WorldWideScience

Sample records for central volcanic systems

  1. Magma chamber processes in central volcanic systems of Iceland

    DEFF Research Database (Denmark)

    Þórarinsson, Sigurjón Böðvar; Tegner, Christian

    2009-01-01

    New field work and petrological investigations of the largest gabbro outcrop in Iceland, the Hvalnesfjall gabbro of the 6-7 Ma Austurhorn intrusive complex, have established a stratigraphic sequence exceeding 800 m composed of at least 8 macrorhythmic units. The bases of the macrorhythmic units...... olivine basalts from Iceland that had undergone about 20% crystallisation of olivine, plagioclase and clinopyroxene and that the macrorhythmic units formed from thin magma layers not exceeding 200-300 m. Such a "mushy" magma chamber is akin to volcanic plumbing systems in settings of high magma supply...... rate including the mid-ocean ridges and present-day magma chambers over the Iceland mantle plume. The Austurhorn central volcano likely formed in an off-rift flank zone proximal to the Iceland mantle plume during a major rift relocation....

  2. Miocene fossil hydrothermal system associated with a volcanic complex in the Andes of central Chile

    Science.gov (United States)

    Fuentes, Francisco; Aguirre, Luis; Vergara, Mario; Valdebenito, Leticia; Fonseca, Eugenia

    2004-11-01

    Cenozoic deposits in the Andes of central Chile have been affected by very low-grade burial metamorphism. At about 33°S in the Cuesta de Chacabuco area, approximately 53 km north of Santiago, two Oligocene and Miocene volcanic units form a ca. 1300-m-thick rock pile. The Miocene unit corresponds to a volcanic complex composed of two eroded stratovolcanoes. Secondary mineral assemblages in both units were studied petrographically and using X-ray diffraction and electron microprobe analyses. Most of the igneous minerals are wholly or partially preserved, and the ubiquitous secondary minerals are zeolites and mafic phyllosilicates. The alteration pattern observed is characterized by a lateral zonation in secondary mineralogy related to a lateral increase in temperature but not to stratigraphic depth. The following three zones were established, mainly based on the distribution of zeolites: zone I comprises heulandite, thomsonite, mesolite, stilbite and tri-smectite; zone II contains laumontite, yugawaralite, prehnite, epidote and chlorite; and zone III comprises wairakite, epidote, chlorite, diopside, biotite and titanite. For each zone, the following temperature ranges were estimated: zone I, 100-180 °C; zone II, 180-270 °C; and zone III, 245-310 °C. The alteration episode was characterized by a high Pfluid/ Ptotal ratio (ca. 1.0), although slightly variable, a high geothermal gradient of ca. 160 °C km -1 and fluid pressures below 500 bars. Although temperature was the main control on the mineral zonation, several interrelated parameters, mainly fluid composition, porosity and permeability, were also important. Hot, near neutral to slightly alkaline pH, alkali chloride hydrothermal fluids with very low dissolved CO 2 contents deposited the secondary minerals. The alteration pattern is the result of depositing fluids in outflow regions from a hydrothermal system developed inside a volcanic complex during the Miocene. The hydrothermal system has been eroded to a

  3. Characterization of the Hydrothermal System of the Tinguiririca Volcanic Complex, Central Chile, using Structural Geology and Passive Seismic Tomography

    Science.gov (United States)

    Pavez Orrego, Claudia; Tapia, Felipe; Comte, Diana; Gutierrez, Francisco; Lira, Elías; Charrier, Reynaldo; Benavente, Oscar

    2016-04-01

    A structural characterization of the hydrothermal-volcanic field associated with the Tinguiririca Volcanic Complex had been performed by combining passive seismic tomography and structural geology. This complex corresponds to a 20 km long succession of N25°E oriented of eruptive centers, currently showing several thermal manifestations distributed throughout the area. The structural behavior of this zone is controlled by the El Fierro - El Diablo fault system, corresponding to a high angle reverse faults of Oligocene - Miocene age. In this area, a temporary seismic network with 16 short-period stations was setup from January to April of 2010, in the context of the MSc thesis of Lira- Energía Andina (2010), covering an area of 200 km2 that corresponds with the hydrothermal field of Tinguiririca Volcanic Complex (TVC), Central Chile, Southern Central Andes. Using P- and S- wave arrival times, a 3D seismic velocity tomography was performed. High Vp/Vs ratios are interpreted as zones with high hot fluid content and high fracturing. Meanwhile, low Vp/Vs anomalies could represent the magmatic reservoir and the conduit network associated to the fluid mobility. Based on structural information and thermal manifestations, these anomalies have been interpreted. In order to visualize the relation between local geology and the velocity model, the volume associated with the magma reservoir and the fluid circulation network has been delimited using an iso-value contour of Vp/Vs equal to 1.70. The most prominent observed feature in the obtained model is a large "V" shaped low - velocity anomaly extending along the entire study region and having the same vergency and orientation as the existing high-angle inverse faults, which corroborates that El Fierro - El Diablo fault system represents the local control for fluid mobility. This geometry coincides with surface hydrothermal manifestations and with available geochemical information of the area, which allowed us to generate a

  4. Water and gas geochemistry of the Calatrava Volcanic Province (CVP) hydrothermal system (Ciudad Real, central Spain)

    Science.gov (United States)

    Vaselli, Orlando; Nisi, Barbara; Tassi, Franco; Giannini, Luciano; Grandia, Fidel; Darrah, Tom; Capecchiacci, Francesco; del Villar, Pèrez

    2013-04-01

    An extensive geochemical and isotopic investigation was carried out in the water and gas discharges of the Late Miocene-Quaternary Calatrava Volcanic Province (CVP) (Ciudad Real, Spain) with the aim reconstruct the fluid circulation in the area. CVP consists of a series of scattered (monogenetic) vents from where alkaline lava flows and pyroclastic deposits formed in two different periods. The first stage (8.7-6.4 Ma) mainly included ultra-potassic mafic extrusives, whilst the second stage (4.7-1.75 Ma) prevalently originated alkaline and ultra-alkaline volcanics. Both stages were followed by a volcanic activity that extended up to 1.3 and 0.7 Ma, respectively. This area can likely be regarded as one of the most important emitting zones of CO2 in the whole Peninsular Spain along with that of Selva-Emporda in northeastern Spain (Cataluña) and it can be assumed as one of the best examples of natural analogues of CO2 leakages in Spain. This latter aspect is further evidenced by the relatively common water-gas blast events that characterize the CCVF. In the last few years the presence of a CO2-pressurized reservoir at a relatively shallow level as indeed caused several small-sized explosion particularly during the drilling of domestic wells. The fluid discharging sites are apparently aligned along well-defined directions: NW-SE and NNW-SSE and subordinately, ENE-WSW, indicating a clear relationship between the thermal discharges and the volcanic centers that also distribute along these lineaments. The CVP waters are mostly hypothermal (up to 33 °C) and are generally Mg(Ca)-HCO3 in composition and occasionally show relatively high concentrations of Fe and Mn, with pH and electrical conductivity down to 5.5 and up to 6.5 mS/cm, respectively. The oxygen and hydrogen isotopes suggest a meteoric origin for these waters. The mantle source of these volcanic products is apparently preserved in the many CO2-rich (up to 990,000 mmol/mol) gas discharges that characterize CVP

  5. System of Volcanic activity

    Directory of Open Access Journals (Sweden)

    P. HÉDERVARI

    1972-06-01

    Full Text Available A comparison is made among the systems of B. G.
    Escher (3, of R. W. van Bemmelen (1 and that of the author (4. In this
    connection, on the basis of Esclier's classification, the terms of "constructiv
    e " and "destructive" eruptions are introduced into the author's system and
    at the same time Escher's concept on the possible relation between the depth
    of magma-chamber and the measure of the gas-pressure is discussed briefly.
    Three complementary remarks to the first paper (4 011 the subject of system
    of volcanic activity are added.

  6. Frequent underwater volcanism in the central Aegean Sea

    Science.gov (United States)

    Huebscher, C.; Ruhnau, M.; Dehghani, G. A.

    2012-04-01

    The extinction of the Minoan culture in the mid second millennium BCE is a well known consequence of the Plinian eruption of Thera volcano (Santorini Island). Santorini is a member of the South Aegean arc forming a chain from the Gulf of Saronikos (Susaki, Egina, Poros, Methana) at West, to an area close to the Anatolian coast at East (Kos, Nisyros and minor islands), through the central part (Milos and Santorini island groups). Underwater volcanic activity was manifested historically only once. During 1649-1650 CE the Kolumbo underwater volcano evolved about 8 km northeast of Santorini. As a consequence of this eruption volcanic ash covered the entire Aegean area and a hazardous tsunami was triggered. Here we show by means of reflection seismic and magnetic data that underwater volcanism occurred more frequently in the central Aegean Sea than previously assumed. Seismic data show that Kolumbo constitutes of five vertically stacked cones of pyroclastic sediment plus at least four smaller cones on the flank of the volcano. The formation of Kolumbo started synchronous with Santorini Island. The entire volume of the Kolumbo pyroclastic cones is estimated to more than 15 cubic-kilometers. Several small-scale cones have been detected in the Anyhdros Basin some km north-east of Kolumbo, being previously interpreted as mud volcanoes by other authors. However, the similarity of seismic and magnetic signatures of these cones and Kolumbo strongly suggest that these cones were also created by underwater volcanism. Volcanic cones, Kolumbo and Santorini are situated along a NE-SW striking graben system that evolved during five extensional tectonic pulses in the Pliocene.

  7. Collaborative studies target volcanic hazards in Central America

    Science.gov (United States)

    Bluth, Gregg J. S.; Rose, William I.

    Central America is the second-most consistently active volcanic zone on Earth, after Indonesia. Centuries of volcanic activity have produced a spectacular landscape of collapsed calderas, debris flows, and thick blankets of pyroclastic materials. Volcanic activity dominates the history, culture, and daily life of Central American countries.January 2002 marked the third consecutive year in which a diverse group of volcanologists and geophysicists conducted focused field studies in Central America. This type of multi-institutional collaboration reflects the growing involvement of a number of U.S. and non-U.S. universities, and of other organizations, in Guatemala and El Salvador (Table 1).

  8. Delineation of the High Enthalpy Reservoirs of the Sierra Nevada Volcanic Geothermal System, South-Central Chile

    Science.gov (United States)

    Alam, M.; Muñoz, M.; Parada, M.

    2011-12-01

    Geothermal system associated with the Pleistocene-Holocene Sierra Nevada volcano (SNVGS) in the Araucanía Region of Chile has surface manifestations from the north-western flank of the volcano, up to Manzanar and Malalcahuello. Baños del Toro, located on the northwestern flank of the volcano, has numerous fumaroles and acid pools (acid sulfate waters, T=~90°C, pH=2.1, TDS=3080 mg/L); while Aguas de la Vaca, near the base of the volcano, has a bubbling spring (chloride-sulfate waters, T=~60°C, pH=7.0, TDS=950 mg/L). Five shallow (low TDS (130-210mg/L). The main heat source of the geothermal system is apparently the magmatic system of the Sierra Nevada volcano. Liquiñe-Ofqui Fault Zone (LOFZ) that transects the area forms excellent conduits for the flow of the geothermal waters. The geothermal reservoirs are hosted in the volcanic rocks interceded with glacial deposits over the North Patagonian Batholith that forms an impermeable barrier, and thus constitutes the lower boundary of the geothermal system and also controls the lateral flow of the fluids. An equilibrium temperature of ~210°C is derived from gas geothermometry (CO2/Ar-H2/Ar) of the discharges at Baños del Toro. Geothermal fluids from the upflow area on the northwestern flank of the volcano migrate northwards to the Cautín River Valley. The geothermal system has a high enthalpy reservoir(s) on the northwestern flank of the Sierra Nevada volcano and low-enthalpy reservoirs in the Cautín River Valley that have been tapped to form spas at Manzanar and Malalcahuello. While sub-vertical fractures of LOFZ facilitate the recharge of the system, lateral flow of the geothermal fluids is apparently controlled by lithology; Melipueclo Pluton in particular prevents the westward flow from the upflow zone, causing the flow only northwards to Malalcahuello and subsequently westward on meeting poorly permeable Guapitrío Member of the Cura-Mallín Formation. This change in the flow direction from northwestward up

  9. Geology and geochemistry characteristics of the Chiapanecan Volcanic Arc (Central Area), Chiapas Mexico

    Science.gov (United States)

    Mora, J. C.; Jaimes-Viera, M. C.; Garduño-Monroy, V. H.; Layer, P. W.; Pompa-Mera, V.; Godinez, M. L.

    2007-04-01

    The Chiapanecan Volcanic Arc (CVA), located in the central portion of the State of Chiapas, is a 150 km stretch of volcanoes irregularly aligned in the northwest direction between two great volcanic features: the Trans-Mexican Volcanic Belt to the northwest and the Central American Volcanic Arc to the southeast. The CVA is located in a complex zone marking the interaction of the North American, Caribbean and Cocos plates, near the Motagua-Polochic fault system, the boundary between North American and Caribbean plates. The central part of the CVA is composed of an irregular northwest alignment of at least 10 volcanic structures generally lying along NNW-SSE-trending faults splayed from the Motagua-Polochic system. Among the structures there are seven volcanic domes (Huitepec, Amahuitz, La Iglesia, Mispía, La Lanza, Venustiano Carranza and Santotón), one explosion crater (Navenchauc), one collapse structure (Apas), and one dome complex (Tzontehuitz). In the majority of the structures there is a clear resurgence with the formation of several domes in the same structure, with the destruction of previous domes (Navenchauc) or with the formation of new explosion craters or collapse structures (Apas). The volcanic activity in the CVA was mainly effusive accompanied by explosive and phreatomagmatic events and is characterized by volcanic domes accompanied by block-and-ash-flows, ash flows with accretionary lapilli, falls, and pumice flows. The volcanic structures and deposits are calcalkaline in composition with a medium to high content of potassium. CVA volcanic rocks vary from andesite to dacite with SiO 2 between 57 and 66 wt.%, show low concentrations of Ti, P, Nb and Ta, are enriched in Light Rare Earths, depleted in Heavy Rare Earths, and show a small Eu anomaly; all indicative of arc-related volcanism associated with subduction of the Cocos plate under the North American plate, but complicated by the geometry of the plate boundary fault system.

  10. Evolution of Geochemical Variations Along the Central American Volcanic Front

    Science.gov (United States)

    Saginor, I. S.; Gazel, E.; Condie, C.; Carr, M. J.

    2014-12-01

    New geochemical analyses of volcanic rocks in El Salvador add to existing data from Nicaragua and Costa Rica to create a comprehensive set of geochemical data for Central American volcanics. These data coupled with previously published 40Ar/39Ar ages covering the past 30 Ma shows that Costa Rica and Nicaragua had similar U/Th and Ba/La values until 10 Ma when the region developed the distinctive along arc variations that made this margin famous. U/Th values increased in Nicaragua since the Miocene, while remaining unchanged along the rest of the volcanic front. This coincides temporally with the Carbonate Crash, which caused a transition in Cocos plate sediments from low-U carbonates to high-U, organic rich hemipelagic muds. Increases in uranium are not observed in Costa Rica because its lower slab dip produces a more diffuse zone of partial melting and because of the contribution from Galapagos-derived tracks dilutes this signal. Ba/La has been used as a geochemical proxy for contributions from the subducting slab, however our analyses indicate that the Ba concentrations do not vary significantly along strike either in the subducting sediment or the volcanic front. Along-arc variation is controlled by changes in La, an indicator of the degree of partial melting or source enrichment. Trace element models of five segments of the volcanic front suggest that a subducting sediment component is more important to magmas produced in El Salvador and Nicaragua than in Costa Rica, where the geochemistry is controlled by recent (<10 Ma) recycling of Galapagos tracks.

  11. Quaternary volcanism in the Acambay graben, Mexican Volcanic Belt: Re-evaluation for potential volcanic danger in central Mexico

    Science.gov (United States)

    Aguirre-Diaz, G. J.; Pedrazzi, D.; Lacan, P.; Roldan-Quintana, J.; Ortuňo, M.; Zuniga, R. R.; Laurence, A.

    2015-12-01

    The Mexican Volcanic Belt (MVB) is best known for the major active stratovolcanoes, such as Popocatépetl, Citlaltépetl and Colima. The most common stratovolcanoes in this province are modest-size cones with heights of 800 to 1000 m. Examples are Tequila, Sangangüey, Las Navajas, Culiacán, La Joya, El Zamorano, Temascalcingo and Altamirano; these last two were formed within the Acambay Graben in central MVB. The Acambay graben (20 x 70 km) is 100 km to the NW of Mexico City, with E-W trending seismically active normal faults; in particular the Acambay-Tixmadejé fault related to a mB =7 earthquake in 1912. Within the graben there are many volcanic structures, including calderas, domes, cinder cones and stratovolcanoes; Temascalcingo and Altamirano are the largest, with about 800 and 900 m heights, respectively. Temascalcingo is mostly composed of dacitic lavas and block and ash flow deposits. Includes a 3 x 2.5 km summit caldera and a magmatic sector collapse event with the associated debris avalanche deposit. 14C ages of 37-12 ka correspond to the volcano's latest phases that produced pyroclastic deposits. A major plinian eruption formed the San Mateo Pumice with an age of <20 Ka. Altamirano volcano is poorly studied; it is andesitic-dacitic, composed of lavas, pyroclastic flow deposits, and pumice fallouts. Morphologically is better preserved than Temascalcingo, and it should be younger. 14C ages of 4.0-2.5 ka were performed in charcoal within pyroclastic flow deposits that apparently were erupted from Altamirano. An undated 3 m thick pumice fallout on the flanks of Altamirano volcano could be also Holocene. It represents a major explosive event. The relatively young ages found in volcanic deposits within the Acambay graben raise the volcanic danger level in this area, originally thought as an inactive volcanic zone. The two major volcanoes, Temascalcingo and Altamirano, should be considered as dormant volcanoes that could restart activity at any time. We

  12. Central San Juan caldera cluster: regional volcanic framework

    Science.gov (United States)

    Lipman, Peter W.

    2000-01-01

    Eruption of at least 8800 km3 of dacitic-rhyolitic magma as 9 major ash-slow sheets (individually 150-5000 km3) was accompanied by recurrent caldera subsidence between 28.3 and about 26.5 Ma in the central San Juan Mountains, Colorado. Voluminous andesitic-decitic lavas and breccias were erupted from central volcanoes prior to the ash-flow eruptions, and similar lava eruptions continued within and adjacent to the calderas during the period of explosive volcanism, making the central San Juan caldera cluster an exceptional site for study of caldera-related volcanic processes. Exposed calderas vary in size from 10 to 75 km in maximum diameter, the largest calderas being associated with the most voluminous eruptions. After collapse of the giant La Garita caldera during eruption if the Fish Canyon Tuff at 17.6 Ma, seven additional explosive eruptions and calderas formed inside the La Garita depression within about 1 m.y. Because of the nested geometry, maximum loci of recurrently overlapping collapse events are inferred to have subsided as much as 10-17 km, far deeper than the roof of the composite subvolcanic batholith defined by gravity data, which represents solidified caldera-related magma bodies. Erosional dissection to depths of as much as 1.5 km, although insufficient to reach the subvolcanic batholith, has exposed diverse features of intracaldera ash-flow tuff and interleaved caldera-collapse landslide deposits that accumulated to multikilometer thickness within concurrently subsiding caldera structures. The calderas display a variety of postcollapse resurgent uplift structures, and caldera-forming events produced complex fault geometries that localized late mineralization, including the epithermal base- and precious-metal veins of the well-known Creede mining district. Most of the central San Juan calderas have been deeply eroded, and their identification is dependent on detailed geologic mapping. In contrast, the primary volcanic morphology of the

  13. Fluid-magmatic systems and volcanic centers in Northern Caucasus

    Science.gov (United States)

    Sobisevich, Alexey L.; Masurenkov, Yuri P.; Pouzich, Irina N.; Laverova, Ninel I.

    2013-04-01

    The central segment of Alpine mobile folded system and the Greater Caucasus is considered with respect to fluid-magmatic activity within modern and Holocene volcanic centers. A volcanic center is a combination of volcanoes, intrusions, and hydrothermal features supported by endogenous flow of matter and energy localised in space and steady in time; responsible for magma generation and characterized by structural representation in the form of circular dome and caldera associations. Results of complimentary geological and geophysical studies carried out in the Elbrus volcanic area and the Pyatogorsk volcanic center are presented. The deep magmatic source and the peripheral magmatic chamber of the Elbrus volcano are outlined via comparative analysis of geological and experimental geophysical data (microgravity studies, magneto-telluric profiling, temperature of carbonaceous mineral waters). It has been determined that the peripheral magmatic chamber and the deep magmatic source of the volcano are located at depths of 0-7 and 20-30 km below sea level, respectively, and the geothermal gradient beneath the volcano is 100°C/km. In this study, analysis of processes of modern heat outflux produced by carbonaceous springs in the Elbrus volcanic center is carried out with respect to updated information about spatial configuration of deep fluid-magmatic structures of the Elbrus volcano. It has been shown, that degradation of the Elbrus glaciers throughout the historical time is related both to climatic variations and endogenic heat. The stable fast rate of melting for the glaciers on the volcano's eastern slope is of theoretical and practical interest as factors of eruption prognosis. The system approach to studying volcanism implies that events that seem to be outside the studied process should not be ignored. This concerns glaciers located in the vicinity of volcanoes. The crustal rocks contacting with the volcanism products exchange matter and energy between each other

  14. Q of Lg Waves in the Central Mexican Volcanic Belt

    Science.gov (United States)

    Singh, S. K.; Iglesias, A.; García, D.; Pacheco, J. F.; Ordaz, M.

    2007-05-01

    From seismograms of shallow, coastal earthquakes recorded at a pair of broadband stations, we estimate Q of Lg waves in the part of central Mexican Volcanic Belt (MVB) that includes the Valley of Mexico. The two stations straddle the central MVB and are located on Cretaceous limestone. A weighted least-square fit to the Q-1(f) data in the frequency range 0.25 to 8 Hz yields Q(f)=98f0.72. This estimate of Q is lower than the corresponding Q in the forearc region which is given by Q(f)=273f0.66. We note that our estimate of Q(f) corresponds to a 200 km-wide zone of the MVB. The result of this study sheds light on the characteristics of seismic waves as they traverse through the MVB where they undergo dramatic amplification in the Valley of Mexico. It also provides one of the critical elements needed in the estimation of expected ground motions at sites to the north of the MVB from future coastal earthquakes. Lower Q of Lg waves in the MVB as compared to the forearc region seems correlated with lower resistivity reported in the MVB relative to the forearc region.

  15. SURFACE AREA AND MICRO-ROUGHNESS OF VOLCANIC ASH PARTICLES: A case study, Acigol Volcanic Complex, Cappadocia, Central Turkiye

    Science.gov (United States)

    Ersoy, O.; Aydar, E.; Sen, E.; Atici, G.

    2009-04-01

    Every single ash particle may convey information about its own formation environment and conditions. Certain features on particles may give a hint about the fragmentation regime, the intensity of fragmentation and quantity of water that partakes in the fragmentation process, etc. On this account, this study majored in the analysis on finer pyroclastic material, namely volcanic ash particles. Here, we used volcanic ash particles from Quaternary Acigol Volcanic complex (West of Nevsehir, Cappadocia, Central Turkiye). Quaternary Acigol Volcanic complex lies between the towns of Nevsehir and Acigol. It consists of a shallow caldera, a thick pyroclastic apron, seven obsidian dome clusters, and scattered cinder cones and associated lavas (Druitt et al., 1995). The products of explosive volcanism of the region were distinguished as two main Quaternary tuffs by a recent study (Druitt et al., 1995). Samples are from ashfall beds in a sequence of intercalated pumice fall, ashfall, and ignimbrite beds. In this study in order to achieve surface properties of volcanic ash particles, surface areas and micro-roughness of ash particles were measured on digital elevation models (DEM) reconstructed from stereoscopic images acquired on Scanning Electron Microscope (SEM) at varying specimen tilt angles. Correlation between surface texture of volcanic ash particles and eruption characteristics was determined.

  16. Landscape evolution within a retreating volcanic arc, Costa Rica, Central America

    Science.gov (United States)

    Marshall, Jeffrey S.; Idleman, Bruce D.; Gardner, Thomas W.; Fisher, Donald M.

    2003-05-01

    Subduction of hotspot-thickened seafloor profoundly affects convergent margin tectonics, strongly affecting upper plate structure, volcanism, and landscape evolution. In southern Central America, low-angle subduction of the Cocos Ridge and seamount domain largely controls landscape evolution in the volcanic arc. Field mapping, stratigraphic correlation, and 40Ar/39Ar geochronology for late Cenozoic volcanic rocks of central Costa Rica provide new insights into the geomorphic response of volcanic arc landscapes to changes in subduction parameters (slab thickness, roughness, dip). Late Neogene volcanism was focused primarily along the now-extinct Cordillera de Aguacate. Quaternary migration of the magmatic front shifted volcanism northeastward to the Caribbean slope, creating a new topographic divide and forming the Valle Central basin. Stream capture across the paleo Aguacate divide led to drainage reversal toward the Pacific slope and deep incision of reorganized fluvial networks. Pleistocene caldera activity generated silicic ash flows that buried the Valle Central and descended the Tárcoles gorge to the Orotina debris fan at the coast. Growth of the modern Cordillera Central accentuated relief along the new divide, establishing the Valle Central as a Pacific slope drainage basin. Arc migration, relocation of the Pacific-Caribbean drainage divide, and formation of the Valle Central basin resulted from slab shallowing as irregular, hotspot-thickened crust entered the subduction zone. The geomorphic evolution of volcanic arc landscapes is thus highly sensitive to changes in subducting plate character.

  17. Pucarilla-Cerro Tipillas volcanic complex: the oldest recognized caldera in the southeastern portion of central volcanic zone of Central Andes?

    Energy Technology Data Exchange (ETDEWEB)

    Guzman, Silvina; Petrinovic, Ivan [CONICET -IBIGEO. Museo de Cs. Naturales, Universidad de Salta, Mendoza 2 (4400), Salta (Argentina)], E-mail: guzmansilvina@gmail.com

    2008-10-01

    We recognize the most eastern and oldest collapse caldera structure in the southern portion of the Central Volcanic Zone of the Andes. A description of Middle-Upper Miocene successions related to explosive- effusive events is presented. The location of this centre close to Cerro Galn Caldera attests a recurrence in the volcanism between 12 and 2 Ma in this portion of the Altiplano - Puna Plateau.

  18. Calderas of the Central Sector of the Mexican Volcanic Belt

    Science.gov (United States)

    Aguirre-Diaz, G. J.

    2001-12-01

    The central sector of the Mexican Volcanic Belt (MVB) (-99 to -103, Long W) has the largest number of calderas so far identified in this province. The calderas (with their age range in Ma, and distance to the Middle America Trench in km, in parenthesis) are: Amazcala (7-6, 480), Apaseo (7-6, 440), Huichapan (5-4, 420), Agustinos (5-4, 400), Amealco (5-4, 400), Macua (4-3, 410), Muerta (?, 380), Catedral (6-5, 370), Azufres (4.5-0.03, 370 -Pradal & Robin, 1994), and Zitácuaro (12-0.5, 320 -Capra et al., 1997). Most calderas completed their activity in about 1 Ma, but Azufres and Zitácuaro had longer lives, mostly as post-caldera lava domes and associated pyroclastic flows. Amazcala is rhyolitic, peraluminous-peralkaline, and 10x14 km in diameter. Apaseo is a 11x14 km center that started as andesitic-dacitic and ended rhyolitic and mildly peraluminous; Huichapan started with dacitic ignimbrites and ended with a major rhyolitic ignimbrite; Agustinos is a > 6 km open semi-circle structure that erupted first an andesitic ignimbrite and then a rhyolitic one; Amealco is 10 km in size and erupted a succession of three ignimbrites with mingled glasses with compositions from trachyandesite to rhyolite; Macua is a summit crater structure, 3x5 km, that erupted an unwelded rhyolitic ignimbrite; Muerta is a sector collapse caldera, 4x5 km, associated to lithics-rich ignimbrite eruptions; next to Mexico-City is Catedral, a 9x6 km in diameter caldera with silicic ignimbrites and rim and central lava domes, some of which erupted block-and-ash flows; Azufres has being a matter of debate, but according to Padral and Robin (1994), is a long-lived structure, about 20 km in diameter, with the major caldera eruption at 4.5-3.4 Ma, and repeated dome and pyroclastic flow activity until 26 Ka ago; Zitácuaro (Capra et al., 1997) is another long-lived center, with eruptive cycles at 12 Ma (the caldera-forming event), 5 Ma and 0.5 Ma (mostly domes and associated pyroclastic flows). Most

  19. Magmatic control along a strike-slip volcanic arc: The central Aeolian arc (Italy)

    KAUST Repository

    Ruch, Joel

    2016-01-23

    The regional stress field in volcanic areas may be overprinted by that produced by magmatic activity, promoting volcanism and faulting. In particular, in strike-slip settings, the definition of the relationships between the regional stress field and magmatic activity remains elusive. To better understand these relationships, we collected stratigraphic, volcanic and structural field data along the strike-slip Central Aeolian arc (Italy): here the islands of Lipari and Vulcano separate the extensional portion of the arc (to the east) from the contractional one (to the west). We collected >500 measurements of faults, extension fractures and dikes at 40 sites. Most structures are NNE-SSW to NNW-SSE oriented, eastward dipping, and show almost pure dip-slip motion; consistent with an E-W extension direction, with minor dextral and sinistral shear. Our data highlight six eruptive periods during the last 55 ka, which allow considering both islands as a single magmatic system, in which tectonic and magmatic activity steadily migrated eastward and currently focus on a 10 km long x 2 km wide active segment. Faulting appears to mostly occur in temporal and spatial relation with magmatic events, supporting that most of the observable deformation derives from transient magmatic activity (shorter-term, days to months), rather than from steady longer-term regional tectonics (102-104 years). More in general, the Central Aeolian case shows how magmatic activity may affect the structure and evolution of volcanic arcs, overprinting any strike-slip motion with magma-induced extension at the surface.

  20. Magmatic control along a strike-slip volcanic arc: The central Aeolian arc (Italy)

    Science.gov (United States)

    Ruch, J.; Vezzoli, L.; De Rosa, R.; Di Lorenzo, R.; Acocella, V.

    2016-02-01

    The regional stress field in volcanic areas may be overprinted by that produced by magmatic activity, promoting volcanism and faulting. In particular, in strike-slip settings, the definition of the relationships between the regional stress field and magmatic activity remains elusive. To better understand these relationships, we collected stratigraphic, volcanic, and structural field data along the strike-slip central Aeolian arc (Italy): here the islands of Lipari and Vulcano separate the extensional portion of the arc (to the east) from the contractional one (to the west). We collected >500 measurements of faults, extension fractures, and dikes at 40 sites. Most structures are NNE-SSW to NNW-SSE oriented, eastward dipping, and show almost pure dip-slip motion, consistent with an E-W extension direction, with minor dextral and sinistral shear. Our data highlight six eruptive periods during the last 55 ka, which allow considering both islands as a single magmatic system, in which tectonic and magmatic activities steadily migrated eastward and currently focus on a 10 km long × 2 km wide active segment. Faulting appears to mostly occur in temporal and spatial relation with magmatic events, supporting that most of the observable deformation derives from transient magmatic activity (shorter term, days to months), rather than from steady longer-term regional tectonics (102-104 years). More in general, the central Aeolian case shows how magmatic activity may affect the structure and evolution of volcanic arcs, overprinting any strike-slip motion with magma-induced extension at the surface.

  1. Synthesis of morphotectonics and volcanics of the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Mukherjee, A.D.; Iyer, S.D.

    The Central Indian Ocean Basin (CIOB) is an enigmatic ocean basin in the young and tectonically complex Indian Ocean. Major tectonic and volcanic forms identified are fracture zones, abyssal hills, seamounts and ridges and a unique zone...

  2. Geochemistry of high-potassium rocks from the mid-Tertiary Guffey volcanic center, Thirtynine Mile volcanic field, central Colorado

    Science.gov (United States)

    Wobus, Reinhard A.; Mochel, David W.; Mertzman, Stanley A.; Eide, Elizabeth A.; Rothwarf, Miriam T.; Loeffler, Bruce M.; Johnson, David A.; Keating, Gordon N.; Sultze, Kimberly; Benjamin, Anne E.; Venzke, Edward A.; Filson, Tammy

    1990-07-01

    The Guffey volcanic center is the largest within the 2000 km2 mid-Tertiary Thirtynine Mile volcanic field of central Colorado. This study is the first to provide extensive chemical data for these alkalic volcanic and subvolcanic rocks, which represent the eroded remnants of a large stratovolcano of Oligocene age. Formation of early domes and flows of latite and trachyte within the Guffey center was followed by extrusion of a thick series of basalt, trachybasalt, and shoshonite flows and lahars. Plugs, dikes, and vents ranging from basalt to rhyolite cut the thick mafic deposits, and felsic tuffs and tuff breccias chemically identical to the small rhyolitic plutons are locally preserved. Whole-rock major and trace element analyses of 80 samples, ranging almost continuously from 47% to 78%SiO2, indicate that the rocks of the Guffey center are among the most highly enriched in K2O (up to 6%) and rare earth elements (typically 200-300 ppm) of any volcanic rocks in Colorado. These observations, along with the relatively high concentrations of Ba and Rb and the depletion of Cr and Ni, suggest an appreciable contribution of lower crustal material to the magmas that produced the Thirtynine Mile volcanic rocks.

  3. The geochemical variations of the upper cenozoic volcanism along the Calama Olacapato El Toro transversal fault system in central Andes (˜24°S): petrogenetic and geodynamic implications

    Science.gov (United States)

    Matteini, M.; Mazzuoli, R.; Omarini, R.; Cas, R.; Maas, R.

    2002-02-01

    In this paper, we present new geochemical and Sr-Nd isotopic data for several Upper Miocene volcanic centres aligned along one of the most extensive transcurrent lineament in the Central Andes, the Calama-Olacapato-El Toro (COT). The transversal volcanic belt along COT is constituted by large composite volcanoes and a caldera structure; they are, from NW to SE, Puntas Negras, Rincon, Tul Tul, Del Medio and Pocitos (TUMEPO), Quevar Aguas Calientes and Tastil. In order to compare chemical data from the different centres along the COT transect, differentiation effects were minimised by using data extrapolated at 60% SiO2 with least-square regression method. In the western sector of the COT, the volcanic products of Puntas Negras and Rincon show relatively high K2O and 87Sr/86Sr and low Rb/Cs, Ta/Th, La/Yb, 143Nd/144Nd. To the east, the TUMEPO products have high Sr and 143Nd/144Nd, La/Yb and Ba/Rb and low Y, 87Sr/86Sr. In the easternmost COT sector, Quevar, Aguas Calientes and Tastil volcanic complexes exhibit low La/Yb, high87Sr/Sr86 and low 143Nd/144Nd. On the basis of these data, we propose a petrogenetic and geodynamical model for Central Andes at 24°S. In correspondence of Miocene-Quaternary volcanic arc (Puntas Negras and Rincon), the magmas inherited a calcalkaline signature partly modified by upper crustal and/or sediment assimilation. In the central eastern sector, melting, assimilation, storage and homogenisation (MASH) processes occurred at the base of a thickened crust. In this COT sector, TUMEPO products show an evident lower crust signature and could be considered representative for MASH derived magmas. In the easternmost sector, Quevar, Aguas Calientes and Tastil products could represent magmas generated by partial melting of underthrusted Brasilian shield and mixed with magmas derived by MASH processes.

  4. A-type volcanics in Central Eastern Sinai, Egypt

    Science.gov (United States)

    Samuel, M. D.; Moussa, H. E.; Azer, M. K.

    2007-04-01

    Alkaline rhyolitic and minor trachytic volcanics were erupted ˜580-530 Ma ago. They occur with their A-type intrusive equivalents in Sinai, southern Negev and southwestern Jordan. At Taba-Nuweiba district, these volcanics outcrop in three areas, namely, Wadi El-Mahash, Wadi Khileifiya and Gebel El-Homra. Mineralogically, they comprise alkali feldspars, iron-rich biotite and arfvedsonite together with rare ferro-eckermannite. Geochemically, the older rhyolitic volcanics are highly evolved, enriched in HFSE including REE and depleted in Ca, Mg, Sr and Eu. The rhyolitic rocks of Wadi El-Mahash and Gebel El-Homra are enriched in K 2O content (5.3-10.1 wt.%) and depleted in Na 2O content (0.08-2.97 wt.%), while the rhyolites of Wadi Khileifiya have normal contents of alkalis. Their REE patterns are uniform, parallel to subparallel, fractionated [(La/Yb) n = 5.4] and show prominent negative Eu-anomalies. They are classified as alkali rhyolites with minor comendites. The younger volcanics are classified as trachyandesite and quartz trachyte (56.6-62.9 wt.% SiO 2). Both older and younger volcanics represent two separate magmatic suites. The overall mineralogical and chemical characteristics of these volcanics are consistent with within plate tectonic setting. It is suggested that partial melting of crustal rocks yielded the source magma. Lithospheric extension and crustal rupture occurred prior to the eruption of these volcanics. The rather thin continental crust (˜35 km) as well as the continental upheaval and extensive erosion that preceded their emplacement favoured pressure release and increasing mantle contribution. The volatiles of the upper mantle were important agents for heat transfer, and sufficient for the anatexis of the crustal rocks. A petrogenetic hypothesis is proposed for the genesis of the recorded potassic and ultrapotassic rhyolitic rocks through the action of dissolved volatiles and their accumulation in the uppermost part of the magma chamber.

  5. Dating of the late Quaternary volcanic events using Uranium-series technique on travertine deposit: A case study in Ihlara, Central Anatolia Volcanic Province

    Science.gov (United States)

    Karabacak, Volkan; Tonguç Uysal, İ.; Ünal-İmer, Ezgi

    2016-04-01

    Dating of late Quaternary volcanism is crucial to understanding of the recent mechanism of crustal deformation and future volcanic explosivity risk of the region. However, radiometric dating of volcanic products has been a major challenge because of high methodological error rate. In most cases, there are difficulties on discrimination of the volcanic lava flow relations in the field. Furthermore, there would be unrecorded and unpreserved volcanoclastic layers by depositional and erosional processes. We present a new method that allows precise dating of late Quaternary volcanic events (in the time range of 0-500,000 years before present) using the Uranium-series technique on travertine mass, which is thought to be controlled by the young volcanism. Since the high pressure CO2 in the spring waters are mobilized during crustal strain cycles and the carbonates are precipitated in the fissures act as conduit for hot springs, thus, travertine deposits provide important information about crustal deformation. In this study we studied Ihlara fissure ridge travertines in the Central Anatolia Volcanic Province. This region is surrounded by many eruption centers (i.e. Hasandaǧı, Acıgöl and Göllüdaǧı) known as the late Quaternary and their widespread volcanoclastic products. Recent studies have suggested at least 11 events at around Acıgöl Caldera for the last 180 ka and 2 events at Hasandaǧı Stratovolcano for the last 30 ka. Active travertine masses around Ihlara deposited from hotwaters, which rise up through deep-penetrated fissures in volcanoclastic products of surrounding volcanoes. Analyses of the joint systems indicate that these vein structures are controlled by the crustal deformation due to young volcanism in the vicinity. Thus, the geological history of Ihlara travertine mass is regarded as a record of surrounding young volcanism. We dated 9 samples from 5 ridge-type travertine masses around Ihlara region. The age distribution indicates that the crustal

  6. Volcanic Alert System (VAS) developed during the (2011-2013) El Hierro (Canary Islands) volcanic process

    Science.gov (United States)

    Ortiz, Ramon; Berrocoso, Manuel; Marrero, Jose Manuel; Fernandez-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Garcia, Alicia

    2014-05-01

    In volcanic areas with long repose periods (as El Hierro), recently installed monitoring networks offer no instrumental record of past eruptions nor experience in handling a volcanic crisis. Both conditions, uncertainty and inexperience, contribute to make the communication of hazard more difficult. In fact, in the initial phases of the unrest at El Hierro, the perception of volcanic risk was somewhat distorted, as even relatively low volcanic hazards caused a high political impact. The need of a Volcanic Alert System became then evident. In general, the Volcanic Alert System is comprised of the monitoring network, the software tools for the analysis of the observables, the management of the Volcanic Activity Level, and the assessment of the threat. The Volcanic Alert System presented here places special emphasis on phenomena associated to moderate eruptions, as well as on volcano-tectonic earthquakes and landslides, which in some cases, as in El Hierro, may be more destructive than an eruption itself. As part of the Volcanic Alert System, we introduce here the Volcanic Activity Level which continuously applies a routine analysis of monitoring data (particularly seismic and deformation data) to detect data trend changes or monitoring network failures. The data trend changes are quantified according to the Failure Forecast Method (FFM). When data changes and/or malfunctions are detected, by an automated watchdog, warnings are automatically issued to the Monitoring Scientific Team. Changes in the data patterns are then translated by the Monitoring Scientific Team into a simple Volcanic Activity Level, that is easy to use and understand by the scientists and technicians in charge for the technical management of the unrest. The main feature of the Volcanic Activity Level is its objectivity, as it does not depend on expert opinions, which are left to the Scientific Committee, and its capabilities for early detection of precursors. As a consequence of the El Hierro

  7. Evidences for a volcanic province in the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.; Sudhakar, M.

    and in deciphering the source of the rock types. Further, the large manganese nodule fields in the CIB are seen to occur in conjunction with the volcanic materials, since the latter forms nuclei and substrates for ferromanganese deposits. It is concluded that a...

  8. Evolution of silicic volcanism following the transition to the modern High Cascades, Deschutes Formation, central Oregon

    Science.gov (United States)

    Eungard, D.; Kent, A. J.; Grunder, A.

    2012-12-01

    An understanding of the controls on silicic volcanism within convergent margin environments has important implications for crustal growth and modification during subduction. In the central Oregon Cascade range silicic volcanism has generally decreased in both size and frequency of eruptions over the last ~40 million years. Despite the general decrease, an increased abundance of silicic volcanism is observed from 5-8 Ma, corresponding to the transition from the Western Cascades to High Cascades volcanic regime. In order to constrain the processes that lead to formation of silicic magmas at this time we have studied the petrogenesis of two extensive and well-preserved ash-flow tuffs from this time period hosted within the Deschutes Formation of central Oregon. The Lower Bridge (LBT) and McKenzie Canyon Tuffs (MCT) produced ~5 km3 each of magma of predominantly rhyolitic and basaltic andesite composition. Both include large volumes of rhyolite, although the MCT also contains a significant mafic component. Both tuffs are normally zoned with mafic ejecta concentrated upsection. Geothermometry also shows that the rhyolitic component in both magmas was relatively hot (~830 degrees C). Distribution, thickness, welding facies, and paleoflow indications from imbricated pumice suggest that both eruptions derive from the same source region, probably near the present day Three Sisters complex, and were likely produced from the same magmatic system. Variations in major and trace element geochemistry also indicate that the magmas involved in both eruptions were produced through fractionation and mixing of mantle melts with a silicic partial melt derived from melting of mafic crust. Production of these voluminous silicic magmas required both crystal fractionation of incoming melts from the mantle, together with mixing with silicic partial melts derived from relatively hot mafic crust. This observation provides a potential explanation for the decrease in silicic melt production

  9. Geologic map of the Simcoe Mountains Volcanic Field, main central segment, Yakama Nation, Washington

    Science.gov (United States)

    Hildreth, Wes; Fierstein, Judy

    2015-01-01

    Mountainous parts of the Yakama Nation lands in south-central Washington are mostly covered by basaltic lava flows and cinder cones that make up the Simcoe Mountains volcanic field. The accompanying geologic map of the central part of the volcanic field has been produced by the U.S. Geological Survey (USGS) on behalf of the Water Resources Program of the Yakama Nation. The volcanic terrain stretches continuously from Mount Adams eastward as far as Satus Pass and Mill Creek Guard Station. Most of the many hills and buttes are volcanic cones where cinders and spatter piled up around erupting vents while lava flows spread downslope. All of these small volcanoes are now extinct, and, even during their active lifetimes, most of them erupted for no more than a few years. On the Yakama Nation lands, the only large long-lived volcano capable of erupting again in the future is Mount Adams, on the western boundary.

  10. Quaternary bimodal volcanism in the Niğde Volcanic Complex (Cappadocia, central Anatolia, Turkey): age, petrogenesis and geodynamic implications

    Science.gov (United States)

    Aydin, Faruk; Schmitt, Axel K.; Siebel, Wolfgang; Sönmez, Mustafa; Ersoy, Yalçın; Lermi, Abdurrahman; Dirik, Kadir; Duncan, Robert

    2014-11-01

    The late Neogene to Quaternary Cappadocian Volcanic Province (CVP) in central Anatolia is one of the most impressive volcanic fields of Turkey because of its extent and spectacular erosionally sculptured landscape. The late Neogene evolution of the CVP started with the eruption of extensive andesitic-dacitic lavas and ignimbrites with minor basaltic lavas. This stage was followed by Quaternary bimodal volcanism. Here, we present geochemical, isotopic (Sr-Nd-Pb and δ18O isotopes) and geochronological (U-Pb zircon and Ar-Ar amphibole and whole-rock ages) data for bimodal volcanic rocks of the Niğde Volcanic Complex (NVC) in the western part of the CVP to determine mantle melting dynamics and magmatic processes within the overlying continental crust during the Quaternary. Geochronological data suggest that the bimodal volcanic activity in the study area occurred between ca. 1.1 and ca. 0.2 Ma (Pleistocene) and comprises (1) mafic lavas consisting of basalts, trachybasalts, basaltic andesites and scoria lapilli fallout deposits with mainly basaltic composition, (2) felsic lavas consisting of mostly rhyolites and pumice lapilli fall-out and surge deposits with dacitic to rhyolitic composition. The most mafic sample is basalt from a monogenetic cone, which is characterized by 87Sr/86Sr = 0.7038, 143Nd/144Nd = 0.5128, 206Pb/204Pb = 18.80, 207Pb/204Pb = 15.60 and 208Pb/204Pb = 38.68, suggesting a moderately depleted signature of the mantle source. Felsic volcanic rocks define a narrow range of 143Nd/144Nd isotope ratios (0.5126-0.5128) and are homogeneous in Pb isotope composition (206Pb/204Pb = 18.84-18.87, 207Pb/204Pb = 15.64-15.67 and 208Pb/204Pb = 38.93-38.99). 87Sr/86Sr isotopic compositions of mafic (0.7038-0.7053) and felsic (0.7040-0.7052) samples are similar, reflecting a common mantle source. The felsic rocks have relatively low zircon δ18O values (5.6 ± 0.6 ‰) overlapping mantle values (5.3 ± 0.3 %), consistent with an origin by fractional crystallization

  11. Timing and sources of neogene and quaternary volcanism in South-Central Guatemala

    Science.gov (United States)

    Reynolds, James H.

    1987-08-01

    Five new and six existing radiometric age dates place constraints on the timing of volcanic episodes in a 1400-km 2 area east of Guatemala City. The source of the voluminous Miocene rhyolitic welded tuffs was the newly discovered Santa Rosa de Lima caldera, in the northern part of the area, not fissure eruptions as was previously believed. Resurgence during the Pliocene included the eruption of more silicic tuffs, followed by post-collapse volcanism around the perimeter. Volcanism in the southern part of the area occurred along the Neogene volcanic front. The sources for these Late Miocene and Pliocene andesitic lavas were not fissure eruptions, as was once believed, but were four large volcanic centers, Cerro Pinula, Ixhuatán, Teanzul, and Cerro La Gabia. The Santa Rosa de Lima caldera structure deflects the Jalpatagua Fault forming tensional fractures along which eruptions in the Quaternary Cuilapa-Barbarena cinder cone field took place. Pleistocene ash flows were erupted from Ixhuatán and Tecuamburro volcanoes in the southern part of the area. Tephras from Ayarza, Amatitlán, and Atitlán blanket the northern and central portions. Present-day activity is restricted to hot springs around the northern and eastern base of Tecuamburro volcano. Based on the work in this area it is proposed that rocks of the Miocene Chalatenango Formation throughout northern Central America were erupted from calderas behind the Neogene volcanic front. Rocks of the Mio-Pliocene Bálsamo Formation in Guatemala and El Salvador were erupted from discrete volcanic centers along the Neogene volcanic front. Pliocene rocks of the Cuscatlán Formation probably represent post-collapse volcanism around earlier caldera structures.

  12. Satellite-based detection of volcanic sulphur dioxide from recent eruptions in Central and South America

    Directory of Open Access Journals (Sweden)

    D. Loyola

    2008-01-01

    Full Text Available Volcanic eruptions can emit large amounts of rock fragments and fine particles (ash into the atmosphere, as well as several gases, including sulphur dioxide (SO2. These ejecta and emissions are a major natural hazard, not only to the local population, but also to the infrastructure in the vicinity of volcanoes and to aviation. Here, we describe a methodology to retrieve quantitative information about volcanic SO2 plumes from satellite-borne measurements in the UV/Visible spectral range. The combination of a satellite-based SO2 detection scheme and a state-of-the-art 3D trajectory model enables us to confirm the volcanic origin of trace gas signals and to estimate the plume height and the effective emission height. This is demonstrated by case-studies for four selected volcanic eruptions in South and Central America, using the GOME, SCIAMACHY and GOME-2 instruments.

  13. Geology and Geochronology of the Central Part of Chiapanecan Volcanic Arc, Mexico.

    Science.gov (United States)

    Layer, P. W.

    2006-12-01

    The Chiapanecan Volcanic Arc (CVA) is a 150 km stretch of volcanoes irregularly aligned in a northwest direction, including El Chichón volcano located in the central portion of the State of Chiapas, southern Mexico. It lies between two great volcanic features: the Trans-Mexican Volcanic Arc to the northwest, and the Central American Volcanic Arc to the southeast, in a complex zone of the interaction of the North American, Caribbean and Cocos Plates. The central part of the CVA is composed of an irregular northwest alignment of at least 12 volcanic structures located 80 km to the southeast of El Chichón (the only currently active volcano in the CVA). These structures include one explosion crater (Navenchauc), one collapse structure (Apas), one dome complex (Tzontehuitz) and nine volcanic domes (Navenchauc, Huitepec, Amahuitz, La Iglesia, Mispía, La Lanza, Venustiano Carranza, Miguel Hidalgo and Santotón) with associated pyroclastic flow deposits. The juvenile lithics from these deposits have a porphyritic texture with phenocrysts of plagioclase (±), amphibole (±), clinopyroxene (±), orthopyroxene (±) and Fe-Ti oxides surrounded by a matrix composed by microlites of plagioclase and glass. The chemical results obtained from representative samples from the deposits and structures indicate that these belong to the series of subalkaline rocks, and fall into the calcalkaline field with medium to high contents of potassium. They vary in their composition from andesite to dacite with an interval of silica between a 56 to a 66% (wt.). The ages reported in the literature and obtained in this study by means of the K-Ar and the 40Ar/39Ar methods, respectively, indicated that volcanism was episodic and spanned a time from 2100 ky ago (Tzontehuitz) to 225 ky ago (Venustiano Carranza).

  14. Central nervous system

    Science.gov (United States)

    The central nervous system is composed of the brain and spinal cord. Your brain and spinal cord serve as the main "processing center" for your entire nervous system. They control all the workings of your body.

  15. Transient magmatic control in a tectonic domain: the central Aeolian volcanic arc (South Italy)

    KAUST Repository

    Ruch, Joel

    2015-04-01

    The background stress field in volcanic areas may be overprinted by that produced by transient magmatic intrusions, generating local faulting. These events are rarely monitored and thus not fully understood, generating debate about the role of magma and tectonics in any geodynamic setting. Here we carried out a field structural analysis on the NNW-SSE strike-slip system of the central Aeolian Arc, Italy (Lipari and Vulcano islands) with ages constrained by stratigraphy to better capture the tectonic and magmatic evolution at the local and regional scales. We consider both islands as a single magmatic system and define 5 principal stratigraphic units based on magmatic and tectonic activity. We collected >500 measurements of faults, extension fractures and dikes at 40 sites, mostly NNE-SSW to NNW-SSE oriented with a dominant NS orientation. These structures are governed quasi exclusively by pure dip-slip motion, consistent with an E-W extension direction, with minor dextral and sinistral slip, the latter being mostly related to old deposits (>50 ka). We further reconstructed the evolution of the Vulcano-Lipari system during the last ~20 ka and find that it consists of an overall half-graben-like structure, with faults with predominant eastward dips. Field evidence suggests that faulting occurs often in temporal and spatial relation with magmatic events, suggesting that most of the observable deformation derived from transient magmatic activity, rather than from steady regional tectonics. To explain the dominant magmatic and episodic extension in a tectonic dominant domain, we propose a model where the regional N-S trending maximum horizontal stress, responsible for strike-slip activity, locally rotates to vertical in response to transient pressurization of the magmatic system and magma rise below Lipari and Vulcano. This has possibly generated the propagation of N-S trending dikes in the past 1 ka along a 10 km long by 1 km wide crustal corridor, with important

  16. Investigation of strontium sorption onto Kula volcanics using Central Composite Design

    Energy Technology Data Exchange (ETDEWEB)

    Kuetahyal Latin-Small-Letter-Dotless-I , Ceren, E-mail: ceren.kutahyali@ege.edu.tr [Ege University, Institute of Nuclear Sciences, 35100 Bornova, Izmir (Turkey); Cetinkaya, Berkan; Acar, M. Bahad Latin-Small-Letter-Dotless-I r [Ege University, Institute of Nuclear Sciences, 35100 Bornova, Izmir (Turkey); Is Latin-Small-Letter-Dotless-I k, Nuray Olcay [Ege University, Engineering Faculty, Leather Engineering Department, 35100 Bornova, Izmir (Turkey); Cireli, Irfan [Celal Bayar University Kula Leather Training School, 45170 Manisa (Turkey)

    2012-01-30

    Highlights: Black-Right-Pointing-Pointer We model strontium sorption on non-treated and HCl-treated Kula volcanics to obtain data on the radionuclide migration. Black-Right-Pointing-Pointer Central Composite Design was used in the experiments avoiding the traditional 'one-factor-at-a-time' experiments. Black-Right-Pointing-Pointer The results show that the K{sub d} values are higher at pH 7-9 which is the pH range of the natural waters. - Abstract: In performance assessment studies, the uptake of the radioactive elements by rock formations play an important role in retarding their aqueous phase migration. Sorption studies of radionuclides have been conducted to obtain data on the distribution coefficient (K{sub d}) that is as an input parameter in the performance assessment of the geological disposal of radioactive wastes. In this work, sorption experiments were studied in a batch sorption system using Sr(NO{sub 3}){sub 2} solution on non-treated and HCl-treated Kula volcanics. The distribution coefficient (K{sub d}) values of Sr{sup 2+} derived from batch experiments were used to evaluate the migration behavior of Sr{sup 2+}. Central Composite Design was used in the experiments. Sr sorption was studied as a function of pH, temperature, initial concentration of adsorbate and contact time. The results show that the K{sub d} values are higher at pH 7-9 which is the pH range of the natural waters. The kinetic data conformed better to the pseudo-second-order equation. Thermodynamic parameters {Delta}H Degree-Sign , {Delta}S Degree-Sign and {Delta}G Degree-Sign were estimated and these parameters show that adsorption is endothermic. The correlation coefficients indicate that the Langmuir model fits better for the strontium sorption onto non-treated and HCl-treated Kula volcanics with monolayer capacities as 2.04 and 1.72 mg/g, respectively.

  17. Volcanic alert system (VAS) developed during the 2011-2014 El Hierro (Canary Islands) volcanic process

    Science.gov (United States)

    García, Alicia; Berrocoso, Manuel; Marrero, José M.; Fernández-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Ortiz, Ramón

    2014-06-01

    The 2011 volcanic unrest at El Hierro Island illustrated the need for a Volcanic Alert System (VAS) specifically designed for the management of volcanic crises developing after long repose periods. The VAS comprises the monitoring network, the software tools for analysis of the monitoring parameters, the Volcanic Activity Level (VAL) management, and the assessment of hazard. The VAS presented here focuses on phenomena related to moderate eruptions, and on potentially destructive volcano-tectonic earthquakes and landslides. We introduce a set of new data analysis tools, aimed to detect data trend changes, as well as spurious signals related to instrumental failure. When data-trend changes and/or malfunctions are detected, a watchdog is triggered, issuing a watch-out warning (WOW) to the Monitoring Scientific Team (MST). The changes in data patterns are then translated by the MST into a VAL that is easy to use and understand by scientists, technicians, and decision-makers. Although the VAS was designed specifically for the unrest episodes at El Hierro, the methodologies may prove useful at other volcanic systems.

  18. Central nervous system resuscitation

    DEFF Research Database (Denmark)

    McIntosh, T K; Garde, E; Saatman, K E;

    1997-01-01

    Traumatic injury to the central nervous system induces delayed neuronal death, which may be mediated by acute and chronic neurochemical changes. Experimental identification of these injury mechanisms and elucidation of the neurochemical cascade following trauma may provide enhanced opportunities ...

  19. Central nervous system resuscitation

    DEFF Research Database (Denmark)

    McIntosh, T K; Garde, E; Saatman, K E

    1997-01-01

    Traumatic injury to the central nervous system induces delayed neuronal death, which may be mediated by acute and chronic neurochemical changes. Experimental identification of these injury mechanisms and elucidation of the neurochemical cascade following trauma may provide enhanced opportunities...

  20. The Galapagos-OIB signature of the central Costa Rican volcanic front: arc-hotspot interaction

    Science.gov (United States)

    Gazel, E.; Carr, M. J.; Hoernle, K.; Feigenson, M. D.; Hauff, F.; Szymanski, D.; van den Bogaard, P.

    2008-12-01

    Although most Central American magmas have a typical arc geochemical signature, magmas in southern Central America have isotopic and trace element compositions with an OIB affinity, similar to the Galapagos hotspot lavas. Our new data for Costa Rica suggest that this signature, unusual for a convergent margin, has a relatively recent origin (Late Miocene-Pliocene ca. 6 Ma). We also show that there was a transition from typical arc magmas (analogous to the modern Nicaraguan volcanic front) to OIB-like magmas. The geographic distribution of the Galapagos signature in recent lavas from southern Central America is present landward from the subduction of the Galapagos hotspot tracks (the Seamount Province and the Cocos/Coiba Ridges) at the Middle American Trench. The higher Pb isotopic ratios, relatively low Nd isotopic ratios and enriched geochemical signature of central Costa Rican magmas can be explained by arc-hotspot interaction. The isotopic ratios of central Costa Rican lavas require the subducting Seamount Province (Northern Galapagos Domain) component, whereas the isotopic ratios of the adakites and alkaline basalts from southern Costa Rica and Panama are in the geochemical range of the subducting Cocos/Coiba Ridges (Central Galapagos Domain). Geological, geochemical, and isotopic evidence collectively indicate that the relatively recent Galapagos-OIB signature in southern Central America represents a geochemical signal from subducting Galapagos hotspot tracks, which started to collide with the margin ~8 Ma ago. The Galapagos hotspot contribution decreases systematically along the volcanic front from central Costa Rica to NW Nicaragua.

  1. Evidence of recent deep magmatic activity at Cerro Bravo-Cerro Machín volcanic complex, central Colombia. Implications for future volcanic activity at Nevado del Ruiz, Cerro Machín and other volcanoes

    Science.gov (United States)

    Londono, John Makario

    2016-09-01

    In the last nine years (2007-2015), the Cerro Bravo-Cerro Machín volcanic complex (CBCMVC), located in central Colombia, has experienced many changes in volcanic activity. In particular at Nevado del Ruiz volcano (NRV), Cerro Machin volcano (CMV) and Cerro Bravo (CBV) volcano. The recent activity of NRV, as well as increasing seismic activity at other volcanic centers of the CBCMVC, were preceded by notable changes in various geophysical and geochemical parameters, that suggests renewed magmatic activity is occurring at the volcanic complex. The onset of this activity started with seismicity located west of the volcanic complex, followed by seismicity at CBV and CMV. Later in 2010, strong seismicity was observed at NRV, with two small eruptions in 2012. After that, seismicity has been observed intermittently at other volcanic centers such as Santa Isabel, Cerro España, Paramillo de Santa Rosa, Quindío and Tolima volcanoes, which persists until today. Local deformation was observed from 2007 at NRV, followed by possible regional deformation at various volcanic centers between 2011 and 2013. In 2008, an increase in CO2 and Radon in soil was observed at CBV, followed by a change in helium isotopes at CMV between 2009 and 2011. Moreover, SO2 showed an increase from 2010 at NRV, with values remaining high until the present. These observations suggest that renewed magmatic activity is currently occurring at CBCMVC. NRV shows changes in its activity that may be related to this new magmatic activity. NRV is currently exhibiting the most activity of any volcano in the CBCMVC, which may be due to it being the only open volcanic system at this time. This suggests that over the coming years, there is a high probability of new unrest or an increase in volcanic activity of other volcanoes of the CBCMVC.

  2. The structural architecture of the Los Humeros volcanic complex and geothermal field, Trans-Mexican Volcanic Belt, Central Mexico

    Science.gov (United States)

    Norini, Gianluca; Groppelli, Gianluca; Sulpizio, Roberto; Carrasco Núñez, Gerardo; Davila Harris, Pablo

    2014-05-01

    The development of geothermal energy in Mexico is a very important goal, given the presence of a large heat anomaly, associated with the Trans-Mexican Volcanic Belt, the renewability of the resource and the low environmental impact. The Quaternary Los Humeros volcanic complex is an important geothermal target, whose evolution involved at least two caldera events, that alternated with other explosive and effusive activity. The first caldera forming event was the 460 ka eruption that produced the Xaltipan ignimbrite and formed a 15-20 km wide caldera. The second collapse event occurred 100 ka with the formation of the Zaragoza ignimbrite and a nested 8-10 km wide caldera. The whole volcano structure, the style of the collapses and the exact location of the calderas scarps and ring faults are still a matter of debate. The Los Humeros volcano hosts the productive Los Humeros Geothermal Field, with an installed capacity of 40 MW and additional 75 MW power plants under construction. Recent models of the geothermal reservoir predict the existence of at least two reservoirs in the geothermal system, separated by impermeable rock units. Hydraulic connectivity and hydrothermal fluids circulation occurs through faults and fractures, allowing deep steam to ascend while condensate flows descend. As a consequence, the plans for the exploration and exploitation of the geothermal reservoir have been based on the identification of the main channels for the circulation of hydrothermal fluids, constituted by faults, so that the full comprehension of the structural architecture of the caldera is crucial to improve the efficiency and minimize the costs of the geothermal field operation. In this study, we present an analysis of the Los Humeros volcanic complex focused on the Quaternary tectonic and volcanotectonics features, like fault scarps and aligned/elongated monogenetic volcanic centres. Morphostructural analysis and field mapping reveal the geometry, kinematics and dynamics of

  3. Modeling Central American Volcanic Front Primitive Lavas with the Arc Basalt Simulator (abs 4.0)

    Science.gov (United States)

    Feigenson, M.; Carr, M. J.; Gazel, E.

    2012-12-01

    We have used the Arc Basalt Simulator (ABS), developed by J-I Kimura, to explore the conditions and components of melting beneath the Central American volcanic front. ABS is a comprehensive forward model that incorporates slab dehydration and melting and mantle wedge fluxing and melting using realistic P-T conditions and experimentally determined phase relations and partition coefficients. We have applied ABS version 4.00, which includes melting/dehydration relations in eight distinct subducting layers, to model representative magma types along the Central American volcanic front. These magmas are first projected to primary melt compositions by the addition of olivine until they reach Fo90. Then, using a wide range of input parameters including variations in slab components, extent of peridotite depletion, depth of slab dehydration and wedge fluxing and degree of peridotite melting, successful model fits are generated (based on trace element and isotope matching). The solution space is probed using a Monte Carlo technique to cover the enormous range of parameter values. Nicaragua and Costa Rica represent geochemical and geophysical end members of the volcanic front, differing greatly in volcano volume, slab dip beneath the volcano, isotopic composition and incompatible element enrichment. Using appropriate input compositions for ABS 4.0, we find through millions of simulations that the Cerro Negro primary magma (Nicaragua) requires high degrees of source melting (22-27%) and large amounts of slab-derived water (3-5%). In contrast, the Irazu primary magma (central Costa Rica) is generated from more enriched sources with only a small amount of water (less than 0.5%) and at low degrees of partial melting (less than 5%). Other Central American lavas with intermediate geochemical characteristics are produced from conditions within the Nicaragua-Costa Rica range. By reproducing the lava geochemistry with ABS 4.0, it becomes possible to extract constraints on source input

  4. Cretaceous alkaline volcanism in south Marzanabad, northern central Alborz, Iran: Geochemistry and petrogenesis

    Directory of Open Access Journals (Sweden)

    Roghieh Doroozi

    2016-11-01

    Full Text Available The alkali-basalt and basaltic trachy-andesites volcanic rocks of south Marzanabad were erupted during Cretaceous in central Alborz, which is regarded as the northern part of the Alpine-Himalayan orogenic belt. Based on petrography and geochemistry, en route fractional crystallization of ascending magma was an important process in the evolution of the volcanic rocks. Geochemical characteristics imply that the south Marzanabad alkaline basaltic magma was originated from the asthenospheric mantle source, whereas the high ratios of (La/YbN and (Dy/YbN are related to the low degree of partial melting from the garnet bearing mantle source. Enrichment pattern of Nb and depletion of Rb, K and Y, are similar to the OIB pattern and intraplate alkaline magmatic rocks. The K/Nb and Zr/Nb ratios of volcanic rocks range from 62 to 588 and from 4.27 to 9 respectively, that are some higher in more evolved samples which may reflect minor crustal contamination. The isotopic ratios of Sr and Nd respectively vary from 0.70370 to 0.704387 and from 0.51266 to 0.51281 that suggest the depleted mantle as a magma source. The development of south Marzanabad volcanic rocks could be related to the presence of extensional phase, upwelling and decompressional melting of asthenospheric mantle in the rift basin which made the alkaline magmatism in Cretaceous, in northern central Alborz of Iran.

  5. FNAL central email systems

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Jack; Lilianstrom, Al; Pasetes, Ray; Hill, Kevin; /Fermilab

    2004-10-01

    The FNAL Email System is the primary point of entry for email destined for an employee or user at Fermilab. This centrally supported system is designed for reliability and availability. It uses multiple layers of protection to help ensure that: (1) SPAM messages are tagged properly; (2) All mail is inspected for viruses; and (3) Valid mail gets delivered. This system employs numerous redundant subsystems to accomplish these tasks.

  6. Understanding volcanism at the PETM: Abundant volcanic ash layers in the Central Tertiary Basin of Spitsbergen, Svalbard

    Science.gov (United States)

    Jones, Morgan; Eliassen, Gauti; Svensen, Henrik; Jochmann, Malte; Friis, Bjarki; Jerram, Dougal; Planke, Sverre

    2014-05-01

    During the early Tertiary, Svalbard developed a fold-thrust belt on its western margin with an associated foreland basin in the central-south of what is now Spitsbergen. This Central Tertiary Basin (CTB) is a syn-orogenic sedimentary basin in a strike-slip regime. The CTB contains the ~1900 m thick Van Mijenfjorden group, a dominantly sandstone-shale succession that was deposited in a North-South extending basin. Sediments in this group display evidence of major transgressive-regressive cycles related to local tectonics and eustatic sea level change. This basin is ideal for study as it has been extensively cored for coal prospecting, allowing a suite of sedimentary logs across the basin to be considered. Prominent marker beds in this sedimentary sequence are 1-30 cm thick bentonites, formed from the chemical weathering of volcanic tuff deposits. In this study, we focus on 8 sedimentary logs across the CTB, spanning the Palaeocene to lower Eocene in age. Bentonites are common in the Palaeocene cores (Basilika and Grumantbyen formations), while rarer but still occasionally present in the Eocene Frysjaodden formation. The cores had between 3-12 observable bentonite layers that showed large variations in preservation and subsequent reworking. Roots and other finer organic material were common, especially when the bentonites were found next to coal seams. Geochemical affinities between ash layers were investigated to identify basin-wide depositional events, with the aim of elucidating the provenance of these ashes. This sedimentary sequence is of broader interest as it covers the Palaeocene-Eocene thermal maximum (PETM), an extreme global warming event driven by large releases to the atmosphere of CO2 and/or CH4, evidenced by a negative carbon isotope excursion in both the ocean and atmosphere. Potential sources include volcanism and associated gas release from intruded sediments, CH4 hydrate dissociation, and/or the oxidation of organic matter. These formations are

  7. Central Nervous System Tuberculosis

    OpenAIRE

    Bano, Shahina; Chaudhary, Vikas; Yadav, Sachchidanand

    2012-01-01

    Central nervous system tuberculosis is a rare presentation of active tuberculosis and accounts for about 1% of cases (1). The three clinical categories include meningitis, intracranial tuberculomas, and spinal tuberculous arachnoiditis. We report a case of a young man who presented with active pulmonary tuberculosis in addition to tuberculous meningitis and the presence of numerous intracranial tuberculomas.

  8. Central nervous system tuberculosis.

    Science.gov (United States)

    Torres, Carlos; Riascos, Roy; Figueroa, Ramon; Gupta, Rakesh K

    2014-06-01

    Tuberculosis (TB) has shown a resurgence in nonendemic populations in recent years and accounts for 8 million deaths annually in the world. Central nervous system involvement is one of the most serious forms of this infection, acting as a prominent cause of morbidity and mortality in developing countries. The rising number of cases in developed countries is mostly attributed to factors such as the pandemic of acquired immunodeficiency syndrome and increased migration in a globalized world. Mycobacterium TB is responsible for almost all cases of tubercular infection in the central nervous system. It can manifest in a variety of forms as tuberculous meningitis, tuberculoma, and tubercular abscess. Spinal infection may result in spondylitis, arachnoiditis, and/or focal intramedullary tuberculomas. Timely diagnosis of central nervous system TB is paramount for the early institution of appropriate therapy, because delayed treatment is associated with severe morbidity and mortality. It is therefore important that physicians and radiologists understand the characteristic patterns, distribution, and imaging manifestations of TB in the central nervous system. Magnetic resonance imaging is considered the imaging modality of choice for the study of patients with suspected TB. Advanced imaging techniques including magnetic resonance perfusion and diffusion tensor imaging may be of value in the objective assessment of therapy and to guide the physician in the modulation of therapy in these patients.

  9. Geochemical Characteristics of the Cenozoic Volcanic Rocks in Central Qiangtang, Tibet: Relation with the Uplift of the Qinghai Tibet Plateau

    Institute of Scientific and Technical Information of China (English)

    TAN Fuwen; PAN Guitang; XU Qiang

    2001-01-01

    The Cenozoic volcanic rocks in central Qiangtang are tectonically outcropped in the transitional area where crust of the Qinghai-Tibet Plateau thins northwards and the Passion's ratios of the crust increases abnormally northwards. Of all Cenozoic volcanic rocks of northern Tibet, the volcanic rocks in Qiangtang area is the oldest one with ages from 44.1±1.0 Ma to 32.6±0.8 Ma. Petrological and geochemical studies of the volcanic rocks in central Qiangtang suggest they formed in the extension environment of post collision-orogeny and were the product of mixture of magmas from crust and mantle. The uplift of the northern plateau is closely related to decoupling of mantle lithosphere,crustal extension and thinning as well as volcanism. Therefore, it is inferred that the main uplift of the northern plateau began from about 40 Ma ago.

  10. Slab Detachment, Flat Subduction and Slab Rollback in Central Mexico: Fitting the Neogene Evolution of the Trans-Mexican Volcanic Belt into the History and Dynamics of Subduction

    Science.gov (United States)

    Ferrari, L.

    2001-12-01

    I present a comparative analysis of the volcanic record of the Trans-Mexican Volcanic Belt (TMVB) and the plate tectonic history since 16 Ma in central Mexico that has important implications for the dynamic of the Cocos-Rivera subduction system. The TMVB volcanism has occurred in episodes characterized by across-arc and along strike variation and/or migration. In its first stage (16 to 10 Ma) the TMVB consisted of a broad andesitic arc emplaced between Long. 102° and 97° 30' (central Mexico). During this period volcanism was absent in the western and eastern TMVB. Between 11 and 6 Ma a voluminous mafic volcanism was emplaced to the northof the previous arc with ages progressively younger from west (Tepic-Guadalajara) to east (Queretaro-Hidalgo). Large calderas and silicic dome complexes developed in latest Miocene and early Pliocene (7.5 to 3.5 Ma) west of the Taxco-San Miguel de Allende fault system (TSMA). East of the TSMA a volcanic gap is clearly observed between ~9 and 3.5 Ma. In the western TMVB small amount of lavas with an intra-plate affinity started to be emplaced since 5 Ma. At the same time the volcanic front migrated to the south by about 70 km. East of the TSMA volcanism resumed at about 3.5 Ma in the Mexico City region and at the end of Pliocene in the eastern TMVB (excluding the Palma Sola area). In the Toluca - Mexico City area the volcanic front migrated trenchward in the Quaternary. No southward migration of the volcanic front is observed in the eastern TMVB. The Middle Miocene volcanism represent a "normal" volcanic arc developed after a gap of ~15 Ma following the formation of the Acapulco trench. I propose that the following unusual volcanic evolution was controlled by the detachment of the deeper part of the Cocos slab and the resulting variation in slab inclination. Slab must have detached after 12.5 following the end of subduction off Baja California. This is a kinematic-dynamic requirement, also supported by the fact that the present

  11. Magnetotelluric Studies of the Laguna del Maule Volcanic Field, Central Chile

    Science.gov (United States)

    Cordell, D. R.; Unsworth, M. J.; Diaz, D.; Pavez, M.; Blanco, B.

    2015-12-01

    Geodetic data has shown that the surface of the Laguna del Maule (LdM) volcanic field in central Chile has been moving upwards at rates >20 cm/yr since 2007 over a 200 km2 area. It has been hypothesized that this ground deformation is due to the inflation of a magma body at ~5 km depth beneath the lake (2.8 km b.s.l.). This magma body is a likely source for the large number of rhyolitic eruptions at this location over the last 25 ka. A dense broadband magnetotelluric (MT) array was collected from 2009 to 2015 and included data from a geothermal exploration project. MT phase tensor analysis indicates that the resistivity structure of the region is largely three-dimensional for signals with periods longer than 1 s, which corresponds to depths >5 km. The MT data were inverted using the ModEM inversion algorithm to produce a three-dimensional electrical resistivity model which included topography. Four primary features were identified in the model: 1) A north-south striking, 10 km by 5 km, low-resistivity zone (inflation centre at a depth of ~5 km (2.8 km b.s.l.) is interpreted as a zone of partial melt which may be supplying material via conduits to account for the observed ground deformation; 2) A shallow low-resistivity feature ~400 m beneath the lake surface (1.8 km a.s.l.) and spatially coincident with the inflation centre is interpreted to be a zone of hydrothermal alteration; 3) A thin, low-resistivity feature to the west of LdM at a depth of ~250 m (2.2 km a.s.l.) is interpreted to be the clay cap of a potential geothermal prospect; 4) A large, low-resistivity zone beneath the San Pedro-Tatara Volcanic Complex to the west of LdM at a depth of ~10 km (8 km b.s.l.) is interpreted to be a zone of partial melt. Further MT data collection is planned for 2016 which will expand the current grid of MT stations to better constrain the lateral extent of the observed features and give greater insight into the dynamics of this restless magma system.

  12. Paleomagnetism of the Acambay graben, central Trans-Mexican Volcanic Belt

    Science.gov (United States)

    Soler-Arechalde, Ana María.; Urrutia-Fucugauchi, J.

