to remove impurities, for example, employing centrifugal filter devices. However, irrespective of method, DNA purification leads to DNA loss. Here we evaluate the filter devices Amicon Ultra 30 K and Microsep 30 K with respect to re...

  1. A Review of Centrifugal Testing of Gasoline Contamination and Remediation

    OpenAIRE

    Jay N. Meegoda; Liming Hu

    2011-01-01

    Leaking underground storage tanks (USTs) containing gasoline represent a significant public health hazard. Virtually undetectable to the UST owner, gasoline leaks can contaminate groundwater supplies. In order to develop remediation plans one must know the extent of gasoline contamination. Centrifugal simulations showed that in silty and sandy soils gasoline moved due to the physical process of advection and was retained as a pool of free products above the water table. However, in clayey soi...

  2. Development and Design of a Centrifugal Compressor Volute

    OpenAIRE

    Cheng Xu; Michael Müller

    2005-01-01

    The volute is one of the key components of a centrifugal compressor. The design of the volute not only impacts the compressor efficiency but also influences the operating range. The detailed flow simulation presented here helps to better understand the volute flow mechanisms and provide design guidance in volute design to meet performance goals. In this study, the viscous Navier-Stokes equations are used to simulate the flow inside the vaneless diffuser and volute. The de...

  3. Inverse Design of Centrifugal Compressor Stages Using a Meanline Approach

    OpenAIRE

    Yuri Biba; Peter Menegay

    2004-01-01

    This article discusses an approach for determining meanline geometric parameters of centrifugal compressor stages given specified performance requirements. This is commonly known as the inverse design approach. The opposite process, that of calculating performance parameters based on geometry input is usually called analysis, or direct calculation. An algorithm and computer code implementing the inverse approach is described. As an alternative to commercially available inverse design codes...

  4. A Novel Aerodynamic Design Method for Centrifugal Compressor Impeller

    OpenAIRE

    Mahdi Nili-Ahmadabadi; mohammad durali; Ali Hajilouy Benisi

    2014-01-01

    This paper describes a new quasi-3D design method for centrifugal compressor impeller. The method links up a novel inverse design algorithm, called Ball-Spine Algorithm (BSA), and a quasi-3D analysis. Euler equation is solved on the impeller meridional plane. The unknown boundaries (hub and shroud) of numerical domain are iteratively modified by BSA until a target pressure distribution in flow passage is reached. To validate the quasi-3D analysis code, existing compressor impeller is investig...

  5. Comparison of Two Diffusers in a Transonic Centrifugal Compressor

    OpenAIRE

    Koji Nakagawa; Hiroshi Hayami; Yuichi Keimi

    2003-01-01

    Flow mechanisms suppressing the flow separation in two diffusers, a low-solidity cascade diffuser and a vaned diffuser with additional small vanes near the inlet, were compared mainly by numerical simulation. As the superiority of the low-solidity cascade diffuser was expected, a series of experiments was conducted using a transonic centrifugal compressor with a maximum pressure ratio of 7. The performance of the compressor with the vaned diffuser was comparable to that of the low-solidity ca...

  6. Optimal Design of a Centrifugal Compressor Impeller Using Evolutionary Algorithms

    OpenAIRE

    Soo-Yong Cho; Kook-Young Ahn; Young-Duk Lee; Young-Cheol Kim

    2012-01-01

    An optimization study was conducted on a centrifugal compressor. Eight design variables were chosen from the control points for the Bezier curves which widely influenced the geometric variation; four design variables were selected to optimize the flow passage between the hub and the shroud, and other four design variables were used to improve the performance of the impeller blade. As an optimization algorithm, an artificial neural network (ANN) was adopted. Initially, the design of experiment...

  7. Centrifugal compressor flow instabilities at lowmass flow rate

    OpenAIRE

    Sundström, Elias

    2016-01-01

    Turbochargers play an important role in increasing the energetic efficiency andreducing emissions of modern power-train systems based on downsized recipro-cating internal combustion engines (ICE). The centrifugal compressor in tur-bochargers is limited at off-design operating conditions by the inception of flowinstabilities causing rotating stall and surge. They occur at reduced enginespeeds (low mass flow rates), i.e. typical operating conditions for a betterengine fuel economy, harming ICEs...

