WorldWideScience

Sample records for central synapses insights

  1. Organization of central synapses by adhesion molecules.

    Science.gov (United States)

    Tallafuss, Alexandra; Constable, John R L; Washbourne, Philip

    2010-07-01

    Synapses are the primary means for transmitting information from one neuron to the next. They are formed during the development of the nervous system, and the formation of appropriate synapses is crucial for the establishment of neuronal circuits that underlie behavior and cognition. Understanding how synapses form and are maintained will allow us to address developmental disorders such as autism, mental retardation and possibly also psychological disorders. A number of biochemical and proteomic studies have revealed a diverse and vast assortment of molecules that are present at the synapse. It is now important to untangle this large array of proteins and determine how it assembles into a functioning unit. Here we focus on recent reports describing how synaptic cell adhesion molecules interact with and organize the presynaptic and postsynaptic specializations of both excitatory and inhibitory central synapses. © The Authors (2010). Journal Compilation © Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  2. Organization of central synapses by adhesion molecules

    OpenAIRE

    Tallafuss, Alexandra; Constable, John R.L.; Washbourne, Philip

    2010-01-01

    Synapses are the primary means for transmitting information from one neuron to the next. They are formed during development of the nervous system, and formation of appropriate synapses is crucial for establishment of neuronal circuits that underlie behavior and cognition. Understanding how synapses form and are maintained will allow us to address developmental disorders such as autism, mental retardation and possibly also psychological disorders. A number of biochemical and proteomic studies ...

  3. Piccolo Promotes Vesicle Replenishment at a Fast Central Auditory Synapse

    Directory of Open Access Journals (Sweden)

    Tanvi Butola

    2017-10-01

    Full Text Available Piccolo and Bassoon are the two largest cytomatrix of the active zone (CAZ proteins involved in scaffolding and regulating neurotransmitter release at presynaptic active zones (AZs, but have long been discussed as being functionally redundant. We employed genetic manipulation to bring forth and segregate the role of Piccolo from that of Bassoon at central auditory synapses of the cochlear nucleus—the endbulbs of Held. These synapses specialize in high frequency synaptic transmission, ideally poised to reveal even subtle deficits in the regulation of neurotransmitter release upon molecular perturbation. Combining semi-quantitative immunohistochemistry, electron microscopy, and in vitro and in vivo electrophysiology we first studied signal transmission in Piccolo-deficient mice. Our analysis was not confounded by a cochlear deficit, as a short isoform of Piccolo (“Piccolino” present at the upstream ribbon synapses of cochlear inner hair cells (IHC, is unaffected by the mutation. Disruption of Piccolo increased the abundance of Bassoon at the AZs of endbulbs, while that of RIM1 was reduced and other CAZ proteins remained unaltered. Presynaptic fiber stimulation revealed smaller amplitude of the evoked excitatory postsynaptic currents (eEPSC, while eEPSC kinetics as well as miniature EPSCs (mEPSCs remained unchanged. Cumulative analysis of eEPSC trains indicated that the reduced eEPSC amplitude of Piccolo-deficient endbulb synapses is primarily due to a reduced readily releasable pool (RRP of synaptic vesicles (SV, as was corroborated by a reduction of vesicles at the AZ found on an ultrastructural level. Release probability seemed largely unaltered. Recovery from short-term depression was slowed. We then performed a physiological analysis of endbulb synapses from mice which, in addition to Piccolo deficiency, lacked one functional allele of the Bassoon gene. Analysis of the double-mutant endbulbs revealed an increase in release probability

  4. Independent origins of neurons and synapses: insights from ctenophores.

    Science.gov (United States)

    Moroz, Leonid L; Kohn, Andrea B

    2016-01-05

    There is more than one way to develop neuronal complexity, and animals frequently use different molecular toolkits to achieve similar functional outcomes. Genomics and metabolomics data from basal metazoans suggest that neural signalling evolved independently in ctenophores and cnidarians/bilaterians. This polygenesis hypothesis explains the lack of pan-neuronal and pan-synaptic genes across metazoans, including remarkable examples of lineage-specific evolution of neurogenic and signalling molecules as well as synaptic components. Sponges and placozoans are two lineages without neural and muscular systems. The possibility of secondary loss of neurons and synapses in the Porifera/Placozoa clades is a highly unlikely and less parsimonious scenario. We conclude that acetylcholine, serotonin, histamine, dopamine, octopamine and gamma-aminobutyric acid (GABA) were recruited as transmitters in the neural systems in cnidarian and bilaterian lineages. By contrast, ctenophores independently evolved numerous secretory peptides, indicating extensive adaptations within the clade and suggesting that early neural systems might be peptidergic. Comparative analysis of glutamate signalling also shows numerous lineage-specific innovations, implying the extensive use of this ubiquitous metabolite and intercellular messenger over the course of convergent and parallel evolution of mechanisms of intercellular communication. Therefore: (i) we view a neuron as a functional character but not a genetic character, and (ii) any given neural system cannot be considered as a single character because it is composed of different cell lineages with distinct genealogies, origins and evolutionary histories. Thus, when reconstructing the evolution of nervous systems, we ought to start with the identification of particular cell lineages by establishing distant neural homologies or examples of convergent evolution. In a corollary of the hypothesis of the independent origins of neurons, our analyses

  5. Mammalian motor neurons corelease glutamate and acetylcholine at central synapses

    DEFF Research Database (Denmark)

    Nishimaru, Hiroshi; Restrepo, Carlos Ernesto; Ryge, Jesper

    2005-01-01

    Motor neurons (MNs) are the principal neurons in the mammalian spinal cord whose activities cause muscles to contract. In addition to their peripheral axons, MNs have central collaterals that contact inhibitory Renshaw cells and other MNs. Since its original discovery > 60 years ago, it has been...

  6. Loss of transforming growth factor-beta 2 leads to impairment of central synapse function

    Directory of Open Access Journals (Sweden)

    Rickmann Michael

    2008-10-01

    Full Text Available Abstract Background The formation of functional synapses is a crucial event in neuronal network formation, and with regard to regulation of breathing it is essential for life. Members of the transforming growth factor-beta (TGF-β superfamily act as intercellular signaling molecules during synaptogenesis of the neuromuscular junction of Drosophila and are involved in synaptic function of sensory neurons of Aplysia. Results Here we show that while TGF-β2 is not crucial for the morphology and function of the neuromuscular junction of the diaphragm muscle of mice, it is essential for proper synaptic function in the pre-Bötzinger complex, a central rhythm organizer located in the brainstem. Genetic deletion of TGF-β2 in mice strongly impaired both GABA/glycinergic and glutamatergic synaptic transmission in the pre-Bötzinger complex area, while numbers and morphology of central synapses of knock-out animals were indistinguishable from their wild-type littermates at embryonic day 18.5. Conclusion The results demonstrate that TGF-β2 influences synaptic function, rather than synaptogenesis, specifically at central synapses. The functional alterations in the respiratory center of the brain are probably the underlying cause of the perinatal death of the TGF-β2 knock-out mice.

  7. Triple Function of Synaptotagmin 7 Ensures Efficiency of High-Frequency Transmission at Central GABAergic Synapses

    Directory of Open Access Journals (Sweden)

    Chong Chen

    2017-11-01

    Full Text Available Synaptotagmin 7 (Syt7 is thought to be a Ca2+ sensor that mediates asynchronous transmitter release and facilitation at synapses. However, Syt7 is strongly expressed in fast-spiking, parvalbumin-expressing GABAergic interneurons, and the output synapses of these neurons produce only minimal asynchronous release and show depression rather than facilitation. To resolve this apparent contradiction, we examined the effects of genetic elimination of Syt7 on synaptic transmission at the GABAergic basket cell (BC-Purkinje cell (PC synapse in cerebellum. Our results indicate that at the BC-PC synapse, Syt7 contributes to asynchronous release, pool replenishment, and facilitation. In combination, these three effects ensure efficient transmitter release during high-frequency activity and guarantee frequency independence of inhibition. Our results identify a distinct function of Syt7: ensuring the efficiency of high-frequency inhibitory synaptic transmission.

  8. Synaptotagmin 2 Is the Fast Ca2+ Sensor at a Central Inhibitory Synapse

    Directory of Open Access Journals (Sweden)

    Chong Chen

    2017-01-01

    Full Text Available GABAergic synapses in brain circuits generate inhibitory output signals with submillisecond latency and temporal precision. Whether the molecular identity of the release sensor contributes to these signaling properties remains unclear. Here, we examined the Ca2+ sensor of exocytosis at GABAergic basket cell (BC to Purkinje cell (PC synapses in cerebellum. Immunolabeling suggested that BC terminals selectively expressed synaptotagmin 2 (Syt2, whereas synaptotagmin 1 (Syt1 was enriched in excitatory terminals. Genetic elimination of Syt2 reduced action potential-evoked release to ∼10%, identifying Syt2 as the major Ca2+ sensor at BC-PC synapses. Differential adenovirus-mediated rescue revealed that Syt2 triggered release with shorter latency and higher temporal precision and mediated faster vesicle pool replenishment than Syt1. Furthermore, deletion of Syt2 severely reduced and delayed disynaptic inhibition following parallel fiber stimulation. Thus, the selective use of Syt2 as release sensor at BC-PC synapses ensures fast and efficient feedforward inhibition in cerebellar microcircuits.

  9. Modulation of Central Synapses by Astrocyte-Released ATP and Postsynaptic P2X Receptors

    Science.gov (United States)

    Pankratov, Yuriy

    2017-01-01

    Communication between neuronal and glial cells is important for neural plasticity. P2X receptors are ATP-gated cation channels widely expressed in the brain where they mediate action of extracellular ATP released by neurons and/or glia. Recent data show that postsynaptic P2X receptors underlie slow neuromodulatory actions rather than fast synaptic transmission at brain synapses. Here, we review these findings with a particular focus on the release of ATP by astrocytes and the diversity of postsynaptic P2X-mediated modulation of synaptic strength and plasticity in the CNS. PMID:28845311

  10. Modulation of Central Synapses by Astrocyte-Released ATP and Postsynaptic P2X Receptors

    Directory of Open Access Journals (Sweden)

    Eric Boué-Grabot

    2017-01-01

    Full Text Available Communication between neuronal and glial cells is important for neural plasticity. P2X receptors are ATP-gated cation channels widely expressed in the brain where they mediate action of extracellular ATP released by neurons and/or glia. Recent data show that postsynaptic P2X receptors underlie slow neuromodulatory actions rather than fast synaptic transmission at brain synapses. Here, we review these findings with a particular focus on the release of ATP by astrocytes and the diversity of postsynaptic P2X-mediated modulation of synaptic strength and plasticity in the CNS.

  11. Toxoplasma gondii Infections Alter GABAergic Synapses and Signaling in the Central Nervous System

    Science.gov (United States)

    Brooks, Justin M.; Carrillo, Gabriela L.; Su, Jianmin; Lindsay, David S.; Blader, Ira J.

    2015-01-01

    ABSTRACT During infections with the protozoan parasite Toxoplasma gondii, gamma-aminobutyric acid (GABA) is utilized as a carbon source for parasite metabolism and also to facilitate parasite dissemination by stimulating dendritic-cell motility. The best-recognized function for GABA, however, is its role in the nervous system as an inhibitory neurotransmitter that regulates the flow and timing of excitatory neurotransmission. When this pathway is altered, seizures develop. Human toxoplasmosis patients suffer from seizures, suggesting that Toxoplasma interferes with GABA signaling in the brain. Here, we show that while excitatory glutamatergic presynaptic proteins appeared normal, infection with type II ME49 Toxoplasma tissue cysts led to global changes in the distribution of glutamic acid decarboxylase 67 (GAD67), a key enzyme that catalyzes GABA synthesis in the brain. Alterations in GAD67 staining were not due to decreased expression but rather to a change from GAD67 clustering at presynaptic termini to a more diffuse localization throughout the neuropil. Consistent with a loss of GAD67 from the synaptic terminals, Toxoplasma-infected mice develop spontaneous seizures and are more susceptible to drugs that induce seizures by antagonizing GABA receptors. Interestingly, GABAergic protein mislocalization and the response to seizure-inducing drugs were observed in mice infected with type II ME49 but not type III CEP strain parasites, indicating a role for a polymorphic parasite factor(s) in regulating GABAergic synapses. Taken together, these data support a model in which seizures and other neurological complications seen in Toxoplasma-infected individuals are due, at least in part, to changes in GABAergic signaling. PMID:26507232

  12. Development in the central nervous system: studies of activity-dependent plasticity and synapse refinement

    OpenAIRE

    Gaudias, Julien

    2015-01-01

    The central nervous system (CNS) is a highly specified structure, involved in a large range of function, from sensory processing to motor behavior to cognition. The CNS development is genetically programmed but also heavily dependent on environmental cues. The CNS is a highly plastic structure, most prominently at the synaptic level. Plasticity is a physiological process allowing a rapid change of synaptic strength depending on experience, use and surrounding neuronal activity. It...

  13. Experience-dependent plasticity and modulation of growth regulatory molecules at central synapses.

    Directory of Open Access Journals (Sweden)

    Simona Foscarin

    Full Text Available Structural remodeling or repair of neural circuits depends on the balance between intrinsic neuronal properties and regulatory cues present in the surrounding microenvironment. These processes are also influenced by experience, but it is still unclear how external stimuli modulate growth-regulatory mechanisms in the central nervous system. We asked whether environmental stimulation promotes neuronal plasticity by modifying the expression of growth-inhibitory molecules, specifically those of the extracellular matrix. We examined the effects of an enriched environment on neuritic remodeling and modulation of perineuronal nets in the deep cerebellar nuclei of adult mice. Perineuronal nets are meshworks of extracellular matrix that enwrap the neuronal perikaryon and restrict plasticity in the adult CNS. We found that exposure to an enriched environment induces significant morphological changes of Purkinje and precerebellar axon terminals in the cerebellar nuclei, accompanied by a conspicuous reduction of perineuronal nets. In the animals reared in an enriched environment, cerebellar nuclear neurons show decreased expression of mRNAs coding for key matrix components (as shown by real time PCR experiments, and enhanced activity of matrix degrading enzymes (matrix metalloproteinases 2 and 9, which was assessed by in situ zymography. Accordingly, we found that in mutant mice lacking a crucial perineuronal net component, cartilage link protein 1, perineuronal nets around cerebellar neurons are disrupted and plasticity of Purkinje cell terminal is enhanced. Moreover, all the effects of environmental stimulation are amplified if the afferent Purkinje axons are endowed with enhanced intrinsic growth capabilities, induced by overexpression of GAP-43. Our observations show that the maintenance and growth-inhibitory function of perineuronal nets are regulated by a dynamic interplay between pre- and postsynaptic neurons. External stimuli act on this interaction

  14. Type 7 adenylyl cyclase is involved in the ethanol and CRF sensitivity of GABAergic synapses in mouse central amygdala

    Directory of Open Access Journals (Sweden)

    Maureen T. Cruz

    2011-01-01

    Full Text Available AbstractThe GABAergic system in the central amygdala (CeA plays a major role in ethanol dependence and in the anxiogenic response to ethanol withdrawal. Previously, we found that both ethanol and corticotropin releasing factor (CRF increase GABAergic transmission in mouse and rat CeA neurons, in part by enhancing the release of GABA via activation of presynaptic CRF1 receptors. CRF1 receptors are coupled to the enzyme adenylyl cyclase (AC, which produces the second messenger cyclic AMP. There are nine isoforms of AC, but we recently found that CRF1 receptors in the pituitary were coupled to the Type 7 AC (AC7. Therefore, using an in vitro electrophysiological approach in brain slices, here we have investigated a possible role of the AC7 signaling pathway in ethanol and CRF effects on CeA GABAergic synapses of genetically modified mice with diminished brain Adcy7 activity (HET compared to their littermate male wild type (WT mice. We found no significant differences in basal membrane properties, mean baseline amplitude of evoked GABAA receptor-mediated inhibitory postsynaptic potentials (IPSPs, or paired-pulse facilitation (PPF of GABAA-IPSPs between HET and WT mice. In CeA neurons of WT mice, ethanol superfusion significantly augmented (by 39% GABAA-IPSPs and decreased PPF (by 25%, suggesting increased presynaptic GABA release. However, these effects were absent in HET mice. CRF superfusion also significantly augmented IPSPs (by 38% and decreased PPF (by 23% in WT CeA neurons, and still elicited a significant but smaller (by 13% increase of IPSP amplitude, but no effect on PPF, in HET mice. These electrophysiological data suggest that AC7 plays an important role in ethanol and CRF modulation of presynaptic GABA release in CeA and thus may underlie ethanol-related behaviors such as anxiety and dependence.

  15. Polyribosomes at the base of dendritic spines of central nervous system neurons - their possible role in synapse construction and modification

    International Nuclear Information System (INIS)

    Steward, O.

    1983-01-01

    The selective localization of polyribosomes at the base of dendritic spines in granule cells of the dentate gyrus was studied. These polyribosomes seem optimally situated to produce proteins for the postsynaptic membrane specialization or the spine and to have their synthetic activity regulated by functional activity over the synapse. The present work will summarize observations on the polyribosome clusters that were found to be ubiquitous in spines throughout the vertebrate CNS. Evidence will be presented that suggests a role for the polyribosomes in synapse construction and modification. 42 refs., 8 figs., 2 tabs

  16. Prenatal corticosteroids modify glutamatergic and GABAergic synapse genomic fabric: insights from a novel animal model of infantile spasms.

    Science.gov (United States)

    Iacobas, D A; Iacobas, S; Chachua, T; Goletiani, C; Sidyelyeva, G; Velíšková, J; Velíšek, L

    2013-11-01

    Prenatal exposure to corticosteroids has long-term postnatal somatic and neurodevelopmental consequences. Animal studies indicate that corticosteroid exposure-associated alterations in the nervous system include hypothalamic function. Infants with infantile spasms, a devastating epileptic syndrome of infancy with characteristic spastic seizures, chaotic irregular waves on interictal electroencephalogram (hypsarhythmia) and mental deterioration, have decreased concentrations of adrenocorticotrophic hormone (ACTH) and cortisol in cerebrospinal fluid, strongly suggesting hypothalamic dysfunction. We have exploited this feature to develop a model of human infantile spasms by using repeated prenatal exposure to betamethasone and a postnatal trigger of developmentally relevant spasms with NMDA. The spasms triggered in prenatally primed rats are more severe compared to prenatally saline-injected ones and respond to ACTH, a treatment of choice for infantile spasms in humans. Using autoradiography and immunohistochemistry, we have identified a link between the spasms in our model and the hypothalamus, especially the arcuate nucleus. Transcriptomic analysis of the arcuate nucleus after prenatal priming with betamethasone but before trigger of spasms indicates that prenatal betamethasone exposure down-regulates genes encoding several important proteins participating in glutamatergic and GABAergic transmission. Interestingly, there were significant sex-specific alterations after prenatal betamethasone in synapse-related gene expression but no such sex differences were found in prenatally saline-injected controls. A pairwise relevance analysis revealed that, although the synapse gene expression in controls was independent of sex, these genes form topologically distinct gene fabrics in males and females and these fabrics are altered by betamethasone in a sex-specific manner. These findings may explain the sex differences with respect to both normal behaviour and the occurrence

  17. Distinct target cell-dependent forms of short-term plasticity of the central visceral afferent synapses of the rat

    Directory of Open Access Journals (Sweden)

    Watabe Ayako M

    2010-10-01

    Full Text Available Abstract Background The visceral afferents from various cervico-abdominal sensory receptors project to the dorsal vagal complex (DVC, which is composed of the nucleus of the solitary tract (NTS, the area postrema and the dorsal motor nucleus of the vagus nerve (DMX, via the vagus and glossopharyngeal nerves and then the solitary tract (TS in the brainstem. While the excitatory transmission at the TS-NTS synapses shows strong frequency-dependent suppression in response to repeated stimulation of the afferents, the frequency dependence and short-term plasticity at the TS-DMX synapses, which also transmit monosynaptic information from the visceral afferents to the DVC neurons, remain largely unknown. Results Recording of the EPSCs activated by paired or repeated TS stimulation in the brainstem slices of rats revealed that, unlike NTS neurons whose paired-pulse ratio (PPR is consistently below 0.6, the distribution of the PPR of DMX neurons shows bimodal peaks that are composed of type I (PPR, 0.6-1.5; 53% of 120 neurons recorded and type II (PPR, Conclusions These two general types of short-term plasticity might contribute to the differential activation of distinct vago-vagal reflex circuits, depending on the firing frequency and type of visceral afferents.

  18. The sticky synapse

    DEFF Research Database (Denmark)

    Owczarek, Sylwia Elzbieta; Kristiansen, Lars Villiam; Hortsch, Michael

    NCAM-type proteins modulate multiple neuronal functions, including the outgrowth and guidance of neurites, the formation, maturation, and plasticity of synapses, and the induction of both long-term potentiation and long-term depression. The ectodomains of NCAM proteins have a basic structure...... signal transduction. A central feature of the synaptic function of NCAM proteins is the regulation of their extracellular interactions by adhesion-modulating glycoepitopes, their removal from the cell surface by endocytosis, and the elimination of their adhesion-mediating interactions by the proteolytic...

  19. Intranasal exposure to manganese disrupts neurotransmitter release from glutamatergic synapses in the central nervous system in vivo

    Science.gov (United States)

    Moberly, Andrew H.; Czarnecki, Lindsey A.; Pottackal, Joseph; Rubinstein, Tom; Turkel, Daniel J.; Kass, Marley D.; McGann, John P.

    2012-01-01

    Chronic exposure to aerosolized manganese induces a neurological disorder that includes extrapyramidal motor symptoms and cognitive impairment. Inhaled manganese can bypass the blood-brain barrier and reach the central nervous system by transport down the olfactory nerve to the brain’s olfactory bulb. However, the mechanism by which Mn disrupts neural function remains unclear. Here we used optical imaging techniques to visualize exocytosis in olfactory nerve terminals in vivo in the mouse olfactory bulb. Acute Mn exposure via intranasal instillation of 2–200 μg MnCl2 solution caused a dose-dependent reduction in odorant-evoked neurotransmitter release, with significant effects at as little as 2 μg MnCl2 and a 90% reduction compared to vehicle controls with a 200 μg exposure. This reduction was also observed in response to direct electrical stimulation of the olfactory nerve layer in the olfactory bulb, demonstrating that Mn’s action is occurring centrally, not peripherally. This is the first direct evidence that Mn intoxication can disrupt neurotransmitter release, and is consistent with previous work suggesting that chronic Mn exposure limits amphetamine-induced dopamine increases in the basal ganglia despite normal levels of dopamine synthesis (Guilarte et al., J Neurochem 2008). The commonality of Mn’s action between glutamatergic neurons in the olfactory bulb and dopaminergic neurons in the basal ganglia suggests that a disruption of neurotransmitter release may be a general consequence wherever Mn accumulates in the brain and could underlie its pleiotropic effects. PMID:22542936

  20. Presynaptic [Ca2+] and GCAPs: aspects on the structure and function of photoreceptor ribbon synapses

    Directory of Open Access Journals (Sweden)

    Frank eSchmitz

    2014-02-01

    Full Text Available Changes in intracellular calcium ions [Ca2+] play important roles in photoreceptor signalling. Consequently, intracellular [Ca2+] levels need to be tightly controlled. In the light-sensitive outer segments (OS of photoreceptors, Ca2+ regulates the activity of retinal guanylate cyclases (ret-GCs thus playing a central role in phototransduction and light-adaptation by restoring light-induced decreases in cGMP. In the synaptic terminals, changes of intracellular Ca2+ trigger various aspects of neurotransmission. Photoreceptors employ tonically active ribbon synapses that encode light-induced, graded changes of membrane potential into different rates of synaptic vesicle exocytosis. The active zones of ribbon synapses contain large electron-dense structures, synaptic ribbons, that are associated with large numbers of synaptic vesicles. Synaptic coding at ribbon synapses differs from synaptic coding at conventional (phasic synapses. Recent studies revealed new insights how synaptic ribbons are involved in this process. This review focuses on the regulation of [Ca2+] in presynaptic photoreceptor terminals and on the function of a particular Ca2+-regulated protein, the neuronal calcium sensor protein GCAP2 (guanylate cyclase-activating protein-2 in the photoreceptor ribbon synapse. GCAP2, an EF hand-containing protein plays multiple roles in the OS and in the photoreceptor synapse. In the OS, GCAP2 works as a Ca2+-sensor within a Ca2+-regulated feedback loop that adjusts cGMP levels. In the photoreceptor synapse, GCAP2 binds to RIBEYE, a component of synaptic ribbons, and mediates Ca2+-dependent plasticity at that site. Possible mechanisms are discussed.

  1. The immunological synapse

    DEFF Research Database (Denmark)

    Klemmensen, Thomas; Pedersen, Lars Ostergaard; Geisler, Carsten

    2003-01-01

    . A distinct 3-dimensional supramolecular structure at the T cell/APC interface has been suggested to be involved in the information transfer. Due to its functional analogy to the neuronal synapse, the structure has been termed the "immunological synapse" (IS). Here, we review molecular aspects concerning...

  2. The Tail-Elicited Tail Withdrawal Reflex of "Aplysia" Is Mediated Centrally at Tail Sensory-Motor Synapses and Exhibits Sensitization across Multiple Temporal Domains

    Science.gov (United States)

    Philips, Gary T.; Sherff, Carolyn M.; Menges, Steven A.; Carew, Thomas J.

    2011-01-01

    The defensive withdrawal reflexes of "Aplysia californica" have provided powerful behavioral systems for studying the cellular and molecular basis of memory formation. Among these reflexes the (T-TWR) has been especially useful. In vitro studies examining the monosynaptic circuit for the T-TWR, the tail sensory-motor (SN-MN) synapses, have…

  3. Specific recycling receptors are targeted to the immune synapse by the intraflagellar transport system

    Science.gov (United States)

    Finetti, Francesca; Patrussi, Laura; Masi, Giulia; Onnis, Anna; Galgano, Donatella; Lucherini, Orso Maria; Pazour, Gregory J.; Baldari, Cosima T.

    2014-01-01

    ABSTRACT T cell activation requires sustained signaling at the immune synapse, a specialized interface with the antigen-presenting cell (APC) that assembles following T cell antigen receptor (TCR) engagement by major histocompatibility complex (MHC)-bound peptide. Central to sustained signaling is the continuous recruitment of TCRs to the immune synapse. These TCRs are partly mobilized from an endosomal pool by polarized recycling. We have identified IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, as a central regulator of TCR recycling to the immune synapse. Here, we have investigated the interplay of IFT20 with the Rab GTPase network that controls recycling. We found that IFT20 forms a complex with Rab5 and the TCR on early endosomes. IFT20 knockdown (IFT20KD) resulted in a block in the recycling pathway, leading to a build-up of recycling TCRs in Rab5+ endosomes. Recycling of the transferrin receptor (TfR), but not of CXCR4, was disrupted by IFT20 deficiency. The IFT components IFT52 and IFT57 were found to act together with IFT20 to regulate TCR and TfR recycling. The results provide novel insights into the mechanisms that control TCR recycling and immune synapse assembly, and underscore the trafficking-related function of the IFT system beyond ciliogenesis. PMID:24554435

  4. Cell Biology of Astrocyte-Synapse Interactions.

    Science.gov (United States)

    Allen, Nicola J; Eroglu, Cagla

    2017-11-01

    Astrocytes, the most abundant glial cells in the mammalian brain, are critical regulators of brain development and physiology through dynamic and often bidirectional interactions with neuronal synapses. Despite the clear importance of astrocytes for the establishment and maintenance of proper synaptic connectivity, our understanding of their role in brain function is still in its infancy. We propose that this is at least in part due to large gaps in our knowledge of the cell biology of astrocytes and the mechanisms they use to interact with synapses. In this review, we summarize some of the seminal findings that yield important insight into the cellular and molecular basis of astrocyte-neuron communication, focusing on the role of astrocytes in the development and remodeling of synapses. Furthermore, we pose some pressing questions that need to be addressed to advance our mechanistic understanding of the role of astrocytes in regulating synaptic development. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Structural Insights into Central Hypertension Regulation by Human Aminopeptidase A*

    Science.gov (United States)

    Yang, Yang; Liu, Chang; Lin, Yi-Lun; Li, Fang

    2013-01-01

    Hypertension is regulated through both the central and systemic renin-angiotensin systems. In the central renin-angiotensin system, zinc-dependent aminopeptidase A (APA) up-regulates blood pressure by specifically cleaving the N-terminal aspartate, but not the adjacent arginine, from angiotensin II, a process facilitated by calcium. Here, we determined the crystal structures of human APA and its complexes with different ligands and identified a calcium-binding site in the S1 pocket of APA. Without calcium, the S1 pocket can bind both acidic and basic residues through formation of salt bridges with the charged side chains. In the presence of calcium, the binding of acidic residues is enhanced as they ligate the cation, whereas the binding of basic residues is no longer favorable due to charge repulsion. Of the peptidomimetic inhibitors of APA, amastatin has higher potency than bestatin by fitting better in the S1 pocket and interacting additionally with the S3′ subsite. These results explain the calcium-modulated substrate specificity of APA in central hypertension regulation and can guide the design and development of brain-targeting antihypertensive APA inhibitors. PMID:23888046

  6. Steps in the formation of neurites and synapses studied in cultured leech neurons

    Directory of Open Access Journals (Sweden)

    De-Miguel F.F.

    2000-01-01

    Full Text Available Leech neurons in culture have provided novel insights into the steps in the formation of neurite outgrowth patterns, target recognition and synapse formation. Identified adult neurons from the central nervous system of the leech can be removed individually and plated in culture under well-controlled conditions, where they retain their characteristic physiological properties, grow neurites and form specific chemical or electrical synapses. Different identified neurons develop distinctive outgrowth patterns that depend on their identities and on the molecular composition of the substrate. On native substrates, the patterns displayed by these neurons reproduce characteristics from the adult or the developing neurons. In addition, the substrate may induce selective directed growth between pairs of neurons that normally make contact in the ganglion. Upon contact, pairs of cultured leech neurons form chemical or electrical synapses, or both types depending on the neuronal identities. Anterograde and retrograde signals during membrane contact and synapse formation modify the distribution of synaptic terminals, calcium currents, and responses to 5-hydroxytryptamine.

  7. A bionics chemical synapse.

    Science.gov (United States)

    Thanapitak, Surachoke; Toumazou, Christofer

    2013-06-01

    Implementation of the current mode CMOS circuit for chemical synapses (AMPA and NMDA receptors) with dynamic change of glutamate as the neurotransmitter input is presented in this paper. Additionally, circuit realisation for receptor GABA(A) and GABA(B) with an electrical signal which symbolises γ-Aminobutyric Acid (GABA) perturbation is introduced. The chemical sensor for glutamate sensing is the modified ISFET with enzyme (glutamate oxidase) immobilisation. The measured results from these biomimetics chemical synapse circuits closely match with the simulation result from the mathematical model. The total power consumption of the whole chip (four chemical synapse circuits and all auxiliary circuits) is 168.3 μW. The total chip area is 3 mm(2) in 0.35-μm AMS CMOS technology.

  8. The Central Eurasia collision zone: insights from a neotectonic study

    Science.gov (United States)

    Tunini, Lavinia; Jiménez-Munt, Ivone; Fernandez, Manel; Vergés, Jaume

    2017-04-01

    In this study, we explore the neotectonic deformation in the whole Central Eurasia, including both the India-Eurasia and the Arabia-Eurasia collision zones, by using the thin-sheet approach in which the lithosphere strength is calculated from the lithosphere structure and thermal regime. We investigate the relative contributions of the lithospheric structure, rheology, boundary conditions, and friction coefficient on faults on the predicted velocity and stress fields. The resulting models have been evaluated by comparing the predictions with available data on seismic deformation, stress directions and GPS velocities. A first order approximation of the velocity and stress directions is obtained, reproducing the counter-clockwise rotation of Arabia and Iran, the westward escape of Anatolia, and the eastward extrusion of the northern Tibetan Plateau. To simulate the observed extensional faults within Tibet a weaker lithosphere is required, provided by a change in the rheological parameters or a reduction of the lithosphere thickness in NE-Tibet. The temperature increase generated by the lithospheric thinning below the Tibetan Plateau would also allow reconciling the model with the high heat flow and low mantle seismic velocities observed in the area. Besides the large scale, this study offers a coherent result in regions with little or no data coverage, as in the case of the Arabia-India inter-collision zone, over large areas of Pakistan and entire Afghanistan. The study is supported by MITE (CGL2014-59516-P) and WE-ME (PIE-CSIC-201330E111) projects.

  9. New insights on NOX enzymes in the central nervous system.

    Science.gov (United States)

    Nayernia, Zeynab; Jaquet, Vincent; Krause, Karl-Heinz

    2014-06-10

    There is increasing evidence that the generation of reactive oxygen species (ROS) in the central nervous system (CNS) involves the NOX family of nicotinamide adenine dinucleotide phosphate oxidases. Controlled ROS generation appears necessary for optimal functioning of the CNS through fine-tuning of redox-sensitive signaling pathways, while overshooting ROS generation will lead to oxidative stress and CNS disease. NOX enzymes are not only restricted to microglia (i.e. brain phagocytes) but also expressed in neurons, astrocytes, and the neurovascular system. NOX enzymes are involved in CNS development, neural stem cell biology, and the function of mature neurons. While NOX2 appears to be a major source of pathological oxidative stress in the CNS, other NOX isoforms might also be of importance, for example, NOX4 in stroke. Globally speaking, there is now convincing evidence for a role of NOX enzymes in various neurodegenerative diseases, cerebrovascular diseases, and psychosis-related disorders. The relative importance of specific ROS sources (e.g., NOX enzymes vs. mitochondria; NOX2 vs. NOX4) in different pathological processes needs further investigation. The absence of specific inhibitors limits the possibility to investigate specific therapeutic strategies. The uncritical use of non-specific inhibitors (e.g., apocynin, diphenylene iodonium) and poorly validated antibodies may lead to misleading conclusions. Physiological and pathophysiological studies with cell-type-specific knock-out mice will be necessary to delineate the precise functions of NOX enzymes and their implications in pathomechanisms. The development of CNS-permeant, specific NOX inhibitors will be necessary to advance toward therapeutic applications.

  10. Face classification using electronic synapses

    Science.gov (United States)

    Yao, Peng; Wu, Huaqiang; Gao, Bin; Eryilmaz, Sukru Burc; Huang, Xueyao; Zhang, Wenqiang; Zhang, Qingtian; Deng, Ning; Shi, Luping; Wong, H.-S. Philip; Qian, He

    2017-05-01

    Conventional hardware platforms consume huge amount of energy for cognitive learning due to the data movement between the processor and the off-chip memory. Brain-inspired device technologies using analogue weight storage allow to complete cognitive tasks more efficiently. Here we present an analogue non-volatile resistive memory (an electronic synapse) with foundry friendly materials. The device shows bidirectional continuous weight modulation behaviour. Grey-scale face classification is experimentally demonstrated using an integrated 1024-cell array with parallel online training. The energy consumption within the analogue synapses for each iteration is 1,000 × (20 ×) lower compared to an implementation using Intel Xeon Phi processor with off-chip memory (with hypothetical on-chip digital resistive random access memory). The accuracy on test sets is close to the result using a central processing unit. These experimental results consolidate the feasibility of analogue synaptic array and pave the way toward building an energy efficient and large-scale neuromorphic system.

