WorldWideScience

Sample records for centre dot mev

  1. Aspects of the historical development of targetry for heavy ions of 0.05-2000 A centre dot MeV at GSI

    CERN Document Server

    Folger, H

    1999-01-01

    The progressively improved GSI accelerators provide beams of heavy ions from energies of 0.05-2000 A centre dot MeV at high particle intensities now. Therefore, a wide variety of common and new heavy-ion target techniques had to be installed and developed during the past 25 years to prepare and characterize self-supported or backed heavy-ion-targets of chemical elements and compounds from hydrogen (as polyethylene) to uranium. The thickness ranged from 2x10 sup - sup 6 to 20 g/cm sup 2 for beam spots of about 5 mm in diameter. Homogeneity, surface structure or individual shape had to be adapted to the needs of each experiment. Special setups were required for targets of poisonous materials, of highly enriched stable isotopes or those of radioactive species in minute amounts. The capability of thin-layer technologies was as well applied to prepare and measure stripper foils or various high-vacuum deposits for experimental or accelerator purposes. The development of different rotating target wheels and control ...

  2. Face-Centred-Cubic Artificial Opal Embedded with CdS Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    徐岭; 李明海; 张宇; 马懿; 徐骏; 黄信凡; 陈坤基

    2002-01-01

    Highly monodispersed colloidal silica spheres in sub-micrometre size with distribution standard deviation less than 5% were synthesized by a chemical method. Using the self-crystallization of the silica spheres, we successfully obtained the three-dimensional close-packed face-centred-cubic silica matrices and artificial opals. Then,a colloidal photonic crystal embedded with CdS quantum dots (QDs) was also chemically prepared by using artificial opals as a template. A reflection spectra study reveals that both artificial opals with and without CdS QDs possess (111) directional photonic bandgap features.

  3. Ferroelectric phase transition in hydrogen-bonded 2-aminopyridine phosphate (NC sub 4 H sub 4 NH sub 2)centre dot H sub 3 PO sub 4

    CERN Document Server

    Czapla, Z; Waskowska, A

    2003-01-01

    A new crystal of 2-aminopyridine phosphate (NC sub 4 H sub 4 NH sub 2)centre dot H sub 3 PO sub 4 has been grown and its x-ray structure and physical properties were studied. At room temperature the crystals are monoclinic, space group C2/c. The flat 2-aminopyridine cations are hydrogen bonded to the anionic [PO sub 4 ] groups. The interesting feature of the crystal structure is the three-dimensional network of hydrogen bonds including, among others, two strong, symmetrical O centre dot centre dot centre dot H, H centre dot centre dot centre dot O interactions with disordered proton locations. Symmetrically related PO sub 4 anions linked through these protons form infinite (PO sub 4) subinfinity chains along the crystal a-axis. The anomalies in the temperature dependence of the electric permittivity showed that the crystal undergoes ferroelectric phase transition at T sub c = 103.5 K. The spontaneous polarization takes place along the crystal a-axis, being parallel to the chains of the hydrogen-bonded PO sub ...

  4. Deuteron and triton production in Pb+Pb collisions at 158 A centre dot GeV.

    CERN Document Server

    Hansen, A G; Bøggild, H; Boissevain, J G; Conin, L; Christiansen, P; Dodd, J; Erazmus, B; Esumi, S; Fabjan, Christian Wolfgang; Ferenc, D; Fields, D E; Franz, A; Gaardhøje, J J; Hansen, A G; Hansen, O; Hardtke, D; Hecke, H V; Holzer, E B; Humanic, T J; Hummel, P; Jacak, B V; Jayanti, R; Kaimi, K; Kaneta, M; Kohama, T; Kopytine, M; Leltchouk, M; Ljubicic, A; Lörstad, B; Martin, L; Maeda, N; Malina, R; Medvedev, A; Murray, M; Ohnishi, H; Paic, G; Pandey, S U; Piuz, François; Pluta, J; Polychronakos, V; Potekhin, M V; Poulard, G; Reichhold, D M; Sakaguchi, A; Simon-Gillo, J; Schmidt-Sørensen, J; Sondheim, W E; Sugitate, T; Sullivan, J P; Sumi, Y; Willis, W J; Wolf, K L; Xu, N; Zachary, D S

    1999-01-01

    NA44 has measured the invariant cross section of deuterons and tritons at non zero p sub t in 158 A centre dot GeV lead on lead collisions at CERN SPS. Normalized transverse mass spectra and coalescence parameters versus p sub t have been calculated showing a significant transverse flow. Radius parameters have been extracted using a simple thermal coalescence model. Results from RQMD+coalescence calculations are compared to the data.

  5. Nanodiamond-based nanostructures for coupling nitrogen-vacancy centres to metal nanoparticles and semiconductor quantum dots

    Science.gov (United States)

    Gong, Jianxiao; Steinsultz, Nat; Ouyang, Min

    2016-06-01

    The ability to control the interaction between nitrogen-vacancy centres in diamond and photonic and/or broadband plasmonic nanostructures is crucial for the development of solid-state quantum devices with optimum performance. However, existing methods typically employ top-down fabrication, which restrict scalable and feasible manipulation of nitrogen-vacancy centres. Here, we develop a general bottom-up approach to fabricate an emerging class of freestanding nanodiamond-based hybrid nanostructures with external functional units of either plasmonic nanoparticles or excitonic quantum dots. Precise control of the structural parameters (including size, composition, coverage and spacing of the external functional units) is achieved, representing a pre-requisite for exploring the underlying physics. Fine tuning of the emission characteristics through structural regulation is demonstrated by performing single-particle optical studies. This study opens a rich toolbox to tailor properties of quantum emitters, which can facilitate design guidelines for devices based on nitrogen-vacancy centres that use these freestanding hybrid nanostructures as building blocks.

  6. sup 5 sup 9 Co NQR study on superconducting Na sub x CoO sub 2 centre dot yH sub 2 O

    CERN Document Server

    Kobayashi, Y; Sato, M

    2003-01-01

    Layered Co oxide Na sub x CoO sub 2 centre dot yH sub 2 O with a superconducting transition temperature T sub c =4.5 K has been studied by sup 5 sup 9 Co NQR. The nuclear spin relaxation rate 1/ sup 5 sup 9 T sub 1 is nearly proportional to temperature T in the normal state. In the superconducting state, it exhibits the coherence peak and decreases with decreasing T below approx 0.8T sub c. Detailed comparison of the 1/T sub 1 T values and the magnetic susceptibilities between Na sub x CoO sub 2 centre dot yH sub 2 O and Na sub x CoO sub 2 implies that the metallic state of the former system is closer to a ferromagnetic phase than that of the latter. These experimental results impose a restriction on the mechanism of the superconductivity.

  7. Activation of silicon quantum dots and coupling between the active centre and the defect state of the photonic crystal in a nanolaser

    Institute of Scientific and Technical Information of China (English)

    Huang Wei-Qi; Chen Hang-Qiong; Shu Qin; Liu Shi-Rong; Qin Chao-Jian

    2012-01-01

    A new nanolaser concept using silicon quantum dots (QDs) is proposed.The conduction band opened by the quantum confinement effect gives the pumping levels.Localized states in the gap due to some surface bonds on Si QDs can be formed for the activation of emission.An inversion of population can be generated between the localized states and the valence band in a QD fabricated by using a nanosecond pulse laser.Coupling between the active centres formed by localized states and the defect states of the two-dimensional (2D) photonic crystal can be used to select the model in the nanolaser.

  8. Ferroelectric TGS ((NH sub 2 CH sub 2 COOH) sub 3 centre dot H sub 2 SO sub 4) under high pressure

    CERN Document Server

    Kobayashi, Y; Furuta, H; Endo, S; Deguchi, K

    2002-01-01

    The ferroelectric transition temperature T sub c of (NH sub 2 CH sub 2 COOH) sub 3 centre dot H sub 2 SO sub 4 (TGS), which is a typical order-disorder-type ferroelectric, was determined by dielectric constant and Raman scattering measurements under high pressure. T sub c increased, passed through a maximum and then decreased slightly with increasing pressure, and then abruptly dropped at about 2.5 GPa, where a transition to a new high-pressure phase was confirmed to exist. A tentative p-T phase diagram was proposed for TGS.

  9. A study of the x-irradiated Cs sub 5 H sub 3 (SO sub 4) sub 4 centre dot H sub 2 O crystal by EPR in the 80-415 K temperature range

    CERN Document Server

    Waplak, S; Baranov, A I; Shuvalov, L A

    1997-01-01

    The EPR spectra of the x-irradiated fast proton conductor Cs sub 5 H sub 3 (SO sub 4) sub 4 centre dot H sub 2 O were investigated in the temperature range of 80-415 K. Two kinds of paramagnetic SO sub 4 sup - centres with different proton configurations below about 370 K and freeze-out behaviour of one of them below about 200 K were observed. The role of acid proton dynamics with respect to the glassy-like transition is discussed. (author)

  10. NMR investigation on isotope effect of glycinium phosphite H sub 3 NCH sub 2 COOH centre dot H sub 2 PO sub 3

    CERN Document Server

    Ishibashi, T

    2003-01-01

    The motions of the phosphite anions and glycinium cations in H sub 3 NCH sub 2 COOH centre dot H sub 2 PO sub 3 (GPI) and its deuterated analogue (DGPI) were investigated by sup 1 H, sup 1 sup 3 C and sup 3 sup 1 P spin-lattice relaxation times T sub 1. For both GPI and DGPI, T sub 1 's of the sup 1 H, sup 1 sup 3 C and sup 3 sup 1 P nuclei reflect the amino rotation, methylene libration and motion of the phosphite anions, respectively. Activation energies obtained from T sub 1 's of sup 1 H, sup 1 sup 3 C and sup 3 sup 1 P nuclei are 28.6(2), 26.0(4) and 26.2(4) kJ/mol for GPI and are 34.9(6), 27(1), 47(2) kJ/mol for DGPI, respectively. The deuterium substitution increases E sub a for the motion influenced by the hydrogen bonding. In all the observed motions, correlation times of DGPI are larger than those of GPI. (author)

  11. Energies and wave functions of an off-centre donor in hemispherical quantum dot: Two-dimensional finite difference approach and ritz variational principle

    Energy Technology Data Exchange (ETDEWEB)

    Nakra Mohajer, Soukaina; El Harouny, El Hassan [Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences, Université Abdelmalek Essaadi, B.P. 2121 M’Hannech II, 93030 Tétouan (Morocco); Ibral, Asmaa [Equipe d’Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida Principale, El Jadida (Morocco); Laboratoire d’Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida Principale, El Jadida (Morocco); El Khamkhami, Jamal [Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences, Université Abdelmalek Essaadi, B.P. 2121 M’Hannech II, 93030 Tétouan (Morocco); and others

    2016-09-15

    Eigenvalues equation solutions of a hydrogen-like donor impurity, confined in a hemispherical quantum dot deposited on a wetting layer and capped by an insulating matrix, are determined in the framework of the effective mass approximation. Conduction band alignments at interfaces between quantum dot and surrounding materials are described by infinite height barriers. Ground and excited states energies and wave functions are determined analytically and via one-dimensional finite difference approach in case of an on-center donor. Donor impurity is then moved from center to pole of hemispherical quantum dot and eigenvalues equation is solved via Ritz variational principle, using a trial wave function where Coulomb attraction between electron and ionized donor is taken into account, and by two-dimensional finite difference approach. Numerical codes developed enable access to variations of donor total energy, binding energy, Coulomb correlation parameter, spatial extension and radial probability density with respect to hemisphere radius and impurity position inside the quantum dot.

  12. Magnetic susceptibility of Co sup 2 sup + pairs in [Co sub 2 (ox)tpmc](ClO sub 4) sub 2 centre dot 3H sub 2 O cluster complex

    CERN Document Server

    Spasojevic, V; Sovilj, S P; Mrozinski, J

    2000-01-01

    Calculation of the magnetic susceptibility of Co sup 2 sup + pairs in the recently synthesized cobaltous cluster complex [Co sub 2 (ox)tpmc](ClO sub 4) sub 2 centre dot 3H sub 2 O has been conducted by the use of two different theoretical models. The calculated results were compared to the experimental data collected in a wide temperature region. Conclusions on both the magnetic properties of Co sup 2 sup + dimers and the validity of the proposed models have been drawn. In the temperature region above chi(T) maximum, the best results are obtained with the Heisenberg model that includes spin-orbit coupling and excited single-ion levels. In the low-temperature region anisotropy of the magnetic properties dominates and Ising dimer ground-state model gives a more appropriate description. Obtained g-values (g sub p sub a sub r sub a sub l sub l sub e sub l a=5.67, g sub p sub a sub r sub a sub l sub l sub e sub l b=5.73, and g sub p sub e sub r sub p sub e sub n sub d sub i sub c sub u sub l sub a sub r =1.54) con...

  13. Quadra-Quantum Dots and Related Patterns of Quantum Dot Molecules: Basic Nanostructures for Quantum Dot Cellular Automata Application

    Directory of Open Access Journals (Sweden)

    Somsak Panyakeow

    2010-10-01

    Full Text Available Laterally close-packed quantum dots (QDs called quantum dot molecules (QDMs are grown by modified molecular beam epitaxy (MBE. Quantum dots could be aligned and cross hatched. Quantum rings (QRs created from quantum dot transformation during thin or partial capping are used as templates for the formations of bi-quantum dot molecules (Bi-QDMs and quantum dot rings (QDRs. Preferable quantum dot nanostructure for quantum computation based on quantum dot cellular automata (QCA is laterally close-packed quantum dot molecules having four quantum dots at the corners of square configuration. These four quantum dot sets are called quadra-quantum dots (QQDs. Aligned quadra-quantum dots with two electron confinements work like a wire for digital information transmission by Coulomb repulsion force, which is fast and consumes little power. Combination of quadra-quantum dots in line and their cross-over works as logic gates and memory bits. Molecular Beam Epitaxial growth technique called 'Droplet Epitaxy' has been developed for several quantum nanostructures such as quantum rings and quantum dot rings. Quantum rings are prepared by using 20 ML In-Ga (15:85 droplets deposited on a GaAs substrate at 390'C with a droplet growth rate of 1ML/s. Arsenic flux (7'8'10-6Torr is then exposed for InGaAs crystallization at 200'C for 5 min. During droplet epitaxy at a high droplet thickness and high temperature, out-diffusion from the centre of droplets occurs under anisotropic strain. This leads to quantum ring structures having non-uniform ring stripes and deep square-shaped nanoholes. Using these peculiar quantum rings as templates, four quantum dots situated at the corners of a square shape are regrown. Two of these four quantum dots are aligned either or, which are preferable crystallographic directions of quantum dot alignment in general.

  14. Highly tuneable hole quantum dots in Ge-Si core-shell nanowires

    Science.gov (United States)

    Brauns, Matthias; Ridderbos, Joost; Li, Ang; van der Wiel, Wilfred G.; Bakkers, Erik P. A. M.; Zwanenburg, Floris A.

    2016-10-01

    We define single quantum dots of lengths varying from 60 nm up to nearly half a micron in Ge-Si core-shell nanowires. The charging energies scale inversely with the quantum dot length between 18 and 4 meV. Subsequently, we split up a long dot into a double quantum dot with a separate control over the tunnel couplings and the electrochemical potential of each dot. Both single and double quantum dot configurations prove to be very stable and show excellent control over the electrostatic environment of the dots, making this system a highly versatile platform for spin-based quantum computing.

  15. Homogeneous linewidth of self-assembled III-V quantum dots observed in single-dot photoluminescence

    DEFF Research Database (Denmark)

    Leosson, K.; Birkedal, Dan; Magnúsdóttir, Ingibjörg;

    2003-01-01

    We report photoluminescence emission from single self-assembled InAlGaAs quantum dots, which is broadened purely by dephasing processes. We observe linewidths as low as 6+/-3@meV at 10K, which agrees with the homogeneous linewidth derived from four-wave mixing experiments. By selecting dots that ...

  16. Electron Scattering in Intrananotube Quantum Dots

    NARCIS (Netherlands)

    Buchs, G.; Bercioux, D.; Ruffieux, P.; Gröning, P.; Grabert, H.; Gröning, O.

    2009-01-01

    Intratube quantum dots showing particle-in-a-box-like states with level spacings up to 200 meV are realized in metallic single-walled carbon nanotubes by means of low dose medium energy Ar+ irradiation. Fourier-transform scanning tunneling spectroscopy compared to results of a Fabry-Perot electron r

  17. DLTS measurements on GaSb/GaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Hoegner, Annika; Nowozin, Tobias; Marent, Andreas; Bimberg, Dieter [Institut fuer Festkoerperphysik, TU Berlin (Germany); Tseng, Chi-Che [Institute of Photonics Technologies, NTHU (China); Lin, Shih-Yen [Institute of Optoelectronic Sciences, NTOU (China)

    2010-07-01

    Memory devices based on hole storage in self-organized quantum dots offer significant advantages with respect to storage time and scalability. Recently, we demonstrated a first prototype based on InAs/GaAs quantum dots at low temperatures. To enable feasible storage times at room temperature the localisation energy of the quantum dots has to be increased by using other material systems. A first step in this direction is the use of GaSb quantum dots within a GaAs matrix. We have characterized self-organized GaSb/GaAs quantum dots embedded into a n{sup +}p-diode structure. DLTS measurements on hole emission were conducted and yield a strong peak from which a mean emission energy of about 400 meV can be extracted. The reference sample without the quantum dots (containing only the wetting layer) shows no such peak.

  18. Scanning near-field infrared micro-spectroscopy on buried InAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Fehrenbacher, Markus; Jacob, Rainer; Winnerl, Stephan; Schneider, Harald; Helm, Manfred [Institut fuer Ionenstrahlphysik und Materialforschung, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Wenzel, Marc Tobias; Krysztofinski, Anja; Ribbeck, Hans-Georg von; Eng, Lukas M. [Institut fuer Angewandte Photophysik, TU Dresden (Germany)

    2012-07-01

    Providing an optical resolution on the nanometer length scale, scanning near-field optical microscopy (SNOM) turned out to be a capable technique to investigate the optical properties of perovskites, buried semiconductors and single quantum dots. Thereby, the line-width of the observed resonances (5 - 8 meV) is significantly smaller than the inhomogeneously broadened line-width of other spectroscopic measurements. Using a scattering-type-SNOM (s-SNOM) combined with a tunable free-electron laser (FEL) light source we investigated the electronic structure of single InAs quantum dots, capped under a 70 nm thick GaAs layer. Spectroscopic near-field scans clearly identified two inter-sublevel transitions within the quantum dots at 85 meV and 120 meV, contrasting from the surrounding medium. Moreover, spatially scanning the s-SNOM tip at fixed excitation energies allowed mapping the 3D distribution of such buried quantum dots.

  19. CMS Centre at CERN

    CERN Multimedia

    2007-01-01

    A new "CMS Centre" is being established on the CERN Meyrin site by the CMS collaboration. It will be a focal point for communications, where physicists will work together on data quality monitoring, detector calibration, offline analysis of physics events, and CMS computing operations. Construction of the CMS Centre begins in the historic Proton Synchrotron (PS) control room. The historic Proton Synchrotron (PS) control room, Opened by Niels Bohr in 1960, will be reused by CMS to built its control centre. TThe LHC@FNAL Centre, in operation at Fermilab in the US, will work very closely with the CMS Centre, as well as the CERN Control Centre. (Photo Fermilab)The historic Proton Synchrotron (PS) control room is about to start a new life. Opened by Niels Bohr in 1960, the room will be reused by CMS to built its control centre. When finished, it will resemble the CERN Contro...

  20. Quantum dot spectroscopy

    DEFF Research Database (Denmark)

    Leosson, Kristjan

    Semiconductor quantum dots ("solid-state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution...... of quantum dots, however, results in a large inhomogeneous broadening of quantum dot spectra. Work on self-assembled InGaAs/GaAs quantum dots will be presented. Properties of atom-like single-dot states are investigated optically using high spatial and spectral resolution. Single-dot spectra can be used...

  1. Quantum dot spectroscopy

    DEFF Research Database (Denmark)

    Leosson, Kristjan

    1999-01-01

    Semiconductor quantum dots ("solid state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution...... of quantum dots, however, results in a large inhomogeneous broadening of quantum dot spectra.Work on self-assembled InGaAs/GaAs quantum dots will be presented. Properties of atom-like single-dots states are investigated optically using high spatial and spectral resolution. Single-dot spectra can be used...

  2. Probing individual quantum dots: noise in self-assembled systems.

    Science.gov (United States)

    Vicaro, K O; Gutiérrez, H R; Seabra, A C; Schulz, P A; Cotta, M A

    2009-11-01

    In this work we explore the noise characteristics in lithographically-defined two terminal devices containing self-assembled InAs/InP quantum dots. The experimental ensemble of InAs dots show random telegraph noise (RTN) with tuneable relative amplitude-up to 150%-in well defined temperature and source-drain applied voltage ranges. Our numerical simulation indicates that the RTN signature correlates with a very low number of quantum dots acting as effective charge storage centres in the structure for a given applied voltage. The modulation in relative amplitude variation can thus be associated to the altered electrostatic potential profile around such centres and enhanced carrier scattering provided by a charged dot.

  3. Colloidal quantum dot photovoltaics: The effect of polydispersity

    KAUST Repository

    Zhitomirsky, David

    2012-02-08

    The size-effect tunability of colloidal quantum dots enables facile engineering of the bandgap at the time of nanoparticle synthesis. The dependence of effective bandgap on nanoparticle size also presents a challenge if the size dispersion, hence bandgap variability, is not well-controlled within a given quantum dot solid. The impact of this polydispersity is well-studied in luminescent devices as well as in unipolar electronic transport; however, the requirements on monodispersity have yet to be quantified in photovoltaics. Here we carry out a series of combined experimental and model-based studies aimed at clarifying, and quantifying, the importance of quantum dot monodispersity in photovoltaics. We successfully predict, using a simple model, the dependence of both open-circuit voltage and photoluminescence behavior on the density of small-bandgap (large-diameter) quantum dot inclusions. The model requires inclusion of trap states to explain the experimental data quantitatively. We then explore using this same experimentally tested model the implications of a broadened quantum dot population on device performance. We report that present-day colloidal quantum dot photovoltaic devices with typical inhomogeneous linewidths of 100-150 meV are dominated by surface traps, and it is for this reason that they see marginal benefit from reduction in polydispersity. Upon eliminating surface traps, achieving inhomogeneous broadening of 50 meV or less will lead to device performance that sees very little deleterious impact from polydispersity. © 2012 American Chemical Society.

  4. Flux pinning properties in YBCO films with growth-controlled nano-dots and heavy-ion irradiation defects

    Science.gov (United States)

    Sueyoshi, T.; Kotaki, T.; Uraguchi, Y.; Suenaga, M.; Makihara, T.; Fujiyoshi, T.; Ishikawa, N.

    2016-11-01

    In order to clarify the influence of size and spatial distribution of three-dimensional pinning centres (3D-PCs) on hybrid flux pinning, columnar defects (CDs) were installed by using 200 MeV Xe ions along the c-axis direction into quasi-multilayered films consisting of YBa2Cu3Oy layers and pseudo layers of BaSnO3. The positive effect of the BaSnO3 doping on the hybrid flux pinning stands out for the critical current density Jc around B || c in high magnetic field and/or inclined magnetic field off the c-axis, which is more remarkable for the multilayered film grown at higher temperature, possibly due to larger BaSnO3 nano-dots. In the case of the in-plane distributed BaSnO3 nano-dots, the Jc around B || ab is remarkably enhanced, whereas there is a detrimental effect on the Jc around B || c. These imply that the tuning of 3D-PCs is one of the keys to improve the Jc at all magnetic field orientations for the hybrid flux pinning.

  5. Connecting dots

    DEFF Research Database (Denmark)

    Murakami, Kyoko; Jacobs, Rachel L.

    2017-01-01

    of connecting the dots of recalled moments of individual family members lives and is geared towards building a family’s shared future for posterity. Lastly, we consider a wider implication of family reminiscence in terms of human development. http://www.infoagepub.com/products/Memory-Practices-and-Learning...... and Middleton, 1995). A reminiscence conversation is a dynamic talk-in-interaction, which can produce valuable learning experience for the participants involved. Reminiscence talk contains rich, personal, historic data that can reveal and inform family members of an unknown past. In this seminar/chapter, we...... shall present a discursive approach, a methodology that captures the dynamics of reminiscence. We analyse collected conversational data of British family members reminiscing on their past as a joint family activity. Through such talk-in-interaction, the family members develop continuity within...

  6. Client Centred Desing

    DEFF Research Database (Denmark)

    Ørngreen, Rikke; Nielsen, Janni; Levinsen, Karin

    2008-01-01

    In this paper we argue for the use of Client Centred preparation phases when designing complex systems. Through Client Centred Design human computer interaction can extend the focus on end-users to alse encompass the client's needs, context and resources....

  7. Annealing behaviour of MeV erbium implanted lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Gortmaker, P.; McCallum, J.C. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Lithium niobate (LiNbO{sub 3}) is a crystalline ceramic commonly used in the fabrication of optoelectronic devices. Recently, rare earth doping of LiNbO{sub 3} has become a topic of particular interest. The electronic configuration of rare earth elements such as Erbium (Er) and Neodymium (Nd) allows them to lase in nearly any host matrix making fabrication of a whole range of new optoelectronic devices possible. At present, the doping technique, for LiNbO{sub 3} are centred upon diffusion technology, but the diffusion profiles for the rare earths are not generally well-matched to the optical modes of the device. The aim of this research is to develop MeV implantation and annealing conditions of rare earth doped LiNbO{sub 3} that would be compatible with optoelectronic device fabrication. To determine the characteristics of the rare earth elements in the LiNbO{sub 3} host material over the depth range of interest in optoelectronic device applications, high energy Rutherford backscattering spectrometry and ion channeling (RBS-C) must be used. Presented here are the Er depth profile and lattice damage results obtained from 5 MeV RBS-C measurements on samples of LiNbO{sub 3} implanted with various doses of MeV Erbium and subsequently thermally annealed at a temperature of 1000 deg C. It was found that there is a peak implant concentration (2 x 10{sup 16} Er/cm{sup 2}) for which erbium no longer goes substitutional in the lattice, and the implantation damage is not fully removed by annealing. 8 refs., 3 figs.

  8. The IGU Knowledge Centre

    NARCIS (Netherlands)

    Huizing, Bernardus

    2005-01-01

    This article describes an innovative service for members of the International Gas Union - IGU. The IGU Knowledge Centre provides members with relevant information and data. In this article is described why, how and where.

  9. Virtual particle therapy centre

    CERN Multimedia

    2015-01-01

    Particle therapy is an advanced technique of cancer radiation therapy, using protons or other ions to target the cancerous mass. This advanced technique requires a multi-disciplinary team working in a specialised centre. 3D animation: Nymus3D

  10. The South African National Accelerator Centre and its research programme

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Y. [Kyushu Univ., Fukuoka (Japan)

    1997-03-01

    An overview of the South African National Accelerator Centre and its research activities is given with emphasis on medium energy nuclear physics and nuclear data measurements for medical use. Also presented is a preliminary result of {sup 40}Ca(p,p`x) spectrum measurement for 392 MeV which has been carried out at RCNP, Osaka University, under the South Africa-Japan collaborative programme. (author)

  11. Spin Quantum Beats in InP Quantum Dots in a Magnetic Field

    Science.gov (United States)

    2001-06-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP013252 TITLE: Spin Quantum Beats in InP Quantum Dots in a Magnetic Field...Technology" SRPN.05 St Petersburg, Russia, June 18-22, 2001 (0 2001 loffe Institute Spin quantum beats in InP quantum dots in a magnetic field L A... quantum dots . A detailed description of the structure is given in [ ]. The luminescence was excited by 3 ps pulses of a Ti:sapphire laser, 40 meV above

  12. Academic Drug Discovery Centres

    DEFF Research Database (Denmark)

    Kirkegaard, Henriette Schultz; Valentin, Finn

    2014-01-01

    Academic drug discovery centres (ADDCs) are seen as one of the solutions to fill the innovation gap in early drug discovery, which has proven challenging for previous organisational models. Prior studies of ADDCs have identified the need to analyse them from the angle of their economic and organi......Academic drug discovery centres (ADDCs) are seen as one of the solutions to fill the innovation gap in early drug discovery, which has proven challenging for previous organisational models. Prior studies of ADDCs have identified the need to analyse them from the angle of their economic...... their performance....

  13. Town Centre Redevelopment Strategies

    DEFF Research Database (Denmark)

    Vagnby, Bo Hellisen

    After many years of urban growth Danish downtowns are facing some important choices. Shall the stake one-sidedly be on the town centres as driving forces for growth and 'city marketing', or do they still have a role to play in a broader socio-economic context? In the paper we look back on eight...... during late years, where increased internationalisation is in focus and where it seems as if the social dimension of the town centre planning is slipping out of the hands of the urban planners....

  14. From DOT to Dotty

    CERN Document Server

    CERN. Geneva

    2017-01-01

    - Module types are interfaces, which can be abstracted. In this talk Martin will present DOT, a particularly simple calculus that can express systems following these principles. DOT has been developed as the foundation of the next version of Scala. He will also report on dotty, a new Scala compiler that implements the constructs of DOT in its core data structures and that uses the lessons learned to drive Scala’s evolution.

  15. The GSO Data Centre

    CERN Document Server

    Paletou, F; Génot, V; Rouillard, A; Petit, P; Palacios, A; Caux, E; Wakelam, V

    2015-01-01

    Hereafter we describe the activities of the $Grand \\, Sud-Ouest$ Data Centre operated for INSU/CNRS by the OMP-IRAP and the Universit\\'e Paul Sabatier (Toulouse), in a collaboration with the OASU-LAB (Bordeaux) and OREME-LUPM (Montpellier).

  16. Implementing Responsibility Centre Budgeting

    Science.gov (United States)

    Vonasek, Joseph

    2011-01-01

    Recently, institutes of higher education (universities) have shown a renewed interest in organisational structures and operating methodologies that generate productivity and innovation; responsibility centre budgeting (RCB) is one such process. This paper describes the underlying principles constituting RCB, its origin and structural elements, and…

  17. ATLAS Visitors Centre

    CERN Multimedia

    claudia Marcelloni

    2009-01-01

    ATLAS Visitors Centre has opened its shiny new doors to the public. Officially launched on Monday February 23rd, 2009, the permanent exhibition at Point 1 was conceived as a tour resource for ATLAS guides, and as a way to preserve the public’s opportunity to get a close-up look at the experiment in action when the cavern is sealed.

  18. Charge Carrier Hopping Dynamics in Homogeneously Broadened PbS Quantum Dot Solids.

    Science.gov (United States)

    Gilmore, Rachel H; Lee, Elizabeth M Y; Weidman, Mark C; Willard, Adam P; Tisdale, William A

    2017-02-08

    Energetic disorder in quantum dot solids adversely impacts charge carrier transport in quantum dot solar cells and electronic devices. Here, we use ultrafast transient absorption spectroscopy to show that homogeneously broadened PbS quantum dot arrays (σhom(2):σinh(2) > 19:1, σinh/kBT quantum dot batches are sufficiently monodisperse (δ ≲ 3.3%). The homogeneous line width is found to be an inverse function of quantum dot size, monotonically increasing from ∼25 meV for the largest quantum dots (5.8 nm diameter/0.92 eV energy) to ∼55 meV for the smallest (4.1 nm/1.3 eV energy). Furthermore, we show that intrinsic charge carrier hopping rates are faster for smaller quantum dots. This finding is the opposite of the mobility trend commonly observed in device measurements but is consistent with theoretical predictions. Fitting our data to a kinetic Monte Carlo model, we extract charge carrier hopping times ranging from 80 ps for the smallest quantum dots to over 1 ns for the largest, with the same ethanethiol ligand treatment. Additionally, we make the surprising observation that, in slightly polydisperse (δ ≲ 4%) quantum dot solids, structural disorder has a greater impact than energetic disorder in inhibiting charge carrier transport. These findings emphasize how small improvements in batch size dispersity can have a dramatic impact on intrinsic charge carrier hopping behavior and will stimulate further improvements in quantum dot device performance.

  19. Observation of the B (s) (0) -> aEuro parts per thousand J/psi I center dot I center dot decay

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M. -O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Perez, D. Campora; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Akiba, K. Carvalho; Casse, G.; Cassina, L.; Garcia, L. Castillo; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Cheung, S. -F.; Chiapolini, N.; Chrzaszcz, M.; Vidal, X. Cid; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Dean, C. -T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Deleage, N.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suarez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Faerber, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fohl, K.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frei, C.; Frosini, M.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Garcia Pardinas, J.; Tico, J. Garra; Garrido, L.; Gascon, D.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Geraci, A.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Giani, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gligorov, V. V.; Goebel, C.; Golubkov, D.; Golutvin, A.; Gotti, C.; Grabalosa Gandara, M.; Graciani Diaz, R.; Cardoso, L. A. Granado; Grauges, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Gruenberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Hess, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koppenburg, P.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J. -P.; Lefevre, R.; Leflat, A.; Lefrancois, J.; Lemos Cid, E.; Leroy, O.; Lesiak, T.

    2016-01-01

    The B (s) (0) -> aEuro parts per thousand J/psi I center dot I center dot decay is observed in pp collision data corresponding to an integrated luminosity of 3 fb(-1) recorded by the LHCb detector at centre-of-mass energies of 7 TeV and 8 TeV. This is the first observation of this decay channel, wit

  20. Dispersion of the electron g factor anisotropy in InAs/InP self-assembled quantum dots

    Science.gov (United States)

    Belykh, V. V.; Yakovlev, D. R.; Schindler, J. J.; van Bree, J.; Koenraad, P. M.; Averkiev, N. S.; Bayer, M.; Silov, A. Yu.

    2016-08-01

    The electron g factor in an ensemble of InAs/InP quantum dots with emission wavelengths around 1.4 μm is measured using time-resolved pump-probe Faraday rotation spectroscopy in different magnetic field orientations. Thereby, we can extend recent single dot photoluminescence measurements significantly towards lower optical transition energies through 0.86 eV. This allows us to obtain detailed insight into the dispersion of the recently discovered g factor anisotropy in these infrared emitting quantum dots. We find with decreasing transition energy over a range of 50 meV a strong enhancement of the g factor difference between magnetic field normal and along the dot growth axis, namely, from 1 to 1.7. We argue that the g factor cannot be solely determined by the confinement energy, but the dot asymmetry underlying this anisotropy therefore has to increase with increasing dot size.

  1. Quantum dot density studies for quantum dot intermediate band solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Thomassen, Sedsel Fretheim; Zhou, Dayong; Vitelli, Stefano; Mayani, Maryam Gholami; Fimland, Bjoern-Ove; Reenaas, Turid Worren

    2010-07-01

    Quantum dots (QDs) have been an active area of research for many years and have been implemented in several applications, such as lasers and detectors. During the last years, some attempts have been made to increase the absorption and efficiency of solar cells by inserting QDs into the intrinsic region of pin solar cells. So far, these attempts have been successful in increasing the absorption, but not the cell efficiency. There are probably several reasons for this lack of efficiency increase, but we believe that one important reason is the low density of the implemented QDs. In this work, samples of single layer InAs QDs on n-GaAs(001) substrates have been grown by molecular beam epitaxy (MBE) and we have performed a systematic study of how deposition parameters affect the QD density. The aim is to achieve densities > 1011 cm-2. The nominal substrate temperature (360 - 500 deg. C), the InAs growth rate (0.085 - 1 ML/s) and thickness (2.0 - 2.8 ML) have been varied in a systematic way for two different deposition methods of InAs, i.e. continuous deposition or deposition with interruptions. In addition, we have for the continuous growth samples also varied the As-flux (0.5 - 6 centre dot10-6 torr). Scanning electron microscopy (SEM) has been the main characterization method to determine quantum dot sizes and densities, and atomic force microscopy (AFM) has been used for evaluation of the quantum dot heights. We find that the QD density increases with reduced growth temperature and that it is higher for samples grown continuously than for samples grown with growth interruptions. The homogeneity is also strongly affected by temperature, InAs deposition method and the As-flux. We have observed QD densities as high as 2.5 centre dot1011 cm-2 for the samples grown at the lowest growth temperatures. (Author)

  2. Realization of electrically tunable single quantum dot nanocavities

    Energy Technology Data Exchange (ETDEWEB)

    Hofbauer, Felix Florian Georg

    2009-03-15

    We investigated the design, fabrication and optical investigation of electrically tunable single quantum dot-photonic crystal defect nanocavities operating in both the weak and strong coupling regimes of the light matter interaction. We demonstrate that the quantum confined Stark effect can be employed to quickly and reversibly switch the dot-cavity coupling, simply by varying a gate voltage. Our results show that exciton transitions from individual dots can be tuned by up to {proportional_to}4 meV relative to the nanocavity mode, before the emission quenches due to carrier tunneling escape from the dots. We directly probe spontaneous emission, irreversible polariton decay and the statistics of the emitted photons from a single-dot nanocavity in the weak and strong coupling regimes. New information is obtained on the nature of the dot-cavity coupling in the weak coupling regime and electrical control of zero dimensional polaritons is demonstrated for the first time. The structures investigated are p-i-n photodiodes consisting of an 180nm thick free-standing GaAs membrane into which a two dimensional photonic crystal is formed by etching a triangular lattice of air holes. Low mode volume nanocavities (V{sub mode}<1.6 ({lambda}/n){sup 3}) are realized by omitting 3 holes in a line to form L3 cavities and a single layer of InGaAs self-assembled quantum dots is embedded into the midpoint of the membrane. The nanocavities are electrically contacted via 35 nm thick p- and n-doped contact layers in the GaAs membrane. In the weak coupling regime, time resolved spectroscopy reveals a {proportional_to}7 x shortening of the spontaneous emission lifetime as the dot is tuned through the nanocavity mode, due to the Purcell effect. Upon strongly detuning the same quantum dot transition from the nanocavity mode we observe an additional {proportional_to}8 x lengthening of the spontaneous emission lifetime. These observations unequivocally highlight two regimes of dot

  3. <600> MeV synchro-cyclotron

    CERN Multimedia

    1971-01-01

    One of the 14 pancakes of the new magnet coils for the 600 MeV synchro-cyclotron which were wound and coated with epoxy resin on the CERN site. These new coils will replace the present ones which have been in use for more than 14 years but are now showing signs of deteriorations.

  4. MeV fullerene impacts on mica

    Energy Technology Data Exchange (ETDEWEB)

    Doebeli, M.; Scandella, L. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Ames, F. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Hillock heights on mica irradiated with MeV C{sub 60} ions have been investigated systematically. Results show that the small range of secondary particles along the track plays a crucial role in defect production. (author) figs., tab., refs.

  5. Quantum Dots: Theory

    Energy Technology Data Exchange (ETDEWEB)

    Vukmirovic, Nenad; Wang, Lin-Wang

    2009-11-10

    This review covers the description of the methodologies typically used for the calculation of the electronic structure of self-assembled and colloidal quantum dots. These are illustrated by the results of their application to a selected set of physical effects in quantum dots.

  6. Quantum Dot Solar Cells

    Science.gov (United States)

    Raffaelle, Ryne P.; Castro, Stephanie L.; Hepp, Aloysius; Bailey, Sheila G.

    2002-01-01

    We have been investigating the synthesis of quantum dots of CdSe, CuInS2, and CuInSe2 for use in an intermediate bandgap solar cell. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Bawendi, et. al., in the early 1990's. However, unlike previous work in this area we have also utilized single-source precursor molecules in the synthesis process. We will present XRD, TEM, SEM and EDS characterization of our initial attempts at fabricating these quantum dots. Investigation of the size distributions of these nanoparticles via laser light scattering and scanning electron microscopy will be presented. Theoretical estimates on appropriate quantum dot composition, size, and inter-dot spacing along with potential scenarios for solar cell fabrication will be discussed.

  7. Elderly Care Centre

    Science.gov (United States)

    Wagiman, Aliani; Haja Bava Mohidin, Hazrina; Ismail, Alice Sabrina

    2016-02-01

    The demand for elderly centre has increased tremendously abreast with the world demographic change as the number of senior citizens rose in the 21st century. This has become one of the most crucial problems of today's era. As the world progress into modernity, more and more people are occupied with daily work causing the senior citizens to lose the care that they actually need. This paper seeks to elucidate the best possible design of an elderly care centre with new approach in order to provide the best service for them by analysing their needs and suitable activities that could elevate their quality of life. All these findings will then be incorporated into design solutions so as to enhance the living environment for the elderly especially in Malaysian context.

  8. Tele-centres in Ghana

    DEFF Research Database (Denmark)

    Falch, Morten

    2004-01-01

    Tele-centres offer a low cost opportunity for the many who cannot afford their own phone or Internet connection. This paper presents a field study of tele-centres in Ghana and analyses how they contribute to universal access.......Tele-centres offer a low cost opportunity for the many who cannot afford their own phone or Internet connection. This paper presents a field study of tele-centres in Ghana and analyses how they contribute to universal access....

  9. Study of Tuberculosis cases under RNTCP attending Designated Microscopy Centre at Pravara Rural Hospital, Loni

    Directory of Open Access Journals (Sweden)

    Phalke Deepak Baburao

    2009-12-01

    Full Text Available Pulmonary Tuberculosis is most common form of tuberculosis (TB. The present study was conducted to study the TB cases attending DMC cum DOTS centre at PRH, Loni. It is a retrospective record based study. TB patients information was collected from the record registers at DOTS centre. Out of 611 patients diagnosed, 188 (30% are from the age group 0- 10 years. Extrapulmonary TB patients were more 222(36%. New smear positive TB cases were 196 (32%. Total 61% patients were categorized in CAT- I, 9% in CAT-II & 30% in CAT III. Treatment completion rate was 93.69%. In view of the high success of DOTS strategy, the same is recommended to be continued. For transferred cases, a better system of follow up may be explored for monitoring all these cases.

  10. Cyclotron-produced radioisotopes and their clinical use at the Austin PET Centre

    Energy Technology Data Exchange (ETDEWEB)

    Tochon-Danguy, H.J. [Centre for PET, Melbourne, VIC (Australia). Austin and Repatriation Medical Centre

    1997-12-31

    A Centre for Positron Emission Tomography (PET) has been established within the Department of Nuclear Medicine at the Austin and Repatriation Medical Centre in Melbourne. PET is a non-invasive technique based on the use of biologically relevant compounds labelled with short-lived positron-emitting radionuclides such as carbon-11, nitrogen-13, oxygen-15 and fluorine-18. The basic equipment consists of a medical cyclotron (10 MeV proton and 5 MeV deuteron), six lead-shielded hot cells with associated radiochemistry facilities and a whole body PET scanner. During its first five years of operation, the Melbourne PET Centre, has pursued a strong radiolabelling development program, leading to an ambitious clinical program in neurology, oncology and cardiology. This presentation will describe the basic principles of the PET technique and review the cyclotron-produced radioisotopes and radiopharmaceuticals. Radiolabelling development programs and clinical applications are also addressed. 30 refs., 1 tab., 1 fig.

  11. Binding Energies of Negatively Charged Donors in a Gaussian Potential Quantum Dot

    Institute of Scientific and Technical Information of China (English)

    XIE Wen-Fang

    2005-01-01

    @@ We investigate a negatively charged donor centre (D-) trapped by a quantum dot, which is subjected to a Gaussian potential confinement. Calculations are carried out by using the method of numerical diagonalization of Hamiltonian within the effective-mass approximation. The dependence of the ground state of the negatively charged donor on the dot size and the potential depth is studied. The same calculations performed with the parabolic approximation of the Gaussian potential lead to the results that are qualitatively and quantitatively different.

  12. Graphene quantum dots

    CERN Document Server

    Güçlü, Alev Devrim; Korkusinski, Marek; Hawrylak, Pawel

    2014-01-01

    This book reflects the current status of theoretical and experimental research of graphene based nanostructures, in particular quantum dots, at a level accessible to young researchers, graduate students, experimentalists and theorists. It presents the current state of research of graphene quantum dots, a single or few monolayer thick islands of graphene. It introduces the reader to the electronic and optical properties of graphite, intercalated graphite and graphene, including Dirac fermions, Berry's phase associated with sublattices and valley degeneracy, covers single particle properties of

  13. Neutron-induced fission cross sections of 242Pu from 0.3 MeV to 3 MeV

    Science.gov (United States)

    Salvador-Castiñeira, P.; Bryś, T.; Eykens, R.; Hambsch, F.-J.; Göök, A.; Moens, A.; Oberstedt, S.; Sibbens, G.; Vanleeuw, D.; Vidali, M.; Pretel, C.

    2015-10-01

    The majority of the next generation of nuclear power plants (GEN-IV) will work in the fast-neutron-energy region, as opposed to present day thermal reactors. This leads to new and more accurate nuclear-data needs for some minor actinides and structural materials. Following those upcoming demands, the Organisation for Economic Cooperation and Development Nuclear Energy Agency performed a sensitivity study. Based on the latter, an improvement in accuracy from the present 20% to 5% is required for the 242Pu(n ,f ) cross section. Within the same project both the 240Pu(n ,f ) cross section and the 242Pu(n ,f ) cross section were measured at the Van de Graaff accelerator of the Joint Research Centre at the Institute for Reference Materials and Measurements, where quasimonoenergetic neutrons were produced in an energy range from 0.3 MeV up to 3 MeV. A twin Frisch-grid ionization chamber has been used in a back-to-back configuration as fission-fragment detector. The 242Pu(n ,f ) cross section has been normalized to three different isotopes: 237Np(n ,f ) , 235U(n ,f ) , and 238U(n ,f ) . A comprehensive study of the corrections applied to the data and the uncertainties associated is given. The results obtained are in agreement with previous experimental data at the threshold region up to 0.8 MeV. The resonance-like structure at 0.8 to 1.1 MeV, visible in the evaluations and in most previous experimental values, was not reproduced with the same intensity in this experiment. For neutron energies higher than 1.1 MeV, the results of this experiment are slightly lower than the Evaluated Nuclear Data File/B-VII.1 evaluation but in agreement with the experiment of Tovesson et al. (2009) as well as Staples and Morley (1998). Finally, for energies above 1.5 MeV, the results show consistency with the present evaluations.

  14. H{sup −} ion implantation induced ten-fold increase of photoluminescence efficiency in single layer InAs/GaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Sreekumar, R.; Mandal, A. [Centre for Nanoelectronics, Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra (India); Chakrabarti, S., E-mail: subho@ee.iitb.ac.in [Centre for Nanoelectronics, Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra (India); Gupta, S.K. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra (India)

    2014-09-15

    We demonstrate a ten-fold increase in photoluminescence (PL) efficiency from 50 keV H{sup −} ion-implanted InAs/GaAs quantum dots (QDs) at a temperature of 8 K and/or 145 K. Enhancement occurred without post-annealing treatment. PL efficiency increased with increasing implantation fluence from 6×10{sup 12} ions/cm{sup 2} up to an optimum value of 2.4×10{sup 13} ions/cm{sup 2}, beyond which PL efficiency decreased drastically (up to a fluence of 2.4×10{sup 15} ions/cm{sup 2}). Passivation of non-radiative recombination centres (due to direct interaction of H{sup −} ions with lattice defects) and de-excitation of photo-generated carriers to QDs through quantum mechanical tunnelling via H{sup −} ion-induced defects (e-traps) that are created near the QD–cap layer interface, resulted in PL efficiency enhancement. Shallow e-traps with activation energy ∼90 meV and 30 meV created near the conduction band of GaAs cap layer for the samples implanted with H{sup −} of fluence 6×10{sup 12} and 2.4×10{sup 13} ions/cm{sup 2} respectively are identified using low temperature PL study. Contribution of de-trapped electrons from the e-traps to the QDs enhanced the PL efficiency at 145 K. Cross-section transmission electron microscopy and X-ray diffraction study revealed that the structural damage created by H{sup −} ions at the high fluence level of 2.4×10{sup 15} ions/cm{sup 2}, caused the degradation in PL efficiency. - Highlights: • Self-assembled single layer InAs/GaAs quantum dots. • Low energy hydrogen ion implantation. • PL efficiency enhancement for implanted samples. • Eradication of defects from dots and capping layers.

  15. A cancer help centre.

    Science.gov (United States)

    Daniel, R

    1996-06-01

    The diagnosis of cancer can be shattering to all involved. The treatment of cancer is intense and often very challenging. Prevailing attitudes to cancer are sometimes fearful, negative and depressing. This combination may leave those affected by cancer shocked, disorientated and without hope. Even worse than this, on asking consultants 'What can I do to help myself?' patients are frequently told 'Absolutely nothing'--crushing in one fell swoop their remaining fighting spirit. Not so in the case of Penny Brohn, who, when faced with the diagnosis of breast cancer, travelled the world to find alternative cancer treatments, and having successfully brought her own cancer under control, dedicated her life to creating a Centre for others wishing to fight their disease.

  16. Stavanger Squash Centre, Norway

    Energy Technology Data Exchange (ETDEWEB)

    Rostvik, H. [Sunlab/ABB, Stavanger (Norway)

    1999-07-01

    Although Stavanger is the technological and financial oil-capital of Norway, the Stavanger Squash Centre was until recently the largest solar building in Norway, with 120 m{sup 2} of collectors. The active, building-integrated, solar air collector in the 45 {sup o} roof facing 15 {sup o} east of due south, has now been delivering solar-heated hot water for the showers for 15 years. The solar system consists of several standard products put together in a new way. Monitoring has shown that the system produced 18,000 kWh/m{sup 2} a (150 kWh/m{sub coll} {sup 2}a). If operated as planned, it could have had a solar contribution of 45,000 kWh/a) (375 kWh/m{sub coll} {sup 2}a), resulting in a 19% solar fraction of total demand. (author)

  17. Call Centre- Computer Telephone Integration

    Directory of Open Access Journals (Sweden)

    Dražen Kovačević

    2012-10-01

    Full Text Available Call centre largely came into being as a result of consumerneeds converging with enabling technology- and by the companiesrecognising the revenue opportunities generated by meetingthose needs thereby increasing customer satisfaction. Regardlessof the specific application or activity of a Call centre, customersatisfaction with the interaction is critical to the revenuegenerated or protected by the Call centre. Physical(v, Call centreset up is a place that includes computer, telephone and supervisorstation. Call centre can be available 24 hours a day - whenthe customer wants to make a purchase, needs information, orsimply wishes to register a complaint.

  18. Auger Processes Mediating the Nonresonant Optical Emission from a Semiconductor Quantum Dot Embedded Inside an Optical Cavity

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Nielsen, Per Kær; Lund, Anders Mølbjerg;

    2013-01-01

    We show that Auger processes involving wetting layer transitions mediate emission from a cavity that is detuned from a quantum dot by even tens of meV. The wetting layer thus acts as a reservoir, which by Coulomb scattering can supply or absorb the energy difference between emitter and cavity. We...

  19. Preliminary design studies of a 100 MeV H-/H+ LINAC as injector for SNS synchrotron/ADS LINAC

    Indian Academy of Sciences (India)

    S A Pande; Moonooku Prasad; Nita Kulkarni; P R Hannurkar

    2002-11-01

    It is proposed to construct a spallation neutron source (SNS) at Centre for Advanced Technology (CAT) based on a 1 GeV proton synchrotron with 100 MeV H- LINAC as injector. Additionally, the LINAC can form the first 100 MeV part of a 1 GeV proton LINAC to be built in future for accelerator driven system (ADS) applications. We are exploring a configuration of the 100 MeV LINAC which will consist of an H- ion source, a 4–6 MeV RFQ followed either by a 20 MeV drift tube LINAC (DTL) and 100 MeV separated function drift tube LINAC (SDTL) or a coupled cavity drift tube LINAC (CCDTL) structure. In this paper, we present the results of our preliminary physics design studies of the RFQ–SDTL, RFQ–CCDTL and RFQ–DTL–SDTL configurations. The design of the 4.5 MeV RFQ is discussed along with the matching sections between the RFQ–SDTL/DTL and RFQ–CCDTL. The choice of the accelerator configuration and that of various parameters of the individual accelerator structures under consideration are discussed. The design objectives are to arrive at a configuration which eases heat removal for CW operation and which is less prone to halo formation in order to reduce the beam loss at higher energies.

  20. Fabrication and electrical properties of a carbon nanotube quantum dot

    Institute of Scientific and Technical Information of China (English)

    Fang Jing-Hai; Liu Li-Wei; Kong Wen-Jie; Cai Jian-Zhen; Lü Li

    2006-01-01

    Single-walled carbon nanotubes (SWNTs) were synthesized by pyrolyzing methane (CH4) at a temperature of 900℃ on SiO2 substrates pre-coated with iron nano-particles. Electrical contacts were fabricated onto one of the SWNTs by using an electron beam lithography process. Coulomb blockade and single-electron tunnelling characters were found at low temperatures, indicating that the SWNT in-between the electrodes forms a quantum dot. It is found that the Coulomb gap of the quantum dot is about 8.57 meV, and the factor α, which converts the gate voltage to the true electrostatic potential shift, is around 200 for this device.

  1. Council celebrates CERN Control Centre

    CERN Multimedia

    2006-01-01

    With the unveiling of its new sign, the CERN Control Centre was officially inaugurated on Thursday 16 March. To celebrate its startup, CERN Council members visited the sleek centre, a futuristic-looking room filled with a multitude of monitoring screens.

  2. Carrier transfer and thermal escape in CdTe/ZnTe quantum dots.

    Science.gov (United States)

    Man, Minh Tan; Lee, Hong Seok

    2014-02-24

    We report on the carrier transfer and thermal escape in CdTe/ZnTe quantum dots (QDs) grown on a GaAs substrate. The significant emission-energy-dependent decay time at high excitation intensity (35 W/cm2) is attributed to the lateral transfer of carriers in the QDs. At low temperature (thermally activated transition occurs between two different states separated by approximately 9 meV, while the main contribution to nonradiative processes is the thermal escape from QDs that is assisted by carrier scattering via the emission of longitudinal phonons through the excited QD states at high temperature, with energies of approximately 19 meV.

  3. Hexagonal graphene quantum dots

    KAUST Repository

    Ghosh, S.

    2016-12-05

    We study hexagonal graphene quantum dots, using density functional theory, to obtain a quantitative description of the electronic properties and their size dependence, considering disk and ring geometries with both armchair and zigzag edges. We show that the electronic properties of quantum dots with armchair edges are more sensitive to structural details than those with zigzag edges. As functions of the inner and outer radii, we find in the case of armchair edges that the size of the band gap follows distinct branches, while in the case of zigzag edges it changes monotonically. This behaviour is further analyzed by studying the ground state wave function and explained in terms of its localisation.

  4. Quantum dot solar cells

    CERN Document Server

    Wu, Jiang

    2013-01-01

    The third generation of solar cells includes those based on semiconductor quantum dots. This sophisticated technology applies nanotechnology and quantum mechanics theory to enhance the performance of ordinary solar cells. Although a practical application of quantum dot solar cells has yet to be achieved, a large number of theoretical calculations and experimental studies have confirmed the potential for meeting the requirement for ultra-high conversion efficiency. In this book, high-profile scientists have contributed tutorial chapters that outline the methods used in and the results of variou

  5. CMCC Data Distribution Centre

    Science.gov (United States)

    Aloisio, Giovanni; Fiore, Sandro; Negro, A.

    2010-05-01

    The CMCC Data Distribution Centre (DDC) is the primary entry point (web gateway) to the CMCC. It is a Data Grid Portal providing a ubiquitous and pervasive way to ease data publishing, climate metadata search, datasets discovery, metadata annotation, data access, data aggregation, sub-setting, etc. The grid portal security model includes the use of HTTPS protocol for secure communication with the client (based on X509v3 certificates that must be loaded into the browser) and secure cookies to establish and maintain user sessions. The CMCC DDC is now in a pre-production phase and it is currently used only by internal users (CMCC researchers and climate scientists). The most important component already available in the CMCC DDC is the Search Engine which allows users to perform, through web interfaces, distributed search and discovery activities by introducing one or more of the following search criteria: horizontal extent (which can be specified by interacting with a geographic map), vertical extent, temporal extent, keywords, topics, creation date, etc. By means of this page the user submits the first step of the query process on the metadata DB, then, she can choose one or more datasets retrieving and displaying the complete XML metadata description (from the browser). This way, the second step of the query process is carried out by accessing to a specific XML document of the metadata DB. Finally, through the web interface, the user can access to and download (partially or totally) the data stored on the storage device accessing to OPeNDAP servers and to other available grid storage interfaces. Requests concerning datasets stored in deep storage will be served asynchronously.

  6. Fuzzy Dot Structure of BG-algebras

    Directory of Open Access Journals (Sweden)

    Tapan Senapati

    2014-09-01

    Full Text Available In this paper, the notions of fuzzy dot subalgebras is introduced together with fuzzy normal dot subalgebras and fuzzy dot ideals of BG-algebras. The homomorphic image and inverse image are investigated in fuzzy dot subalgebras and fuzzy dot ideals of BG-algebras. Also, the notion of fuzzy relations on the family of fuzzy dot subalgebras and fuzzy dot ideals of BG-algebras are introduced with some related properties.

  7. Electron correlations in quantum dots

    CERN Document Server

    Tipton, D L J

    2001-01-01

    Quantum dot structures confine electrons in a small region of space. Some properties of semiconductor quantum dots, such as the discrete energy levels and shell filling effects visible in addition spectra, have analogies to those of atoms and indeed dots are sometimes referred to as 'artificial atoms'. However, atoms and dots show some fundamental differences due to electron correlations. For real atoms, the kinetic energy of electrons dominates over their mutual Coulomb repulsion energy and for this reason the independent electron approximation works well. For quantum dots the confining potential may be shallower than that of real atoms leading to lower electron densities and a dominance of mutual Coulomb repulsion over kinetic energy. In this strongly correlated regime the independent electron picture leads to qualitatively incorrect results. This thesis concentrates on few-electron quantum dots in the strongly correlated regime both for quasi-one-dimensional and two-dimensional dots in a square confining p...

  8. Carbon nanotube quantum dots

    NARCIS (Netherlands)

    Sapmaz, S.