  8. Measurement and Calibration of Centrifugal Compressor Pressure Scanning Instrumentation

    OpenAIRE

    Rivas, Jose R; Lou, Fangyuan; Harrison, Herbert "Trey"; Key, Nicole

    2015-01-01

    The compressor is a key component of a jet engine necessary to compress air for the combustion process. Research to optimize compressor efficiency through the understanding of air flow behavior has led to increased efforts in creating modern compressor test facilities. In collaboration with Honeywell, the High Speed Compressor facility at Zucrow Laboratories has built a centrifugal compressor test cell with instrumentation to measure the temperatures and pressures of the air flow. This facili...

  9. Impeller Design of a Centrifugal Fan with Blade Optimization

    OpenAIRE

    Yu-Tai Lee; Vineet Ahuja; Ashvin Hosangadi; Michael E. Slipper; Lawrence P. Mulvihill; Roger Birkbeck; Coleman, Roderick M.

    2011-01-01

    A method is presented for redesigning a centrifugal impeller and its inlet duct. The double-discharge volute casing is a structural constraint and is maintained for its shape. The redesign effort was geared towards meeting the design volute exit pressure while reducing the power required to operate the fan. Given the high performance of the baseline impeller, the redesign adopted a high-fidelity CFD-based computational approach capable of accounting for all aerodynamic losses. The present eff...

  10. Centrifuge modeling of rocking-isolated inelastic RC bridge piers

    OpenAIRE

    Loli, Marianna; Knappett, Jonathan A; Brown, Michael J.; Anastasopoulos, Ioannis; GAZETAS, George

    2014-01-01

    Experimental proof is provided of an unconventional seismic design concept, which is based on deliberately underdesigning shallow foundations to promote intense rocking oscillations and thereby to dramatically improve the seismic resilience of structures. Termed rocking isolation, this new seismic design philosophy is investigated through a series of dynamic centrifuge experiments on properly scaled models of a modern reinforced concrete (RC) bridge pier. The experimental method reproduces th...

  11. Fault Diagnosis in a Centrifugal Pump Using Active Magnetic Bearings

    OpenAIRE

    Nordmann Rainer; Aenis Martin

    2004-01-01

    The number of rotors running in active magnetic bearings (AMBs) has increased over the last few years. These systems offer a great variety of advantages compared to conventional systems. The aim of this article is to use the AMBs together with a developed built-in software for identification, fault detection, and diagnosis in a centrifugal pump. A single-stage pump representing the turbomachines is investigated. During full operation of the pump, the AMBs are used as actuators to generate def...

  12. Comparative hemolysis study of clinically available centrifugal pumps.

    Science.gov (United States)

    Naito, K; Suenaga, E; Cao, Z L; Suda, H; Ueno, T; Natsuaki, M; Itoh, T

    1996-06-01

    Centrifugal pumps have become important devices for cardiopulmonary bypass and circulatory assistance. Five types of centrifugal pumps are clinically available in Japan. To evaluate the blood trauma caused by centrifugal pumps, a comparative hemolysis study was performed under identical conditions. In vitro hemolysis test circuits were constructed to operate the BioMedicus BP-80 (Medtronic, BioMedicus), Sarns Delphin (Sarns/3M Healthcare), Isoflow (St. Jude Medical [SJM]), HPM-15 (Nikkiso), and Capiox CX-SP45 (Terumo). The hemolysis test loop consisted of two 1.5 m lengths of polyvinyl chloride tubing with a 3/8-inch internal diameter, a reservoir with a sampling port, and a pump head. All pumps were set to flow at 6 L/min against the total pressure head of 120 mm Hg. Experiments were conducted simultaneously for 6 h at room temperature (21 degrees C) with fresh bovine blood. Blood samples for plasma-free hemoglobin testing were taken, and the change in temperature at the pump outlet port was measured during the experiment. The mean pump rotational speeds were 1,570, 1,374, 1,438, 1,944, and 1,296 rpm, and the normalized indexes of hemolysis were 0.00070, 0.00745, 0.00096, 0.00066, 0.00090 g/100 L for the BP-80, Sarns, SJM, Nikkiso, and Terumo pumps, respectively. The change in temperature at the pump outlet port was the least for the Nikkiso pump (1.8 degrees C) and the most with the SJM pump (3.8 degrees C). This study showed that there is no relationship between the pump rotational speed (rpm) and the normalized index of hemolysis in 5 types of centrifugal pumps. The pump design and number of impellers could be more notable factors in blood damage.