  11. Neuroimaging of Central Sensitivity Syndromes: Key Insights from the Scientific Literature.

    Science.gov (United States)

    Walitt, Brian; Ceko, Marta; Gracely, John L; Gracely, Richard H

    2016-01-01

    Central sensitivity syndromes are characterized by distressing symptoms, such as pain and fatigue, in the absence of clinically obvious pathology. The scientific underpinnings of these disorders are not currently known. Modern neuroimaging techniques promise new insights into mechanisms mediating these postulated syndromes. We review the results of neuroimaging applied to five central sensitivity syndromes: fibromyalgia, chronic fatigue syndrome, irritable bowel syndrome, temporomandibular joint disorder, and vulvodynia syndrome. Neuroimaging studies of basal metabolism, anatomic constitution, molecular constituents, evoked neural activity, and treatment effect are compared across all of these syndromes. Evoked sensory paradigms reveal sensory augmentation to both painful and nonpainful stimulation. This is a transformative observation for these syndromes, which were historically considered to be completely of hysterical or feigned in origin. However, whether sensory augmentation represents the cause of these syndromes, a predisposing factor, an endophenotype, or an epiphenomenon cannot be discerned from the current literature. Further, the result from cross-sectional neuroimaging studies of basal activity, anatomy, and molecular constituency are extremely heterogeneous within and between the syndromes. A defining neuroimaging "signature" cannot be discerned for any of the particular syndromes or for an over-arching central sensitization mechanism common to all of the syndromes. Several issues confound initial attempts to meaningfully measure treatment effects in these syndromes. At this time, the existence of "central sensitivity syndromes" is based more soundly on clinical and epidemiological evidence. A coherent picture of a "central sensitization" mechanism that bridges across all of these syndromes does not emerge from the existing scientific evidence.

  12. Alzheimer's disease: synapses gone cold

    Directory of Open Access Journals (Sweden)

    Hyman Bradley T

    2011-08-01

    Full Text Available Abstract Alzheimer's disease (AD is a progressive neurodegenerative disease characterized by insidious cognitive decline and memory dysfunction. Synapse loss is the best pathological correlate of cognitive decline in AD and mounting evidence suggests that AD is primarily a disease of synaptic dysfunction. Soluble oligomeric forms of amyloid beta (Aβ, the peptide that aggregates to form senile plaques in the brain of AD patients, have been shown to be toxic to neuronal synapses both in vitro and in vivo. Aβ oligomers inhibit long-term potentiation (LTP and facilitate long-term depression (LTD, electrophysiological correlates of memory formation. Furthermore, oligomeric Aβ has also been shown to induce synapse loss and cognitive impairment in animals. The molecular underpinnings of these observations are now being elucidated, and may provide clear therapeutic targets for effectively treating the disease. Here, we review recent findings concerning AD pathogenesis with a particular focus on how Aβ impacts synapses.

  13. Diversity of Spine Synapses in Animals

    Science.gov (United States)

    Wang, Ya-Xian; Mattson, Mark P.; Yao, Pamela J.

    2016-01-01

    Here we examine the structure of the various types of spine synapses throughout the animal kingdom. Based on available evidence, we suggest that there are two major categories of spine synapses: invaginating and non-invaginating, with distributions that vary among different groups of animals. In the simplest living animals with definitive nerve cells and synapses, the cnidarians and ctenophores, most chemical synapses do not form spine synapses. But some cnidarians have invaginating spine synapses, especially in photoreceptor terminals of motile cnidarians with highly complex visual organs, and also in some mainly sessile cnidarians with rapid prey capture reflexes. This association of invaginating spine synapses with complex sensory inputs is retained in the evolution of higher animals in photoreceptor terminals and some mechanoreceptor synapses. In contrast to invaginating spine synapse, non-invaginating spine synapses have been described only in animals with bilateral symmetry, heads and brains, associated with greater complexity in neural connections. This is apparent already in the simplest bilaterians, the flatworms, which can have well-developed non-invaginating spine synapses in some cases. Non-invaginating spine synapses diversify in higher animal groups. We also discuss the functional advantages of having synapses on spines and more specifically, on invaginating spines. And finally we discuss pathologies associated with spine synapses, concentrating on those systems and diseases where invaginating spine synapses are involved. PMID:27230661

  14. Classic Period collapse of the Central Maya Lowlands: insights about human-environment relationships for sustainability.

    Science.gov (United States)

    Turner, B L; Sabloff, Jeremy A

    2012-08-28

    The ninth century collapse and abandonment of the Central Maya Lowlands in the Yucatán peninsular region were the result of complex human-environment interactions. Large-scale Maya landscape alterations and demands placed on resources and ecosystem services generated high-stress environmental conditions that were amplified by increasing climatic aridity. Coincident with this stress, the flow of commerce shifted from land transit across the peninsula to sea-borne transit around it. These changing socioeconomic and environmental conditions generated increasing societal conflicts, diminished control by the Maya elite, and led to decisions to move elsewhere in the peninsular region rather than incur the high costs of maintaining the human-environment systems in place. After abandonment, the environment of the Central Maya Lowlands largely recovered, although altered from its state before Maya occupation; the population never recovered. This history and the spatial and temporal variability in the pattern of collapse and abandonment throughout the Maya lowlands support the case for different conditions, opportunities, and constraints in the prevailing human-environment systems and the decisions to confront them. The Maya case lends insights for the use of paleo- and historical analogs to inform contemporary global environmental change and sustainability.

  15. Classic Period collapse of the Central Maya Lowlands: Insights about human–environment relationships for sustainability

    Science.gov (United States)

    Turner, B. L.; Sabloff, Jeremy A.

    2012-01-01

    The ninth century collapse and abandonment of the Central Maya Lowlands in the Yucatán peninsular region were the result of complex human–environment interactions. Large-scale Maya landscape alterations and demands placed on resources and ecosystem services generated high-stress environmental conditions that were amplified by increasing climatic aridity. Coincident with this stress, the flow of commerce shifted from land transit across the peninsula to sea-borne transit around it. These changing socioeconomic and environmental conditions generated increasing societal conflicts, diminished control by the Maya elite, and led to decisions to move elsewhere in the peninsular region rather than incur the high costs of maintaining the human–environment systems in place. After abandonment, the environment of the Central Maya Lowlands largely recovered, although altered from its state before Maya occupation; the population never recovered. This history and the spatial and temporal variability in the pattern of collapse and abandonment throughout the Maya lowlands support the case for different conditions, opportunities, and constraints in the prevailing human–environment systems and the decisions to confront them. The Maya case lends insights for the use of paleo- and historical analogs to inform contemporary global environmental change and sustainability. PMID:22912403

  16. Farmers’ Preference for Rice Traits: Insights from Farm Surveys in Central Luzon, Philippines, 1966-2012

    Science.gov (United States)

    Laborte, Alice G.; Paguirigan, Neale C.; Moya, Piedad F.; Nelson, Andrew; Sparks, Adam H.; Gregorio, Glenn B.

    2015-01-01

    Many modern rice varieties (MVs) have been released but only a few have been widely adopted by farmers. To understand farmers’ preferences, we characterized MVs released in the Philippines from 1966 to 2013 and identified important characteristics of the varieties that were widely adopted in Central Luzon using farm surveys conducted in 1966–2012. We found that farmers adopt MVs that are high yielding, mature faster, and have long and slender grains, high milling recovery, and intermediate amylose content. The amylose content of adopted varieties has been declining, suggesting value in developing softer rice. To have a high potential for adoption, new MVs should have characteristics within the ranges of values observed for the adopted MVs. In addition, new MVs should have higher head rice recovery, less chalky grains, and better resistance to pests and diseases. Most MVs released in 2005–2013 compared poorly in these three traits. To reduce the risk of severe outbreaks, broad spectrum resistance should be incorporated into new MVs. This analysis of five decades of farm surveys provides insights into the varietal characteristics preferred by farmers which could contribute to the establishment of a product profile for developing improved MVs that are more targeted and, hence, would have high potential for adoption by farmers in Central Luzon and similar areas. We recommend a similar analysis be done in other major rice growing regions to aid the development of MVs that are more responsive to farmers’ needs and preferences. PMID:26317505

  17. On the resemblance of synapse formation and CNS myelination.

    Science.gov (United States)

    Almeida, R G; Lyons, D A

    2014-09-12

    The myelination of axons in the central nervous system (CNS) is essential for nervous system formation, function and health. CNS myelination continues well into adulthood, but not all axons become myelinated. Unlike the peripheral nervous system, where we know of numerous axon-glial signals required for myelination, we have a poor understanding of the nature or identity of such molecules that regulate which axons are myelinated in the CNS. Recent studies have started to elucidate cell behavior during myelination in vivo and indicate that the choice of which axons are myelinated is made prior to myelin sheath generation. Here we propose that interactions between axons and the exploratory processes of oligodendrocyte precursor cells (OPCs) lead to myelination and may be similar to those between dendrites and axons that prefigure and lead to synapse formation. Indeed axons and OPCs form synapses with striking resemblance to those of neurons, suggesting a similar mode of formation. We discuss families of molecules with specific functions at different stages of synapse formation and address studies that implicate the same factors during axon-OPC synapse formation and myelination. We also address the possibility that the function of such synapses might directly regulate the myelinating behavior of oligodendrocyte processes in vivo. In the future it may be of benefit to consider these similarities when taking a candidate-based approach to dissect mechanisms of CNS myelination. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Insight

    Science.gov (United States)

    Ramesh, Priya; Wei, Annan; Welter, Elisabeth; Bamps, Yvan; Stoll, Shelley; Bukach, Ashley; Sajatovic, Martha; Sahoo, Satya S

    2015-11-01

    Insight is a Semantic Web technology-based platform to support large-scale secondary analysis of healthcare data for neurology clinical research. Insight features the novel use of: (1) provenance metadata, which describes the history or origin of patient data, in clinical research analysis, and (2) support for patient cohort queries across multiple institutions conducting research in epilepsy, which is the one of the most common neurological disorders affecting 50 million persons worldwide. Insight is being developed as a healthcare informatics infrastructure to support a national network of eight epilepsy research centers across the U.S. funded by the U.S. Centers for Disease Control and Prevention (CDC). This paper describes the use of the World Wide Web Consortium (W3C) PROV recommendation for provenance metadata that allows researchers to create patient cohorts based on the provenance of the research studies. In addition, the paper describes the use of descriptive logic-based OWL2 epilepsy ontology for cohort queries with "expansion of query expression" using ontology reasoning. Finally, the evaluation results for the data integration and query performance are described using data from three research studies with 180 epilepsy patients. The experiment results demonstrate that Insight is a scalable approach to use Semantic provenance metadata for context-based data analysis in healthcare informatics.

  19. Synapse Pathology in Psychiatric and Neurologic Disease

    NARCIS (Netherlands)

    M. van Spronsen (Myrrhe); C.C. Hoogenraad (Casper)

    2010-01-01

    textabstractInhibitory and excitatory synapses play a fundamental role in information processing in the brain. Excitatory synapses usually are situated on dendritic spines, small membrane protrusions that harbor glutamate receptors and postsynaptic density components and help transmit electrical

  20. Microglial interactions with synapses are modulated by visual experience.

    Directory of Open Access Journals (Sweden)

    Marie-Ève Tremblay

    2010-11-01

    Full Text Available Microglia are the immune cells of the brain. In the absence of pathological insult, their highly motile processes continually survey the brain parenchyma and transiently contact synaptic elements. Aside from monitoring, their physiological roles at synapses are not known. To gain insight into possible roles of microglia in the modification of synaptic structures, we used immunocytochemical electron microscopy, serial section electron microscopy with three-dimensional reconstructions, and two-photon in vivo imaging to characterize microglial interactions with synapses during normal and altered sensory experience, in the visual cortex of juvenile mice. During normal visual experience, most microglial processes displayed direct apposition with multiple synapse-associated elements, including synaptic clefts. Microglial processes were also distinctively surrounded by pockets of extracellular space. In terms of dynamics, microglial processes localized to the vicinity of small and transiently growing dendritic spines, which were typically lost over 2 d. When experience was manipulated through light deprivation and reexposure, microglial processes changed their morphology, showed altered distributions of extracellular space, displayed phagocytic structures, apposed synaptic clefts more frequently, and enveloped synapse-associated elements more extensively. While light deprivation induced microglia to become less motile and changed their preference of localization to the vicinity of a subset of larger dendritic spines that persistently shrank, light reexposure reversed these behaviors. Taken together, these findings reveal different modalities of microglial interactions with synapses that are subtly altered by sensory experience. These findings suggest that microglia may actively contribute to the experience-dependent modification or elimination of a specific subset of synapses in the healthy brain.

  1. Invaginating Structures in Mammalian Synapses

    Science.gov (United States)

    Petralia, Ronald S.; Wang, Ya-Xian; Mattson, Mark P.; Yao, Pamela J.

    2018-01-01

    Invaginating structures at chemical synapses in the mammalian nervous system exist in presynaptic axon terminals, postsynaptic spines or dendrites, and glial processes. These invaginating structures can be divided into three categories. The first category includes slender protrusions invaginating into axonal terminals, postsynaptic spines, or glial processes. Best known examples of this category are spinules extending from postsynaptic spines into presynaptic terminals in forebrain synapses. Another example of this category are protrusions from inhibitory presynaptic terminals invaginating into postsynaptic neuronal somas. Regardless of the direction and location, the invaginating structures of the first category do not have synaptic active zones within the invagination. The second category includes postsynaptic spines invaginating into presynaptic terminals, whereas the third category includes presynaptic terminals invaginating into postsynaptic spines or dendrites. Unlike the first category, the second and third categories have active zones within the invagination. An example of the second category are mossy terminal synapses of the hippocampal CA3 region, in which enlarged spine-like structures invaginate partly or entirely into mossy terminals. An example of the third category is the neuromuscular junction (NMJ) where substantial invaginations of the presynaptic terminals invaginate into the muscle fibers. In the retina, rod and cone synapses have invaginating processes from horizontal and bipolar cells. Because horizontal cells act both as post and presynaptic structures, their invaginating processes represent both the second and third category. These invaginating structures likely play broad yet specialized roles in modulating neuronal cell signaling.

  2. N-cadherin relocalizes from the periphery to the center of the synapse after transient synaptic stimulation in hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Patricia T Yam

    Full Text Available N-cadherin is a cell adhesion molecule which is enriched at synapses. Binding of N-cadherin molecules to each other across the synaptic cleft has been postulated to stabilize adhesion between the presynaptic bouton and the postsynaptic terminal. N-cadherin is also required for activity-induced changes at synapses, including hippocampal long term potentiation and activity-induced spine expansion and stabilization. We hypothesized that these activity-dependent changes might involve changes in N-cadherin localization within synapses. To determine whether synaptic activity changes the localization of N-cadherin, we used structured illumination microscopy, a super-resolution approach which overcomes the conventional resolution limits of light microscopy, to visualize the localization of N-cadherin within synapses of hippocampal neurons. We found that synaptic N-cadherin exhibits a spectrum of localization patterns, ranging from puncta at the periphery of the synapse adjacent to the active zone to an even distribution along the synaptic cleft. Furthermore, the N-cadherin localization pattern within synapses changes during KCl depolarization and after transient synaptic stimulation. During KCl depolarization, N-cadherin relocalizes away from the central region of the synaptic cleft to the periphery of the synapse. In contrast, after transient synaptic stimulation with KCl followed by a period of rest in normal media, fewer synapses have N-cadherin present as puncta at the periphery and more synapses have N-cadherin present more centrally and uniformly along the synapse compared to unstimulated cells. This indicates that transient synaptic stimulation modulates N-cadherin localization within the synapse. These results bring new information to the structural organization and activity-induced changes occurring at synapses, and suggest that N-cadherin relocalization may contribute to activity dependent changes at synapses.

  3. Peripheral synapses and giant neurons in whip spiders.

    Science.gov (United States)

    Foelix, Rainer; Troyer, David; Igelmund, Peter

    2002-08-15

    Among invertebrates the synapses between neurons are generally restricted to ganglia, i.e., to the central nervous system (CNS). As an exception, synapses occur in the sensory nerves of arachnid legs, indicating that some nervous integration is already taking place far out in the periphery. In the antenniform legs of whip spiders (Amblypygi), a very special synaptic circuit is present. These highly modified legs contain several large interneurons (giant neurons) that receive mechanosensory input from 700-1,500 tarsal bristles. Some of the sensory cell axons contact a giant neuron at its short, branched dendrite, a few at the soma, but most synapse onto the long giant axon. The fine structure of these synapses resembles that of typical chemical synapses in other arthropods. Although thousands of sensory fibers converge on a single giant neuron, there is no reduction in the actual number of sensory fibers, because these afferent fibers continue their course to the CNS after having made several en passant synapses onto the giant neuron. Touching a single tarsal bristle is sufficient to elicit action potentials in a giant neuron. Owing to the large diameter of the giant axon (10-20 microm), the action potentials reach the CNS within 55 ms, at conduction velocities of up to 7 m/s. However, mechanical stimulation of the tarsal bristles does not elicit a fast escape response, in contrast to giant fiber systems in earthworms, certain insects, and crayfishes. A quick escape is observed in whip spiders, but only after stimulation of the filiform hairs (trichobothria) on the regular walking legs. Although the giant fiber system in the antenniform legs undoubtedly provides a fast sensory pathway, its biological significance is not clearly understood at the moment. Copyright 2002 Wiley-Liss, Inc.

  4. Setting the pace: new insights into central pattern generator interactions in box jellyfish swimming.

    Directory of Open Access Journals (Sweden)

    Anna Lisa Stöckl

    Full Text Available Central Pattern Generators (CPGs produce rhythmic behaviour across all animal phyla. Cnidarians, which have a radially symmetric nervous system and pacemaker centres in multiples of four, provide an interesting comparison to bilaterian animals for studying the coordination between CPGs. The box jellyfish Tripedalia cystophora is remarkable among cnidarians due to its most elaborate visual system. Together with their ability to actively swim and steer, they use their visual system for multiple types of behaviour. The four swim CPGs are directly regulated by visual input. In this study, we addressed the question of how the four pacemaker centres of this radial symmetric cnidarian interact. We based our investigation on high speed camera observations of the timing of swim pulses of tethered animals (Tripedalia cystophora with one or four rhopalia, under different simple light regimes. Additionally, we developed a numerical model of pacemaker interactions based on the inter pulse interval distribution of animals with one rhopalium. We showed that the model with fully resetting coupling and hyperpolarization of the pacemaker potential below baseline fitted the experimental data best. Moreover, the model of four swim pacemakers alone underscored the proportion of long inter pulse intervals (IPIs considerably. Both in terms of the long IPIs as well as the overall swim pulse distribution, the simulation of two CPGs provided a better fit than that of four. We therefore suggest additional sources of pacemaker control than just visual input. We provide guidelines for future research on the physiological linkage of the cubozoan CPGs and show the insight from bilaterian CPG research, which show that pacemakers have to be studied in their bodily and nervous environment to capture all their functional features, are also manifest in cnidarians.

  5. Policy entrepreneurship in UK central government: The behavioural insights team and the use of randomized controlled trials.

    Science.gov (United States)

    John, Peter

    2014-07-01

    What factors explain the success of the UK Cabinet Office's Behavioural Insights Team? To answer this question, this article applies insights from organizational theory, particularly accounts of change agents. Change agents are able-with senior sponsorship-to foster innovation by determination and skill: they win allies and circumvent more traditional bureaucratic procedures. Although Behavioural Insights Team is a change agent-maybe even a skunkworks unit-not all the facilitating factors identified in the literature apply in this central government context. Key factors are its willingness to work in a non-hierarchical way, skills at forming alliances, and the ability to form good relationships with expert audiences. It has been able to promote a more entrepreneurial approach to government by using randomized controlled trials as a robust method of policy evaluation.

  6. The role of bushmeat in urban household consumption:Insights from Bangui, the capital city of the Central African Republic

    OpenAIRE

    Fargeot, Christian; Drouet-Hoguet, Nolwenn; Le Bel, Sébastien

    2017-01-01

    In the Congo Forest Basin, hunting provides a major source of protein for rural household consumption. In the context of increasing urbanisation, an understanding of bushmeat consumption in urban settings is needed to both address food security issues and design biodiversity conservation strategies. This paper provides insights into bushmeat con - sumption patterns in Bangui, the capital of the Central African Republic, through an analysis of household expenditures and market prices. A survey...

  7. Autism-Associated Chromatin Regulator Brg1/SmarcA4 Is Required for Synapse Development and Myocyte Enhancer Factor 2-Mediated Synapse Remodeling.

    Science.gov (United States)

    Zhang, Zilai; Cao, Mou; Chang, Chia-Wei; Wang, Cindy; Shi, Xuanming; Zhan, Xiaoming; Birnbaum, Shari G; Bezprozvanny, Ilya; Huber, Kimberly M; Wu, Jiang I

    2016-01-01

    Synapse development requires normal neuronal activities and the precise expression of synapse-related genes. Dysregulation of synaptic genes results in neurological diseases such as autism spectrum disorders (ASD). Mutations in genes encoding chromatin-remodeling factor Brg1/SmarcA4 and its associated proteins are the genetic causes of several developmental diseases with neurological defects and autistic symptoms. Recent large-scale genomic studies predicted Brg1/SmarcA4 as one of the key nodes of the ASD gene network. We report that Brg1 deletion in early postnatal hippocampal neurons led to reduced dendritic spine density and maturation and impaired synapse activities. In developing mice, neuronal Brg1 deletion caused severe neurological defects. Gene expression analyses indicated that Brg1 regulates a significant number of genes known to be involved in synapse function and implicated in ASD. We found that Brg1 is required for dendritic spine/synapse elimination mediated by the ASD-associated transcription factor myocyte enhancer factor 2 (MEF2) and that Brg1 regulates the activity-induced expression of a specific subset of genes that overlap significantly with the targets of MEF2. Our analyses showed that Brg1 interacts with MEF2 and that MEF2 is required for Brg1 recruitment to target genes in response to neuron activation. Thus, Brg1 plays important roles in both synapse development/maturation and MEF2-mediated synapse remodeling. Our study reveals specific functions of the epigenetic regulator Brg1 in synapse development and provides insights into its role in neurological diseases such as ASD. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Dust emission mechanisms in the central Sahara: new insights from remote field observations

    Science.gov (United States)

    Allen, C.; Washington, R.; Engelstaedter, S.

    2013-12-01

    North Africa is the world's largest source of mineral aerosol (dust). The Fennec Project, an international consortium led by the University of Oxford, is the first project to systematically instrument the remote central Sahara Desert. These observations have, among others, provided new insights into the atmospheric mechanisms of dust emission. Bordj Badji Mokhtar, in south-west Algeria, is within kilometres of the centre of the global mean summer dust maximum. The site, operated by Fennec partners ONM Algerie, has been heavily instrumented since summer 2011. During the Intensive Observation Period (IOP) in June 2011, four main emission mechanisms were observed and documented: cold pool outflows, low level jets (LLJs), monsoon surges and dry convective plumes. Establishing the relative importance of dust emission mechanisms has been a long-standing research goal. A detailed partitioning exercise of dust events during the IOP shows that 45% of the dust over BBM was generated by local emission in cold pool outflows, 14% by LLJs and only 2% by dry convective plumes. 27% of the dust was advected to the site rather than locally emitted and 12% of the dust was residual or ';background' dust. The work shows the primacy of cold pool outflows for dust emission in the region and also the important contribution of dust advection. In accordance with long-held ideas, the cube of wind speed is strongly correlated with dust emission. Surprisingly however, particles in long-range advection (>500km) were found to be larger than locally emitted dust. Although a clear LLJ wind structure is evident in the mean diurnal cycle during the IOP (12m/s peak winds at 935hPa between 04-05h), LLJs are only responsible for a relatively small amount of dust emission. There is significant daily variability in LLJ strength; the strongest winds are produced by a relatively small number of events. The position and strength of the Saharan Heat Low is strongly associated with the development (or

  9. Effects of ligands on unfolding of the amyloid β-peptide central helix: mechanistic insights from molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Mika Ito

    Full Text Available Polymerization of the amyloid β-peptide (Aβ, a process which requires that the helical structure of Aβ unfolds beforehand, is suspected to cause neurodegeneration in Alzheimer's disease. According to recent experimental studies, stabilization of the Aβ central helix counteracts Aβ polymerization into toxic assemblies. The effects of two ligands (Dec-DETA and Pep1b, which were designed to bind to and stabilize the Aβ central helix, on unfolding of the Aβ central helix were investigated by molecular dynamics simulations. It was quantitatively demonstrated that the stability of the Aβ central helix is increased by both ligands, and more effectively by Pep1b than by Dec-DETA. In addition, it was shown that Dec-DETA forms parallel conformations with β-strand-like Aβ, whereas Pep1b does not and instead tends to bend unwound Aβ. The molecular dynamics results correlate well with previous experiments for these ligands, which suggest that the simulation method should be useful in predicting the effectiveness of novel ligands in stabilizing the Aβ central helix. Detailed Aβ structural changes upon loss of helicity in the presence of the ligands are also revealed, which gives further insight into which ligand may lead to which path subsequent to unwinding of the Aβ central helix.

  10. Synapse-specific astrocyte gating of amygdala-related behavior.

    Science.gov (United States)

    Martin-Fernandez, Mario; Jamison, Stephanie; Robin, Laurie M; Zhao, Zhe; Martin, Eduardo D; Aguilar, Juan; Benneyworth, Michael A; Marsicano, Giovanni; Araque, Alfonso

    2017-11-01

    The amygdala plays key roles in fear and anxiety. Studies of the amygdala have largely focused on neuronal function and connectivity. Astrocytes functionally interact with neurons, but their role in the amygdala remains largely unknown. We show that astrocytes in the medial subdivision of the central amygdala (CeM) determine the synaptic and behavioral outputs of amygdala circuits. To investigate the role of astrocytes in amygdala-related behavior and identify the underlying synaptic mechanisms, we used exogenous or endogenous signaling to selectively activate CeM astrocytes. Astrocytes depressed excitatory synapses from basolateral amygdala via A 1 adenosine receptor activation and enhanced inhibitory synapses from the lateral subdivision of the central amygdala via A 2A receptor activation. Furthermore, astrocytic activation decreased the firing rate of CeM neurons and reduced fear expression in a fear-conditioning paradigm. Therefore, we conclude that astrocyte activity determines fear responses by selectively regulating specific synapses, which indicates that animal behavior results from the coordinated activity of neurons and astrocytes.

  11. Microglia actively regulate the number of functional synapses.

    Directory of Open Access Journals (Sweden)

    Kyungmin Ji

    Full Text Available Microglia are the immunocompetent cells of the central nervous system. In the physiological setting, their highly motile processes continually survey the local brain parenchyma and transiently contact synaptic elements. Although recent work has shown that the interaction of microglia with synapses contributes to synaptic remodeling during development, the role of microglia in synaptic physiology is just starting to get explored. To assess this question, we employed an electrophysiological approach using two methods to manipulate microglia in culture: organotypic hippocampal brain slices in which microglia were depleted using clodronate liposomes, and cultured hippocampal neurons to which microglia were added. We show here that the frequency of excitatory postsynaptic current increases in microglia-depleted brain slices, consistent with a higher synaptic density, and that this enhancement ensures from the loss of microglia since it is reversed when the microglia are replenished. Conversely, the addition of microglia to neuronal cultures decreases synaptic activity and reduces the density of synapses, spine numbers, surface expression of AMPA receptor (GluA1, and levels of synaptic adhesion molecules. Taken together, our findings demonstrate that non-activated microglia acutely modulate synaptic activity by regulating the number of functional synapses in the central nervous system.

  12. New insights on dust emission mechanisms in the central Sahara: observations from Fennec

    Science.gov (United States)

    Allen, Christopher; Washington, Richard

    2013-04-01

    The central Sahara is the dustiest region of the world in boreal summer. The Fennec project instrumented this remote region and the data that has come back has furnished some intriguing insights into the mechanisms of dust emission. Here, observations are presented for the June 2011 intensive observation period (IOP) from the supersite at Bordj-Badji Mokhtar (BBM), in south-west Algeria. Cold pool outflows produced 11 of the top 15 dustiest events at BBM. Their duration over BBM varied from 3-19h. Several of these outflows travelled long distances to reach the site (~600km). The average propagation speed of two of the dustiest, 11.6m/s and 16.2m/s, is much higher than the average speed of density currents in the Atlas foothills, estimated at 3-11.1m/s in published work by other authors. Such long-travelled currents also appear to have brought unexpectedly large dust particles to BBM: the three dust events during the IOP with the lowest Angstrom Exponent (≤0) are all convective outflows spawned by mesoscale convective complexes over western Niger. It is therefore possible that i) the sedimentology over the western Niger region provides much larger particles for emission than over the BBM region ii) the density currents over western Niger have much stronger gust fronts than those spawned near BBM, allowing much larger particles to be uplifted. A third possibility, which may have been the case on the night 16-17 June, is that dust was uplifted over Niger, transported in an elevated intrusion above a stable nocturnal surface layer, and then mixed down to the ground after the surface temperature inversion was eroded. 2m temperatures at BBM were between 1 and 2 standard deviations below the June mean on the morning of 17 June, making it possible that the 'cold pool' could in fact have been warmer than the surface and propagated as an elevated intrusion. Dry convective plume emission and low level jet (LLJ) induced emission and was also observed. Dry convective plume

  13. Microglia - insights into immune system structure, function, and reactivity in the central nervous system

    DEFF Research Database (Denmark)

    Wirenfeldt, Martin; Babcock, Alicia A; Vinters, Harry V

    2011-01-01

    Microglia are essential cellular components of a well-functioning central nervous system (CNS). The development and establishment of the microglial population differs from the other major cell populations in the CNS i.e. neurons and macroglia (astrocytes and oligodendrocytes). This different...

  14. Geometric and topological characterization of porous media: insights from eigenvector centrality

    Science.gov (United States)

    Jimenez-Martinez, J.; Negre, C.

    2017-12-01

    Solving flow and transport through complex geometries such as porous media involves an extreme computational cost. Simplifications such as pore networks, where the pores are represented by nodes and the pore throats by edges connecting pores, have been proposed. These models have the ability to preserve the connectivity of the medium. However, they have difficulties capturing preferential paths (high velocity) and stagnation zones (low velocity), as they do not consider the specific relations between nodes. Network theory approaches, where the complex network is conceptualized like a graph, can help to simplify and better understand fluid dynamics and transport in porous media. To address this issue, we propose a method based on eigenvector centrality. It has been corrected to overcome the centralization problem and modified to introduce a bias in the centrality distribution along a particular direction which allows considering the flow and transport anisotropy in porous media. The model predictions are compared with millifluidic transport experiments, showing that this technique is computationally efficient and has potential for predicting preferential paths and stagnation zones for flow and transport in porous media. Entropy computed from the eigenvector centrality probability distribution is proposed as an indicator of the "mixing capacity" of the system.

  15. Spatiotemporal evolution of Reaumuria (Tamaricaceae) in Central Asia: insights from molecular biogeography

    Science.gov (United States)

    Mingli Zhang; Xiaoli Hao; Stewart C. Sanderson; Byalt V. Vyacheslav; Alexander P. Sukhorukov; Xia Zhang

    2014-01-01

    Reaumuria is an arid adapted genus with a distribution center in Central Asia; its evolution and dispersal is investigated in this paper. Eighteen species of Reaumuria and nine species of two other genera in the Tamaricaceae, Tamarix and Myricaria, were sampled, and four markers ITS, rps16, psbB-psbH, and trnL-trnF were sequenced. The reconstructed phylogenetic tree is...

  16. The thermal evolution of Chinese central Tianshan and its implications: Insights from multi-method chronometry

    Science.gov (United States)

    Yin, Jiyuan; Chen, Wen; Hodges, Kip V.; Xiao, Wenjiao; Cai, Keda; Yuan, Chao; Sun, Min; Liu, Li-Ping; van Soest, Matthijs C.

    2018-01-01

    The Chinese Tianshan is located in the south of the Central Asian Orogenic Belt and formed during final consumption of the Paleo-Asian Ocean in the late Palaeozoic. In order to further elucidate the tectonic evolution of the Chinese Tianshan, we have established the temperature-time history of granitic rocks from the Chinese Tianshan through a multi-chronological approach that includes U/Pb (zircon), 40Ar/39Ar (biotite and K-feldspar), and (U-Th)/He (zircon and apatite) dating. Our data show that the central Tianshan experienced accelerated cooling during the late Carboniferous- to early Permian. Multiple sequences of complex multiple accretionary, subduction and collisional events could have induced the cooling in the Tianshan Orogenic Belt. The new 40Ar/39Ar and (U-Th)/He data, in combination with thermal history modeling results, reveal that several tectonic reactivation and exhumation episodes affected the Chinese central Tianshan during middle Triassic (245-210 Ma), early Cretaceous (140-100 Ma), late Oligocene-early Miocene (35-20 Ma) and late Miocene (12-9 Ma). The middle Triassic cooling dates was only found in the central Tianshan. Strong uplift and deformation in the Chinese Tianshan has been limited and localized. It have been concentrated in around major fault zone and the foreland thrust belt since the early Cretaceous. The middle Triassic and early Cretaceous exhumation is interpreted as distal effects of the Cimmerian collisions (i.e. the Qiangtang and Kunlun-Qaidam collision and Lhasa-Qiangtang collision) at the southern Eurasian margin. The Cenozoic reactivation and exhumation is interpreted as a far field response to the India-Eurasia collision and represents the beginning of modern mountain building and denudation in the Chinese Tianshan.

  17. A new measure for the strength of electrical synapses

    Directory of Open Access Journals (Sweden)

    Julie S Haas

    2015-09-01

    Full Text Available Electrical synapses, like chemical synapses, mediate intraneuronal communication. Electrical synapses are typically quantified by subthreshold measurements of coupling, which fall short in describing their impact on spiking activity in coupled neighbors. Here we describe a novel measurement for electrical synapse strength that directly evaluates the effect of synaptically transmitted activity on spike timing. This method, also applicable to neurotransmitter-based synapses, communicates the considerable strength of electrical synapses. For electrical synapses measured in rodent slices of the thalamic reticular nucleus, spike timing is modulated by tens of ms by activity in a coupled neighbor.

  18. Neurobeachin regulates neurotransmitter receptor trafficking to synapses

    NARCIS (Netherlands)

    Nair, R.; Lauks, J.; Jung, S; Cooke, N.E.; de Wit, H.; Brose, N.; Kilimann, M.W.; Verhage, M.; Rhee, J.

    2013-01-01

    The surface density of neurotransmitter receptors at synapses is a key determinant of synaptic efficacy. Synaptic receptor accumulation is regulated by the transport, postsynaptic anchoring, and turnover of receptors, involving multiple trafficking, sorting, motor, and scaffold proteins. We found

  19. The Diversity of Cortical Inhibitory Synapses

    Directory of Open Access Journals (Sweden)

    Yoshiyuki eKubota

    2016-04-01

    Full Text Available The most typical and well known inhibitory action in the cortical microcircuit is a strong inhibition on the target neuron by axo-somatic synapses. However, it has become clear that synaptic inhibition in the cortex is much more diverse and complicated. Firstly, at least ten or more inhibitory non-pyramidal cell subtypes engage in diverse inhibitory functions to produce the elaborate activity characteristic of the different cortical states. Each distinct non-pyramidal cell subtype has its own independent inhibitory function. Secondly, the inhibitory synapses innervate different neuronal domains, such as axons, spines, dendrites and soma, and their IPSP size is not uniform. Thus cortical inhibition is highly complex, with a wide variety of anatomical and physiological modes. Moreover, the functional significance of the various inhibitory synapse innervation styles and their unique structural dynamic behaviors differ from those of excitatory synapses. In this review, we summarize our current understanding of the inhibitory mechanisms of the cortical microcircuit.

  20. Synapse proteomics: current status and quantitative applications

    NARCIS (Netherlands)

    Li, K.W.; Jimenez, C.R.

    2008-01-01

    Chemical synapses are key organelles for neurotransmission. The coordinated actions of protein networks in diverse synaptic subdomains drive the sequential molecular events of transmitter release from the presynaptic bouton, activation of transmitter receptors located in the postsynaptic density and

  1. Comparative anatomy of phagocytic and immunological synapses

    Directory of Open Access Journals (Sweden)

    Florence eNiedergang

    2016-01-01

    Full Text Available The generation of phagocytic cups and immunological synapses are crucial events of the innate and adaptive immune responses, respectively. They are triggered by distinct immune receptors and performed by different cell types. However, growing experimental evidence shows that a very close series of molecular and cellular events control these two processes. Thus, the tight and dynamic interplay between receptor signaling, actin and microtubule cytoskeleton, and targeted vesicle traffic are all critical features to build functional phagosomes and immunological synapses. Interestingly, both phagocytic cups and immunological synapses display particular spatial and temporal patterns of receptors and signaling molecules, leading to the notion of phagocytic synapse. Here we discuss both types of structures, their organization and the mechanisms by which they are generated and regulated.