    2006-01-01

    Low temperature electron transport measurements on individual single wall carbon nanotubes are described in this thesis. Carbon nanotubes are small hollow cylinders made entirely out of carbon atoms. At low temperatures (below ~10 K) finite length nanotubes form quantum dots. Because of its small si

  9. Characterization of 2 MeV, 4 MeV, 6 MeV and 18 MeV buildup caps for use with a 0.6 cubic centimeter thimble ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Salyer, R.L.; VanDenburg, J.W.; Prinja, A.K.; Kirby, T.; Busch, R. [Univ. of New Mexico, Albuquerque, NM (United States); Hong-Nian Jow [Sandia National Laboratories, Albuquerque, NM (United States)

    1996-07-01

    The purpose of this research is to characterize existing 2 MeV, 4 MeV and 6 MeV buildup caps, and to determine if a buildup cap can be made for the 0.6 cm{sup 3} thimble ionization chamber that will accurately measure exposures in a high-energy photon radiation field. Two different radiation transport codes were used to computationally characterize existing 2 MeV, 4 MeV, and 6 MeV buildup caps for a 0.6 cm{sup 3} active volume thimble ionization chamber: ITS, The Integrated TIGER Series of Coupled Electron-Photon Monte Carlo Transport Codes; and CEPXS/ONEDANT, A One-Dimensional Coupled Electron-Photon Discrete Ordinates Code Package. These codes were also used to determine the design characteristics of a buildup cap for use in the 18 MeV photon beam produced by the 14 TW pulsed power HERMES-III electron accelerator. The maximum range of the secondary electron, the depth at which maximum dose occurs, and the point where dose and collision kerma are equal have been determined to establish the validity of electronic equilibrium. The ionization chamber with the appropriate buildup cap was then subjected to a 4 MeV and a 6 MeV bremmstrahlung radiation spectrum to determine the detector response.

  10. 14 MeV neutrons physics and applications

    CERN Document Server

    Valkovic, Vladivoj

    2015-01-01

    Despite the often difficult and time-consuming effort of performing experiments with fast (14 MeV) neutrons, these neutrons can offer special insight into nucleus and other materials because of the absence of charge. 14 MeV Neutrons: Physics and Applications explores fast neutrons in basic science and applications to problems in medicine, the environment, and security.Drawing on his more than 50 years of experience working with 14 MeV neutrons, the author focuses on:Sources of 14 MeV neutrons, including laboratory size accelerators, small and sealed tube generators, well logging sealed tube ac

  11. Colloidal Double Quantum Dots.

    Science.gov (United States)

    Teitelboim, Ayelet; Meir, Noga; Kazes, Miri; Oron, Dan

    2016-05-17

    Pairs of coupled quantum dots with controlled coupling between the two potential wells serve as an extremely rich system, exhibiting a plethora of optical phenomena that do not exist in each of the isolated constituent dots. Over the past decade, coupled quantum systems have been under extensive study in the context of epitaxially grown quantum dots (QDs), but only a handful of examples have been reported with colloidal QDs. This is mostly due to the difficulties in controllably growing nanoparticles that encapsulate within them two dots separated by an energetic barrier via colloidal synthesis methods. Recent advances in colloidal synthesis methods have enabled the first clear demonstrations of colloidal double quantum dots and allowed for the first exploratory studies into their optical properties. Nevertheless, colloidal double QDs can offer an extended level of structural manipulation that allows not only for a broader range of materials to be used as compared with epitaxially grown counterparts but also for more complex control over the coupling mechanisms and coupling strength between two spatially separated quantum dots. The photophysics of these nanostructures is governed by the balance between two coupling mechanisms. The first is via dipole-dipole interactions between the two constituent components, leading to energy transfer between them. The second is associated with overlap of excited carrier wave functions, leading to charge transfer and multicarrier interactions between the two components. The magnitude of the coupling between the two subcomponents is determined by the detailed potential landscape within the nanocrystals (NCs). One of the hallmarks of double QDs is the observation of dual-color emission from a single nanoparticle, which allows for detailed spectroscopy of their properties down to the single particle level. Furthermore, rational design of the two coupled subsystems enables one to tune the emission statistics from single photon

  12. 25 years Nuclear Research Centre

    Energy Technology Data Exchange (ETDEWEB)

    Harde, R.

    1981-07-01

    On June 12, the Karlsruhe Nuclear Research Centre celebrated its 25th anniversary. The Centre was founded on July 19, 1956. The importance of this institution became apparent by the large number of prominent guests, at the head, the Federal President, Karl Carstens. Minister President Spaeth and the Federal Minister for Research and Technology, von Buelow, appreciated the achievements obtained by this big science centre of nuclear technology. The ceremony held in the State theatre of Baden-Wuerttemberg gave testimony of an impressing confession in favour of nuclear energy. Excerpts from the speech of the Chairman of the Managing Board, Prof. Harde, are quoted.

  13. Minister unveils new nanotech centres

    Science.gov (United States)

    Dumé, Belle

    2009-06-01

    Three new nanotechnology research centres are to be set up in France as part of a €70m government plan to help French companies in the sector. Researchers at the new centres, which will be located in Grenoble, Saclay (near Paris) and Toulouse, will be encouraged to collaborate with industry to develop new nanotech-based products. Dubbed NANO-INNOV, the new plan includes €46m for two new buildings at Saclay, with the rest being used to buy new equipment at the three centres and to fund grant proposals from staff to the French National Research Agency (ANR).

  14. The World Heritage Centr

    Directory of Open Access Journals (Sweden)

    Ayman G. Abdel Tawab

    2014-09-01

    Full Text Available New Gourna Village, which is located inside one of the World Heritage Sites in Egypt, has never been recognized as an element contributing to the site’s Outstanding Universal Value. The recognition of the village as a contributing element is reliant on the successful assessment of its authenticity and integrity. Responding to the dramatically declining integrity of the village, the World Heritage Centre has carried out an architectural study to guide the potential conservation works in the property. The study has recommended that a group of objectives and two approaches to the conservation of the village should be adopted. One of these two approaches has been concerned with the conservation of the village according to the architect’s original intentions and principles. The previous approach can be called the principles-based approach. The main aim of this study was to examine the agreement of the World Heritage Centre’s objectives and their proposed principles-based approach to the conservation of the village with the aim to improve its chance in meeting the conditions of authenticity and integrity. The study approached the previous aim by assessing, by means of a proposed methodology; the level of significance, authenticity and integrity of the property. Based on the previous assessment, a list of conservation interventions was proposed to improve the property’s chance in meeting the conditions of authenticity and integrity. Finally, the World Heritage Centre’s recommended approaches and objectives were examined against the previous proposed conservation interventions. The findings indicated the possibility to adopt the principles-based approach to the conservation of New Gourna Village, as well as the other World Heritage Centre’s objectives, without limiting the property’s chance in meeting the conditions of authenticity and integrity. The study recommends to carry out further studies that are concerned with the identification

  15. Measurement of the B (s) (0) -> aEuro parts per thousand I center dot I center dot branching fraction and search for the decay B (0) -> phi phi

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M-O; van Beuzekom, M.; Bien, A.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Buchanan, E.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Perez, D. Campora; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Garcia, L. Castillo; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S-F; Chiapolini, N.; Chrzaszcz, M.; Vidal, X. Cid; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Dean, C-T; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Deleage, N.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suarez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Faerber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fohl, K.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Pardinas, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Giani, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gligorov, V. V.; Goebel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Gandara, M. Grabalosa; Graciani Diaz, R.; Granado Cardoso, L. A.; Grauges, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Gruenberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Hess, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.

    2015-01-01

    Using a dataset corresponding to an integrated luminosity of 3.0 fb(-1) collected in pp collisions at centre-of-mass energies of 7 and 8 TeV, the B (s) (0) -> aEuro parts per thousand I center dot I center dot branching fraction is measured to be B(B-0 -> phi phi) = (1.84 +/- 0.05(stat) +/- 0.07 (sy

  16. Intraband Auger effect in InAs/InGaAlAs/InP quantum dot structures

    Energy Technology Data Exchange (ETDEWEB)

    Gebhard, T; Souza, P L [LabSem/CETUC, PUC, Rio de Janeiro (Brazil); Pires, M P [Instituto de Fisica, UFRJ, Rio de Janeiro (Brazil); Vieira, G S [Divisao de Fisica Aplicada, IEA, Sao Jose dos Campos (Brazil); Boas, J M Villas [Walter Schottky Institue, TU, Munich (Germany); Alvarenga, D; Guimaraes, P S S; Unterrainer, K, E-mail: Thomas.gebhard@tuwien.ac.a

    2009-05-01

    Intraband photocurrent and absorption measurements were performed on InAs/InGaAlAs/InP quantum dot structures. A full three-dimensional theoretical model has been employed to identify the observed photocurrent as a bound to bound transition, where the final state is about 200 meV deep below the conduction band continuum. The reported results strongly suggest that an Auger process plays a fundamental role in generating the observed intraband photocurrent.

  17. The centre of the action

    CERN Document Server

    2008-01-01

    The CERN Control Centre (CCC) has all the ingredients of an action movie control room: hundreds of screens, technicians buzzing in and out, huge floor-to-ceiling windows revealing the looming vista of a mountain range, flashing lights, microphones… This is the place where not just the LHC, but the whole of CERN’s accelerator complex and technical support is based - truly the centre of the action at CERN.

  18. Valine radiolysis by MeV ions

    Science.gov (United States)

    Da Silveira, Enio

    2016-07-01

    Valine, (CH3)2 CHCH (NH2) COOH, is a protein amino acid that has been identified in extraterrestrial environments and in the Murchison meteorite [1]. The knowledge of half-lives of small organic molecules under ionizing radiation is important for the setup of models describing the spread out of prebiotics across the Solar System or the Galaxy. We have investigated typical effects of MeV cosmic ray ions on prebiotic molecules in laboratory by impinging ions produced by the PUC-Rio Van de Graaff accelerator. Pure valine films, deposited by evaporation on KBr substrates, were irradiated by H ^{+}, He ^{+} and N ^{+} ion beams, from 0.5 to 1.5 MeV and up to a fluence of 10 ^{15} projectiles/cm ^{2}. The sample temperature was varied from 10 K to 300 K. The irradiation was interrupted several times for Mid-FTIR analysis of the sample. The main findings are: 1- The column density of the valine decreases exponentially with fluence. 2- In some cases, a second exponential appears in the beginning of irradiation; this feature has been attributed to sample compaction by the ion beam [2]. 3- Destruction cross sections of valine are in the 10 ^{-15} cm ^{2} range, while compaction cross sections are in the 10 ^{-14} cm ^{2} range. 4- Destruction cross section increases with the stopping power of the beam and also with the sample temperature. 5- Surprisingly, during the radiolysis of valine, just CO _{2} is seen by as a daughter molecule formed in the bulk. 6- After long beam fluence, also a CO peak appears in the infrared spectrum; this species is however interpreted as a fragment of the formed CO2 molecules. 7- Considering the flux ratio between laboratory experiments and actual galactic cosmic rays, half-life of valine is predicted for ISM conditions [3]. This work on pure valine is the first measurement of a series. New experiments are planned for determining cross sections of valine dissolved in H _{2}O or CO _{2}, inspired by the study performed for glycine [4]. [1] P

  19. Spectroscopic characterization of germanium quantum dots in silicon; Spektroskopische Charakterisierung von Germanium-Quantenpunkten in Silizium

    Energy Technology Data Exchange (ETDEWEB)

    Bougeard, D.

    2006-01-15

    This thesis presents the first detailed investigation of the phonon Raman spectrum of Ge hut clusters. Interpretations of Ge/Si superlattice and SiGe alloy spectra are successfully adapted to the quantum dot spectrum. The period, the sublayers of a period, as well as biaxial strain are determined through the analysis of the acoustic phonons which propagate through the whole multilayer structure. At the same time, the non dispersing optical phonons are localised in the single layers of the structure. Thus they act as local sensors probing the average composition, the strain field and the mode localisation energy in one particular type of layer in the period. The frequency positions and relative intensities of the characteristical vibration mode are discussed in detail. Ex-situ annealing above 600 C is also studied with Raman phonon scattering. The annealing leads to an increase of the island volume and substantial intermixing, which is characterised through the determination of the interdiffusion constants. The investigation of optical transitions in Ge/Si multilayer structures shows quantum dot-like behaviour for the Ge hut clusters. Photoluminescence spectra show only phononless recombinations of electron-hole pairs for the hut clusters. Photocurrent spectroscopy reveals a localisation energy of 380 meV for the dot ground level compared to the Si valence band edge. Optical transitions between bound states in the quantum dots and potential minima in the Ge wetting layer or the neighbouring (2 nm) modulation doping layer, are observed through the spectral analysis of the photoconductivity in the quantum dot plane. The energy difference between these minima and the Si valence band edge is 40 meV. Finally resonant electronic Raman scattering reveals an optical intraband transition with an energy difference of 105 meV between initial and final transition state. (orig.)

  20. 150 MeV fixed field alternating gradient (FFAG) accelerator

    CERN Document Server

    Nakano, J

    2002-01-01

    150 MeV FFAG accelerator is prototype for practical use. Fundamental development of FFAG, research of FFAG accelerator and its application for therapy are investigated. 150 MeV ring consists of 12 sector magnets. The distribution of magnetic field of 12 sector magnets is almost same. 12 MeV proton beam is generated by cyclotron and injection to 150 MeV FFAG. The injection system consists of 2 bump magnets, kicker magnet and septum electrode. RF accelerating cavity system using high-permeability magnetic substance with high magnetic permeability accelerates proton beam to 150 MeV, then the first operation aims at 250 Hz. Return Yoke Free magnet was developed for adjustment. 150 MeV FFAG magnet is constructed and 12 MeV proton beam acceleration is conformed. The final state of 150 MeV FFAG magnet is explained by calculation results. On cancer therapy by proton beam, the three dimensions spot scan method is proposed. (S.Y.)

  1. RF Operation for the 100MeV Proton Linac

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Kyung Tae; Kwon, Hyeok Jung; Kim, Dae Il; Kim, Han Sung; Song, Young Gi; Jang, Ji Ho; Cho, Yong Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The RF systems for the 100MeV linac were constructed. The HPRF system including klystrons, circulators, high power dummy loads, and waveguide components was installed at the klystron gallery, and the LLRF control systems including a commercial FPGA module and a LLRF analog chassis were also installed. The phase stability of the RF reference line was measured with S11 phase under temperature control. The RF systems for 100MeV linac have been operated for a beam commissioning, and the 100MeV proton beam has been supplied to users currently. The RF systems of the 100MeV proton linac for the KOMAC (KOrea Multi-purpose Accelerator Complex) were installed at the Gyeong-ju site. The 100MeV linac consists of a 3MeV RFQ, a 20MeV DTL with four tanks, two MEBT tanks, and seven 100MeV DTL tanks. For the 100MeV linac, nine sets of LLRF control systems and the HPRF systems including 1MW klystrons, circulators and waveguide components have been installed at the klystron gallery, and four high voltage converter modulators to drive nine klystrons have been installed at the modulator room. A RF reference system distributing 300MHz LO signal to each RF control system has also been installed with a temperature control system at the klystron gallery. The requirement of RF field control is within +/- 1% in RF amplitude and +/- 1 degree in RF phase. The RF systems have been operated for the beam commissioning. The installation and operation of the RF system for the 100MeV proton linac are presented in this paper.

  2. Perceptual strategies of pigeons to detect a rotational centre--a hint for star compass learning?

    Science.gov (United States)

    Alert, Bianca; Michalik, Andreas; Helduser, Sascha; Mouritsen, Henrik; Güntürkün, Onur

    2015-01-01

    Birds can rely on a variety of cues for orientation during migration and homing. Celestial rotation provides the key information for the development of a functioning star and/or sun compass. This celestial compass seems to be the primary reference for calibrating the other orientation systems including the magnetic compass. Thus, detection of the celestial rotational axis is crucial for bird orientation. Here, we use operant conditioning to demonstrate that homing pigeons can principally learn to detect a rotational centre in a rotating dot pattern and we examine their behavioural response strategies in a series of experiments. Initially, most pigeons applied a strategy based on local stimulus information such as movement characteristics of single dots. One pigeon seemed to immediately ignore eccentric stationary dots. After special training, all pigeons could shift their attention to more global cues, which implies that pigeons can learn the concept of a rotational axis. In our experiments, the ability to precisely locate the rotational centre was strongly dependent on the rotational velocity of the dot pattern and it crashed at velocities that were still much faster than natural celestial rotation. We therefore suggest that the axis of the very slow, natural, celestial rotation could be perceived by birds through the movement itself, but that a time-delayed pattern comparison should also be considered as a very likely alternative strategy.

  3. Perceptual strategies of pigeons to detect a rotational centre--a hint for star compass learning?

    Directory of Open Access Journals (Sweden)

    Bianca Alert

    Full Text Available Birds can rely on a variety of cues for orientation during migration and homing. Celestial rotation provides the key information for the development of a functioning star and/or sun compass. This celestial compass seems to be the primary reference for calibrating the other orientation systems including the magnetic compass. Thus, detection of the celestial rotational axis is crucial for bird orientation. Here, we use operant conditioning to demonstrate that homing pigeons can principally learn to detect a rotational centre in a rotating dot pattern and we examine their behavioural response strategies in a series of experiments. Initially, most pigeons applied a strategy based on local stimulus information such as movement characteristics of single dots. One pigeon seemed to immediately ignore eccentric stationary dots. After special training, all pigeons could shift their attention to more global cues, which implies that pigeons can learn the concept of a rotational axis. In our experiments, the ability to precisely locate the rotational centre was strongly dependent on the rotational velocity of the dot pattern and it crashed at velocities that were still much faster than natural celestial rotation. We therefore suggest that the axis of the very slow, natural, celestial rotation could be perceived by birds through the movement itself, but that a time-delayed pattern comparison should also be considered as a very likely alternative strategy.

  4. Nanocrystal quantum dots

    CERN Document Server

    Klimov, Victor I

    2010-01-01

    ""Soft"" Chemical Synthesis and Manipulation of Semiconductor Nanocrystals, J.A. Hollingsworth and V.I. Klimov Electronic Structure in Semiconductor Nanocrystals: Optical Experiment, D.J. NorrisFine Structure and Polarization Properties of Band-Edge Excitons in Semiconductor Nanocrystals, A.L. EfrosIntraband Spectroscopy and Dynamics of Colloidal Semiconductor Quantum Dots, P. Guyot-Sionnest, M. Shim, and C. WangMultiexciton Phenomena in Semiconductor Nanocrystals, V.I. KlimovOptical Dynamics in Single Semiconductor Quantum Do

  5. Quantum dot nanostructures

    Directory of Open Access Journals (Sweden)

    Mohamed Henini

    2002-06-01

    These sophisticated technologies for the growth of high quality epitaxial layers of compound semiconductor materials on single crystal semiconductor substrates are becoming increasingly important for the development of the semiconductor electronics industry. This article is intended to convey the flavor of the subject by focusing on the technology and applications of self-assembled quantum dots (QDs and to give an introduction to some of the essential characteristics.

  6. Laplace DLTS studies on deep levels coexisted with InAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Lin, S.W.; Peaker, A.R.; Song, A.M. [School of Electrical and Electronic Engineering, University of Manchester, Manchester M60 1QD (United Kingdom)

    2006-07-01

    Self-assembled InAs/GaAs quantum dot structures have been investigated in both conventional and Laplace-transform deep-level transient spectroscopy (DLTS) experiments. Laplace DLTS technique provides orders of magnitude better energy resolution than conventional DLTS and hence enables us to study the electronic fine structure of the deep level states that are revealed using the conventional DLTS method. Two well-separated peaks corresponding to excitation energies of 468 meV and 485 meV are determined in the quantum dot sample, which have energy broadenings of 13.7 meV and 22.9 meV, respectively. A fine structure is also observed in the reference sample, but the ratio between the two peaks differs and the energy broadening is too narrow to be resolved even by the Laplace DLTS. The strain relaxation due to the QD formation is proposed to explain our observations. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. The ideal Atomic Centre; Le Centre Atomique ideal

    Energy Technology Data Exchange (ETDEWEB)

    Mas, R. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    The author presents considerations which should prove to be of interest to all those who have to design, to construct and to operate a nuclear research centre. A large number of the ideas presented can also be applied to non-nuclear scientific research centres. In his report the author reviews: various problems with which the constructor is faced: ground-plan, infrastructure, buildings and the large units of scientific equipment in the centre, and those problems facing the director: maintenance, production, supplies, security. The author stresses the relationship which ought to exist between the research workers and the management. With this aim in view he proposes the creation of National School for Administration in Research which would train administrative executives for public or private organisations; they would be specialised in the fields of fundamental or applied research. (author) [French] L'auteur propose une base de reflexions a tous ceux qui doivent concevoir, realiser et faire vivre un Centre d'Etudes Nucleaires. Un grand nombre des idees exprimees peut d'ailleurs s'appliquer a un Centre d'Etudes Scientifiques non nucleaires. Dans son ouvrage, l'auteur passe en revue les differents problemes qui se posent au constructeur: plan, masse, infrastructure, batiments et grands appareils du Centre, et ceux qu'a a resoudre le directeur: entretien, fabrication, approvisionnements, securite. L'auteur insiste sur l'aspect des rapports qui doivent exister entre les chercheurs et ceux qui les administrent. Il propose a cette fin la creation d'une Ecole Nationale d'Administration de la Recherche qui formerait des cadres administratifs pour les organismes publics ou prives, specialises dans la Recherche fondamentale ou appliquee. (auteur)

  8. Inter-dot coupling effects on transport through correlated parallel coupled quantum dots

    Indian Academy of Sciences (India)

    Shyam Chand; G Rajput; K C Sharma; P K Ahluwalia

    2009-05-01

    Transport through symmetric parallel coupled quantum dot system has been studied, using non-equilibrium Green function formalism. The inter-dot tunnelling with on-dot and inter-dot Coulomb repulsion is included. The transmission coefficient and Landaur–Buttiker like current formula are shown in terms of internal states of quantum dots. The effect of inter-dot tunnelling on transport properties has been explored. Results, in intermediate inter-dot coupling regime show signatures of merger of two dots to form a single composite dot and in strong coupling regime the behaviour of the system resembles the two decoupled dots.

  9. Space charge spectroscopy of self assembled Ge quantum dots in Si

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, T.; Miesner, C.; Brunner, K.; Abstreiter, G. [Technische Univ. Muenchen, Garching (Germany). Walter-Schottky-Inst. fuer Physikalische Grundlagen der Halbleiterelektronik

    2001-03-01

    Admittance spectroscopy was used to investigate the density of states in self assembled Ge quantum dots (QDs) of different size embedded in Si Schottky diodes. From the admittance results, activation energies of hole in the QDs have been determined as a function of the external bias which shifts the Fermi level with respect to the energy states in the QDs. The activation energy of a quantum well sample remains constant up to 6 V bias voltage. Large Ge dots (70 nm diameter) show a continuum of activation energies and a low continuous averaged density of states. In small Ge dots (20 nm diameter) a discrete energy level structure with level separations of 40 to 4 meV are observed. They are attributed to strongly quantum confined hole states with significant Coulomb blockade energies. (orig.)

  10. Transport through a strongly coupled graphene quantum dot in perpendicular magnetic field

    Directory of Open Access Journals (Sweden)

    Güttinger Johannes

    2011-01-01

    Full Text Available Abstract We present transport measurements on a strongly coupled graphene quantum dot in a perpendicular magnetic field. The device consists of an etched single-layer graphene flake with two narrow constrictions separating a 140 nm diameter island from source and drain graphene contacts. Lateral graphene gates are used to electrostatically tune the device. Measurements of Coulomb resonances, including constriction resonances and Coulomb diamonds prove the functionality of the graphene quantum dot with a charging energy of approximately 4.5 meV. We show the evolution of Coulomb resonances as a function of perpendicular magnetic field, which provides indications of the formation of the graphene specific 0th Landau level. Finally, we demonstrate that the complex pattern superimposing the quantum dot energy spectra is due to the formation of additional localized states with increasing magnetic field.

  11. Person-centred reflective practice.

    Science.gov (United States)

    Devenny, Bob; Duffy, Kathleen

    Person-centred health and person-centred care have gained prominence across the UK following the publication of reports on public inquiries exploring failings in care. Self-awareness and participation in reflective practice are recognised as vital to supporting the person-centred agenda. This article presents an education framework for reflective practice, developed and used in one NHS board in Scotland, and based on the tenets of the clinical pastoral education movement. Providing an insight into the usefulness of a spiritual component in the reflective process, the framework provides an opportunity for nurses and other healthcare professionals to examine the spiritual dimensions of patient encounters, their own values and beliefs, and the effect these may have on their practice.

  12. Construction of the Wigner Data Centre

    CERN Document Server

    2013-01-01

    A remote extension of the CERN data centre has recently been inaugurated. Hosted at the Wigner Research Centre for Physics in Hungary, it provides extra computing power required to cover CERN’s needs. This video presents the construction of the Wigner Data Centre from initial demolishing work through to its completion and details the major technical characteristics of the Data Centre.

  13. Energy and Mass Distributions of Induced-Fission of 197 Au Nucleus by 29 MeV Protons

    Institute of Scientific and Technical Information of China (English)

    S.Soheyli

    2007-01-01

    A thin target of197 Au is bombarded with 29 MeV protons from the cyclotron at Department of Nuclear Research Centre for Agriculture and Medicine. Correlated energies of fission-fragment pairs are measured with silicon surface-barrier detectors and their time of flights is made using a spectrometry pair. The fission cross section, fragment mass distribution, and total kinetic energy distribution of the fission fragments are measured in our experiment. The results are also compared with the previous works and good agreements are found.

  14. Large scale silver nanowires network fabricated by MeV hydrogen (H+) ion beam irradiation

    Science.gov (United States)

    Honey, S.; Naseem, S.; Ishaq, A.; Maaza, M.; Bhatti, M. T.; Wan, D.

    2016-04-01

    A random two-dimensional large scale nano-network of silver nanowires (Ag-NWs) is fabricated by MeV hydrogen (H+) ion beam irradiation. Ag-NWs are irradiated under H+ ion beam at different ion fluences at room temperature. The Ag-NW network is fabricated by H+ ion beam-induced welding of Ag-NWs at intersecting positions. H+ ion beam induced welding is confirmed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Moreover, the structure of Ag NWs remains stable under H+ ion beam, and networks are optically transparent. Morphology also remains stable under H+ ion beam irradiation. No slicings or cuttings of Ag-NWs are observed under MeV H+ ion beam irradiation. The results exhibit that the formation of Ag-NW network proceeds through three steps: ion beam induced thermal spikes lead to the local heating of Ag-NWs, the formation of simple junctions on small scale, and the formation of a large scale network. This observation is useful for using Ag-NWs based devices in upper space where protons are abandoned in an energy range from MeV to GeV. This high-quality Ag-NW network can also be used as a transparent electrode for optoelectronics devices. Project supported by the National Research Foundation of South Africa (NRF), the French Centre National pour la Recherche Scientifique, iThemba-LABS, the UNESCO-UNISA Africa Chair in Nanosciences & Nanotechnology, the Third World Academy of Science (TWAS), Organization of Women in Science for the Developing World (OWSDW), the Abdus Salam ICTP via the Nanosciences African Network (NANOAFNET), and the Higher Education Commission (HEC) of Pakistan.

  15. Single quantum dot nanowire photodetectors

    NARCIS (Netherlands)

    Van Kouwen, M.P.; Van Weert, M.H.M.; Reimer, M.E.; Akopian, N.; Perinetti, U.; Algra, R.E.; Bakkers, E.P.A.M.; Kouwenhoven, L.P.; Zwiller, V.

    2010-01-01

    We report InP nanowire photodetectors with a single InAsP quantum dot as light absorbing element. With excitation above the InP band gap, the nanowire photodetectors are efficient (quantum efficiency of 4%). Under resonant excitation of the quantum dot, the photocurrent amplitude depends on the line

  16. LDE centres: sprint or marathon?

    NARCIS (Netherlands)

    Bonger, S.; Van Rein, E.

    2015-01-01

    The aim of the Strategic Leiden-Delft-Erasmus Alliance, established by the three universities in 2012, was to improve research and education and competitiveness. Projects are intended to develop from the ground up, which led to the establishment of eight joint centres in 2013. A quick look around re

  17. Dosimetric comparison of 4 MeV and 6 MeV electron beams for total skin irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung In; Park, So Yeon; Park, Jong Min; Ye, Sung Joon; Kim, Il Han [Dept. of Radiation Oncology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2014-11-15

    Total skin electron irradiation (TSEI) was developed by Stanford University in the 1950s and introduced for the treatment of mycosis fungoides, the most common form of cutaneous T-cell lymphoma which generally affects the skin. In this study, dosimetric aspects of TSEI consisting of a 4 MeV beam with no spoiler were investigated in comparison to a nominal 6 MeV beam applications was evaluated. The suggested 4 MeV beam for TSEI could be applied to shallow depth skin diseases and to electron boost as second treatment course.

  18. Complex dynamics in planar two-electron quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Schroeter, Sebastian Josef Arthur

    2013-06-25

    Quantum dots play an important role in a wide range of recent experimental and technological developments. In particular they are promising candidates for realisations of quantum bits and further applications in quantum information theory. The harmonically confined Hooke's atom model is experimentally verified and separates in centre-of-mass and relative coordinates. Findings that are contradictory to this separability call for an extension of the model, in particular changing the confinement potential. In order to study effects of an anharmonic confinement potential on spectral properties of planar two-electron quantum dots a sophisticated numerical approach is developed. Comparison between the Helium atom, Hooke's atom and an anharmonic potential model are undertaken in order to improve the description of quantum dots. Classical and quantum features of complexity and chaos are investigated and used to characterise the dynamics of the system to be mixed regular-chaotic. Influence of decoherence can be described by quantum fidelity, which measures the effect of a perturbation on the time evolution. The quantum fidelity of eigenstates of the system depends strongly on the properties of the perturbation. Several methods for solving the time-dependent Schrödinger equation are implemented and a high level of accuracy for long time evolutions is achieved. The concept of offset entanglement, the entanglement of harmonic models in the noninteracting limit, is introduced. This concept explains different questions raised in the literature for harmonic quantum dot models, recently. It shows that only in the groundstate the electrons are not entangled in the fermionic sense. The applicability, validity, and origin of Hund's first rule in general quantum dot models is further addressed. In fact Hund's first rule is only applicable, and in this case also valid, for one pair of singlet and triplet states in Hooke's atom. For more realistic models of two

  19. The CCCB is a cultural centre, not a tourist centre

    Directory of Open Access Journals (Sweden)

    Elena Xirau

    2004-04-01

    Full Text Available Last February, Barcelona's Centre of Contemporary Culture (CCCB celebrated its first ten years in existence. During this time, this institution has looked to be a showcase to the most modern and innovative cultural expressions focused on reflecting on the concept of the city. In this interview, Josep Ramoneda offers his personal view, as the CCCB's director. He talks of how this cultural project was born, of how the concept of the institution took shape in the CCCB, of its relations with Barcelona's Strategic Plan, of how the project has evolved, of the architectural remodelling of the Casa de la Caritat building for its conversion into a cultural centre, of the relations with other institutions and its future.

  20. European Centre for Disease Prevention and Control.

    Science.gov (United States)

    Evans, Roger

    2014-11-04

    The European Centre for Disease Prevention and Control was set up in 2005 to strengthen Europe's defences against infectious diseases. The centre is an independent agency of the European Union and is based in Stockholm, Sweden.

  1. Temporal Structure of MeV Electron Precipitation

    Science.gov (United States)

    Millan, R. M.; Lorentzen, K. R.; Lin, R. P.; Smith, D. M.

    2001-12-01

    On January 12, 2000, the MAXIS (MeV Auroral X-ray Imaging and Spectroscopy) long duration balloon experiment was launched from McMurdo, Antarctica carrying x-ray instrumentation designed to search for MeV electron precipitation similar to the event observed in 1996 over Kiruna, Sweden (L=5.8). MAXIS detected seven x-ray bursts with significant flux extending above 0.8 MeV during the 18 day flight in addition to extended periods of softer X-ray activity. These seven events are characterized by an extremely flat spectrum ( ~E-1.7) indicating that the bulk of precipitating electrons producing the x-rays is at relativistic energies. The bursts were detected between magnetic latitudes 58o-67o (corresponding to L-values between 3.8-6.7) with durations varying from several minutes to several hours. The MeV bursts were found to occur preferentially in the late afternoon/dusk sectors (14:30-00:00 MLT) while softer precipitation was detected at all magnetic local times. Two of the strongest MeV events detected by MAXIS show strong modulation of the x-ray count rate at ULF timescales ( ~150 s) similar to modulations observed during the Kiruna event at 100-200 s. We present results from temporal analysis of the MAXIS germanium spectrometer data and examine ground-based and spacecraft observations for evidence of coincident ULF wave activity.

  2. Field Flatness Tuning for PEFP 100 MeV DTL

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han-Sung; Kwon, Hyeok-Jung; Seol, Kyung-Tae; Kim, Dae-Il; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-05-15

    A conventional 100 MeV drift tube linac is under development for Proton Engineering Frontier Project. Currently the proton linac up to 20 MeV, which consists of injector, 3 MeV RFQ and 20 MeV DTL is completed. To accelerate the proton beam up to 100 MeV additional 7 DTL tanks are required. The DTL should be tuned after fabrication and alignment of the drift tube inside the tank to meet the requirements from the beam dynamics. Tuning process includes the resonant frequency tuning, field flatness tuning and tilt sensitivity tuning. The tuning goal for the field flatness tuning is less than {+-}2% in field uniformity throughout the DTL tank with less than {+-}% standard deviation. A non-uniform field profile caused by the machining errors and alignment errors can be made uniform through the slug tuner adjustment. This procedure requires the field profile measurements and several iterations between the field profile measurements and adjustment. The methods and the results of the DTL field flatness tuning will be reported in this presentation.

  3. Quantum dots: Rethinking the electronics

    Science.gov (United States)

    Bishnoi, Dimple

    2016-05-01

    In this paper, we demonstrate theoretically that the Quantum dots are quite interesting for the electronics industry. Semiconductor quantum dots (QDs) are nanometer-scale crystals, which have unique photo physical, quantum electrical properties, size-dependent optical properties, There small size means that electrons do not have to travel as far as with larger particles, thus electronic devices can operate faster. Cheaper than modern commercial solar cells while making use of a wider variety of photon energies, including "waste heat" from the sun's energy. Quantum dots can be used in tandem cells, which are multi junction photovoltaic cells or in the intermediate band setup. PbSe (lead selenide) is commonly used in quantum dot solar cells.

  4. Contribution to the determination of Sb-Ag-Cu-Ga-Mo-Zn using 14 MeV neutron activation; Contribution au dosage de Sb-Ag-Cu-Ga-Mo-Zn par activation aux neutrons de 14 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Crambes, M. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1966-04-01

    By using, 14 MeV, neutron irradiation it is possible to extend the field of application of neutron radio-activation analysis, in particular to the case of light elements. For, many other elements it can replace in-pile irradiation thereby making it possible, thanks to portable 14 MeV neutron generators, to carry out radio-activation analyses away from nuclear-research c e n t r e s. With a view to applying this analytical technique to routine work, we have developed some rapid chemical separation methods in order to make possible the determination of several elements which after exposure to fast neutrons, produce {beta} emitting nuclides which cannot be differentiated by a simple instrumental study, the emitted radiation being of the same type and of similar half-life the two cases. (author) [French] L'irradiation au moyen de neutrons de 14 MeV permet d'etendre le domaine d'application de l'analyse par radioactivation neutronique, en particulier aux elements legers. Cependant pour de nombreux autres elements elle peut remplacer l'irradiation en reacteur nucleaire permettant ainsi grace aux ensembles portables producteurs de neutrons de 14 MeV, l'extension de l'analyse par radioactivation a l'exterieur des centres d'etudes nucleaires. Dans le but d'appliquer cette methode d'analyse a des travaux de routine, nous avons mis au point des separations chimiques rapides, afin de permettre le dosage de quelques elements qui par irradiation aux neutrons rapides, engendrent des nucleides emetteurs {beta} qu'une simple etude instrumentale ne peut differencier en raison de l'identite de leur rayonnement et de leurs periodes radioactives trop proches. (auteur)

  5. Hydrophobin-Encapsulated Quantum Dots.

    Science.gov (United States)

    Taniguchi, Shohei; Sandiford, Lydia; Cooper, Maggie; Rosca, Elena V; Ahmad Khanbeigi, Raha; Fairclough, Simon M; Thanou, Maya; Dailey, Lea Ann; Wohlleben, Wendel; von Vacano, Bernhard; de Rosales, Rafael T M; Dobson, Peter J; Owen, Dylan M; Green, Mark

    2016-02-01

    The phase transfer of quantum dots to water is an important aspect of preparing nanomaterials that are suitable for biological applications, and although numerous reports describe ligand exchange, very few describe efficient ligand encapsulation techniques. In this report, we not only report a new method of phase transferring quantum dots (QDs) using an amphiphilic protein (hydrophobin) but also describe the advantages of using a biological molecule with available functional groups and their use in imaging cancer cells in vivo and other imaging applications.

  6. Quantum Dots in Cell Biology

    OpenAIRE

    Barroso, Margarida M.

    2011-01-01

    Quantum dots are semiconductor nanocrystals that have broad excitation spectra, narrow emission spectra, tunable emission peaks, long fluorescence lifetimes, negligible photobleaching, and ability to be conjugated to proteins, making them excellent probes for bioimaging applications. Here the author reviews the advantages and disadvantages of using quantum dots in bioimaging applications, such as single-particle tracking and fluorescence resonance energy transfer, to study receptor-mediated t...

  7. Quantum dots in cell biology.

    Science.gov (United States)

    Barroso, Margarida M

    2011-03-01

    Quantum dots are semiconductor nanocrystals that have broad excitation spectra, narrow emission spectra, tunable emission peaks, long fluorescence lifetimes, negligible photobleaching, and ability to be conjugated to proteins, making them excellent probes for bioimaging applications. Here the author reviews the advantages and disadvantages of using quantum dots in bioimaging applications, such as single-particle tracking and fluorescence resonance energy transfer, to study receptor-mediated transport.

  8. 3 MeV Test Stand commissioning report

    CERN Document Server

    Bellodi, Guilia; Andreassen, O; Comblin, J-F; Dimov, V; Lallement, J-B; Martin, C; Midttun, O; Ovalle, E; Raich, U; Roncarolo, F; Rossi, C; Scrivens, R; Vollaire, J; Yarmohammadi Satri, M; Zocca, Z

    2013-01-01

    Linac4 is a normal-conducting 160 MeV H- linear accelerator, presently under construction, that will replace the present 50 MeV Linac2 as injector of the CERN proton accelerator complex with the goal of increasing the LHC luminosity. The Linac4 front-end, composed of a 45 keV ion source, a Low Energy Beam Transport (LEBT), a 352.2 MHz Radio Frequency Quadrupole (RFQ) and a Medium Energy Beam Transport (MEBT) housing a beam chopper, was commissioned at the 3 MeV test stand area during the first half of 2013. This report gives details of the installation and operational systems used, describes the commissioning phases and measurements performed and summarizes the results that were finally achieved and the lessons learnt in the process.

  9. 400-MeV upgrade for the Fermilab linac

    Energy Technology Data Exchange (ETDEWEB)

    Young, D.E.; Noble, R.J.

    1989-09-01

    Fermilab plans to upgrade the Tevatron to expand the physics research program in both the fixed target and the collider operating modes. The first phase of this program is to increase the energy of the H{sup -} linac from 200 to 400 MeV in order to reduce the incoherent space change tuneshift at injection into the Booster which can limit either the brightness or the total intensity of the beam. The linac upgrade will be achieved by replacing the last four 201 MeV, with seven 805 MHz side-coupled cavity modules operating at an average axial field of about 8 MV/m. This will allow acceleration to 400 MeV in the existing Linac enclosure. 4 refs., 3 figs., 1 tab.

  10. The spectral analysis and threshold limits of quasi-supercontinuum self-assembled quantum dot interband lasers

    KAUST Repository

    Tan, Cheeloon

    2009-09-01

    This paper presents a theoretical model to explain the quasi-supercontinuum interband emission from InGaAs/GaAs self-assembled semiconductor quantum dot lasers by accounting for both inhomogeneous and homogeneous optical gain broadening. The experimental and theoretical agreement of a room temperature (293 K) broadband laser emission confirms the presence of multiple-state lasing actions in highly inhomogeneous dot ensembles. The corresponding full-width half-maximum of the photoluminescence is 76 meV as opposed to those wideband lasing coverage at only low temperature (∼60 K) from typical quantum dot lasers. A newly proposed change of homogeneous broadening with injection that occurs only in highly inhomogeneous quantum dot system is critical to account for the continuous wideband lasing but not the conventional ideas of carrier dynamics in semiconductor lasers. In addition, the analysis of threshold conditions reveals that broadband lasing only occurs when the energy spacing between quantized energy states is comparable to the inhomogeneous broadening of quantum-dot nanostructures. The study is important in providing a picture of this novel device and realization of broad lasing coverage for diverse applications, especially in the research field of short-pulse generation and ultra-fast phenomena in semiconductor quantum-dot laser. © 2009 IEEE.

  11. Fuzzy dot ideals and fuzzy dot H-ideals of BCH-algebras

    Institute of Scientific and Technical Information of China (English)

    PENG Jia-yin

    2008-01-01

    The notions of fuzzy dot ideals and fuzzy dot H-ideals in BCH-algebras are intro duced,several appropriate examples are provided,and their some properties are investigated.The relations among fuzzy ideal,fuzzy H-ideal,fuzzy dot ideal and fuzzy dot H-ideals in BCH algebras are discussed,several equivalent depictions of fuzzy dot ideal are obtained. How to deal with the homomorphic image and inverse image of fuzzy dot ideals (fuzzy dot H-ideals) are studied. The relations between a fuzzy dot ideal (fuzzy dot H-ideal) in BCH-algebras and a fuzzy dot ideal (fuzzy dot H-ideal) in the product algebra of BCH-algebras are given.

  12. Scheduling participants of Assessment Centres

    DEFF Research Database (Denmark)

    Lysgaard, Jens; Løber, Janni

      Assessment Centres are used as a tool for psychologists and coaches to observe a number of dimensions in a person's behaviour and test his/her potential within a number of chosen focus areas. This is done in an intense course, with a number of different exercises which expose each participant......'s ability level in the chosen focus areas. The participants are observed by assessors with the purpose of gathering material for reaching a conclusion on each participant's personal profile. We consider the particular case that arises at the company Human Equity (www.humanequity.dk), where Assessment...

  13. InAs/GaAs submonolayer quantum dot superluminescent diode emitting around 970 nm

    Institute of Scientific and Technical Information of China (English)

    Li Xin-Kun; Liang De-Chun; Jin Peng; An Qi; Wei Heng; Wu Jian; Wang Zhan-Guo

    2012-01-01

    According to the InAs/GaAs submonolayer quantum dot active region,we demonstrate a bent-waveguide superlnminescent diode emitting at a wavelength of around 970 nm.At a pulsed injection current of 0.5 A,the device exhibits an output power of 24 mW and an emission spectrum centred at 971 nm with a full width at half maximum of 16 nm.

  14. Resolution considerations in MeV ion microscopy and lithography

    Energy Technology Data Exchange (ETDEWEB)

    Norarat, Rattanaporn, E-mail: rattanaporn@rmutl.ac.th [University of Applied Sciences (HES-SO), Haute Ecole Arc Ingénierie, Eplatures-Gris 17, CH-2300 La Chaux-de-Fonds (Switzerland); Faculty of Sciences and Agricultural Technology, Rajamangala University of Technology Lanna, Chiang Rai, 57120 Chiang Rai (Thailand); Whitlow, Harry J. [University of Applied Sciences (HES-SO), Haute Ecole Arc Ingénierie, Eplatures-Gris 17, CH-2300 La Chaux-de-Fonds (Switzerland)

    2015-04-01

    There a disparity between the way the resolution is specified in microscopy and lithography using light compared to MeV ion microscopy and lithography. In this work we explore the implications of the way the resolution is defined with a view to answering the questions; how are the resolving powers in MeV ion microscopy and lithography relate to their optical counterparts? and how do different forms of point spread function affect the modulation transfer function and the sharpness of the edge profile?.

  15. Lifetime of 19Ne*(4.03 MeV)

    CERN Document Server

    Kanungo, R; Andreyev, A N; Ball, G C; Chakravarthy, R S; Chicoine, M; Churchman, R; Davids, B; Forster, J S; Gujrathi, S; Hackman, G; Howell, D; Leslie, J R; Morton, A C; Mythili, S; Pearson, C J; Ressler, J J; Ruiz, C; Savajols, H; Schumaker, M A; Tanihata, I; Walden, P L; Yen, S

    2006-01-01

    The Doppler-shift attenuation method was applied to measure the lifetime of the 4.03 MeV state in 19Ne. Utilizing a 3He-implanted Au foil as a target, the state was populated using the 20Ne(3He,alpha)19Ne reaction in inverse kinematics at a 20Ne beam energy of 34 MeV. De-excitation gamma rays were detected in coincidence with alpha particles. At the 1 sigma level, the lifetime was determined to be 11 +4, -3 fs and at the 95.45% confidence level the lifetime is 11 +8, -7 fs.

  16. Single to quadruple quantum dots with tunable tunnel couplings

    Energy Technology Data Exchange (ETDEWEB)

    Takakura, T.; Noiri, A.; Obata, T.; Yoneda, J.; Yoshida, K. [Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Otsuka, T.; Tarucha, S. [Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); RIKEN, Center for Emergent Matter Science, 3-1 Wako-shi, Saitama 351-0198 (Japan)

    2014-03-17

    We prepare a gate-defined quadruple quantum dot to study the gate-tunability of single to quadruple quantum dots with finite inter-dot tunnel couplings. The measured charging energies of various double dots suggest that the dot size is governed by the gate geometry. For the triple and quadruple dots, we study the gate-tunable inter-dot tunnel couplings. For the triple dot, we find that the effective tunnel coupling between side dots significantly depends on the alignment of the center dot potential. These results imply that the present quadruple dot has a gate performance relevant for implementing spin-based four-qubits with controllable exchange couplings.

  17. Neighbourhood Centres – Organisation, Management and Finance

    DEFF Research Database (Denmark)

    Larsen, Jacob Norvig

    public subsidy. Some of the centres have high number of users on a daily basis, whereas others are only rarely used. It is explored how organisation, management and financial set-up differs among the centres. Quantitative data on financial issues and annual accounts of fifteen centres were analysed......From the late 1990s neighbourhood centres were brought to the fore of public urban regen-eration policy, because they were seen as a means to accelerate the formation of social capital in deprived urban neighbourhoods. A number of such local community centres were established with substantial...... to identify different financial models and analyse economic sustainability. As regards organisational and management models data were collected through documentary sources and by means of personal interviews and field visits to ten centres. Even within the analysed limited population of centres economic...

  18. Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime

    KAUST Repository

    Zhitomirsky, David

    2014-05-06

    © 2014 Macmillan Publishers Limited. Colloidal quantum dots are attractive materials for efficient, low-cost and facile implementation of solution-processed optoelectronic devices. Despite impressive mobilities (1-30 cm2V-1 s-1) reported for new classes of quantum dot solids, it is-surprisingly-the much lower-mobility (10-3-10-2 cm2V-1 s-1) solids that have produced the best photovoltaic performance. Here we show that it is not mobility, but instead the average spacing among recombination centres that governs the diffusion length of charges in today\\'s quantum dot solids. In this regime, colloidal quantum dot films do not benefit from further improvements in charge carrier mobility. We develop a device model that accurately predicts the thickness dependence and diffusion length dependence of devices. Direct diffusion length measurements suggest the solid-state ligand exchange procedure as a potential origin of the detrimental recombination centres. We then present a novel avenue for in-solution passivation with tightly bound chlorothiols that retain passivation from solution to film, achieving an 8.5% power conversion efficiency.

  19. Perceptual centres in speech - an acoustic analysis

    Science.gov (United States)

    Scott, Sophie Kerttu

    Perceptual centres, or P-centres, represent the perceptual moments of occurrence of acoustic signals - the 'beat' of a sound. P-centres underlie the perception and production of rhythm in perceptually regular speech sequences. P-centres have been modelled both in speech and non speech (music) domains. The three aims of this thesis were toatest out current P-centre models to determine which best accounted for the experimental data bto identify a candidate parameter to map P-centres onto (a local approach) as opposed to the previous global models which rely upon the whole signal to determine the P-centre the final aim was to develop a model of P-centre location which could be applied to speech and non speech signals. The first aim was investigated by a series of experiments in which a) speech from different speakers was investigated to determine whether different models could account for variation between speakers b) whether rendering the amplitude time plot of a speech signal affects the P-centre of the signal c) whether increasing the amplitude at the offset of a speech signal alters P-centres in the production and perception of speech. The second aim was carried out by a) manipulating the rise time of different speech signals to determine whether the P-centre was affected, and whether the type of speech sound ramped affected the P-centre shift b) manipulating the rise time and decay time of a synthetic vowel to determine whether the onset alteration was had more affect on P-centre than the offset manipulation c) and whether the duration of a vowel affected the P-centre, if other attributes (amplitude, spectral contents) were held constant. The third aim - modelling P-centres - was based on these results. The Frequency dependent Amplitude Increase Model of P-centre location (FAIM) was developed using a modelling protocol, the APU GammaTone Filterbank and the speech from different speakers. The P-centres of the stimuli corpus were highly predicted by attributes of

  20. The new AMS control centre

    CERN Multimedia

    Anaïs Schaeffer

    2011-01-01

    Construction work for the future AMS control room began in November 2010 and should be finished this June. The new building, which will have been completed in record time thanks to the professionalism of the project team, will soon be ready to receive the initial data from the AMS experiment.     Luigi Scibile and Michael Poehler, from the GS department, at the AMS control centre construction site.   The Alpha Magnetic Spectrometer (AMS) is due to wing its way towards the International Space Station (ISS) on board the shuttle Discovery in April. Mainly intended for research on antimatter and dark matter, the data collected by AMS will be sent to Houston in the United States and then directly to CERN’s new Building 946. Construction work for the AMS control centre building on the Route Gentner at CERN’s Prévessin site started in November 2010 and must be completed in time to receive the first data from the spectrometer in June. “It normall...

  1. Optically active quantum dots

    Science.gov (United States)

    Gerard, Valerie; Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii K.

    2015-10-01

    The main goal of our research is to develop new types of technologically important optically active quantum dot (QD) based materials, study their properties and explore their biological applications. For the first time chiral II-VI QDs have been prepared by us using microwave induced heating with the racemic (Rac), D- and L-enantiomeric forms of penicillamine as stabilisers. Circular dichroism (CD) studies of these QDs have shown that D- and L-penicillamine stabilised particles produced mirror image CD spectra, while the particles prepared with a Rac mixture showed only a weak signal. It was also demonstrated that these QDs show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. These QDs have demonstrated highly specific chiral recognition of various biological species including aminoacids. The utilisation of chiral stabilisers also allowed the preparation of new water soluble white emitting CdS nano-tetrapods, which demonstrated circular dichroism in the band-edge region of the spectrum. Biological testing of chiral CdS nanotetrapods displayed a chiral bias for an uptake of the D- penicillamine stabilised nano-tetrapods by cancer cells. It is expected that this research will open new horizons in the chemistry of chiral nanomaterials and their application in nanobiotechnology, medicine and optical chemo- and bio-sensing.

  2. Charge collection efficiency degradation induced by MeV ions in semiconductor devices: Model and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Vittone, E., E-mail: ettore.vittone@unito.it [Department of Physics, NIS Research Centre and CNISM, University of Torino, via P. Giuria 1, 10125 Torino (Italy); Pastuovic, Z. [Centre for Accelerator Science (ANSTO), Locked bag 2001, Kirrawee DC, NSW 2234 (Australia); Breese, M.B.H. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Garcia Lopez, J. [Centro Nacional de Aceleradores (CNA), Sevilla University, J. Andalucia, CSIC, Av. Thomas A. Edison 7, 41092 Sevilla (Spain); Jaksic, M. [Department for Experimental Physics, Ruder Boškovic Institute (RBI), P.O. Box 180, 10002 Zagreb (Croatia); Raisanen, J. [Department of Physics, University of Helsinki, Helsinki 00014 (Finland); Siegele, R. [Centre for Accelerator Science (ANSTO), Locked bag 2001, Kirrawee DC, NSW 2234 (Australia); Simon, A. [International Atomic Energy Agency (IAEA), Vienna International Centre, P.O. Box 100, 1400 Vienna (Austria); Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), Debrecen (Hungary); Vizkelethy, G. [Sandia National Laboratories (SNL), PO Box 5800, Albuquerque, NM (United States)

    2016-04-01

    Highlights: • We study the electronic degradation of semiconductors induced by ion irradiation. • The experimental protocol is based on MeV ion microbeam irradiation. • The radiation induced damage is measured by IBIC. • The general model fits the experimental data in the low level damage regime. • Key parameters relevant to the intrinsic radiation hardness are extracted. - Abstract: This paper investigates both theoretically and experimentally the charge collection efficiency (CCE) degradation in silicon diodes induced by energetic ions. Ion Beam Induced Charge (IBIC) measurements carried out on n- and p-type silicon diodes which were previously irradiated with MeV He ions show evidence that the CCE degradation does not only depend on the mass, energy and fluence of the damaging ion, but also depends on the ion probe species and on the polarization state of the device. A general one-dimensional model is derived, which accounts for the ion-induced defect distribution, the ionization profile of the probing ion and the charge induction mechanism. Using the ionizing and non-ionizing energy loss profiles resulting from simulations based on the binary collision approximation and on the electrostatic/transport parameters of the diode under study as input, the model is able to accurately reproduce the experimental CCE degradation curves without introducing any phenomenological additional term or formula. Although limited to low level of damage, the model is quite general, including the displacement damage approach as a special case and can be applied to any semiconductor device. It provides a method to measure the capture coefficients of the radiation induced recombination centres. They can be considered indexes, which can contribute to assessing the relative radiation hardness of semiconductor materials.

  3. Fossil Dot Com

    DEFF Research Database (Denmark)

    2011-01-01

    technological examples from his background as director of the innovation centre at DONG Energy, Charles Nielsen will discuss the impact of upcoming changes to the backbone of industry: the energy supply. DONG Energy has an ambitious strategy of changing the energy supply from 15% to 85% renewable energy before...... 2040. Embodiment of the corporate strategy into designs including urban design, bio refineries, offshore wind, sun and electric vehicles will serve as a platform for describing design challenges of the future - A future where society at large becomes the most important stakeholder demanding sustenance....... Management gurus have taught us for the last 20 years that in the end we all are delivering products and services to end users. This may still hold true; however, we now need to learn that we all are nothing but subsidiary companies of the nature....

  4. Linac4 crosses the 100 MeV threshold

    CERN Multimedia

    Corinne Pralavorio

    2016-01-01

    The new linear accelerator, which from 2020 will be the first link in the accelerator chain, has entered a new stage of its commissioning.   Members of the team in charge of the commissioning of Linac4 in the accelerator’s control room. A few hours earlier, Linac4 accelerated a beam to 107 MeV for the first time. We couldn’t have imagined a more appropriate date: on 1 July (1.07), Linac4 reached an energy of 107 MeV. Having crossed the 100 MeV barrier, the linear accelerator is now on the home straight of its commissioning. “This stage was very quick – it took less than two weeks,” says Alessandra Lombardi, deputy project leader of Linac4, in charge of the commissioning. In 2020, Linac4 will replace the existing Linac2 as the first link in the accelerator chain. It will accelerate beams of H- ions (protons surrounded by two electrons) to 160 MeV, compared to 50 MeV with Linac2. The new machine is particularly sophisticated as it comprises...

  5. History of the ZGS 500 MeV booster.

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, J.; Martin; R.; Kustom, R.

    2006-05-09

    The history of the design and construction of the Argonne 500 MeV booster proton synchrotron from 1969 to 1982 is described. This accelerator has since been in steady use for the past 25 years to power the Argonne Intense Pulsed Neutron Source (IPNS).

  6. Photoreflectance and photoluminescence study of InAs dots-in-a-well nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Nedzinskas, Ramūnas; Čechavičius, Bronislovas; Kavaliauskas, Julius; Karpus, Vytautas; Valušis, Gintaras [Semiconductor Physics Institute, Center for Physical Sciences and Technology, A. Goštauto 11, LT-01108 Vilnius (Lithuania); Li, Lianhe; Khanna, Suraj P.; Linfield, Edmund H. [School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2013-12-04

    InAs quantum dots (QDs), embedded within InGaAs/GaAs/AlAs and GaAs/AlAs quantum wells (QWs), are examined by photoreflectance and photoluminescence techniques. Optical properties and electronic structure of two differently designed dots-in-a-well nanostructures is revealed focusing on the effect of strain-reducing InGaAs layer, which is discussed in detail. It is found that the use of InGaAs capping layer red-shifts the QD ground-state interband transition energy by about 100 meV maintaining strong quantization of the electronic states. The changes in InAs QD electronic properties are ascribed mainly to QD size/shape variation due to decomposition of InGaAs layer during growth process.

  7. Powering the Future Data Centre

    DEFF Research Database (Denmark)

    Zhang, Zhe

    2010-01-01

    . Considering the input impendence of fuel cell and super-cap, the small-signal stability of cascaded converter is analyzed. The system small-signal model is rebuilt and controllers for current loop and voltage loop are designed to obtain good transient performance. Through analysis and synthesis......The extended run Uninterruptible Power Supply system (UPSs) which powered by fuel cells and supercapcitors, is a promising solution for future data centre to obtain environmentfriendly energy efficient and cost effective. There are many challenges in power electronic interface circuits, because...... of the characteristics of these two power sources: long warm-up stage and low dynamics for fuel cell, and variable terminal voltage for supercapacitors. The motivation for this project was to find ways which can overcome those limitations to integrate fuel cells and supercapcitors to the system with high efficiency...

  8. Population Swap of a Pair of Quantum Dots Coupling to a Plasmonic Nanocavity

    Institute of Scientific and Technical Information of China (English)

    LI Jian-Bo; CHENG Mu-Tian; YANG Zhong-Jian; HAO Zhong-Hua

    2009-01-01

    We theoretically design a single-mode plasmonic ring nanocavity. Based on the plasmonic cavity, the exciton dynamics between two identical quantum dots (QD-p, QD-q) coupled to the nanocavity are investigated. It is shown that the coupling factors gi (i=p, q) between QD-i and surface plasmons are both equal to 12.53meV in our model and exciton population swap between the two QDs can be realized. The periods and amplitudes of population oscillations can be modified by the coupling factors. Our results may have potential applications in quantum information and quantum computation on a chip.