    2000-03-01

    Paleomagnetic results for Miocene to Quaternary volcanic units of the Acambay graben are used to investigate the Neogene tectonic activity within the central sector of the Trans-Mexican Volcanic Belt (TMVB). Characteristic magnetization directions were obtained for 22 sites, with an overall mean direction (Dec=176.7°, Inc=-34.3°, k=28, α95=6°) that is concordant with the expected direction calculated from North American reference data. Examination of site-mean directions shows an apparent geographic pattern related to the intersection of the Queretaro-Taxco fault zone with the E-W border fault system of the graben. This pattern is characterized by easterly and westerly declinations arranged into two broad groups. The mean direction for group A (easterly) is ( n=9): Dec=189.9°, Inc=-28.5°, k=53 and α 95=4.8 . The mean direction for group B (westerly) is ( n=13): Dec=167.6°, Inc=-36.2°, k=38 and α 95=4.3°. Group A sites cover two areas, one inside the graben and the other immediately to the south including the Pastores fault. Group B sites are distributed over broad NW and SE areas across the graben, which include the Amealco caldera and Epitacio Huerta and Acambay-Tixmadeje faults and also the Venta de Bravo fault. Eighteen units show reverse polarities, and four units show normal polarity. Absence of normal polarity Quaternary units suggests a pre-Brunhes age for units sampled. K-Ar dating in the Amealco caldera gives a range between 5.7 and 2.2 Ma. A comparison of group A and B mean directions with reference directions calculated from the North American 10 Ma pole and the geographic pole gives rotation parameters between 9.1±5.3° and 9.9±4.6° and between -12.4±5.4° and -12.4±4.3°, respectively. These may be interpreted in terms of vertical-axis rotations associated with regional left-lateral shear in a normal/strike-slip fault environment, which has characterized the Acambay graben during the Neogene.

  13. The Earth System Science Pathfinder VOLCAM Volcanic Hazard Mission

    Science.gov (United States)

    Krueger, Arlin J.

    1999-01-01

    The VOLCAM mission is planned for research on volcanic eruptions and as a demonstration of a satellite system for measuring the location and density of volcanic eruption clouds for use in mitigating hazards to aircraft by the operational air traffic control systems. A requirement for 15 minute time resolution is met by flight as payloads of opportunity on geostationary satellites. Volcanic sulfur dioxide and ash are detected using techniques that have been developed from polar orbiting TOMS (UV) and AVHRR (IR) data. Seven band UV and three band IR filter wheel cameras are designed for continuous observation of the full disk of the earth with moderate (10 - 20 km) ground resolution. This resolution can be achieved with small, low cost instruments but is adequate for discrimination of ash and sulfur dioxide in the volcanic clouds from meteorological clouds and ozone. The false alarm rate is small through use of sulfur dioxide as a unique tracer of volcanic clouds. The UV band wavelengths are optimized to detect very small sulfur dioxide amounts that are present in pre-eruptive outgassing of volcanoes. The system is also capable of tracking dust and smoke clouds, and will be used to infer winds at tropopause level from the correlation of total ozone with potential vorticity.

  14. Isotopic Ages of the Carbonatitic Volcanic Rocks in the Kunyang Rift Zone in Central Yunnan,China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yongbei; WANG Guilan; NIE Jianfeng; ZHAO Chongshun; XU Chengyan; QIU Jiaxiang; Wang Hao

    2003-01-01

    The Mesoproterozoic Kunyang rift, which is located on the western margin of the Yangtze platform and the southern section of the Kangdian axis, is a rare massive Precambrian iron-copper polymetallic mineralization zone in China. The Mesoproterozoic Wulu (Wuding(Lufeng) basin in the middle of the rift is an elliptic basin controlled by a ring fracture system. Moreover, volcanic activities in the basin display zonation of an outer ring, a middle ring and an inner ring with carbonatitic volcanic rocks and sub-volcanic dykes discovered in the outer and middle rings. The Sm-Nd isochron ages have been determined for the outer-ring carbonatitic lavas (1685 Ma) and basaltic porphyrite of the radiating dyke swarm (1645 Ma) and the Rb-Sr isochron ages for the out-ring carbonatitic lavas (893 Ma) and the middle-ring dykes (1048 Ma). In combination of the U-Pb concordant ages of zircon (1743 Ma) in trachy-andesite of the corresponding period and stratum (1569 Ma) of the Etouchang Formation, as well as the Rb-Sr isochron age (1024 Ma) and K-Ar age (1186 Ma) of the dykes in the middle ring, the age of carbonatites in the basin is preliminarily determined. It is ensured that all of these carbonatites were formed in the Mesoproterozoic period, whereby two stages could be identified as follows: in the first stage, carbonatitic volcanic groups, such as lavas, pyroclastic rocks and volcaniclastic sedimentary rocks, were formed in the outer ring; in the second stage, carbonatitic breccias and dykes appeared in the middle ring. The metamorphic age of the carbonatitic lavas in the outer ring was determined to be concurrent with the end of the first stage of the Neoproterozoic period, corresponding to the Jinning movement in central Yunnan.

  15. Geothermal systems in volcanic arcs: Volcanic characteristics and surface manifestations as indicators of geothermal potential and favorability worldwide

    Science.gov (United States)

    Stelling, P.; Shevenell, L.; Hinz, N.; Coolbaugh, M.; Melosh, G.; Cumming, W.

    2016-09-01

    This paper brings a global perspective to volcanic arc geothermal assessments by evaluating trends and correlations of volcanic characteristic and surface manifestation data from world power production sites in subduction zone volcanic settings. The focus of the work was to evaluate volcanic centers individually and as a group in these arcs by correlating various geologic characteristics with known potential to host electricity grade geothermal systems at the volcanic centers. A database was developed that describes key geologic factors expected to be indicative of productive geothermal systems in a global training set, which includes all 74 subduction zone volcanic centers world-wide with current or proven power production capability. Importantly, this data set only contains data from subduction zone volcanoes and contains no negative cases, limiting the populations of any statistical groups. Regardless, this is the most robust geothermal benchmark training set for magmatic-heated systems to date that has been made public. The work reported here is part of a larger project that included data collection, evaluation, correlations and weightings, fairway and favorability modeling and mapping, prediction of blind systems, and uncertainty analysis to estimate errors associated with model predictions. This first paper describes volcano characteristics, compositions and eruption ages and trends along with surface manifestation observations and temperatures as they relate to known power producing systems. Our findings show a strong correlation between the presence and size of active flank fumarole areas and installed power production. Additionally, the majority of volcanic characteristics, including long-held anecdotal correlations related to magmatic composition or size, have limited to no correlation with power production potential. Notable exceptions are correlations between greater power yield from geothermal systems associated with older (Pleistocene) caldera systems

  16. Classification of the ecological status of volcanic lakes in Central Italy

    Directory of Open Access Journals (Sweden)

    Daria VAGAGGINI

    2003-09-01

    Full Text Available A synthesis is made of biological data collected in the last three decades on five volcanic lakes in Central Italy with the aim of evaluating their environmental status by means of biological parameters related to zooplankton, littoral and profundal zoobenthos frequently used to detect water quality changes in lakes. A number of bioindicators and bioindices were selected for this purpose, as far as possible following an integrated approach using information drawn from physical and chemical variables. Our results allowed the lakes to be classified according to their biological quality level, which proved to be in good agreement with physical and chemical diagnoses. Lake Bracciano exhibited the best environmental quality, due to the presence of a ring waste water collecting system, to its large size and depth, and to its strong hydrodynamism. Lake Martignano followed, with some symptoms of stress in the hypolimnion due to a marked summer deoxygenation. Oxygen depletion in the profundal characterized also Lake Vico, which showed a mesotrophic condition in the sixties, and 20 years later now shows clear signs of increased trophy (meso-eutrophy. Lake Albano seemed meso-eutrophic with total absence of fauna below a depth of 120 m due to a meromictic status. Finally Lake Nemi, exposed to domestic wastes in the 70s, suffered a heavy eutrophication with dramatic algal blooms and fish kills. Following the diversion of discharges that occurred in the early 90s, today this lake is characterized by the partial improvement of many ecological features. The need for integration between physical and chemical analyses and biological data in order to obtain a reliable evaluation of lake environmental quality is stressed, especially as far as routine implementation in managing and recovery procedures is concerned.

  17. Shallow crustal structure of eastern-central Trans-Mexican Volcanic Belt.

    Science.gov (United States)

    Campos-Enriquez, J. O.; Ramón, V. M.; Lermo-Samaniego, J.

    2015-12-01

    Central-eastern Trans-Mexican Volcanic Belt (TMVB) is featured by large basins (i.e., Toluca, Mexico, Puebla-Tlaxcala, Libres-Oriental). It has been supposed that major crustal faults limit these basins. Sierra de Las Cruces range separates the Toluca and Mexico basins. The Sierra Nevada range separates Mexico basin from the Puebla-Tlaxcala basin. Based in gravity and seismic data we inferred the Toluca basin is constituted by the Ixtlahuaca sub-basin, to the north, and the Toluca sub-basin to the south, which are separated by a relative structural high. The Toluca depression is more symmetric and bounded by sub-vertical faults. In particular its eastern master fault controlled the emplacement of Sierra de Las Cruces range. Easternmost Acambay graben constitutes the northern and deepest part of the Ixtlahuaca depression. The Toluca-Ixtlahuaca basin is inside the Taxco-San Miguel de Allende fault system, and limited to the west by the Guerrero terrane which continues beneath the TMVB up to the Acambay graben. Mexico basin basement occupies an intermediate position and featured by a relative structural high to the north-east, as established by previous studies. This relative structural high is limited to the west by the north-south Mixhuca trough, while to the south it is bounded by the east-west Copilco-Xochimilco-Chalco sub-basin. The Puebla-Tlaxcala basin basement is the shallowest of these 3 tectonic depressions. In general, features (i.e., depth) and relationship between these basins, from west to east, are controlled by the regional behavior of the Sierra Madre Oriental fold and thrust belt basement (i.e., Oaxaca Complex?). This study indicates that an active east-west regional fault system limits to the south the TMVB (from the Nevado de Toluca volcano through the Popocatepetl volcano and eastward along southern Puebla-Tlaxcala basin). The Tenango and La Pera fault systems constituting the western part of this regional fault system coincide with northern

  18. Geodynamical evolution of Central Andes at 24°S as inferred by magma composition along the Calama-Olacapato-El Toro transversal volcanic belt

    Science.gov (United States)

    Matteini, M.; Mazzuoli, R.; Omarini, R.; Cas, R.; Maas, R.

    2002-11-01

    Miocene to Recent volcanism on the Puna plateau (Central Andes) developed in three geological settings: (a) volcanic arc in the Western Cordillera (Miocene-Recent); (b) trans-arc along the main NW-SE transverse fault systems (Miocene); and (c) back-arc, mainly monogenic volcanic centres (Pliocene-Quaternary). We have studied the evolution of the arc-trans-arc volcanism along one of the most extensive transverse structures of Central Andes, the Calama-Olacapato-El Toro, at 24°S. Compositional variations from arc to trans-arc volcanism provide insights into petrogenesis and magma source regions. Puntas Negras and Rincon volcanic centres are arc-type and have typical calc-alkaline geochemical and Sr-Nd-Pb isotopic characteristics. East of the arc, lavas of the Tul-Tul, Del Medio and Pocitos complexes (TUMEPO) are heavy rare earth element-depleted and could be derived from 20-30% of partial melting of a lower crustal garnet-bearing metabasite. These liquids could be variably mixed with arc magmas at the base of the crust (MASH). This suggests important contributions from lower crustal sources to TUMEPO centres. Products at the Quevar and Aguas Calientes volcanic complexes to the east of TUMEPO show a prominent upper crustal signature (high 86Sr/ 87Sr, low 143Nd/ 144Nd) and could represent mixtures of 20-30% TUMEPO-type liquids with up to 70-80% of upper crustal melts. We propose a geodynamic model to explain geochemical variations for the arc-trans-arc transverse volcanism from the Upper Miocene to Recent. In our model, arc volcanism is linked to dehydration of the subducting Nazca plate, which produces typical calc-alkaline compositions. During the Upper Miocene (10-5 Ma), lithospheric evolution in the Puna plateau was dominated by thickening of ductile lower crust and thinning of the lithosphere. Lower crustal melting was promoted by concomitant asthenospheric upwelling and water release from the amphibolite-eclogite transformation, yielding TUMEPO magmas with lower

  19. Geodetic Monitoring System Operating On Neapolitan Volcanic Area (southern Italy)

    Science.gov (United States)

    Pingue, F.; Ov-Geodesy Team

    The Neapolitan volcanic area is located in the southern sector of the Campanian Plain Graben including three volcanic active structures (Somma-Vesuvius, Campi Flegrei and Ischia). The Somma-Vesuvius complex, placed East of Naples, is a strato-volcano composed by a more ancient apparatus (Mt. Somma) and a younger cone (Mt. Vesu- vius) developed inside Somma caldera. Since last eruption (1944) it is in a quiescent state characterised by a low level seismicity and deformation activity. The Campi Fle- grei, located West of Naples, are a volcanic field inside an older caldera rim. The last eruption, occurred in the 1538, built up the Mt. Nuovo cone. The Campi Flegrei are subject to a slow vertical deformation, called bradyseism. In the 1970-1972 and 1982-1984 they have been affected by two intense episodes of ground upheaval (ac- companied by an intense seismic activity)0, followed by a subsidence phase, slower than uplift and still active. Though such phenomenon has not been followed by erup- tive events, it caused serious damages, emphasizing the high volcanic risk of the phle- grean caldera. The Ischia island, located SW of Naples, has been characterised by a volcanic activity both explosive and effusive, occurred mainly in the last 50,000 years. These events modelled the topography producing fault systems and structures delim- iting the Mt. Epomeo resurgent block. The last eruption has occurred on 1302. After, the dynamics of the island has been characterised by seismic activity (the strongest earthquake occurred on 1883) and by a meaningful subsidence, on the S and NW sec- tors of the island. The concentration of such many active volcanoes in an area with a dense urbanization (about 1,500,000 inhabitants live) needs systematic and contin- uous monitoring of the dynamics. These information are necessary in order to char- acterise eruptive precursors useful for modelling the volcanoes behaviour. Insofar, the entire volcanic Neapolitan area, characterised by a

  20. Application of Geographical Information Systems to Lahar Hazard Assessment on an Active Volcanic System

    OpenAIRE

    2010-01-01

    Lahars (highly dynamic mixtures of volcanic debris and water) have been responsible for some of the most serious volcanic disasters and have killed tens of thousands of people in recent decades. Despite considerable lahar model development in the sciences, many research tools have proved wholly unsuitable for practical application on an active volcanic system where it is difficult to obtain field measurements. In addition, geographic information systems are tools that offer a great potenti...

  1. The 10 April 2014 Nicaraguan Crustal Earthquake: Evidence of Complex Deformation of the Central American Volcanic Arc

    Science.gov (United States)

    Suárez, Gerardo; Muñoz, Angélica; Farraz, Isaac A.; Talavera, Emilio; Tenorio, Virginia; Novelo-Casanova, David A.; Sánchez, Antonio

    2016-10-01

    northwest relative to the Caribbean plate at a rate of 14 mm/year. Part of the deformation is apparently accommodated by strain partitioning in the form of bookshelf faulting, on a system of orthogonal faults. The sinistral faults striking northeast-southwest rotate blocks of the Caribbean plate in a clockwise manner. The recent crustal earthquakes in central Nicaragua in 1931, 1972 and 2005 earthquakes took place on these left-lateral faults. The motion of the forearc sliver is also accommodated by a second set of right-lateral, strike-slip faults oriented parallel to the volcanic arc. Faults with this orientation and direction of motion are responsible for the 2014 and possibly the 1955 earthquakes. The presence of this geometry of orthogonal crustal faults highlights the seismic hazard posed by this complex faulting system, not only in the capital city of Managua, but also to the major Nicaraguan cities, which lie close to the volcanic arc.

  2. The 10 April 2014 Nicaraguan Crustal Earthquake: Evidence of Complex Deformation of the Central American Volcanic Arc

    Science.gov (United States)

    Suárez, Gerardo; Muñoz, Angélica; Farraz, Isaac A.; Talavera, Emilio; Tenorio, Virginia; Novelo-Casanova, David A.; Sánchez, Antonio

    2015-11-01

    northwest relative to the Caribbean plate at a rate of 14 mm/year. Part of the deformation is apparently accommodated by strain partitioning in the form of bookshelf faulting, on a system of orthogonal faults. The sinistral faults striking northeast-southwest rotate blocks of the Caribbean plate in a clockwise manner. The recent crustal earthquakes in central Nicaragua in 1931, 1972 and 2005 earthquakes took place on these left-lateral faults. The motion of the forearc sliver is also accommodated by a second set of right-lateral, strike-slip faults oriented parallel to the volcanic arc. Faults with this orientation and direction of motion are responsible for the 2014 and possibly the 1955 earthquakes. The presence of this geometry of orthogonal crustal faults highlights the seismic hazard posed by this complex faulting system, not only in the capital city of Managua, but also to the major Nicaraguan cities, which lie close to the volcanic arc.

  3. Bimodal volcanism in a tectonic transfer zone: Evidence for tectonically controlled magmatism in the southern Central Andes, NW Argentina

    Science.gov (United States)

    Petrinovic, I. A.; Riller, U.; Brod, J. A.; Alvarado, G.; Arnosio, M.

    2006-04-01

    This field-based and analytical laboratory study focuses on the genetic relationship between bimodal volcanic centres and fault types of an important tectonic transfer zone in the southern Central Andes, the NW-SE striking Calama-Olacapato-Toro (COT) volcanic belt. More specifically, tectono-magmatic relationships are examined for the 0.55 Ma Tocomar, the 0.78 Ma San Jerónimo and the 0.45 Ma Negro de Chorrillos volcanic centres in the Tocomar area (66°30 W-24°15 S). Structures of the COT volcanic belt, notably NW-SE striking strike-slip faults and NE-SW trending normal faults, accommodated differential shortening between major N-S striking thrust faults on the Puna Plateau. We present evidence that bimodal volcanism was contemporaneous with activity of these fault types in the COT volcanic belt, whereby eruption and composition of the volcanic rocks in the Tocomar and San Jerónimo-Negro de Chorrillos areas appear to have been controlled by the kinematics of individual faults. More specifically, rhyolitic centres such as the Tocomar are associated with normal faults, whereas shoshonitic-andesitic monogenetic volcanoes, e.g., the San Jerónimo and Negro de Chorrillos centres, formed at strike-slip dominated faults. Thus, the eruption of higher viscous rhyolite magmas appears to have been facilitated in tectonic settings characterized by horizontal dilation whereas ascent and effusive volcanic activity of less viscous and hot basaltic andesites to shoshonites were controlled by subvertical strike-slip faults. While the Tocomar rhyolites are interpreted to be derived from an anatectic crustal source, geochemical characteristics of the San Jerónimo and Negro de Chorrillos shoshonitic andesites are in agreement with a deeper source. This suggests that the composition of erupted volcanic rocks as well as their spatial distribution in the Tocomar area is controlled by the activity of specific fault types. Such volcano-tectonic relationships are also evident from older

  4. Exploring the Potential Impacts of Historic Volcanic Eruptions on the Contemporary Global Food System

    Science.gov (United States)

    Puma, Michael J.; Chon, S.; Wada, Y.

    2015-01-01

    A better understanding of volcanic impacts on crops is urgently needed, as volcanic eruptions and the associated climate anomalies can cause unanticipated shocks to food production. Such shocks are a major concern given the fragility of the global food system.

  5. Sanidine holocrystalline ejecta from central Sabatini Volcanic District, Latium (Italy). II. Intergranular ejecta and minerogenetic deductions

    Energy Technology Data Exchange (ETDEWEB)

    Capitanio, F.; Mottana, A.

    1998-12-31

    The Sanidine holocrystalline ejecta with intergranular texture from the central Sabatini Volcanic District contain high-T feldspars, out-of-equilibrium K- and Na- Ca-feldspar, and two pyroxene generations formed at different depths, as well as many mineral phases which indicate high f (H{sub 2}O) and/or f(O{sub 2}). A simple evolution model by fractional crystallization, in a plutonic or hypoabissal domain, has been derived from the mineralogical assemblages present in both the isotropic and intergranular type of ejecta. The intergranular type, the crystallization of which began at deeper levels than the isotropic one, underwent multiple pyroxene-liquidus re-equilibration during a quick magma ascent to shallower levels.

  6. Volcanic tremors: Good indicators of change in plumbing systems during volcanic eruptions

    Science.gov (United States)

    Tárraga, Marta; Martí, Joan; Abella, Rafael; Carniel, Roberto; López, Carmen

    2014-03-01

    Geophysical and geochemical signals recorded during episodes of unrest preceding volcanic eruptions provide information on movements of magma inside the lithosphere and on how magma prepares to reach the surface. When the eruption ensues continuous volcanic monitoring can reveal the nature of changes occurring in the volcano's plumbing system, which may be correlated with changes in both eruption behaviour and products. During the 2011-2012 submarine eruption of El Hierro (Canary Islands), the seismic signal, surface deformation, a broad stain on the sea surface of the eruption site, and the occasional appearance of floating lava balloons and pyroclastic fragments were the main observable signs. A strong continuous tremor in the vent accompanied the eruption and varied significantly in amplitude, frequency and dynamical parameters. We analysed these variations and correlated them with changes in the distribution of earthquakes and in the petrology of the erupting magma. This enabled us to relate variations in tremors to changes in the (i) stress conditions of the plumbing system, (ii) dimensions of the conduit and vent, (iii) intensity of the explosive episodes, and (iv) rheological changes in the erupting magma. The results obtained show how the tremor signal was strongly influenced by stress changes in the host rock and in the rheological variations in the erupting magma. We conclude that the tracking of real-time syn-eruptive tremor signals via the observation of variations in plumbing systems and magma physics is a potentially effective tool for interpreting eruption dynamics, and suggest that similar variations observed in pre-eruptive tremors will have a similar origin.

  7. On-and offshore tephrostratigraphy and -chronology of the southern Central American Volcanic Arc (CAVA)

    Science.gov (United States)

    Schindlbeck, J. C.; Kutterolf, S.; Hemming, S. R.; Wang, K. L.

    2015-12-01

    Including the recently drilled CRISP sites (IODP Exp. 334&344) the deep sea drilling programs have produced 69 drill holes at 29 Sites during 9 Legs at the Central American convergent margin, where the Cocos plate subducts beneath the Caribbean plate. The CAVA produced numerous plinian eruptions in the past. Although abundant in the marine sediments, information and data regarding large late Cenozoic explosive eruptions from Costa Rica, Nicaragua, Honduras, El Salvador, and Guatemala remain very sparse and discontinuous on land. We have established a tephrostratigraphy from recent through Miocene times from the unique archive of ODP/IODP sites offshore Central America in which we identify tephra source regions by geochemical fingerprinting using major and trace element glass shard compositions. Here we present first order correlations of ­~500 tephra layers between multiple holes at a single site as well as between multiple sites. We identified ashes supporting Costa Rican (~130), Nicaraguan (17) and Guatemalan (27) sources as well as ~150 tephra layers from the Galápagos hotspot. Within our marine record we also identified well-known marker beds such as the Los Chocoyos tephra from Atitlán Caldera in Guatemala and the Tiribi Tuff from Costa Rica but also correlations to 15 distinct deposits from known Costa Rican and Nicaraguan eruptions within the last 4.1 Ma. These correlations, together with new radiometric age dates, provide the base for an improved tephrochronostratigraphy in this region. Finally, the new marine record of explosive volcanism offshore southern CAVA provides insights into the eruptive history of long-living volcanic complexes (e.g., Barva, Costa Rica) and into the distribution and frequency of large explosive eruptions from the Galápagos hotspot. The integrated approach of Ar/Ar age dating, correlations with on land deposits from CAVA, biostratigraphic ages and sediment accumulation rates improved the age models for the drilling sites.

  8. Precise Hypocenter Relocation of Microearthquakes in the Torfajökull Volcanic System, Iceland

    Science.gov (United States)

    Lippitsch, R.; White, R. S.; Soosalu, H.

    2003-12-01

    The Torfajökull volcanic system is one of about 30 active volcanoes comprising the neovolcanic zones of Iceland. It is located at the rift-transform junction between the Eastern Volcanic Zone and the South Iceland Seismic Zone. The central volcanic part of the system is the largest silicic centre in Iceland with a caldera of about 12 km diameter. It's high-temperature geothermal system is one of the most powerful in Iceland. Torfajökull is the source of persistent seismicity, where both high- and low-frequency earthquakes occur. To study the microseismicity of the volcanic area in detail a temporary array of 20 broad-band seismic stations was deployed between May and November 2002. These temporary stations were embedded in the permanent South Iceland Lowland (SIL) network, and data from nine adjacent SIL-stations were included in the study. A 'minimum one-dimensional velocity model' with station corrections was computed for earthquake relocation by inverting manually picked P- and S- wave arrival times from events occurring in the Torfajökull volcanic centre, beneath Myrdalsjökull glacier south of the temporary array, and in the South Iceland Seismic Zone in the west. High-frequency earthquakes from the Torfajökull volcanic centre were then relocated using the program NonLinLoc, which calculates a non-linear, probabilistic solution to the earthquake location problem. From several hundred earthquakes in the Torfajökull area, 122 were well locatable (gap < 180 degrees, more than 10 observations). Subsequently, we correlated the waveforms of this sub-dataset (around 2000 obseravtions) to define linked events, calculated the relative travel time difference between event pairs, and solved for the hypocentral separation between these events with HypoDD. The resulting high-resolution pattern shows a tighter clustering in epicenter and focal depth when compared to original locations. All earthquakes are located beneath the caldera with hypocenters between 1 and 6 km

  9. Eruptive History of the Rhyolitic Guangoche Volcano, Los Azufres Volcanic Field, Central Mexico

    Science.gov (United States)

    Rangel Granados, E.; Arce, J. L.; Macias, J. L.; Layer, P. W.

    2014-12-01

    Guangoche is a rhyolitic and polygenetic volcano with a maximum elevation of 2,760 meters above sea level. It is situated to the southwest of the Los Azufres Volcanic Field (LAVF), in the central sector of the Trans-Mexican Volcanic Belt. Guangoche volcano is the youngest volcano described within the LAVF. It shows a horseshoe shaped crater open to the south, with a central lava dome. Its eruptive history during late Pleistocene has been intense with six explosive eruptions that consists of: 1) A southwards sector collapse of the volcano that generated a debris avalanche deposit with megablocks of heterogenous composition; 2) A plinian-type eruption that generated a pumice fall deposit and pyroclastic density currents by column collapse at 30.6 ka; 3) A plinian-type eruption "White Pumice Sequence" (29 ka) that developed a 22-km-high eruptive column, with a MDR of 7.0 x 107 kg/s (vol. = 0.53 km3); 4) A dome-destruction event, "Agua Blanca Pyroclastic Sequence" at 26.7 ka, that deposited a block-and-ash flow deposit; 5) A subplinian-plinian type eruption "Ochre Pyroclastic Sequence" (<26 ka) with an important initial phreatomagmatic phase, that generated pyroclastic density currents and pumice fallouts. The subplinian-plinian event generated a 16-km-high eruptive column, with a MDR of 1.9 x 107 kg/s, and magma volume of 0.38 km3; 6) The eruptive history ended with a subplinian eruption (<<26 ka), that generated a multilayered fall deposit, that developed a 11-km-high eruptive column, with a MDR of 2.9 x 106 kg/s and a magma volume of 0.26 km3. Volcanic activity at Guangoche volcano has been intense and future activity should not be discarded. Unfortunately, the last two events have not been dated yet. Guangoche rhyolitic magma is characterized by low-Ba contents suggesting crystal mush extraction for their genesis.

  10. The Origin of ‘OIB-Type’ Magmas in the Central Mexican Volcanic Belt

    Science.gov (United States)

    Straub, S. M.; Gomez-Tuena, A.; Zellmer, G. F.; Cai, Y.; Stuart, F. M.; Espinasa-Perena, R.; Langmuir, C. H.; Goldstein, S. L.

    2009-12-01

    Many models consider a primary mantle origin of high-Mg andesites, but the subarc mantle of arcs producing high-Mg andesites remains poorly defined. In the monogenetic volcanic field of Sierra Chichinautzin (central Mexican Volcanic Belt), high-Mg andesites are spatially and temporally intimately associated with mildly alkaline basalts and basaltic andesites, variously referred to as ‘OIB-type’, ‘intraplate’ or ‘high-Nb arc basalts’ (Wallace and Carmichael 1999, Contrib Mineral Petrol; Schaaf et al. 2005, J Petrol). ‘OIB-type’ magmas and high-Mg andesites have erupted within a few hundreds to thousands of years from vents only a few kilometers apart, or may even have erupted jointly from single vents. It has been suggested that these ‘OIB-type’ magmas were melts from subarc mantle yet unmodified by subduction fluxes while high-Mg andesites were produced from mantle sources residual to the ‘OIB-type’ magmas. In order to test this model, we investigated ‘OIB-type’ magmas erupting from three young and closely spaced monogenetic volcanoes in the Sierra Chichinautzin Volcanic Field (V. Chichinautzin, V. Suchiooc, Cuescomates vent). The primitive olivine-phyric alkaline basalts and basaltic andesites (SiO2 = 49.6-53.5 wt%; Mg#=62-68 and MgO= 6.5-8.3 wt%) have high Ni (97-179 ppm), Nb (18-34 ppm), Nb/La (0.9-1.2) and 3He/4He ratios (R/Ra = 7.3-8.0) typical of near-primary mantle magmas unaffected by the passage through the ~47 km thick continental crust. However, all ‘OIB-type’ magmas contain high-Ni olivines that are indicative of siliceous slab melts infiltrating and reacting with peridotite mantle (Straub et al., 2008, G-cubed; Wang & Gaetani 2008, Contrib Mineral Petrol). Significant slab additions to the mantle source of the ‘OIB-type’ magmas are further confirmed by Sr-Nd-Pb systematics. We suggest that ‘OIB-type’ arc magmas reflect fertilization of a pre-existing MORB-type subarc mantle by enriched, little fractionated slab

  11. The interplay between tectonics and volcanism: a key to unravel the nature of Andean geothermal systems

    Science.gov (United States)

    Cembrano, J. M.

    2013-05-01

    Field mapping combined with seismic data document the interplay between tectonics and volcanism in the Andes. In the Central Volcanic Zone (CVZ) of northern Chile (22-24°S), Pleistocene east-west shortening and a thick crust (50-70 km) are associated with major composite dacitic-andesitic volcanoes and a few monogenetic basaltic eruptive centers. CVZ stratovolcanoes are devoided of flank vents; clusters of minor eruptive centers are uncommon. Composite volcanoes and minor eruptive centers are coeval with a NS-striking system of reverse faults and fault-propagation folds. Although dextral strike-slip crustal seismicity is recorded between 18 and 21°S, evidence for long-term, margin-parallel strike-slip deformation is absent. In contrast, volcanoes of the Southern Volcanic Zone (SVZ), between 38 and 46°S are built on a much thinner crust (30-40 km) during intra-arc dextral transpression. Crustal seismicity shows dextral strike-slip focal mechanisms. There, a wide variety of volcanic forms and compositions coexist along the same volcanic arc. Volcanoes range from single monogenetic cones lying on master faults to major composite volcanoes organized into either NE- or NW-trending chains, oblique to the continental margin. Flank vents and elongated clusters of minor eruptive centers are common. Compositions range from primitive basalts at minor eruptive centers, to highly evolved magmas at mature stratovolcanoes. I hypothesize that the kinematics of fault-fracture networks under which magma is transported through the crust is one fundamental factor controlling the wide variety of volcanic forms, volcanic alignment patterns and rock compositions along a single volcanic arc. As a first approximation, a thicker crust favors magma differentiation processes whereas a thinner crust prevents it. Likewise, whereas bulk intra-arc compression (vertical σ3) enhances longer residence times of magmas in the CVZ, strike-slip deformation (horizontal σ3) in SVZ provides

  12. Subsurface Fires in Mali: Refutation of Active Volcanism Hypothesis in West-Central Africa

    Science.gov (United States)

    Bandlien, E. H.; Svensen, H.; Dysthe, D. K.; Planke, S.

    2002-12-01

    .P. This suggests that subsurface fires might have been common in the Trans-Saharan region previously, and that the stratigraphic record from the Holocene lakes should be correlated with data from areas with modern subsurface fires. We argue that the phenomena previously being attributed to volcanism in the Lac Faguibine area were caused by subsurface combustion of organic material. An important consequence of this conclusion is that west-central Africa should be regarded as volcanologically inactive, and that possible reactivations of the major EW trending Guinea-Nubian lineament is not associated with volcanism.

  13. Identifying the volcanic eruption depicted in a neolithic painting at Catalhoyuk, Central Anatolia, Turkey.

    Directory of Open Access Journals (Sweden)

    Axel K Schmitt

    Full Text Available A mural excavated at the Neolithic Çatalhöyük site (Central Anatolia, Turkey has been interpreted as the oldest known map. Dating to ∼6600 BCE, it putatively depicts an explosive summit eruption of the Hasan Dağı twin-peaks volcano located ∼130 km northeast of Çatalhöyük, and a birds-eye view of a town plan in the foreground. This interpretation, however, has remained controversial not least because independent evidence for a contemporaneous explosive volcanic eruption of Hasan Dağı has been lacking. Here, we document the presence of andesitic pumice veneer on the summit of Hasan Dağı, which we dated using (U-Th/He zircon geochronology. The (U-Th/He zircon eruption age of 8.97±0.64 ka (or 6960±640 BCE; uncertainties 2σ overlaps closely with (14C ages for cultural strata at Çatalhöyük, including level VII containing the "map" mural. A second pumice sample from a surficial deposit near the base of Hasan Dağı records an older explosive eruption at 28.9±1.5 ka. U-Th zircon crystallization ages in both samples range from near-eruption to secular equilibrium (>380 ka. Collectively, our results reveal protracted intrusive activity at Hasan Dağı punctuated by explosive venting, and provide the first radiometric ages for a Holocene explosive eruption which was most likely witnessed by humans in the area. Geologic and geochronologic lines of evidence thus support previous interpretations that residents of Çatalhöyük artistically represented an explosive eruption of Hasan Dağı volcano. The magmatic longevity recorded by quasi-continuous zircon crystallization coupled with new evidence for late-Pleistocene and Holocene explosive eruptions implicates Hasan Dağı as a potential volcanic hazard.

  14. Geothermal prospecting by geochemical methods in the Quaternary volcanic province of Dhamar (central Yemen)

    Science.gov (United States)

    Minissale, Angelo; Vaselli, Orlando; Mattash, Mohamed; Montegrossi, Giordano; Tassi, Franco; Ad-Dukhain, Abdulsalam; Kalberkamp, Ulrich; Al-Sabri, Ali; Al-Kohlani, Taha

    2013-01-01

    This paper deals with geothermal prospecting carried out in the Quaternary volcanic field of Dhamar, which is located almost in the centre of the main Oligo-Miocene basaltic trap plateau of Yemen. By applying geochemical and thermometric techniques in domestic wells producing water from the shallow unconfined aquifer in the area, which is prevalently hosted inside the Quaternary volcano-clastic material, a closed thermal anomaly associated with the Quaternary volcanic activity was well delineated. Although the aquifer(s) has a Ca-Na-HCO3 composition, that is typical of shallow groundwater, there are several chemical anomalies in the hotter central area compared to typical aquifers: i) the pH is lower and, consequently, the calculated partial pressure of CO2 in solution is higher, ii) the electrical conductivity is higher, iii) the total salinity is higher and iv) the fluoride ion concentration is higher. Such chemical anomalies in the hotter part of the aquifer do not seem to be generated by the rising and/or mixing of deep hydrothermal components rising into the shallow aquifer, but rather produced by enhanced water-rock interaction processes resulting from the higher temperature of the aquifer and its greater acidity. By applying some speculative calculations, based on the likely temperature of rainfall in the area and the depth and temperature of individual wells, the local thermal gradients in the area have been calculated. The thermal gradient varies from less than the average Earth gradient at the periphery of the delimitated thermal anomaly, to more than 250 °C/km, within an extensive area (exceeding 200 km2) where the gradient is greater than 100/120 °C/km.

  15. The sub-volcanic system of El Hierro, Canary Islands

    Science.gov (United States)

    Galindo, I.; Becerril, L.; Gudmundsson, A.

    2012-04-01

    The main volcanotectonic structures of El Hierro are three rift zones, trending northeast, west, and south. Most of the eruptions in El Hierro within these zones are basaltic fissure eruptions fed by subvertical dykes. The dykes appear as close to collinear or slightly offset segments, their surface expressions being clusters of cinder cones and eruptive vents. Three large landslides, referred to as El Golfo, El Julan, and Las Playas, have eroded the areas between rift axes and provide exposures that make it possible to provide a three-dimensional view of the uppermost part of the sub-volcanic system. Here we report the results of a structural study of the sub-volcanic system as obtained through the analysis of dykes and eruptive vents. The data obtained from surface outcrops have been combined with data from subsurface water galleries. More than 600 eruptive vents and 625 dykes have been studied in detail to characterise the subvolcanic system of the island. Using cinder-cone and other eruptive-vent alignments it has been possible to infer 115 eruptive fissures with lengths that range from 40 m to 2200 m. NE-SW trending volcanic fissures and dykes are common on the entire island and predominate in the northeast rift zone. The main strike of the dykes and fissures in the south and west rift zones are approximately NNW-SSE and E-W, respectively. However, in the west rift zone, eruptive fissures display a fan distribution with directions that range from N43°E to N124°E. Volcanic fissures within the El Golfo landslide valley trend parallel to the head scarp, except those that are close to the head of the valley, many of which are perpendicular to the scarp. Dykes show a radial distribution in the head scarp of the El Golfo landslide. Three feeder-dykes directly connected with their lava flows have been identified in El Hierro. Feeder dykes are difficult to observe in the field but provide important information when their lengths and thicknesses can be measured

  16. Eruption chronology of Ciomadul, a long dormant dacitic volcanic system in the Eastern Carpathians

    Science.gov (United States)

    Molnár, Kata; Harangi, Szabolcs; Dunkl, István; Lukács, Réka; Kiss, Balázs; Schmitt, Axel K.; Seghedi, Ioan

    2016-04-01

    During the last decade, the zircon (U-Th)/He geochronology has become a promising method for dating eruption histories even in case of very young (Quaternary) volcanic products. It is proved to be particularly applicable when other dating methods such as radiocarbon, K/Ar, and 40Ar/39Ar techniques encounter analytical or interpretational difficulties often caused by a lack of appropriate materials for dating. Zircon (U-Th)/He method can be used to infer the date of the rapid cooling of the erupted magma, i.e. the eruption age. However, when the crystals formed less than ~350 ka, correction for U-series disequilibrium is necessary. The effect of the secular disequilibrium can be corrected by the U-Th zircon dates, which provides additional information also about the timescale of the magma storage. Here, we provide a detailed zircon (U-Th)/He dating approach to refine the eruption chronology of the Ciomadul dacite volcanic complex, found at the East Carpathians, eastern-central Europe. It is characterized by an intermittent precursor lava dome activity with extrusion of 0.1-0.6 km3 dacitic magma, followed by the build-up of a massive lava dome complex with two explosion craters. The erupted products are fairly homogeneous dacite with similar mineral cargo. During the field campaigns we focused on the volcanic products of the Ciomadul lava dome complex and sampled all the known localities to cover the whole volcanic period and avoid sampling bias. According to the new (U-Th)/He results the precursor lava domes were formed between ~1000 and 300 ka, during several intermittent eruption events which were separated by long repose times: Bába Laposa: 950±50 ka, Delaul Mare: 840±12 ka, Puturosul: 710±50 ka, Bálványos: 580±20 ka and Turnul Apor: 330±40 ka. After another long quiescence, volcanic activity renewed at about 200 ka and became more productive. Numerous lava domes were developed between ca. 160 and 100 ka, which form the 10-12 km3 central lava dome edifice

  17. Non-Volcanic Tremors beneath the Southern Central Range in Taiwan

    Science.gov (United States)

    Sun, W.; Lin, C.; Peng, Z.; Chao, K.

    2011-12-01

    Deep non-volcanic tremors (NVT) triggered by teleseismic surface waves have been systematically observed in the Central Range in Taiwan recently. The discovery of NVT in Taiwan, as an arc-continental type collision environment, would provide us better understanding of critical conditions related to tremor occurrence and of the fault mechanics at the bottom of the seismogenic layer. Aiming to capture more NVT events, we have further installed two dense 36-element, small-aperture seismic arrays in the Liouguei and Lidao areas. Two arrays are respectively located about 20 km in southwest and northeast to the tremor sources reported at the southern Central Range of Taiwan. In each array, the short-period, vertical-channel GS-11D sensors with 4.5Hz natural frequency were laid out on the relatively flat parts of the mountain areas in a grid of approximately 100 by 80 meters. We had successfully recorded nine sets of continuous seismic data for totally 4034 hours among the first half year of 2011. Among those data, as we expected, the two arrays recorded clear tremors triggered by the great Tohoku earthquake (Mw=8.9) on 2011/03/11. Based on the beamforming results of the western and eastern arrays, the possible tremor sources come from N60E and just beneath it, respectively. Therefore, we believe the possible source of triggered tremors were nearby the Lidao area. Since the array analysis is able to significantly increase the level of tremor detection, we are examining other possible NVT events during the deployed period and the possible conditions related to NVT events, such as the passing seismic waves from other large regional earthquakes.

  18. Geochemical, isotopic (Sr-Nd-Pb) and geochronological (Ar-Ar and U-Pb) constraints on Quaternary bimodal volcanism of the Nigde Volcanic Complex (Central Anatolia, Turkey)

    Science.gov (United States)

    Aydin, F.; Siebel, W.; Uysal, I.; Ersoy, E. Y.; Schmitt, A. K.; Sönmez, M.; Duncan, R.

    2012-04-01

    The Nigde Volcanic Complex (NVC) is a major Late Neogene-Quaternary volcanic centre within the Cappadocian Volcanic Province of Central Anatolia. The Late Neogene evolution of the NVC generally initiated with the eruption of extensive andesitic-dacitic lavas and pyroclastic flow deposits, and minor basaltic lavas. This stage was followed by a Quaternary bimodal magma suite which forms Na-alkaline/transitional basaltic and high-K calc-alkaline to alkaline silicic volcanic rocks. In this study, we present new geochemical, isotopic (Sr-Nd-Pb) and geochronological (Ar-Ar and U-Pb) data for the bimodal volcanic suite within the NVC. Recent data suggest that the eruption of this suite took place ranges between ~650 and ~220 ka (Middle-Late Pleistocene). Silicic rocks consisting of rhyolite and associated pumice-rich pyroclastic fall out and surge deposits define a narrow range of 143Nd/144Nd isotope ratios (0.5126-0.5127), and show virtually no difference in Pb isotope composition (206Pb/204Pb = 18.84-18.87, 207Pb/204Pb = 15.64-15.67 and 208Pb/204Pb = 38.93-38.99). 87Sr/86Sr isotopic compositions of the silicic (0.704-0.705) and basaltic rocks (0.703-0.705) are rather similar reflecting a common source. The most mafic sample from basaltic rocks related to monogenetic cones is characterized by 87Sr/86Sr = 0.704, 143Nd/144Nd = 0.5127, 206Pb/204Pb = 18.80, 207Pb/204Pb = 15.60 and 208Pb/204Pb = 38.68. These values suggest a moderately depleted signature of the mantle source. The geochronological and geochemical data suggest that NVC silicic and basaltic rocks are genetically closely related to each other. Mantle derived differentiated basaltic melts which experienced low degree of crustal assimilation are suggested to be the parent melt of the rhyolites. Further investigations will focus on the spatial and temporal evolution of Quaternary bimodal magma suite in the NVC and the genetic relation between silicic and basaltic rocks through detailed oxygen isotope analysis and (U

  19. Central Verification System

    Data.gov (United States)

    US Agency for International Development — CVS is a system managed by OPM that is designed to be the primary tool for verifying whether or not there is an existing investigation on a person seeking security...

  20. Centralized versus Decentralized Information Systems

    Science.gov (United States)

    Hugoson, Mats-Åke

    This paper brings into question whether information systems should be centralized or decentralized in order to provide greater support for different business processes. During the last century companies and organizations have used different approaches for centralization and decentralization; a simple answer to the question does not exist. This paper provides a survey of the evolution of centralized and decentralized approaches, mainly in a Nordic perspective. Based on critical reflections on the situation in the end of the century we can discuss what we can learn from history to achieve alignment between centralized and decentralized systems and the business structure. The conclusion is that theories, management and practice for decisions on centralization or decentralization of information systems must be improved. A conscious management and control of centralization /decentralization of IT support is a vital question in the company or the organization, and this is not a task that can be handled only by IT-specialists. There is a need for business oriented IT management of centralization/decentralization.

  1. Novel central nervous system drug delivery systems.

    Science.gov (United States)

    Stockwell, Jocelyn; Abdi, Nabiha; Lu, Xiaofan; Maheshwari, Oshin; Taghibiglou, Changiz

    2014-05-01

    For decades, biomedical and pharmaceutical researchers have worked to devise new and more effective therapeutics to treat diseases affecting the central nervous system. The blood-brain barrier effectively protects the brain, but poses a profound challenge to drug delivery across this barrier. Many traditional drugs cannot cross the blood-brain barrier in appreciable concentrations, with less than 1% of most drugs reaching the central nervous system, leading to a lack of available treatments for many central nervous system diseases, such as stroke, neurodegenerative disorders, and brain tumors. Due to the ineffective nature of most treatments for central nervous system disorders, the development of novel drug delivery systems is an area of great interest and active research. Multiple novel strategies show promise for effective central nervous system drug delivery, giving potential for more effective and safer therapies in the future. This review outlines several novel drug delivery techniques, including intranasal drug delivery, nanoparticles, drug modifications, convection-enhanced infusion, and ultrasound-mediated drug delivery. It also assesses possible clinical applications, limitations, and examples of current clinical and preclinical research for each of these drug delivery approaches. Improved central nervous system drug delivery is extremely important and will allow for improved treatment of central nervous system diseases, causing improved therapies for those who are affected by central nervous system diseases.

  2. Fluid escape structures in the Graham Bank region (Sicily Channel, Central Mediterranean) revealing volcanic and neotectonic activity.

    Science.gov (United States)

    Spatola, Daniele; Pennino, Valentina; Basilone, Luca; Interbartolo, Francesco; Micallef, Aaron; Sulli, Attilio; Basilone, Walter

    2016-04-01

    In the Sicily Channel, (Central Mediterranean), two geodynamic processes overlap each other, the Maghrebides-Apennines accretionary prism and the Sicily Channel rift. Moreover, the northwestern sector (Banks sector) is characterised by an irregular seafloor morphology linked to the recent volcanic and tectonic activity.In order to discriminate the role exerted by both the processes in the morphostructural setting of the area we used a dataset of both high and very high resolution single-channel and multi-channel profiles, acquired in the frame of the RITMARE project respectively with CHIRP and sparker, and airgun sources, and high resolution (5 m cell) morpho-bathymetric data. The data allowed us to identify and characterise two areas where different geological features (sedimentary and volcanic) are prevailing. They present fluid escaping evidence, which often appears to be active and generating different types of morphologies (both positive and negative). In the western sector we recognised pockmarks at water depths of 195 to 317 m, with diameters from 25 to 580 m, depths from 1.3 to 15 m, and slope up to 23°. They show sub-circular shape in plan-view and reflectors with upward concavity in cross section, and are oriented along a NW-SE trend.The CHIRP and multichannel profiles highlight fluids that affect the Plio-Quaternary succession, especially in areas where the top surface of the Messinian succession is shallower. Conversely, wipe-out acoustic facies were recognised in proximity of: i) extensional faults of Mesozoic age with NW-SE trend; ii) dip/strike slip faults of Cenozoic age with NW-SE, N-S and about NNE-SSW trends, and iii) extensional neo-tectonic faults with NW-SE and NNW-SSE trends. We cannot exclude that they could feed the shallower reservoir producing a mixing between the two. In the eastern sector we recognised a cluster of volcanoes composed of seven cone-shaped structures (SCV1-7), pertaining to a wide area known as Graham Bank. A detailed

  3. Geochemistry and petrogenesis of extension-related magmas close to the volcanic front of the central part of the Trans-Mexican Volcanic Belt

    Science.gov (United States)

    Verma, Surendra P.; Torres-Sánchez, Darío; Velasco-Tapia, Fernando; Subramanyam, K. S. V.; Manikyamba, C.; Bhutani, Rajneesh

    2016-12-01

    New geochemical data for 23 samples from the Sierra de Chichinautzin (SCN) and Sierra Santa Catarina (SSC) located at the volcanic front of the central part of the Trans-Mexican Volcanic Belt were combined with the published data on 580 samples from the SCN to explore the origin and evolution of the Quaternary trachybasalt and basalt to andesite and dacite. The rare-earth element concentrations for the evolved intermediate and acid rocks are lower than those for the more basic varieties, implying that the evolved magmas cannot be generated by a simple fractional crystallisation process without crustal assimilation. The size of the Nb and Ta negative anomalies increases from basic to acid, which is similar to the behaviour of most continental rifts and extension-related areas, but contrasts from all island and continental arcs. The multidimensional tectonomagmatic diagrams indicate a continental rift setting from basic and alkaline intermediate magmas. The SSC represents a new site of within-plate alkaline magmas discovered in this work, which complements the earlier interpretation of the adjacent SCN as a manifestation of continental rift or extension-related magmatism.

  4. Mantle Origin of Silicic Calc-alkaline Basalts to Andesites in the Central Mexican Volcanic Belt

    Science.gov (United States)

    Straub, S. M.; Zellmer, G. F.; Gómez-Tuena, A.; Stuart, F.; Espinasa-Perena, R.; Cai, Y.

    2011-12-01

    The Quaternary central Mexican Volcanic Belt, constructed on ~50 km thick continental crust, erupts a broad spectrum of basaltic to dacitic calc-alkaline magmas with the arc-typical high ratios of large-ion lithophile to high-field strength elements. In order to understand their genesis, we investigated high-Mg# olivine-phyric calc-alkaline basalts to andesites from Holocene monogenetic volcanoes Tuxtepec (50.2 wt% SiO2; 9.7 wt% MgO), Yecahuazac (53.1;8.0), Suchiooc Cone (53.2;9.2), Guespalapa (54.4-61.2;5.3-7.9) and Cuatepel (55.6-58.9;5.4-7.5), and as well as one basaltic andesite from composite volcano Popocateptl (56.7;6.9). The high 3He/4He (7.3 ± 0.3 Ra; n=16) of olivine phenocrysts that crystallize at upper crustal levels, and the limited range of Sr-Nd-Hf isotope ratios preclude any significant crustal contamination of these magmas. Moreover, small, but significant differences in Sr-Nd-Hf isotope ratios and the variations of olivine phenocrysts in the Fo-Ni space conclusively rule out that these magmas were related through fractional crystallization. Consequently, the basaltic to andesitic magmas must originate from the sub-arc mantle. Building on the high-Ni content of the olivines that by far exceed Ni abundances of olivines in partial melts of peridotite, we propose that the subarc MVB mantle contains segregations of silica-excess and silica-deficient 'reaction pyroxenites' that formed through infiltration of highly reactive silicic fluids or melts from slab. Upon melting, the pyroxenites produce dacitic and basaltic initial melts, respectively, that mix in variable proportions during ascent through mantle and crust. This genetic model links the silica enrichment of the arc magmas directly to the silica flux from slab, with no requirement for any significant melt silica increase in the overlying crust.

  5. Geology and stratigraphy of the Challis Volcanic Group and related rocks, Little Wood River area, south-central Idaho

    Science.gov (United States)

    Sandford, Richard F.; Snee, Lawrence W.

    2005-01-01

    The southwestern part of the Challis volcanic field occupies the valley of the Little Wood River and its tributaries in the Hailey and Idaho Falls 1??2? quadrangles of south-central Idaho. The Little Wood River area is a structurally controlled topographic basin that is partly filled by Eocene Challis Volcanic Group and younger rocks. Rock types in the Challis Volcanic Group of the Little Wood River area include, in order of decreasing abundance, andesite lava flows and tuff breccia, dacite lava flows and flow breccia, volcaniclastic sedimentary rocks, lithic tuff, nonvolcanic conglomerate, and rhyolite dikes. A basal nonvolcanic conglomerate, that locally rests on upper Paleozoic sedimentary rocks at a regional unconformity, was deposited prior to eruption of volcanic rocks. Andesite was the first volcanic rock erupted and is a voluminous sequence as thick as 3,000 ft (1,000 m). Locally thick volcaniclastic sedimentary rocks accumulated in topographic lows. A sharp transition marks the beginning of dacite eruption from fissures and flow-dome complexes. Dacite flows and breccias are as thick as 2,000 ft (600 m). An upper volcaniclastic unit was deposited in paleotopographic lows following emplacement of the main dacite unit. Next, a widespread, distinctive, lithic rich ash flow tuff, correlated with the tuff of Stoddard Gulch, was deposited over much of the area. Deposition of the tuff was followed by eruption of thin andesite and dacite lava flows and deposition of conglomeratic sedimentary rocks. The entire sequence was then intruded by a dacite flow-dome complex composed of at least three separate intrusions. The Challis Volcanic Group in the study area is calcalkaline. Andesitic rocks are typically high potassium basaltic andesite, high potassium andesite, shoshonite, and banakite (latite). Dacitic rocks are high potassium dacite and trachyte. Tuffs and vitrophyres range in composition from basaltic andesite to trachyte. The paleotopographic basin in which the

  6. The influence of volcanic eruptions on growth of central European trees in NE Germany during the last Millennium

    Science.gov (United States)

    Pieper, H.; Heinrich, I.; Heussner, K. U.; Helle, G.

    2011-12-01

    species show a clearly negative response in tree growth after volcanic eruptions. Volcanic aerosols originating from the northern hemisphere appear to cause a greater ring-width reduction than aerosols from volcanoes from the southern hemisphere. The study clearly indicates that effects of major volcanic eruptions are less obvious in central Europe than they are for trees growing at the altitudinal or latitudinal timberline.

  7. Pre-eruptive conditions of the ~31 ka rhyolitic magma of Tlaloc volcano, Sierra Nevada Volcanic Range, Central Mexico

    Science.gov (United States)

    Macias, J.; Arce, J.; Rueda, H.; Gardner, J.

    2008-12-01

    Tlaloc volcano is located at the northern tip of the Sierra Nevada Volcanic Range in Central Mexico. This Pleistocene to Recent volcanic range consists from north to south of Tlaloc-Telapón-Teyotl-Iztaccíhuatl-and- Popocatépetl volcanoes. While andesitic to barely dacitic volcanism dominates the southern part of the range (i.e. Popocatépetl and Iztaccíhuatl); dacitic and rare rhyolithic volcanism (i.e. Telapón, Tlaloc) dominates the northern end. The known locus of rhyolitic magmatism took place at Tlaloc volcano with a Plinian-Subplinian eruption that occurred 31 ka ago. The eruption emplaced the so-called multilayered fallout and pumiceous pyroclastic flows (~2 km3 DRE). The deposit consists of 95% vol. of juvenile particles (pumice + crystals) and minor altered lithics 5% vol. The mineral association of the pumice fragments (74-76 % wt. SiO2) consists of quartz + plagioclase + sanidine + biotite and rare oxides set in a glassy groundmass with voids. Melt inclusions in quartz phenocrysts suggest that prior to the eruption the rhyolitic contain ~7% of H2O and Toluca volcano (~6 km) some 50 km to the southwest.

  8. Dynamics of natural contamination by aluminium and iron rich colloids in the volcanic aquifers of Central Italy.

    Science.gov (United States)

    Viaroli, Stefano; Cuoco, Emilio; Mazza, Roberto; Tedesco, Dario

    2016-10-01

    The dynamics of natural contamination by Al and Fe colloids in volcanic aquifers of central-southern Italy were investigated. Localized perched aquifers, and their relative discharges, are strongly affected by the presence of massive suspended solids, which confer a white-lacteous coloration to the water. This phenomenon occasionally caused the interruption of water distribution due to the exceeding of Al and Fe concentrations in aquifers exploited for human supply. The cause was ascribed to water seepage from perched aquifers. Water discharges affected by such contamination was investigated for the Rocca Ripesena area (north-eastern sector of Vulsini Volcanic District) and for the Rianale Stream Valley (Roccamonfina Volcanic Complex). Hydrogeological survey of both areas confirmed the presence of perched aquifers not previously considered due to their low productivity. Pluviometric data and chemical parameters were periodically monitored. Water mineralization decreased with increasing rainfall, conversely Al and Fe concentrations increased. Statistical analysis confirmed the dependence of all the chemical variables on rock leaching, with the sole exception of Al and Fe which were imputed to colloids mobilization from local, strongly pedogenized pyroclastic material. The similarities in hydrogeological settings and mobilization dynamics in both areas suggest that the Al and Fe colloidal contamination should be more abundant than currently known in quaternary volcanic areas.

  9. Late Cenozoic tephrostratigraphy offshore the southern Central American Volcanic Arc: 2. Implications for magma production rates and subduction erosion

    Science.gov (United States)

    Schindlbeck, J. C.; Kutterolf, S.; Freundt, A.; Straub, S. M.; Vannucchi, P.; Alvarado, G. E.

    2016-11-01

    Pacific drill sites offshore Central America provide the unique opportunity to study the evolution of large explosive volcanism and the geotectonic evolution of the continental margin back into the Neogene. The temporal distribution of tephra layers established by tephrochonostratigraphy in Part 1 indicates a nearly continuous highly explosive eruption record for the Costa Rican and the Nicaraguan volcanic arc within the last 8 Myr. The widely distributed marine tephra layers comprise the major fraction of the respective erupted tephra volumes and masses thus providing insights into regional and temporal variations of large-magnitude explosive eruptions along the southern Central American Volcanic Arc (CAVA). We observe three pulses of enhanced explosive volcanism between 0 and 1 Ma at the Cordillera Central, between 1 and 2 Ma at the Guanacaste and at >3 Ma at the Western Nicaragua segments. Averaged over the long-term the minimum erupted magma flux (per unit arc length) is ˜0.017 g/ms. Tephra ages, constrained by Ar-Ar dating and by correlation with dated terrestrial tephras, yield time-variable accumulation rates of the intercalated pelagic sediments with four prominent phases of peak sedimentation rates that relate to tectonic processes of subduction erosion. The peak rate at >2.3 Ma near Osa particularly relates to initial Cocos Ridge subduction which began at 2.91 ± 0.23 Ma as inferred by the 1.5 Myr delayed appearance of the OIB geochemical signal in tephras from Barva volcano at 1.42 Ma. Subsequent tectonic re-arrangements probably involved crustal extension on the Guanacaste segment that favored the 2-1 Ma period of unusually massive rhyolite production.

  10. Bromine release during Plinian eruptions along the Central American Volcanic Arc

    Science.gov (United States)

    Hansteen, T. H.; Kutterolf, S.; Appel, K.; Freundt, A.; Perez-Fernandez, W.; Wehrmann, H.

    2010-12-01

    Volcanoes of the Central American Volcanic Arc (CAVA) have produced at least 72 highly explosive eruptions within the last 200 ka. The eruption columns of all these “Plinian” eruptions reached well into the stratosphere such that their released volatiles may have influenced atmospheric chemistry and climate. While previous research has focussed on the sulfur and chlorine emissions during such large eruptions, we here present measurements of the heavy halogen bromine by means of synchrotron radiation induced micro-XRF microanalysis (SR-XRF) with typical detection limits at 0.3 ppm (in Fe rich standard basalt ML3B glass). Spot analyses of pre-eruptive glass inclusions trapped in minerals formed in magma reservoirs were compared with those in matrix glasses of the tephras, which represent the post-eruptive, degassed concentrations. The concentration difference between inclusions and matrix glasses, multiplied by erupted magma mass determined by extensive field mapping, yields estimates of the degassed mass of bromine. Br is probably hundreds of times more effective in destroying ozone than Cl, and can accumulate in the stratosphere over significant time scales. Melt inclusions representing deposits of 22 large eruptions along the CAVA have Br contents between 0.5 and 13 ppm. Br concentrations in matrix glasses are nearly constant at 0.4 to 1.5 ppm. However, Br concentrations and Cl/Br ratios vary along the CAVA. The highest values of Br contents (>8 ppm) and lowest Cl/Br ratios (170 to 600) in melt inclusions occur across central Nicaragua and southern El Salvador, and correlate with bulk-rock compositions of high Ba/La > 85 as well as low La/Yb discharged 700 kilotons of Br. On average, each of the remaining 21 CAVA eruptions studied have discharged c.100 kilotons of bromine. During the past 200 ka, CAVA volcanoes have emitted a cumulative mass of 3.2 Mt of Br through highly explosive eruptions. There are six periods in the past (c. 2ka, 6ka, 25ka, 40ka, 60ka, 75

  11. Crustal recycling by subduction erosion in the central Mexican Volcanic Belt

    Science.gov (United States)

    Straub, Susanne M.; Gómez-Tuena, Arturo; Bindeman, Ilya N.; Bolge, Louise L.; Brandl, Philipp A.; Espinasa-Perena, Ramón; Solari, Luigi; Stuart, Finlay M.; Vannucchi, Paola; Zellmer, Georg F.

    2015-10-01

    Recycling of upper plate crust in subduction zones, or 'subduction erosion', is a major mechanism of crustal destruction at convergent margins. However, assessing the impact of eroded crust on arc magmas is difficult owing to the compositional similarity between the eroded crust, trench sediment and arc crustal basement that may all contribute to arc magma formation. Here we compare Sr-Nd-Pb-Hf and trace element data of crustal input material to Sr-Nd-Pb-Hf-He-O isotope chemistry of a well-characterized series of olivine-phyric, high-Mg# basalts to dacites in the central Mexican Volcanic Belt (MVB). Basaltic to andesitic magmas crystallize high-Ni olivines that have high mantle-like 3He/4He = 7-8 Ra and high crustal δ18Omelt = +6.3-8.5‰ implying their host magmas to be near-primary melts from a mantle infiltrated by slab-derived crustal components. Remarkably, their Hf-Nd isotope and Nd/Hf trace element systematics rule out the trench sediment as the recycled crust end member, and imply that the coastal and offshore granodiorites are the dominant recycled crust component. Sr-Nd-Pb-Hf isotope modeling shows that the granodiorites control the highly to moderately incompatible elements in the calc-alkaline arc magmas, together with lesser additions of Pb- and Sr-rich fluids from subducted mid-oceanic ridge basalt (MORB)-type altered oceanic crust (AOC). Nd-Hf mass balance suggests that the granodiorite exceeds the flux of the trench sediment by at least 9-10 times, corresponding to a flux of ⩾79-88 km3/km/Myr into the subduction zone. At an estimated thickness of 1500-1700 m, the granodiorite may buoyantly rise as bulk 'slab diapirs' into the mantle melt region and impose its trace element signature (e.g., Th/La, Nb/Ta) on the prevalent calc-alkaline arc magmas. Deep slab melting and local recycling of other slab components such as oceanic seamounts further diversify the MVB magmas by producing rare, strongly fractionated high-La magmas and a minor population of

  12. Seismotectonic pattern and the source region of volcanism in the central part of Sunda Arc

    Science.gov (United States)

    Špičák, Aleš; Hanuš, Václav; Vaněk, Jiří

    2005-07-01

    The seismotectonic pattern in the central part of the Sunda Arc (Java, Nusa Tenggara) was studied in relation to the distribution of active calc-alkaline volcanoes, using global seismological data. Hypocentral determinations of the International Seismological Centre from the period 1964-1999, as relocated by Engdahl, and Harvard Centroid Moment Tensor Solutions from the period 1976-2003 were used. The following phenomena, which could assist the location of the source region of primary magma for island arc calc-alkaline volcanism, were observed: (1) An aseismic gap without any strong teleseismically recorded earthquakes was found in the Wadati-Benioff zone of the subducting slab along the whole investigated region of the Sunda Arc, forming a continuous strip of laterally variable depth and shape, at depths between 100 and 200 km. The absence of strong earthquakes (with mb>4.0) indicates a significant change in the mechanical properties of the subducting slab at intermediate depths. All active calc-alkaline volcanoes in the Sunda Arc are located above this gap. (2) The majority of earthquakes occurring in the lithospheric wedge of the Eurasian Plate above the subducted slab could be attributed to several deep-rooted seismically active fracture zones of regional extent. All delineated active fracture zones display a thrust tectonic regime as shown by the available fault plane solutions. (3) Clusters of earthquakes were found beneath active volcanoes of western Java, Bali and Nusa Tenggara in the lithospheric wedge above the slab and identified as seismically active columns. These clusters occur only beneath the volcanoes that are located at the outcrops of seismically active fracture zones. We interpret the earthquakes in these clusters beneath volcanoes as events induced by magma transport through the medium of the lithospheric wedge that has been subcritically pre-stressed by the process of plate convergence. (4) Beneath the volcanoes of central Java no seismically

  13. Various origins of clinopyroxene megacrysts from basanites from the eastern part of Central European Volcanic Province

    Science.gov (United States)

    Lipa, Danuta; Puziewicz, Jacek; Ntaflos, Theodoros; Matusiak-Małek, Magdalena; Kukuła, Anna

    2014-05-01

    Clinopyroxene megacrysts up to few centimetres in size occur in Cenozoic alkaline lavas forming the north-eastern part of Central European Volcanic Province in Lower Silesia (SW Poland). The megacrysts occur, among other, in the Miocene basanite from Ostrzyca Proboszczowicka (bulk rock mg# 0.65-0.66) and in that from Lutynia (Pliocene, K-Ar age: 4.56 +/- 0.2 Ma; Birkenmajer et al. 2002; bulk rock mg# 0.64). The megacrysts typically consist of homogeneous core surrounded by patchy and spongy mantle, which is covered by a thin outermost rim of composition similar to that of the groundmass clinopyroxene occurring in the host basanite. The mantles of the megacrysts have been affected by melting, whereas the cores preserve their primary composition. We compare the core parts of megacrysts in the following. The Ostrzyca clinopyroxene megacrysts contain euhedral apatite intergrowths. The clinopyroxene has the composition of Fe-rich diopside (mg# = 0.61 - 0.70), contain significant sodium (to 0.12 a pfu) and are calcium rich (0.89-0.92 a pfu). The Lutynia megacrysts have the composition of augite and diopside (mg# 0.80-0.83). The sodium content is also high (to 0.12 a pfu), but calcium varies from 0.68 to 0.77 a pfu. The REE concentrations for Lutynia (1-10 x PM) are lower relative to Ostrzyca, enriched 10-100 times relative to PM. In both sites the megacrysts are strongly enriched in LREE relative to HREE and TE are characterized by positive Th, La and Ce anomalies, slight negative Sr and Y anomalies and strong Pb anomaly in the PM normalised patterns. The megacrysts from Ostrzyca reveal slight negative Ti and strong positive Zr and Hf anomalies, whereas those Lutynia have negative Zr anomaly and Ti anomaly is absent. Major and trace element composition shows that the megacrysts from Ostrzyca formed as coarse-grained cumulate at significant depth (lower crust?) from the LREE enriched alkaline melt. That melt was very rich in phosphorous which enabled its saturation in

  14. Stratigraphic and geochemical evolution of an oceanic arc upper crustal section: The Jurassic Talkeetna Volcanic Formation, south-central Alaska

    Science.gov (United States)

    Clift, P.D.; Draut, A.E.; Kelemen, P.B.; Blusztajn, J.; Greene, A.

    2005-01-01

    The Early Jurassic Talkeetna Volcanic Formation forms the upper stratigraphic level of an oceanic volcanic arc complex within the Peninsular Terrane of south-central Alaska. The section comprises a series of lavas, tuffs, and volcaniclastic debris-How and flow turbidite deposits, showing significant lateral facies variability. There is a general trend toward more volcaniclastic sediment at the top of the section and more lavas and tuff breccias toward the base. Evidence for dominant submarine, mostly mid-bathyal or deeper (>500 m) emplacement is seen throughout the section, which totals ???7 km in thickness, similar to modern western Pacific arcs, and far more than any other known exposed section. Subaerial sedimentation was rare but occurred over short intervals in the middle of the section. The Talkeetna Volcanic Formation is dominantly calc-alkatine and shows no clear trend to increasing SiO2 up-section. An oceanic subduction petrogenesis is shown by trace element and Nd isotope data. Rocks at the base of the section show no relative enrichment of light rare earth elements (LREEs) versus heavy rare earth elements (REES) or in melt-incompatible versus compatible high field strength elements (HFSEs). Relative enrichment of LREEs and HFSEs increases slightly up-section. The Talkeetna Volcanic Formation is typically more REE depleted than average continental crust, although small volumes of light REE-enriched and heavy REE-depleted mafic lavas are recognized low in the stratigraphy. The Talkeetna Volcanic Formation was formed in an intraoceanic arc above a north-dipping subduction zone and contains no preserved record of its subsequent collisions with Wrangellia or North America. ?? 2005 Geological Society of America.

  15. Smart electromechanical systems the central nervous system

    CERN Document Server

    Kurbanov, Vugar

    2017-01-01

    This book describes approaches to solving the problems of developing the central nervous system of robots (CNSR) based on smart electromechanical systems (SEMS) modules, principles of construction of the various modules of the central nervous system and variants of mathematical software CNSR in control systems for intelligent robots. It presents the latest advances in theory and practice at the Russian Academy of Sciences. Developers of intelligent robots to solve modern problems in robotics are increasingly addressing the use of the bionic approach to create robots that mimic the complexity and adaptability of biological systems. These have smart electromechanical system (SEMS), which are used in various cyber-physical systems (CPhS), and allow the functions of calculation, control, communications, information storage, monitoring, measurement and control of parameters and environmental parameters to be integrated. The behavior of such systems is based on the information received from the central nervous syst...

  16. Age and chemical constraints of Volcán Tunupa: Implications for behind arc volcanism in the Bolivian central Andes

    Science.gov (United States)

    salisbury, M. J.; Kent, A. J.; Jiménez, N.; Jicha, B. R.

    2011-12-01

    New 40Ar/39Ar age determinations of groundmass separates and whole-rock geochemical data constrain the Pleistocene eruptive history of Volcán Tunupa, a glacially-dissected composite volcano (~50 km3) situated between the Salar de Uyuni and Salar de Coipasa. Tunupa erupted ~110 km east of the arc front of the Western Cordillera of the central Andes near the eastern edge of the Intersalar Volcanic Field, an arc-perpendicular expression of volcanism that extends to the central Altiplano basin of Bolivia. 40Ar/39Ar age determinations indicate that the edifice was constructed between ~1.40 and 1.55 Ma, whereas nearby Cerro Huayrana lavas erupted ~ 11 Ma. Published ages from the Western Cordillera that are concordant with both Tunupa and Huayrana lavas demonstrate that the central Altiplano lavas are a long-lived expression of behind arc volcanism. The Tunupa lavas define a calc-alkaline trend from trachyandesite to trachydacite (wt.% SiO2 = 60.6 - 63.6; wt.% K2O + Na2O = 7.5 - 8.3) and are overlain by younger, more silicic (wt.% SiO2 = 66) trachydacitic domes. Major element compositions of Tunupa and Huayrana are enriched in FeO and TiO2 compared to the arc front. These lavas are also enriched in high field strength elements, notably Nb and Ta, and are characterized by considerably lower Ba/Nb and La/Ta ratios than arc front lavas in northern Chile. The geochemical and spatiotemporal patterns of the behind arc Tunupa and Huayrana lavas suggest different petrogenetic histories from typical central Andean arc lavas.

  17. G-EVER Activities and the Next-generation Volcanic Hazard Assessment System

    Science.gov (United States)

    Takarada, S.

    2013-12-01

    The Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER) is a consortium of Asia-Pacific geohazard research institutes that was established in 2012. G-EVER aims to formulate strategies to reduce the risks of disasters worldwide caused by the occurrence of earthquakes, tsunamis and volcanic eruptions. G-EVER is working on enhancing collaboration, sharing of resources, and making information on the risks of earthquakes and volcanic eruptions freely available and understandable. The 1st G-EVER International Symposium was held in Tsukuba, Japan in March 11, 2013. The 2nd Symposium is scheduled in Sendai, Tohoku Japan, in Oct. 19-20, 2013. Currently, 4 working groups were proposed in the G-EVER Consortium. The next-generation volcano hazard assessment WG is developing a useful system for volcanic eruption prediction, risk assessment, and evacuation at various eruption stages. The assessment system is based on volcanic eruption history datasets, volcanic eruption database, and numerical simulations. Volcanic eruption histories including precursor phenomena leading to major eruptions of active volcanoes are very important for future prediction of volcanic eruptions. A high quality volcanic eruption database, which contains compilations of eruption dates, volumes, and types, is important for the next-generation volcano hazard assessment system. Proposing international standards on how to estimate the volume of volcanic products is important to make a high quality volcanic eruption database. Spatial distribution database of volcanic products (e.g. tephra and pyroclastic flow distributions), encoded into a GIS based database is necessary for more precise area and volume estimation and risk assessments. The volcanic eruption database is developed based on past eruption results, which only represents a subset of possible future scenarios. Therefore, numerical simulations with controlled parameters are needed for more precise volcanic eruption

  18. Volcanic settings and their reservoir potential: An outcrop analog study on the Miocene Tepoztlán Formation, Central Mexico

    Science.gov (United States)

    Lenhardt, Nils; Götz, Annette E.

    2011-07-01

    The reservoir potential of volcanic and associated sedimentary rocks is less documented in regard to groundwater resources, and oil and gas storage compared to siliciclastic and carbonate systems. Outcrop analog studies within a volcanic setting enable to identify spatio-temporal architectural elements and geometric features of different rock units and their petrophysical properties such as porosity and permeability, which are important information for reservoir characterization. Despite the wide distribution of volcanic rocks in Mexico, their reservoir potential has been little studied in the past. In the Valley of Mexico, situated 4000 m above the Neogene volcanic rocks, groundwater is a matter of major importance as more than 20 million people and 42% of the industrial capacity of the Mexican nation depend on it for most of their water supply. Here, we present porosity and permeability data of 108 rock samples representing five different lithofacies types of the Miocene Tepoztlán Formation. This 800 m thick formation mainly consists of pyroclastic rocks, mass flow and fluvial deposits and is part of the southern Transmexican Volcanic Belt, cropping out south of the Valley of Mexico and within the two states of Morelos and Mexico State. Porosities range from 1.4% to 56.7%; average porosity is 24.8%. Generally, permeabilities are low to median (0.2-933.3 mD) with an average permeability of 88.5 mD. The lavas are characterized by the highest porosity values followed by tuffs, conglomerates, sandstones and tuffaceous breccias. On the contrary, the highest permeabilities can be found in the conglomerates, followed by tuffs, tuffaceous breccias, sandstones and lavas. The knowledge of these petrophysical rock properties provides important information on the reservoir potential of volcanic settings to be integrated to 3D subsurface models.

  19. Does Students' Source of Knowledge Affect Their Understanding of Volcanic Systems?

    Science.gov (United States)

    Parham, Thomas L.; Cervato, Cinzia; Gallus, William; Larsen, Michael; Hobbs, Jon; Greenbowe, Thomas

    2011-01-01

    A recent survey of undergraduates at five schools across the United States indicates that many undergraduates feel that they have learned more about volcanic systems from Hollywood films and the popular media than they learned in the course of their precollegiate formal education. Scores on the Volcanic Concept Survey, an instrument designed to…

  20. Stages of recent volcanism and problems of their correlation with landscape formation in the central Caucasus

    Science.gov (United States)

    Koronovskii, N. V.

    2016-09-01

    The article presents a first comparison of the isotopic ages of Pliocene-Quaternary volcanic rocks of the Greater Caucasus with the time of creation of various forms of the modern relief. The latter are associated with lava flows and volcanic centers identified from the study of neotectonic movements, geomorphology, and glacial stages. It is demonstrated that the results of chronological subdivision of lava flows using geomorphological and neotectonic methods, in comparison with the isotopic data, generally agree with each other in this area and ensure more reliable dating of glaciation epochs in the Greater Caucasus. Despite the overall similarity of the data, some contradictions have been revealed and possible causes are considered.

  1. Integrating Community Volcanic Hazard Mapping, Geographic Information Systems, and Modeling to Reduce Volcanic Hazard Vulnerability

    Science.gov (United States)

    Bajo Sanchez, Jorge V.

    This dissertation is composed of an introductory chapter and three papers about vulnerability and volcanic hazard maps with emphasis on lahars. The introductory chapter reviews definitions of the term vulnerability by the social and natural hazard community and it provides a new definition of hazard vulnerability that includes social and natural hazard factors. The first paper explains how the Community Volcanic Hazard Map (CVHM) is used for vulnerability analysis and explains in detail a new methodology to obtain valuable information about ethnophysiographic differences, hazards, and landscape knowledge of communities in the area of interest: the Canton Buenos Aires situated on the northern flank of the Santa Ana (Ilamatepec) Volcano, El Salvador. The second paper is about creating a lahar hazard map in data poor environments by generating a landslide inventory and obtaining potential volumes of dry material that can potentially be carried by lahars. The third paper introduces an innovative lahar hazard map integrating information generated by the previous two papers. It shows the differences in hazard maps created by the communities and experts both visually as well as quantitatively. This new, integrated hazard map was presented to the community with positive feedback and acceptance. The dissertation concludes with a summary chapter on the results and recommendations.