  2. Prevention of Noise Damage to Cochlear Synapses

    Science.gov (United States)

    2016-10-01

    neurotrophic factor CNTF in promoting synapse regeneration. KEYWORDS Anandamide Auditory Brainstem Response Calcium Ion Calcium-Permeable AMPA Receptors...excitotoxic trauma (kainic acid) in vitro? f) Does CNTF promote synapse regeneration in vitro as does NT-3? W81XWH-14-1-0494 Annual Progress Report 29... CNTF ) is expressed in the organ of Corti at high levels, comparable to NT-3. We have also found that CNTF is approximately as effective as NT-3 in

  3. Defects of the Glycinergic Synapse in Zebrafish

    OpenAIRE

    Ogino, Kazutoyo; Hirata, Hiromi

    2016-01-01

    Glycine mediates fast inhibitory synaptic transmission. Physiological importance of the glycinergic synapse is well established in the brainstem and the spinal cord. In humans, the loss of glycinergic function in the spinal cord and brainstem leads to hyperekplexia, which is characterized by an excess startle reflex to sudden acoustic or tactile stimulation. In addition, glycinergic synapses in this region are also involved in the regulation of respiration and locomotion, and in the nocicepti...

  4. Spiking Neural P Systems With Scheduled Synapses.

    Science.gov (United States)

    Cabarle, Francis George C; Adorna, Henry N; Jiang, Min; Zeng, Xiangxiang

    2017-12-01

    Spiking neural P systems (SN P systems) are models of computation inspired by biological spiking neurons. SN P systems have neurons as spike processors, which are placed on the nodes of a directed and static graph (the edges in the graph are the synapses). In this paper, we introduce a variant called SN P systems with scheduled synapses (SSN P systems). SSN P systems are inspired and motivated by the structural dynamism of biological synapses, while incorporating ideas from nonstatic (i.e., dynamic) graphs and networks. In particular, synapses in SSN P systems are available only at specific durations according to their schedules. The SSN P systems model is a response to the problem of introducing durations to synapses of SN P systems. Since SN P systems are in essence static graphs, it is natural to consider them for dynamic graphs also. We introduce local and global schedule types, also taking inspiration from the above-mentioned sources. We prove that SSN P systems are computationally universal as number generators and acceptors for both schedule types, under a normal form (i.e., a simplifying set of restrictions). The introduction of synapse schedules for either schedule type proves useful in programming the system, despite restrictions in the normal form.

  5. Differentiation and Characterization of Excitatory and Inhibitory Synapses by Cryo-electron Tomography and Correlative Microscopy

    Science.gov (United States)

    Sun, Rong; Zhang, Bin; Qi, Lei; Shivakoti, Sakar; Tian, Chong-Li; Lau, Pak-Ming

    2018-01-01

    As key functional units in neural circuits, different types of neuronal synapses play distinct roles in brain information processing, learning, and memory. Synaptic abnormalities are believed to underlie various neurological and psychiatric disorders. Here, by combining cryo-electron tomography and cryo-correlative light and electron microscopy, we distinguished intact excitatory and inhibitory synapses of cultured hippocampal neurons, and visualized the in situ 3D organization of synaptic organelles and macromolecules in their native state. Quantitative analyses of >100 synaptic tomograms reveal that excitatory synapses contain a mesh-like postsynaptic density (PSD) with thickness ranging from 20 to 50 nm. In contrast, the PSD in inhibitory synapses assumes a thin sheet-like structure ∼12 nm from the postsynaptic membrane. On the presynaptic side, spherical synaptic vesicles (SVs) of 25–60 nm diameter and discus-shaped ellipsoidal SVs of various sizes coexist in both synaptic types, with more ellipsoidal ones in inhibitory synapses. High-resolution tomograms obtained using a Volta phase plate and electron filtering and counting reveal glutamate receptor-like and GABAA receptor-like structures that interact with putative scaffolding and adhesion molecules, reflecting details of receptor anchoring and PSD organization. These results provide an updated view of the ultrastructure of excitatory and inhibitory synapses, and demonstrate the potential of our approach to gain insight into the organizational principles of cellular architecture underlying distinct synaptic functions. SIGNIFICANCE STATEMENT To understand functional properties of neuronal synapses, it is desirable to analyze their structure at molecular resolution. We have developed an integrative approach combining cryo-electron tomography and correlative fluorescence microscopy to visualize 3D ultrastructural features of intact excitatory and inhibitory synapses in their native state. Our approach shows

  6. Muscle sympathetic nerve responses to passive and active one-legged cycling: insights into the contributions of central command.

    Science.gov (United States)

    Doherty, Connor J; Incognito, Anthony V; Notay, Karambir; Burns, Matthew J; Slysz, Joshua T; Seed, Jeremy D; Nardone, Massimo; Burr, Jamie F; Millar, Philip J

    2018-01-01

    The contribution of central command to the peripheral vasoconstrictor response during exercise has been investigated using primarily handgrip exercise. The purpose of the present study was to compare muscle sympathetic nerve activity (MSNA) responses during passive (involuntary) and active (voluntary) zero-load cycling to gain insights into the effects of central command on sympathetic outflow during dynamic exercise. Hemodynamic measurements and contralateral leg MSNA (microneurography) data were collected in 18 young healthy participants at rest and during 2 min of passive and active zero-load one-legged cycling. Arterial baroreflex control of MSNA burst occurrence and burst area were calculated separately in the time domain. Blood pressure and stroke volume increased during exercise ( P cycling ( P > 0.05). In contrast, heart rate, cardiac output, and total vascular conductance were greater during the first and second minute of active cycling ( P cycling ( P 0.05). Reductions in total MSNA were attenuated during the first ( P cycling, in concert with increased MSNA burst amplitude ( P = 0.02 and P = 0.005, respectively). The sensitivity of arterial baroreflex control of MSNA burst occurrence was lower during active than passive cycling ( P = 0.01), while control of MSNA burst strength was unchanged ( P > 0.05). These results suggest that central feedforward mechanisms are involved primarily in modulating the strength, but not the occurrence, of a sympathetic burst during low-intensity dynamic leg exercise. NEW & NOTEWORTHY Muscle sympathetic nerve activity burst frequency decreased equally during passive and active cycling, but reductions in total muscle sympathetic nerve activity were attenuated during active cycling. These results suggest that central command primarily regulates the strength, not the occurrence, of a muscle sympathetic burst during low-intensity dynamic leg exercise.

  7. Metamorphic complexes in accretionary orogens: Insights from the Beishan collage, southern Central Asian Orogenic Belt

    Science.gov (United States)

    Song, Dongfang; Xiao, Wenjiao; Windley, Brian F.; Han, Chunming; Yang, Lei

    2016-10-01

    The sources of ancient zircons and the tectonic attributions and origins of metamorphic complexes in Phanerozoic accretionary orogens have long been difficult issues. Situated between the Tianshan and Inner Mongolia orogens, the Beishan orogenic collage (BOC) plays a pivotal role in understanding the accretionary processes of the southern Central Asian Orogenic Belt (CAOB), particularly the extensive metamorphic and high-strained complexes on the southern margin. Despite their importance in understanding the basic architecture of the southern CAOB, little consensus has been reached on their ages and origins. Our new structural, LA-ICP-MS zircon U-Pb and Hf isotopic data from the Baidunzi, Shibandun, Qiaowan and Wutongjing metamorphic complexes resolve current controversial relations. The metamorphic complexes have varied lithologies and structures. Detrital zircons from five para-metamorphic rocks yield predominantly Phanerozoic ages with single major peaks at ca. 276 Ma, 286 Ma, 427 Ma, 428 Ma and 461 Ma. Two orthogneisses have weighted mean ages of 294 ± 2 Ma and 304 ± 2 Ma with no Precambrian inherited zircons. Most Phanerozoic zircons show positive εHf(t) values indicating significant crustal growth in the Ordovician, Silurian and Permian. The imbricated fold-thrust deformation style combined with diagnostic zircon U-Pb-Hf isotopic data demonstrate that the metamorphic rocks developed in a subduction-accretion setting on an arc or active continental margin. This setting and conclusion are supported by the nearby occurrence of Ordovician-Silurian adakites, Nb-rich basalts, Carboniferous-Permian ophiolitic mélanges, and trench-type turbidites. Current data do not support the presence of a widespread Precambrian basement in the evolution of the BOC; the accretionary processes may have continued to the early Permian in this part of the CAOB. These relationships have meaningful implications for the interpretation of the tectonic attributions and origins of other

  8. Crater palaeolakes in the Tibesti mountains (Central Sahara, North Chad) - New insights into past Saharan climates

    Science.gov (United States)

    Kröpelin, Stefan; Dinies, Michèle; Sylvestre, Florence; Hoelzmann, Philipp

    2016-04-01

    For the first time continuous lacustrine sections were sampled from the volcanic Tibesti Mountains (Chad): In the 900 m deep crater of Trou au Natron at Pic Toussidé (3,315 m a.s.l.) and from the 800 m deep Era Kohor, the major sub-caldera of Emi Koussi (3,445 m a.s.l.). The remnant diatomites on their slopes are located 360 m (Trou au Natron) and 125 m (Era Kohor) above the present day bottom of the calderas. These sediments from highly continental positions in the central Sahara are keys for the reconstruction of the last climatic cycles (Kröpelin et al. 2015). We report first results from sedimentary-geochemical (total organic and total inorganic carbon contents; total nitrogen; major elements; mineralogy) and palynological analyses for palaeo-environmental interpretations. The diatomites from the Trou au Natron comprise 330 cm of mostly calcitic sediments with relatively low organic carbon (moss/fern stands. Regional pollen rain-e.g. grasses and wormwood-is scarcely represented. Golden algae dominate in the lower section. The results of the first palynological samples suggest a small sedimentation basin. Two 14C-dated charcoals out of the upper part of the section indicate mid-Holocene ages and a linear extrapolation based on a sediment accumulation rate of 1.4mma-1 would lead to tentative dates of ~8650 cal a BP for basal lacustrine sediments and ~4450 cal a BP for the cessation of this lacustrine sequence. The diatomites from the Era Kohor reflect a suite of sections that in total sum up to 145 cm of mostly silica-based sediments with very low carbon contents (flora mainly composed of benthic and tychoplanktonic species, indicating a shallow freshwater lake. Both diatomite sequences thus suggest shallow lakes throughout their deposition-whether this is due to their marginal position within the large calderas and/or shallow waters covered the entire calderas is an outstanding question that will be addressed with planned additional investigations. Kr

  9. Chemical characteristics of submicron particles at the central Tibetan Plateau: insights from aerosol mass spectrometry

    Directory of Open Access Journals (Sweden)

    J. Xu

    2018-01-01

    Full Text Available Recent studies have revealed a significant influx of anthropogenic aerosol from South Asia to the Himalayas and Tibetan Plateau (TP during pre-monsoon period. In order to characterize the chemical composition, sources, and transport processes of aerosol in this area, we carried out a field study during June 2015 by deploying a suite of online instruments including an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS and a multi-angle absorption photometer (MAAP at Nam Co station (90°57′ E, 30°46′ N; 4730 m a.s.l. at the central of the TP. The measurements were made at a period when the transition from pre-monsoon to monsoon occurred. The average ambient mass concentration of submicron particulate matter (PM1 over the whole campaign was  ∼  2.0 µg m−3, with organics accounting for 68 %, followed by sulfate (15 %, black carbon (8 %, ammonium (7 %, and nitrate (2 %. Relatively higher aerosol mass concentration episodes were observed during the pre-monsoon period, whereas persistently low aerosol concentrations were observed during the monsoon period. However, the chemical composition of aerosol during the higher aerosol concentration episodes in the pre-monsoon season was on a case-by-case basis, depending on the prevailing meteorological conditions and air mass transport routes. Most of the chemical species exhibited significant diurnal variations with higher values occurring during afternoon and lower values during early morning, whereas nitrate peaked during early morning in association with higher relative humidity and lower air temperature. Organic aerosol (OA, with an oxygen-to-carbon ratio (O ∕ C of 0.94, was more oxidized during the pre-monsoon period than during monsoon (average O ∕ C ratio of 0.72, and an average O ∕ C was 0.88 over the entire campaign period, suggesting overall highly oxygenated aerosol in the central TP. Positive matrix factorization of the

  10. Chemical characteristics of submicron particles at the central Tibetan Plateau: insights from aerosol mass spectrometry

    Science.gov (United States)

    Xu, Jianzhong; Zhang, Qi; Shi, Jinsen; Ge, Xinlei; Xie, Conghui; Wang, Junfeng; Kang, Shichang; Zhang, Ruixiong; Wang, Yuhang

    2018-01-01

    Recent studies have revealed a significant influx of anthropogenic aerosol from South Asia to the Himalayas and Tibetan Plateau (TP) during pre-monsoon period. In order to characterize the chemical composition, sources, and transport processes of aerosol in this area, we carried out a field study during June 2015 by deploying a suite of online instruments including an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS) and a multi-angle absorption photometer (MAAP) at Nam Co station (90°57' E, 30°46' N; 4730 m a.s.l.) at the central of the TP. The measurements were made at a period when the transition from pre-monsoon to monsoon occurred. The average ambient mass concentration of submicron particulate matter (PM1) over the whole campaign was ˜ 2.0 µg m-3, with organics accounting for 68 %, followed by sulfate (15 %), black carbon (8 %), ammonium (7 %), and nitrate (2 %). Relatively higher aerosol mass concentration episodes were observed during the pre-monsoon period, whereas persistently low aerosol concentrations were observed during the monsoon period. However, the chemical composition of aerosol during the higher aerosol concentration episodes in the pre-monsoon season was on a case-by-case basis, depending on the prevailing meteorological conditions and air mass transport routes. Most of the chemical species exhibited significant diurnal variations with higher values occurring during afternoon and lower values during early morning, whereas nitrate peaked during early morning in association with higher relative humidity and lower air temperature. Organic aerosol (OA), with an oxygen-to-carbon ratio (O / C) of 0.94, was more oxidized during the pre-monsoon period than during monsoon (average O / C ratio of 0.72), and an average O / C was 0.88 over the entire campaign period, suggesting overall highly oxygenated aerosol in the central TP. Positive matrix factorization of the high-resolution mass spectra of OA identified two oxygenated

  11. Hyperhidrosis associated with subthalamic deep brain stimulation in Parkinson's disease: Insights into central autonomic functional anatomy.

    Science.gov (United States)

    Ramirez-Zamora, Adolfo; Smith, Heather; Youn, Youngwon; Durphy, Jennifer; Shin, Damian S; Pilitsis, Julie G

    2016-07-15

    There is limited evidence regarding the precise location and connections of thermoregulatory centers in humans. We present two patients managed with subthalamic nucleus (STN) Deep Brain Stimulation (DBS) for motor fluctuations in PD that developed reproducible hyperhidrosis with high frequency DBS. To describe the clinical features and analyze the location of the electrodes leading to autonomic activation in both patients. We retrospectively assessed the anatomical localization, electrode programming settings and effects of unilateral STN DBS leading to hyperhidrosis. Unilateral stimulation of anterior and medially located contacts within the STN and zona incerta (Zi) caused bilateral, consistent, reproducible, and reversible sweating in our patients. Adequate control of motor symptoms without autonomic side effects was accomplished with alternative programming settings. Stimulation of the medial Zi and medial and anterior STN causes hyperhidrosis in a pattern similar to that described in primates and rats. We speculate that central autonomic fibers originating in the lateral hypothalamic area project laterally to the ventral/medial Zi and then to brainstem nuclei following an medial and posterior trajectory in relationship to STN. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Indirect dynamics in SN2@N: insight into the influence of central atoms.

    Science.gov (United States)

    Liu, Xu; Zhao, Chenyang; Yang, Li; Zhang, Jiaxu; Sun, Rui

    2017-08-30

    Central atoms have a significant influence on the reaction kinetics and dynamics of nucleophilic substitution (S N 2). Herein, atomistic dynamics of a prototype S N 2@N reaction F - + NH 2 Cl is uncovered employing direct dynamics simulations that show strikingly distinct features from those determined for a S N 2@C congener F - + CH 3 Cl. Indirect scattering is found to prevail, which proceeds predominantly through a hydrogen-bonded F - -HNHCl complex in the reactant entrance channel. This unexpected finding of a pronounced contribution of indirect reaction dynamics, even at a high collision energy, is in strong contrast to a general evolution from indirect to direct dynamics with enhanced energy that characterizes S N 2@C. This result suggests that the relative importance of different atomic-level mechanisms may depend essentially on the interaction potential of reactive encounters and the coupling between inter- and intramolecular modes of the pre-reaction complex. For F - + NH 2 Cl the proton transfer pathway is less competitive than S N 2. A remarkable finding is that the more favorable energetics for NH 2 Cl proton transfer, as compared to that for CH 3 Cl, does not manifest itself in the reaction dynamics. The present work sheds light on the underlying reaction dynamics of S N 2@N, which remain largely unclear compared to well-studied S N 2@C.

  13. The Inylchek Glacier in Kyrgyzstan, Central Asia: Insight on Surface Kinematics from Optical Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    Mohamad Nobakht

    2014-01-01

    Full Text Available Mountain chains of Central Asia host a large number of glaciated areas that provide critical water supplies to the semi-arid populated foothills and lowlands of this region. Spatio-temporal variations of glacier flows are a key indicator of the impact of climate change on water resources as the glaciers react sensitively to climate. Satellite remote sensing using optical imagery is an efficient method for studying ice-velocity fields on mountain glaciers. In this study, temporal and spatial changes in surface velocity associated with the Inylchek glacier in Kyrgyzstan are investigated. We present a detailed map for the kinematics of the Inylchek glacier obtained by cross-correlation analysis of Landsat images, acquired between 2000 and 2011, and a set of ASTER images covering the time period between 2001 and 2007. Our results indicate a high-velocity region in the elevated part of the glacier, moving up to a rate of about 0.5 m/day. Time series analysis of optical data reveals some annual variations in the mean surface velocity of the Inylchek during 2000–2011. In particular, our findings suggest an opposite trend between periods of the northward glacial flow in Proletarskyi and Zvezdochka glacier, and the rate of westward motion observed for the main stream of the Inylchek.

  14. Current progress in tonoplast proteomics reveals insights into the function of the large central vacuole

    Directory of Open Access Journals (Sweden)

    Oliver eTrentmann

    2013-03-01

    Full Text Available Vacuoles of plants fulfill various biologically important functions, like turgor generation and maintenance, detoxification, solute sequestration or protein storage. Different types of plant vacuoles (lytic vs. protein storage are characterized by different functional properties apparently caused by a different composition/abundance and regulation of transport proteins in the surrounding membrane, the tonoplast. Proteome analyses allow the identification of vacuolar proteins and provide an informative basis for assigning observed transport processes to specific carriers or channels. This review summarizes techniques required for vacuolar proteome analyses, like e.g. isolation of the large central vacuole or tonoplast membrane purification. Moreover, an overview about diverse published vacuolar proteome studies is provided. It becomes evident that qualitative proteomes from different plant species represent just the tip of the iceberg. During the past few years, mass spectrometry achieved immense improvement concerning its accuracy, sensitivity and application. As a consequence, modern tonoplast proteome approaches are suited for detecting alterations in membrane protein abundance in response to changing environmental/physiological conditions and help to clarify the regulation of tonoplast transport processes.

  15. Lowering of blood pressure by chronic suppression of central sympathetic outflow: insight from prolonged baroreflex activation

    Science.gov (United States)

    Iliescu, Radu

    2012-01-01

    Device-based therapy for resistant hypertension by electrical activation of the carotid baroreflex is currently undergoing active clinical investigation, and initial findings from clinical trials have been published. The purpose of this mini-review is to summarize the experimental studies that have provided a conceptual understanding of the mechanisms that account for the long-term lowering of arterial pressure with baroreflex activation. The well established mechanisms mediating the role of the baroreflex in short-term regulation of arterial pressure by rapid changes in peripheral resistance and cardiac function are often extended to long-term pressure control, and the more sluggish actions of the baroreflex on renal excretory function are often not taken into consideration. However, because clinical, experimental, and theoretical evidence indicates that the kidneys play a dominant role in long-term control of arterial pressure, this review focuses on the mechanisms that link baroreflex-mediated reductions in central sympathetic outflow with increases in renal excretory function that lead to sustained reductions in arterial pressure. PMID:22797307

  16. New insights into the earliest Quaternary environments in the Central North Sea from 3D seismic

    Science.gov (United States)

    Lamb, Rachel; Huuse, Mads; Stewart, Margaret; Brocklehurst, Simon H.

    2014-05-01

    In the past the transition between an unconformable surface in the south to a conformable horizon towards the north has made identification and mapping the base-Quaternary in the central North Sea difficult (Sejrup et al 1991; Gatliff et al 1994). However recent integration of biostratigraphy, pollen analysis, paleomagnetism and amino acid analysis in the Dutch and Danish sectors (Rasmussen et al 2005; Kuhlmann et al 2006) has allowed greater confidence in the correlation to the region 3D seismic datasets and thus has allowed the base-Quaternary to be mapped across the entire basin. The base-Quaternary has been mapped using the PGS MegaSurvey dataset from wells in the Danish Sector along the initially unconformable horizon and down the delta front into the more conformable basin giving a high degree of confidence in the horizon pick. The revised base-Quaternary surface reaches a depth of 1248 ms TWT with an elongate basin shape which is significantly deeper than the traditionally mapped surface. Using RMS amplitudes and other seismic attributes the revised base-Quaternary has been investigated along the horizon and in time slice to interpret the environments of the earliest Quaternary prior to the onset of glaciation. Combined with analysis of aligned elongate furrows over 10 km long, 100 m wide and 100 m deep suggest a deep marine environment in an almost enclosed basin with persistent strong NW-SE bottom currents in the deepest parts. Pockmarks were formed by the escape of shallow gas on the sides of a small delta in the eastern part of the basin. The progradation of large deltas from both the north and south into the basin make up the majority of the deposition of sediment into the basin. Key Words: base-Quaternary; seismic interpretation; paleoenvironments References: Gatliff, R.W, Richards, P.C, Smith, K, Graham, C.C, McCormac, M, Smith, N.J.P, Long, D, Cameron, T.D.J, Evans, D, Stevenson, A.G, Bulat, J, Ritchie, J.D, (1994) 'United Kingdom offshore regional

  17. Despite disorganized synapse structure, Th2 cells maintain directional delivery of CD40L to antigen-presenting B cells.

    Directory of Open Access Journals (Sweden)

    Jennifer L Gardell

    Full Text Available Upon recognition of peptide displayed on MHC molecules, Th1 and Th2 cells form distinct immunological synapse structures. Th1 cells have a bull's eye synapse structure with TCR/ MHC-peptide interactions occurring central to a ring of adhesion molecules, while Th2 cells have a multifocal synapse with small clusters of TCR/MHC interactions throughout the area of T cell/antigen-presenting cell interaction. In this study, we investigated whether this structural difference in the immunological synapse affects delivery of T cell help. The immunological synapse is thought to ensure antigen-specific delivery of cytolytic granules and killing of target cells by NK cells and cytolytic T cells. In helper T cells, it has been proposed that the immunological synapse may direct delivery of other effector molecules including cytokines. CD40 ligand (CD40L is a membrane-bound cytokine essential for antigen-specific T cell help for B cells in the antibody response. We incubated Th1 and Th2 cells overnight with a mixture of antigen-presenting and bystander B cells, and the delivery of CD40L to B cells and subsequent B cell responses were compared. Despite distinct immunological synapse structures, Th1 and Th2 cell do not differ in their ability to deliver CD40L and T cell help in an antigen-specific fashion, or in their susceptibility to inhibition of help by a blocking anti-CD40L antibody.

  18. Despite disorganized synapse structure, Th2 cells maintain directional delivery of CD40L to antigen-presenting B cells.

    Science.gov (United States)

    Gardell, Jennifer L; Parker, David C

    2017-01-01

    Upon recognition of peptide displayed on MHC molecules, Th1 and Th2 cells form distinct immunological synapse structures. Th1 cells have a bull's eye synapse structure with TCR/ MHC-peptide interactions occurring central to a ring of adhesion molecules, while Th2 cells have a multifocal synapse with small clusters of TCR/MHC interactions throughout the area of T cell/antigen-presenting cell interaction. In this study, we investigated whether this structural difference in the immunological synapse affects delivery of T cell help. The immunological synapse is thought to ensure antigen-specific delivery of cytolytic granules and killing of target cells by NK cells and cytolytic T cells. In helper T cells, it has been proposed that the immunological synapse may direct delivery of other effector molecules including cytokines. CD40 ligand (CD40L) is a membrane-bound cytokine essential for antigen-specific T cell help for B cells in the antibody response. We incubated Th1 and Th2 cells overnight with a mixture of antigen-presenting and bystander B cells, and the delivery of CD40L to B cells and subsequent B cell responses were compared. Despite distinct immunological synapse structures, Th1 and Th2 cell do not differ in their ability to deliver CD40L and T cell help in an antigen-specific fashion, or in their susceptibility to inhibition of help by a blocking anti-CD40L antibody.

  19. Neuroligin-1 loss is associated with reduced tenacity of excitatory synapses.

    Directory of Open Access Journals (Sweden)

    Adel Zeidan

    Full Text Available Neuroligins (Nlgns are postsynaptic, integral membrane cell adhesion molecules that play important roles in the formation, validation, and maturation of synapses in the mammalian central nervous system. Given their prominent roles in the life cycle of synapses, it might be expected that the loss of neuroligin family members would affect the stability of synaptic organization, and ultimately, affect the tenacity and persistence of individual synaptic junctions. Here we examined whether and to what extent the loss of Nlgn-1 affects the dynamics of several key synaptic molecules and the constancy of their contents at individual synapses over time. Fluorescently tagged versions of the postsynaptic scaffold molecule PSD-95, the AMPA-type glutamate receptor subunit GluA2 and the presynaptic vesicle molecule SV2A were expressed in primary cortical cultures from Nlgn-1 KO mice and wild-type (WT littermates, and live imaging was used to follow the constancy of their contents at individual synapses over periods of 8-12 hours. We found that the loss of Nlgn-1 was associated with larger fluctuations in the synaptic contents of these molecules and a poorer preservation of their contents at individual synapses. Furthermore, rates of synaptic turnover were somewhat greater in neurons from Nlgn-1 knockout mice. Finally, the increased GluA2 redistribution rates observed in neurons from Nlgn-1 knockout mice were negated by suppressing spontaneous network activity. These findings suggest that the loss of Nlgn-1 is associated with some use-dependent destabilization of excitatory synapse organization, and indicate that in the absence of Nlgn-1, the tenacity of excitatory synapses might be somewhat impaired.

  20. Multiassociative Memory: Recurrent Synapses Increase Storage Capacity.

    Science.gov (United States)

    Gauy, Marcelo Matheus; Meier, Florian; Steger, Angelika

    2017-05-01

    The connection density of nearby neurons in the cortex has been observed to be around 0.1, whereas the longer-range connections are present with much sparser density (Kalisman, Silberberg, & Markram, 2005 ). We propose a memory association model that qualitatively explains these empirical observations. The model we consider is a multiassociative, sparse, Willshaw-like model consisting of binary threshold neurons and binary synapses. It uses recurrent synapses for iterative retrieval of stored memories. We quantify the usefulness of recurrent synapses by simulating the model for small network sizes and by doing a precise mathematical analysis for large network sizes. Given the network parameters, we can determine the precise values of recurrent and afferent synapse densities that optimize the storage capacity of the network. If the network size is like that of a cortical column, then the predicted optimal recurrent density lies in a range that is compatible with biological measurements. Furthermore, we show that our model is able to surpass the standard Willshaw model in the multiassociative case if the information capacity is normalized per strong synapse or per bits required to store the model, as considered in Knoblauch, Palm, and Sommer ( 2010 ).

  1. Glutamate synapses in human cognitive disorders.

    Science.gov (United States)

    Volk, Lenora; Chiu, Shu-Ling; Sharma, Kamal; Huganir, Richard L

    2015-07-08

    Accumulating data, including those from large genetic association studies, indicate that alterations in glutamatergic synapse structure and function represent a common underlying pathology in many symptomatically distinct cognitive disorders. In this review, we discuss evidence from human genetic studies and data from animal models supporting a role for aberrant glutamatergic synapse function in the etiology of intellectual disability (ID), autism spectrum disorder (ASD), and schizophrenia (SCZ), neurodevelopmental disorders that comprise a significant proportion of human cognitive disease and exact a substantial financial and social burden. The varied manifestations of impaired perceptual processing, executive function, social interaction, communication, and/or intellectual ability in ID, ASD, and SCZ appear to emerge from altered neural microstructure, function, and/or wiring rather than gross changes in neuron number or morphology. Here, we review evidence that these disorders may share a common underlying neuropathy: altered excitatory synapse function. We focus on the most promising candidate genes affecting glutamatergic synapse function, highlighting the likely disease-relevant functional consequences of each. We first present a brief overview of glutamatergic synapses and then explore the genetic and phenotypic evidence for altered glutamate signaling in ID, ASD, and SCZ.

  2. Localization of mineralocorticoid receptors at mammalian synapses.

    Directory of Open Access Journals (Sweden)

    Eric M Prager

    Full Text Available In the brain, membrane associated nongenomic steroid receptors can induce fast-acting responses to ion conductance and second messenger systems of neurons. Emerging data suggest that membrane associated glucocorticoid and mineralocorticoid receptors may directly regulate synaptic excitability during times of stress when adrenal hormones are elevated. As the key neuron signaling interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. The lateral amygdala is a key site for synaptic plasticity underlying conditioned fear, which can both trigger and be coincident with the stress response. A large body of electrophysiological data shows rapid regulation of neuronal excitability by steroid hormone receptors. Despite the importance of these receptors, to date, only the glucocorticoid receptor has been anatomically localized to the membrane. We investigated the subcellular sites of mineralocorticoid receptors in the lateral amygdala of the Sprague-Dawley rat. Immunoblot analysis revealed the presence of mineralocorticoid receptors in the amygdala. Using electron microscopy, we found mineralocorticoid receptors expressed at both nuclear including: glutamatergic and GABAergic neurons and extra nuclear sites including: presynaptic terminals, neuronal dendrites, and dendritic spines. Importantly we also observed mineralocorticoid receptors at postsynaptic membrane densities of excitatory synapses. These data provide direct anatomical evidence supporting the concept that, at some synapses, synaptic transmission is regulated by mineralocorticoid receptors. Thus part of the stress signaling response in the brain is a direct modulation of the synapse itself by adrenal steroids.

  3. Otanps synapse linear relation multiplier circuit

    International Nuclear Information System (INIS)

    Chible, H.

    2008-01-01

    In this paper, a four quadrant VLSI analog multiplier will be proposed, in order to be used in the implementation of the neurons and synapses modules of the artificial neural networks. The main characteristics of this multiplier are the small silicon area and the low power consumption and the high value of the weight input voltage. (author)

  4. Intercellular protein-protein interactions at synapses.

    Science.gov (United States)

    Yang, Xiaofei; Hou, Dongmei; Jiang, Wei; Zhang, Chen

    2014-06-01

    Chemical synapses are asymmetric intercellular junctions through which neurons send nerve impulses to communicate with other neurons or excitable cells. The appropriate formation of synapses, both spatially and temporally, is essential for brain function and depends on the intercellular protein-protein interactions of cell adhesion molecules (CAMs) at synaptic clefts. The CAM proteins link pre- and post-synaptic sites, and play essential roles in promoting synapse formation and maturation, maintaining synapse number and type, accumulating neurotransmitter receptors and ion channels, controlling neuronal differentiation, and even regulating synaptic plasticity directly. Alteration of the interactions of CAMs leads to structural and functional impairments, which results in many neurological disorders, such as autism, Alzheimer's disease and schizophrenia. Therefore, it is crucial to understand the functions of CAMs during development and in the mature neural system, as well as in the pathogenesis of some neurological disorders. Here, we review the function of the major classes of CAMs, and how dysfunction of CAMs relates to several neurological disorders.

  5. Defects of the Glycinergic Synapse in Zebrafish

    Science.gov (United States)

    Ogino, Kazutoyo; Hirata, Hiromi

    2016-01-01

    Glycine mediates fast inhibitory synaptic transmission. Physiological importance of the glycinergic synapse is well established in the brainstem and the spinal cord. In humans, the loss of glycinergic function in the spinal cord and brainstem leads to hyperekplexia, which is characterized by an excess startle reflex to sudden acoustic or tactile stimulation. In addition, glycinergic synapses in this region are also involved in the regulation of respiration and locomotion, and in the nociceptive processing. The importance of the glycinergic synapse is conserved across vertebrate species. A teleost fish, the zebrafish, offers several advantages as a vertebrate model for research of glycinergic synapse. Mutagenesis screens in zebrafish have isolated two motor defective mutants that have pathogenic mutations in glycinergic synaptic transmission: bandoneon (beo) and shocked (sho). Beo mutants have a loss-of-function mutation of glycine receptor (GlyR) β-subunit b, alternatively, sho mutant is a glycinergic transporter 1 (GlyT1) defective mutant. These mutants are useful animal models for understanding of glycinergic synaptic transmission and for identification of novel therapeutic agents for human diseases arising from defect in glycinergic transmission, such as hyperekplexia or glycine encephalopathy. Recent advances in techniques for genome editing and for imaging and manipulating of a molecule or a physiological process make zebrafish more attractive model. In this review, we describe the glycinergic defective zebrafish mutants and the technical advances in both forward and reverse genetic approaches as well as in vivo visualization and manipulation approaches for the study of the glycinergic synapse in zebrafish. PMID:27445686

  6. Interplay between membrane elasticity and active cytoskeleton forces regulates the aggregation dynamics of the immunological synapse

    Science.gov (United States)

    Dharan, Nadiv; Farago, Oded

    Adhesion between a T cell and an antigen presenting cell is achieved by TCR-pMHC and LFA1-ICAM1 protein complexes. These segregate to form a special pattern, known as the immunological synapse (IS), consisting of a central quasi-circular domain of TCR-pMHC bonds surrounded by a peripheral domain of LFA1-ICAM1 complexes. Insights gained from imaging studies had led to the conclusion that the formation of the central adhesion domain in the IS is driven by active (ATP-driven) mechanisms. Recent studies, however, suggested that passive (thermodynamic) mechanisms may also play an important role in this process. Here, we present a simple physical model, taking into account the membrane-mediated thermodynamic attraction between the TCR-pMHC bonds and the effective forces that they experience due to ATP-driven actin retrograde flow and transport by dynein motor proteins. Monte Carlo simulations of the model exhibit a good spatio-temporal agreement with the experimentally observed pattern evolution of the TCR-pMHC microclusters. The agreement is lost when one of the aggregation mechanisms is "muted", which helps to identify the respective roles in the process. We conclude that actin retrograde flow drives the centripetal motion of TCR-pMHC bonds, while the membrane-mediated interactions facilitate microcluster formation and growth. In the absence of dynein motors, the system evolves into a ring-shaped pattern, which highlights the role of dynein motors in the formation of the final concentric pattern. The interplay between the passive and active mechanisms regulates the rate of the accumulation process, which in the absence of one them proceeds either too quickly or slowly.