  13. Effects of Different Blade Angle Distributions on Centrifugal Compressor Performance

    OpenAIRE

    Pekka Röyttä; Aki Grönman; Ahti Jaatinen; Teemu Turunen-Saaresti; Jari Backman

    2009-01-01

    A centrifugal compressor with three different shrouded 2D impellers is studied numerically. All impellers have the same dimensions, and they only differ in channel length and geometry. Noticeable differences in efficiency are observed. Two different turbulence models, Chien's k-ε and k-ω SST, are compared. For this case, k-ω SST was found more realistic. The hypothesis that pressure losses in a curved duct and in an impeller passage behave similarly is suggested and found inadequate.

  14. Numerical simulation of the countercurrent flow in a gas centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Cloutman, L.D.; Gentry, R.A.

    1983-03-01

    We present a finite difference method for the numerical simulation of the axisymmetric countercurrent flow in a gas centrifuge. A time-marching technique is used to relax an arbitrary initial condition to the desired steady-state solution. All boundary layers can be resolved, and nonlinear effects may be included. Numerical examples are presented. We conclude that this technique is capable of predicting accurately the performance of a wide variety of machines under all operating conditions of interest.

  15. Pseudostupidity and analyzability.

    Science.gov (United States)

    Cohn, L S

    1989-01-01

    This paper seeks to heighten awareness of pseudostupidity and the potential analyzability of patients who manifest it by defining and explicating it, reviewing the literature, and presenting in detail the psychoanalytic treatment of a pseudostupid patient. Pseudostupidity is caused by an inhibition of the integration and synthesis of thoughts resulting in a discrepancy between intellectual capacity and apparent intellect. The patient's pseudostupidity was determined in part by his need to prevent his being more successful than father, i.e., defeating his oedipal rival. Knowing and learning were instinctualized. The patient libidinally and defensively identified with father's passive, masochistic position. He needed to frustrate the analyst as he had felt excited and frustrated by his parents' nudity and thwarted by his inhibitions. He wanted to cause the analyst to feel as helpless as he, the patient, felt. Countertransference frustration was relevant and clinically useful in the analysis. Interpretation of evolving relevant issues led to more anxiety and guilt, less pseudostupidity, a heightened alliance, and eventual working through. Negative therapeutic reactions followed the resolution of pseudostupidity. PMID:2708771

  16. Downhole Fluid Analyzer Development

    Energy Technology Data Exchange (ETDEWEB)

    Bill Turner

    2006-11-28

    A novel fiber optic downhole fluid analyzer has been developed for operation in production wells. This device will allow real-time determination of the oil, gas and water fractions of fluids from different zones in a multizone or multilateral completion environment. The device uses near infrared spectroscopy and induced fluorescence measurement to unambiguously determine the oil, water and gas concentrations at all but the highest water cuts. The only downhole components of the system are the fiber optic cable and windows. All of the active components--light sources, sensors, detection electronics and software--will be located at the surface, and will be able to operate multiple downhole probes. Laboratory testing has demonstrated that the sensor can accurately determine oil, water and gas fractions with a less than 5 percent standard error. Once installed in an intelligent completion, this sensor will give the operating company timely information about the fluids arising from various zones or multilaterals in a complex completion pattern, allowing informed decisions to be made on controlling production. The research and development tasks are discussed along with a market analysis.