  2. Volcano-tectonics of the Al Haruj Volcanic Province, Central Libya

    Science.gov (United States)

    Elshaafi, Abdelsalam; Gudmundsson, Agust

    2016-10-01

    The Al Haruj intra-continental Volcanic Province (AHVP), located at the south-western margin of the Sirt Basin, hosts the most extensive and recent volcanic activity in Libya - which is considered typical for plate interiors. From north to south the AHVP is divided into two subprovinces, namely Al Haruj al Aswad and Al Haruj al Abiyad. The total area of the AHVP is around 42,000 km2. Despite the great size of the AHVP, its volcano-tectonic evolution and activity have received very little attention and are poorly documented and understood. Here we present new field data, and analytical and numerical results, on the volcano-tectonics of the AHVP. The length/thickness ratio of 47 dykes and volcanic fissures were measured to estimate magmatic overpressure at the time of eruption. The average dyke (length/thickness) ratio of 421 indicates magmatic overpressures during the associate fissure eruptions of 8-19 MPa (depending on host-rock elastic properties). Spatial distributions of 432 monogenetic eruptions sites/points (lava shields, pyroclastic cones) in the AHVP reveal two main clusters, one in the south and another in the north. Aligned eruptive vents show the dominating strike of volcanic fissures/feeder-dykes as WNW-ESE to NW-SE, coinciding with the orientation of one of main fracture/fault zones. Numerical modelling and field observations suggest that some feeder-dykes may have used steeply dipping normal-fault zones as part of their paths to the surface.

  3. Post-Cretaceous intraplate volcanism in the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.

    in the abyssal parts of CIOB by Iyer et al. (1997). Iron enriched volcanic magnetic spherules (average Fe 74%, and 475 mm in diameter) dredged from the foot of a large seamount (height >800 m) were analysed to suggest that Fe rich lavas or hydrothermal emanations...

  4. Terminal Pleistocene to early Holocene volcanic eruptions at Zuni Salt Lake, west-central New Mexico, USA

    Science.gov (United States)

    Onken, Jill; Forman, Steven

    2017-01-01

    Zuni Salt Lake (ZSL) is a large maar in the Red Hill-Quemado volcanic field located in west-central New Mexico in the southwestern USA. Stratigraphic analysis of sections in and around the maar, coupled with optically stimulated luminescence (OSL) and accelerator mass spectrometry (AMS) 14C dating, indicate that ZSL volcanic activity occurred between ˜13.4 and 9.9 ka and was most likely confined to a ≤500-year interval sometime between ˜12.3 and 11.0 ka. The basal volcanic unit consists of locally widespread basaltic ash fallout interpreted to represent a violent or wind-aided strombolian eruption tentatively attributed to Cerro Pomo, a scoria cone ˜10 km south of ZSL. Subsequent eruptions emanated from vents near or within the present-day ZSL maar crater. Strombolian eruptions of multiple spatter and scoria cones produced basaltic lava and scoria lapilli fallout. Next, a phreatomagmatic eruption created the maar crater and surrounding tephra rim and apron. ZSL eruptions ended with strombolian eruptions that formed three scoria cones on the crater floor. The revised age range of ZSL is younger and more precise than the 190-24 ka 2-sigma age range derived from previous argon dating. This implies that other morphologically youthful, argon-dated volcanoes on the southern margin of the Colorado Plateau might be substantially younger than previously reported.

  5. Geochronology and magmatic evolution of the Dieng Volcanic Complex, Central Java, Indonesia and their relationships to geothermal resources

    Science.gov (United States)

    Harijoko, Agung; Uruma, Ryusuke; Wibowo, Haryo Edi; Setijadji, Lucas Doni; Imai, Akira; Yonezu, Kotaro; Watanabe, Koichiro

    2016-01-01

    We analyzed new radiometric dating and petrological data of DVC in an attempt to reconstruct volcanic history as groundwork to understand magmatic temporal and spatial evolution. The magma of DVC can be divided on the basis of mineral composition into three types: olivine bearing basalt-basaltic andesite, pyroxene basaltic andesite-andesite, and biotite andesite-dacite, which coincide with three volcanic episodes of DVC: pre-caldera, second, and youngest episode, respectively. The pre-caldera episode was active no later than 1 Ma, the second episode occurred between 0.3 and 0.4 Ma, and the youngest occurred after 0.27 Ma. Plots of CaO, K2O, Al2O3, and Rb/Sr against FeO*/MgO and/or MgO suggest that each volcanic episode has distinct differentiation trends, indicating the presence of multiple shallow magma chambers. The close spatial relationship between the geothermal manifestation, geophysical anomalies, geothermal production zones and volcanic edifices supports the presence of multiple shallow magma chambers beneath DVC, which act as a heat source for the existing geothermal system.

  6. Tectonics Along Western-Central Part of the Trans Mexican Volcanic Belt as Inferred From Palaeomagnetic Data: A Summary

    Science.gov (United States)

    Rosas-Elguera, J.; Goguichaisvilli, A.; Alva-Valdivia, L.; Urrutia-Fucugauchi, J.

    2007-05-01

    The Trans-Mexican Volcanic Belt (TMVB), one of the largest continental volcanic arcs built on the North America plate, spans about 1000 km and crosses central Mexico from the Pacific Ocean to the Gulf of Mexico. The initial stage of the TMVB is marked by widespread Miocene basaltic volcanism, emplaced from the Nayarit state, in the west, to the longitude of Mexico City. This volcanism is characterized by plateau-like structures resulting from the shield volcanoes and fissure lava flows, which have an estimated aggregate volume ranging between 3200 and 6800 km3. The western-central Mexico has been affected by right-lateral transtension within the western TMVB but previous paleomagnetic studies indicate some 15-20° anticlockwise tectonic rotations for the Rio Grande de Santiago canyon and surrounding areas, in accordance with a Miocene left-lateral transtensional tectonic regime. We present a summary of paleomagnetic and rock-magnetic studies of that Miocene volcanic succession from the TMVB. A total of 114 consecutive basaltic lava flows (more than 550 oriented samples) were collected from four localities: Tepic, Guadalajara, Los Altos, and Queretaro which span from 11 to 7.5 Ma. The mean paleodirection obtained for Tepic area is I = 33.7°, D = 358.4°, k = 140, á95 = 3.0°, N = 17. These directions are in perfect agreement with the expected paleodirections for late Miocene time, as derived from reference poles given by Besse and Courtillot (1991) for North America.. The mean paleodirection obtained for Guadalajara is I = 31.1°, D = 354.6°, k = 124, 95 = 2.1°, which corresponds to the mean paleomagnetic pole position Plat = 84°, Plong = 129.8°, k = 29, 95 = 4.4°. These directions are in reasonably good agreement with the expected paleodirections for middle Miocene time. The mean paleomagnetic direction calculated for Los Altos and Queretaro is I = 32.46°, D = 341.2°, k = 7.2 and 95 = 11.6°. Thus, our results suggest that no major block rotation has

  7. A Measure of Intense in West and Central Java Through Manifestation of River Basin Morphometry Development on Quaternary Volcanic Deposits

    Directory of Open Access Journals (Sweden)

    Febri Hirnawan

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v4i4.88Indications exhibiting active tectonic movements in Java occur in many places, characterized by unstable regions, such as active faults, earthquakes, volcanic eruptions, etc. The results of researches conducted at several areas in West and Central Java on tectonic morphometry developments of river basins both in Quaternary deposits and Tertiary sediments exhibit a degree of active tectonic intensity. Such the researches are very important regarding to the spatial development design that is related to a region of active tectonism that should be well understood by planners for decision making mainly through comprehensive approach, in which the phenomena involved explaining the characteristics of the region as part of an active plate margin. Statistic approach as the chosen methodology had been utilized to gain meaningful conclusions through the verification of hypotheses, which are based on valid and reliable tested data obtained from the fields and satellite imagery. Results of regression-correlation tests between azimuths of river segment and lineaments in both chronostratigraphic systems mentioned earlier are significant with several large values of correlation coefficients r of no less than 0.9. On the other hand, results of t-tests are not a significant difference of means of bifurcation ratio (Rb and drainage density (Dd from many to river basins. The results of all tests have verified the effect of active tectonic control on the morphometry development process regarding to river segments and density of drainage patterns development in Tertiary and Quaternary deposits.

  8. The ~ 2000 yr BP Jumento volcano, one of the youngest edifices of the Chichinautzin Volcanic Field, Central Mexico

    Science.gov (United States)

    Arce, J. L.; Muñoz-Salinas, E.; Castillo, M.; Salinas, I.

    2015-12-01

    The Chichinautzin Volcanic Field is situated at the southern limit of the Basin of Mexico and the Metropolitan area of Mexico City, the third most populated city around the world. The Chichinautzin Volcanic field holds more than 220 monogenetic volcanoes. Xitle is the youngest of these with an estimated age of 1.6 ky BP. Xitle's eruptive activity took place during the Mesoamerican Mexican Pre-classic period and is related to the destruction of Cuicuilco Archaeological Site, the oldest civilization known in Central Mexico. However, there are still several regional cones that have not been dated. Based on 14C ages, stratigraphic and geomorphologic criteria, we conclude that the Jumento volcano, located to the west of Xitle, is one of the youngest cones of the Chichinautzin Volcanic Field. The Jumento volcano has a basaltic andesite composition, and its eruptive activity was initially hydromagmatic, followed by Strombolian and finally effusive events occurred recorded through: (1) a sequence of hydromagmatic pyroclastic surges and ashfall layers emplaced at a radius of > 5 km from the crater with charcoal fragments at its base; this activity built the Jumento's cone with slopes of 32°; and (2) lava flows that breached the southern part of the cone and flowed for up to 2.5 km from the vent. The resulting 14C ages for this volcano yielded a maximum age of ~ 2 ky BP. Morphometric analysis indicates that the state of degradation of Jumento cone is similar to the Xitle, suggesting that the Jumento could be in the state of degradation of a volcanic structure of similar age or younger adding credence to the probable radiocarbon age of ~ 2 ky BP for the Jumento edifice.

  9. The hydrothermal system of Volcan Puracé, Colombia

    Science.gov (United States)

    Sturchio, Neil C.; Williams, Stanley N.; Sano, Yuji

    1993-05-01

    This paper presents chemical and isotopic data for thermal waters, gases and S deposits from Volcan Puracé (summit elevation ˜4600 m) in SW Colombia. Hot gas discharges from fumaroles in and around the summit crater, and thermal waters discharge from three areas on its flanks. The waters from all areas have δD values of-75±1, indicating a single recharge area at high elevation on the volcano. Aircorrected values of3He/4He in thermal waters range from 3.8 to 6.7 RA, and approach those for crater fumarole gas (6.1 7.1 RA), indicating widespread addition of magmatic volatiles. An economic S deposit (El Vinagre) is being mined in the Rio Vinagre fault zone at 3600 m elevation. Sulfur isotopic data are consistent with a magmatic origin for S species in thermal waters and gases, and for the S ore deposit. Isotopic equilibration between S species may have occurred at 220±40°C, which overlaps possible equilibration temperatures (170±40°C) determined by a variety of other geothermometers for neutral thermal waters. Apparent CH4-CO2 equilibration temperatures for gases from thermal springs (400±50°C) and crater fumaroles (520±60°C) reflect higher temperatures deeper in the system. Hot magmatic gas ascending through the Rio Vinagre fault zone is though to have precipitated S and generated thermal waters by interaction with descending meteoric waters.

  10. Tectonic evolution of the central-eastern sector of Trans Mexican Volcanic Belt and its influence on the eruptive history of the Nevado de Toluca volcano (Mexico)

    Science.gov (United States)

    Bellotti, F.; Capra, L.; Groppelli, G.; Norini, G.

    2006-11-01

    The Nevado de Toluca is an andesitic to dacitic stratovolcano of Late Pliocene-Holocene age located within the central and eastern sectors of the Trans Mexican Volcanic Belt. Morphostructural analysis, aerial photograph and satellite image interpretation, structural analysis and geological fieldwork were methods used to investigate the relationship between the evolution of the volcano and the tectonic framework of its basement. The study revealed that the area of Nevado de Toluca is affected by three main fault systems that intersect close to the volcanic edifice. These are from oldest to youngest, the Taxco-Querétaro, San Antonio and Tenango fault systems. The NNW-SSE Taxco-Querétaro fault system was active in the area since Early Miocene, and is characterized by right-lateral transtensive movement. Its reactivation during Early to Middle Pleistocene was responsible for the emplacement of andesitic to dacitic lava flows and domes of La Cieneguilla Supersynthem. The NE-SW San Antonio fault system was active during Late Pliocene, before the reactivation of the Taxco-Querétaro fault system, and is characterized by extensional left-lateral oblique-slip kinematics. The youngest is the E-W Tenango fault system that has been active since Late Pleistocene. This fault system is characterized by transtensive left-lateral strike-slip movement, and partly coeval with the youngest eruptive phase, the Nevado Supersynthem, which formed the present summit cone of the Nevado de Toluca volcano. The stress re-orientation from the Taxco-Querétaro to the Tenango fault system during Late Pleistocene is responsible for the ˜ 1 Ma hiatus in the magmatic activity between 1.15 Ma and 42 ka. After this period of repose, the eruptive style drastically changed from effusive to explosive with the emission of dacitic products. The methodology presented here furnish new data that can be used to better assess the complex structural evolution of this sector of the Trans Mexican Volcanic Belt

  11. Petrology and petrogenesis of the Eocene Volcanic rocks in Yildizeli area (Sivas), Central Anatolia, Turkey

    Science.gov (United States)

    Doğa Topbay, C.; Karacık, Zekiye; Genç, S. Can; Göçmengil, Gönenç

    2015-04-01

    Yıldızeli region to the south of İzmir Ankara Erzincan suture zone is situated on the large Sivas Tertiary sedimentary basin. After the northern branch of the Neotethyan Ocean was northerly consumed beneath the Sakarya Continent, a continent - continent collision occurred between the Anatolide- Tauride platform and Pontides and followed a severe intermediate magmatism during the Late Cretaceous- Tertiary period. This created an east-west trending volcanic belt along the whole Pontide range. In the previous studies different models are suggested for the Eocene volcanic succession such as post-collisional, delamination and slab-breakoff models as well as the arc model for its westernmost parts. We will present our field and geochemical data obtained from the Yıldızeli and its surroundings for its petrogenesis, and will discuss the tectonic model(s) on the basis of their geochemical/petrological aspects. Cenozoic volcanic sequences of Yıldızeli region which is the main subject of this study, overlie Pre-Mesozoic crustal meta-sedimentary group of Kırşehir Massif, Ophiolitic mélange and Cretaceous- Paleocene? flysch-like sequences. In the northern part of Yıldızeli region, north vergent thrust fault trending E-W seperates the ophiolitic mélange complex from the Upper Cretaceous-Paleocene and Tertiary formations. Volcano-sedimentary units, Eocene in age, of the Yıldızeli (Sivas-Turkey) which are intercalated with sedimentary deposits related to the collision of Anatolide-Tauride and a simultaneous volcanic activity (i.e. the Yıldızeli volcanics), exposed throughout a wide zone along E-W orientation. Yıldızeli volcanics consist of basalts, basaltic-andesites and andesitic lavas intercalated flow breccias and epiclastic, pyroclastic deposits. Basaltic andesite lavas contain Ca-rich plagioclase + clinopyroxene ± olivine with minor amounts of opaque minerals in a matrix comprised of microlites and glass; andesitic lavas are generally contain Ca

  12. Volcanic succession of the Borovnik Member (Mohorje Formation, Bloke Plateau area, Central Slovenia

    Directory of Open Access Journals (Sweden)

    Stevo Dozet

    2009-06-01

    Full Text Available A 75 m thick volcanic succession of the Borovnik Member, Mohorje Formation in the Bloke Plateau area consistsof dacitic and rhyolitic rocks deposited in a shallow-marine environment. Volcanic activity begun with lavaflows that underwent extensive disintegration, autobrecciation and mixing with the underlying unconsolidated fine-grained clastic sediments producing dacite/rhyolite-siltstone peperites. Peperites are very rich in fractured plagioclase phenocrysts, and owing to the incorporation of clastic material, they are commonly depleted in silica.The overlying fining-upward pyroclastic sequence is monotonous. Basal parts mainly consist of coarse-grained vitric tuffs that may contain some smaller pumice lapilli. The overlying volcaniclastics are fine-grained vitric tuffs,and in the uppermost parts of the sequence, they are interbedded with cherts.The study confirms the existence of primary volcaniclastic succession in the Bloke Plateau area and excludes its epiclastic or reworked origin.

  13. Chemistry of ash-leachates to monitor volcanic activity: An application to Popocatepetl volcano, central Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Armienta, M.A., E-mail: victoria@geofisica.unam.mx [Universidad Nacional Autonoma de Mexico, Instituto de Geofisica, Circuito Exterior, C.U., Mexico 04510 D.F. (Mexico); De la Cruz-Reyna, S. [Universidad Nacional Autonoma de Mexico, Instituto de Geofisica, Circuito Exterior, C.U., Mexico 04510 D.F. (Mexico); Soler, A. [Grup de Mineralogia Aplicada i Medi Ambient, Dep. Cristal.lografia, Mineralogia i Diposits Minerals, Fac. Geologia, Universidad de Barcelona (Spain); Cruz, O.; Ceniceros, N.; Aguayo, A. [Universidad Nacional Autonoma de Mexico, Instituto de Geofisica, Circuito Exterior, C.U., Mexico 04510 D.F. (Mexico)

    2010-08-15

    Monitoring volcanic activity and assessing volcanic risk in an on-going eruption is a problem that requires the maximum possible independent data to reduce uncertainty. A quick, relatively simple and inexpensive method to follow the development of an eruption and to complement other monitoring parameters is the chemical analysis of ash leachates, particularly in the case of eruptions related to dome emplacement. Here, the systematic analysis of SO{sub 4}{sup 2-}, Cl{sup -} and F{sup -} concentrations in ash leachates is proposed as a valuable tool for volcanic activity monitoring. However, some results must be carefully assessed, as is the case for S/Cl ratios, since eruption of hydrothermally altered material may be confused with degassing of incoming magma. Sulfur isotopes help to identify SO{sub 4} produced by hydrothermal processes from magmatic SO{sub 2}. Lower S isotopic values correlated with higher F{sup -} percentages represent a better indicator of fresh magmatic influence that may lead to stronger eruptions and emplacement of new lava domes. Additionally, multivariate statistical analysis helps to identify different eruption characteristics, provided that the analyses are made over a long enough time to sample different stages of an eruption.

  14. Volcanisme à travers le système solaire, Volcanism in the solar system

    Science.gov (United States)

    Deschamps, Frederic

    2016-11-01

    Volcanic activity at the surface of the Earth results from the cooling of our planet's interior. Other rocky planets and satellites of the Solar system, are also cooling down and are, or have been, experiencing volcanic activities. Details of these activities depend on planets and satellites properties, in particular their size and composition. In this article, the author briefly reviews our current knowledge of volcanic activity throughout the Solar system, based on observations made by past and recent space missions. Moon volcanism is dominated by lava floods that lead to the formation of the lunar maria. Unlike Earth, the surface of Venus and Mars are not animated by plate tectonics; this has strong implications on the type of volcanism operating on these planets. In the outer Solar system, the most spectacular volcanic activity can be observed at Io, the closest Galilean moon of Jupiter, entertained by the strong tidal forces exerted by Jupiter. Finally, evidences of cryo-volcanic activity, involving water and volatiles ices instead of silicate rocks, have been detected at the surface of icy moons of giant planets (e.g., Europa, Titan, Enceladus) and dwarf planets (Pluto).

  15. Tracking changes in volcanic systems with seismic Interferometry

    Science.gov (United States)

    Haney, Matt; Alicia J. Hotovec-Ellis,; Ninfa L. Bennington,; Silvio De Angelis,; Clifford Thurber,

    2014-01-01

    The detection and evaluation of time-dependent changes at volcanoes form the foundation upon which successful volcano monitoring is built. Temporal changes at volcanoes occur over all time scales and may be obvious (e.g., earthquake swarms) or subtle (e.g., a slow, steady increase in the level of tremor). Some of the most challenging types of time-dependent change to detect are subtle variations in material properties beneath active volcanoes. Although difficult to measure, such changes carry important information about stresses and fluids present within hydrothermal and magmatic systems. These changes are imprinted on seismic waves that propagate through volcanoes. In recent years, there has been a quantum leap in the ability to detect subtle structural changes systematically at volcanoes with seismic waves. The new methodology is based on the idea that useful seismic signals can be generated “at will” from seismic noise. This means signals can be measured any time, in contrast to the often irregular and unpredictable times of earthquakes. With seismic noise in the frequency band 0.1–1 Hz arising from the interaction of the ocean with the solid Earth known as microseisms, researchers have demonstrated that cross-correlations of passive seismic recordings between pairs of seismometers yield coherent signals (Campillo and Paul 2003; Shapiro and Campillo 2004). Based on this principle, coherent signals have been reconstructed from noise recordings in such diverse fields as helioseismology (Rickett and Claerbout 2000), ultrasound (Weaver and Lobkis 2001), ocean acoustic waves (Roux and Kuperman 2004), regional (Shapiro et al. 2005; Sabra et al. 2005; Bensen et al. 2007) and exploration (Draganov et al. 2007) seismology, atmospheric infrasound (Haney 2009), and studies of the cryosphere (Marsan et al. 2012). Initial applications of ambient seismic noise were to regional surface wave tomography (Shapiro et al. 2005). Brenguier et al. (2007) were the first to

  16. Late Paleogene topography of the Central Rocky Mountains and western Great Plains region using hydrogen isotope ratios in volcanic glass

    Science.gov (United States)

    Rossetto, G.; Fricke, H. C.; Cassel, E. J.; Evanoff, E.

    2015-12-01

    The Central Rocky Mountains (CRM), located in southern Wyoming, Colorado, and northern New Mexico, are characterized by the highest elevation basins (up to 2500 m) and mountains (over 4000 m) in the North American Cordillera. The timing and drivers for surface uplift of the CRM have not been conclusively determined. The goal of this study is to constrain the timing of surface uplift of the CRM by comparing hydrogen isotope ratios of hydration waters (δDglass) in late Paleogene volcanic glasses preserved in felsic tuffs deposited in CRM basins to δDglass values from glasses of similar age (34.9 to 32.2 Ma) preserved in tuffs from the surrounding Great Plains. The tuffs deposited in the Great Plains, to the north and east of the CRM, are currently at elevations of 1100-1600 m. Volcanic glass hydrates shortly after deposition, preserving the δD of ancient meteoric water on geologic timescales, and can thus be used as a proxy for ancient precipitation δD values. Volcanic glasses from the CRM have δDglass values that are an average of ~31‰ higher than δDglass values from the Great Plains, while modern day precipitation δD values in the CRM are ~25‰ lower than δD values in the Great Plains. These results suggest that the uplift of the CRM relative to the surrounding Great Plains occurred after ~32 Ma. This requires a mechanism such as mantle upwelling or differential crustal hydration, not solely Laramide tectonism, to uplift the CRM to current elevations. Elevation, however, may not have been the only control on the spatial distribution of precipitation δD values across the western US. Similar to the modern, mixing of Pacific and Gulf coast air masses likely occurred during the latest Paleogene, driving regional variability in δD values of precipitation.

  17. Depositional conditions of the coal-bearing Hirka Formation beneath late Miocene explosive volcanic products in NW central Anatolia, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Sener, M. [Nigde University, Nigde (Turkey). Dept. of Geology

    2007-04-15

    This work focuses on the relationship between the coal deposition and explosive volcanism of the Miocene basin, NW central Anatolia, Turkey. The coal-bearing Hirka Formation was deposited over the Galatian Andesitic Complex and/or massive lagoonal environments during the Miocene. The investigated lignite is a high ash (from 32 to 58%) and sulphur (from 1.43 to 3.03%) lignite which is petrographically characterised by a high humunite content. The mineral matter of the studied lignite samples is made up of mainly clay minerals (illite-smectite and kaolinite), plagioclase and quartz in Bolu coal field, clay minerals (illite-smectite, smectite and illite), quartz, calcite, plagioclase and gypsum in Seben coal field, quartz, K-feldspar, plagioclase and clay minerals (kaolinite and illite) in Kibriscik, and dolomite, quartz, clinoptilolite, opal CT and gypsum in Camhdere coal field. The differences in these four types of lignite with specific mineralogical patterns may be due to the explosive volcanic events and depositional conditions which changed from one coal field to the others. There is a zonation from SW to SE in the studied area for zeolites. Carbonate minerals are commonly calcite in Seben and Kibriscik coal fields. In Bolu, coal samples are devoid of calcite and dolomite. These analyses show that there is an increase in the amount of Mg and a decrease in the amount of Na from the northwestern part to the southern part in the study area.

  18. Effects of Prolonged Flat Subduction on the Miocene Magmatic Record of the Central Trans-Mexican Volcanic Belt

    Science.gov (United States)

    Mori, L.; Gomez-Tuena, A.; Goldstein, S. L.

    2006-12-01

    Temporal modifications in the chemical compositions of middle to late Miocene rocks from the central Trans- Mexican Volcanic Belt elucidate how a process of prolonged flat subduction influences arc magmatism. These are recorded in the Palo Huerfano-La Joya-Zamorano Volcanic Complex (PH-LJ-Z; 16-9 Ma), a group of andesitic to dacitic stratovolcanoes located at ~500 km from the current trench, and in the Queretaro Volcanic Succession (QVS; 9-6 Ma), a basaltic to basaltic-andesitic plateau which stratigraphically overlies the stratovolcanoes. The two rock groups have typical arc-like trace element patterns, but the PH-LJ-Z suite has higher Sr/Y and LREE(MREE)/HREE ratios with MORB-like Sr, Nd and Pb isotopic compositions; geochemical features that are typical of experimental and natural slab melts. In contrast, rocks from the QVS have an overall weaker subduction signature, do not show slab melt signals, and have higher FeO^{tot} and MgO contents at equivalent Na2O and Mg# (40-70) than the PH-LJ-Z suite. Since Fe in arc magmas is a sensitive proxy of melting pressure and/or water contents (Gaetani &Grove, CMP, 1998), and Na could be either sensitive to slab melt additions (Kelemen et al., Tr. Geoch., 2003) or to the thickness of the mantle column that controls the extent of melting (Plank &Langmuir, EPSL, 1998), the overall chemical differences of both rock suites can only be reconciled if they equilibrated with the mantle wedge at the same pressures but with different amounts of dissolved water. The geochemical evidence thus indicates that the compositional differences between the two magmatic episodes are mainly related to different mechanisms of element recycling that occurred without major changes in the local tectonic configuration. The slab melt features of PH- LJ-Z rocks, and their emplacement at a large distance from the trench, are consistent with a sub-horizontal subduction geometry which favors slab melting at relatively low pressures (Gutscher et al

  19. Group II Xenoliths from Lunar Crater Volcanic Field, Central Nevada: Evidence for a Kinked Geotherm

    Science.gov (United States)

    Roden, M.; Mosely, J.; Norris, J.

    2015-12-01

    Group II xenoliths associated with the 140 Ka Easy Chair Crater, Lunar Crater volcanic field, NV, consist of amphibole rich-inclusions including amphibolites, pyroxenites, and gabbros. Abundant minerals in these inclusions are kaersutite, aluminous (7.3-9.7 wt% Al2O3), calcic clinopyroxene, primarily diopside, and olivine (Mg# 69-73) with accessory spinel, sulfide and apatite. Although most apatites are fluor-hydroxyapatite solid solutions, one xenolith contains Cl- and OH-rich apatite suggesting that Cl may have been an important constituent in the parent magma(s) . The xenoliths show abundant evidence for equilibration at relatively low temperatures including amphibole and orthopyroxene exsolution in clinopyroxene, and granules of magnetite in hercynite hosts. If latter texture is due to exsolution, then this particular Group II xenolith equilibrated at temperatures near or below 500oC or at a depth of about 15 km along a conductive geotherm. It may be that all the Group II xenoliths equilibrated at low temperatures given the abundant exsolution textures although Fe-Mg exchange relations suggest equilibration at temperatures in excess of 800oC. Low equilibration temperatures are in conflict with the unusually high equilibration temperatures, >1200oC (Smith, 2000) displayed by Group I xenoliths from this same volcanic field. Taken at face value, the geothermometric results indicate unusually high temperatures in the upper mantle, normal temperatures in the crust and the possibility of a kinked geotherm in the region. Curiously the LCVF lies in an area of "normal" heat flow, south of the Battle Mountain area of high heat flow but the number of heat flow measurements in the Lunar Crater area is very low (Humphreys et al., 2003; Sass, 2005). References: Humphreys et al., 2003, Int. Geol. Rev. 45: 575; Sass et al., 2005, http://pubs.usgs.gov/of/2005/1207/; Smith, 2000, JGR 105: 16769.

  20. Use of Low-Cost Acquisition Systems with an Embedded Linux Device for Volcanic Monitoring

    Directory of Open Access Journals (Sweden)

    David Moure

    2015-08-01

    Full Text Available This paper describes the development of a low-cost multiparameter acquisition system for volcanic monitoring that is applicable to gravimetry and geodesy, as well as to the visual monitoring of volcanic activity. The acquisition system was developed using a System on a Chip (SoC Broadcom BCM2835 Linux operating system (based on DebianTM that allows for the construction of a complete monitoring system offering multiple possibilities for storage, data-processing, configuration, and the real-time monitoring of volcanic activity. This multiparametric acquisition system was developed with a software environment, as well as with different hardware modules designed for each parameter to be monitored. The device presented here has been used and validated under different scenarios for monitoring ocean tides, ground deformation, and gravity, as well as for monitoring with images the island of Tenerife and ground deformation on the island of El Hierro.

  1. Use of Low-Cost Acquisition Systems with an Embedded Linux Device for Volcanic Monitoring.

    Science.gov (United States)

    Moure, David; Torres, Pedro; Casas, Benito; Toma, Daniel; Blanco, María José; Del Río, Joaquín; Manuel, Antoni

    2015-08-19

    This paper describes the development of a low-cost multiparameter acquisition system for volcanic monitoring that is applicable to gravimetry and geodesy, as well as to the visual monitoring of volcanic activity. The acquisition system was developed using a System on a Chip (SoC) Broadcom BCM2835 Linux operating system (based on DebianTM) that allows for the construction of a complete monitoring system offering multiple possibilities for storage, data-processing, configuration, and the real-time monitoring of volcanic activity. This multiparametric acquisition system was developed with a software environment, as well as with different hardware modules designed for each parameter to be monitored. The device presented here has been used and validated under different scenarios for monitoring ocean tides, ground deformation, and gravity, as well as for monitoring with images the island of Tenerife and ground deformation on the island of El Hierro.

  2. Magma types and mantle sources of the Bárðarbunga volcanic system, Iceland

    Science.gov (United States)

    Halldórsson, Sæmundur; Rubin, Ken; Sverrisdóttir, Guðrún; Sigurðsson, Gylfi

    2015-04-01

    The Bárðarbunga volcanic system (BVS) represents one of the largest volcanic systems in Iceland, extending ~190 km from the northern boundary of Torfajökull in the south to Dyngjufjöll Ytri in the north, and intersecting the largely ice-covered Bárðarbunga volcano. The extensive length of the BVS thus allows sampling of an unusually large section of the mantle underlying Iceland's Eastern rift zone. Perhaps surprisingly, the degree of mantle source heterogeneity beneath the BVS remains poorly known. We have recently undertaken a detailed study of the BVS because such data are fundamental for understanding the magmatic history and magma delivery system beneath of the BVS, including those that led to recent volcanism north of Dyngjujökull. Here, we present major and trace element analyses, as well as high-precision Pb isotope analyses, of several Holocene lava flows from the Dyngjuháls area and from rocks representing the basement, flanks and nunataks of the ice-free part of the Bárðarbunga volcano. We compare these data to those on a suite of recently collected fissure basalts from the Veiðivötn fissure swarm in the south and the new lava north of Dyngjujökull in order to study the geochemical characteristics of the BVS as a whole. The BVS has generated fairly primitive tholeiites (MgO ~6-9 wt.%) throughout the Holocene. Evolved basaltic compositions (MgO ≤6 wt.%) that are often associated with large and mature caldera systems in Iceland (e.g., Krafla and Askja), appear to be notably absent in the BVS within our current sample set (although might still exist in the largely ice-covered Bárðarbunga volcano). Significantly, no highly evolved rocks (dacite, rhyolite) have been associated with the BVS. It is therefore unlikely that a long-lived and relatively shallow (18.40. In contrast, subglacial formations in the Dyngjuháls region, form a single trend with 206Pb/204Pb always melts to the BVS, in different proportions in space and time. However

  3. Las comunidades vegetales del Zacatonal Alpino de los volcanes Popocatépetl y Nevado de Toluca, Región Central de México.

    NARCIS (Netherlands)

    Almeida-Lenero, L.; Gimenez de Azcarate, J.; Cleef, A.M.; Gonzales Trapaga, A.

    2004-01-01

    This study of the zacatonal alpino zone of the volcanoes Popocatepetl (5452 in) and Nevado de Toluca (4690 m) in the central region of the Transmexican Volcanic Belt, is a follow-up of the study of ALMEIDA et al. (1994). This tropical alpine zacatonal represents the potential vegetation of the altit

  4. Central nervous system tuberculosis: MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kioumehr, F.; Dadsetan, M.R.; Rooholamini, S.A.; Au, A.

    1994-02-01

    The MRI findings of 18 proven cases of central nervous system (CNS) tuberculosis were reviewed; 10 patients were seropositive for HIV. All had medical, laboratory, or surgical proof of CNS tuberculosis. Eleven patients had meningitis, of whom two also had arachnoiditis. Five patients had focal intra-axial tuberculomas: four brain masses and one an intramedullary spinal lesion. Two patients had focal extra-axial tuberculomas: one in the pontine cistern, and one in the spine. In all 11 patients with meningitis MRI showed diffuse, thick, meningeal enhancement. All intraparenchymal tuberculomas showed low signal intensity on T2-weighted images and ring or nodular enhancement. The extra-axial tuberculomas had areas isointense or hypointense relative to normal brain and spinal cord on T2-weighted images. Although tuberculous meningitis cannot be differentiated from other meningitides on the basis of MR findings, intraparenchymal tuberculomas show characteristic T2 shortening, not found in most other space-occupying lesions. In the appropriate clinical setting, tuberculoma should be considered. (orig.)

  5. Monitoring volcanic systems through cross-correlation of coincident A-Train satellite data.

    Science.gov (United States)

    Flower, V. J. B.; Carn, S. A.; Wright, R.

    2014-12-01

    The remote location and inaccessibility of many active volcanic systems around the world hinders detailed investigation of their eruptive dynamics. One methodology for monitoring such locations is through the utilisation of multiple satellite datasets to elucidate underlying eruption dynamics and aid volcanic hazard mitigation. Whilst satellite datasets are often analysed individually, here we exploit the multi-platform NASA A-Train satellite constellation, including the Ozone Monitoring Instrument (OMI) on Aura and Moderate Resolution Imaging Spectroradiometer (MODIS) on Aqua. OMI measures volcanic emissions (e.g. sulphur dioxide, ash) whilst MODIS enables monitoring of thermal anomalies (e.g. lava flows, lava lakes, pyroclastic deposits), allowing analysis of a more diverse range of volcanic unrest than is possible using a single measurement technique alone, and permitting cross-correlation between datasets for specific locations to assess cyclic activity. A Multi-taper (MTM) Fast Fourier Transform (FFT) analysis was implemented at an initial sample site (Soufriere Hills volcano [SHV], Montserrat) facilitating cycle identification and subsequent comparison with existing ground-based data. Corresponding cycles at intervals of 8, 12 and ~50 days were identified in both the satellite-based SO2 and thermal infrared signals and ground-based SO2 measurements (Nicholson et al. 2013), validating the methodology. Our analysis confirms the potential for identification of cyclical volcanic activity through synergistic analysis of satellite data, which would be of particular value at poorly monitored volcanic systems. Following our initial test at SHV, further sample sites have been selected in locations with varied eruption dynamics and monitoring capabilities including Ambrym (Vanuatu), Kilauea (Hawaii), Nyiragongo (DR Congo) and Etna (Italy) with the intention of identifying not only cyclic signals that can be attributed to volcanic systems but also those which are

  6. Analysis on the Capacity Building Efforts for Mitigating Volcanic Risks during 2010 Eruption of Mount Merapi, Central Java, Indonesia

    Directory of Open Access Journals (Sweden)

    SARI BAHAGIARTI KUSUMAYUDHA

    2012-12-01

    Full Text Available Mount Merapi is one of the most active volcanoes on the World erupted again during October to November 2010. Its climax activities happened on 5th November at 00.10 pm, with different type of eruption from Mount Merapi of last 50 years. Ordinary, Mount Merapi activity starts from lava dome development, followed by dome collapse to create pyroclastic flow. This specific character of eruption is called Merapi type. The pyroclastic flows at that time killed 341 people and buried many villages on the southeastern slope, while the secondary hazard of lahar destroyed many other human settlements and infrastructures on the western slope of the volcano. Actually, capacity building program in the areas of around Mount Merapi has been established since more than 15 years ago. In most villages, there are community associations that well trained on volcanic hazard mitigation and early warning system. The association name is Association of Mountains Belt of Merapi. Map of Mount Merapi hazards was also already set by the Center of Volcanology and Geologic Disaster Mitigation. Unfortunately, human are not able to order the nature. The character of Mount Merapi eruption in the year 2010 was inconsistent. There was much higher gas pressure, much longer distant of pyroclastic flow, and much greater volume of volcanic material poured from the crater. This made people and stake holders very astonished in handling the evacuation. However, a socio-cultural factor in this respect is that the local people and agriculturists view Mount Merapi as a God which gives them fertile soil and water for agriculture and are reluctant to move away even under an impending threat of a volcanic hazard. This mind-set of people is a challenge in capacity building as the people prefer in-situ protective measures rather than moving away.

  7. The Sanfandila earthquake sequence of 1998, Queretaro, Mexico: activation of an undocumented fault in the northern edge of central Trans-Mexican Volcanic Belt

    Science.gov (United States)

    Zúñiga, F. R.; Pacheco, J. F.; Guzmán-Speziale, M.; Aguirre-Díaz, G. J.; Espíndola, V. H.; Nava, E.

    2003-01-01

    A sequence of small earthquakes occurred in Central Mexico, at the northern edge of the Trans-Mexican Volcanic Belt (TMVB) in the State of Queretaro, during the first 3 months of 1998. Medium to large events in the continental regime of central Mexico are not common, but the seismic history of the region demonstrates that faults there are capable of generating destructive events. The sequence was analyzed using data from a temporary network with the goals of identifying the causative fault and its relation to regional tectonics. Employing a waveform inversion scheme adapted from a method used for regional studies, we found that the source mechanisms conform to the style of faulting (i.e. extension in the E-W direction) representative of the Taxco-San Miguel Allende Fault system. This system has been proposed as the southernmost extension of the Basin and Range (BR) Province. The spatial distribution of hypocenters and source mechanisms indicate that the seismogenic segment was a fault with an azimuth of approximately 334° with almost pure dip slip. Since events which occurred just south from this region show features which are consistent with TMVB tectonics (i.e. extension in an N-S direction), the sequence may mark the boundary between the TMVB and BR stress domains.

  8. Volcanic evolution of central Basse-Terre Island revisited on the basis of new geochronology and geomorphology data

    Science.gov (United States)

    Ricci, J.; Quidelleur, X.; Lahitte, P.

    2015-10-01

    Twenty-six new and seven previous K-Ar ages obtained on groundmass separates for samples from the Axial Chain massif (Guadeloupe, F.W.I.), associated with geomorphological investigations, allow us to propose a new model of the volcanic evolution of the central part of Basse-Terre Island. The Axial Chain is composed of four edifices, Moustique, Matéliane, Capesterre, and Icaque mounts, showing coeval activity from 681 ± 12 to 509 ± 10 ka, which contradicts a previous hypothesis that flank collapse affected them successively. Our geomorphological reconstruction shows that the Axial Chain can be considered as a single large volcano, named the Southern Axial Chain volcano (SCA), rather than a succession of several smaller volcanoes. It raises questions regarding the formation of a large depression within the SCA volcano, prior to the construction of the Sans-Toucher volcano between 451 ± 13 and 412 ± 8 ka. Given presently available evidence, a slump affecting the western part of the SCA volcano is the most probable scenario to reconcile the complete age dataset and the present-day morphology of central Basse-Terre. Finally, our study shows that the SCA volcano had a post-activity volume of 90 km3, implying a construction rate of 0.5 km3/kyr. This value strongly constrains interpretations of magma generation processes throughout the Lesser Antilles arc.

  9. Linking hydropedology and ecosystem services: differential controls of surface field saturated hydraulic conductivity in a volcanic setting in central Mexico

    Directory of Open Access Journals (Sweden)

    A. Gómez-Tagle

    2009-03-01

    Full Text Available In this study the variation of field saturated soil hydraulic conductivity (Kfs as key control variable and descriptor of infiltration was examined by means of a constant head single ring infiltrometer. The study took place in five coverage types and land uses in a volcanic setting in central Mexico. The tested hypothesis was that there exist a positive relationship between plant cover and surface Kfs for the study area. The examined coverage types included; Second growth pine-oak forest, pasture land, fallow land, gully and Cupresus afforestation. Results indicate that Kfs did not depend exclusively of plant cover; it was related to surface horizontal expression of the unburied soil horizons and linked to land use history. Therefore the Kfs measured at a certain location did not depend exclusively of the actual land use, it was also influenced by soil bioturbation linked to plant succession patterns and land use management practices history. The hypothesis accounts partially the variation between sites. Kfs under dense plant cover at the Cupresus afforestation was statistically equal to that measured at the fallow land or the gully sites, while second growth pine-oak forest Kfs figures were over an order of magnitude higher than the rest of the coverage types. The results suggest the relevance of unburied soil horizons in the soil hydrologic response when present at the surface. Under these conditions loosing surface soil horizons due to erosion, not only fertility is lost, but environmental services generation potential. A conceptual model within the hydropedological approach is proposed. It explains the possible controls of Kfs, for this volcanic setting. Land use history driven erosion plays a decisive role in subsurface horizon presence at the surface and soil matrix characteristic determination, while plant succession patterns seem to be strongly linked to soil bioturbation and

  10. Identifying the Volcanic Eruption Depicted in a Neolithic Painting at Çatalhöyük, Central Anatolia, Turkey

    Science.gov (United States)

    Schmitt, Axel K.; Danišík, Martin; Aydar, Erkan; Şen, Erdal; Ulusoy, İnan; Lovera, Oscar M.

    2014-01-01

    A mural excavated at the Neolithic Çatalhöyük site (Central Anatolia, Turkey) has been interpreted as the oldest known map. Dating to ∼6600 BCE, it putatively depicts an explosive summit eruption of the Hasan Dağı twin-peaks volcano located ∼130 km northeast of Çatalhöyük, and a birds-eye view of a town plan in the foreground. This interpretation, however, has remained controversial not least because independent evidence for a contemporaneous explosive volcanic eruption of Hasan Dağı has been lacking. Here, we document the presence of andesitic pumice veneer on the summit of Hasan Dağı, which we dated using (U-Th)/He zircon geochronology. The (U-Th)/He zircon eruption age of 8.97±0.64 ka (or 6960±640 BCE; uncertainties 2σ) overlaps closely with 14C ages for cultural strata at Çatalhöyük, including level VII containing the “map” mural. A second pumice sample from a surficial deposit near the base of Hasan Dağı records an older explosive eruption at 28.9±1.5 ka. U-Th zircon crystallization ages in both samples range from near-eruption to secular equilibrium (>380 ka). Collectively, our results reveal protracted intrusive activity at Hasan Dağı punctuated by explosive venting, and provide the first radiometric ages for a Holocene explosive eruption which was most likely witnessed by humans in the area. Geologic and geochronologic lines of evidence thus support previous interpretations that residents of Çatalhöyük artistically represented an explosive eruption of Hasan Dağı volcano. The magmatic longevity recorded by quasi-continuous zircon crystallization coupled with new evidence for late-Pleistocene and Holocene explosive eruptions implicates Hasan Dağı as a potential volcanic hazard. PMID:24416270

  11. Depositional conditions of the coal-bearing Hirka Formation beneath Late Miocene explosive volcanic products in NW central Anatolia, Turkey

    Indian Academy of Sciences (India)

    Mehmet Şener

    2007-04-01

    This work focuses on the relationship between the coal deposition and explosive volcanism of the Miocene basin, NW central Anatolia, Turkey. The coal-bearing Hirka Formation was deposited over the Galatian Andesitic Complex and/or massive lagoonal environments during the Miocene. The investigated lignite is a high ash (from 32 to 58%) and sulphur (from 1.43 to 3.03%) lignite which is petrographically characterised by a high humunite content. The mineral matter of the studied lignite samples is made up of mainly clay minerals (illite–smectite and kaolinite), plagioclase and quartz in Bolu coal field, clay minerals (illite–smectite, smectite and illite), quartz, calcite, plagioclase and gypsum in Seben coal field, quartz, K-feldspar, plagioclase and clay minerals (kaolinite and illite) in Kıbrıscık, and dolomite, quartz, clinoptilolite, opal CT and gypsum in C¸ amlıdere coal field. The differences in these four types of lignite with specific mineralogical patterns may be due to the explosive volcanic events and depositional conditions which changed from one coal field to the others. There is a zonation from SW to SE in the studied area for zeolites such as Opal CT+smectite-clinoptilolite-analcime-K-feldspar. Carbonate minerals are commonly calcite in Seben and Kıbrıscık coal fields. In Bolu, coal samples are devoid of calcite and dolomite. These analyses show that there is an increase in the amount of Mg and a decrease in the amount of Na from the northwestern part to the southern part in the study area.

  12. Haemangiopericytoma of central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Borg, M.F.; Benjamin, C.S. [Auckland Hospital, Auckland (New Zealand). Dept. of Clinical Oncology

    1995-02-01

    The records of four patients presenting with a histological diagnosis of haemangiopericytoma of the central nervous system, in Auckland, New Zealand, between 1970 and 1990 were reviewed retrospectively, with the aim of determining the natural history of the disease and response to various treatment modalities. Three out of the four patients reviewed presented with primary cerebral disease and the fourth with a primary spinal cord tumour. All three cerebral primary patients were initially treated with local surgical excision. All three patients received radical radiotherapy following local recurrence. The first two patients remained disease-free locally although one patient developed a solitary liver metastasis 5 years after radiotherapy. The third patient was referred with multiple cerebral metastases and failed to respond to radiotherapy. The patient with the primary lesion in the spinal cord was treated with local excision followed by postoperative radiotherapy and remains disease-free 17 years after treatment. One patient failed to respond to chemotherapy, prescribed to treat a local recurrence adjacent to the previous radiotherapy field. This was successfully excised subsequently. The patient presenting with multiple cerebral metastases was the only patient to die of this disease. Results suggest that local recurrence is avoidable with adequate wide excision of the primary tumour followed by local radical radiotherapy. The role of chemotherapy remains controversial and no conclusion could be drawn regarding the role of palliative radiotherapy from this study. Active treatment and long-term follow-up are necessary because of the relative aggressiveness of this disease and the propensity for late relapses. 22 refs., 2 tabs., 6 figs.

  13. About the use of radon in the surveillance of volcanoes from Central America; De l`utilisation du radon dans la surveillance des volcans d`amerique centrale

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, E. [Obviscori, Heridia (Costa Rica); Garcia Vindas, R.; Monnin, M.; Seidel, J.L. [Centre National de la Recherche Scientifique (CNRS), 34 -Montpellier (France). Centre d`Etudes Phytosociologiques et Ecologiques Louis-Emberger; Segovia, N. [ININ, Mexico (Mexico)

    1996-12-31

    Anomalous fluctuations of radon content in soil gases, fumaroles or thermal sources associated with volcanic systems are considered as precursors of deep degassing phenomena. Radon measurements in soil gases were performed for several years on three active volcanoes of Costa-Rica (Arenal, Irazu, Poas), also on El Chichon and Colima volcanoes in Mexico and more recently on the Popocatepetl since its reactivation in December 1994. Data acquisition was initially performed using plastic detectors with a 15 days integration. Since 1993, autonomous automatic probes are used and give hourly measurements. A nine stations network for ground measurements is installed on the Poas since 1982. Radon and Cl{sup -}, F{sup -} and SO{sub 4}{sup 2-} variations of the main crater lake are examined and correlated with the volcanic activity which led to the decay and disappearing of the lake in April 1989. On the Irazu, five stations were installed in 1982 and 3 automatic ones were added in November 1993. Results obtained so far are discussed according to the phreatic eruption of December 1994. The Popocatepetl measurements obtained since December 1994 are presented too. Abstract only. (J.S.).

  14. Pattern of geochemical variations within the volcanic system of Mt Etna, Italy, from 1995 to 2013

    Science.gov (United States)

    Corsaro, Rosa Anna; Falsaperla, Susanna; Langer, Horst

    2016-04-01

    Dynamic and evolution of magma in the plumbing system are key aspects in the evaluation of volcanic hazard. Eruptive phenomena involve indeed processes of magma upraise and storage, which may change in time and space, and mirror in the composition of volcanic products. In this study, we analyze the pattern of geochemical variations at Etna, Italy, from 1995 to 2013. In this time span, volcanic activity affected all the four craters close to the summit of the volcano (located at about 3300 m above the sea level), and fed eruptive fissures along its upper flanks. In addition, a new crater formed and rapidly built up, giving rise to spectacular lava fountains from 2011 on. Based on a dataset containing the geochemical composition of volcanic products collected over 18 years, we explored the application of data mining methods in the framework of the European MEDiterrranean Supersite Volcanoes (MED­-SUV) project. In the present application, we discuss the relationships among the composition of volcanic products sampled from all the afore-mentioned eruptive centers. Our results highlight differences in magma evolution, dynamic and eruptive style even within a single eruptive center.

  15. A multidisciplinary approach to quantify the permeability of the Whakaari/White Island volcanic hydrothermal system (Taupo Volcanic Zone, New Zealand)

    Science.gov (United States)

    Heap, Michael J.; Kennedy, Ben M.; Farquharson, Jamie I.; Ashworth, James; Mayer, Klaus; Letham-Brake, Mark; Reuschlé, Thierry; Gilg, H. Albert; Scheu, Bettina; Lavallée, Yan; Siratovich, Paul; Cole, Jim; Jolly, Arthur D.; Baud, Patrick; Dingwell, Donald B.

    2017-02-01

    Our multidisciplinary study aims to better understand the permeability of active volcanic hydrothermal systems, a vital prerequisite for modelling and understanding their behaviour and evolution. Whakaari/White Island volcano (an active stratovolcano at the north-eastern end of the Taupo Volcanic Zone of New Zealand) hosts a highly reactive hydrothermal system and represents an ideal natural laboratory to undertake such a study. We first gained an appreciation of the different lithologies at Whakaari and (where possible) their lateral and vertical extent through reconnaissance by land, sea, and air. The main crater, filled with tephra deposits, is shielded by a volcanic amphitheatre comprising interbedded lavas, lava breccias, and tuffs. We deployed field techniques to measure the permeability and density/porosity of (1) > 100 hand-sized sample blocks and (2) layered unlithified deposits in eight purpose-dug trenches. Our field measurements were then groundtruthed using traditional laboratory techniques on almost 150 samples. Our measurements highlight that the porosity of the materials at Whakaari varies from ∼ 0.01 to ∼ 0.7 and permeability varies by eight orders of magnitude (from ∼ 10-19 to ∼ 10-11 m2). The wide range in physical and hydraulic properties is the result of the numerous lithologies and their varied microstructures and alteration intensities, as exposed by a combination of macroscopic and microscopic (scanning electron microscopy) observations, quantitative mineralogical studies (X-ray powder diffraction), and mercury porosimetry. An understanding of the spatial distribution of lithology and alteration style/intensity is therefore important to decipher fluid flow within the Whakaari volcanic hydrothermal system. We align our field observations and porosity/permeability measurements to construct a schematic cross section of Whakaari that highlights the salient findings of our study. Taken together, the alteration typical of a volcanic

  16. Geochemical signatures of the diffuse CO2 emission from Brava volcanic system, Cape Verde

    Science.gov (United States)

    Rodriguez, F.; Bandomo, Z.; Barros, I.; Dias Fonseca, J.; Fernandes, P.; Rodrigues, J.; Melian Rodriguez, G.; Padron, E.; Dionis, S.; Sonia, S.; Gonçalves, A.; Fernandes, A.; Hernandez Perez, P. A.; Perez, N.

    2010-12-01

    Brava (67 km2) the smallest of the populated Cape Verde islands, lies at the southwestern end of the archipelagic crescent. Brava volcanic system has no documented historical eruptions, but its youthful volcanic morphology and the fact that earthquake swarms still occur indicate the potential for future eruptions. A geochemical survey of diffuse gas emissions was carried out in Brava island during February and March 2010. For this survey 228 sampling sites were selected all over the island to perform soil CO2 efflux measurements, using a portable accumulation chamber and an IR sensor, and soil temperature measurements at a depth of 30-50 cm. Soil gas samples were collected at 40 cm depth for chemical (He, H2, N2, CO2, CH4, Ar and O2) and isotopic (δ13C-CO2) analysis in 32 selected sampling sites. CO2 efflux values ranged from non-detectable up to 1.343 g m-2 d-1. To quantify the total diffuse CO2 emission from Brava volcanic system, a CO2 efflux map was constructed using sequential Gaussian simulations (sGs). Most of the studied area showed background levels of CO2 efflux (˜2 g m-2 d-1), while peak levels (>1300 g m-2 d-1) were mainly identified at Vinagre and Baleia areas. The total diffuse CO2 output from Brava volcanic system was estimated about 41.6 t d-1. The analysis of the carbon isotopic signature of the CO2 in the soil atmosphere provides an insight for evaluating the origin of the diffuse CO2 emission. Observed δ13C-CO2 values ranged from -20.86 to -1.26 ‰. A binary plot of CO2 concentrations versus δ13C-CO2 values allows us to represent three major geochemical reservoirs (atmospheric air, volcanic gas, and biogenic gas) and their related mixing lines. The chemical and isotopic analysis of Brava soil gas samples suggest a mixing with deep-seated CO2 and biogenic gas for the diffuse CO2 emission from Brava volcanic system. The lack of visible volcanic gas emission in Brava highlights the importance of monitoring diffuse CO2 emission to improve its

  17. Melt extraction in mush zones: The case of crystal-rich enclaves at the Sabatini Volcanic District (central Italy)

    Science.gov (United States)

    Masotta, M.; Mollo, S.; Gaeta, M.; Freda, C.

    2016-04-01

    A peculiar feature of the Sabatini Volcanic District (SVD, central Italy) is the occurrence of crystal-poor pumices and crystal-rich enclaves within the same eruptive host-deposit. The stratigraphic sequence of pumices and enclaves indicates the tapping of a stratified magma chamber, where a crystal-poor phonolitic magma lay on top of a more primitive crystal-rich magma. The crystal-rich enclaves are genetically related to the pumices and record the evolution of a solidification front, in which a more differentiated melt was produced, extracted and eventually erupted. We collected and analyzed crystal-rich enclaves from one of the largest phonolitic eruptions at the SVD and used their petrological and geochemical features to reconstruct magma differentiation and crystal-melt separation in the solidification front. On this basis, three groups of enclaves have been identified: porphyritic enclaves, holocrystalline enclaves and sanidinites. The mineralogical variability faithfully reproduces the spatial and temporal evolution expected of a solidification front, from early-to-intermediate crystallization conditions (porphyritic and holocrystalline type) to the late stage of solidification (sanidinites), in which the percolation of a more differentiated melt through the crystal mush triggered the instability of the solidification front. Results from numerical models indicate that gravitational instability is the most efficient mechanism to explain melt extraction in mush zones of medium-sized (~ 10 km3), short-lived (~ 104 years) magma chambers.

  18. Geology, thermal maturation, and source rock geochemistry in a volcanic covered basin: San Juan sag, south-central Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Gries, R.R. [Priority Oil & Gas, Denver, CO (United States); Clayton, J.L. [Geological Survey, Denver, CO (United States); Leonard, C. [Platte River Associates, Denver, CO (United States)

    1997-07-01

    The San Juan sag, concealed by the vast San Juan volcanic field of south-central Colorado, has only recently benefited from oil and gas wildcat drilling and evaluations. Sound geochemical analyses and maturation modeling are essential elements for successful exploration and development. Oil has been produced in minor quantities from an Oligocene sill in the Mancos Shale within the sag, and major oil and gas production occurs from stratigraphically equivalent rocks in the San Juan basin to the southwest and in the Denver basin to the northeast. The objectives of this study were to identify potential source rocks, assess thermal maturity, and determine hydrocarbon-source bed relationships. Source rocks are present in the San Juan sag in the upper and lower Mancos Shale (including the Niobrara Member), which consists of about 666 m (2184 ft) of marine shale with from 0.5 to 3.1 wt. % organic carbon. Pyrolysis yields (S{sub 1} + S{sub 2} = 2000-6000 ppm) and solvent extraction yields (1000-4000 ppm) indicate that some intervals within the Mancos Shale are good potential source rocks for oil, containing type II organic matter, according to Rock-Eval pyrolysis assay.

  19. Volcanic Lake System at Aso Volcano, Japan: Fluctuations in the Supply of Volcanic Fluid from the Hydrothermal System beneath the Crater Lake (Invited)

    Science.gov (United States)

    Terada, A.; Hashimoto, T.; Kagiyama, T.

    2010-12-01

    Hot crater lakes that develop upon active volcanoes generally overlie the magma-hydrothermal system. At hot crater lakes, most of the thermal energy and mass injected into the lake bottom is trapped in the lake water. It is therefore possible to detect even slight changes in subaqueous geothermal activity. The 1st crater of Nakadake, Aso volcano, Japan, contains a hot crater lake, locally called Yudamari, which is about 200 m in diameter. During a recent calm period, water temperature is around 60-70 °C, and heat discharge from lake surface is approximately constant at 200-300 MW. Historical documents report that Yudamari has repeatedly appeared and disappeared over the past 1,500 years. Changes in water level and temperature suggest that the state of Yudamari is related to volcanic activity, as also reported for Poás in Costa Rica and for Ruapehu in New Zealand. These changes in lake water are probably caused by changes in the input of volcanic fluid to the crater bottom. Therefore, precise observations and analysis of a hot crater lake would reveal the nature of variations in the input of volcanic fluid that originated from the underlying hydrothermal system. However, direct monitoring of the lake water at Yudamari is made difficult by the steep topography and high concentrations of SO2 gas. The recent compilation of a 1-mesh digital surface model (DSM) and installation of a commercial digital camera enabled precise and continuous monitoring of water level with an average accuracy of 10-20 cm. As a result we observed characteristic patterns of change in lake level that show no direct correlation with precipitation, suggesting fluctuations in the supply of volcanic fluid to lake water. To estimate temporal variations in flux and enthalpy from the lake bottom, we developed a numerical model of a hot crater lake applied to the precise observation data for the period from July 2006 to January 2009. The analyses revealed seasonal changes in mass flux (66-132 kg

  20. The influence of volcanic activity in the Campi Flegrei coastal depositional system

    Science.gov (United States)

    Violante, Crescenzo; Esposito, Eliana; Molisso, Flavia; Porfido, Sabina; Sacchi, Marco

    2010-05-01

    The Campi Flegrei coastal area includes the bay of Pozzuoli, Procida and Ischia islands, characterized by active tectonics and volcanism since the Pleistocene. Numerous monogenic volcanoes occur close to the shoreline and volcanic debris interpreted as submarine counterpart of subaerial flows and surges, have been detected offshore. In the Pozzuoli area the most recent eruptive volcanic activity occurred from 10.0 to 8.0 ky B.P and 4.5 to 3.7 ky B.P. followed by the September 1538 Monte Nuovo eruption. Here magma-related activity is testified by extensive hydrothermalism, and recent episodes (1970-71 and 1982-84 on Pozzuoli coast) of shallow seismicity and ground deformation, exceeding rates of 100 cm/year in the years 1983-1984. The most recent volcanic activity on Ischia island starts around 10.0 ky B.P. to which associates several eruptive centres mostly located in the western sector. The last eruption dates back to Arso flow in 1302. Nevertheless the landscape of Ischia is dominated by Mount Epomeo in the central part of the island, which is the highest peak (788 m). It is a volcano-tectonic structure that raised above sea level between 33 and 28 ka BP, due to the intrusion of magma at shallow depth. Procida island is composed of five monogenic Volcanoes (Vivara, Terra Murata, Pozzo Vecchio, Fiumicello and Solchiaro) that have been active over the last 80 ky producing pyroclastic deposits and a lava dome. A sixth volcanic structure has been reported recently off P.ta Serra by marine investigations and confirmed by airborne magnetic surveys. The emplacement of large amount of volcanoclastic material from volcanic and volcano-tectonic activity in the Campi Flegrei coastal area produced extensive avalanche deposits off Ischia island, seafloor instabilities in the form of creep/slump, channelled sediment flow and deep sedimentary fans, and is largely responsible for aggradation/progradation of the coastal area during the Quaternary. Moreover, numerous volcanic bank

  1. Geochronology and geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, China: Implications for the late Palaeozoic tectonic evolution of the south-eastern Central Asian Orogenic Belt

    Science.gov (United States)

    Zhang, Zhicheng; Chen, Yan; Li, Ke; Li, Jianfeng; Yang, Jinfu; Qian, Xiaoyan

    2017-03-01

    Zircon U-Pb ages, geochemical data and Sr-Nd isotopic data are presented for volcanic rocks from the lower Permian Dashizhai Formation. These rocks are widely distributed in the south-eastern Central Asian Orogenic Belt in central Inner Mongolia, China. The volcanic rocks mainly consist of basaltic andesite and rhyolite, subordinate dacite and local andesite, and exhibit bimodal geochemical features. The results of zircon U-Pb dating indicate that the volcanic rocks formed during the early Permian (292-279 Ma). The mafic volcanic rocks belong to low-K tholeiitic to medium-K calc-alkaline series. These mafic volcanic rocks are also characterised by moderately enriched light rare earth element (LREE) patterns; high abundances of Th, U, Zr and Hf; negative Nb, Ta and Ti anomalies; initial 87Sr/86Sr ratios of 0.70514-0.70623; and positive εNd(t) values (+1.9 to +3.8). These features indicate that the mafic volcanic rocks were likely derived from the high-percentage partial melting of subduction-related metasomatised asthenospheric mantle. The felsic rocks show an A-type affinity, with enrichments in alkalis, Th, U and LREEs. The felsic rocks are depleted in Ba, Sr, Nb, Ta and Ti and exhibit moderately LREE-enriched patterns (LaN/YbN = 2.09-6.45) and strongly negative Eu anomalies (Eu/Eu∗ = 0.04-0.25). These features, along with the positive εNd(t) values (+2.6 to +7.7) and young TDM2 ages (TDM2 = 435-916 Ma), indicate that the felsic rocks were likely derived from a juvenile crustal source that mainly consisted of juvenile mid-ocean ridge basalt-related rocks. The volcanic association in this study and in previously published work widely distributed in central Inner Mongolia. The observations in this study suggest that the lower Permian volcanic rocks formed in an identical tectonic environment. The regional geological data indicate that the bimodal volcanic rocks from the lower Permian Dashizhai Formation in the study area formed in an extensional setting that was

  2. Directed Volcanic Blast as a Tragedy of October 26Th, 2010 at Merapi Volcano, Central Java

    Directory of Open Access Journals (Sweden)

    Igan S. Sutawidjaja

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v8i3.163Merapi is an active strato volcano located in Central Java. This volcano is regarded as the most active and most dangerous volcano in Indonesia. Since the twentieth century, the activities have comprised mainly the effusive growth of viscous lava domes and lava tongues, with occasional gravitational collapses of parts of over-steepened domes producing pyroclastic flows, commonly defined as “Merapi-Type”. Since October 2010, however, explosive eruptions of a relatively large size have occurred to VEI 4, and some associated pyroclastic flows were larger and had farther reach than any produced on July 2006. These events may also be regarded as another type of eruptions for Merapi. On October26th, 2010 such event happened, even though it was not caused by pyroclastic flows of the dome collapses, about thirty people were killed including Mbah Marijan, known as the Merapi volcano's spiritual gatekeeper, who was found dead at his home approximately 4 km from the crater. The Yogyakarta Palace subsequently confirmed his death. This time the disaster was caused by a sudden directed blast that took place at 17:02 pm throughout Cangkringan, Kinahrejo Village, at the south flank of Merapi Volcano. The victims were the local people who did not predict the blast threatened their areas, because they believed that the pyroclastic flows from the dome collapses as long as they knew, did not threaten their areas, and pyroclastic flows would flow down following the Boyong River as the closest valley to their village. The blast swept an area about 8 km2, reaching about 5 km in distance, deposited thin ash, and toppled all trees to the south around the Kinahrejo and Pakem areas. The blast that reached Kinahrejo Village seemed to have moderate temperatures, because all trees facing the crater were not burnt. However, the victims were affected by dehydration and blanketed by fine ash.

  3. [Functional anatomy of the central nervous system].

    Science.gov (United States)

    Krainik, A; Feydy, A; Colombani, J M; Hélias, A; Menu, Y

    2003-03-01

    The central nervous system (CNS) has a particular regional functional anatomy. The morphological support of cognitive functions can now be depicted using functional imaging. Lesions of the central nervous system may be responsible of specific symptoms based on their location. Current neuroimaging techniques are able to show and locate precisely macroscopic lesions. Therefore, the knowledge of functional anatomy of the central nervous system is useful to link clinical disorders to symptomatic lesions. Using radio-clinical cases, we present the functional neuro-anatomy related to common cognitive impairments.

  4. Ecological characteristics and management of geothermal systems of the Taupo Volcanic Zone, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Boothroyd, Ian K.G. [Golder Associates Ltd., P.O. Box 33849, Takapuna, and School of Geography, Geology and Environmental Science, University of Auckland, Private Bag 92019, Auckland (New Zealand)

    2009-03-15

    New Zealand has an array of geothermal systems with distinctive ecological features, with many occurring in the Taupo Volcanic Zone in the Central North Island. Associated with these geothermal features are characteristic geophysical and geochemical components, and distinctive terrestrial and aquatic ecosystems with many attributes that are common across a range of the biotic groups. Zonation amongst vegetation communities is closely related to soil temperature and these associations generally occur in a predictable sequence along the soil temperature gradient. Similarly, clear distinctions in aquatic flora and fauna occur longitudinally downstream from the source of thermal springs and vertically on geyser mounds. The characteristic vegetation communities associated with geothermal fields and the invertebrate and algal communities found in geothermally influenced springs and streams are described, in particular the features of the Wairakei geothermal field. At this field four plant associations are recognized (non-vegetated soilfield, prostrate kanuka shrubland, prostrate kanuka scrub, mixed fernland), but all the major aquatic macroinvertebrate groups are represented and commonly found in natural freshwaters throughout New Zealand. The current management of geothermal ecosystems is reviewed with particular reference to the Waikato region of New Zealand. Management of geothermal resources in New Zealand aims to balance development with the protection of highly valued surface features via a series of regional policies, rules and regulations. Geothermal habitats, ecological gradients, and at-risk geothermal plants are included in the definition of geothermal systems for management purposes. With the recognition of the unique ecological diversity and function of geothermal ecosystems, knowledge and understanding of their ecological characteristics will be critical to the ability to utilize and sustain geothermal resources into the future. (author)

  5. Middle Jurassic Topawa group, Baboquivari Mountains, south-central Arizona: Volcanic and sedimentary record of deep basins within the Jurassic magmatic arc

    Science.gov (United States)

    Haxel, G.B.; Wright, J.E.; Riggs, N.R.; Tosdal, R.M.; May, D.J.

    2005-01-01

    Among supracrustal sequences of the Jurassic magmatic arc of the southwestern Cordillera, the Middle Jurassic Topawa Group, Baboquivari Mountains, south-central Arizona, is remarkable for its lithologic diversity and substantial stratigraphic thickness, ???8 km. The Topawa Group comprises four units (in order of decreasing age): (1) Ali Molina Formation-largely pyroclastic rhyolite with interlayered eolian and fluvial arenite, and overlying conglomerate and sandstone; (2) Pitoikam Formation-conglomerate, sedimentary breccia, and sandstone overlain by interbedded silt- stone and sandstone; (3) Mulberry Wash Formation-rhyolite lava flows, flow breccias, and mass-flow breccias, with intercalated intraformational conglomerate, sedimentary breccia, and sandstone, plus sparse within-plate alkali basalt and comendite in the upper part; and (4) Tinaja Spring Porphyry-intrusive rhyolite. The Mulberry Wash alkali basalt and comendite are genetically unrelated to the dominant calcalkaline rhyolite. U-Pb isotopic analyses of zircon from volcanic and intrusive rocks indicate the Topawa Group, despite its considerable thickness, represents only several million years of Middle Jurassic time, between approximately 170 and 165 Ma. Sedimentary rocks of the Topawa Group record mixing of detritus from a minimum of three sources: a dominant local source of porphyritic silicic volcanic and subvolcanic rocks, identical or similar to those of the Topawa Group itself; Meso- proterozoic or Cambrian conglomerates in central or southeast Arizona, which contributed well-rounded, highly durable, polycyclic quartzite pebbles; and eolian sand fields, related to Middle Jurassic ergs that lay to the north of the magmatic arc and are now preserved on the Colorado Plateau. As the Topawa Group evidently represents only a relatively short interval of time, it does not record long-term evolution of the Jurassic magmatic arc, but rather represents a Middle Jurassic "stratigraphic snapshot" of the arc

  6. Topaz magmatic crystallization in rhyolites of the Central Andes (Chivinar volcanic complex, NW Argentina): Constraints from texture, mineralogy and rock chemistry

    Science.gov (United States)

    Gioncada, Anna; Orlandi, Paolo; Vezzoli, Luigina; Omarini, Ricardo H.; Mazzuoli, Roberto; Lopez-Azarevich, Vanina; Sureda, Ricardo; Azarevich, Miguel; Acocella, Valerio; Ruch, Joel

    2014-01-01

    Topaz-bearing rhyolite lavas were erupted as domes and cryptodomes during the early history of the Late Miocene Chivinar volcano, in Central Andes. These are the only topaz rhyolite lavas recognized in Central Andes. Textural, mineralogical and geochemical data on the Chivinar rhyolites suggest that topaz crystallized from strongly residual, fluorine-rich, peraluminous silicate melts of topazite composition before the complete solidification of the lava domes. Crystallization of the rhyolitic magma began with sodic plagioclase and alkali feldspar phenocrysts in the magma chamber, followed by groundmass quartz + alkali feldspar + minor sodic plagioclase during dome emplacement, and terminated with quartz + topaz + vapour bubbles forming small scattered miaroles. Fluorine partitioning into the fluid phase occurred only in the final stage of groundmass crystallization. The magmatic origin of topaz indicates the presence of a fluorine-rich highly differentiated magma in the early history of the Chivinar volcano and suggests the possibility of rare metals mineralizations related to the cooling and solidification of a silicic magma chamber. A late fluid circulation phase, pre-dating the andesitic phase of the Chivinar volcano, affected part of the topaz rhyolite lavas. The presence of Nb, Ta and Mn minerals as primary accessories in the rhyolites and as secondary minerals in veins suggests a connection of the fluid circulation phase with the silicic magmatic system. Although at the edge of the active volcanic arc, the Chivinar topaz rhyolites are in correspondence of the transtensive Calama-Olacapato-El Toro fault system, suggesting preferred extensional conditions for the formation of magmatic topaz in convergent settings, consistently with evidence from other known cases worldwide.

  7. Childhood Central Nervous System Embryonal Tumors Treatment

    Science.gov (United States)

    ... Cord Tumors Treatment Childhood Astrocytomas Treatment Childhood Brain Stem Glioma ... Central nervous system (CNS) embryonal tumors may begin in embryonic (fetal) cells that remain in the brain after birth. ...

  8. NCPC Central Files Information System (CFIS)

    Data.gov (United States)

    National Capital Planning Commission — This dataset contains records from NCPC's Central Files Information System (CFIS), which is a comprehensive database of projects submitted to NCPC for design review...

  9. Miniaturized Airborne Imaging Central Server System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a miniaturized airborne imaging central server system (MAICSS). MAICSS is designed as a high-performance-computer-based electronic backend that...

  10. Miniaturized Airborne Imaging Central Server System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a miniaturized airborne imaging central server system (MAICSS). MAICSS is designed as a high-performance computer-based electronic backend that...

  11. Database compilation for the geologic map of the San Francisco volcanic field, north-central Arizona

    Science.gov (United States)

    Bard, Joseph A.; Ramsey, David W.; Wolfe, Edward W.; Ulrich, George E.; Newhall, Christopher G.; Moore, Richard B.; Bailey, Norman G.; Holm, Richard F.

    2016-01-08

    The main component of this publication is a geologic map database prepared using geographic information system (GIS) applications. The geodatabase of geologic points, lines, and polygons was produced as a compilation from five adjoining map sections originally published as printed maps in 1987 (see references in metadata). Four of the sections (U.S. Geological Survey Miscellaneous Field Studies Maps MF–1957, MF–1958, MF–1959, MF–1960) were created by scanning and geo-referencing stable base map material consisting of mylar positives. The final section (MF–1956) was compiled by hand tracing an enlargement of the available printed paper base map onto mylar using a #00 rapidograph pen, the mylar positive was then digitally scanned and geo-referenced. This method was chosen because the original basemap materials (mylar positives) for the MF–1956 section were unavailable at the time of this publication. Due to the condition of the available MF–1956 map section used as the base (which had previously been folded) the accuracy within the boundary of the MF–1956 section is presumed to be degraded in certain areas. The locations of the degraded areas and the degree of degradation within these areas is unclear. Final compilation of the database was completed using the ArcScan toolset, and the Editor toolset in ESRI ArcMap 10.1. Polygon topology was created from the lines and labels were added to the resultant geological polygons, lines, and points. Joseph A. Bard and David W. Ramsey updated and corrected the geodatabase, created the metadata and web presence, and provided the GIS-expertise to bring the geodatabase and metadata to completion. Included are links to files to view or print the original map sheets and the accompanying pamphlets.

  12. Central nervous system and computation.

    Science.gov (United States)

    Guidolin, Diego; Albertin, Giovanna; Guescini, Michele; Fuxe, Kjell; Agnati, Luigi F

    2011-12-01

    Computational systems are useful in neuroscience in many ways. For instance, they may be used to construct maps of brain structure and activation, or to describe brain processes mathematically. Furthermore, they inspired a powerful theory of brain function, in which the brain is viewed as a system characterized by intrinsic computational activities or as a "computational information processor. "Although many neuroscientists believe that neural systems really perform computations, some are more cautious about computationalism or reject it. Thus, does the brain really compute? Answering this question requires getting clear on a definition of computation that is able to draw a line between physical systems that compute and systems that do not, so that we can discern on which side of the line the brain (or parts of it) could fall. In order to shed some light on the role of computational processes in brain function, available neurobiological data will be summarized from the standpoint of a recently proposed taxonomy of notions of computation, with the aim of identifying which brain processes can be considered computational. The emerging picture shows the brain as a very peculiar system, in which genuine computational features act in concert with noncomputational dynamical processes, leading to continuous self-organization and remodeling under the action of external stimuli from the environment and from the rest of the organism.

  13. The origin of groundwater arsenic and fluorine in a volcanic sedimentary basin in central Mexico: a hydrochemistry hypothesis

    Science.gov (United States)

    Morales-Arredondo, Iván; Rodríguez, Ramiro; Armienta, Maria Aurora; Villanueva-Estrada, Ruth Esther

    2016-06-01

    A groundwater sampling campaign was carried out in the summer of 2013 in a low-temperature geothermal system located in Juventino Rosas (JR) municipality, Guanajuato State, Mexico. This groundwater presents high concentrations of As and F- and high Rn counts, mainly in wells with relatively higher temperature. The chemistry of major elements was interpreted with different methods, like Piper and D'Amore diagrams. These diagrams allowed for classification of four groundwater types located in three hydrogeological environments. The aquifers are hosted mainly in alluvial-lacustrine sediments and volcanic rocks in interaction with fault and fracture systems. The subsidence, faults and fractures observed in the study area can act as preferential channels for recharge and also for the transport of deep fluids to the surface, especially in the basin plain. The formation of a piezometric dome and the observed hydrochemical behavior of groundwater suggest a possible origin of the As and F-. Geochemical processes occurring during water-rock interaction are related to high concentrations of As and F-. High temperatures and alteration processes (like rock weathering) induce dissolution of As and F--bearing minerals, increasing the content of these elements in groundwater.