  9. Confinement effect in a quantum well dot induced by an InP stressor

    Science.gov (United States)

    Tulkki, J.; Heinämäki, A.

    1995-09-01

    We have calculated the confinement effect in an In1-xGaxAs/GaAs quantum well dot induced by a dislocation-free InP stressor island. The energy levels were calculated by including the strain interaction and the band-edge confinement in the Luttinger-Kohn Hamiltonian. The maximum level spacing for the dipole-allowed interband E1-->HH1 line spectrum was 20 meV. Our calculation also gives excellent agreement with recent measurements [H. Lipsanen, M. Sopanen, and J. Ahopelto, Phys. Rev. B 51, 13 868 (1995)] and provides indirect evidence of screened Coulomb interaction, tentatively addressed to slow carrier relaxation.

  10. Self-assembled quantum dots in a nanowire system for quantum photonics.

    Science.gov (United States)

    Heiss, M; Fontana, Y; Gustafsson, A; Wüst, G; Magen, C; O'Regan, D D; Luo, J W; Ketterer, B; Conesa-Boj, S; Kuhlmann, A V; Houel, J; Russo-Averchi, E; Morante, J R; Cantoni, M; Marzari, N; Arbiol, J; Zunger, A; Warburton, R J; Fontcuberta i Morral, A

    2013-05-01

    Quantum dots embedded within nanowires represent one of the most promising technologies for applications in quantum photonics. Whereas the top-down fabrication of such structures remains a technological challenge, their bottom-up fabrication through self-assembly is a potentially more powerful strategy. However, present approaches often yield quantum dots with large optical linewidths, making reproducibility of their physical properties difficult. We present a versatile quantum-dot-in-nanowire system that reproducibly self-assembles in core-shell GaAs/AlGaAs nanowires. The quantum dots form at the apex of a GaAs/AlGaAs interface, are highly stable, and can be positioned with nanometre precision relative to the nanowire centre. Unusually, their emission is blue-shifted relative to the lowest energy continuum states of the GaAs core. Large-scale electronic structure calculations show that the origin of the optical transitions lies in quantum confinement due to Al-rich barriers. By emitting in the red and self-assembling on silicon substrates, these quantum dots could therefore become building blocks for solid-state lighting devices and third-generation solar cells.

  11. Chiral Graphene Quantum Dots.

    Science.gov (United States)

    Suzuki, Nozomu; Wang, Yichun; Elvati, Paolo; Qu, Zhi-Bei; Kim, Kyoungwon; Jiang, Shuang; Baumeister, Elizabeth; Lee, Jaewook; Yeom, Bongjun; Bahng, Joong Hwan; Lee, Jaebeom; Violi, Angela; Kotov, Nicholas A

    2016-02-23

    Chiral nanostructures from metals and semiconductors attract wide interest as components for polarization-enabled optoelectronic devices. Similarly to other fields of nanotechnology, graphene-based materials can greatly enrich physical and chemical phenomena associated with optical and electronic properties of chiral nanostructures and facilitate their applications in biology as well as other areas. Here, we report that covalent attachment of l/d-cysteine moieties to the edges of graphene quantum dots (GQDs) leads to their helical buckling due to chiral interactions at the "crowded" edges. Circular dichroism (CD) spectra of the GQDs revealed bands at ca. 210-220 and 250-265 nm that changed their signs for different chirality of the cysteine edge ligands. The high-energy chiroptical peaks at 210-220 nm correspond to the hybridized molecular orbitals involving the chiral center of amino acids and atoms of graphene edges. Diverse experimental and modeling data, including density functional theory calculations of CD spectra with probabilistic distribution of GQD isomers, indicate that the band at 250-265 nm originates from the three-dimensional twisting of the graphene sheet and can be attributed to the chiral excitonic transitions. The positive and negative low-energy CD bands correspond to the left and right helicity of GQDs, respectively. Exposure of liver HepG2 cells to L/D-GQDs reveals their general biocompatibility and a noticeable difference in the toxicity of the stereoisomers. Molecular dynamics simulations demonstrated that d-GQDs have a stronger tendency to accumulate within the cellular membrane than L-GQDs. Emergence of nanoscale chirality in GQDs decorated with biomolecules is expected to be a general stereochemical phenomenon for flexible sheets of nanomaterials.

  12. Quantum-dot emitters in photonic nanostructures

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Stobbe, Søren; Lodahl, Peter

    2010-01-01

    The spontaneous emission from self-assembled semiconductor quantum dots is strongly influenced by the environment in which they are placed. This can be used to determine fundamental optical properties of the quantum dots as well as to manipulate and control the quantum-dot emission itself....

  13. Beer's law in semiconductor quantum dots

    CERN Document Server

    Adamashvili, G T

    2010-01-01

    The propagation of a coherent optical linear wave in an ensemble of semiconductor quantum dots is considered. It is shown that a distribution of transition dipole moments of the quantum dots changes significantly the polarization and Beer's absorption length of the ensemble of quantum dots. Explicit analytical expressions for these quantities are presented.

  14. Membrane analysis with amphiphilic carbon dots.

    Science.gov (United States)

    Nandi, Sukhendu; Malishev, Ravit; Parambath Kootery, Kaviya; Mirsky, Yelena; Kolusheva, Sofiya; Jelinek, Raz

    2014-09-14

    Newly-synthesized amphiphilic carbon dots were used for spectroscopic analysis and multicolour microscopic imaging of membranes and live cells. We show that Förster resonance energy transfer (FRET) occurred from the amphiphilic carbon dots to different membrane-associated fluorescence acceptors. The amphiphilic carbon dots enabled imaging of membrane disruption by the beta-amyloid peptide.

  15. Criteria of Categorizing Logistics and Distribution Centres

    OpenAIRE

    Darko Babić; Anđelko Šćukanec; Kristijan Rogic

    2011-01-01

    Logistics and distribution centres represent very significant infrastructure elements of the macro-logistic system. The creation of the logistics and distribution centres and their connection into a wide (global) network have resulted in the creation of conditions for an adequate distribution of labour and significant increase in the productivity of all the logistics elements and processes, noting that the logistics and distribution centres in this concept have a superregional significance. ...

  16. Smart work centres in rural areas

    DEFF Research Database (Denmark)

    Lorentzen, Anne Birte

    This paper discusses the establishment of telework centres as an element in local development strategies in rural areas, with a particular view to two new telework centres in region North Denmark. The paper argues that telework centres do not represent an easy solution to problems of local develo...... development and environmental sustainability, and further, that technology may not even be the most important feature needed to make them function as such....

  17. Activities of Radiation Protection Centre in 2000

    CERN Document Server

    Radiat. Prot. Cent. Vilnius

    2001-01-01

    Description of the activities of Radiation Protection Centre in 2000 is presented. Radiation Protection Centre is responsible for radiation protection issues. Currently there are six departments at Radiation Protection Centre: two in Vilnius - Department of Radiation Protection Supervision and Control and Department of Programs and Expertise, and four in the districts. Brief information on subject controlled by each departments is provided focusing on main achievements and events.

  18. Criteria of Categorizing Logistics and Distribution Centres

    Directory of Open Access Journals (Sweden)

    Darko Babić

    2011-07-01

    Full Text Available Logistics and distribution centres represent very significant infrastructure elements of the macro-logistic system. The creation of the logistics and distribution centres and their connection into a wide (global network have resulted in the creation of conditions for an adequate distribution of labour and significant increase in the productivity of all the logistics elements and processes, noting that the logistics and distribution centres in this concept have a superregional significance. This paper represents the summary (results of the research that was carried out on a large number of logistics and distribution centres with the aim of considering the complexity and the issues related to the logistics and distribution centres and the distribution network, their elements and action of the subsystems according to the following criteria: spatial, technical, technological, and organizational, with the aim of defining the categorisation model of the logistics and distribution centres. The analysis of the selected data collected during the research has resulted in defining of the categorisation model of the logistics and distribution centres which foresees six categories. Each of the foreseen categories has been defined according to the set model by the mentioned traffic, technical and technological, and organisational characteristics and the level of service. This is precisely where the application of the categorisation model of the logistics and distribution centres can be found, which will define the relevant categories of the centres applicable in the creation of effective distribution

  19. Nanoscale quantum-dot supercrystals

    Science.gov (United States)

    Baimuratov, Anvar S.; Turkov, Vadim K.; Rukhlenko, Ivan D.; Baranov, Alexander V.; Fedorov, Anatoly V.

    2013-09-01

    We develop a theory allowing one to calculate the energy spectra and wave functions of collective excitations in twoand three-dimensional quantum-dot supercrystals. We derive analytical expressions for the energy spectra of twodimensional supercrystals with different Bravias lattices, and use them to analyze the possibility of engineering the supercrystals' band structure. We demonstrate that the variation of the supercrystal's parameters (such as the symmetry of the periodic lattice and the properties of the quantum dots or their environment) enables an unprecedented control over its optical properties, thus paving a way towards the development of new nanophotonics materials.

  20. Spin storage in quantum dot ensembles and single quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Heiss, Dominik

    2009-10-15

    This thesis deals with the investigation of spin relaxation of electrons and holes in small ensembles of self-assembled quantum dots using optical techniques. Furthermore, a method to detect the spin orientation in a single quantum dot was developed in the framework of this thesis. A spin storage device was used to optically generate oriented electron spins in small frequency selected quantum dot ensembles using circularly polarized optical excitation. The spin orientation can be determined by the polarization of the time delayed electroluminescence signal generated by the device after a continuously variable storage time. The degree of spin polarized initialization was found to be limited to 0.6 at high magnetic fields, where anisotropic effects are compensated. The spin relaxation was directly measured as a function of magnetic field, lattice temperature and s-shell transition energy of the quantum dot by varying the spin storage time up to 30 ms. Very long spin lifetimes are obtained with a lower limit of T{sub 1}=20 ms at B=4 T and T=1 K. A strong magnetic field dependence T{sub 1}{proportional_to}B{sup -5} has been observed for low temperatures of T=1 K which weakens as the temperature is increased. In addition, the temperature dependence has been determined with T{sub 1}{proportional_to}T{sup -1}. The characteristic dependencies on magnetic field and temperature lead to the identification of the spin relaxation mechanism, which is governed by spin-orbit coupling and mediated by single phonon scattering. This finding is qualitatively supported by the energy dependent measurements. The investigations were extended to a modified device design that enabled studying the spin relaxation dynamics of heavy holes in self-assembled quantum dots. The measurements show a polarization memory effect for holes with up to 0.1 degree of polarization. Furthermore, investigations of the time dynamics of the hole spin relaxation reveal surprisingly long lifetimes T{sub 1}{sup h

  1. First Light: MeV Astrophysics from the Moon

    Science.gov (United States)

    Miller, Richard S.; Lawrence, David J.

    2016-06-01

    We report evidence of the first astrophysical source detected from the Moon at MeV energies. Our detection of Cygnus X-1 is a validation of a new investigative paradigm in which the lunar environment is intrinsic to the detection approach: the Lunar Occultation Technique (LOT). NASA’s Lunar Prospector mission served as a proxy for a dedicated LOT-based mission. The characteristic signature of temporal modulation, generated by repeated lunar occultations and encoded within acquired gamma-ray data (0.5-9 MeV), is consistent with an unambiguous detection of Cygnus X-1 at 5.4σ significance. Source localization and long-term monitoring capabilities of the LOT are also demonstrated. This “first light” detection verifies the basic tenets of the LOT methodology, reinforces its feasibility as an alternative astronomical detection paradigm for nuclear astrophysics investigations, and is an illustration of the fundamental benefits of the Moon as a platform for science.

  2. Evolution of the 400 MeV linac design

    Energy Technology Data Exchange (ETDEWEB)

    MacLachlan, J.A.

    1987-11-09

    The basic premises of the conceptual design for the linac upgrade are pursued to establish lengths, gradients, power dissipation, etc., for the 400 MeV linac and matching section. The discussion is limited to accelerating and focusing components. Wherever values depend on the choice of the accelerating structure, the disk-and-washer structure is emphasized; the results are generally relevant to the side coupled cavity choice also.

  3. Construction of a pulsed MeV positron beam line

    Energy Technology Data Exchange (ETDEWEB)

    Masuno, Shin-ichi; Okada, Sohei; Kawasuso, Atsuo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    To develop a fast (1 MeV) and short pulsed (100 ps) positron beam which enables defect behavior analysis of bulk states of materials even at high temperatures where a usual positron source would melt, we have been performing design study and construction of the beam line in a three-year program since 1994. This report describes the components, design study results and experimental results of the completed parts until now. (author)

  4. RADIATION DAMAGE TO BSCCO-2223 FROM 50 MEV PROTONS

    Energy Technology Data Exchange (ETDEWEB)

    Zeller, A.F.; Ronningen, R.M.; Godeke, Arno; Heibronn, L.H; McMahan-Norris, P.; Gupta, R.

    2007-11-01

    The use of HTS materials in high radiation environments requires that the superconducting properties remain constant up to a radiation high dose. BSCCO-2223 samples from two manufacturers were irradiated with 50 MeV protons at fluences of up to 5 x 10{sup 17} protons/cm{sup 2}. The samples lost approximately 75% of their pre-irradiation I{sub c}. This compares with Nb{sub 3}Sn, which loses about 50% at the same displacements per atom.

  5. RADIATION DAMAGE TO BSCCO-2223 FROM 50 MEV PROTONS

    Energy Technology Data Exchange (ETDEWEB)

    Zeller, A.F.; Ronningen, R.M.; Godeke, A.; Heilbronn, L.H.; McMahan-Norris, P.; Gupta, R.

    2007-11-27

    The use of HTS materials in high radiation environmentsrequires that the superconducting properties remain constant up to aradiation high dose. BSCCO-2223 samples from two manufacturers wereirradiated with 50 MeV protons at fluences of up to 5 x 1017 protons/cm2.The samples lost approximately 75 percent of their pre-irradiation Ic.This compares with Nb3Sn, which loses about 50 percent at the samedisplacements per atom.

  6. Vacuum system of the 3MeV industrial electron beam accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Jayaprakash, D; Mishra, R L; Ghodke, S R; Kumar, M; Kumar, M; Nanu, K; Mittal, Dr K C [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085 (India)], E-mail: jaypee@barc.gov.in

    2008-05-01

    One DC Accelerator, for electron beam of 3 MeV energy and 10 mA beam current, to derive 30 KW beam power for Industrial applications is nearing completion at Electron Beam Centre, Kharghar, Navi Mumbai. Beam-line of the accelerator is six meters long, consists of electron gun at top, followed by the accelerating column and finally the scan horn. Electron gun and the accelerating column is exposed to SF{sub 6} gas at six atmospheres. Area exposed to the vacuum is 65,000 sq: cm, and includes a volume of 200 litres. Vacuum of the order of 1x10{sup -7}mbar is desired. To ensure a good vacuum gradient, distributive pumping is implemented. Electron beam is scanned to a size of 5cm x 120cm, to get a useful beam coverage, for industrial radiation applications. The beam is extracted through a window of Titanium foil of 50{mu}m thickness. A safety interlock, to protect the electron gun, accelerating column and sputter ion pumps, in case of a foil rupture, is incorporated. Foil change can be done without disturbing the vacuum in the other zones. System will be integrated to a master control system to take care of the various safety aspects, and to make it operator friendly.

  7. Vacuum system of the 3MeV industrial electron beam accelerator

    Science.gov (United States)

    Jayaprakash, D.; Mishra, R. L.; Ghodke, S. R.; kumar, M.; kumar, M.; Nanu, K.; Mittal, K. C., Dr

    2008-05-01

    One DC Accelerator, for electron beam of 3 MeV energy and 10 mA beam current, to derive 30 KW beam power for Industrial applications is nearing completion at Electron Beam Centre, Kharghar, Navi Mumbai. Beam-line of the accelerator is six meters long, consists of electron gun at top, followed by the accelerating column and finally the scan horn. Electron gun and the accelerating column is exposed to SF6 gas at six atmospheres. Area exposed to the vacuum is 65,000 sq: cm, and includes a volume of 200 litres. Vacuum of the order of 1×10-7mbar is desired. To ensure a good vacuum gradient, distributive pumping is implemented. Electron beam is scanned to a size of 5cm × 120cm, to get a useful beam coverage, for industrial radiation applications. The beam is extracted through a window of Titanium foil of 50μm thickness. A safety interlock, to protect the electron gun, accelerating column and sputter ion pumps, in case of a foil rupture, is incorporated. Foil change can be done without disturbing the vacuum in the other zones. System will be integrated to a master control system to take care of the various safety aspects, and to make it operator friendly.

  8. Laparoscopic adrenalectomy: Single centre experience.

    LENUS (Irish Health Repository)

    O'Farrell, N J

    2012-02-01

    BACKGROUND: Laparoscopic adrenalectomy is an attractive alternative to the traditional open approach in the surgical excision of an adrenal gland. It has replaced open adrenalectomy in our institution and we review our experience to date. METHODS: All cases of laparoscopic adrenalectomies in our hospital over eight years (from 2001 to May 2009) were retrospectively reviewed. Patient demographics, diagnosis, length of hospital stay, histology and all operative and post-operative details were evaluated. RESULTS: Fifty-five laparoscopic adrenalectomies (LA) were performed on 51 patients over eight years. The mean age was 48 years (Range 16-86 years) with the male: female ratio 1:2. Twenty-three cases had a right adrenalectomy, 24 had a left adrenalectomy and the remaining four patients had bilateral adrenalectomies. 91% were successfully completed laparoscopically with five converted to an open approach. Adenomas (functional and non functional) were the leading indication for LA, followed by phaeochromocytomas. Other indications for LA included Cushing\\'s disease, adrenal malignancies and rarer pathologies. There was one mortality from necrotising pancreatitis following a left adrenalectomy for severe Cushing\\'s disease, with subsequent death 10 days later. CONCLUSION: Laparoscopic adrenalectomy is effective for the treatment of adrenal tumours, fulfilling the criteria for the ideal minimally invasive procedure. It has replaced the traditional open approach in our centre and is a safe and effective alternative. However, in the case of severe Cushing\\'s disease, laparoscopic adrenalectomy has the potential for significant adverse outcomes and mortality.

  9. Polymer-coated quantum dots

    NARCIS (Netherlands)

    Tomczak, Nikodem; Liu, Rongrong; Vancso, Julius G.

    2013-01-01

    Quantum Dots (QDs) are semiconductor nanocrystals with distinct photophysical properties finding applications in biology, biosensing, and optoelectronics. Polymeric coatings of QDs are used primarily to provide long-term colloidal stability to QDs dispersed in solutions and also as a source of addit

  10. DOT strategies versus orbiter strategies

    NARCIS (Netherlands)

    Rutten, R.J.

    2001-01-01

    The Dutch Open Telescope is a high-resolution solar imager coming on-line at La Palma. The definition of the DOT science niche, strategies, and requirements resemble Solar Orbiter considerations and deliberations. I discuss the latter in the light of the former, and claim that multi-line observation

  11. Nuclear Spins in Quantum Dots

    NARCIS (Netherlands)

    Erlingsson, S.I.

    2003-01-01

    The main theme of this thesis is the hyperfine interaction between the many lattice nuclear spins and electron spins localized in GaAs quantum dots. This interaction is an intrinsic property of the material. Despite the fact that this interaction is rather weak, it can, as shown in this thesis, stro

  12. Luminescent Surface Quaternized Carbon Dots

    KAUST Repository

    Bourlinos, Athanasios B.

    2012-01-10

    Thermal oxidation of a salt precursor made from the acid base combination of tris(hydroxymethyl)aminomethane and betaine hydrochloride results in light-emitting surface quaternized carbon dots that are water-dispersible, display anion exchange properties, and exhibit uniform size/surface charge. © 2011 American Chemical Society.

  13. Danish Anaesthesia Allergy Centre - preliminary results

    DEFF Research Database (Denmark)

    Garvey, L H; Roed-Petersen, J; Menné, T

    2001-01-01

    BACKGROUND: Anaphylactoid reactions in anaesthesia are rare and should ideally be investigated in specialist centres. At Gentofte University Hospital, we established such a centre in 1998 as a joint venture between the Departments of Anaesthesiology and Dermatology. We present the methodology, di...

  14. Oil Trading Centre to Reopen in Shanghai

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ Chinese oil companies will likely resume activities at the oil trading centre in Shanghai this year, a move to further liberalize the once tightly controlled oil market. The centre will trade forward contracts for refined oil products,including gasoline, diesel oil, kerosene and fuel oil, industrial sources said.

  15. The Press Research Centre, 1956-1976.

    Science.gov (United States)

    Press Research Centre, Krakow (Poland).

    In 1956, the Press Research Centre was established in Cracow, Poland by a group of journalists and publishers, for the purpose of instituting press research that would have practical applications. The aims of the Centre were to conduct studies on the history of the Polish press, the contemporary press, press readership, and editorial techniques.…

  16. A midrapidity source of intermediate mass fragments in highly central collisions of Au+Au at 150 A MeV

    Energy Technology Data Exchange (ETDEWEB)

    Alard, J.P.; Bastid, N.; Crouau, M.; Dupieux, P.; Fraysse, L.; Jorio, M.; Montarou, G.; Morel, P. [Laboratoire de Physique Corpusculaire, 63 - Clermont-Ferrand (France); Basrak, Z.; Caplar, R.; Cindro, N.; Hoelbling, S. [Rudjer Boskovic Inst., Zagreb (Yugoslavia); Belayev, I.M.; Frolov, S.; Korchagin, Y.; Lebedev, A.; Smolyankin, S.; Zhilin, A.V. [Institute for Experimental and Theoretical Physics, Moscow (Russia); Bini, M.; Olmi, A.; Pasquali, G.; Poggi, G.; Taccetti, N. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Blaich, T. [Mainz Univ. (Germany); Buta, A.; Legrand, I.; Moisa, D.; Petrovici, M.; Simion, V. [Institute for Physics and Nuclear Engineering, Bucharest (Romania); Cerruti, C.; Coffin, J.P.; Fintz, P.; Guillaume, G.; Houari, O.; Jundt, F.; Kuhn, C.; Maguire, C.; Rami, F.; Tezkratt, R.; Wagner, P. [Centre de Recherches Nucleaires, 67 - Strasbourg (France)]|[Strasbourg Univ., 67 (France); Eroe, J.; Fodor, Z.; Kecskemeti, J.; Koncz, P.; Seres, Z. [Central Research Inst. for Physics, Budapest (Hungary); Grigoriyan, Y.; Manko, V.; Mgebrishvili, G.; Sadchikov, A.; Vasiliev, M.A. [Kurchatov Inst. for Atomic Energy, Moscow (Russia); Herrmann, N.; Pelte, D.; Trzaska, M.; Wienold, T. [Heidelberg Univ. (Germany). Physikalisches Inst.; Kotte, R.; Moesner, J.; Neubert, W.; Wohlfarth, D. [Forschungszentrum Rossendorf (Germany); Matulewicz, T.; Sikora, B.; Wilhelmi, Z. [Warsaw Univ. (Poland). Inst. of Experimental Physics; Bock, R.; Fan, Z.G.; Freifelder, R.; Gobbi, A.; Hildenbrand, K.D.; Jeong, S.C.; Kraemer, M.; Reisdorf, W.; Schuell, D.; Sodan, U.; Teh, K.; Wessels, J.P.; FOPI Collaboration at GSI

    1992-02-01

    Charged particles have been observed in collisions of Au on Au at incident energy of 150 A MeV using a high-granularity detector system covering approximatley the forward hemisphere in the center-of-mass system. Highly central collisions have been studied using a double selection criterion which combines large charged particle multiplicities with small transverse momentum directivities. In this class of events about one quarter of the total nuclear charge emerges as intermediate mass fragments with nuclear charges Z>2. These fragments are centred at midrapidity and are produced with large transverse velocities. (orig.).

  17. The role of the sexual assault centre.

    LENUS (Irish Health Repository)

    Eogan, Maeve

    2013-02-01

    Sexual Assault Centres provide multidisciplinary care for men and women who have experienced sexual crime. These centres enable provision of medical, forensic, psychological support and follow-up care, even if patients chose not to report the incident to the police service. Sexual Support Centres need to provide a ring-fenced, forensically clean environment. They need to be appropriately staffed and available 24 hours a day, 7 days a week to allow prompt provision of medical and supportive care and collection of forensic evidence. Sexual Assault Centres work best within the context of a core agreed model of care, which includes defined multi-agency guidelines and care pathways, close links with forensic science and police services, and designated and sustainable funding arrangements. Additionally, Sexual Assault Centres also participate in patient, staff and community education and risk reduction. Furthermore, they contribute to the development, evaluation and implementation of national strategies on domestic, sexual and gender-based violence.

  18. Spin transport through quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Lima, A.T. da Cunha; Anda, Enrique V. [Pontificia Univ. Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil)

    2003-07-01

    Full text: We investigate the spin polarized transport properties of a nanoscopic device constituted by a quantum dot connected to two leads. The electrical current circulates with a spin polarization that is modulated via a gate potential that controls the intensity of the spin-orbit coupling, the Rashba effect. We study a polarized field-effect transistor when one of its parts is constituted by a small quantum dot, which energies are controlled by another gate potential operating inside the confined region. The high confinement and correlation suffered by the charges inside the dot gives rise to novel phenomena. We show that through the manipulation of the gate potential applied to the dot it is possible to control, in a very efficient way, the intensity and polarization of the current that goes along the system. Other crucial parameters to be varied in order to understand the behavior of this system are the intensity of the external applied electric and magnetic field. The system is represented by the Anderson Impurity Hamiltonian summed to a spin-orbit interaction, which describes the Rashba effect. To obtain the current of this out-of-equilibrium system we use the Keldysh formalism.The solution of the Green function are compatible with the Coulomb blockade regime. We show that under the effect of a external magnetic field, if the dot is small enough the device operates as a complete spin filter that can be controlled by the gate potential. The behavior of this device when it is injected into it a polarized current and modulated by the Rashba effect is as well studied. (author)

  19. Application of calorimeters for 5 MeV EB and bremsstrahlung dosimetry

    DEFF Research Database (Denmark)

    Sato, T.; Takahashi, T.; Saito, T.;

    1993-01-01

    Graphite and water calorimeters, which were developed for use a 10 MeV electron beams (EB) at Riso National Laboratory, were used for process validation and routine dosimeter calibration at a 5 MeV EB. Water calorimeters were used for reference measurements for 5 MeV EB, the response was found...... at 5 MeV EB. Graphite calorimeters gave reproducible readings within 3.3 % relative errors (95 % confidence level) for X-ray measurement....

  20. First on-line test of the LINAC superbuncher at Nuclear Science Centre

    Indian Academy of Sciences (India)

    S Ghosh; R Mehta; P N Prakash; A Mandal; G K Chaudhari; S S K Sonti; D S Mathuria; K K Mistry; A Rai; S Rao; P Barua; A Pandey; B K Sahu; A Sarkar; G Joshi; S K Datta; R K Bhowmik; A Roy

    2002-11-01

    An on-line test of the LINAC superbuncher at Nuclear Science Centre has been successfully performed. DC O7+ beam of nominal energy 92 MeV was accelerated through the superbuncher resonator, operating at a field of 4.54 MV/m. The total energy gain of the beam was measured to be 4.5 MeV. For the pulsed beam test a phase locked bunched beam of O7+ of nominal energy 92 MeV, FWHM 1.3 ns from the pre-tandem multiharmonic buncher was injected into the superbuncher. By properly adjusting the phase and amplitude of the resonator, the best FWHM of the bunched beam was measured to be 185 ps near the entrance of the first LINAC module. Fully depleted cooled surface barrier detector was used for measuring the time width. In a separate experiment the intrinsic time resolution of the same detector was measured to be 134 ps. Consequently the intrinsic time width of the bunched beam, after correcting for the detector resolution, would be 127 ps. Details of the experiment and results are presented.

  1. Physics design of a 10 MeV, 6 kW travelling wave electron linac for industrial applications

    Indian Academy of Sciences (India)

    NITA S KULKARNI; RINKY DHINGRA; VINIT KUMAR

    2016-11-01

    We present the physics design of a 10 MeV, 6 kW S-band (2856 MHz) electron linear accelerator (linac), which has been recently built and successfully operated at Raja Ramanna Centre for Advanced Technology, Indore. The accelerating structure is a $2\\pi/3$ mode constant impedance travelling wave structure, which comprises travelling wave buncher cells, followed by regular accelerating cells. The structure is designed to accelerate 50 keV electron beam from the electron gun to 10 MeV. This paper describes the details of electromagnetic design simulations to fix the mechanical dimensions and tolerances, as well as heat loss calculations in the structure. Results of design simulations have been compared with those obtained using approximate analytical formulae. The beam dynamics simulation with space charge is performed and the required magnetic field profile for keeping the beam focussed in the linac has been evaluated and discussed. An important feature of a travelling wave linac (in contrast with standing wave linac) is that it accepts the RF power over a band of frequencies. Threedimensional transient simulations of the accelerating structure along with the input and output couplers have beenperformed using the software CST-MWS to explicitly demonstrate this feature.

  2. Three-dimensional simulation studies of 10 MeV, 352.2 MHz drift tube Linac

    Indian Academy of Sciences (India)

    Nita S Kulkarni

    2013-06-01

    It is proposed to build a drift tube Linac (DTL) at Raja Ramanna Centre for Advanced Technology, Indore, India, that will form a part of the future Spallation Neutron Source. This DTL will accelerate 30 mA H-ion beam from 3 MeV to 10 MeV. The DTL is designed to operate at 352.2 MHz with a maximum duty cycle of 3%. The DTL tank will consist of three sections, each about 1.2 m in length having 60 cells. The DTL has a ramped accelerating field, which is ramped in the first section of DTL from 1.8 to 2.2 MV/m and remains constant over the rest of the length of DTL. The field in DTL will be stabilized using post-couplers. The three-dimensional (3D) design of the DTL is done using CST microwave studio (CST MWS) incorporating the various nonaxisymmetric components such as tuners, post-couplers and vacuum ports. The frequency shifts due to these components have been evaluated. This paper presents the details of the studies and analysis of 3D simulations of post-couplers, tuners and vacuum ports.

  3. A dynamic programming approach for quickly estimating large network-based MEV models

    DEFF Research Database (Denmark)

    Mai, Tien; Frejinger, Emma; Fosgerau, Mogens

    2017-01-01

    by a rooted, directed graph where each node without successor is an alternative. We formulate a family of MEV models as dynamic discrete choice models on graphs of correlation structures and show that the dynamic models are consistent with MEV theory and generalize the network MEV model (Daly and Bierlaire...

  4. First H- beam accelerated at Linac4: 3MeV done, 157 MeV to go!

    CERN Multimedia

    Linac4 Project Team

    2013-01-01

    On 14 November, the first H- (one proton surrounded by two electrons) beam was accelerated to the energy of 3 MeV in the Linac4 - the new linear accelerator that will replace Linac2 as low-energy injector in the LHC accelerator chain.      A view of the Linac4 taken during the recent tests (top image) and the current measured by the instruments at the end of the acceleration line on 14 November (bottom image). Images: Linac4 collaboration. Using the recently installed Radio Frequency Quadrupole (RFQ) accelerator, 13 mA of current were accelerated to the energy of 3 MeV. After the successful commissioning of the Linac4 RFQ at the 3 MeV test stand completed during the first months of 2013, the whole equipment (composed of the RFQ itself, the following Medium Energy Beam Transport line and its diagnostic line) were moved to the Linac4 tunnel during summer and installed in their final position. In the meantime, a new ion source was assembled, installed and successfu...

  5. Big Surveys, Big Data Centres

    Science.gov (United States)

    Schade, D.

    2016-06-01

    Well-designed astronomical surveys are powerful and have consistently been keystones of scientific progress. The Byurakan Surveys using a Schmidt telescope with an objective prism produced a list of about 3000 UV-excess Markarian galaxies but these objects have stimulated an enormous amount of further study and appear in over 16,000 publications. The CFHT Legacy Surveys used a wide-field imager to cover thousands of square degrees and those surveys are mentioned in over 1100 publications since 2002. Both ground and space-based astronomy have been increasing their investments in survey work. Survey instrumentation strives toward fair samples and large sky coverage and therefore strives to produce massive datasets. Thus we are faced with the "big data" problem in astronomy. Survey datasets require specialized approaches to data management. Big data places additional challenging requirements for data management. If the term "big data" is defined as data collections that are too large to move then there are profound implications for the infrastructure that supports big data science. The current model of data centres is obsolete. In the era of big data the central problem is how to create architectures that effectively manage the relationship between data collections, networks, processing capabilities, and software, given the science requirements of the projects that need to be executed. A stand alone data silo cannot support big data science. I'll describe the current efforts of the Canadian community to deal with this situation and our successes and failures. I'll talk about how we are planning in the next decade to try to create a workable and adaptable solution to support big data science.

  6. Electronic structure of InAs/GaAs self-assembled quantum dots studied by high-excitation luminescence in magnetic fields up to 73 T

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, D.; Raymond, S.; Studenikin, S.; Babinski, A.; Leotin, J.; Frings, P.; Potemski, M.; Sachrajda, A

    2004-04-30

    We report on high-excitation photoluminescence (PL) measurements of an ensemble of InAs/GaAs self-assembled quantum dots with large inter-shell spacing (75 meV) in magnetic fields up to 73 T. The PL spectra show a complex picture of levels splitting and crossings. A simple two-band single-particle model provides a good approximation to explain the observed magneto-PL spectra.

  7. Carbon dots as antioxidants and prooxidants.

    Science.gov (United States)

    Christensen, Ingeborg Lie; Sun, Ya-Ping; Juzenas, Petras

    2011-10-01

    In this study we report the effect of classical CdSe/ZnS quantum dots and novel spherical carbon dots on generation of singlet oxygen and other reactive oxygen species (ROS) in aqueous solutions in vitro. Free radicals were initiated either chemically using 2,2'-azodiisobutyramidine dihydrochloride (AAPH) or by radiation with a blue light source emitting 390-470 nm (peak 420 nm). Two reagents, dihydrorhodamine 123 (Dhr123) and singlet oxygen sensor green (SOSG), were used as radical probes. Quantum dots and carbon dots inhibited oxidation of the radical probes under decomposition of AAPH. However, when subjected to the blue light both the quantum dots and carbon dots induced oxidation of Dhr123 to a greater extent than SOSG in water. Generation of singlet oxygen was remarkably enhanced in deuterium oxide solutions while oxidation of Dhr123 remained unchanged. For comparison, traditional photosensitizer protoporphyrin IX mainly induced oxidation of SOSG in water. In conclusion, upon external radiation carbon dots or quantum dots generate reactive oxygen species acting as prooxidants. Carbon dots or quantum dots also scavenge free radicals that are generated chemically by an azo compound. Such dual properties of these nanoparticles can be used for photodynamic and photocatalytic or antioxidant applications.

  8. Probing silicon quantum dots by single-dot techniques

    Science.gov (United States)

    Sychugov, Ilya; Valenta, Jan; Linnros, Jan

    2017-02-01

    Silicon nanocrystals represent an important class of non-toxic, heavy-metal free quantum dots, where the high natural abundance of silicon is an additional advantage. Successful development in mass-fabrication, starting from porous silicon to recent advances in chemical and plasma synthesis, opens up new possibilities for applications in optoelectronics, bio-imaging, photovoltaics, and sensitizing areas. In this review basic physical properties of silicon nanocrystals revealed by photoluminescence spectroscopy, lifetime, intensity trace and electrical measurements on individual nanoparticles are summarized. The fabrication methods developed for accessing single Si nanocrystals are also reviewed. It is concluded that silicon nanocrystals share many of the properties of direct bandgap nanocrystals exhibiting sharp emission lines at low temperatures, on/off blinking, spectral diffusion etc. An analysis of reported results is provided in comparison with theory and with direct bandgap material quantum dots. In addition, the role of passivation and inherent interface/matrix defects is discussed.

  9. Holistic design : learning from the Learning Centre

    Energy Technology Data Exchange (ETDEWEB)

    Simon, C. [Charles Simon Architect and Planner, Eden Mills, ON, (Canada); McKee, C. [Kitchener-Waterloo YMCA Outdoor Services, ON (Canada)

    2004-08-01

    The energy efficiency of several solar technologies currently in operation at the Kitchener-Waterloo YMCA's Environmental Learning Centre was evaluated. The off-grid earth-sheltered building dug into a south-facing slope features a sod roof, and protection from north winds by coniferous tree plantations. Passive solar strategies are evaluated, including average indoor temperatures and lighting requirements in both summer and winter. Also evaluated were the centre's ventilation systems, windows and passive heat recovery ventilators (HRVs), solar collectors, masonry heaters, and photovoltaic panels. The centre's composting toilets and use of the Living Machine{sup TM} were also discussed and details of the centre's building materials were provided. Ten straw-bale cabins are currently under construction at the centre, using passive solar strategies for heating, ventilation and cooling and combination propane fired/solar hot water heaters, straw bale building envelope and wood frame roof. Further suggestions for the centre's potential uses, and an outline of the centre's ongoing priorities were outlined. 4 refs.

  10. X-Ray Diffraction Analysis on Gallium-Indium Interdiffusion in Quantum Dot Superlattices

    Institute of Scientific and Technical Information of China (English)

    汪辉; 封松林; 徐世杰; 李晴

    2001-01-01

    Thermal-induced interdiffusion in InAs/GaAs quantum dot superlattices is studied by high-resolution x-raydiffraction rocking curve and photoluminescence techniques. With increasing annealing temperatures, up to300meV a blueshift of the emission peak position and down to 16.6meV a narrowing of the line width are foundin the photoluminescence spectra, and respective intensity of the higher-order satellite peaks to lower-order onesin the x-ray rocking curves decreases. Dynamical theory is employed to simulate the measured x-ray diffractiondata. Excellent agreement between the experimental curves and the simulations is achieved when the composition, thickness and stress variations caused by interdiffusion are taken into account. It is found that the significantIn-Ga intermixing occurs even in the as-grown InAs/GaAs quantum dots. The estimated diffusion coefficient is1.8 × 10-17cm2.s-1 at 650 ℃, 3.2 × 10-17cm2·s-1 at 750 ℃, and 1.2 × 10-14 cm2.s-1 at 850℃.

  11. Near-infrared quantum dots for HER2 localization and imaging of cancer cells

    Directory of Open Access Journals (Sweden)

    Rizvi SB

    2014-03-01

    Full Text Available Sarwat B Rizvi,1 Sepideh Rouhi,1 Shohei Taniguchi,2 Shi Yu Yang,1 Mark Green,2 Mo Keshtgar,1,3 Alexander M Seifalian1,3 1UCL Centre for Nanotechnology and Regenerative Medicine, University College London, 2Department of Physics, King's College London, 3Royal Free London NHS Foundation Trust Hospital, London, UK Background: Quantum dots are fluorescent nanoparticles with unique photophysical properties that allow them to be used as diagnostic, therapeutic, and theranostic agents, particularly in medical and surgical oncology. Near-infrared-emitting quantum dots can be visualized in deep tissues because the biological window is transparent to these wavelengths. Their small sizes and free surface reactive groups that can be conjugated to biomolecules make them ideal probes for in vivo cancer localization, targeted chemotherapy, and image-guided cancer surgery. The human epidermal growth factor receptor 2 gene (HER2/neu is overexpressed in 25%–30% of breast cancers. The current methods of detection for HER2 status, including immunohistochemistry and fluorescence in situ hybridization, are used ex vivo and cannot be used in vivo. In this paper, we demonstrate the application of near-infrared-emitting quantum dots for HER2 localization in fixed and live cancer cells as a first step prior to their in vivo application. Methods: Near-infrared-emitting quantum dots were characterized and their in vitro toxicity was established using three cancer cell lines, ie, HepG2, SK-BR-3 (HER2-overexpressing, and MCF7 (HER2-underexpressing. Mouse antihuman anti-HER2 monoclonal antibody was conjugated to the near-infrared-emitting quantum dots. Results: In vitro toxicity studies showed biocompatibility of SK-BR-3 and MCF7 cell lines with near-infrared-emitting quantum dots at a concentration of 60 µg/mL after one hour and 24 hours of exposure. Near-infrared-emitting quantum dot antiHER2-antibody bioconjugates successfully localized HER2 receptors on SK-BR-3 cells

  12. Review of CERN Data Centre Infrastructure

    CERN Document Server

    Andrade, P; van Eldik, J; McCance, G; Panzer-Steindel, B; Coelho dos Santos, M; Traylen, S; Schwickerath, U

    2012-01-01

    The CERN Data Centre is reviewing strategies for optimizing the use of the existing infrastructure and expanding to a new data centre by studying how other large sites are being operated. Over the past six months, CERN has been investigating modern and widely-used tools and procedures used for virtualisation, clouds and fabric management in order to reduce operational effort, increase agility and support unattended remote data centres. This paper gives the details on the project’s motivations, current status and areas for future investigation.

  13. Modelling total energy costs of sports centres

    Energy Technology Data Exchange (ETDEWEB)

    Boussabaine, A.H.; Kirkham, R.J.; Grew, R.J. [Liverpool Univ., School of Architecture and Building Engineering, Liverpool (United Kingdom)

    1999-12-07

    Providing and maintaining safe and comfortable conditions in sport centres raises many issues, particularly cost. The paper gives an overview of the factors associated with sport centre servicing and attempts to highlight the governing factors associated with this, particularly energy costs. A total of 19 sport centres in the City of Liverpool in the UK are investigated, using data elicited from the Liverpool Leisure Services Directorate. The energy operating costs were analysed using statistical methods. Six models were developed to predict total energy costs. Testing and validation results showed a high level of model accuracy. The models would be of use to professionals involved in feasibility studies at the design stage. (Author)

  14. Potential of Natural Ventilation in Shopping Centres

    DEFF Research Database (Denmark)

    Diederichsen, Alice; Friis, Kristina; Brohus, Henrik;

    2008-01-01

    The indoor environmental quality (IEQ) is a fundamental requirement for a well performing shopping centre. This paper contains a pilot study of the potential of using hybrid ventilation (a combination of automatically controlled natural and mechanical ventilation - respectively NV and MV......) in shopping centres with focus on both the achieved IEQ and energy consumptions for air movement. By thermal building simulations it is found that there exists an interesting potential for hybrid ventilation of shopping centres, which can lead to great savings in the electrical energy consumptions...... for ventilation and cooling without compromising IEQ....

  15. New centre for intelligent mining systems

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, W.

    2002-10-01

    A Centre for Intelligent Mining Systems has been opened by the University of Alberta's Computing Science Department, a collaborative effort by the University and Syncrude Canada Ltd. The objective of the new Centre is to apply technologies in the area of artificial intelligence and robotics to the problems of surface mining. The Centre has already attracted attention from other players within the industry and a long-term funding proposal by a consortium that includes Syncrude is in the works. Noranda Inc and Inco Inc have also shown interest.

  16. Planetary Radars Operating Centre PROC

    Science.gov (United States)

    Catallo, C.; Flamini, E.; Seu, R.; Alberti, G.

    2007-12-01

    Planetary exploration by means of radar systems, mainly using Ground Penetrating Radars (GPR) plays an important role in Italy. Numerous scientific international space programs are currently carried out jointly with ESA and NASA by Italian Space Agency, the scientific community and the industry. Three important experiments under Italian leadership ( designed and manufactured by the Italian industry), provided by ASI either as contribution to ESA programs either within a NASA/ASI joint venture framework, are now operating: MARSIS on-board Mars Express, SHARAD on-board Mars Reconnaissance Orbiter and CASSINI Radar on-board Cassini spacecraft. In order to support all the scientific communities, institutional customers and experiment teams operation three Italian dedicated operational centers have been realized, namely SHOC, (Sharad Operating Centre), MOC (Marsis Operating Center) and CASSINI PAD ( Processing Altimetry Data). Each center is dedicated to a single instrument management and control, data processing and distribution. Although they had been conceived to operate autonomously and independently one from each other, synergies and overlaps have been envisaged leading to the suggestion of a unified center, the Planetary Radar Processing Center (PROC). PROC is conceived in order to include the three operational centers, namely SHOC, MOC and CASSINI PAD, either from logistics point of view and from HW/SW capabilities point of view. The Planetary Radar Processing Center shall be conceived as the Italian support facility to the scientific community for on-going and future Italian planetary exploration programs. Therefore, scalability, easy use and management shall be the design drivers. The paper describes how PROC is designed and developed, to allow SHOC, MOC and CASSINI PAD to operate as before, and to offer improved functionalities to increase capabilities, mainly in terms of data exchange, comparison, interpretation and exploitation. Furthermore, in the frame of

  17. Dot-in-Well Quantum-Dot Infrared Photodetectors

    Science.gov (United States)

    Gunapala, Sarath; Bandara, Sumith; Ting, David; Hill, cory; Liu, John; Mumolo, Jason; Chang, Yia Chung

    2008-01-01

    Dot-in-well (DWELL) quantum-dot infrared photodetectors (QDIPs) [DWELL-QDIPs] are subjects of research as potentially superior alternatives to prior QDIPs. Heretofore, there has not existed a reliable method for fabricating quantum dots (QDs) having precise, repeatable dimensions. This lack has constituted an obstacle to the development of uniform, high-performance, wavelength-tailorable QDIPs and of focal-plane arrays (FPAs) of such QDIPs. However, techniques for fabricating quantum-well infrared photodetectors (QWIPs) having multiple-quantum- well (MQW) structures are now well established. In the present research on DWELL-QDIPs, the arts of fabrication of QDs and QWIPs are combined with a view toward overcoming the deficiencies of prior QDIPs. The longer-term goal is to develop focal-plane arrays of radiationhard, highly uniform arrays of QDIPs that would exhibit high performance at wavelengths from 8 to 15 m when operated at temperatures between 150 and 200 K. Increasing quantum efficiency is the key to the development of competitive QDIP-based FPAs. Quantum efficiency can be increased by increasing the density of QDs and by enhancing infrared absorption in QD-containing material. QDIPs demonstrated thus far have consisted, variously, of InAs islands on GaAs or InAs islands in InGaAs/GaAs wells. These QDIPs have exhibited low quantum efficiencies because the numbers of QD layers (and, hence, the areal densities of QDs) have been small typically five layers in each QDIP. The number of QD layers in such a device must be thus limited to prevent the aggregation of strain in the InAs/InGaAs/GaAs non-lattice- matched material system. The approach being followed in the DWELL-QDIP research is to embed In- GaAs QDs in GaAs/AlGaAs multi-quantum- well (MQW) structures (see figure). This material system can accommodate a large number of QD layers without excessive lattice-mismatch strain and the associated degradation of photodetection properties. Hence, this material

  18. Towards Human-Centred Design

    Science.gov (United States)

    Bannon, Liam J.

    The field of HCI has evolved and expanded dramatically since its origin in the early 1980’s. The HCI community embraces a large community of researchers and practitioners around the world, from a variety of disciplinary backgrounds in the human and social sciences, engineering and informatics, and more recently, the arts and design disciplines. This kaleidoscope of cultures and disciplines as seen at INTERACT Conferences provides a rich pool of resources for examining our field. Applications are increasingly exploring our full range of sensory modalities, and merging the digital and physical worlds. WiFi has opened up a huge design space for mobile applications. A focus on usability of products and services has been complemented by an emphasis on engagement, enjoyment and experience. With the advent of ubiquitous computing, and the emergence of “The Internet of Things”, new kinds of more open infrastructures make possible radically new kinds of applications. The sources of innovation have also broadened, to include human and social actors outside of the computing and design organizations. The question is to what extent is our mainstream thinking in the HCI field ready for the challenges of this Brave New World? Do the technological and social innovations that we see emerging require us to re-shape, or even, re-create, our field, or is it a case of a more gradual evolution and development of that which we already know? In this closing Keynote, I will provide a perspective on the evolution and development of the HCI field, looking backwards as well as forwards, in order to determine what are some of the changes of significance in the field. This “broad-brush” approach to what I term “ human-centred design” will be complemented by the examination of specific projects and applications, to help anchor some of the discussion. Areas such as user-centred design, participatory design, computer-supported cooperative work and learning, and interaction design, in

  19. Brightness-equalized quantum dots

    Science.gov (United States)

    Lim, Sung Jun; Zahid, Mohammad U.; Le, Phuong; Ma, Liang; Entenberg, David; Harney, Allison S.; Condeelis, John; Smith, Andrew M.

    2015-10-01

    As molecular labels for cells and tissues, fluorescent probes have shaped our understanding of biological structures and processes. However, their capacity for quantitative analysis is limited because photon emission rates from multicolour fluorophores are dissimilar, unstable and often unpredictable, which obscures correlations between measured fluorescence and molecular concentration. Here we introduce a new class of light-emitting quantum dots with tunable and equalized fluorescence brightness across a broad range of colours. The key feature is independent tunability of emission wavelength, extinction coefficient and quantum yield through distinct structural domains in the nanocrystal. Precise tuning eliminates a 100-fold red-to-green brightness mismatch of size-tuned quantum dots at the ensemble and single-particle levels, which substantially improves quantitative imaging accuracy in biological tissue. We anticipate that these materials engineering principles will vastly expand the optical engineering landscape of fluorescent probes, facilitate quantitative multicolour imaging in living tissue and improve colour tuning in light-emitting devices.

  20. Synthesis and applications of carbon dots

    OpenAIRE

    Nolan, Andrew Steven

    2015-01-01

    The use of non-invasive methods to visualise and monitor processes inside living organisms is vital in the understanding and diagnosis of disease. The work in this thesis details the synthesis and applications of a new imaging modality; carbon dots, whose inherent fluorescence and non-toxic nature makes them attractive alternatives to more traditional ‘quantum dots’. In this thesis, different methods of carbon dot synthesis were attempted in order to produce carbon dots of t...

  1. Colloidal quantum dots: synthesis, properties and applications

    Science.gov (United States)

    Brichkin, S. B.; Razumov, V. F.

    2016-12-01

    Key recent results obtained in studies of a new class of luminophores, colloidal quantum dots, are analyzed. Modern methods for the synthesis and post-synthetic treatment of colloidal quantum dots that make it possible to achieve record high quantum yield of luminescence and to modify their characteristics for specific applications are considered. Currently important avenues of research on colloidal quantum dots and the problems in and prospects for their practical applications in various fields are discussed. The bibliography includes 272 references.

  2. Occupational deprivation in an asylum centre:

    DEFF Research Database (Denmark)

    Morville, Anne-Le; Erlandsson, Lena-Karin

    2013-01-01

    explored the participants’ occupational history and its influence on their occupations in the asylum centre. A thematic analysis showed that the participants had been subjected to occupational disruption and deprivation by politically oppressive systems even before their flight. Their occupations...

  3. Symmetric centres of braided monoidal categories

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper introduces the concept of‘symmetric centres' of braided monoidal categories. Let H be a Hopf algebra with bijective antipode over a field k. We address the symmetric centre of the Yetter-Drinfel'd module category HH(yD) and show that a left Yetter-Drinfel'd module M belongs to the symmetric centre of HH(yD) if and only if M is trivial. We also study the symmetric centres of categories of representations of quasitriangular Hopf algebras and give a sufficient and necessary condition for the braid of H(M) to induce the braid of (H(H)(A),(○)A,A,φ,l,r), or equivalently, the braid of (A#H(H),(○)A,A,φ,l,r), where A is a quantum commutative H-module algebra.

  4. Identity Theft: A Study in Contact Centres

    Science.gov (United States)

    Moir, Iain; Weir, George R. S.

    This paper explores the recent phenomenon of identity theft. In particular, it examines the contact centre environment as a mechanism for this to occur. Through a survey that was conducted amongst forty-five contact centre workers in the Glasgow area we determined that contact centres can and do provide a mechanism for identity theft. Specifically, we found a particularly high incidence of agents who had previously dealt with phone calls that they considered suspicious. Furthermore, there are agents within such environments who have previously been offered money in exchange for customers' details, or who know of fellow workers who received such offers. Lastly, we identify specific practices within contact centres that may contribute to the likelihood of identity theft.

  5. Rapid Thermal Annealing Effects on Structural and Optical Properties of Self-Assembled InAs/GaAs Quantum Dots Capped by InAlAs/InGaAs Layers

    Institute of Scientific and Technical Information of China (English)

    L(U) Wei; LI Da-Bing; ZHANG Zi-Yang; LI Chao-Rong; ZHANG Ze; XU Bo; WANG Zhan-Gum

    2005-01-01

    @@ Effects of rapid thermal annealing on the optical and structural properties of self-assembled InAs/GaAs quantum dots capped by the InAlAs/InGaAs combination layers are studied by photoluminescence and transmission electron microscopy.The photoluminescence measurement shows that the photoluminescence peak of the sample after 850℃ rapid thermal annealing is blue shifted with 370meV and the excitation peak intensity increases by a factor of about 2.7 after the rapid thermal annealing, which indicates that the InAs quantum dots have experienced an abnormal transformation during the annealing.The transmission electron microscopy shows that the quantum dots disappear and a new InAlGaAs single quantum well structure forms after the rapid thermal annealing treatment.The transformation mechanism is discussed.These abnormal optical properties are attributed to the structural transformation of these quantum dots into a single quantum well.

  6. Social innovation for People-Centred Development

    DEFF Research Database (Denmark)

    Hulgård, Lars; P.K., Shajahan

    2013-01-01

    Social innovation is closely related to the people-centred development (PCD) framework of knowledge production. The discussion of PCD in this chapter particularly expands on the feature of empowerment and socio-political mobilization of people in social innovation......Social innovation is closely related to the people-centred development (PCD) framework of knowledge production. The discussion of PCD in this chapter particularly expands on the feature of empowerment and socio-political mobilization of people in social innovation...

  7. Thermoelectric energy harvesting with quantum dots.

    Science.gov (United States)

    Sothmann, Björn; Sánchez, Rafael; Jordan, Andrew N

    2015-01-21

    We review recent theoretical work on thermoelectric energy harvesting in multi-terminal quantum-dot setups. We first discuss several examples of nanoscale heat engines based on Coulomb-coupled conductors. In particular, we focus on quantum dots in the Coulomb-blockade regime, chaotic cavities and resonant tunneling through quantum dots and wells. We then turn toward quantum-dot heat engines that are driven by bosonic degrees of freedom such as phonons, magnons and microwave photons. These systems provide interesting connections to spin caloritronics and circuit quantum electrodynamics.

  8. Activation of silicon quantum dots for emission

    Institute of Scientific and Technical Information of China (English)

    Huang Wei-Qi; Miao Xin-Jian; Huang Zhong-Mei; Liu Shi-Rong; Qin Chao-Jian

    2012-01-01

    The emission of silicon quantum dots is weak when their surface is passivated well. Oxygen or nitrogen on the surface of silicon quantum dots can break the passivation to form localized electronic states in the band gap to generate active centers where stronger emission occurs.From this point of view,we can build up radiative matter for emission.Emissions of various wavelengths can be obtained by controlling the surface bonds of silicon quantum dots.Our experimental results demonstrate that annealing is important in the treatment of the activation,and stimulated emissions at about 600 and 700 nm take place on active silicon quantum dots.

  9. Synthetic Developments of Nontoxic Quantum Dots.

    Science.gov (United States)

    Das, Adita; Snee, Preston T

    2016-03-03

    Semiconductor nanocrystals, or quantum dots (QDs), are candidates for biological sensing, photovoltaics, and catalysis due to their unique photophysical properties. The most studied QDs are composed of heavy metals like cadmium and lead. However, this engenders concerns over heavy metal toxicity. To address this issue, numerous studies have explored the development of nontoxic (or more accurately less toxic) quantum dots. In this Review, we select three major classes of nontoxic quantum dots composed of carbon, silicon and Group I-III-VI elements and discuss the myriad of synthetic strategies and surface modification methods to synthesize quantum dots composed of these material systems.

  10. POLARON IN CYLINDRICAL AND SPHERICAL QUANTUM DOTS

    Directory of Open Access Journals (Sweden)

    L.C.Fai

    2004-01-01

    Full Text Available Polaron states in cylindrical and spherical quantum dots with parabolic confinement potentials are investigated applying the Feynman variational principle. It is observed that for both kinds of quantum dots the polaron energy and mass increase with the increase of Frohlich electron-phonon coupling constant and confinement frequency. In the case of a spherical quantum dot, the polaron energy for the strong coupling is found to be greater than that of a cylindrical quantum dot. The energy and mass are found to be monotonically increasing functions of the coupling constant and the confinement frequency.

  11. Random Feature Maps for Dot Product Kernels

    CERN Document Server

    Kar, Purushottam

    2012-01-01

    Approximating non-linear kernels using feature maps has gained a lot of interest in recent years due to applications in reducing training and testing times of SVM classifiers and other kernel based learning algorithms. We extend this line of work and present low distortion embeddings for dot product kernels into linear Euclidean spaces. We base our results on a classical result in harmonic analysis characterizing all dot product kernels and use it to define randomized feature maps into explicit low dimensional Euclidean spaces in which the native dot product provides an approximation to the dot product kernel with high confidence.

  12. Semiconductor quantum-dot lasers and amplifiers

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Borri, Paola; Ledentsov, N. N.

    2002-01-01

    -power surface emitting VCSELs. We investigated the ultrafast dynamics of quantum-dot semiconductor optical amplifiers. The dephasing time at room temperature of the ground-state transition in semiconductor quantum dots is around 250 fs in an unbiased amplifier, decreasing to below 50 fs when the amplifier...... is biased to positive net gain. We have further measured gain recovery times in quantum dot amplifiers that are significantly lower than in bulk and quantum-well semiconductor optical amplifiers. This is promising for future demonstration of quantum dot devices with high modulation bandwidth...

  13. Dissipative tunneling in structures with quantum dots and quantum molecules

    OpenAIRE

    Dahnovsky, Yu. I.; Krevchik, V. D.; Semenov, M. B.; Yamamoto, K.; Zhukovsky, V. Ch.; Aringazin, A. K.; Kudryashov, E. I.; Mayorov, V. G.