  7. Prevention of Noise Damage to Cochlear Synapses

    Science.gov (United States)

    2017-10-01

    difference We therefore conclude that it is more likely that female hormones are protecting against susceptibility as opposed to male hormones...of synapse counts among all experimental conditions, those in A as well as saline/vehicle and systemic 4 mg/Kg IEM-1460 (IEMs4mg). There is no... animals at the approximate level of the animals ’ ears. The variation of the noise level across the animals ’ ears and across time is ə dB

  8. CNS Neurons Deposit Laminin α5 to Stabilize Synapses

    Directory of Open Access Journals (Sweden)

    Mitchell H. Omar

    2017-10-01

    Full Text Available Summary: Synapses in the developing brain are structurally dynamic but become stable by early adulthood. We demonstrate here that an α5-subunit-containing laminin stabilizes synapses during this developmental transition. Hippocampal neurons deposit laminin α5 at synapses during adolescence as connections stabilize. Disruption of laminin α5 in neurons causes dramatic fluctuations in dendritic spine head size that can be rescued by exogenous α5-containing laminin. Conditional deletion of laminin α5 in vivo increases dendritic spine size and leads to an age-dependent loss of synapses accompanied by behavioral defects. Remaining synapses have larger postsynaptic densities and enhanced neurotransmission. Finally, we provide evidence that laminin α5 acts through an integrin α3β1-Abl2 kinase-p190RhoGAP signaling cascade and partners with laminin β2 to regulate dendritic spine density and behavior. Together, our results identify laminin α5 as a stabilizer of dendritic spines and synapses in the brain and elucidate key cellular and molecular mechanisms by which it acts. : In the developing brain, synaptic structure transitions from dynamic to stable by early adulthood. Omar et al. identify a laminin molecule deposited at synapses in the brain that is essential for dendritic spine structural regulation and synapse stability between early postnatal development and adulthood. Keywords: extracellular matrix, ECM, synapse maturation, adhesion, Lama5, Lamb2, synapse loss, stability, structural plasticity, motility

  9. Tectonic and lithological controls on fluvial landscape development in central-eastern Portugal: Insights from long profile tributary stream analyses

    Science.gov (United States)

    Martins, António A.; Cabral, João; Cunha, Pedro P.; Stokes, Martin; Borges, José; Caldeira, Bento; Martins, A. Cardoso

    2017-01-01

    This study examines the long profiles of tributaries of the Tagus and Zêzere rivers in Portugal (West Iberia) in order to provide new insights into patterns, timing, and controls on drainage development during the Quaternary incision stage. The studied streams are incised into a relict culminant fluvial surface, abandoned at the beginning of the incision stage. The streams flow through a landscape with bedrock variations in lithology (mainly granites and metasediments) and faulted blocks with distinct uplift rates. The long profiles of the analyzed streams record an older transitory knickpoint/knickzone separating (1) an upstream relict graded profile, with lower steepness and higher concavity, that reflects a long period of quasi-equilibrium conditions reached after the beginning of the incision stage, and (2) a downstream rejuvenated long profile, with steeper gradient and lower concavity, particularly for the final reach, which is often convex. The rejuvenated reaches testify to the upstream propagation of several incision waves, interpreted as the response of each stream to increasing crustal uplift and prolonged periods of base-level lowering by the trunk drainages, coeval with low sea level conditions. The morphological configurations of the long profiles enabled spatial and relative temporal patterns of incisions to be quantified. The incision values of streams flowing on the Portuguese Central Range (PCR; ca. 380-150 m) are variable but generally higher than the incision values of streams flowing on the adjacent South Portugal Planation Surface (SPPS; ca. 220-110 m), corroborating differential uplift of the PCR relative to the SPPS. Owing to the fact that the relict graded profiles can be correlated with the Tagus River T1 terrace (1.1-0.9 My) present in the study area, incision rates can be estimated (1) for the streams located in the PCR, 0.38-0.15 m/ky and (2) for the streams flowing on the SPPS, 0.22-0.12 m/ky. The differential uplift inferred in the

  10. Microglia-Synapse Pathways: Promising Therapeutic Strategy for Alzheimer's Disease

    Science.gov (United States)

    Xie, Jingdun; Wang, Haitao

    2017-01-01

    The main hallmarks of Alzheimer's disease (AD) are extracellular deposits of amyloid plaques and intracellular accumulation of hyperphosphorylated neurofibrillary tangles (tau). However, the mechanisms underlying these neuropathological changes remain largely unclear. To date, plenty of studies have shown that microglia-mediated neuroinflammation contributes to the pathogenesis of AD, and the microglia-synapse pathways have been repeatedly identified as the crucial factor in the disease process. In this review, evidences from microglia and synapse studies are presented, and the role of microglia in the pathogenesis of AD, the contributing factors to synapse dysfunction, and the role and mechanisms of microglia-synapse pathways will be discussed. PMID:28473983

  11. How synapses can enhance sensibility of a neural network

    Science.gov (United States)

    Protachevicz, P. R.; Borges, F. S.; Iarosz, K. C.; Caldas, I. L.; Baptista, M. S.; Viana, R. L.; Lameu, E. L.; Macau, E. E. N.; Batista, A. M.

    2018-02-01

    In this work, we study the dynamic range in a neural network modelled by cellular automaton. We consider deterministic and non-deterministic rules to simulate electrical and chemical synapses. Chemical synapses have an intrinsic time-delay and are susceptible to parameter variations guided by learning Hebbian rules of behaviour. The learning rules are related to neuroplasticity that describes change to the neural connections in the brain. Our results show that chemical synapses can abruptly enhance sensibility of the neural network, a manifestation that can become even more predominant if learning rules of evolution are applied to the chemical synapses.

  12. Eruptive dynamics and hazards associated with obsidian bearing ignimbrites of the Geghama Volcanic Highland, Central Armenia: a textural insight

    Science.gov (United States)

    Matthews, Zoe; Manning, Christina J.

    2017-04-01

    The Geghama Volcanic highland in central Armenia is an ideal setting to study the young ( 750-25 ka [1]) volcanism that characterises the Lesser Caucasus region. The volcanism in the area is bimodal in composition: the eastern highlands are dominated by numerous monogenetic scoria cones, whilst the west shows more evolved volcanism centered on two obsidian bearing, polygenetic domes (Hatis and Gutanasar) [2]. Activity at Hatis and Gutanasar is thought to have spanned 550ka-200ka [3] and produced a range of products including obsidian flows, ignimbrites and basaltic scoria cones, consistent with long lived and complex magma storage systems. During a similar time period there is evidence for the presence of hominin groups in the surrounding region [3] and it is likely that at least some of the volcanic activity at Hatis and Gutanasar impacted on their distribution [4]. A better understanding of the eruptive behaviour of these volcanoes during this period could therefore shed light on the effect of volcanic activity on the dispersal of man through this period. Whilst large regional studies have striven to better understand the timing and source of volcanism in Armenia, there have been few detailed studies on single volcanoes. Obsidian is ubiquitous within the volcanic material of both Gutanasar and Hatis as lava flows, dome deposits and within ignimbrites. This study aims to better understand the eruptive history of Gutanasar, with specific focus upon the determination of the petrogenetic history of obsidian lenses observed within the ignimbrite deposits. Identification of these obsidians as the result of welding or in-situ melting will help constrain eruptive volumes and flow thickness, important for the reconstruction of palaeo-volcanic hazards. In order to interpret how this obsidian was deposited, macro textural analysis is combined with micro textural measurements of microlite crystals. Quantitative measurements of microlites in obsidian can provide significant

  13. Neuromuscular NMDA Receptors Modulate Developmental Synapse Elimination.

    Science.gov (United States)

    Personius, Kirkwood E; Slusher, Barbara S; Udin, Susan B

    2016-08-24

    At birth, each mammalian skeletal muscle fiber is innervated by multiple motor neurons, but in a few weeks, all but one of those axons retracts (Redfern, 1970) and differential activity between inputs controls this phenomenon (Personius and Balice-Gordon, 2001; Sanes and Lichtman, 2001; Personius et al., 2007; Favero et al., 2012). Acetylcholine, the primary neuromuscular transmitter, has long been presumed to mediate this activity-dependent process (O'Brien et al., 1978), but glutamatergic transmission also occurs at the neuromuscular junction (Berger et al., 1995; Grozdanovic and Gossrau, 1998; Mays et al., 2009). To test the role of neuromuscular NMDA receptors, we assessed their contribution to muscle calcium fluxes in mice and tested whether they influence removal of excess innervation at the end plate. Developmental synapse pruning was slowed by reduction of NMDA receptor activation or expression and by reduction of glutamate production. Conversely, pruning is accelerated by application of exogenous NMDA. We also found that NMDA induced increased muscle calcium only during the first 2 postnatal weeks. Therefore, neuromuscular NMDA receptors play previously unsuspected roles in neuromuscular activity and synaptic pruning during development. In normal adult muscle, each muscle fiber is innervated by a single axon, but at birth, fibers are multiply innervated. Elimination of excess connections requires neural activity; because the neuromuscular junction (NMJ) is a cholinergic synapse, acetylcholine has been assumed to be the critical mediator of activity. However, glutamate receptors are also expressed at the NMJ. We found that axon removal in mice is slowed by pharmacological and molecular manipulations that decrease signaling through neuromuscular NMDA receptors, whereas application of exogenous NMDA at the NMJ accelerates synapse elimination and increases muscle calcium levels during the first 2 postnatal weeks. Therefore, neuromuscular NMDA receptors play

  14. Triheteromeric NMDA Receptors at Hippocampal Synapses

    Science.gov (United States)

    Tovar, Kenneth R.; McGinley, Matthew J.; Westbrook, Gary L.

    2013-01-01

    NMDA receptors are composed of two GluN1 (N1) and two GluN2 (N2) subunits. Constituent N2 subunits control the pharmacological and kinetic characteristics of the receptor. NMDA receptors in hippocampal or cortical neurons are often thought of as diheteromeric, i.e., containing only one type of N2 subunit. However, triheteromeric receptors with more than one type of N2 subunit also have been reported and the relative contribution of di- and triheteromeric NMDA receptors at synapses has been difficult to assess. Because wild-type hippocampal principal neurons express N1, N2A and N2B, we used cultured hippocampal principal neurons from N2A and N2B-knockout mice as templates for diheteromeric synaptic receptors. Summation of N1/N2B and N1/N2A excitatory postsynaptic currents could not account for the deactivation kinetics of wild-type excitatory postsynaptic currents (EPSCs) however. To make a quantitative estimate of NMDA receptor subtypes at wild-type synapses, we used the deactivation kinetics, as well as the effects of the competitive antagonist NVP-AAM077. Our results indicate that three types of NMDA receptors contribute to the wild-type EPSC, with at least two-thirds being triheteromeric receptors. Functional isolation of synaptic triheteromeric receptors revealed deactivation kinetics and pharmacology distinct from either diheteromeric receptor subtype. Because of differences in open probability, synaptic triheteromeric receptors outnumbered N1/N2A receptors by 5.8 to 1 and N1/N2B receptors by 3.2 to 1. Our results suggest that triheteromeric NMDA receptors must be either preferentially assembled or preferentially localized at synapses. PMID:23699525

  15. The number and distribution of AMPA receptor channels containing fast kinetic GluA3 and GluA4 subunits at auditory nerve synapses depend on the target cells.

    Science.gov (United States)

    Rubio, María E; Matsui, Ko; Fukazawa, Yugo; Kamasawa, Naomi; Harada, Harumi; Itakura, Makoto; Molnár, Elek; Abe, Manabu; Sakimura, Kenji; Shigemoto, Ryuichi

    2017-11-01

    The neurotransmitter receptor subtype, number, density, and distribution relative to the location of transmitter release sites are key determinants of signal transmission. AMPA-type ionotropic glutamate receptors (AMPARs) containing GluA3 and GluA4 subunits are prominently expressed in subsets of neurons capable of firing action potentials at high frequencies, such as auditory relay neurons. The auditory nerve (AN) forms glutamatergic synapses on two types of relay neurons, bushy cells (BCs) and fusiform cells (FCs) of the cochlear nucleus. AN-BC and AN-FC synapses have distinct kinetics; thus, we investigated whether the number, density, and localization of GluA3 and GluA4 subunits in these synapses are differentially organized using quantitative freeze-fracture replica immunogold labeling. We identify a positive correlation between the number of AMPARs and the size of AN-BC and AN-FC synapses. Both types of AN synapses have similar numbers of AMPARs; however, the AN-BC have a higher density of AMPARs than AN-FC synapses, because the AN-BC synapses are smaller. A higher number and density of GluA3 subunits are observed at AN-BC synapses, whereas a higher number and density of GluA4 subunits are observed at AN-FC synapses. The intrasynaptic distribution of immunogold labeling revealed that AMPAR subunits, particularly GluA3, are concentrated at the center of the AN-BC synapses. The central distribution of AMPARs is absent in GluA3-knockout mice, and gold particles are evenly distributed along the postsynaptic density. GluA4 gold labeling was homogenously distributed along both synapse types. Thus, GluA3 and GluA4 subunits are distributed at AN synapses in a target-cell-dependent manner.

  16. Cell adhesion and matricellular support by astrocytes of the tripartite synapse

    NARCIS (Netherlands)

    Hillen, Anne E J; Burbach, J Peter H; Hol, Elly M

    2018-01-01

    Astrocytes contribute to the formation, function, and plasticity of synapses. Their processes enwrap the neuronal components of the tripartite synapse, and due to this close interaction they are perfectly positioned to modulate neuronal communication. The interaction between astrocytes and synapses

  17. Astrocytic Gliotransmitter: Diffusion Dynamics and Induction of Information Processing on Tripartite Synapses

    Science.gov (United States)

    Li, Jia-Jia; Du, Meng-Meng; Wang, Rong; Lei, Jin-Zhi; Wu, Ying

    Astrocytes have important functions in the central nervous system (CNS) and are significant in our understanding of the neuronal network. Astrocytes modulate neuronal firings at both single cell level of tripartite synapses and the neuron-glial network level. Astrocytes release adenosine triphosphate (ATP) and glutamate into the neuron-glial network. These gliotransmitters diffuse over the network to form long distance signals to regulate neuron firings. In this paper, we study a neuron-glial network model that includes a diffusion of astrocytic ATP and glutamate to investigate how long distance diffusion of the gliotransmitters affects the information processing in a neuronal network. We find that gliotransmitters diffusion can compensate for the failure of information processing of interneuron network firings induced by defectively coupled synapses. Moreover, we find that calcium waves in astrocyte network and firings in interneuron network are both sensitive to the glutamate diffusion rate and feedback intensities of astrocytes on interneurons.

  18. Rhythmic changes in synapse numbers in Drosophila melanogaster motor terminals.

    Directory of Open Access Journals (Sweden)

    Santiago Ruiz

    Full Text Available Previous studies have shown that the morphology of the neuromuscular junction of the flight motor neuron MN5 in Drosophila melanogaster undergoes daily rhythmical changes, with smaller synaptic boutons during the night, when the fly is resting, than during the day, when the fly is active. With electron microscopy and laser confocal microscopy, we searched for a rhythmic change in synapse numbers in this neuron, both under light:darkness (LD cycles and constant darkness (DD. We expected the number of synapses to increase during the morning, when the fly has an intense phase of locomotion activity under LD and DD. Surprisingly, only our DD data were consistent with this hypothesis. In LD, we found more synapses at midnight than at midday. We propose that under LD conditions, there is a daily rhythm of formation of new synapses in the dark phase, when the fly is resting, and disassembly over the light phase, when the fly is active. Several parameters appeared to be light dependent, since they were affected differently under LD or DD. The great majority of boutons containing synapses had only one and very few had either two or more, with a 70∶25∶5 ratio (one, two and three or more synapses in LD and 75∶20∶5 in DD. Given the maintenance of this proportion even when both bouton and synapse numbers changed with time, we suggest that there is a homeostatic mechanism regulating synapse distribution among MN5 boutons.

  19. Synaptotagmin 7 confers frequency invariance onto specialized depressing synapses

    Science.gov (United States)

    Turecek, Josef; Jackman, Skyler L.; Regehr, Wade G.

    2017-11-01

    At most synapses in the brain, short-term plasticity dynamically modulates synaptic strength. Rapid frequency-dependent changes in synaptic strength have key roles in sensory adaptation, gain control and many other neural computations. However, some auditory, vestibular and cerebellar synapses maintain constant strength over a wide range of firing frequencies, and as a result efficiently encode firing rates. Despite its apparent simplicity, frequency-invariant transmission is difficult to achieve because of inherent synaptic nonlinearities. Here we study frequency-invariant transmission at synapses from Purkinje cells to deep cerebellar nuclei and at vestibular synapses in mice. Prolonged activation of these synapses leads to initial depression, which is followed by steady-state responses that are frequency invariant for their physiological activity range. We find that synaptotagmin 7 (Syt7), a calcium sensor for short-term facilitation, is present at both synapses. It was unclear why a sensor for facilitation would be present at these and other depressing synapses. We find that at Purkinje cell and vestibular synapses, Syt7 supports facilitation that is normally masked by depression, which can be revealed in wild-type mice but is absent in Syt7 knockout mice. In wild-type mice, facilitation increases with firing frequency and counteracts depression to produce frequency-invariant transmission. In Syt7-knockout mice, Purkinje cell and vestibular synapses exhibit conventional use-dependent depression, weakening to a greater extent as the firing frequency is increased. Presynaptic rescue of Syt7 expression restores both facilitation and frequency-invariant transmission. Our results identify a function for Syt7 at synapses that exhibit overall depression, and demonstrate that facilitation has an unexpected and important function in producing frequency-invariant transmission.

  20. Nonlinear Synapses for Large-Scale Models: An Efficient Representation Enables Complex Synapse Dynamics Modeling in Large-Scale Simulations

    Directory of Open Access Journals (Sweden)

    Eric eHu

    2015-09-01

    Full Text Available Chemical synapses are comprised of a wide collection of intricate signaling pathways involving complex dynamics. These mechanisms are often reduced to simple spikes or exponential representations in order to enable computer simulations at higher spatial levels of complexity. However, these representations cannot capture important nonlinear dynamics found in synaptic transmission. Here, we propose an input-output (IO synapse model capable of generating complex nonlinear dynamics while maintaining low computational complexity. This IO synapse model is an extension of a detailed mechanistic glutamatergic synapse model capable of capturing the input-output relationships of the mechanistic model using the Volterra functional power series. We demonstrate that the IO synapse model is able to successfully track the nonlinear dynamics of the synapse up to the third order with high accuracy. We also evaluate the accuracy of the IO synapse model at different input frequencies and compared its performance with that of kinetic models in compartmental neuron models. Our results demonstrate that the IO synapse model is capable of efficiently replicating complex nonlinear dynamics that were represented in the original mechanistic model and provide a method to replicate complex and diverse synaptic transmission within neuron network simulations.

  1. Morphotectonic control of the Białka drainage basin (Central Carpathians: Insights from DEM and morphometric analysis.

    Directory of Open Access Journals (Sweden)

    Wołosiewicz Bartosz

    2016-06-01

    Full Text Available The Białka river valley is directly related to a deep NNW-SSE oriented fault zone. According to the results of previous morphometric analyses, the Białka drainage basin is one of the most tectonically active zones in the Central Carpathians. It is also located within an area of high seismic activity.

  2. Recruitment of dynein to the Jurkat immunological synapse

    Science.gov (United States)

    Combs, Jeffrey; Kim, Soo Jin; Tan, Sarah; Ligon, Lee A.; Holzbaur, Erika L. F.; Kuhn, Jeffrey; Poenie, Martin

    2006-10-01

    Binding of T cells to antigen-presenting cells leads to the formation of the immunological synapse, translocation of the microtubule-organizing center (MTOC) to the synapse, and focused secretion of effector molecules. Here, we show that upon activation of Jurkat cells microtubules project from the MTOC to a ring of the scaffolding protein ADAP, localized at the synapse. Loss of ADAP, but not lymphocyte function-associated antigen 1, leads to a severe defect in MTOC polarization at the immunological synapse. The microtubule motor protein cytoplasmic dynein clusters into a ring at the synapse, colocalizing with the ADAP ring. ADAP coprecipitates with dynein from activated Jurkat cells, and loss of ADAP prevents MTOC translocation and the specific recruitment of dynein to the synapse. These results suggest a mechanism that links signaling through the T cell receptor to translocation of the MTOC, in which the minus end-directed motor cytoplasmic dynein, localized at the synapse through an interaction with ADAP, reels in the MTOC, allowing for directed secretion along the polarized microtubule cytoskeleton. microtubules | T cell polarization | -catenin | PLAC-24

  3. Recruitment of activation receptors at inhibitory NK cell immune synapses.

    Directory of Open Access Journals (Sweden)

    Nicolas Schleinitz

    2008-09-01

    Full Text Available Natural killer (NK cell activation receptors accumulate by an actin-dependent process at cytotoxic immune synapses where they provide synergistic signals that trigger NK cell effector functions. In contrast, NK cell inhibitory receptors, including members of the MHC class I-specific killer cell Ig-like receptor (KIR family, accumulate at inhibitory immune synapses, block actin dynamics, and prevent actin-dependent phosphorylation of activation receptors. Therefore, one would predict inhibition of actin-dependent accumulation of activation receptors when inhibitory receptors are engaged. By confocal imaging of primary human NK cells in contact with target cells expressing physiological ligands of NK cell receptors, we show here that this prediction is incorrect. Target cells included a human cell line and transfected Drosophila insect cells that expressed ligands of NK cell activation receptors in combination with an MHC class I ligand of inhibitory KIR. The two NK cell activation receptors CD2 and 2B4 accumulated and co-localized with KIR at inhibitory immune synapses. In fact, KIR promoted CD2 and 2B4 clustering, as CD2 and 2B4 accumulated more efficiently at inhibitory synapses. In contrast, accumulation of KIR and of activation receptors at inhibitory synapses correlated with reduced density of the integrin LFA-1. These results imply that inhibitory KIR does not prevent CD2 and 2B4 signaling by blocking their accumulation at NK cell immune synapses, but by blocking their ability to signal within inhibitory synapses.

  4. A shared synapse architecture for efficient FPGA implementation of autoencoders.

    Science.gov (United States)

    Suzuki, Akihiro; Morie, Takashi; Tamukoh, Hakaru

    2018-01-01

    This paper proposes a shared synapse architecture for autoencoders (AEs), and implements an AE with the proposed architecture as a digital circuit on a field-programmable gate array (FPGA). In the proposed architecture, the values of the synapse weights are shared between the synapses of an input and a hidden layer, and between the synapses of a hidden and an output layer. This architecture utilizes less of the limited resources of an FPGA than an architecture which does not share the synapse weights, and reduces the amount of synapse modules used by half. For the proposed circuit to be implemented into various types of AEs, it utilizes three kinds of parameters; one to change the number of layers' units, one to change the bit width of an internal value, and a learning rate. By altering a network configuration using these parameters, the proposed architecture can be used to construct a stacked AE. The proposed circuits are logically synthesized, and the number of their resources is determined. Our experimental results show that single and stacked AE circuits utilizing the proposed shared synapse architecture operate as regular AEs and as regular stacked AEs. The scalability of the proposed circuit and the relationship between the bit widths and the learning results are also determined. The clock cycles of the proposed circuits are formulated, and this formula is used to estimate the theoretical performance of the circuit when the circuit is used to construct arbitrary networks.

  5. Genotyping and phylogenetic analysis of Yersinia pestis by MLVA: insights into the worldwide expansion of Central Asia plague foci.

    Science.gov (United States)

    Li, Yanjun; Cui, Yujun; Hauck, Yolande; Platonov, Mikhail E; Dai, Erhei; Song, Yajun; Guo, Zhaobiao; Pourcel, Christine; Dentovskaya, Svetlana V; Anisimov, Andrey P; Yang, Ruifu; Vergnaud, Gilles

    2009-06-22

    The species Yersinia pestis is commonly divided into three classical biovars, Antiqua, Medievalis, and Orientalis, belonging to subspecies pestis pathogenic for human and the (atypical) non-human pathogenic biovar Microtus (alias Pestoides) including several non-pestis subspecies. Recent progress in molecular typing methods enables large-scale investigations in the population structure of this species. It is now possible to test hypotheses about its evolution which were proposed decades ago. For instance the three classical biovars of different geographical distributions were suggested to originate from Central Asia. Most investigations so far have focused on the typical pestis subspecies representatives found outside of China, whereas the understanding of the emergence of this human pathogen requires the investigation of strains belonging to subspecies pestis from China and to the Microtus biovar. Multi-locus VNTR analysis (MLVA) with 25 loci was performed on a collection of Y. pestis isolates originating from the majority of the known foci worldwide and including typical rhamnose-negative subspecies pestis as well as rhamnose-positive subspecies pestis and biovar Microtus. More than 500 isolates from China, the Former Soviet Union (FSU), Mongolia and a number of other foci around the world were characterized and resolved into 350 different genotypes. The data revealed very close relationships existing between some isolates from widely separated foci as well as very high diversity which can conversely be observed between nearby foci. The results obtained are in full agreement with the view that the Y. pestis subsp. pestis pathogenic for humans emerged in the Central Asia region between China, Kazakhstan, Russia and Mongolia, only three clones of which spread out of Central Asia. The relationships among the strains in China, Central Asia and the rest of the world based on the MLVA25 assay provide an unprecedented view on the expansion and microevolution of Y

  6. Monitoring single-synapse glutamate release and presynaptic calcium concentration in organised brain tissue.

    Science.gov (United States)

    Jensen, Thomas P; Zheng, Kaiyu; Tyurikova, Olga; Reynolds, James P; Rusakov, Dmitri A

    2017-06-01

    Brain function relies in large part on Ca 2+ -dependent release of the excitatory neurotransmitter glutamate from neuronal axons. Establishing the causal relationship between presynaptic Ca 2+ dynamics and probabilistic glutamate release is therefore a fundamental quest across neurosciences. Its progress, however, has hitherto depended primarily on the exploration of either cultured nerve cells or giant central synapses accessible to direct experimental probing in situ. Here we show that combining patch-clamp with time-resolved imaging of Ca 2+ -sensitive fluorescence lifetime of Oregon Green BAPTA-1 (Tornado-FLIM) enables readout of single spike-evoked presynaptic Ca 2+ concentration dynamics, with nanomolar sensitivity, in individual neuronal axons in acute brain slices. In parallel, intensity Tornado imaging of a locally expressed extracellular optical glutamate sensor iGluSnFr provides direct monitoring of single-quantum, single-synapse glutamate releases in situ. These two methods pave the way for simultaneous registration of presynaptic Ca 2+ dynamics and transmitter release in an intact brain at the level of individual synapses. Copyright © 2017. Published by Elsevier Ltd.

  7. The massacre mass grave of Schöneck-Kilianstädten reveals new insights into collective violence in Early Neolithic Central Europe.

    Science.gov (United States)

    Meyer, Christian; Lohr, Christian; Gronenborn, Detlef; Alt, Kurt W

    2015-09-08

    Conflict and warfare are central but also disputed themes in discussions about the European Neolithic. Although a few recent population studies provide broad overviews, only a very limited number of currently known key sites provide precise insights into moments of extreme and mass violence and their impact on Neolithic societies. The massacre sites of Talheim, Germany, and Asparn/Schletz, Austria, have long been the focal points around which hypotheses concerning a final lethal crisis of the first Central European farmers of the Early Neolithic Linearbandkeramik Culture (LBK) have concentrated. With the recently examined LBK mass grave site of Schöneck-Kilianstädten, Germany, we present new conclusive and indisputable evidence for another massacre, adding new data to the discussion of LBK violence patterns. At least 26 individuals were violently killed by blunt force and arrow injuries before being deposited in a commingled mass grave. Although the absence and possible abduction of younger females has been suggested for other sites previously, a new violence-related pattern was identified here: the intentional and systematic breaking of lower limbs. The abundance of the identified perimortem fractures clearly indicates torture and/or mutilation of the victims. The new evidence presented here for unequivocal lethal violence on a large scale is put into perspective for the Early Neolithic of Central Europe and, in conjunction with previous results, indicates that massacres of entire communities were not isolated occurrences but rather were frequent features of the last phases of the LBK.

  8. Examining runoff generation processes in the Selke catchment in central Germany: Insights from data and semi-distributed numerical model

    Directory of Open Access Journals (Sweden)

    Sumit Sinha

    2016-09-01

    New hydrological insights for the region: We examined the spatio-temporal variation of runoff generating mechanisms on the sub-basin level on seasonal basis. Our analysis reveals that the runoff generation in the Selke catchment is primarily dominated by shallow sub-surface flow and very rarely the contribution from Dunne overland flow exceeds sub-surface flow. Runoff generated by Hortonian mechanism is very infrequent and almost negligible. We also examined the spatio-temporal variation of runoff coefficients on seasonal basis as well as for individual storms. Due to higher precipitation and topographic relief in the upland catchment of Silberhutte, the runoff coefficients were consistently higher and its peak was found in winter months due to lower evapotranspiration.

  9. The Extracellular and Cytoplasmic Domains of Syndecan Cooperate Postsynaptically to Promote Synapse Growth at the Drosophila Neuromuscular Junction.

    Science.gov (United States)

    Nguyen, Margaret U; Kwong, Jereen; Chang, Julia; Gillet, Victoria G; Lee, Rachel M; Johnson, Karl Gregory

    2016-01-01

    The heparan sulfate proteoglycan (HSPG) Syndecan (Sdc) is a crucial regulator of synapse development and growth in both vertebrates and invertebrates. In Drosophila, Sdc binds via its extracellular heparan sulfate (HS) sidechains to the receptor protein tyrosine phosphatase LAR to promote the morphological growth of the neuromuscular junction (NMJ). To date, however, little else is known about the molecular mechanisms by which Sdc functions to promote synapse growth. Here we show that all detectable Sdc found at the NMJ is provided by the muscle, strongly suggesting a post-synaptic role for Sdc. We also show that both the cytoplasmic and extracellular domains of Sdc are required to promote synapse growth or to rescue Sdc loss of function. We report the results of a yeast two-hybrid screen using the cytoplasmic domains of Sdc as bait, and identify several novel candidate binding partners for the cytoplasmic domains of Sdc. Together, these studies provide new insight into the mechanism of Sdc function at the NMJ, and provide enticing future directions for further exploring how Sdc promotes synapse growth.

  10. The Extracellular and Cytoplasmic Domains of Syndecan Cooperate Postsynaptically to Promote Synapse Growth at the Drosophila Neuromuscular Junction.

    Directory of Open Access Journals (Sweden)

    Margaret U Nguyen

    Full Text Available The heparan sulfate proteoglycan (HSPG Syndecan (Sdc is a crucial regulator of synapse development and growth in both vertebrates and invertebrates. In Drosophila, Sdc binds via its extracellular heparan sulfate (HS sidechains to the receptor protein tyrosine phosphatase LAR to promote the morphological growth of the neuromuscular junction (NMJ. To date, however, little else is known about the molecular mechanisms by which Sdc functions to promote synapse growth. Here we show that all detectable Sdc found at the NMJ is provided by the muscle, strongly suggesting a post-synaptic role for Sdc. We also show that both the cytoplasmic and extracellular domains of Sdc are required to promote synapse growth or to rescue Sdc loss of function. We report the results of a yeast two-hybrid screen using the cytoplasmic domains of Sdc as bait, and identify several novel candidate binding partners for the cytoplasmic domains of Sdc. Together, these studies provide new insight into the mechanism of Sdc function at the NMJ, and provide enticing future directions for further exploring how Sdc promotes synapse growth.

  11. Visualization by high resolution immunoelectron microscopy of the transient receptor potential vanilloid-1 at inhibitory synapses of the mouse dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Miren-Josune Canduela

    Full Text Available We have recently shown that the transient receptor potential vanilloid type 1 (TRPV1, a non-selective cation channel in the peripheral and central nervous system, is localized at postsynaptic sites of the excitatory perforant path synapses in the hippocampal dentate molecular layer (ML. In the present work, we have studied the distribution of TRPV1 at inhibitory synapses in the ML. With this aim, a preembedding immunogold method for high resolution electron microscopy was applied to mouse hippocampus. About 30% of the inhibitory synapses in the ML are TRPV1 immunopositive, which is mostly localized perisynaptically (∼60% of total immunoparticles at postsynaptic dendritic membranes receiving symmetric synapses in the inner 1/3 of the layer. This TRPV1 pattern distribution is not observed in the ML of TRPV1 knock-out mice. These findings extend the knowledge of the subcellular localization of TRPV1 to inhibitory synapses of the dentate molecular layer where the channel, in addition to excitatory synapses, is present.

  12. Thrombospondins 1 and 2 are important for afferent synapse formation and function in the inner ear.

    Science.gov (United States)

    Mendus, Diana; Sundaresan, Srividya; Grillet, Nicolas; Wangsawihardja, Felix; Leu, Rose; Müller, Ulrich; Jones, Sherri M; Mustapha, Mirna

    2014-04-01

    Thrombospondins (TSPs) constitute a family of secreted extracellular matrix proteins that have been shown to be involved in the formation of synapses in the central nervous system. In this study, we show that TSP1 and TSP2 are expressed in the cochlea, and offer the first description of their putative roles in afferent synapse development and function in the inner ear. We examined mice with deletions of TSP1, TSP2 and both (TSP1/TSP2) for inner ear development and function. Immunostaining for synaptic markers indicated a significant decrease in the number of formed afferent synapses in the cochleae of TSP2 and TSP1/TSP2 knockout (KO) mice at postnatal day (P)29. In functional studies, TSP2 and TSP1/TSP2 KO mice showed elevated auditory brainstem response (ABR) thresholds as compared with wild-type littermates, starting at P15, with the most severe phenotype being seen for TSP1/TSP2 KO mice. TSP1/TSP2 KO mice also showed reduced wave I amplitudes of ABRs and vestibular evoked potentials, suggesting synaptic dysfunction in both the auditory and vestibular systems. Whereas ABR thresholds in TSP1 KO mice were relatively unaffected at early ages, TSP1/TSP2 KO mice showed the most severe phenotype among all of the genotypes tested, suggesting functional redundancy between the two genes. On the basis of the above results, we propose that TSPs play an important role in afferent synapse development and function of the inner ear. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. GABAA Receptor Activity Shapes the Formation of Inhibitory Synapses between Developing Medium Spiny Neurons

    Directory of Open Access Journals (Sweden)

    Jessica eArama

    2015-08-01

    Full Text Available Basal ganglia play an essential role in motor coordination and cognitive functions. The GABAergic medium spiny neurons (MSNs account for ~95 % of all the neurons in this brain region. Central to the normal functioning of MSNs is integration of synaptic activity arriving from the glutamatergic corticostriatal and thalamostriatal afferents, with synaptic inhibition mediated by local interneurons and MSN axon collaterals. In this study we have investigated how the specific types of GABAergic synapses between the MSNs develop over time, and how the activity of GABAA receptors (GABAARs influences this development. Isolated embryonic (E17 MSNs form a homogenous population in vitro and display spontaneous synaptic activity and functional properties similar to their in vivo counterparts. In dual whole-cell recordings of synaptically connected pairs of MSNs, action potential-activated synaptic events were detected between 7 and 14 days in vitro (DIV, which coincided with the shift in GABAAR operation from depolarization to hyperpolarization, as detected indirectly by intracellular calcium imaging. In parallel, the predominant subtypes of inhibitory synapses, which innervate dendrites of MSNs and contain GABAAR α1 or α2 subunits, underwent distinct changes in the size of postsynaptic clusters, with α1 becoming smaller and α2 larger over time, while both the percentage and the size of mixed α1/α2-postsynaptic clusters were increased. When activity of GABAARs was under chronic blockade between 4-7 DIV, the structural properties of these synapses remained unchanged. In contrast, chronic inhibition of GABAARs between7-14 DIV led to reduction in size of α1- and α1/α2-postsynaptic clusters and a concomitant increase in number and size of α2-postsynaptic clusters. Thus, the main subtypes of GABAergic synapses formed by MSNs are regulated by GABAAR activity, but in opposite directions, and thus appear to be driven by different molecular mechanisms.

  14. Future energy consumption and emissions in East-, Central- and West-China: Insights from soft-linking two global models

    DEFF Research Database (Denmark)

    Dai, Hancheng; Mischke, Peggy

    2014-01-01

    China's role in the global economy and energy markets is expanding, however many uncertainties with regards to the country's future energy consumption and emissions remain. Large regional disparities between China's provinces exist. Scenario analysis for different sub-regions of China...... will be useful for an improved understanding of China's potential future development and associated global impacts. This study soft-links a global dynamic CGE model and a global technology-rich energy system model. Both models are expanded to include East-, Central-, and West-China. This study shows that soft...

  15. Working memory capacity and the functional connectome - insights from resting-state fMRI and voxelwise centrality mapping.