  14. Computerized Systems: Centralized or Decentralized?

    Science.gov (United States)

    Seitz, Linda Ludington

    1985-01-01

    Computerized management information systems have long been used in business, and data integration and sophisticated programing now enable many businesses to decentralize their information operations. This approach has advantages and disadvantages that colleges and universities must weigh and plan for carefully. (MSE)

  15. Central nervous system involvement in diabetic neuropathy.

    Science.gov (United States)

    Selvarajah, Dinesh; Wilkinson, Iain D; Davies, Jennifer; Gandhi, Rajiv; Tesfaye, Solomon

    2011-08-01

    Diabetic neuropathy is a chronic and often disabling condition that affects a significant number of individuals with diabetes. Long considered a disease of the peripheral nervous system, there is now increasing evidence of central nervous system involvement. Recent advances in neuroimaging methods detailed in this review have led to a better understanding and refinement of how diabetic neuropathy affects the central nervous system. Recognition that diabetic neuropathy is, in part, a disease that affects the whole nervous system is resulting in a critical rethinking of this disorder, opening a new direction for further research.

  16. USGS Volcanic Activity Alert-Notification System Description

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Website provides plain-English description of the alert notification system that the USGS has adopted nationwide for characterizing the level of unrest and eruptive...

  17. Central histaminergic system and cognition.

    Science.gov (United States)

    Passani, M B; Bacciottini, L; Mannaioni, P F; Blandina, P

    2000-01-01

    The neurotransmitter histamine is contained within neurons clustered in the tuberomammillary nuclei of the hypothalamus. These cells give rise to widespread projections extending through the basal forebrain to the cerebral cortex, as well as to the thalamus and pontomesencephalic tegmentum. These morphological features suggest that the histaminergic system acts as a regulatory center for whole-brain activity. Indeed, this amine is involved in the regulation of numerous physiological functions and behaviors, including learning and memory, as indicated by extensive research reviewed in this paper. Histamine effects on cognition might be explained by the modulation of the cholinergic system. However, interactions of histamine with any transmitter system, and/or a putative intrinsic procognitive role cannot be excluded. Furthermore, although experimental evidence indicates that attention-deficit hyperactivity disorder symptoms arise from impaired dopaminergic and noradrenergic transmission, recent research suggests that histamine is also involved. The possible relevance of histamine in disorders such as age-related memory deficits, Alzheimer's disease and attention-deficit hyperactivity disorder is worth of consideration, and awaits validation with clinical trials that will prove the beneficial effects of histaminergic drugs in the treatment of these diseases.

  18. UQ -- Fast Surrogates Key to New Methodologies in an Operational and Research Volcanic Hazard Forecasting System

    Science.gov (United States)

    Hughes, C. G.; Stefanescu, R. E. R.; Patra, A. K.; Bursik, M. I.; Madankan, R.; Pouget, S.; Jones, M.; Singla, P.; Singh, T.; Pitman, E. B.; Morton, D.; Webley, P.

    2014-12-01

    As the decision to construct a hazard map is frequently precipitated by the sudden initiation of activity at a volcano that was previously considered dormant, timely completion of the map is imperative. This prohibits the calculation of probabilities through direct sampling of a numerical ash-transport and dispersion model. In developing a probabilistic forecast for ash cloud locations following an explosive volcanic eruption, we construct a number of possible meta-models (a model of the simulator) to act as fast surrogates for the time-expensive model. We will illustrate the new fast surrogates based on both polynomial chaos and multilevel sparse representations that have allowed us to conduct the Uncertainty Quantification (UQ) in a timely fashion. These surrogates allow orders of magnitude improvement in cost associated with UQ, and are likely to have a major impact in many related domains.This work will be part of an operational and research volcanic forecasting system (see the Webley et al companion presentation) moving towards using ensembles of eruption source parameters and Numerical Weather Predictions (NWPs), rather than single deterministic forecasts, to drive the ash cloud forecasting systems. This involves using an Ensemble Prediction System (EPS) as input to an ash transport and dispersion model, such as PUFF, to produce ash cloud predictions, which will be supported by a Decision Support System. Simulation ensembles with different input volcanic source parameters are intelligently chosen to predict the average and higher-order moments of the output correctly.

  19. Probabilities of future VEI ≥ 2 eruptions at the Central American Volcanic Arc: a statistical perspective based on the past centuries' eruption record

    Science.gov (United States)

    Dzierma, Yvonne; Wehrmann, Heidi

    2014-10-01

    A probabilistic eruption forecast is provided for seven historically active volcanoes along the Central American Volcanic Arc (CAVA), as a pivotal empirical contribution to multi-disciplinary volcanic hazards assessment. The eruption probabilities are determined with a Kaplan-Meier estimator of survival functions, and parametric time series models are applied to describe the historical eruption records. Aside from the volcanoes that are currently in a state of eruptive activity (Santa María, Fuego, and Arenal), the highest probabilities for eruptions of VEI ≥ 2 occur at Concepción and Cerro Negro in Nicaragua, which are likely to erupt to 70-85 % within the next 10 years. Poás and Irazú in Costa Rica show a medium to high eruption probability, followed by San Miguel (El Salvador), Rincón de la Vieja (Costa Rica), and Izalco (El Salvador; 24 % within the next 10 years).

  20. Petrogenesis of Volcanic Rocks in the Khabr-Marvast Tectonized Ophiolite: Evidence for Subduction Processes in the South-Western Margin of Central Iranian Microcontinent

    Institute of Scientific and Technical Information of China (English)

    Azam SOLTANMOHAMMADI; Mohammad RAHGOSHAY; Morteza KHALATBARI-JAFARI

    2009-01-01

    The Late Cretaceous Khabr-Marvast tectonized ophiolite is located in the middle part of the Nain-Baft ophiolite belt, at the south-western edge of the central Iranian microcontinent. Although all the volcanic rocks in the study area indicate subduction-related magmatism (e.g. high LILE (large ion lithophile elements)/ HFSE (high field strenght elements) ratios and negative anomalies in Nb and Ta), geological and geochemical data clearly distinguish two distinct groups of volcanic rocks in the tectonized association: (1) group 1 is comprised of hyaloclustic breccias, basaltic pillow iavas, and andesite sheet flows. These rocks represent the Nain-Baft oceanic crust; and (2) group 2 is alkaline iavas from the top section of the ophiolite suite. These lavas show shoshonite affinity, but do not support the propensity of ophiolite.

  1. Volcanic hazard assessment in monogenetic volcanic fields

    OpenAIRE

    Bartolini, Stefania

    2014-01-01

    [eng] One of the most important tasks of modern volcanology, which represents a significant socio-economic implication, is to conduct hazard assessment in active volcanic systems. These volcanological studies are aimed at hazard that allows to constructing hazard maps and simulating different eruptive scenarios, and are mainly addressed to contribute to territorial planning, definition of emergency plans or managing volcanic crisis. The impact of a natural event, as a volcanic eruption, can s...

  2. MRI of central nervous system anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Izawa, M.; Oikawa, A.; Matoba, A.

    1987-05-01

    MRI was very useful in the evaluation of congenital anomalies of central nervous system as well as other nervous system disease with three-dimensional spatial resolution. We had experienced MRI of central nervous system anomalies, demonstrated characterisitic findings in each anomaly. MRI is useful to observe the coronal, horizontal and sagittal images of the brain and spinal cord in order to discuss the etiological mechanisms of spinal dysraphysm and its associated anomalies. In case of spina bifida cystica MRI was available to decide operative indication for radical operation and tetherd cord developed from postoperative scar or accompanied intraspinal lesions.

  3. Central nervous system complications after liver transplantation.

    Science.gov (United States)

    Kim, Jeong-Min; Jung, Keun-Hwa; Lee, Soon-Tae; Chu, Kon; Roh, Jae-Kyu

    2015-08-01

    We investigated the diversity of central nervous system complications after liver transplantation in terms of clinical manifestations and temporal course. Liver transplantation is a lifesaving option for end stage liver disease patients but post-transplantation neurologic complications can hamper recovery. Between 1 January 2001 and 31 December 2010, patients who had undergone liver transplantation at a single tertiary university hospital were included. We reviewed their medical records and brain imaging data and classified central nervous system complications into four categories including vascular, metabolic, infectious and neoplastic. The onset of central nervous system complications was grouped into five post-transplantation intervals including acute (within 1 month), early subacute (1-3 months), late subacute (3-12 months), chronic (1-3 years), and long-term (after 3 years). During follow-up, 65 of 791 patients (8.2%) experienced central nervous system complications, with 30 occurring within 1 month after transplantation. Vascular etiology was the most common (27 patients; 41.5%), followed by metabolic (23; 35.4%), infectious (nine patients; 13.8%), and neoplastic (six patients). Metabolic encephalopathy with altered consciousness was the most common etiology during the acute period, followed by vascular disorders. An initial focal neurologic deficit was detected in vascular and neoplastic complications, whereas metabolic and infectious etiologies presented with non-focal symptoms. Our study shows that the etiology of central nervous system complications after liver transplantation changes over time, and initial symptoms can help to predict etiology.

  4. Stochastic modelling of central heating systems

    DEFF Research Database (Denmark)

    Hansen, Lars Henrik

    1997-01-01

    and the degree Erhvervsforsker (a special Danish degree, equivalent to ``Industrial Ph.D.''). The thesis is mainly concerned with experimental design and system identification for individual components in water based central heating systems. The main contribution to this field is on the nonlinear dynamic...

  5. The quantum human central neural system.

    Science.gov (United States)

    Alexiou, Athanasios; Rekkas, John

    2015-01-01

    In this chapter we present Excess Entropy Production for human aging system as the sum of their respective subsystems and electrophysiological status. Additionally, we support the hypothesis of human brain and central neural system quantumness and we strongly suggest the theoretical and philosophical status of human brain as one of the unknown natural Dirac magnetic monopoles placed in the center of a Riemann sphere.

  6. Interferons in the central nervous system

    DEFF Research Database (Denmark)

    Owens, Trevor; Khorooshi, Reza M. H.; Wlodarczyk, Agnieszka

    2014-01-01

    Interferons (IFNs) are implicated as an important component of the innate immune system influencing viral infections, inflammation, and immune surveillance. We review here the complex biological activity of IFNs in the central nervous system (CNS) and associated glial–immune interactions...

  7. Neotectonic development of the El Salvador Fault Zone and implications for deformation in the Central America Volcanic Arc: Insights from 4-D analog modeling experiments

    Science.gov (United States)

    Alonso-Henar, Jorge; Schreurs, Guido; Martinez-Díaz, José Jesús; Álvarez-Gómez, José Antonio; Villamor, Pilar

    2015-01-01

    The El Salvador Fault Zone (ESFZ) is an active, approximately 150 km long and 20 km wide, segmented, dextral strike-slip fault zone within the Central American Volcanic Arc striking N100°E. Although several studies have investigated the surface expression of the ESFZ, little is known about its structure at depth and its kinematic evolution. Structural field data and mapping suggest a phase of extension, at some stage during the evolution of the ESFZ. This phase would explain dip-slip movements on structures that are currently associated with the active, dominantly strike slip and that do not fit with the current tectonic regime. Field observations suggest trenchward migration of the arc. Such an extension and trenchward migration of the volcanic arc could be related to slab rollback of the Cocos plate beneath the Chortis Block during the Miocene/Pliocene. We carried out 4-D analog model experiments to test whether an early phase of extension is required to form the present-day fault pattern in the ESFZ. Our experiments suggest that a two-phase tectonic evolution best explains the ESFZ: an early pure extensional phase linked to a segmented volcanic arc is necessary to form the main structures. This extensional phase is followed by a strike-slip dominated regime, which results in intersegment areas with local transtension and segments with almost pure strike-slip motion. The results of our experiments combined with field data along the Central American Volcanic Arc indicate that the slab rollback intensity beneath the Chortis Block is greater in Nicaragua and decreases westward to Guatemala.

  8. Origin and age of the Volcanic Rocks of Tláloc Volcano, Sierra Nevada, Central Mexico

    Science.gov (United States)

    Meier, M.; Grobéty, B.; Arce, J. L.; Rueda, H.

    2007-05-01

    The Tláloc volcano (TV) is a 4125 m high stratovolcano of the Trans Mexican Volcanic Belt (TMVB) and is located in the northern end of the N-S trending Sierra Nevada, 30 km NE of Mexico City. Few data on the petrological and temporal evolution of TV have been published to date. Recently dated deposits gave ages between 32'000 and 34'500±500 years BP (Huddart and Gonzalez, 2004). Mapping and sampling of extrusive rocks in the summit region of TV revealed a dome structure with radiating lava flows consisting of dacitic rocks containing plagioclase and hornblende phenocrysts. Some flows, however, seem to be associated with a collapse structure E of the main summit. Crossing relationships indicate that this structure is older (“Paleo Tláloc”). A stratigraphy of the pyroclastic deposits was established along the northern slope of TV. From the numerous pyroclastic flows, separated by paleosoils and fluviatile deposits, only two pumice and one block and ash flow (BAF) have regional extent. Their thickness - distance relationship and their granulometry point to major explosive events. A carbonized wood sample from the BAF deposit gave ages similar to the previous ages (33'180±550 yr BP and 23'170±270 yr BP), a sample from a pyroclastic flow gave even a younger age (16'620±110 yr BP), suggesting that TV remained active also after the volcanoes Iztaccíhuatl and Popocatépetl further to the South started their activity. Based on these preliminary data it may be necessary to reconsider the accepted scenario of the temporal evolution of the central section of the TMVB, which assumes that the activity migrates from North to South with time. Huddart, D. and Gonzalez, S., 2004. Pyroclastic flows and associated sediments, Tláloc-Telapón, piedmont fringe of the eastern basin of Mexico. In: G.J. Aguirre-Diaz, Macías, J.L., and Siebe, C., (Editor), Penrose Conference. UNAM, Metepec, Puebla, Mexico, pp. 35.

  9. Tracking a closing volcanic system using repeating earthquakes

    Science.gov (United States)

    Buurman, H.; West, M. E.; Grapenthin, R.

    2011-12-01

    Repeating, volcano-tectonic (VT) earthquakes were recorded at the end of the explosive phase of the 2009 eruption of Redoubt Volcano, Alaska. The events cluster into several families which exhibit cross-correlation values greater than 0.8 and are distributed between 0-10 km below the edifice. The earthquake magnitudes decline gradually with time, and the events also appear to shallow as the sequence progresses. This activity continued for over 2 months and accompanied steady dome growth, which halted around the same time that the last of the repeating VTs were recorded. The repetitive nature of these earthquakes, their relatively deep locations and their occurrence following 3 weeks of major explosive eruptions suggest that they are related to changes around the conduit system and/or the magma storage area as the last of the magma was removed from the mid-crustal storage area. Geodetic data indicate that the deflation of the edifice, which had been continuous throughout the explosive activity, ceased coincident with the onset of the repeating VT earthquakes. We use evidence from earthquake relocations and earthquake focal mechanisms to investigate the source for the repeating VT earthquakes. We propose a model in which the repeating earthquakes are closely related to the adjustment of the conduit system and mid crustal storage area in response to the last of the ascending magma.

  10. Hydrogels for central nervous system therapeutic strategies.

    Science.gov (United States)

    Russo, Teresa; Tunesi, Marta; Giordano, Carmen; Gloria, Antonio; Ambrosio, Luigi

    2015-12-01

    The central nervous system shows a limited regenerative capacity, and injuries or diseases, such as those in the spinal, brain and retina, are a great problem since current therapies seem to be unable to achieve good results in terms of significant functional recovery. Different promising therapies have been suggested, the aim being to restore at least some of the lost functions. The current review deals with the use of hydrogels in developing advanced devices for central nervous system therapeutic strategies. Several approaches, involving cell-based therapy, delivery of bioactive molecules and nanoparticle-based drug delivery, will be first reviewed. Finally, some examples of injectable hydrogels for the delivery of bioactive molecules in central nervous system will be reported, and the key features as well as the basic principles in designing multifunctional devices will be described.

  11. Central functions of the orexinergic system

    Institute of Scientific and Technical Information of China (English)

    Xiao-Yang Zhang; Lei Yu; Qian-Xing Zhuang; Jing-Ning Zhu; Jian-Jun Wang

    2013-01-01

    The neuropeptide orexin is synthesized by neurons exclusively located in the hypothalamus.However,these neurons send axons over virtually the entire brain and spinal cord and therefore constitute a unique central orexinergic system.It is well known that central orexin plays a crucial role in the regulation of various basic non-somatic and somatic physiological functions,including feeding,energy homeostasis,the sleep/wake cycle,reward,addiction,and neuroendocrine,as well as motor control.Moreover,the absence of orexin results in narcolepsy-cataplexy,a simultaneous somatic and non-somatic dysfunction.In this review,we summarize these central functions of the orexinergic system and associated diseases,and suggest that this system may hold a key position in somatic-non-somatic integration.

  12. New age constraints on the timing of volcanism in central Afar, in the presence of propagating rifts

    Science.gov (United States)

    Lahitte, Pierre; Gillot, Pierre-Yves; Kidane, Tesfaye; Courtillot, Vincent; Bekele, Abebe

    2003-02-01

    We investigate the relationship between rift propagation and volcanism in the Afar Depression in the last 4 Myr. Potassium-argon and thermoluminescence dating allow detailed reconstruction of the temporal evolution of volcanism. Volcanic activity is almost continuous since 3.5 Ma, with intervals characterized by more intense activity, especially around 2 Ma. Spatial distribution of ages reveals that Stratoid Series volcanism migrated northward along a 200-km trend between 3 and 1 Ma, at about 10 cm/yr, linked to northward propagation of the Gulf of Aden Ridge, after it had cut across the Danakil horst at 4 Ma. Our work underlines the role of rhyolitic volcanism in initiation of rifting. Acid volcanoes, initially formed near the axes of extensional zones, have been subsequently dissected and are presently located on both sides of active rift segments. These lavas were the first to be erupted in areas of low extensional strain and were followed by basaltic lavas as extension increased. Differentiated volcanoes acted as zones of local weakness and guided localization of fractures, then leading to fissural magmatism. This regional-scale, composite style of rifting, including volcanic and tectonic components, can be compared to the large-scale continental breakup process itself. Deformation occurs through propagation of faults and fissures under a regional stress field. These become localized because of weakening of the crust (or lithosphere) due to emplacement of magmas, under the influence of a plume in the large-scale case, or of silicic centers linked to magma chambers in the regional-scale case.

  13. Shallow sub-surface structure of the central volcanic complex of Tenerife, Canary Islands: implications for the evolution and the recent reactivation of the Las Canadas caldera

    Energy Technology Data Exchange (ETDEWEB)

    Gottsmann, J [Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ (United Kingdom); Camacho, A G; Fernandez, J [Instituto de Astronomia y Geodesia (CSIC-UCM), Ciudad Universitaria, Pza. de Ciencias, 3, 28040 Madrid (Spain); MartI, J [Institute of Earth Sciences ' Jaume Almera' , CSIC, Lluis Sole SabarIs s/n, Barcelona 08028 (Spain); Wooller, L; Rymer, H [Department of Earth and Environmental Sciences, Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); GarcIa, A [Department of Volcanology, Museo Nacional de Ciencias Naturales, CSIC, C/ Jose Gutierrez Abascal, 2, 28006 Madrid (Spain)], E-mail: j.gottsmann@bristol.ac.uk

    2008-10-01

    We present a new local Bouguer anomaly map of the Central Volcanic Complex (CVC) of Tenerife, Spain. The high-density core of the CVC and the pronounced gravity low centred in the Las Canadas caldera (LCC) in greater detail than previously available. Mathematical construction of a subsurface model from the local anomaly data, employing a 3-D inversion enables mapping of the shallow structure beneath the complex, giving unprecedented insights into the sub-surface architecture of the complex, and shedding light on its evolution.

  14. Nature, source and composition of volcanic ash in sediments from a fracture zone trace of Rodriguez Triple Junction in the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Mascarenhas-Pereira, M.B.L.; Nath, B.N.; Borole, D.V.; Gupta, S.M.

    during the late Pleistocene. Introduction Tephra layers in marine sediments provide a high-resolution and temporally precise record of volcanic activity (Paterne et al., 1988; Arculus and Bloomfield, 1992; Bednarz and Schmincke, 1994). Submarine... of terrgenous influence in deep-sea sediments upto 8 oS in the Central Indian basin. Mar. Geol. 87, 301-313. Paterne, M., Guichard, F., Labeyrie, J., 1988. Explosive activity of the south Italian volcanoes during the past 80,000 years as determined by marine...

  15. Melting of a subduction-modified mantle source: A case study from the Archean Marda Volcanic Complex, central Yilgarn Craton, Western Australia

    Science.gov (United States)

    Morris, P. A.; Kirkland, C. L.

    2014-03-01

    Subduction processes on early earth are controversial, with some suggestions that tectonics did not operate until the earth cooled to a sufficient point around the Archean-Proterozoic boundary. One way of addressing this issue is to examine well-preserved successions of Archean supracrustal rocks. Here we discuss petrography, whole-rock chemical and isotopic data combined with zircon Hf isotopes from andesites, high-magnesium andesites (HMA), dacites, high-magnesium dacites (HMD), rhyolites and coeval felsic intrusive rocks of the c. 2730 Ma Marda Volcanic Complex (MVC) in the central Yilgarn Craton of Western Australia. We demonstrate that these rocks result from melting of a metasomatized mantle source, followed by fractional crystallization in a crustal magma chamber. Contamination of komatiite by Archean crust, to produce the Marda Volcanic Complex andesites, is not feasible, as most of these crustal sources are too radiogenic to act as viable contaminants. The ɛNd(2730) of MVC andesites can be produced by mixing 10% Narryer semi-pelite with komatiite, consistent with modelling using Hf isotopes, but to achieve the required trace element concentrations, the mixture needs to be melted by about 25%. The most likely scenario is the modification of a mantle wedge above a subducting plate, coeval with partial melting, producing volcanic rocks with subduction signatures and variable Mg, Cr and Ni contents. Subsequent fractionation of cognate phases can account for the chemistry of dacites and rhyolites.

  16. Relationship between volcanism and marine sedimentation in northern Austral (Aisén) Basin, central Patagonia: Stratigraphic, U-Pb SHRIMP and paleontologic evidence

    Science.gov (United States)

    Suárez, M.; De La Cruz, R.; Aguirre-Urreta, B.; Fanning, M.

    2009-04-01

    The northernmost part of the oil-producing Austral Basin, known as Aisén Basin or Río Mayo Embayment (in central Patagonian Cordillera; 43-46°S), is a special area within the basin where the interplay between volcanism and the initial stages of its development can be established. Stratigraphic, paleontologic and five new U-Pb SHRIMP age determinations presented here indicate that the Aisén Basin was synchronous with the later phases of volcanism of the Ibáñez Formation for at least 11 m.yr. during the Tithonian to early Hauterivian. In this basin marine sedimentary rocks of the basal units of the Coihaique Group accumulated overlying and interfingering with the Ibáñez Formation, which represents the youngest episode of volcanism of a mainly Jurassic acid large igneous province (Chon Aike Province). Five new U-Pb SHRIMP magmatic ages ranging between 140.3 ± 1.0 and 136.1 ± 1.6 Ma (early Valanginian to early Hauterivian) were obtained from the Ibáñez Formation whilst ammonites from the overlying and interfingering Toqui Formation, the basal unit of the Coihaique Group, indicate Tithonian, early Berriasian and late Berriasian ages. The latter was a synvolcanic shallow marine facies accumulated in an intra-arc setting, subsequently developed into a retro-arc basin.

  17. Volcanism and associated hazards: the Andean perspective

    Science.gov (United States)

    Tilling, R. I.

    2009-12-01

    Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene. The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent hazardous eruptions in Chile, Colombia, Ecuador, and Peru has spurred significant improvements in reducing volcano risk in the Andean region. But much remains to be done.

  18. Volcanism and associated hazards: The Andean perspective

    Science.gov (United States)

    Tilling, R.I.

    2009-01-01

    Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene. The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent hazardous eruptions in Chile, Colombia, Ecuador, and Peru has spurred significant improvements in reducing volcano risk in the Andean region. But much remains to be done.

  19. Imaging of the fetal central nervous system

    NARCIS (Netherlands)

    Pistorius, L.R.

    2008-01-01

    Introduction : Ultrasound and MR imaging of the fetal central nervous system (CNS) develop at an ever-increasing rate. Theoretically, the two modalities should be synergistic, but a literature review revealed the difficulties of determining the merit of either technique and revealed gaps in our know

  20. Superficial siderosis in the central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Pythinen, J. [Oulu Univ. (Finland). Dept. of Diagnostic Radiology; Paeaekkoe, E. [Oulu Univ. (Finland). Dept. of Diagnostic Radiology; Ilkko, E. [Oulu Univ. (Finland). Dept. of Diagnostic Radiology

    1995-02-01

    We describe a rare entity, superficial siderosis of the central nervous system, due to multiple small episodes of subarachnoid haemorrhage from any source. Non-specific neurological findings are associated with deposition of iron-containing pigments in the leptomeninges and superficial layers of the cortex. T2-weighted magnetic resonance imaging demonstrates characteristic low signal in the meninges. (orig.)

  1. Primary Angiitis Of The Central Nervous System

    Directory of Open Access Journals (Sweden)

    Sundaram Meenakshi

    2001-01-01

    Full Text Available An unusual case of primary angiitis of central nervous system (PACNS presenting with headache, seizures and focal deficits is presented. Despite multiple lesions noted on brain MRI, definitive diagnosis required a brain biopsy. A high index of clinical suspicious and the utility of brain biopsy for diagnosis are emphasized.

  2. Hypersensitivity Responses in the Central Nervous System

    DEFF Research Database (Denmark)

    Khorooshi, Reza; Asgari, Nasrin; Mørch, Marlene Thorsen

    2015-01-01

    of pathology in neuromyelitis optica (NMO), a central nervous system (CNS) demyelinating disease where activated neutrophils infiltrate, unlike in MS. The most widely used model for MS, experimental autoimmune encephalomyelitis, is an autoantigen-immunized disease that can be transferred to naive animals...

  3. A geochemical reconnaissance of the Alid volcanic center and geothermal system, Danakil depression, Eritrea

    Science.gov (United States)

    Lowenstern, J. B.; Janik, C.J.; Fournier, R.O.; Tesfai, T.; Duffield, W.A.; Clynne, M.A.; Smith, James G.; Woldegiorgis, L.; Weldemariam, K.; Kahsai, G.

    1999-01-01

    Geological and geochemical studies indicate that a high-temperature geothermal system underlies the Alid volcanic center in the northern Danakil depression of Eritrea. Alid is a very late-Pleistocene structural dome formed by shallow intrusion of rhyolitic magma, some of which vented as lavas and pyroclastic flows. Fumaroles and boiling pools distributed widely over an area of ~10 km2 on the northern half of Alid suggest that an active hydrothermal system underlies much of that part of the mountain. Geothermometers indicate that the fumarolic gases are derived from a geothermal system with temperatures >225??C. The isotopic composition of condensed fumarolic steam is consistent with these temperatures and implies that the source water is derived primarily from either lowland meteoric waters or fossil Red Sea water, or both. Some gases vented from the system (CO2, H2S and He) are largely magmatic in origin. Permeability beneath the volcanic center may be high, given the amount of intrusion-related deformation and the active normal faulting within the Danakil depression.Geological and geochemical studies indicate that a high-temperature geothermal system underlies the Alid volcanic center in the northern Danakil depression of Eritrea. Alid is a very late-Pleistocene structural dome formed by shallow intrusion of rhyolitic magma, some of which vented as lavas and pyroclastic flows. Fumaroles and boiling pools distributed widely over an area of approx. 10 km2 on the northern half of Alid suggest that an active hydrothermal system underlies much of that part of the mountain. Geothermometers indicate that the fumarolic gases are derived from a geothermal system with temperatures >225??C. The isotopic composition of condensed fumarolic steam is consistent with these temperatures and implies that the source water is derived primarily from either lowland meteoric waters or fossil Red Sea water, or both. Some gases vented from the system (CO2, H2S and He) are largely

  4. Transition from alkaline to calc-alkaline volcanism during evolution of the Paleoproterozoic Francevillian basin of eastern Gabon (Western Central Africa)

    Science.gov (United States)

    Thiéblemont, Denis; Bouton, Pascal; Préat, Alain; Goujou, Jean-Christian; Tegyey, Monique; Weber, Francis; Ebang Obiang, Michel; Joron, Jean Louis; Treuil, Michel

    2014-11-01

    We report new geochemical data for the volcanic and subvolcanic rocks associated with the evolution of the Francevillian basin of eastern Gabon during Paleoproterozoic times (c. 2.1-2 Ga). Filling of this basin has proceeded through four main sedimentary or volcano-sedimentary episodes, namely FA, FB, FC and FD. Volcanism started during the FB episode being present only in the northern part of the basin (Okondja sub-basin). This volcanism is ultramafic to trachytic in composition and displays a rather constant alkaline geochemical signature. This signature is typical of a within-plate environment, consistent with the rift-setting generally postulated for the Francevillian basin during the FB period. Following FB, the FC unit is 10-20 m-thick silicic horizon (jasper) attesting for a massive input of silica in the basin. Following FC, the FD unit is a c. 200-400 m-thick volcano-sedimentary sequence including felsic tuffs and epiclastic rocks. The geochemical signatures of these rocks are totally distinct from those of the FB alkaline lavas. High Th/Ta and La/Ta ratios attest for a calc-alkaline signature and slight fractionation between heavy rare-earth suggests melting at a rather low pressure. Such characteristics are comparable to those of felsic lavas associated with the Taupo zone of New Zealand, a modern ensialic back-arc basin. Following FD, the FE detrital unit is defined only in the Okondja region, probably associated with a late-stage collapse of the northern part of the basin. It is suggested that the alkaline to calc-alkaline volcanic transition reflects the evolution of the Francevillian basin from a diverging to a converging setting, in response to the onset of converging movements in the Eburnean Belt of Central Africa.

  5. Contribution of ground surface altitude difference to thermal anomaly detection using satellite images: Application to volcanic/geothermal complexes in the Andes of Central Chile

    Science.gov (United States)

    Gutiérrez, Francisco J.; Lemus, Martín; Parada, Miguel A.; Benavente, Oscar M.; Aguilera, Felipe A.

    2012-09-01

    Detection of thermal anomalies in volcanic-geothermal areas using remote sensing methodologies requires the subtraction of temperatures, not provided by geothermal manifestations (e.g. hot springs, fumaroles, active craters), from satellite image kinetic temperature, which is assumed to correspond to the ground surface temperature. Temperatures that have been subtracted in current models include those derived from the atmospheric transmittance, reflectance of the Earth's surface (albedo), topography effect, thermal inertia and geographic position effect. We propose a model that includes a new parameter (K) that accounts for the variation of temperature with ground surface altitude difference in areas where steep relief exists. The proposed model was developed and applied, using ASTER satellite images, in two Andean volcanic/geothermal complexes (Descabezado Grande-Cerro Azul Volcanic Complex and Planchón-Peteroa-Azufre Volcanic Complex) where field data of atmosphere and ground surface temperature as well as radiation for albedo calibration were obtained in 10 selected sites. The study area was divided into three zones (Northern, Central and Southern zones) where the thermal anomalies were obtained independently. K value calculated for night images of the three zones are better constrained and resulted to be very similar to the Environmental Lapse Rate (ELR) determined for a stable atmosphere (ELR > 7 °C/km). Using the proposed model, numerous thermal anomalies in areas of ≥ 90 m × 90 m were identified that were successfully cross-checked in the field. Night images provide more reliable information for thermal anomaly detection than day images because they record higher temperature contrast between geothermal areas and its surroundings and correspond to more stable atmospheric condition at the time of image acquisition.

  6. Historical volcanism and the state of stress in the East African Rift System

    Science.gov (United States)

    Wadge, Geoffrey; Biggs, Juliet; Lloyd, Ryan; Kendall, Michael

    2016-09-01

    Crustal extension at the East African Rift System (EARS) should, as a tectonic ideal, involve a stress field in which the direction of minimum horizontal stress is perpendicular to the rift. A volcano in such a setting should produce dykes and fissures parallel to the rift. How closely do the volcanoes of the EARS follow this? We answer this question by studying the 21 volcanoes that have erupted historically (since about 1800) and find that 7 match the (approximate) geometrical ideal. At the other 14 volcanoes the orientation of the eruptive fissures/dykes and/or the axes of the host rift segments are oblique to the ideal values. To explain the eruptions at these volcanoes we invoke local (non-plate tectonic) variations of the stress field caused by: crustal heterogeneities and anisotropies (dominated by NW structures in the Protoerozoic basement), transfer zone tectonics at the ends of offset rift segments, gravitational loading by the volcanic edifice (typically those with 1-2 km relief) and magmatic pressure in central reservoirs. We find that the more oblique volcanoes tend to have large edifices, large eruptive volumes and evolved and mixed magmas capable of explosive behaviour. Nine of the volcanoes have calderas of varying ellipticity, 6 of which are large, reservoir-collapse types mainly elongated across rift (e.g. Kone) and 3 are smaller, elongated parallel to the rift and contain active lava lakes (e.g. Erta Ale), suggesting different mechanisms of formation and stress fields. Nyamuragira is the only EARS volcano with enough sufficiently well-documented eruptions to infer its long-term dynamic behaviour. Eruptions within 7 km of the volcano are of relatively short duration (<100 days), but eruptions with more distal fissures tend to have greater obliquity and longer durations, indicating a changing stress field away from the volcano. There were major changes in long-term magma extrusion rates in 1977 (and perhaps in 2002) due to major along-rift dyking

  7. Historical volcanism and the state of stress in the East African Rift System

    Directory of Open Access Journals (Sweden)

    Geoffrey Wadge

    2016-09-01

    Full Text Available Crustal extension at the East African Rift System (EARS should, as a tectonic ideal, involve a stress field in which the direction of minimum horizontal stress is perpendicular to the rift. A volcano in such a setting should produce dykes and fissures parallel to the rift. How closely do the volcanoes of the EARS follow this? We answer this question by studying the 21 volcanoes that have erupted historically (since about 1800 and find that 7 match the (approximate geometrical ideal. At the other 14 volcanoes the orientation of the eruptive fissures/dykes and/or the axes of the host rift segments are oblique to the ideal values. To explain the eruptions at these volcanoes we invoke local (non-plate tectonic variations of the stress field caused by: crustal heterogeneities and anisotropies (dominated by NW structures in the Protoerozoic basement, transfer zone tectonics at the ends of offset rift segments, gravitational loading by the volcanic edifice (typically those with 1-2 km relief and magmatic pressure in central reservoirs. We find that the more oblique volcanoes tend to have large edifices, large eruptive volumes and evolved and mixed magmas capable of explosive behaviour. Nine of the volcanoes have calderas of varying ellipticity, 6 of which are large, reservoir-collapse types mainly elongated across rift (e.g. Kone and 3 are smaller, elongated parallel to the rift and contain active lava lakes (e.g. Erta Ale, suggesting different mechanisms of formation and stress fields. Nyamuragira is the only EARS volcano with enough sufficiently well-documented eruptions to infer its long-term dynamic behaviour. Eruptions within 7 km of the volcano are of relatively short duration (<100 days, but eruptions with more distal fissures tend to have greater obliquity and longer durations, indicating a changing stress field away from the volcano. There were major changes in long-term magma extrusion rates in 1977 (and perhaps in 2002 due to major along

  8. Geochemical variability of hydrothermal emissions between three Pacific volcanic arc systems: Alaskan-Aleutian and Cascadian, North America and Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Blackstock, J. M.; Horton, T. W.; Gravley, D. M.; Deering, C. D.

    2013-12-01

    Knowledge of the source, transport, and fate of hydrothermal fluids in the upper crust informs our understanding and interpretation of ore-forming processes, volcanogenic hazards, geothermal resources, and volatile cycling. Co-variation between fluid inclusion CO2/CH4 and N2/Ar ratios is an established tracer of magmatic, meteoric, and crustal fluid end-members. Yet, this tracer has had limited application to macroscopic fluid reservoirs accessible via geothermal wells and hydrothermal features (e.g. pools). In this study, we compared the covariance CO2/CH4 and N2/Ar ratios of gases collected throughout the Taupo Volcanic Zone, New Zealand (TVZ), the Alaska-Aleutian Volcanic Arc, USA (AAVA), and the Cascadian Volcanic Arc, USA (CVA) with corresponding δ13C and 3He/4He values. Our findings show that there is good agreement between these proxies for different end-member contributions at coarse scales. However, some samples classified as meteoric water according to the CO2/CH4 and N2/Ar ratios also show more positive δ13C values (~ -7.0 per mil) and relatively higher 3He/4He ratios indicative of magmatic input from primarily mantle sources. This unexpected result may be related to magmatic fluids, CO2 in particular, mixing with predominantly meteoric derived waters. The potential to identify magmatic CO2 in groundwater samples overlying geothermal systems in differing volcanic arc settings using simple and cost-effective gas ratios is a promising step forward in the search for ';surface blind' but developable geothermal systems and volcanic monitoring. 3He/4He anomalies also support this inference and underscore the potential decoupling of thermal anomalies and magmatic-derived fluids in the Earth's crust. The general agreement between the co-variation of CO2/CH4 and N2/Ar ratios with other isotope and geochemical proxies for magmatic, meteoric, and crustal end-members is encouraging to employ expanded use of these ratios for both the exploration and monitoring of

  9. Introduction to FAST central control system

    Science.gov (United States)

    Sun, Jinghai; Zhu, Lichun; Jiang, Zhiqian

    2016-07-01

    FAST is the largest single dish radio telescope in the world. During observation, part of spherical reflector forms paraboloid to the source direction, meanwhile the feed is placed to instant focus. The control of telescope is difficult and complicated. An autonomous central control system is designed and implemented for methodically and efficiently operation. The system connects and coordinates all subsystems including control, measurement and health monitoring for reflector, feed support and receiver respectively. The main functions are managing observation tasks, commanding subsystems, storing operating data, monitoring statuses and providing the uniform time standard. In this paper, the functions, software and hardware of FAST central control system are presented. The relative infrastructures such as power, network and control room arrangement are introduced.

  10. A first Event-tree for the Bárðarbunga volcanic system (Iceland): from the volcanic crisis in 2014 towards a tool for hazard assessment

    Science.gov (United States)

    Barsotti, Sara; Tumi Gudmundsson, Magnús; Jónsdottir, Kristín; Vogfjörd, Kristín; Larsen, Gudrun; Oddsson, Björn

    2015-04-01

    Bárdarbunga volcano is part of a large volcanic system that had its last confirmed eruption before the present unrest in 1910. This system is partially covered by ice within the Vatnajökull glacier and it extends further to the NNE as well as to SW. Based on historical data, its eruptive activity has been predominantly characterized by explosive eruptions, originating beneath the glacier, and important effusive eruptions in the ice-free part of the system itself. The largest explosive eruptions took place on the southern side of the fissure system in AD 1477 producing about 10 km3 of tephra. Due to the extension and location of this volcanic system, the range of potential eruptive scenarios and associated hazards is quite wide. Indeed, it includes: inundation, due to glacial outburst; tephra fallout, due to ash-rich plume generated by magma-water interaction; abundant volcanic gas release; and lava flows. Most importantly these phenomena are not mutually exclusive and might happen simultaneously, creating the premise for a wide spatial and temporal impact. During the ongoing volcanic crisis at Bárdarbunga, which started on 16 August, 2014, the Icelandic Meteorological Office, together with the University of Iceland and Icelandic Civil Protection started a common effort of drawing, day-by-day, the potential evolution of the ongoing rifting event and, based on the newest data from the monitoring networks, updated and more refined scenarios have been identified. Indeed, this volcanic crisis created the occasion for pushing forward the creation of the first Event-tree for the Bárðarbunga volcanic system. We adopted the approach suggested by Newhall and Pallister (2014) and a preliminary ET made of nine nodes has been constructed. After the two initial nodes (restless and genesis) the ET continues with the identification of the location of aperture of future eruptive vents. Due to the complex structure of the system and historical eruptions, this third node

  11. A geochemical reconnaissance of the Alid volcanic center and geothermal system, Danakil depression, Eritrea

    Energy Technology Data Exchange (ETDEWEB)

    Lowenstern, J.B.; Janik, C.J.; Fournier, R.O. [U.S. Geological Survey, Menlo Park, CA (US)] [and others

    1999-04-01

    Geological and geochemical studies indicate that a high-temperature geothermal system underlies the Alid volcanic center in the northern Danakil depression of Eritrea. Alid is a very late-Pleistocene structural dome formed by shallow intrusion of rhyolitic magma, some of which vented as lavas and pyroclastic flows. Fumaroles and boiling pools distributed widely over an area of {approx} 10 km{sup 2} on the northern half of Alid suggest that an active hydrothermal system underlies much of that part of the mountain. Geothermometers indicate that the fumarolic gases are derived from a geothermal system with temperatures > 225{sup o}C. The isotopic composition of condensed fumarolic steam is consistent with these temperatures and implies that the source water is derived primarily from either lowland meteoric waters or fossil Red Sea water, or both. Some gases vented from the system (CO{sub 2}, H{sub 2}S and He) are largely magmatic in origin. Permeability beneath the volcanic center may be high, given the amount of intrusion-related deformation and the active normal faulting within the Danakil depression. (author)

  12. [Central nervous system malformations: neurosurgery correlates].

    Science.gov (United States)

    Jiménez-León, Juan C; Betancourt-Fursow, Yaline M; Jiménez-Betancourt, Cristina S

    2013-09-06

    Congenital malformations of the central nervous system are related to alterations in neural tube formation, including most of the neurosurgical management entities, dysraphism and craniosynostosis; alterations of neuronal proliferation; megalencefaly and microcephaly; abnormal neuronal migration, lissencephaly, pachygyria, schizencephaly, agenesis of the corpus callosum, heterotopia and cortical dysplasia, spinal malformations and spinal dysraphism. We expose the classification of different central nervous system malformations that can be corrected by surgery in the shortest possible time and involving genesis mechanisms of these injuries getting better studied from neurogenic and neuroembryological fields, this involves connecting innovative knowledge areas where alteration mechanisms in dorsal induction (neural tube) and ventral induction (telencephalization) with the current way of correction, as well as the anomalies of cell proliferation and differentiation of neuronal migration and finally the complex malformations affecting the posterior fossa and current possibilities of correcting them.

  13. Primary Angiitis of the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Mojdeh Ghabaee

    2012-03-01

    Full Text Available Primary angiitis of the central nervous system (PACNS is an idiopathic disorder (vasculitis restricted to the central nervous system (CNS. It often presents with focal neurological deficits suggesting stroke or a combination of confusion and headache. We herein report three cases with various combinations of fever, partial seizure, encephalopathy, paresis, headache and ataxia. One of them was initially treated as herpes simplex meningoencephalitis, but further investigations revealed primary angiitis. Primary angiitis of the CNS has protean manifestations and should always be considered in patients suspicious to have CNS infection or stroke, particularly who does not respond to the routine treatments. Clinical data, exclusion of differential diagnoses and typical angiography seem to be enough to justify the diagnosis in the majority of cases.

  14. Central Nervous System Involvement in Whipple Disease

    OpenAIRE

    Compain, Caroline; Sacre, Karim; Puéchal, Xavier; Klein, Isabelle; Vital-Durand, Denis; Houeto, Jean-Luc; De Broucker, Thomas; Raoult, Didier; Papo, Thomas

    2013-01-01

    Abstract Whipple disease (WD) is a rare multisystemic infection with a protean clinical presentation. The central nervous system (CNS) is involved in 3 situations: CNS involvement in classic WD, CNS relapse in previously treated WD, and isolated CNS infection. We retrospectively analyzed clinical features, diagnostic workup, brain imaging, cerebrospinal fluid (CSF) study, treatment, and follow-up data in 18 patients with WD and CNS infection. Ten men and 8 women were included with a median ag...

  15. Tuberculoma of the central nervous system.

    Science.gov (United States)

    DeLance, Arthur R; Safaee, Michael; Oh, Michael C; Clark, Aaron J; Kaur, Gurvinder; Sun, Matthew Z; Bollen, Andrew W; Phillips, Joanna J; Parsa, Andrew T

    2013-10-01

    Tuberculosis is among the oldest and most devastating infectious diseases worldwide. Nearly one third of the world's population has active or latent disease, resulting in 1.5 million deaths annually. Central nervous system involvement, while rare, is the most severe form of tuberculosis. Manifestations include tuberculoma and tuberculous meningitis, with the majority of cases occurring in children and immunocompromised patients. Despite advancements in imaging and laboratory diagnostics, tuberculomas of the central nervous system remain a diagnostic challenge due to their insidious nature and nonspecific findings. On imaging studies tuberculous meningitis is characterized by diffuse basal enhancement, but tuberculomas may be indistinguishable from neoplasms. Early diagnosis is imperative, since clinical outcomes are largely dependent on timely treatment. Stereotactic biopsy with histopathological analysis can provide a definitive diagnosis, but is only recommended when non-invasive methods are inconclusive. Standard medical treatment includes rifampicin, isoniazid, pyrazinamide, and streptomycin or ethambutol. In cases of drug resistance, revision of the treatment regimen with second-line agents is recommended over the addition of a single drug to the first-line regimen. Advances in genomics have identified virulent strains of tuberculosis and are improving our understanding of host susceptibility. Neurosurgical referral is advised for patients with elevated intracranial pressure, seizures, or brain or spinal cord compression. This review synthesizes pertinent findings in the literature surrounding central nervous system tuberculoma in an effort to highlight recent advances in pathophysiology, diagnosis, and treatment.

  16. Rhabdoid tumors of the central nervous system.

    Science.gov (United States)

    Reinhardt, D; Behnke-Mursch, J; Weiss, E; Christen, H J; Kühl, J; Lakomek, M; Pekrun, A

    2000-04-01

    Rhabdoid tumors of the central nervous system are rare malignancies with a still almost uniformly fatal outcome. There is still no proven curative therapy available. We report our experience with nine patients with central nervous system rhabdoid tumors. Gross complete surgical removal of the tumor was achieved in six patients. Seven patients received intensive chemotherapy. Four of these were treated in addition with both neuroaxis radiotherapy and a local boost directed to the tumor region, while two patients received local radiotherapy only. The therapy was reasonably well tolerated in most cases. Despite the aggressive therapy, eight of the nine patients died from progressive tumor disease, and one patient died from hemorrhagic brain stem lesions of unknown etiology. The mean survival time was 10 months after diagnosis. Conventional treatment, although aggressive, cannot change the fatal prognosis of central nervous system rhabdoid tumors. As these neoplasms are so rare, a coordinated register would probably be a good idea, offering a means of learning more about the tumor's biology and possible strategies of treatment.

  17. [Parasitic diseases of the central nervous system].

    Science.gov (United States)

    Schmutzhard, E

    2010-02-01

    Central nervous system infections and infestations by protozoa and helminths constitute a problem of increasing importance throughout all of central European and northern/western countries. This is partially due to the globalisation of our society, tourists and business people being more frequently exposed to parasitic infection/infestation in tropical countries than in moderate climate countries. On top of that, migrants may import chronic infestations and infections with parasitic pathogens, eventually also--sometimes exclusively--involving the nervous system. Knowledge of epidemiology, initial clinical signs and symptoms, diagnostic procedures as well as specific chemotherapeutic therapies and adjunctive therapeutic strategies is of utmost important in all of these infections and infestations of the nervous systems, be it by protozoa or helminths. This review lists, mainly in the form of tables, all possible infections and infestations of the nervous systems by protozoa and by helminths. Besides differentiating parasitic diseases of the nervous system seen in migrants, tourists etc., it is very important to have in mind that disease-related (e.g. HIV) or iatrogenic immunosuppression has led to the increased occurrence of a wide variety of parasitic infections and infestations of the nervous system (e. g. babesiosis, Chagas disease, Strongyloides stercoralis infestation, toxoplasmosis, etc.).

  18. The Central Nervous System of Box Jellyfish

    DEFF Research Database (Denmark)

    Garm, Anders Lydik; Ekström, Peter

    2008-01-01

    of behaviors in the box jellyfish such as obstacle avoidance and navigation. The need to process the visual information and turn it into the appropriate behavior puts strong demands on the nervous system of box jellyfish, which appears more elaborate than in other cnidarians. Here, the central part...... of this nervous system is described. Each rhopalium holds a separate part of the CNS with 1,000 nerve cells and a large amount of neuropil. The rhopalial nervous system has several subsystems defined by the anatomy, location, and immunocytochemistry of the cells. Most of the subsystems connect to one or more...... of the eye types, and it is likely that the rhopalial nervous system accounts for most of the visual processing. The major part of the CNS is made up of a ring nerve encircling the bell shaped body. The ring nerve holds around 10,000 cells and is directly connected to all four rhopalial nervous systems...

  19. GPS-derived coupling estimates for the Central America subduction zone and volcanic arc faults: El Salvador, Honduras and Nicaragua

    Science.gov (United States)

    Correa-Mora, F.; DeMets, C.; Alvarado, D.; Turner, H. L.; Mattioli, G.; Hernandez, D.; Pullinger, C.; Rodriguez, M.; Tenorio, C.

    2009-12-01

    We invert GPS velocities from 32 sites in El Salvador, Honduras and Nicaragua to estimate the rate of long-term forearc motion and distributions of interseismic coupling across the Middle America subduction zone offshore from these countries and faults in the Salvadoran and Nicaraguan volcanic arcs. A 3-D finite element model is used to approximate the geometries of the subduction interface and strike-slip faults in the volcanic arc and determine the elastic response to coupling across these faults. The GPS velocities are best fit by a model in which the forearc moves 14-16 mmyr-1 and has coupling of 85-100 per cent across faults in the volcanic arc, in agreement with the high level of historic and recent earthquake activity in the volcanic arc. Our velocity inversion indicates that coupling across the potentially seismogenic areas of the subduction interface is remarkably weak, averaging no more than 3 per cent of the plate convergence rate and with only two poorly resolved patches where coupling might be higher along the 550-km-long segment we modelled. Our geodetic evidence for weak subduction coupling disagrees with a seismically derived coupling estimate of 60 +/- 10 per cent from a published analysis of earthquake damage back to 1690, but agrees with three other seismologic studies that infer weak subduction coupling from 20th century earthquakes. Most large historical earthquakes offshore from El Salvador and western Nicaragua may therefore have been intraslab normal faulting events similar to the Mw 7.3 1982 and Mw 7.7 2001 earthquakes offshore from El Salvador. Alternatively, the degree of coupling might vary with time. The evidence for weak coupling indirectly supports a recently published hypothesis that much of the Middle American forearc is escaping to the west or northwest away from the Cocos Ridge collision zone in Costa Rica. Such a hypothesis is particularly attractive for El Salvador, where there is little or no convergence obliquity to drive the

  20. Biogeochemical processes involving dissolved CO2 and CH4 at Albano, Averno, and Monticchio meromictic volcanic lakes (Central-Southern Italy)

    Science.gov (United States)

    Cabassi, Jacopo; Tassi, Franco; Vaselli, Orlando; Fiebig, Jens; Nocentini, Matteo; Capecchiacci, Francesco; Rouwet, Dmitri; Bicocchi, Gabriele

    2013-01-01

    This paper focuses on the chemical and isotopic features of dissolved gases (CH4 and CO2) from four meromictic lakes hosted in volcanic systems of Central-Southern Italy: Lake Albano (Alban Hills), Lake Averno (Phlegrean Fields), and Monticchio Grande and Piccolo lakes (Mt. Vulture). Deep waters in these lakes are characterized by the presence of a significant reservoir of extra-atmospheric dissolved gases mainly consisting of CH4 and CO2. The δ13C-CH4 and δD-CH4 values of dissolved gas samples from the maximum depths of the investigated lakes (from -66.8 to -55.6 ‰ V-PDB and from -279 to -195 ‰ V-SMOW, respectively) suggest that CH4 is mainly produced by microbial activity. The δ13C-CO2 values of Lake Grande, Lake Piccolo, and Lake Albano (ranging from -5.8 to -0.4 ‰ V-PDB) indicate a significant CO2 contribution from sublacustrine vents originating from (1) mantle degassing and (2) thermometamorphic reactions involving limestone, i.e., the same CO2 source feeding the regional thermal and cold CO2-rich fluid emissions. In contrast, the relatively low δ13C-CO2 values (from -13.4 to -8.2 ‰ V-PDB) of Lake Averno indicate a prevalent organic CO2. Chemical and isotopic compositions of dissolved CO2 and CH4 at different depths are mainly depending on (1) CO2 inputs from external sources (hydrothermal and/or anthropogenic); (2) CO2-CH4 isotopic exchange; and (3) methanogenic and methanotrophic activity. In the epilimnion, vertical water mixing, free oxygen availability, and photosynthesis cause the dramatic decrease of both CO2 and CH4 concentrations. In the hypolimnion, where the δ13C-CO2 values progressively increase with depth and the δ13C-CH4 values show an opposite trend, biogenic CO2 production from CH4 using different electron donor species, such as sulfate, tend to counteract the methanogenesis process whose efficiency achieves its climax at the water-bottom sediment interface. Theoretical values, calculated on the basis of δ13C-CO2 values, and

  1. Paleomagnetic secular variation study of Ar-Ar dated lavas flows from Tacambaro area (Central Mexico): Possible evidence of Intra-Jaramillo geomagnetic excursion in volcanic rocks

    Science.gov (United States)

    Peña, Rafael Maciel; Goguitchaichvili, Avto; Guilbaud, Marie-Noëlle; Martínez, Vicente Carlos Ruiz; Rathert, Manuel Calvo; Siebe, Claus; Reyes, Bertha Aguilar; Morales, Juan

    2014-04-01

    More than 350 oriented paleomagnetic cores were obtained for rock-magnetic and paleomagnetic analysis from radiometrically dated (40Ar-39Ar) magmatic rocks occurring in the southern segment (Jorullo and Tacámbaro areas) of the Michoacán-Guanajuato Volcanic Field in the Trans-Mexican Volcanic Belt. Most of the lavas (37) stem from monogenetic volcanoes dated at less than 4 Ma. Two additional sites were sampled from the plutonic basement dated at 33-30 Ma. Primary remanences carried by low-Ti titanomagnetites allowed to determining 34 reliable site-mean directions of mostly normal (27) but also reversed (7) polarities. The mean directions of these two populations are antipodal, and suggest neither major vertical-axis rotations with respect to the North America craton nor tilting in the region for the last 4 Ma (rotation and flattening of the inclination parameters being less than -5.9 ± 3.8 and 0.1 ± 3.9, respectively). The corresponding paleomagnetic pole obtained for Pliocene-Pleistocene times is PLAT = 83.4°, PLON = 2.4° (N = 32, A95 = 2.7°). Virtual geomagnetic poles also contribute to the time averaged field global database and to the paleosecular variation (PSV) investigations at low latitudes from lavas for the last 5 Ma, showing a geomagnetic dispersion value that is in agreement with available PSV models. When comparing the magnetic polarities and corresponding radiometric ages of the studied sites with the Cenozoic geomagnetic polarity time scale (GPTS), a good correlation is observable. This finding underscores the suitability of data obtained on lavas in Central Mexico for contributing to the GPTS. Furthermore, the detection of short-lived geomagnetic features seems possible, since the possible evidence of Intra-Jaramillo geomagnetic excursion could be documented for the first time in these volcanic rocks.

  2. Tephrochronology of the Mont-Dore volcanic Massif (Massif Central, France): new 40Ar/39Ar constraints on the Late Pliocene and Early Pleistocene activity

    Science.gov (United States)

    Nomade, Sébastien; Pastre, Jean-François; Nehlig, Pierre; Guillou, Hervé; Scao, Vincent; Scaillet, Stéphane

    2014-03-01

    The Mont-Dore Massif (500 km2), the youngest stratovolcano of the French Massif Central, consists of two volcanic edifices: the Guéry and the Sancy. To improve our knowledge of the oldest explosive stages of the Mont-Dore Massif, we studied 40Ar/39Ar-dated (through single-grain laser and step-heating experiments) 11 pyroclastic units from the Guéry stratovolcano. We demonstrate that the explosive history of the Guéry can be divided into four cycles of explosive eruption activity between 3.09 and 1.46 Ma (G.I to G.IV). We have also ascertained that deposits associated with the 3.1-3.0-Ma rhyolitic activity, which includes the 5-km3 "Grande Nappe" ignimbrite, are not recorded in the central part of the Mont-Dore Massif. All the pyroclastites found in the left bank of the Dordogne River belong to a later explosive phase (2.86-2.58 Ma, G.II) and were channelled down into valleys or topographic lows where they are currently nested. This later activity also gave rise to most of the volcanic products in the Perrier Plateau (30 km east of the Mont-Dore Massif); three quarters of the volcano-sedimentary sequence (up to 100 m thick) was emplaced within less than 20 ky, associated with several flank collapses in the northeastern part of the Guéry. The age of the "Fournet flora" (2.69 ± 0.01 Ma) found within an ash bed belonging to G.II suggests that temperate forests already existed in the French Massif Central before the Pliocene/Pleistocene boundary. The Guéry's third explosive eruption activity cycle (G.III) lasted between 2.36 and 1.91 Ma. It encompassed the Guéry Lake and Morangie pumice and ash deposits, as well as seven other important events recorded as centimetric ash beds some 60 to 100 km southeast of the Massif in the Velay region. We propose a general tephrochronology for the Mont-Dore stratovolcano covering the last 3.1 My. This chronology is based on 44 40Ar/39Ar-dated events belonging to eight explosive eruption cycles each lasting between 100 and 200

  3. Halogens behaviours in Magma Degassing: Insights into Eruptive Dynamics, Hydrothermal Systems and Atmospheric Impact of Andesitic Volcanism

    Science.gov (United States)

    Villemant, B.; Balcone, H.; Mouatt, J.; Michel, A.; Komorowski, J.; Boudon, G.

    2007-12-01

    Shallow degassing of H2O in andesitic magmas determines the eruptive styles of volcanic eruptions and contributes to the hydrothermal systems developed around active volcanoes. Halogens behaviour during magma degassing primarily depends on their incompatible behaviour in the melts and on water solubility. Thus, residual contents of halogens in volcanic juvenile vitric clasts may be used as tracers of H2O degassing processes during explosive and effusive eruptions. Because of the large range of water-melt partition coefficients of halogens and their relatively low diffusion coefficients, a comparison of F, Cl, Br and I contents in volcanic clasts in function of their vesicularity and micro-cristallinity allows to precisely model the main degassing processes and to establish constraints on pre-eruptive conditions. Halogens acids (HCl, HBr and HI) extracted in the vapour phase have much more complex behaviours because of their high solubility in low temperature thermal waters, their variable condensation temperatures and their very high reactivity when mixed with low temperature and oxidizing atmospheric gases. A comparison of model compositions of high temperature gases with the composition of thermal waters, and gases from fumaroles or plumes of active volcanoes allows to characterise the shallow volcanic system and its evolutionary states. Variable halogen behaviours are discussed for a variety of eruption types (plinian, vulcanian and dome-forming) and active volcanic systems from the Lesser Antilles (Montagne Pelee, Soufrière of Guadeloupe, Soufriere Hills of Montserrat).

  4. Petrogenesis of the Early Permian volcanic rocks in the Chinese South Tianshan: Implications for crustal growth in the Central Asian Orogenic Belt

    Science.gov (United States)

    Huang, He; Zhang, Zhaochong; Santosh, M.; Zhang, Dongyang; Wang, Tao

    2015-07-01

    The Paleozoic and Early Mesozoic magmatic suites in the Central Asian Orogenic Belt (CAOB) provide important insights on the crustal growth and reworking process associated with the construction of the largest Phanerozoic orogen on the Earth. Among the tectonic blocks of the CAOB, the South Tianshan Terrane (STT) occupies the southwestern margin and is located adjacent to the Tarim Craton. Here we investigate the Early Permian Xiaotikanlike Formation in the central part of the Chinese STT in Xinjiang in Northwest China. The formation is composed of a series of terrestrial volcanic lava flows and volcanic breccia, interbedded with siltstones, sandstones and sandy conglomerates. Zircon U-Pb and Lu-Hf isotopic analysis, whole-rock major oxide, trace element and Sr-Nd isotopic data are presented for the volcanic lava flows of the Xiaotikanlike Formation exposed in the Boziguo'er, Laohutai and Wensu regions. The new zircon ages from our study, together with those reported in previous investigations on the rhyolitic lava flow from the Wensu region, suggest that the volcanic rocks of the Xiaotikanlike Formation simultaneously erupted at ca. 285 Ma. The lavas of the formation show a wide range of SiO2 (49.88 to 78.56 wt.%). The basaltic rocks show SiO2 from 49.88 to 53.78 wt.%, MgO from 3.73 to 7.01 wt.% and Mg# from 41 to 61. They possess slightly enriched Sr-Nd isotope signature [(87Sr/86Sr)t = 0.70495-0.70624 and εNd(t) = - 0.5 to + 0.6], and have trace and rare earth element patterns similar to those of oceanic island basalts (OIBs). Petrographic and whole-rock chemical characteristics indicate that the basaltic lava flows are dominantly tholeiitic, and were likely derived from a spinel-dominated peridotite asthenospheric mantle source. The felsic lavas of the Xiaotikanlike Formation show SiO2 in the range of 60.71 to 78.56 wt.% and display overall similar immobile element pattern characterized by notable troughs at Nb-Ta, P and Ti and gently sloping REEs. Zircon Lu

  5. The Domuyo volcanic system: An enormous geothermal resource in Argentine Patagonia

    Science.gov (United States)

    Chiodini, Giovanni; Liccioli, Caterina; Vaselli, Orlando; Calabrese, Sergio; Tassi, Franco; Caliro, Stefano; Caselli, Alberto; Agusto, Mariano; D'Alessandro, Walter

    2014-03-01

    A geochemical survey of the main thermal waters discharging in the southwestern part of the Domuyo volcanic complex (Argentina), where the latest volcanic activity dates to 0.11 Ma, has highlighted the extraordinarily high heat loss from this remote site in Patagonia. The thermal water discharges are mostly Na-Cl in composition and have TDS values up to 3.78 g L- 1 (El Humazo). A simple hydrogeochemical approach shows that 1,100 to 1,300 kg s- 1 of boiling waters, which have been affected by shallow steam separation, flow into the main drainage of the area (Rio Varvarco). A dramatic increase of the most conservative species such as Na, Cl and Li from the Rio Varvarco from upstream to downstream was observed and related solely to the contribution of hydrothermal fluids. The equilibrium temperatures of the discharging thermal fluids, calculated on the basis of the Na-K-Mg geothermometer, are between 190 °C and 230 °C. If we refer to a liquid originally at 220 °C (enthalpy = 944 J g- 1), the thermal energy release can be estimated as high as 1.1 ± 0.2 GW, a value that is much higher than the natural release of heat in other important geothermal fields worldwide, e.g., Mutnovsky (Russia), Wairakei (New Zealand) and Lassen Peak (USA). This value is the second highest measured advective heat flux from any hydrothermal system on Earth after Yellowstone.

  6. The Spatial Response of the Climate System to Explosive Volcanic Eruptions

    Science.gov (United States)

    Kelly, P. M.; Jones, P. D.; Pengqun, Jia

    1996-05-01

    Determining the spatial response of the climate system to volcanic forcing is of importance in the development of short-term climate prediction and in the assesment of anthropogenic factors such as global warming. The June 1991 eruption of the Phillippine volcano, Mount Pinatubo, provides an important opportunity to test existing understanding and extend previous emperical analyses of volcanic effect. We identify the spatial climate response to historic eruptions in the surface air temperature and mean-sea- level pressure record and use this information to assess the impact of the Pinatubo eruption. The Pinatubo eruption clearly generated significant global cooling during the years after the event. The magnitude and timing of the cooling is similar to that associated with previous equatorial eruptions. There is good agreement between the spatial patterns of tempurature and circulation anomalies associated with the historic eruptions and those following the Mount Pinatubo event. Evidence of limited higher latitude warming and a major change in the atmospheric circulation is found over the Northern Hemisphere during the first winter after the equatorial eruptions analysed, followed by widespread cooling, but limited change in the atmosphere circulation, during the subsquent 2 years.

  7. Experimental Observations of Multiscale Dynamics of Viscous Fluid Behavior: Implications in Volcanic Systems

    Science.gov (United States)

    Arciniega-Ceballos, A.; Spina, L.; Scheu, B.; Dingwell, D. B.

    2015-12-01

    We have investigated the dynamics of Newtonian fluids with viscosities (10-1000 Pa s; corresponding to mafic to intermediate silicate melts) during slow decompression, in a Plexiglas shock tube. As an analogue fluid we used silicon oil saturated with Argon gas for 72 hours. Slow decompression, dropping from 10 MPa to ambient pressure, acts as the excitation mechanism, initiating several processes with their own distinct timescales. The evolution of this multi-timescale phenomenon generates complex non-stationary microseismic signals, which have been recorded with 7 high-dynamic piezoelectric sensors located along the conduit. Correlation analysis of these time series with the associated high-speed imaging enables characterization of distinct phases of the dynamics of these viscous fluids and the extraction of the time and the frequency characteristics of the individual processes. We have identified fluid-solid elastic interaction, degassing, fluid mass expansion and flow, bubble nucleation, growth, coalescence and collapse, foam building and vertical wagging. All these processes (in fine and coarse scales) are sequentially coupled in time, occur within specific pressure intervals, and exhibit a localized distribution in space. Their coexistence and interactions constitute the stress field and driving forces that determine the dynamics of the system. Our observations point to the great potential of this experimental approach in the understanding of volcanic processes and volcanic seismicity.

  8. Primary volcanic structures from a type section of Deccan Trap flows around Narsingpur–Harrai–Amarwara, central India: Implications for cooling history

    Indian Academy of Sciences (India)

    Piyali Sengupta; Arijit Ray

    2006-12-01

    Field investigations of the Deccan Trap lava sequence along a 70 km traverse in the Narsingpur–Harrai–Amarwara area of central India indicate twenty lava flows comprising a total thickness of around 480m. Primary volcanic structures like vesicles and cooling joints are conspicuous in this volcanic succession and are used to divide individual flows into three well-defined zones namely the lower colonnade zone, entablature zone, and the upper colonnade zone. The variable nature of these structural zones is used for identification and correlation of lava flows in the field. For twenty lava flows, the thicknesses of upper colonnade zones of eight flows are ∼5m while those of eight other flows are ∼8m each. The thicknesses of upper colonnade zones of remaining four flows could not be measured in the field. Using the thicknesses of these upper colonnade zones and standard temperature-flow thickness-cooling time profiles for lava pile, the total cooling time of these sixteen Deccan Trap lava flows has been estimated at 12 to 15 years.

  9. Imaging the Roots of Geothermal Systems: 3-D Inversion of Magnetotelluric Array Data in the Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Bertrand, E. A.; Caldwell, G.; Bannister, S. C.; Hill, G.; Bennie, S.

    2013-12-01

    The Taupo Volcanic Zone (TVZ), located in the central North Island of New Zealand, is a rifted arc that contains more than 20 liquid-dominated high-temperature geothermal systems, which together discharge ~4.2 GW of heat at the surface. The shallow (upper ~500 m) extent of these geothermal systems is marked by low-resistivity, mapped by tens-of-thousands of DC resistivity measurements collected throughout the 1970's and 80's. Conceptual models of heat transport through the brittle crust of the TVZ link these low-resistivity anomalies to the tops of vertically ascending plumes of convecting hydrothermal fluid. Recently, data from a 40-site array of broadband seismometers with ~4 km station spacing, and an array of 270 broadband magnetotelluric (MT) measurements with ~2 km station spacing, have been collected in the south-eastern part of the TVZ in an experiment to image the deep structure (or roots) of the geothermal systems in this region. Unlike DC resistivity, these MT measurements are capable of resolving the resistivity structure of the Earth to depths of 10 km or more. 2-D and 3-D models of subsets of these MT data have been used to provide the first-ever images of quasi-vertical low-resistivity zones (at depths of 3-7 km) that connect with the near-surface geothermal fields. These low-resistivity zones are interpreted to represent convection plumes of high-temperature fluids ascending within fractures, which supply heat to the overlying geothermal fields. At the Rotokawa, Ngatamariki and Ohaaki geothermal fields, these plumes extend to a broad layer of low-resistivity, inferred to represent a magmatic, basal heat source located below the seismogenic zone (at ~7-8 km depth) that drives convection in the brittle crust above. Little is known about the mechanisms that transfer heat into the hydrothermal regime. However, at Rotokawa, new 3-D resistivity models image a vertical low-resistivity zone that lies directly beneath the geothermal field. The top of this

  10. The chemistry and isotopic composition of waters in the low-enthalpy geothermal system of Cimino-Vico Volcanic District, Italy

    Science.gov (United States)

    Battistel, Maria; Hurwitz, Shaul; Evans, William; Barbieri, Maurizio

    2017-01-01

    Geothermal energy exploration is based in part on interpretation of the chemistry, temperature, and discharge rate of thermal springs. Here we present the major element chemistry and the δD, δ18O, 87Sr/86Sr and δ11B isotopic ratio of groundwater from the low-enthalpy geothermal system near the city of Viterbo in the Cimino-Vico volcanic district of west-Central Italy. The geothermal system hosts many thermal springs and gas vents, but the resource is still unexploited. Water chemistry is controlled by mixing between low salinity,HCO3-rich fresh waters (<24.2°C) flowing in shallow volcanic rocks and SO4-rich thermal waters (25.3°C to 62.2°C) ascending from deep, high permeability Mesozoic limestones. The (equivalent) SO4/Cl (0.01–0.02), Na/Cl (2.82–5.83) and B/Cl ratios (0.02–0.38) of thermal waters differs from the ratios in other geothermal systems from Central Italy, probably implying a lack of hydraulic continuity across the region. The δ18O (−6.6‰ to −5.9‰) and δD (−40.60‰ to −36.30‰) isotopic composition of spring water suggest that the recharge area for the geothermal system is the summit region of Mount Cimino. The strontium isotope ratios (87Sr/86Sr) of thermal waters (0.70797–0.70805) are consistent with dissolution of the Mesozoic evaporite-carbonate units that constitute the reservoir, and the ratios of cold fresh waters mainly reflect shallow circulation through the volcanic cover and some minor admixture (<10%) of thermal water as well. The boron isotopic composition (δ11B) of fresh waters (−5.00 and 6.12‰) is similar to that of the volcanic cover, but the δ11B of thermal waters (−8.37‰ to −4.12‰) is a mismatch for the Mesozoic reservoir rocks and instead reflects dissolution of secondary boron minerals during fluid ascent through flysch units that overlie the reservoir. A slow and tortuous ascent enhances extraction of boron but also promotes conductive cooling, partially masking the heat present in the

  11. Central configurations, periodic orbits, and Hamiltonian systems

    CERN Document Server

    Llibre, Jaume; Simó, Carles

    2015-01-01

    The notes of this book originate from three series of lectures given at the Centre de Recerca Matemàtica (CRM) in Barcelona. The first one is dedicated to the study of periodic solutions of autonomous differential systems in Rn via the Averaging Theory and was delivered by Jaume Llibre. The second one, given by Richard Moeckel, focusses on methods for studying Central Configurations. The last one, by Carles Simó, describes the main mechanisms leading to a fairly global description of the dynamics in conservative systems. The book is directed towards graduate students and researchers interested in dynamical systems, in particular in the conservative case, and aims at facilitating the understanding of dynamics of specific models. The results presented and the tools introduced in this book include a large range of applications.

  12. Central nervous system involvement by multiple myeloma

    DEFF Research Database (Denmark)

    Jurczyszyn, Artur; Grzasko, Norbert; Gozzetti, Alessandro

    2016-01-01

    The multicenter retrospective study conducted in 38 centers from 20 countries including 172 adult patients with CNS MM aimed to describe the clinical and pathological characteristics and outcomes of patients with multiple myeloma (MM) involving the central nervous system (CNS). Univariate......, 97% patients received initial therapy for CNS disease, of which 76% received systemic therapy, 36% radiotherapy and 32% intrathecal therapy. After a median follow-up of 3.5 years, the median overall survival (OS) from the onset of CNS involvement for the entire group was 7 months. Untreated...... untreated patients and patients with favorable cytogenetic profile might be prolonged due to systemic treatment and/or radiotherapy. This article is protected by copyright. All rights reserved....

  13. Central Nervous System Involvement by Multiple Myeloma

    DEFF Research Database (Denmark)

    Jurczyszyn, A.; Gozzetti, A.; Cerase, A.

    2015-01-01

    Introduction: Central nervous system (CNS) involvement by multiple myeloma (MM) is a rare occurrence and is found in approximately 1% of MM patients at some time during the course of their disease. At the time of diagnosis, extramedullary MM is found in 7% of patients, and another 6% may develop....... Results: The median time from MM diagnosis to CNS MM diagnosis was 3 years. Upon diagnosis, 97% patients with CNS MM received frontline therapy, of which 76% received systemic therapy, 36% radiotherapy and 32% intrathecal therapy. The most common symptoms at presentation were visual changes (36...... history of chemotherapy and unfavorable cytogenetic profile, survival of individuals free from these negative prognostic factors can be prolonged due to administration of systemic treatment and/or radiotherapy. Prospective multi-institutional studies are warranted to improve the outcome of patients...

  14. PLASTICITY IN THE ADULT CENTRAL AUDITORY SYSTEM.

    Science.gov (United States)

    Irvine, Dexter R F; Fallon, James B; Kamke, Marc R

    2006-04-01

    The central auditory system retains into adulthood a remarkable capacity for plastic changes in the response characteristics of single neurons and the functional organization of groups of neurons. The most dramatic examples of this plasticity are provided by changes in frequency selectivity and organization as a consequence of either partial hearing loss or procedures that alter the significance of particular frequencies for the organism. Changes in temporal resolution are also seen as a consequence of altered experience. These forms of plasticity are likely to contribute to the improvements exhibited by cochlear implant users in the post-implantation period.

  15. PLASTICITY IN THE ADULT CENTRAL AUDITORY SYSTEM

    Science.gov (United States)

    Irvine, Dexter R. F.; Fallon, James B.; Kamke, Marc R.

    2007-01-01

    The central auditory system retains into adulthood a remarkable capacity for plastic changes in the response characteristics of single neurons and the functional organization of groups of neurons. The most dramatic examples of this plasticity are provided by changes in frequency selectivity and organization as a consequence of either partial hearing loss or procedures that alter the significance of particular frequencies for the organism. Changes in temporal resolution are also seen as a consequence of altered experience. These forms of plasticity are likely to contribute to the improvements exhibited by cochlear implant users in the post-implantation period. PMID:17572797

  16. Origin of the ca. 90 Ma magnesia-rich volcanic rocks in SE Nyima, central Tibet: Products of lithospheric delamination beneath the Lhasa-Qiangtang collision zone

    Science.gov (United States)

    Wang, Qing; Zhu, Di-Cheng; Zhao, Zhi-Dan; Liu, Sheng-Ao; Chung, Sun-Lin; Li, Shi-Min; Liu, Dong; Dai, Jin-Gen; Wang, Li-Quan; Mo, Xuan-Xue

    2014-06-01

    Bulk-rock major and trace element, Sr-Nd-Hf isotope, zircon U-Pb age, and zircon Hf isotopic data of the Late Cretaceous Zhuogapu volcanic rocks in the northern Lhasa subterrane provide a new insight into tectonic processes following the collision of the terrane with the Qiangtang zone. SHRIMP zircon U-Pb dating reveals that the Zhuogapu volcanic rocks crystallized at ca. 91 Ma, postdating the development of a regional angular unconformity between the Upper Cretaceous and the underlying strata in the Lhasa-Qiangtang collision zone. Compared to the Andean arc-type andesites and dacites, the Zhuogapu volcanic rocks are characterized by higher MgO of 2.78-5.86 wt.% and Mg# of 54-64 for andesites and MgO of 2.30-2.61 wt.% and Mg# of 55-58 for dacites. Eight andesite samples have whole-rock (87Sr/86Sr)i of 0.7054-0.7065, εNd(t) of - 3.2 to - 1.7, and εHf(t) of + 3.8-+ 6.4, similar to those of the three dacite samples with (87Sr/86Sr)i = 0.7056-0.7060, εNd(t) of - 2.7 to - 2.2, and εHf(t) of + 5.6-+ 7.0. Thirteen analyses from a dacite sample give positive zircon εHf(t) of + 5.6 to + 8.7. These signatures indicate that the Zhuogapu Mg-rich andesites were most likely derived from partial melting of a delaminated mafic lower crust (including the lowermost crust straddling the northern and central Lhasa subterranes) that led to the generation of the Zhuogapu primary melts with adakitic signatures and small negative εNd(t). Such melts subsequently experienced interaction of melt-asthenospheric mantle peridotite followed by the modification of highly fractionated magmas in shallow crustal magma chamber. Hornblende-controlled fractionation results in the change of geochemical composition from Mg-rich andesitic to Mg-rich dacitic magmas. Field observations, together with geochronological and geochemical data, indicate that the Zhuogapu Mg-rich volcanic rocks and coeval magmatism in the northern Lhasa subterrane may be the result of thickened lithospheric delamination

  17. Lower Pliensbachian caldera volcanism in high-obliquity rift systems in the western North Patagonian Massif, Argentina

    Science.gov (United States)

    Benedini, Leonardo; Gregori, Daniel; Strazzere, Leonardo; Falco, Juan I.; Dristas, Jorge A.