  17. Phase characterization in two centrifugally cast HK stainless steel tubes

    International Nuclear Information System (INIS)

    The petrochemical industry has been using 25% Cr - 20% Ni centrifugally cast stainless steel since the early 1960s in reformer and pyrolysis furnaces. This class of material has replaced the traditional superalloys showing similar creep behavior, with substantial reduction in costs. The use of the centrifugal casting technique for tube production has also contributed to better quality in these components. During the past two decades, several studies have been conducted concerning the improvement in the performance of this material at high temperatures. Some of them were related to failure analysis and life prediction, while others were related to the chemical composition balance and to new alloying procedures. As a consequence, a new generation of centrifugally cast steels has been developed in the form of niobium-modified HK and HP steels. The creep resistance of these alloys appears to be dependent on the composition, morphology, and distribution of carbides that form within them. The purpose of the study reported herein is to characterize the precipitation effects occurring during long- term service in two HK-type steels, one being of basic HK composition and the other a niobium-modified alloy

  18. Governing Principles of Alginate Microparticle Synthesis with Centrifugal Forces.

    Science.gov (United States)

    Eral, Huseyin Burak; Safai, Eric R; Keshavarz, Bavand; Kim, Jae Jung; Lee, Jisoek; Doyle, P S

    2016-07-19

    A controlled synthesis of polymeric particles is becoming increasingly important because of emerging applications ranging from medical diagnostics to self-assembly. Centrifugal synthesis of hydrogel microparticles is a promising method, combining rapid particle synthesis and the ease of manufacturing with readily available laboratory equipment. This method utilizes centrifugal forces to extrude an aqueous polymer solution, sodium alginate (NaALG) through a nozzle. The extruded solution forms droplets that quickly cross-link upon contact with aqueous calcium chloride (CaCl2) solution to form hydrogel particles. The size distribution of hydrogel particles is dictated by the pinch-off behavior of the extruded solution through a balance of inertial, viscous, and surface tension stresses. We identify the parameters dictating the particle size and provide a numerical correlation predicting the average particle size. Furthermore, we create a phase map identifying different pinch-off regimes (dripping without satellites, dripping with satellites, and jetting), explaining the corresponding particle size distributions, and present scaling arguments predicting the transition between regimes. By shedding light on the underlying physics, this study enables the rational design and operation of particle synthesis by centrifugal forces.

  19. Numerical Analysis and Centrifuge Modeling of Shallow Foundations

    Institute of Scientific and Technical Information of China (English)

    罗强; 栾茂田; 杨蕴明; 王忠涛; 赵守正

    2014-01-01

    The influence of non-coaxial constitutive model on predictions of dense sand behavior is investigated in this paper. The non-coaxial model with strain softening plasticity is applied into finite-element program ABAQUS, which is first used to predict the stress-strain behavior and the non-coaxial characteristic between the orientations of the principal stress and principal plastic strain rate in simple shear tests. The model is also used to predict load settlement responses and bearing capacity factors of shallow foundations. A series of centrifuge tests for shallow foundations on saturated dense sand are performed under drained conditions and the test results are compared with the corresponding numerical results. Various footing dimensions, depths of embedment, and footing shapes are considered in these tests. In view of the load settlement relationships, the stiffness of the load-displacement curves is significantly affected by the non-coaxial model compared with those predicted by the coaxial model, and a lower value of non-coaxial modulus gives a softer response. Considering the soil behavior at failure, the coaxial model predictions of bearing capacity factors are more advanced than those of centrifuge test results and the non-coaxial model results;besides, the non-coaxial model gives better predictions. The non-coaxial model predictions are closer to those of the centrifuge results when a proper non-coaxial plastic modulus is chosen.

  20. Flow measurements in a centrifugal diffusor test device

    Science.gov (United States)

    Vitting, T.

    1985-06-01

    This work sought to verify concepts used in the design of a large scale, low speed, radial cascade wind tunnel which was to be used to investigate flow phenomena in and the performance of vaned radial diffusors. A major contributor to centrifugal compressor efficiency is the performance of the vaned diffusor which closely follows the impeller of the compressor. The purpose of this diffusor is to efficiently convert most of the kinetic energy of the transonic flow entering the vane into pressure. The need for an experimental facility which could simulate adequately, at low cost and in a controlled way, the environment of the centrifugal compressor motivated the development of the Centrifugal Diffusor Test Device (CDTD). It was expected that the generation of a three dimensional flow would provide improved empirical data on annular cascade performance. This measurement program surveyed the axial and circumferential uniformity of the flow at the inlet of a transonic wedge-type blading mounted in the device. Evaluation of the results showed the flow uniformity to be unsatisfactory. Leakage and other small perturbations in the flow field in the swirl generator are believed to be amplified by the basic flow configuration of the device.