    Science.gov (United States)

    Markett, Sebastian; Reuter, Martin; Heeren, Behrend; Lachmann, Bernd; Weber, Bernd; Montag, Christian

    2018-02-01

    The functional connectome represents a comprehensive network map of functional connectivity throughout the human brain. To date, the relationship between the organization of functional connectivity and cognitive performance measures is still poorly understood. In the present study we use resting-state functional magnetic resonance imaging (fMRI) data to explore the link between the functional connectome and working memory capacity in an individual differences design. Working memory capacity, which refers to the maximum amount of context information that an individual can retain in the absence of external stimulation, was assessed outside the MRI scanner and estimated based on behavioral data from a change detection task. Resting-state time series were analyzed by means of voxelwise degree and eigenvector centrality mapping, which are data-driven network analytic approaches for the characterization of functional connectivity. We found working memory capacity to be inversely correlated with both centrality in the right intraparietal sulcus. Exploratory analyses revealed that this relationship was putatively driven by an increase in negative connectivity strength of the structure. This resting-state connectivity finding fits previous task based activation studies that have shown that this area responds to manipulations of working memory load.

  16. Role of neuron-glia interactions in developmental synapse elimination.

    Science.gov (United States)

    Terni, Beatrice; López-Murcia, Francisco José; Llobet, Artur

    2017-03-01

    During the embryonic development of the nervous system there is a massive formation of synapses. However, the exuberant connectivity present after birth must be pruned during postnatal growth to optimize the function of neuronal circuits. Whilst glial cells play a fundamental role in the formation of early synaptic contacts, their contribution to developmental modifications of established synapses is not well understood. The present review aims to highlight the various roles of glia in the developmental refinement of embryonic synaptic connectivity. We summarize recent evidences linking secretory abilities of glial cells to the disassembly of synaptic contacts that are complementary of a well-established phagocytic role. Considering a theoretical framework, it is discussed how release of glial molecules could be relevant to the developmental refinement of synaptic connectivity. Finally, we propose a three-stage model of synapse elimination in which neurons and glia are functionally associated to timely eliminate synapses. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Silent Synapse-Based Circuitry Remodeling in Drug Addiction.

    Science.gov (United States)

    Dong, Yan

    2016-05-01

    Exposure to cocaine, and likely other drugs of abuse, generates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-silent glutamatergic synapses in the nucleus accumbens. These immature synaptic contacts evolve after drug withdrawal to redefine the neurocircuital properties. These results raise at least three critical questions: (1) what are the molecular and cellular mechanisms that mediate drug-induced generation of silent synapses; (2) how are neurocircuits remodeled upon generation and evolution of drug-generated silent synapses; and (3) what behavioral consequences are produced by silent synapse-based circuitry remodeling? This short review analyzes related experimental results, and extends them to some speculations. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  18. Large-scale evolution of the central-east Greenland margin: New insights to the North Atlantic glaciation history

    Science.gov (United States)

    Pérez, Lara F.; Nielsen, Tove; Knutz, Paul C.; Kuijpers, Antoon; Damm, Volkmar

    2018-04-01

    The continental shelf of central-east Greenland is shaped by several glacially carved transverse troughs that form the oceanward extension of the major fjord systems. The evolution of these troughs through time, and their relation with the large-scale glaciation of the Northern Hemisphere, is poorly understood. In this study seismostratigraphic analyses have been carried out to determine the morphological and structural development of this important sector of the East Greenland glaciated margin. The age of major stratigraphic discontinuities has been constrained by a direct tie to ODP site 987 drilled in the Greenland Sea basin plain off Scoresby Sund fan system. The areal distribution and internal facies of the identified seismic units reveal the large-scale depositional pattern formed by ice-streams draining a major part of the central-east Greenland ice sheet. Initial sedimentation along the margin was, however, mainly controlled by tectonic processes related to the margin construction, continental uplift, and fluvial processes. From late Miocene to present, progradational and erosional patterns point to repeated glacial advances across the shelf. The evolution of depo-centres suggests that ice sheet advances over the continental shelf have occurred since late Miocene, about 2 Myr earlier than previously assumed. This cross-shelf glaciation is more pronounced during late Miocene and early Pliocene along Blosseville Kyst and around the Pliocene/Pleistocene boundary off Scoresby Sund; indicating a northward migration of the glacial advance. The two main periods of glaciation were separated by a major retreat of the ice sheet to an inland position during middle Pliocene. Mounded-wavy deposits interpreted as current-related deposits suggest the presence of changing along-slope current dynamics in concert with the development of the modern North Atlantic oceanographic pattern.

  19. Insights into mercury deposition and spatiotemporal variation in the glacier and melt water from the central Tibetan Plateau.

    Science.gov (United States)

    Paudyal, Rukumesh; Kang, Shichang; Huang, Jie; Tripathee, Lekhendra; Zhang, Qianggong; Li, Xiaofei; Guo, Junming; Sun, Shiwei; He, Xiaobo; Sillanpää, Mika

    2017-12-01

    Long-term monitoring of global pollutant such as Mercury (Hg) in the cryosphere is very essential for understanding its bio-geochemical cycling and impacts in the pristine environment with limited emission sources. Therefore, from May 2015 to Oct 2015, surface snow and snow-pits from Xiao Dongkemadi Glacier and glacier melt water were sampled along an elevation transect from 5410 to 5678m a.s.l. in the central Tibetan Plateau (TP). The concentration of Hg in surface snow was observed to be higher than that from other parts of the TP. Unlike the southern parts of the TP, no clear altitudinal variation was observed in the central TP. The peak Total Hg (Hg T ) concentration over the vertical profile on the snow pits corresponded with a distinct yellowish-brown dust layer supporting the fact that most of the Hg was associated with particulate matter. It was observed that only 34% of Hg in snow was lost when the surface snow was exposed to sunlight indicating that the surface snow is less influenced by the post-depositional process. Significant diurnal variation of Hg T concentration was observed in the river water, with highest concentration observed at 7pm when the discharge was highest and lowest concentration during 7-8am when the discharge was lowest. Such results suggest that the rate of discharge was influential in the concentration of Hg T in the glacier fed rivers of the TP. The estimated export of Hg T from Dongkemadi river basin is 747.43gyr -1 , which is quite high compared to other glaciers in the TP. Therefore, the export of global contaminant Hg might play enhanced role in the Alpine regions as these glaciers are retreating at an alarming rate under global warming which may have adverse impact on the ecosystem and the human health of the region. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Cenozoic History of Paleo-Currents through the Central American Seaway: Insights from Deep Sea Sediments and Outcrops in Panama

    Science.gov (United States)

    Waite, A. J.; Martin, E. E.

    2015-12-01

    Paleontologic, oceanographic, and ecologic studies suggest gradual shoaling of the Central American Seaway between ~15 to 2 Ma that caused a stepwise shutdown of deep, intermediate, and shallow water exchange between the Pacific Ocean and Caribbean Sea. This diminishing communication has been further associated with changes in surface and deep ocean currents, atmospheric flow, and ultimately regional and global climate. Recent studies of the Isthmus of Panama's exhumation history, palm phylogenies, and fossil/molecularly derived migration rates, however, suggest that the isthmus may have risen much earlier. An earlier rise scenario would call into question many accepted consequences of this gateway event under the 'Panama Hypothesis,' including strengthened thermohaline circulation, North Atlantic Deep Water production, the onset of Northern Hemisphere glaciation, and the Great American Biotic Interchange. Despite considerable research on the Neogene, few paleoceanographic studies have directly examined long-term changes in the adjacent oceans over the Cenozoic to evaluate the potential for earlier events in the closure history of the seaway. In this study, we extend records of bottom water circulation reconstructed from the Nd-isotopes of fish teeth from several Caribbean International Ocean Discovery Program sediment cores (ODP Sites 998, 999, 1000). These reconstructions clearly depict an increase in Pacific volcanism throughout the Cenozoic and sustained transport of Pacific waters into the Caribbean basin from ~50 to 9 Ma, although there appear to be interesting complexities within the Caribbean basin itself. We also present preliminary investigations into the potential of Nd-isotopic analyses on fossil fish teeth recovered from outcrops and exposures of marine strata across Panama to further elucidate the regional dynamics and shoaling history of the Central American Seaway.

  1. Changes in rat hippocampal CA1 synapses following imipramine treatment

    DEFF Research Database (Denmark)

    Chen, Fenghua; Madsen, Torsten M; Wegener, Gregers

    2008-01-01

    Neuronal plasticity in hippocampus is hypothesized to play an important role in both the pathophysiology of depressive disorders and the treatment. In this study, we investigated the consequences of imipramine treatment on neuroplasticity (including neurogenesis, synaptogenesis, and remodelling...... and number of neurons of hippocampal subregions following imipramine treatment were found. However, the number and percentage of CA1 asymmetric spine synapses increased significantly and, conversely, the percentage of asymmetric shaft synapses significantly decreased in the imipramine treated group. Our...

  2. Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation

    DEFF Research Database (Denmark)

    Fritzsche, Marco; Fernandes, Ricardo A.; Chang, Veronica T.

    2017-01-01

    optical microscopes to analyze resting and activated T cells, we show that, following contact formation with activating surfaces, these cells sequentially rearrange their cortical actin across the entire cell, creating a previously unreported ramifying actin network above the immunological synapse....... This network shows all the characteristics of an inward-growing transportation network and its dynamics correlating with T cell receptor rearrangements. This actin reorganization is accompanied by an increase in the nanoscale actin meshwork size and the dynamic adjustment of the turnover times and filament...... as well as a central ramified transportation network apparently directed at the consolidation of the contact and the delivery of effector functions....

  3. Calcium channel-dependent molecular maturation of photoreceptor synapses.

    Directory of Open Access Journals (Sweden)

    Nawal Zabouri

    Full Text Available Several studies have shown the importance of calcium channels in the development and/or maturation of synapses. The Ca(V1.4(α(1F knockout mouse is a unique model to study the role of calcium channels in photoreceptor synapse formation. It features abnormal ribbon synapses and aberrant cone morphology. We investigated the expression and targeting of several key elements of ribbon synapses and analyzed the cone morphology in the Ca(V1.4(α(1F knockout retina. Our data demonstrate that most abnormalities occur after eye opening. Indeed, scaffolding proteins such as Bassoon and RIM2 are properly targeted at first, but their expression and localization are not maintained in adulthood. This indicates that either calcium or the Ca(V1.4 channel, or both are necessary for the maintenance of their normal expression and distribution in photoreceptors. Other proteins, such as Veli3 and PSD-95, also display abnormal expression in rods prior to eye opening. Conversely, vesicle related proteins appear normal. Our data demonstrate that the Ca(V1.4 channel is important for maintaining scaffolding proteins in the ribbon synapse but less vital for proteins related to vesicular release. This study also confirms that in adult retinae, cones show developmental features such as sprouting and synaptogenesis. Overall we present evidence that in the absence of the Ca(V1.4 channel, photoreceptor synapses remain immature and are unable to stabilize.

  4. Southern Hemisphere humpback whales wintering off Central America: insights from water temperature into the longest mammalian migration.

    Science.gov (United States)

    Rasmussen, Kristin; Palacios, Daniel M; Calambokidis, John; Saborío, Marco T; Dalla Rosa, Luciano; Secchi, Eduardo R; Steiger, Gretchen H; Allen, Judith M; Stone, Gregory S

    2007-06-22

    We report on a wintering area off the Pacific coast of Central America for humpback whales (Megaptera novaeangliae) migrating from feeding areas off Antarctica. We document seven individuals, including a mother/calf pair, that made this migration (approx. 8300km), the longest movement undertaken by any mammal. Whales were observed as far north as 11 degrees N off Costa Rica, in an area also used by a boreal population during the opposite winter season, resulting in unique spatial overlap between Northern and Southern Hemisphere populations. The occurrence of such a northerly wintering area is coincident with the development of an equatorial tongue of cold water in the eastern South Pacific, a pattern that is repeated in the eastern South Atlantic. A survey of location and water temperature at the wintering areas worldwide indicates that they are found in warm waters (21.1-28.3 degrees C), irrespective of latitude. We contend that while availability of suitable reproductive habitat in the wintering areas is important at the fine scale, water temperature influences whale distribution at the basin scale. Calf development in warm water may lead to larger adult size and increased reproductive success, a strategy that supports the energy conservation hypothesis as a reason for migration.

  5. On the reliability of AMS in ilmenite-type granites: an insight from the Marimanha pluton, central Pyrenees

    Science.gov (United States)

    Oliva-Urcia, B.; Casas, A. M.; Ramón, M. J.; Leiss, B.; Mariani, E.; Román-Berdiel, T.

    2012-04-01

    The anisotropy of magnetic susceptibility (AMS) at room temperature has been used for decades to obtain the petrofabric orientation in granites as a kinematic marker to establish models explaining the emplacement of plutons. To assess the significance of AMS in terms of mineral orientation, we have performed a multidisciplinary study at five sites of an ilmenite-type pluton (Marimanha, central Pyrenees) with significant facies changes. To test the reliability of AMS measurements at room temperature, the following methods were applied: low temperature AMS; image analyses and X-ray texture goniometry (XTG) of biotites; and electron backscatter diffraction (EBSD) to obtain c-axes directions of quartz. The total (para-, ferro- and dia-)magnetic fabric analysed by AMS is compared with the paramagnetic fabric (low-T AMS), mica orientation (with image analyses and XTG) and the diamagnetic fabric (EBSD). Results indicate that weakly oriented paramagnetic minerals can give well-defined magnetic fabrics (AMS at room and low temperatures). Furthermore, the AMS ellipsoid is the result of composite biotite fabrics resulting from both orientation and spatial distribution of crystals, as demonstrated by 2-D mathematical models presented in this study. AMS is the most effective technique for quickly measuring composite fabrics. In addition, the advantage of using AMS analyses is twofold: (1) it is a fast way of analysing standard samples that can give clues for subsequent image/mineral orientation analysis and (2) it is a volume-related method that gives a picture of the rock fabric as a whole.

  6. Structure and tectonic evolution of the southwestern Trinidad dome, Escambray complex, Central Cuba: Insights into deformation in an accretionary wedge

    Science.gov (United States)

    Despaigne-Díaz, Ana Ibis; García Casco, Antonio; Cáceres Govea, Dámaso; Wilde, Simon A.; Millán Trujillo, Guillermo

    2017-10-01

    insights into the tectonic evolution of accretionary wedges in an intra-arc setting.

  7. Insights into the crustal structure and magmatic evolution of the High and Western Plateau of the Manihiki Plateau, Central Pacific

    Science.gov (United States)

    Hochmuth, Katharina; Gohl, Karsten; Uenzelmann-Neben, Gabriele

    2014-05-01

    The Manihiki Plateau is a Large Igneous Province (LIP) located in the Central Pacific. It is assumed, that the formation of the Manihiki Plateau took place during the early Cretaceous in multiple volcanic stages as part of the "Super-LIP" Ontong-Java-Nui. The plateau consists of several sub-plateaus of which the Western Plateau und High Plateau are the largest. In addressing the plateau's magmatic evolutionary history, one of the key questions is whether all sub-plateaus experienced the same magmatic history or if distinct phases of igneous or tectonic processes led to its fragmentation. During the RV Sonne cruise SO-224 in 2012; we collected two deep crustal seismic refraction/wide-angle reflection lines, crossing the two main sub-plateaus. Modeling of P- and S-wave phases reveals the different crustal nature of both sub-plateaus. On the High Plateau, the 20 km thick crust is divided into four seismic units, interpreted to range from basaltic composition in the uppermost crust to peridotitic composition in the middle and lower crust. The Western Plateau on the other hand shows multiple rift structures and no indications of basalt flows. With a maximum of 17 km crustal thickness, the Western Plateau is also thinner than the High Plateau. The upper basement layers show relatively low P-wave velocities (3.0 - 5.0 km/s), which infers that on the Western Plateau these layers consist of volcanoclastic and carbonatic rocks rather than basaltic flow units. Later volcanic stages may be restricted to the High Plateau with a possible eastward trend in the center of volcanic activity. Extensive secondary volcanism does not seem to have occurred on the Western Plateau, and its later deformation is mainly caused by tectonic extension and rifting.

  8. Origin of magnetic highs at ultramafic hosted hydrothermal systems: Insights from the Yokoniwa site of Central Indian Ridge

    Science.gov (United States)

    Fujii, Masakazu; Okino, Kyoko; Sato, Taichi; Sato, Hiroshi; Nakamura, Kentaro

    2016-05-01

    High-resolution vector magnetic measurements were performed on an inactive ultramafic-hosted hydrothermal vent field, called Yokoniwa Hydrothermal Field (YHF), using a deep-sea manned submersible Shinkai6500 and an autonomous underwater vehicle r2D4. The YHF has developed at a non-transform offset massif of the Central Indian Ridge. Dead chimneys were widely observed around the YHF along with a very weak venting of low-temperature fluids so that hydrothermal activity of the YHF was almost finished. The distribution of crustal magnetization from the magnetic anomaly revealed that the YHF is associated with enhanced magnetization, as seen at the ultramafic-hosted Rainbow and Ashadze-1 hydrothermal sites of the Mid-Atlantic Ridge. The results of rock magnetic analysis on seafloor rock samples (including basalt, dolerite, gabbro, serpentinized peridotite, and hydrothermal sulfide) showed that only highly serpentinized peridotite carries high magnetic susceptibility and that the natural remanent magnetization intensity can explain the high magnetization of Yokoniwa. These observations reflect abundant and strongly magnetized magnetite grains within the highly serpentinized peridotite. Comparisons with the Rainbow and Ashadze-1 suggest that in ultramafic-hosted hydrothermal systems, strongly magnetized magnetite and pyrrhotite form during the progression of hydrothermal alteration of peridotite. After the completion of serpentinization and production of hydrogen, pyrrhotites convert into pyrite or nonmagnetic iron sulfides, which considerably reduces their levels of magnetization. Our results revealed origins of the magnetic high and the development of subsurface chemical processes in ultramafic-hosted hydrothermal systems. Furthermore, the results highlight the use of near-seafloor magnetic field measurements as a powerful tool for detecting and characterizing seafloor hydrothermal systems.

  9. Dissolved organic matter and inorganic ions in a central Himalayan glacier--insights into chemical composition and atmospheric sources.

    Science.gov (United States)

    Xu, Jianzhong; Zhang, Qi; Li, Xiangying; Ge, Xinlei; Xiao, Cunde; Ren, Jiawen; Qin, Dahe

    2013-06-18

    Melting of Himalayan glaciers can be accelerated by the deposition of airborne black carbon and mineral dust as it leads to significant reductions of the surface albedo of snow and ice. Whereas South Asia has been shown a primary source region to these particles, detailed sources of these aerosol pollutants remain poorly understood. In this study, the chemical compositions of snow pit samples collected from Jima Yangzong glacier in the central Himalayas were analyzed to obtain information of atmospheric aerosols deposited from summer 2009 to spring 2010. Especially, an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was used for the first time to chemically characterize the dissolved organic and inorganic matter (DOM and DIM) in snow samples. The concentrations of these species varied seasonally, with high levels observed during the winter-spring period and low levels during the summer monsoon period. On average, the dissolved substances was dominated by organics (58%) with important contributions from inorganic species, NO3(-) (12.5%), Ca(2+) (9.1%), NH4(+) (8.7%), and SO(4)(2-) (8.1%). DOM was found more oxidized with an average (± 1σ) atomic oxygen-to-carbon ratio (nO/nC) of 0.64 (± 0.14) and organic mass-to-carbon ratio (OM/OC) of 2.01 (± 0.19) during the winter-spring periods compared to the summer season (nO/nC = 0.31 ± 0.09 and OM/OC = 1.58 ± 0.12). In addition, biomass burning particles were found significantly enhanced in snow during the winter-spring periods, consistent with HYSPLIT back trajectory analysis of air mass history, which indicates prevailing atmospheric transport from northwest India and Nepal.

  10. Changes in Properties of Auditory Nerve Synapses following Conductive Hearing Loss.

    Science.gov (United States)

    Zhuang, Xiaowen; Sun, Wei; Xu-Friedman, Matthew A

    2017-01-11

    production, but the location of the problem is unknown. Here, we show that occluding the ear causes synapses at the very first stage of the auditory pathway to modify their properties, by decreasing in size and increasing the likelihood of releasing neurotransmitter. This causes synapses to deplete faster, which reduces fidelity at central targets of the auditory nerve, which could affect perception. Temporary hearing loss could cause similar changes at later stages of the auditory pathway, which could contribute to disorders in behavior. Copyright © 2017 the authors 0270-6474/17/370323-10$15.00/0.

  11. New Insights into the present-day kinematics of the central and western Papua New Guinea from GPS

    Science.gov (United States)

    Koulali, A.; Tregoning, P.; McClusky, S.; Stanaway, R.; Wallace, L.; Lister, G.

    2015-08-01

    New Guinea is a region characterized by rapid oblique convergence between the Pacific and Australian tectonic plates. The detailed tectonics of the region, including the partitioning of relative block motions and fault slip rates within this complex boundary plate boundary zone are still not well understood. In this study, we quantify the distribution of the deformation throughout the central and western parts of Papua New Guinea (PNG) using 20 yr of GPS data (1993-2014). We use an elastic block model to invert the regional GPS velocities as well as earthquake slip vectors for the location and rotation rates of microplate Euler poles as well as fault slip parameters in the region. Convergence between the Pacific and the Australian plates is accommodated in northwestern PNG largely by the New Guinea Trench with rates exceeding 90 mm yr-1, indicating that this is the major active interplate boundary. However, some convergent deformation is partitioned into a shear component with ˜12 per cent accommodated by the Bewani-Torricelli fault zone and the southern Highlands Fold-and-Thrust Belt. New GPS velocities in the eastern New Guinea Highlands region have led to the identification of the New Guinea Highlands and the Papuan Peninsula being distinctly different blocks, separated by a boundary through the Aure Fold-and-Thrust Belt complex which accommodates an estimated 4-5 mm yr-1 of left-lateral and 2-3 mm yr-1 of convergent motion. This implies that the Highlands Block is rotating in a clockwise direction relative to the rigid Australian Plate, consistent with the observed transition to left-lateral strike-slip regime observed in western New Guinea Highlands. We find a better fit of our block model to the observed velocities when assigning the current active boundary between the Papuan Peninsula and the South Bismark Block to be to the north of the city of Lae on the Gain Thrust, rather than on the more southerly Ramu-Markham fault as previously thought. This may

  12. Petrogenesis of incipient charnockite in the Ikalamavony sub-domain, south-central Madagascar: New insights from phase equilibrium modeling

    Science.gov (United States)

    Endo, Takahiro; Tsunogae, Toshiaki; Santosh, M.; Shaji, E.; Rambeloson, Roger A.

    2017-06-01

    Incipient charnockites representing granulite formation on a mesoscopic scale occur in the Ambodin Ifandana area of Ikalamavony sub-domain in south-central Madagascar. Here we report new petrological data from these rocks, and discuss the process of granulite formation on the basis of petrography, mineral equilibrium modeling, and fluid inclusion studies. The incipient charnockites occur as brownish patches, lenses, and layers characterized by an assemblage of biotite + orthopyroxene + K-feldspar + plagioclase + quartz + magnetite + ilmenite within host orthopyroxene-free biotite gneiss with an assemblage of biotite + K-feldspar + plagioclase + quartz + magnetite + ilmenite. Lenses and layers of calc-silicate rock (clinopyroxene + garnet + plagioclase + quartz + titanite + calcite) are typically associated with the charnockite. Coarse-grained charnockite occurs along the contact between the layered charnockite and calc-silicate rock. The application of mineral equilibrium modeling on the mineral assemblages in charnockite and biotite gneiss employing the NCKFMASHTO system as well as fluid inclusion study on coarse-grained charnockite defines a P-T range of 8.5-10.5 kbar and 880-900 °C, which is nearly consistent with the inferred P-T condition of the Ikalamavony sub-domain (8.0-10.5 kbar and 820-880 °C). The result of T versus H2O activity (a(H2O)) modeling demonstrates that orthopyroxene-bearing assemblage in charnockite is stable under relatively low a(H2O) condition of 0.42-0.43, which is consistent with the popular models of incipient-charnockite formation related to the lowering of water activity and stabilization of orthopyroxene through dehydration of biotite. The occurrence of calc-silicate rocks adjacent to the charnockite suggests that the CO2-bearing fluid that caused dehydration and incipient-charnockite formation might have been derived through decarbonation of calc-silicate rocks during the initial stage of decompression slightly after the peak

  13. Numerical simulation and decomposition of kinetic energy in the Central Mediterranean: insight on mesoscale circulation and energy conversion

    Directory of Open Access Journals (Sweden)

    R. Sorgente

    2011-08-01

    Full Text Available The spatial and temporal variability of eddy and mean kinetic energy of the Central Mediterranean region has been investigated, from January 2008 to December 2010, by mean of a numerical simulation mainly to quantify the mesoscale dynamics and their relationships with physical forcing. In order to understand the energy redistribution processes, the baroclinic energy conversion has been analysed, suggesting hypotheses about the drivers of the mesoscale activity in this area. The ocean model used is based on the Princeton Ocean Model implemented at 1/32° horizontal resolution. Surface momentum and buoyancy fluxes are interactively computed by mean of standard bulk formulae using predicted model Sea Surface Temperature and atmospheric variables provided by the European Centre for Medium Range Weather Forecast operational analyses. At its lateral boundaries the model is one-way nested within the Mediterranean Forecasting System operational products.

    The model domain has been subdivided in four sub-regions: Sardinia channel and southern Tyrrhenian Sea, Sicily channel, eastern Tunisian shelf and Libyan Sea. Temporal evolution of eddy and mean kinetic energy has been analysed, on each of the four sub-regions, showing different behaviours. On annual scales and within the first 5 m depth, the eddy kinetic energy represents approximately the 60 % of the total kinetic energy over the whole domain, confirming the strong mesoscale nature of the surface current flows in this area. The analyses show that the model well reproduces the path and the temporal behaviour of the main known sub-basin circulation features. New mesoscale structures have been also identified, from numerical results and direct observations, for the first time as the Pantelleria Vortex and the Medina Gyre.

    The classical kinetic energy decomposition (eddy and mean allowed to depict and to quantify the permanent and fluctuating parts of the circulation in the region, and

  14. Sweeping Changes in Marriage, Cohabitation, and Childbearing in Central and Eastern Europe: New Insights from the Developmental Idealism Framework.

    Science.gov (United States)

    Thornton, Arland; Philipov, Dimiter

    2009-01-01

    In Central and Eastern Europe following the political transformations of the late 1980s and early 1990s there were dramatic declines in marriage and childbearing, significant increases in nonmarital cohabitation and childbearing, and a movement from reliance on abortion to a reliance on contraception for fertility limitation. Although many explanations have been offered for these trends, we offer new explanations based on ideational influences and the intersection of these ideational influences with structural factors. We focus on the political, economic, social, and cultural histories of the region, with particular emphasis on how countries in the region have interacted with and been influenced by Western European and North American countries. Our explanations emphasize the role of developmental models in guiding change in the region, suggesting that developmental idealism influenced family and demographic changes following the political transformations. Developmental idealism provides beliefs that modern family systems help to produce modern political and economic accomplishments and helps to establish the importance of freedom and equality as human rights in both the public and private spheres. The disintegration of the governments and the fall of the iron curtain in the late 1980s and early 1990s brought new understanding about social, economic, and family circumstances in the West, increasing consumption aspirations and expectations which clashed with both old economic realities and the dramatic declines in economic circumstances. In addition, the dissolution of the former governments removed or weakened systems supporting the bearing and rearing of children, and, the legitimacy of the former governments and their programs was largely destroyed, removing government support for old norms and patterns of behavior. In addition, the attacks of previous decades on the religious institutions in the region had in many places left these institutions weak. During this

  15. Upper Paleozoic tectonics in the Tien Shan (Central Asian Orogenic Belt): insight from new structural data (Kyrgyzstan)

    Science.gov (United States)

    Jourdon, Anthony; Petit, Carole; Rolland, Yann; Loury, Chloé; Bellahsen, Nicolas; Guillot, Stéphane; Ganino, Clément

    2016-04-01

    Due to successive block accretions, the polarity of structures and tectonic evolution of the Central Asian Orogenic Belt (CAOB) are still a matter of debate. There are several conflicting models about the polarity of subduction during the Paleozoic, the number of microplates and oceanic basins and the timing of tectonic events in Kyrgyz and Chinese Tien Shan. In this study, we propose new structural maps and cross-sections of Middle and South Kyrgyz Tien Shan (MTS and STS respectively). These cross-sections highlight an overall dextral strike-slip shear zone in the MTS and a north verging structure related to south-dipping subduction in the STS. These structures are Carboniferous in age and sealed by Mesozoic and Cenozoic deposits. In detail, the STS exhibits two deformation phases. The first one is characterized by coeval top-to-the north thrusting and top-to-the-South normal shearing at the boundaries of large continental unit that underwent High-Pressure (Eclogite facies) metamorphism. We ascribe this phase to the exhumation of underthrusted passive margin units of the MTS. The second one corresponds to a top to the North nappe stacking that we link to the last collisional events between the MTS and the Tarim block. Later on, during the Late Carboniferous, a major deformation stage is characterized by the deformation of the MTS and its thrusting over the NTS. This deformation occurred on a large dextral shear zone between the NTS and the MTS known as Song-Kul Zone or Nikolaiev Line as a "side effect" of the Tarim/MTS collision. Based on these observations, we propose a new interpretation of the tectonic evolution of the CAOB. The resulting model comprises the underthrusting of the MTS-Kazakh platform beneath the Tarim and its exhumation followed by the folding, shortening and thickening of the internal metamorphic units during the last collisional events which partitioned the deformation between the STS and the MTS. Finally, the docking of the large Tarim Craton

  16. Trends and Bioclimatic Assessment of Extreme Indices: Emerging Insights for Rainfall Derivative Crop Microinsurance in Central-West Nigeria

    Science.gov (United States)

    Awolala, D. O.

    2015-12-01

    Scientific predictions have forecasted increasing economic losses by which farming households will be forced to consider new adaptation pathways to close the food gap and be income secure. Pro-poor adaptation planning decisions therefore must rely on location-specific details from systematic assessment of extreme climate indices to provide template for most suitable financial adaptation instruments. This paper examined critical loss point to water stress in maize production and risk-averse behaviour to extreme local climate in Central West Nigeria. Trends of extreme indices and bio-climatic assessment based on RClimDex for numerical weather predictions were carried out using a 3-decade time series daily observational climate data of the sub-humid region. The study reveals that the flowering and seed formation stage was identified as the most critical loss point when seed formation is a function of per unit soil water available for uptake. The sub-humid has a bi-modal rainfall pattern but faces longer dry spell with a fast disappearing mild climate measured by budyko evaporation of 80.1%. Radiation index of dryness of 1.394 confirms the region is rapidly becoming drier at an evaporation rate of 949 mm/year and rainfall deficit of 366 mm/year. Net primary production from rainfall is fast declining by 1634 g(DM)/m2/year. These conditions influenced by monthly rainfall uncertainties are associated with losses of standing crops because farmers are uncertain of rainfall probability distribution especially during most important vegetative stage. In a simulated warmer climate, an absolute dryness of months was observed compared with 4 dry months in a normal climate which explains triggers of food deficits and income losses. Positive coefficients of tropical nights (TR20), warm nights (TN90P) and warm days (TX90P), and the negative coefficient of cold days (TX10P) with time are significant at Pfinancial instruments capable of sharing covariate shocks with farmers within an

  17. New views of the human NK cell immunological synapse: recent advances enabled by super- and high- resolution imaging techniques

    Directory of Open Access Journals (Sweden)

    Emily M. Mace

    2013-01-01

    Full Text Available Imaging technology has undergone rapid growth with the development of super resolution microscopy, which enables resolution below the diffraction barrier of light (~200 nm. In addition, new techniques for single molecule imaging are being added to the cell biologist’s arsenal. Immunologists have exploited these techniques to advance understanding of NK biology, particularly that of the immune synapse. The immune synapse’s relatively small size and complex architecture combined with its exquisitely controlled signaling milieu have made it a challenge to visualize. In this review we highlight and discuss new insights into NK cell immune synapse formation and regulation revealed by cutting edge imaging techniques, including super resolution microscopy and high resolution total internal reflection microscopy and Förster resonance energy transfer.

  18. Remodelling at the calyx of Held-MNTB synapse in mice developing with unilateral conductive hearing loss.

    Science.gov (United States)

    Grande, Giovanbattista; Negandhi, Jaina; Harrison, Robert V; Wang, Lu-Yang

    2014-04-01

    Structure and function of central synapses are profoundly influenced by experience during developmental sensitive periods. Sensory synapses, which are the indispensable interface for the developing brain to interact with its environment, are particularly plastic. In the auditory system, moderate forms of unilateral hearing loss during development are prevalent but the pre- and postsynaptic modifications that occur when hearing symmetry is perturbed are not well understood. We investigated this issue by performing experiments at the large calyx of Held synapse. Principal neurons of the medial nucleus of the trapezoid body (MNTB) are innervated by calyx of Held terminals that originate from the axons of globular bushy cells located in the contralateral ventral cochlear nucleus. We compared populations of synapses in the same animal that were either sound deprived (SD) or sound experienced (SE) after unilateral conductive hearing loss (CHL). Middle ear ossicles were removed 1 week prior to hearing onset (approx. postnatal day (P) 12) and morphological and electrophysiological approaches were applied to auditory brainstem slices taken from these mice at P17-19. Calyces in the SD and SE MNTB acquired their mature digitated morphology but these were structurally more complex than those in normal hearing mice. This was accompanied by bilateral decreases in initial EPSC amplitude and synaptic conductance despite the CHL being unilateral. During high-frequency stimulation, some SD synapses displayed short-term depression whereas others displayed short-term facilitation followed by slow depression similar to the heterogeneities observed in normal hearing mice. However SE synapses predominantly displayed short-term facilitation followed by slow depression which could be explained in part by the decrease in release probability. Furthermore, the excitability of principal cells in the SD MNTB had increased significantly. Despite these unilateral changes in short-term plasticity

  19. Fundamental Molecules and Mechanisms for Forming and Maintaining Neuromuscular Synapses

    Science.gov (United States)

    Huijbers, Maartje G.; Remedio, Leonor

    2018-01-01

    The neuromuscular synapse is a relatively large synapse with hundreds of active zones in presynaptic motor nerve terminals and more than ten million acetylcholine receptors (AChRs) in the postsynaptic membrane. The enrichment of proteins in presynaptic and postsynaptic membranes ensures a rapid, robust, and reliable synaptic transmission. Over fifty years ago, classic studies of the neuromuscular synapse led to a comprehensive understanding of how a synapse looks and works, but these landmark studies did not reveal the molecular mechanisms responsible for building and maintaining a synapse. During the past two-dozen years, the critical molecular players, responsible for assembling the specialized postsynaptic membrane and regulating nerve terminal differentiation, have begun to be identified and their mechanism of action better understood. Here, we describe and discuss five of these key molecular players, paying heed to their discovery as well as describing their currently understood mechanisms of action. In addition, we discuss the important gaps that remain to better understand how these proteins act to control synaptic differentiation and maintenance. PMID:29415504

  20. The presynaptic machinery at the synapse of C. elegans.

    Science.gov (United States)

    Calahorro, Fernando; Izquierdo, Patricia G

    2018-03-12

    Synapses are specialized contact sites that mediate information flow between neurons and their targets. Important physical interactions across the synapse are mediated by synaptic adhesion molecules. These adhesions regulate formation of synapses during development and play a role during mature synaptic function. Importantly, genes regulating synaptogenesis and axon regeneration are conserved across the animal phyla. Genetic screens in the nematode Caenorhabditis elegans have identified a number of molecules required for synapse patterning and assembly. C. elegans is able to survive even with its neuronal function severely compromised. This is in comparison with Drosophila and mice where increased complexity makes them less tolerant to impaired function. Although this fact may reflect differences in the function of the homologous proteins in the synapses between these organisms, the most likely interpretation is that many of these components are equally important, but not absolutely essential, for synaptic transmission to support the relatively undemanding life style of laboratory maintained C. elegans. Here, we review research on the major group of synaptic proteins, involved in the presynaptic machinery in C. elegans, showing a strong conservation between higher organisms and highlight how C. elegans can be used as an informative tool for dissecting synaptic components, based on a simple nervous system organization.