    2014-12-01

    In the Cerro Carro Quebrado and Cerro Catri Cura area, located at the border between the Neuquén Basin and the North Patagonian Massif, the Garamilla Formation is composed of four volcanic stages: 1) andesitic lava-flows related to the beginning of the volcanic system; 2) basal massive lithic breccias that represent the caldera collapse; 3) voluminous, coarse-crystal rich massive lava-like ignimbrites related to multiple, steady eruptions that represent the principal infill of the system; and, finally 4) domes, dykes, lava flows, and lava domes of rhyolitic composition indicative of a post-collapse stage. The analysis of the regional and local structures, as well as, the architectures of the volcanic facies, indicates the existence of a highly oblique rift, with its principal extensional strain in an NNE-SSW direction (˜N10°). The analyzed rocks are mainly high-potassium dacites and rhyolites with trace and RE elements contents of an intraplate signature. The age of these rocks (189 ± 0.76 Ma) agree well with other volcanic sequences of the western North Patagonian Massif, as well as, the Neuquén Basin, indicating that Pliensbachian magmatism was widespread in both regions. The age is also coincident with phase 1 of volcanism of the eastern North Patagonia Massif (188-178 Ma) represented by ignimbrites, domes, and pyroclastic rocks of the Marifil Complex, related to intraplate magmatism.

  18. Canyon incision, volcanic fill, and re-incision rates in southwest Peru: proxies for quantifying uplift in the Central Andes

    Science.gov (United States)

    Thouret, Jean-Claude; Gunnell, Yanni; de La Rupelle, Aude

    2010-05-01

    canyon system is still adjusting its course through large Pleistocene debris-avalanche deposits. Three knickzones occur along the length of the canyon. Upstream, V-shaped bedrock gorges of Cotahuasi give way to a ~1 km-wide braided channel of Ocoña, confirming asynchronous incision. Successive waves of knickpoint migration can be evidenced by breaks in slope when reconstructing Pliocene longitudinal valley profiles, when the 4.9-3.6 Ma Sencca ignimbrites filled the canyon. Longitudinal incision and lateral slope processes collaborated to shape distinct canyon reaches. No volcanic rocks older than some 2.27 Ma valley-floor lava flows have been preserved on the steep walls of the lower Rio Ocoña valley. In contrast, in the upper reaches of the Ocoña and Cotahuasi, two Sencca ignimbrites, 4.9-3.6 and 2.34-1.6 Ma old, cap two sets of rock plat-forms cut in slopes 400-600 m above the present-day channel. The 3390 km2 canyon catchment area has undergone 0.2 km3 Myr-1 of averaged bulk erosion since 13 Ma. This relatively low rate for an active orogen can be explained by the long-term prevalence of arid climatic conditions. Runoff and erosion were nevertheless enhanced after 6 Ma by bedrock being driven through increasingly higher altitudinal belts, eventually permitting glacier-fed runoff after 2 Ma. Erosion has been intermittent, alternately enhanced or hindered by slope instability. Large debris avalanches and mass flows caused ponding and subsequent lake-breakout debris flows, which slowed down the successive waves of knickpoint propagation. Clastic fill having repeatedly altered local relief in the canyon, the mass balance of valley incision has thus been more complex than any impression of a steady removal of bedrock in response to crustal uplift might suggest.

  19. Distributed generation and centralized power system in Thailand

    DEFF Research Database (Denmark)

    Sukkumnoed, Decharut

    The paper examines and discusses conflicts between the development of distributed power and centralized power system in Thailand.......The paper examines and discusses conflicts between the development of distributed power and centralized power system in Thailand....

  20. Distributed generation and centralized power system in Thailand

    DEFF Research Database (Denmark)

    Sukkumnoed, Decharut

    2004-01-01

    The paper examines and discusses conflicts between the development of distributed power and centralized power system.......The paper examines and discusses conflicts between the development of distributed power and centralized power system....

  1. Drilling of Submarine Shallow-water Hydrothermal Systems in Volcanic Arcs of the Tyrrhenian Sea, Italy

    Science.gov (United States)

    Petersen, S.; Augustin, N.; de Benedetti, A.; Esposito, A.; Gaertner, A.; Gemmell, B.; Gibson, H.; He, G.; Huegler, M.; Kleeberg, R.; Kuever, J.; Kummer, N. A.; Lackschewitz, K.; Lappe, F.; Monecke, T.; Perrin, K.; Peters, M.; Sharpe, R.; Simpson, K.; Smith, D.; Wan, B.

    2007-12-01

    Seafloor hydrothermal systems related to volcanic arcs are known from several localities in the Tyrrhenian Sea in water depths ranging from 650 m (Palinuro Seamount) to less than 50 m (Panarea). At Palinuro Seamount 13 holes (holes ended in mineralization. Metal enrichment at the top of the deposit is evident in some cores with polymetallic (Zn, Pb, Ag) sulfides overlying more massive and dense pyritic ore. The massive sulfide mineralization at Palinuro Seamount contains a number of unusual minerals, including enargite, tennantite, luzonite, and Ag-sulfosalts, that are not commonly encountered in mid-ocean ridge massive sulfides. In analogy to epithermal deposits forming on land, the occurrence of these minerals suggests a high sulfidation state of the hydrothermal fluids during deposition implying that the mineralizing fluids were acidic and oxidizing rather than near-neutral and reducing as those forming typical base metal rich massive sulfides along mid-ocean ridges. Oxidizing conditions during sulfide deposition can probably be related to the presence of magmatic volatiles in the mineralizing fluids that may be derived from a degassing magma chamber. Elevated temperatures within sediment cores and TV-grab stations (up to 60°C) indicate present day hydrothermal fluid flow. This is also indicated by the presence of small tube-worm bushes present on top the sediment. A number of drill holes were placed around the known phreatic gas-rich vents of Panarea and recovered intense clay-alteration in some holes as well as abundant massive anhydrite/gypsum with only trace sulfides along a structural depression suggesting the presence of an anhydrite seal to a larger hydrothermal system at depth. The aim of this study is to understand the role that magmatic volatiles and phase separation play in the formation of these precious and trace element-rich shallow water (<750m) hydrothermal systems in the volcanic arcs of the Tyrrhenian Sea.

  2. Intercomparison of SO2 camera systems for imaging volcanic gas plumes

    Science.gov (United States)

    Kern, Christoph; Lübcke, Peter; Bobrowski, Nicole; Campion, Robin; Mori, Toshiya; Smekens, Jean-Francois; Stebel, Kerstin; Tamburello, Giancarlo; Burton, Mike; Platt, Ulrich; Prata, Fred

    2015-01-01

    SO2 camera systems are increasingly being used to image volcanic gas plumes. The ability to derive SO2 emission rates directly from the acquired imagery at high time resolution allows volcanic process studies that incorporate other high time-resolution datasets. Though the general principles behind the SO2 camera have remained the same for a number of years, recent advances in CCD technology and an improved understanding of the physics behind the measurements have driven a continuous evolution of the camera systems. Here we present an intercomparison of seven different SO2 cameras. In the first part of the experiment, the various technical designs are compared and the advantages and drawbacks of individual design options are considered. Though the ideal design was found to be dependent on the specific application, a number of general recommendations are made. Next, a time series of images recorded by all instruments at Stromboli Volcano (Italy) is compared. All instruments were easily able to capture SO2 clouds emitted from the summit vents. Quantitative comparison of the SO2 load in an individual cloud yielded an intra-instrument precision of about 12%. From the imagery, emission rates were then derived according to each group's standard retrieval process. A daily average SO2 emission rate of 61 ± 10 t/d was calculated. Due to differences in spatial integration methods and plume velocity determination, the time-dependent progression of SO2 emissions varied significantly among the individual systems. However, integration over distinct degassing events yielded comparable SO2 masses. Based on the intercomparison data, we find an approximate 1-sigma precision of 20% for the emission rates derived from the various SO2 cameras. Though it may still be improved in the future, this is currently within the typical accuracy of the measurement and is considered sufficient for most applications.

  3. Systematic approaches to central nervous system myelin.

    Science.gov (United States)

    de Monasterio-Schrader, Patricia; Jahn, Olaf; Tenzer, Stefan; Wichert, Sven P; Patzig, Julia; Werner, Hauke B

    2012-09-01

    Rapid signal propagation along vertebrate axons is facilitated by their insulation with myelin, a plasma membrane specialization of glial cells. The recent application of 'omics' approaches to the myelinating cells of the central nervous system, oligodendrocytes, revealed their mRNA signatures, enhanced our understanding of how myelination is regulated, and established that the protein composition of myelin is much more complex than previously thought. This review provides a meta-analysis of the > 1,200 proteins thus far identified by mass spectrometry in biochemically purified central nervous system myelin. Contaminating proteins are surprisingly infrequent according to bioinformatic prediction of subcellular localization and comparison with the transcriptional profile of oligodendrocytes. The integration of datasets also allowed the subcategorization of the myelin proteome into functional groups comprising genes that are coregulated during oligodendroglial differentiation. An unexpectedly large number of myelin-related genes cause-when mutated in humans-hereditary diseases affecting the physiology of the white matter. Systematic approaches to oligodendrocytes and myelin thus provide valuable resources for the molecular dissection of developmental myelination, glia-axonal interactions, leukodystrophies, and demyelinating diseases.

  4. Vitamin D and the central nervous system.

    Science.gov (United States)

    Wrzosek, Małgorzata; Łukaszkiewicz, Jacek; Wrzosek, Michał; Jakubczyk, Andrzej; Matsumoto, Halina; Piątkiewicz, Paweł; Radziwoń-Zaleska, Maria; Wojnar, Marcin; Nowicka, Grażyna

    2013-01-01

    Vitamin D is formed in human epithelial cells via photochemical synthesis and is also acquired from dietary sources. The so-called classical effect of this vitamin involves the regulation of calcium homeostasis and bone metabolism. Apart from this, non-classical effects of vitamin D have recently gained renewed attention. One important yet little known of the numerous functions of vitamin D is the regulation of nervous system development and function. The neuroprotective effect of vitamin D is associated with its influence on neurotrophin production and release, neuromediator synthesis, intracellular calcium homeostasis, and prevention of oxidative damage to nervous tissue. Clinical studies suggest that vitamin D deficiency may lead to an increased risk of disease of the central nervous system (CNS), particularly schizophrenia and multiple sclerosis. Adequate intake of vitamin D during pregnancy and the neonatal period seems to be crucial in terms of prevention of these diseases.

  5. Central nervous system lupus erythematosus in childhood

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Shumpei; Kimura, Kazue; Yoshida, Naotaka; Mitsuda, Toshihiro; Ibe, Masa-aki; Shimizu, Hiroko (Yokohama City Univ. (Japan). Faculty of Medicine)

    1989-12-01

    Clinical features of central nervous system (CNS) invlvement in childhood systemic lupus erythematosus (SLE) was investigated. Neuropsychiatric manifestations including seizures, chorea, headache, overt psychosis, tremor, increase of muscle spastisity, and disturbed memory were found in 47% of 15 patients with SLE. There was a well correlatin between CNS abnormalities and SLE disease activity judged by serum complement levels and anti-nuclear antibody and anti-DNA antibody titers. The administration of Prednisolon was effective for the treatment of these CNS abnormalities and steroid psychosis was rare in the present study. EEG abnormalities involving diffuse slowing and slowing bursts were found in 73% of the patients. Cranial CT scan revealed basel ganglia calcifications in 2 patients, and marked brain atrophy in 3 patients. This study indicated that in the long term following of SLE children CNS abnormalities need to be serially checked by EEG and cranial CT scans as well as serological investigations. (author).

  6. The chemistry and isotopic composition of waters in the low-enthalpy geothermal system of Cimino-Vico Volcanic District, Italy

    Science.gov (United States)

    Battistel, Maria; Hurwitz, Shaul; Evans, William C.; Barbieri, Maurizio

    2016-12-01

    Geothermal energy exploration is based in part on interpretation of the chemistry, temperature, and discharge rate of thermal springs. Here we present the major element chemistry and the δD, δ18O, 87Sr/86Sr and δ11B isotopic ratio of groundwater from the low-enthalpy geothermal system near the city of Viterbo in the Cimino-Vico volcanic district of west-Central Italy. The geothermal system hosts many thermal springs and gas vents, but the resource is still unexploited. Water chemistry is controlled by mixing between low salinity,HCO3-rich fresh waters (extraction of boron but also promotes conductive cooling, partially masking the heat present in the reservoir. Overall data from this study is consistent with previous studies that concluded that the geothermal system has a large energy potential.

  7. Volcanic pulses determined by local re-melting throughout plumbing systems

    Science.gov (United States)

    Di Renzo, V.; Moretti, R.; neuville, D. R.; Le Losq, C.; Allard, P.; Arienzo, I.; Civetta, L.; D'Antonio, M.; Flank, A.; Lagarde, P.; Metrich, N.; Orsi, G.; Papale, P.

    2012-12-01

    We present results from a thorough surveys of magma features from active southern Italy Volcanoes (Vesuvius, Campi Flegrei, Ischia, Stromboli) which are clearly related to a common subduction setting. In fact, the geochemical signatures of volcanic products from these sites show that their source regions are invested by melt/fluids released from the de-volatilizing slab. Volcanism at these volcanic sites is commonly seen as due to magmas ascending and differentiating from the parental melts originated in the mantle source. However, these volcanoes and their products, melt inclusions (MIs) particularly, show common features, such as: 1) a relatively modest magma production in recent times; 2) high total volatile contents and abundant gas emission at surface; 3) abundant CO2 in the gas phase coexisting with the melts at large depths, prior to any interaction with the carbonatic basement, if present; 4) CO2 fluxing of magmas; 5) vapor buffered trends bounding MIs on H2O-CO2 saturation diagrams; 6) evidences of isotopic disequilibria between minerals and melts; 7) high oxidation states also in deep mafic parental magmas, essentially governed by Fe2+/Fe3+ around 1; 8) relatively low-MgO contents of mafic parental magmas. All these features can be ascribed to multiple paths of magma mixing/mingling + degassing + fractional crystallization. Here we present a complementary hypothesis and suggest that the ascending slab-derived supercritical fluids may (re)melt pre-existing crystal mushes (e.g., Gaetani and Grove, 2003) at great crustal depths and then mobilize small batches of fluid-rich magmas, contributing to the above features. In this view, mafic magmas emitted at studied volcanoes during the last 10 ka could represent molten patches, formed under hydrous and oxidized conditions, of mush compositionally akin to mafic trachybasaltic rocks. Iron is in fact the most abundant multiple valence element within the mushy system, and during the fluid-driven melting at depth it

  8. Bilastine and the central nervous system.

    Science.gov (United States)

    Montoro, J; Mullol, J; Dávila, I; Ferrer, M; Sastre, J; Bartra, J; Jáuregui, I; del Cuvillo, A; Valero, A

    2011-01-01

    Antihistamines have been classifed as first or second generation drugs, according to their pharmacokinetic properties, chemical structure and adverse effects. The adverse effects of antihistamines upon the central nervous system (CNS) depend upon their capacity to cross the blood-brain barrier (BBB) and bind to the central H1 receptors (RH1). This in turn depends on the lipophilicity of the drug molecule, its molecular weight (MW), and affinity for P-glycoprotein (P-gp) (CNS xenobiotic substances extractor protein). First generation antihistamines show scant affinity for P-gp, unlike the second generation molecules which are regarded as P-gp substrates. Histamine in the brain is implicated in many functions (waking-sleep cycle, attention, memory and learning, and the regulation of appetite), with numerous and complex interactions with different types of receptors in different brain areas. Bilastine is a new H1 antihistamine that proves to be effective in treating allergic rhinoconjunctivitis (seasonal and perennial) and urticaria. The imaging studies made, as well as the objective psychomotor tests and subjective assessment of drowsiness, indicate the absence of bilastine action upon the CNS. This fact, and the lack of interaction with benzodiazepines and alcohol, define bilastine as a clinically promising drug with a good safety profile as regards adverse effects upon the CNS.

  9. The Pliocene initiation and Early Pleistocene volcanic disruption of the palaeo-Gediz fluvial system, Western Turkey

    NARCIS (Netherlands)

    Maddy, D.; Demir, T.; Bridgland, D.R.; Veldkamp, A.; Stemerdink, C.; Schriek, van der T.; Schreve, D.

    2007-01-01

    In this paper, we report our latest observations concerning a Pliocene and Early Pleistocene record from Western Turkey. The sedimentary sequence described comprises the fluvial deposits of an Early Pleistocene palaeo-Gediz river system and its tributaries prior to the onset of volcanism around Kula

  10. Inverse Dipolar Magnetic Anomaly Over the Volcanic Cone Linked to Reverse Polarity Magnetizations in Lavas and Tuffs - Implications for the Conduit System

    Science.gov (United States)

    Fucugauchi, J. U.; Perez-Cruz, L. L.; Trigo-Huesca, A.

    2012-12-01

    A combined magnetics and paleomagnetic study of Toluquilla monogenetic volcano and associated lavas and tuffs from Valsequillo basin in Central Mexico provides evidence on a magnetic link between lavas, ash tuffs and the underground volcanic conduit system. Paleomagnetic analyses show that lavas and ash tuffs carry reverse polarity magnetizations, which correlate with the inversely polarized dipolar magnetic anomaly over the volcano. The magnetizations in the lava and tuff show similar southward declinations and upward inclinations, supporting petrological inferences that the tuff was emplaced while still hot and indicating a temporal correlation for lava and tuff emplacement. Conduit geometry is one of the important controlling factors in eruptive dynamics of basaltic volcanoes. However volcanic conduits are often not, or only partly, exposed. Modeling of the dipolar anomaly gives a reverse polarity source magnetization associated with a vertical prismatic body with southward declination and upward inclination, which correlates with the reverse polarity magnetizations in the lava and tuff. The study documents a direct correlation of the paleomagnetic records with the underground magmatic conduit system of the monogenetic volcano. Time scale for cooling of the volcanic plumbing system involves a longer period than the one for the tuff and lava, suggesting that magnetization for the source of dipolar anomaly may represent a long time average as compared to the spot readings in the lava and tuff. The reverse polarity magnetizations in lava and tuff and in the underground source body for the magnetic anomaly are interpreted in terms of eruptive activity of Toluquilla volcano at about 1.3 Ma during the Matuyama reverse polarity C1r.2r chron.

  11. The Olig family affects central nervous system development and disease

    Institute of Scientific and Technical Information of China (English)

    Botao Tan; Jing Yu; Ying Yin; Gongwei Jia; Wei Jiang; Lehua Yu

    2014-01-01

    Neural cell differentiation and maturation is a critical step during central nervous system devel-opment. The oligodendrocyte transcription family (Olig family) is known to be an important factor in regulating neural cell differentiation. Because of this, the Olig family also affects acute and chronic central nervous system diseases, including brain injury, multiple sclerosis, and even gliomas. Improved understanding about the functions of the Olig family in central nervous system development and disease will greatly aid novel breakthroughs in central nervous system diseases. This review investigates the role of the Olig family in central nervous system develop-ment and related diseases.

  12. Glucocorticoids and central nervous system inflammation.

    Science.gov (United States)

    Dinkel, Klaus; Ogle, William O; Sapolsky, Robert M

    2002-12-01

    Glucocorticoids (GCs) are well known for their anti-inflammatory and immunosuppressive properties in the periphery and are therefore widely and successfully used in the treatment of autoimmune diseases, chronic inflammation, or transplant rejection. This led to the assumption that GCs are uniformly anti-inflammatory in the periphery and the central nervous system (CNS). As a consequence, GCs are also used in the treatment of CNS inflammation. There is abundant evidence that an inflammatory reaction is mounted within the CNS following trauma, stroke, infection, and seizure, which can augment the brain damage. However an increasing number of studies indicate that the concept of GCs being universally immunosuppressive might be oversimplified. This article provides a review of the current literature, showing that under certain circumstances GCs might fail to have anti-inflammatory effects and sometimes even enhance inflammation.

  13. Corticosteroids In Infections Of Central Nervous System

    Directory of Open Access Journals (Sweden)

    Meena AK

    2003-01-01

    Full Text Available Infections of central nervous system are still a major problem. Despite the introduction of newer antimicrobial agents, mortality and long-term sequelace associated with these infections is unacceptably high. Based on the evidence that proinflammtory cytokines have a role in pathophysiology of bacterial and tuberculous meningitis, corticosteroids with a potent anti-inflammatory and immunomodulating effect have been tested and found to be of use in experimental and clinical studies, Review of the available literature suggests steroid administration just prior to antimicrobial therapy is effective in decreasing audiologic and neurologic sequelae in childern with H. influenzae nenigitis. Steroid use for bacterial meningitis in adults is found to be beneficial in case of S. pneumoniae. The value of adjunctive steroid therapy for other bacterial causes of meningitis remains unproven. Corticocorticoids are found to be of no benefit in viral meningitis, Role of steroids in HIV positive patients needs to be studied.

  14. Pediatric central nervous system vascular malformations

    Energy Technology Data Exchange (ETDEWEB)

    Burch, Ezra A. [Brigham and Women' s Hospital, Department of Radiology, Boston, MA (United States); Orbach, Darren B. [Boston Children' s Hospital, Neurointerventional Radiology, Boston, MA (United States)

    2015-09-15

    Pediatric central nervous system (CNS) vascular anomalies include lesions found only in the pediatric population and also the full gamut of vascular lesions found in adults. Pediatric-specific lesions discussed here include infantile hemangioma, vein of Galen malformation and dural sinus malformation. Some CNS vascular lesions that occur in adults, such as arteriovenous malformation, have somewhat distinct manifestations in children, and those are also discussed. Additionally, children with CNS vascular malformations often have associated broader vascular conditions, e.g., PHACES (posterior fossa anomalies, hemangioma, arterial anomalies, cardiac anomalies, eye anomalies and sternal anomalies), hereditary hemorrhagic telangiectasia, and capillary malformation-arteriovenous malformation syndrome (related to the RASA1 mutation). The treatment of pediatric CNS vascular malformations has greatly benefited from advances in endovascular therapy, including technical advances in adult interventional neuroradiology. Dramatic advances in therapy are expected to stem from increased understanding of the genetics and vascular biology that underlie pediatric CNS vascular malformations. (orig.)

  15. Parasitic diseases of the central nervous system.

    Science.gov (United States)

    Chacko, Geeta

    2010-08-01

    Parasitic infections, though endemic to certain regions, have over time appeared in places far removed from their original sites of occurrence facilitated probably by the increase in world travel and the increasing migration of people from their native lands to other, often distant, countries. The frequency of occurrence of some of these diseases has also changed based on a variety of factors, including the presence of intermediate hosts, geographic locations, and climate. One factor that has significantly altered the epidemiology of parasitic diseases within the central nervous system (CNS) is the HIV pandemic. In this review of the pathology of parasitic infections that affect the CNS, each parasite is discussed in the sequence of epidemiology, life cycle, pathogenesis, and pathology.

  16. VIIP: Central Nervous System (CNS) Modeling

    Science.gov (United States)

    Vera, Jerry; Mulugeta, Lealem; Nelson, Emily; Raykin, Julia; Feola, Andrew; Gleason, Rudy; Samuels, Brian; Ethier, C. Ross; Myers, Jerry

    2015-01-01

    Current long-duration missions to the International Space Station and future exploration-class missions beyond low-Earth orbit expose astronauts to increased risk of Visual Impairment and Intracranial Pressure (VIIP) syndrome. It has been hypothesized that the headward shift of cerebrospinal fluid (CSF) and blood in microgravity may cause significant elevation of intracranial pressure (ICP), which in turn may then induce VIIP syndrome through interaction with various biomechanical pathways. However, there is insufficient evidence to confirm this hypothesis. In this light, we are developing lumped-parameter models of fluid transport in the central nervous system (CNS) as a means to simulate the influence of microgravity on ICP. The CNS models will also be used in concert with the lumped parameter and finite element models of the eye described in the related IWS works submitted by Nelson et al., Feola et al. and Ethier et al.

  17. Advances in Primary Central Nervous System Lymphoma.

    Science.gov (United States)

    Patrick, Lauren B; Mohile, Nimish A

    2015-12-01

    Primary central nervous system lymphoma (PCNSL) is a rare form of non-Hodgkin lymphoma that is limited to the CNS. Although novel imaging techniques aid in discriminating lymphoma from other brain tumors, definitive diagnosis requires brain biopsy, vitreoretinal biopsy, or cerebrospinal fluid analysis. Survival rates in clinical studies have improved over the past 20 years due to the addition of high-dose methotrexate-based chemotherapy regimens to whole-brain radiotherapy. Long-term survival, however, is complicated by clinically devastating delayed neurotoxicity. Newer regimens are attempting to reduce or eliminate radiotherapy from first-line treatment with chemotherapy dose intensification. Significant advances have also been made in the fields of pathobiology and treatment, with more targeted treatments on the horizon. The rarity of the disease makes conducting of prospective clinical trials challenging, requiring collaborative efforts between institutions. This review highlights recent advances in the biology, detection, and treatment of PCNSL in immunocompetent patients.

  18. An Early-Warning System for Volcanic Ash Dispersal: The MAFALDA Procedure

    Science.gov (United States)

    Barsotti, S.; Nannipieri, L.; Neri, A.

    2006-12-01

    Forecasts of the dispersal of volcanic ash is a fundamental goal in order to mitigate its potential impact on urbanized areas and transport routes surrounding explosive volcanoes. To this aim we developed an early- warning procedure named MAFALDA (Modeling And Forecasting Ash Loading and Dispersal in the Atmosphere). Such tool is able to quantitatively forecast the atmospheric concentration of ash as well as the ground deposition as a function of time over a 3D spatial domain.\\The main features of MAFALDA are: (1) the use of the hybrid Lagrangian-Eulerian code VOL-CALPUFF able to describe both the rising column phase and the atmospheric dispersal as a function of weather conditions, (2) the use of high-resolution weather forecasting data, (3) the short execution time that allows to analyse a set of scenarios and (4) the web-based CGI software application (written in Perl programming language) that shows the results in a standard graphical web interface and makes it suitable as an early-warning system during volcanic crises.\\MAFALDA is composed by a computational part that simulates the ash cloud dynamics and a graphical interface for visualizing the modelling results. The computational part includes the codes for elaborating the meteorological data, the dispersal code and the post-processing programs. These produces hourly 2D maps of aerial ash concentration at several vertical levels, extension of "threat" area on air and 2D maps of ash deposit on the ground, in addition to graphs of hourly variations of column height.\\The processed results are available on the web by the graphical interface and the users can choose, by drop-down menu, which data to visualize. \\A first partial application of the procedure has been carried out for Mt. Etna (Italy). In this case, the procedure simulates four volcanological scenarios characterized by different plume intensities and uses 48-hrs weather forecasting data with a resolution of 7 km provided by the Italian Air Force.

  19. Coexistence of pumice and manganese nodule fields-evidence for submarine silicic volcanism in the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.; Sudhakar, M.

    Pumice, of various shapes and sizes, uncoated or coatEd. by ferromanganese oxides, have been recovered from deeper parts of the Central Indian Basin (CIB). The pumice field covers an area of 600,000 km sup(2), approximately encompassing one...

  20. Central nervous system toxicity of metallic nanoparticles

    Directory of Open Access Journals (Sweden)

    Feng XL

    2015-07-01

    Full Text Available Xiaoli Feng,1 Aijie Chen,1 Yanli Zhang,1 Jianfeng Wang,2 Longquan Shao,1 Limin Wei2 1Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China; 2School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China Abstract: Nanomaterials (NMs are increasingly used for the therapy, diagnosis, and monitoring of disease- or drug-induced mechanisms in the human biological system. In view of their small size, after certain modifications, NMs have the capacity to bypass or cross the blood–brain barrier. Nanotechnology is particularly advantageous in the field of neurology. Examples may include the utilization of nanoparticle (NP-based drug carriers to readily cross the blood–brain barrier to treat central nervous system (CNS diseases, nanoscaffolds for axonal regeneration, nanoelectromechanical systems in neurological operations, and NPs in molecular imaging and CNS imaging. However, NPs can also be potentially hazardous to the CNS in terms of nano­neurotoxicity via several possible mechanisms, such as oxidative stress, autophagy, and lysosome dysfunction, and the activation of certain signaling pathways. In this review, we discuss the dual effect of NMs on the CNS and the mechanisms involved. The limitations of the current research are also discussed. Keywords: nanomaterials, neurotoxicity, blood–brain barrier, autophagy, ROS

  1. Inorganic particles in the skin of inhabitants of volcanic areas of Central America: their possible immunomodulatory influence in leishmaniasis and leprosy.

    Science.gov (United States)

    Convit, J; Ulrich, M; Castillo, J; De Lima, H; Pérez, M; Caballero, N; Hung, J; Arana, B; Pérez, P

    2006-08-01

    We have evaluated biopsies from patients with atypical nodular and typical ulcerated lesions of cutaneous leishmaniasis, from leishmanin reactions and skin from normal individuals from Nicaragua, Honduras and Guatemala for the presence of inorganic particles using confocal microscopy with a polarised light source and conventional histopathological techniques. Analysis by semiquantitative confocal microscopy permitted the demonstration of significantly larger numbers of particles in atypical lesions. Silica and aluminium, important components of these particles, were less abundant in particles from normal skin. The histology of these atypical lesions, characterised by 'naked' sarcoidal granulomas with epithelioid differentiation but very few lymphocytes, was very similar to the histological reaction observed after 14 days in persisting inflammation at leishmanin skin test sites. The presence of these unusual lesions in areas of Central American countries characterised by the presence of large amounts of volcanic ash, as well the unexpectedly low prevalence of leprosy in Central America, suggest that environmental factors may contribute significantly to the frequency and clinical manifestations of these infections. Among possible environmental features, the presence of inorganic particles with immunomodulatory properties in the skin may be a significant factor.

  2. The role of petrology in defining volcanic hazards and designing monitoring systems

    Science.gov (United States)

    Smith, I. E.; Turner, M. B.; Price, R. C.; Cronin, S. J.

    2011-12-01

    Petrology is the study of magmatic systems; physical volcanology investigates processes of eruption. Physical volcanology provides the pre-eminent underpinning of the practical business of defining hazard scenarios, planning mitigation and designing monitoring strategies. Recent research in a variety of volcanic settings has demonstrated an important link between the petrologic processes that at a fundamental level drive the behavior of volcanoes and the processes that determine the eruptive style of a volcano. Together these define the hazards that arise from volcanic eruptions. Petrological studies of volcanoes are typically based on a study of lava because coherent rock is less vulnerable to weathering and alteration and is more durable in the geological record. Pyroclastic materials are commonly friable and glassy, are more easily eroded, and are more difficult to use in the analytical techniques that have become the staple basis of petrological studies. However, pyroclastic materials represent a complementary but different part of the magmatic story and it is only by integrating both effusive and explosive components of an eruption sequence that a complete picture of the behavior of the system feeding a volcano can be gained. Andesitic strato-cones are made up of a cone-building facies consisting mainly of primary magmatic products and usually dominated by lava flows because pyroclastic material is easily eroded from the slopes of a steep cone. The surrounding ring plain facies includes primary pyroclastic deposits but is typically dominated by redistributed material in the form of debris flow and lahar deposits together with reworked fluvial material. The deposits of each of these two facies are assembled on different time scales and they contain different aspects of the record of the evolution of the magmatic system that gave rise to them. An important practical consequence of this is that different parts of the geochemical record of the system can occur in

  3. Possible lava tube system in a hummocky lava flow at Daund, western Deccan Volcanic Province, India

    Indian Academy of Sciences (India)

    Raymond A Duraiswami; Ninad R Bondre; Gauri Dole

    2004-12-01

    A hummocky flow characterised by the presence of toes, lobes, tumuli and possible lava tube system is exposed near Daund, western Deccan Volcanic Province, India. The lava tube system is exposed as several exhumed outcrops and is composed of complex branching and discontinuous segments. The roof of the lava tube has collapsed but original lava tube walls and fragments of the tube roof are seen at numerous places along the tube. At some places the tube walls exhibit a single layer of lava lining, whereas, at other places it shows an additional layer characterised by smooth surface and polygonal cracks. The presence of a branching and meandering lava tube system in the Daund flow, which represents the terminal parts of Thakurwadi Formation, shows that the hummocky flow developed at a low local volumetric flow rate. This tube system developed in the thinner parts of the flow sequence; and tumuli developed in areas where the tube clogged temporarily in the sluggish flow.

  4. Source Dynamics of Long-Period Seismicity in Volcanic and Hydrothermal Systems

    Science.gov (United States)

    Chouet, B. A.

    2006-12-01

    Long-period (LP) seismicity, including individual LP events and tremor, is widely observed in relation to magmatic and hydrothermal activities in volcanic areas and is recognized as a precursory phenomenon for eruptive activity. The waveform of the LP event is characterized by simple decaying harmonic oscillations except for a brief interval at the event onset. This characteristic event signature is commonly interpreted as oscillations of a fluid-filled resonator in response to a time-localized excitation. By the same token, tremor may be viewed as oscillations of the same resonator in response to a sustained excitation. Because the properties of the resonator system at the source of the LP event can be inferred from the complex frequencies of the decaying harmonic oscillations in the tail of the seismogram, these events are particularly important in the quantification of volcanic and hydrothermal processes. The damped oscillations in the LP coda are characterized by two parameters, T and Q, where T is the period of the dominant mode of oscillation, and Q is the quality factor of the oscillatory system representing the combined effects of radiation and intrinsic losses. Typical periods observed for LP events are in the range 0.2 - 2 s, while observed Q range from values near 1 to values larger than 100. Waveform inversions of LP signals carried out so far point to a crack geometry at the source of these events. Detailed investigations of the oscillating characteristics of LP sources based on the fluid-filled crack model suggest source dimensions ranging from tens to several hundred meters. Such studies further indicate that dusty gases and bubbly basalt are the most common types of fluids involved at the source of LP events in magmatic systems, while misty gases, steam and bubbly water commonly represent LP events of hydrothermal origin. Observations carried out in different volcanic settings point to a wide variety of LP excitation mechanisms. At Stromboli

  5. Volcanism and associated hazards: the Andean perspective

    Directory of Open Access Journals (Sweden)

    R. I. Tilling

    2009-12-01

    Full Text Available Andean volcanism occurs within the Andean Volcanic Arc (AVA, which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions" recognized worldwide that have occurred from the Ordovician to the Pleistocene.

    The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru. The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (<0.05 km3 in 1985 of Nevado del Ruiz (Colombia killed about 25 000 people – the worst volcanic disaster in the Andean region as well as the second worst in the world in the 20th century. The Ruiz tragedy has been attributed largely to ineffective communications of hazards information and indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent

  6. Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland.

    Science.gov (United States)

    Sigmundsson, Freysteinn; Hooper, Andrew; Hreinsdóttir, Sigrún; Vogfjörd, Kristín S; Ófeigsson, Benedikt G; Heimisson, Elías Rafn; Dumont, Stéphanie; Parks, Michelle; Spaans, Karsten; Gudmundsson, Gunnar B; Drouin, Vincent; Árnadóttir, Thóra; Jónsdóttir, Kristín; Gudmundsson, Magnús T; Högnadóttir, Thórdís; Fridriksdóttir, Hildur María; Hensch, Martin; Einarsson, Páll; Magnússon, Eyjólfur; Samsonov, Sergey; Brandsdóttir, Bryndís; White, Robert S; Ágústsdóttir, Thorbjörg; Greenfield, Tim; Green, Robert G; Hjartardóttir, Ásta Rut; Pedersen, Rikke; Bennett, Richard A; Geirsson, Halldór; La Femina, Peter C; Björnsson, Helgi; Pálsson, Finnur; Sturkell, Erik; Bean, Christopher J; Möllhoff, Martin; Braiden, Aoife K; Eibl, Eva P S

    2015-01-08

    Crust at many divergent plate boundaries forms primarily by the injection of vertical sheet-like dykes, some tens of kilometres long. Previous models of rifting events indicate either lateral dyke growth away from a feeding source, with propagation rates decreasing as the dyke lengthens, or magma flowing vertically into dykes from an underlying source, with the role of topography on the evolution of lateral dykes not clear. Here we show how a recent segmented dyke intrusion in the Bárðarbunga volcanic system grew laterally for more than 45 kilometres at a variable rate, with topography influencing the direction of propagation. Barriers at the ends of each segment were overcome by the build-up of pressure in the dyke end; then a new segment formed and dyke lengthening temporarily peaked. The dyke evolution, which occurred primarily over 14 days, was revealed by propagating seismicity, ground deformation mapped by Global Positioning System (GPS), interferometric analysis of satellite radar images (InSAR), and graben formation. The strike of the dyke segments varies from an initially radial direction away from the Bárðarbunga caldera, towards alignment with that expected from regional stress at the distal end. A model minimizing the combined strain and gravitational potential energy explains the propagation path. Dyke opening and seismicity focused at the most distal segment at any given time, and were simultaneous with magma source deflation and slow collapse at the Bárðarbunga caldera, accompanied by a series of magnitude M > 5 earthquakes. Dyke growth was slowed down by an effusive fissure eruption near the end of the dyke. Lateral dyke growth with segment barrier breaking by pressure build-up in the dyke distal end explains how focused upwelling of magma under central volcanoes is effectively redistributed over long distances to create new upper crust at divergent plate boundaries.

  7. Alkanes and alkenes in Mediterranean volcanic-hydrothermal systems: origins and geothermometry

    Science.gov (United States)

    Fiebig, Jens; D'Alessandro, Walter; Tassi, Franco; Woodland, Alan

    2010-05-01

    It is still a matter of debate if nature provides conditions for abiogenic production of hydrocarbons. Methane (C1) and the C2+ alkanes emanating from ultramafic hydrothermal systems such as Lost City have been considered to be abiogenic in origin, mainly because of the occurrence of an isotopic reversal between methane and the C2+hydrocarbons and C1/C2+ ratios >1000 [1]. Abiogenic production of methane has been postulated to occur under the relatively oxidizing redox conditions of continental-hydrothermal systems, too. It was observed that temperatures received from the H2-H2O-CO-CO2-CH4 geoindicator were coincident with temperatures derived from carbon isotope partitioning between CO2 and CH4in gases released from the Mediterranean volcanic-hydrothermal systems of Nisyros (Greece), Vesuvio and Ischia (both Italy) [2]. Such equilibrium pattern, if not fortuitous, can only be obtained if mantle- and marine limestone-derived CO2 is reduced to CH4. At Nisyros, observed C1/C2+ ratios from 300-4000 are in agreement with an abiogenic origin of the methane. Ethane and propane, however, were shown to be non-genetic with CO2 and methane. C1/C2 and C2/C3 distribution ratios may point to the admixture of small amounts of hydrocarbons deriving from the thermal decomposition of organic matter along with abiogenically equilibrated methane essentially devoid of the higher hydrocarbons [3]. Here, we provide new isotopic and hydrocarbon concentration data on several Mediterranean volcanic-hydrothermal systems, including Nisyros, Vesuvio, Ischia, Vulcano, Solfatara and Pantelleria. Wherever possible, we have extended our data set for the hydrogen isotope composition of CH4 and H2, n-alkane- and alkene/alkane-distribution ratios. At Nisyros, measured alkene/alkane- and H2/H2O concentration ratios confirm the attainment of equilibrium between CO2 and CH4. CO2 and CH4 appear to have equilibrated in the liquid phase at temperatures of ~360° C and redox conditions closely corresponding

  8. Sr and Nd isotopic characteristics of 1.77-1.58 Ga rift-related granites and volcanics of the Goias tin province, Central Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel, Marcio M.; Botelho, Nilson F. [Brasilia Univ., DF (Brazil). Inst. de Geociencias]. E-mail: marcio@unb.br

    2001-06-01

    Supracrustal rocks of the Arai Group, together with coeval A-type granites represent a ca. 1.77-1.58 Ga old continental rift in Brazil. Two granite families are identified: the older (1.77 Ga) group forms small undeformed plutons, and the younger granites (ca. 1.58 Ga) constitute larger, deformed plutons. Sr-Nd isotopic data for these rocks indicate that the magmatism is mostly produced of re-melting of Paleoproterozoic sialic crust. Initial Sr ratios for both granite families are ca 0.276 and 0.720. Most TDM model ages are between 2.58 and 1.80 Ga. {epsilon}{sub Nd} (T) values are between +3.6 and -11.9. Arai volcanics are bimodal, with basalts and dacites/rhyolites interlayered with continental sediments. The felsic volcanics show Nd isotopic characteristics which are very similar to the granites, and are also interpreted as reworking of Paleoproterozoic crust. Detrital sediments of the Arai Group revealed T{sub DM} model ages between 2.4 and 2.16 Ga., indicating that they are the product of erosion of Paleoproterozoic crust. The data indicate that the Arai rift system was established on crust that had just become stable after the Paleoproterozoic orogeny. (author)

  9. Alarm systems detect volcanic tremor and earthquake swarms during Redoubt eruption, 2009

    Science.gov (United States)

    Thompson, G.; West, M. E.

    2009-12-01

    We ran two alarm algorithms on real-time data from Redoubt volcano during the 2009 crisis. The first algorithm was designed to detect escalations in continuous seismicity (tremor). This is implemented within an application called IceWeb which computes reduced displacement, and produces plots of reduced displacement and spectrograms linked to the Alaska Volcano Observatory internal webpage every 10 minutes. Reduced displacement is a measure of the amplitude of volcanic tremor, and is computed by applying a geometrical spreading correction to a displacement seismogram. When the reduced displacement at multiple stations exceeds pre-defined thresholds and there has been a factor of 3 increase in reduced displacement over the previous hour, a tremor alarm is declared. The second algorithm was to designed to detect earthquake swarms. The mean and median event rates are computed every 5 minutes based on the last hour of data from a real-time event catalog. By comparing these with thresholds, three swarm alarm conditions can be declared: a new swarm, an escalation in a swarm, and the end of a swarm. The end of swarm alarm is important as it may mark a transition from swarm to continuous tremor. Alarms from both systems were dispatched using a generic alarm management system which implements a call-down list, allowing observatory scientists to be called in sequence until someone acknowledged the alarm via a confirmation web page. The results of this simple approach are encouraging. The tremor alarm algorithm detected 26 of the 27 explosive eruptions that occurred from 23 March - 4 April. The swarm alarm algorithm detected all five of the main volcanic earthquake swarm episodes which occurred during the Redoubt crisis on 26-27 February, 21-23 March, 26 March, 2-4 April and 3-7 May. The end-of-swarm alarms on 23 March and 4 April were particularly helpful as they were caused by transitions from swarm to tremor shortly preceding explosive eruptions; transitions which were

  10. Time perception mechanisms at central nervous system

    Directory of Open Access Journals (Sweden)

    Rhailana Fontes

    2016-04-01

    Full Text Available The five senses have specific ways to receive environmental information and lead to central nervous system. The perception of time is the sum of stimuli associated with cognitive processes and environmental changes. Thus, the perception of time requires a complex neural mechanism and may be changed by emotional state, level of attention, memory and diseases. Despite this knowledge, the neural mechanisms of time perception are not yet fully understood. The objective is to relate the mechanisms involved the neurofunctional aspects, theories, executive functions and pathologies that contribute the understanding of temporal perception. Articles form 1980 to 2015 were searched by using the key themes: neuroanatomy, neurophysiology, theories, time cells, memory, schizophrenia, depression, attention-deficit hyperactivity disorder and Parkinson’s disease combined with the term perception of time. We evaluated 158 articles within the inclusion criteria for the purpose of the study. We conclude that research about the holdings of the frontal cortex, parietal, basal ganglia, cerebellum and hippocampus have provided advances in the understanding of the regions related to the perception of time. In neurological and psychiatric disorders, the understanding of time depends on the severity of the diseases and the type of tasks.

  11. DEGENERESCENCE SPONGIEUSE FAMILIALE DU SYSTEME NERVEUX CENTRAL

    Directory of Open Access Journals (Sweden)

    F.Tirgari -Z

    1981-07-01

    Full Text Available A case o f fami l ial spongy degenerat ion o f cent r a l nervaus sys tem i s repor ted . Cl inical manifestation ,hi s topathologi c changes and pat hogene sis have been disc us sed . The patie nt 15 a ' months o:d baby "'ho deve:oped nervous disorde r s as hypotonia and sucking di fficu lty short :y a f t e r birth . From t he second month he had hypert oni c and s pas t ic attacks and fina:ly di ~d in r espiratoy dis t r ess . The baby 's parents are c l os e re lative s and t heir fi - rst chi l d had developed s i mi l ar c linical s ymptoms and di - e d at 4 months of age ."nMicroscopical l y , pathologic change s i nclude spong i osis o f the enti re whi t e matte r o f t he central nervous system associated with diffuse gliosi s Al zheime r t ype 11 . Re cent ultrastructural and biochemical studies have demonst rated unique fe ature that are consist ent ,with t he accumulati on of excessive f l uid within t he as t rocyti c c ytoplasm and myelin l ame l l ae.

  12. Time Perception Mechanisms at Central Nervous System

    Science.gov (United States)

    Fontes, Rhailana; Ribeiro, Jéssica; Gupta, Daya S.; Machado, Dionis; Lopes-Júnior, Fernando; Magalhães, Francisco; Bastos, Victor Hugo; Rocha, Kaline; Marinho, Victor; Lima, Gildário; Velasques, Bruna; Ribeiro, Pedro; Orsini, Marco; Pessoa, Bruno; Leite, Marco Antonio Araujo; Teixeira, Silmar

    2016-01-01

    The five senses have specific ways to receive environmental information and lead to central nervous system. The perception of time is the sum of stimuli associated with cognitive processes and environmental changes. Thus, the perception of time requires a complex neural mechanism and may be changed by emotional state, level of attention, memory and diseases. Despite this knowledge, the neural mechanisms of time perception are not yet fully understood. The objective is to relate the mechanisms involved the neurofunctional aspects, theories, executive functions and pathologies that contribute the understanding of temporal perception. Articles form 1980 to 2015 were searched by using the key themes: neuroanatomy, neurophysiology, theories, time cells, memory, schizophrenia, depression, attention-deficit hyperactivity disorder and Parkinson’s disease combined with the term perception of time. We evaluated 158 articles within the inclusion criteria for the purpose of the study. We conclude that research about the holdings of the frontal cortex, parietal, basal ganglia, cerebellum and hippocampus have provided advances in the understanding of the regions related to the perception of time. In neurological and psychiatric disorders, the understanding of time depends on the severity of the diseases and the type of tasks. PMID:27127597

  13. Epidemiology of central nervous system mycoses

    Directory of Open Access Journals (Sweden)

    Chakrabarti Arunaloke

    2007-01-01

    Full Text Available Fungal infections of the central nervous system (CNS were considered rare until the 1970s. This is no longer true in recent years due to widespread use of corticosteroids, cytotoxic drugs and antibiotics. Immunocompromised patients with underlying malignancy, organ transplantations and acquired immune deficiency syndrome are all candidates for acquiring fungal infections either in meninges or brain. A considerable number of cases of CNS fungal infections even in immunocompetent hosts have been reported. A vast array of fungi may cause infection in the CNS, but barring a few, most of them are anecdotal case reports. Cryptococcus neoformans , Candida albicans, Coccidioides immitis. Histoplasma capsulatum are common causes of fungal meningitis; Aspergillus spp., Candida spp., Zygomycetes and some of the melanized fungi are known to cause mass lesions in brain. Few fungi like C. neoformans, Cladophialophora bantiana, Exophiala dermatitidis, Ramichloridium mackenzie, Ochroconis gallopava are considered as true neurotropic fungi. Most of the fungi causing CNS infection are saprobes with worldwide distribution; a few are geographically restricted like Coccidioides immitis . The infections reach the CNS either by the hematogenous route or by direct extension from colonized sinuses or ear canal or by direct inoculation during neurosurgical procedures.

  14. Inflammation in central nervous system injury.

    Science.gov (United States)

    Allan, Stuart M; Rothwell, Nancy J

    2003-10-29

    Inflammation is a key component of host defence responses to peripheral inflammation and injury, but it is now also recognized as a major contributor to diverse, acute and chronic central nervous system (CNS) disorders. Expression of inflammatory mediators including complement, adhesion molecules, cyclooxygenase enzymes and their products and cytokines is increased in experimental and clinical neurodegenerative disease, and intervention studies in experimental animals suggest that several of these factors contribute directly to neuronal injury. Most notably, specific cytokines, such as interleukin-1 (IL-1), have been implicated heavily in acute neurodegeneration, such as stroke and head injury. In spite of their diverse presentation, common inflammatory mechanisms may contribute to many neurodegenerative disorders and in some (e.g. multiple sclerosis) inflammatory modulators are in clinical use. Inflammation may have beneficial as well as detrimental actions in the CNS, particularly in repair and recovery. Nevertheless, several anti-inflammatory targets have been identified as putative treatments for CNS disorders, initially in acute conditions, but which may also be appropriate to chronic neurodegenerative conditions.

  15. Deep seismic sounding investigation into the deep structure of the magma system in Changbaishan-Tianchi volcanic region

    Institute of Scientific and Technical Information of China (English)

    张先康; 张成科; 赵金仁; 杨卓欣; 李松林; 张建狮; 刘宝峰; 成双喜; 孙国伟; 潘素珍

    2002-01-01

    The magma system of Changbaishan-Tianchi Volcanic region is studied with three-dimensional deep seismic sounding (DSS) technique. The results show that the magma system of Changbaishan-Tianchi volcanic region, mainly characterized by low velocity of P wave, can be divided into three parts in terms of depth. At the depth range of 9(15 km, the distribution of the magma system is characterized by extensiveness, large scale and near-SN orientation. This layer is the major place for magma storage. From the depth of 15 km down to the lower crust, it is characterized by small lateral scale, which indicates the (trace( of magma intrusion from the upper mantle into the crust and also implies that the magma system most probably extends to the upper mantle, or even deeper.(less than 8(9 km deep), the range of magma distribution is even smaller, centering on an SN-oriented area just north of the Tianchi crater. If low velocity of P wave is related to the magma system, it then reflects that the magma here is still in a state of relatively high temperature. In this sense, the magma system of Changbaishan-Tianchi volcanic region is at least not (remains(, in other words, it is in an (active( state.

  16. Developing International Guidelines on Volcanic Hazard Assessments for Nuclear Facilities

    Science.gov (United States)

    Connor, Charles

    2014-05-01

    tremendous challenge in quantitative volcanic hazard assessments to encompass alternative conceptual models, and to create models that are robust to evolving understanding of specific volcanic systems by the scientific community. A central question in volcanic hazards forecasts is quantifying rates of volcanic activity. Especially for long-dormant volcanic systems, data from the geologic record may be sparse, individual events may be missing or unrecognized in the geologic record, patterns of activity may be episodic or otherwise nonstationary. This leads to uncertainty in forecasting long-term rates of activity. Hazard assessments strive to quantify such uncertainty, for example by comparing observed rates of activity with alternative parametric and nonparametric models. Numerical models are presented that characterize the spatial distribution of potential volcanic events. These spatial density models serve as the basis for application of numerical models of specific phenomena such as development of lava flow, tephra fallout, and a host of other volcanic phenomena. Monte Carlo techniques (random sampling, stratified sampling, importance sampling) are methods used to sample vent location and other key eruption parameters, such as eruption volume, magma rheology, and eruption column height for probabilistic models. The development of coupled scenarios (e.g., the probability of tephra accumulation on a slope resulting in subsequent debris flows) is also assessed through these methods, usually with the aid of event trees. The primary products of long-term forecasts are a statistical model of the conditional probability of the potential effects of volcanism, should an eruption occur, and the probability of such activity occurring. It is emphasized that hazard forecasting is an iterative process, and board consideration must be given to alternative conceptual models of volcanism, weighting of volcanological data in the analyses, and alternative statistical and numerical models

  17. Geodetic observations and modeling of magmatic inflation at the Three Sisters volcanic center, central Oregon Cascade Range, USA

    Science.gov (United States)

    Dzurisin, Daniel; Lisowski, Michael; Wicks, Charles W.; Poland, Michael P.; Endo, Elliot T.

    2006-01-01

    Tumescence at the Three Sisters volcanic center began sometime between summer 1996 and summer 1998 and was discovered in April 2001 using interferometric synthetic aperture radar (InSAR). Swelling is centered about 5 km west of the summit of South Sister, a composite basaltic-andesite to rhyolite volcano that last erupted between 2200 and 2000 yr ago, and it affects an area ∼20 km in diameter within the Three Sisters Wilderness. Yearly InSAR observations show that the average maximum displacement rate was 3–5 cm/yr through summer 2001, and the velocity of a continuous GPS station within the deforming area was essentially constant from June 2001 to June 2004. The background level of seismic activity has been low, suggesting that temperatures in the source region are high enough or the strain rate has been low enough to favor plastic deformation over brittle failure. A swarm of about 300 small earthquakes (Mmax = 1.9) in the northeast quadrant of the deforming area on March 23–26, 2004, was the first notable seismicity in the area for at least two decades. The U.S. Geological Survey (USGS) established tilt-leveling and EDM networks at South Sister in 1985–1986, resurveyed them in 2001, the latter with GPS, and extended them to cover more of the deforming area. The 2001 tilt-leveling results are consistent with the inference drawn from InSAR that the current deformation episode did not start before 1996, i.e., the amount of deformation during 1995–2001 from InSAR fully accounts for the net tilt at South Sister during 1985–2001 from tilt-leveling. Subsequent InSAR, GPS, and leveling observations constrain the source location, geometry, and inflation rate as a function of time. A best-fit source model derived from simultaneous inversion of all three datasets is a dipping sill located 6.5 ± 2.5 km below the surface with a volume increase of 5.0 × 106 ± 1.5 × 106m3/yr (95% confidence limits). The most likely cause of tumescence is a pulse of

  18. Structure of magma reservoirs beneath Merapi and surrounding volcanic centers of Central Java modeled from ambient noise tomography

    Science.gov (United States)

    Koulakov, Ivan; Maksotova, Gulzhamal; Jaxybulatov, Kayrly; Kasatkina, Ekaterina; Shapiro, Nikolai M.; Luehr, Birger-G.; El Khrepy, Sami; Al-Arifi, Nassir

    2016-10-01

    We present a three-dimensional model of the distribution of S-wave velocity in the upper crust to a depth of 20 km beneath Central Java based on the analysis of seismic ambient noise data recorded by more than 100 seismic stations in 2004 associated with the MERAMEX project. To invert the Rayleigh wave dispersion curves to construct 2-D group-velocity maps and 3-D distributions of S-wave velocity, we have used a new tomographic algorithm based on iterative linearized inversion. We have performed a series of synthetic tests that demonstrate significantly higher resolution in the upper crust with this model compared to the local earthquake travel-time tomography (LET) model previously applied for the same station network. Beneath the southern flank of Merapi, we identify a large low-velocity anomaly that can be split into two layers. The upper layer reflects the ˜1 km thick sedimentary cover of volcanoclastic deposits. The deeper anomaly at depths of ˜4-8 km may represent a magma reservoir with partially molten rock that feeds several volcanoes in Central Java. Beneath the Merapi summit, we observe another low-velocity anomaly as deep as 8 km that may be associated with the active magma reservoir that feeds the eruptive activity of Merapi. In the southern portion of the study area, in the lower crust, we identify a low-velocity anomaly that may represent the top of the pathways of volatiles and melts ascending from the slab that was previously inferred from the LET model results. We observe that this anomaly is clearly separate from the felsic magma reservoirs in the upper crust.

  19. The influence of cooling, crystallisation and re-melting on the interpretation of geodetic signals in volcanic systems

    Science.gov (United States)

    Caricchi, Luca; Biggs, Juliet; Annen, Catherine; Ebmeier, Susanna

    2014-02-01

    Deformation of volcanic edifices is typically attributed to the movement of magma within the volcanic plumbing system, but a wide range of magmatic processes are capable of producing significant volume variations and may also produce deformation. In order to understand the evolution of magmatic systems prior to eruption and correctly interpret monitoring signals, it is necessary to quantify the patterns and timescales of surface deformation that processes such as crystallisation, degassing and expansion of the hydrothermal system can produce. We show how the combination of petrology and thermal modelling can be applied to geodetic observations to identify the processes occurring in a magmatic reservoir during volcanic unrest. Thermal modelling and petrology were used to determine the timescales and volumetric variations associated with cooling, crystallisation and gas exsolution. These calculations can be performed rapidly and highlight the most likely processes responsible for the variation of a set of monitoring parameters. We then consider the magnitude and timescales of deformation produced by other processes occurring within the vicinity of an active magma system. We apply these models to a time series of geodetic data spanning the period between the 1997 and 2008 eruptions of Okmok volcano, Aleutians, examining scenarios involving crystallisation, degassing and remelting of the crystallising shallow magmatic body and including a viscoelastic shell or hydrothermal system. The geodetic observations are consistent with the injection of a water-saturated basalt, followed by minor crystallisation and degassing. Other scenarios are not compatible either with the magnitude or rate of the deformation signals.

  20. Vasculitis Syndromes of the Central and Peripheral Nervous Systems

    Science.gov (United States)

    ... Sheets Vasculitis Syndromes of the Central and Peripheral Nervous Systems Fact Sheet Table of Contents (click to jump ... flow of blood. How does vasculitis affect the nervous system? Vasculitis can cause problems in any organ system, ...

  1. Geochemical modeling of groundwater evolution in a volcanic aquifer system of Kumamoto area, Japan

    Science.gov (United States)

    Hossain, S.; Hosono, T.; Ide, K.; Shimada, J.

    2013-12-01

    Inverse geochemical modeling (PHREEQC) was used to identify the evolution of groundwater in a volcanic aquifer system of Kumamoto area (103 Km2) in southern Japan. The modeling was based on flow paths proposed by different researcher using different techniques, and detailed chemical analysis of groundwater along the flow paths. Potential phases were constrained using general trends in hydrochemical data of groundwater, mineralogical data, and saturation indices data of minerals in groundwater. Hydrochemical data from a total of 180 spring, river and well water samples were used to evaluate water quality and to determine processes that control groundwater chemistry. The samples from the area were classified as recharge zone water (Ca-HCO3 and Ca-SO4 type), lateral flow to discharge zone water (Ca-HCO3 and Na-HCO3 type) and stagnant zone water (Na-Cl type). The inverse geochemical modeling demonstrated that relatively few phases are required to derive water chemistry in the area. The downstream changes in groundwater chemistry could be largely explained by the weathering of plagioclase to kaolinite, with possible contributions from weathering of biotite and pyroxene. In a broad sense, the reactions responsible for the hydrochemical evolution in the area fall into three categories (1) silicate weathering reactions (2) precipitation of amorphous silica and clay minerals and (3) Cation exchange reactions of Ca2+ to Na+.

  2. Central nervous system manifestations of neonatal lupus: a systematic review.

    Science.gov (United States)

    Chen, C C; Lin, K-L; Chen, C-L; Wong, A May-Kuen; Huang, J-L

    2013-12-01

    Neonatal lupus is a rare and acquired autoimmune disease. Central nervous system abnormalities are potential manifestations in neonatal lupus. Through a systematic literature review, we analyzed the clinical features of previously reported neonatal lupus cases where central nervous system abnormalities had been identified. Most reported neonatal lupus patients with central nervous system involvement were neuroimaging-determined and asymptomatic. Only seven neonatal lupus cases were identified as having a symptomatic central nervous system abnormality which caused physical disability or required neurosurgery. A high percentage of these neurosymptomatic neonatal lupus patients had experienced a transient cutaneous skin rash and had no maternal history of autoimmune disease before pregnancy.

  3. Congenital tumors of the central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Severino, Mariasavina [G. Gaslini Children' s Hospital, Department of Neuroradiology, Genoa (Italy); Schwartz, Erin S. [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Thurnher, Majda M. [Medical University of Vienna, Department of Radiology, Vienna (Austria); Rydland, Jana [MR Center, St. Olav' s Hospital HF, Trondheim (Norway); Nikas, Ioannis [Agia Sophia Children' s Hospital, Imaging Department, Athens (Greece); Rossi, Andrea [G. Gaslini Children' s Hospital, Department of Neuroradiology, Genoa (Italy); G. Gaslini Children' s Hospital, Department of Pediatric Neuroradiology, Genoa (Italy)

    2010-06-15

    Congenital tumors of the central nervous system (CNS) are often arbitrarily divided into ''definitely congenital'' (present or producing symptoms at birth), ''probably congenital'' (present or producing symptoms within the first week of life), and ''possibly congenital'' (present or producing symptoms within the first 6 months of life). They represent less than 2% of all childhood brain tumors. The clinical features of newborns include an enlarged head circumference, associated hydrocephalus, and asymmetric skull growth. At birth, a large head or a tense fontanel is the presenting sign in up to 85% of patients. Neurological symptoms as initial symptoms are comparatively rare. The prenatal diagnosis of congenital CNS tumors, while based on ultrasonography, has significantly benefited from the introduction of prenatal magnetic resonance imaging studies. Teratomas constitute about one third to one half of these tumors and are the most common neonatal brain tumor. They are often immature because of primitive neural elements and, rarely, a component of mixed malignant germ cell tumors. Other tumors include astrocytomas, choroid plexus papilloma, primitive neuroectodermal tumors, atypical teratoid/rhabdoid tumors, and medulloblastomas. Less common histologies include craniopharyngiomas and ependymomas. There is a strong predilection for supratentorial locations, different from tumors of infants and children. Differential diagnoses include spontaneous intracranial hemorrhage that can occur in the presence of coagulation factor deficiency or underlying vascular malformations, and congenital brain malformations, especially giant heterotopia. The prognosis for patients with congenital tumors is generally poor, usually because of the massive size of the tumor. However, tumors can be resected successfully if they are small and favorably located. The most favorable outcomes are achieved with choroid plexus tumors

  4. Volcanic sanidinites: an example for the mobilization of high field strength elements (HFSE) in magmatic systems

    Science.gov (United States)

    Aßbichler, Donjá; Heuss-Aßbichler, Soraya; Müller, Dirk; Kunzmann, Thomas

    2016-04-01

    In earth science the mobility of high field strength elements (HFSE) is generally discussed in context of hydrothermal processes. Recent investigations mainly address processes in (late) magmatic-, metamorphic- and submarine hydrothermal systems. They have all in common that H2O is main solvent. The transport of HFSE is suggested to be favored by volatiles, like boron, fluorine, phosphate and sulfate (Jiang et al., 2005). In this study processes in magmatic system are investigated. Sanidinites are rare rocks of igneous origin and are found as volcanic ejecta of explosive volcanoes. They consist mainly of sanidine and minerals of the sodalite group. The very porous fabric of these rocks is an indication of their aggregation from a gaseous magmatic phase. The large sanidine crystals (up to several centimeters) are mostly interlocking, creating large cavities between some crystals. In these pores Zr crystallizes as oxide (baddeleyite, ZrO2) or silicate (zircon, ZrSiO4). The euhedral shape of these minerals is a further indication of their formation out of the gas phase. Furthermore, bubbles in glass observed in some samples are evidence for gas-rich reaction conditions during the formation of the sanidinites. The formation of sanidinites is suggested to be an example for solvothermal processes in natural systems. Solvothermal processes imply the solvation, transport and recrystallization of elements in a gas phase. Results obtained from whole rock analysis from sanidinites from Laacher See (Germany) show a positive correlation between LOI, sulfate, Cl, and Na with the HFSE like Zr. Na-rich conditions seem to ameliorate the solvothermal transport of Zr. All these features point to the formation of sanidinites in the upper part of a magma chamber, where fluid consisting of SO3 and Cl compounds in addition to H2O, CO2 and HFSE (high field strength elements) like Zr accumulate.

  5. Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER) project and a next-generation real-time volcano hazard assessment system

    Science.gov (United States)

    Takarada, S.

    2012-12-01

    The first Workshop of Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER1) was held in Tsukuba, Ibaraki Prefecture, Japan from February 23 to 24, 2012. The workshop focused on the formulation of strategies to reduce the risks of disasters worldwide caused by the occurrence of earthquakes, tsunamis, and volcanic eruptions. More than 150 participants attended the workshop. During the workshop, the G-EVER1 accord was approved by the participants. The Accord consists of 10 recommendations like enhancing collaboration, sharing of resources, and making information about the risks of earthquakes and volcanic eruptions freely available and understandable. The G-EVER Hub website (http://g-ever.org) was established to promote the exchange of information and knowledge among the Asia-Pacific countries. Several G-EVER Working Groups and Task Forces were proposed. One of the working groups was tasked to make the next-generation real-time volcano hazard assessment system. The next-generation volcano hazard assessment system is useful for volcanic eruption prediction, risk assessment, and evacuation at various eruption stages. The assessment system is planned to be developed based on volcanic eruption scenario datasets, volcanic eruption database, and numerical simulations. Defining volcanic eruption scenarios based on precursor phenomena leading up to major eruptions of active volcanoes is quite important for the future prediction of volcanic eruptions. Compiling volcanic eruption scenarios after a major eruption is also important. A high quality volcanic eruption database, which contains compilations of eruption dates, volumes, and styles, is important for the next-generation volcano hazard assessment system. The volcanic eruption database is developed based on past eruption results, which only represent a subset of possible future scenarios. Hence, different distributions from the previous deposits are mainly observed due to the differences in

  6. Tephra layers from Holocene lake sediments of the Sulmona Basin, central Italy: implications for volcanic activity in Peninsular Italy and tephrostratigraphy in the central Mediterranean area

    Science.gov (United States)

    Giaccio, B.; Messina, P.; Sposato, A.; Voltaggio, M.; Zanchetta, G.; Galadini, F.; Gori, S.; Santacroce, R.

    2009-12-01

    We present a new tephrostratigraphic record from the Holocene lake sediments of the Sulmona basin, central Italy. The Holocene succession is represented by whitish calcareous mud that is divided into two units, SUL2 (ca 32 m thick) and SUL1 (ca 8 m thick), for a total thickness of ca 40 m. These units correspond to the youngest two out of six sedimentary cycles recognised in the Sulmona basin that are related to the lake sedimentation since the Middle Pleistocene. Height concordant U series age determinations and additional chronological data constrain the whole Holocene succession to between ca 8000 and 1000 yrs BP. This includes a sedimentary hiatus that separates the SUL2 and SUL1 units, which is roughly dated between Ischia Island eruption of the Cannavale tephra (2920 ± 450 cal yrs BP). The 27 ash layers compatible with Mt. Somma-Vesuvius activity are clustered in three different time intervals: from ca 2000 to >1000; from 3600 to 3100; and from 7600 to 4700 yrs BP. The first, youngest cluster, comprises six layers and correlates with the intense explosive activity of Mt. Somma-Vesuvius that occurred after the prominent AD 79 Pompeii eruption, but only the near-Plinian event of AD 472 has been tentatively recognised. The intermediate cluster (3600-3100 yrs BP) starts with tephra that chemically and chronologically matches the products from the "Pomici di Avellino" eruption (ca 3800 ± 200 yrs BP). This is followed by eight further layers, where the glasses exhibit chemical features that are similar in composition to the products from the so-called "Protohistoric" or AP eruptions; however, only the distal equivalents of three AP events (AP3, AP4 and AP6) are tentatively designated. Finally, the early cluster (7600-4700 yrs BP) comprises 12 layers that contain evidence of a surprising, previously unrecognised, activity of the Mt. Somma-Vesuvius volcano during its supposed period of quiescence, between the major Plinian "Pomici di Mercato" (ca 9000 yrs BP) and

  7. Relative contributions of crust and mantle to the origin of the Bijli Rhyolite in a palaeoproterozoic bimodal volcanic sequence (Dongargarh Group), central India

    Indian Academy of Sciences (India)

    Sarajit Sensarma; S Hoernes; Dhruba Mukhopadhyay

    2004-12-01

    New mineralogical, bulk chemical and oxygen isotope data on the Palaeoproterozoic Bijli Rhyolite, the basal unit of a bimodal volcanic sequence (Dongargarh Group) in central India, and one of the most voluminous silicic volcanic expressions in the Indian Shield, are presented. The Bijli Rhyolite can be recognized as a poorly sorted pyroclastic deposit, and comprises of phenocrystic K-feldspar + albite ± anorthoclase set in fine-grained micro-fragmental matrix of quartz-feldsparsericite- chlorite-iron-oxide ± calcite. The rocks are largely metaluminous with high SiO2, Na2O+ KO, Fe/Mg, Ga/Al, Zr, Ta, Sn, Y, REE and low CaO, Ba, Sr contents; the composition points to an ‘A-type granite’ melt. The rocks show negative Cs-, Sr-, Eu- and Ti- anomalies with incompatible element concentrations 2–3 times more than the upper continental crust (UCC). LREE is high (La/Yb ∼20) and HREE 20-30 times chondritic. 18 Owhole-rock varies between 4.4 and 7.8‰(mean 5.87 ± 1.26‰). The Bijli melt is neither formed by fractionation of a basaltic magma, nor does it represent a fractionated crustal melt. It is shown that the mantle-derived high temperature basaltic komatiitic melts/high Mg basalts triggered crustal melting, and interacted predominantly with deep crust compositionally similar to the Average Archaean Granulite (AAG), and a shallower crustal component with low CaO and Al2O3 to give rise to the hybrid Bijli melts. Geochemical mass balance suggests that ∼30% partial melting of AAG under anhydrous condition, instead of the upper continental crust (UCC) including the Amgaon granitoid gneiss reported from the area, better matches the trace element concentrations in the rocks. The similar Ta/Th of the rhyolites (0.060) and average granulite (0.065) vs. UCC (0.13) also support a deep crustal protolith. Variable contributions of crust and mantle, and action of hydrothermal fluid are attributed for the spread in 18Owhole-rock values. The fast eruption of high

  8. Central Computer IMS Processing System (CIMS).

    Science.gov (United States)

    Wolfe, Howard

    As part of the IMS Version 3 tryout in 1971-72, software was developed to enable data submitted by IMS users to be transmitted to the central computer, which acted on the data to create IMS reports and to update the Pupil Data Base with criterion exercise and class roster information. The program logic is described, and the subroutines and…

  9. Transmission Reinforcements in the Central American Regional Power System

    Energy Technology Data Exchange (ETDEWEB)

    Elizondo, Marcelo A.; Vallem, Mallikarjuna R.; Samaan, Nader A.; Makarov, Yuri V.; Vyakaranam, Bharat; Nguyen, Tony B.; Munoz, Christian; Herrera, Ricardo; Midence, Diego; Shpitsberg, Anna

    2016-07-25

    The Central American regional interconnected power system (SER) connects the countries members of the Central American regional electricity market (MER): Guatemala, El Salvador, Honduras, Nicaragua, Costa Rica, and Panama. The SER was a result of a long term regional effort, and was initially conceived to transfer 300 MW between countries. However, the current transfer limits between countries range from 70 MW to 300 MW. Regional entities, like CRIE (Regional Commission of Electrical Interconnection), EOR (Central American Regional System Operator), and CDMER (Board of Directors of the Central American Market) are working on coordinating the national transmission expansion plans with regional transmission planning efforts. This paper presents experience in Central America region to recommend transmission reinforcements to achieve 300 MW transfer capacity between any pair of member countries of the Central American regional electricity market (MER). This paper also provides a methodology for technical analysis and for coordination among the regional and national entities. This methodology is unique for transmission systems of these characteristics.

  10. Three thousand years of flank and central vent eruptions of the San Salvador volcanic complex (El Salvador) and their effects on El Cambio archeological site: a review based on tephrostratigraphy

    Science.gov (United States)

    Ferrés, D.; Delgado Granados, H.; Hernández, W.; Pullinger, C.; Chávez, H.; Castillo Taracena, C. R.; Cañas-Dinarte, C.

    2011-09-01

    The volcanic events of the last 3,000 years at San Salvador volcanic complex are reviewed using detailed stratigraphic records exposed in new excavations between 2005 and 2007, at El Cambio archeological site (Zapotitán Valley, El Salvador), and in other outcrops on the northern and northwestern sectors of the complex. The sequences that overlie Tierra Blanca Joven (cal. 429 ± 107 ad), from the Ilopango caldera, comprise the Loma Caldera (cal. 590 ± 90 ad) and El Playón (1658-1671) deposits and the San Andrés Tuff (cal. 1031 ± 29 ad), related to El Boquerón Volcano. The surge deposits within the El Playón, San Andrés Tuff and overlying Talpetate II sequences indicate the significance of phreatomagmatic phases in both central vent and flank eruptions during the last 1,600 years. Newly identified volcanic deposits underlying Tierra Blanca Joven at El Cambio extend the stratigraphic record of the area to 3,000 years bp. Paleosols interstratified with those deposits contain cultural artifacts which could be associated with the Middle Preclassic period (900-400 bc). If correct, human occupation of the site during the Preclassic period was more intense than previously known and volcanic eruptions must have affected prehistoric settlements. The archeological findings provide information on how prehistoric populations dealt with volcanic hazards, thousands of years ago in the eastern Zapotitán Valley, where several housing projects are currently being developed. The new stratigraphic and volcanological data can be used as a basis for local and regional hazard assessment related to future secondary vent activity in the San Salvador Volcanic Complex.