    2005-01-01

    The problem of tunneling control in systems "quantum dot - quantum well" (as well as "quantum dot - quantum dot" or quantum molecule) and "quantum dot - bulk contact" is studied as a quantum tunneling with dissipation process in the semiclassical (instanton) approximation. For these systems temperature and correlation between a quantum dot radius and a quantum well width (or another quantum dot radius) are considered to be control parameters. The condition for a single electron blockade is fo...

  14. The Imperial College Thermophysical Properties Data Centre

    Science.gov (United States)

    Angus, S.; Cole, W. A.; Craven, R.; de Reuck, K. M.; Trengove, R. D.; Wakeham, W. A.

    1986-07-01

    The IUPAC Thermodynamic Tables Project Centre in London has at its disposal considerable expertise on the production and utilization of high-accuracy equations of state which represent the thermodynamic properties of substances. For some years they have been content to propagate this information by the traditional method of book production, but the increasing use of the computer in industry for process design has shown that an additional method was needed. The setting up of the IUPAC Transport Properties Project Centre, also at Imperial College, whose products would also be in demand by industry, afforded the occasion for a new look at the problem. The solution has been to set up the Imperial College Thermophysical Properties Data Centre, which embraces the two IUPAC Project Centres, and for it to establish a link with the existing Physical Properties Data Service of the Institution of Chemical Engineers, thus providing for the dissemination of the available information without involving the Centres in problems such as those of marketing and advertising. This paper outlines the activities of the Centres and discusses the problems in bringing their products to the attention of industry in suitable form.

  15. Perspectives on recycling centres and future developments.

    Science.gov (United States)

    Engkvist, I-L; Eklund, J; Krook, J; Björkman, M; Sundin, E

    2016-11-01

    The overall aim of this paper is to draw combined, all-embracing conclusions based on a long-term multidisciplinary research programme on recycling centres in Sweden, focussing on working conditions, environment and system performance. A second aim is to give recommendations for their development of new and existing recycling centres and to discuss implications for the future design and organisation. Several opportunities for improvement of recycling centres were identified, such as design, layout, ease with which users could sort their waste, the work environment, conflicting needs and goals within the industry, and industrialisation. Combining all results from the research, which consisted of different disciplinary aspects, made it possible to analyse and elucidate their interrelations. Waste sorting quality was recognized as the most prominent improvement field in the recycling centre system. The research identified the importance of involving stakeholders with different perspectives when planning a recycling centre in order to get functionality and high performance. Practical proposals of how to plan and build recycling centres are given in a detailed checklist.

  16. (π+/-,π+/-p) reaction at 245 MeV

    Science.gov (United States)

    Piasetzky, E.; Ashery, D.; Altman, A.; Yavin, A. I.; Schlepütz, F. W.; Powers, R. J.; Bertl, W.; Felawka, L.; Walter, H. K.; Winter, R. G.; Pluym, J. V. D.

    1982-05-01

    The inclusive (π+/-,π+/-p) reactions on C, Fe, and Bi were studied at 245 MeV in a broad kinematic range by means of coincidence measurement of the outgoing particles. The π-p angular correlations and proton-energy spectra show features consistent with those expected from quasifree scattering. It is observed that about 80% of the inclusive inelastic scattering cross section at backward pion angles may be attributed to nucleon knockout mechanisms. The results allow identification of the direct quasifree process, unperturbed by higher order effects, which accounts for 30%, 20%, and 15% of the C, Fe, and Bi inclusive (π+,π+) differential cross sections, respectively. The ratio of positive to negative pion cross sections for quasifree scattering, integrated over the proton energy and angle, are in agreement with the ratio for free π-p scattering. Such is not the case for various proton angles. The deviation of the positive to negative ratio at the peak of the proton angular correlation from the free scattering ratio is most pronounced for more forward pion angles. NUCLEAR REACTIONS (π+/-,π+/-p) coin. measurements on C, Fe, Bi, E=245 MeV; deduced σknockout decomposition of σinelastic.

  17. Limitations of 14 MeV neutron simulation techniques

    Science.gov (United States)

    Kley, W.; Bishop, G. R.; Sinha, A.

    1988-07-01

    A D-T fusion cycle produces five times more neutrons per unit of energy released than a fission cycle, with about twice the damage energy and the capability to produce ten times more hydrogen, helium and transmutation products than fission neutrons. They determine, together with other parameters, the lifetime of the construction materials for the low plasma-density fusion reactors (tokamak, tandem-mirror, etc.), which require a first wall. For the economie feasibility of fusion power reactors the first wall and blanket materials must withstand a dose approaching 300 to 400 dpa. Arguments are presented that demonstrate that today's simulation techniques using existing fission reactors and charged particle beams are excellent tools to study the underlying basic physical phenomena of the evolving damage structures but are not sufficient to provide a valid technological data base for the design of economie fusion power reactors. It is shown than an optimized spallation neutron source based on a continuous beam of 600 MeV, 6 mA protons is suitable to simulate first wall conditions. Comparing it with FMIT the 35 MeV, 100 mA D + -Li neutron source, we arrive at the following figure of merit: FM = {(dpa·volume) EURAC}/{(dpa·volume) FMIT} = {} = 111 reflecting the fact that the proton beam generates about 100 times more neutrons than the deuteron beam in FMIT for the same beam power.

  18. Angular spreading measurements using MeV ion microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Whitlow, Harry J., E-mail: harry.whitlow@he-arc.ch [Institut des Microtechnologies Appliquées, Haute Ecole Arc Ingénierie, Eplatures-Gris 17, CH-2300 La Chaux-de-Fonds (Switzerland); Department of Physics, P.O. Box 35 (YFL), FI-40014 University of Jyväskylä (Finland); Ren, Minqin; Chen, Xiao; Osipowicz, Thomas; Kan, Jeroen A. van; Watt, Frank [Centre for Ion Beam Applications, National University of Singapore (Singapore)

    2013-07-01

    The sharpness of MeV ion microscope images is governed by small-angle scattering and associated lateral spreading of the ion beam in the sample. We have investigated measurement of the half-angle of the angular spreading distribution by characterising the image blurring in direct-Scanning Transmission Ion Microscopy (direct-STIM). In these tests Mylar™ foils of 0.5–6 μm were used to induce angular spreading. Images were taken of an electron microscope grid using 2 MeV protons with, and without, the foils in the beam path. The blurring was measured by fitting the width of a circular Gaussian point spread function to the images with and without the foil in position. The results show the half-angle width of the spreading has a square root dependence on foil thickness that lies intermediate between SRIM predictions and the theoretical estimates (Bird and Williams fits to the Sigmund and Winterbon data and Amsel et al.)

  19. Characteristic parameters of 6--21 MeV electron beams from a 21 MeV linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghazi, M.S.A.L. (Department of Medical Physics, Thunder Bay Regional Cancer Centre, Ontario Cancer Treatment and Research Foundation, Thunder Bay, Ontario P7A 7T1, (Canada) Department of Physics, Lakehead University, Thunder Bay, Ontario P7B 5E1, (Canada) Lingman, D. Department of Medical Physics, Thunder Bay Regional Cancer Centre, Ontario Cancer Treatment and Research Foundation, Thunder Bay, Ontario P7A 7T1, (Canada) Department of Computer Science, Lakehead University, Thunder Bay, Ontario P7B 5E1, (Canada)); Gilbert, L.D. (Thekkumthala, J. Department of Medical Physics, Thunder Bay Regional Cancer Centre, Ontario Cancer Treatment and Research Foundation, Thunder Bay, Ontario P7A 7T1, (Canada))

    1991-07-01

    Dosimetry measurements have been carried out for the electron beams produced by a linear accelerator at energies 6, 8, 10, 14, 18, and 21 MeV. Characteristic parameters of the central axis dose distributions were derived and compared to corresponding values of electron beams from other accelerators in clinical use where such a comparison is appropriate. A comprehensive set of dosimetric parameters is provided for electron beam treatment planning. The data include central axis depth dose, range--energy parameters, beam penumbra and uniformity.

  20. Electrostatically Confined Monolayer Graphene Quantum Dots with Orbital and Valley Splittings.

    Science.gov (United States)

    Freitag, Nils M; Chizhova, Larisa A; Nemes-Incze, Peter; Woods, Colin R; Gorbachev, Roman V; Cao, Yang; Geim, Andre K; Novoselov, Kostya S; Burgdörfer, Joachim; Libisch, Florian; Morgenstern, Markus

    2016-09-14

    The electrostatic confinement of massless charge carriers is hampered by Klein tunneling. Circumventing this problem in graphene mainly relies on carving out nanostructures or applying electric displacement fields to open a band gap in bilayer graphene. So far, these approaches suffer from edge disorder or insufficiently controlled localization of electrons. Here we realize an alternative strategy in monolayer graphene, by combining a homogeneous magnetic field and electrostatic confinement. Using the tip of a scanning tunneling microscope, we induce a confining potential in the Landau gaps of bulk graphene without the need for physical edges. Gating the localized states toward the Fermi energy leads to regular charging sequences with more than 40 Coulomb peaks exhibiting typical addition energies of 7-20 meV. Orbital splittings of 4-10 meV and a valley splitting of about 3 meV for the first orbital state can be deduced. These experimental observations are quantitatively reproduced by tight binding calculations, which include the interactions of the graphene with the aligned hexagonal boron nitride substrate. The demonstrated confinement approach appears suitable to create quantum dots with well-defined wave function properties beyond the reach of traditional techniques.

  1. Quantum Dot Spectrum Converters for Enhanced High Efficiency Photovoltaics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This research proposes to enhance solar cell efficiency, radiation resistance and affordability. The Quantum Dot Spectrum Converter (QDSC) disperses quantum dots...

  2. Interaction of a 29 MeV 3{sup H}e particle beam with a Cl{sub 4}C vapour target; Interacciones de He{sup 3} de 29 MeV en un blanco de Cl{sub 4}C

    Energy Technology Data Exchange (ETDEWEB)

    Lleo Morilla, A.

    1963-07-01

    The interactions of a 29 MeV 3{sup H}e particles beam on a Cl{sub 4}C vapour target have been studied using the photographic method. differential cross-sections for the Cl({sup 3}He, {sup 3}He)Cl elastic scattering and {sup 1}2C({sup 3}He, {alpha}){sup 1}1C pick-up reaction are shown; the corresponding angular distributions in the centre-of-mass system have been compared with the predictions of optical model and A.B.M. theories. (Author) 21 refs.

  3. Neutron flux from a 14-MeV neutron generator with tungsten filter for research in NDA methods for nuclear safeguards and security

    Science.gov (United States)

    Rennhofer, H.; Pedersen, B.; Crochemore, J.-M.

    2009-12-01

    The Joint Research Centre has taken into operation a new experimental device designed for research in the fields of nuclear safeguards and security applications. The research projects currently undertaken include detection of shielded contraband materials, detection of fissile materials, and mass determination of small fissile materials in shielded containers. The device, called the Pulsed Neutron Interrogation Test Assembly (PUNITA), incorporates a pulsed 14-MeV (D-T) neutron generator and a large graphite mantle surrounding the sample cavity. By pulsing the neutron generator with a frequency in the range of 10 to 150 Hz, a sample may be interrogated first by fast neutrons and a few hundred micro-seconds later by a pure thermal neutron flux. The permanent detection systems incorporated in PUNITA include 3He neutrons detectors, HPGe gamma detectors, and lanthanum bromide scintillation detectors. We have studied the effects of placing a tungsten liner around the neutron generator target. The 14-MeV neutrons induce (n, 2n) and (n, 3n) reactions. In addition the mean neutron energy emitted from generator/tungsten assembly is reduced to about 1 MeV. Both of these effects increase the thermal neutron flux in the sample cavity. The paper describes the observed advantages of the tungsten liner with respect to increase in thermal flux, and better shielding capabilities of the nearby gamma and neutron detectors.

  4. MOVPE growth of InAs quantum dots for mid-IR applications

    Institute of Scientific and Technical Information of China (English)

    TANG Xiao-hong; YIN Zong-you; DU An-yan; ZHAO Jing-hua; DENY S

    2006-01-01

    InAs quantum dots (QDs) grown on InxGa1-xAs/InP matrix by low pressure metal organic vapor phase epitaxy (LP-MOVPE) in nitrogen ambient were studied. Formation of the InAs QDs with different growth conditions was investigated. To improve the dot size uniformity,a two-step growth method was used and investigated. It is found that morphology of the InAs QDs formed on such InxGa1-xAs/InP matrix is very sensitive to the growth conditions. InAs QDs with high density of 1.3×1010 cm-2 are grown by using S-K growth method with fast growth rate. Using the two-step growth method,the InAs QDs size uniformity improves by 63% and 110% compared that of the dots grown by ordinary S-K method and ALE method,respectively. Narrow photoluminescence (PL) emission spectrum of the QDs grown by using the two-step growth method is received. FWHM of the PL curve is measured at 26 meV and the peak emission wavelength is larger than 2.3 μm at 77 K.

  5. Anomalous temperature dependent photoluminescence properties of CdSxSe1-x quantum dots

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    CdSxSe1-x quantum dots were fabricated by a simple spin-coating heat volatilization method on InP wafer.Temperature dependent photoluminescence of CdSxSe1-x quantum dots was carried out in a range of 10-300 K.The integrated photoluminescence intensity revealed an anomalous behavior with increasing temperature in the range of 180-200 K.The band gap energy showed a redshift of 61.34 meV when the temperature increased from 10 to 300 K.The component ratio of S to Se in the CdSxSe1-x quantum dots was valued by both the X-ray diffraction data and photoluminescence peak energy at room temperature according to Vegard Law.Moreover,the parameters of the Varshni relation for CdS0.9Se0.1 materials were also obtained using photoluminescence peak energy as a function of temperature and the best-fit curve:α=(3.5 ± 0.1)10-4 eV/K,and β=210 ± 10 K (close to the Debye temperature θD of the material).

  6. Nonadiabatic corrections to a quantum dot quantum computer working in adiabatic limit

    Indian Academy of Sciences (India)

    M Ávila

    2014-07-01

    The time of operation of an adiabatic quantum computer must be less than the decoherence time, otherwise the computer would be nonoperative. So far, the nonadiabatic corrections to an adiabatic quantum computer are merely theoretical considerations. By the above reason, we consider the particular case of a quantum-dot-confined electron spin qubit working adiabatically in the nanoscale regime (e.g., in the MeV range of energies) and include nonadiabatic corrections in it. If the decoherence times of a quantum dot computer are ∼100 ns [J M Kikkawa and D D Awschalom, Phys. Rev. Lett. 80, 4313 (1998)] then the predicted number of one qubit gate (primitive) operations of the Loss–DiVincenzo quantum computer in such an interval of time must be > 1010. However, if the quantum-dot-confined electron spin qubit is very excited (i.e., the semiclassical limit) the number of operations of such a computer would be approximately the same as that of a classical computer. Our results suggest that for an adiabatic quantum computer to operate successfully within the decoherence times, it is necessary to take into account nonadiabatic corrections.

  7. Study of excitonic states in single InAs quantum dots by low-temperature SNOM

    Energy Technology Data Exchange (ETDEWEB)

    Senichev, Alexander; Werner, Peter [Max-Planck-Institut, Halle (Germany); Talalaev, Vadim [Max-Planck-Institut, Halle (Germany); Martin-Luther-Universitaet, ZIK ' ' SiLi-nano' ' , Halle (Germany); Schilling, Joerg [Martin-Luther-Universitaet, ZIK ' ' SiLi-nano' ' , Halle (Germany); Cirlin, George [A. F. Ioffe Physico-Technical Institute, St. Petersburg (Russian Federation); St. Petersburg Physics and Technology Center for Research and Education, St. Petersburg (Russian Federation); Institute for Analytical Instrumentation, St. Petersburg (Russian Federation)

    2013-07-01

    We report on near-field optical spectroscopy on InAs quantum dots embedded in a GaAs matrix. Quantum dot samples are grown by molecular beam epitaxy in different configuration of the active region. Sharp spectral lines corresponding to optical recombination in single quantum dots are selected. The spectral width of most resonances is quite narrow and comparable with the resolution of our monochromator (0.1 meV). Varying the excitation power density from 2 W/cm{sup 2} to 300 W/cm{sup 2} power dependence of photoluminescence (PL) parameters is investigated. For spatial PL imaging (spatial resolution 300 nm), the fiber probe is scanned across the sample surface, and a full PL spectrum is recorded at every pixel. The intensity of the observed emission lines shows approximately linear power dependence and saturate at the power of 100 W/cm{sup 2}. The results are discussed in respect to the capability of SNOM and provide a better understanding of the exciton behavior of individual QDs.

  8. Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting.

    Science.gov (United States)

    Yang, C H; Rossi, A; Ruskov, R; Lai, N S; Mohiyaddin, F A; Lee, S; Tahan, C; Klimeck, G; Morello, A; Dzurak, A S

    2013-01-01

    Although silicon is a promising material for quantum computation, the degeneracy of the conduction band minima (valleys) must be lifted with a splitting sufficient to ensure the formation of well-defined and long-lived spin qubits. Here we demonstrate that valley separation can be accurately tuned via electrostatic gate control in a metal-oxide-semiconductor quantum dot, providing splittings spanning 0.3-0.8 meV. The splitting varies linearly with applied electric field, with a ratio in agreement with atomistic tight-binding predictions. We demonstrate single-shot spin read-out and measure the spin relaxation for different valley configurations and dot occupancies, finding one-electron lifetimes exceeding 2 s. Spin relaxation occurs via phonon emission due to spin-orbit coupling between the valley states, a process not previously anticipated for silicon quantum dots. An analytical theory describes the magnetic field dependence of the relaxation rate, including the presence of a dramatic rate enhancement (or hot-spot) when Zeeman and valley splittings coincide.

  9. Temperature-Dependent Energy Gap Shift and Thermally Activated Transition in Multilayer CdTe/ZnTe Quantum Dots.

    Science.gov (United States)

    Man, Minh Tan; Lee, Hong Seok

    2015-10-01

    We investigated the influence of growth conditions on carrier dynamics in multilayer CdTe/ZnTe quantum dots (QDs) by monitoring the temperature dependence of the photoluminescence emission energy. The results were analyzed using the empirical Varshni and O'Donnell relations for temperature variation of the energy gap shift. Best fit values showed that the thermally activated transition between two different states occurs due to band low-temperature quenching with values separated by 5.0-6.5 meV. The addition of stack periods in multilayer CdTe/ZnTe QDs plays an important role in the energy gap shift, where the exciton binding energy is enhanced, and, conversely, the exciton-phonon coupling strength is suppressed with an average energy of 19.3-19.8 meV.

  10. Transmission of HIV in dialysis centre.

    Science.gov (United States)

    Velandia, M; Fridkin, S K; Cárdenas, V; Boshell, J; Ramirez, G; Bland, L; Iglesias, A; Jarvis, W

    1995-06-01

    In August, 1993, 13 dialysis patients at one dialysis centre in Colombia, South America, were found to be HIV positive, and this prompted an epidemiological investigation. We carried out a cohort study of all dialysis centre patients during January, 1992 to December, 1993 (epidemic period) to determine risk factors for HIV seroconversion. Haemodialysis and medical records were reviewed, dialysis centre staff and surviving patients were interviewed, and dialysis practices were observed. Stored sera from all dialysis centre patients were tested for HIV antibody. 12 (52%) of 23 patients tested positive for HIV antibody by enzyme immunoassay and western blot during the epidemic period. Of the 23 tested, 9 (39%) converted from HIV antibody negative to positive (seroconverters) and 10 (44%) remained HIV negative (seronegatives). The HIV seroconversion rate was higher among patients dialysed at the centre while a new patient, who was HIV seropositive, was dialysed there (90% vs 0%; p dialysis centre reprocessed access needles, dialysers, and bloodlines (60% vs 0%). While 2 of 9 HIV seroconverters had had sex with prostitutes, none had received unscreened blood products or had other HIV risk factors. No surgical or dental procedures were associated with HIV seroconversion. Dialysers were reprocessed separately with 5% formaldehyde and were labelled for use on the same patient. Access needles were reprocessed by soaking them in a common container with a low-level disinfectant, benzalkonium chloride; 4 pairs of needles were placed in one pan creating the potential for cross-contamination or use of one patient's needles on another patient. HIV transmission at the dialysis centre was confirmed. Improperly reprocessed patient-care equipment, most probably access needles, is the likely mechanism of transmission. This outbreak was discovered by accident and similar transmission may be occurring in many other countries where low-level disinfectants are used to sterilise critical

  11. Nitrogen-Doped Carbon Dots for "green" Quantum Dot Solar Cells.

    Science.gov (United States)

    Wang, Hao; Sun, Pengfei; Cong, Shan; Wu, Jiang; Gao, Lijun; Wang, Yun; Dai, Xiao; Yi, Qinghua; Zou, Guifu

    2016-12-01

    Considering the environment protection, "green" materials are increasingly explored for photovoltaics. Here, we developed a kind of quantum dots solar cell based on nitrogen-doped carbon dots. The nitrogen-doped carbon dots were prepared by direct pyrolysis of citric acid and ammonia. The nitrogen-doped carbon dots' excitonic absorption depends on the N-doping content in the carbon dots. The N-doping can be readily modified by the mass ratio of reactants. The constructed "green" nitrogen-doped carbon dots solar cell achieves the best power conversion efficiency of 0.79 % under AM 1.5 G one full sun illumination, which is the highest efficiency for carbon dot-based solar cells.

  12. GaAs-based long-wavelength InAs bilayer quantum dots grown by molecular beam epitaxy

    Institute of Scientific and Technical Information of China (English)

    Zhu Yan; Li Mifeng; He Jifang; Yu Ying; Ni Haiqiao; Xu Yingqiang; Wang Juan; He Zhenhong; Niu Zhichuan

    2011-01-01

    Molecular beam epitaxy growth ofa bilayer stacked InAs/GaAs quantum dot structure on a pure GaAs matrix has been systemically investigated.The influence of growth temperature and the InAs deposition of both layers on the optical properties and morphologies of the bilayer quantum dot (BQD) structures is discussed.By optimizing the growth parameters,InAs BQD emission at 1.436μm at room temperature with a narrower FWHM of 27 meV was demonstrated.The density of QDs in the second layer is around 9 × 109 to 1.4 × 1010 cm-2.The BQD structure provides a useful way to extend the emission wavelength of GaAs-based material for quantum functional devices.

  13. The UHV system of the 10 MeV RF electron linac

    Science.gov (United States)

    Bhattacharjee, D.; Jayaprakash, D.; Mishra, R. L.; Nimje, V. T.; Mittal, K. C.

    2008-05-01

    A 10 MeV, 10 kW RF Electron Linac, for Industrial applications, is installed and commissioned at Electron Beam Centre (EBC), Kharghar, Navi Mumbai. The accelerator consists of the electron gun, RF Linac, Vacuum system, Beam diagnostics system, Magnetic sweep scanning system and Scan horn. The accelerator is divided into three sections with gate valves to isolate them, to enable servicing of pumps and modifications. The vacuum requirement in the accelerator is 10-7 mbar considering the breakdown parameters of the RF field within the linac. Total length of the accelerator from electron gun to the scan horn is about 5.0 meters. Vacuum plumb lines are of SS 304 pipes of nominal bores of 100 mm and 150 mm, machined internally to a surface finish of 0.8 μm. It encloses a volume of 156 litres. Total surface area exposed to vacuum is 57,500 cm2. It consists of 5250 cm2 of OFHC Copper, 51300 cm2 of SS 304 and 940 cm2 of ceramic sections. Leak-tightness of the order of 1 × 10-9mbar.l/s is ensured for the whole system, after eliminating the leaks at every stage of the assembly. Baking the plumb line and pumps at 150° C, for eight hours an ultimate vacuum of 2 × 10-7mbar is achieved in the accelerator. Modifications of the vacuum system is undertaken to suit the design changes in the gun and the diagnostic systems.

  14. The UHV system of the 10 MeV RF electron linac

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, D; Jayaprakash, D; Mishra, R L; Nimje, V T; Mittal, K C [D. Bhattacharjee, Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085 (India)], E-mail: dhruvab@barc.gov.in

    2008-05-01

    A 10 MeV, 10 kW RF Electron Linac, for Industrial applications, is installed and commissioned at Electron Beam Centre (EBC), Kharghar, Navi Mumbai. The accelerator consists of the electron gun, RF Linac, Vacuum system, Beam diagnostics system, Magnetic sweep scanning system and Scan horn. The accelerator is divided into three sections with gate valves to isolate them, to enable servicing of pumps and modifications. The vacuum requirement in the accelerator is 10{sup -7} mbar considering the breakdown parameters of the RF field within the linac. Total length of the accelerator from electron gun to the scan horn is about 5.0 meters. Vacuum plumb lines are of SS 304 pipes of nominal bores of 100 mm and 150 mm, machined internally to a surface finish of 0.8 {mu}m. It encloses a volume of 156 litres. Total surface area exposed to vacuum is 57,500 cm{sup 2}. It consists of 5250 cm{sup 2} of OFHC Copper, 51300 cm{sup 2} of SS 304 and 940 cm{sup 2} of ceramic sections. Leak-tightness of the order of 1 x 10{sup -9}mbar.l/s is ensured for the whole system, after eliminating the leaks at every stage of the assembly. Baking the plumb line and pumps at 150 deg. C, for eight hours an ultimate vacuum of 2 x 10{sup -7}mbar is achieved in the accelerator. Modifications of the vacuum system is undertaken to suit the design changes in the gun and the diagnostic systems.

  15. Dynamic control of the optical emission from GaN/InGaN nanowire quantum dots by surface acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Lazić, S., E-mail: lazic.snezana@uam.es; Chernysheva, E.; Meulen, H. P. van der; Calleja Pardo, J. M. [Departamento de Física de Materiales, Instituto “Nicolás Cabrera” and Instituto de Física de Materia Condensada (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid (Spain); Gačević, Ž.; Calleja, E. [ISOM-DIE, Universidad Politécnica de Madrid, 28040 Madrid (Spain)

    2015-09-15

    The optical emission of InGaN quantum dots embedded in GaN nanowires is dynamically controlled by a surface acoustic wave (SAW). The emission energy of both the exciton and biexciton lines is modulated over a 1.5 meV range at ∼330 MHz. A small but systematic difference in the exciton and biexciton spectral modulation reveals a linear change of the biexciton binding energy with the SAW amplitude. The present results are relevant for the dynamic control of individual single photon emitters based on nitride semiconductors.

  16. Dynamic control of the optical emission from GaN/InGaN nanowire quantum dots by surface acoustic waves

    Science.gov (United States)

    Lazić, S.; Chernysheva, E.; Gačević, Ž.; van der Meulen, H. P.; Calleja, E.; Calleja Pardo, J. M.

    2015-09-01

    The optical emission of InGaN quantum dots embedded in GaN nanowires is dynamically controlled by a surface acoustic wave (SAW). The emission energy of both the exciton and biexciton lines is modulated over a 1.5 meV range at ˜330 MHz. A small but systematic difference in the exciton and biexciton spectral modulation reveals a linear change of the biexciton binding energy with the SAW amplitude. The present results are relevant for the dynamic control of individual single photon emitters based on nitride semiconductors.

  17. Dynamic control of the optical emission from GaN/InGaN nanowire quantum dots by surface acoustic waves

    Directory of Open Access Journals (Sweden)

    S. Lazić

    2015-09-01

    Full Text Available The optical emission of InGaN quantum dots embedded in GaN nanowires is dynamically controlled by a surface acoustic wave (SAW. The emission energy of both the exciton and biexciton lines is modulated over a 1.5 meV range at ∼330 MHz. A small but systematic difference in the exciton and biexciton spectral modulation reveals a linear change of the biexciton binding energy with the SAW amplitude. The present results are relevant for the dynamic control of individual single photon emitters based on nitride semiconductors.

  18. Thick-shell nanocrystal quantum dots

    Science.gov (United States)

    Hollingsworth, Jennifer A.; Chen, Yongfen; Klimov, Victor I.; Htoon, Han; Vela, Javier

    2011-05-03

    Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.

  19. Optically active quantum-dot molecules.

    Science.gov (United States)

    Shlykov, Alexander I; Baimuratov, Anvar S; Baranov, Alexander V; Fedorov, Anatoly V; Rukhlenko, Ivan D

    2017-02-20

    Chiral molecules made of coupled achiral semiconductor nanocrystals, also known as quantum dots, show great promise for photonic applications owing to their prospective uses as configurable building blocks for optically active structures, materials, and devices. Here we present a simple model of optically active quantum-dot molecules, in which each of the quantum dots is assigned a dipole moment associated with the fundamental interband transition between the size-quantized states of its confined charge carriers. This model is used to analytically calculate the rotatory strengths of optical transitions occurring upon the excitation of chiral dimers, trimers, and tetramers of general configurations. The rotatory strengths of such quantum-dot molecules are found to exceed the typical rotatory strengths of chiral molecules by five to six orders of magnitude. We also study how the optical activity of quantum-dot molecules shows up in their circular dichroism spectra when the energy gap between the molecular states is much smaller than the states' lifetime, and maximize the strengths of the circular dichroism peaks by optimizing orientations of the quantum dots in the molecules. Our analytical results provide clear design guidelines for quantum-dot molecules and can prove useful in engineering optically active quantum-dot supercrystals and photonic devices.

  20. Research on Self-Assembling Quantum Dots.

    Science.gov (United States)

    1995-10-30

    0K. in a second phase of this contract we turned our efforts to the fabrication and studies of self assembled quantum dots . We first demonstrated a...method for producing InAs-GasAs self assembled quantum dots (SAD) using MBE. (AN)

  1. Double Acceptor Interaction in Semimagnetic Quantum Dot

    Directory of Open Access Journals (Sweden)

    A. Merwyn Jasper D. Reuben

    2011-01-01

    Full Text Available The effect of geometry of the semimagnetic Quantum Dot on the Interaction energy of a double acceptor is computed in the effective mass approximation using the variational principle. A peak is observed at the lower dot sizes as a magnetic field is increased which is attributed to the reduction in confinement.

  2. Quantum Dots Coupled to a Superconductor

    DEFF Research Database (Denmark)

    Jellinggaard, Anders Robert

    are tuned electrostatically. This includes tuning the odd occupation of the dot through a quantum phase transition, where it forms a singlet with excitations in the superconductor. We detail the fabrication of these bottom gated devices, which additionally feature ancillary sensor dots connected...

  3. Detecting the chirality for coupled quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Cao Huijuan [Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China); Hu Lian [Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China)], E-mail: huliancaohj@yahoo.com

    2008-04-21

    We propose a scheme to detect the chirality for a system consisting of three coupled quantum dots. The chirality is found to be determined by the frequency of the transition between chiral states under the chiral symmetry broken perturbation. The results are important to construct quantum gates and to demonstrate chiral entangle states in the triangle spin dots.

  4. Optical anisotropy in vertically coupled quantum dots

    DEFF Research Database (Denmark)

    Yu, Ping; Langbein, Wolfgang Werner; Leosson, Kristjan;

    1999-01-01

    We have studied the polarization of surface and edge-emitted photoluminescence (PL) from structures with vertically coupled In0.5Ga0.5As/GaAs quantum dots (QD's) grown by molecular beam epitaxy. The PL polarization is found to be strongly dependent on the number of stacked layers. While single...... number due to increasing dot size....

  5. Optical studies of capped quantum dots

    NARCIS (Netherlands)

    Wuister, S.F.

    2005-01-01

    This thesis describes the synthesis and spectroscopy of CdSe and CdTe semiconductor quantum dots (QDs). The first chapter gives an introduction into the unique size dependent properties of semiconductor quantum dots. Highly luminescent QDs of CdSe and CdTe were prepared via a high temperature method

  6. Optical Properties of Semiconductor Quantum Dots

    NARCIS (Netherlands)

    Perinetti, U.

    2011-01-01

    This thesis presents different optical experiments performed on semiconductor quantum dots. These structures allow to confine a small number of electrons and holes to a tiny region of space, some nm across. The aim of this work was to study the basic properties of different types of quantum dots mad

  7. Scavenger hunt in the CERN Computing Centre

    CERN Multimedia

    CERN Bulletin

    2013-01-01

    Hidden among the racks of servers and disks in the CERN Computing Centre, you’ll find Hawaiian dancers, space aliens, gorillas… all LEGO® figurines! These characters were placed about the Centre for the arrival of Google’s Street View team for the world to discover.   PLEASE NOTE THAT THE COMPETITION IS OVER. ONLY FOR REFERENCE, HERE IS THE ORIGINAL ARTICLE. We’re pleased to announce our first global scavenger hunt! Spot three LEGO® figurines using Google’s Street View and you’ll be entered to win a gift of your choice from our CERN Gift Guide. A LEGO® figurine in the CERN Computing Centre, as seen on Google Street View. Here are the details: Find at least three LEGO® figurines hidden around the CERN Computing Centre using Google Street View.   Take screencaps of the figurines and e-mail the pictures to TreasureHunt-ComputingCentre@cern.ch. This email is no longer active.   The...

  8. Visits to Tier-1 Computing Centres

    CERN Multimedia

    Dario Barberis

    At the beginning of 2007 it became clear that an enhanced level of communication is needed between the ATLAS computing organisation and the Tier-1 centres. Most usual meetings are ATLAS-centric and cannot address the issues of each Tier-1; therefore we decided to organise a series of visits to the Tier-1 centres and focus on site issues. For us, ATLAS computing management, it is most useful to realize how each Tier-1 centre is organised, and its relation to the associated Tier-2s; indeed their presence at these visits is also very useful. We hope it is also useful for sites... at least, we are told so! The usual participation includes, from the ATLAS side: computing management, operations, data placement, resources, accounting and database deployment coordinators; and from the Tier-1 side: computer centre management, system managers, Grid infrastructure people, network, storage and database experts, local ATLAS liaison people and representatives of the associated Tier-2s. Visiting Tier-1 centres (1-4). ...

  9. Multipole Stack for the 800 MeV PS Booster

    CERN Multimedia

    1975-01-01

    The 800 MeV PS Booster had seen first beam in its 4 superposed rings in 1972, routine operation began in 1973. In the strive for ever higher beam intensities, the need for additional multipole lenses became evident. After detailed studies, the manufacture of 8 stacks of multipoles was launched in 1974. Each stack consists of 4 superposed multipoles and each multipole has 4 concentric shells. From the innermost to the outermost shell, Type A contains octupole, skew-octupole, sextupole, skew-sextupole. Type B contains skew-octupole, skew-sextupole, vertical dipole, horizontal dipole. Completion of installation in 1976 opened the way to higher beam intensities. M. Battiaz is seen here with a multipole stack and its many electrical connections.

  10. Two charmoniumlike charged axial resonances near 3885 MeV

    CERN Document Server

    Voloshin, M B

    2016-01-01

    It is argued that the charged $Z^+_c(3885)$ resonance, treated as a `molecular' state of charmed $D$ and $D^*$ mesons, is likely to consist of two peaks unequally coupled to the $D^{*+} \\bar D^0$ and $D^+ \\bar D^{*0}$ channels. The peaks should be split in mass by at least approximately 1.5 MeV. This behavior arises from an enhancement of the effect of isospin violation in the masses of the $D$ and $D^*$ mesons due to apparent suppression of forces between the mesons depending on the spins of the heavy as well as of the light quarks. The suggested double-peak structure can be studied either by direct shape measurement in the channels with heavy mesons, or by isospin-violating transitions from $Z_c^\\pm(3885)$ to the states of charmonium plus a light meson.

  11. Proton Polarimeter Calibration between 82 and 217 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Glister, J; Lee, B; Beck, A; Brash, E; Camsonne, A; Choi, S; Dumas, J; Feuerbach, R; Gilman, R; Higinbotham, D W; Jiang, X; Jones, M K; May-Tal Beck, S; McCullough, E; Paolone, M; Piasetzky, E; Roche, J; Rousseau, Y; Sarty, A J; Sawatzky, B; Strauch, S

    2009-07-01

    The proton analyzing power in carbon has been measured for energies of 82 to 217 MeV and proton scattering angles of 5 to 41 degrees. The measurements were carried out using polarized protons from the elastic scattering H(pol. e, pol. p) reaction and the Focal Plane Polarimeter (FPP) in Hall A of Jefferson Lab. A new parameterization of the FPP p-C analyzing power was fit to the data, which is in good agreement with previous parameterizations and provides an extension to lower energies and larger angles. The main conclusions are that all polarimeters to date give consistent measurements of the carbon analyzing power, independently of the details of their construction and that measuring on a larger angular range significantly improves the polarimeter figure of merit at low energies.

  12. The 5 MeV bump - a nuclear whodunit mystery

    CERN Document Server

    Huber, Patrick

    2016-01-01

    We perform a combined analysis of recent NEOS and Daya Bay data on the reactor antineutrino spectrum. This analysis includes approximately 1.5 million antineutrino events, which is the largest neutrino event sample analyzed to date. We use a double ratio which cancels flux model dependence and related uncertainties as well as the effects of the detector response model. We find at 3-4 standard deviation significance level, that plutonium-239 and plutonium-241 are disfavored as the single source for the the so-called 5 MeV bump. This analysis method has general applicability and in particular with higher statistics data sets will be able to shed significant light on the issue of the bump. With some caveat this also should allow to improve the sensitivity for sterile neutrino searches in NEOS.

  13. Design of 10 MeV cyclotron accelerator

    Directory of Open Access Journals (Sweden)

    R Solhju

    2015-09-01

    Full Text Available Design and construction of 10MeV cyclotron has been started at Amirkabir University of Technology since 2012. So far, the conceptual and detail engineering design phases have been finalized. The main purpose of this baby cyclotron is to generate proton beam for the production of PET radioisotopes. The cyclotron consists of magnet, cavity, ion source, RF and LLRF system, vacuum system, cooling system, power amplifiers and power supplies system. In this paper, a brief of design principles for all the parts of cyclotron and their final simulation results is presented. It should be noted that these simulations have been performed and optimized by the most accurate softwares such as TOSCA, ANSYS, HFSS, SolidWorks and CST. Also, the manufacturing feasibility of all the parts is performed and their dimensions and parameters are synchronized with manufacturing standards

  14. Focussed MeV ion beam implanted waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Von Bibra, M.L.; Roberts, A.; Nugent, K.; Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Single mode buried optical waveguides have been fabricated in fused silica by MeV proton implantation using a focussed hydrogen ion beam. The technique has the potential to direct write waveguide devices and produce multi-layered structures, without the need for intermediate steps such as mask fabrication or layered depositions. A micron resolution Confocal Raman Spectrometer has been used to map the distribution of atomic vacancies that forms the waveguiding region. The results are compared with theoretical calculations. Losses of 3 dB cm{sup -1} have been measured in unannealed samples, which decreases to less than 0.5 dB cm{sup -1} after annealing at 500 degrees Celsius. We describe methods for determining the refractive index distribution of single mode buried waveguides from their output intensity distributions via an inversion of the scalar wave equation. (authors). 5 figs.

  15. Coherent control of quantum dots

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Lodahl, Peter; Hvam, Jørn Märcher

    In recent years much effort has been devoted to the use of semiconductor quantum dotsystems as building blocks for solid-state-based quantum logic devices. One importantparameter for such devices is the coherence time, which determines the number ofpossible quantum operations. From earlier...... measurements the coherence time of the selfassembledquantum dots (QDs) has been reported to be limited by the spontaneousemission rate at cryogenic temperatures1.In this project we propose to alter the coherence time of QDs by taking advantage of arecent technique on modifying spontaneous emission rates...

  16. Biocompatible quantum dots for biological applications.

    Science.gov (United States)

    Rosenthal, Sandra J; Chang, Jerry C; Kovtun, Oleg; McBride, James R; Tomlinson, Ian D

    2011-01-28

    Semiconductor quantum dots are quickly becoming a critical diagnostic tool for discerning cellular function at the molecular level. Their high brightness, long-lasting, size-tunable, and narrow luminescence set them apart from conventional fluorescence dyes. Quantum dots are being developed for a variety of biologically oriented applications, including fluorescent assays for drug discovery, disease detection, single protein tracking, and intracellular reporting. This review introduces the science behind quantum dots and describes how they are made biologically compatible. Several applications are also included, illustrating strategies toward target specificity, and are followed by a discussion on the limitations of quantum dot approaches. The article is concluded with a look at the future direction of quantum dots.

  17. Quantum-dot supercrystals for future nanophotonics

    Science.gov (United States)

    Baimuratov, Anvar S.; Rukhlenko, Ivan D.; Turkov, Vadim K.; Baranov, Alexander V.; Fedorov, Anatoly V.

    2013-01-01

    The study of supercrystals made of periodically arranged semiconductor quantum dots is essential for the advancement of emerging nanophotonics technologies. By combining the strong spatial confinement of elementary excitations inside quantum dots and exceptional design flexibility, quantum-dot supercrystals provide broad opportunities for engineering desired optical responses and developing superior light manipulation techniques on the nanoscale. Here we suggest tailoring the energy spectrum and wave functions of the supercrystals' collective excitations through the variation of different structural and material parameters. In particular, by calculating the excitonic spectra of quantum dots assembled in two-dimensional Bravais lattices we demonstrate a wide variety of spectrum transformation scenarios upon alterations in the quantum dot arrangement. This feature offers unprecedented control over the supercrystal's electromagnetic properties and enables the development of new nanophotonics materials and devices.

  18. Shielding measurements for a 230 MeV proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Siebers, J.V.

    1990-01-01

    Energetic secondary neutrons produced as protons interact with accelerator components and patients dominate the radiation shielding environment for proton radiotherapy facilities. Due to the scarcity of data describing neutron production, attenuation, absorbed dose, and dose equivalent values, these parameters were measured for 230 MeV proton bombardment of stopping length Al, Fe, and Pb targets at emission angles of 0{degree}, 22{degree}, 45{degree}, and 90{degree} in a thick concrete shield. Low pressure tissue-equivalent proportional counters with volumes ranging from 1 cm{sup 3} to 1000 cm{sup 3} were used to obtain microdosimetric spectra from which absorbed dose and radiation quality are deduced. Does equivalent values and attenuation lengths determined at depth in the shield were found to vary sharply with angle, but were found to be independent of target material. Neutron dose and radiation length values are compared with Monte Carlo neutron transport calculations performed using the Los Alamos High Energy Transport Code (LAHET). Calculations used 230 MeV protons incident upon an Fe target in a shielding geometry similar to that used in the experiment. LAHET calculations overestimated measured attenuation values at 0{degree}, 22{degree}, and 45{degree}, yet correctly predicted the attenuation length at 90{degree}. Comparison of the mean radiation quality estimated with the Monte Carlo calculations with measurements suggest that neutron quality factors should be increased by a factor of 1.4. These results are useful for the shielding design of new facilities as well as for testing neutron production and transport calculations.

  19. Effect of different uranium compounds on the properties of U-Pt-Y-Ba-O double-perovskite pinning centres in textured Y-Ba-Cu-O superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Sawh, Ravi-Persad; Weinstein, Roy; Parks, Drew; Gandini, Alberto [Beam Particle Dynamics Laboratories, University of Houston, Houston, TX 77204-5005 (United States); Department of Physics, University of Houston, Houston, TX 77204-5005 (United States); Texas Center for Superconductivity and Advanced Materials, University of Houston, Houston, TX 77204-5005 (United States)

    2005-02-01

    An experiment was performed to test the effect of different uranium compounds on the properties of chemical pinning centres. UO{sub 2}, UO{sub 3}, and UO{sub 4}{center_dot}2H{sub 2}O wereadmixed to Y 123+Pt, and textured. Tests of J{sub c} via measurements of trapped field (B{sub trap}) indicate a clear dependence of B{sub trap} on the U compound admixed to create the pinning centres. In all three cases there is a monotonic increase in B{sub trap} as the mass (M{sub U}) of U is increased. However, the magnitude of the increase in B{sub trap} depends on the admixed U compound. The highest increase in B{sub trap} is measured in samples doped with UO{sub 4}{center_dot}2H{sub 2}O, and the lowest is obtained in samples doped with UO{sub 2}. Microstructure studies indicate that the composition of the U-rich pinning deposits is the same in all three cases, i.e. all are the previously identified (U{sub 0.6}Pt{sub 0.4})Y Ba{sub 2}O{sub 6} compound. The primary difference among the three types of samples is that the size of the U-Pt-Y-Ba-O pinning deposits depends on the admixed U compound. While all are in the nanometre domain, the diameter of these deposits was markedly larger in UO{sub 2} doped samples than in UO{sub 3} doped samples, and smallest in UO{sub 4}{center_dot}2H{sub 2}O doped samples. Because some form of poisoning limits the amount of U that can be added to create pinning centres, to M{sub U} {approx}1 wt%, smaller deposits result in a greater number of pinning centres. We conclude that UO{sub 4}{center_dot}2H{sub 2}O is more effective than either UO{sub 3} or UO{sub 2} in the formation of U-Pt-Y-Ba-O pinning centres because of diminished pinning centre size, and consequent increase in pinning centre density.

  20. The Aube centre. 1997 statement; Le centre de l`Aube. Bilan 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    Since January 1992 the Aube centre ensures the storage of 90% of the short life radioactive wastes produced in France. This educational booklet describes the organization of the activities in the centre from the storage of wastes to the radioactivity surveillance of the environment (air, surface and ground waters, river sediments, plants and milk). (J.S.)

  1. Blood Compatibility Evaluations of Fluorescent Carbon Dots.

    Science.gov (United States)

    Li, Sha; Guo, Zhong; Zhang, Yi; Xue, Wei; Liu, Zonghua

    2015-09-02

    Because of their unique advantages, fluorescent carbon dots are gaining popularity in various biomedical applications. For these applications, good biosafety is a prerequisite for their use in vivo. Studies have reported the preliminary biocompatibility evaluations of fluorescent carbon dots (mainly cytotoxicity); however, to date, little information is available about their hemocompatibility, which could impede their development from laboratory to bedside. In this work, we evaluated the hemocompatibility of fluorescent carbon dots, which we prepared by hydrothermal carbonization of α-cyclodextrin. The effects of the carbon dots on the structure and function of key blood components were investigated at cellular and molecular levels. In particular, we considered the morphology and lysis of human red blood cells, the structure and conformation of the plasma protein fibrinogen, the complement activation, platelet activation, and in vitro and in vivo blood coagulation. We found that the carbon dots have obvious concentration-dependent effects on the blood components. Overall, concentrations of the fluorescent carbon dots at ≤0.1 mg/mL had few adverse effects on the blood components, but at higher doses, the carbon dots impair the structure and function of the blood components, causing morphological disruptions and lysis of red blood cells, interference in the local microenvironments of fibrinogen, activation of the complement system, and disturbances in the plasma and whole blood coagulation function in vitro. However, the carbon dots tend to activate platelets only at low concentrations. Intravenous administration of the carbon dots at doses up to 50 mg/kg did not impair the blood coagulation function. These results provide valuable information for the clinical application of fluorescent carbon dots.

  2. Peptide dot immunoassay and immunoblotting: electroblotting from aluminum thin-layer chromatography plates and isoelectric focusing gels to activated nitrocellulose

    DEFF Research Database (Denmark)

    Bjerrum, O.J.; Holm, A.; Lauritzen, Edgar;

    1993-01-01

    Peptide dot immunoassay, electroblotting, activated nitrocellulose, dot blot, membranes, peptides and proteins......Peptide dot immunoassay, electroblotting, activated nitrocellulose, dot blot, membranes, peptides and proteins...

  3. Learning Styles of Independent Learning Centre Users

    Directory of Open Access Journals (Sweden)

    Tarik Uzun

    2014-09-01

    Full Text Available Learning style research has been a significant field within language teaching and learning. There have been very few attempts, however, to seek possible links between independent learning and learning style preferences. This paper aims to identify the learning styles of students who use the Independent Learning Centre (ILC on a regular basis at a state university in Turkey (n=102. The findings of the learning style analysis revealed that, contrary to expectations, most of the regular users of the centre were synoptic learners, which implies that these learners might not necessarily have conscious control over their own learning processes. An in-depth analysis of learning styles and recommendations to improve the services offered in the centre are also included in the paper.

  4. A day in the CERN Control Centre

    CERN Multimedia

    Rosaria Marraffino

    2015-01-01

    The CERN Control Centre (CCC) is the nerve centre of the CERN beam systems. From this room, the experts prepare, monitor, adjust, and control the particle beams that circulate throughout the accelerator complex while ensuring that the services and the technical infrastructure work flawlessly. Buttons, screens, telephones, lights (but no sound): in the CCC, everything is ready to make it possible for the LHC to reach the unprecedented energies expected at Run 2.   Seen from above, the CERN Control Centre resembles the shape of a quadrupole magnet. The consoles are distributed in four circles, called “islands”, dedicated to the LHC, the SPS, the PS Complex and the Technical Infrastructure (TI) respectively. Spread between TI and LHC are the Cryogenics consoles. Being in the same room allows the 24h-manned islands to be constantly in touch with one another, thus ensuring the best performance of the machines. At the LHC island, operators are currently busy training the magnet...

  5. THE ELUSIVENESS OF LEARNER-CENTRED TEACHING

    Directory of Open Access Journals (Sweden)

    Ervin Kovačević

    2016-03-01

    Full Text Available This research will explore teaching styles of university professors. Teaching style is an umbrella term for teaching decisions made during the entire teaching process – planning, delivery, and evaluation. Contemporary university teachers are advised to adopt the learner-centred teaching style which is assumed to produce remarkable possibilities. In the Fall Semester 2015 fifty-two respondents in different faculties of International University of Sarajevo were surveyed using The Principles of Adult Learning Scale inventory designed by Gary J. Conti. Inventory scores were calculated according to guidelines suggested by the author of the inventory. The scores revealed that majority of respondents strongly supported teacher-centred rather than learner-centred styles of instruction. Scores were analysed on gender lines and across three different faculties, namely: Arts and Social Sciences; Business and Administration; Engineering and Natural Sciences. In all five groups none of the seven teaching style indicators was found to conform with the learner-centred teaching criteria. There was no statistically significant difference between the two genders’ preference for a teaching style. And there was no statistically significant difference between teaching style preference across the three different faculties.The results of this research imply that the learner-centred style of instruction is not frequently implemented. Secondly, the results indicate that the requirements necessary for proper application of the learner-centred teaching style are not easy to meet in current written and unwritten norms. Finally, the results show that traditional teaching styles, which have been preserved in different scientific fields, still predominate in universities.

  6. Neutron-induced fission cross sections of uraniums up to 40 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Maslov, V.M. [Radiation Physics and Chemistry Problems Inst., Minsk-Sosny (Belarus); Hasegawa, A.

    1998-11-01

    Statistical theory of nuclear reactions, well-proved below 20 MeV, is applied for {sup 235}U and {sup 238}U fission data analysis up to {approx}40 MeV. It is shown that measured data could be reproduced. Chance structure of measured fission cross section is provided, it`s validity is supported by description of data for competing (n,xn)-reactions. Role of fissility of target nucleus is addressed. It seems that gap in incident neutron energy interval of 20 MeV - 50 MeV, below which evaluation approaches are well-developed, and above which simplified statistical approaches are valid, could be covered. (author)

  7. Backward Secondary Electron Emission Yield of Thick Targets Induced by MeV Ions

    Institute of Scientific and Technical Information of China (English)

    JIANG Lei; ZHAO Guo-Qing; ZHOU Zhu-Ying

    2000-01-01

    The backward secondary electron emission yields of MeV ions (H+, He+, He++, Cl, Si, and Cu ) impinging on thick carbon and gold targets are studied. The measured results for H+ (1MeV ≤ E ≤ 5MeV) on carbon are proportional to the electronic stopping power. Our experimental data and fitting formula of yields for H+ (1 MeV≤ E≤ 4.5MeV) impacting Au are compared with the theoretical expectation. The influence of the collective field and the charge state of ions on the secondary electron emission yield is discussed.

  8. Enhancing person-centred communication in NICU

    DEFF Research Database (Denmark)

    Weis, Janne; Zoffmann, Vibeke; Egerod, Ingrid

    2015-01-01

    Aims of this article were (a) to explore how parents of premature infants experience guided family-centred care (GFCC), and (b) to compare how parents receiving GFCC versus standard care (SC) describe nurse-parent communication in the neonatal intensive care unit.......Aims of this article were (a) to explore how parents of premature infants experience guided family-centred care (GFCC), and (b) to compare how parents receiving GFCC versus standard care (SC) describe nurse-parent communication in the neonatal intensive care unit....

  9. Byurakan Astrophysical Observatory as Cultural Centre

    Science.gov (United States)

    Mickaelian, A. M.; Farmanyan, S. V.

    2016-12-01

    NAS RA V. Ambartsumian Byurakan Astrophysical Observatory is presented as a cultural centre for Armenia and the Armenian nation in general. Besides being scientific and educational centre, the Observatory is famous for its unique architectural ensemble, rich botanical garden and world of birds, as well as it is one of the most frequently visited sightseeing of Armenia. In recent years, the Observatory has also taken the initiative of the coordination of the Cultural Astronomy in Armenia and in this field, unites the astronomers, historians, archaeologists, ethnographers, culturologists, literary critics, linguists, art historians and other experts.

  10. Electron transport in quantum dots

    CERN Document Server

    2003-01-01

    When I was contacted by Kluwer Academic Publishers in the Fall of 200 I, inviting me to edit a volume of papers on the issue of electron transport in quantum dots, I was excited by what I saw as an ideal opportunity to provide an overview of a field of research that has made significant contributions in recent years, both to our understanding of fundamental physics, and to the development of novel nanoelectronic technologies. The need for such a volume seemed to be made more pressing by the fact that few comprehensive reviews of this topic have appeared in the literature, in spite of the vast activity in this area over the course of the last decade or so. With this motivation, I set out to try to compile a volume that would fairly reflect the wide range of opinions that has emerged in the study of electron transport in quantum dots. Indeed, there has been no effort on my part to ensure any consistency between the different chapters, since I would prefer that this volume instead serve as a useful forum for the...

  11. Chiral quantum dot based materials

    Science.gov (United States)

    Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii

    2014-05-01

    Recently, the use of stereospecific chiral stabilising molecules has also opened another avenue of interest in the area of quantum dot (QD) research. The main goal of our research is to develop new types of technologically important quantum dot materials containing chiral defects, study their properties and explore their applications. The utilisation of chiral penicillamine stabilisers allowed the preparation of new water soluble white emitting CdS quantum nanostructures which demonstrated circular dichroism in the band-edge region of the spectrum. It was also demonstrated that all three types of QDs (D-, L-, and Rac penicillamine stabilised) show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. In this work the chiral CdS based quantum nanostructures have also been doped by copper metal ions and new chiral penicilamine stabilized CuS nanoparticles have been prepared and investigated. It was found that copper doping had a strong effect at low levels in the synthesis of chiral CdS nanostructures. We expect that this research will open new horizons in the chemistry of chiral nanomaterials and their application in biotechnology, sensing and asymmetric synthesis.

  12. A comparative study of 30MeV boron{sup 4+} and 60MeV oxygen{sup 8+} ion irradiated Si NPN BJTs

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M. Vinay, E-mail: Vkm288@gmail.com; Krishnaveni, S. [Department of studies in Physics, University of Mysore, Manasagangotri, Mysore 570006 (India); Yashoda, T. [Deparment of Physics, AVK College for women, Hassan-573201 (India); Dinesh, C. M. [Department of Physics, Govt. First grade college for women, Chintamani-563125 (India); Krishnakumar, K. S. [Department of Physics, APS College of Engineering (India); Jayashree, B. [Department of Physics, Maharanis Science College for Women, Bangalore-560001 (India); Ramani [Department of Physics, Bangalore University, Jnanabharathi, Bangalore-560056 (India)

    2015-06-24

    The impact of 30MeV boron{sup 4+} and 60MeV oxygen{sup 8+} ion irradiation on electrical characteristics of 2N3773 Si NPN Bipolar junction transistors (BJTs) is reported in the present study. The transistors were decapped and irradiated at room temperature. Gummel characteristics, DC current gain and Capacitance-voltage (C-V) characteristics were studied before and after irradiation at different fluences. DC current gain has decreased significantly in both boron and oxygen ion irradiation. Also the value of capacitance decreased 3-4 times with increase in fluence. Both 30MeV boron ion and 60MeV oxygen ion induced similar extent of degradation in electrical characteristics of the transistor.

  13. A comparative study of 30MeV boron4+ and 60MeV oxygen8+ ion irradiated Si NPN BJTs

    Science.gov (United States)

    Kumar, M. Vinay; Yashoda, T.; Dinesh, C. M.; Krishnakumar, K. S.; Jayashree, B.; Ramani, Krishnaveni, S.

    2015-06-01

    The impact of 30MeV boron4+ and 60MeV oxygen8+ ion irradiation on electrical characteristics of 2N3773 Si NPN Bipolar junction transistors (BJTs) is reported in the present study. The transistors were decapped and irradiated at room temperature. Gummel characteristics, DC current gain and Capacitance-voltage (C-V) characteristics were studied before and after irradiation at different fluences. DC current gain has decreased significantly in both boron and oxygen ion irradiation. Also the value of capacitance decreased 3-4 times with increase in fluence. Both 30MeV boron ion and 60MeV oxygen ion induced similar extent of degradation in electrical characteristics of the transistor.

  14. [Accreditation criteria and quality standards for Poisons centres: development of a quality management system within the Milan Poisons centre].

    Science.gov (United States)

    Della Puppa, Tiziana; Manfrè, Sergio; Grezzi, Marinella

    2006-01-01

    Poisons centres throughout Italy and Europe vary considerably in terms of their institutions and organisation. The European Association of Poisons Centres and Clinical Toxicologists (EAPCCT) has laid down the activities that a poisons centre must carry out, specifying minimum and maximum standards required. These directions allow an evaluation of the service provided. In 2002 Milan Poisons Centre began a project aiming to introduce concepts and methodology proper of the quality systems within poisons centres' institutional activity. Concluded, the project resulted in the centre's certification and the documentation of its procedures: this may now contribute to help define the status and activity of poisons centres in Italy.

  15. M-C simulation of shielding effects of PE, LiH and graphite fibers under 1 MeV electrons and 20 MeV protons

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Shielding effects of different materials under 1 MeV electron and 20 MeV proton beams were simulated with Geant4 code. It was found that shielding effects of polyethylene and graphite fibers are much better than aluminum. Energy depositions in the phantom shielded by the materials are calculated, with the least energy deposition by graphite fiber shielding. The results show that graphite fibers are good radiation shielding material in space programs.