  1. The Scaffolding Protein Synapse-Associated Protein 97 is Required for Enhanced Signaling Through Isotype-Switched IgG Memory B Cell Receptors

    Science.gov (United States)

    Liu, Wanli; Chen, Elizabeth; Zhao, Xing Wang; Wan, Zheng Peng; Gao, Yi Ren; Davey, Angel; Huang, Eric; Zhang, Lijia; Crocetti, Jillian; Sandoval, Gabriel; Joyce, M. Gordon; Miceli, Carrie; Lukszo, Jan; Aravind, L.; Swat, Wojciech; Brzostowski, Joseph; Pierce, Susan K.

    2012-01-01

    Memory B cells are generated during an individual's first encounter with a foreign antigen and respond to re-encounter with the same antigen through cell surface immunoglobulin G (IgG) B cell receptors (BCRs) resulting in rapid, high-titered IgG antibody responses. Despite a central role for IgG BCRs in B cell memory, our understanding of the molecular mechanism by which IgG BCRs enhance antibody responses is incomplete. Here, we showed that the conserved cytoplasmic tail of the IgG BCR, which contains a putative PDZ-binding motif, associated with synapse-associated protein 97 (SAP97), a member of the PDZ domain–containing, membrane-associated guanylate-kinase family of scaffolding molecules that play key roles in controlling receptor density and signal strength at neuronal synapses. We showed that SAP97 accumulated and bound to IgG BCRs in the immune synapses that formed in response to engagement of the B cell with antigen. Knocking down SAP97 in IgG-expressing B cells or mutating the putative PDZ-binding motif in the tail impaired immune synapse formation, the initiation of IgG BCR signaling, and downstream activation of p38 mitogen-activated protein kinase. Thus, heightened B cell memory responses are encoded, in part, by a mechanism that involves SAP97 serving as a scaffolding protein in the IgG BCR immune synapse. PMID:22855505

  2. Spatially restricted actin-regulatory signaling contributes to synapse morphology

    Science.gov (United States)

    Nicholson, Daniel A.; Cahill, Michael E.; Tulisiak, Christopher T.; Geinisman, Yuri; Penzes, Peter

    2012-01-01

    The actin cytoskeleton in dendritic spines is organized into microdomains, but how signaling molecules that regulate actin are spatially governed is incompletely understood. Here we examine how the localization of the RacGEF kalirin-7, a well-characterized regulator of actin in spines, varies as a function of postsynaptic density (PSD) area and spine volume. Using serial section electron microscopy (EM), we find that extrasynaptic, but not synaptic, expression of kalirin-7 varies directly with synapse size and spine volume. Moreover, we find that overall expression levels of kalirin-7 differ in spines bearing perforated and non-perforated synapses, due primarily to extrasynaptic pools of kalirin-7 expression in the former. Overall, our findings indicate that kalirin-7 is differentially compartmentalized in spines as a function of both synapse morphology and spine size. PMID:22458534

  3. Dynamic mobility of functional GABAA receptors at inhibitory synapses.

    Science.gov (United States)

    Thomas, Philip; Mortensen, Martin; Hosie, Alastair M; Smart, Trevor G

    2005-07-01

    Importing functional GABAA receptors into synapses is fundamental for establishing and maintaining inhibitory transmission and for controlling neuronal excitability. By introducing a binding site for an irreversible inhibitor into the GABAA receptor alpha1 subunit channel lining region that can be accessed only when the receptor is activated, we have determined the dynamics of receptor mobility between synaptic and extrasynaptic locations in hippocampal pyramidal neurons. We demonstrate that the cell surface GABAA receptor population shows no fast recovery after irreversible inhibition. In contrast, after selective inhibition, the synaptic receptor population rapidly recovers by the import of new functional entities within minutes. The trafficking pathways that promote rapid importation of synaptic receptors do not involve insertion from intracellular pools, but reflect receptor diffusion within the plane of the membrane. This process offers the synapse a rapid mechanism to replenish functional GABAA receptors at inhibitory synapses and a means to control synaptic efficacy.

  4. An NMDA Receptor-Dependent Mechanism Underlies Inhibitory Synapse Development

    Directory of Open Access Journals (Sweden)

    Xinglong Gu

    2016-01-01

    Full Text Available In the mammalian brain, GABAergic synaptic transmission provides inhibitory balance to glutamatergic excitatory drive and controls neuronal output. The molecular mechanisms underlying the development of GABAergic synapses remain largely unclear. Here, we report that NMDA-type ionotropic glutamate receptors (NMDARs in individual immature neurons are the upstream signaling molecules essential for GABAergic synapse development, which requires signaling via Calmodulin binding motif in the C0 domain of the NMDAR GluN1 subunit. Interestingly, in neurons lacking NMDARs, whereas GABAergic synaptic transmission is strongly reduced, the tonic inhibition mediated by extrasynaptic GABAA receptors is increased, suggesting a compensatory mechanism for the lack of synaptic inhibition. These results demonstrate a crucial role for NMDARs in specifying the development of inhibitory synapses, and suggest an important mechanism for controlling the establishment of the balance between synaptic excitation and inhibition in the developing brain.

  5. Learning through ferroelectric domain dynamics in solid-state synapses

    Science.gov (United States)

    Boyn, Sören; Grollier, Julie; Lecerf, Gwendal; Xu, Bin; Locatelli, Nicolas; Fusil, Stéphane; Girod, Stéphanie; Carrétéro, Cécile; Garcia, Karin; Xavier, Stéphane; Tomas, Jean; Bellaiche, Laurent; Bibes, Manuel; Barthélémy, Agnès; Saïghi, Sylvain; Garcia, Vincent

    2017-04-01

    In the brain, learning is achieved through the ability of synapses to reconfigure the strength by which they connect neurons (synaptic plasticity). In promising solid-state synapses called memristors, conductance can be finely tuned by voltage pulses and set to evolve according to a biological learning rule called spike-timing-dependent plasticity (STDP). Future neuromorphic architectures will comprise billions of such nanosynapses, which require a clear understanding of the physical mechanisms responsible for plasticity. Here we report on synapses based on ferroelectric tunnel junctions and show that STDP can be harnessed from inhomogeneous polarization switching. Through combined scanning probe imaging, electrical transport and atomic-scale molecular dynamics, we demonstrate that conductance variations can be modelled by the nucleation-dominated reversal of domains. Based on this physical model, our simulations show that arrays of ferroelectric nanosynapses can autonomously learn to recognize patterns in a predictable way, opening the path towards unsupervised learning in spiking neural networks.

  6. Neuromorphic function learning with carbon nanotube based synapses

    International Nuclear Information System (INIS)

    Gacem, Karim; Filoramo, Arianna; Derycke, Vincent; Retrouvey, Jean-Marie; Chabi, Djaafar; Zhao, Weisheng; Klein, Jacques-Olivier

    2013-01-01

    The principle of using nanoscale memory devices as artificial synapses in neuromorphic circuits is recognized as a promising way to build ground-breaking circuit architectures tolerant to defects and variability. Yet, actual experimental demonstrations of the neural network type of circuits based on non-conventional/non-CMOS memory devices and displaying function learning capabilities remain very scarce. We show here that carbon-nanotube-based memory elements can be used as artificial synapses, combined with conventional neurons and trained to perform functions through the application of a supervised learning algorithm. The same ensemble of eight devices can notably be trained multiple times to code successively any three-input linearly separable Boolean logic function despite device-to-device variability. This work thus represents one of the very few demonstrations of actual function learning with synapses based on nanoscale building blocks. The potential of such an approach for the parallel learning of multiple and more complex functions is also evaluated. (paper)

  7. Neuroglial plasticity at striatal glutamatergic synapses in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Rosa M Villalba

    2011-08-01

    Full Text Available Striatal dopamine denervation is the pathological hallmark of Parkinson’s disease (PD. Another major pathological change described in animal models and PD patients is a significant reduction in the density of dendritic spines on medium spiny striatal projection neurons. Simultaneously, the ultrastructural features of the neuronal synaptic elements at the remaining corticostriatal and thalamostriatal glutamatergic axo-spinous synapses undergo complex ultrastructural remodeling consistent with increased synaptic activity (Villalba et al., 2011. The concept of tripartite synapses (TS was introduced a decade ago, according to which astrocytes process and exchange information with neuronal synaptic elements at glutamatergic synapses (Araque et al., 1999a. Although there has been compelling evidence that astrocytes are integral functional elements of tripartite glutamatergic synaptic complexes in the cerebral cortex and hippocampus, their exact functional role, degree of plasticity and preponderance in other CNS regions remain poorly understood. In this review, we discuss our recent findings showing that neuronal elements at cortical and thalamic glutamatergic synapses undergo significant plastic changes in the striatum of MPTP-treated parkinsonian monkeys. We also present new ultrastructural data that demonstrate a significant expansion of the astrocytic coverage of striatal TS synapses in the parkinsonian state, providing further evidence for ultrastructural compensatory changes that affect both neuronal and glial elements at TS. Together with our limited understanding of the mechanisms by which astrocytes respond to changes in neuronal activity and extracellular transmitter homeostasis, the role of both neuronal and glial components of excitatory synapses must be considered, if one hopes to take advantage of glia-neuronal communication knowledge to better understand the pathophysiology of striatal processing in parkinsonism, and develop new PD

  8. Painful Cervical Facet Joint Injury Is Accompanied by Changes in the Number of Excitatory and Inhibitory Synapses in the Superficial Dorsal Horn That Differentially Relate to Local Tissue Injury Severity.

    Science.gov (United States)

    Ita, Meagan E; Crosby, Nathan D; Bulka, Ben A; Winkelstein, Beth A

    2017-06-15

    Immunohistochemistry labeled pre- and postsynaptic structural markers to quantify excitatory and inhibitory synapses in the spinal superficial dorsal horn at 14 days after painful facet joint injury in the rat. The objective of this study was to investigate the relationship between pain and synapse density in the spinal cord after facet injury. Neck pain is a major contributor to disability and often becomes chronic. The cervical facet joints are susceptible to loading-induced painful injury, initiating spinal central sensitization responses. Although excitatory synapse plasticity has been reported in the superficial dorsal horn early after painful facet injury, whether excitatory and/or inhibitory synapse density is altered at a time when pain is maintained is unknown. Rats underwent either a painful C6/C7 facet joint distraction or sham surgery. Mechanical hyperalgesia was measured and immunohistochemistry techniques for synapse quantification were used to quantify excitatory and inhibitory synapse densities in the superficial dorsal horn at day 14. Logarithmic correlation analyses evaluated whether the severity of facet injury correlated with either behavioral or synaptic outcomes. Facet joint injury induces pain that is sustained until day 14 (P Injury severity is significantly correlated with pain at days 1 (P = 0.0011) and 14 (P = 0.0002), but only with inhibitory, not excitatory, synapse density (P = 0.0025) at day 14. This study demonstrates a role for structural plasticity in both excitatory and inhibitory synapses in the maintenance of facet-mediated joint pain, and that altered inhibitory, but not excitatory, synapse density correlates to the severity of painful joint injury. Understanding the functional consequences of this spinal structural plasticity is critical to elucidate mechanisms of chronic joint pain. N /A.

  9. The Pathophysiology of Fragile X (and What It Teaches Us about Synapses)

    Science.gov (United States)

    Bhakar, Asha L.; Dölen, Gül; Bear, Mark F.

    2014-01-01

    Fragile X is the most common known inherited cause of intellectual disability and autism, and it typically results from transcriptional silencing of FMR1 and loss of the encoded protein, FMRP (fragile X mental retardation protein). FMRP is an mRNA-binding protein that functions at many synapses to inhibit local translation stimulated by metabotropic glutamate receptors (mGluRs) 1 and 5. Recent studies on the biology of FMRP and the signaling pathways downstream of mGluR1/5 have yielded deeper insight into how synaptic protein synthesis and plasticity are regulated by experience. This new knowledge has also suggested ways that altered signaling and synaptic function can be corrected in fragile X, and human clinical trials based on this information are under way. PMID:22483044

  10. Angelman syndrome at the synapse: meeting report of the Angelman Syndrome Foundation's 2009 scientific symposium.

    Science.gov (United States)

    Williams, Charles; Franco, Lisa

    2010-02-01

    Angelman syndrome is caused by disruption of the ubiquitin-protein ligase E3A gene (UBE3A). The gene encodes an ubiquitinating protein that is widely expressed in the body but has tissue-specific expression in brain neurons, resulting in transcription from only the maternal allele. The normal function of this protein is beginning to be delineated, but its protein targets and role in various cellular pathways remain elusive. Angelman syndrome mouse models lacking the protein in the brain provide insight into neuronal cell dysfunction, particularly in hippocampal neurons where dendritic structure and synaptic function become disturbed. The Angelman Syndrome Foundation's 2009 symposium theme was thus ''Angelman Syndrome at the Synapse,'' and the event enabled neuroscientists and other researchers and clinicians to present their current research on the syndrome.

  11. Cell Adhesion, the Backbone of the Synapse: “Vertebrate” and “Invertebrate” Perspectives

    OpenAIRE

    Giagtzoglou, Nikolaos; Ly, Cindy V.; Bellen, Hugo J.

    2009-01-01

    Synapses are asymmetric intercellular junctions that mediate neuronal communication. The number, type, and connectivity patterns of synapses determine the formation, maintenance, and function of neural circuitries. The complexity and specificity of synaptogenesis relies upon modulation of adhesive properties, which regulate contact initiation, synapse formation, maturation, and functional plasticity. Disruption of adhesion may result in structural and functional imbalance that may lead to neu...

  12. Remodeling of Hippocampal Synapses After Hippocampus-Dependent Associative Learning

    NARCIS (Netherlands)

    Geinisman, Yuri; Disterhoft, John F.; Gundersen, Hans Jørgen G.; McEchron, Matthew D.; Persina, Inna S.; Power, John M.; Zee, Eddy A. van der; West, Mark J.

    2000-01-01

    The aim of this study was to determine whether hippocampus-dependent associative learning involves changes in the number and/or structure of hippocampal synapses. A behavioral paradigm of trace eyeblink conditioning was used. Young adult rabbits were given daily 80 trial sessions to a criterion of

  13. Ultralow power artificial synapses using nanotextured magnetic Josephson junctions

    Science.gov (United States)

    Schneider, Michael L.; Donnelly, Christine A.; Russek, Stephen E.; Baek, Burm; Pufall, Matthew R.; Hopkins, Peter F.; Dresselhaus, Paul D.; Benz, Samuel P.; Rippard, William H.

    2018-01-01

    Neuromorphic computing promises to markedly improve the efficiency of certain computational tasks, such as perception and decision-making. Although software and specialized hardware implementations of neural networks have made tremendous accomplishments, both implementations are still many orders of magnitude less energy efficient than the human brain. We demonstrate a new form of artificial synapse based on dynamically reconfigurable superconducting Josephson junctions with magnetic nanoclusters in the barrier. The spiking energy per pulse varies with the magnetic configuration, but in our demonstration devices, the spiking energy is always less than 1 aJ. This compares very favorably with the roughly 10 fJ per synaptic event in the human brain. Each artificial synapse is composed of a Si barrier containing Mn nanoclusters with superconducting Nb electrodes. The critical current of each synapse junction, which is analogous to the synaptic weight, can be tuned using input voltage spikes that change the spin alignment of Mn nanoclusters. We demonstrate synaptic weight training with electrical pulses as small as 3 aJ. Further, the Josephson plasma frequencies of the devices, which determine the dynamical time scales, all exceed 100 GHz. These new artificial synapses provide a significant step toward a neuromorphic platform that is faster, more energy-efficient, and thus can attain far greater complexity than has been demonstrated with other technologies. PMID:29387787

  14. A recipe for ridding synapses of the ubiquitous AMPA receptor.

    Science.gov (United States)

    Turrigiano, Gina G

    2002-12-01

    Getting AMPA receptors into and out of synapses represents an important mechanism for changing synaptic strength, but the signals that target AMPA receptors for removal from the synaptic membrane are incompletely understood. A recent study in Ceanorhabditis elegans suggests that ubiquitination of AMPA receptors is one important signal that targets these receptors for endocytosis.

  15. Shaping inhibition: activity dependent structural plasticity of GABAergic synapses

    Directory of Open Access Journals (Sweden)

    Carmen E Flores

    2014-10-01

    Full Text Available Inhibitory transmission through the neurotransmitter Ɣ-aminobutyric acid (GABA shapes network activity in the mammalian cerebral cortex by filtering synaptic incoming information and dictating the activity of principal cells. The incredibly diverse population of cortical neurons that use GABA as neurotransmitter shows an equally diverse range of mechanisms that regulate changes in the strength of GABAergic synaptic transmission and allow them to dynamically follow and command the activity of neuronal ensembles. Similarly to glutamatergic synaptic transmission, activity-dependent functional changes in inhibitory neurotransmission are accompanied by alterations in GABAergic synapse structure that range from morphological reorganization of postsynaptic density to de novo formation and elimination of inhibitory contacts. Here we review several aspects of structural plasticity of inhibitory synapses, including its induction by different forms of neuronal activity, behavioral and sensory experience and the molecular mechanisms and signaling pathways involved. We discuss the functional consequences of GABAergic synapse structural plasticity for information processing and memory formation in view of the heterogenous nature of the structural plasticity phenomena affecting inhibitory synapses impinging on somatic and dendritic compartments of cortical and hippocampal neurons.

  16. Distribution and structure of efferent synapses in the chicken retina

    Science.gov (United States)

    Lindstrom, SH; Nacsa, N; Blankenship, T; Fitzgerald, PG; Weller, C; Vaney, DI; Wilson, M

    2012-01-01

    The visual system of birds includes an efferent projection from a visual area, the isthmooptic nucleus in the midbrain, back to the retina. Using a combination of anterograde labeling of efferent fibers, reconstruction of dye-filled neurons, NADPH-diaphorase staining, and transmission electron microscopy we have examined the distribution of efferent fibers and their synaptic structures in the chicken retina. We show that efferent fibers terminate strictly within the ventral retina. In 2 completely mapped retinas, only 2 fibers from a total of 15,359 terminated in the dorsal retina. The major synapse made by each efferent fiber is with a single Efferent Target Amacrine Cell (TC). This synapse consists of 5-25 boutons of 2μm diameter, each with multiple active zones, pressed into the TC soma or synapsing with a basketwork of rudimentary TC dendrites in the inner nuclear layer (INL). This basketwork, which is sheathed by Muller cells processes, defines a private neuropil in the INL within which TCs were also seen to receive input from retinal neurons. In addition to the major synapse, efferent fibers typically produce several very thin processes that terminate nearby in single small boutons and for which the soma of a local amacrine cell is one of the likely postsynaptic partners. A minority of efferent fibers also give rise to a thicker process terminating in a strongly diaphorase positive ball about 5μm in diameter. PMID:19439107

  17. Sleep: The hebbian reinforcement of the local inhibitory synapses.

    Science.gov (United States)

    Touzet, Claude

    2015-09-01

    Sleep is ubiquitous among the animal realm, and represents about 30% of our lives. Despite numerous efforts, the reason behind our need for sleep is still unknown. The Theory of neuronal Cognition (TnC) proposes that sleep is the period of time during which the local inhibitory synapses (in particular the cortical ones) are replenished. Indeed, as long as the active brain stays awake, hebbian learning guarantees that efficient inhibitory synapses lose their efficiency – just because they are efficient at avoiding the activation of the targeted neurons. Since hebbian learning is the only known mechanism of synapse modification, it follows that to replenish the inhibitory synapses' efficiency, source and targeted neurons must be activated together. This is achieved by a local depolarization that may travel (wave). The period of time during which such slow waves are experienced has been named the "slow-wave sleep" (SWS). It is cut into several pieces by shorter periods of paradoxical sleep (REM) which activity resembles that of the awake state. Indeed, SWS – because it only allows local neural activation – decreases the excitatory long distance connections strength. To avoid losing the associations built during the awake state, these long distance activations are played again during the REM sleep. REM and SWS sleeps act together to guarantee that when the subject awakes again, his inhibitory synaptic efficiency is restored and his (excitatory) long distance associations are still there. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. N-CADHERIN PRODOMAIN CLEAVAGE REGULATES SYNAPSE FORMATION IN VIVO

    Science.gov (United States)

    Latefi, Nazlie S.; Pedraza, Liliana; Schohl, Anne; Li, Ziwei; Ruthazer, Edward S.

    2009-01-01

    Cadherins are initially synthesized bearing a prodomain that is thought to limit adhesion during early stages of biosynthesis. Functional cadherins lack this prodomain, raising the intriguing possibility that cells may utilize prodomain cleavage as a means to temporally or spatially regulate adhesion after delivery of cadherin to the cell surface. In support of this idea, immunostaining for the prodomain of zebrafish N-cadherin revealed enriched labeling at neuronal surfaces at the soma and along axonal processes. To determine whether post-translational cleavage of the prodomain affects synapse formation, we imaged Rohon-Beard cells in zebrafish embryos expressing GFP-tagged wild-type N-cadherin (NCAD-GFP) or a GFP-tagged N-cadherin mutant expressing an uncleavable prodomain (PRON-GFP) rendering it non-adhesive. NCAD-GFP accumulated at synaptic microdomains in a developmentally regulated manner, and its overexpression transiently accelerated synapse formation. PRON-GFP was much more diffusely distributed along the axon and its overexpression delayed synapse formation. Our results support the notion that N-cadherin serves to stabilize pre- to postsynaptic contacts early in synapse development and suggests that regulated cleavage of the N-cadherin prodomain may be a mechanism by which the kinetics of synaptogenesis are regulated. PMID:19365814

  19. Bridging the gap between North and Central Chile : insight from new GPS data on coupling complexities and the Andean sliver motion

    Science.gov (United States)

    Klein, E.; Métois, M.; Meneses, G.; Vigny, C.; Delorme, A.

    2018-03-01

    GPS surveys have been extensively used over the past 20 years to quantify crustal deformation associated with the Andean subduction zone in Chile. Such measurements revealed the coupling variations associated with the seismic segmentation of the subduction. However, because of data gaps mostly due to access difficulties, the Atacama-Antofagasta regions of North Chile remain poorly known. We present here an upgraded interseismic velocity field aggregating new data acquired between 2012 and 2016 in the region of Taltal (24° S - 26° S), over a small scale network of 20 benchmarks. This denser data set reveals a new complexity regarding the modelling methodology commonly used. We first show that a large scale rigid Andean sliver, running from central to North Chile, does not allow to explain the velocities measured near the cordillera in the region of Taltal. This region exhibits an additional coherent block motion of almost 8 mm/yr with respect to the inland motion generated by the rotation of the sliver proposed by (e.g. Brooks et al. 2003; Métois et al. 2013, 2014) which works well everywhere else. Second, once this local block motion is taken into account, the coupling in the Taltal area is refined, which brings new insights about the subduction segmentation there. The Taltal area shows as a relative low in coupling (although coupling values are still high), potentially cutting a long section of the subduction into two independent highly coupled segments: the Paranal segment - North of Taltal, between 23° S and 25° S - and the Chañaral segment - south of Taltal, between 26° S and 28° S. These segments may rupture individually with magnitude ˜8 earthquakes or simultaneously which would produce a larger earthquake, especially if a third segment (Atacama - more to the south - between 28° S and 29° S) is also involved.

  20. Monitoring air quality in California's Central Valley with aircraft and continuous mountaintop observations - attribution insights gained by considering the scalar budget equation

    Science.gov (United States)

    Faloona, I. C.; Trousdell, J.; Caputi, D.; Conley, S. A.

    2017-12-01

    Ozone is one of the six criteria pollutants established by the US EPA's Clean Air Act, and one of two that still routinely violates federal standards as it is a secondary pollutant and therefore subject to indirect control strategies on complex, non-linear atmospheric chemistry. While improvements have been seen in many regions where ozone controls are in place, gains in California's San Joaquin Valley have lagged many other districts across the state. We present airborne measurements from several different campaigns in the valley (DISCOVER-AQ, ArvinO3, and CABOTS) along with data from a mountaintop monitoring site on its upwind side near the Pacific coast that has been operational for 5 years, and we shed light on several outstanding questions concerning air pollution in California's vast Central Valley. The framework of analysis is centered on the primitive equation of any atmospheric constituent - the scalar budget equation. By measuring each term in this equation, we gain insights into the relative impacts of exogenous (due to long range transport) vs. endogenous ozone (due to local photochemical production). We further argue that small aircraft campaigns with an emphasis on scalar budgeting sorties are a cost-effective tool in uncovering specific shortcomings of regional air quality models (e.g., lateral boundary conditions can be tested by comparing horizontal advection, turbulence parameterizations by comparing vertical fluxes, and chemical mechanisms by comparing net photochemical production rates.) In the case of NOx and CH4, for instance, we find that solving for surface emissions points toward inventory underestimates of both species by at least a factor of two. We discuss possible causes of these discrepancies, and suggest other ways to specifically vet aspects of regional air quality models with airborne measurements of meteorological and chemical variables.

  1. Presynaptic GABAB Receptors Regulate Hippocampal Synapses during Associative Learning in Behaving Mice.

    Directory of Open Access Journals (Sweden)

    M Teresa Jurado-Parras

    Full Text Available GABAB receptors are the G-protein-coupled receptors for GABA, the main inhibitory neurotransmitter in the central nervous system. Pharmacological activation of GABAB receptors regulates neurotransmission and neuronal excitability at pre- and postsynaptic sites. Electrophysiological activation of GABAB receptors in brain slices generally requires strong stimulus intensities. This raises the question as to whether behavioral stimuli are strong enough to activate GABAB receptors. Here we show that GABAB1a-/- mice, which constitutively lack presynaptic GABAB receptors at glutamatergic synapses, are impaired in their ability to acquire an operant learning task. In vivo recordings during the operant conditioning reveal a deficit in learning-dependent increases in synaptic strength at CA3-CA1 synapses. Moreover, GABAB1a-/- mice fail to synchronize neuronal activity in the CA1 area during the acquisition process. Our results support that activation of presynaptic hippocampal GABAB receptors is important for acquisition of a learning task and for learning-associated synaptic changes and network dynamics.

  2. Analog Memristive Synapse in Spiking Networks Implementing Unsupervised Learning

    Science.gov (United States)

    Covi, Erika; Brivio, Stefano; Serb, Alexander; Prodromakis, Themis; Fanciulli, Marco; Spiga, Sabina

    2016-01-01

    Emerging brain-inspired architectures call for devices that can emulate the functionality of biological synapses in order to implement new efficient computational schemes able to solve ill-posed problems. Various devices and solutions are still under investigation and, in this respect, a challenge is opened to the researchers in the field. Indeed, the optimal candidate is a device able to reproduce the complete functionality of a synapse, i.e., the typical synaptic process underlying learning in biological systems (activity-dependent synaptic plasticity). This implies a device able to change its resistance (synaptic strength, or weight) upon proper electrical stimuli (synaptic activity) and showing several stable resistive states throughout its dynamic range (analog behavior). Moreover, it should be able to perform spike timing dependent plasticity (STDP), an associative homosynaptic plasticity learning rule based on the delay time between the two firing neurons the synapse is connected to. This rule is a fundamental learning protocol in state-of-art networks, because it allows unsupervised learning. Notwithstanding this fact, STDP-based unsupervised learning has been proposed several times mainly for binary synapses rather than multilevel synapses composed of many binary memristors. This paper proposes an HfO2-based analog memristor as a synaptic element which performs STDP within a small spiking neuromorphic network operating unsupervised learning for character recognition. The trained network is able to recognize five characters even in case incomplete or noisy images are displayed and it is robust to a device-to-device variability of up to ±30%. PMID:27826226

  3. Reduced sensory stimulation alters the molecular make-up of glutamatergic hair cell synapses in the developing cochlea.

    Science.gov (United States)

    Barclay, M; Constable, R; James, N R; Thorne, P R; Montgomery, J M

    2016-06-14

    Neural activity during early development is known to alter innervation pathways in the central and peripheral nervous systems. We sought to examine how reduced sound-induced sensory activity in the cochlea affected the consolidation of glutamatergic synapses between inner hair cells (IHC) and the primary auditory neurons as these synapses play a primary role in transmitting sound information to the brain. A unilateral conductive hearing loss was induced prior to the onset of sound-mediated stimulation of the sensory hair cells, by rupturing the tympanic membrane and dislocating the auditory ossicles in the left ear of P11 mice. Auditory brainstem responses at P15 and P21 showed a 40-50-dB increase in thresholds for frequencies 8-32kHz in the dislocated ear relative to the control ear. Immunohistochemistry and confocal microscopy were subsequently used to examine the effect of this attenuation of sound stimulation on the expression of RIBEYE, which comprises the presynaptic ribbons, Shank-1, a postsynaptic scaffolding protein, and the GluA2/3 and 4 subunits of postsynaptic AMPA receptors. Our results show that dislocation did not alter the number of pre- or postsynaptic protein puncta. However, dislocation did increase the size of RIBEYE, GluA4, GluA2/3 and Shank-1 puncta, with postsynaptic changes preceding presynaptic changes. Our data suggest that a reduction in sound stimulation during auditory development induces plasticity in the molecular make-up of IHC glutamatergic synapses, but does not affect the number of these synapses. Up-regulation of synaptic proteins with sound attenuation may facilitate a compensatory increase in synaptic transmission due to the reduced sensory stimulation of the IHC. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Internal dynamics of a paleoaccretionary wedge: insights from combined isotope tectonochronology and sandbox modelling of the South-Central Chilean forearc

    Science.gov (United States)

    Glodny, Johannes; Lohrmann, Jo; Echtler, Helmut; Gräfe, Kirsten; Seifert, Wolfgang; Collao, Santiago; Figueroa, Oscar

    2005-02-01

    Forearc accretionary wedges are cyclic systems in which material is frontally and/or basally accreted. Material cycling involves underthrusting, subduction, underplating, exhumation, erosion, transfer to the trench and underthrusting again. In this study we present a novel, tectonochronologic approach to constrain long-term exhumation rates of basally accreted wedge complexes, based on isotopic dating of structural features, on petrological data and sandbox analogue simulations. Congruence between the structural inventory in nature and structures generated in scaled sandbox experiments allows detailed insights into wedge dynamics. For the present-day surface material of the paleoaccretionary wedge of South-Central Chile (Valdivia area, 40°S), published U-Pb ages of detrital zircon place a maximum age of ˜278 Ma for subduction. Prograde metamorphism at transitional greenschist to blueschist facies conditions (420 °C, 8-9 kbar) was immediately followed by progressive penetrative deformation associated with basal accretion, dated at ˜250-245 Ma using Rb/Sr internal mineral isochrons. The accretion process involved duplex tectonics and antiformal stacking, with formation of near-horizontal mylonitic shear zones at around 241 Ma. Continuous basal accretion at depth gave rise to an extensional tectonic regime at higher structural levels. Both semi-ductile, small-scale extensional shear zones and post-kinematic vein mineralizations yield Rb/Sr ages of ˜235 Ma. Tension gashes, representing the latest isotopically dateable stage of structural evolution, were formed at ˜210 Ma, at conditions of ˜230 °C at 1.5-3 kbar, as constrained by fluid inclusion data. Zircon fission track data indicate final cooling to below ˜200 °C at 186±24 Ma. The results suggest continuous basal accretion for at least 50 Ma, with long-term average exhumation rates of 0.6±0.2 mm/a, most probably outbalanced by similar long-term average erosion rates. Changing plate boundary conditions at

  5. A Neuron- and a Synapse Chip for Artificial Neural Networks

    DEFF Research Database (Denmark)

    Lansner, John; Lehmann, Torsten

    1992-01-01

    A cascadable, analog, CMOS chip set has been developed for hardware implementations of artificial neural networks (ANN's):I) a neuron chip containing an array of neurons with hyperbolic tangent activation functions and adjustable gains, and II) a synapse chip (or a matrix-vector multiplier) where...... the matrix is stored on-chip as differential voltages on capacitors. In principal any ANN configuration can be made using these chips. A neuron array of 4 neurons and a 4 × 4 matrix-vector multiplier has been fabricated in a standard 2.4 ¿m CMOS process for test purposes. The propagation time through...... the synapse and neuron chips is less than 4 ¿s and the weight matrix has a 10 bit resolution....

  6. Autaptic effects on synchrony of neurons coupled by electrical synapses

    Science.gov (United States)

    Kim, Youngtae

    2017-07-01

    In this paper, we numerically study the effects of a special synapse known as autapse on synchronization of population of Morris-Lecar (ML) neurons coupled by electrical synapses. Several configurations of the ML neuronal populations such as a pair or a ring or a globally coupled network with and without autapses are examined. While most of the papers on the autaptic effects on synchronization have used networks of neurons of same spiking rate, we use the network of neurons of different spiking rates. We find that the optimal autaptic coupling strength and the autaptic time delay enhance synchronization in our neural networks. We use the phase response curve analysis to explain the enhanced synchronization by autapses. Our findings reveal the important relationship between the intraneuronal feedback loop and the interneuronal coupling.

  7. Astrocytosis in parkinsonism: considering tripartite striatal synapses in physiopathology?

    Science.gov (United States)

    Charron, Giselle; Doudnikoff, Evelyne; Canron, Marie-Helene; Li, Qin; Véga, Céline; Marais, Sebastien; Baufreton, Jérôme; Vital, Anne; Oliet, Stéphane H R; Bezard, Erwan

    2014-01-01

    The current concept of basal ganglia organization and function in physiological and pathophysiological conditions excludes the most numerous cells in the brain, i.e., the astrocytes, present with a ratio of 10:1 neuron. Their role in neurodegenerative condition such as Parkinson's disease (PD) remains to be elucidated. Before embarking into physiological investigations of the yet-to-be-identified "tripartite" synapses in the basal ganglia in general and the striatum in particular, we therefore characterized anatomically the PD-related modifications in astrocytic morphology, the changes in astrocytic network connections and the consequences on the spatial relationship between astrocytic processes and asymmetric synapses in normal and PD-like conditions in experimental and human PD. Our results unravel a dramatic regulation of striatal astrocytosis supporting the hypothesis of a key role in (dys) regulating corticostriatal transmission. Astrocytes and their various properties might thus represent a therapeutic target in PD.

  8. Astrocytosis in parkinsonism: considering tripartite striatal synapses in physiopathology?

    Directory of Open Access Journals (Sweden)

    Giselle eCharron

    2014-09-01

    Full Text Available The current concept of basal ganglia organization and function in physiological and pathophysiological conditions excludes the most numerous cells in the brain, i.e. the astrocytes, present with a ratio of 10:1 neuron. Their role in neurodegenerative condition such as Parkinson’s disease (PD remains to be elucidated. Before embarking into physiological investigations of the yet-to-be-identified tripartite synapses in the basal ganglia in general and the striatum in particular, we therefore characterized anatomically the PD-related modifications in astrocytic morphology, the changes in astrocytic network connections and the consequences on the spatial relationship between astrocytic processes and asymmetric synapses in normal and PD-like conditions in experimental and human PD. Our results unravel a dramatic regulation of striatal astrocytosis supporting the hypothesis of a key role in (dysregulating corticostriatal transmission. Astrocytes and their various properties might thus represent a therapeutic target in PD.

  9. Microorganism and Fungi Drive Evolution of Plant Synapses

    Directory of Open Access Journals (Sweden)

    Frantisek eBaluska

    2013-08-01

    Full Text Available In the course of plant evolution, there is an obvious trend toward an increased complexity of plant bodies, as well as an increased sophistication of plant behavior and communication. Phenotypic plasticity of plants is based on the polar auxin transport machinery that is directly linked with plant sensory systems impinging on plant behavior and adaptive responses. Similar to the emergence and evolution of eukaryotic cells, evolution of land plants was also shaped and driven by infective and symbiotic microorganisms. These microorganisms are the driving force behind the evolution of plant synapses and other neuronal aspects of higher plants; this is especially pronounced in the root apices. Plant synapses allow synaptic cell-cell communication and coordination in plants, as well as sensory-motor integration in root apices searching for water and mineral nutrition. These neuronal aspects of higher plants are closely linked with their unique ability to adapt to environmental changes.