  11. Geochemistry of the late Holocene rocks from the Tolbachik volcanic field, Kamchatka: Quantitative modelling of subduction-related open magmatic systems

    Science.gov (United States)

    Portnyagin, Maxim; Duggen, Svend; Hauff, Folkmar; Mironov, Nikita; Bindeman, Ilya; Thirlwall, Matthew; Hoernle, Kaj

    2015-12-01

    We present new major and trace element, high-precision Sr-Nd-Pb (double spike), and O-isotope data for the whole range of rocks from the Holocene Tolbachik volcanic field in the Central Kamchatka Depression (CKD). The Tolbachik rocks range from high-Mg basalts to low-Mg basaltic trachyandesites. The rocks considered in this paper represent mostly Late Holocene eruptions (using tephrochronological dating), including historic ones in 1941, 1975-1976 and 2012-2013. Major compositional features of the Tolbachik volcanic rocks include the prolonged predominance of one erupted magma type, close association of middle-K primitive and high-K evolved rocks, large variations in incompatible element abundances and ratios but narrow range in isotopic composition. We quantify the conditions of the Tolbachik magma origin and evolution and revise previously proposed models. We conclude that all Tolbachik rocks are genetically related by crystal fractionation of medium-K primary magmas with only a small range in trace element and isotope composition. The primary Tolbachik magmas contain ~ 14 wt.% of MgO and ~ 4% wt.% of H2O and originated by partial melting (~ 6%) of moderately depleted mantle peridotite with Indian-MORB-type isotopic composition at temperature of ~ 1250 °C and pressure of ~ 2 GPa. The melting of the mantle wedge was triggered by slab-derived hydrous melts formed at ~ 2.8 GPa and ~ 725 °C from a mixture of sediments and MORB- and Meiji-type altered oceanic crust. The primary magmas experienced a complex open-system evolution termed Recharge-Evacuation-Fractional Crystallization (REFC). First the original primary magmas underwent open-system crystal fractionation combined with periodic recharge of the magma chamber with more primitive magma, followed by mixing of both magma types, further fractionation and finally eruption. Evolved high-K basalts, which predominate in the Tolbachik field, and basaltic trachyandesites erupted in 2012-2013 approach steady-state REFC

  12. Bromo volcano area as human-environment system: interaction of volcanic eruption, local knowledge, risk perception and adaptation strategy

    Science.gov (United States)

    Bachri, Syamsul; Stötter, Johann; Sartohadi, Junun

    2013-04-01

    People in the Bromo area (located within Tengger Caldera) have learn to live with the threat of volcanic hazard since this volcano is categorized as an active volcano in Indonesia. During 2010, the eruption intensity increased yielding heavy ash fall and glowing rock fragments. A significant risk is also presented by mass movement which reaches areas up to 25 km from the crater. As a result of the 2010 eruption, 12 houses were destroyed, 25 houses collapsed and there were severe also effects on agriculture and the livestock sector. This paper focuses on understanding the interaction of Bromo volcanic eruption processes and their social responses. The specific aims are to 1) identify the 2010 eruption of Bromo 2) examine the human-volcano relationship within Bromo area in general, and 3) investigate the local knowledge related to hazard, risk perception and their adaptation strategies in specific. In-depth interviews with 33 informants from four districts nearest to the crater included local people and authorities were carried out. The survey focused on farmers, key persons (dukun), students and teachers in order to understand how people respond to Bromo eruption. The results show that the eruption in 2010 was unusual as it took continued for nine months, the longest period in Bromo history. The type of eruption was phreatomagmatic producing material dominated by ash to fine sand. This kind of sediment typically belongs to Tengger mountain eruptions which had produced vast explosions in the past. Furthermore, two years after the eruption, the interviewed people explained that local knowledge and their experiences with volcanic activity do not influence their risk perception. Dealing with this eruption, people in the Bromo area applied 'lumbung desa' (traditional saving systems) and mutual aid activity for surviving the volcanic eruption. Keywords: Human-environment system, local knowledge, risk perception, adaptation strategies, Bromo Volcano Indonesia

  13. Groundwater flow processes and mixing in active volcanic systems: the case of Guadalajara (Mexico)

    Science.gov (United States)

    Hernández-Antonio, A.; Mahlknecht, J.; Tamez-Meléndez, C.; Ramos-Leal, J.; Ramírez-Orozco, A.; Parra, R.; Ornelas-Soto, N.; Eastoe, C. J.

    2015-09-01

    other active volcanic systems on Earth.

  14. Testing a model-driven Geographical Information System for risk assessment during an effusive volcanic crisis

    Science.gov (United States)

    Harris, Andrew; Latutrie, Benjamin; Andredakis, Ioannis; De Groeve, Tom; Langlois, Eric; van Wyk de Vries, Benjamin; Del Negro, Ciro; Favalli, Massimiliano; Fujita, Eisuke; Kelfoun, Karim; Rongo, Rocco

    2016-04-01

    RED-SEED stands for Risk Evaluation, Detection and Simulation during Effusive Eruption Disasters, and combines stakeholders from the remote sensing, modeling and response communities with experience in tracking volcanic effusive events. It is an informal working group that has evolved around the philosophy of combining global scientific resources, in the realm of physical volcanology, remote sensing and modeling, to better define and limit uncertainty. The group first met during a three day-long workshop held in Clermont Ferrand (France) between 28 and 30 May 2013. The main recommendation of the workshop in terms of modeling was that there is a pressing need for "real-time input of reliable Time-Averaged Discharge Rate (TADR) data with regular up-dates of Digital Elevation Models (DEMs) if modeling is to be effective; the DEMs can be provided by the radar/photogrammetry community." We thus set up a test to explore (i) which model source terms are needed, (ii) how they can be provided and updated, and (iii) how can models be run and applied in an ensemble approach. The test used two hypothetical effusive events in the Chaîne des Puys (Auvergne, France), for which a prototype Geographical Information System (GIS) was set up to allow loss assessment during an effusive crisis. This system drew on all immediately available data for population, land use, communications, utility and building-type. After defining lava flow model source terms (vent location, effusion rate, lava chemistry, temperature, crystallinity and vesicularity), five operational lava flow emplacement models were run (DOWNFLOW, FLOWGO, LAVASIM, MAGFLOW and VOLCFLOW) to produce a projection for likelihood of impact for all pixels within the area covered by the GIS, based on agreement between models. The test thus aimed not to assess the model output, but instead to examine overlapping output. Next, inundation maps and damage reports for impacted zones were produced. The exercise identified several

  15. Mount Kenya volcanic activity and the Late Cenozoic landscape reorganisation in the upper Tana fluvial system

    NARCIS (Netherlands)

    Veldkamp, A.; Schoorl, J.M.; Wijbrans, J.R.; Claessens, L.F.G.

    2012-01-01

    Volcanic–fluvial landscape interaction of the late Cenozoic Mt Kenya region in the upper Tana catchment has been reconstructed. The oldest newly dated phonolite flow is 5.78 Ma (40Ar/39Ar), placing the initiation of Mt Kenya volcanic activity within the Late Miocene, much earlier than reported befor

  16. Central nervous system adaptation to exercise training

    Science.gov (United States)

    Kaminski, Lois Anne

    Exercise training causes physiological changes in skeletal muscle that results in enhanced performance in humans and animals. Despite numerous studies on exercise effects on skeletal muscle, relatively little is known about adaptive changes in the central nervous system. This study investigated whether spinal pathways that mediate locomotor activity undergo functional adaptation after 28 days of exercise training. Ventral horn spinal cord expression of calcitonin gene-related peptide (CGRP), a trophic factor at the neuromuscular junction, choline acetyltransferase (Chat), the synthetic enzyme for acetylcholine, vesicular acetylcholine transporter (Vacht), a transporter of ACh into synaptic vesicles and calcineurin (CaN), a protein phosphatase that phosphorylates ion channels and exocytosis machinery were measured to determine if changes in expression occurred in response to physical activity. Expression of these proteins was determined by western blot and immunohistochemistry (IHC). Comparisons between sedentary controls and animals that underwent either endurance training or resistance training were made. Control rats received no exercise other than normal cage activity. Endurance-trained rats were exercised 6 days/wk at 31m/min on a treadmill (8% incline) for 100 minutes. Resistance-trained rats supported their weight plus an additional load (70--80% body weight) on a 60° incline (3 x 3 min, 5 days/wk). CGRP expression was measured by radioimmunoassay (RIA). CGRP expression in the spinal dorsal and ventral horn of exercise-trained animals was not significantly different than controls. Chat expression measured by Western blot and IHC was not significantly different between runners and controls but expression in resistance-trained animals assayed by IHC was significantly less than controls and runners. Vacht and CaN immunoreactivity in motor neurons of endurance-trained rats was significantly elevated relative to control and resistance-trained animals. Ventral

  17. Hawaii and Beyond: Volcanic Islands as Model Systems for Biogeochemical and Human Ecodynamic Research

    Science.gov (United States)

    Chadwick, O.

    2012-12-01

    The Hawaiian Islands provide an excellent natural lab for understanding geochemical and ecosystem processes. The most important features are: a) increasing volcano age with distance from the hotspot, b) asymmetric rainfall distribution imposed by the northeasterly trade winds and orographic processes, creating wet windward and dry leeward landscapes, c) an impoverished vegetation assemblage allowing the same species to grow in strongly varying climate and soil conditions, d) the ability to hold topography relatively constant over long time scales by sampling on volcanic shield remnants that are preserved even on the oldest high island, Kauai, and e) a long-term topographic evolution that carves the gently sloping shield surfaces into steep-sided, amphitheater headed, relatively flat floored valleys. Although deeply incised valleys are well represented in Kauai, the later stages of volcanic island evolution are not well expressed in the exposed Hawaiian Islands. Therefore, I also consider examples from the Society and Gambier Islands in French Polynesia to demonstrate the biogeochemical and human ecodynamic impacts of valley expansion and subsidence leading to drowning of all but the highest elevation interfluves. In Hawaii, I and many colleagues have characterized the details of biogeochemical processes such as: a) variations in oxygen isotopes in soil water and soil minerals, b) changing nutrient sources using Sr, Ca, and Mg isotopes, c) mineral - carbon sorption and its implications for carbon storage in soils and for mineral ripening, and d) the development of leaching and redox driven pedogenic thresholds. Here, I address how these biogeochemical features influence human land-use decisions in prehistoric Hawaii and elsewhere in the Pacific. Polynesian radiation into the eastern Pacific occurred rapidly after 1300 y bp. Although they carried with them a kitchen garden each new island presented a different environmental challenge. They were sensitive to

  18. Statin therapy inhibits remyelination in the central nervous system

    DEFF Research Database (Denmark)

    Miron, Veronique E; Zehntner, Simone P; Kuhlmann, Tanja

    2009-01-01

    Remyelination of lesions in the central nervous system contributes to neural repair following clinical relapses in multiple sclerosis. Remyelination is initiated by recruitment and differentiation of oligodendrocyte progenitor cells (OPCs) into myelinating oligodendrocytes. Simvastatin, a blood...... that OPCs were maintained in an immature state (Olig2(strong)/Nkx2.2(weak)). NogoA+ oligodendrocyte numbers were decreased during all simvastatin treatment regimens. Our findings suggest that simvastatin inhibits central nervous system remyelination by blocking progenitor differentiation, indicating...... the need to monitor effects of systemic immunotherapies that can access the central nervous system on brain tissue-repair processes....

  19. Calibration method for a central catadioptric-perspective camera system.

    Science.gov (United States)

    He, Bingwei; Chen, Zhipeng; Li, Youfu

    2012-11-01

    A central catadioptric-perspective camera system is widely used nowadays. A critical problem is that current calibration methods cannot determine the extrinsic parameters between the central catadioptric camera and a perspective camera effectively. We present a novel calibration method for a central catadioptric-perspective camera system, in which the central catadioptric camera has a hyperbolic mirror. Two cameras are used to capture images of one calibration pattern at different spatial positions. A virtual camera is constructed at the origin of the central catadioptric camera and faced toward the calibration pattern. The transformation between the virtual camera and the calibration pattern could be computed first and the extrinsic parameters between the central catadioptric camera and the calibration pattern could be obtained. Three-dimensional reconstruction results of the calibration pattern show a high accuracy and validate the feasibility of our method.

  20. Provenance and drainage system of the Early Cretaceous volcanic detritus in the Himalaya as constrained by detrital zircon geochronology

    Institute of Scientific and Technical Information of China (English)

    Xiu-Mian Hu; Eduardo Garzanti; Wei An

    2015-01-01

    The age range of the major intra-plate volcanic event that affected the northern Indian margin in the Early Cretaceous is here deifned precisely by detrital zircon geochronol-ogy. U–Pb ages of Early Cretaceous detrital zircons found in the Cretaceous to the Paleocene sandstones cluster mainly between 142 Ma and 123 Ma in the northern Tethys Himalayan unit, and between 140 Ma and 116 Ma in the southern Tethys Himalayan unit. The youngest and oldest detrital zircons within this group indicate that volcanism in the source areas started in the latest Jurassic and ended by the early Albian. Stratigraphic data indicate that volcaniclastic sedimentation began signiifcantly earlier in southern Tibet (Tithonian) than in Nepal (Valangin-ian), and considerably later in Spiti and Zanskar (Aptian/Albian) to the west. This apparent westward migration of magmatism was explained with progressive westward propagation of extensional/transtensional tectonic activity and development of fractures cutting deeply across the Indian continental margin crust. However, detrital zircon geochronology provides no indi-cation of heterochroneity in magmatic activity in the source areas from east to west, and thus lends little support to such a scenario. Westward migration of volcaniclastic sedimentation may thus relfect instead the westward progradation of major drainage systems supplying vol-canic detritus sourced from the same volcanic centers in the east. Development of multiple radial drainage away from the domal surface uplift associated with magmatic upwelling, as observed for most large igneous provinces around the world, may also explain why U–Pb ages of detrital zircons tend to cluster around 133–132 Ma (the age of the Comei igneous province) in Tethys Himalayan units, but around 118–117 Ma (the age of the Rajmahal igneous province) in Lesser Himalayan units.

  1. Petrological mapping of Volcanic Plumbing Systems using amphiboles in mixed intermediate magmas

    Science.gov (United States)

    Kiss, Balázs; Harangi, SzZabolcs; Hauzenberger, Christoph; Ntaflos, Theodoros; Mason, Paul R. D.

    2016-04-01

    Petrological mapping of volcanic plumbing systems (VPS) is essential to understand the magma evolution and to interpret geophysical signals of monitored volcanoes. The mapping includes the determination of the compositions of magmas feed the system and their storage depths. Intermediate magmas are usually formed by magma mixing a processes that mask the real compositional variation of magmas feed the VPS. However phenocrysts can preserve this information in their chemical stratigraphy. Amphibole can be a powerful tool in these studies because it can incorporate petrogenetically important trace elements primarily controlled by the coexisting melt composition, additionally the major element composition can be used to calculate pressure. We studied the zoning, texture and major and trace element composition of amphiboles from the Ciomadul, a late pleistocen dacite volcano. The erupted dacites contain abundant amphibole phenocrysts. Amphibole coexist with all of the rock forming minerals (e.g. with quartz or with olivine) indicating their diverse origin. The amphiboles show large major element compositional variation (e.g. Al2O3: 6-15 wt%) accompanied with large variation in trace element (e.g. Cr: 10-3000 ppm, Sr: 55-855 ppm, Eu/Eu*: 0.62-1.19) even in a single sample or single crystal and they represent antecryst (reworked) and phenocryst (in situ crystallized) populations. Such a large compositional variation of amphiboles is commonly observed at andesite-dacite arc volcanoes. Hornblendes (antecryst1) have low Al, Mg/Fe, and negative Eu-anomaly; they equilibrated with rhyolitic melt at near-solidus temperature. Antecryst2 is represented by Cr-, Mg-rich amphiboles; they can contain Cr-spinel inclusions suggesting near-liquidus crystallization from primitive mafic melts. Phenocrysts show large compositional variation sample by sample that is different from the antecrysts suggesting variable pre-eruptive conditions. The antecrysts are derived from a stratified (mafic

  2. Functional neuroanatomy of the central noradrenergic system.

    Science.gov (United States)

    Szabadi, Elemer

    2013-08-01

    The central noradrenergic neurone, like the peripheral sympathetic neurone, is characterized by a diffusely arborizing terminal axonal network. The central neurones aggregate in distinct brainstem nuclei, of which the locus coeruleus (LC) is the most prominent. LC neurones project widely to most areas of the neuraxis, where they mediate dual effects: neuronal excitation by α₁-adrenoceptors and inhibition by α₂-adrenoceptors. The LC plays an important role in physiological regulatory networks. In the sleep/arousal network the LC promotes wakefulness, via excitatory projections to the cerebral cortex and other wakefulness-promoting nuclei, and inhibitory projections to sleep-promoting nuclei. The LC, together with other pontine noradrenergic nuclei, modulates autonomic functions by excitatory projections to preganglionic sympathetic, and inhibitory projections to preganglionic parasympathetic neurones. The LC also modulates the acute effects of light on physiological functions ('photomodulation'): stimulation of arousal and sympathetic activity by light via the LC opposes the inhibitory effects of light mediated by the ventrolateral preoptic nucleus on arousal and by the paraventricular nucleus on sympathetic activity. Photostimulation of arousal by light via the LC may enable diurnal animals to function during daytime. LC neurones degenerate early and progressively in Parkinson's disease and Alzheimer's disease, leading to cognitive impairment, depression and sleep disturbance.

  3. Disseminated encephalomyelitis-like central nervous system neoplasm in childhood.

    Science.gov (United States)

    Zhao, Jianhui; Bao, Xinhua; Fu, Na; Ye, Jintang; Li, Ting; Yuan, Yun; Zhang, Chunyu; Zhang, Yao; Zhang, Yuehua; Qin, Jiong; Wu, Xiru

    2014-08-01

    A malignant neoplasm in the central nervous system with diffuse white matter changes on magnetic resonance imaging (MRI) is rare in children. It could be misdiagnosed as acute disseminated encephalomyelitis. This report presents our experience based on 4 patients (3 male, 1 female; aged 7-13 years) whose MRI showed diffuse lesions in white matter and who were initially diagnosed with acute disseminated encephalomyelitis. All of the patients received corticosteroid therapy. After brain biopsy, the patients were diagnosed with gliomatosis cerebri, primitive neuroectodermal tumor and central nervous system lymphoma. We also provide literature reviews and discuss the differentiation of central nervous system neoplasm from acute disseminated encephalomyelitis.

  4. Roles of the orexin system in central motor control.

    Science.gov (United States)

    Hu, Bo; Yang, Nian; Qiao, Qi-Cheng; Hu, Zhi-An; Zhang, Jun

    2015-02-01

    The neuropeptides orexin-A and orexin-B are produced by one group of neurons located in the lateral hypothalamic/perifornical area. However, the orexins are widely released in entire brain including various central motor control structures. Especially, the loss of orexins has been demonstrated to associate with several motor deficits. Here, we first summarize the present knowledge that describes the anatomical and morphological connections between the orexin system and various central motor control structures. In the next section, the direct influence of orexins on related central motor control structures is reviewed at molecular, cellular, circuitry, and motor activity levels. After the summarization, the characteristic and functional relevance of the orexin system's direct influence on central motor control function are demonstrated and discussed. We also propose a hypothesis as to how the orexin system orchestrates central motor control in a homeostatic regulation manner. Besides, the importance of the orexin system's phasic modulation on related central motor control structures is highlighted in this regulation manner. Finally, a scheme combining the homeostatic regulation of orexin system on central motor control and its effects on other brain functions is presented to discuss the role of orexin system beyond the pure motor activity level, but at the complex behavioral level.

  5. The renin-angiotensin system and the central nervous system.

    Science.gov (United States)

    Ganong, W F

    1977-04-01

    One of several factors affecting the secretion of renin by the kidneys is the sympathetic nervous system. The sympathetic input is excitatory and is mediated by beta-adrenergic receptors, which are probably located on the membranes of the juxtaglomerular cells. Stimulation of sympathetic areas in the medulla, midbrain and hypothalamus raises blood pressure and increases renin secretion, whereas stimulation of other parts of the hypothalamus decreases blood pressure and renin output. The centrally active alpha-adrenergic agonist clonidine decreases renin secretion, lowers blood pressure, inhibits ACTH and vasopressin secretion, and increases growth hormone secretion in dogs. The effects on ACTH and growth hormone are abolished by administration of phenoxybenzamine into the third ventricle, whereas the effect on blood pressure is abolished by administration of phenoxybenzamine in the fourth ventricle without any effect on the ACTH and growth hormone responses. Fourth ventricular phenoxybenzamine decreases but does not abolish the inhibitory effect of clonidine on renin secretion. Circulating angiotensin II acts on the brain via the area postrema to raise blood pressure and via the subfornical organ to increase water intake. Its effect on vasopressin secretion is debated. The brain contains a renin-like enzyme, converting enzyme, renin substrate, and angiotensin. There is debate about the nature and physiological significance of the angiotensin II-generating enzyme in the brain, and about the nature of the angiotensin I and angiotensin II that have been reported to be present in the central nervous system. However, injection of angiotensin II into the cerebral ventricles produces drinking, increased secretion of vasopressin and ACTH, and increased blood pressure. The same responses are produced by intraventricular renin. Angiotensin II also facilitates sympathetic discharge in the periphery, and the possibility that it exerts a similar action on the adrenergic neurons

  6. Origin of Miocene andesite and dacite in the Goldfield-Superstition volcanic province, central Arizona: Hybrids of mafic and silicic magma mixing

    Science.gov (United States)

    Fodor, R. V.; Johnson, Kelly G.

    2016-07-01

    The Miocene Goldfield-Superstition volcanic province (G-SVP), ∼8000 km2 in central Arizona, is composed largely of silicic pyroclastic rocks and lavas, and smaller volumes of alkalic basalt and intermediate-composition lavas. Volcanism began ∼20.5 Ma as sparse rhyolitic and mainly basaltic lavas followed by intermediate lavas, lasting until ∼19 Ma. At that time, ∼1 m.y. of silicic eruptions began, creating most of the G-SVP. Petrologic studies are available for basalts and some for silicic rocks, but petrologic/geochemical information is sparse for intermediate-composition lavas. These latter, andesites and dacites, are the focus of this study, in which we present the processes and sources responsible for their origins. Goldfield-Superstition andesites and dacites have SiO2 ∼56-70 wt.% and Na2O + K2O that qualifies some as trachy-andesite and -dacite. A prominent petrographic feature is plagioclase-phyric texture (∼11-30 vol% plagioclase), where oligoclase-andesine phenocrysts have cores surrounded by corroded, or reacted, zones, mantled by higher An% plagioclase. Where corroded zones are absent, margins are etched, curved, or embayed. Groundmass plagioclase is labradorite, also more calcic than the phenocrysts. Other minerals are quartz (subrounded; embayed), clinopyroxene, amphibole, biotite, and rare titanite and zircon. A salient compositional characteristic that provides insight to andesite-dacite origins with respect to other G-SVP rocks is revealed when using SiO2 as an index. Namely, abundances of many incompatible elements, mainly HFSE and REE, decrease over the low to high SiO2 range (i.e., abundances are lower in dacites than in co-eruptive andesites and underlying alkalic basalts). As examples: G-SVP basalts have ∼50-70 ppm La, and andesites-dacites have ∼59-22 ppm La; for Zr, basalts have ∼225-170 ppm, but most andesites-dacites have ∼180-50; for Y, basalts >20 ppm, andesites-dacites ∼18-9 ppm. To understand these trends of lower

  7. Volcanism on Mars. Chapter 41

    Science.gov (United States)

    Zimbelman, J. R.; Garry, W. B.; Bleacher, J. E.; Crown, D. A.

    2015-01-01

    Spacecraft exploration has revealed abundant evidence that Mars possesses some of the most dramatic volcanic landforms found anywhere within the solar system. How did a planet half the size of Earth produce volcanoes like Olympus Mons, which is several times the size of the largest volcanoes on Earth? This question is an example of the kinds of issues currently being investigated as part of the space-age scientific endeavor called "comparative planetology." This chapter summarizes the basic information currently known about volcanism on Mars. The volcanoes on Mars appear to be broadly similar in overall morphology (although, often quite different in scale) to volcanic features on Earth, which suggests that Martian eruptive processes are not significantly different from the volcanic styles and processes on Earth. Martian volcanoes are found on terrains of different age, and Martian volcanic rocks are estimated to comprise more than 50% of the Martian surface. This is in contrast to volcanism on smaller bodies such as Earth's Moon, where volcanic activity was mainly confined to the first half of lunar history (see "Volcanism on the Moon"). Comparative planetology supports the concept that volcanism is the primary mechanism for a planetary body to get rid of its internal heat; smaller bodies tend to lose their internal heat more rapidly than larger bodies (although, Jupiter's moon Io appears to contradict this trend; Io's intense volcanic activity is powered by unique gravitational tidal forces within the Jovian system; see "Volcanism on Io"), so that volcanic activity on Mars would be expected to differ considerably from that found on Earth and the Moon.

  8. Central Nervous System Infections in Patients with Severe Burns

    Science.gov (United States)

    2010-01-01

    both patients had bacteremia with identical microorganisms as isolated from CSF ( Acinetobacter baumannii and methicillin resistant Staphylococcus...multiresistant Acinetobacter baumannii central nervous system infections with intraventricular or intrathecal colistin: case series and literature review. J

  9. "Suicide" Gen Therapy for Malignant Central Nervous System Tumors

    NARCIS (Netherlands)

    A.J.P.E. Vincent (Arnoud)

    1998-01-01

    textabstractDespite development in surgical techniques, chemotherapy and radiotherapy, most malignancies of the central nervous system are still devastating tumors with a poor prognosis. For example, median survival of patients with malignant gliomas (astrocytoma, oligodendroglioma or mixed rype) is

  10. [Microglial cells and development of the embryonic central nervous system].

    Science.gov (United States)

    Legendre, Pascal; Le Corronc, Hervé

    2014-02-01

    Microglia cells are the macrophages of the central nervous system with a crucial function in the homeostasis of the adult brain. However, recent studies showed that microglial cells may also have important functions during early embryonic central nervous system development. In this review we summarize recent works on the extra embryonic origin of microglia, their progenitor niche, the pattern of their invasion of the embryonic central nervous system and on interactions between embryonic microglia and their local environment during invasion. We describe microglial functions during development of embryonic neuronal networks, including their roles in neurogenesis, in angiogenesis and developmental cell death. These recent discoveries open a new field of research on the functions of neural-microglial interactions during the development of the embryonic central nervous system.

  11. Central nervous system stimulants and drugs that suppress appetite

    DEFF Research Database (Denmark)

    Aagaard, Lise

    2014-01-01

    of the January 2012 to June 2013 publications on central nervous system stimulants and drugs that suppress appetite covers amphetamines (including metamfetamine, paramethoxyamfetamine and paramethoxymetamfetamine), fenfluramine and benfluorex, atomoxetine, methylphenidate, modafinil and armodafinil...

  12. Structural controls on a geothermal system in the Tarutung Basin, north central Sumatra

    Science.gov (United States)

    Nukman, Mochamad; Moeck, Inga

    2013-09-01

    The Sumatra Fault System provides a unique geologic setting to evaluate the influence of structural controls on geothermal activity. Whereas most of the geothermal systems in Indonesia are controlled by volcanic activity, geothermal systems at the Sumatra Fault System might be controlled by faults and fractures. Exploration strategies for these geothermal systems need to be verified because the typical pattern of heat source and alteration clays are missing so that conventional exploration with magnetotelluric surveys might not provide sufficient data to delineate favorable settings for drilling. We present field geological, structural and geomorphological evidence combined with mapping of geothermal manifestations to allow constraints between fault dynamics and geothermal activity in the Tarutung Basin in north central Sumatra. Our results indicate that the fault pattern in the Tarutung Basin is generated by a compressional stress direction acting at a high angle to the right-lateral Sumatra Fault System. NW-SE striking normal faults possibly related to negative flower structures and NNW-SSE to NNE-SSW oriented dilative Riedel shears are preferential fluid pathways whereas ENE-WSW striking faults act as barriers in this system. The dominant of geothermal manifestations at the eastern part of the basin indicates local extension due to clockwise block rotation in the Sumatra Fault System. Our results support the effort to integrate detailed field geological surveys to refined exploration strategies even in tropical areas where outcrops are limited.

  13. Nosocomial infections in patients with acute central nervous system infections

    OpenAIRE

    2007-01-01

    Due to current increase in the rate of nosocomial infections, our objective was to examine the frequency, risk factors, clinical presentation and etiology of nosocomial infections in patients with central nervous system infections. 2246 patients with central nervous system infections, treated in the intensive care units of the Institute of Infectious and Tropical Diseases, Clinical Center of Serbia in Belgrade and at the Department of Infectious Diseases of the Clinical Hospital Center Kraguj...

  14. Role of metallothionein-III following central nervous system damage

    DEFF Research Database (Denmark)

    Carrasco, Javier; Penkowa, Milena; Giralt, Mercedes

    2003-01-01

    We evaluated the physiological relevance of metallothionein-III (MT-III) in the central nervous system following damage caused by a focal cryolesion onto the cortex by studying Mt3-null mice. In normal mice, dramatic astrogliosis and microgliosis and T-cell infiltration were observed in the area...... the inflammatory response elicited in the central nervous system by a cryoinjury, nor does it serve an important antioxidant role, but it may influence neuronal regeneration during the recovery process....

  15. Geochemistry and zircon U-Pb-Hf isotopes of Early Paleozoic arc-related volcanic rocks in Sonid Zuoqi, Inner Mongolia: Implications for the tectonic evolution of the southeastern Central Asian Orogenic Belt

    Science.gov (United States)

    Chen, Yan; Zhang, Zhicheng; Li, Ke; Yu, Haifei; Wu, Tairan

    2016-11-01

    An Early Paleozoic acid volcanic sequence has been recently detected southeast of Sonid Zuoqi in central Inner Mongolia to constrain the tectonic evolution of the Central Asian Orogenic Belt in this area. First, the volcanic rocks have zircon U-Pb ages of 439-445 Ma. They are characterized by (a) a high silica content, moderate alkali content and low iron content; (b) enrichment in light rare earth elements, depletion of heavy rare earth elements, and negative Eu anomalies; and (c) negative Nb, Ta, and Ti anomalies. Finally, the volcanic samples yield εHf(t) values of - 4.7 to + 9.2 with TDM2 ages of 835-1724 Ma. For petrogenesis, they were possibly arc derived, from predominant juvenile materials with subordinate ancient continental crust. Combined with previous studies, the Early Paleozoic Sonid Zuoqi arc magmatism can be divided into three stages: a primitive arc stage represented by 464-490 Ma low-K, calcic granitoids; a normal continental arc stage represented by 439-445 Ma medium-K, calcic to calcic-alkalic plutons and volcanic rocks and a syn-collisional stage represented by 423-424 Ma high-K granites. Furthermore, the timing and tectonic settings of the above magmatic rocks show similarities to those in Xilinhot and other areas of the northern Early to Mid-Paleozoic orogenic belt (NOB), although the rock assemblies and their proportions vary more or less in different areas. Accordingly, the NOB that formed on this arc was probably attributed to the northward subduction of the Paleo-Asian Ocean beginning at 500 Ma, which experienced this type of arc development and was terminated by a soft collision before the Late Devonian.

  16. Estimation of the geothermal potential of the Caldara di Manziana site in the Mts Sabatini Volcanic District (Central Italy) by integrating geochemical data and 3D-GIS modelling.

    Science.gov (United States)

    Ranaldi, Massimo; Lelli, Matteo; Tarchini, Luca; Carapezza, Maria Luisa; Patera, Antonio

    2016-04-01

    High-enthalpy geothermal fields of Central Italy are hosted in deeply fractured carbonate reservoirs occurring in thermally anomalous and seismically active zones. However, the Mts. Sabatini volcanic district, located north of Rome, has an interesting deep temperatures (T), but it is characterized by low to very low seismicity and permeability in the reservoir rocks (mostly because of hydrothermal self-sealing processes). Low PCO2 facilitates the complete sealing of the reservoir fractures, preventing hot fluids rising and, determining a low CO2 flux at the surface. Conversely, high CO2 flux generally reflects a high pressure of CO2, suggesting that an active geothermal reservoir is present at depth. In Mts. Sabatini district, the Caldara of Manziana (CM) is the only zone characterized by a very high CO2 flux (188 tons/day) from a surface of 0.15 km2) considering both the diffuse and viscous CO2 emission. This suggests the likely presence of an actively degassing geothermal reservoir at depth. Emitted gas is dominated by CO2 (>97 vol.%). Triangular irregular networks (TINs) have been used to represent the morphology of the bottom of the surficial volcanic deposits, the thickness of the impervious formation and the top of the geothermal reservoir. The TINs, integrated by T-gradient and deep well data, allowed to estimate the depth and the temperature of the top of the geothermal reservoir, respectively to ~-1000 m from the surface and to ~130°C. These estimations are fairly in agreement with those obtained by gas chemistry (818geothermal potential has been estimated to 48÷68 MW, which would represent ~30% to ~40% of the total thermal power estimated at regional scale for the Manziana geothermal system. Our results, suggest that the W-SW sector of Bracciano lake is the most thermally anomalous zone of the area. Geothermometers and the GIS model indicated a temperature range between 120 and 150°C, confirming the presence of a medium-enthalpy geothermal resource in

  17. Paleomagnetic study of Siluro-Devonian volcanic rocks from the central Lachlan Orogen: Implications for the apparent pole wander path of Gondwana

    Science.gov (United States)

    VéRard, Christian; Tait, Jennifer; Glen, Richard

    2005-06-01

    The apparent pole wander (APW) path for Gondwana is still not clearly established, in particular, for Silurian-Devonian times. A controversial debate places authors who argue for an "X path," running directly through Africa on a reconstruction of Gondwana against those who advocate a large loop passing by southern South America, the "Y path." Most of the paleomagnetic data used to draw this loop come from the Lachlan Orogen (Australia). A paleomagnetic study was carried out in the well-dated Ambone and Ural volcanics in the central subprovince of Lachlan Orogen, New South Wales. Anisotropy of magnetic susceptibility measurements confirms detailed mapping of the region and shows that these massive dacitic sills and/or lava flows are flat lying. Among the different localities studied, only one yields interpretable paleomagnetic results. Two components of magnetization can be identified: a midtemperature direction yielding a corresponding pole in Australian coordinates λ = 67.9°S/ϕ = 084.4°E (B = 5; n = 21; dp = 17.5°/dm = 23.1°) and a high-temperature direction with a corresponding VGP λ = 24.4°S/ϕ = 060.6°E (B = 5; n = 25; dp = 1.4°/dm = 2.5°). The first is interpreted as corresponding to an Early Carboniferous pole position and can be regarded as an overprint probably related to the Early Carboniferous Kanimblan orogenic event. The second does not correspond to any expected Silurian-Devonian or younger pole position. This magnetization is thought to be primary in origin; however, secular variation has apparently not been averaged out in the single lava flow sampled. Therefore the earliest Devonian paleopole position probably lies in a 30° cone around the obtained VGP, and this position can only match the X-type APW path for Gondwana. It is in particular very different from coeval poles obtained in the eastern subprovince of the Lachlan Orogen, and it is mostly used as key poles supporting the Silurian-Devonian loop for the APW path of Gondwana

  18. 40Ar/39Ar dating, geochemistry, and isotopic analyses of the quaternary Chichinautzin volcanic field, south of Mexico City: implications for timing, eruption rate, and distribution of volcanism

    Science.gov (United States)

    Arce, J. L.; Layer, P. W.; Lassiter, J. C.; Benowitz, J. A.; Macías, J. L.; Ramírez-Espinosa, J.

    2013-12-01

    Monogenetic structures located at the southern and western ends of the Chichinautzin volcanic field (Trans-Mexican Volcanic Belt, Central Mexico) yield 40Ar/39Ar ages ranging from 1.2 Ma in the western portion of the field to 1.0-0.09 Ma in the southern portion, all of which are older than the volcanic field. These new ages indicate: (1) an eruption rate of 0.47 km3/kyr, which is much lower than the 11.7 km3/kyr previously estimated; (2) that the Chichinautzin magmatism coexisted with the Zempoala (0.7 Ma) and La Corona (1.0 Ma) polygenetic volcanoes on the southern edge of Las Cruces Volcanic Range (Trans-Mexican Volcanic Belt); and confirm (3) that the drainage system between the Mexico and Cuernavaca basins was closed during early Pleistocene forming the Texcoco Lake. Whole-rock chemistry and Sr, Nd, and Pb isotopic data indicate heterogeneous magmatism throughout the history of Chichinautzin activity that likely reflects variable degrees of slab and sediment contributions to the mantle wedge, fractional crystallization, and crustal assimilation. Even with the revised duration of volcanism within the Chichinautzin Volcanic Field, its eruption rate is higher than most other volcanic fields of the Trans-Mexican Volcanic Belt and is comparable only to the Tacámbaro-Puruaran area in the Michoacán-Guanajuato Volcanic Field to the west. These variations in eruption rates among different volcanic fields may reflect a combination of variable subduction rates of the Rivera and Cocos plates along the Middle America Trench, as well as different distances from the trench, variations in the depth with respect to the subducted slab, or the upper plate characteristics.

  19. Relating binary-star planetary systems to central configurations

    CERN Document Server

    Veras, Dimitri

    2016-01-01

    Binary-star exoplanetary systems are now known to be common, for both wide and close binaries. However, their orbital evolution is generally unsolvable. Special cases of the N-body problem which are in fact completely solvable include dynamical architectures known as central configurations. Here, I utilize recent advances in our knowledge of central configurations to assess the plausibility of linking them to coplanar exoplanetary binary systems. By simply restricting constituent masses to be within stellar or substellar ranges characteristic of planetary systems, I find that (i) this constraint reduces by over 90 per cent the phase space in which central configurations may occur, (ii) both equal-mass and unequal-mass binary stars admit central configurations, (iii) these configurations effectively represent different geometrical extensions of the Sun-Jupiter-Trojan-like architecture, (iv) deviations from these geometries are no greater than ten degrees, and (v) the deviation increases as the substellar masse...

  20. Central Energy System Modernization at Fort Jackson, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Daryl R.; Chvala, William D.; Dirks, James A.

    2006-11-29

    An evaluation of technology options was conducted for the central energy systems at Fort Jackson, South Carolina. There were two objectives in conducting this study. From a broader viewpoint, the Army would like to develop a systematic approach to management of its central energy systems and selected Fort Jackson for this ''pilot'' study for a prospective Central Energy System Modernization Program. From a site-specific perspective, the objective was to identify the lowest life-cycle cost energy supply option(s) at Fort Jackson for buildings currently served by central boilers and chillers. This study was co-funded by the Army's Southeast Region and the U.S. Department of Energy's Federal Energy Management Program.

  1. Structural and functional features of central nervous system lymphatic vessels.

    Science.gov (United States)

    Louveau, Antoine; Smirnov, Igor; Keyes, Timothy J; Eccles, Jacob D; Rouhani, Sherin J; Peske, J David; Derecki, Noel C; Castle, David; Mandell, James W; Lee, Kevin S; Harris, Tajie H; Kipnis, Jonathan

    2015-07-16

    One of the characteristics of the central nervous system is the lack of a classical lymphatic drainage system. Although it is now accepted that the central nervous system undergoes constant immune surveillance that takes place within the meningeal compartment, the mechanisms governing the entrance and exit of immune cells from the central nervous system remain poorly understood. In searching for T-cell gateways into and out of the meninges, we discovered functional lymphatic vessels lining the dural sinuses. These structures express all of the molecular hallmarks of lymphatic endothelial cells, are able to carry both fluid and immune cells from the cerebrospinal fluid, and are connected to the deep cervical lymph nodes. The unique location of these vessels may have impeded their discovery to date, thereby contributing to the long-held concept of the absence of lymphatic vasculature in the central nervous system. The discovery of the central nervous system lymphatic system may call for a reassessment of basic assumptions in neuroimmunology and sheds new light on the aetiology of neuroinflammatory and neurodegenerative diseases associated with immune system dysfunction.

  2. Response of hydrothermal system to stress transients at Lassen Volcanic Center, California, inferred from seismic interferometry with ambient noise

    Science.gov (United States)

    Taira, Taka'aki; Brenguier, Florent

    2016-10-01

    Time-lapse monitoring of seismic velocity at volcanic areas can provide unique insight into the property of hydrothermal and magmatic fluids and their temporal variability. We established a quasi real-time velocity monitoring system by using seismic interferometry with ambient noise to explore the temporal evolution of velocity in the Lassen Volcanic Center, Northern California. Our monitoring system finds temporal variability of seismic velocity in response to stress changes imparted by an earthquake and by seasonal environmental changes. Dynamic stress changes from a magnitude 5.7 local earthquake induced a 0.1 % velocity reduction at a depth of about 1 km. The seismic velocity susceptibility defined as ratio of seismic velocity change to dynamic stress change is estimated to be about 0.006 MPa-1, which suggests the Lassen hydrothermal system is marked by high-pressurized hydrothermal fluid. By combining geodetic measurements, our observation shows that the long-term seismic velocity fluctuation closely tracks snow-induced vertical deformation without time delay, which is most consistent with an hydrological load model (either elastic or poroelastic response) in which surface loading drives hydrothermal fluid diffusion that leads to an increase of opening of cracks and subsequently reductions of seismic velocity. We infer that heated-hydrothermal fluid in a vapor-dominated zone at a depth of 2-4 km range is responsible for the long-term variation in seismic velocity[Figure not available: see fulltext.

  3. Development and relationship of monogenetic and polygenetic volcanic fields in time and space.

    Science.gov (United States)

    Germa, Aurelie; Connor, Chuck; Connor, Laura; Malservisi, Rocco

    2013-04-01

    The classification of volcanic systems, developed by G. P. L. Walker and colleagues, relates volcano morphology to magma transport and eruption processes. In general, distributed monogenetic volcanic fields are characterized by infrequent eruptions, low average output rate, and a low spatial intensity of the eruptive vents. In contrast, central-vent-dominated systems, such as stratovolcanoes, central volcanoes and lava shields are characterized by frequent eruptions, higher average flux rates, and higher spatial intensity of eruptive vents. However, it has been observed that a stratovolcano is often associated to parasitic monogenetic vents on its flanks, related to the central silicic systems, and surrounded by an apron of monogenetic edifices that are part of the volcanic field but independent from the principal central system. It appears from spatial distribution and time-volume relationships that surface area of monogenetic fields reflects the lateral extent of the magma source region and the lack of magma focusing mechanisms. In contrast, magma is focused through a unique conduit system for polygenetic volcanoes, provided by a thermally and mechanically favorable pathway toward the surface that is maintained by frequent and favorable stress conditions. We plan to relate surface observations of spatio-temporal location of eruptive vents and evolution of the field area through time to processes that control magma focusing during ascent and storage in the crust. We choose to study fields that range from dispersed to central-vent dominated, through transitional fields (central felsic system with peripheral field of monogenetic vents independent from the rhyolitic system). We investigate different well-studied volcanic fields in the Western US and Western Europe in order to assess influence of the geodynamic setting and tectonic stress on the spatial distribution of magmatism. In summary, incremental spatial intensity maps should reveal how fast a central conduit

  4. Geomorphological impact on agroforestry systems in the interior highlands of Nicaragua, Central America

    Science.gov (United States)

    Mentler, Axel; Wriessnig, Karin; Ottner, Franz; Schomakers, Jasmin; Benavides González, Álvaro; Cisne Contreras, José Dolores; Querol Lipcovich, Daniel

    2013-04-01

    Cerro el Castillo is located in the NW of Nicaragua, Central America, close to the border of Honduras (Provincia Central de las Cordilleras) at 1000-1200m above sea level. In this region, small and medium-sized farms are agroforestry systems with mangos, avocados, coffee, papayas, bananas, strawberries, maize, pumpkins, beans and other vegetables. The production systems are strongly linked to facilities for raising small domestic animals and cows. Main regional agricultural production problems are steep slopes, soil erosion, varying precipitation and distribution, water management and the unstable family income. An investigation of topsoil properties with comparable management systems showed on small scales significant differences in key values of soil chemistry and mineralogy. The outline of the analytical parameters included determination of pH, electrical conductivity (EC), cation exchange capacity (CEC), organic carbon (TOC), dissolved organic carbon (DOC), total nitrogen (TN) and dissolved nitrogen (DN) in soil solution, and plant available nutrients (P and K). The soil's mineralogical composition was determined by X-ray diffraction analysis. The area is a highly weathered karst landscape within a tropical limestone region displaying different amounts of volcanic pyroclastic parent material. The dominant Nitisoils and Andosols show degraded argic and andic horizons along the upper half of the mountainside. The pH values in the topsoil are moderate from pH 5.0 to 5.6. The upland topsoil is decalcified and the amount of plant available phosphorous is very low with significant low Ca concentration at the sorption complex. The mineralogical composition points to the high weathering intensity of this area (high content of kaolinite and a lower concentration of potassium and plagioclase feldspars and andesite). Along the upper half of the mountain, the soil profiles show wider C:N ratios and lower amounts of organic matter. Topsoil at lower altitude and with a lower

  5. Aerosols Monitoring Network to Create a Volcanic ASH Risk Management System in Argentina and Chile

    Science.gov (United States)

    Quel, Eduardo; Sugimoto, Nobuo; Otero, Lidia; Jin, Yoshitaka; Ristori, Pablo; Nishizawa, Tomoaki; González, Francisco; Papandrea, Sebastián; Shimizu, Atsushi; Mizuno, Akira

    2016-06-01

    Two main decisions were made in Argentina to mitigate the impact of the recent volcanic activity in de country basically affected by the presence of volcanic ash in the air and deposited over the Argentinean territory. The first one was to create a risk management commission were this risk between others were studied, and second to develop new ground based remote sensing technologies to be able to identify and inform the risk close to the airports. In addition the Japanese government program for Science and Technology joint Research Partnership between Argentina, Chile and Japan for Sustainable Development (SATREPS) accepted to fund this cooperation due to the potential future utilization of the research outcomes to the benefit of the society. This work present the actual achievements and expected advance of these projects that try to joint efforts between national and international agencies as well as countries on behalf of a better understanding of the risks and a joint collaboration on the mitigation of suspended ashes impact over the aerial navigation.

  6. Aerosols Monitoring Network to Create a Volcanic ASH Risk Management System in Argentina and Chile

    Directory of Open Access Journals (Sweden)

    Quel Eduardo

    2016-01-01

    Full Text Available Two main decisions were made in Argentina to mitigate the impact of the recent volcanic activity in de country basically affected by the presence of volcanic ash in the air and deposited over the Argentinean territory. The first one was to create a risk management commission were this risk between others were studied, and second to develop new ground based remote sensing technologies to be able to identify and inform the risk close to the airports. In addition the Japanese government program for Science and Technology joint Research Partnership between Argentina, Chile and Japan for Sustainable Development (SATREPS accepted to fund this cooperation due to the potential future utilization of the research outcomes to the benefit of the society. This work present the actual achievements and expected advance of these projects that try to joint efforts between national and international agencies as well as countries on behalf of a better understanding of the risks and a joint collaboration on the mitigation of suspended ashes impact over the aerial navigation.

  7. Diverse roles of neurotensin agonists in the central nervous system

    Directory of Open Access Journals (Sweden)

    Mona eBoules

    2013-03-01

    Full Text Available NT is a tridecapeptide that is found in the central nervous system and the gastrointestinal tract. NT behaves as a neurotransmitter in the brain and as a hormone in the gut. Additionally, NT acts as a neuromodulator to several neurotransmitter systems including dopaminergic, sertonergic, GABAergic, glutamatergic and cholinergic systems. Due to its association with such a wide variety of neurotransmitters, NT has been implicated in the pathophysiology of several central nervous system (CNS disorders such as schizophrenia, drug abuse, Parkinson’s disease, pain, central control of blood pressure, eating disorders, as well as, cancer and inflammation. The present review will focus on the role that NT and its analogs play in schizophrenia, endocrine function, pain, psychostimulant abuse, and Parkinson’s disease.

  8. Sr and Nd isotopic characteristics of 1.77-1.58 Ga rift-related granites and volcanics of the Goiás tin province, central Brazil

    Directory of Open Access Journals (Sweden)

    MÁRCIO M. PIMENTEL

    2001-06-01

    Full Text Available Supracrustal rocks of the Araí Group, together with coeval A-type granites represent a ca. 1.77-1.58 Ga old continental rift in Brazil. Two granite families are identified: the older (1.77 Ga group forms small undeformed plutons, and the younger granites (ca. 1.58 Ga constitute larger, deformed plutons. Sr-Nd isotopic data for these rocks indicate that the magmatism is mostly product of re-melting of Paleoproterozoic sialic crust. Initial Sr ratios for both granite families are ca 0.726 and 0.720. Most TDM model ages are between 2.58 and 1.80 Ga. epsilonND(T values are between +3.6 and -11.9. Araí volcanics are bimodal, with basalts and dacites/rhyolites interlayered with continental sediments. The felsic volcanics show Nd isotopic characteristics which are very similar to the granites, and are also interpreted as reworking of Paleoproterozoic crust. Detrital sediments of the Araí Group revealed T DM model ages between 2.4 and 2.16 Ga, indicating that they are the product of erosion of Paleoproterozoic crust. The data indicate that the Araí rift system was established on crust that had just become stable after the Paleoproterozoic orogeny.As rochas supracrustais do Grupo Araí, e os granitos tipo-A associados, representam um rift continental paleo-mesoproterozóico. Duas famílias de granitos são identificadas: a mais antiga (ca. 1,77 Ga forma pequenos plutons circulares enquanto a mais jovem (ca. 1,58 Ga, constitui corpos maiores e deformados. Dados isotópicos Sr-Nd indicam que o magmatismo félsico é predominantemente o produto de re-fusão de crosta de idade paleoproterozóica. Razões 87Sr/86Sr iniciais das duas famílias são ca. 0,726 e 0,720. A maioria das idades modelo T DM caem no intervalo entre 2,58 e 1,80 Ga e os valores de épsilonND(T se distribuem entre +3.6 e -11.9. Rochas vulcânicas do Grupo Araí são bimodais, com basaltos e dacitos/riolitos intercalados em sedimentos continentais. As vulcânicas félsicas mostram

  9. A 200kW central receiver CPV system

    Energy Technology Data Exchange (ETDEWEB)

    Lasich, John, E-mail: jbl@raygen.com; Thomas, Ian, E-mail: ithomas@raygen.com; Hertaeg, Wolfgang; Shirley, David; Faragher, Neil; Erenstrom, Neil; Carter, Sam; Cox, Brian; Zuo, Xinyi [Raygen Resources Pty. Ltd., 15 King Street, Blackburn, Victoria, 3130 (Australia)

    2015-09-28

    Raygen Resources has recently completed a Central Receiver CPV (CSPV) pilot plant in Central Victoria, Australia. The system is under final commissioning and initial operation is expected in late April 2015. The pilot demonstrates a full scale CSPV repeatable unit in a form that is representative of a commercial product and provides a test bed to prove out performance and reliability of the CSPV technology. Extensive testing of the system key components: dense array module, wireless solar powered heliostat and control system has been performed in the laboratory and on sun. Results from this key component testing are presented herein.

  10. A 200kW central receiver CPV system

    Science.gov (United States)

    Lasich, John; Thomas, Ian; Hertaeg, Wolfgang; Shirley, David; Faragher, Neil; Erenstrom, Neil; Carter, Sam; Cox, Brian; Zuo, Xinyi

    2015-09-01

    Raygen Resources has recently completed a Central Receiver CPV (CSPV) pilot plant in Central Victoria, Australia. The system is under final commissioning and initial operation is expected in late April 2015. The pilot demonstrates a full scale CSPV repeatable unit in a form that is representative of a commercial product and provides a test bed to prove out performance and reliability of the CSPV technology. Extensive testing of the system key components: dense array module, wireless solar powered heliostat and control system has been performed in the laboratory and on sun. Results from this key component testing are presented herein.

  11. Demand modelling for central heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Heller, A.

    2000-07-01

    Most researchers in the field of heat demand estimation have focussed on explaning the load for a given plant based on rather few measurements. This approach is simply the only one adaptable with the very limited data material and limited computer power. This way of dealing with the subject is here called the top-down approach, due to the fact that one tries to explain the load from the overall data. The results of such efforts are discussed in the report, leading to inspiration for own work. Also the significance of the findings to the causes for given heat loads are discussed and summarised. Contrary to the top-down approach applied in literature, a here-called bottom-up approach is applied in this work, describing the causes of a given partial load in detail and combining them to explain the total load for the system. Three partial load 'components' are discussed: 1) Space heating. 2) Hot-Water Consumption. 3) Heat losses in pipe networks. The report is aimed at giving an introduction to these subjects, but at the same time at collecting the previous work done by the author. Space heating is shortly discussed and loads are generated by an advanced simulation model. A hot water consumption model is presented and heat loads, generated by this model, utilised in the overall work. Heat loads due to heat losses in district heating a given a high priority in the current work. Hence a detailed presentation and overview of the subject is given to solar heating experts normally not dealing with district heating. Based on the 'partial' loads generated by the above-mentioned method, an overall load model is built in the computer simulation environment TRNSYS. The final tool is then employed for the generation of time series for heat demand, representing a district heating area. The results are compared to alternative methods for the generation of heat demand profiles. Results form this comparison will be presented. Computerised modelling of systems

  12. Volcanic gas

    Science.gov (United States)

    McGee, Kenneth A.; Gerlach, Terrance M.

    1995-01-01

    In Roman mythology, Vulcan, the god of fire, was said to have made tools and weapons for the other gods in his workshop at Olympus. Throughout history, volcanoes have frequently been identified with Vulcan and other mythological figures. Scientists now know that the “smoke" from volcanoes, once attributed by poets to be from Vulcan’s forge, is actually volcanic gas naturally released from both active and many inactive volcanoes. The molten rock, or magma, that lies beneath volcanoes and fuels eruptions, contains abundant gases that are released to the surface before, during, and after eruptions. These gases range from relatively benign low-temperature steam to thick hot clouds of choking sulfurous fume jetting from the earth. Water vapor is typically the most abundant volcanic gas, followed by carbon dioxide and sulfur dioxide. Other volcanic gases are hydrogen sulfide, hydrochloric acid, hydrogen, carbon monoxide, hydrofluoric acid, and other trace gases and volatile metals. The concentrations of these gas species can vary considerably from one volcano to the next.

  13. WATER SYSTEM OPERATOR TRAINING FOR THE CENTRAL ARIZONA PROJECT

    Science.gov (United States)

    The Central Arizona Project (CAP) is designed to bring about 1.5 million acre-feet of Colorado River water per year to Maricopa, Pima, and Pinal counties in Arizona. CAP carries water from Lake Havasu down to Tucson. The CAP canal system is a 336-mile long system of aqueducts, tunnels, pumping pla...

  14. Thermal Environment for Classrooms. Central System Approach to Air Conditioning.

    Science.gov (United States)

    Triechler, Walter W.

    This speech compares the air conditioning requirements of high-rise office buildings with those of large centralized school complexes. A description of one particular air conditioning system provides information about the system's arrangement, functions, performance efficiency, and cost effectiveness. (MLF)

  15. Negative Magnetic Anomalies Observed in the Central West Antarctica (CWA) Aerogeophysical Survey Over the West Antarctic Ice Sheet (WAIS), Whose Sources are Volcanic Centers (e.g. Mt Resnik) at the Base of the ice >780 Ka

    Science.gov (United States)

    Behrendt, J. C.; Finn, C. A.; Morse, D. L.; Blankenship, D. D.

    2005-12-01

    Analysis of a block of coincident aeromagnetic and radar ice-sounding data (from the CWA aerogeophysical survey) over the WAIS reveals ~1000 50->1000-nT, shallow -source, ``volcanic" magnetic anomalies, interpreted as caused by late Cenozoic alkaline magmatism associated with the West Antarctic rift system (WR). About 400 of these anomalies (conservatively selected) have topographic expression at the bed of the WAIS; >80% of these topographic features have Resnik, marked by a complex negative anomaly, is a conical peak 300 m below the surface of the WAIS, and has ~2 km topographic relief. We interpret a magnetic model fit to this anomaly as comprising reversely magnetized (in the present field direction), 0.5-2.5-km thick volcanic flows at the summit overlying normally magnetized flows. Published models (1996) reported for the Hut Point anomaly, at Ross Island, Antarctica, a similar anomaly to Mt. Resnik, also required both normal and reversed magnetizations correlated with drill holes into dated volcanic flows (also part of the late Cenozoic WR) crossing the Brunhes-Matuyama boundary (780 Ka). Because of their form similar to exposed volcanoes in the WAIS area with edifices primarily comprising subaerially-erupted, very magnetic volcanic flows, which have resisted glacial erosion, Behrendt et al. (2004) interpreted that these 18 high-topograpy, high-relief sources are subglacial volcanoes (including the five >780 Ka) erupted subaerially during a period when the WAIS was absent.

  16. Influence of explosive volcanic events on the activation versus de-activation of a modern turbidite system: the example of the Dohrn canyon-fan in the continental slope of the Campania volcanic district (Naples Bay, Italy - Western Mediterranean)

    Science.gov (United States)

    Roca, M.; Budillon, F.; Pappone, G.; Insinga, D.

    2015-12-01

    The interplay between volcanic activity, volcano-clastic yield and activation/deactivation of a turbidite system can be evaluated along the continental margin of Campania region (Tyrrhenian Sea - Italy), an active volcanic area, where three wide canyon-fans occur at short distances one to another. Actually, the Dohrn, Magnaghi and Cuma canyons cut the continental slope and shelf off Ischia and Procida volcanic islands and off the Campania Plain where Phlegraean Field and Mt. Vesuvius active vents are located. This research, partly supported by the Italian Flagship Project Ritmare, is based on single-channel, high-resolution seismic profiles (Sparker-One 16 kJ, 0.5 s twtt), swath-bathymetry and litho- and tephra-stratigraphy of gravity cores. We focused on the stratigraphic constraint of paleo-thalweg features and channel/levees deposits in seismics, debris flow, turbidites and hemipelagites in cores, to learn more on the activation/deactivation stages of the canyon Dohrn, in the frame of relative eustatic sea level variations over the Middle Pleistocene-Holocene time span.Preliminary outcomes suggest that even major volcanic events occurred in the last 300 ky, such as ignimbrite eruptions or large fallouts, have caused the infilling of the canyon head and the cover of pre-existing seabed morphology. As a consequence, the temporary deactivation of the turbidite system has occurred, despite the volcano-clastic overload in the coastal environment. Phases of renewed activities of the thalweg are observed to be in step with falling stages of sea level, which have driven the re-incision of canyon valleys through continuous volcano-clastic debris and turbidites down-flows. Since Holocene, the quiescence of the Dohrn Canyon has been documented, despite the intense volcano-tectonic activity in the area.

  17. How temperature-dependent elasticity alters host rock/magmatic reservoir models: A case study on the effects of ice-cap unloading on shallow volcanic systems

    Science.gov (United States)

    Bakker, Richard R.; Frehner, Marcel; Lupi, Matteo

    2016-12-01

    In geodynamic numerical models of volcanic systems, the volcanic basement hosting the magmatic reservoir is often assumed to exhibit constant elastic parameters with a sharp transition from the host rocks to the magmatic reservoir. We assess this assumption by deriving an empirical relation between elastic parameters and temperature for Icelandic basalts by conducting a set of triaxial compression experiments between 200 °C and 1000 °C. Results show a significant decrease of Young's modulus from ∼38 GPa to less than 4.7 GPa at around 1000 °C. Based on these laboratory data, we develop a 2D axisymmetric finite-element model including temperature-dependent elastic properties of the volcanic basement. As a case study, we use the Snæfellsjökull volcanic system, Western Iceland to evaluate pressure differences in the volcanic edifice and basement due to glacial unloading of the volcano. First, we calculate the temperature field throughout the model and assign elastic properties accordingly. Then we assess unloading-driven pressure differences in the magma chamber at various depths in models with and without temperature-dependent elastic parameters. With constant elastic parameters and a sharp transition between basement and magma chamber we obtain results comparable to other studies. However, pressure changes due to surface unloading become smaller when using more realistic temperature-dependent elastic properties. We ascribe this subdued effect to a transition zone around the magma chamber, which is still solid rock but with relatively low Young's modulus due to high temperatures. We discuss our findings in the light of volcanic processes in proximity to the magma chamber, such as roof collapse, dyke injection, or deep hydrothermal circulation. Our results aim at quantifying the effects of glacial unloading on magma chamber dynamics and volcanic activity.

  18. Climate effects on volcanism: influence on magmatic systems of loading and unloading from ice mass variations, with examples from Iceland.

    Science.gov (United States)

    Sigmundsson, Freysteinn; Pinel, Virginie; Lund, Björn; Albino, Fabien; Pagli, Carolina; Geirsson, Halldór; Sturkell, Erik

    2010-05-28

    Pressure influences both magma production and the failure of magma chambers. Changes in pressure interact with the local tectonic settings and can affect magmatic activity. Present-day reduction in ice load on subglacial volcanoes due to global warming is modifying pressure conditions in magmatic systems. The large pulse in volcanic production at the end of the last glaciation in Iceland suggests a link between unloading and volcanism, and models of that process can help to evaluate future scenarios. A viscoelastic model of glacio-isostatic adjustment that considers melt generation demonstrates how surface unloading may lead to a pulse in magmatic activity. Iceland's ice caps have been thinning since 1890 and glacial rebound at rates exceeding 20 mm yr(-1) is ongoing. Modelling predicts a significant amount of 'additional' magma generation under Iceland due to ice retreat. The unloading also influences stress conditions in shallow magma chambers, modifying their failure conditions in a manner that depends critically on ice retreat, the shape and depth of magma chambers as well as the compressibility of the magma. An annual cycle of land elevation in Iceland, due to seasonal variation of ice mass, indicates an annual modulation of failure conditions in subglacial magma chambers.

  19. Fermi Problem: Power developed at the eruption of the Puyehue-Cord\\'on Caulle volcanic system in June 2011

    CERN Document Server

    Asorey, Hernan

    2011-01-01

    On June 4 2011 the Puyehue-Cord\\'on Caulle volcanic system produced a pyroclastic subplinian eruption reaching level 3 in the volcanic explosivity index. The first stage of the eruption released sand and ashes that affected small towns and cities in the surrounding areas, including San Carlos de Bariloche, in Argentina, one of the largest cities in the North Patagonian andean region. By treating the eruption as a Fermi problem, we estimated the volume and mass of sand ejected as well as the energy and power released during the eruptive phase. We then put the results in context by comparing the obtained values with everyday quantities, like the load of a cargo truck or the electric power produced in Argentina. These calculations have been done as a pedagogic exercise, and after evaluation of the hypothesis was done in the classroom, the calculations have been performed by the students. These are students of the first physics course at the Physics and Chemistry Teacher Programs of the Universidad Nacional de R\\...

  20. The impact of stratospheric volcanic aerosol on decadal-scale climate predictions

    Science.gov (United States)

    Timmreck, Claudia; Pohlmann, Holger; Illing, Sebastian; Kadow, Christopher

    2016-04-01

    The possibility of a large future volcanic eruption provides arguably the largest uncertainty concerning the evolution of the climate system on the time scale of a few years; but also the greatest opportunity to learn about the behavior of the climate system, and our models thereof. So the question emerges how large will the uncertainty be for future decadal climate predictions if no volcanic aerosol is taken into account? And how strong has volcanic aerosol affected decadal prediction skill on annual and multi-year seasonal scales over the CMIP5 hindcast period? To understand the impact of volcanic aerosol on multi-year seasonal and decadal climate predictions we performed CMIP5-type hindcasts without volcanic aerosol using the German MiKlip prediction system system baseline 1 from 1961 to 1991 and compared them to the corresponding simulations including aerosols. Our results show that volcanic aerosol significantly affects the prediction skill for global mean surface air temperature in the first five years after strong volcanic eruptions. Also on the regional scale a volcanic imprint on decadal-scale variability is detectable. Neglecting volcanic aerosol leads to a reduced prediction skill over the tropical and subtropical Atlantic, Indic and West Pacific but to an improvement over the tropical East-Pacific, where the model has in general no skill. Multi-seasonal differences in the skill for seasonal-mean temperatures are evident over Continental Europe with significant skill loss due to neglection of volcanic aerosol in boreal winter over central Europe, Scandinavia and over south-eastern Europe and the East-Mediterranean in boreal summer.

  1. Chemical and isotopic compositions of minerals and waters from the Campi Flegrei volcanic system, Naples, Italy

    Science.gov (United States)

    Valentino, G. M.; Cortecci, G.; Franco, E.; Stanzione, D.

    1999-08-01

    Based on their δ 34S signature, sulfate minerals and native sulfur around fumaroles and hot water pools from the Campi Flegrei volcanic area derive from supergenic oxidation of volcanic H 2S. Their mean δ 34S value (-0.2±1.7‰) matches with that of fumarolic H 2S at Solfatara (-0.3±0.3‰), as well as with the δ 34S of +1.4‰ obtained for total sulfur in fresh trachyte from the area. All δ 34S values indicate a mostly deep-seated origin for sulfur. Thermal waters were analysed for major and minor chemistry and for oxygen, hydrogen and sulfur isotope compositions. Pools at Pisciarelli are filled with evaporated meteoric water heated by rising (magmatic) gases. The water δ 18O (+3.8±1.3‰) and δ 2H (+6.5±2.2‰) values in these steam-heated waters are controlled by mixing and evaporation effects, and the δ 34S value of dissolved sulfate (-1.3±0.3‰) basically agrees with supergenic oxidation of deep-seated H 2S as the major source of sulfur. Instead, water from thermal springs and wells elsewhere in the Campi Flegrei appears to be a mixture between dilute meteoric and saline marine components. The latter may be local seawater from the bay of Pozzuoli. The δ 18O and δ 2H values of waters sampled during 1993-1994 range from -5.6 to +0.3‰ and from -33 to -3.4‰, respectively. The δ 34S values of dissolved sulfate range between -0.1 and +19.5‰. In general, sulfate is probably derived essentially from two sources, both within the volcanic cover, i.e., oxidation/dissolution of pyrite and anhydrite, and marine water. An occasional source of water and sulfate is represented by (magmatic) gases, which directly interact with shallow meteoric water as in the case of the Hotel Tennis well yielding steam-heated water with δ 18O=-1.5±0.2‰, δ 2H=-17±1‰ and δ 34S=-0.1‰.

  2. A Linearized Model for Wave Propagation through Coupled Volcanic Conduit-crack Systems Filled with Multiphase Magma

    Science.gov (United States)

    Liang, C.; Dunham, E. M.; OReilly, O. J.; Karlstrom, L.

    2015-12-01

    Both the oscillation of magma in volcanic conduits and resonance of fluid-filled cracks (dikes and sills) are appealing explanations for very long period signals recorded at many active volcanoes. While these processes have been studied in isolation, real volcanic systems involve interconnected networks of conduits and cracks. The overall objective of our work is to develop a model of wave propagation and ultimately eruptive fluid dynamics through this coupled system. Here, we present a linearized model for wave propagation through a conduit with multiple cracks branching off of it. The fluid is compressible and viscous, and is comprised of a mixture of liquid melt and gas bubbles. Nonequilibrium bubble growth and resorption (BGR) is quantified by introducing a time scale for mass exchange between phases, following the treatment in Karlstrom and Dunham (2015). We start by deriving the dispersion relation for crack waves travelling along the multiphase-magma-filled crack embedded in an elastic solid. Dissipation arises from magma viscosity, nonequilibrium BGR, and radiation of seismic waves into the solid. We next introduce coupling conditions between the conduit and crack, expressing conservation of mass and the balance of forces across the junction. Waves in the conduit, like those in the crack, are influenced by nonequilibrium BGR, but the deformability of the surrounding solid is far less important than for cracks. Solution of the coupled system of equations provides the evolution of pressure and fluid velocity within the conduit-crack system. The system has various resonant modes that are sensitive to fluid properties and to the geometry of the conduit and cracks. Numerical modeling of seismic waves in the solid allows us to generate synthetic seismograms.

  3. Volcanism and sedimentation along the western margin of the Rio Grande rift between caldera-forming eruptions of the Jemez Mountains volcanic field, north-central New Mexico, USA

    Science.gov (United States)

    Jacobs, Elaine P.; WoldeGabriel, Giday; Kelley, Shari A.; Broxton, David; Ridley, John

    2016-11-01

    The Cerro Toledo Formation (CTF), a series of intracaldera rhyolitic dome complexes and their associated extracaldera tephras and epiclastic sedimentary deposits, records the dynamic interplay between volcanic, tectonic, and geomorphic processes that were occurring along the western margin of the Rio Grande rift between major caldera-forming eruptions of the Bandelier Tuff 1.65-1.26 Ma. The Alamo Canyon and Pueblo Canyon Members differ significantly despite deposition within a few kilometers of each other on the Pajarito Plateau. These differences highlight spatial distinctions in vent sources, eruptive styles, and depositional environments along the eastern side of the Jemez Mountains volcanic field during this ca. 400,000 year interval. Intercalated pyroclastic fall deposits and sandstones of the Pueblo Canyon Member reflect deposition with a basin. Thick Alamo Canyon Member deposits of block-and-ash-flow tuff and pyroclastic fall deposits fill a paleovalley carved into coarse grained sedimentary units reflecting deposition along the mountain front. Chemistry and ages of glass from fall deposits together with clast lithologies of sedimentary units, allow correlation of outcrops, subsurface units, and sources. Dates on pyroclastic fall deposits from Alamo Canyon record deep incision into the underlying Otowi Member in the southern part of the Pajarito Plateau within 100 k.y. of the Toledo caldera-forming eruption. Reconstruction of the CTF surface shows that this period of rapid incision was followed by aggradation where sediments largely filled pre-existing paleocanyons. Complex sequences within the upper portion of the Otowi Member in outcrop and in the subsurface record changes in the style of eruptive activity during the waning stages of the Toledo caldera-forming eruption.

  4. Histologic examination of the rat central nervous system after intrathecal administration of human beta-endorphin

    DEFF Research Database (Denmark)

    Hée, P.; Klinken, Leif; Ballegaard, Martin

    1992-01-01

    Neuropathology, analgesics - intrathecal, central nervous system, histology, human beta-endorphin, toxicity......Neuropathology, analgesics - intrathecal, central nervous system, histology, human beta-endorphin, toxicity...

  5. Volcanic sulfur dioxide and carbon dioxide measurements using small unmanned aerial systems

    Science.gov (United States)

    Pieri, D. C.; Diaz, J. A.; Fladeland, M. M.; Bland, G.; Alan, A., Jr.; Alegria, O.; Buongiorno, M. F.; Christensen, L. E.; Corrales, E.; Linick, J.; Mouginis-Mark, P. J.; Ramsey, M. S.; Realmuto, V. J.; Schwandner, F. M.

    2015-12-01

    Volcanoes emit gases continuously with significant pre-post-eruption changes, mainly H2O and CO2, plus SO2, and others. The SO2/CO2 ratio changes within volcanic life cycles making it an indicator of oncoming eruption phases: it can dip weeks to months before eruptions, then increase, and decrease back to background after eruptions. Over the last five years, we have made an effort to develop small and inexpensive lighter-than-air and fixed wing unmanned aerial vehicle (UAV) platforms in Costa Rica at Turrialba Volcano. Turrialba is an appropriate natural laboratory to test and prove platforms and instrumentation in low-level steady state volcanogenic gas and aerosol emissions at moderate altitudes (UAVs during ASTER overpasses, and (3) reconciliation of the orbital results with in situ data to validate mass retrieval and transport models. As part of the NASA HyspIRI Preparatory Airborne Activities program, we will conduct similar observations at Kilauea volcano using small UAVs and for both SO2 and CO2 in situ. One of the salient characteristics of the long lived Kilauea eruptions since 1983 has been the emission of SO2 in significant amounts, generating environmental stresses on local inhabitants due to lowered air quality, and stress on vegetation. Kilauea volcanic plumes, as with Turrialba, are mainly gases and liquid--SO2 is hydrolyzed to H2SO4 and the resulting highly acidic liquid aerosol is termed "vog," an environmental health hazard. Measurement of the diffuse CO2 emissions at Kilauea will also be of interest. Such measurements at Turrialba, indicate summit CO2 concentrations of up to 4000ppmv, and flank CO2 values of up to1500ppmv. We will discuss our SO2 and CO2 results at Turrialba and in Italy, and plans for Hawaii. Work presented here was done, in part, under contract to the NASA Earth Surface and Interior Focus Area, at the Jet Propulsion Laboratory of the California Institute of Technology.

  6. Diagnosis of Fetal Central Nervous System Anomalies by Ultrasonography

    Directory of Open Access Journals (Sweden)

    F. Tuncay Ozgunen

    2003-04-01

    Full Text Available During the last 30 years, one of the most important instruments in diagnosis is ultrasonograph. It has an indispensible place in obstetrics. Its it possible to evaluate normal fetal anatomy, to follow-up fetal growth and to diagnose fetal congenital anomalies by ultrasonography. Central nervous system anomalies is the one of the most commonly seen and the best time for screening is between 18- and 22-week of pregnancy. In this paper, it is presented the sonographic features of some outstanding Central Nervous System anomalies. [Archives Medical Review Journal 2003; 12(2.000: 77-89

  7. Population growth and the development of a central place system

    Science.gov (United States)

    Cromley, Robert G.; Hanink, Dean M.

    2008-12-01

    This paper describes the spatial and functional evolution of a central place system as market conditions change with population growth. Utilizing a partial equilibrium optimization model, we examine the spatial response of two economic sectors to increases in market populations resulting from natural increase and migration. Response in both sectors is conditioned by threshold demand, with factor prices also affecting one of the sectors. As the central place system evolves it exhibits spatial and functional characteristics that are initially consistent with a Löschian landscape, then a Christallerian landscape at higher populations, while at even larger populations Krugman’s landscape emerges.

  8. Central- and autonomic nervous system coupling in schizophrenia.

    Science.gov (United States)

    Schulz, Steffen; Bolz, Mathias; Bär, Karl-Jürgen; Voss, Andreas

    2016-05-13

    The autonomic nervous system (ANS) dysfunction has been well described in schizophrenia (SZ), a severe mental disorder. Nevertheless, the coupling between the ANS and central brain activity has been not addressed until now in SZ. The interactions between the central nervous system (CNS) and ANS need to be considered as a feedback-feed-forward system that supports flexible and adaptive responses to specific demands. For the first time, to the best of our knowledge, this study investigates central-autonomic couplings (CAC) studying heart rate, blood pressure and electroencephalogram in paranoid schizophrenic patients, comparing them with age-gender-matched healthy subjects (CO). The emphasis is to determine how these couplings are composed by the different regulatory aspects of the CNS-ANS. We found that CAC were bidirectional, and that the causal influence of central activity towards systolic blood pressure was more strongly pronounced than such causal influence towards heart rate in paranoid schizophrenic patients when compared with CO. In paranoid schizophrenic patients, the central activity was a much stronger variable, being more random and having fewer rhythmic oscillatory components. This study provides a more in-depth understanding of the interplay of neuronal and autonomic regulatory processes in SZ and most likely greater insights into the complex relationship between psychotic stages and autonomic activity.

  9. Paleomagnetic Evidence From Volcanic Units of Valsequillo Basin for the Laschamp Geomagnetic Excursion, and Implications for Early Human Occupation in Central Mexico

    Science.gov (United States)

    Rocha, J.; Gogichaishvili, A.; Martin Del Pozzo, A.; Urrutia-Fucugauchi, J.; Soler, A. M.

    2007-12-01

    Alleged human and animal footprints were found within the upper bedding surfaces of the Xalnene volcanic ash layer that outcrops in Valsequillo basin, south of Puebla, Mexico (Gonzalez et al., Quaternary Science Reviews doi: 10.1016/j.quascirev, 2005). The ash has been dated to 40 ka by means of optically stimulated luminescence analysis. This was held as new evidence that America was colonized earlier. We carried out paleomagnetic and rock magnetic analysis of 18 Xalnene ash block and core samples collected at two distinct localities, and nineteen standard paleomagnetic cores belonging to nearby monogenetic volcanoes. Our data yield evidence that both volcanic lava flow and Xalnene ash were emplaced at during the Laschamp geomagnetic event spanning from about 45 to 39 ka. This interpretation indicates that Valsequillo probably remains one of the sites of early human occupation in the Americas, producing evidence of early arrival.

  10. Paleomagnetic and rock-magnetic study on volcanic units of the Valsequillo Basin: implications for early human occupation in central Mexico

    Science.gov (United States)

    Goguitchaichvili, Avto; Pozzo, Ana Lillian Martin-Del; Rocha-Fernandez, Jose Luis; Urrutia-Fucugauchi, Jaime; Soler-Arechalde, Ana Maria

    2009-01-01

    Alleged human and animal footprints were found within the upper bedding surfaces of the Xalnene volcanic ash layer that outcrops in the Valsequillo Basin, south of Puebla, Mexico (Gonzalez et al, 2005). The ash has been dated at 40 ka by optically stimulated luminescence analysis, thereby providing new evidence that America was colonized earlier than the Clovis culture (about 13.5 Ma). We carried out paleomagnetic and rock magnetic analysis on 18 Xalnene ash block and core samples collected at two distinct localities and 19 standard paleomagnetic cores belonging to nearby monogenetic volcanoes. Our data provide evidence that both the volcanic lava flow and Xalnene ash were emplaced during the Laschamp geomagnetic event spanning from about 45 to 39 ka.