  16. Quantum dots with single-atom precision.

    Science.gov (United States)

    Fölsch, Stefan; Martínez-Blanco, Jesús; Yang, Jianshu; Kanisawa, Kiyoshi; Erwin, Steven C

    2014-07-01

    Quantum dots are often called artificial atoms because, like real atoms, they confine electrons to quantized states with discrete energies. However, although real atoms are identical, most quantum dots comprise hundreds or thousands of atoms, with inevitable variations in size and shape and, consequently, unavoidable variability in their wavefunctions and energies. Electrostatic gates can be used to mitigate these variations by adjusting the electron energy levels, but the more ambitious goal of creating quantum dots with intrinsically digital fidelity by eliminating statistical variations in their size, shape and arrangement remains elusive. We used a scanning tunnelling microscope to create quantum dots with identical, deterministic sizes. By using the lattice of a reconstructed semiconductor surface to fix the position of each atom, we controlled the shape and location of the dots with effectively zero error. This allowed us to construct quantum dot molecules whose coupling has no intrinsic variation but could nonetheless be tuned with arbitrary precision over a wide range. Digital fidelity opens the door to quantum dot architectures free of intrinsic broadening-an important goal for technologies from nanophotonics to quantum information processing as well as for fundamental studies of confined electrons.

  17. Optical and electronic study on InAs quantum dots doped with rare earths; Optische und elektronische Untersuchung an mit Seltenen Erden dotierten InAs-Quantenpunkten

    Energy Technology Data Exchange (ETDEWEB)

    Greff, Markus Karlheinz

    2015-07-01

    In the framework of this thesis it was studied, how the optical and electronic properties of InAs quantum dots change by the implantation of ions form the group of the rare earths. For this photoluminescence measurements as well as C(V) measurements were performed on InAs quantum dots, which were doped with europium as well as erbium. The optical studies showed a new emission peak in the photoluminescence spectrum after the thermal annealing. By the ions brought in by means of ion implantation it came locally to lattice stresses and an accumulation of lattice defects on the interfaces of the quantum dots, which led to a diffusion strengthening, whereby it came during the thermal annealing both to a broadening of the quantum dots by the indium diffusion and to an increasement of the band gap by gallium diffusion into the quantum dot. Thereby a shift of the ground-state energy of up to 150 meV could be measured.

  18. [The coordination of care in health centres].

    Science.gov (United States)

    Ribardière, Olivia

    2016-06-01

    Health centres are structurally designed to facilitate the coordination of care. However, evolutions in society have resulted in forms of consumption of health care which are not necessarily compatible with efficient care coordination. On a local level, teams are nevertheless organising and structuring themselves to offer the right form of care, to the right patient and at the right time.

  19. Tensions in human-centred design

    NARCIS (Netherlands)

    Steen, M.G.D.

    2011-01-01

    In human-centred design (HCD), researchers and designers attempt to cooperate with and learn from potential users of the products or services which they are developing. Their goal is to develop products or services that match users' practices, needs and preferences. In this position paper it is argu

  20. Frequency selectivity at very low centre frequencies

    DEFF Research Database (Denmark)

    Orellana, Carlos Andrés Jurado; Pedersen, Christian Sejer; Marquardt, Torsten

    2010-01-01

    -3638 (2007)]. Recent experiments showed that the exact frequency varies from individual to individual. Besides, the helicotrema region in the METF has been found to highly influence frequency selectivity for centre frequencies (CFs) below 80 Hz (Jurado and Moore in prep). By using individual METF...

  1. Visiting a science centre: what's on offer?

    Science.gov (United States)

    Russell, Ian

    1990-09-01

    Science centres are a valuable resource, used more frequently by family groups and primary school parties than by secondary schools. The importance of affective learning, involving attitude changes, is stressed. Provided the right approach is used, accompanying adults can help children get the most out of a visit.

  2. Mandibular trauma: a two-centre study

    NARCIS (Netherlands)

    Boffano, P.; Kommers, S.C.; Karagozoglu, K.H.; Gallesio, C.; Forouzanfar, T.

    2015-01-01

    The aims of this study were to assess and compare epidemiological data on mandibular fractures from two European centres and to perform a review of the literature. Between 2001 and 2010, a total of 752 patients with a total of 1167 mandibular fractures were admitted to a hospital in Turin, and 245 p

  3. Renovation of the CERN Computer Centre

    CERN Multimedia

    Patrice Loïez

    2003-01-01

    The Computer Centre at CERN is seen after half of the equipment is the large ground floor room has been removed. A large-scale spring-cleaning operation took place before renovation work for the new CERN Grid system began. Fifteen kilometres of cables that were no longer needed were removed from the cavity floor for recycling.

  4. Cactus: The Centres of a Triangle

    Science.gov (United States)

    Hyde, Hartley

    2009-01-01

    This is the first of two articles which describe how to use "JavaSketchPad" to explore the centres of a triangle. This introductory exercise is suggested in the GSP "Workshop Guide". Students can use "JavaSketchPad Interactive Geometry" (JSP) at home at no cost. They are likely to impress their parents with their enthusiasm for geometry and all…

  5. Scanning gate microscopy of ultra clean carbon nanotube quantum dots

    OpenAIRE

    Xue, Jiamin; Dhall, Rohan; Cronin, Stephen B.; LeRoy, Brian J.

    2015-01-01

    We perform scanning gate microscopy on individual suspended carbon nanotube quantum dots. The size and position of the quantum dots can be visually identified from the concentric high conductance rings. For the ultra clean devices used in this study, two new effects are clearly identified. Electrostatic screening creates non-overlapping multiple sets of Coulomb rings from a single quantum dot. In double quantum dots, by changing the tip voltage, the interactions between the quantum dots can b...

  6. Measurements of 1.9 MeV electron Bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Pino, Neivy; Cabal, Fatima Padilla; D' Alessandro, Katia [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Maidana, Nora Lia; Vanin, Vito Roberto; Martins, Marcos Nogueira; Malafronte, Alexandre; Bonini, Alfredo L. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica. Lab. do Acelerador Linear; Sempau, Josep [Universitat Politecnica de Catalunya, Barcelona (Spain)

    2011-07-01

    Full text: Bremsstrahlung Cross section of 1.9 MeV electrons in Ti, Ag, and Au were measured at the Microtron accelerator of the IFUSP. Target mass surface density was in the range 0.1 to 1 mg/cm{sup 2} and the electron current varied from 3 to 30 nA, measured by a Faraday cup. The spectra were measured at three angles (30 deg; 90 deg and 60 deg) using a shielded p-type HPGe detector with an spectroscopy amplifier with pile-up rejection and a fast ADC. A 20 cm in length and 1.2 cm in diameter Pb collimator was placed in front of the detector to reduce the contribution of radiation scattered in the irradiation chamber or other background sources. With the goal of increasing the peak to total gamma-ray efficiency, the collimator hole was placed with its axis parallel to the coaxial detector symmetry axis, but displaced 1.4 cm to the right of the detector crystal axis. Hence, the Ge thickness exposed directly to the Bremsstrahlung beam was about 5 times bigger than that in the crystal axis, where the n-contact hole is located. The detector response functions were obtained by Monte Carlo simulations based on experimentally determined detector dimensions, in a procedure described in a companion paper submitted to this conference (Response function of a p-type Ge detector). Two energy bins: 50 keV and 1 keV were used in the Bremsstrahlung spectrum deconvolution. The first one was employed to determine the energy differential cross section from 0.1 to 1.9 MeV, and the second one for a more specific spectra study, in the high frequency limit or 'tip region'. The experimental spectrum was corrected for pile-up, with a simple model that assumes that the amplifier pile-up rejection resolving time is the same for all measured energies, and the photon background, measured with the target retracted from the beam. The Bremsstrahlung spectra B were obtained as: B = R{sup -}1 X E, where R is the matrix of the detector response function and E the recorded spectrum vector

  7. An evaluation of the dot-ELISA procedure as a diagnostic test in an area with a high prevalence of human Toxocara canis infection

    Directory of Open Access Journals (Sweden)

    María V Bojanich

    2012-03-01

    Full Text Available The aim of this work was to evaluate a dot-enzyme-linked immunosorbent assay (dot-ELISA using excretory-secretory antigens from the larval stages of Toxocara canis for the diagnosis of toxocariasis. A secondary aim was to establish the optimal conditions for its use in an area with a high prevalence of human T. canis infection. The dot-ELISA test was standardised using different concentrations of the antigen fixed on nitrocellulose paper strips and increasing dilutions of the serum and conjugate. Both the dot-ELISA and standard ELISA methods were tested in parallel with the same batch of sera from controls and from individuals living in the problem area. The best results were obtained with 1.33 µg/mL of antigen, dilutions of 1/80 for the samples and controls and a dilution of 1/5,000 for the anti-human IgG-peroxidase conjugate. All steps of the procedure were performed at room temperature. The coincidence between ELISA and dot-ELISA was 85% and the kappa index was 0.72. The dot-ELISA test described here is rapid, easy to perform and does not require expensive equipment. Thus, this test is suitable for the serological diagnosis of human T. canis infection in field surveys and in the primary health care centres of endemic regions.

  8. Time-bin Entanglement from Quantum Dots

    CERN Document Server

    Weihs, Gregor; Predojević, Ana

    2016-01-01

    The desire to have a source of single entangled photon pairs can be satisfied using single quantum dots as emitters. However, we are not bound to pursue only polarization entanglement, but can also exploit other degrees of freedom. In this chapter we focus on the time degree of freedom, to achieve so-called time-bin entanglement. This requires that we prepare the quantum dot coherently into the biexciton state and also build special interferometers for analysis. Finally this technique can be extended to achieve time-bin and polarization hyper-entanglement from a suitable quantum dot.

  9. Fluorescent Quantum Dots for Biological Labeling

    Science.gov (United States)

    McDonald, Gene; Nadeau, Jay; Nealson, Kenneth; Storrie-Lomardi, Michael; Bhartia, Rohit

    2003-01-01

    Fluorescent semiconductor quantum dots that can serve as "on/off" labels for bacteria and other living cells are undergoing development. The "on/off" characterization of these quantum dots refers to the fact that, when properly designed and manufactured, they do not fluoresce until and unless they come into contact with viable cells of biological species that one seeks to detect. In comparison with prior fluorescence-based means of detecting biological species, fluorescent quantum dots show promise for greater speed, less complexity, greater sensitivity, and greater selectivity for species of interest. There are numerous potential applications in medicine, environmental monitoring, and detection of bioterrorism.

  10. Quantum dot devices for optical communications

    DEFF Research Database (Denmark)

    Mørk, Jesper

    2005-01-01

    . The main property of semiconductor quantum dots compared to bulk material or even quantum well structures is the discrete nature of the allowed states, which means that inversion of the medium can be obtained for very low electron densities. This has led to the fabrication of quantum dot lasers with record......-low threshold currents and amplifiers with record-high power levels. In this tutorial we will review the basic properties of quantum dots, emphasizing the properties which are important for laser and amplifier applications, as well as devices for all-optical signal processing. The high-speed properties...

  11. Electronic properties of aperiodic quantum dot chains

    Science.gov (United States)

    Korotaev, P. Yu.; Vekilov, Yu. Kh.; Kaputkina, N. E.

    2012-04-01

    The electronic spectral and transport properties of aperiodic quantum dot chains are investigated. The systems with singular continuous energy spectrum are considered: Thue-Morse chain, double-periodic chain, Rudin-Shapiro chain. The influence of electronic energy in quantum dot on the spectral properties, band structure, density of states and spectral resistivity, is discussed. Low resistivity regions correspond to delocalized states and these states could be current states. Also we discuss the magnetic field application as the way to tune electronic energy in quantum dot and to obtain metallic or insulating conducting states of the systems.

  12. Amplification Without Inversion in Semiconductor Quantum Dot

    Science.gov (United States)

    Hajibadali, A.; Abbasian, K.; Rostami, A.

    In this paper, we have realized amplification without inversion (AWI) in quantum dot (QD). A Y-type four-level system of InxGa1-xN quantum dot has been obtained and investigated for AWI. It has been shown that, with proper setting of control fields' amplitude, we can obtain reasonable gain. With proper setting of phase difference of control fields and probe field, we can obtain considerable gain in resonant wavelength. We have designed this system by solving the Schrödinger-Poisson equations for InxGa1-xN quantum dot in GaN substrate, self-consistently.

  13. Quantum Dots Investigated for Solar Cells

    Science.gov (United States)

    Bailey, Sheila G.; Castro, Stephanie L.; Raffaelle, Ryne P.; Hepp, Aloysius F.

    2001-01-01

    The NASA Glenn Research Center has been investigating the synthesis of quantum dots of CdSe and CuInS2 for use in intermediate-bandgap solar cells. Using quantum dots in a solar cell to create an intermediate band will allow the harvesting of a much larger portion of the available solar spectrum. Theoretical studies predict a potential efficiency of 63.2 percent, which is approximately a factor of 2 better than any state-of-the-art devices available today. This technology is also applicable to thin-film devices--where it offers a potential four-fold increase in power-to-weight ratio over the state of the art. Intermediate-bandgap solar cells require that quantum dots be sandwiched in an intrinsic region between the photovoltaic solar cell's ordinary p- and n-type regions (see the preceding figure). The quantum dots form the intermediate band of discrete states that allow sub-bandgap energies to be absorbed. However, when the current is extracted, it is limited by the bandgap, not the individual photon energies. The energy states of the quantum dot can be controlled by controlling the size of the dot. Ironically, the ground-state energy levels are inversely proportional to the size of the quantum dots. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Ba Wendi et al., in the early 1990's. The most studied quantum dots prepared by this method have been of CdSe. To produce these dots, researchers inject a syringe of the desired organometallic precursors into heated triocytlphosphine oxide (TOPO) that has been vigorously stirred under an inert atmosphere (see the following figure). The solution immediately begins to change from colorless to yellow, then orange and red/brown, as the quantum dots increase in size. When the desired size is reached, the heat is removed from the flask. Quantum dots of different sizes can be identified by placing them under a "black light" and observing the various color differences in

  14. A study on socio-demographic profile and feasibility of DOTS provider registered under RNTCP in Varanasi district Uttar Pradesh

    Directory of Open Access Journals (Sweden)

    Mohd. Afzalul Haque

    2014-03-01

    Full Text Available Introduction: Tuberculosis is a major chronic disorder affecting the larger population more than any other disease in the country. DOTS was introduced in India in 1993 as part of the Revised National Tuberculosis Programme (RNTCP following a review of India’s National Tuberculosis Programme (NTP a year earlier (1 .Patient satisfaction is an important parameter for assessing the quality of patient care services. There is need to assess the health care provider regarding the consumer satisfaction as often as possible, this paper summarizes our experience about role of DOTS provider in the management of TB patient in rural population of Varanasi districts Utter Pradesh. Objective: (1 To assess the perception of registered tuberculosis patients regarding DOTS provider for the treatment of tuberculosis. (2 To assess the accessibility, acceptability & availability of community DOTS provider. Design: A longitudinal study. Setting: Three microscopic centre of Cholapur Tuberculosis unit of Varanasi districts. Methods: Registered patients were interviewed twice: once in the beginning and another at the completion of the treatment or after the permanent discontinuation of the treatment. Patients were interviewed for their socio-demographic profiles, opinion about DOTS and its providers. Side effects experienced and action taken etc. Data was collected on a semi-structured, pre-tested questionnaire. DOTS providers were interviewed and treatment cards analyzed for any interruption of treatment and action taken. Data was collected from 1st June 2004 to 31th June 2005 till the completion of the regimen. Results: Majority of DOTS providers were young males (82.7% of 26 years to 40 years, while the representation of females was only 5 (17.3%. Almost more than 80% of the patients started their treatment within 1-10 days. For majority of cases (83% the distance of DOTS provider from patient’s house was within 1 km. Mean time spent to go to DOTS provider was 27

  15. Person-centred care in nursing documentation.

    LENUS (Irish Health Repository)

    Broderick, Margaret C

    2012-12-07

    BACKGROUND: Documentation is an essential part of nursing. It provides evidence that care has been carried out and contains important information to enhance the quality and continuity of care. Person-centred care (PCC) is an approach to care that is underpinned by mutual respect and the development of a therapeutic relationship between the patient and nurse. It is a core principle in standards for residential care settings for older people and is beneficial for both patients and staff (International Practice Development in Nursing and Healthcare, Chichester, Blackwell, 2008 and The Implementation of a Model of Person-Centred Practice in Older Person Settings, Dublin, Health Service Executive, 2010a). However, the literature suggests a lack of person-centredness within nursing documentation (International Journal of Older People Nursing 2, 2007, 263 and The Implementation of a Model of Person-Centred Practice in Older Person Settings, Dublin, Health Service Executive, 2010a). AIMS AND OBJECTIVES: To explore nursing documentation in long-term care, to determine whether it reflected a person-centred approach to care and to describe aspects of PCC as they appeared in nursing records. METHOD: A qualitative descriptive study using the PCN framework (Person-centred Nursing; Theory and Practice, Oxford, Wiley-Blackwell, 2010) as the context through which nursing assessments and care plans were explored. RESULTS: Findings indicated that many nursing records were incomplete, and information regarding psychosocial aspects of care was infrequent. There was evidence that nurses engaged with residents and worked with their beliefs and values. However, nursing documentation was not completed in consultation with the patient, and there was little to suggest that patients were involved in decisions relating to their care. IMPLICATIONS FOR PRACTICE: The structure of nursing documentation can be a major obstacle to the recording of PCC and appropriate care planning. Documentation

  16. Quantum dot heterojunction solar cells: the mechanism of device operation and impacts of quantum dot oxidation

    OpenAIRE

    Ihly, Rachelle

    2014-01-01

    This thesis explores the understanding of the chemistry and physics of colloidal quantum dots for practical solar energy photoconversion. Solar cell devices that make use of PbS quantum dots generally rely on constant and unchanged optical properties such that band gap energies remain tuned within the device. The design and development of unique experiments to ascertain mechanisms of optical band gap shifts occurring in PbS quantum dot thin-films exposed to air are discussed. The systematic s...

  17. Design of Cavity for 10 MeV Electron Irradiation Accelerator

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This article describes the 10 MeV high-power electron irradiation accelerator. This accelerator can output varied energy electron beam which the highest energy is 10 MeV or shooting target produce X-rays for industrial radiation processing.

  18. Buncher Power Source Monitoring System of 100 MeV Cyclotron

    Institute of Scientific and Technical Information of China (English)

    WEI; Jun-yi; FU; Xiao-liang; GUO; Juan-juan; ZHANG; Yi-wang; CAO; Xue-long; YIN; Zhi-guo; JI; Bin

    2015-01-01

    The 100MeV cyclotron provides 70-100MeV and 200μA proton beam,which can be used in astrophysics,medical,defense,energy and other fields.Buncher system can enhance the beam intensity and expand the scope of application of the accelerator.Buncher system is one part of the

  19. Performance Results of the Modulator for the 100MeV Proton Linac

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Il; Kwon, Hyeok Jung; Kim, Han Sung; Seol, Kyung Tae; Cho, Yong Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The modulator for the 100MeV proton linac has been installed at KOMAC (Korea of Multi-purpose Accelerator Complex) site. The specification of modulator is 5.8MW peak power with 1.5ms pulse width, 60Hz repetition rate. There are total 4 sets of modulator for 100-MeV proton linac including 3-MeV RFQ, 20-MeV DTL and 100-MeV DTL. A modulator drives two or three sets of the klystrons simultaneously. After installation and du mmy test of 4 modulators, it has been operated for 100MeV proton linac. In this paper, the performance results of modulators for the 100MeV proton linac are presented. 4 modulators were installed and tested for the 100MeV proton linac. The modulator was measured to have about less than 1% droops at flat top for 500 us pulse by using pulse frequency modulation droop compensation method. The long term voltage variation measurement showed that the voltage increased up to 0.05% for 8 hours. In future, the voltage droop and variation of modulator should be continuously checked in the high repetition rate.

  20. Klystron High Power Operation for KOMAC 100-MeV Proton Linac

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Kyung-Tae; Kim, Seong-Gu; Kwon, Hyeok-Jung; Kim, Han-Sung; Cho, Yong-Sub [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    The Korea multi-purpose accelerator complex (KOMAC) accelerator facility has a 100-MeV proton linac, five beam lines for 20-MeV beam utilization, and another five beam lines for 100-MeV beam utilization. The 100-MeV linac consists of a 50-keV proton injector based on a microwave ion source, a 3-MeV RFQ with a four-vane structure, and a 100-MeV DTL. Nine sets of 1MW klystrons have been operated for the 100-MeV proton linac. The klystron filament heating time was approximately 5700 hours in 2014, and RF operation time was 2863.4 hours. During the high power operation of the klystron, unstable RF waveforms appeared at the klystron output, and we have checked and performed cavity frequency adjustments, magnet and heater current, reflection from a circulator, klystron test without a circulator, and the frequency spectrum measurement. Nine sets of the klystrons have been operated for the KOMAC 100-MeV proton linac. The klystron filament heating time was 5700 hours and RF operation time was 2863.4 hours during the operation in 2014. Some klystrons have unstable RF waveforms at specific power level. We have checked and tested the cavity frequency adjustment, reflection from a circulator, high power test without a circulator, and frequency spectrum at the unstable RF.

  1. Initial Operation Results of the KOMAC 100MeV Proton Linac

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Kyungtae; Kwon, Hyeokjung; Kim, Hansung; Kim, Daeil; Song, Younggi; Cho, Yongsub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The Korea multi-purpose accelerator complex (KOMAC) accelerator facility has a 100-MeV proton linac, five beam lines for 20-MeV beam utilization, and another five beam lines for 100-MeV beam utilization. The 100-MeV linac consists of a 50-keV proton injector based on a microwave ion source, a 3-MeV RFQ with a four-vane structure, and a 100-MeV DTL. The KOMAC started to provide a proton beam to users on July 2013. A 20-MeV beam line and a 100-MeV beam line have been operated for beam service during the first year. In 2013, the proton linac had been operated for more than 2200 hours and beam service time was 432 hours approximately. The accumulated downtime during the first year in 2013 is 94.7 hours and there were some faults at utilities, high voltage modulators, and RF components. The KOMAC started to provide a proton beam to users on July 2013. The proton linac had been operated for more than 2200 hours and beam service time was 432 hours approximately. Accumulated downtime was 94.7 hours and availability was 82 %. The plan for beam power and operation time in 2014 is 10 kW and 2500 hours respectively.

  2. Collective motion in selected central collisions of Au on Au at 150A MeV

    Science.gov (United States)

    Jeong, S. C.; Herrmann, N.; Fan, Z. G.; Freifelder, R.; Gobbi, A.; Hildenbrand, K. D.; Krämer, M.; Randrup, J.; Reisdorf, W.; Schüll, D.; Sodan, U.; Teh, K.; Wessels, J. P.; Pelte, D.; Trzaska, M.; Wienold, T.; Alard, J. P.; Amouroux, V.; Basrak, Z.; Bastid, N.; Belayev, I. M.; Berger, L.; Bini, M.; Blaich, Th.; Boussange, S.; Buta, A.; Čaplar, R.; Cerruti, C.; Cindro, N.; Coffin, J. P.; Dona, R.; Dupieux, P.; Erö, J.; Fintz, P.; Fodor, Z.; Fraysse, L.; Frolov, S.; Grigorian, Y.; Guillaume, G.; Hölbling, S.; Houari, A.; Jundt, F.; Kecskemeti, J.; Koncz, P.; Korchagin, Y.; Kotte, R.; Kuhn, C.; Ibnouzahir, M.; Legrand, I.; Lebedev, A.; Maguire, C.; Manko, V.; Maurenzig, P.; Mgebrishvili, G.; Mösner, J.; Moisa, D.; Montarou, G.; Montbel, I.; Morel, P.; Neubert, W.; Olmi, A.; Pasquali, G.; Petrovici, M.; Poggi, G.; Rami, F.; Ramillien, V.; Sadchikov, A.; Seres, Z.; Sikora, B.; Simion, V.; Smolyankin, S.; Tezkratt, R.; Vasiliev, M. A.; Wagner, P.; Wilhelmi, Z.; Wohlfarth, D.; Zhilin, A. V.

    1994-05-01

    Using the FOPI facility at GSI Darmstadt complete data of Au on Au collisions at 150A MeV were collected for charged products (Z=1-15) at laboratory angles 1°=3) are used to determine the collective energy which is found to be at least 10A MeV.

  3. Tailoring Magnetism in Quantum Dots

    Science.gov (United States)

    Zutic, Igor; Abolfath, Ramin; Hawrylak, Pawel

    2007-03-01

    We study magnetism in magnetically doped quantum dots as a function of particle numbers, temperature, confining potential, and the strength of Coulomb interaction screening. We show that magnetism can be tailored by controlling the electron-electron Coulomb interaction, even without changing the number of particles. The interplay of strong Coulomb interactions and quantum confinement leads to enhanced inhomogeneous magnetization which persists at substantially higher temperatures than in the non-interacting case or in the bulk-like dilute magnetic semiconductors. We predict a series of electronic spin transitions which arise from the competition between the many-body gap and magnetic thermal fluctuations. Cond-mat/0612489. [1] R. Abolfath, P. Hawrylak, I. Zuti'c, preprint.

  4. CESAR, 2 MeV electron storage ring; general view.

    CERN Multimedia

    1964-01-01

    CESAR (CERN Electron Storage and Accumulation Ring) was built as a study-model for the ISR (Intersecting Storage Rings). The model had to be small (24 m circumference) and yet the particles had to be highly relativistic, which led to the choice of electrons. On the other hand, in order to model the behaviour of protons, effects from synchrotron radiation had to be negligible, which meant low magnetic fields (130 G in the bending magnets) and a corresponding low energy of 1.75 MeV. All the stacking (accumulation) procedures envisaged for the ISR were proven with CESAR, and critical aspects of transverse stability were explored. Very importantly, CESAR was the test-bed for the ultrahigh vacuum techniques and components, essential for the ISR, with a final pressure of 6E-11 Torr. The CESAR project was decided early in 1960, design was completed in 1961 and construction in 1963. After an experimental period from 1964 to 1967, CESAR was dismantled in 1968.

  5. CESAR, 2 MeV electron storage ring.

    CERN Multimedia

    1967-01-01

    CESAR (CERN Electron Storage and Accumulation Ring) was built as a study-model for the ISR (Intersecting Storage Rings). The model had to be small (24 m circumference) and yet the particles had to be highly relativistic, which led to the choice of electrons. On the other hand, in order to model the behaviour of protons, effects from synchrotron radiation had to be negligible, which meant low magnetic fields (130 G in the bending magnets) and a corresponding low energy of 1.75 MeV. All the stacking (accumulation) procedures envisaged for the ISR were proven with CESAR, and critical aspects of transverse stability were explored. Very importantly, CESAR was the test-bed for the ultrahigh vacuum techniques and components, essential for the ISR, with a final pressure of 6E-11 Torr. The CESAR project was decided early in 1960, design was completed in 1961 and construction in 1963. After an experimental period from 1964 to 1967, CESAR was dismantled in 1968.

  6. Multipurpose 5-MeV linear induction accelerator

    Science.gov (United States)

    Birx, D. L.; Hawkins, S. A.; Poor, S. E.; Reginato, L. L.; Smith, M. W.

    1984-06-01

    Although linear induction accelerators (LIAs) are quite reliable by most standards, they are limited in repeating rate, average power, and reliability because the final stage of energy delivery is based on spark gap performance. In addition, they have a low duty factor of operation. To provide a higher burst rate and greater reliability, new technology was used to develop a magnetic pulse compression scheme that eliminates all spark gaps and exceeds requirements. The magnetic drive system are tailored to drive induction cells from a few kA to over 10 kA at 500 kV, with average beam power levels in the megawatts. This new 5-MeV, 2.5-kA LIA under construction at the Lawrence Livermore National Laboratory (LLNL) will be used for the development of high brightness sources and will provide a test bed for the new technology, which should lead to LIAs that surpass the radio frequency linacs for efficiency and reliability, as well as fit other industrial applications, such as sewage sterilization.

  7. Multipurpose 5-MeV linear induction accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Birx, D.L.; Hawkins, S.A.; Poor, S.E.; Reginato, L.L. Smith, M.W.

    1984-06-11

    Although linear induction accelerators (LIAs) are quite reliable by most standards, they are limited in repeating rate, average power, and reliability because the final stage of energy delivery is based on spark gap performance. In addition, they have a low duty factor of operation. To provide a higher burst rate and greater reliability, the researchers used new technology to develop a magnetic pulse compression scheme that eliminates all spark gaps and exceeds requirements. The paper describes the scheme. The magnetic drive system can be tailored to drive induction cells from a few kA to over 10 kA at 500 kV, with average beam power levels in the megawatts. This new 5-MeV, 2.5-kA LIA under construction at the Lawrence Livermore National Laboratory (LLNL) will be used for the development of high brightness sources and will provide a test bed for the new technology, which should lead to LIAs that surpass the radio frequency linacs for efficiency and reliability, as well as fit other industrial applications, such as sewage sterilization.

  8. Survey and Alignment of the 100MeV Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Park, Bumsik; Kwon, Hyeokjung; Jang, Jiho; Kim, Hansung; Kim, Daeil; Cho, Yongsub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The 100MeV linear accelerator was installed and under commissioning at the Gyeongju site. The 100MeV proton linac was developed by the KOMAC according to the survey work and the alignment process. 100MeV proton beam will be supplied to the users after the beam commissioning. KOMAC is developing a 100MeV high-duty-factor proton linac. Linac is composed with a 50keV proton injector, a 3MeV RFQ, DTL tanks and a beam dump. In this paper, the survey and alignment scheme are described. To install the accelerator, the align network was built and the survey work was accomplished. On the basis of the survey result, all of the accelerator components were installed in the tunnel with two laser trackers.

  9. Large quantum dots with small oscillator strength

    DEFF Research Database (Denmark)

    Stobbe, Søren; Schlereth, T.W.; Höfling, S.

    2010-01-01

    We have measured the oscillator strength and quantum efficiency of excitons confined in large InGaAs quantum dots by recording the spontaneous emission decay rate while systematically varying the distance between the quantum dots and a semiconductor-air interface. The size of the quantum dots...... is measured by in-plane transmission electron microscopy and we find average in-plane diameters of 40 nm. We have calculated the oscillator strength of excitons of that size assuming a quantum-dot confinement given by a parabolic in-plane potential and a hard-wall vertical potential and predict a very large...... oscillator strength due to Coulomb effects. This is in stark contrast to the measured oscillator strength, which turns out to be so small that it can be described by excitons in the strong confinement regime. We attribute these findings to exciton localization in local potential minima arising from alloy...

  10. Ge Quantum Dot Infrared Imaging Camera Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations Incorporated proposes to develop a high performance Ge quantum dots-based infrared (IR) imaging camera on Si substrate. The high sensitivity, large...

  11. Measurement of Eccentricity of the Centre of Mass from the Geometric Centre of a Sphere

    Institute of Scientific and Technical Information of China (English)

    郭俊起; 胡忠坤; 顾邦明; 罗俊

    2004-01-01

    The eccentricity of the centre of mass from the geometric centre of a spherical attracting mass in determining the Newtonian gravitational constant G is tested by means of an electronic balance. The experimental result shows that the eccentricity of the sample is about 0.31 μm with uncertainty of 0.05 μm. Two density distribution models are discussed to estimate the uncertainty to G by the eccentricities of the attracting masses.

  12. Treatment Outcomes of Patients Placed on Treatment Under Directly Observed Therapy Short-Course (Dots)

    Science.gov (United States)

    Kaur, Gurpreet; Goel, N.K.; Kumar, Dinesh; Janmeja, A.K.; Swami, H.M.; Kalia, Meenu

    2008-01-01

    Background: Tuberculosis continues to be a pressing health problem in India. The Revised National Tuberculosis Programme (RNTCP), an application of Directly Observed Treatment Short-course (DOTS) in India, launched in 1997 needs continuous evaluation. Objective: To study the outcomes of treatment among the patients put on DOTS under RNTCP in Chandigarh, UT. Material & Methods: A Longitudinal study was conducted during 2004-2005 in 13 Microscopic centres (MC's) spread over 2 Tuberculosis Units (TU's) under District Tuberculosis Centre (DTC) in Union Territory (UT), Chandigarh. A sample of 265 respondents, selected by two-stage stratified random sampling technique, was recruited in the study cohort. Data analysis was done using SPSS-10 statistical software package. Results: For Category I and Category II patients, the Success rate was 98.6% and 90.4% respectively. The overall default rate was 1.1% and failure rate was 2.6%. For re-treatment cases, failure rate was higher i.e. 5.8%. The sputum conversion rate among the new smear positive cases was 93.8% at 3 months of treatment. For the re-treatment cases, spu-tum conversion rate at 3 months was 94.1%. Conclusion: The study concludes that RNTCP is running successfully in UT Chandigarh, having high success rate and low default rate. The reasons for high failure rate should be explored in depth. PMID:20165654

  13. Treatment outcomes of patients placed on treatment under directly observed therapy short-course (DOTS

    Directory of Open Access Journals (Sweden)

    Kaur Gurpreet

    2008-01-01

    Full Text Available Background : Tuberculosis continues to be a pressing health problem in India. The Revised National Tuberculosis Programme (RNTCP, an application of Directly Observed Treatment Short-course (DOTS in India, launched in 1997 needs contin-uous evaluation. Objective : To study the outcomes of treatment among the patients put on DOTS under RNTCP in Chandigarh, UT. Material & Methods : A Longitudi-nal study was conducted during 2004-2005 in 13 Microscopic centres (MC′s spread over 2 Tuberculosis Units (TU′s under District Tuberculosis Centre (DTC in Union Territory (UT, Chandigarh. A sample of 265 respondents, selected by two-stage stratified random sampling technique, was recruited in the study cohort. Data analysis was done using SPSS-10 statistical software package. Results : For Category I and Category II patients, the Success rate was 98.6% and 90.4% respectively. The overall default rate was 1.1% and failure rate was 2.6%. For re-treatment cases, failure rate was higher i.e. 5.8%. The sputum conversion rate among the new smear positive cases was 93.8% at 3 months of treatment. For the re-treatment cases, spu-tum conversion rate at 3 months was 94.1%. Conclusion : The study concludes that RNTCP is running successfully in UT Chandigarh, having high success rate and low default rate. The reasons for high failure rate should be explored in depth.

  14. An investigation of near-infrared photoluminescence from AP-MOVPE grown InSb/GaSb quantum dot structures

    Science.gov (United States)

    Ahia, C. C.; Tile, N.; Urgessa, Z. N.; Botha, J. R.; Neethling, J. H.

    2017-01-01

    In this work, the near-infrared photoluminescence (PL) of InSb/GaSb QD structures grown on GaSb substrate (2° off (100)) using atmospheric pressure Metalorganic Vapor Phase Epitaxy is investigated. The structures are analyzed before capping and after capping using scanning probe microscopy and high resolution transmission electron microscopy (HRTEM), respectively. At 10 K, with an excitation power of 2 mW, a PL peak at ∼ 732 meV is observed. Upon an increase in laser power to 120 mW, a blue shift of ∼ 8 meV is noticed. This emission typically persists up to 60-70 K, after which it becomes weak. An SPM analysis of the size distribution of uncapped dots reveals a mono-modal distribution with an average density of ∼ 5×1010 cm-2. However, a HRTEM investigation of the capped dots reveals the formation of an InGaSb quantum well-like structure, ∼ 10 nm thick, which gives rise to the PL signal mentioned above.

  15. Effects of unstratified and centre-stratified randomization in multi-centre clinical trials.

    Science.gov (United States)

    Anisimov, Vladimir V

    2011-01-01

    This paper deals with the analysis of randomization effects in multi-centre clinical trials. The two randomization schemes most often used in clinical trials are considered: unstratified and centre-stratified block-permuted randomization. The prediction of the number of patients randomized to different treatment arms in different regions during the recruitment period accounting for the stochastic nature of the recruitment and effects of multiple centres is investigated. A new analytic approach using a Poisson-gamma patient recruitment model (patients arrive at different centres according to Poisson processes with rates sampled from a gamma distributed population) and its further extensions is proposed. Closed-form expressions for corresponding distributions of the predicted number of the patients randomized in different regions are derived. In the case of two treatments, the properties of the total imbalance in the number of patients on treatment arms caused by using centre-stratified randomization are investigated and for a large number of centres a normal approximation of imbalance is proved. The impact of imbalance on the power of the study is considered. It is shown that the loss of statistical power is practically negligible and can be compensated by a minor increase in sample size. The influence of patient dropout is also investigated. The impact of randomization on predicted drug supply overage is discussed.

  16. Start Shift of Individual Quantum Dots

    Science.gov (United States)

    1999-06-18

    We will here describe the results of the influence of electric field on InP quantum dots embedded in GalnP, lattice matched to GaAs. Experimental...details The sample we used was grown by metal-organic vapour phase epitaxy, and contained InP quantum dots in GanP, lattice matched to GaAs (n-type

  17. Exciton in type-II quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Sierra-Ortega, J; Escorcia, R A [Universidad del Magdalena, A. A. 731, Santa Marta (Colombia); Mikhailov, I D, E-mail: jsierraortega@gmail.co [Universidad Industrial de Santander, A. A. 678, Bucaramanga (Colombia)

    2009-05-01

    We study the quantum-size effect and the influence of the external magnetic field on the exciton ground state energy in the type-II InP quantum disk, lens and pyramid deposited on a wetting layer and embedded in a GaInP matrix. We show that the charge distribution over and below quantum dot and wetting layer induced by trapped exciton strongly depends on the quantum dot morphology and the strength of the magnetic field.

  18. Random Feature Maps for Dot Product Kernels

    OpenAIRE

    Kar, Purushottam; Karnick, Harish

    2012-01-01

    Approximating non-linear kernels using feature maps has gained a lot of interest in recent years due to applications in reducing training and testing times of SVM classifiers and other kernel based learning algorithms. We extend this line of work and present low distortion embeddings for dot product kernels into linear Euclidean spaces. We base our results on a classical result in harmonic analysis characterizing all dot product kernels and use it to define randomized feature maps into explic...

  19. Chaotic quantum dots with strongly correlated electrons

    OpenAIRE

    Shankar, R.

    2007-01-01

    Quantum dots pose a problem where one must confront three obstacles: randomness, interactions and finite size. Yet it is this confluence that allows one to make some theoretical advances by invoking three theoretical tools: Random Matrix theory (RMT), the Renormalization Group (RG) and the 1/N expansion. Here the reader is introduced to these techniques and shown how they may be combined to answer a set of questions pertaining to quantum dots

  20. Dot-dye-immunoassay for the diagnosis of schistosomiasis mansoni

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Teles Rabello

    1992-06-01

    Full Text Available A new serological assay dot-dye-immunoassay (dot-DIA was evaluated for the diagnosis of schistosomiasis mansoni. This method consist of four steps: (a biding of antigens to a nitrocellulose membrane (NC; (b blocking of free sites of the NC; (c incubation in specific primary antibody; (d detection of primary antibody reactivity by color development using second antibody coupled to textile dyes. Sera from 82 individuals, 61 with Schistosoma mansoni eggs in the stool and 21 stool negative were tested by ELISA, dot-ELISA, and dotDIA. A high level of agreement between the methods tested was observed for all sera tested: ELISA x dot-ELISA: 95.1%, ELISA x dot-DIA: 92.7% and dot-ELISA x dot-DIA: 97.6%. In this study, dot-DIA proved to be a feasible, sensitive, rapid and practical test for the diagnosis of shcistosomiasis.

  1. Quantum-dot-in-perovskite solids

    KAUST Repository

    Ning, Zhijun

    2015-07-15

    © 2015 Macmillan Publishers Limited. All rights reserved. Heteroepitaxy - atomically aligned growth of a crystalline film atop a different crystalline substrate - is the basis of electrically driven lasers, multijunction solar cells, and blue-light-emitting diodes. Crystalline coherence is preserved even when atomic identity is modulated, a fact that is the critical enabler of quantum wells, wires, and dots. The interfacial quality achieved as a result of heteroepitaxial growth allows new combinations of materials with complementary properties, which enables the design and realization of functionalities that are not available in the single-phase constituents. Here we show that organohalide perovskites and preformed colloidal quantum dots, combined in the solution phase, produce epitaxially aligned \\'dots-in-a-matrix\\' crystals. Using transmission electron microscopy and electron diffraction, we reveal heterocrystals as large as about 60 nanometres and containing at least 20 mutually aligned dots that inherit the crystalline orientation of the perovskite matrix. The heterocrystals exhibit remarkable optoelectronic properties that are traceable to their atom-scale crystalline coherence: photoelectrons and holes generated in the larger-bandgap perovskites are transferred with 80% efficiency to become excitons in the quantum dot nanocrystals, which exploit the excellent photocarrier diffusion of perovskites to produce bright-light emission from infrared-bandgap quantum-tuned materials. By combining the electrical transport properties of the perovskite matrix with the high radiative efficiency of the quantum dots, we engineer a new platform to advance solution-processed infrared optoelectronics.

  2. Coherent transport through interacting quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Hiltscher, Bastian

    2012-10-05

    The present thesis is composed of four different works. All deal with coherent transport through interacting quantum dots, which are tunnel-coupled to external leads. There a two main motivations for the use of quantum dots. First, they are an ideal device to study the influence of strong Coulomb repulsion, and second, their discrete energy levels can easily be tuned by external gate electrodes to create different transport regimes. The expression of coherence includes a very wide range of physical correlations and, therefore, the four works are basically independent of each other. Before motivating and introducing the different works in more detail, we remark that in all works a diagrammatic real-time perturbation theory is used. The fermionic degrees of freedom of the leads are traced out and the elements of the resulting reduced density matrix can be treated explicitly by means of a generalized master equation. How this equation is solved, depends on the details of the problem under consideration. In the first of the four works adiabatic pumping through an Aharonov-Bohm interferometer with a quantum dot embedded in each of the two arms is studied. In adiabatic pumping transport is generated by varying two system parameters periodically in time. We consider the two dot levels to be these two pumping parameters. Since they are located in different arms of the interferometer, pumping is a quantum mechanical effect purely relying on coherent superpositions of the dot states. It is very challenging to identify a quantum pumping mechanism in experiments, because a capacitive coupling of the gate electrodes to the leads may yield an undesired AC bias voltage, which is rectified by a time dependent conductance. Therefore, distinguishing features of these two transport mechanisms are required. We find that the dependence on the magnetic field is the key feature. While the pumped charge is an odd function of the magnetic flux, the rectified current is even, at least in

  3. Danish Polymer Centre annual report 2001

    DEFF Research Database (Denmark)

    Hassager, O.; Hvilsted, S.; Mortensen, Kell

    The centre is a collaboration between the Risø National Laboratory and the Technical University of Denmark (DTU). At the DTU the Department of Chemical Engineering and the Department of Manufacturing Engineering and Management participate in the centre.From 2001 the Polymer Department at Risø coo....... The Annual Report for 2001 represents therefore the first report from a period in which the new facilitieshave been utilized to full advantage....... coordinates the activities at Risø From the outset it was considered important with common laboratories to obtain the full effect of the collaboration between the two departments at the DTU and Risø NationalLaboratory. In 2001 new laboratories for polymer research and education were established at the DTU...

  4. Patient-centred Prevention among PAD Patients

    DEFF Research Database (Denmark)

    Pii, Kathrine Hoffmann

    2014-01-01

    Intro: This paper discusses a central professional dilemma in patient-centred education: on one hand the concern for ensuring patients autonomy and right to make their own decisions regarding their treatment and, on the other hand, a concern for getting patients to make the “right” decisions......-centredness is thus promoted as a way to organize health more effectively (in terms of cost and treatment outcomes) and as a way to ensure patients’ autonomy and fundamental right to make their own decisions regarding their treatment. Critical voices within social and nursing theory have however argued...... of a patient-centred prevention programme aimed at PAD patients, which includes medical treatment as well as individual nurse-led lifestyle-oriented conversations (inspired by psychological theory and methods such as Motivational Interviewing). Method: The findings are based on four months ethnographic field...

  5. JOB CENTRE FOR DOMESTIC STAFF IN SWITZERLAND

    CERN Multimedia

    Relations with the Host States Service; http://www.cern.ch/relations/

    2001-01-01

    The Permanent mission of Switzerland to the International Organisations in Geneva has informed CERN that the Geneva Welcome Centre has set up an employment registration desk for the domestic staff of international civil servants. The aim of this pilot project is, on the one hand, to help international civil servants find domestic staff and, on the other hand, to help domestic staff holding an 'F'-type carte de légitimation find employment within 30 days after the expiry of a contract. For more information, please contact the Geneva Welcome Centre, La Pastorale, 106, route de Ferney, Case postale 103, 1211 Genève 20, tel. (+41.22) 918 02 70, fax (+41.22) 918 02 79), http://geneva-international.org/Welcome.E.html.

  6. Institutional profile: the London Centre for Nanotechnology.

    Science.gov (United States)

    Weston, David; Bontoux, Thierry

    2009-12-01

    Located in the London neighborhoods of Bloomsbury and South Kensington, the London Centre for Nanotechnology is a UK-based multidisciplinary research center that operates at the forefront of science and technology. It is a joint venture between two of the world's leading institutions, UCL and Imperial College London, uniting their strong capabilities in the disciplines that underpin nanotechnology: engineering, the physical sciences and biomedicine. The London Centre for Nanotechnology has a unique operating model that accesses and focuses the combined skills of the Departments of Chemistry, Physics, Materials, Medicine, Electrical and Electronic Engineering, Mechanical Engineering, Chemical Engineering, Biochemical Engineering and Earth Sciences across the two universities. It aims to provide the nanoscience and nanotechnology required to solve major problems in healthcare, information processing, energy and the environment.

  7. Emergency Centre Organization and Automated Triage System

    CERN Document Server

    Golding, Dan; Marwala, Tshilidzi

    2008-01-01

    The excessive rate of patients arriving at accident and emergency centres is a major problem facing South African hospitals. Patients are prioritized for medical care through a triage process. Manual systems allow for inconsistency and error. This paper proposes a novel system to automate accident and emergency centre triage and uses this triage score along with an artificial intelligence estimate of patient-doctor time to optimize the queue order. A fuzzy inference system is employed to triage patients and a similar system estimates the time but adapts continuously through fuzzy Q-learning. The optimal queue order is found using a novel procedure based on genetic algorithms. These components are integrated in a simple graphical user interface. Live tests could not be performed but simulations reveal that the average waiting time can be reduced by 48 minutes and priority is given to urgent patients

  8. Achieving competences in patient-centred care

    DEFF Research Database (Denmark)

    Lomborg, Kirsten; Nielsen, Else Skånning; Jensen, Annesofie Lunde

    2011-01-01

    Aim: To document the efficacy of a training programme in patient-centred care in which the nursing staff was trained to involve chronic obstructive pulmonary patients in assisted personal body care (APBC). The objectives were to describe the programme and uncover the outcomes. Background: Chronic...... obstructive pulmonary patients suffer from breathlessness and may need comprehensive assistance with personal body care. The patients’ wellbeing may be improved and their integrity safeguarded if nurses are able to involve the patients in accordance with their illness conditions and personal preferences....... The training was time-consuming. Conclusion: A comprehensive training programme can improve nursing competences to action patient-centred and involve severely ill respiratory patients in APBC. Further studies are needed to investigate the efficacy from the patients’ perspective. Relevance to clinical practice...

  9. It's all change at the Computer Centre

    CERN Multimedia

    Laëtitia Pedroso

    2011-01-01

    The IT and EN Departments are modernising the infrastructure of the Computer Centre to improve the conditions in which the equipment has to operate and to increase capacity. The construction work has already begun and is due to be completed in October 2012.   Every year CERN experiences around ten power cuts lasting from less than a second to several hours. In most cases the two protection systems - the UPS* and the diesel generators – are able to ensure that the operation of the Computer Centre is not affected. As Vincent Doré, the project leader for the IT Department, and Paul Pepinster, the EN Department's technical coordinator in charge of modernising the infrastructure, explains: "Building 513 has two types of computing facilities – the "non-critical" ones, such as the servers for "off-line" computing, which have UPS systems ensuring that they can operate for 10 minutes after a power cut, and the "critical&...

  10. [The development process of colon cancer centres].

    Science.gov (United States)

    Sahm, M; Wesselmann, S; Kube, R; Schöffel, N; Pross, M; Lippert, H; Kahl, S

    2013-02-01

    Colon carcinomas are the most common malignant tumours in the Western world. Important findings about the overall quality of medical care have been reported in multi-centre observational studies. A quality enhancement of therapeutic care can be achieved by an additional increase in diagnostic and therapeutic measures in the interdisciplinary setting. The development of colon cancer centres improves the chance to objectively observe the results of medical care induced by the development of an interdisciplinary and cross-sectoral unit that includes a comprehensive medical care for patients. The implementation of the current medical findings based on evidence in clinical routine, the inspection of the usage of guidelines by external specialists as part of an audit and the continuous correction of analysed deficits in the course of treatment guarantee a continuous improvement of service.

  11. Birth of a science centre. Italian phenomenology

    Directory of Open Access Journals (Sweden)

    Paola Rodari

    2006-06-01

    Full Text Available In May 2004 the Balì Museum, Planetarium and interactive science museum, was opened to the public in Italy: 35 hands-on exhibits designed according to the interactive tradition of the Exploratorium in San Francisco, an astronomic observatory for educational activities, a Planetarium with 70 places. With a total investment of about three million euros, about two thirds of which were spent on restructuring the splendid eighteenth-century villa in which it is housed, the undertaking may be considered a small one in comparison with other European science centres. Three million euros: perhaps enough to cover the cost of only the splendid circular access ramp to the brand-new Cosmocaixa in Barcelona, an investment of one hundred million euros. But the interesting aspect of the story of the Balì Museum (but also of other Italian stories, as we shall see lies in the fact that this lively and advanced science centre stands in the bucolic region of the Marches, next to a small town of only 800 inhabitants (Saltara, in the Province of Pesaro and Urbino, in a municipal territory that has a total of 5000. Whereas in Italy the projects for science centres comparable with the Catalan one, for example projects for Rome and Turin, never get off the ground, smaller ones are opening in small and medium-sized towns: why is this? And what does the unusual location of the centres entail for science communication in Italy? This Focus does not claim to tell the whole truth about Italian interactive museums, but it does offer some phenomenological cues to open a debate on the cultural, economic and political premises that favour their lives.

  12. User-Centred Design Using Gamestorming.

    Science.gov (United States)

    Currie, Leanne

    2016-01-01

    User-centered design (UX) is becoming a standard in software engineering and has tremendous potential in healthcare. The purpose of this tutorial will be to demonstrate and provide participants with practice in user-centred design methods that involve 'Gamestorming', a form of brainstorming where 'the rules of life are temporarily suspended'. Participants will learn and apply gamestorming methods including persona development via empathy mapping and methods to translate artefacts derived from participatory design sessions into functional and design requirements.

  13. CMS Centres Worldwide - a New Collaborative Infrastructure

    CERN Document Server

    Taylor, Lucas

    2011-01-01

    Webcasts, and generic Web tools such as CMS-TV for broadcasting live monitoring and outreach information. Being Web-based and experiment-independent, these systems could easily be extended to other organizations. We describe the experiences of using CMS Centres Worldwide in the CMS data-taking operations as well as for major media events with several hundred TV channels, radio stations, and many more press journalists simultaneously around the world.

  14. Enhancing Safety at Airline Operations Control Centre

    Directory of Open Access Journals (Sweden)

    Lukáš Řasa

    2015-04-01

    Full Text Available In recent years a new term of Safety Management System (SMS has been introduced into aviation legislation. This system is being adopted by airline operators. One of the groundbased actors of everyday operations is Operations Control Centre (OCC. The goal of this article has been to identify and assess risks and dangers which occur at OCC and create a template for OCC implementation into SMS.

  15. Training science centre Explainers. The Techniquest experience

    Directory of Open Access Journals (Sweden)

    Colin Johnson

    2005-12-01

    Full Text Available Techniquest was established in 1986, and in 1995 moved to its current premises at Cardiff Bay, South Wales. This was the first purpose-built science centre in the UK. It receives around 200,000 visitors every year to its exhibition, and to its programmes for schools and public audiences in the theatre, laboratory, discovery room and planetarium. The author joined the Techniquest project in 1985, became a staff member in 1990 and was the Chief Executive from 1997 until his retirement in 2004. Techniquest has three “out-stations” in Wales, and is responsible for the supply and maintenance of exhibits to the Look Out Discovery Centre in Bracknell, England. There is a Techniquest gallery at the Lisbon Pavilhão do Conhecimento - Ciência Viva, and a traveling exhibition, SciQuest, in South Africa which was also supplied by Techniquest. All these centres rely on the effective intervention of “Explainers” (at Techniquest we call them “Helpers” to provide the best possible experience for visitors. At its most demanding, the tasks of an Explainer are varied and intensive, yet there may be times when the duties are mundane or even dull. When you rely on people to act as both hosts and housekeepers, to provide both support and stimulus, and to be both welcoming and watchful, you are asking a great deal. This article raises some of the issues concerned with the recruitment and retention of Explainers, their training and management, and the way in which their role is recognized and valued by the science centre as a whole.

  16. Bismuth centred magnetic perovskite: A projected multiferroic

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Asish K., E-mail: asish.k@gmail.com [Discipline of Physics, Indian Institute of Information Technology, Design and Manufacturing, Dumna Airport Road, Jabalpur 482005 (India); Seikh, Md. Motin [Department of Chemistry, Visva-Bharati University, Santiniketan, West Bengal 731235 (India); Nautiyal, Pranjal [Discipline of Mechanical Engineering, Indian Institute of Information Technology, Design and Manufacturing, Dumna Airport Road, Jabalpur 482005 (India)

    2015-03-15

    In recent time substantial attention has been initiated to understand the physics behind multiferroism and to design new multiferroic materials. BiMnO{sub 3} and BiFeO{sub 3} are the well-studied Bi-centred multiferroic oxides. BiMnO{sub 3} is a ferromagnetic–ferroelectric (metastable) phase and require drastic conditions to synthesize. However, lanthanum substituted BiMnO{sub 3} phases stabilized at ambient pressure. It is thus of major importance to increase the number of ferromagnetic perovskites with Bi cations that could be designed under ambient conditions. In this article, we have presented an up to date report of investigations on Bi-centred magnetic perovskites, a prospective material for multiferroic application. Central focus is concentrated on La{sub 0.5}Bi{sub 0.5}MnO{sub 3} perovskite with various substitutions at different levels. A few of these perovskites are found to be of practical importance e.g. La{sub 0.5}Bi{sub 0.5}Mn{sub 0.67}Co{sub 0.33}O{sub 3} with high dielectric permittivity coupled with ferromagnetism. A comprehensive analysis of different physical functionalities and their interrelation for a wide range of compositions of these Bi-centred perovskites is presented. It has been found that the complex magnetic behaviour originates from mixed valence metal ions. The ferroelectricity is associated with the 6s{sup 2} lone pair of Bi{sup 3+} cations. The magnetic ground state influences the dielectric properties reflecting the multiferroism in a single material. - Highlights: • Multiferroics have attracted increasing attention due to their possible device applications. • Bismuth centred magnetic perovskite is one kind of such promising multiferroic materials. • Ferromagnetic Bi-perovskites, which are synthesized at ambient conditions, have been discussed.

  17. Upcoming opening of CERN's new Mobility Centre

    CERN Multimedia

    2016-01-01

    On 29 February, CERN’s brand new Mobility Centre opened in the Globe car park. The Centre has been created to cater to the transport needs of everyone at CERN, to simplify procedures and to centralise all the transport services on offer: the rental of CERN bikes and cars, the CERN car-sharing scheme and SIXT car rental.   From 29 February onwards, the Mobility Centre in the Globe car park will be the place to go for all your duty travel needs: rental of CERN cars (with or without the CERN logo), SIXT car rental, CERN bike rental, distribution of cards allowing the use of CERN’s self-service bike- and car-sharing schemes. That same day, the premises currently housing the Car Pool in Building 130 will become the CERN garage, responsible for: upkeep and repairs on CERN bikes, minor maintenance work on CERN vehicles (e.g. replacing windscreen wipers, bulbs and fuses, refilling windscreen washer fluid, pumping up tyres, etc.), arranging and following up the repair and maintenan...

  18. Bismuth centred magnetic perovskite: A projected multiferroic

    Science.gov (United States)

    Kundu, Asish K.; Seikh, Md. Motin; Nautiyal, Pranjal

    2015-03-01

    In recent time substantial attention has been initiated to understand the physics behind multiferroism and to design new multiferroic materials. BiMnO3 and BiFeO3 are the well-studied Bi-centred multiferroic oxides. BiMnO3 is a ferromagnetic-ferroelectric (metastable) phase and require drastic conditions to synthesize. However, lanthanum substituted BiMnO3 phases stabilized at ambient pressure. It is thus of major importance to increase the number of ferromagnetic perovskites with Bi cations that could be designed under ambient conditions. In this article, we have presented an up to date report of investigations on Bi-centred magnetic perovskites, a prospective material for multiferroic application. Central focus is concentrated on La0.5Bi0.5MnO3 perovskite with various substitutions at different levels. A few of these perovskites are found to be of practical importance e.g. La0.5Bi0.5Mn0.67Co0.33O3 with high dielectric permittivity coupled with ferromagnetism. A comprehensive analysis of different physical functionalities and their interrelation for a wide range of compositions of these Bi-centred perovskites is presented. It has been found that the complex magnetic behaviour originates from mixed valence metal ions. The ferroelectricity is associated with the 6s2 lone pair of Bi3+ cations. The magnetic ground state influences the dielectric properties reflecting the multiferroism in a single material.

  19. Energy Efficiency Improvements Using DC in Data Centres

    OpenAIRE

    Bergqvist, Sofia

    2011-01-01

    The installed power usage in a data centre will often amount to several megawatts (MW). Thetotal power consumption of the data centres in the world is comparable to that of the airtraffic. The high energy costs and carbon dioxide emissions resulting from the operation of adata centre call for alternative, more efficient, solutions for the power supply design. Oneproposed solution to decrease the energy usage is to use a direct current power supply (DCUPS) for all the servers in the data centr...