  10. Microorganism and filamentous fungi drive evolution of plant synapses.

    Science.gov (United States)

    Baluška, František; Mancuso, Stefano

    2013-01-01

    In the course of plant evolution, there is an obvious trend toward an increased complexity of plant bodies, as well as an increased sophistication of plant behavior and communication. Phenotypic plasticity of plants is based on the polar auxin transport machinery that is directly linked with plant sensory systems impinging on plant behavior and adaptive responses. Similar to the emergence and evolution of eukaryotic cells, evolution of land plants was also shaped and driven by infective and symbiotic microorganisms. These microorganisms are the driving force behind the evolution of plant synapses and other neuronal aspects of higher plants; this is especially pronounced in the root apices. Plant synapses allow synaptic cell-cell communication and coordination in plants, as well as sensory-motor integration in root apices searching for water and mineral nutrition. These neuronal aspects of higher plants are closely linked with their unique ability to adapt to environmental changes.

  11. Process for forming synapses in neural networks and resistor therefor

    Science.gov (United States)

    Fu, Chi Y.

    1996-01-01

    Customizable neural network in which one or more resistors form each synapse. All the resistors in the synaptic array are identical, thus simplifying the processing issues. Highly doped, amorphous silicon is used as the resistor material, to create extremely high resistances occupying very small spaces. Connected in series with each resistor in the array is at least one severable conductor whose uppermost layer has a lower reflectivity of laser energy than typical metal conductors at a desired laser wavelength.

  12. Temporal coding at the immature depolarizing GABAergic synapse

    Directory of Open Access Journals (Sweden)

    Guzel Valeeva

    2010-07-01

    Full Text Available In the developing hippocampus, GABA exerts depolarizing and excitatory actions and contributes to the generation of neuronal network driven Giant Depolarizing Potentials (GDPs. Here, we studied spike time coding at immature GABAergic synapses and its impact on synchronization of the neuronal network during GDPs in the neonatal (postnatal days P2-6 rat hippocampal slices. Using extracellular recordings, we found that the delays of action potentials (APs evoked by synaptic activation of GABA(A receptors are long (mean, 65 ms and variable (within a time window of 10-200 ms. During patch-clamp recordings, depolarizing GABAergic responses were mainly subthreshold and their amplification by persistent sodium conductance was required to trigger APs. AP delays at GABAergic synapses shortened and their variability reduced with an increase in intracellular chloride concentration during whole-cell recordings. Negative shift of the GABA reversal potential (EGABA with low concentrations of bumetanide, or potentiation of GABA(A receptors with diazepam reduced GDPs amplitude, desynchronized neuronal firing during GDPs and slowed down GDPs propagation. Partial blockade of GABA(A receptors with bicuculline increased neuronal synchronization and accelerated GDPs propagation. We propose that spike-timing at depolarizing GABA synapses is determined by intracellular chloride concentration. At physiological levels of intracellular chloride GABAergic depolarization does not reach the action potential threshold and amplification of GABAergic responses by non-inactivating sodium conductance is required for postsynaptic AP initiation. Slow and variable excitation at GABAergic synapse determines the level of neuronal synchrony and the rate of GDPs propagation in the developing hippocampus.

  13. Studying the Dynamics of TCR Internalization at the Immune Synapse.

    Science.gov (United States)

    Calleja, Enrique; Alarcón, Balbino; Oeste, Clara L

    2017-01-01

    Establishing a stable interaction between a T cell and an antigen presenting cell (APC) involves the formation of an immune synapse (IS). It is through this structure that the T cell can integrate all the signals provided by the APC. The IS also serves as a mechanism for TCR downregulation through internalization. Here, we describe methods for visualizing MHC-engaged T cell receptor (TCR) internalization from the IS in human cell lines and mouse primary T cells by confocal fluorescence microscopy techniques.

  14. Storage capacity of attractor neural networks with depressing synapses

    International Nuclear Information System (INIS)

    Torres, Joaquin J.; Pantic, Lovorka; Kappen, Hilbert J.

    2002-01-01

    We compute the capacity of a binary neural network with dynamic depressing synapses to store and retrieve an infinite number of patterns. We use a biologically motivated model of synaptic depression and a standard mean-field approach. We find that at T=0 the critical storage capacity decreases with the degree of the depression. We confirm the validity of our main mean-field results with numerical simulations

  15. Astrocytosis in parkinsonism: considering tripartite striatal synapses in physiopathology?

    OpenAIRE

    Charron, Giselle; Doudnikoff, Evelyne; Canron, Marie-Helene; Li, Qin; Véga, Céline; Marais, Sebastien; Baufreton, Jérôme; Vital, Anne; Oliet, Stéphane H. R.; Bezard, Erwan

    2014-01-01

    International audience; The current concept of basal ganglia organization and function in physiological and pathophysiological conditions excludes the most numerous cells in the brain, i.e., the astrocytes, present with a ratio of 10:1 neuron. Their role in neurodegenerative condition such as Parkinson's disease (PD) remains to be elucidated. Before embarking into physiological investigations of the yet-to-be-identified " tripartite " synapses in the basal ganglia in general and the striatum ...

  16. The State of Synapses in Fragile X Syndrome

    OpenAIRE

    Pfeiffer, Brad E.; Huber, Kimberly M.

    2009-01-01

    Fragile X Syndrome is the most common inherited form of mental retardation and a leading genetic cause of autism. There is increasing evidence in both FXS and other forms of autism that alterations in synapse number, structure and function are associated and contribute to these prevalent diseases. FXS is caused by loss of function of the Fmr1 gene which encodes the RNA binding protein, FMRP. Therefore, FXS is a tractable model to understand synaptic dysfunction in cognitive disorders. FMRP is...

  17. The space where aging acts: focus on the GABAergic synapse.

    Science.gov (United States)

    Rozycka, Aleksandra; Liguz-Lecznar, Monika

    2017-08-01

    As it was established that aging is not associated with massive neuronal loss, as was believed in the mid-20th Century, scientific interest has addressed the influence of aging on particular neuronal subpopulations and their synaptic contacts, which constitute the substrate for neural plasticity. Inhibitory neurons represent the most complex and diverse group of neurons, showing distinct molecular and physiological characteristics and possessing a compelling ability to control the physiology of neural circuits. This review focuses on the aging of GABAergic neurons and synapses. Understanding how aging affects synapses of particular neuronal subpopulations may help explain the heterogeneity of aging-related effects. We reviewed the literature concerning the effects of aging on the numbers of GABAergic neurons and synapses as well as aging-related alterations in their presynaptic and postsynaptic components. Finally, we discussed the influence of those changes on the plasticity of the GABAergic system, highlighting our results concerning aging in mouse somatosensory cortex and linking them to plasticity impairments and brain disorders. We posit that aging-induced impairments of the GABAergic system lead to an inhibitory/excitatory imbalance, thereby decreasing neuron's ability to respond with plastic changes to environmental and cellular challenges, leaving the brain more vulnerable to cognitive decline and damage by synaptopathic diseases. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  18. TFH-derived dopamine accelerates productive synapses in germinal centres.

    Science.gov (United States)

    Papa, Ilenia; Saliba, David; Ponzoni, Maurilio; Bustamante, Sonia; Canete, Pablo F; Gonzalez-Figueroa, Paula; McNamara, Hayley A; Valvo, Salvatore; Grimbaldeston, Michele; Sweet, Rebecca A; Vohra, Harpreet; Cockburn, Ian A; Meyer-Hermann, Michael; Dustin, Michael L; Doglioni, Claudio; Vinuesa, Carola G

    2017-07-20

    Protective high-affinity antibody responses depend on competitive selection of B cells carrying somatically mutated B-cell receptors by follicular helper T (T FH ) cells in germinal centres. The rapid T-B-cell interactions that occur during this process are reminiscent of neural synaptic transmission pathways. Here we show that a proportion of human T FH cells contain dense-core granules marked by chromogranin B, which are normally found in neuronal presynaptic terminals storing catecholamines such as dopamine. T FH cells produce high amounts of dopamine and release it upon cognate interaction with B cells. Dopamine causes rapid translocation of intracellular ICOSL (inducible T-cell co-stimulator ligand, also known as ICOSLG) to the B-cell surface, which enhances accumulation of CD40L and chromogranin B granules at the human T FH cell synapse and increases the synapse area. Mathematical modelling suggests that faster dopamine-induced T-B-cell interactions increase total germinal centre output and accelerate it by days. Delivery of neurotransmitters across the T-B-cell synapse may be advantageous in the face of infection.

  19. Synapse geometry and receptor dynamics modulate synaptic strength.

    Directory of Open Access Journals (Sweden)

    Dominik Freche

    Full Text Available Synaptic transmission relies on several processes, such as the location of a released vesicle, the number and type of receptors, trafficking between the postsynaptic density (PSD and extrasynaptic compartment, as well as the synapse organization. To study the impact of these parameters on excitatory synaptic transmission, we present a computational model for the fast AMPA-receptor mediated synaptic current. We show that in addition to the vesicular release probability, due to variations in their release locations and the AMPAR distribution, the postsynaptic current amplitude has a large variance, making a synapse an intrinsic unreliable device. We use our model to examine our experimental data recorded from CA1 mice hippocampal slices to study the differences between mEPSC and evoked EPSC variance. The synaptic current but not the coefficient of variation is maximal when the active zone where vesicles are released is apposed to the PSD. Moreover, we find that for certain type of synapses, receptor trafficking can affect the magnitude of synaptic depression. Finally, we demonstrate that perisynaptic microdomains located outside the PSD impacts synaptic transmission by regulating the number of desensitized receptors and their trafficking to the PSD. We conclude that geometrical modifications, reorganization of the PSD or perisynaptic microdomains modulate synaptic strength, as the mechanisms underlying long-term plasticity.

  20. Remote tactile sensing system integrated with magnetic synapse.

    Science.gov (United States)

    Oh, Sunjong; Jung, Youngdo; Kim, Seonggi; Kim, SungJoon; Hu, Xinghao; Lim, Hyuneui; Kim, CheolGi

    2017-12-05

    Mechanoreceptors in a fingertip convert external tactile stimulations into electrical signals, which are transmitted by the nervous system through synaptic transmitters and then perceived by the brain with high accuracy and reliability. Inspired by the human synapse system, this paper reports a robust tactile sensing system consisting of a remote touch tip and a magnetic synapse. External pressure on the remote touch tip is transferred in the form of air pressure to the magnetic synapse, where its variation is converted into electrical signals. The developed system has high sensitivity and a wide dynamic range. The remote sensing system demonstrated tactile capabilities over wide pressure range with a minimum detectable pressure of 6 Pa. In addition, it could measure tactile stimulation up to 1,000 Hz without distortion and hysteresis, owing to the separation of the touching and sensing parts. The excellent performance of the system in terms of surface texture discrimination, heartbeat measurement from the human wrist, and satisfactory detection quality in water indicates that it has considerable potential for various mechanosensory applications in different environments.

  1. Stochastic resonance in small-world neuronal networks with hybrid electrical–chemical synapses

    International Nuclear Information System (INIS)

    Wang, Jiang; Guo, Xinmeng; Yu, Haitao; Liu, Chen; Deng, Bin; Wei, Xile; Chen, Yingyuan

    2014-01-01

    Highlights: •We study stochastic resonance in small-world neural networks with hybrid synapses. •The resonance effect depends largely on the probability of chemical synapse. •An optimal chemical synapse probability exists to evoke network resonance. •Network topology affects the stochastic resonance in hybrid neuronal networks. - Abstract: The dependence of stochastic resonance in small-world neuronal networks with hybrid electrical–chemical synapses on the probability of chemical synapse and the rewiring probability is investigated. A subthreshold periodic signal is imposed on one single neuron within the neuronal network as a pacemaker. It is shown that, irrespective of the probability of chemical synapse, there exists a moderate intensity of external noise optimizing the response of neuronal networks to the pacemaker. Moreover, the effect of pacemaker driven stochastic resonance of the system depends largely on the probability of chemical synapse. A high probability of chemical synapse will need lower noise intensity to evoke the phenomenon of stochastic resonance in the networked neuronal systems. In addition, for fixed noise intensity, there is an optimal chemical synapse probability, which can promote the propagation of the localized subthreshold pacemaker across neural networks. And the optimal chemical synapses probability turns even larger as the coupling strength decreases. Furthermore, the small-world topology has a significant impact on the stochastic resonance in hybrid neuronal networks. It is found that increasing the rewiring probability can always enhance the stochastic resonance until it approaches the random network limit

  2. The artificial synapse chip: From proteins to prostheses

    Science.gov (United States)

    Peterman, Mark Charles

    Most retinal prostheses use an electric field to stimulate retinal circuitry, yet information transfer in the retina is primarily through neurotransmitters. To address this difference, this thesis describes a proof of concept retinal interface based on localized chemical delivery. This system, the Artificial Synapse Chip, is based on a 5 mum aperture in a silicon nitride membrane overlying a microfluidic channel. The effectiveness of this interface is demonstrated by ejecting bradykinin on cultured excitable cells. Even with manual fluidic control, the relationship between the extent of stimulation and concentration is linear, providing enough control to limit stimulation to individual cells. A neurotransmitter-based prosthesis will require advanced fluidic control. This thesis reports the use of electroosmosis to eject or withdraw fluid from an aperture in a channel wall. This effect is demonstrated experimentally, and numerically, using a finite-element method. Our primary device is a prototype interface with four individually addressable apertures in a 2 x 2 array. Using this array, we demonstrate stimulation of both PC12 and retinal ganglion cells. This demonstration of localized chemical stimulation of excitable cells illustrates the potential of this technology for retinal prostheses. As a final application of the Artificial Synapse Chip, we applied the concept to lipid bilayer membranes and membrane-bound proteins. Not only are membrane-bound proteins crucial to the function of biological synapses, but also are important from a technological point of view. In this thesis, we use a Langmuir-Blodgett technique to producing lipid bilayers across apertures in a modified version of the Artificial Synapse Chip. These bilayers display many of the same properties as bilayers across apertures in Teflon films. In addition, these bilayers remain unbroken at transmembrane potentials over +/-400 mV, higher than Teflon-supported bilayers. We also demonstrate single

  3. Untangling the two-way signalling route from synapses to the nucleus, and from the nucleus back to the synapses.

    Science.gov (United States)

    Nonaka, Mio; Fujii, Hajime; Kim, Ryang; Kawashima, Takashi; Okuno, Hiroyuki; Bito, Haruhiko

    2014-01-05

    During learning and memory, it has been suggested that the coordinated electrical activity of hippocampal neurons translates information about the external environment into internal neuronal representations, which then are stored initially within the hippocampus and subsequently into other areas of the brain. A widely held hypothesis posits that synaptic plasticity is a key feature that critically modulates the triggering and the maintenance of such representations, some of which are thought to persist over time as traces or tags. However, the molecular and cell biological basis for these traces and tags has remained elusive. Here, we review recent findings that help clarify some of the molecular and cellular mechanisms critical for these events, by untangling a two-way signalling crosstalk route between the synapses and the neuronal soma. In particular, a detailed interrogation of the soma-to-synapse delivery of immediate early gene product Arc/Arg3.1, whose induction is triggered by heightened synaptic activity in many brain areas, teases apart an unsuspected 'inverse' synaptic tagging mechanism that likely contributes to maintaining the contrast of synaptic weight between strengthened and weak synapses within an active ensemble.

  4. Effects of curcumin on synapses in APPswe/PS1dE9 mice.

    Science.gov (United States)

    He, Yingkun; Wang, Pengwen; Wei, Peng; Feng, Huili; Ren, Ying; Yang, Jinduo; Rao, Yingxue; Shi, Jing; Tian, Jinzhou

    2016-06-01

    Significant losses of synapses have been demonstrated in studies of Alzheimer's disease (AD), but structural and functional changes in synapses that depend on alterations of the postsynaptic density (PSD) area occur prior to synaptic loss and play a crucial role in the pathology of AD. Evidence suggests that curcumin can ameliorate the learning and memory deficits of AD. To investigate the effects of curcumin on synapses, APPswe/PS1dE9 double transgenic mice (an AD model) were used, and the ultra-structures of synapses and synapse-associated proteins were observed. Six months after administration, few abnormal synapses were observed upon electron microscopy in the hippocampal CA1 areas of the APPswe/PS1dE9 double transgenic mice. The treatment of the mice with curcumin resulted in improvements in the quantity and structure of the synapses. Immunohistochemistry and western blot analyses revealed that the expressions of PSD95 and Shank1 were reduced in the hippocampal CA1 areas of the APPswe/PS1dE9 double transgenic mice, but curcumin treatment increased the expressions of these proteins. Our findings suggest that curcumin improved the structure and function of the synapses by regulating the synapse-related proteins PSD95 and Shank1. © The Author(s) 2016.

  5. The new final Clinical Skills examination in human medicine in Switzerland: Essential steps of exam development, implementation and evaluation, and central insights from the perspective of the national Working Group

    Directory of Open Access Journals (Sweden)

    Berendonk, Christoph

    2015-10-01

    Full Text Available Objective: Since 2011, the new national final examination in human medicine has been implemented in Switzerland, with a structured clinical-practical part in the OSCE format. From the perspective of the national Working Group, the current article describes the essential steps in the development, implementation and evaluation of the Federal Licensing Examination Clinical Skills (FLE CS as well as the applied quality assurance measures. Finally, central insights gained from the last years are presented. Methods: Based on the principles of action research, the FLE CS is in a constant state of further development. On the foundation of systematically documented experiences from previous years, in the Working Group, unresolved questions are discussed and resulting solution approaches are substantiated (planning, implemented in the examination (implementation and subsequently evaluated (reflection. The presented results are the product of this iterative procedure.Results: The FLE CS is created by experts from all faculties and subject areas in a multistage process. The examination is administered in German and French on a decentralised basis and consists of twelve interdisciplinary stations per candidate. As important quality assurance measures, the national Review Board (content validation and the meetings of the standardised patient trainers (standardisation have proven worthwhile. The statistical analyses show good measurement reliability and support the construct validity of the examination. Among the central insights of the past years, it has been established that the consistent implementation of the principles of action research contributes to the successful further development of the examination.Conclusion: The centrally coordinated, collaborative-iterative process, incorporating experts from all faculties, makes a fundamental contribution to the quality of the FLE CS. The processes and insights presented here can be useful for others planning a

  6. Mammalian Cochlear Hair Cell Regeneration and Ribbon Synapse Reformation

    Directory of Open Access Journals (Sweden)

    Xiaoling Lu

    2016-01-01

    Full Text Available Hair cells (HCs are the sensory preceptor cells in the inner ear, which play an important role in hearing and balance. The HCs of organ of Corti are susceptible to noise, ototoxic drugs, and infections, thus resulting in permanent hearing loss. Recent approaches of HCs regeneration provide new directions for finding the treatment of sensor neural deafness. To have normal hearing function, the regenerated HCs must be reinnervated by nerve fibers and reform ribbon synapse with the dendrite of spiral ganglion neuron through nerve regeneration. In this review, we discuss the research progress in HC regeneration, the synaptic plasticity, and the reinnervation of new regenerated HCs in mammalian inner ear.

  7. A compound memristive synapse model for statistical learning through STDP in spiking neural networks

    Directory of Open Access Journals (Sweden)

    Johannes eBill

    2014-12-01

    Full Text Available Memristors have recently emerged as promising circuit elements to mimic the function of biological synapses in neuromorphic computing. The fabrication of reliable nanoscale memristive synapses, that feature continuous conductance changes based on the timing of pre- and postsynaptic spikes, has however turned out to be challenging. In this article, we propose an alternative approach, the compound memristive synapse, that circumvents this problem by the use of memristors with binary memristive states. A compound memristive synapse employs multiple bistable memristors in parallel to jointly form one synapse, thereby providing a spectrum of synaptic efficacies. We investigate the computational implications of synaptic plasticity in the compound synapse by integrating the recently observed phenomenon of stochastic filament formation into an abstract model of stochastic switching. Using this abstract model, we first show how standard pulsing schemes give rise to spike-timing dependent plasticity (STDP with a stabilizing weight dependence in compound synapses. In a next step, we study unsupervised learning with compound synapses in networks of spiking neurons organized in a winner-take-all architecture. Our theoretical analysis reveals that compound-synapse STDP implements generalized Expectation-Maximization in the spiking network. Specifically, the emergent synapse configuration represents the most salient features of the input distribution in a Mixture-of-Gaussians generative model. Furthermore, the network’s spike response to spiking input streams approximates a well-defined Bayesian posterior distribution. We show in computer simulations how such networks learn to represent high-dimensional distributions over images of handwritten digits with high fidelity even in presence of substantial device variations and under severe noise conditions. Therefore, the compound memristive synapse may provide a synaptic design principle for future neuromorphic

  8. Power-law forgetting in synapses with metaplasticity

    International Nuclear Information System (INIS)

    Mehta, A; Luck, J M

    2011-01-01

    The idea of using metaplastic synapses to incorporate the separate storage of long- and short-term memories via an array of hidden states was put forward in the cascade model of Fusi et al. In this paper, we devise and investigate two models of a metaplastic synapse based on these general principles. The main difference between the two models lies in their available mechanisms of decay, when a contrarian event occurs after the build-up of a long-term memory. In one case, this leads to the conversion of the long-term memory to a short-term memory of the opposite kind, while in the other, a long-term memory of the opposite kind may be generated as a result. Appropriately enough, the response of both models to short-term events is not affected by this difference in architecture. On the contrary, the transient response of both models, after long-term memories have been created by the passage of sustained signals, is rather different. The asymptotic behaviour of both models is, however, characterised by power-law forgetting with the same universal exponent

  9. A Reinforcement Learning Framework for Spiking Networks with Dynamic Synapses

    Directory of Open Access Journals (Sweden)

    Karim El-Laithy

    2011-01-01

    Full Text Available An integration of both the Hebbian-based and reinforcement learning (RL rules is presented for dynamic synapses. The proposed framework permits the Hebbian rule to update the hidden synaptic model parameters regulating the synaptic response rather than the synaptic weights. This is performed using both the value and the sign of the temporal difference in the reward signal after each trial. Applying this framework, a spiking network with spike-timing-dependent synapses is tested to learn the exclusive-OR computation on a temporally coded basis. Reward values are calculated with the distance between the output spike train of the network and a reference target one. Results show that the network is able to capture the required dynamics and that the proposed framework can reveal indeed an integrated version of Hebbian and RL. The proposed framework is tractable and less computationally expensive. The framework is applicable to a wide class of synaptic models and is not restricted to the used neural representation. This generality, along with the reported results, supports adopting the introduced approach to benefit from the biologically plausible synaptic models in a wide range of intuitive signal processing.

  10. Positioning of AMPA Receptor-Containing Endosomes Regulates Synapse Architecture

    Directory of Open Access Journals (Sweden)

    Marta Esteves da Silva

    2015-11-01

    Full Text Available Lateral diffusion in the membrane and endosomal trafficking both contribute to the addition and removal of AMPA receptors (AMPARs at postsynaptic sites. However, the spatial coordination between these mechanisms has remained unclear, because little is known about the dynamics of AMPAR-containing endosomes. In addition, how the positioning of AMPAR-containing endosomes affects synapse organization and functioning has never been directly explored. Here, we used live-cell imaging in hippocampal neuron cultures to show that intracellular AMPARs are transported in Rab11-positive recycling endosomes, which frequently enter dendritic spines and depend on the microtubule and actin cytoskeleton. By using chemically induced dimerization systems to recruit kinesin (KIF1C or myosin (MyosinV/VI motors to Rab11-positive recycling endosomes, we controlled their trafficking and found that induced removal of recycling endosomes from spines decreases surface AMPAR expression and PSD-95 clusters at synapses. Our data suggest a mechanistic link between endosome positioning and postsynaptic structure and composition.

  11. Bibliometric analysis of the Korean Journal of Parasitology: measured from SCI, PubMed, Scopus, and Synapse databases.

    Science.gov (United States)

    Lee, Choon Shil

    2009-10-01

    The Korean Journal of Parasitology (KJP) is the official journal of the Korean Society for Parasitology which is celebrating its 50th anniversary in 2009. To assess the contributions and achievements of the KJP, bibliometric analysis was conducted based on the citation data retrieved from 4 major databases; SCI, PubMed, Synapse, and Scopus. It was found that the KJP articles were constantly cited by the articles published in major international journals represented in these databases. More than 60% of 1,370 articles published in the KJP from 1963 to June 2009 were cited at least once by SCI articles. The overall average times cited by SCI articles are 2.6. The rate is almost 3 times higher for the articles published in the last 10 years compared to 1.0 for the articles of the 1960s. The SCI journal impact factor for 2008 is calculated as 0.871. It is increasing and it is expected to increase further with the introduction of the KJP in the database in 2008. The more realistic h-indices were measured from the study data set covering all the citations to the KJP; 17 for SCI, 6 for PubMed, 19 for Synapse, and 17 for Scopus. Synapse extensively picked up the citations to the earlier papers not retrievable from the other 3 databases. It identified many papers published in the 1960s and in the 1980s which have been cited heavily, proving the central role of the KJP in the dissemination of the important research findings over the last 5 decades.

  12. Nature and timing of the final collision of Central Asian Orogenic Belt: insights from basic intrusion in the Xilin Gol Complex, Inner Mongolia, China

    NARCIS (Netherlands)

    Li, Y.; Zhou, H.; Brouwer, F.M.; Xiao, W.; Wijbrans, J.R.; Zhao, J.; Zhong, Z.; Liu, H.

    2014-01-01

    The Solonker suture zone of the Central Asian Orogenic Belt (CAOB) records the final closure of the Paleo-Asian Ocean. The nature and timing of final collision along the Solonker suture has long been controversial, partly because of an incomplete record of isotopic ages and differing interpretations

  13. NKp46 clusters at the immune synapse and regulates NK cell polarization

    Directory of Open Access Journals (Sweden)

    Uzi eHadad

    2015-09-01

    Full Text Available Natural killer cells play an important role in first-line defense against tumor and virus-infected cells. The activity of NK cells is tightly regulated by a repertoire of cell-surface expressed inhibitory and activating receptors. NKp46 is a major NK cell activating receptor that is involved in the elimination of target cells. NK cells form different types of synapses that result in distinct functional outcomes: cytotoxic, inhibitory, and regulatory. Recent studies revealed that complex integration of NK receptor signaling controls cytoskeletal rearrangement and other immune synapse-related events. However the distinct nature by which NKp46 participates in NK immunological synapse formation and function remains unknown. In this study we determined that NKp46 forms microclusters structures at the immune synapse between NK cells and target cells. Over-expression of human NKp46 is correlated with increased accumulation of F-actin mesh at the immune synapse. Concordantly, knock-down of NKp46 in primary human NK cells decreased recruitment of F-actin to the synapse. Live cell imaging experiments showed a linear correlation between NKp46 expression and lytic granules polarization to the immune synapse. Taken together, our data suggest that NKp46 signaling directly regulates the NK lytic immune synapse from early formation to late function.

  14. Flexible three-dimensional artificial synapse networks with correlated learning and trainable memory capability.

    Science.gov (United States)

    Wu, Chaoxing; Kim, Tae Whan; Choi, Hwan Young; Strukov, Dmitri B; Yang, J Joshua

    2017-09-29

    If a three-dimensional physical electronic system emulating synapse networks could be built, that would be a significant step toward neuromorphic computing. However, the fabrication complexity of complementary metal-oxide-semiconductor architectures impedes the achievement of three-dimensional interconnectivity, high-device density, or flexibility. Here we report flexible three-dimensional artificial chemical synapse networks, in which two-terminal memristive devices, namely, electronic synapses (e-synapses), are connected by vertically stacking crossbar electrodes. The e-synapses resemble the key features of biological synapses: unilateral connection, long-term potentiation/depression, a spike-timing-dependent plasticity learning rule, paired-pulse facilitation, and ultralow-power consumption. The three-dimensional artificial synapse networks enable a direct emulation of correlated learning and trainable memory capability with strong tolerances to input faults and variations, which shows the feasibility of using them in futuristic electronic devices and can provide a physical platform for the realization of smart memories and machine learning and for operation of the complex algorithms involving hierarchical neural networks.High-density information storage calls for the development of modern electronics with multiple stacking architectures that increase the complexity of three-dimensional interconnectivity. Here, Wu et al. build a stacked yet flexible artificial synapse network using layer-by-layer solution processing.

  15. The debate on the kiss-and-run fusion at synapses.

    Science.gov (United States)

    He, Liming; Wu, Ling-Gang

    2007-09-01

    It has long been proposed that following vesicle fusion, a small pore might open and close rapidly without full dilation. Such 'kiss-and-run' vesicle fusion can in principle result in rapid vesicle recycling and influence the size and the kinetics of the resulting synaptic current. However, the existence of kiss-and-run remains highly controversial, as revealed by recent imaging and electrophysiological studies at several synapses, including hippocampal synapses, neuromuscular junctions and retinal bipolar synapses. Only a minor fraction of fusion events has been shown to be kiss-and-run, as determined using cell-attached capacitance recordings in endocrine cells, pituitary nerve terminals and calyx-type synapses. Further work is needed to determine whether kiss-and-run is a major mode of fusion and has a major role in controlling synaptic strength at synapses.

  16. Silent Synapses Speak Up: Updates of the Neural Rejuvenation Hypothesis of Drug Addiction.

    Science.gov (United States)

    Huang, Yanhua H; Schlüter, Oliver M; Dong, Yan

    2015-10-01

    A transient but prominent increase in the level of "silent synapses"--a signature of immature glutamatergic synapses that contain only NMDA receptors without stably expressed AMPA receptors--has been identified in the nucleus accumbens (NAc) following exposure to cocaine. As the NAc is a critical forebrain region implicated in forming addiction-associated behaviors, the initial discoveries have raised speculations about whether and how these drug-induced synapses mature and potentially contribute to addiction-related behaviors. Here, we summarize recent progress in recognizing the pathway-specific regulations of silent synapse maturation, and its diverse impacts on behavior. We provide an update of the guiding hypothesis--the "neural rejuvenation hypothesis"--with recently emerged evidence of silent synapses in cocaine craving and relapse. © The Author(s) 2015.

  17. Three-dimensional distribution of cortical synapses: a replicated point pattern-based analysis

    Directory of Open Access Journals (Sweden)

    Laura eAnton-Sanchez

    2014-08-01

    Full Text Available The biggest problem when analyzing the brain is that its synaptic connections are extremely complex. Generally, the billions of neurons making up the brain exchange information through two types of highly specialized structures: chemical synapses (the vast majority and so-called gap junctions (a substrate of one class of electrical synapse. Here we are interested in exploring the three-dimensional spatial distribution of chemical synapses in the cerebral cortex. Recent research has showed that the three-dimensional spatial distribution of synapses in layer III of the neocortex can be modeled by a random sequential adsorption (RSA point process, i.e., synapses are distributed in space almost randomly, with the only constraint that they cannot overlap. In this study we hypothesize that RSA processes can also explain the distribution of synapses in all cortical layers. We also investigate whether there are differences in both the synaptic density and spatial distribution of synapses between layers. Using combined focused ion beam milling and scanning electron microscopy (FIB/SEM, we obtained three-dimensional samples from the six layers of the rat somatosensory cortex and identified and reconstructed the synaptic junctions. A total volume of tissue of approximately 4500 μm3 and around 4000 synapses from three different animals were analyzed. Different samples, layers and/or animals were aggregated and compared using RSA replicated spatial point processes. The results showed no significant differences in the synaptic distribution across the different rats used in the study. We found that RSA processes described the spatial distribution of synapses in all samples of each layer. We also found that the synaptic distribution in layers II to VI conforms to a common underlying RSA process with different densities per layer. Interestingly, the results showed that synapses in layer I had a slightly different spatial distribution from the other layers.

  18. Spinal CCL2 Promotes Central Sensitization, Long-Term Potentiation, and Inflammatory Pain via CCR2: Further Insights into Molecular, Synaptic, and Cellular Mechanisms.

    Science.gov (United States)

    Xie, Rou-Gang; Gao, Yong-Jing; Park, Chul-Kyu; Lu, Ning; Luo, Ceng; Wang, Wen-Ting; Wu, Sheng-Xi; Ji, Ru-Rong

    2018-02-01

    Mounting evidence supports an important role of chemokines, produced by spinal cord astrocytes, in promoting central sensitization and chronic pain. In particular, CCL2 (C-C motif chemokine ligand 2) has been shown to enhance N-methyl-D-aspartate (NMDA)-induced currents in spinal outer lamina II (IIo) neurons. However, the exact molecular, synaptic, and cellular mechanisms by which CCL2 modulates central sensitization are still unclear. We found that spinal injection of the CCR2 antagonist RS504393 attenuated CCL2- and inflammation-induced hyperalgesia. Single-cell RT-PCR revealed CCR2 expression in excitatory vesicular glutamate transporter subtype 2-positive (VGLUT2 + ) neurons. CCL2 increased NMDA-induced currents in CCR2 + /VGLUT2 + neurons in lamina IIo; it also enhanced the synaptic NMDA currents evoked by dorsal root stimulation; and furthermore, it increased the total and synaptic NMDA currents in somatostatin-expressing excitatory neurons. Finally, intrathecal RS504393 reversed the long-term potentiation evoked in the spinal cord by C-fiber stimulation. Our findings suggest that CCL2 directly modulates synaptic plasticity in CCR2-expressing excitatory neurons in spinal lamina IIo, and this underlies the generation of central sensitization in pathological pain.

  19. Dopamine synapse is a neuroligin-2–mediated contact between dopaminergic presynaptic and GABAergic postsynaptic structures

    Science.gov (United States)

    Uchigashima, Motokazu; Ohtsuka, Toshihisa; Kobayashi, Kazuto; Watanabe, Masahiko

    2016-01-01

    Midbrain dopamine neurons project densely to the striatum and form so-called dopamine synapses on medium spiny neurons (MSNs), principal neurons in the striatum. Because dopamine receptors are widely expressed away from dopamine synapses, it remains unclear how dopamine synapses are involved in dopaminergic transmission. Here we demonstrate that dopamine synapses are contacts formed between dopaminergic presynaptic and GABAergic postsynaptic structures. The presynaptic structure expressed tyrosine hydroxylase, vesicular monoamine transporter-2, and plasmalemmal dopamine transporter, which are essential for dopamine synthesis, vesicular filling, and recycling, but was below the detection threshold for molecules involving GABA synthesis and vesicular filling or for GABA itself. In contrast, the postsynaptic structure of dopamine synapses expressed GABAergic molecules, including postsynaptic adhesion molecule neuroligin-2, postsynaptic scaffolding molecule gephyrin, and GABAA receptor α1, without any specific clustering of dopamine receptors. Of these, neuroligin-2 promoted presynaptic differentiation in axons of midbrain dopamine neurons and striatal GABAergic neurons in culture. After neuroligin-2 knockdown in the striatum, a significant decrease of dopamine synapses coupled with a reciprocal increase of GABAergic synapses was observed on MSN dendrites. This finding suggests that neuroligin-2 controls striatal synapse formation by giving competitive advantage to heterologous dopamine synapses over conventional GABAergic synapses. Considering that MSN dendrites are preferential targets of dopamine synapses and express high levels of dopamine receptors, dopamine synapse formation may serve to increase the specificity and potency of dopaminergic modulation of striatal outputs by anchoring dopamine release sites to dopamine-sensing targets. PMID:27035941

  20. Synapse-specific and compartmentalized expression of presynaptic homeostatic potentiation.

    Science.gov (United States)

    Li, Xiling; Goel, Pragya; Chen, Catherine; Angajala, Varun; Chen, Xun; Dickman, Dion K

    2018-04-05

    Postsynaptic compartments can be specifically modulated during various forms of synaptic plasticity, but it is unclear whether this precision is shared at presynaptic terminals. Presynaptic Homeostatic Plasticity (PHP) stabilizes neurotransmission at the Drosophila neuromuscular junction, where a retrograde enhancement of presynaptic neurotransmitter release compensates for diminished postsynaptic receptor functionality. To test the specificity of PHP induction and expression, we have developed a genetic manipulation to reduce postsynaptic receptor expression at one of the two muscles innervated by a single motor neuron. We find that PHP can be induced and expressed at a subset of synapses, over both acute and chronic time scales, without influencing transmission at adjacent release sites. Further, homeostatic modulations to CaMKII, vesicle pools, and functional release sites are compartmentalized and do not spread to neighboring pre- or post-synaptic structures. Thus, both PHP induction and expression mechanisms are locally transmitted and restricted to specific synaptic compartments. © 2018, Li et al.