  11. Petrology, magnetostratigraphy and geochronology of the Miocene volcaniclastic Tepoztlán Formation: implications for the initiation of the Transmexican Volcanic Belt (Central Mexico)

    Science.gov (United States)

    Lenhardt, Nils; Böhnel, Harald; Wemmer, Klaus; Torres-Alvarado, Ignacio S.; Hornung, Jens; Hinderer, Matthias

    2010-09-01

    The volcaniclastic Tepoztlán Formation (TF) represents an important rock record to unravel the early evolution of the Transmexican Volcanic Belt (TMVB). Here, a depositional model together with a chronostratigraphy of this Formation is presented, based on detailed field observations together with new geochronological, paleomagnetic, and petrological data. The TF consists predominantly of deposits from pyroclastic density currents and extensive epiclastic products such as tuffaceous sandstones, conglomerates and breccias, originating from fluvial and mass flow processes, respectively. Within these sediments fall deposits and lavas are sparsely intercalated. The clastic material is almost exclusively of volcanic origin, ranging in composition from andesite to rhyolite. Thick gravity-driven deposits and large-scale alluvial fan environments document the buildup of steep volcanic edifices. K-Ar and Ar-Ar dates, in addition to eight magnetostratigraphic sections and lithological correlations served to construct a chronostratigraphy for the entire Tepoztlán Formation. Correlation of the 577 m composite magnetostratigraphic section with the Cande and Kent (1995) Geomagnetic Polarity Time Scale (GPTS) suggests that this section represents the time intervall 22.8-18.8 Ma (6Bn.1n-5Er; Aquitanian-Burdigalian, Lower Miocene). This correlation implies a deposition of the TF predating the extensive effusive activity in the TMVB at 12 Ma and is therefore interpreted to represent its initial phase with predominantly explosive activity. Additionally, three subdivisions of the TF were established, according to the dominant mode of deposition: (1) the fluvial dominated Malinalco Member (22.8-22.2 Ma), (2) the volcanic dominated San Andrés Member (22.2-21.3 Ma) and (3) the mass flow dominated Tepozteco Member (21.3-18.8 Ma).

  12. Central retinal vein occlusion: A patient with systemic sclerosis

    Directory of Open Access Journals (Sweden)

    Karadžić Jelena

    2016-01-01

    Full Text Available Introduction. Scleroderma (systemic sclerosis is a severe chronic connective tissue disease, which results in involvement of numerous internal organs. Changes in the eye are the consequences of organ-specific manifestations of scleroderma or adverse effects of immunosuppressive treatment applied. Case report. We reported a 42-year-old woman with systemic sclerosis and acute deterioration of vision in the left eye, with visual acuity 0.9. After thorough clinical examination, including fluorescein angiography and optical coherence tomography, the diagnosis of nonischemic central retinal vein occlusion was made. Further biochemical, rheumatological and immunological investigation, apart from inactive systemic sclerosis, showed normal findings. Therefore, the cause of central retinal vein occlusion could only be attributed to the microvascular changes in systemic sclerosis. After three months, visual acuity deteriorated to 0.6 due to the development of cystoid macular edema. The patient received intravitreal injection of bevacizumab and after a single dose visual acuity improved to 0.9. After a 6- month follow-up, macular edema resolved and visual acuity stabilized. Conclusion. According to our knowledge and current data from the literature, central retinal vein occlusion is a rare vision threatening manifestation of scleroderma. There are only few published case reports on central vein occlusion in scleroderma patients. Examination of the ocular fundus is recommended for evaluation of vascular disease in patients with systemic sclerosis.

  13. Relating binary-star planetary systems to central configurations

    Science.gov (United States)

    Veras, Dimitri

    2016-11-01

    Binary-star exoplanetary systems are now known to be common, for both wide and close binaries. However, their orbital evolution is generally unsolvable. Special cases of the N-body problem which are in fact completely solvable include dynamical architectures known as central configurations. Here, I utilize recent advances in our knowledge of central configurations to assess the plausibility of linking them to coplanar exoplanetary binary systems. By simply restricting constituent masses to be within stellar or substellar ranges characteristic of planetary systems, I find that (i) this constraint reduces by over 90 per cent the phase space in which central configurations may occur, (ii) both equal-mass and unequal-mass binary stars admit central configurations, (iii) these configurations effectively represent different geometrical extensions of the Sun-Jupiter-Trojan-like architecture, (iv) deviations from these geometries are no greater than 10°, and (v) the deviation increases as the substellar masses increase. This study may help restrict future stability analyses to architectures which resemble exoplanetary systems, and might hint at where observers may discover dust, asteroids and/or planets in binary-star systems.

  14. Central suboptimal H ∞ control design for nonlinear polynomial systems

    Science.gov (United States)

    Basin, Michael V.; Shi, Peng; Calderon-Alvarez, Dario

    2011-05-01

    This article presents the central finite-dimensional H ∞ regulator for nonlinear polynomial systems, which is suboptimal for a given threshold γ with respect to a modified Bolza-Meyer quadratic criterion including the attenuation control term with the opposite sign. In contrast to the previously obtained results, the article reduces the original H ∞ control problem to the corresponding optimal H 2 control problem, using this technique proposed in Doyle et al. [Doyle, J.C., Glover, K., Khargonekar, P.P., and Francis, B.A. (1989), 'State-space Solutions to Standard H 2 and H ∞ Control Problems', IEEE Transactions on Automatic Control, 34, 831-847]. This article yields the central suboptimal H ∞ regulator for nonlinear polynomial systems in a closed finite-dimensional form, based on the optimal H 2 regulator obtained in Basin and Calderon-Alvarez [Basin, M.V., and Calderon-Alvarez, D. (2008b), 'Optimal Controller for Uncertain Stochastic Polynomial Systems', Journal of the Franklin Institute, 345, 293-302]. Numerical simulations are conducted to verify performance of the designed central suboptimal regulator for nonlinear polynomial systems against the central suboptimal H ∞ regulator available for the corresponding linearised system.

  15. Blind Geothermal System Exploration in Active Volcanic Environments; Multi-phase Geophysical and Geochemical Surveys in Overt and Subtle Volcanic Systems, Hawai’i and Maui

    Energy Technology Data Exchange (ETDEWEB)

    Fercho, Steven [Ormat Nevada, Inc., Reno, NV (United States); Owens, Lara [Ormat Nevada, Inc., Reno, NV (United States); Walsh, Patrick [Ormat Nevada, Inc., Reno, NV (United States); Drakos, Peter [Ormat Nevada, Inc., Reno, NV (United States); Martini, Brigette [Corescan Inc., Ascot (Australia); Lewicki, Jennifer L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kennedy, Burton M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-01

    Suites of new geophysical and geochemical exploration surveys were conducted to provide evidence for geothermal resource at the Haleakala Southwest Rift Zone (HSWRZ) on Maui Island, Hawai’i. Ground-based gravity (~400 stations) coupled with heli-bourne magnetics (~1500 line kilometers) define both deep and shallow fractures/faults, while also delineating potentially widespread subsurface hydrothermal alteration on the lower flanks (below approximately 1800 feet a.s.l.). Multi-level, upward continuation calculations and 2-D gravity and magnetic modeling provide information on source depths, but lack of lithologic information leaves ambiguity in the estimates. Additionally, several well-defined gravity lows (possibly vent zones) lie coincident with magnetic highs suggesting the presence of dike intrusions at depth which may represent a potentially young source of heat. Soil CO2 fluxes were measured along transects across geophysically-defined faults and fractures as well as young cinder cones along the HSWRZ. This survey generally did not detect CO2 levels above background, with the exception of a weak anomalous flux signal over one young cinder cone. The general lack of observed CO2 flux signals on the HSWRZ is likely due to a combination of lower magmatic CO2 fluxes and relatively high biogenic surface CO2 fluxes which mix with the magmatic signal. Similar surveys at the Puna geothermal field on the Kilauea Lower East Rift Zone (KLERZ) also showed a lack of surface CO2 flux signals, however aqueous geochemistry indicated contribution of magmatic CO2 and He to shallow groundwater here. As magma has been intercepted in geothermal drilling at the Puna field, the lack of measured surface CO2 flux indicative of upflow of magmatic fluids here is likely due to effective “scrubbing” by high groundwater and a mature hydrothermal system. Dissolved inorganic carbon (DIC) concentrations, δ13C compositions and 3He/4He values were sampled at Maui from several shallow

  16. Volcanic Catastrophes

    Science.gov (United States)

    Eichelberger, J. C.

    2003-12-01

    The big news from 20th century geophysics may not be plate tectonics but rather the surprise return of catastrophism, following its apparent 19th century defeat to uniformitarianism. Divine miracles and plagues had yielded to the logic of integrating observations of everyday change over time. Yet the brilliant interpretation of the Cretaceous-Tertiary Boundary iridium anomaly introduced an empirically based catastrophism. Undoubtedly, decades of contemplating our own nuclear self-destruction played a role in this. Concepts of nuclear winter, volcanic winter, and meteor impact winter are closely allied. And once the veil of threat of all-out nuclear exchange began to lift, we could begin to imagine slower routes to destruction as "global change". As a way to end our world, fire is a good one. Three-dimensional magma chambers do not have as severe a magnitude limitation as essentially two-dimensional faults. Thus, while we have experienced earthquakes that are as big as they get, we have not experienced volcanic eruptions nearly as great as those preserved in the geologic record. The range extends to events almost three orders of magnitude greater than any eruptions of the 20th century. Such a calamity now would at the very least bring society to a temporary halt globally, and cause death and destruction on a continental scale. At maximum, there is the possibility of hindering photosynthesis and threatening life more generally. It has even been speculated that the relative genetic homogeneity of humankind derives from an evolutionary "bottleneck" from near-extinction in a volcanic cataclysm. This is somewhat more palatable to contemplate than a return to a form of Original Sin, in which we arrived at homogeneity by a sort of "ethnic cleansing". Lacking a written record of truly great eruptions, our sense of human impact must necessarily be aided by archeological and anthropological investigations. For example, there is much to be learned about the influence of

  17. Is Ghrelin Synthesized in the Central Nervous System?

    Science.gov (United States)

    Cabral, Agustina; López Soto, Eduardo J.; Epelbaum, Jacques; Perelló, Mario

    2017-01-01

    Ghrelin is an octanoylated peptide that acts via its specific receptor, the growth hormone secretagogue receptor type 1a (GHSR-1a), and regulates a vast variety of physiological functions. It is well established that ghrelin is predominantly synthesized by a distinct population of endocrine cells located within the gastric oxyntic mucosa. In addition, some studies have reported that ghrelin could also be synthesized in some brain regions, such as the hypothalamus. However, evidences of neuronal production of ghrelin have been inconsistent and, as a consequence, it is still as a matter of debate if ghrelin can be centrally produced. Here, we provide a comprehensive review and discussion of the data supporting, or not, the notion that the mammalian central nervous system can synthetize ghrelin. We conclude that no irrefutable and reproducible evidence exists supporting the notion that ghrelin is synthetized, at physiologically relevant levels, in the central nervous system of adult mammals. PMID:28294994

  18. Submarine Volcanic Morphology of Santorini Caldera, Greece

    Science.gov (United States)

    Nomikou, P.; Croff Bell, K.; Carey, S.; Bejelou, K.; Parks, M.; Antoniou, V.

    2012-04-01

    Santorini volcanic group form the central part of the modern Aegean volcanic arc, developed within the Hellenic arc and trench system, because of the ongoing subduction of the African plate beneath the European margin throughout Cenozoic. It comprises three distinct volcanic structures occurring along a NE-SW direction: Christianna form the southwestern part of the group, Santorini occupies the middle part and Koloumbo volcanic rift zone extends towards the northeastern part. The geology of the Santorini volcano has been described by a large number of researchers with petrological as well as geochronological data. The offshore area of the Santorini volcanic field has only recently been investigated with emphasis mainly inside the Santorini caldera and the submarine volcano of Kolumbo. In September 2011, cruise NA-014 on the E/V Nautilus carried out new surveys on the submarine volcanism of the study area, investigating the seafloor morphology with high-definition video imaging. Submarine hydrothermal vents were found on the seafloor of the northern basin of the Santorini caldera with no evidence of high temperature fluid discharges or massive sulphide formations, but only low temperature seeps characterized by meter-high mounds of bacteria-rich sediment. This vent field is located in line with the normal fault system of the Kolumbo rift, and also near the margin of a shallow intrusion that occurs within the sediments of the North Basin. Push cores have been collected and they will provide insights for their geochemical characteristics and their relationship to the active vents of the Kolumbo underwater volcano. Similar vent mounds occur in the South Basin, at shallow depths around the islets of Nea and Palaia Kameni. ROV exploration at the northern slopes of Nea Kameni revealed a fascinating underwater landscape of lava flows, lava spines and fractured lava blocks that have been formed as a result of 1707-1711 and 1925-1928 AD eruptions. A hummocky topography at

  19. Comparative Performance Assessment For Central Receiver CPV Systems

    Science.gov (United States)

    Lasich, John B.; Thomas, Ian; Verlinden, Pierre J.; Lewandowski, Allan; Heartag, Wolfgang; Wright, Mark

    2011-12-01

    A Central receiver Concentrating PV (C2PV) system has the potential to be the optimum solar energy generation system for utility scale because it combines the high efficiency of CPV with the low cost of a heliostat collector. Due to the off axis nature of a heliostat central receiver concentrator a cosine efficiency loss is incurred and, unlike `normal' tracking CPV lens and dish systems, the optical performance varies with time and site latitude. To investigate the optical performance of a C2PV system a ray trace model has been developed and the performance of a representative C2PV system is modelled throughout the year and at different site latitudes. The cosine loss and latitude dependence are put into perspective by calculating the annual average optical efficiency and testing its sensitivity to variations in site latitude. These values are then used to estimate a system performance by applying efficiencies for solar cell, balance of system and operational factors. This system efficiency is finally compared to published data for `normal' tracking CPV dish and lens systems. Modelled annual average AC system efficiency for the C2PV system was calculated to be 21% at 40° latitude and 19% at 15° latitude. These annual average AC system efficiencies are shown to be similar to those reported for typical dish and lens CPV systems when they are adjusted to use a total collector area baseline.

  20. Extreme Cost Reductions with Multi-Megawatt Centralized Inverter Systems

    Energy Technology Data Exchange (ETDEWEB)

    Schwabe, Ulrich [Alencon LLC; Fishman, Oleg [Alencon LLC

    2015-03-20

    The objective of this project was to fully develop, demonstrate, and commercialize a new type of utility scale PV system. Based on patented technology, this includes the development of a truly centralized inverter system with capacities up to 100MW, and a high voltage, distributed harvesting approach. This system promises to greatly impact both the energy yield from large scale PV systems by reducing losses and increasing yield from mismatched arrays, as well as reduce overall system costs through very cost effective conversion and BOS cost reductions enabled by higher voltage operation.

  1. Central Auditory Nervous System Dysfunction in Echolalic Autistic Individuals.

    Science.gov (United States)

    Wetherby, Amy Miller; And Others

    1981-01-01

    The results showed that all the Ss had normal hearing on the monaural speech tests; however, there was indication of central auditory nervous system dysfunction in the language dominant hemisphere, inferred from the dichotic tests, for those Ss displaying echolalia. (Author)

  2. The Role of Central Nervous System Plasticity in Tinnitus

    Science.gov (United States)

    Saunders, James C.

    2007-01-01

    Tinnitus is a vexing disorder of hearing characterized by sound sensations originating in the head without any external stimulation. The specific etiology of these sensations is uncertain but frequently associated with hearing loss. The "neurophysiogical" model of tinnitus has enhanced appreciation of central nervous system (CNS) contributions.…

  3. Neuronal chemokines : Versatile messengers in central nervous system cell interaction

    NARCIS (Netherlands)

    de Haas, A. H.; van Weering, H. R. J.; de Jong, E. K.; Boddeke, H. W. G. M.; Biber, K. P. H.

    2007-01-01

    Whereas chemokines are well known for their ability to induce cell migration, only recently it became evident that chemokines also control a variety of other cell functions and are versatile messengers in the interaction between a diversity of cell types. In the central nervous system (CNS), chemoki

  4. Aberrant nerve fibres within the central nervous system.

    Science.gov (United States)

    Moffie, D

    1992-01-01

    Three cases of aberrant nerve fibres in the spinal cord and medulla oblongata are described. The literature on these fibres is discussed and their possible role in regeneration. Different views on the possibility of regeneration or functional recovery of the central nervous system are mentioned in the light of recent publications, which are more optimistic than before.

  5. Tuberculosis of the central nervous system : overview of neuroradiological findings

    NARCIS (Netherlands)

    Bernaerts, A; Vanhoenacker, FM; Parizel, PM; van Altena, R; Laridon, A; De Roeck, J; Coeman, [No Value; De Schepper, AM; Goethem, J.W.M.

    2003-01-01

    This article presents the range of manifestations of tuberculosis (TB) of the craniospinal axis. Central nervous system (CNS) infection with Mycobacterium tuberculosis occurs either in a diffuse form as basal exudative leptomeningitis or in a localized form as tuberculoma, abscess, or cerebritis. In

  6. Innate immune responses in central nervous system inflammation

    DEFF Research Database (Denmark)

    Finsen, Bente; Owens, Trevor

    2011-01-01

    In autoimmune diseases of the central nervous system (CNS), innate glial cell responses play a key role in determining the outcome of leukocyte infiltration. Access of leukocytes is controlled via complex interactions with glial components of the blood-brain barrier that include angiotensin II...

  7. School Reentry for Children with Acquired Central Nervous Systems Injuries

    Science.gov (United States)

    Carney, Joan; Porter, Patricia

    2009-01-01

    Onset of acquired central nervous system (CNS) injury during the normal developmental process of childhood can have impact on cognitive, behavioral, and motor function. This alteration of function often necessitates special education programming, modifications, and accommodations in the education setting for successful school reentry. Special…

  8. A centralized dose calculation system for radiation therapy.

    Science.gov (United States)

    Xiao, Y; Galvin, J

    2000-05-01

    Centralization of treatment planning in a radiation therapy department is a realistic strategy to achieve an integrated and quality-controlled planning system, especially for institutions with numerous affiliations. The rapid evolution of computer hardware and software technology makes this a distinct possibility. However, the procedure of three-dimensional treatment planning involves a number of steps, such as: (1) input of patient computed tomography (CT) images and contour information; (2) interactions with local devices such as a film digitizer; and (3) output of beam information to be integrated with the record and verify the system. A full-fledged realization of the web-based centralized three-dimensional treatment planning system will require an extensive commercial development effort. We have developed and incorporated a web-based Timer/Monitor Unit (MU) program as a first step towards the full implementation of a centralized treatment planning system. The software application was developed in JAVA language. It uses the internet server and client technology. With one server that can handle multiple threads, it is a simple process to access the application anywhere on the network with an internet browser. Both the essential data needed for the calculation and the results are stored on the server, which centralizes the maintenance of the software and the storage of patient information.

  9. The hydrothermal system of the Domuyo volcanic complex (Argentina): A conceptual model based on new geochemical and isotopic evidences

    Science.gov (United States)

    Tassi, F.; Liccioli, C.; Agusto, M.; Chiodini, G.; Vaselli, O.; Calabrese, S.; Pecoraino, G.; Tempesti, L.; Caponi, C.; Fiebig, J.; Caliro, S.; Caselli, A.

    2016-12-01

    The Domuyo volcanic complex (Neuquén Province, Argentina) hosts one of the most promising geothermal systems of Patagonia, giving rise to thermal manifestations discharging hot and Cl--rich fluids. This study reports a complete geochemical dataset of gas and water samples collected in three years (2013, 2014 and 2015) from the main fluid discharges of this area. The chemical and isotopic composition (δD-H2O and δ18O-H2O) of waters indicates that rainwater and snow melting are the primary recharge of a hydrothermal reservoir located at relative shallow depth (400-600 m) possibly connected to a second deeper (2-3 km) reservoir. Reactive magmatic gases are completely scrubbed by the hydrothermal aquifer(s), whereas interaction of meteoric waters at the surface causes a significant air contamination and dilution of the fluid discharges located along the creeks at the foothill of the Cerro Domuyo edifice. Thermal discharges located at relatively high altitude ( 3150 m a.s.l.), namely Bramadora, are less affected by this process, as also shown by their relatively high R/Ra values (up to 6.91) pointing to the occurrence of an actively degassing magma batch located at an unknown depth. Gas and solute geothermometry suggests equilibrium temperatures up to 220-240 °C likely referred to the shallower hydrothermal reservoir. These results, confirming the promising indications of the preliminary surveys carried out in the 1980‧s, provide useful information for a reliable estimation of the geothermal potential of this extinct volcanic system, although a detailed geophysical measurements is required for the correct estimation of depth and dimensions of the fluid reservoir(s).

  10. [VARICELLA ZOSTER VIRUS AND DISEASES OF CENTRAL NERVOUS SYSTEM VESSELS].

    Science.gov (United States)

    Kazanova, A S; Lavrov, V F; Zverev, V V

    2015-01-01

    Systemized data on epidemiology, pathogenesis, clinical manifestation, diagnostics and therapy of VZV-vasculopathy--a disease, occurring due to damage of arteries of the central nervous system by Varicella Zoster virus, are presented in the review. A special attention in the paper is given to the effect of vaccine prophylaxis of chicken pox and herpes zoster on the frequency of development and course of VZV-vasculopathy.

  11. Fissure swarms and fracture systems within the Western Volcanic Zone, Iceland - Effects of spreading rates

    Science.gov (United States)

    Hjartardóttir, Ásta Rut; Einarsson, Páll; Björgvinsdóttir, Sigríður G.

    2016-10-01

    The Western Volcanic Zone (WVZ) in Iceland is ∼120 km long and 40 km wide. It offers an opportunity to study rift zones in a local ultra-slow spreading area close to a hotspot. Fractures were mapped from aerial photographs and digital elevation models. Most surface fractures are located in the southern part of the WVZ. The majority of the fractures have a north-northeasterly orientation, some deviations occur from this, especially in the north part of the WVZ. Fracture orientations are therefore quite uniform in the southern, faster spreading part of the WVZ, but more irregular in the slower-spreading northern part. This suggests different stress fields in the north part, which could be due to the influence of the Hreppar microplate and possibly also due to stress fields induced by crustal deformation because of changes in glacial load in the area. Such glacially-induced stress fields may have similar or even more influence than crustal spreading in the slower spreading northern part of the WVZ. Lower fracture density towards the north within the WVZ suggests lower frequency of rifting events in the north part, in accordance with less spreading in the north as measured by GPS geodetic measurements.

  12. The hydrothermal system in central Twin Falls County, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, R.E.; Young, H.W.

    1989-01-01

    This report describes the results of a study to define the areal extent and thickness of the hydrothermal reservoir in Twin Falls County and to propose a generalized conceptual model of the system. Specific objectives of the study, done in cooperation with the Idaho Department of Water Resources, were to evaluate the existing resource as to its volume, temperature, pressure, and water chemistry, and to determine the effects of present development on the resource. The study was limited to Twin Falls County. Some geologic, geochemical, and hydrologic data for the hydrothermal system were available from earlier studies. However, information about the subsurface at depths greater than 1000 feet was sparse. One well for which data were available was drilled to 2525 feet; several others were drilled to depths between 1200 and 2200 feet. Direct-current electrical resistivity soundings conducted during the summer of 1985 as part of the study provided valuable information about the subsurface at depths less than about 6000 feet. Interpretation of computer-generated subsurface profiles constructed from the soundings provided the basis for determining the thickness of the Idavada Volcanics over much of the study area. 42 refs., 9 figs., 3 tabs.

  13. A multi-faceted approach to characterize acid-sulfate alteration processes in volcanic hydrothermal systems on Earth and Mars

    Science.gov (United States)

    Marcucci, Emma Cordts

    Acid-sulfate alteration is a dominant weathering process in high temperature, low pH, sulfur-rich volcanic environments. Additionally, hydrothermal environments have been proposed as locations where life could have originated on Earth. Based on the extensive evidence of flowing surface water and persistent volcanism, similar locations and processes could have existed on early Mars. Globally observed alteration mineral assemblages likely represent relic Martian hydrothermal settings. Yet the limited understanding of environmental controls, limits the confidence of interpreting the paleoconditions of these hydrothermal systems and assessing their habitability to support microbial life. This thesis presents a series of laboratory experiments, geochemical models, analog fieldwork, and Martian remote sensing to characterize distinguishing features and controls of acid-sulfate alteration. The experiments and models were designed to replicate alteration is a highly acidic, sulfurous, and hot field sites. The basaltic minerals were individually reacted in both experimental and model simulations with varying initial parameters to infer the geochemical pathways of acid-sulfate alteration on Earth and Mars. It was found that for a specific starting material, secondary mineralogies were consistent. Variations in pH, temperature and duration affected the abundance, shape, and size of mineral products. Additionally evaporation played a key role in secondary deposits; therefore, both alteration and evaporitic processes need to be taken into consideration. Analog volcanic sites in Nicaragua were used to supplement this work and highlight differences between natural and simulated alteration. In situ visible near-infrared spectroscopy demonstrated that primary lithology and gas chemistry were dominant controls of alteration, with secondary effects from environmental controls, such as temperature and pH. The spectroscopic research from the field was directly related to Mars

  14. The H.E.S.S. Central Data Acquisition System

    CERN Document Server

    Balzer, A; Gajdus, M.; Göring, D.; Lopatin, A.; de Naurois, M.; Schlenker, S.; Schwanke, U.; Stegmann, C.

    2014-01-01

    The High Energy Stereoscopic System (H.E.S.S.) is a system of Imaging Atmospheric Cherenkov Telescopes (IACTs) located in the Khomas Highland in Namibia. It measures cosmic gamma rays of very high energies (VHE; $>100$) GeV using the Earth's atmosphere as a calorimeter. The H.E.S.S. Array entered Phase II in September 2012 with the inauguration of a fifth telescope that is larger and more complex than the other four. This paper will give an overview of the current H.E.S.S. central data acquisition (DAQ) system with particular emphasis on the upgrades made to integrate the fifth telescope into the array. At first, the various requirements for the central DAQ are discussed then the general design principles employed to fulfil these requirements are described. Finally, the performance, stability and reliability of the H.E.S.S. central DAQ are presented. One of the major accomplishments is that less than $0.8$ % of observation time has been lost due to central DAQ problems since 2009.

  15. 21 CFR 882.5550 - Central nervous system fluid shunt and components.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of...

  16. Geologic characterization of Cuvette Centrale petroleum systems Congo-DRC

    Energy Technology Data Exchange (ETDEWEB)

    Vicentelli, Maria Gabriela C.; Barbosa, Mauro; Rezende, Nelio G.A.M. [HRT Petroleum, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The Cuvette Centrale is an almost unexplored basin, which contains some petroleum system elements that indicate the presence of hydrocarbons. In this sense; this paper presents an exploratory alternative for this intracratonic basin. The interpretation of the limited gravimetric, magnetometric, geochemical and seismic available data allowed the identification of many huge structural features and also some areas with hydrocarbon potential for stratigraphic traps. The presence of several oil and gas seeps widespread around the Busira and Lokoro sub-basins indicate that at least one active petroleum system exist in the basin. Despite only four wells have been drilled in the basin, one of them presented oil shows during drilling. Geological correlations between Brazilian Paleozoic basins and Cuvette Centrale sedimentary sequences permitted to conclude that Cambro-Ordovician and Siluro-Devonian source rocks must be present and active in the Cuvette Centrale basin. The tectono-stratigraphic evolution history of the Cuvette Centrale from Neo proterozoic to Recent times shows extensional and compressional/transpressional alternating phases along the geological time. The most confident petroleum system expected in the Cuvette Centrale is characterized by the Cambrian Mamungi shale - source rock - and the Cambro-Ordovician. Upper Arenaceous Sequence - reservoirs, as observed in the MBandaka and Gilson wells and confirmed by surface geology in outcrops. Besides, other potential petroleum systems are expected to occur in the basin. One is characterized by the Neo proterozoic Itury Group source rock and reservoirs in the mature/over mature stage, the others are the Siluro-Devonian and Cretaceous source rocks and reservoirs, expected to occur with better maturity conditions only in the deeper parts of the basin. (author)

  17. Tectonic localization of multi-plume hydrothermal fluid flow in a segmented rift system, Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Rowland, J. V.; Downs, D. T.; Scholz, C.; de P. S. Zuquim, M.

    2013-05-01

    High-temperature (>250°C) multi-plume hydrothermal systems occur in a range of tectonic settings, though most are extensional or transtensional. A key feature of such settings is their tendency to partition into discrete structural elements that scale with the thickness of the seismogenic zone. The late Miocene to present record of arc magmatism and rifting in the North Island of New Zealand illustrates the importance of structural segmentation and reactivation of inherited basement fabrics on the localisation of hydrothermal upflow. The 15 My record of similarly-oriented magmatism, rifting and hydrothermal activity associated with subduction of the Pacific Plate beneath the North Island of New Zealand. Lateral migration of the locus of arc magmatism, concomitant with roll-back of the subducting slab, is supported by the SE-directed younging of: 1) volcanism; 2) fault-controlled rift basins; and 3) hydrothermal activity, represented by the distribution of epithermal mineralisation within the ~15-3 Ma Coromandel Volcanic Zone (CVZ), and geothermal activity within the TVZ. Currently the TVZ is extending in a NW-SE direction at a rate that varies from ~3 mm/yr to ~15 mm/yr from SW to NE, respectively. The TVZ is partitioned into discrete rift segments, comprising arrays of NE-striking normal faults of ~20 km in length, as expected on mechanical grounds for the 6-8 km-thick seismogenic zone. Transfer zones between rift segments coincide with N-to-NW-trending alignments of geothermal fields, spaced ~ 30 km apart can be recognized elsewhere within the CVZ. The most productive epithermal deposits to date are localised where these inferred transfer zones intersect arc-parallel fault arrays. A similar tectonic configuration occurs in the Deseado Massif, Argentinian Patagonia, where interplay between transfer and rift faults is inferred to have localized hydrothermal fluids in small pull-apart basins and arrays of extension veins for durations >30 My.

  18. An assessment on hydrogen production using central receiver solar systems

    Science.gov (United States)

    Bilgen, C.; Bilgen, E.

    An assessment is presented on hydrogen production using a dedicated central receiver solar system concept coupled to two types of hydrogen producing processes, electrolysis and thermochemical. The study on solar electrolytic hydrogen was carried out using solar electricity and four different electrolytic technologies, namely, industrial unipolar 1980 and 1983 technologies, industrial bipolar and solid polymer electrolyte technology. The thermochemical process was the sulphur/iodine cycle, which is being developed by General Atomic Co. Systems, which is capable of producing about one-million GJ hydrogen per year, was developed at the conceptual level, and site specific computations were carried out. A general mathematical model was developed to predict the optical and thermal performance of the central receiver system coupled directly to the chemical plant. Cost models were developed for each subsystem based on the database published in the literature. Levelized and delevelized costs of solar hydrogen were then computed.

  19. Sjogrens Syndrome Presenting with Central Nervous System Involvement

    Directory of Open Access Journals (Sweden)

    Tülay Terzi

    2012-01-01

    Full Text Available Sjogren’s syndrome is a slowly progressive autoimmune disease. Neurological involvement occurs in approximately 20-25% cases in Sjogren’s syndrome. 87% of the neurological involvement is peripheral nervous system, almost 13% in the form of central nervous system involvement. Affected central nervous system may show similar clinical and radiological findings as in multiple sclerosis (MS. In this paper, a 43-year-old patient is discussed who was referred with the complaint of dizziness, there was MS- like lesions in brain imaging studies and was diagnosed with Sjogren’s syndrome. MS- like clinical and radiologic tables can be seen, albeit rarely in Sjogren’s syndrome. In these cases, early diagnosis and early treatment for the sjögren has a great importance for the prognosis of the disease.

  20. The Dynamics of People Movement Systems in Central Areas

    Directory of Open Access Journals (Sweden)

    John Zacharias

    2011-11-01

    Full Text Available Certain pedestrian facilities, by their nature and the spatial imperatives they impose, exert a powerful role in organizing and promoting the development of associated central places. The need for an expanded public space in the city has found expression in the new public spaces that have emerged in relation to this transport infrastructure within long developed urban environments. In contemporary, advanced urban society, such new spaces need to have polyvalent purposes and to respond to emergent demands. It is proposed that certain characteristics of these pedestrian systems support intensification and multiplication of activities over a particular spatial environment defined by activities. In the three cases—the Underground system of Montreal, Tokyo Station City and the Central Mid-levels Escalator area—common characteristics proposed as important to the achievement of the developmental goals include specific spatial relations, system open-endedness and structural complexity.

  1. Experimental observations of pressure oscillations and flow regimes in an analogue volcanic system

    Science.gov (United States)

    Lane, S.J.; Chouet, B.A.; Phillips, J.C.; Dawson, P.; Ryan, G.A.; Hurst, E.

    2001-01-01

    Gas-liquid flows, designed to be analogous to those in volcanic conduits, are generated in the laboratory using organic gas-gum rosin mixtures expanding in a vertically mounted tube. The expanding fluid shows a range of both flow and pressure oscillation behaviors. Weakly supersaturated source liquids produce a low Reynolds number flow with foam expanding from the top surface of a liquid that exhibits zero fluid velocity at the tube wall; i.e., the conventional "no-slip" boundary condition. Pressure oscillations, often with strong long-period characteristics and consistent with longitudinal and radial resonant oscillation modes, are detected in these fluids. Strongly supersaturated source liquids generate more energetic flows that display a number of flow regimes. These regimes include a static liquid source, viscous flow, detached flow (comprising gas-pockets-at-wall and foam-in-gas annular flow, therefore demonstrating strong radial heterogeneity), and a fully turbulent transonic fragmented or mist flow. Each of these flow regimes displays characteristic pressure oscillations that can be related to resonance of flow features or wall impact phenomena. The pressure oscillations are produced by the degassing processes without the need of elastic coupling to the confining medium or flow restrictors and valvelike features. The oscillatory behavior of the experimental flows is compared to seismoacoustic data from a range of volcanoes where resonant oscillation of the fluid within the conduit is also often invoked as controlling the observed oscillation frequencies. On the basis of the experimental data we postulate on the nature of seismic signals that may be measured during large-scale explosive activity. Copyright 2001 by the American Geophysical Union.

  2. Determination of temporal changes in seismic velocity caused by volcanic activity in and around Hakone volcano, central Japan, using ambient seismic noise records

    Science.gov (United States)

    Yukutake, Yohei; Ueno, Tomotake; Miyaoka, Kazuki

    2016-12-01

    Autocorrelation functions (ACFs) for ambient seismic noise are considered to be useful tools for estimating temporal changes in the subsurface structure. Velocity changes at Hakone volcano in central Japan, where remarkable swarm activity has often been observed, were investigated in this study. Significant velocity changes were detected during two seismic activities in 2011 and 2013. The 2011 activity began immediately after the 2011 Tohoku-oki earthquake, suggesting remote triggering by the dynamic stress changes resulting from the earthquake. During the 2013 activity, which exhibited swarm-like features, crustal deformations were detected by Global Navigation Satellite System (GNSS) stations and tiltmeters, suggesting a pressure increment of a Mogi point source at a depth of 7 km and two shallow open cracks. Waveforms that were bandpass-filtered between 1 and 3 Hz were used to calculate ACFs using a one-bit correlation technique. Fluctuations in the velocity structure were obtained using the stretching method. A gradual decrease in the velocity structure was observed prior to the 2013 activity at the KOM station near the central cone of the caldera, which started after the onset of crustal expansion observed by the GNSS stations. Additionally, a sudden significant velocity decrease was observed at the OWD station near a fumarolic area just after the onset of the 2013 activity and the tilt changes. The changes in the stress and strain caused by the deformation sources were likely the main contributors to these decreases in velocity. The precursory velocity reduction at the KOM station likely resulted from the inflation of the deep Mogi source, whereas the sudden velocity decrease at the OWD station may reflect changes in the strain caused by the shallow open-crack source. Rapid velocity decreases were also detected at many stations in and around the volcano after the 2011 Tohoku-oki earthquake. The velocity changes may reflect the redistribution of hydrothermal

  3. Classifications of central solar domestic hot water systems

    Science.gov (United States)

    Guo, J. Y.; Hao, B.; Peng, C.; Wang, S. S.

    2016-08-01

    Currently, there are many means by which to classify solar domestic hot water systems, which are often categorized according to their scope of supply, solar collector positions, and type of heat storage tank. However, the lack of systematic and scientific classification as well as the general disregard of the thermal performance of the auxiliary heat source is important to DHW systems. Thus, the primary focus of this paper is to determine a classification system for solar domestic hot water systems based on the positions of the solar collector and auxiliary heating device, both respectively and in combination. Field-testing data regarding many central solar DHW systems demonstrates that the position of the auxiliary heat source clearly reflects the operational energy consumption. The consumption of collective auxiliary heating hot water system is much higher than individual auxiliary heating hot water system. In addition, costs are significantly reduced by the separation of the heat storage tank and the auxiliary heating device.

  4. Middle Miocene near trench volcanism in northern Colombia: A record of slab tearing due to the simultaneous subduction of the Caribbean Plate under South and Central America?

    Science.gov (United States)

    Lara, M.; Cardona, A.; Monsalve, G.; Yarce, J.; Montes, C.; Valencia, V.; Weber, M.; De La Parra, F.; Espitia, D.; López-Martínez, M.

    2013-08-01

    Field, geochemical, geochronological, biostratigraphical and sedimentary provenance results of basaltic and associated sediments northern Colombia reveal the existence of Middle Miocene (13-14 Ma) mafic volcanism within a continental margin setting usually considered as amagmatic. This basaltic volcanism is characterized by relatively high Al2O3 and Na2O values (>15%), a High-K calc-alkaline affinity, large ion lithophile enrichment and associated Nb, Ta and Ti negative anomalies which resemble High Al basalts formed by low degree of asthenospheric melting at shallow depths mixed with some additional slab input. The presence of pre-Cretaceous detrital zircons, tourmaline and rutile as well as biostratigraphic results suggest that the host sedimentary rocks were deposited in a platform setting within the South American margin. New results of P-wave residuals from northern Colombia reinforce the view of a Caribbean slab subducting under the South American margin. The absence of a mantle wedge, the upper plate setting, and proximity of this magmatism to the trench, together with geodynamic constraints suggest that the subducted Caribbean oceanic plate was fractured and a slab tear was formed within the oceanic plate. Oceanic plate fracturing is related to the splitting of the subducting Caribbean Plate due to simultaneous subduction under the Panama-Choco block and northwestern South America, and the fast overthrusting of the later onto the Caribbean oceanic plate.

  5. Immune response induction in the central nervous system

    DEFF Research Database (Denmark)

    Owens, Trevor; Babcock, Alicia

    2002-01-01

    The primary function of the immune response is protection of the host against infection with pathogens, including viruses. Since viruses can infect any tissue of the body, including the central nervous system (CNS), it is logical that cells of the immune system should equally have access to all...... tissues. Nevertheless, the brain and spinal cord are noted for their lack of immune presence. Relative to other organ systems, the CNS appears immunologically privileged. Furthermore, when immune responses do occur in the CNS, they are frequently associated with deleterious effects such as inflammatory...

  6. MyOcean Central Information System - Achievements and Perspectives

    Science.gov (United States)

    de Dianous, Rémi; Jolibois, Tony; Besnard, Sophie

    2015-04-01

    MyOcean (http://www.myocean.eu) is providing a pre-operational service, for forecasts, analysis and expertise on ocean currents, temperature, salinity, sea level, primary ecosystems and ice coverage. Since 2009, three successive projects (MyOcean-I, MyOcean-II and MyOcean-Follow-on) have been designed to prepare and to lead the demonstration phases of the future Copernicus Marine Environment Monitoring Service. The main goal of these projects was to build a system of systems offering the users a unique access point to European oceanographic data. Reaching this goal at European level with 59 partners from 28 different countries was a real challenge: initially, each local system had its own human processes and methodology, its own interfaces for production and dissemination. At the end of MyOcean Follow-on, any user can connect to one web portal, browse an interactive catalogue of products and services, use one login to access all data disseminated through harmonized interfaces in a common format and contact a unique centralized service desk. In this organization the central information system plays a key role. The production of observation and forecasting data is done by 48 Production Units (PU). Product download and visualisation are hosted by 26 Dissemination Units (DU). All these products and associated services are gathered in a single system hiding the intricate distributed organization of PUs and DUs. This central system will be presented in detail, including notably the technical choices in architecture and technologies which have been made and why, and the lessons learned during these years of real life of the system, taking into account internal and external feedbacks. Then, perspectives will be presented to sketch the future of such system in the next Marine Copernicus Service which is meant to be fully operational from 2015 onwards.

  7. Antigen presentation for priming T cells in central system.

    Science.gov (United States)

    Dasgupta, Shaoni; Dasgupta, Subhajit

    2017-01-01

    Generation of myelin antigen-specific T cells is a major event in neuroimmune responses that causes demyelination. The antigen-priming of T cells and its location is important in chronic and acute inflammation. In autoimmune multiple sclerosis, the effector T cells are considered to generate in periphery. However, the reasons for chronic relapsing-remitting events are obscure. Considering mechanisms, a feasible aim of research is to investigate the role of antigen-primed T cells in lupus cerebritis. Last thirty years of investigations emphasize the relevance of microglia and infiltrated dendritic cells/macrophages as antigen presenting cells in the central nervous system. The recent approach towards circulating B-lymphocytes is an important area in the context. Here, we analyze the existing findings on antigen presentation in the central nervous system. The aim is to visualize signaling events of myelin antigen presentation to T cells and lead to the strategy of future goals on immunotherapy research.

  8. Central nervous system histoplasmosis in an immunocompetent pediatric patient.

    Science.gov (United States)

    Esteban, Ignacio; Minces, Pablo; De Cristofano, Analía M; Negroni, Ricardo

    2016-06-01

    Neurohistoplasmosis is a rare disease, most prevalent in immunosuppressed patients, secondary to disseminated disease with a high mortality rate when diagnosis and treatment are delayed. We report a previously healthy 12 year old girl, from a bat infested region of Tucuman Province, Argentine Republic, who developed meningoencephalitis due to Histoplasma capsulatum. Eighteen months prior to admission the patient started with headaches and intermittent fever. The images of the central nervous system showed meningoencephalitis suggestive of tuberculosis. She received antibiotics and tuberculostatic medications without improvement. Liposomal amphotericin B was administered for six weeks. The patient's clinical status improved remarkably. Finally the culture of cerebral spinal fluid was positive for micelial form of Histoplasma capsulatum. The difficulties surrounding the diagnosis and treatment of neurohistoplasmosis in immunocompetent patients are discussed in this manuscript, as it also intends to alert to the presence of a strain of Histoplasma capsulatum with affinity for the central nervous system.

  9. [Eales' disease involving central nervous system white matter].

    Science.gov (United States)

    Antigüedad, A; Zarranz, J J

    1994-01-01

    Eales' disease (ED) is a rare condition characterized by repeated retinal and vitreous hemorrhages. The only extraocular involvement described occasionally in the literature is neurological. Histologically, vasculitis in ED is usually restricted to the eye, but occasionally involves the central nervous system, where demyelinizing lesions may also occur. We present a 34-year-old male with ED and subclinical central nervous system involvement. Craneal magnetic resonance images (MR) suggested demyelinization; brainstem auditory and somatosensory evoked potentials were abnormal. There was moderate pleocytosis in CSF and intratecal production of immunoglobulins with oligoclonal bands. Follow-up over a period of 2.5 years showed no clinical, MR or CSF changes in spite of continued opthamological impairment. Little is known about factors that affect the development or not of demyelinizing lesions in ED patients with neurological involvement demonstrated by intratecal production of immunoglobulins. Identification of such factors may contribute to our understanding of other diseases, such as multiple sclerosis.

  10. Central nervous system infection in the pediatric population

    Directory of Open Access Journals (Sweden)

    Rabi Narayan Sahu

    2009-01-01

    Full Text Available Infection of the central nervous system is a life-threatening condition in the pediatric population. Almost all agents can cause infection within the central nervous system and the extent of infection ranges from diffuse involvement of the meninges, brain, or the spinal cord to localized involvement presenting as a space-occupying lesion. Modern imaging techniques define the anatomic region infected, the evolution of the disease, and help in better management of these patients. Acute bacterial meningitis remains a major cause of mortality and long-term neurological disability. Fortunately, the incidence of infection after clean craniotomy is < 5%, but it leads to significant morbidity as well as fiscal loss. The most significant causative factor in postcraniotomy infections is postoperative CSF leak. Cerebral abscess related to organic congenital heart disease is one of the leading causes of morbidity and mortality in the pediatric population. The administration of prophylactic antibiotics is indicated for contaminated and clean-contaminated wounds.

  11. Neurotropic Enterovirus Infections in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Hsing-I Huang

    2015-11-01

    Full Text Available Enteroviruses are a group of positive-sense single stranded viruses that belong to the Picornaviridae family. Most enteroviruses infect humans from the gastrointestinal tract and cause mild symptoms. However, several enteroviruses can invade the central nervous system (CNS and result in various neurological symptoms that are correlated to mortality associated with enteroviral infections. In recent years, large outbreaks of enteroviruses occurred worldwide. Therefore, these neurotropic enteroviruses have been deemed as re-emerging pathogens. Although these viruses are becoming large threats to public health, our understanding of these viruses, especially for non-polio enteroviruses, is limited. In this article, we review recent advances in the trafficking of these pathogens from the peripheral to the central nervous system, compare their cell tropism, and discuss the effects of viral infections in their host neuronal cells.

  12. Simultaneous central nervous system complications of C. neoformans infection

    Science.gov (United States)

    González-Duarte, Alejandra; Higera Calleja, Jesus; Mitre, Vicente Gijón; Ramos, Guillermo Garcia

    2009-01-01

    The most common neurological manifestation of Cryptococcus neoformans infection is meningitis. Other less common manifestations include parenchymal central nervous system (CNS) granulomatous disease, hydrocephalus and stroke. C. neoformans is often suspected in immunodepressed patients, but it can be easily overlooked in otherwise healthy patients. This paper provides a detailed clinical description of a patient without immunosupression who developed multiple simultaneous neurological manifestations after the infection with C. neoformans. PMID:21577360

  13. Diagnosis of Fetal Central Nervous System Anomalies by Ultrasonography

    OpenAIRE

    F. Tuncay Ozgunen

    2003-01-01

    During the last 30 years, one of the most important instruments in diagnosis is ultrasonograph. It has an indispensible place in obstetrics. Its it possible to evaluate normal fetal anatomy, to follow-up fetal growth and to diagnose fetal congenital anomalies by ultrasonography. Central nervous system anomalies is the one of the most commonly seen and the best time for screening is between 18- and 22-week of pregnancy. In this paper, it is presented the sonographic features of some outstandin...

  14. Central nervous system infection caused by Morganella morganii.

    Science.gov (United States)

    Abdalla, Jehad; Saad, Mustafa; Samnani, Imran; Lee, Prescott; Moorman, Jonathan

    2006-01-01

    Central nervous system (CNS) infection with Morganella morganii is very rare. We describe a 38-year-old female patient with frontal brain abscess caused by M morganii who was unsuccessfully treated. We also review all reported cases of Morganella CNS infections with an emphasis on treatment modalities and outcomes. Aggressive surgical management and appropriate antimicrobial therapy can lead to cure, but the mortality rate for these infections remains high.

  15. Central nervous system inflammatory demyelinating disorders of childhood

    OpenAIRE

    Kamate Mahesh; Chetal Vivek; Tonape Venkatesh; Mahantshetti Niranjana; Hattiholi Virupaxi

    2010-01-01

    Background and Objectives: Childhood Central Nervous System (CNS) inflammatory demyelinating disorders (CIDD) are being diagnosed more commonly now. There is ambiguity in the use of different terms in relation to CIDD. Recently, consensus definitions have been proposed so that there is uniformity in studies across the world. The prevalence of these disorders and the spectrum varies from place to place. This study was undertaken to study the clinico-radiological profile and outcome of children...

  16. Central nervous system frontiers for the use of erythropoietin

    DEFF Research Database (Denmark)

    Olsen, Niels Vidiendal

    2003-01-01

    Recombinant human erythropoietin (r-HuEPO; epoetin alfa) is well established as safe and effective for the treatment of anemia. In addition to the erythropoietic effects of endogenous erythropoietin (EPO), recent evidence suggests that it may elicit a neuroprotective effect in the central nervous...... system (CNS). Preclinical studies have demonstrated the presence of EPO receptors in the brain that are up-regulated under hypoxic or ischemic conditions. Intracerebral and systemic administration of epoetin alfa have been demonstrated to elicit marked neuroprotective effects in multiple preclinical...

  17. Central nervous system involvement in systemic lupus erythematosus.

    Institute of Scientific and Technical Information of China (English)

    1994-01-01

    This paper deals with the clinical, immunological and pathological data of 5 eases of systemic lupus erythematosus (SLE). Each of the five cases has typical SLE damages on the skin and multiple organs. Among

  18. Evolution of flatworm central nervous systems: Insights from polyclads

    Science.gov (United States)

    Quiroga, Sigmer Y.; Carolina Bonilla, E.; Marcela Bolaños, D.; Carbayo, Fernando; Litvaitis, Marian K.; Brown, Federico D.

    2015-01-01

    The nervous systems of flatworms have diversified extensively as a consequence of the broad range of adaptations in the group. Here we examined the central nervous system (CNS) of 12 species of polyclad flatworms belonging to 11 different families by morphological and histological studies. These comparisons revealed that the overall organization and architecture of polyclad central nervous systems can be classified into three categories (I, II, and III) based on the presence of globuli cell masses -ganglion cells of granular appearance-, the cross-sectional shape of the main nerve cords, and the tissue type surrounding the nerve cords. In addition, four different cell types were identified in polyclad brains based on location and size. We also characterize the serotonergic and FMRFamidergic nervous systems in the cotylean Boninia divae by immunocytochemistry. Although both neurotransmitters were broadly expressed, expression of serotonin was particularly strong in the sucker, whereas FMRFamide was particularly strong in the pharynx. Finally, we test some of the major hypothesized trends during the evolution of the CNS in the phylum by a character state reconstruction based on current understanding of the nervous system across different species of Platyhelminthes and on up-to-date molecular phylogenies. PMID:26500427

  19. Evolution of flatworm central nervous systems: Insights from polyclads

    Directory of Open Access Journals (Sweden)

    Sigmer Y. Quiroga

    2015-09-01

    Full Text Available The nervous systems of flatworms have diversified extensively as a consequence of the broad range of adaptations in the group. Here we examined the central nervous system (CNS of 12 species of polyclad flatworms belonging to 11 different families by morphological and histological studies. These comparisons revealed that the overall organization and architecture of polyclad central nervous systems can be classified into three categories (I, II, and III based on the presence of globuli cell masses -ganglion cells of granular appearance-, the cross-sectional shape of the main nerve cords, and the tissue type surrounding the nerve cords. In addition, four different cell types were identified in polyclad brains based on location and size. We also characterize the serotonergic and FMRFamidergic nervous systems in the cotylean Boninia divae by immunocytochemistry. Although both neurotransmitters were broadly expressed, expression of serotonin was particularly strong in the sucker, whereas FMRFamide was particularly strong in the pharynx. Finally, we test some of the major hypothesized trends during the evolution of the CNS in the phylum by a character state reconstruction based on current understanding of the nervous system across different species of Platyhelminthes and on up-to-date molecular phylogenies.

  20. Diffuse H_{2} emission: a useful geochemical tool to monitor the volcanic activity at El Hierro volcano system

    Science.gov (United States)

    Pérez, Nemesio M.; Melián, Gladys; González-Santana, Judit; Barrancos, José; Padilla, Germán; Rodríguez, Fátima; Padrón, Eleazar; Hernández, Pedro A.

    2016-04-01

    The occurrence of interfering processes affecting reactive gases as CO2 during its ascent from magmatic bodies or hydrothermal systems toward the surface environment hinders the interpretation of their enrichments in the soil atmosphere and fluxes for volcano monitoring purposes (Marini and Gambardella, 2005). These processes include gas scrubbing by ground-waters and interaction with rocks, decarbonatation processes, biogenic production, etc. Within the rest of the soil gases, particularly interest has been addressed to light and highly mobile gases. They offer important advantages for the detection of vertical permeability structures, because their interaction with the surrounding rocks or fluids during the ascent toward the surface is minimum. H2 is one of the most abundant trace species in volcano-hydrothermal systems and is a key participant in many redox reactions occurring in the hydrothermal reservoir gas (Giggenbach, 1987). Although H2 can be produced in soils by N2-fixing and fertilizing bacteria, soils are considered nowadays as sinks of molecular hydrogen (Smith-Downey et al., 2006). Because of its chemical and physical characteristics, H2 generated within the crust moves rapidly and escapes to the atmosphere. These characteristics make H2 one of the best geochemical indicators of magmatic and geothermal activity at depth. El Hierro is the youngest and the SW-most of the Canary Islands and the scenario of the last volcanic eruption of the archipelago, a submarine eruption that took place 2 km off the southern coast of the island from October 2011 to March 2012. Since at El Hierro Island there are not any surface geothermal manifestations (fumaroles, etc), we have focused our studies on soil degassing surveys. Here we show the results of soil H2 emission surveys that have been carried out regularly since mid-2012. Soil gas samples were collected in ˜600 sites selected based on their accessibility and geological criteria. Soil gases were sampled at ˜40

  1. Geology and petrology of the Vulsinian volcanic area (Latium, Italy)

    NARCIS (Netherlands)

    Varekamp, J.C.

    1979-01-01

    The Vulsinian volcanic area is situated in Latium, west central Italy. This quarternary volcanic complex consists of a series of layered tuffs, lava flows, ignimbrites, and many small cinder and ash cones. A steep central edifice is lacking due to the relatively large amount of pyroclastic deposits.

  2. Salt movements within the Central European basin system

    Energy Technology Data Exchange (ETDEWEB)

    Maystrenko, Yuriy; Bayer, Ulf; Scheck-Wenderoth [GeoForschungsZentrum (GFZ), Potsdam (Germany); Littke, Ralf [RWTH Aachen (Germany). Lehrstuhl fuer Geologie, Geochemie und Lagerstaetten des Erdoels und der Kohle

    2010-04-15

    Evolution of salt structures in relation to tectonic events within central part of the Central European Basin System is described by summarizing results which have been obtained and published in frame of the research project DFG-SPP 1135. These results illustrate main phases of salt tectonics within the basin system from the Triassic to present day. During the Buntsandstein and Muschelkalk, extension triggered raft tectonics and salt movements within the Ems Trough, the Glueckstadt and the Horn Grabens. The next phase of salt movements occurred in response to a Middle-Late Keuper regional extensional event which was strongest within the Triassic depocenters of the Central European Basin System, such as the Horn Graben, the Glueckstadt Graben, the Ems and the Rheinsberg Troughs. Regional erosion truncated the study area during the Late Jurassic-Early Cretaceous time. The magnitude of Late Jurassic-Early Cretaceous erosion is declining towards southern margin of the basin system where a dextral transtensional regime was established in the Lower Saxony Basin and neighboring areas during the Late Jurassic-Early Cretaceous. The late Early Cretaceous-early Late Cretaceous is characterized by a relative tectonic quiescence without strong salt movements. The Late Cretaceous-Early Cenozoic inversion provocated renewed salt movements, causing the thick-skinned salt tectonics along the Elbe Fault System and the thin-skinned character of salt movements towards the north from the area of strain localisation. Post-inversion Cenozoic subsidence was accompanied by salt movements, related either to diapiric rise due to regional shortening and/or to local almost E-W directed extension. (orig.)

  3. Volcanic hazard management in dispersed volcanism areas

    Science.gov (United States)

    Marrero, Jose Manuel; Garcia, Alicia; Ortiz, Ramon

    2014-05-01

    Traditional volcanic hazard methodologies were developed mainly to deal with the big stratovolcanoes. In such type of volcanoes, the hazard map is an important tool for decision-makers not only during a volcanic crisis but also for territorial planning. According to the past and recent eruptions of a volcano, all possible volcanic hazards are modelled and included in the hazard map. Combining the hazard map with the Event Tree the impact area can be zoned and defining the likely eruptive scenarios that will be used during a real volcanic crisis. But in areas of disperse volcanism is very complex to apply the same volcanic hazard methodologies. The event tree do not take into account unknown vents, because the spatial concepts included in it are only related with the distance reached by volcanic hazards. The volcanic hazard simulation is also difficult because the vent scatter modifies the results. The volcanic susceptibility try to solve this problem, calculating the most likely areas to have an eruption, but the differences between low and large values obtained are often very small. In these conditions the traditional hazard map effectiveness could be questioned, making necessary a change in the concept of hazard map. Instead to delimit the potential impact areas, the hazard map should show the expected behaviour of the volcanic activity and how the differences in the landscape and internal geo-structures could condition such behaviour. This approach has been carried out in La Palma (Canary Islands), combining the concept of long-term hazard map with the short-term volcanic scenario to show the expected volcanic activity behaviour. The objective is the decision-makers understand how a volcanic crisis could be and what kind of mitigation measurement and strategy could be used.

  4. The excitation and characteristic frequency of the long-period volcanic event: An approach based on an inhomogeneous autoregressive model of a linear dynamic system

    Science.gov (United States)

    Nakano, M.; Kumagai, H.; Kumazawa, M.; Yamaoka, K.; Chouet, B.A.

    1998-01-01

    We present a method to quantify the source excitation function and characteristic frequencies of long-period volcanic events. The method is based on an inhomogeneous autoregressive (AR) model of a linear dynamic system, in which the excitation is assumed to be a time-localized function applied at the beginning of the event. The tail of an exponentially decaying harmonic waveform is used to determine the characteristic complex frequencies of the event by the Sompi method. The excitation function is then derived by operating an AR filter constructed from the characteristic frequencies to the entire seismogram of the event, including the inhomogeneous part of the signal. We apply this method to three long-period events at Kusatsu-Shirane Volcano, central Japan, whose waveforms display simple decaying monochromatic oscillations except for the beginning of the events. We recover time-localized excitation functions lasting roughly 1 s at the start of each event and find that the estimated functions are very similar to each other at all the stations of the seismic network for each event. The phases of the characteristic oscillations referred to the estimated excitation function fall within a narrow range for almost all the stations. These results strongly suggest that the excitation and mode of oscillation are both dominated by volumetric change components. Each excitation function starts with a pronounced dilatation consistent with a sudden deflation of the volumetric source which may be interpreted in terms of a choked-flow transport mechanism. The frequency and Q of the characteristic oscillation both display a temporal evolution from event to event. Assuming a crack filled with bubbly water as seismic source for these events, we apply the Van Wijngaarden-Papanicolaou model to estimate the acoustic properties of the bubbly liquid and find that the observed changes in the frequencies and Q are consistently explained by a temporal change in the radii of the bubbles

  5. Chemokines and their receptors in central nervous system disease.

    Science.gov (United States)

    Biber, Knut; de Jong, Eiko K; van Weering, Hilmar R J; Boddeke, Hendrikus W G M

    2006-01-01

    Almost a decade ago, it was discovered that the human deficiency virus (HIV) makes use of chemokine receptors to infect blood cells. This appreciation of the clinical relevance of specific chemokine receptors has initiated a considerable boost in the field of chemokine research. It is clear today that chemokine signaling orchestrates the immune system and is widely involved in both physiological and pathophysiological processes. Since the chemokine system offers various targets through which pathology could be influenced, most pharmaceutical companies have chosen this system as a therapeutic target for a variety of diseases. Here recent developments concerning the role of chemokines in diseases of the central nervous system (CNS) as well as their possible therapeutic relevance are discussed.

  6. Performance of Early Warning Systems on Landslides in Central America

    Science.gov (United States)

    Strauch, W.; Devoli, G.

    2012-04-01

    We performed a reconnaissance about Early Warning Systems (EWS) on Landslides (EWSL) in the countries of Central America. The advance of the EWSL began in the 1990-ies and accelerated dramatically after the regional disaster provoked by Hurricane Mitch in 1998. In the last decade, Early Warning Systems were intensely promoted by national and international development programs aimed on disaster prevention. Early Warning on landslides is more complicated than for other geological phenomena. But, we found information on more than 30 EWSL in the region. In practice, for example in planning, implementation and evaluation of development projects, it is often not clearly defined what exactly is an Early Warning System. Only few of the systems can be classified as true EWSL that means 1) being directly and solely aimed at persons living in the well-defined areas of greatest risk and 2) focusing their work on saving lives before the phenomenon impacts. There is little written information about the work of the EWSL after the initial phase. Even, there are no statistics whether they issued warnings, if the warnings were successful, how many people were evacuated, if there were few false alerts, etc.. Actually, we did not find a single report on a successful landslide warning issued by an EWSL. The lack of information is often due to the fact that communitarian EWSL are considered local structures and do not have a clearly defined position in the governmental hierarchy; there is little oversight and no qualified support and long-term support. The EWSL suffer from severe problems as lack of funding on the long term, low technical level, and insufficient support from central institutions. Often the EWSL are implemented by NGÓs with funding from international agencies, but leave the project alone after the initial phase. In many cases, the hope of the local people to get some protection against the landslide hazard is not really fulfilled. There is one case, where an EWSL with a

  7. Subdiffusion of volcanic earthquakes

    CERN Document Server

    Abe, Sumiyoshi

    2016-01-01

    A comparative study is performed on volcanic seismicities at Mt.Eyjafjallajokull in Iceland and Mt. Etna in Sicily, Italy, from the viewpoint of science of complex systems, and the discovery of remarkable similarities between them regarding their exotic spatio-temporal properties is reported. In both of the volcanic seismicities as point processes, the jump probability distributions of earthquakes are found to obey the exponential law, whereas the waiting-time distributions follow the power law. In particular, a careful analysis is made about the finite size effects on the waiting-time distributions, and accordingly, the previously reported results for Mt. Etna [S. Abe and N. Suzuki, EPL 110, 59001 (2015)] are reinterpreted. It is shown that spreads of the volcanic earthquakes are subdiffusive at both of the volcanoes. The aging phenomenon is observed in the "event-time-averaged" mean-squared displacements of the hypocenters. A comment is also made on presence/absence of long term memories in the context of t...

  8. Volcanic hazard assessment at Deception Island

    Science.gov (United States)

    Bartolini, S.; Sobradelo, R.; Geyer, A.; Martí, J.

    2012-04-01

    Deception Island is the most active volcano of the South Shetland Islands (Antarctica) with more than twenty eruptions recognised over the past two centuries. The island was formed on the expansion axis of the Central Bransfield Strait and its evolution consists of constructive and destructive phases. A first a shield phase was followed by the construction of a central edifice and formation of the caldera with a final monogenetic volcanism along the caldera rim. The post-caldera magma composition varies from andesitic-basaltic to dacitic. The activity is characterised by monogenetic eruptions of low volume and short duration. The eruptions show a variable degree of explosivity, strombolian or phreatomagmatic, with a VEI 2 to 4, which have generated a wide variety of pyroclastic deposits and lavas. It is remarkable how many phases of phreatic explosive eruptions are associated to the emission of large ballistic blocks. Tephra record preserved in the glacier ice of Livingston Island or in marine sediments show the explosive power of the phreatomagmatic phases and the wide dispersal of its finest products in a great variety of directions of the prevailing winds. Also it is important to highlight the presence of different lahar deposits associated with some of these eruptions. In this contribution we present the guidelines to conduct a short-term and long-term volcanic hazard assessment at Deception Island. We apply probabilistic methods to estimate the susceptibility, statistical techniques to determine the eruption recurrence and eruptive scenario, and reproduce the effects of historical eruptions too. Volcanic hazard maps and scenarios are obtained using a Voris-based model tool (Felpeto et al., 2007) in a free Geographical Information System (GIS), a Quantum GIS.

  9. Refining the Ciona intestinalis model of central nervous system regeneration.

    Directory of Open Access Journals (Sweden)

    Carl Dahlberg

    Full Text Available BACKGROUND: New, practical models of central nervous system regeneration are required and should provide molecular tools and resources. We focus here on the tunicate Ciona intestinalis, which has the capacity to regenerate nerves and a complete adult central nervous system, a capacity unusual in the chordate phylum. We investigated the timing and sequence of events during nervous system regeneration in this organism. METHODOLOGY/PRINCIPAL FINDINGS: We developed techniques for reproducible ablations and for imaging live cellular events in tissue explants. Based on live observations of more than 100 regenerating animals, we subdivided the regeneration process into four stages. Regeneration was functional, as shown by the sequential recovery of reflexes that established new criteria for defining regeneration rates. We used transgenic animals and labeled nucleotide analogs to describe in detail the early cellular events at the tip of the regenerating nerves and the first appearance of the new adult ganglion anlage. CONCLUSIONS/SIGNIFICANCE: The rate of regeneration was found to be negatively correlated with adult size. New neural structures were derived from the anterior and posterior nerve endings. A blastemal structure was implicated in the formation of new neural cells. This work demonstrates that Ciona intestinalis is as a useful system for studies on regeneration of the brain, brain-associated organs and nerves.

  10. Records of Precambrian Early Palaeozoic volcanic and sedimentary processes in the Central European Variscides: A review of SHRIMP zircon data from the Kaczawa succession (Sudetes, SW Poland)

    Science.gov (United States)

    Kryza, Ryszard; Zalasiewicz, Jan

    2008-12-01

    The early, pre-orogenic stages of evolution in the Variscan belt, i.e. rifting processes, opening of sedimentary basins and associated igneous activities, are often obscure because many successions have yielded little or no biostratigraphic data, have a strong metamorphic overprint and are tectonically deformed and dislocated. The increasing application of SHRIMP zircon dating has provided useful constraints on magmatic and metamorphic processes, helped locate probable source areas for detritus within sedimentary successions and facilitated large-scale palaeogeographic correlations. This methodology has recently thrown considerable light on the age and relationships of the previously poorly constrained rock units of the Kaczawa Complex in the Polish West Sudetes. Thus, recent SHRIMP studies in the Kaczawa Mountains have yielded Early Ordovician ages of the initial rift type bimodal volcanic suites at the bottom part of the Kaczawa Succession: c. 503 Ma for metarhyodacites of crustal derivation, and c. 485 Ma for alkaline metatrachytes of mantle signature. These dates provide a firm temporal constraint on the initial rift magmatism interpreted as related to the continental break-up of the northern peripheries of Gondwana. New SHRIMP data from metavolcaniclastic and metasedimentary rocks of the Kaczawa Complex have yielded results that have provided significantly changed interpretations on their age and relationships. For instance, a siliciclastic sequence interpreted as belonging to the lower part of the Kaczawa Complex (the Gackowa Sandstones) and seemingly sourced (using an array of geochemical and mineralogical evidence) from nearby early Ordovician volcanic rocks has, surprisingly, yielded zircon ages not younger than Precambrian and thus this unit has tentatively been reinterpreted as a possible correlative of the Neoproterozoic Lusatian Graywackes. Felsic metavolcaniclastic rocks embedded in the carbonate succession of the Wojcieszów Limestone have yielded

  11. Genesis and Eruptive Dynamics of the Garnet-Bearing Rhyolites from the Ramadas Volcanic Centre (Altiplano-Puna Plateau, Central Andes, Argentina).

    Science.gov (United States)

    De Astis, G.; Baez, W.; Bardelli, L.; Becchio, R.; Giordano, G.; Lucci, F.; Rossetti, F.; Viramonte, J. G.

    2015-12-01

    Ramadas volcanic centre (6.6 Ma) is a monogenetic calderic depression, now largely obliterated, almost coeval with the Late Miocene outbreak of highly explosive silicic activity in the Altiplano-Puna plateau. Ramadas erupted a rather complex suite of garnet-bearing, rhyolitic pyroclastic rocks, dominated by a >35 km3 fall deposit and preceded by the emplacement of a lag breccia containing abundant metasedimentary lithics and garnet-tourmaline leucogranites. During the waning stage of the eruption, small volume phreatomagmatic deposits formed a small tuff-ring, followed by a lava coulée emplacement. Volcanological data together with textural features of typical tube pumice evidence a volatiles-rich, plinian eruption. Petrographic and textural studies on juveniles confirm the presence of euhedral garnet as dominant phase and identify micrometric metaigneous fragments (Qtz+Bt+Kfs+Mt+Tur). BSE imaging and microprobe analyses on glasses, garnets and accessory mineral phases (zircon and monazite) provide further data to understand the genesis and eruptive conditions of these atypical rhyolites, geochemically different from those outcropping in the same region. Garnets display a homogeneous, unzoned almandine-spessartine composition (Alm72-71Sps24-23Pyr0-1Grs4-3) and are contained in a glassy rhyolitic magma with peraluminous character, HREE depleted and relative LREE enriched. It's known that primary igneous garnets are rare and can only develop under restricted conditions. Additionally, the presence of Zr and Mnz is associated with both magmatic and high-T metamorphic processes. Although more data need to be collected, our study and preliminary modelling point to the occurrence of thermal metamorphism shifting to partial melting of Fe-MnO-rich metapelitic rocks (or even re-melting of older acid volcanics), with final extraction of volatiles-rich rhyolitic melts, able to produce a plinian eruption. Here, Alm-Sps garnet could represent the peritectic product of the

  12. Volcano-Hydrothermal Systems of the Central and Northern Kuril Island Arc - a Review

    Science.gov (United States)

    Kalacheva, E.; Taran, Y.; Voloshina, E.; Ptashinsky, L.

    2015-12-01

    More than 20 active volcanoes with historical eruptions are known on 17 islands composing the Central and Northern part of the Kurilian Arc. Six islands - Paramushir, Shiashkotan, Rasshua, Ushishir, Ketoy and Simushir - are characterized by hydrothermal activity, complementary to the fumarolic activity in their craters. There are several types of volcano-hydrothermal systems on the islands. At Paramushir, Shiashkotan and Ketoy the thermal manifestations are acidic to ultra-acidic water discharges associated with hydrothermal aquifers inside volcano edifices and formed as the result of the absorption of magmatic gases by ground waters. A closest known analogue of such activity is Satsuma-Iwojima volcano-island at the Ryukyu Arc. Another type of hydrothermal activity are wide spread coastal hot springs (Shiashkotan, Rasshua), situated as a rule within tide zones and formed by mixing of the heated seawater with cold groundwater or, in opposite, by mixing of the steam- or conductively heated groundwater with seawater. This type of thermal manifestation is similar to that reported for other volcanic islands of the world (Satsuma Iwojima, Monserrat, Ischia, Socorro). Ushishir volcano-hydrothermal system is formed by the absorption of magmatic gases by seawater. Only Ketoy Island hosts a permanent acidic crater lake. At Ebeko volcano (Paramushir) rapidly disappearing small acidic lakes (formed after phreatic eruptions) have been reported. The main hydrothermal manifestation of Simushir is the Zavaritsky caldera lake with numerous coastal thermal springs and weak steam vents. The last time measured temperatures of fumaroles at the islands are: >500ºC at Pallas Peak (Ketoy), 480ºC at Kuntamintar volcano (Shiashkotan), variable and fast changing temperatures from 120º C to 500ºC at Ebeko volcano (Paramushir), 150ºC in the Rasshua crater, and > 300ºC in the Chirpoy crater (Black Brothers islands). The magmatic and rock-forming solute output by the Kurilian volcano

  13. [Histoplasmosis of the central nervous system in an immunocompetent patient].

    Science.gov (United States)

    Osorio, Natalia; López, Yúrika; Jaramillo, Juan Camilo

    2014-01-01

    Histoplasmosis is a multifaceted condition caused by the dimorphic fungi Histoplasma capsulatum whose infective spores are inhaled and reach the lungs, the primary organ of infection. The meningeal form, considered one of the most serious manifestations of this mycosis, is usually seen in individuals with impaired cellular immunity such as patients with acquired immunodeficiency syndrome, systemic lupus erythematous or solid organ transplantation, and infants given their immunological immaturity. The most common presentation is self-limited and occurs in immunocompetent individuals who have been exposed to high concentrations of conidia and mycelia fragments of the fungi. In those people, the condition is manifested by pulmonary disorders and late dissemination to other organs and systems. We report a case of central nervous system histoplasmosis in an immunocompetent child.

  14. Operation of the Upgraded ATLAS Level-1 Central Trigger System

    CERN Document Server

    Glatzer, Julian Maximilian Volker; The ATLAS collaboration

    2015-01-01

    The ATLAS Level-1 Central Trigger (L1CT) system is a central part of ATLAS data-taking and has undergone a major upgrade for Run 2 of the LHC, in order to cope with the expected increase of instantaneous luminosity of a factor of 2 with respect to Run 1. The upgraded hardware offers more flexibility in the trigger decisions due to the double amount of trigger inputs and usable trigger channels. It also provides an interface to the new topological trigger system. Operationally - particularly useful for commissioning, calibration and test runs - it allows concurrent running of up to 3 different sub-detector combinations. In this contribution, we give an overview of the operational software framework of the L1CT system with particular emphasis of the configuration, controls and monitoring aspects. The software framework allows a consistent configuration with respect to the ATLAS experiment and the LHC machine, upstream and downstream trigger processors, and the data acquisition. Trigger and dead-time rates are m...

  15. Operation of the Upgraded ATLAS Level-1 Central Trigger System

    CERN Document Server

    Glatzer, Julian Maximilian Volker; The ATLAS collaboration

    2015-01-01

    The ATLAS Level-1 Central Trigger (L1CT) system is a central part of ATLAS data-taking and has undergone a major upgrade for Run 2 of the LHC, in order to cope with the expected increase of instantaneous luminosity of a factor of 2 with respect to Run 1. The upgraded hardware offers more flexibility in the trigger decisions due to the double amount of trigger inputs and usable trigger channels. It also provides an interface to the new topological trigger system. Operationally - particularly useful for commissioning, calibration and test runs - it allows concurrent running of up to 3 different subdetector combinations. An overview of the operational software framework of the L1CT system with particular emphasis of the configuration, controls and monitoring aspects is given. The software framework allows a consistent configuration with respect to the ATLAS experiment and the LHC machine, upstream and downstream trigger processors, and the data acquisition. Trigger and dead-time rates are monitored coherently at...

  16. Functional roles of neuropeptides in the insect central nervous system

    Science.gov (United States)

    Nässel, D. R.

    With the completion of the Drosophila genome sequencing project we can begin to appreciate the extent of the complexity in the components involved in signal transfer and modulation in the nervous system of an animal with reasonably complex behavior. Of all the different classes of signaling substances utilized by the nervous system, the neuropeptides are the most diverse structurally and functionally. Thus peptidergic mechanisms of action in the central nervous system need to be analyzed in the context of the neuronal circuits in which they act and generalized traits cannot be established. By taking advantage of Drosophila molecular genetics and the presence of identifiable neurons, it has been possible to interfere with peptidergic signaling in small populations of central neurons and monitor the consequences on behavior. These studies and experiments on other insects with large identifiable neurons, permitting cellular analysis of signaling mechanisms, have outlined important principles for temporal and spatial action of neuropeptides in outputs of the circadian clock and in orchestrating molting behavior. Considering the large number of neuropeptides available in each insect species and their diverse distribution patterns, it is to be expected that different neuropeptides play roles in most aspects of insect physiology and behavior.

  17. Isolated Central Nervous System Vasculitis Associated with Antiribonuclear Protein Antibody

    Directory of Open Access Journals (Sweden)

    Amer M. Awad

    2011-01-01

    Full Text Available We describe the case of a young woman who was referred to a tertiary care center with unexplained subacute progressive encephalopathy preceded by long-standing severe headaches. Her extensive workup was remarkable for abnormal intracranial angiography suggestive of small- and medium-vessel vasculitis, persistently elevated protein in the cerebrospinal fluid and persistently high titers of antiribonuclear protein antibody. The patient showed a modest response to intravenous high-dose steroids. We propose that the patient's neurologic disease is secondary to immune-mediated central nervous system vasculitis, possibly as an initial manifestation of mixed connective tissue disease.

  18. Masquerade Syndrome of Multicentre Primary Central Nervous System Lymphoma

    Directory of Open Access Journals (Sweden)

    Silvana Guerriero

    2011-01-01

    Full Text Available Purpose. In Italy we say that the most unlucky things can happen to physicians when they get sick, despite the attention of colleagues. To confirm this rumor, we report the sad story of a surgeon with bilateral vitreitis and glaucoma unresponsive to traditional therapies. Methods/Design. Case report. Results. After one year of steroidal and immunosuppressive therapy, a vitrectomy, and a trabeculectomy for unresponsive bilateral vitreitis and glaucoma, MRI showed a multicentre primary central nervous system lymphoma, which was the underlying cause of the masquerade syndrome. Conclusions. All ophthalmologists and clinicians must be aware of masquerade syndromes, in order to avoid delays in diagnosis.

  19. Area 51: How do Acanthamoeba invade the central nervous system?

    Science.gov (United States)

    Siddiqui, Ruqaiyyah; Emes, Richard; Elsheikha, Hany; Khan, Naveed Ahmed

    2011-05-01

    Acanthamoeba granulomatous encephalitis generally develops as a result of haematogenous spread, but it is unclear how circulating amoebae enter the central nervous system (CNS) and cause inflammation. At present, the mechanisms which Acanthamoeba use to invade this incredibly well-protected area of the CNS and produce infection are not well understood. In this paper, we propose two key virulence factors: mannose-binding protein and extracellular serine proteases as key players in Acanthamoeba traversal of the blood-brain barrier leading to neuronal injury. Both molecules should provide excellent opportunities as potential targets in the rational development of therapeutic interventions against Acanthamoeba encephalitis.