  20. Optimal catchment area and primary PCI centre volume revisited

    DEFF Research Database (Denmark)

    Schoos, Mikkel Malby; Pedersen, Frants; Holmvang, Lene;

    2015-01-01

    AIMS: The currently stated optimal catchment population for a pPCI centre is 300,000-1,100,000, resulting in 200-800 procedures/year. pPCI centres are increasing in number even within small geographic areas. We describe the organisation and quality of care after merging two high-volume centres...

  1. Tele-centres as a way of achieving universal access

    DEFF Research Database (Denmark)

    Falch, Morten; Anyimadu, Amos

    2003-01-01

    The success of tele-centres in Ghana is discussed. The tele-centres offer a low cost opportunity to empower local communities in developed and developing countries to meet the challenges of the information society. The tele-centres can also contribute more directly to the supply of non-commercial...

  2. Two body photodisintegration of the deuteron from 100 to 800 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, R.; Annand, J.R.M.; Anthony, I. [Glasgow Univ. (United Kingdom). Dept. of Physics and Astronomy; Ahrens, J.; Beck, R. [Mainz Univ. (Germany). Inst. fuer Kernphysik; Braghieri, A.; Pedroni, P. [Istituto Nazionale di Fisica Nucleare, Pavia (Italy); Altieri, S. [Istituto Nazionale di Fisica Nucleare, Pavia (Italy)]|[Pavia Univ. (Italy). Ist. di Fisica Nucleare; Audit, G.; D`Hose, N. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee] [and others

    1996-01-01

    The total and the differential cross sections for the D({gamma},p)n reaction have been measured over the photon energy range 100-800 MeV at the 855 MeV MAMI Microtron in Mainz. The data are presented in the form of thirty-five angular distributions at c.m. proton angles between 30 deg-160 deg in 10 deg intervals and at photon energies in steps of 20 MeV. Previous experimental work is reassessed in the light of the present results and the results compared with some recent theoretical calculations. (author). Submitted to Nuclear Physics, B (NL); 23 refs.

  3. On the Origin of the MeV $\\gamma$-Ray Background

    CERN Document Server

    Stecker, F W; Done, C

    1999-01-01

    In this paper, we suggest a new hypothesis for explaining the spectrum of the extragalactic MeV gamma-ray background as observed by COMPTEL and SMM. We propose that both the flux level and spectrum can be accounted for as a superposition of non-thermal MeV tails in the spectra of Seyfert galaxies and other AGN. Although present detectors are not sensitive enough to obtain MeV data from individual extragalactic sources, indirect evidence in support of our hypothesis is found in OSSE and COMPTEL observations of the galactic black hole candidate Cygnus X-1.

  4. Advancements in the Field of Quantum Dots

    Science.gov (United States)

    Mishra, Sambeet; Tripathy, Pratyasha; Sinha, Swami Prasad.

    2012-08-01

    Quantum dots are defined as very small semiconductor crystals of size varying from nanometer scale to a few micron i.e. so small that they are considered dimensionless and are capable of showing many chemical properties by virtue of which they tend to be lead at one minute and gold at the second minute.Quantum dots house the electrons just the way the electrons would have been present in an atom, by applying a voltage. And therefore they are very judiciously given the name of being called as the artificial atoms. This application of voltage may also lead to the modification of the chemical nature of the material anytime it is desired, resulting in lead at one minute to gold at the other minute. But this method is quite beyond our reach. A quantum dot is basically a semiconductor of very tiny size and this special phenomenon of quantum dot, causes the band of energies to change into discrete energy levels. Band gaps and the related energy depend on the relationship between the size of the crystal and the exciton radius. The height and energy between different energy levels varies inversely with the size of the quantum dot. The smaller the quantum dot, the higher is the energy possessed by it.There are many applications of the quantum dots e.g. they are very wisely applied to:Light emitting diodes: LEDs eg. White LEDs, Photovoltaic devices: solar cells, Memory elements, Biology : =biosensors, imaging, Lasers, Quantum computation, Flat-panel displays, Photodetectors, Life sciences and so on and so forth.The nanometer sized particles are able to display any chosen colour in the entire ultraviolet visible spectrum through a small change in their size or composition.

  5. The Italian project for a hadrontherapy centre

    Energy Technology Data Exchange (ETDEWEB)

    Amaldi, U. [European Organization for Nuclear Research, Geneva (Switzerland)]|[Universita di Milano, Como Seat, Via Lucini 3, 22100 Como (Italy); Arduini, G. [ASP, Villa Gualino, Via Settimio Severo 65, 10133 Torino (Italy); Badano, L. [Fondazione per Adroterapia Oncologica, Via Puccini 11, 28100 Novara (Italy); Cambria, R. [Fondazione per Adroterapia Oncologica, Via Puccini 11, 28100 Novara (Italy); Campi, D. [European Organization for Nuclear Research, Geneva (Switzerland); Gerardi, F. [Fondazione Italiana Ricerca sul Cancro, Via F. Corridoni 7, 20122 Milano (Italy); Gramatica, F. [Fondazione per Adroterapia Oncologica, Via Puccini 11, 28100 Novara (Italy); Leone, R. [Fondazione Italiana Ricerca sul Cancro, Via F. Corridoni 7, 20122 Milano (Italy); Manfredi, G. [Consiglio Nazionale delle Ricerche, ITBA, Via Ampere 56, 20131 Milano (Italy); Nonis, M. [Fondazione per Adroterapia Oncologica, Via Puccini 11, 28100 Novara (Italy); Pullia, M. [Fondazione per Adroterapia Oncologica, Via Puccini 11, 28100 Novara (Italy); Rossi, S. [Fondazione per Adroterapia Oncologica, Via Puccini 11, 28100 Novara (Italy); Sangaletti, L. [Fondazione Italiana Ricerca sul Cancro, Via F. Corridoni 7, 20122 Milano (Italy); Silari, M. [Consiglio Nazionale delle Ricerche, ITBA, Via Ampere 56, 20131 Milano (Italy); Tosi, G. [Fondazione per Adroterapia Oncologica, Via Puccini 11, 28100 Novara (Italy)]|[Istituto Europeo di Oncologia, Via Ripamonti 435, 22100 Milano (Italy)

    1995-06-01

    A feasibility study has just been completed for a hospital-based hadrontherapy facility to be built in Italy. This facility aims at the treatment of 1000 patients/year in 5 treatment rooms served by a H{sup -}/light ion synchrotron producing proton beams with energies ranging from 60 to 250 MeV. Generation of neutron beams for boron neutron capture therapy and production of positron emitting radionuclides for PET diagnostics is also foreseen. After an account of the rationale for the use of hadron beams in radiation therapy, a brief overview is given of both the technical components and the facility layout. Two of the treatment rooms will be equipped with a rotating isocentric irradiation unit. The design foresees the possibility of implementing, as a future development, acceleration of fully stripped light ions up to {sup 16}O to energies in the 120-400 MeV/u range. (orig.).

  6. Graphene Quantum Dots Interfaced with Single Bacterial Spore for Bio-Electromechanical Devices: A Graphene Cytobot

    Science.gov (United States)

    Sreeprasad, T. S.; Nguyen, Phong; Alshogeathri, Ahmed; Hibbeler, Luke; Martinez, Fabian; McNeil, Nolan; Berry, Vikas

    2015-03-01

    The nanoarchitecture and micromachinery of a cell can be leveraged to fabricate sophisticated cell-driven devices. This requires a coherent strategy to derive cell's mechanistic abilities, microconstruct, and chemical-texture towards such microtechnologies. For example, a microorganism's hydrophobic membrane encapsulating hygroscopic constituents allows it to sustainably withhold a high aquatic pressure. Further, it provides a rich surface chemistry available for nano-interfacing and a strong mechanical response to humidity. Here we demonstrate a route to incorporate a complex cellular structure into microelectromechanics by interfacing compatible graphene quantum dots (GQDs) with a highly responsive single spore microstructure. A sensitive and reproducible electron-tunneling width modulation of 1.63 nm within a network of GQDs chemically-secured on a spore was achieved via sporal hydraulics with a driving force of 299.75 Torrs (21.7% water at GQD junctions). The electron-transport activation energy and the Coulomb blockade threshold for the GQD network were 35 meV and 31 meV, respectively; while the inter-GQD capacitance increased by 1.12 folds at maximum hydraulic force. This is the first example of nano/bio interfacing with spores and will lead to the evolution of next-generation bio-derived microarchitectures, probes for cellular/biochemical processes, biomicrorobotic-mechanisms, and membranes for micromechanical actuation.

  7. Graphene quantum dots interfaced with single bacterial spore for bio-electromechanical devices: a graphene cytobot.

    Science.gov (United States)

    Sreeprasad, T S; Nguyen, Phong; Alshogeathri, Ahmed; Hibbeler, Luke; Martinez, Fabian; McNeil, Nolan; Berry, Vikas

    2015-03-16

    The nanoarchitecture and micromachinery of a cell can be leveraged to fabricate sophisticated cell-driven devices. This requires a coherent strategy to derive cell's mechanistic abilities, microconstruct, and chemical-texture towards such microtechnologies. For example, a microorganism's hydrophobic membrane encapsulating hygroscopic constituents allows it to sustainably withhold a high aquatic pressure. Further, it provides a rich surface chemistry available for nano-interfacing and a strong mechanical response to humidity. Here we demonstrate a route to incorporate a complex cellular structure into microelectromechanics by interfacing compatible graphene quantum dots (GQDs) with a highly responsive single spore microstructure. A sensitive and reproducible electron-tunneling width modulation of 1.63 nm within a network of GQDs chemically-secured on a spore was achieved via sporal hydraulics with a driving force of 299.75 Torrs (21.7% water at GQD junctions). The electron-transport activation energy and the Coulomb blockade threshold for the GQD network were 35 meV and 31 meV, respectively; while the inter-GQD capacitance increased by 1.12 folds at maximum hydraulic force. This is the first example of nano/bio interfacing with spores and will lead to the evolution of next-generation bio-derived microarchitectures, probes for cellular/biochemical processes, biomicrorobotic-mechanisms, and membranes for micromechanical actuation.

  8. Submonolayer Quantum Dot Infrared Photodetector

    Science.gov (United States)

    Ting, David Z.; Bandara, Sumith V.; Gunapala, Sarath D.; Chang, Yia-Chang

    2010-01-01

    A method has been developed for inserting submonolayer (SML) quantum dots (QDs) or SML QD stacks, instead of conventional Stranski-Krastanov (S-K) QDs, into the active region of intersubband photodetectors. A typical configuration would be InAs SML QDs embedded in thin layers of GaAs, surrounded by AlGaAs barriers. Here, the GaAs and the AlGaAs have nearly the same lattice constant, while InAs has a larger lattice constant. In QD infrared photodetector, the important quantization directions are in the plane perpendicular to the normal incidence radiation. In-plane quantization is what enables the absorption of normal incidence radiation. The height of the S-K QD controls the positions of the quantized energy levels, but is not critically important to the desired normal incidence absorption properties. The SML QD or SML QD stack configurations give more control of the structure grown, retains normal incidence absorption properties, and decreases the strain build-up to allow thicker active layers for higher quantum efficiency.

  9. Quantum dots as biophotonics tools.

    Science.gov (United States)

    Cesar, Carlos L

    2014-01-01

    This chapter provides a short review of quantum dots (QDs) physics, applications, and perspectives. The main advantage of QDs over bulk semiconductors is the fact that the size became a control parameter to tailor the optical properties of new materials. Size changes the confinement energy which alters the optical properties of the material, such as absorption, refractive index, and emission bands. Therefore, by using QDs one can make several kinds of optical devices. One of these devices transforms electrons into photons to apply them as active optical components in illumination and displays. Other devices enable the transformation of photons into electrons to produce QDs solar cells or photodetectors. At the biomedical interface, the application of QDs, which is the most important aspect in this book, is based on fluorescence, which essentially transforms photons into photons of different wavelengths. This chapter introduces important parameters for QDs' biophotonic applications such as photostability, excitation and emission profiles, and quantum efficiency. We also present the perspectives for the use of QDs in fluorescence lifetime imaging (FLIM) and Förster resonance energy transfer (FRET), so useful in modern microscopy, and how to take advantage of the usually unwanted blinking effect to perform super-resolution microscopy.

  10. Electromechanical transition in quantum dots

    Science.gov (United States)

    Micchi, G.; Avriller, R.; Pistolesi, F.

    2016-09-01

    The strong coupling between electronic transport in a single-level quantum dot and a capacitively coupled nanomechanical oscillator may lead to a transition towards a mechanically bistable and blocked-current state. Its observation is at reach in carbon-nanotube state-of-art experiments. In a recent publication [Phys. Rev. Lett. 115, 206802 (2015), 10.1103/PhysRevLett.115.206802] we have shown that this transition is characterized by pronounced signatures on the oscillator mechanical properties: the susceptibility, the displacement fluctuation spectrum, and the ring-down time. These properties are extracted from transport measurements, however the relation between the mechanical quantities and the electronic signal is not always straightforward. Moreover the dependence of the same quantities on temperature, bias or gate voltage, and external dissipation has not been studied. The purpose of this paper is to fill this gap and provide a detailed description of the transition. Specifically we find (i) the relation between the current-noise and the displacement spectrum; (ii) the peculiar behavior of the gate-voltage dependence of these spectra at the transition; (iii) the robustness of the transition towards the effect of external fluctuations and dissipation.

  11. Quantum dots for terahertz generation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H C; Aslan, B; Gupta, J A; Wasilewski, Z R; Aers, G C; SpringThorpe, A J; Buchanan, M [Institute for Microstructural Sciences, National Research Council, Ottawa, K1A 0R6 (Canada)], E-mail: h.c.liu@nrc.ca

    2008-09-24

    Nanostructures made of semiconductors, such as quantum wells and quantum dots (QD), are well known, and some have been incorporated in practical devices. Here we focus on novel structures made of QDs and related devices for terahertz (THz) generation. Their potential advantages, such as low threshold current density, high characteristic temperature, increased differential gain, etc, make QDs promising candidates for light emitting applications in the THz region. Our idea of using resonant tunneling through QDs is presented, and initial results on devices consisting of self-assembled InAs QDs in an undoped GaAs matrix, with a design incorporating a GaInNAs/GaAs short period superlattice, are discussed. Moreover, shallow impurities are also being explored for possible THz emission: the idea is based on the tunneling through bound states of individual donor or acceptor impurities in the quantum well. Initial results on devices having an AlGaAs/GaAs double-barrier resonant tunneling structure are discussed.

  12. Some Relevant Aspects in the Design and Construction of a 30-62 MeV Linac Booster for Proton Therapy

    CERN Document Server

    Vaccaro, V G

    2004-01-01

    Recent results in accelerator physics showed the feasibility of a coupling scheme between a cyclotron and a linac for proton acceleration. Cyclotrons with energies up to 30 MeV, mainly devoted to radioisotopes production, are available in a large number of medical centres. This suggested to design a linac booster able to increase the proton energy up to 62 MeV as required for treating tumours like the ocular ones. In this paper we will review the rationale of the project; we will discuss the basic design of a compact 3 GHz SCL (Side Coupled Linac) with a new approach to the linac cavities. Among the many challenges of such a project one of the most interesting is the tuning of the cavities. Because the tuning can be done only after assembling the system, it is difficult to detect which cavities are responsible for the detuning: indeed the resonant behavior of single cavity is lost since the resonances merge into the resonant modes of the whole system. It is shown how, from the measured mode frequencies of the...

  13. Formation of slab waveguides in eulytine type BGO and CaF{sub 2} crystals by implantation of MeV nitrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Banyasz, I., E-mail: bakonyjako@yahoo.es [Department of Crystal Physics, Research Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Berneschi, S. [Centro Studi e Ricerche ' Enrico Fermi' , Piazza del Viminale 2, 00184 Roma (Italy); MDF-Lab, ' ' Nello Carrara' ' Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Khanh, N.Q.; Lohner, T. [Research Institute for Technical Physics and Materials Science of the Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Lengyel, K. [Department of Crystal Physics, Research Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Fried, M. [Research Institute for Technical Physics and Materials Science of the Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Peter, A. [Department of Crystal Physics, Research Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Petrik, P.; Zolnai, Z. [Research Institute for Technical Physics and Materials Science of the Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Watterich, A. [Department of Crystal Physics, Research Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Nunzi-Conti, G.; Pelli, S.; Righini, G.C. [MDF-Lab, ' ' Nello Carrara' ' Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy)

    2012-09-01

    Ion implantation, compared with other waveguide fabrication methods, has some unique advantages. It has proved to be a universal technique for producing waveguides in most optical materials. The authors of the present article reported fabrication of channel and slab waveguides in an Erbium-doped tungsten tellurite glass by implantation of MeV energy N{sup +} ions. The present article reports successful adaptation of the same technique to the fabrication of slab waveguides in eulytine type bismuth germanate (BGO) and CaF{sub 2} crystals. This is the first report on successful waveguide fabrication in these materials using 3.5 MeV N{sup +} ions at implanted fluences between 5 Multiplication-Sign 10{sup 15} and 4 Multiplication-Sign 10{sup 16} ions/cm{sup 2}. Spectroscopic ellipsometric measurements revealed the existence of guiding structures in both materials. M-line spectroscopic measurements indicated guiding effect in the as-implanted BGO up to 1550 nm and up to 980 nm in the as-implanted CaF{sub 2}. Ion implantation induced the appearance of three peaks in the UV/Vis absorption spectrum of CaF{sub 2}, that can be attributed to colour centres.

  14. Comparison of bactericidal efficiency of 7.5 MeV X-rays, gamma-rays, and 10 MeV e-beams

    Science.gov (United States)

    Song, Beom-Seok; Lee, Yunjong; Moon, Byeong-Geum; Go, Seon-Min; Park, Jong-Heum; Kim, Jae-Kyung; Jung, Koo; Kim, Dong-Ho; Ryu, Sang-Ryeol

    2016-08-01

    This study was performed to verify the feasibility of 7.5 MeV X-rays for food pasteurization through a comparison of the bactericidal efficiency with those of other sources for selected bacterial pathogens. No significant differences were observed between the overall bactericidal efficiency for beef-inoculated pathogens based on the uncertainty of the absorbed dose and variations in bacterial counts. This result supported that all three irradiation sources were effective for inactivation of food-borne bacteria and that 7.5 MeV X-rays may be used for food pasteurization.

  15. An improved time of flight gamma-ray telescope to monitor diffuse gamma-ray in the energy range 5 MeV - 50 MeV

    Science.gov (United States)

    Dacostafereiraneri, A.; Bui-Van, A.; Lavigne, J. M.; Sabaud, C.; Vedrenne, G.; Agrinier, B.; Gouiffes, C.

    1985-01-01

    A time of flight measuring device is the basic triggering system of most of medium and high energy gamma-ray telescopes. A simple gamma-ray telescope has been built in order to check in flight conditions the functioning of an advanced time of flight system. The technical ratings of the system are described. This telescope has been flown twice with stratospheric balloons, its axis being oriented at various Zenital directions. Flight results are presented for diffuse gamma-rays, atmospheric secondaries, and various causes of noise in the 5 MeV-50 MeV energy range.

  16. Controlling quantum dot emission by integration of semiconductor nanomembranes onto piezoelectric actuators

    Energy Technology Data Exchange (ETDEWEB)

    Rastelli, A.; Plumhof, J.D.; Kumar, S.; Trotta, R.; Atkinson, P.; Zallo, E.; Krapek, V.; Schroeter, J.R.; Kiravittaya, S.; Benyoucef, M.; Thurmer, D.J.; Grimm, D.; Schmidt, O.G. [Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstrasse 20, 01069 Dresden (Germany); Ding, F.; Zander, T. [Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstrasse 20, 01069 Dresden (Germany); Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Deneke, C. [Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstrasse 20, 01069 Dresden (Germany); Laboratorio Nacional de Nanotecnologia (LNNano), Rua Giuseppe Maximo Scolfaro 10000, 13083-100 Campinas, SP (Brazil); Malachias, A. [Departamento de Fisica, Universidade Federal de Minas Gerais, CP 702, 30123-970 Belo Horizonte, MG (Brazil); Herklotz, A.; Doerr, K. [Institute for Metallic Materials, IFW Dresden, Helmholtzstrasse 20, 01069 Dresden (Germany); Singh, R.; Bester, G. [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Hafenbrak, R.; Joens, K.D.; Michler, P. [Institut fuer Halbleiteroptik und Funktionelle Grenzflaechen, University of Stuttgart, Allmandring 3, 70569 Stuttgart (Germany)

    2012-04-15

    This paper reviews the recent advances obtained by integrating semiconductor epitaxial films with embedded self-assembled quantum dots (QDs) on top of single-crystal piezoelectric substrates made of lead magnesium niobate-lead titanate (PMN-PT). This combination allows us to study in detail the effects produced by variable strains (up to about {+-} 0.2%) on the excitonic emission of single QDs and to add a powerful ''tuning knob'' to QDs. Biaxial stress can be used to reversibly shift the emission wavelength of QDs in a spectral range wider than 10 meV and to modify the relative binding energies of excitonic species. Anisotropic stress has instead a strong influence on the fine structure splitting of neutral excitons. Finally, we present experimental results on the effect of biaxial strain on the optical modes of microring optical resonators and show a simple approach enabling the compensation of piezo-creep via a closed-loop system. Schematic illustration of a QD membrane integrated on top of a PMN-PT substrate. Stress provided by the piezoelectric substrate allows broad range tuning of the emission properties of the overlying dots. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Modulation of Quantum Dot Energy Levels by Surface Acoustic Waves for use as a Triggered Photon Source

    Science.gov (United States)

    Hubert, Colin

    The foundation for a triggered photon source was realized by convolving the energy bandgap of a quantum dot with a surface acoustic wave. The devices consisted of an InP substrate on which InAs/InP quantum dots were grown. It was then coated with a layer of piezoelectric ZnO by radio-frequency magnetic sputtering. Modulation of the device was enabled through aluminum interdigitated transducers that were deposited on the sample, which excited surface acoustic waves. The expected resonance of the interdigitated transducers was around 200 MHz. However, resonances at 200 MHz and 300 MHz were recorded, due a Sezawa mode excitation. The preferential excitation of modes was likely due to variations in the ZnO film thickness. The target quantum dot emission was around 1550 nm, matching with the C-band used in fibre optic communication channels. The largest wavelength measured for the ground state energy emissions from these dots was 1580 nm, though typical lowest energy emission peaks were in the range of 1300-1400 nm. Unidirectional Stark shifts in the photoluminescence emission of the quantum dots were observed as surface acoustic waves were applied. This quantum confined Stark effect is thought to be due the polarization of the InP/InAs due to the electric field in the ZnO layer, providing a second order effect. The electrical field from the ZnO layer potentially contributes a linear effect. The modulation of the quantum dot energy is due to the strain field but due to the electrical coupling form the ZnO layer, exact determination of the strain field's contribution is not possible. The emission modulation effect is quadratically dependent on both applied SAW power and inital emission energy. Convolution of the quantum dot emission with the surface acoustic wave-induced bandgap modulation was also observed, resulting in a split emission peak. A splitting of 4.97 meV was observed using a linear surface acoustic wave power density of at least 1.69 W/m and a laser

  18. Inorganic passivation and doping control in colloidal quantum dot photovoltaics

    KAUST Repository

    Hoogland, Sjoerd H.

    2012-01-01

    We discuss strategies to reduce midgap trap state densities in colloidal quantum dot films and requirements to control doping type and magnitude. We demonstrate that these improvements result in colloidal quantum dot solar cells with certified 7.0% efficiency.

  19. Low energy use at Vaestervik sports centre

    Energy Technology Data Exchange (ETDEWEB)

    2009-05-15

    Vaestervik, in south Sweden, has saved both energy and money since modern energy efficiency equipment was installed in its swimming pool and bowling alley. Energy use in the sports centre has so far fallen by around 830 MWh/year, and operating costs have been reduced by efficient heat recovery. Energy efficiency at the Vaestervik sports centre is a good example of how a local authority can save energy and money by installing modern equipment for ventilation and heat recovery in a facility with high energy consumption. The well-used sports centre, including a swimming pool and bowling alley, is in central Vaestervik. In 1999 the Municipality received grants from the local investment programme (LIP) to improve the facility's energy efficiency. An efficient ventilation system with a dehumidifier and heat exchanger was installed at the swimming pool, reducing the need to introduce cold air. In addition the bowling alley, which did not have heat recovery, was given a modern heat-recovery plant. - Lower operating costs due to efficient heat recovery. - Reduced energy use (electricity and district heating) for the plant at around 830 MWh/year. The modern and highly efficient units for heat recovery, dehumidification and heat exchange result in lower operating costs and reduced energy use, which means that the Municipality of Vaestervik saves energy and money. Installation at the swimming pool resulted in slightly higher air humidity, but a relative humidity of 60% is common in swimming pools and difficult to reduce without inconveniencing bathers. A new fan room installed in the roof contributed to higher than anticipated costs, but the financial and economic gains outweigh these. New frequency-controlled circulation pumps for the pool water were installed in 2007. They are to have occupancy control capability, giving a further improvement of energy saving and heat recovery

  20. Photoluminescence of carbon dots from mesoporous silica

    Science.gov (United States)

    Nelson, D. K.; Razbirin, B. S.; Starukhin, A. N.; Eurov, D. A.; Kurdyukov, D. A.; Stovpiaga, E. Yu; Golubev, V. G.

    2016-09-01

    Photophysical properties of carbon dots were investigated under various excitation conditions and over a wide temperature region - from room to liquid helium temperatures. The carbon dots (CDs) were synthesized using mesoporous silica particles as a reactor and (3-aminopropyl)triethoxysilane (APTES) as a precursor. The photoluminescence spectra of CDs exhibit a strong dependence on the excitation wavelength and demonstrate a significant inhomogeneous broadening. Lowering sample temperature reveals the doublet structure of the spectra, which is associated with the vibronic structure of radiative transitions. The vibration energy ∼1200 cm-1 is close to the energy of Csbnd O stretching vibration. Long-lived phosphorescence of carbon dots with its decay time ∼0.2 s at T = 80 K was observed. The fluorescence and phosphorescence spectra are shown to be spectrally separated. The long-lived component of the emission was ascribed to optically forbidden triplet-singlet transitions. The value of the singlet-triplet splitting was found to be about 0.3 eV. Photo-induced polarization of the luminescence of carbon dots was revealed. The degree of the linear polarization is dependent on the wavelengths of both excitation and emitted light. The effect indicates a hidden anisotropy of optical dipole transitions in the dots and demonstrates the loss of the dipole orientation during the electron energy relaxation.

  1. Biological Inspiration in Human Centred Robotics

    Institute of Scientific and Technical Information of China (English)

    HU Huo-sheng; LIU Jin-dong; Calderon Carlos A

    2004-01-01

    Human centred robotics (HCR) concerns with the development of various kinds of intelligent systems and robots that will be used in environments coexisting with humans. These systems and robots will be interactive and useful assistants/companions for people in different ages, situations, activities and environments in order to improve the quality of life. This paper presents the autors' current research work toward the development of advanced theory and technologies for HCR applications, based on inspiration from biological systems. More specifically, both bio-mimetic system modelling and robot learning by imitation are discussed respectively, and some preliminary results are demonstrated.

  2. Dynamics of B cells in germinal centres.

    Science.gov (United States)

    De Silva, Nilushi S; Klein, Ulf

    2015-03-01

    Humoral immunity depends on the germinal centre (GC) reaction during which somatically mutated high-affinity memory B cells and plasma cells are generated. Recent studies have uncovered crucial cues that are required for the formation and the maintenance of GCs and for the selection of high-affinity antibody mutants. In addition, it is now clear that these events are promoted by the dynamic movements of cells within and between GCs. These findings have resolved the complexities of the GC reaction in greater detail than ever before. This Review focuses on these recent advances and discusses their implications for the establishment of humoral immunity.

  3. The INTEGRAL science data centre (ISDC)

    DEFF Research Database (Denmark)

    Courvoisier, T.J.L.; Walter, Rasmus; Beckmann, V.;

    2003-01-01

    The INTEGRAL Science Data Centre (ISDC) provides the INTEGRAL data and means to analyse them to the scientific community. The ISDC runs a gamma ray burst alert system that provides the position of gamma ray bursts on the sky within seconds to the community. It operates a quick-look analysis...... of the data within few hours that detects new and unexpected sources as well as it monitors the instruments. The ISDC processes the data through a standard analysis the results of which are provided to the observers together with their data....

  4. Design study for a 500 MeV proton synchrotron with CSNS linac as an injector

    Science.gov (United States)

    Huang, Liang-Sheng; Ji, Hong-Fei; Wang, Sheng

    2016-09-01

    Using the China Spallation Neutron Source (CSNS) linac as the injector, a 500 MeV proton synchrotron is proposed for multidisciplinary applications, such as biology, material science and proton therapy. The synchrotron will deliver proton beam with energy from 80 MeV to 500 MeV. A compact lattice design has been worked out, and all the important beam dynamics issues have been investigated. The 80 MeV H- beam is stripped and injected into the synchrotron by using multi-turn injection. In order to continuously extraction the proton with small beam loss, an achromatic structure is proposed and a slow extraction method with RF knock-out is adopted and optimized.

  5. Induced photonuclear interaction by Rhodotron-TT200 10 MeV electron beam

    Indian Academy of Sciences (India)

    Farshid Tabbakh; Mojtaba Mostajab Aldaavati; Mahdieh Hoseyni; Khadijeh Rezaee Ebrahim Saraee

    2012-02-01

    In this paper the photonuclear interaction induced by 10 MeV electron beam generating high-intensity neutrons is studied. Since the results depend on the target material, the calculations are performed for Pb, Ta and W targets which have high , in a simple geometry. MCNPX code has been used to simulate the whole process. Also, the results of photon generation has been compared with the experimental results to evaluate the reliability of the calculation. The results show that the obtained neutron flux can reach up to 1012 n/cm2 /s with average energies of 0.9 MeV, 0.4 MeV and 0.9 MeV for these three elements respectively with the maximum heat deposited as 3000 W/c3,4500 W/c3 and 6000 W/c3.

  6. Performance of the 6 MeV injector for the Moscow racetrack microtron

    Science.gov (United States)

    Alimov, A. S.; Chepurnov, A. S.; Chubarov, O. V.; Gribov, I. V.; Ishkhanov, B. S.; Piskarev, I. M.; Rzhanov, A. G.; Sotnikov, M. A.; Surma, I. V.; Shumakov, A. V.; Shvedunov, V. I.; Tiunov, A. V.; Ushkanov, V. A.

    1993-03-01

    The 6 MeV injector for the Moscow racetrack microtron is described. The work presents the accelerator description, the rf power supply system and results of the computer simulation. The method of injector tuning and experimental results are discussed.

  7. Beam diagnostics measurements at 3 MeV of the LINAC4 H- beam at CERN

    CERN Document Server

    Zocca, F; Duraffourg, M; Focker, G J; Gerard, D; Kolad, B; Lenardon, F; Ludwig, M; Raich, U; Roncarolo, F; Sordet, M; Tan, J; Tassan-Viol, J; Vuitton, C; Feshenko, A

    2014-01-01

    As part of the CERN LHC injector chain upgrade, LINAC4 [1, 2] will accelerate H- ions to 160 MeV, replacing the old 50 MeV proton linac. The ion source, the Low Energy Beam Transfer (LEBT) line, the 3 MeV Radio Frequency Quadrupole and the Medium Energy Beam Transfer (MEBT) line hosting a chopper, have been commissioned in the LINAC4 tunnel. Diagnostic devices are installed in the LEBT and MEBT line and in a movable diagnostics test bench which is temporarily added to the MEBT exit. The paper gives an overview of all the instruments used, including beam current transformers, beam position monitors, wire scanners and wire grids for transverse profile measurements, a longitudinal bunch shape monitor and a slit-and-grid emittance meter. The instrumentation performance is discussed and the measurement results that allowed characterizing the 3 MeV beam in the LINAC4 tunnel are summarized.

  8. LUMINESCENCE OF CADMIUM SULFIDE QUANTUM DOTS IN FLUOROPHOSPHATE GLASSES

    OpenAIRE

    Z. O. Lipatova; E. V. Kolobkova; V. A. Aseev

    2015-01-01

    Cadmium sulfide quantum dots are perspective materials in optics, medicine, biology and optoelectronics. Fluorophosphate glasses, doped with cadmium sulfide quantum dots, were examined in the paper. Heat treatment led to the formation of quantum dots with diameters equal to 2.8 nm, 3.0 nm and 3.8 nm. In view of such changes in the quantum dots size the fundamental absorption edge shift and the luminescence band are being displaced to the long wavelengths. Luminescence lifetime has been fou...

  9. Coherence and dephasing in self-assembled quantum dots

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Leosson, K.; Birkedal, Dan

    2003-01-01

    We measured dephasing times in InGaAl/As self-assembled quantum dots at low temperature using degenerate four-wave mixing. At 0K, the coherence time of the quantum dots is lifetime limited, whereas at finite temperatures pure dephasing by exciton-phonon interactions governs the quantum dot...... coherence. The inferred homogeneous line widths are significantly smaller than the line widths usually observed in the photoluminescence from single quantum dots indicating an additional inhomogeneours broadening mechanism in the latter....

  10. Quantum Dots and Their Multimodal Applications: A Review

    OpenAIRE

    Holloway, Paul H; Teng-Kuan Tseng; Lei Qian; Debasis Bera

    2010-01-01

    Semiconducting quantum dots, whose particle sizes are in the nanometer range, have very unusual properties. The quantum dots have band gaps that depend in a complicated fashion upon a number of factors, described in the article. Processing-structure-properties-performance relationships are reviewed for compound semiconducting quantum dots. Various methods for synthesizing these quantum dots are discussed, as well as their resulting properties. Quantum states and confinement of their excitons ...

  11. High energy resolution characteristics on 14MeV neutron spectrometer for fusion experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, Tetsuo [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.; Takada, Eiji; Nakazawa, Masaharu

    1996-10-01

    A 14MeV neutron spectrometer suitable for an ITER-like fusion experimental reactor is now under development on the basis of a recoil proton counter telescope principle in oblique scattering geometry. To verify its high energy resolution characteristics, preliminary experiments are made for a prototypical detector system. The comparison results show reasonably good agreement and demonstrate the possibility of energy resolution of 2.5% in full width at half maximum for 14MeV neutron spectrometry. (author)

  12. Coulomb dissociation of {sup 8}B at 254 A MeV

    Energy Technology Data Exchange (ETDEWEB)

    Suemmerer, K.; Boue, F.; Baumann, T.; Geissel, H.; Hellstroem, M.; Koczon, P.; Schwab, E.; Schwab, W.; Senger, P.; Surowiecz, A. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Iwasa, N.; Ozawa, A. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany)]|[RIKEN Institute of Physical and Chemical Research, Saitama (Japan); Surowka, G. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany)]|[Jagiellonian Univ., Krakow (Poland). Inst. of Physics; Blank, B.; Czajkowski, S.; Marchand, C.; Pravikoff, M.S. [Centre d`Etudes Nucleaires de Bordeaux-Gradignan, 33 (France); Foerster, A.; Lauer, F.; Oeschler, H.; Speer, J.; Sturm, C.; Uhlig, F.; Wagner, A. [Technische Univ. Darmstadt (Germany); Gai, M. [Connecticut Univ., Storrs, CT (United States). Dept. of Physics; Grosse, E. [Inst. fuer Kern- und Hadronenphysik, Forschungszentrum Rossendorf, Dresden (Germany); Kohlmeyer, B. [Philipps Univ., Marburg (Germany). Fachbereich Physik; Kulessa, R.; Walus, W. [Jagiellonian Univ., Krakow (Poland). Inst. of Physics; Motobayashi, T. [Rikkyo Univ., Tokyo (Japan). Dept. of Physics; Teranishi, T. [RIKEN Institute of Physical and Chemical Research, Saitama (Japan)

    1998-06-01

    As an alternative method for determining the astrophysical S-factor for the {sup 7}Be(p,{gamma}){sup 8}B reaction we have measured the Coulomb dissociation of {sup 8}B at 254 A MeV. From our preliminary results, we obtain good agreement with both the accepted direct-reaction measurements and the low-energy Coulomb dissociation study of Iwasa et al. performed at about 50 A MeV. (orig.)

  13. (n,Xn) measurements at 100 MeV. Recent developments and first results

    Energy Technology Data Exchange (ETDEWEB)

    Blideanu, V. [Lab. de Physique Corpusculaire, Caen (France); Blomgren, J.; Eudes, P.; Fontbonne, J.M.; Foucher, Y.; Guertin, A.; Hadad, F.; Hay, L.; Hildebrand, A.; Iltis, G.; Le Brun, C.; Lecolley, F.R.; Lecolley, J.F.; Lefort, T.; Louvel, M.; Mermod, P.; Marie, N.; Olsson, N.; Pomp, S.; Osterlund, M.; Prokoviev, A.V.

    2003-07-01

    In the framework of the HINDAS project, we have studied the feasibility of (n,Xn) measurements at intermediate energy (20-200 MeV). To achieve this goal, we have developed a new set-up and performed several experiments using the monoenergetic neutron beam facility at the Svedberg laboratory (Sweden). The performance of this set-up is illustrated by first results obtained in 100 MeV neutron-induced reactions on a lead target. (orig.)

  14. Measurement of Prompt Fission Neutron Spectrum of 238U at 2.8 MeV

    Institute of Scientific and Technical Information of China (English)

    HUANG; Han-xiong; RUAN; Xi-chao; REN; Jie; LI; Guang-wu; LUAN; Guang-yuan

    2015-01-01

    The prompt fission neutron spectrum(PFNS,Fig.1)of 238U was measured at 2.8MeV incident neutron energy by using the Cockcroft&Walton accelerator in China Institute of Atomic Energy(CIAE).The effect-to-background ratio was improved by increasing the amount of sample mass and adding an appropriate shielding.The final uncertainty of neutron energy spectrum is less than 20%below 10MeV region at an bin size

  15. Filtering algorithm for dotted interferences

    Energy Technology Data Exchange (ETDEWEB)

    Osterloh, K., E-mail: kurt.osterloh@bam.de [Federal Institute for Materials Research and Testing (BAM), Division VIII.3, Radiological Methods, Unter den Eichen 87, 12205 Berlin (Germany); Buecherl, T.; Lierse von Gostomski, Ch. [Technische Universitaet Muenchen, Lehrstuhl fuer Radiochemie, Walther-Meissner-Str. 3, 85748 Garching (Germany); Zscherpel, U.; Ewert, U. [Federal Institute for Materials Research and Testing (BAM), Division VIII.3, Radiological Methods, Unter den Eichen 87, 12205 Berlin (Germany); Bock, S. [Technische Universitaet Muenchen, Lehrstuhl fuer Radiochemie, Walther-Meissner-Str. 3, 85748 Garching (Germany)

    2011-09-21

    An algorithm has been developed to remove reliably dotted interferences impairing the perceptibility of objects within a radiographic image. This particularly is a major challenge encountered with neutron radiographs collected at the NECTAR facility, Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II): the resulting images are dominated by features resembling a snow flurry. These artefacts are caused by scattered neutrons, gamma radiation, cosmic radiation, etc. all hitting the detector CCD directly in spite of a sophisticated shielding. This makes such images rather useless for further direct evaluations. One approach to resolve this problem of these random effects would be to collect a vast number of single images, to combine them appropriately and to process them with common image filtering procedures. However, it has been shown that, e.g. median filtering, depending on the kernel size in the plane and/or the number of single shots to be combined, is either insufficient or tends to blur sharp lined structures. This inevitably makes a visually controlled processing image by image unavoidable. Particularly in tomographic studies, it would be by far too tedious to treat each single projection by this way. Alternatively, it would be not only more comfortable but also in many cases the only reasonable approach to filter a stack of images in a batch procedure to get rid of the disturbing interferences. The algorithm presented here meets all these requirements. It reliably frees the images from the snowy pattern described above without the loss of fine structures and without a general blurring of the image. It consists of an iterative, within a batch procedure parameter free filtering algorithm aiming to eliminate the often complex interfering artefacts while leaving the original information untouched as far as possible.

  16. Bright infrared LEDs based on colloidal quantum-dots

    KAUST Repository

    Sun, Liangfeng

    2013-01-01

    Record-brightness infrared LEDs based on colloidal quantum-dots have been achieved through control of the spacing between adjacent quantum-dots. By tuning the size of quantum-dots, the emission wavelengths can be tuned between 900nm and 1650nm. © 2013 Materials Research Society.

  17. AHE measurements of very thin films and nanosized dots

    NARCIS (Netherlands)

    Kikuchi, N.; Murillo, R.; Lodder, J.C.

    2005-01-01

    In this paper we present anomalous Hall effect analysis from very thin Co (0.5 nm) film, Co/Pt multilayers and large areas of nanosized dots as well as from a few magnetic dots having a diameter of 120 nm. The dot arrayis prepared from Co/Pt multilayer by using laser interference lithography (LIL) w

  18. Evidence for curvilinear interpolation from dot alignment judgements

    NARCIS (Netherlands)

    van Assen, MA; Vos, PG

    1999-01-01

    Visual interpolation between dots responsible for rectilinear versus curvilinear contour interpretation was examined with the psychophysical forced directional response (FDR) paradigm. Regular four-dot polygon segments, together with a target dot, were presented to the subjects for 150 ms. Subjects

  19. Toward structurally defined carbon dots as ultracompact fluorescent probes.

    Science.gov (United States)

    LeCroy, Gregory Ethan; Sonkar, Sumit Kumar; Yang, Fan; Veca, L Monica; Wang, Ping; Tackett, Kenneth N; Yu, Jing-Jiang; Vasile, Eugeniu; Qian, Haijun; Liu, Yamin; Luo, Pengju George; Sun, Ya-Ping

    2014-05-27

    There has been much discussion on the need to develop fluorescent quantum dots (QDs) as ultracompact probes, with overall size profiles comparable to those of the genetically encoded fluorescent tags. In the use of conventional semiconductor QDs for such a purpose, the beautifully displayed dependence of fluorescence color on the particle diameter becomes a limitation. More recently, carbon dots have emerged as a new platform of QD-like fluorescent nanomaterials. The optical absorption and fluorescence emissions in carbon dots are not bandgap in origin, different from those in conventional semiconductor QDs. The absence of any theoretically defined fluorescence color-dot size relationships in carbon dots may actually be exploited as a unique advantage in the size reduction toward having carbon dots serve as ultracompact QD-like fluorescence probes. Here we report on carbon dots of less than 5 nm in the overall dot diameter with the use of 2,2'-(ethylenedioxy)bis(ethylamine) (EDA) molecules for the carbon particle surface passivation. The EDA-carbon dots were found to be brightly fluorescent, especially over the spectral range of green fluorescent protein. These aqueous soluble smaller carbon dots also enabled more quantitative characterizations, including the use of solution-phase NMR techniques, and the results suggested that the dot structures were relatively simple and better-defined. The potential for these smaller carbon dots to serve as fluorescence probes of overall sizes comparable to those of fluorescent proteins is discussed.

  20. Coupling of single quantum dots to a photonic crystal waveguide

    DEFF Research Database (Denmark)

    Lund-Hansen, Toke; Stobbe, Søren; Julsgaard, Brian;

    . An alternative approach is to couple the quantum dot directly to the propagating mode of a photonic waveguide. We demonstrate the coupling of single quantum dots to a photonic crystal waveguide using time-resolved spontaneous emission measurements. A pronounced effect is seen in the decay rates of dots coupled...

  1. Charged-Exciton Complexes in Quantum Dots

    Institute of Scientific and Technical Information of China (English)

    XIE Wen-Fang

    2001-01-01

    It is known experimentally that stable charged-exciton complexes can exist in low-dimensional semiconductor nanostructures. Much less is known about the properties of such charged-exciton complexes since three-body problems are very difficult to be solved, even numerically. Here we introduce the correlated hyperspherical harmonics as basis functions to solve the hyperangular equation for negatively and positively charged excitons (trions) in a harmonic quantum dot. By using this method, we have calculated the energy spectra of the low-lying states of a charged exciton as a function of the radius of quantum dot. Based on symmetry analysis, the level crossover as the dot radius increases can be fully explained as the results of symmetry constraint.``

  2. Barrier Li Quantum Dots in Magnetic Fields

    Institute of Scientific and Technical Information of China (English)

    LIUYi-Min; LIXiao-Zhu; YANWen-Hong; BAOCheng-Guang

    2003-01-01

    The methods for the few-body system are introduced to investigate the states of the barrier Li quantum dots (QDs) in an arbitrary strength of magnetic field. The configuration, which consists of a positive ion located on the z-axis at a distaneed from the two-dimensional QD plane (the x-y plane) and three electrons in the dot plane bound by the positive ion, is called a barrier Li center. The system, which consists of three electrons in the dot plane bound by the ion,is called a barrier Li QD. The dependence of energy of the state of the barrier Li QD on an external magnetic field B and the distance d is obtained. The angular momentum L of the ground states is found to jump not only with the variation orB but also with d.

  3. Branch management into micropipeline joint dot

    Directory of Open Access Journals (Sweden)

    Dimitar Tyanev

    2011-11-01

    Full Text Available This paper considers problems related to hardware implementation of computational process with conditional jumps. Hardware refers to asynchronous pipeline organization at microoperational level. Exploration is dedicated to one of the tasks presented in (Tyanev, D., 2009 concerning to micropipeline controller design to control micropipeline stage into joint dot of branch algorithm. Joint dot is the point at which few preceding branches are combined. It appears inevitably into conditional jump structures and this is the reason for the actuality of its problem. Analysis of this new task is presented and request arbitration functioning principles are formulated for the incoming to joint dot requests. The arbiter is responsible for the fair choice on which depends steady peformance of separate pipeline brances. Paper also describes pipeline controller synthesis and analysis of its operation in two variants: about 2-phase and 4-phase data transfer protocol. The synthesized asynchronous arbiter scheme is invariant to the type of pipeline protocol.

  4. Angiogenic Profiling of Synthesized Carbon Quantum Dots.

    Science.gov (United States)

    Shereema, R M; Sruthi, T V; Kumar, V B Sameer; Rao, T P; Shankar, S Sharath

    2015-10-20

    A simple method was employed for the synthesis of green luminescent carbon quantum dots (CQDs) from styrene soot. The CQDs were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared, and Raman spectroscopy. The prepared carbon quantum dots did not show cellular toxicity and could successfully be used for labeling cells. We also evaluated the effects of carbon quantum dots on the process of angiogenesis. Results of a chorioallantoic membrane (CAM) assay revealed the significant decrease in the density of branched vessels after their treatment with CQDs. Further application of CQDs significantly downregulated the expression levels of pro-angiogenic growth factors like VEGF and FGF. Expression of VEGFR2 and levels of hemoglobin were also significantly lower in CAMs treated with CQDs, indicating that the CQDs inhibit angiogenesis. Data presented here also show that CQDs can selectively target cancer cells and therefore hold potential in the field of cancer therapy.

  5. Quantum Dots in Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Sollner, Immo Nathanael

    This Thesis is focused on the study of quantum electrodynamics in photonic crystal waveguides. We investigate the interplay between a single quantum dot and the fundamental mode of the photonic crystal waveguide. We demonstrate experimental coupling eciencies for the spontaneous emission...... into the mode exceeding 98% for emitters spectrally close to the band-edge of the waveguide mode. In addition we illustrate the broadband nature of the underlying eects, by obtaining coupling eciencies above 90% for quantum dots detuned from the band edge by as far as 20nm. These values are in good agreement...... quantum-dot-waveguide coupling. Such a structure is ideally suited for a number of applications in quantum information processing and among others we propose an on-chip spin-photon interface, a single photon transistor, and a deterministic cNOT gate....

  6. Measurement of the Am241(n,2n) reaction cross section from 7.6 MeV to 14.5 MeV

    Science.gov (United States)

    Tonchev, A. P.; Angell, C. T.; Boswell, M.; Crowell, A. S.; Fallin, B.; Hammond, S.; Howell, C. R.; Hutcheson, A.; Karwowski, H. J.; Kelley, J. H.; Pedroni, R. S.; Tornow, W.; Becker, J. A.; Dashdorj, D.; Kenneally, J.; Macri, R. A.; Stoyer, M. A.; Wu, C. Y.; Bond, E.; Chadwick, M. B.; Fitzpatrick, J.; Kawano, T.; Rundberg, R. S.; Slemmons, A.; Vieira, D. J.; Wilhelmy, J. B.

    2008-05-01

    The (n,2n) cross section of the radioactive isotope Am241 (T1/2=432.6 y) has been measured in the incident neutron energy range from 7.6 to 14.5 MeV in steps of a few MeV using the activation technique. Monoenergetic neutron beams were produced via the H2(d,n)He3 reaction by bombarding a pressurized deuterium gas cell with an energetic deuteron beam at the TUNL 10-MV Van de Graaff accelerator facility. The induced γ-ray activity of Am240 was measured with high-resolution HPGe detectors. The cross section was determined relative to Al, Ni, and Au neutron activation monitor foils, measured in the same geometry. Good agreement is obtained with previous measurements at around 9 and 14 MeV, whereas for a large discrepancy is observed when our data are compared to those reported by Perdikakis near 11 MeV. Very good agreement is found with the END-B/VII evaluation, whereas the JENDL-3.3 evaluation is in fair agreement with our data.

  7. Measurement of (n,Xn) reaction cross sections at 96 MeV; Measure des sections efficaces (n,Xn) a 96 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Sagrado Garcia, Melle Inmaculada C. [Ecole Doctorale: SINEM, U.F.R. de Sciences, Universite de Caen/Basse-Normandie, Esplanade Paix14000 Caen (France)

    2006-10-15

    Nucleon induced reactions in the 20-200 MeV energy range are intensively studied since a long time. The evaporation and the pre-equilibrium processes correspond to an important contribution of the production cross section in these reactions. Several theoretical approaches have been proposed and their predictions must be tested. The experimental results shown in this work are the only complete set of data for the (n,Xn) reactions in this energy range. Neutron double differential cross section measurements using lead and iron targets for an incident neutron beam at 96 MeV were carried out at TSL Laboratory in Uppsala, Sweden. The measurements have been performed for the first time with an energy threshold of 2 MeV and for a wide angular range (15 angle - 98 angle). Neutrons have been detected using two independent setups, DECOI and DEMON and CLODIA and SCANDAL, in order to cover the whole energy range (2-100) MeV. The angular distributions, the differential cross sections and the total inelastic production cross sections have been calculated using the double differential cross sections. The comparison between the experimental data and the predictions given by two of the most popular simulation codes, GEANT3 and MCNPX, have been performed, as well as the comparison with the predictions of the microscopic simulation model DYWAN, selected for its treatment of nucleon-nucleon reactions. (author)

  8. Photonuclear reaction based high-energy x-ray spectrometer to cover from 2 MeV to 20 MeV.

    Science.gov (United States)

    Sakata, S; Arikawa, Y; Kojima, S; Ikenouchi, T; Nagai, T; Abe, Y; Inoue, H; Morace, A; Utsugi, M; Kato, R; Nishimura, H; Nakai, M; Shiraga, H; Fujioka, S; Azechi, H

    2014-11-01

    A photonuclear-reaction-based hard x-ray spectrometer is developed to measure the number and energy spectrum of fast electrons generated by interactions between plasma and intense laser light. In this spectrometer, x-rays are converted to neutrons through photonuclear reactions, and the neutrons are counted with a bubble detector that is insensitive to x-rays. The spectrometer consists of a bundle of hard x-ray detectors that respond to different photon-energy ranges. Proof-of-principle experiment was performed on a linear accelerator facility. A quasi-monoenergetic electron bunch (Ne = 1.0 × 10(-6) C, Ee = 16 ± 0.32 MeV) was injected into a 5-mm-thick lead plate. Bremsstrahlung x-rays, which emanate from the lead plate, were measured with the spectrometer. The measured spectral shape and intensity agree fairly well with those computed with a Monte Carlo simulation code. The result shows that high-energy x-rays can be measured absolutely with a photon-counting accuracy of 50%-70% in the energy range from 2 MeV to 20 MeV with a spectral resolution (Δhν/hν) of about 15%. Quantum efficiency of this spectrometer was designed to be 10(-7), 10(-4), 10(-5), respectively, for 2-10, 11-15, and 15-25 MeV of photon energy ranges.

  9. WISB: Warwick Integrative Synthetic Biology Centre.

    Science.gov (United States)

    McCarthy, John

    2016-06-15

    Synthetic biology promises to create high-impact solutions to challenges in the areas of biotechnology, human/animal health, the environment, energy, materials and food security. Equally, synthetic biologists create tools and strategies that have the potential to help us answer important fundamental questions in biology. Warwick Integrative Synthetic Biology (WISB) pursues both of these mutually complementary 'build to apply' and 'build to understand' approaches. This is reflected in our research structure, in which a core theme on predictive biosystems engineering develops underpinning understanding as well as next-generation experimental/theoretical tools, and these are then incorporated into three applied themes in which we engineer biosynthetic pathways, microbial communities and microbial effector systems in plants. WISB takes a comprehensive approach to training, education and outreach. For example, WISB is a partner in the EPSRC/BBSRC-funded U.K. Doctoral Training Centre in synthetic biology, we have developed a new undergraduate module in the subject, and we have established five WISB Research Career Development Fellowships to support young group leaders. Research in Ethical, Legal and Societal Aspects (ELSA) of synthetic biology is embedded in our centre activities. WISB has been highly proactive in building an international research and training network that includes partners in Barcelona, Boston, Copenhagen, Madrid, Marburg, São Paulo, Tartu and Valencia.

  10. CMS tracker slides into centre stage

    CERN Multimedia

    2006-01-01

    As preparations for the magnet test and cosmic challenge get underway, a prototype tracker has been carefully inserted into the centre of CMS. The tracker, in its special platform, is slowly inserted into the centre of CMS. The CMS prototype tracker to be used for the magnet test and cosmic challenge coming up this summer has the same dimensions -2.5 m in diameter and 6 m in length- as the real one and tooling exactly like it. However, the support tube is only about 1% equipped, with 2 m2 of silicon detectors installed out of the total 200 m2. This is already more than any LEP experiment ever used and indicates the great care needed to be taken by engineers and technicians as these fragile detectors were installed and transported to Point 5. Sixteen thousand silicon detectors with a total of about 10 million strips will make up the full tracker. So far, 140 modules with about 100 000 strips have been implanted into the prototype tracker. These silicon strips will provide precision tracking for cosmic muon...

  11. ALICE opens its new nerve centre

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    Twenty-nine fully equipped and ergonomic workstations, one meeting area and 11 large format screens in a completely refurbished room: the ALICE Run Control Centre (ARC) implements the best and newest solutions for its shift workers and expert operators, including access for persons with reduced mobility and very soon a magic window for Point 2 visitors.   The ALICE Run Control Centre. “Our initial intention was just to optimise the old layout,” says Federico Ronchetti from Laboratori Nazionali di Frascati (Italy), a CERN scientific associate currently appointed as ALICE Run Coordinator and person in charge of the ALICE Consolidation Task Force. “However, during the review process, we carried out a study of all the existing control rooms at CERN and became aware we needed a radical change. Hence we started planning a complete redesign of the workspace.” Designed and equipped over many years, the old ALICE control room did not have enough space to fit al...

  12. KNMI Data Centre: Easy access for all

    Science.gov (United States)

    van de Vegte, John; Som de Cerff, Wim; Plieger, Maarten; de Vreede, Ernst; Sluiter, Raymond; Willem Noteboom, Jan; van der Neut, Ian; Verhoef, Hans; van Versendaal, Robert; van Binnendijk, Martin; Kalle, Henk; Knopper, Arthur; Spit, Jasper; Mastop, Joeri; Klos, Olaf; Calis, Gijs; Ha, Siu-Siu; van Moosel, Wim; Klein Ikkink, Henk-Jan; Tosun, Tuncay

    2013-04-01

    KNMI is the Dutch institute for weather, climate research and seismology. It disseminates weather information to the public at large, the government, aviation and the shipping industry in the interest of safety, the economy and a sustainable environment. To gain insight into long-term developments KNMI conducts research on climate change. Making the knowledge, data and information on hand at KNMI accessible is one core activity. A huge part of the KNMI information is from numerical models, insitu sensor networks and remote sensing satellites. This digital collection is mostly internal only available and is a collection of non searchable , non standardized file formats, lacking documentation and has no references to scientific publications. With the KNMI Data Centre (KDC) project these issues are tackled. In the project a user driven development approach with SCRUM was chosen to get maximum user involvement in a relative short development timeframe. Building on open standards and proven open source technology (which includes in-house developed software like ADAGUC WMS and Portal) resulted in a first release in December 2012 This presentation will focus on the aspects of KDC relating to its technical challenges, the development strategy and the initial usage results of the data centre.

  13. Direct spectroscopic evidence of ultrafast electron transfer from a low band gap polymer to CdSe quantum dots in hybrid photovoltaic thin films.

    Science.gov (United States)

    Couderc, Elsa; Greaney, Matthew J; Brutchey, Richard L; Bradforth, Stephen E

    2013-12-11

    Ultrafast transient absorption spectroscopy is used to study charge transfer dynamics in hybrid films composed of the low band gap polymer PCPDTBT and CdSe quantum dots capped with tert-butylthiol ligands. By selectively exciting the polymer, a spectral signature for electrons on the quantum dots appears on ultrafast time scales (≲ 65 fs), which indicates ultrafast electron transfer. From this time scale, the coupling between the polymer chains and the quantum dots is estimated to be J ≳ 17 meV. The reduced quantum dot acceptors exhibit an unambiguous spectral bleach signature, whose amplitude allows for the first direct calculation of the absolute electron transfer yield in a hybrid solar cell (82 ± 5%). We also show that a limitation of the hybrid system is rapid and measurable geminate recombination due to the small separation of the initial charge pair. The fast recombination is consistent with the internal quantum efficiency of the corresponding solar cell. We therefore have identified and quantified a main loss mechanism in this type of third generation solar cell.

  14. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications.

    Science.gov (United States)

    Zheng, Xin Ting; Ananthanarayanan, Arundithi; Luo, Kathy Qian; Chen, Peng

    2015-04-08

    The emerging graphene quantum dots (GQDs) and carbon dots (C-dots) have gained tremendous attention for their enormous potentials for biomedical applications, owing to their unique and tunable photoluminescence properties, exceptional physicochemical properties, high photostability, biocompatibility, and small size. This article aims to update the latest results in this rapidly evolving field and to provide critical insights to inspire more exciting developments. We comparatively review the properties and synthesis methods of these carbon nanodots and place emphasis on their biological (both fundamental and theranostic) applications.

  15. Resonant tunneling in graphene pseudomagnetic quantum dots.

    Science.gov (United States)

    Qi, Zenan; Bahamon, D A; Pereira, Vitor M; Park, Harold S; Campbell, D K; Neto, A H Castro

    2013-06-12

    Realistic relaxed configurations of triaxially strained graphene quantum dots are obtained from unbiased atomistic mechanical simulations. The local electronic structure and quantum transport characteristics of y-junctions based on such dots are studied, revealing that the quasi-uniform pseudomagnetic field induced by strain restricts transport to Landau level- and edge state-assisted resonant tunneling. Valley degeneracy is broken in the presence of an external field, allowing the selective filtering of the valley and chirality of the states assisting in the resonant tunneling. Asymmetric strain conditions can be explored to select the exit channel of the y-junction.

  16. Cadmium telluride quantum dots advances and applications

    CERN Document Server

    Donegan, John

    2013-01-01

    Optical Properties of Bulk and Nanocrystalline Cadmium Telluride, Núñez Fernández and M.I. VasilevskiyAqueous Synthesis of Colloidal CdTe Nanocrystals, V. Lesnyak, N. Gaponik, and A. EychmüllerAssemblies of Thiol-Capped CdTe Nanocrystals, N. GaponikFörster Resonant Energy Transfer in CdTe Nanocrystal Quantum Dot Structures, M. Lunz and A.L. BradleyEmission of CdTe Nanocrystals Coupled to Microcavities, Y.P. Rakovich and J.F. DoneganBiological Applications of Cadmium Telluride Semiconductor Quantum Dots, A. Le Cign

  17. Polymers in Carbon Dots: A Review

    Directory of Open Access Journals (Sweden)

    Yiqun Zhou

    2017-02-01

    Full Text Available Carbon dots (CDs have been widely studied since their discovery in 2004 as a green substitute of the traditional quantum dots due to their excellent photoluminescence (PL and high biocompatibility. Meanwhile, polymers have increasingly become an important component for both synthesis and modification of CDs to provide polymeric matrix and enhance their PL property. Furthermore, critical analysis of composites of CDs and polymers has not been available. Herein, in this review, we summarized the use of polymers in the synthesis and functionalization of CDs, and the applications of these CDs in various fields.

  18. Bilayer graphene quantum dot defined by topgates

    Energy Technology Data Exchange (ETDEWEB)

    Müller, André; Kaestner, Bernd; Hohls, Frank; Weimann, Thomas; Pierz, Klaus; Schumacher, Hans W., E-mail: hans.w.schumacher@ptb.de [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany)

    2014-06-21

    We investigate the application of nanoscale topgates on exfoliated bilayer graphene to define quantum dot devices. At temperatures below 500 mK, the conductance underneath the grounded gates is suppressed, which we attribute to nearest neighbour hopping and strain-induced piezoelectric fields. The gate-layout can thus be used to define resistive regions by tuning into the corresponding temperature range. We use this method to define a quantum dot structure in bilayer graphene showing Coulomb blockade oscillations consistent with the gate layout.

  19. Mitigation of quantum dot cytotoxicity by microencapsulation.

    Directory of Open Access Journals (Sweden)

    Amelia Romoser

    Full Text Available When CdSe/ZnS-polyethyleneimine (PEI quantum dots (QDs are microencapsulated in polymeric microcapsules, human fibroblasts are protected from acute cytotoxic effects. Differences in cellular morphology, uptake, and viability were assessed after treatment with either microencapsulated or unencapsulated dots. Specifically, QDs contained in microcapsules terminated with polyethylene glycol (PEG mitigate contact with and uptake by cells, thus providing a tool to retain particle luminescence for applications such as extracellular sensing and imaging. The microcapsule serves as the "first line of defense" for containing the QDs. This enables the individual QD coating to be designed primarily to enhance the function of the biosensor.

  20. Spectroscopic characteristics of carbon dots (C-dots) derived from carbon fibers and conversion to sulfur-bridged C-dots nanosheets.

    Science.gov (United States)

    Vinci, John C; Ferrer, Ivonne M; Guterry, Nathan W; Colón, Verónica M; Destino, Joel F; Bright, Frank V; Colón, Luis A

    2015-09-01

    We synthesized sub-10 nm carbon nanoparticles (CNPs) consistent with photoluminescent carbon dots (C-dots) from carbon fiber starting material. The production of different C-dots fractions was monitored over seven days. During the course of the reaction, one fraction of C-dots species with relatively high photoluminescence was short-lived, emerging during the first hour of reaction but disappearing after one day of reaction. Isolation of this species during the first hour of the reaction was crucial to obtaining higher-luminescent C-dots species. When the reaction proceeded for one week, the appearance of larger nanostructures was observed over time, with lateral dimensions approaching 200 nm. The experimental evidence suggests that these larger species are formed from small C-dot nanoparticles bridged together by sulfur-based moieties between the C-dot edge groups, as if the C-dots polymerized by cross-linking the edge groups through sulfur bridges. Their size can be tailored by controlling the reaction time. Our results highlight the variety of CNP products, from sub-10 nm C-dots to ~200 nm sulfur-containing carbon nanostructures, that can be produced over time during the oxidation reaction of the graphenic starting material. Our work provides a clear understanding of when to stop the oxidation reaction during the top-down production of C-dots to obtain highly photoluminescent species or a target average particle size.

  1. Photoluminescence studies of single InGaAs quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1999-01-01

    Semiconductor quantum dots are considered a promising material system for future optical devices and quantum computers. We have studied the low-temperature photoluminescence properties of single InGaAs quantum dots embedded in GaAs. The high spatial resolution required for resolving single dots...... to resolve luminescence lines from individual quantum dots, revealing an atomic-like spectrum of sharp transition lines. A parameter of fundamental importance is the intrinsic linewidth of these transitions. Using high-resolution spectroscopy we have determined the linewidth and investigated its dependence...... on temperature, which gives information about how the exciton confined to the quantum dot interacts with the surrounding lattice....

  2. The Influence of Formulating a Damping Solution on Dot Gain

    Directory of Open Access Journals (Sweden)

    Povilas Mikalainis

    2011-02-01

    Full Text Available Difference in dot gain using various additives to the damping solution was investigated on two offset web presses. Dot gain was measured using a densitometer and calculated considering CIE L*a*b* coordinates. It was found that while using a non alcohol additive instead of the alcohol one, dot gain became smaller and printing stability was lower. Changes in dot gain depend on the ink that may vary in colours. The influence of changes in dot gain on the colour was determined. Besides, it was found that differences in colour were unacceptable in many cases.Article in Lithuanian

  3. Photoluminescent carbon dots from 1,4-addition polymers.

    Science.gov (United States)

    Jiang, Zhiqiang; Nolan, Andrew; Walton, Jeffrey G A; Lilienkampf, Annamaria; Zhang, Rong; Bradley, Mark

    2014-08-25

    Photoluminescent carbon dots were synthesised directly by thermopyrolysis of 1,4-addition polymers, allowing precise control of their properties. The effect of polymer composition on the properties of the carbon dots was investigated by TEM, IR, XPS, elemental analysis and fluorescence analysis, with carbon dots synthesised from nitrogen-containing polymers showing the highest fluorescence. The carbon dots with high nitrogen content were observed to have strong fluorescence in the visible region, and culture with cells showed that the carbon dots were non-cytotoxic and readily taken up by three different cell lines.

  4. Electrically addressing a single self-assembled quantum dot

    CERN Document Server

    Ellis, D J P; Atkinson, P; Ritchie, D A; Shields, A J

    2006-01-01

    We report on the use of an aperture in an aluminum oxide layer to restrict current injection into a single self-assembled InAs quantum dot, from an ensemble of such dots within a large mesa. The insulating aperture is formed through the wet-oxidation of a layer of AlAs. Under photoluminescence we observe that only one quantum dot in the ensemble exhibits a Stark shift, and that the same single dot is visible under electroluminescence. Autocorrelation measurements performed on the electroluminescence confirm that we are observing emission from a single quantum dot.

  5. Sensitivity of quantum-dot semiconductor lasers to optical feedback.

    Science.gov (United States)

    O'Brien, D; Hegarty, S P; Huyet, G; Uskov, A V

    2004-05-15

    The sensitivity of quantum-dot semiconductor lasers to optical feedback is analyzed with a Lang-Kobayashi approach applied to a standard quantum-dot laser model. The carriers are injected into a quantum well and are captured by, or escape from, the quantum dots through either carrier-carrier or phonon-carrier interaction. Because of Pauli blocking, the capture rate into the dots depends on the carrier occupancy level in the dots. Here we show that different carrier capture dynamics lead to a strong modification of the damping of the relaxation oscillations. Regions of increased damping display reduced sensitivity to optical feedback even for a relatively large alpha factor.

  6. High-resolution photoluminescence studies of single semiconductor quantum dots

    DEFF Research Database (Denmark)

    Leosson, Kristjan; Østergaard, John Erland; Jensen, Jacob Riis;

    2000-01-01

    Semiconductor quantum dots, especially those formed by self-organized growth, are considered a promising material system for future optical devices [1] and the optical properties of quantum dot ensembles have been investigated in detail over the past years. Recently, considerable interest has...... developed in the study of single quantum dots, characterized by sharp atomic-like transition lines revealing their zero-dimensional density of states. Substantial information about the fundamental properties of individual quantum dots, as well as their interactions with other dots and the host lattice, can...

  7. A study of the lunisolar secular resonance $2\\dot{\\omega}+\\dot{\\Omega}=0$

    CERN Document Server

    Celletti, Alessandra

    2016-01-01

    The dynamics of small bodies around the Earth has gained a renewed interest, since the awareness of the problems that space debris can cause in the nearby future. A relevant role in space debris is played by lunisolar secular resonances, which might contribute to an increase of the orbital elements, typically of the eccentricity. We concentrate our attention on the lunisolar secular resonance described by the relation $2\\dot{\\omega}+\\dot{\\Omega}=0$, where $\\omega$ and $\\Omega$ denote the argument of perigee and the longitude of the ascending node of the space debris. We introduce three different models with increasing complexity. We show that the growth in eccentricity, as observed in space debris located in the MEO region at the inclination about equal to $56^\\circ$, can be explained as a natural effect of the secular resonance $2\\dot{\\omega}+\\dot{\\Omega}=0$, while the chaotic variations of the orbital parameters are the result of interaction and overlapping of nearby resonances.

  8. Complete identification of states in 208Pb below Ex=6.2 MeV

    Science.gov (United States)

    Heusler, A.; Jolos, R. V.; Faestermann, T.; Hertenberger, R.; Wirth, H.-F.; von Brentano, P.

    2016-05-01

    The Q3D magnetic spectrograph at the Maier-Leibnitz-Laboratorium of the Ludwig-Maximilians-Universität München and the Technische Universität München (Garching, Germany), was used to study the 208Pb(p ,p' ) , 206,207,208Pb (d,p), and 208Pb(d ,d' ) reactions. One hundred fifty-one states at Ex<6.20 MeV in 208Pb are identified and spin and parity assigned. Four states are newly identified and new spins and/or parities are assigned to 25 states. Tentative spin assignments are done to five states at 5.90 MeV . Nearly 50 levels below Ex=6.20 MeV listed by the Nuclear Data Sheets as of 2007 are recognized to be nonexistent or doubly placed. The schematic shell model describing one-particle-one-hole configurations without residual interaction is extended by including two-particle-two-hole configurations. The number of configurations thus predicted at Ex<6.20 MeV nearly agrees with the number of states identified. Several states with dominant two-particle-two-hole configurations are identified. New isobaric analog resonances in 209Bi with two-particle-one-hole structure are discovered at Eres=17.6 MeV . The excitation energies of 70 states with unnatural parity at Ex<6.20 MeV are found to agree within about 200 keV with one-particle-one-hole configurations predicted by the extended schematic shell model. In contrast, the excitation energies of about 20 natural parity states are more than 0.5 MeV lower than predicted, demonstrating the residual interaction among the configurations to be much larger for natural parity than for unnatural parity.

  9. Synthesis of CdSe quantum dots for quantum dot sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Neetu, E-mail: singh.neetu1985@gmail.com; Kapoor, Avinashi [Department of Electronic Science, University of Delhi South Campus, New Delhi-110 021 (India); Kumar, Vinod [Department of Physics, University of the Free State, Bloemfontein, ZA9300 (South Africa); Mehra, R. M. [School of Engineering and Technology, Sharda University, Greater Noida-201 306, U.P. (India)

    2014-04-24

    CdSe Quantum Dots (QDs) of size 0.85 nm were synthesized using chemical route. ZnO based Quantum Dot Sensitized Solar Cell (QDSSC) was fabricated using CdSe QDs as sensitizer. The Pre-synthesized QDs were found to be successfully adsorbed on front ZnO electrode and had potential to replace organic dyes in Dye Sensitized Solar Cells (DSSCs). The efficiency of QDSSC was obtained to be 2.06 % at AM 1.5.

  10. Children's Centre "3 in 1 - together"

    Science.gov (United States)

    Gancheva, Hristina

    2013-04-01

    "There are only two ways to life your live. One is as though nothing is a miracle. The other is as though everything is a miracle." Albert Einstein Children's Centre "3 in 1" is an extracurricular unit linked to the High School of Zlatartitsa, St. Cyril and St. Methodius, accomplished with the help of the municipality and many volunteers from the local community. With its activity it forms in children patriotic spirit, love for nature, active citizenship, and an impulse for a healthy life through communication with nature, saving the traditions and history, insurance of equality of the kids of the local five ethnicities and participation in activities in the sphere of science, art, sport and tourism. The educational work is mainly directed towards kids with difficulties with communication, hyperactivity, aggression, problems in their families, or those deprived of parental care. For a few years in the Children's Centre there have been clubs of interests: "Gardeners" - kids cultivate a garden. They plow, dig, plant, put in, irrigate and weed under the watch of Ms Stafka Nikolova, parents, and volunteers of the local community. The ecologically clean products - vegetables and fruits, kids use to cook delicious meals, sell, or give away. Weeds are also utilized; they are making herbarium out of them. "Cooks" - "What to have for lunch, when mom is out?". One can learn a lot of wonderful recipes from the club "Cooks". Products are own made, raised with love. In 2010, on the on the annual traditional holiday of the garden soup in Zlataritsa, the little cooks won third prize for making a delicious vegetable soup. On the same day, the 26 years old Nadezhda Savova, Cultural and Social Anthropology PhD in Princeton, founded the second community bakery in Bulgaria in Children's Centre "3 in1". Nadezhda Savova was declared traveler of 2012 by National Geographic. After the baking house in Gabrovo and Zlataritsa, Nadezhda also founded such projects in Sofia, Varna and Ruse

  11. Data communication at the CERN computer centre

    CERN Document Server

    Bruins, T; Pieters, R; Slettenhaar, Hendrik J; Van de Kerk, P

    1972-01-01

    The growing interest for on-line computer service and process control at CERN decentralises certain computer activities. Small process computers, remote batch stations and user terminals are to be backed by a powerful central computer. The present data network is principally star shaped. At the centre of it is a CDC 6600-6500 computer combination. It has a front end CDC 3100 computer with a Hewlett Packard 2116 as multiplexer. Some details about the fast parallel connections between the CDC 3100 and the HP 2116B are given in the paper, as well as descriptions of some computer simulation techniques used to test the present systems. Finally some plans on a future network are given. (12 refs).

  12. Learner-Centred Education in International Perspective

    Directory of Open Access Journals (Sweden)

    Michele Schweisfurth

    2013-04-01

    Full Text Available Abstract: This article provides an overview of Learner-Centred ducation (LCE as a travelling policy and outlines some of the arguments and pathways that have been used to fuel its travel. Despite the rich promises it offers and its proliferation as a global phenomenon and national policy, there is evidence that implementation and changes to classroom practice have proved to be problematic in many contexts. This seems particularly true in developing countries, and the article explores some of the reasons behind these perennial gaps. It concludes by arguing for the importance of both a birds-eye view and local understandings in researching and operationalising LCE, and suggests ways that the local and the global might be reconciled so that the promise of LCE is not lost in translation.

  13. MATERNAL MORTALITY IN A TERTIARY CARE CENTRE

    Directory of Open Access Journals (Sweden)

    Harpreet

    2013-06-01

    Full Text Available ABSTRACT: Maternal Mortality in A Tertiary Care Centre. OBJECTIVE: To study maternal mortality and the complications leading to maternal death. METHODS: A retrospective study of hospital record to study maternal mortality and its causes over 3 years from January 2010 to December 2012. RESULTS: There were a total of 58 maternal deaths out of 2823 live births giving a maternal mortality ratio of 2054.55 per one lakh live births. Unbooked and late referrals account for 77.58% of maternal deaths. The majority of deaths around 75.86% were in 20-30 years age group. Haemorrhage was the commonest causes of death (24.12% followed by sepsis (18.96% and pregnancy induced hypertension 15.51% Anemia contributed to the most common indirect cause of maternal morality. CONCLUSION: Haemorrhage, sepsis and pregnancy induced hypertension including eclampsia were the direct major causes of death. Anaemia and cardiac diseases were other indirect causes of death.

  14. Stimulated emission from NV centres in diamond

    CERN Document Server

    Jeske, Jan; McGuinness, Liam P; Reineck, Philip; Johnson, Brett C; McCallum, Jeffrey C; Jelezko, Fedor; Volz, Thomas; Cole, Jared H; Gibson, Brant C; Greentree, Andrew D

    2016-01-01

    Stimulated emission is the process fundamental to laser operation, thereby producing coherent photon output. Despite negatively-charged nitrogen-vacancy (NV$^-$) centres being discussed as a potential laser medium since the 1980's, there have been no definitive observations of stimulated emission from ensembles of NV$^-$ to date. Reasons for this lack of demonstration include the short excited state lifetime and the occurrence of photo-ionisation to the neutral charge state by light around the zero-phonon line. Here we show both theoretical and experimental evidence for stimulated emission from NV$^-$ states using light in the phonon-sidebands. Our system uses a continuous wave pump laser at 532 nm and a pulsed stimulating laser that is swept across the phononic sidebands of the NV$^-$. Optimal stimulated emission is demonstrated in the vicinity of the three-phonon line at 700 nm. Furthermore, we show the transition from stimulated emission to photoionisation as the stimulating laser wavelength is reduced fro...

  15. Project for a renewable energy research centre

    Directory of Open Access Journals (Sweden)

    Andrea Giachetta

    2011-04-01

    Full Text Available In Liguria, where sustainable approaches to the design, construction and management of buildings enjoy scant currency, the idea of a company from Milan (FERA s.r.l. setting up a research centre for studies into renewable energy resources, could well open up very interesting development opportunities.The project includes: environmental rehabilitation (restoration projects; strategies for the protection of water resources and waste management systems; passive and active solar systems (solar thermal and experiments with thermodynamic solar energy; hyperinsulation systems, passive cooling of buildings; use of natural materials; bio-climatic use of vegetation. The author describes the project content within the context of the multidisciplinary work that has gone into it.

  16. A novel POSS-coated quantum dot for biological application

    Directory of Open Access Journals (Sweden)

    Rizvi SB

    2012-08-01

    Full Text Available Sarwat B Rizvi,1 Lara Yildirimer,1 Shirin Ghaderi,1 Bala Ramesh,1 Alexander M Seifalian,1,2 Mo Keshtgar1,21UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, United Kingdom; 2Royal Free Hampstead NHS Trust Hospital, London, United KingdomAbstract: Quantum dots (QDs are fluorescent semiconductor nanocrystals that have the potential for major advancements in the field of nanomedicine through their unique photophysical properties. They can potentially be used as fluorescent probes for various biomedical imaging applications, including cancer localization, detection of micrometastasis, image guided surgery, and targeted drug delivery. Their main limitation is toxicity, which requires a biologically compatible surface coating to shield the toxic core from the surrounding environment. However, this leads to an increase in QD size that may lead to problems of excretion and systemic sequestration. We describe a one pot synthesis, characterization, and in vitro cytotoxicity of a novel polyhedral oligomeric silsesquioxane (POSS-coated CdTe-cored QD using mercaptosuccinic acid (MSA and D-cysteine as stabilizing agents. Characterization was performed using transmission electron microscopy Fourier transform infrared spectroscopy, and photoluminescence studies. POSS-coated QDs demonstrated high colloidal stability and enhanced photostability on high degrees of ultraviolet (UV excitation compared to QDs coated with MSA and D-cysteine alone (P value < 0.05. In vitro toxicity studies showed that both POSS and MSA-QDs were significantly less toxic than ionized salts of Cd+2 and Te-2. Confocal microscopy confirmed high brightness of POSS-QDs in cells at both 1 and 24 hours, indicating that these QDs are rapidly taken up by cells and remain photostable in a biological environment. We therefore conclude that a POSS coating confers biological compatibility, photostability, and colloidal

  17. Communications Centre Model in Insurance Business

    Directory of Open Access Journals (Sweden)

    Danijel Bara

    2013-07-01

    Full Text Available The aim of this paper is to define a communications centre model in an insurance company that essentially has two objectives. The first objective is focused on providing quality support with the sales process thereby creating a strategic advantage over the competition while the second objective is focused on improving the link between internal organizational units whose behaviour can often render decision-making at all levels difficult. The function of sales is fundamental for an insurance company. Whether an insurance company will fulfil its basic function, which is transfer of risk from the insured party to the insurer who agrees tonreimburse incidental damages to the damaged party and distribute them among all members of the risk group on the principles of reciprocity and solidarity, depends on successful sales and billing (Andrijašević & Petranović, 1999. For an insurance company to operate successfully in a demanding market, it is necessary to meet the needs of potential clients who then must be at the centre of all the activities of the insurer. A satisfied policy holder, who is respected by the insurer as a partner, is a guarantee that the sales of insurance services will be successful and that the insured party will come back to the same insurance company. In the era of globalization and all-pervading new technologies and modes of communication, policy holders need to be able to communicate with insurance company employees. Quality communication is a good foundation for a sales conversation. A fast flow of all types of information within an organisation using a single communication module makes decision-making at all levels quicker and easier.

  18. Optical Properties of Quantum-Dot-Doped Liquid Scintillators

    CERN Document Server

    Aberle, C; Weiss, S; Winslow, L

    2013-01-01

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO.

  19. Collaborating at a distance: operations centres, tools, and trends

    Energy Technology Data Exchange (ETDEWEB)

    Gottschalk, Erik E.; /Fermilab

    2009-05-01

    Successful operation of the LHC and its experiments is crucial to the future of the worldwide high-energy physics program. Remote operations and monitoring centres have been established for the CMS experiment in several locations around the world. The development of remote centres began with the LHC{at}FNAL ROC and has evolved into a unified approach with distributed centres that are collectively referred to as 'CMS Centres Worldwide'. An overview of the development of remote centres for CMS will be presented, along with a synopsis of collaborative tools that are used in these centres today and trends in the development of remote operations capabilities for high-energy physics.

  20. Producing Quantum Dots by Spray Pyrolysis

    Science.gov (United States)

    Banger, Kulbinder; Jin, Michael H.; Hepp, Aloysius

    2006-01-01

    An improved process for making nanocrystallites, commonly denoted quantum dots (QDs), is based on spray pyrolysis. Unlike the process used heretofore, the improved process is amenable to mass production of either passivated or non-passivated QDs, with computer control to ensure near uniformity of size.

  1. Enabling biomedical research with designer quantum dots

    NARCIS (Netherlands)

    Tomczak, N.; Janczewski, D.; Dorokhin, D.V.; Han, M-Y; Vancso, G.J.; Navarro, Melba; Planell, Josep A.

    2012-01-01

    Quantum Dots (QDs) are a new class of semiconductor nanoparticulate luminophores, which are actively researched for novel applications in biology and nanomedicine. In this review, the recent progress in the design and applications of QD labels for in vitro and in vivo imaging of cells is presented.

  2. Quantum dot waveguides: ultrafast dynamics and applications

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2009-01-01

    In this paper we analyze, based on numerical simulations, the dynamics of semiconductor devices incorporating quantum dots (QDs). In particular we emphasize the unique ultrafast carrier dynamics occurring between discrete QD bound states, and its influence on QD semiconductor optical amplifiers...... (SOAs). Also the possibility of realizing an all-optical regenerator by incorporating a QD absorber section in an amplifier structure is discussed....

  3. Amphoteric CdSe nanocrystalline quantum dots.

    Science.gov (United States)

    Islam, Mohammad A

    2008-06-25

    The nanocrystal quantum dot (NQD) charge states strongly influence their electrical transport properties in photovoltaic and electroluminescent devices, optical gains in NQD lasers, and the stability of the dots in thin films. We report a unique electrostatic nature of CdSe NQDs, studied by electrophoretic methods. When we submerged a pair of metal electrodes, in a parallel plate capacitor configuration, into a dilute solution of CdSe NQDs in hexane, and applied a DC voltage across the pair, thin films of CdSe NQDs were deposited on both the positive and the negative electrodes. Extensive characterizations including scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR) and Raman studies revealed that the films on both the positive and the negative electrodes were identical in every respect, clearly indicating that: (1) a fraction (<1%) of the CdSe NQDs in free form in hexane solution are charged and, more importantly, (2) there are equal numbers of positive and negative CdSe NQDs in the hexane solution. Experiments also show that the number of deposited dots is at least an order of magnitude higher than the number of initially charged dots, indicating regeneration. We used simple thermodynamics to explain such amphoteric nature and the charging/regeneration of the CdSe NQDs.

  4. Coherent transport through interacting quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Hiltscher, Bastian

    2012-10-05

    The present thesis is composed of four different works. All deal with coherent transport through interacting quantum dots, which are tunnel-coupled to external leads. There a two main motivations for the use of quantum dots. First, they are an ideal device to study the influence of strong Coulomb repulsion, and second, their discrete energy levels can easily be tuned by external gate electrodes to create different transport regimes. The expression of coherence includes a very wide range of physical correlations and, therefore, the four works are basically independent of each other. Before motivating and introducing the different works in more detail, we remark that in all works a diagrammatic real-time perturbation theory is used. The fermionic degrees of freedom of the leads are traced out and the elements of the resulting reduced density matrix can be treated explicitly by means of a generalized master equation. How this equation is solved, depends on the details of the problem under consideration. In the first of the four works adiabatic pumping through an Aharonov-Bohm interferometer with a quantum dot embedded in each of the two arms is studied. In adiabatic pumping transport is generated by varying two system parameters periodically in time. We consider the two dot levels to be these two pumping parameters. Since they are located in different arms of the interferometer, pumping is a quantum mechanical effect purely relying on coherent superpositions of the dot states. It is very challenging to identify a quantum pumping mechanism in experiments, because a capacitive coupling of the gate electrodes to the leads may yield an undesired AC bias voltage, which is rectified by a time dependent conductance. Therefore, distinguishing features of these two transport mechanisms are required. We find that the dependence on the magnetic field is the key feature. While the pumped charge is an odd function of the magnetic flux, the rectified current is even, at least in

  5. Decoherence in Nearly-Isolated Quantum Dots

    DEFF Research Database (Denmark)

    Folk, J.; M. Marcus, C.; Harris jr, J.

    2000-01-01

    Decoherence in nearly-isolated GaAs quantum dots is investigated using the change in average Coulomb blockade peak height upon breaking time-reversal symmetry. The normalized change in average peak height approaches the predicted universal value of 1/4 at temperatures well below the single...

  6. System and method for making quantum dots

    KAUST Repository

    Bakr, Osman M.

    2015-05-28

    Embodiments of the present disclosure provide for methods of making quantum dots (QDs) (passivated or unpassivated) using a continuous flow process, systems for making QDs using a continuous flow process, and the like. In one or more embodiments, the QDs produced using embodiments of the present disclosure can be used in solar photovoltaic cells, bio-imaging, IR emitters, or LEDs.

  7. Saturating optical resonances in quantum dots

    Science.gov (United States)

    Nair, Selvakumar V.; Rustagi, K. C.

    Optical bistability in quantum dots, recently proposed by Chemla and Miller, is studied in a two-resonance model. We show that for such classical electromagnetic resonances the applicability of a two-resonance model is far more restrictive than for those in atoms.

  8. Single Molecule Applications of Quantum Dots

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Elmelund; Jauffred, Liselotte; Brewer, Jonathan R.

    2013-01-01

    Fluorescent nanocrystals composed of semiconductor materials were first introduced for biological applications in the late 1990s. The focus of this review is to give a brief survey of biological applications of quantum dots (QDs) at the single QD sensitivity level. These are described as follows:...

  9. Carbon dots (C-dots) from cow manure with impressive subcellular selectivity tuned by simple chemical modification.

    Science.gov (United States)

    D'Angelis do E S Barbosa, Cintya; Corrêa, José R; Medeiros, Gisele A; Barreto, Gabrielle; Magalhães, Kelly G; de Oliveira, Aline L; Spencer, John; Rodrigues, Marcelo O; Neto, Brenno A D

    2015-03-23

    Improved cellular selectivity for nucleoli staining was achieved by simple chemical modification of carbon dots (C-dots) synthesized from waste carbon sources such as cow manure (or from glucose). The C-dots were characterized and functionalized (amine-passivated) with ethylenediamine, affording amide bonds that resulted in bright green fluorescence. The new modified C-dots were successfully applied as selective live-cell fluorescence imaging probes with impressive subcellular selectivity and the ability to selectively stain nucleoli in breast cancer cell lineages (MCF-7). The C-dots were also tested in four other cellular models and showed the same cellular selection in live-cell imaging experiments.

  10. VIA Ageing and Dementia, Research Centre, VIA University College, Denmark

    DEFF Research Database (Denmark)

    Munk, Karen Pallesgaard; Maibom, Kirsten

    2016-01-01

    New research environments are evolving in Denmark. Following a legislative change in 2013, the conditions for research in University Colleges have been improved. University Colleges (professionshøjskoler) includes the undergraduate-level educations such as nursing, occupational therapy and physio...... and physiotherapy and related research centres. The article describes such a research centre, namely VIA Ageing and Dementia, Research Centre, VIA University College, Denmark....

  11. Highly Stripped Ion Sources for MeV Ion Implantation

    Energy Technology Data Exchange (ETDEWEB)

    Hershcovitch, Ady

    2009-06-30

    Original technical objectives of CRADA number PVI C-03-09 between BNL and Poole Ventura, Inc. (PVI) were to develop an intense, high charge state, ion source for MeV ion implanters. Present day high-energy ion implanters utilize low charge state (usually single charge) ion sources in combination with rf accelerators. Usually, a MV LINAC is used for acceleration of a few rnA. It is desirable to have instead an intense, high charge state ion source on a relatively low energy platform (de acceleration) to generate high-energy ion beams for implantation. This de acceleration of ions will be far more efficient (in energy utilization). The resultant implanter will be smaller in size. It will generate higher quality ion beams (with lower emittance) for fabrication of superior semiconductor products. In addition to energy and cost savings, the implanter will operate at a lower level of health risks associated with ion implantation. An additional aim of the project was to producing a product that can lead to long­ term job creation in Russia and/or in the US. R&D was conducted in two Russian Centers (one in Tomsk and Seversk, the other in Moscow) under the guidance ofPVI personnel and the BNL PI. Multiple approaches were pursued, developed, and tested at various locations with the best candidate for commercialization delivered and tested at on an implanter at the PVI client Axcelis. Technical developments were exciting: record output currents of high charge state phosphorus and antimony were achieved; a Calutron-Bemas ion source with a 70% output of boron ion current (compared to 25% in present state-of-the-art). Record steady state output currents of higher charge state phosphorous and antimony and P ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb {sup 4 +}, Sb{sup 5+}, and Sb{sup 6+} respectively. Ultimate commercialization goals did not succeed (even though a number of the products like high

  12. Crystalline roof glazing - Westside shopping centre, Berne; Kristalline Dachverglasungen

    Energy Technology Data Exchange (ETDEWEB)

    Enkerli, W.

    2009-07-01

    This illustrated article takes a look at the new shopping and leisure centre on the western outskirts of Berne, Switzerland. In particular, the roof of this unusual building over the motorway with its sloping walls and zig-zag design is looked at. The centre's shopping mall, adventure baths and spa, a multiplex cinema, an old peoples' home and a hotel are briefly discussed, as is the embedding of the centre in its suburban environment. The roof construction with its crystalline skylights is examined and discussed in detail. The centre's building technical services are also briefly commented on.

  13. Elastic Neutron Scattering at 96 MeV from {sup 12}C and {sup 208}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Klug, J.; Blomgren, J.; Atac, A. [and others

    2003-04-01

    A facility for detection of scattered neutrons in the energy interval 50-130 MeV, SCANDAL (SCAttered Nucleon Detection AssembLy), has recently been installed at the 20-180 MeV neutron beam line of the The Svedberg Laboratory, Uppsala. Elastic neutron scattering from {sup 12}C and {sup 208}Pb has been studied at 96 MeV in the 10-70 deg interval. The achieved energy resolution, 3.7 MeV, is about an order of magnitude better than for any previous experiment above 65 MeV incident energy. The present experiment represents the highest neutron energy where the ground state has been resolved from the first excited state in neutron scattering. A novel method for normalization of the absolute scale of the cross section has been used. The estimated uncertainty, 3 %, is unprecedented for a neutron-induced differential cross section measurement on a nuclear target. The results are compared with modern optical model predictions, based on phenomenology or microscopic nuclear theory.

  14. Damage kinetics in MeV gold ion - Irradiated crystalline quartz

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, S.M.M. E-mail: ramos@dpm.univ-lyon1.fr; Clerc, C.; Canut, B.; Chaumont, J.; Toulemonde, M.; Bernas, H

    2000-05-02

    Damage creation in crystalline {alpha}-quartz under gold irradiation was studied at 1.0 and 5.5 MeV using the ARAMIS accelerator at CSNSM (Orsay). Although at these energies the total stopping powers are nearly equal (respectively, 4.20 and 4.46 keV nm{sup -1}), the electronic stopping power is only 1.23 keV nm{sup -1} (25% of the total) at 1 MeV while it reaches 2.75 keV nm{sup -1} (62% of the total) at 5.5 MeV. The electronic stopping power threshold for damage creation in {alpha}-quartz is about 1.8 keV/nm . The experiment thus allows us to follow the damage production kinetics due to nuclear collisions (at 1 MeV) versus electronic collisions (at 5.5 MeV). The damage was determined by channeling Rutherford backscattering (RBS-C) using the 2 MV Van de Graaff at DPM (Villeurbanne). Single ion impacts create damage when electronic stopping dominates, while several impacts are necessary to achieve complete damage when nuclear stopping dominates. Differences in damage efficiencies will be discussed.

  15. Modification of semiconductor or metal nanoparticle lattices in amorphous alumina by MeV heavy ions

    Science.gov (United States)

    Bogdanović Radović, I.; Buljan, M.; Karlušić, M.; Jerčinović, M.; Dražič, G.; Bernstorff, S.; Boettger, R.

    2016-09-01

    In the present work we investigate effects of MeV heavy ions (from 0.4 MeV Xe to 15 MeV Si) on regularly ordered nanoparticle (NP) lattices embedded in amorphous alumina matrix. These nanostructures were produced by self-assembling growth using magnetron-sputtering deposition. From grazing incidence small-angle x-ray scattering measurements we have found that the used MeV heavy ions do not change the NP sizes, shapes or distances among them. However, ions cause a tilt of the entire NP lattice in the direction parallel to the surface. The tilt angle depends on the incident ion energy, type and the applied fluence and a nearly linear increase of the tilt angle with the ion fluence and irradiation angle was found. This way, MeV heavy ion irradiation can be used to design custom-made NP lattices. In addition, grazing incidence small-angle x-ray scattering can be effectively used as a method for the determination of material redistribution/shift caused by the ion hammering effect. For the first time, the deformation yield in amorphous alumina was determined for irradiation performed at the room temperature.

  16. Independent isotopic yields in 25 MeV and 50 MeV proton-induced fission of {sup nat}U

    Energy Technology Data Exchange (ETDEWEB)

    Penttilae, H.; Gorelov, D.; Elomaa, V.V.; Eronen, T.; Hager, U.; Hakala, J.; Jokinen, A.; Kankainen, A.; Karvonen, P.; Moore, I.D.; Parkkonen, J.; Pohjalainen, I.; Rahaman, S.; Rinta-Antila, S.; Rissanen, J.; Saastamoinen, A.; Simutkin, V.; Sonoda, T.; Weber, C.; Voss, A.; Aeystoe, J. [Department of Physics, University of Jyvaskylae (Finland); Peraejaervi, K. [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland); Rubchenya, V.A. [Department of Physics, University of Jyvaskylae (Finland); V.G. Khlopin Radium Institute, St. Petersburg (Russian Federation)

    2016-04-15

    Independent isotopic yields for elements from Zn to La in the 25 MeV proton-induced fission of {sup nat}U were determined with the JYFLTRAP facility. In addition, isotopic yields for Zn, Ga, Rb, Sr, Zr, Pd and Xe in the 50 MeV proton-induced fission of {sup nat}U were measured. The deduced isotopic yield distributions are compared with a Rubchenya model, the GEF model with universal parameters and the semi-empirical Wahl model. Of these, the Rubchenya model gives the best overall agreement with the obtained data. Combining the isotopic yield data with mass yield data to obtain the absolute independent yields was attempted. The result depends on the mass yield distribution. (orig.)

  17. Photonuclear reaction based high-energy x-ray spectrometer to cover from 2 MeV to 20 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, S., E-mail: sakata-s@ile.osaka-u.ac.jp; Arikawa, Y.; Kojima, S.; Ikenouchi, T.; Nagai, T.; Abe, Y.; Inoue, H.; Morace, A.; Utsugi, M.; Nishimura, H.; Nakai, M.; Shiraga, H.; Fujioka, S.; Azechi, H. [Institute of Laser Engineering, Osaka University, Suita 565-0871 (Japan); Kato, R. [Institute of Scientific and Industrial Research, Osaka University, Ibaraki 565-0047 (Japan)

    2014-11-15

    A photonuclear-reaction-based hard x-ray spectrometer is developed to measure the number and energy spectrum of fast electrons generated by interactions between plasma and intense laser light. In this spectrometer, x-rays are converted to neutrons through photonuclear reactions, and the neutrons are counted with a bubble detector that is insensitive to x-rays. The spectrometer consists of a bundle of hard x-ray detectors that respond to different photon-energy ranges. Proof-of-principle experiment was performed on a linear accelerator facility. A quasi-monoenergetic electron bunch (N{sub e} = 1.0 × 10{sup −6} C, E{sub e} = 16 ± 0.32 MeV) was injected into a 5-mm-thick lead plate. Bremsstrahlung x-rays, which emanate from the lead plate, were measured with the spectrometer. The measured spectral shape and intensity agree fairly well with those computed with a Monte Carlo simulation code. The result shows that high-energy x-rays can be measured absolutely with a photon-counting accuracy of 50%–70% in the energy range from 2 MeV to 20 MeV with a spectral resolution (Δhν/hν) of about 15%. Quantum efficiency of this spectrometer was designed to be 10{sup −7}, 10{sup −4}, 10{sup −5}, respectively, for 2–10, 11–15, and 15–25 MeV of photon energy ranges.

  18. Digital neutron/gamma discrimination with an organic scintillator at energies between 1 MeV and 100 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Comrie, A.C. [Department of Physics, University of Cape Town, Rondebosch 7700 (South Africa); Buffler, A., E-mail: andy.buffler@uct.ac.za [Department of Physics, University of Cape Town, Rondebosch 7700 (South Africa); Smit, F.D. [iThemba LABS, Somerset West 7129 (South Africa); Wörtche, H.J. [INCAS" 3, Dr. Nassaulaan 9. 9400 AT Assen (Netherlands)

    2015-02-01

    Three different digital implementations of pulse shape discrimination for pulses from an EJ301 liquid scintillator detector are presented, and illustrated with neutrons and gamma-rays produced by an Am–Be radioisotopic source, a D–T generator and beams produced by cyclotron-accelerated protons of energies 42, 62 and 100 MeV on a Li target. A critical comparison between the three methods is provided.

  19. Calculating Rayleigh scattering amplitudes from 100 eV to 10 MeV. [100 eV to 10 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Parker, J.C.; Reynaud, G.W.; Botto, D.J.; Pratt, R.H.

    1979-05-01

    An attempt is made to explain how to calculate the contribution to elastic photon-atom scattering due to Rayleigh scattering (the scattering off bound electrons) in the photon energy range 100 eV less than or equal to W less than or equal to 10 MeV. All intermediate calculations are described, including the calculation of the potential, bound state wave functions, matrix elements, and final cross sections. 12 references. (JFP)

  20. Optical power limiting in ensembles of colloidal Ag{sub 2}S quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Ovchinnikov, O V; Smirnov, M S; Perepelitsa, A S; Shatskikh, T S [Voronezh State University, Voronezh (Russian Federation); Shapiro, B I [M.V. Lomonosov Moscow State Academy of Fine Chemical Technology, Moscow (Russian Federation)

    2015-12-31

    The effect of power limiting for optical radiation at a wavelength of 660 nm with a pulse duration of 10 ms and operation threshold of 2.2 – 3.1 mJ cm{sup -2} is observed in ensembles of colloidal Ag{sub 2}S quantum dots (QDs). Using the z-scanning method in an open-aperture scheme it is found that the power is limited mainly due to reverse saturable absorption caused by two-photon optical transitions that involve energy levels of Ag{sub 2}S photoluminescence centres, related to structural impurity defects in colloidal Ag{sub 2}S QDs. At the same time, the z-scanning in a closed-aperture scheme demonstrates the formation of a thermal dynamic lens. (nonlinear optical phenomena)

  1. Scalability of the LEU-Modified Cintichem Process: 3-MeV Van de Graaff and 35-MeV Electron Linear Accelerator Studies

    Energy Technology Data Exchange (ETDEWEB)

    Rotsch, David A. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Brossard, Tom [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Roussin, Ethan [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Quigley, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Gromov, Roman [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Jonah, Charles [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Hafenrichter, Lohman [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Tkac, Peter [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Krebs, John [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-10-31

    Molybdenum-99, the mother of Tc-99m, can be produced from fission of U-235 in nuclear reactors and purified from fission products by the Cintichem process, later modified for low-enriched uranium (LEU) targets. The key step in this process is the precipitation of Mo with α-benzoin oxime (ABO). The stability of this complex to radiation has been examined. Molybdenum-ABO was irradiated with 3 MeV electrons produced by a Van de Graaff generator and 35 MeV electrons produced by a 50 MeV/25 kW electron linear accelerator. Dose equivalents of 1.7–31.2 kCi of Mo-99 were administered to freshly prepared Mo-ABO. Irradiated samples of Mo-ABO were processed according to the LEU Modified-Cintichem process. The Van de Graaff data indicated good radiation stability of the Mo-ABO complex up to ~15 kCi dose equivalents of Mo-99 and nearly complete destruction at doses >24 kCi Mo-99. The linear accelerator data indicate that even at 6.2 kCi of Mo-99 equivalence of dose, the sample lost ~20% of Mo-99. The 20% loss of Mo-99 at this low dose may be attributed to thermal decomposition of the product from the heat deposited in the sample during irradiation.

  2. Depth profiling of fingerprint and ink signals by SIMS and MeV SIMS

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, M.J., E-mail: m.bailey@surrey.ac.u [University of Surrey Ion Beam Centre, Surrey GU2 7XH (United Kingdom); Jones, B.N. [University of Surrey Ion Beam Centre, Surrey GU2 7XH (United Kingdom); Hinder, S.; Watts, J. [Surface Analysis Laboratory, University of Surrey, GU2 7XH (United Kingdom); Bleay, S. [Home Office Scientific Development Branch, St. Albans (United Kingdom); Webb, R.P. [University of Surrey Ion Beam Centre, Surrey GU2 7XH (United Kingdom)

    2010-06-15

    Police institutions currently have no analytical method of knowing whether a fingerprint was deposited before or after the document was written or printed. The suitability of using MeV secondary ion mass spectrometry (i.e. SIMS with an MeV ion beam) to determine the order in which a fingerprint and written text were deposited on paper was therefore investigated. A 10 MeV O{sup 4+} beam was used to generate secondary ions from the surface of the samples and to map the molecular fragments from doped fingerprints and inks on paper. The images obtained and the sputtering behaviour of the samples was found to be indicative of the sequence of ink and fingerprint deposits.

  3. Nuclear spin response of sup 40 Ca to 800 MeV polarized protons

    Energy Technology Data Exchange (ETDEWEB)

    Bimbot, L.; Fergerson, R.W.; Glashausser, C.; Jones, K.W.; Baker, F.T.; Beatty, D.; Cupps, V.; Green, A.; Nanda, S. (Institut de Physique Nucleaire, F-91406 Orsay, France (FR) Rutgers University, New Brunswick, NJ 08903 Los Alamos National Laboratory, Los Alamos, New Mexico 87545 University of Georgia, Athens, Georgia 30602 Continuous Electron Beam Accelerator Facility, Newport News, Virginia 23606)

    1990-12-01

    Doubly differential cross sections and spin-flip probabilities have been measured for 800-MeV proton scattering on {sup 40}Ca at 3.2{degree}, 4{degree}, 5{degree}, and 7{degree} in the laboratory, for excitation energies up to 45 MeV. The features of these observables in the continuum are discussed. The data indicate that nuclear spin excitations are enhanced at high excitation energy for angles corresponding to momentum transfers around 100 MeV/{ital c}, as previously observed for incident energies around 300 MeV. The relative nuclear spin response derived from these data is roughly independent of energy. This suggests that the dominance of spin-transfer excitation at high excitation energies for momentum transfers around 100 MeV/{ital c} is an intrinsic feature of the nuclear structure of {sup 40}Ca.

  4. Splitting Behaviour of Implanted MeV Au+ Ions in LiB3O5

    Institute of Scientific and Technical Information of China (English)

    WANG Ke-ming; SHI Bo-rong; Nelson Cue; LU Fei; WANG Feng-xiang; XIE Zhao-xia; SHEN Ding-yu; LIU Yao-gang

    2000-01-01

    The diffusion behaviour of 1.0 and 2.0 MeV Au+ implanted into LiB3O5 single crystal has been studied by the Rutherford backscattering of 2.1 MeV He ions. Annealing was performed at temperatures of 600, 700, and 800℃each for 30min. The results show that the diffusion behaviour is quite different in two cases. In LiB3O5, the depth distribution of the 1.0 Me V Au is nearly Gaussian and becomes bimodal after annealing at 800℃ for 30 min.But in the case of 2.0 MeV, the depth distribution of as implanted Au+ in LiBsO5 has splitting behaviour. After 800C for 30 min annealing, there is no obvious diffusion observed. The precise interpretation is needed.

  5. The photoresponse of stable N=82 nuclei below 10 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Volz, S. [Institut fuer Kernphysik, TU Darmstadt, Schlossgartenstrasse 9, D-64289 Darmstadt (Germany)]. E-mail: volz@ikp.tu-darmstadt.de; Tsoneva, N. [Institut fuer Theoretische Physik, Universitaet Giessen, Heinrich-Buff-Ring 16, D-35392 Giessen (Germany); Institute for Nuclear Research and Nuclear Energy, 1784 Sofia (Bulgaria); Babilon, M. [Institut fuer Kernphysik, TU Darmstadt, Schlossgartenstrasse 9, D-64289 Darmstadt (Germany); Elvers, M. [Institut fuer Kernphysik, TU Darmstadt, Schlossgartenstrasse 9, D-64289 Darmstadt (Germany); Hasper, J. [Institut fuer Kernphysik, TU Darmstadt, Schlossgartenstrasse 9, D-64289 Darmstadt (Germany); Herzberg, R.-D. [Department of Physics, The University of Liverpool, Liverpool L69 7ZE (United Kingdom); Lenske, H. [Institut fuer Theoretische Physik, Universitaet Giessen, Heinrich-Buff-Ring 16, D-35392 Giessen (Germany); Lindenberg, K. [Institut fuer Kernphysik, TU Darmstadt, Schlossgartenstrasse 9, D-64289 Darmstadt (Germany); Savran, D. [Institut fuer Kernphysik, TU Darmstadt, Schlossgartenstrasse 9, D-64289 Darmstadt (Germany); Zilges, A. [Institut fuer Kernphysik, TU Darmstadt, Schlossgartenstrasse 9, D-64289 Darmstadt (Germany)

    2006-11-27

    High resolution photon scattering experiments were performed at the 10 MeV bremsstrahlung facility of the electron accelerator S-DALINAC at TU Darmstadt to investigate the semi-magic N=82 nuclei {sup 138}Ba, {sup 140}Ce, {sup 142}Nd and {sup 144}Sm. Energies and absolute strengths of dipole transitions below 10 MeV were determined in a model independent way. A concentration of electric dipole excitations exhausting up to 1% of the isovector E1 energy weighted sum rule is observed in all four nuclei around 6.5 MeV. Calculations in the framework of the Quasiparticle-Phonon Model (QPM) reproduce the gross experimental features.

  6. Study of calf thymus DNA irradiated in vitro with MeV fluorine ions

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A study of the fragments of DNA irradiated with MeV ions is important for the understanding of the DNA damage mechanism and the subsequent biological effects (induced by heavy ions). In this experiment, the products of calf thymus DNA (CT DNA) irradiated with MeV fluorine ions were analyzed using agarose gel electrophoresis,modified time-of-flight mass spectrometer (MALDI-TOF), and high-performance liquid chromatography (HPLC).The results showed that the molecular mass of the fragments were concentrated around 831 bp with agarose gel electrophoresis, there was no observable product in the range of 1,000- 30,000 (m/q) using MALDI-TOF, and small biomolecules were separated from the products. The results of this study indicated that the strand breaks of calf thymus DNA induced by MeV fluorine ions were nonrandom.

  7. 25 MeV Solar Proton Events in Cycle 24 and Previous Cycles

    Science.gov (United States)

    Richardson, I. G.; Cane, H. V.; von Rosenvinge, T. T.

    2014-12-01

    We summarize observations of nearly 1000 solar energetic particle events that include 25 MeV protons made by Goddard instruments on various spacecraft (IMPs IV, V, 7, 8, ISEE-3) and by other instruments on SOHO, since 1967, encompassing solar cycles 20 to 24. We also include recent observations of such events from the STEREO spacecraft. These extended observations place studies focusing on Cycles 23 and 24 in a broader context. For example, the time distribution of 25 MeV proton events varies from cycle to cycle such that each cycle is unique. In the current cycle, ~25 MeV proton events were absent during the preceding solar minimum, whereas earlier minima showed occasional, often reasonably intense events, and there have been, so far, fewer exceptionally intense events compared to Cycles 22 and 23, though Cycle 21 also apparently lacked such events.

  8. Resonance frequency control for the KOMAC 100-MeV drift tube linac

    Science.gov (United States)

    Kwon, Hyeok-Jung

    2015-02-01

    A 100-MeV proton accelerator has been developed, and the operation and beam service started at the Korea Multi-purpose Accelerator Complex (KOMAC) in July 2013. The accelerator consists of a 50-keV proton injector, a 3-MeV radio-frequency quadrupole (RFQ) and a 100-MeV drift tube linac (DTL). The resonance frequencies of the DTL tanks are controlled by using the resonance frequency control cooling system (RCCS), installed at every DTL tank. Until now, the RCCS has been operating in the constant temperature mode. If the system is to be stabilized better, the RCCS must be operated in the frequency control mode. For this purpose, studies, including the relation between the resonance frequency and RCCS operation temperature, were done under various conditions. In this paper, the preparations for the frequency control loop of the RCCS are described.

  9. 50 MeV Run of the IOTA / FAST Electron Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Edstrom Jr., D.; et al.

    2017-02-02

    The low-energy section of the photoinjector-based electron linear accelerator at the Fermilab Accelerator Science & Technology (FAST) facility was recently commissioned to an energy of 50 MeV. This linear accelerator relies primarily upon pulsed SRF acceleration and an optional bunch compressor to produce a stable beam within a large operational regime in terms of bunch charge, total average charge, bunch length, and beam energy. Various instrumentation was used to characterize fundamental properties of the electron beam including the intensity, stability, emittance, and bunch length. While much of this instrumentation was commissioned in a 20 MeV running period prior, some (including a new Martin- Puplett interferometer) was in development or pending installation at that time. All instrumentation has since been recommissioned over the wide operational range of beam energies up to 50 MeV, intensities up to 4 nC/pulse, and bunch structures from ~1 ps to more than 50 ps in length.

  10. A proposed diagnostic for time-resolved 14 MeV neutron measurements on TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Ku, L.P.; Nazikian, R.; Prorvitch, V.

    1990-06-01

    A novel method for time resolved measurements of the 14 MeV neutron flux in an intense 2.5 MeV neutron and {gamma}-ray background has been developed. Discrimination against the background 2.5 MeV neutron and {gamma}-ray flux is achieved by the use of polyethylene and lead shielding. A high detection efficiency of DT neutrons is obtained by the use of large volume plastic scintillators and photomultiplier tube designed for operating in high magnetic field environments. Design computations for a such a detector system on TFTR show that an absolute detection efficiency of {approximately}10{sup {minus}8} counts per DT neutron may be obtained. A source strength of 10{sup 13} DT n/s may readily be detected by this method using both count mode and current mode operation with a resolution of {approximately}10 ms within a statistical accuracy of {approximately}5%. 12 refs., 8 figs., 2 tabs.

  11. Relativistic analysis of nuclear ground state densities at 135 to 200 MeV

    Indian Academy of Sciences (India)

    M A Suhail; N Neeloffer; Z A Khan

    2005-12-01

    A relativistic analysis of p + 40Ca elastic scattering with different nuclear ground state target densities at 135 to 200 MeV is presented in this paper. It is found that the IGO densities are more consistent in reproducing the data over the energy range considered here. The reproduction of spin-rotation-function data with the simultaneous fitting of differential cross-section and analyzing power, and the appearance of wine-bottle-bottom shaped Re eff() in the transition energy region, sensitively depends on the input nuclear ground state densities and are not solely the relativistic characteristic signatures. We also found that the wine-bottle-bottom shaped Re eff() is preferred by the spin observables in the transition energy region (i.e. 181 MeV to 200 MeV).

  12. Neutron-proton analyzing power measurements from 375 to 775 MeV

    Science.gov (United States)

    Newsom, C. R.; Hollas, C. L.; Ransome, R. D.; Riley, P. J.; Bonner, B. E.; Boissevain, J. G. J.; Jarmer, J. J.; McNaughton, M. W.; Simmons, J. E.; Bhatia, T. S.; Glass, G.; Hiebert, J. C.; Northcliffe, L. C.; Tippens, W. B.

    1989-03-01

    As part of an experimental study of the nucleon-nucleon interaction at medium energy, the free neutron-proton analyzing power An(θ*n,Tn) has been measured at nine incident neutron energies in the range 375<=Tn<=775 MeV and for neutron c.m. angles in the range 57°<=θ*n<=159°. Unpolarized neutrons with a broad continuum of energies, produced by interaction of an 800 MeV proton beam with a beryllium target, were scattered from a polarized proton target. At each angle, for the whole energy region, the scattered neutron and conjugate recoil proton were detected in coincidence. A previously unseen minimum is observed in the energy dependence of An(θ*~100°) near 625 MeV.

  13. Dispersive spherical optical model of neutron scattering from Al27 up to 250 MeV

    CERN Document Server

    Molina, A; Quesada, J M; Lozano, M

    2002-01-01

    A spherical optical model potential (OMP) containing a dispersive term is used to fit the available experimental database of angular distribution and total cross section data for n + Al27 covering the energy range 0.1- 250 MeV using relativistic kinematics and a relativistic extension of the Schroedinger equation. A dispersive OMP with parameters that show a smooth energy dependence and energy independent geometry are determined from fits to the entire data set. A very good overall agreement between experimental data and predictions is achieved up to 150 MeV. Inclusion of nonlocality effects in the absorptive volume potential allows to achieve an excellent agreement up to 250 MeV.

  14. First commissioning experience with the LINAC4 3 MeV front-end at CERN

    CERN Document Server

    Lallement, J B; Bellodi, G; Comblin, J F; Dimov, V A; Granemann Souza, E; Lettry, J; Lombardi, A M; Midttun, O; Ovalle, E; Raich, U; Roncarolo, F; Rossi, C; Sanchez Alvarez, R; Scrivens, C A; Valerio-Lizarraga, C A; Vretenar, M; Yarmohammadi Satri, M

    2013-01-01

    Linac4 is a normal-conducting 160 MeV H- linear accelerator presently under construction at CERN. It will replace the present 50 MeV Linac2 as injector of the proton accelerator complex as part of a project to increase the LHC luminosity. The Linac front-end, composed of a 45 keV ion source, a Low Energy Beam Transport (LEBT), a 352.2 MHz Radio Frequency Quadrupole (RFQ) and a Medium Energy Beam Transport (MEBT) housing a beam chopper, have been commissioned at the 3 MeV test stand during the first half of 2013. The status of the installation and the results of the first commissioning stage are presented in this paper.