  20. Hypopituitarism as unusual sequelae to central nervous system tuberculosis

    Directory of Open Access Journals (Sweden)

    S Mageshkumar

    2011-01-01

    Full Text Available Neurological tuberculosis can very rarely involve the hypophysis cerebri. We report a case of an eighteen year old female who presented with five months duration of generalised apathy, secondary amenorrhea and weight gain. She was on irregular treatment for tuberculosis of the central nervous system for the last five months. Neuroimaging revealed sellar and suprasellar tuberculomas and communicating hydrocephalus requiring emergency decompression. Endocrinological investigation showed hypopituitarism manifesting as pituitary hypothyroidism, hypocortisolism, hypogonadotropic hypogonadism, and hyperprolactinemia. Restarting anti-tuberculosis treatment, hormone replacement therapy, and a ventriculo-peritoneal shunt surgery led to remarkable improvement in the general condition of the patient.

  1. Open system degassing, bubble rise and flow dynamics within volcanic conduits- an experimental approach

    Science.gov (United States)

    Pioli, L.; Azzopardi, B. J.; Bonadonna, C.; Marchetti, E.; Ripepe, M.

    2009-12-01

    Open conduit basaltic volcanoes are characterized by frequent eruptions, usually consisting in mild Strombolian and Hawaiian explosions, alternating years to months of quiescence periods, with degassing activity from the central conduit. Recent improvements of thermal, video, radar and acoustic monitoring techniques have provided new powerful tools for the study of degassing processes and made available geophysical and geochemical datasets for many central volcanoes, such as Stromboli, Etna (Italy), Kilauea (Hawaii), Villarrica (Chile). These studies revealed that degassing is an unsteady, often pulsatory process, characterized by fluctuations in both intensity and composition of the emitted gases. Unambiguous interpretation of monitoring data of surface activity in terms of conduit dynamics and flow processes is, however, not possible, due to partial knowledge of the physical processes controlling the dynamics of two-phase flows in magmas. We performed a series of experiments to gain further insights on the dynamics of the gas-bubble rise in magmas within a cylindrical conduit, their ability to segregate and coalesce and the effect of these processes on the degassing dynamics. The experiments consisted in generating fluxes at variable intensities of air through stagnant water or glucose syrup in a bubble column apparatus 6.5 m high and with a diameter of 24 cm diameter. Glucose syrup and water are Newtonian liquids with viscosity ranging from 2.4 to 204.0 Pa*s and from 1.7 to 0.2 10 -3 Pa*s respectively, depending on temperature. Air was inserted at the base of the column through a variable number (1 to 25) of 5mm-diameter nozzles reaching surficial gas velocities of up to 0.5 m/s. The activity of the bubble column was monitored through temperature, pressure, void fraction and acoustic measurements and filmed by a high-speed camera with maximum resolution of 800x600 pixels. Pressure fluctuations, vesicularity and acoustic signal were then analyzed and correlated

  2. Records of climatic changes and volcanic events in an ice core from Central Dronning Maud Land (East Antarctica) during the past century

    Indian Academy of Sciences (India)

    V N Nijampurkar; D K Rao; H B Clausen; M K Kaul; A Chaturvedi

    2002-03-01

    The depth profiles of electrical conductance, 18O, 210Pb and cosmogenic radio isotopes 10Be and 36Cl have been measured in a 30 m ice core from east Antarctica near the Indian station, Dakshin Gangotri. Using 210Pb and 18O, the mean annual accumulation rates have been calculated to be 20 and 21 cm of ice equivalent per year during the past ∼150 years. Using these acumulation rates, the volcanic event that occurred in 1815 AD, has been identified based on electrical conductance measurements. Based on 18O measurements, the mean annual surface air temperatures (MASAT) data observed during the last 150 years indicates that the beginning of the 19th century was cooler by about 2°C than the recent past and the middle of 18th century. The fallout of cosmogenic radio isotope 10Be compares reasonably well with those obtained on other stations (73° S to 90°S) from Antarctica and higher latitudes beyond 77°N. The fallout of 36Cl calculated based on the present work agrees well with the mean global production rate estimated earlier by Lal and Peters (1967) The bomb pulse of 36Cl observed in Greenland is not observed in the present studies a result which is puzzling and needs to be studied on neighbouring ice cores from the same region.

  3. Infecciones del sistema nervioso central en urgencias Infections of the central nervous system in emergency department

    Directory of Open Access Journals (Sweden)

    I. Gastón

    2008-01-01

    Full Text Available Las infecciones del sistema nervioso central son enfermedades frecuentes en la atención urgente, pudiendo ser de origen bacteriano, parasitario o vírico. Los síntomas iniciales pueden ser inespecíficos, lo que puede dificultar y retrasar su diagnóstico, por lo que es de suma importancia toda la información que pueda obtenerse a través de la anamnesis y exploración física y con frecuencia exploraciones complementarias. En los últimos cien años, con la introducción de fármacos antibióticos ha disminuido de forma importante la mortalidad secundaria a meningoencefalitis, pero a pesar de ello siguen provocando alta morbi-mortalidad. Otros fenómenos, como las campañas de vacunación, movimientos migratorios, infección por el virus de la inmunodeficiencia humana y otros estados de inmunosupresión, han dado lugar a importantes cambios epidemiológicos como son la práctica desaparición de algunas infecciones o la aparición de otras previamente casi inexistentes. La lista de infecciones potenciales de sistema nervioso central es extensa por lo que en este artículo de revisión expondremos desde el punto de vista clínico, diagnóstico y terapéutico las más frecuentes en nuestro medio y algunas que, aunque poco frecuentes, pueden requerir atención urgente por su gravedad.Infections of the central nervous system are frequent diseases in emergency care. They can have a bacterial, parasitic or viral origin. Initial symptoms can be non-specific, which can complicate and delay diagnosis, hence the extreme importance of all the information that can be obtained through anamnesis and physical exploration, with frequent complementary explorations. In the last hundred years, with the introduction of antibiotic drugs, there has been a significant fall in mortality secondary to meningoencephalitis, but in spite of that they continue to provoke high morbidity and mortality. Other phenomena, such as vaccination campaigns, migratory movements

  4. Operating The Central Process Systems At Glenn Research Center

    Science.gov (United States)

    Weiler, Carly P.

    2004-01-01

    As a research facility, the Glenn Research Center (GRC) trusts and expects all the systems, controlling their facilities to run properly and efficiently in order for their research and operations to occur proficiently and on time. While there are many systems necessary for the operations at GRC, one of those most vital systems is the Central Process Systems (CPS). The CPS controls operations used by GRC's wind tunnels, propulsion systems lab, engine components research lab, and compressor, turbine and combustor test cells. Used widely throughout the lab, it operates equipment such as exhausters, chillers, cooling towers, compressors, dehydrators, and other such equipment. Through parameters such as pressure, temperature, speed, flow, etc., it performs its primary operations on the major systems of Electrical Dispatch (ED), Central Air Dispatch (CAD), Central Air Equipment Building (CAEB), and Engine Research Building (ERB). In order for the CPS to continue its operations at Glenn, a new contract must be awarded. Consequently, one of my primary responsibilities was assisting the Source Evaluation Board (SEB) with the process of awarding the recertification contract of the CPS. The job of the SEB was to evaluate the proposals of the contract bidders and then to present their findings to the Source Selecting Official (SSO). Before the evaluations began, the Center Director established the level of the competition. For this contract, the competition was limited to those companies classified as a small, disadvantaged business. After an industry briefing that explained to qualified companies the CPS and type of work required, each of the interested companies then submitted proposals addressing three components: Mission Suitability, Cost, and Past Performance. These proposals were based off the Statement of Work (SOW) written by the SEB. After companies submitted their proposals, the SEB reviewed all three components and then presented their results to the SSO. While the

  5. Longitudinal analysis of hearing loss in a case of hemosiderosis of the central nervous system.

    NARCIS (Netherlands)

    Weekamp, H.; Huygen, P.L.M.; Merx, J.L.; Kremer, H.P.H.; Cremers, C.W.R.J.; Longridge, N.S.

    2003-01-01

    OBJECTIVE: To describe cochleovestibular aspects of superficial hemosiderosis of the central nervous system. BACKGROUND: Superficial hemosiderosis of the central nervous system is a rare disease in which cochleovestibular impairment, cerebellar ataxia, and myelopathy are the most frequent signs. Chr

  6. Arteriovenous Malformations and Other Vascular Lesions of the Central Nervous System

    Science.gov (United States)

    ... Malformations and Other Vascular Lesions of the Central Nervous System Fact Sheet Table of Contents (click to jump ... other types of vascular lesions affect the central nervous system? What causes vascular lesions? How are AVMs and ...

  7. Multistation alarm system for eruptive activity based on the automatic classification of volcanic tremor: specifications and performance

    Science.gov (United States)

    Langer, Horst; Falsaperla, Susanna; Messina, Alfio; Spampinato, Salvatore

    2015-04-01

    With over fifty eruptive episodes (Strombolian activity, lava fountains, and lava flows) between 2006 and 2013, Mt Etna, Italy, underscored its role as the most active volcano in Europe. Seven paroxysmal lava fountains at the South East Crater occurred in 2007-2008 and 46 at the New South East Crater between 2011 and 2013. Month-lasting lava emissions affected the upper eastern flank of the volcano in 2006 and 2008-2009. On this background, effective monitoring and forecast of volcanic phenomena are a first order issue for their potential socio-economic impact in a densely populated region like the town of Catania and its surroundings. For example, explosive activity has often formed thick ash clouds with widespread tephra fall able to disrupt the air traffic, as well as to cause severe problems at infrastructures, such as highways and roads. For timely information on changes in the state of the volcano and possible onset of dangerous eruptive phenomena, the analysis of the continuous background seismic signal, the so-called volcanic tremor, turned out of paramount importance. Changes in the state of the volcano as well as in its eruptive style are usually concurrent with variations of the spectral characteristics (amplitude and frequency content) of tremor. The huge amount of digital data continuously acquired by INGV's broadband seismic stations every day makes a manual analysis difficult, and techniques of automatic classification of the tremor signal are therefore applied. The application of unsupervised classification techniques to the tremor data revealed significant changes well before the onset of the eruptive episodes. This evidence led to the development of specific software packages related to real-time processing of the tremor data. The operational characteristics of these tools - fail-safe, robustness with respect to noise and data outages, as well as computational efficiency - allowed the identification of criteria for automatic alarm flagging. The

  8. U-Pb SHRIMP and Sm-Nd geochronology of the Silvânia Volcanics and Jurubatuba Granite: juvenile Paleoproterozoic crust in the basement of the Neoproterozoic Brasília Belt, Goiás, central Brazil

    Directory of Open Access Journals (Sweden)

    FISCHEL DANIELLE P.

    2001-01-01

    Full Text Available U-Pb SHRIMP and Sm-Nd isotopic ages were determined for felsic metavolcanic rocks from the Silvânia Sequence and Jurubatuba Granite in the central part of the Brasília Belt. Zircon grains from a metavolcanic sample yielded 2115 ± 23 Ma and from the granite yielded 2089 ± 14 Ma, interpreted as crystallization ages of these rocks. Six metavolcanic samples of the Silvânia Sequence yielded a six-point whole-rock Sm-Nd isochron indicating a crystallization age of 2262 ± 110 Ma and positive epsilonNd(T = +3.0 interpreted as a juvenile magmatic event. Nd isotopic analyses on samples from the Jurubatuba Granite have Paleoproterozoic T DM model ages between 2.30 and 2.42 Ga and epsilonNd(T values vary between -0.22 and -0.58. The oldest T DM value refers to a sedimentary xenolith in the granite. These results suggest crystallization ages of Silvânia volcanics and Jurubatuba Granite are the first evidence of a ca. 2.14-2.08 juvenile magmatic event in the basement of the central part of the Brasília Belt that implies the presence of arc/suture hidden in reworked basement of the Brasília Belt.

  9. Insights from gas and water chemistry on the geothermal system of the Domuyo volcanic complex (Patagonia, Argentina)

    Science.gov (United States)

    Tassi, F.; Liccioli, C.; Chiodini, G.; Agusto, M.; Caselli, A. T.; Caliro, S.; Vaselli, O.; Pecoraino, G.

    2015-12-01

    This study focuses on the geochemistry of geothermal fluids discharging from the western flank of the Domuyo volcanic complex (Argentina), which is hosted within an extensional basins that interrupts the Andes at latitudes comprises between 35° and 39°S. The analytical results of gas and water samples collected during three sampling campaigns (2013, 2014 and 2015) are presented and discussed in order to: i) evaluate the equilibrium temperature(s) of the main fluid reservoir, ii) provide information on the origin of the fluid discharges and the secondary processes controlling their chemistry. Geothermometry based on the chemical composition of thermal waters indicates a maximum equilibrium temperature of 220 °C. This temperature, coupled with the measured amount of discharged Cl, suggest that the total energy released from this system is 1.1±0.2 GW. Atmospheric gases from a thick shallow aquifer contaminate most gas emissions, masking the chemical features of the deep fluid component, with the only exception of a jet fumarole located at 3,000 m a.s.l. (Bramadora). The H2O-CO2-CH4-H2-CO-C3H6-C3H8 composition of this gas emission was used to construct a geochemical conceptual model showing that the hydrothermal reservoir is liquid-dominated and thermally stratified, with temperatures ranging from 180 to 270 °C. The helium isotopic ratios (up to 6.8 Ra) and the δ13C-CO2 values (from -7.05 to -7.75 ‰ V-PDB) indicate that mantle degassing represents the dominant primary source for this dormant volcano. These results highlight the huge potential of this system as energy resource for the region. Accordingly, the regional authorities have recently planned and approved an investigation project aimed to provide further insights into the fluid geochemistry and the geostructural assessment in this promising area.

  10. A Rare Case of Central Nervous System Tuberculosis

    Directory of Open Access Journals (Sweden)

    Ravish Parekh

    2014-01-01

    Full Text Available Intracranial abscess is an extremely rare form of central nervous system (CNS tuberculosis (TB. We describe a case of central nervous system tuberculous abscess in absence of human immunodeficiency virus (HIV infection. A 82-year-old Middle Eastern male from Yemen was initially brought to the emergency room due to altered mental status and acute renal failure. Cross-sectional imaging revealed multiple ring enhancing lesions located in the left cerebellum and in bilateral frontal lobe as well as in the inferior parietal lobe on the left. The patient was placed on an empiric antibiotic regimen. Preliminary testing for infectious causes was negative. Chest radiography and CT of chest showed no positive findings. He was not on any immunosuppressive medications and human immunodeficiency virus (HIV enzyme immunoassay (EIA test was negative. A subsequent MRI one month later showed profound worsening of the lesions with increasing vasogenic edema and newly found mass effect impinging on the fourth ventricle. Brain biopsy showed focal exudative cerebellitis and inflamed granulation tissue consistent with formation of abscesses. The diagnosis of CNS TB was finally confirmed by positive acid-fast bacilli (AFB cultures. The patient was started on standard tuberculosis therapy but expired due to renal failure and cardiac arrest.

  11. Engineering Biomaterial Properties for Central Nervous System Applications

    Science.gov (United States)

    Rivet, Christopher John

    Biomaterials offer unique properties that are intrinsic to the chemistry of the material itself or occur as a result of the fabrication process; iron oxide nanoparticles are superparamagnetic, which enables controlled heating in the presence of an alternating magnetic field, and a hydrogel and electrospun fiber hybrid material provides minimally invasive placement of a fibrous, artificial extracellular matrix for tissue regeneration. Utilization of these unique properties towards central nervous system disease and dysfunction requires a thorough definition of the properties in concert with full biological assessment. This enables development of material-specific features to elicit unique cellular responses. Iron oxide nanoparticles are first investigated for material-dependent, cortical neuron cytotoxicity in vitro and subsequently evaluated for alternating magnetic field stimulation induced hyperthermia, emulating the clinical application for enhanced chemotherapy efficacy in glioblastoma treatment. A hydrogel and electrospun fiber hybrid material is first applied to a rat brain to evaluate biomaterial interface astrocyte accumulation as a function of hybrid material composition. The hybrid material is then utilized towards increasing functional engraftment of dopaminergic progenitor neural stem cells in a mouse model of Parkinson's disease. Taken together, these two scenarios display the role of material property characterization in development of biomaterial strategies for central nervous system repair and regeneration.

  12. Genetic perspectives on the ascidian central nervous system

    Directory of Open Access Journals (Sweden)

    A Locascio

    2009-03-01

    Full Text Available In 2002, date of publication of the Ciona intestinalis genome, ascidians entered the post-genomic era. This tool had a fundamental role and has become the starting point for a series of new functional and genomic studies. Recently, great efforts have been done to characterize the genetic cascades of genes having a key role in early embryonic development and to draw the regulatory networks in which they are involved. In this review, we focused our attention on the last advances obtained in the attempt to clarify the complex molecular events governing ascidian central nervous system development with a special interest for anterior neural and sensory structures. We discussed the more recent theories on its early induction and late regionalization. In particular, we used some conserved genes fully or partially characterized as examples to compare ascidian and vertebrate central nervous system (CNS.By integrating the various results obtained with microarray, morpholino loss of function and promoter analyses, we showed that many progresses have been done to unravel the gene networks controlling early CNS induction and formation. Unfortunately, fewer advances have been done in the identification of the regulatory cascades controlling late CNS regionalization and sensory organs differentiation. Some results are discussed to point out the importance of fully characterizing also these specific regulatory cascades.

  13. Prolactin gene expression in primary central nervous system tumors

    Directory of Open Access Journals (Sweden)

    Mendes Graziella Alebrant

    2013-01-01

    Full Text Available Abstract Background Prolactin (PRL is a hormone synthesized in both the pituitary gland and extrapituitary sites. It has been associated with the occurrence of neoplasms and, more recently, with central nervous system (CNS neoplasms. The aim of this study was to evaluate prolactin expression in primary central nervous system tumors through quantitative real-time PCR and immunohistochemistry (IH. Results Patient mean age was 49.1 years (SD 15.43, and females accounted for 70% of the sample. The most frequent subtype of histological tumor was meningioma (61.5%, followed by glioblastoma (22.9%. Twenty cases (28.6% showed prolactin expression by immunohistochemistry, most of them females (18 cases, 90%. Quantitative real-time PCR did not show any prolactin expression. Conclusions Despite the presence of prolactin expression by IH, the lack of its expression by quantitative real-time PCR indicates that its presence in primary tumors in CNS is not a reflex of local production.

  14. A centralized information management system for environmental science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Namboodiri, K. [Martin Marietta Technical Services, Inc., Bay City, MI (United States)

    1995-12-31

    During the past few decades there have been several serious initiatives focusing on the applications of computational technology towards understanding the diverse fields of environmental research such as environmental monitoring, pollution prevention, and hazardous chemical mitigation. Recently, due to the widespread application of high performance computer technology and the renewed interest of the industrial community in environmental protection, we are witnessing an era of environmental information explosion. In light of these large-scale computer-driven developments, the author identifies a highly desirable initiative for this field, which is solely devoted to a centralized environmental database and information management system. This talk will focus on some design aspects of such an information management system.

  15. Programming and reprogramming neuronal subtypes in the central nervous system.

    Science.gov (United States)

    Rouaux, Caroline; Bhai, Salman; Arlotta, Paola

    2012-07-01

    Recent discoveries in nuclear reprogramming have challenged the dogma that the identity of terminally differentiated cells cannot be changed. The identification of molecular mechanisms that reprogram differentiated cells to a new identity carries profound implications for regenerative medicine across organ systems. The central nervous system (CNS) has historically been considered to be largely immutable. However, recent studies indicate that even the adult CNS is imparted with the potential to change under the appropriate stimuli. Here, we review current knowledge regarding the capability of distinct cells within the CNS to reprogram their identity and consider the role of developmental signals in directing these cell fate decisions. Finally, we discuss the progress and current challenges of using developmental signals to precisely direct the generation of individual neuronal subtypes in the postnatal CNS and in the dish.

  16. Diagnosis and classification of central nervous system vasculitis.

    Science.gov (United States)

    Hajj-Ali, Rula A; Calabrese, Leonard H

    2014-01-01

    Central nervous system vasculitis is one of the foremost diagnostic challenges in rheumatology. It results in inflammation and destruction of the vasculature within the CNS. When vasculitis is confined to brain, meninges or spinal cord, it is referred to as primary angiitis of the CNS. Secondary CNS vasculitis occurs in the setting of a systemic vasculitis, auto-inflammatory or infectious disease. Prompt and accurate diagnosis of CNS vasculitis is essential to prevent irreversible brain damage, and to secure precise treatment decisions. Progressive debilitating and unexplained neurological deficits, associated with abnormal cerebrospinal fluid is the typical picture of the disease. Biopsy of the brain remains the gold standard diagnostic test. The differential diagnosis of CNS vasculitis is highly diverse with a broad array of mimics at the clinical, radiographic and angiographic levels.

  17. Development-inspired reprogramming of the mammalian central nervous system.

    Science.gov (United States)

    Amamoto, Ryoji; Arlotta, Paola

    2014-01-31

    In 2012, John Gurdon and Shinya Yamanaka shared the Nobel Prize for the demonstration that the identity of differentiated cells is not irreversibly determined but can be changed back to a pluripotent state under appropriate instructive signals. The principle that differentiated cells can revert to an embryonic state and even be converted directly from one cell type into another not only turns fundamental principles of development on their heads but also has profound implications for regenerative medicine. Replacement of diseased tissue with newly reprogrammed cells and modeling of human disease are concrete opportunities. Here, we focus on the central nervous system to consider whether and how reprogramming of cell identity may affect regeneration and modeling of a system historically considered immutable and hardwired.

  18. Chemistry and origin of the Mayo Kila sapphires, NW region Cameroon (Central Africa): Their possible relationship with the Cameroon volcanic line

    Science.gov (United States)

    Paul Mbih, Kemeng; Meffre, Sebastien; Yongue, Rose Fouateu; Kanouo, Nguo Sylvestre; Jay, Thomson

    2016-06-01

    Mineralogical, chemical and geochronological studies constrained the origin of sapphires from Mayo Kila, Northwest Cameroon. The sapphires are mostly blue, with sizes ranging from 2 to 5 mm. The pale blue grains are transparent, whereas, other corundums are transparent to translucent and/or opaque. The sapphires are dominantly euhedral to sub-hedral with few polished lustrous grains, acquired features during moderate to short distance transport from a proximal source rock. Solid inclusions are limited to rutile and zircon. Trace element analysis of sapphires shows significant concentration (in ppm) in some elements: Fe (2208-14,473), Ti (82-1783), Ga (77-512), Mg (0.9-264.9), Cr (b.d.l -168) and V (1.3-82). The other elements (e.g. Sn, Nb, Ta, Th, Zr, Ni, Ce) are generally below 10 ppm. The calculated ratios for some of the selected elements show an extreme variation: Fe/Mg (43-3043), Fe/Ti (2-76), Ti/Mg (1-328), and Ga/Mg (0.4-363). They are dominantly corundum crystallized in alkaline magma (s) with few from metamorphic source (s). Trace elemental features with Hf (13,354-26,238 ppm), Th (4018-45,584 ppm) and U (7825-17,175 ppm), and Th/U (0.39-2.65) found in zircon inclusions are compatible with quantified values in magmatic crystallized zircons. The Cenozoic age (mean of 30.78 ± 0.28 Ma) obtained for zircon inclusions is close to the age of some igneous rocks found within the Cameroon Volcanic Line (e.g. rocks of the Mount Oku: 31-22 Ma), showing the same period of formation. The most probable source of the zircon host sapphires is the Oku Mountain located SW of Mayo Kila.

  19. Experiment of "No-Tillage" Farming System on the Volcanic Soils of Tropical Islands of Micronesia

    Directory of Open Access Journals (Sweden)

    Mohammad H. Golabi

    2014-06-01

    The objectives of this study are; 1 to evaluate the use of crop rotation and tillage management for increasing organic-matter content to improve the overall quality of these severely eroded soils, 2 to evaluate the effect of conservation practices on harvested yield and crop productivity of these eroded soils and, 3 to assess the effects of conservation techniques including no-tillage systems on water runoff and infiltration. This paper discusses the effect of conservation strategies and techniques on these severely eroded soils of southern Guam.

  20. Impact of volcanic processes on the cryospheric system of the Peteroa Volcano, Andes of southern Mendoza, Argentina

    Science.gov (United States)

    Liaudat, Dario Trombotto; Penas, Pablo; Aloy, Gustavo

    2014-03-01

    Soil temperatures of the active Volcanic Complex Peteroa situated in the Cordillera Principal between Chile and Argentina at 35°15‧ S and 70°35‧ W (approximately) were monitored in the area, and local geomorphology (periglacial geomorphology, presence of permafrost, and cryoforms) was studied. The present contribution also resulted in a comparison of two consecutive analyses of the volcano peak carried out with special thermocameras (AGEMA TVH 550, FUR P660) in order to study the thermal range of different hot and cold sites selected in 2009. The thermocameras were used ascending by foot and also during flights with a Cessna 180. A night expedition to the volcanic avalanche caldera, at up to 3900 m asl (approximately), completed the monitoring activity of 2010. Hot zones were associated to present volcanism and cold zones to the presence of glacier ice and shadowy slopes with possible presence of permafrost. Identifying and mapping uncovered and covered ice was possible with the help of monitoring and geomorphological interpretation related to the upper englacement, which is severely affected by volcanism. Glaciers are retreating toward the north or approaching the rims of the volcanic avalanche caldera leaving islands of ice associated with superficial permafrost. The cryogenic area with slope permafrost was identified through active protalus and sedimentary cryogenic slopes. Craters have undergone considerable thermal changes in comparison to the year 2009; and new, much more vigorous fumaroles have appeared in hot areas detected in 2009 following a tendency toward the west. New subaquatic heat columns that appeared in crater 3, crater walls, and glaciated areas vanished, supplying cold water and thus contributing to the formation of a new lake in crater 4. A possible post-seismic shift of the volcanic activity may provide geodynamical evidence of the changes registered in other areas after the earthquake of 27 February 2010.

  1. MyOcean Central Information System - Achievements and Perspectives

    Science.gov (United States)

    Claverie, Vincent; Loubrieu, Thomas; Jolibois, Tony; de Dianous, Rémi; Blower, Jon; Romero, Laia; Griffiths, Guy

    2013-04-01

    Since 2009, MyOcean (http://www.myocean.eu) is providing an operational service, for forecasts, analysis and expertise on ocean currents, temperature, salinity, sea level, primary ecosystems and ice coverage. The production of observation and forecasting data is done by 42 Production Units (PU). Product download and visualisation are hosted by 25 Dissemination Units (DU). All these products and associated services are gathered in a single catalogue hiding the intricate distributed organization of PUs and DUs. Besides applying INSPIRE directive and OGC recommendations, MyOcean overcomes technical choices and challenges. This presentation focuses on 3 specific issues met by MyOcean and relevant for many Spatial Data Infrastructures: user's transaction accounting, large volume download and stream line the catalogue maintenance. Transaction Accounting: Set up powerful means to get detailed knowledge of system usage in order to subsequently improve the products (ocean observations, analysis and forecast dataset) and services (view, download) offer. This subject drives the following ones: Central authentication management for the distributed web services implementations: add-on to THREDDS Data Server for WMS and NETCDF sub-setting service, specific FTP. Share user management with co-funding projects. In addition to MyOcean, alternate projects also need consolidated information about the use of the cofunded products. Provide a central facility for the user management. This central facility provides users' rights to geographically distributed services and gathers transaction accounting history from these distributed services. Propose a user-friendly web interface to download large volume of data (several GigaBytes) as robust as basic FTP but intuitive and file/directory independent. This should rely on a web service drafting the INSPIRE to-be specification and OGC recommendations for download taking into account that FTP server is not enough friendly (need to know

  2. 75 FR 75681 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-12-06

    ... HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System Drugs... and circulation) of the central nervous system. The BBB is an area consisting of specialized...

  3. Permeability Reduction in Passively Degassing Seawater-dominated Volcanic-hydrothermal systems: Processes and Perils on Raoul Island, Kermadecs (NZ)

    Science.gov (United States)

    Christenson, B. W.; Reyes, A. G.

    2014-12-01

    The 2006 eruption from Raoul Island occurred apparently in response to local tectonic swarm activity, but without any precursory indication of volcanic unrest within the hydrothermal system on the island. The eruption released some 200 T of SO2, implicating the involvement of a deep magmatic vapor input into the system during/prior to the event. In the absence of any recognized juvenile material in the eruption products, previous explanations for this eruptive event focused on this vapor being a driving force for the eruption. In 2004, at least 80 T/d of CO2 was escaping from the hydrothermal system, but mainly through areas that did not correspond to the 2006 eruption vents. The lack of a pre-eruptive hydrothermal system response related to the seismic event in 2006 can be explained by the presence of a hydrothermal mineralogic seal in the vent area of the volcano. Evidence for the existence of such a seal was found in eruption deposits in the form of massive fracture fillings of aragonite, calcite and anhydrite. Fluid inclusion homogenization temperatures in these phases range from ca. 140 °C to 220 °C which, for pure water indicate boiling point depths of between 40 and 230 m assuming a cold hydrostatic pressure constraint. Elevated pressures behind this seal are consistent with the occurrence of CO2 clathrates in some inclusion fluids, indicating CO2 concentrations approaching 1 molal in the parent fluids. Reactive transport modeling of magmatic volatile inputs into what is effectively a seawater-dominated hydrothermal system provide valuable insights into seal formation. Carbonate mineral phases ultimately come to saturation along this flow path, but we suggest that focused deposition of the observed massive carbonate seal is facilitated by near-surface boiling of these CO2-enriched altered seawaters, leading to large degrees of supersaturation which are required for the formation of aragonite. As the seal grew and permeability declined, pore pressures

  4. Scientific and public responses to the ongoing volcanic crisis at Popocatépetl Volcano, Mexico: Importance of an effective hazards-warning system

    Science.gov (United States)

    De la Cruz-Reyna, Servando; Tilling, Robert I.

    2008-02-01

    Volcanic eruptions and other potentially hazardous natural phenomena occur independently of any human actions. However, such phenomena can cause disasters when a society fails to foresee the hazardous manifestations and adopt adequate measures to reduce its vulnerability. One of the causes of such a failure is the lack of a consistent perception of the changing hazards posed by an ongoing eruption, i.e., with members of the scientific community, the Civil Protection authorities and the general public having diverging notions about what is occurring and what may happen. The problem of attaining a perception of risk as uniform as possible in a population measured in millions during an evolving eruption requires searching for communication tools that can describe—as simply as possible—the relations between the level of threat posed by the volcano, and the level of response of the authorities and the public. The hazards-warning system adopted at Popocatépetl Volcano, called the Volcanic Traffic Light Alert System (VTLAS), is a basic communications protocol that translates volcano threat into seven levels of preparedness for the emergency-management authorities, but only three levels of alert for the public (color coded green-yellow-red). The changing status of the volcano threat is represented as the most likely scenarios according to the opinions of an official scientific committee analyzing all available data. The implementation of the VTLAS was intended to reduce the possibility of ambiguous interpretations of intermediate levels by the endangered population. Although the VTLAS is imperfect and has not solved all problems involved in mass communication and decision-making during a volcanic crisis, it marks a significant advance in the management of volcanic crises in Mexico.

  5. Scientific and public responses to the ongoing volcanic crisis at Popocatépetl Volcano, Mexico: Importance of an effective hazards-warning system

    Science.gov (United States)

    de la Cruz-Reyna, Servando; Tilling, Robert I.

    2008-01-01

    Volcanic eruptions and other potentially hazardous natural phenomena occur independently of any human actions. However, such phenomena can cause disasters when a society fails to foresee the hazardous manifestations and adopt adequate measures to reduce its vulnerability. One of the causes of such a failure is the lack of a consistent perception of the changing hazards posed by an ongoing eruption, i.e., with members of the scientific community, the Civil Protection authorities and the general public having diverging notions about what is occurring and what may happen. The problem of attaining a perception of risk as uniform as possible in a population measured in millions during an evolving eruption requires searching for communication tools that can describe—as simply as possible—the relations between the level of threat posed by the volcano, and the level of response of the authorities and the public. The hazards-warning system adopted at Popocatépetl Volcano, called the Volcanic Traffic Light Alert System(VTLAS), is a basic communications protocol that translates volcano threat into seven levels of preparedness for the emergency-management authorities, but only three levels of alert for the public (color coded green–yellow–red). The changing status of the volcano threat is represented as the most likely scenarios according to the opinions of an official scientific committee analyzing all available data. The implementation of the VTLAS was intended to reduce the possibility of ambiguous interpretations of intermediate levels by the endangered population. Although the VTLAS is imperfect and has not solved all problems involved in mass communication and decision-making during a volcanic crisis, it marks a significant advance in the management of volcanic crises in Mexico.

  6. Geochronological and geochemical assessment of Cenozoic volcanism from the Terror Rift region of the West Antarctic Rift System

    Science.gov (United States)

    Rilling, Sarah E.

    The work presented in this dissertation explains results from three different methods to determine the relation between tectonism and rift-related volcanism in the Terror Rift region of the West Antarctic Rift System (WARS). Alkaline lavas from seven submarine features, Beaufort Island and Franklin Islands, and several locations near Mt Melbourne were dated by 40Ar/39Ar geochronology and analyzed for elemental and isotopic chemical signatures. Each chapter addresses a different aspect of the hypothesis that the presence of volatiles, primarily H2O or CO2, in the magma source has led to anomalously high volumes of magmatism after rift-related decompressional melting rather than requiring an active mantle plume source. Chapter 2 provides the temporal framework, illustrating that the sampled features range in age from 6.7 Ma to 89 ka, post-dating the main Miocene age phase of Terror Rift extension. Chapter 3 illustrates the traditional enriched elemental and isotopic chemical signatures to support the overall homogeneity of these lavas and previously analyzed areas of the WARS. This chapter also provides a new model for the generation of the Pb isotopic signatures consistent with a history of metasomatism in the magma source. Chapter 4 provides an entirely new chemical dataset for the WARS. The first platinum group element (PGE) abundances and extremely unradiogenic Os isotopic signatures of Cenozoic lavas from Antarctica provide the strongest evidence of melting contributions from a lithospheric mantle source. The combined results from these three studies consistently support the original hypothesis of this dissertation. New evidence suggests that WARS related lavas are not related to a mantle plume(s) as previously proposed. Instead, they are generated by passive, decompressional melting of a source, likely a combination of the asthenospheric and lithospheric mantle, which has undergone previous melting events and metasomatism.

  7. Volcanic Eruptions and Climate

    Science.gov (United States)

    Robock, A.

    2012-12-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of these aerosol clouds produce responses in the climate system. Observations and numerical models of the climate system show that volcanic eruptions produce global cooling and were the dominant natural cause of climate change for the past millennium, on timescales from annual to century. Major tropical eruptions produce winter warming of Northern Hemisphere continents for one or two years, while high latitude eruptions in the Northern Hemisphere weaken the Asian and African summer monsoon. The Toba supereruption 74,000 years ago caused very large climate changes, affecting human evolution. However, the effects did not last long enough to produce widespread glaciation. An episode of four large decadally-spaced eruptions at the end of the 13th century C.E. started the Little Ice Age. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade had a small effect on global temperature trends. The June 13, 2011 Nabro eruption in Eritrea produced the largest stratospheric aerosol cloud since Pinatubo, and the most of the sulfur entered the stratosphere not by direct injection, but by slow lofting in the Asian summer monsoon circulation. Volcanic eruptions warn us that while stratospheric geoengineering could cool the surface, reducing ice melt and sea level rise, producing pretty sunsets, and increasing the CO2 sink, it could also reduce summer monsoon precipitation, destroy ozone, allowing more harmful UV at the surface, produce rapid warming when stopped, make the sky white, reduce solar power, perturb the ecology with more diffuse radiation, damage airplanes flying in the stratosphere, degrade astronomical observations, affect remote sensing, and affect

  8. Copahue Geothermal System: A Volcanic Environment with Rich Extreme Prokaryotic Biodiversity.

    Science.gov (United States)

    Urbieta, María Sofía; Porati, Graciana Willis; Segretín, Ana Belén; González-Toril, Elena; Giaveno, María Alejandra; Donati, Edgardo Rubén

    2015-07-08

    The Copahue geothermal system is a natural extreme environment located at the northern end of the Cordillera de los Andes in Neuquén province in Argentina. The geochemistry and consequently the biodiversity of the area are dominated by the activity of the Copahue volcano. The main characteristic of Copahue is the extreme acidity of its aquatic environments; ponds and hot springs of moderate and high temperature as well as Río Agrio. In spite of being an apparently hostile location, the prokaryotic biodiversity detected by molecular ecology techniques as well as cultivation shows a rich and diverse environment dominated by acidophilic, sulphur oxidising bacteria or archaea, depending on the conditions of the particular niche studied. In microbial biofilms, found in the borders of the ponds where thermal activity is less intense, the species found are completely different, with a high presence of cyanobacteria and other photosynthetic species. Our results, collected during more than 10 years of work in Copahue, have enabled us to outline geomicrobiological models for the different environments found in the ponds and Río Agrio. Besides, Copahue seems to be the habitat of novel, not yet characterised autochthonous species, especially in the domain Archaea.

  9. Copahue Geothermal System: A Volcanic Environment with Rich Extreme Prokaryotic Biodiversity

    Directory of Open Access Journals (Sweden)

    María Sofía Urbieta

    2015-07-01

    Full Text Available The Copahue geothermal system is a natural extreme environment located at the northern end of the Cordillera de los Andes in Neuquén province in Argentina. The geochemistry and consequently the biodiversity of the area are dominated by the activity of the Copahue volcano. The main characteristic of Copahue is the extreme acidity of its aquatic environments; ponds and hot springs of moderate and high temperature as well as Río Agrio. In spite of being an apparently hostile location, the prokaryotic biodiversity detected by molecular ecology techniques as well as cultivation shows a rich and diverse environment dominated by acidophilic, sulphur oxidising bacteria or archaea, depending on the conditions of the particular niche studied. In microbial biofilms, found in the borders of the ponds where thermal activity is less intense, the species found are completely different, with a high presence of cyanobacteria and other photosynthetic species. Our results, collected during more than 10 years of work in Copahue, have enabled us to outline geomicrobiological models for the different environments found in the ponds and Río Agrio. Besides, Copahue seems to be the habitat of novel, not yet characterised autochthonous species, especially in the domain Archaea.

  10. A catalogue of caldera unrest at Taupo Volcanic Centre, New Zealand, using the Volcanic Unrest Index (VUI)

    Science.gov (United States)

    Potter, Sally H.; Scott, Bradley J.; Jolly, Gill E.; Johnston, David M.; Neall, Vince E.

    2015-09-01

    Caldera unrest occurs frequently at Taupo Volcanic Centre (TVC), New Zealand, occasionally resulting in deleterious socio-economic impacts. This large silicic volcano most recently erupted in 232 AD in an explosive, caldera-forming rhyolitic eruption, devastating the central North Island. Eruptions are preceded by volcanic unrest, often consisting of seismicity, deformation, degassing, and/or geothermal system changes. These phenomena may also occur due to non-magmatic processes, complicating eruption forecasting. As volcanic unrest may or may not lead to an eruption, it needs to be characterised to provide effective warnings; this is best achieved by understanding past unrest. In this research, a catalogue of caldera unrest at TVC is developed using an historical chronology methodology, spanning from 1872 to December 2011. The Volcanic Unrest Index (VUI), which is introduced by Potter et al. (2015), is estimated for the catalogue, demonstrating its use and providing a characterisation of unrest at TVC. Sixteen episodes of unrest are identified; 4 are classified as moderate unrest (VUI 3), and 12 are classified as minor unrest (VUI 2). There has been median interval of approximately 3 years between unrest episodes and a median unrest episode duration of just under 5 months. This research provides context for future caldera unrest crises at TVC and contributes to the global caldera unrest dataset.

  11. The role of microbiome in central nervous system disorders.

    Science.gov (United States)

    Wang, Yan; Kasper, Lloyd H

    2014-05-01

    Mammals live in a co-evolutionary association with the plethora of microorganisms that reside at a variety of tissue microenvironments. The microbiome represents the collective genomes of these co-existing microorganisms, which is shaped by host factors such as genetics and nutrients but in turn is able to influence host biology in health and disease. Niche-specific microbiome, prominently the gut microbiome, has the capacity to effect both local and distal sites within the host. The gut microbiome has played a crucial role in the bidirectional gut-brain axis that integrates the gut and central nervous system (CNS) activities, and thus the concept of microbiome-gut-brain axis is emerging. Studies are revealing how diverse forms of neuro-immune and neuro-psychiatric disorders are correlated with or modulated by variations of microbiome, microbiota-derived products and exogenous antibiotics and probiotics. The microbiome poises the peripheral immune homeostasis and predisposes host susceptibility to CNS autoimmune diseases such as multiple sclerosis. Neural, endocrine and metabolic mechanisms are also critical mediators of the microbiome-CNS signaling, which are more involved in neuro-psychiatric disorders such as autism, depression, anxiety, stress. Research on the role of microbiome in CNS disorders deepens our academic knowledge about host-microbiome commensalism in central regulation and in practicality, holds conceivable promise for developing novel prognostic and therapeutic avenues for CNS disorders.

  12. Fast food, central nervous system insulin resistance, and obesity.

    Science.gov (United States)

    Isganaitis, Elvira; Lustig, Robert H

    2005-12-01

    Rates of obesity and insulin resistance have climbed sharply over the past 30 years. These epidemics are temporally related to a dramatic rise in consumption of fast food; until recently, it was not known whether the fast food was driving the obesity, or vice versa. We review the unique properties of fast food that make it the ideal obesigenic foodstuff, and elucidate the mechanisms by which fast food intake contributes to obesity, emphasizing its effects on energy metabolism and on the central regulation of appetite. After examining the epidemiology of fast food consumption, obesity, and insulin resistance, we review insulin's role in the central nervous system's (CNS) regulation of energy balance, and demonstrate the role of CNS insulin resistance as a cause of leptin resistance and in the promotion of the pleasurable or "hedonic" responses to food. Finally, we analyze the characteristics of fast food, including high-energy density, high fat, high fructose, low fiber, and low dairy intake, which favor the development of CNS insulin resistance and obesity.

  13. Volcanic Eruptions and Climate

    Science.gov (United States)

    LeGrande, Allegra N.; Anchukaitis, Kevin J.

    2015-01-01

    Volcanic eruptions represent some of the most climatically important and societally disruptive short-term events in human history. Large eruptions inject ash, dust, sulfurous gases (e.g. SO2, H2S), halogens (e.g. Hcl and Hbr), and water vapor into the Earth's atmosphere. Sulfurous emissions principally interact with the climate by converting into sulfate aerosols that reduce incoming solar radiation, warming the stratosphere and altering ozone creation, reducing global mean surface temperature, and suppressing the hydrological cycle. In this issue, we focus on the history, processes, and consequences of these large eruptions that inject enough material into the stratosphere to significantly affect the climate system. In terms of the changes wrought on the energy balance of the Earth System, these transient events can temporarily have a radiative forcing magnitude larger than the range of solar, greenhouse gas, and land use variability over the last millennium. In simulations as well as modern and paleoclimate observations, volcanic eruptions cause large inter-annual to decadal-scale changes in climate. Active debates persist concerning their role in longer-term (multi-decadal to centennial) modification of the Earth System, however.

  14. Impact of an extremely large magnitude volcanic eruption on the global climate and carbon cycle estimated from ensemble Earth System Model simulations

    Directory of Open Access Journals (Sweden)

    J. Segschneider

    2012-07-01

    Full Text Available The response of the global climate-carbon cycle system to an extremely large Northern Hemisphere mid latitude volcanic eruption is investigated using ensemble integrations with the comprehensive Earth System Model MPI-ESM. The model includes dynamical compartments of the atmosphere and ocean and interactive modules of the terrestrial biosphere as well as ocean biogeochemistry. The MPI-ESM was forced with anomalies of aerosol optical depth and effective radius of aerosol particles corresponding to a super eruption of the Yellowstone volcanic system. The model experiment consists of an ensemble of fifteen model integrations that are started at different pre-ENSO states of a contol experiment and run for 200 yr after the volcanic eruption. The climate response to the volcanic eruption is a maximum global monthly mean surface air temperature cooling of 3.8 K for the ensemble mean and from 3.3 K to 4.3 K for individual ensemble members. Atmospheric pCO2 decreases by a maximum of 5 ppm for the ensemble mean and by 3 ppm to 7 ppm for individual ensemble members approximately 6 yr after the eruption. The atmospheric carbon content only very slowly returns to near pre-eruption level at year 200 after the eruption. The ocean takes up carbon shortly after the eruption in response to the cooling, changed wind fields, and ice cover. This physics driven uptake is weakly counteracted by a reduction of the biological export production mainly in the tropical Pacific. The land vegetation pool shows a distinct loss of carbon in the initial years after the eruption which has not been present in simulations of smaller scale eruptions. The gain of the soil carbon pool determines the amplitude of the CO2 perturbation and the long term behaviour of the overall system: an initial gain caused by reduced soil respiration is followed by a rather slow return towards pre-eruption levels. During this phase, the ocean compensates partly for the

  15. Impact of an extremely large magnitude volcanic eruption on the global climate and carbon cycle estimated from ensemble Earth System Model simulations

    Directory of Open Access Journals (Sweden)

    J. Segschneider

    2013-02-01

    Full Text Available The response of the global climate-carbon cycle system to an extremely large Northern Hemisphere mid-latitude volcanic eruption is investigated using ensemble integrations with the comprehensive Earth System Model MPI-ESM. The model includes dynamical compartments of the atmosphere and ocean and interactive modules of the terrestrial biosphere as well as ocean biogeochemistry. The MPI-ESM was forced with anomalies of aerosol optical depth and effective radius of aerosol particles corresponding to a super eruption of the Yellowstone volcanic system. The model experiment consists of an ensemble of fifteen model integrations that are started at different pre-ENSO states of a control experiment and run for 200 years after the volcanic eruption. The climate response to the volcanic eruption is a maximum global monthly mean surface air temperature cooling of 3.8 K for the ensemble mean and from 3.3 K to 4.3 K for individual ensemble members. Atmospheric pCO2 decreases by a maximum of 5 ppm for the ensemble mean and by 3 ppm to 7 ppm for individual ensemble members approximately 6 years after the eruption. The atmospheric carbon content only very slowly returns to near pre-eruption level at year 200 after the eruption. The ocean takes up carbon shortly after the eruption in response to the cooling, changed wind fields and ice cover. This physics-driven uptake is weakly counteracted by a reduction of the biological export production mainly in the tropical Pacific. The land vegetation pool shows a decrease by 4 GtC due to reduced short-wave radiation that has not been present in a smaller scale eruption. The gain of the soil carbon pool determines the amplitude of the CO2 perturbation and the long-term behaviour of the overall system: an initial gain caused by reduced soil respiration is followed by a rather slow return towards pre-eruption levels. During this phase, the ocean compensates partly for the reduced atmospheric

  16. Modulation of Tumor Tolerance in Primary Central Nervous System Malignancies

    Directory of Open Access Journals (Sweden)

    Theodore S. Johnson

    2012-01-01

    Full Text Available Central nervous system tumors take advantage of the unique immunology of the CNS and develop exquisitely complex stromal networks that promote growth despite the presence of antigen-presenting cells and tumor-infiltrating lymphocytes. It is precisely this immunological paradox that is essential to the survival of the tumor. We review the evidence for functional CNS immune privilege and the impact it has on tumor tolerance. In this paper, we place an emphasis on the role of tumor-infiltrating myeloid cells in maintaining stromal and vascular quiescence, and we underscore the importance of indoleamine 2,3-dioxygenase activity as a myeloid-driven tumor tolerance mechanism. Much remains to be discovered regarding the tolerogenic mechanisms by which CNS tumors avoid immune clearance. Thus, it is an open question whether tumor tolerance in the brain is fundamentally different from that of peripheral sites of tumorigenesis or whether it simply stands as a particularly strong example of such tolerance.

  17. HIV and aging: effects on the central nervous system.

    Science.gov (United States)

    Cañizares, Silvia; Cherner, Mariana; Ellis, Ronald J

    2014-02-01

    With the introduction of combination antiretroviral therapy, many human immunodeficiency virus-positive (HIV+) individuals are reaching advanced age. The proportion of people living with HIV older than 50 years already exceeds 50% in many communities, and is expected to reach this level nationally by 2015. HIV and aging are independently associated with neuropathological changes, but their concurrence may have a more deleterious effect on the central nervous system (CNS). Published data about neurocognitive and neuroimaging markers of HIV and aging are reviewed. Putative factors contributing to neurocognitive impairment and neuroimaging changes in the aging HIV+ brain, such as metabolic disturbances, cardiovascular risk factors, immune senescence, and neuroinflammation, are described. The possible relationship between HIV and some markers of Alzheimer's disease is presented. Current research findings emphasize multiple mechanisms related to HIV and combination antiretroviral therapy that compromise CNS structure and function with advancing age.

  18. Adult neural stem cells in the mammalian central nervous system

    Institute of Scientific and Technical Information of China (English)

    Dengke K Ma; Michael A Bonaguidi; Guo-li Ming; Hongjun Song

    2009-01-01

    Neural stem cells (NSCs) are present not only during the embryonic development but also in the adult brain of all mammalian species, including humans. Stem cell niche architecture in vivo enables adult NSCs to continuously generate functional neurons in specific brain regions throughout life. The adult neurogenesis process is subject to dynamic regulation by various physiological, pathological and pharmacological stimuli. Multipotent adult NSCs also appear to be intrinsically plastic, amenable to genetic programing during normal differentiation, and to epigenetic reprograming during de-differentiation into pluripotency. Increasing evidence suggests that adult NSCs significantly contribute to specialized neural functions under physiological and pathological conditions. Fully understanding the biology of adult NSCs will provide crucial insights into both the etiology and potential therapeutic interventions of major brain disorders. Here, we review recent progress on adult NSCs of the mammalian central nervous system, in-cluding topics on their identity, niche, function, plasticity, and emerging roles in cancer and regenerative medicine.

  19. Central nervous system syndromes in solid organ transplant recipients.

    Science.gov (United States)

    Wright, Alissa J; Fishman, Jay A

    2014-10-01

    Solid organ transplant recipients have a high incidence of central nervous system (CNS) complications, including both focal and diffuse neurologic deficits. In the immunocompromised host, the initial clinical evaluation must focus on both life-threatening CNS infections and vascular or anatomic lesions. The clinical signs and symptoms of CNS processes are modified by the immunosuppression required to prevent graft rejection. In this population, these etiologies often coexist with drug toxicities and metabolic abnormalities that complicate the development of a specific approach to clinical management. This review assesses the multiple risk factors for CNS processes in solid organ transplant recipients and establishes a timeline to assist in the evaluation and management of these complex patients.

  20. MRT of the central nervous system; MRT des Zentralnervensystems

    Energy Technology Data Exchange (ETDEWEB)

    Forsting, M.; Jansen, O. (eds.)

    2006-07-01

    The book presents the state of the art of MRT imaging of the central nervous system. Detailed information is presented in order to provide sufficient knowledge for the medical diagnostician to discuss any case encountered at eye level with the clinical physician. The book is an indispensable reference manual and a quick orientation already during examination in difficult cases. It contains images made with the most recent technology and with excellent representation of details. Even rare findings are described in detail. The imaging principle is illustrated by more than 1000 pictures and graphical representations as well as more than 100 complementary tables. Findings are classified by regions, i.e. 'brain' and 'spinal cord', including anatomical descriptions. (orig.)

  1. The expression of SEIPIN in the mouse central nervous system.

    Science.gov (United States)

    Liu, Xiaoyun; Xie, Beibei; Qi, Yanfei; Du, Ximing; Wang, Shaoshi; Zhang, Yumei; Paxinos, George; Yang, Hongyuan; Liang, Huazheng

    2016-11-01

    Immunohistochemical staining was used to investigate the expression pattern of SEIPIN in the mouse central nervous system. SEIPIN was found to be present in a large number of areas, including the motor and somatosensory cortex, the thalamic nuclei, the hypothalamic nuclei, the mesencephalic nuclei, some cranial motor nuclei, the reticular formation of the brainstem, and the vestibular complex. Double labeling with NeuN antibody confirmed that SEIPIN-positive cells in some nuclei were neurons. Retrograde tracer injections into the spinal cord revealed that SEIPIN-positive neurons in the motor and somatosensory cortex and other movement related nuclei project to the mouse spinal cord. The present study found more nuclei positive for SEIPIN than shown using in situ hybridization and confirmed the presence of SEIPIN in neurons projecting to the spinal cord. The results of this study help to explain the clinical manifestations of patients with Berardinelli-Seip congenital lipodystrophy (Bscl2) gene mutations.

  2. Theory of cellwise optimization for solar central receiver system

    Science.gov (United States)

    Lipps, F. W.

    1985-05-01

    Cost effective optimization of the solar central receiver system is primarily concerned with the distribution of heliostats in the collector field, including the boundaries of the field. The cellwise optimization procedure determines the optimum cell usage and heliostat spacing parameters for each cell in the collector field. Spacing parameters determine the heliostat density and neighborhood structure uniformly in each cell. Consequently, the cellwise approach ignores heliostat mismatch at cell boundaries. Ignoring the cell boundary problem permits an easy solution for the optimum in terms of appropriately defined annual average data. Insolation, receiver interception, shading and blocking, cosine effects, and the cost parameters combine to control the optimum. Many trade offs are represented. Outputs include the receiver flux density distribution for design time, coefficients for an actual layout, the optimum boundary and various performance and cost estimates for the optimum field. It is also possible to optimize receiver size and tower height by a repeated application of the field optimization procedure.

  3. Are astrocytes executive cells within the central nervous system?

    Science.gov (United States)

    Sica, Roberto E; Caccuri, Roberto; Quarracino, Cecilia; Capani, Francisco

    2016-08-01

    Experimental evidence suggests that astrocytes play a crucial role in the physiology of the central nervous system (CNS) by modulating synaptic activity and plasticity. Based on what is currently known we postulate that astrocytes are fundamental, along with neurons, for the information processing that takes place within the CNS. On the other hand, experimental findings and human observations signal that some of the primary degenerative diseases of the CNS, like frontotemporal dementia, Parkinson's disease, Alzheimer's dementia, Huntington's dementia, primary cerebellar ataxias and amyotrophic lateral sclerosis, all of which affect the human species exclusively, may be due to astroglial dysfunction. This hypothesis is supported by observations that demonstrated that the killing of neurons by non-neural cells plays a major role in the pathogenesis of those diseases, at both their onset and their progression. Furthermore, recent findings suggest that astrocytes might be involved in the pathogenesis of some psychiatric disorders as well.

  4. Fungal infections of the central nervous system: The clinical syndromes

    Directory of Open Access Journals (Sweden)

    Murthy J.M.K

    2007-01-01

    Full Text Available Fungal infections of the central nervous system (CNS are being increasingly diagnosed both in immunocompromised and immunocompetent individuals. Sinocranial aspergillosis is more frequently described from countries with temperate climates, more often in otherwise immunocompetent individuals. The clinical syndromes with which fungal infections of the CNS can present are protean and can involve most part of the neuroaxis. Certain clinical syndromes are specific for certain fungal infections. The rhinocerebral form is the most common presenting syndrome with zygomycosis and skull-base syndromes are often the presenting clinical syndromes in patients with sinocranial aspergillosis. Subacute and chronic meningitis in patients with HIV infection is more likely to be due to cryptococcal infection. Early recognition of the clinical syndromes in an appropriate clinical setting is the first step towards achieving total cure in some of these infections.

  5. Optimized optical clearing method for imaging central nervous system

    Science.gov (United States)

    Yu, Tingting; Qi, Yisong; Gong, Hui; Luo, Qingming; Zhu, Dan

    2015-03-01

    The development of various optical clearing methods provides a great potential for imaging entire central nervous system by combining with multiple-labelling and microscopic imaging techniques. These methods had made certain clearing contributions with respective weaknesses, including tissue deformation, fluorescence quenching, execution complexity and antibody penetration limitation that makes immunostaining of tissue blocks difficult. The passive clarity technique (PACT) bypasses those problems and clears the samples with simple implementation, excellent transparency with fine fluorescence retention, but the passive tissue clearing method needs too long time. In this study, we not only accelerate the clearing speed of brain blocks but also preserve GFP fluorescence well by screening an optimal clearing temperature. The selection of proper temperature will make PACT more applicable, which evidently broaden the application range of this method.

  6. Cell fate control in the developing central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Guérout, Nicolas; Li, Xiaofei; Barnabé-Heider, Fanie, E-mail: Fanie.Barnabe-Heider@ki.se

    2014-02-01

    The principal neural cell types forming the mature central nervous system (CNS) are now understood to be diverse. This cellular subtype diversity originates to a large extent from the specification of the earlier proliferating progenitor populations during development. Here, we review the processes governing the differentiation of a common neuroepithelial cell progenitor pool into mature neurons, astrocytes, oligodendrocytes, ependymal cells and adult stem cells. We focus on studies performed in mice and involving two distinct CNS structures: the spinal cord and the cerebral cortex. Understanding the origin, specification and developmental regulators of neural cells will ultimately impact comprehension and treatments of neurological disorders and diseases. - Highlights: • Similar mechanisms regulate cell fate in different CNS cell types and structures. • Cell fate regulators operate in a spatial–temporal manner. • Different neural cell types rely on the generation of a diversity of progenitor cells. • Cell fate decision is dictated by the integration of intrinsic and extrinsic signals.

  7. Fungal Infections of the Central Nervous System: A Pictorial Review

    Directory of Open Access Journals (Sweden)

    Jose Gavito-Higuera

    2016-01-01

    Full Text Available Fungal infections of the central nervous system (CNS pose a threat to especially immunocompromised patients and their development is primarily determined by the immune status of the host. With an increasing number of organ transplants, chemotherapy, and human immunodeficiency virus infections, the number of immunocompromised patients as susceptible hosts is growing and fungal infections of the CNS are more frequently encountered. They may result in meningitis, cerebritis, abscess formation, cryptococcoma, and meningeal vasculitis with rapid disease progression and often overlapping symptoms. Although radiological characteristics are often nonspecific, unique imaging patterns can be identified through computer tomography as a first imaging modality and further refined by magnetic resonance imaging. A rapid diagnosis and the institution of the appropriate therapy are crucial in helping prevent an often fatal outcome.

  8. Tuberculous Panophthalmitis with Lymphadenitis and Central Nervous System Tuberculoma

    Directory of Open Access Journals (Sweden)

    Sirawat Srichatrapimuk

    2016-01-01

    Full Text Available Tuberculosis (TB is a serious infectious disease that spreads globally. The ocular manifestations of TB are uncommon and diverse. TB panophthalmitis has been rarely reported. Here, we described a 38-year-old Thai man presenting with panophthalmitis of the right eye. Further investigation showed that he had concurrent TB lymphadenitis and central nervous system (CNS tuberculoma, as well as HIV infection, with a CD4 cell count of 153 cells/mm3. Despite the initial response to antituberculous agents, the disease had subsequently progressed and enucleation was required. The pathological examination revealed acute suppurative granulomatous panophthalmitis with retinal detachment. Further staining demonstrated acid-fast bacilli in the tissue. Colonies of Mycobacterium tuberculosis were obtained from tissue culture. He was treated with antiretroviral agents for HIV infection and 12 months of antituberculous agents. Clinicians should be aware of the possibility of TB in the differential diagnosis of endophthalmitis and panophthalmitis, especially in regions where TB is endemic.

  9. Fungal central nervous system infections: prevalence and diagnosis.

    Science.gov (United States)

    Kourbeti, Irene S; Mylonakis, Eleftherios

    2014-02-01

    Fungal infections of the central nervous system (CNS) are rare but they pose a significant challenge. Their prevalence spans a wide array of hosts including immunosuppressed and immunocompetent individuals, patients undergoing neurosurgical procedures and those carrying implantable CNS devices. Cryptococcus neoformans and Aspergillus spp. remain the most common pathogens. Magnetic resonance imaging can help localize the lesions, but diagnosis is challenging since invasive procedures may be needed for the retrieval of tissue, especially in cases of fungal abscesses. Antigen and antibody tests are available and approved for use in the cerebrospinal fluid (CSF). PCR-based techniques are promising but they are not validated for use in the CSF. This review provides an overview on the differential diagnosis of the fungal CNS disease based on the host and the clinical syndrome and suggests the optimal use of diagnostic techniques. It also summarizes the emergence of Cryptococcus gatti and an unanticipated outbreak caused by Exserohilum rostratum.

  10. Therapeutic approaches of magnetic nanoparticles for the central nervous system.

    Science.gov (United States)

    Dilnawaz, Fahima; Sahoo, Sanjeeb Kumar

    2015-10-01

    The diseases of the central nervous system (CNS) represent one of the fastest growing areas of concern requiring urgent medical attention. Treatment of CNS ailments is hindered owing to different physiological barriers including the blood-brain barrier (BBB), which limits the accessibility of potential drugs. With the assistance of a nanotechnology-based drug delivery strategy, the problems could be overcome. Recently, magnetic nanoparticles (MNPs) have proven immensely useful as drug carriers for site-specific delivery and as contrast agents owing to their magnetic susceptibility and biocompatibility. By utilizing MNPs, diagnosis and treatment of CNS diseases have progressed by overcoming the hurdles of the BBB. In this review, the therapeutic aspect and the future prospects related to the theranostic approach of MNPs are discussed.

  11. Central nervous system recurrence of systemic lymphoma in the era of stem cell transplantation--an International Primary Central Nervous System Lymphoma Study Group project.

    Science.gov (United States)

    Bromberg, Jacoline E; Doorduijn, Jeanette K; Illerhaus, Gerald; Jahnke, Kristoph; Korfel, Agniezka; Fischer, Lars; Fritsch, Kristina; Kuittinen, Outti; Issa, Samar; van Montfort, Cees; van den Bent, Martin J

    2013-05-01

    Autologous stem cell transplantation has greatly improved the prognosis of systemic recurrent non-Hodgkin's lymphoma. However, no prospective data are available concerning the feasibility and efficacy of this strategy for systemic lymphoma relapsing in the central nervous system. We, therefore, we performed an international multicenter retrospective study of patients with a central nervous system recurrence of systemic lymphoma to assess the outcome of these patients in the era of stem cell transplantation. We collected clinical and treatment data on patients with a first central nervous system recurrence of systemic lymphoma treated between 2000 and 2010 in one of five centers in four countries. Patient- and treatment-related factors were analyzed and compared descriptively. Primary outcome measures were overall survival and percentage of patients transplanted. We identified 92 patients, with a median age of 59 years and a median Eastern Cooperative Oncology Group/World Health Organization performance status of 2, of whom 76% had diffuse large B-cell histology. The majority (79%) of these patients were treated with systemic chemotherapy with or without intravenous rituximab. Twenty-seven patients (29%) were transplanted; age and insufficient response to induction chemotherapy were the main reasons for not being transplanted in the remaining 65 patients. The median overall survival was 7 months (95% confidence interval 2.6-11.4), being 8 months (95% confidence interval 3.8-5.2) for patients ≤ 65 years old. The 1-year survival rate was 34.8%; of the 27 transplanted patients 62% survived more than 1 year. The Memorial Sloan Kettering Prognostic Index for primary central nervous system lymphoma was prognostic for both undergoing transplantation and survival. In conclusion, despite the availability of autologous stem cell transplantation for patients with central nervous system progression or relapse of systemic lymphoma, prognosis is still poor. Long-term survival

  12. Temozolomide and radiation for aggressive pediatric central nervous system malignancies.

    Science.gov (United States)

    Loh, Kenneth C; Willert, Jennifer; Meltzer, Hal; Roberts, William; Kerlin, Bryce; Kadota, Richard; Levy, Michael; White, Greg; Geddis, Amy; Schiff, Deborah; Martin, Laura; Yu, Alice; Kung, Faith; Spear, Matthew A

    2005-05-01

    This study describes the outcomes of children treated with combinations of temozolomide and radiation therapy for various aggressive central nervous system malignancies. Their age at diagnosis ranged from 1 to 15 years. Patients with focal disease were treated with concomitant temozolomide (daily 75 mg/m) and three-dimensional conformal radiotherapy in a dose that ranged from 50 to 54 Gy, followed by temozolomide (200 mg/m/d x 5 days/month in three patients, 150 mg/m x 5 days/ month in one patient). Patients with disseminated disease were treated with craniospinal radiation (39.6 Gy) before conformal boost. One patient received temozolomide (200 mg/m x 5 days/month) before craniospinal radiation, and one patient received temozolomide (daily 95 mg/m) concomitant with craniospinal radiation and a radiosurgical boost, followed by temozolomide (200 mg/m x 5 days/month). Three patients achieved a partial response during treatment, with two of these patients dying of progressive disease after treatment. One patient has no evidence of disease. Three patients achieved stable disease, with one of these patients dying of progressive disease after treatment. Toxicities observed included low-grade neutropenia, thrombocytopenia, and lymphopenia. The combination of temozolomide and radiotherapy appears to be well tolerated in a variety of treatment schemas for aggressive pediatric central nervous system malignancies. This information is of particular use in designing future studies, given the recent positive results in a randomized study examining the use of temozolomide concomitant with radiation in the treatment of adult glioblastoma.

  13. Spatial and temporal variations of diffuse CO2 degassing at El Hierro volcanic system: Relation to the 2011-2012 submarine eruption

    Science.gov (United States)

    Melián, Gladys; Hernández, Pedro A.; Padrón, Eleazar; Pérez, Nemesio M.; Barrancos, José; Padilla, Germán.; Dionis, Samara; Rodríguez, Fátima; Calvo, David; Nolasco, Dacil

    2014-09-01

    We report herein the results of extensive diffuse CO2 emission surveys performed on El Hierro Island in the period 1998-2012. More than 17,000 measurements of the diffuse CO2 efflux were carried out, most of them during the volcanic unrest period that started in July 2011. Two significant precursory signals based on geochemical and geodetical studies suggest that a magma intrusion processes might have started before 2011 in El Hierro Island. During the preeruptive and eruptive periods, the time series of the diffuse CO2 emission released by the whole island experienced two significant increases. The first started almost 2 weeks before the onset of the submarine eruption, reflecting a clear geochemical anomaly in CO2 emission, most likely due to increasing release of deep-seated magmatic gases to the surface. The second one, between 24 October and 27 November 2011, started before the most energetic seismic events of the volcanic-seismic unrest. The data presented here demonstrate that combined continuous monitoring studies and discrete surveys of diffuse CO2 emission provide important information to optimize the early warning system in volcano monitoring programs and to monitor the evolution of an ongoing volcanic eruption, even though it is a submarine eruption.

  14. Central nervous system involvement in systemic lupus erythematosus: Overview on classification criteria.

    Science.gov (United States)

    Sciascia, Savino; Bertolaccini, Maria Laura; Baldovino, Simone; Roccatello, Dario; Khamashta, Munther A; Sanna, Giovanni

    2013-01-01

    Central nervous system (CNS) involvement is one of the major causes of morbidity and mortality in systemic lupus erythematosus (SLE) patients. Clinical manifestations can involve both the central and peripheral nervous systems, and they must be differentiated from infections, metabolic complications, and drug-induced toxicity. Recognition and treatment of CNS involvement continues to represent a major diagnostic challenge. In this Review, we sought to summarise the current insights on the various aspects of neuropsychiatric SLE with special emphasis on the terminology and classification criteria needed to correctly attribute the particular event to SLE.

  15. Ranking of Logistics System Scenarios for Central Business District

    Directory of Open Access Journals (Sweden)

    Snežana Radoman Tadić

    2014-04-01

    Full Text Available This paper presents the procedure for logistics system scenario selection for the central business district (CBD of the city in the phase of significant urban changes. Scenarios are defined in accordance with the overall logistics concept of the city. Conflicting goals of stakeholders (residents, shippers and receivers, logistics providers and city government generate a vast number of criteria that need to be included when selecting the scenario for the city area logistics system. Due to limited resources and linguistic assessment of criteria, fuzzy extensions of conventional multi-criteria decision-making (MCDM methods were used. Fuzzy "analytical hierarchy process" (FAHP is applied to determine the relative weights of evaluation criteria, and fuzzy "technique for order preference by similarity to ideal solution" (FTOPSIS is applied to rank the logistics systems scenarios. This paper contributes to the literature in the field of city logistics (CL, as it applies the integrated FAHP-FTOPSIS method for the evaluation of scenarios, which are also integrated combinations of different CL initiatives. The integrated combined approach proved to be accurate, effective and a systematic tool for the decision support in the process of selecting CBD logistics scenarios.

  16. Ion channels as drug targets in central nervous system disorders.

    Science.gov (United States)

    Waszkielewicz, A M; Gunia, A; Szkaradek, N; Słoczyńska, K; Krupińska, S; Marona, H

    2013-01-01

    Ion channel targeted drugs have always been related with either the central nervous system (CNS), the peripheral nervous system, or the cardiovascular system. Within the CNS, basic indications of drugs are: sleep disorders, anxiety, epilepsy, pain, etc. However, traditional channel blockers have multiple adverse events, mainly due to low specificity of mechanism of action. Lately, novel ion channel subtypes have been discovered, which gives premises to drug discovery process led towards specific channel subtypes. An example is Na(+) channels, whose subtypes 1.3 and 1.7-1.9 are responsible for pain, and 1.1 and 1.2 - for epilepsy. Moreover, new drug candidates have been recognized. This review is focusing on ion channels subtypes, which play a significant role in current drug discovery and development process. The knowledge on channel subtypes has developed rapidly, giving new nomenclatures of ion channels. For example, Ca(2+)s channels are not any more divided to T, L, N, P/Q, and R, but they are described as Ca(v)1.1-Ca(v)3.3, with even newer nomenclature α1A-α1I and α1S. Moreover, new channels such as P2X1-P2X7, as well as TRPA1-TRPV1 have been discovered, giving premises for new types of analgesic drugs.

  17. Economic sustainability of organic dairy sheep systems in Central Spain

    Directory of Open Access Journals (Sweden)

    Paula Toro-Mujica

    2015-05-01

    Full Text Available Sheep production systems in regions with a Mediterranean climate are important in social, economic and environmental terms. Modeling these systems allows, among others, evaluation of the costs efficiencies which in turn permits assessing the expected effects of changes in production variables. This paper presents a prototype analysis of the economic sustainability of ecological dairy sheep systems of Castilla-La Mancha, Central Spain evaluated through the estimation of costs efficiencies. Costs functions were developed using data from 31 farms. Rate of supplementary feeding, labour use, and flock size were used to measure the cost efficiency. On average, cost efficiency was 61.7±15.5%, with significant differences among typological groups. High efficiency was found in only 29% of the farms. The economic analyses performed suggest that the continued existence of economically unsustainably farms is explained by the available subsidies, lack of amortization of fixed assets leading to progressive decapitalization, and subsistence incomes by family groups (gross family income.

  18. Geopulsation, Volcanism and Astronomical Periods

    Institute of Scientific and Technical Information of China (English)

    Yang Xuexiang; Chen Dianyou; Yang Xiaoying; Yang Shuchen

    2000-01-01

    Volcanism is mainly controlled by the intermittent release of energy in the earth. As far as the differential rotation of the earth's inner core is concerned, the Galactic Year may change the gravitational constant G, the solar radiative quantity and the moving speed of the solar system and affect the exchange of angular momentum between core and mantle as well as the energy exchange between crust and mantle. As a result, this leads to eruptions of superplumes and magma, and controls the energy flow from core - mantle boundary (CMB) to crust. When the earth' s speed decreases, it will release a huge amount of energy. They are the reason of the correspondence of the volcanic cycles one by one with the astronomical periods one by one. According to the astronomical periods, volcanic eruptions may possibly be predicted in the future.

  19. System design package for the solar heating and cooling central data processing system

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-01

    This system design package for the Central Data Processing System consists of the Software Performance Specification, Hardware Performance Specification, Software Verification Plan, CDPS Development Program, Qualification and Acceptance Test Procedures, Qualification Test and Analysis Report, and Qualification and Acceptance Test Review. The Central Data Processing System, located at IBM's Federal System Division facility in Huntsville, Alabama, provides the resources required to assess the performance of solar heating and cooling systems installed at remote sites. These sites consist of residential, commercial, government, and educational types of buildings, and the solar heating and cooling systems can be hot-water, space heating, cooling, and combinations of these. The instrumentation data associated with these systems will vary according to the application and must be collected, processed, and presented in a form which supports continuity of performance evaluation across all applications.

  20. Linfoma primário do sistema nervoso central Primary central nervous system lymphoma

    Directory of Open Access Journals (Sweden)

    Marcelo Bellesso

    2008-02-01

    Full Text Available O linfoma primário do sistema nervoso central (LPSNC é um linfoma extralinfonodal que, ao diagnóstico, encontra-se restrito ao parênquima cerebral, às meninges e/ou cordão espinhal e/ou olhos. Sua incidência triplicou nas últimas três décadas para 0,4 casos por 100.000 habitantes, representando 4% dos tumores do sistema nervoso central (SNC. Embora pacientes infectados pelo HIV tenham 3.600 vezes maior risco para o desenvolvimento do LPSNC, a incidência não aumentou apenas neste grupo de pessoas. Dados sugerem reduções da incidência de LPSNC em pacientes infectados após a introdução de drogas anti-retrovirais. Cerca de 90% dos casos de LPSNC são classificados como linfoma difuso de grandes células B, 10% têm envolvimento ocular e 10% são HIV positivos. A apresentação clínica depende da localização tumoral, prevalecendo os sintomas neurológicos em detrimento aos sistêmicos. Os exames de tomografia computadorizada (TC e ressonância nuclear magnética (RNM são essenciais para o diagnóstico, porém o exame confirmatório deve ser o anatomopatológico. O estadiamento deve ser feito com exames de imagem e biópsia de medula óssea (BMO bilateral. Os principais fatores de mau prognóstico são: performance status do paciente acima de 1, idade superior a 60 anos, DHL elevada, hiperproteinorraquia e acometimento de área cerebral não hemisférica. Alguns fatores de prognóstico biológicos também podem influenciar na sobrevida, a exemplo da expressão de Bcl-6, que confere melhor prognóstico. O tratamento de escolha é a combinação de quimioterapia contendo altas doses de metotrexate e radioterapia (RDT. Devido às altas taxas de neurotoxicidade associada à RDT, seu uso tem ficado mais restrito aos pacientes idosos, e os recidivados ou refratários.Primary Central Nervous System lymphoma (PCNSL is an extranodal non-Hodgkin lymphoma in the brain, leptomeninges, spinal cord or eyes. The incidence of PCNSL increased

  1. Landslide hazards and systems analysis: A Central European perspective

    Science.gov (United States)

    Klose, Martin; Damm, Bodo; Kreuzer, Thomas

    2016-04-01

    Part of the problem with assessing landslide hazards is to understand the variable settings in which they occur. There is growing consensus that hazard assessments require integrated approaches that take account of the coupled human-environment system. Here we provide a synthesis of societal exposure and vulnerability to landslide hazards, review innovative approaches to hazard identification, and lay a focus on hazard assessment, while presenting the results of historical case studies and a landslide time series for Germany. The findings add to a growing body of literature that recognizes societal exposure and vulnerability as a complex system of hazard interactions that evolves over time as a function of social change and development. We therefore propose to expand hazard assessments by the framework and concepts of systems analysis (e.g., Liu et al., 2007) Results so far have been promising in ways that illustrate the importance of feedbacks, thresholds, surprises, and time lags in the evolution of landslide hazard and risk. In densely populated areas of Central Europe, landslides often occur in urbanized landscapes or on engineered slopes that had been transformed or created intentionally by human activity, sometimes even centuries ago. The example of Germany enables to correlate the causes and effects of recent landslides with the historical transition of urbanization to urban sprawl, ongoing demographic change, and some chronic problems of industrialized countries today, including ageing infrastructures or rising government debts. In large parts of rural Germany, the combination of ageing infrastructures, population loss, and increasing budget deficits starts to erode historical resilience gains, which brings especially small communities to a tipping point in their efforts to risk reduction. While struggling with budget deficits and demographic change, these communities are required to maintain ageing infrastructures that are particularly vulnerable to