  15. Entrapment in phospholipid vesicles quenches photoactivity of quantum dots

    Directory of Open Access Journals (Sweden)

    Generalov R

    2011-09-01

    Full Text Available Roman Generalov1,2, Simona Kavaliauskiene1, Sara Westrøm1, Wei Chen3, Solveig Kristensen2, Petras Juzenas11Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; 2School of Pharmacy, University of Oslo, Oslo, Norway; 3Department of Physics, The University of Texas at Arlington, Arlington, TX, USAAbstract: Quantum dots have emerged with great promise for biological applications as fluorescent markers for immunostaining, labels for intracellular trafficking, and photosensitizers for photodynamic therapy. However, upon entry into a cell, quantum dots are trapped and their fluorescence is quenched in endocytic vesicles such as endosomes and lysosomes. In this study, the photophysical properties of quantum dots were investigated in liposomes as an in vitro vesicle model. Entrapment of quantum dots in liposomes decreases their fluorescence lifetime and intensity. Generation of free radicals by liposomal quantum dots is inhibited compared to that of free quantum dots. Nevertheless, quantum dot fluorescence lifetime and intensity increases due to photolysis of liposomes during irradiation. In addition, protein adsorption on the quantum dot surface and the acidic environment of vesicles also lead to quenching of quantum dot fluorescence, which reappears during irradiation. In conclusion, the in vitro model of phospholipid vesicles has demonstrated that those quantum dots that are fated to be entrapped in endocytic vesicles lose their fluorescence and ability to act as photosensitizers.Keywords: fluorescence lifetime, free radicals, liposomes, lipodots, reactive oxygen species

  16. Entrapment in phospholipid vesicles quenches photoactivity of quantum dots.

    Science.gov (United States)

    Generalov, Roman; Kavaliauskiene, Simona; Westrøm, Sara; Chen, Wei; Kristensen, Solveig; Juzenas, Petras

    2011-01-01

    Quantum dots have emerged with great promise for biological applications as fluorescent markers for immunostaining, labels for intracellular trafficking, and photosensitizers for photodynamic therapy. However, upon entry into a cell, quantum dots are trapped and their fluorescence is quenched in endocytic vesicles such as endosomes and lysosomes. In this study, the photophysical properties of quantum dots were investigated in liposomes as an in vitro vesicle model. Entrapment of quantum dots in liposomes decreases their fluorescence lifetime and intensity. Generation of free radicals by liposomal quantum dots is inhibited compared to that of free quantum dots. Nevertheless, quantum dot fluorescence lifetime and intensity increases due to photolysis of liposomes during irradiation. In addition, protein adsorption on the quantum dot surface and the acidic environment of vesicles also lead to quenching of quantum dot fluorescence, which reappears during irradiation. In conclusion, the in vitro model of phospholipid vesicles has demonstrated that those quantum dots that are fated to be entrapped in endocytic vesicles lose their fluorescence and ability to act as photosensitizers.

  17. Studies of silicon quantum dots prepared at different substrate temperatures

    Science.gov (United States)

    Al-Agel, Faisal A.; Suleiman, Jamal; Khan, Shamshad A.

    2017-03-01

    In this research work, we have synthesized silicon quantum dots at different substrate temperatures 193, 153 and 123 K at a fixed working pressure 5 Torr. of Argon gas. The structural studies of these silicon quantum dots have been undertaken using X-ray diffraction, Field Emission Scanning Electron Microscopy (FESEM) and High Resolution Transmission Electron Microscopy (HRTEM). The optical and electrical properties have been studied using UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, Fluorescence spectroscopy and I-V measurement system. X-ray diffraction pattern of Si quantum dots prepared at different temperatures show the amorphous nature except for the quantum dots synthesized at 193 K which shows polycrystalline nature. FESEM images of samples suggest that the size of quantum dots varies from 2 to 8 nm. On the basis of UV-visible spectroscopy measurements, a direct band gap has been observed for Si quantum dots. FTIR spectra suggest that as-grown Si quantum dots are partially oxidized which is due exposure of as-prepared samples to air after taking out from the chamber. PL spectra of the synthesized silicon quantum dots show an intense peak at 444 nm, which may be attributed to the formation of Si quantum dots. Temperature dependence of dc conductivity suggests that the dc conductivity enhances exponentially by raising the temperature. On the basis above properties i.e. direct band gap, high absorption coefficient and high conductivity, these silicon quantum dots will be useful for the fabrication of solar cells.

  18. Attenuation of 10 MeV electron beam energy to achieve low doses does not affect Salmonella spp. inactivation kinetics

    Science.gov (United States)

    Hieke, Anne-Sophie Charlotte; Pillai, Suresh D.

    2015-05-01

    The effect of attenuating the energy of a 10 MeV electron beam on Salmonella inactivation kinetics was investigated. No statistically significant differences were observed between the D10 values of either Salmonella 4,[5],12:i:- or a Salmonella cocktail (S. 4,[5],12:i:-, Salmonella Heidelberg, Salmonella Newport, Salmonella Typhimurium, Salmonella) when irradiated with either a non-attenuated 10 MeV eBeam or an attenuated 10 MeV eBeam (~2.9±0.22 MeV). The results show that attenuating the energy of a 10 MeV eBeam to achieve low doses does not affect the inactivation kinetics of Salmonella spp. when compared to direct 10 MeV eBeam irradiation.

  19. RF phase stability in the 100-MeV proton linac operation

    Science.gov (United States)

    Seol, Kyung-Tae

    2015-02-01

    The 100-MeV proton linac of the Korea multi-purpose accelerator complex (KOMAC) has been operated to provide a proton beam to users. The 100-MeV linac consists of a 3-MeV radio-frequency quadrupole accelerator (RFQ), four 20-MeV drift-tube linac (DTL) tanks, two medium-energy beam-transmitter (MEBT) tanks, and seven 100-MeV DTL tanks. The requirements of the field stability are within ±1% in RF amplitude and ±1 degree in RF phase. The RF phase stability is influenced by a RF reference line, RF transmission lines, and a RF control system. The RF reference signal is chosen to be a 300-MHz local oscillator (LO) signal, and a rigid copper coaxial line with temperature control was installed for an RF reference distribution. A phase stability of ±0.1 degrees was measured under a temperature change of ±0.1 °C. A digital feedback control system with a field-programmable gate-array (FPGA) module was adopted for a high RF stability. The RF phase was maintained within ±0.1 degrees with a dummy cavity and was within ±0.3 degrees at RFQ operation. In the case of the 20-MeV DTL tanks, one klystron drives 4 tanks, and the input phases of 4 tanks were designed to be in phase. The input phases of 4 tanks were fixed within ±1 degree by adjusting a phase shifter in each waveguide.

  20. The Centres for Environment-friendly Energy Research (FME)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    High expectations for Norway's Centres for Environment-friendly Energy Research (FME).The FME centres address a broad range of areas, allcentral to developing the energy sector of the future. The activities of the eight centres established in 2009 focus on renewable energy, raising energy efficiency, energy planning, and carbon capture and storage (CCS). In 2011 three new FME centres were established which focus on social science-related energy research. The FME scheme is a direct follow-up of the broad-based political agreement on climate policy achieved in the Storting in January 2008, and of the national RandD Energi21 strategy submitted in February 2008 to the Ministry of Petroleum and Energy. In April 2008 the Research Council of Norway's Executive Board decided to launch a process to establish centres for environment-friendly energy research, and a funding announcement was issued that same year. In 2010 it was decided that additional FME centres would be established in the field of social science-related energy research. After a thorough assessment of each project (based on feasibility, scientific merit, potential to generate value creation and innovation, and composition of the consortium) eight applicants were selected to become FME centres in February 2009. A new call for proposals was issued in 2010, and three more centres were awarded FME status in February 2011. The objective of the FME scheme is to establish time-limited research centres which conduct concentrated, focused and long-term research of high international calibre in order to solve specific challenges in the energy sphere. The selected centres must exhibit higher goals, a longer-term perspective and a more concentrated focus than is required under other funding instruments for the same scientific area. The make-up of the centres is critical to achieving this objective. The centres bring together Norway's leading research institutions and key players in private enterprise, the

  1. Design of an MeV ultra-fast electron diffraction experiment at Tsinghua university

    Institute of Scientific and Technical Information of China (English)

    LI Ren-Kai; TANG Chuan-Xiang; HUANG Wen-Hui; DU Ying-Chao; SHI Jia-Ru; YAN Li-Xin

    2009-01-01

    Time-resolved MeV ultra-fast electron difiraction(UED)is a powerful tool for structure dynamics studies.In this paper.we present a design of a MeV UED facility based on a photocathode RF gun at Tsinghua University.Electron beam qualities are optimized with numerical simulations,indicating that resolutions of 250 fs and 0.01 A.and bunch charge exceeding 105 electrons are expected with technically achievable machine parameters.Status of experiment preparation is also presented.

  2. Radiation hardness of a single crystal CVD diamond detector for MeV energy protons

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Yuki, E-mail: y.sato@riken.jp [The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Shimaoka, Takehiro; Kaneko, Junichi H. [Graduate School of Engineering, Hokkaido University, N13, W8, Sapporo 060-8628 (Japan); Murakami, Hiroyuki [The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Isobe, Mitsutaka; Osakabe, Masaki [National Institute for Fusion Science, 322-6, Oroshi-cho Toki-city, Gifu 509-5292 (Japan); Tsubota, Masakatsu [Graduate School of Engineering, Hokkaido University, N13, W8, Sapporo 060-8628 (Japan); Ochiai, Kentaro [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Chayahara, Akiyoshi; Umezawa, Hitoshi; Shikata, Shinichi [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan)

    2015-06-01

    We have fabricated a particle detector using single crystal diamond grown by chemical vapor deposition. The irradiation dose dependence of the output pulse height from the diamond detector was measured using 3 MeV protons. The pulse height of the output signals from the diamond detector decreases as the amount of irradiation increases at count rates of 1.6–8.9 kcps because of polarization effects inside the diamond crystal. The polarization effect can be cancelled by applying a reverse bias voltage, which restores the pulse heights. Additionally, the radiation hardness performance for MeV energy protons was compared with that of a silicon surface barrier detector.

  3. Beam Loss by Lorentz Stripping in a 100 MeV Compact H~- Cyclotron

    Institute of Scientific and Technical Information of China (English)

    Larry; Root

    2002-01-01

    The success of TRIUMF’s ISAC facility demonstrates that a 500 MeV 100 μ A H cyclotron is agood choice for the driver stage of an ISOL type RIB facility. As a result, China Institute of AtomicEnergy is proposing the construction of a 75~100 MeV 200~500μA H~- cyclotron as an upgrade to theBeijing Tandem Laboratory. This would be a multiple user facility, which would include a RIB target

  4. (π+/-,2N) reactions at 165 and 245 MeV

    Science.gov (United States)

    Altman, A.; Ashery, D.; Piasetzky, E.; Lichtenstadt, J.; Yavin, A. I.; Bertl, W.; Felawka, L.; Walter, H. K.; Powers, R. J.; Winter, R. G.; Pluym, J. V. D.

    1986-11-01

    The (π+,2p) and (π+/-, pn) reactions were studied by coincidence detection of the outgoing nucleons on C, Fe, and Bi at 165 and 245 MeV and on 16O and 18O at 165 MeV. The quasideuteron component is identified and found to account for only about 10% of the absorption cross section for carbon down to about 2% for bismuth. With corrections for the final-state interaction of outgoing nucleons it amounts to at most 40%. The data indicate that quasideuteron absorption following pion scattering is not likely. The absorption on T=1 nucleon pairs is about 4% of that on quasideuterons.

  5. Design and experiment of insulation support of 2 MeV injector

    CERN Document Server

    Wang Meng; Dai Guang Sen; Wang Jing Sheng; Xia Lian Sheng; Huang Hai Bo

    2002-01-01

    Aiming at the technical request of high power injector, the authors designed two Nylon radial graded insulation supports on the heads of cathode and anode of the existing 2 MeV injector. The experiment results showed that, on the basis of credible insulation, the supports improved the quality of coaxiality between the cathode and the anode, ameliorated the identity of the three axes of beams, magnetic field and mechanism, and settled the groundwork for advancing each technical performances of the 2 MeV injector

  6. Effect of 100MeV oxygen ion irradiation on silicon NPN power transistor

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M. Vinay; Krishnakumar, K. S.; Dinesh, C. M.; Krishnaveni, S.; Ramani [Department of studies in Physics, University of Mysore, Mysore (India); Department of Physics, APS College, Bengaluru (India); Department of Physics, DCE, Govt. First Grade College, Mangalore (India); Department of studies in Physics, University of Mysore, Mysore (India); Department of Physics, Bangalore University, Bengaluru (India)

    2012-06-05

    The radiation response of npn Bipolar junction transistor (BJT) has been examined for 100 MeV O{sup 7+} ion. Key electrical properties like Gummel characteristics, dc current gain and capacitance-voltage of 100MeV O{sup 7+} ion irradiated transistor were studied before and after irradiation. The device was decapped and the electrical characterizations were performed at room temperature. Base current is observed to be more sensitive than collector current and gain appears to be degraded with ion fluence, also considerable degradation in C-V characteristics is observed and doping concentration is found to be increased along with the increase in ion fluence.

  7. Effect of 100MeV oxygen ion irradiation on silicon NPN power transistor

    Science.gov (United States)

    Kumar, M. Vinay; Krishnakumar, K. S.; Dinesh, C. M.; Krishnaveni, S.; Ramani

    2012-06-01

    The radiation response of npn Bipolar junction transistor (BJT) has been examined for 100 MeV O7+ ion. Key electrical properties like Gummel characteristics, dc current gain and capacitance-voltage of 100MeV O7+ ion irradiated transistor were studied before and after irradiation. The device was decapped and the electrical characterizations were performed at room temperature. Base current is observed to be more sensitive than collector current and gain appears to be degraded with ion fluence, also considerable degradation in C-V characteristics is observed and doping concentration is found to be increased along with the increase in ion fluence.

  8. Properties of the {sup 12}C 10 MeV state determined through {beta}-decay

    Energy Technology Data Exchange (ETDEWEB)

    Diget, C.A. [Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark); Barker, F.C. [Department of Theoretical Physics, Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200 (Australia); Borge, M.J.G. [Instituto Estructura de la Materia, CSIC, E-28006 Madrid (Spain); Cederkaell, J. [ISOLDE-CERN, CH-1211 Geneva 23 (Switzerland); Fedosseev, V.N. [ISOLDE-CERN, CH-1211 Geneva 23 (Switzerland); Fraile, L.M. [ISOLDE-CERN, CH-1211 Geneva 23 (Switzerland); Fulton, B.R. [Department of Physics, University of York, Heslington, YO10 5DD (United Kingdom); Fynbo, H.O.U. [Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark)]. E-mail: fynbo@phys.au.dk; Jeppesen, H.B. [Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark); Jonson, B. [Fundamental Fysik, Chalmers Tekniska Hoegskola, S-412 96 Goeteborg (Sweden); Koester, U. [ISOLDE-CERN, CH-1211 Geneva 23 (Switzerland); Meister, M. [Fundamental Fysik, Chalmers Tekniska Hoegskola, S-412 96 Goeteborg (Sweden); Nilsson, T. [ISOLDE-CERN, CH-1211 Geneva 23 (Switzerland); Nyman, G. [Fundamental Fysik, Chalmers Tekniska Hoegskola, S-412 96 Goeteborg (Sweden); Prezado, Y. [Instituto Estructura de la Materia, CSIC, E-28006 Madrid (Spain); Riisager, K. [Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark); Rinta-Antila, S. [Department of Physics, University of Jyvaeskylae, FIN-40351 Jyvaeskylae (Finland); Tengblad, O. [Instituto Estructura de la Materia, CSIC, E-28006 Madrid (Spain); Turrion, M. [Instituto Estructura de la Materia, CSIC, E-28006 Madrid (Spain); Wilhelmsen, K. [Fundamental Fysik, Chalmers Tekniska Hoegskola, S-412 96 Goeteborg (Sweden); Aeystoe, J. [Department of Physics, University of Jyvaeskylae, FIN-40351 Jyvaeskylae (Finland); Helsinki Institute of Physics, University of Helsinki, FIN-00014 Helsinki (Finland)

    2005-10-03

    The {beta}-delayed triple-{alpha} particle decay of {sup 12}B has been measured with a setup that favours coincidence detection. A broad state in {sup 12}C, previously reported around 10 MeV, has been seen and its properties determined through R-matrix analysis of the excitation spectrum. The spin and parity are 0{sup +}. Interference between this state and the Hoyle state at 7.654 MeV has a marked influence on the spectrum. The coupling between the two states makes it difficult to determine the resonance energy.

  9. The physics design of magnet in 14 MeV cyclotron

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The 14 MeV, 400 μA compact cyclotron is under construction at China Institute of Atomic Energy (CIAE). The design of main magnet and the result of beam dynamics in the cyclotron will be described in this paper, including the choice of main parameters of magnet, the method of shimming isochronous field in the compact cyclotron and optimization of the magnetic field in central region. The beam will be accelerated to 14.6 MeV by optimizing the magnet structure.

  10. The response of the Sievert instrument in neutron beams up to 180 MeV

    CERN Document Server

    Kylionen, J E; Samuelson, G

    2001-01-01

    Measurements with a tissue-equivalent proportional counter (TEPC) using the variance-covariance method have been performed in neutron beams between 71 keV and 180 MeV and in the cosmic radiation reference field (CERF) at CERN. The results show that with appropriate linear Q/sub D/(y/sub D/) relations, the ambient dose equivalent can be determined within about 55% in these beams. Build- up measurements show that wall thickness is not crucial for H* determinations at 60 and 180 MeV. (26 refs).

  11. The KAERI 10 MeV Electron Linac - Description and Operational Manual

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol; Park, Seong Hee; Jung, Young Uk; Han, Young Hwan; Kang, Hee Young

    2005-06-15

    The objective of this technical report is to guide the right operation and maintenance of the KAERI electron linac system. The KAERI electron linac system consists of 2 MeV injector based on 176 MHz Normal conducting RF (Radio Frequency)cavity and 10 MeV main accelerator based on 352 MHz Superconducting RF cavity, electron beamlines (injection and extraction). Since a electron accelerator generates hazard radiation, this system is located at the shielded room in basement and we can operate the system using the remote control system. It includes the description and the operational manual as well as the detailed technical direction for trouble shooting.

  12. Effects of 3 MeV proton irradiation on the mechanical properties of polyimide films

    Science.gov (United States)

    Hill, David J. T.; Hopewell, Jefferson L.

    1996-11-01

    The effects of 3 MeV proton irradiation on the elongation to break, fracture energy and Young's Modulus have been investigated for films of Kapton and Ultem over the dose range 0-75 MGy at ambient temperature. The results have been compared with those reported by other workers for irradiation by 60Co gamma rays and 2 MeV electron beams under similar conditions, and little difference was found between the damage to the mechanical properties of the films induced by these three beam types.

  13. Production of Highly Polarized Positrons Using Polarized Electrons at MeV Energies

    Science.gov (United States)

    Abbott, D.; Adderley, P.; Adeyemi, A.; Aguilera, P.; Ali, M.; Areti, H.; Baylac, M.; Benesch, J.; Bosson, G.; Cade, B.; Camsonne, A.; Cardman, L. S.; Clark, J.; Cole, P.; Covert, S.; Cuevas, C.; Dadoun, O.; Dale, D.; Dong, H.; Dumas, J.; Fanchini, E.; Forest, T.; Forman, E.; Freyberger, A.; Froidefond, E.; Golge, S.; Grames, J.; Guèye, P.; Hansknecht, J.; Harrell, P.; Hoskins, J.; Hyde, C.; Josey, B.; Kazimi, R.; Kim, Y.; Machie, D.; Mahoney, K.; Mammei, R.; Marton, M.; McCarter, J.; McCaughan, M.; McHugh, M.; McNulty, D.; Mesick, K. E.; Michaelides, T.; Michaels, R.; Moffit, B.; Moser, D.; Muñoz Camacho, C.; Muraz, J.-F.; Opper, A.; Poelker, M.; Réal, J.-S.; Richardson, L.; Setiniyaz, S.; Stutzman, M.; Suleiman, R.; Tennant, C.; Tsai, C.; Turner, D.; Ungaro, M.; Variola, A.; Voutier, E.; Wang, Y.; Zhang, Y.; PEPPo Collaboration

    2016-05-01

    The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the polarized bremsstrahlung radiation induced by a polarized electron beam in a high-Z target. Positron polarization up to 82% have been measured for an initial electron beam momentum of 8.19 MeV /c , limited only by the electron beam polarization. This technique extends polarized positron capabilities from GeV to MeV electron beams, and opens access to polarized positron beam physics to a wide community.

  14. Reactions sup 58,64 Ni( p ,. pi. sup + ) at 201 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Badala, A.; Barbera, R.; Palmeri, A.; Pappalardo, G.S.; Bonasera, A. (Istituto Nazionale di Fisica Nucleare, Corso Italia 57, 95129 Catania (Italy)); Riggi, F.; Adorno, A. (Istituto Nazionale di Fisica Nucleare and Dipartimento di Fisica dell' Universita di Catania, Corso Italia 57, 95129 Catania (Italy)); Bimbot, L. (Institut de Physique Nucleaire, Boite Postale 1, 91406 Orsay CEDEX (France))

    1992-08-01

    The production of positive and negative pions induced by 201 MeV protons on {sup 58}Ni and {sup 64}Ni isotopes has been studied. The double differential cross sections have been measured at the laboratory angles 22{degree}, 35{degree}, 55{degree}, 72{degree}, 90{degree}, 105{degree}, 120{degree}, 138{degree}, 155{degree} and from 20 MeV kinetic energy up to the kinematical limit. Features of the double differential cross sections relative to the two targets are discussed and compared to results obtained at higher incident energies.

  15. Thin Object Radiography with a 2.2 MeV Pulsed Power Machine

    Science.gov (United States)

    Haines, Todd; Danielson, Jeremy; Wood, W. Monty

    2015-06-01

    An experimental series was performed at a pulsed-power 2.2 MeV flash radiography machine to determine the lower limits of its mass sensitivity. This machine uses a rod-pinch diode with accelerating potential of 2.2 MeV and 50 ns pulse duration. Tungsten, aluminum, and titanium rod anodes were used to tune the emitted bremsstrahlung spectrum; as well as aluminum and beryllium filter materials. Analysis of thin tantalum foils shows a mass sensitivity as low as 300 μg/cm2. This is a factor of 5 better than previous measurements.

  16. Pionic charge exchange on the proton from 40 to 250 MeV

    Science.gov (United States)

    Breitschopf, J.; Bauer, M.; Clement, H.; Cröni, M.; Denz, H.; Friedman, E.; Gibson, E. F.; Meier, R.; Wagner, G. J.

    2006-08-01

    The total cross sections for pionic charge exchange on hydrogen were measured using a transmission technique on thin CH2 and C targets. Data were taken for π- lab energies from 39 to 247 MeV with total errors of typically 2% over the Δ-resonance and up to 10% at the lowest energies. Deviations from the predictions of the SAID phase shift analysis in the 60-80 MeV region are interpreted as evidence for isospin-symmetry breaking in the s-wave amplitudes. The charge dependence of the Δ-resonance properties appears to be smaller than previously reported.

  17. Mass Segregation in the Galactic Centre

    CERN Document Server

    Hopman, Clovis

    2010-01-01

    Two-body energy exchange between stars orbiting massive black holes (MBHs) leads to the formation of a power-law density distribution n(r)~r^(-a) that diverges towards the MBH. For a single mass population, a=7/4 and the flow of stars is much less than N(centre (GC) is t_r ~2-3 * 10^(10) yr, a cusp should form in less than a Hubble time. The absence of a visible cusp of old stars in the GC poses a challenge to these models, ...

  18. Detecting pulsars in the Galactic centre

    CERN Document Server

    Rajwade, Kaustubh; Anderson, Loren

    2016-01-01

    Although high-sensitivity surveys have revealed a number of highly dispersed pulsars in the inner Galaxy, none have so far been found in the Galactic centre (GC) region, which we define to be within a projected distance of 1~pc from Sgr~A*. This null result is surprising given that several independent lines of evidence predict a sizeable population of neutron stars in the region. Here, we present a detailed analysis of both the canonical and millisecond pulsar populations in the GC and consider free-free absorption and multi-path scattering to be the two main sources of flux mitigation. We demonstrate the sensitivity limits of previous surveys are not sufficient to detect GC pulsar population, and investigate the optimum observing frequency for future surveys. Depending on the degree of scattering and free-free absorption in the GC, current surveys constrain the size of the potentially observable population (i.e. those beaming towards us) to be up to 50 canonical pulsars and 1430 millisecond pulsars. We find ...

  19. The Galactic Centre in the Far Infrared

    CERN Document Server

    Etxaluze, M; Tolls, V; Stark, A A; Gonzalez-Alfonso, E

    2011-01-01

    We analyse the far infrared dust emission from the Galactic Centre region, including the Circumnuclear Disk (CND) and other structures, using Herschel PACS and SPIRE photometric observations. These Herschel data are complemented by unpublished observations by the Infrared Space Observatory Long Wavelength Spectrometer (ISO LWS), which used parallel mode scans to obtain photometric images of the region with a larger beam than Herschel but with a complementary wavelength coverage and more frequent sampling with ten detectors observing at ten different wavelengths in the range from 46 to 180 \\mum, where the emission peaks. We also include data from the MSX at 21.3 \\mum for completeness. We model the combined ISO LWS continuum plus Herschel PACS and SPIRE photometric data toward the central 2 pc in Sgr A*, a region that includes the CND. We find that the FIR spectral energy distribution is best represented by a continuum that is the sum of three greybody curves from dust at temperatures of 90, 44.5, and 23 K. We ...

  20. Rockshire Care Centre, Rockshire Road, Ferrybank, Waterford.

    LENUS (Irish Health Repository)

    Bushe, Chris J

    2008-01-01

    BACKGROUND: Weight gain is commonly observed during psychotropic treatments for chronic forms of severe mental illness and is most rapid during the early treatment phases. All formats of behavioural weight intervention programmes have suggested that weight gain can be prevented or reversed in some patients. There is no data on these programmes in acutely unwell inpatients whom may be the major beneficiaries. METHODS: A modular behavioural intervention programme (Solutions for Wellness) used in SMI outpatients since 2002 in Ireland has been adapted for inpatient use. Preliminary data is reported from 5 centres in Ireland. RESULTS: In 47 inpatients the mean weight change was +0.26 kg (SD 2.02) with a median change of 0 kg. Mean follow-up was 23.7 (SD 21.6) days, and median 14 days (range 6-98 days). There was no difference in mean weight change in those patients involved for > 35 days compared with < 35 days (+0.26 kg; 0.25 kg; p = 0.5). Weight loss or maintenance was seen in 70% of patients. CONCLUSION: These preliminary data are supportive of the concept that acutely unwell inpatients with SMI may engage with a behavioural weight programme. Weight change observed contrasts with the significant weight gain often seen in most subjects. Further clinical trials are warranted.

  1. The LHC Physics Centre at CERN

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    As the LHC goes on line for its first exploration of the new high-energy frontier, CERN is also getting ready to enhance the support it provides for the analysis and interpretation of the emerging data.    The LHC Physics Centre at CERN (LPCC) has started up over the past couple of months, beginning with a series of initiatives ranging from Workshops to lectures for students. More details about the LPCC will be featured in a forthcoming Bulletin article. In the meantime, you can consult the LPCC web page, now available at http://cern.ch/lpcc. This offers the high energy physics community a portal to the LPCC's activities, as well as to useful resources, tools and information about the LHC physics programme, the progress of accelerator operations, relevant workshops and events around the world, and much more. The LPCC will shortly begin issuing a weekly bulletin of its own, distributed by e-mail. Members of the CERN physics community and subscribers to the CERN Bulletin will receive the ...

  2. The LHC Physics Centre at CERN

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Although raw physics data is produced at CERN, thanks to the GRID its analysis is performed in various institutes worldwide. In addition, workshops, conferences and meetings take place all over the world. The physicist community is decentralized, and CERN must continue to provide intellectual leadership. The LHC Physics Centre is the tool that will make this possible.   Until the early days of LEP, a large part of the scientific activity related to CERN’s experiments was strongly centered at the Laboratory. Few places had the infrastructure to host activities such as the working groups preparing the Yellow Reports, and the limited access to information in the pre-web era made CERN the natural place to learn what was happening in the field. “I remember the days when we, the theorists, would come to CERN just to read the most recent preprints, which were reaching CERN's Library before we could get them in our institutes”, says Michelangelo Mangano, a member of the Theo...

  3. The Charles Perkins Centre's Twins Research Node.

    Science.gov (United States)

    Ferreira, Lucas C; Craig, Jeffrey M; Hopper, John L; Carrick, Susan E

    2016-08-01

    Twins can help researchers disentangle the roles of genes from those of the environment on human traits, health, and diseases. To realize this potential, the Australian Twin Registry (ATR), University of Melbourne, and the Charles Perkins Centre (CPC), University of Sydney, established a collaboration to form the Twins Research Node, a highly interconnected research facility dedicated specifically to research involving twins. This collaboration aims to foster the adoption of twin designs as important tools for research in a range of health-related domains. The CPC hosted their Twins Research Node's launch seminar entitled 'Double the power of your research with twin studies', in which experienced twin researchers described how twin studies are supporting scientific discoveries and careers. The launch also featured twin pairs who have actively participated in research through the ATR. Researchers at the CPC were surveyed before the event to gauge their level of understanding and interest in utilizing twin research. This article describes the new Twins Research Node, discusses the survey's main results and reports on the launch seminar.

  4. Radio polarimetry of Galactic centre pulsars

    CERN Document Server

    Schnitzeler, D H F M; Ferrière, K; Kramer, M; Lee, K J; Noutsos, A; Shannon, R M

    2016-01-01

    To study the strength and structure of the magnetic field in the Galactic centre (GC) we measured Faraday rotation of the radio emission of pulsars which are seen towards the GC. Three of these pulsars have the largest rotation measures (RMs) observed in any Galactic object with the exception of Sgr A*. Their large dispersion measures, RMs and the large RM variation between these pulsars and other known objects in the GC implies that the pulsars lie in the GC and are not merely seen in projection towards the GC. The large RMs of these pulsars indicate large line-of-sight magnetic field components between ~ 16-33 microgauss; combined with recent model predictions for the strength of the magnetic field in the GC this implies that the large-scale magnetic field has a very small inclination angle with respect to the plane of the sky (~ 12 degrees). Foreground objects like the Radio Arc or possibly an ablated, ionized halo around the molecular cloud G0.11-0.11 could contribute to the large RMs of two of the pulsar...

  5. Telecom-wavelength (1.5 μm) single-photon emission from InP-based quantum dots

    Science.gov (United States)

    Benyoucef, M.; Yacob, M.; Reithmaier, J. P.; Kettler, J.; Michler, P.

    2013-10-01

    We demonstrate pronounced single-photon emission from InAs/AlGaInAs/InP quantum dots (QDs) at wavelengths above 1.5 μm that are compatible with standard long-distance fiber communication. The QDs are grown by molecular beam epitaxy on distributed Bragg reflectors. A low QD density of about 5 × 108 cm-2 was obtained using optimized growth conditions. Low-temperature micro-photoluminescence spectroscopy exhibits sharp excitonic emission lines from single QDs without the necessity of further processing steps. The combination of excitation power-dependent and polarization-resolved photoluminescence measurements reveal a characteristic exciton-biexciton behavior with biexciton binding energies that range from 3.5 to 4 meV and fine-structure splitting values down to 20 μeV.

  6. Strong mode coupling in InP quantum dot-based GaInP microdisk cavity dimers

    Science.gov (United States)

    Witzany, M.; Liu, T.-L.; Shim, J.-B.; Hargart, F.; Koroknay, E.; Schulz, W.-M.; Jetter, M.; Hu, E.; Wiersig, J.; Michler, P.

    2013-01-01

    We report on strong mode coupling in closely spaced GaInP microdisk dimer structures including InP quantum dots as the active medium. Using electron beam lithography and a combination of dry- and wet-etch processes, dimers with inter-disk separations down to d < 100 nm have been fabricated. Applying a photo-thermal heating scheme, we overcome the spectral mode detuning due to the size mismatch between the two disks forming the dimer. We observe signatures of mode coupling in the corresponding photoluminescence spectra with coupling energies of up to 0.66 MeV. With the aid of a numerical analysis, we specify the geometrical and physical factors of the microdisk dimer precisely, and reproduce its spectrum with good agreement.

  7. Explanation of Unusual Photoluminescence Behavior from InAs Quantum Dots with InAlAs Capping

    Institute of Scientific and Technical Information of China (English)

    Zhongyuan YU; Yongqiang WEI

    2005-01-01

    The effect of different kinds of cap layers on optical property of InAs quantum dots (QDs) on GaAs (100) substrate was studied. Temperature dependent photoluminescence (PL) indicates that the PL integrated intensity from the ground state of InAs QDs capped with an intermediate InAlAs layer drops very little as compared to QDs capped with a thin InGaAs or GaAs cap layer from 15 K up to room temperature. PL integrated intensity ratio of the first excited to ground states for InAs QDs capped with an intermediate InAlAs layer is unexpectedly decreased with increasing temperature, which are attributed to phonon bottleneck effect. A virtual barrier is proposed to describe this physics process and shows good agreement with experimental results when fitting the curve with the value of the virtual barrier 30 meV.

  8. Growth and characterization of InAs quantum dots with low-density and long emission wavelength

    Institute of Scientific and Technical Information of China (English)

    Lin Li; Guojun Liu; Zhanguo Li; Mei Li; Xiaohua Wang

    2008-01-01

    The growth parameters affecting the deposition of self-assembled InAs quantum dots (QDs) on GaAs substrate by low-pressure metal-organic chemical vapor deposition (MOCVD) are reported. The low-density InAs QDs (~ 5 × 108 cm-2) are achieved using high growth temperature and low InAs coverage. Photolu-minescence (PL) measurements show the good optical quality of low-density QDs. At room temperature,the ground state peak wavelength of PL spectrum and full-width at half-maximum (FWHM) are 1361 nm and 23 meV (35 nm), respectively, which are obtained as the GaAs capping layer grown using triethylgallium (TEG) and tertiallybutylarsine (TBA). The PL spectra exhibit three emission peaks at 1361, 1280,and 1204 nm, which correspond to the ground state, the first excited state, and the second excited state of the QDs, respectively.

  9. Quantum confinement in MOVPE-grown structures with self-assembled InAs/GaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kuldova, K; Vyborny, Z; Pangrac, J; Oswald, J [Institute of Physics of the AS CR, v. v. i., Cukrovarnicka 10, CZ-162 00 Praha 6 (Czech Republic); Molas, M; Borysiuk, J; Babinski, A, E-mail: kuldova@fzu.c [Institute of Experimental Physics, University of Warsaw, Ho z-dot a 69, PL-00-681 Warszawa (Poland)

    2010-09-01

    In this communication we report on low-temperature, micro-photoluminescence study of quantum confinement in MOVPE-grown structures with InAs/GaAs quantum dots (QDs) with GaAs and/or strain reducing InGaAs/GaAs capping. We focus our attention on sharp emission lines, which appear in both structures at energies up to 80 meV below the wetting line emission. Power-dependent measurements confirmed their attribution to single excitons as well as biexcitons. Negative binding energy of biexcitons with systematic dependence on their energy was observed. It has been proposed that the investigated emission lines result from radiative recombination in flat non-fully developed QDs in the investigated structure. The attribution is confirmed by transmission electron microscopic analysis of investigated structures.

  10. Suppressing the multimodal size distribution of InAs/GaAs quantum dots through flattening the surface fluctuation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A method of suppressing the multimodal size distribution of InAs/GaAs quantum dots(QDs) using molecular beam epitaxy through flattening the substrate surface is reported in this work.It is found that the surface roughness plays an important role in the growth of QDs through continuous surface evolution(SEQDs).SEQDs are the main components of small QD ensemble in QDs with multimodal size distribution.It is suggested that most of the SEQDs are very likely to nucleate during the growth interruption rather than during the deposition.The growth of QDs on a smoother surface has largely reduced the density of SEQDs.The photoluminescence line width of uniform QDs is found to be only 17 meV at a low temperature.

  11. The Discharge Coefficient of a Centre-Pivot Roof Window

    DEFF Research Database (Denmark)

    Iqbal, Ahsan; Afshari, Alireza; Nielsen, Peter V.

    2012-01-01

    value of discharge coefficient is used. The constant value of discharge coefficient leads to deceptive airflow estimation in the cases of centre-pivot roof windows. The object of this paper is to study and evaluate the discharge coefficient of the centre pivot roof window. Focus is given...

  12. Importance of patient centred care for various patient groups.

    NARCIS (Netherlands)

    Rademakers, J.J.D.J.M.; Delnoij, D.M.J.; Boer, D. de

    2010-01-01

    Background: Though patient centred care is a somewhat ‘fuzzy’ concept, in general it is considered as something to strive for. However, preliminary evidence suggests that the importance of elements of patient-centred care (PCC), such as communication, information and shared decision making, may vary

  13. Opportunity Centred Learning: An Innovation in Enterprise Education?

    Science.gov (United States)

    Rae, David

    2003-01-01

    This paper describes an approach called opportunity centred learning that has been developed by the author and applied in the field of enterprise education. The relationship between opportunity centred learning and existing theory and practice in learning and education is outlined in comparison with problem-based learning and action learning, and…

  14. Low-Income Parents' Adult Interactions at Childcare Centres

    Science.gov (United States)

    Reid, Jeanne L.; Martin, Anne; Brooks-Gunn, Jeanne

    2017-01-01

    Little is known about the extent and nature of low-income parents' interactions with other parents and staff at childcare centres, despite the potential for these interactions to provide emotional, informational, and instrumental support. This study interviewed 51 parents at three childcare centres in low-income neighbourhoods in New York City.…

  15. Science Centres: A Resource for School and Community

    Science.gov (United States)

    Pilo, Miranda; Mantero, Alfonso; Marasco, Antonella

    2011-01-01

    We present a science centre established in Genoa on an agreement between Municipality of Genoa and Department of Physics of University of Genoa. The aim is to offer children, young people and community an opportunity to approach science in a playful way. The centre staffs guide the visitors through the exhibits, attracting their interests towards…

  16. The CERN Control Centre is up and running!

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The CERN Control Centre (CCC) that combines all the control rooms for the accelerators, the cryogenic system and the technical infrastructure came into operation on 1st February. On 1st February, at 2.00 p.m., Patrick Villeton Pachot started the first Technical Infrastructure shift at the brand new CERN Control Centre.

  17. The Hierarchy Model of the Size Distribution of Centres

    NARCIS (Netherlands)

    J. Tinbergen (Jan)

    1968-01-01

    textabstractWe know that human beings live in centres, that is, cities, towns and villages of different size. Both large and small centres have a number of advantages and disadvantages, different for different people and this is why we have a whole range of sizes. Statistically, we even find that th

  18. Effect of high energy proton irradiation on InAs/GaAs quantum dots: Enhancement of photoluminescence efficiency (up to {approx}7 times) with minimum spectral signature shift

    Energy Technology Data Exchange (ETDEWEB)

    Sreekumar, R.; Mandal, A. [Centre for Nanoelectronics, Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra (India); Gupta, S.K. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra (India); Chakrabarti, S., E-mail: subho@ee.iitb.ac.in [Centre for Nanoelectronics, Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra (India)

    2011-11-15

    Graphical abstract: Authors demonstrate enhancement in photoluminescence efficiency (7 times) in single layer InAs/GaAs quantum dots using proton irradiation without any post-annealing treatment via either varying proton energy (a) or fluence (b). The increase in PL efficiency is explained by a proposed model before (c) and after irradiation (d). Highlights: {yields} Proton irradiation improved PL efficiency in InAs/GaAs quantum dots (QDs). {yields} Proton irradiation favoured defect and strain annihilation in InAs/GaAs QDs. {yields} Reduction in defects/non-radiative recombination improved PL efficiency. {yields} Protons could be used to improve PL efficiency without spectral shift. {yields} QD based devices will be benefited by this technique to improve device performance. -- Abstract: We demonstrate 7-fold increase of photoluminescence efficiency in GaAs/(InAs/GaAs) quantum dot hetero-structure, employing high energy proton irradiation, without any post-annealing treatment. Protons of energy 3-5 MeV with fluence in the range (1.2-7.04) x 10{sup 12} ions/cm{sup 2} were used for irradiation. X-ray diffraction analysis revealed crystalline quality of the GaAs cap layer improves on proton irradiation. Photoluminescence study conducted at low temperature and low laser excitation density proved the presence of non-radiative recombination centers in the system which gets eliminated on proton irradiation. Shift in photoluminescence emission towards higher wavelength upon irradiation substantiated the reduction in strain field existed between GaAs cap layer and InAs/GaAs quantum dots. The enhancement in PL efficiency is thus attributed to the annihilation of defects/non-radiative recombination centers present in GaAs cap layer as well as in InAs/GaAs quantum dots induced by proton irradiation.

  19. The design study for a 500 MeV proton synchrotron with CSNS linac as an injector

    CERN Document Server

    Huang, Liang-Sheng; Ji, Hong-Fei

    2016-01-01

    Using the China Spallation Neutron Source (CSNS) linac as the injector, a 500 MeV proton synchrotron is proposed for multidisciplinary application, such as biology, material and proton therapy. The synchrotron will deliver proton beam with energy from 80 MeV to 500 MeV. A compact lattice design was worked out, and all the important beam dynamics issues were investigated. The 80 MeV H- beam is stripped and injected into the synchrotron by using multi-turn injection. In order to continuously extraction the proton with small beam loss, the achromatic structure is proposed and slow extraction method with RF knock-out is adopted and optimized.

  20. Measurement of thick target neutron yields for protons and deuterons in Ten's of MeV region

    Energy Technology Data Exchange (ETDEWEB)

    Baba, M.; Aoki, T.; Kawata, N.; Hagiwara, M.; Miura, T.; Yamadera, A.; Yonai, S.; Nakamura, T. [Tohoku Univ., Sendai (Japan)

    2002-07-01

    We have measured energy-angular differential thick target neutron yields (TTY) for C, Al, Ta, W(p,n) reactions at 50 MeV, and Li, Be (d,n) reactions for 25 MeV deuterons with the TOF method using Tohoku University K=110 MeV cyclotron equipped with a beam swinger system and a well collimated TOF line. Neutron spectrum data have been obtained down to {approx} 0.8 MeV from the highest energy at several laboratory angles from 0-deg to 90-deg. The results are compared with other experiments and a recent data library LA-150.

  1. 16O+12C resonances within the strong absorption region for Ec.m.>23 MeV

    Science.gov (United States)

    Jachcinski, C. M.; Braun-Munzinger, P.; Berkowitz, G. M.; Freifelder, R. H.; Gai, M.; Renner, T. R.; Uhlhorn, C. D.

    1980-07-01

    Excitation functions for 12C(16O, 16O)12C elastic and inelastic scattering have been measured in the energy range 23<=Ec.m.<=32 MeV. Two strong structures at Ec.m.=25.5 and 29.6 MeV are observed in the 12C + 16O(3-,6.13 MeV) exit channel; angular correlation measurements at these energies suggest spin assignments of 15- and 16+, respectively. NUCLEAR REACTIONS 12C(16O, 16O*)12C*; Ec.m.=23-32 MeV, θc.m.(16O)=130°-155° measured σ(E) angular correlations.

  2. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control

    KAUST Repository

    Sun, Liangfeng

    2012-05-06

    Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4 W sr \\'1 m \\'2) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3 nm by varying the lengths of the linker molecules from three to eight CH 2 groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850 nm.© 2012 Macmillan Publishers Limited.

  3. Stromal networking: cellular connections in the germinal centre.

    Science.gov (United States)

    Denton, Alice E; Linterman, Michelle A

    2017-03-17

    Secondary lymphoid organs are organized into distinct zones, governed by different types of mesenchymal stromal cells. These stromal cell subsets are critical for the generation of protective humoral immunity because they direct the migration of, and interaction between, multiple immune cell types to form the germinal centre. The germinal centre response generates long-lived antibody-secreting plasma cells and memory B cells which can provide long-term protection against re-infection. Stromal cell subsets mediate this response through control of immune cell trafficking, activation, localization and antigen access within the secondary lymphoid organ. Further, distinct populations of stromal cells underpin the delicate spatial organization of immune cells within the germinal centre. Because of this, the interactions between immune cells and stromal cells in secondary lymphoid organs are fundamental to the germinal centre response. Herein we review how this unique relationship leads to effective germinal centre responses.

  4. Nanobeam photonic crystal cavity quantum dot laser

    CERN Document Server

    Gong, Yiyang; Shambat, Gary; Sarmiento, Tomas; Harris, James S; Vuckovic, Jelena

    2010-01-01

    The lasing behavior of one dimensional GaAs nanobeam cavities with embedded InAs quantum dots is studied at room temperature. Lasing is observed throughout the quantum dot PL spectrum, and the wavelength dependence of the threshold is calculated. We study the cavity lasers under both 780 nm and 980 nm pump, finding thresholds as low as 0.3 uW and 19 uW for the two pump wavelengths, respectively. Finally, the nanobeam cavity laser wavelengths are tuned by up to 7 nm by employing a fiber taper in near proximity to the cavities. The fiber taper is used both to efficiently pump the cavity and collect the cavity emission.

  5. Efficient Luminescence from Perovskite Quantum Dot Solids

    KAUST Repository

    Kim, Younghoon

    2015-11-18

    © 2015 American Chemical Society. Nanocrystals of CsPbX3 perovskites are promising materials for light-emitting optoelectronics because of their colloidal stability, optically tunable bandgap, bright photoluminescence, and excellent photoluminescence quantum yield. Despite their promise, nanocrystal-only films of CsPbX3 perovskites have not yet been fabricated; instead, highly insulating polymers have been relied upon to compensate for nanocrystals\\' unstable surfaces. We develop solution chemistry that enables single-step casting of perovskite nanocrystal films and overcomes problems in both perovskite quantum dot purification and film fabrication. Centrifugally cast films retain bright photoluminescence and achieve dense and homogeneous morphologies. The new materials offer a platform for optoelectronic applications of perovskite quantum dot solids.

  6. Mesoscopic Cavity Quantum Electrodynamics with Quantum Dots

    CERN Document Server

    Childress, L I; Lukin, M D

    2003-01-01

    We describe an electrodynamic mechanism for coherent, quantum mechanical coupling between spacially separated quantum dots on a microchip. The technique is based on capacitive interactions between the electron charge and a superconducting transmission line resonator, and is closely related to atomic cavity quantum electrodynamics. We investigate several potential applications of this technique which have varying degrees of complexity. In particular, we demonstrate that this mechanism allows design and investigation of an on-chip double-dot microscopic maser. Moreover, the interaction may be extended to couple spatially separated electron spin states while only virtually populating fast-decaying superpositions of charge states. This represents an effective, controllable long-range interaction, which may facilitate implementation of quantum information processing with electron spin qubits and potentially allow coupling to other quantum systems such as atomic or superconducting qubits.

  7. Energy level statistics of quantum dots.

    Science.gov (United States)

    Tsau, Chien-Yu; Nghiem, Diu; Joynt, Robert; Woods Halley, J

    2007-05-08

    We investigate the charging energy level statistics of disordered interacting electrons in quantum dots by numerical calculations using the Hartree approximation. The aim is to obtain a global picture of the statistics as a function of disorder and interaction strengths. We find Poisson statistics at very strong disorder, Wigner-Dyson statistics for weak disorder and interactions, and a Gaussian intermediate regime. These regimes are as expected from previous studies and fundamental considerations, but we also find interesting and rather broad crossover regimes. In particular, intermediate between the Gaussian and Poisson regimes we find a two-sided exponential distribution for the energy level spacings. In comparing with experiment, we find that this distribution may be realized in some quantum dots.

  8. Design of tunneling injection quantum dot lasers

    Institute of Scientific and Technical Information of China (English)

    JIA Guo-zhi; YAO Jiang-hong; SHU Yong-chun; WANG Zhan-guo

    2007-01-01

    To implement high quality tunneling injection quantum dot lasers,effects of primary factors on performance of the tunneling injection quantum dot lasers were investigated. The considered factors were tunneling probability,tunneling time and carriers thermal escape time from the quantum well. The calculation results show that with increasing of the ground-state energy level in quantum well,the tunneling probability increases and the tunneling time decreases,while the thermal escape time decreases because the ground-state energy levelis shallower. Longitudinal optical phonon-assisted tunneling can be an effective method to solve the problem that both the tunneling time and the thermal escape time decrease simultaneously with the ground-state energy level increasing in quantum well.

  9. Many electron effects in semiconductor quantum dots

    Indian Academy of Sciences (India)

    R K Pandey; Manoj K Harbola; V Ranjan; Vijay A Singh

    2003-01-01

    Semiconductor quantum dots (QDs) exhibit shell structures, very similar to atoms. Termed as ‘artificial atoms’ by some, they are much larger (1 100 nm) than real atoms. One can study a variety of manyelectron effects in them, which are otherwise difficult to observe in a real atom. We have treated these effects within the local density approximation (LDA) and the Harbola–Sahni (HS) scheme. HS is free of the selfinteraction error of the LDA. Our calculations have been performed in a three-dimensional quantum dot. We have carried out a study of the size and shape dependence of the level spacing. Scaling laws for the Hubbard ‘’ are established.

  10. Energy level statistics of quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Tsau, C-Y [University of Wisconsin-Madison, Madison, WI 53706 (United States); Nghiem, Diu [University of Wisconsin-Madison, Madison, WI 53706 (United States); Joynt, Robert [University of Wisconsin-Madison, Madison, WI 53706 (United States); Halley, J Woods [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2007-05-08

    We investigate the charging energy level statistics of disordered interacting electrons in quantum dots by numerical calculations using the Hartree approximation. The aim is to obtain a global picture of the statistics as a function of disorder and interaction strengths. We find Poisson statistics at very strong disorder, Wigner-Dyson statistics for weak disorder and interactions, and a Gaussian intermediate regime. These regimes are as expected from previous studies and fundamental considerations, but we also find interesting and rather broad crossover regimes. In particular, intermediate between the Gaussian and Poisson regimes we find a two-sided exponential distribution for the energy level spacings. In comparing with experiment, we find that this distribution may be realized in some quantum dots.

  11. Energy level statistics of quantum dots

    Science.gov (United States)

    Tsau, Chien-Yu; Nghiem, Diu; Joynt, Robert; Halley, J. Woods

    2007-05-01

    We investigate the charging energy level statistics of disordered interacting electrons in quantum dots by numerical calculations using the Hartree approximation. The aim is to obtain a global picture of the statistics as a function of disorder and interaction strengths. We find Poisson statistics at very strong disorder, Wigner-Dyson statistics for weak disorder and interactions, and a Gaussian intermediate regime. These regimes are as expected from previous studies and fundamental considerations, but we also find interesting and rather broad crossover regimes. In particular, intermediate between the Gaussian and Poisson regimes we find a two-sided exponential distribution for the energy level spacings. In comparing with experiment, we find that this distribution may be realized in some quantum dots.

  12. Light emission from Si quantum dots

    Directory of Open Access Journals (Sweden)

    Philippe M. Fauchet

    2005-01-01

    Full Text Available Si quantum dots (QDs as small as ∼2 nm in diameter have been synthesized by a variety of techniques. Because of quantum confinement and the elimination of bulk or surface defects, these dots can emit light from the near infrared throughout the visible with quantum efficiencies in excess of 10%. The luminescence wavelength range has been extended to longer wavelengths by the addition of light-emitting rare earths such as erbium (Er. Light-emitting devices (LEDs have been fabricated and their performances are starting to approach those of direct band gap semiconductor or organic LEDs. A search for a Si QD-based laser is even under way. The state-of-the-art in the materials science, physics, and device development of luminescent Si QDs is reviewed and areas of future research are pointed out.

  13. Peptide-Decorated Tunable-Fluorescence Graphene Quantum Dots.

    Science.gov (United States)

    Sapkota, Bedanga; Benabbas, Abdelkrim; Lin, Hao-Yu Greg; Liang, Wentao; Champion, Paul; Wanunu, Meni

    2017-03-22

    We report here the synthesis of graphene quantum dots with tunable size, surface chemistry, and fluorescence properties. In the size regime 15-35 nm, these quantum dots maintain strong visible light fluorescence (mean quantum yield of 0.64) and a high two-photon absorption (TPA) cross section (6500 Göppert-Mayer units). Furthermore, through noncovalent tailoring of the chemistry of these quantum dots, we obtain water-stable quantum dots. For example, quantum dots with lysine groups bind strongly to DNA in solution and inhibit polymerase-based DNA strand synthesis. Finally, by virtue of their mesoscopic size, the quantum dots exhibit good cell permeability into living epithelial cells, but they do not enter the cell nucleus.

  14. Single quantum dots fundamentals, applications, and new concepts

    CERN Document Server

    2003-01-01

    This book reviews recent advances in the exciting and rapid growing field of semiconductor quantum dots by contributions from some of the most prominent researchers in the field. Special focus is given to the optical and electronic properties of single quantum dots due to their potential applications in devices operating with single electrons and/or single photons. This includes quantum dots in electric and magnetic fields, cavity-quantum electrodynamics, nonclassical light generation, and coherent optical control of excitons. Single Quantum Dots also addresses various growth techniques as well as potential device applications such as quantum dot lasers, and new concepts like a single-photon source, and a single quantum dot laser.

  15. Principles of conjugating quantum dots to proteins via carbodiimide chemistry.

    Science.gov (United States)

    Song, Fayi; Chan, Warren C W

    2011-12-09

    The covalent coupling of nanomaterials to bio-recognition molecules is a critical intermediate step in using nanomaterials for biology and medicine. Here we investigate the carbodiimide-mediated conjugation of fluorescent quantum dots to different proteins (e.g., immunoglobulin G, bovine serum albumin, and horseradish peroxidase). To enable these studies, we developed a simple method to isolate quantum dot bioconjugates from unconjugated quantum dots. The results show that the reactant concentrations and protein type will impact the overall number of proteins conjugated onto the surfaces of the quantum dots, homogeneity of the protein-quantum dot conjugate population, quantum efficiency, binding avidity, and enzymatic kinetics. We propose general principles that should be followed for the successful coupling of proteins to quantum dots.

  16. Mode Competition in Dual-Mode Quantum Dots Semiconductor Microlaser

    CERN Document Server

    Chusseau, Laurent; Viktorovitch, P; Letartre, Xavier

    2013-01-01

    This paper describes the modeling of quantum dots lasers with the aim of assessing the conditions for stable cw dual-mode operation when the mode separation lies in the THz range. Several possible models suited for InAs quantum dots in InP barriers are analytically evaluated, in particular quantum dots electrically coupled through a direct exchange of excitation by the wetting layer or quantum dots optically coupled through the homogeneous broadening of their optical gain. A stable dual-mode regime is shown possible in all cases when quantum dots are used as active layer whereas a gain medium of quantum well or bulk type inevitably leads to bistable behavior. The choice of a quantum dots gain medium perfectly matched the production of dual-mode lasers devoted to THz generation by photomixing.

  17. Quantum Dots and Their Multimodal Applications: A Review

    Directory of Open Access Journals (Sweden)

    Paul H. Holloway

    2010-03-01

    Full Text Available Semiconducting quantum dots, whose particle sizes are in the nanometer range, have very unusual properties. The quantum dots have band gaps that depend in a complicated fashion upon a number of factors, described in the article. Processing-structure-properties-performance relationships are reviewed for compound semiconducting quantum dots. Various methods for synthesizing these quantum dots are discussed, as well as their resulting properties. Quantum states and confinement of their excitons may shift their optical absorption and emission energies. Such effects are important for tuning their luminescence stimulated by photons (photoluminescence or electric field (electroluminescence. In this article, decoupling of quantum effects on excitation and emission are described, along with the use of quantum dots as sensitizers in phosphors. In addition, we reviewed the multimodal applications of quantum dots, including in electroluminescence device, solar cell and biological imaging.

  18. Templated self-assembly of SiGe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Dais, Christian

    2009-08-19

    This PhD thesis reports on the fabrication and characterization of exact aligned SiGe quantum dot structures. In general, SiGe quantum dots which nucleate via the Stranski-Krastanov growth mode exhibit broad size dispersion and nucleate randomly on the surface. However, to tap the full potential of SiGe quantum dots it is necessary to control the positioning and size of the dots on a nanometer length, e.g. for electronically addressing of individual dots. This can be realized by so-called templated self-assembly, which combines top-down lithography with bottom-up selfassembly. In this process the lithographically defined pits serve as pre-defined nucleation points for the epitaxially grown quantum dots. In this thesis, extreme ultraviolet interference lithography at a wavelength of e=13.4 nm is employed for prepatterning of the Si substrates. This technique allows the precise and fast fabrication of high-resolution templates with a high degree of reproducibility. The subsequent epitaxial deposition is either performed by molecular beam epitaxy or low-pressure chemical vapour deposition. It is shown that the dot nucleation on pre-patterned substrates depends strongly on the lithography parameters, e.g. size and periodicity of the pits, as well as on the epitaxy parameters, e.g. growth temperature or material coverage. The interrelations are carefully analyzed by means of scanning force microscopy, transmission electron microscopy and X-ray diffraction measurements. Provided that correct template and overgrowth parameters are chosen, perfectly aligned and uniform SiGe quantum dot arrays of different period, size as well as symmetry are created. In particular, the quantum dot arrays with the so far smallest period (35 nm) and smallest size dispersion are fabricated in this thesis. Furthermore, the strain fields of the underlying quantum dots allow the fabrication of vertically aligned quantum dot stacks. Combining lateral and vertical dot alignment results in three

  19. Ac response of a coupled double quantum dot

    Institute of Scientific and Technical Information of China (English)

    Xu Jie; W.Z. Shangguan; Zhan Shi-Chang

    2005-01-01

    The effect of phase-breaking process on the ac response of a coupled double quantum dot is studied in this paper based on the nonequilibrium Green function formalism. A general expression is derived for the ac current in the presence of electron-phonon interaction. The ac conductance is numerically computed and the results are compared with those in [Anatram M P and Datts S 1995 Phys. Rev. B 51 7632]. Our results reveal that the inter-dot electron tunnelling interplays with that between dots and electron reservoirs, and contributes prominently to the ac current when inter-dot tunnelling coupling is much larger than the tunnelling coupling between dots and electron reservoirs. In addition, the phase-breaking process is found to have a significant effect on the ac transport through the coupled double dot.

  20. Electric and Magnetic Interaction between Quantum Dots and Light

    DEFF Research Database (Denmark)

    Tighineanu, Petru

    a future challenge for the droplet-epitaxy technique. A multipolar theory of spontaneous emission from quantum dots is developed to explain the recent observation that In(Ga)As quantum dots break the dipole theory. The analysis yields a large mesoscopic moment, which contains magnetic-dipole and electric......-matter interaction of both electric and magnetic character. Our study demonstrates that In(Ga)As quantum dots lack parity symmetry and, as consequence, can be employed for locally probing the parity symmetry of complex photonic nanostructures. This opens the prospect for interfacing quantum dots with optical......The present thesis reports research on the optical properties of quantum dots by developing new theories and conducting optical measurements. We demonstrate experimentally singlephoton superradiance in interface-uctuation quantum dots by recording the temporal decay dynamics in conjunction...