  1. Simple PC-based system for morphometric analysis of synapses.

    Science.gov (United States)

    Buravkov, S V

    1995-01-01

    The computer system designed for synaptic morphometry of aksosomatic and aksospine synapses of brain is described in the present paper. It is based on an AT-comparable personal computer equipped with low-cost frame grabber. This hardware configuration allows to input images from any TV source such as TV camera, videorecorder for further processing. The appropriate software was written in Microsoft Quick Basic to measure the main morphometric parameters of axon ending, dendritic spines, total contact, active zone and mitochondria. Number of synaptic vesicles (total and active) were also counted using a mouse as a pointing device. The derivative parameters (vesicle density, mitochondrial density) are then calculated. All measured data are stored in ASCII format, allowing ease in editing and export into other application programs. Statistical evaluation and calculation of histograms is performed by associated program also written in Quick Basic. The advantages and disadvantages of this approach are discussed.

  2. Tripartite synapses: astrocytes process and control synaptic information.

    Science.gov (United States)

    Perea, Gertrudis; Navarrete, Marta; Araque, Alfonso

    2009-08-01

    The term 'tripartite synapse' refers to a concept in synaptic physiology based on the demonstration of the existence of bidirectional communication between astrocytes and neurons. Consistent with this concept, in addition to the classic 'bipartite' information flow between the pre- and postsynaptic neurons, astrocytes exchange information with the synaptic neuronal elements, responding to synaptic activity and, in turn, regulating synaptic transmission. Because recent evidence has demonstrated that astrocytes integrate and process synaptic information and control synaptic transmission and plasticity, astrocytes, being active partners in synaptic function, are cellular elements involved in the processing, transfer and storage of information by the nervous system. Consequently, in contrast to the classically accepted paradigm that brain function results exclusively from neuronal activity, there is an emerging view, which we review herein, in which brain function actually arises from the coordinated activity of a network comprising both neurons and glia.

  3. Coordinated Feeding Behavior in Trichoplax, an Animal without Synapses.

    Directory of Open Access Journals (Sweden)

    Carolyn L Smith

    Full Text Available Trichoplax is a small disk-shaped marine metazoan that adheres to substrates and locomotes by ciliary gliding. Despite having only six cell types and lacking synapses Trichoplax coordinates a complex sequence of behaviors culminating in external digestion of algae. We combine live cell imaging with electron microscopy to show how this is accomplished. When Trichoplax glides over a patch of algae, its cilia stop beating so it ceases moving. A subset of one of the cell types, lipophils, simultaneously secretes granules whose content rapidly lyses algae. This secretion is accurately targeted, as only lipophils located near algae release granules. The animal pauses while the algal content is ingested, and then resumes gliding. Global control of gliding is coordinated with precise local control of lipophil secretion suggesting the presence of mechanisms for cellular communication and integration.

  4. New 40Ar-39Ar dating of Lower Cretaceous basalts at the southern front of the Central High Atlas, Morocco: insights on late Mesozoic tectonics, sedimentation and magmatism

    Science.gov (United States)

    Moratti, G.; Benvenuti, M.; Santo, A. P.; Laurenzi, M. A.; Braschi, E.; Tommasini, S.

    2018-04-01

    This study is based upon a stratigraphic and structural revision of a Middle Jurassic-Upper Cretaceous mostly continental succession exposed between Boumalne Dades and Tinghir (Southern Morocco), and aims at reconstructing the relation among sedimentary, tectonic and magmatic processes that affected a portion of the Central High Atlas domains. Basalts interbedded in the continental deposits have been sampled in the two studied sites for petrographic, geochemical and radiogenic isotope analyses. The results of this study provide: (1) a robust support to the local stratigraphic revision and to a regional lithostratigraphic correlation based on new 40Ar-39Ar ages (ca. 120 Ma) of the intervening basalts; (2) clues for reconstructing the relation between magma emplacement in a structural setting characterized by syn-depositional crustal shortening pre-dating the convergent tectonic inversion of the Atlasic rifted basins; (3) a new and intriguing scenario indicating that the Middle Jurassic-Lower Cretaceous basalts of the Central High Atlas could represent the first signal of the present-day Canary Islands mantle plume impinging, flattening, and delaminating the base of the Moroccan continental lithosphere since the Jurassic, and successively dragged passively by the Africa plate motion to NE. The tectono-sedimentary and magmatic events discussed in this paper are preliminarily extended from their local scale into a peculiar geodynamic setting of a continental plate margin flanked by the opening and spreading Central Atlantic and NW Tethys oceans. It is suggested that during the late Mesozoic this setting created an unprecedented condition of intraplate stress for concurrent crustal shortening, related mountain uplift, and thinning of continental lithosphere.

  5. The Fate of Atmospherically Derived Pb in Central European Catchments: Insights from Spatial and Temporal Pollution Gradients and Pb Isotope Ratios

    Czech Academy of Sciences Publication Activity Database

    Bohdálková, Leona; Novák, M.; Štěpánová, M.; Foltová, D.; Chrastný, V.; Miková, J.; Kuběna, Aleš Antonín

    2014-01-01

    Roč. 48, č. 8 (2014), s. 4336-4433 ISSN 0013-936X R&D Projects: GA MŠk ED1.1.00/02.0070 Institutional support: RVO:67985556 ; RVO:67179843 Keywords : AMBIENT AIR - QUALITY * LEAD BIOGEOCHEMISTRY * DEPOSITION TRENDS * NORTHERN ENGLAND * CENTRAL ONTARIO * FOREST SOILS * PEAT BOGS * WATERS * ELEMENT * METALS Subject RIV: DN - Health Impact of the Environment Quality ; EH - Ecology, Behaviour (UEK-B) Impact factor: 5.330, year: 2014 http://library.utia.cas.cz/separaty/2014/E/kubena-0433722.pdf

  6. Weighted Synapses Without Carry Operations for RRAM-Based Neuromorphic Systems

    Science.gov (United States)

    Liao, Yan; Deng, Ning; Wu, Huaqiang; Gao, Bin; Zhang, Qingtian; Qian, He

    2018-01-01

    The parallel updating scheme of RRAM-based analog neuromorphic systems based on sign stochastic gradient descent (SGD) can dramatically accelerate the training of neural networks. However, sign SGD can decrease accuracy. Also, some non-ideal factors of RRAM devices, such as intrinsic variations and the quantity of intermediate states, may significantly damage their convergence. In this paper, we analyzed the effects of these issues on the parallel updating scheme and found that it performed poorly on the task of MNIST recognition when the number of intermediate states was limited or the variation was too large. Thus, we propose a weighted synapse method to optimize the parallel updating scheme. Weighted synapses consist of major and minor synapses with different gain factors. Such a method can be widely used in RRAM-based analog neuromorphic systems to increase the number of equivalent intermediate states exponentially. The proposed method also generates a more suitable ΔW, diminishing the distortion caused by sign SGD. Unlike when several RRAM cells are combined to achieve higher resolution, there are no carry operations for weighted synapses, even if a saturation on the minor synapses occurs. The proposed method also simplifies the circuit overhead, rendering it highly suitable to the parallel updating scheme. With the aid of weighted synapses, convergence is highly optimized, and the error rate decreases significantly. Weighted synapses are also robust against the intrinsic variations of RRAM devices.

  7. From synapse to nucleus: calcium-dependent gene transcription in the control of synapse development and function.

    Science.gov (United States)

    Greer, Paul L; Greenberg, Michael E

    2008-09-25

    One of the unique characteristics of higher organisms is their ability to learn and adapt to changes in their environment. This plasticity is largely a result of the brain's ability to convert transient stimuli into long-lasting alterations in neuronal structure and function. This process is complex and involves changes in receptor trafficking, local mRNA translation, protein turnover, and new gene synthesis. Here, we review how neuronal activity triggers calcium-dependent gene expression to regulate synapse development, maturation, and refinement. Interestingly, many components of the activity-dependent gene expression program are mutated in human cognitive disorders, which suggest that this program is essential for proper brain development and function.

  8. Larger earthquakes recur more periodically: New insights in the megathrust earthquake cycle from lacustrine turbidite records in south-central Chile

    Science.gov (United States)

    Moernaut, J.; Van Daele, M.; Fontijn, K.; Heirman, K.; Kempf, P.; Pino, M.; Valdebenito, G.; Urrutia, R.; Strasser, M.; De Batist, M.

    2018-01-01

    Historical and paleoseismic records in south-central Chile indicate that giant earthquakes on the subduction megathrust - such as in AD1960 (Mw 9.5) - reoccur on average every ∼300 yr. Based on geodetic calculations of the interseismic moment accumulation since AD1960, it was postulated that the area already has the potential for a Mw 8 earthquake. However, to estimate the probability of such a great earthquake to take place in the short term, one needs to frame this hypothesis within the long-term recurrence pattern of megathrust earthquakes in south-central Chile. Here we present two long lacustrine records, comprising up to 35 earthquake-triggered turbidites over the last 4800 yr. Calibration of turbidite extent with historical earthquake intensity reveals a different macroseismic intensity threshold (≥VII1/2 vs. ≥VI1/2) for the generation of turbidites at the coring sites. The strongest earthquakes (≥VII1/2) have longer recurrence intervals (292 ±93 yrs) than earthquakes with intensity of ≥VI1/2 (139 ± 69yr). Moreover, distribution fitting and the coefficient of variation (CoV) of inter-event times indicate that the stronger earthquakes recur in a more periodic way (CoV: 0.32 vs. 0.5). Regional correlation of our multi-threshold shaking records with coastal paleoseismic data of complementary nature (tsunami, coseismic subsidence) suggests that the intensity ≥VII1/2 events repeatedly ruptured the same part of the megathrust over a distance of at least ∼300 km and can be assigned to Mw ≥ 8.6. We hypothesize that a zone of high plate locking - identified by geodetic studies and large slip in AD 1960 - acts as a dominant regional asperity, on which elastic strain builds up over several centuries and mostly gets released in quasi-periodic great and giant earthquakes. Our paleo-records indicate that Poissonian recurrence models are inadequate to describe large megathrust earthquake recurrence in south-central Chile. Moreover, they show an enhanced

  9. Mountain Building in Central and Western Tien Shan Orogen: Insight from Joint Inversion of Surface Wave Phase Velocities and Body Wave Travel Times

    Science.gov (United States)

    Wu, S.; Yang, Y.; Wang, K.

    2017-12-01

    The Tien Shan orogeny, situated in central Asia about 2000 km away from the collision boundary between Indian plate and Eurasian plate, is one of the highest, youngest, and most active intracontinental mountain belts on the earth. It first formed during the Paleozoic times and became reactivated at about 20Ma. Although many studies on the dynamic processes of the Tien Shan orogeny have been carried out before, its tectonic rejuvenation and uplift mechanism are still being debated. A high-resolution model of crust and mantle beneath Tien Shan is critical to discern among competing models for the mountain building. In this study, we collect and process seismic data recorded by several seismic arrays in the central and western Tien Shan region to generate surface wave dispersion curves at 6-140 s period using ambient noise tomography (ANT) and two-plane surface wave tomography (TPWT) methods. Using these dispersion curves, we construct a high-resolution 3-D image of shear wave velocity (Vs) in the crust and upper mantle up to 300 km depth. Our current model constrained only by surface waves shows that, under the Tien Shan orogenic belt, a strong low S-wave velocity anomaly exists in the uppermost mantle down to the depth of 200km, supporting the model that the hot upper mantle is upwelling under the Tien Shan orogenic belt, which may be responsible for the mountain building. To the west of central Tien Shan across the Talas-Fergana fault, low S-wave velocity anomalies in the upper mantle become much weaker and finally disappear beneath the Fergana basin. Because surface waves are insensitive to the structures below 300 km, body wave arrival times will be included for a joint inversion with surface waves to generate S-wave velocity structure from the surface down to the mantle transition zone. The joint inversion of both body and surface waves provide complementary constraints on structures at different depths and helps to achieve a more realistic model compared with

  10. Late Quaternary alluvial fans of Emli Valley in the Ecemiş Fault Zone, south central Turkey: Insights from cosmogenic nuclides

    Science.gov (United States)

    Akif Sarıkaya, M.; Yıldırım, Cengiz; Çiner, Attila

    2015-01-01

    Alluvial fans within the paraglacial Ecemiş River drainages on the Aladağlar Mountains in south central Turkey were studied using geomorphological, sedimentological, and chlorine-36 terrestrial cosmogenic nuclide (TCN) surface exposure dating methods to examine the timing of alluvial fan abandonment/incision, and to understand the role of climatic and tectonic processes in the region. These alluvial fan complexes are among the best-preserved succession of alluvial fans in Turkey and they were offset by the major strike-slip Ecemiş Fault of the Central Anatolian Fault Zone. The alluvial fans are mostly composed of well-lithified limestone cobbles (5 to 25 cm in size), and comprise crudely stratified thick beds with a total thickness reaching up to about 80 m. TCN surface exposure dating indicates that the oldest alluvial fan surface (Yalak Fan) was likely formed and subsequently abandoned latest by 136.0 ± 23.4 ka ago, largely on the transition of the Penultimate Glaciation (Marine Isotope Stage 6, MIS 6) to the Last Interglacial (MIS 5) (i.e. Termination II). The second set of alluvial fan (Emli Fan) was possibly developed during the Last Interglacial (MIS 5), and incised twice by between roughly 97.0 ± 13.8 and 81.2 ± 13.2 ka ago. A younger alluvial fan deposit placed on relatively older erosional terraces of the Emli Fan suggests that it may have been produced during the Last Glacial Cycle (MIS 2). These events are similar to findings from other fluvial and lacustrine deposits throughout central Anatolia. The incision times of the Ecemiş alluvial fan surfaces largely coincide with major climatic shifts from the cooler glacial periods to warmer interglacial/interstadial conditions. This indicates that alluvial fans were produced by outwash sediments of paleoglaciers during cooler conditions, and, later, when glaciers started to retreat due to a major warming event, the excess water released from the glaciers incised the pre-existing fan surfaces. An

  11. Loss of Ca(2+)-permeable AMPA receptors in synapses of tonic firing substantia gelatinosa neurons in the chronic constriction injury model of neuropathic pain.

    Science.gov (United States)

    Chen, Yishen; Derkach, Victor A; Smith, Peter A

    2016-05-01

    Synapses transmitting nociceptive information in the spinal dorsal horn undergo enduring changes following peripheral nerve injury. Indeed, such injury alters the expression of the GluA2 subunit of glutamatergic AMPA receptors (AMPARs) in the substantia gelatinosa and this predicts altered channel conductance and calcium permeability, leading to an altered function of excitatory synapses. We therefore investigated the functional properties of synaptic AMPA receptors in rat substantia gelatinosa neurons following 10-20d chronic constriction injury (CCI) of the sciatic nerve; a model of neuropathic pain. We measured their single-channel conductance and sensitivity to a blocker of calcium permeable AMPA receptors (CP-AMPARs), IEM1460 (50μM). In putative inhibitory, tonic firing neurons, CCI reduced the average single-channel conductance of synaptic AMPAR from 14.4±3.5pS (n=12) to 9.2±1.0pS (n=10, pinjury acting at synapses of inhibitory neurons to reduce their drive and therefore inhibitory tone in the spinal cord, therefore contributing to the central sensitization associated with neuropathic pain. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Geochemical Signature of Magmatic-Hydrothermal Fluids Exsolved from the Beauvoir Rare-Metal Granite (Massif Central, France: Insights from LA-ICPMS Analysis of Primary Fluid Inclusions

    Directory of Open Access Journals (Sweden)

    Matthieu Harlaux

    2017-01-01

    Full Text Available The Beauvoir granite (Massif Central, France represents an exceptional case in the European Variscan belt of a peraluminous rare-metal granite crosscutting an early W stockwork. The latter was strongly overprinted by rare-metal magmatic-hydrothermal fluids derived from the Beauvoir granite, resulting in a massive topazification of the quartz-ferberite vein system. This work presents a complete study of primary fluid inclusions hosted in quartz and topaz from the Beauvoir granite and the metasomatized stockwork, in order to characterize the geochemical composition of the magmatic fluids exsolved during the crystallization of this evolved rare-metal peraluminous granite. Microthermometric and Raman spectrometry data show that the earliest fluid (L1 is of high temperature (500 to >600°C, high salinity (17–28 wt.% NaCl eq, and Li-rich (Te100 m and interaction with external fluids.

  13. New insights into structural and stratigraphic aspects of central Northern Switzerland from the Nagra 2D reflection seismic campaign 2011/12

    Energy Technology Data Exchange (ETDEWEB)

    Meier, B. [Proseis AG, Zürich (Switzerland)

    2015-07-01

    In this article, some findings resulting from the interpretation of reprocessed and newly acquired 2D seismic data in the central Northern Switzerland are presented. The seismic examples illustrate the relationship between basement and cover-tectonics and offer a closer look at seismic-stratigraphic characteristics which can be observed in the Middle Jurassic sequence. The new 2D seismic data have closed an important data gaps between the Nagra siting regions 'Jura Ost' and Nördlich Lägern' proposed for radioactive waste disposal and allow clarification of the general structural framework and internal composition of the Permo-Carboniferous Through. Furthermore, the kinematic relationships between the basement and cover structures can be studied and the newly acquired seismic data have allowed detailed depositional structures and seismic facies changes within the Mid-Upper Dogger sequence to be recognized, particularly east and west of the lower Aare valley. (author)

  14. Neotectonic development of the El Salvador Fault Zone and implications for deformation in the Central America Volcanic Arc: Insights from 4-D analog modeling experiments

    Science.gov (United States)

    Alonso-Henar, Jorge; Schreurs, Guido; Martinez-Díaz, José Jesús; Álvarez-Gómez, José Antonio; Villamor, Pilar

    2015-01-01

    The El Salvador Fault Zone (ESFZ) is an active, approximately 150 km long and 20 km wide, segmented, dextral strike-slip fault zone within the Central American Volcanic Arc striking N100°E. Although several studies have investigated the surface expression of the ESFZ, little is known about its structure at depth and its kinematic evolution. Structural field data and mapping suggest a phase of extension, at some stage during the evolution of the ESFZ. This phase would explain dip-slip movements on structures that are currently associated with the active, dominantly strike slip and that do not fit with the current tectonic regime. Field observations suggest trenchward migration of the arc. Such an extension and trenchward migration of the volcanic arc could be related to slab rollback of the Cocos plate beneath the Chortis Block during the Miocene/Pliocene. We carried out 4-D analog model experiments to test whether an early phase of extension is required to form the present-day fault pattern in the ESFZ. Our experiments suggest that a two-phase tectonic evolution best explains the ESFZ: an early pure extensional phase linked to a segmented volcanic arc is necessary to form the main structures. This extensional phase is followed by a strike-slip dominated regime, which results in intersegment areas with local transtension and segments with almost pure strike-slip motion. The results of our experiments combined with field data along the Central American Volcanic Arc indicate that the slab rollback intensity beneath the Chortis Block is greater in Nicaragua and decreases westward to Guatemala.

  15. Eolian dust dispersal patterns since the last glacial period in eastern Central Asia: insights from a loess-paleosol sequence in the Ili Basin

    Science.gov (United States)

    Li, Yue; Song, Yougui; Fitzsimmons, Kathryn E.; Chang, Hong; Orozbaev, Rustam; Li, Xinxin

    2018-03-01

    The extensive loess deposits of the Eurasian mid-latitudes provide important terrestrial archives of Quaternary climatic change. As yet, however, loess records in Central Asia are poorly understood. Here we investigate the grain size and magnetic characteristics of loess from the Nilka (NLK) section in the Ili Basin of eastern Central Asia. Weak pedogenesis suggested by frequency-dependent magnetic susceptibility (χfd%) and magnetic susceptibility (MS) peaks in primary loess suggest that MS is more strongly influenced by allogenetic magnetic minerals than pedogenesis, and may therefore be used to indicate wind strength. This is supported by the close correlation between variations in MS and proportions of the sand-sized fraction. To further explore the temporal variability in dust transport patterns, we identified three grain size end-members (EM1, mode size 47.5 µm; EM2, 33.6 µm; EM3, 18.9 µm) which represent distinct aerodynamic environments. EM1 and EM2 are inferred to represent grain size fractions transported from proximal sources in short-term, near-surface suspension during dust outbreaks. EM3 appears to represent a continuous background dust fraction under non-dust storm conditions. Of the three end-members, EM1 is most likely the most sensitive recorder of wind strength. We compare our EM1 proportions with mean grain size from the Jingyuan section in the Chinese loess plateau, and assess these in the context of modern and Holocene climate data. Our research suggests that the Siberian High pressure system is the dominant influence on wind dynamics, resulting in loess deposition in the eastern Ili Basin. Six millennial-scale cooling (Heinrich) events can be identified in the NLK loess records. Our grain size data support the hypothesis that the Siberian High acts as teleconnection between the climatic systems of the North Atlantic and East Asia in the high northern latitudes, but not for the mid-latitude westerlies.

  16. Vegetation response to the "African Humid Period" termination in Central Cameroon (7° N – new pollen insight from Lake Mbalang

    Directory of Open Access Journals (Sweden)

    M. Servant

    2010-05-01

    Full Text Available A new pollen sequence from the Lake Mbalang (7°19´ N, 13°44´ E, 1110 m a.s.l. located on the eastern Adamawa plateau, in Central Cameroon, is presented in this paper to analyze the Holocene African Humid Period (AHP termination and related vegetation changes at 7° N in tropical Africa, completing an important transect for exploring shifts in the northern margin of the African Monsoon. This sequence, spanning the last 7000 cal yr BP, shows that the vegetation response to this transitional climatic period was marked by significant successional changes within the broad context of long-term aridification. Semi-deciduous/sub-montane forest retreat in this area is initially registered as early as ca. 6100 cal yr BP and modern savannah was definitely established at ca. 3000 cal yr BP and stabilized at ca. 2400 cal yr BP; but a slight forest regeneration episode is observed between ca. 5200 and ca. 4200 cal yr BP. In this area with modern high rainfall, increasing in the length of the dry season during the AHP termination linked to a contraction of the northern margin of the Intertropical Convergence Zone (ITCZ from ca. 6100 cal yr BP onward, probably associated with decreasing in cloud cover and/or fog frequency, has primarily controlled vegetation dynamics and above all the disappearance of the forested environment on the Adamawa plateau. Compared to previous studies undertaken in northern tropical and Central Africa, this work clearly shows that the response of vegetation to transitional periods between climatic extremes such as the AHP termination might be different in timing, mode and amplitude according to the regional climate of the study sites, but also according to the stability of vegetation before and during these climatic transitions.

  17. New insights in postglacial paleoclimatic and paleoenvironmental changes in Central Europe derived from isotope analyses of laminated lake sediments and peat deposits

    International Nuclear Information System (INIS)

    Mayer, B.; Schwark, L.; Zink, K.G.; Buhay, W.M.; Lechterbeck, J.

    2002-01-01

    Isotope ratio determinations in concert with geochemical and palynological analyses performed on material from German continental archives (lake sediments, peat cores) provided information about paleoclimatic and paleoenvironmental changes in Central Europe throughout the last 15,000 years. Oxygen isotope ratio variations of (i) bulk carbonates from lake sediments (Lake Steisslingen) and of (ii) cellulose extracted from peat cores suggest the following climatic trends: an early postglacial climate optimum in the Boelling; a distinct cooling phase during the Younger Dryas; an early Holocene warming period in the Preboreal; another warming phase in the Boreal leading into the mid-Holocene warm period; a gradual decrease of mean annual air temperatures since the mid- Holocene warm period. Evaluation of other isotopic proxy data in concert with geochemical and palynological information revealed that the above-described climatic variations in Central Europe triggered marked paleoenvironmental changes in the study region between the Boelling and the onset of the mid-Holocene warm period. Elevated organic carbon contents in lake sediments and increasing δ 13 C values of organic carbon were typically associated with climatic warm phases and seem to indicate enhanced in-lake productivity. Pollen counts and biomarker data suggest a predominance of Betula during climatic warm phases and a predominance of Pinus during colder periods. The Mid Younger Dryas event was observable in pollen and biomarker data, but oxygen isotope ratios of bulk carbonates from Lake Steisslingen did not record temperature variations at that time. The data presented for the chronozones Bolling through Boreal provide evidence that the elucidation of paleoclimatic and paleoenvironmental variations on our continents can benefit greatly from a joint interpretation of isotope analyses, palynological evidence, and inorganic and organic geochemistry data derived from continental archives. (author)

  18. Geodynamic controls on the contamination of Cenozoic arc magmas in the southern Central Andes: Insights from the O and Hf isotopic composition of zircon

    Science.gov (United States)

    Jones, Rosemary E.; Kirstein, Linda A.; Kasemann, Simone A.; Dhuime, Bruno; Elliott, Tim; Litvak, Vanesa D.; Alonso, Ricardo; Hinton, Richard

    2015-09-01

    Subduction zones, such as the Andean convergent margin of South America, are sites of active continental growth and crustal recycling. The composition of arc magmas, and therefore new continental crust, reflects variable contributions from mantle, crustal and subducted reservoirs. Temporal (Ma) and spatial (km) variations in these contributions to southern Central Andean arc magmas are investigated in relation to the changing plate geometry and geodynamic setting of the southern Central Andes (28-32° S) during the Cenozoic. The in-situ analysis of O and Hf isotopes in zircon, from both intrusive (granitoids) and extrusive (basaltic andesites to rhyolites) Late Cretaceous - Late Miocene arc magmatic rocks, combined with high resolution U-Pb dating, demonstrates distinct across-arc variations. Mantle-like δ18O(zircon) values (+5.4‰ to +5.7‰ (±0.4 (2σ))) and juvenile initial εHf(zircon) values (+8.3 (±0.8 (2σ)) to +10.0 (±0.9 (2σ))), combined with a lack of zircon inheritance suggests that the Late Cretaceous (∼73 Ma) to Eocene (∼39 Ma) granitoids emplaced in the Principal Cordillera of Chile formed from mantle-derived melts with very limited interaction with continental crustal material, therefore representing a sustained period of upper crustal growth. Late Eocene (∼36 Ma) to Early Miocene (∼17 Ma) volcanic arc rocks present in the Frontal Cordillera have 'mantle-like' δ18O(zircon) values (+4.8‰ (±0.2 (2σ) to +5.8‰ (±0.5 (2σ))), but less radiogenic initial εHf(zircon) values (+1.0 (±1.1 (2σ)) to +4.0 (±0.6 (2σ))) providing evidence for mixing of mantle-derived melts with the Late Paleozoic - Early Mesozoic basement (up to ∼20%). The assimilation of both Late Paleozoic - Early Mesozoic Andean crust and a Grenville-aged basement is required to produce the higher than 'mantle-like' δ18O(zircon) values (+5.5‰ (±0.6 (2σ) to +7.2‰ (±0.4 (2σ))) and unradiogenic, initial εHf(zircon) values (-3.9 (±1.0 (2σ)) to +1.6 (±4.4 (2

  19. Salt Tectonics of the Abenaki Graben and Central Sable Subbasin: Insights from Regional Seismic Interpretation and Four-Dimensional Scaled Physical Experiments

    Science.gov (United States)

    Campbell, Clarke

    The tectono-stratigraphic evolution of the Abenaki graben and central Sable Subbasin of the north-central Scotian margin has been highly influenced by salt deformation. Shimeld (2004) has identified five salt subprovinces defined by varying salt structural styles across the margin. Although it has been hypothesized these varying structural styles are the result of complex salt basin morphologies and variable Mesozoic post-rift sedimentation patterns, there is still a lack of understanding of how these first order controlling factors specifically controlled the tectono-stratigraphic evolution across the margin. Disappointing petroleum exploration results from the last round of deepwater drilling supports the further need to investigate how variable salt basin morphologies, and depositional rates and patterns controlled salt deformation as well as the evolution of the margin. The purpose of this project is to integrate regional 2D seismic reflection data including the ION-GXT NovaSPAN dataset, with 4D scaled physical experiments to better understand the tectono-stratigraphic evolution of the Abenaki Graben and central Sable Subbasin. The study area is located in Shimeld's salt Subprovince III that comprises an extensive salt tongue-canopy system that has spread upwards of 80 km on the secondary detachment level. Seismic interpretation indicates an original salt basin characterized by a landward tapering wedge representing the Abenaki Graben, an intermediate high referred to as the North Sable High (NSH), and a symmetric graben with basin step representing the Sable Subbasin. The geometry of the salt basin floor is composed of rifted basement blocks and syn-rift fill that was originally been infilled with upwards of 2 km of Argo salt. Scaled 4D physical experiments simulating the study area indicate the presence of 4 kinematic domains from the shelf to slope including a: (1) Salt Weld and Pillow, (2) Normal Fault and Reactive Diapir, (3) Passive Diapir and Expulsion

  20. Subduction Zone Configuration of Central and Eastern Anatolia since the Late Cretaceous: Insights from Sedimentary Basins in the Neotethyan Suture Zone

    Science.gov (United States)

    Gürer, D.; Van Hinsbergen, D. J. J.; Matenco, L.; Corfu, F.; Langereis, C. G.; Ozkaptan, M.

    2015-12-01

    Subduction and accretion of continental and Neotethyan oceanic crustal fragments during Africa-Europe convergence since the Mesozoic formed the Anatolian fold-and-thrust belt. Sedimentary basins overlying key locations of the resulting fold-thrust belt that was metamorphosed to varying grades, may help to quantitatively kinematically restore the subduction evolution, and to identify timing, directions and amounts of post-accretionary extension, shortening and strike-slip faulting. The Upper Cretaceous - Oligocene Ulukışla basin straddles ophiolites, underlain by the HT-LP metamorphic Kırşehir Block (KB) to its north, and the HP-LT Bolkardağ/Afyon zone (BA) to its south. At its southern margin a series of small-offset faults consistent with latest Cretaceous-Paleocene N-S extension, was contemporaneous with (presumably extensional) exhumation of BA. Close to the contact with KB, a series of large-offset listric normal faults compatible with E-W extension offsets sediments and the base of newly dated Paleocene volcanics, showing E-W extension simultaneous with N-S extension in the south, prevailing until at least 56 Ma. Subsequently, N-S directed contraction led to E-W striking folds and thrusts and back-thrusting of the BA over the Ulukisla basin, probably in Oligocene time, and coeval left lateral strike-slip motion along the Ecemiş fault (EF) at the eastern basin margin. We explain the interplay between two Late Cretaceous-Paleocene extension directions to result from interplay between N-S and E-W striking subduction segments in central and eastern Anatolia, respectively. The latter can be followed farther east towards the Bitlis. In addition, absence of a Kirsehir block in eastern Anatolia led to a much longer duration of subduction below the Pontides, throughout the Paleogene and perhaps until as young as the Middle Miocene, with a suture below the Sivas basin that covers the contact between the KB, the Pontides and the Taurides. We restore an amount of

  1. Conductive Hearing Loss Has Long-Lasting Structural and Molecular Effects on Presynaptic and Postsynaptic Structures of Auditory Nerve Synapses in the Cochlear Nucleus.

    Science.gov (United States)

    Clarkson, Cheryl; Antunes, Flora M; Rubio, Maria E

    2016-09-28

    Sound deprivation by conductive hearing loss increases hearing thresholds, but little is known about the response of the auditory brainstem during and after conductive hearing loss. Here, we show in young adult rats that 10 d of monaural conductive hearing loss (i.e., earplugging) leads to hearing deficits that persist after sound levels are restored. Hearing thresholds in response to clicks and frequencies higher than 8 kHz remain increased after a 10 d recovery period. Neural output from the cochlear nucleus measured at 10 dB above threshold is reduced and followed by an overcompensation at the level of the lateral lemniscus. We assessed whether structural and molecular substrates at auditory nerve (endbulb of Held) synapses in the cochlear nucleus could explain these long-lasting changes in hearing processing. During earplugging, vGluT1 expression in the presynaptic terminal decreased and synaptic vesicles were smaller. Together, there was an increase in postsynaptic density (PSD) thickness and an upregulation of GluA3 AMPA receptor subunits on bushy cells. After earplug removal and a 10 d recovery period, the density of synaptic vesicles increased, vesicles were also larger, and the PSD of endbulb synapses was larger and thicker. The upregulation of the GluA3 AMPAR subunit observed during earplugging was maintained after the recovery period. This suggests that GluA3 plays a role in plasticity in the cochlear nucleus. Our study demonstrates that sound deprivation has long-lasting alterations on structural and molecular presynaptic and postsynaptic components at the level of the first auditory nerve synapse in the auditory brainstem. Despite being the second most prevalent form of hearing loss, conductive hearing loss and its effects on central synapses have received relatively little attention. Here, we show that 10 d of monaural conductive hearing loss leads to an increase in hearing thresholds, to an increased central gain upstream of the cochlear nucleus at

  2. Quantitative 3D video microscopy of HIV transfer across T cell virological synapses.

    Science.gov (United States)

    Hübner, Wolfgang; McNerney, Gregory P; Chen, Ping; Dale, Benjamin M; Gordon, Ronald E; Chuang, Frank Y S; Li, Xiao-Dong; Asmuth, David M; Huser, Thomas; Chen, Benjamin K

    2009-03-27

    The spread of HIV between immune cells is greatly enhanced by cell-cell adhesions called virological synapses, although the underlying mechanisms have been unclear. With use of an infectious, fluorescent clone of HIV, we tracked the movement of Gag in live CD4 T cells and captured the direct translocation of HIV across the virological synapse. Quantitative, high-speed three-dimensional (3D) video microscopy revealed the rapid formation of micrometer-sized "buttons" containing oligomerized viral Gag protein. Electron microscopy showed that these buttons were packed with budding viral crescents. Viral transfer events were observed to form virus-laden internal compartments within target cells. Continuous time-lapse monitoring showed preferential infection through synapses. Thus, HIV dissemination may be enhanced by virological synapse-mediated cell adhesion coupled to viral endocytosis.

  3. Integrated geochronology of Acheulian sites from the southern Latium (central Italy): Insights on human-environment interaction and the technological innovations during the MIS 11-MIS 10 period

    Science.gov (United States)

    Pereira, Alison; Nomade, Sébastien; Moncel, Marie-Hélène; Voinchet, Pierre; Bahain, Jean-Jacques; Biddittu, Italo; Falguères, Christophe; Giaccio, Biagio; Manzi, Giorgio; Parenti, Fabio; Scardia, Giancarlo; Scao, Vincent; Sottili, Gianluca; Vietti, Amina

    2018-05-01

    We have explored the multimethod approach combining 40Ar/39Ar on single crystal, ESR on bleached quartz, and ESR/U-series on teeth to improve the age of four neighbours "Acheulian" sites of the Frosinone Province (Latium, Italy): Fontana Ranuccio, Cava Pompi (Pofi), Isoletta, and Lademagne. Ages obtained by the three methods are in mutual agreement and confirm the potential of dating with confidence Middle Pleistocene sites of Italy using these methods. At Fontana Ranuccio, the 40Ar/39Ar age (408 ± 10 ka, full external error at 2σ) obtained for the archaeological level (unit FR4) and geochemical analyses of glass shards performed on the Unit FR2a layer allow us to attribute the studied volcanic material to the Pozzolane Nere volcanic series, a well-known caldera-forming event originated from the Colli Albani volcanic district. These new data ascribe the Fontana Ranuccio site, as well as the eponym faunal unit, to the climatic optimum of Marine Isotope Stage (MIS) 11. Ages obtained for the Cava Pompi, Isoletta, and Lademagne sites cover a relatively short period of time between 408 ka and 375 ka, spanning MIS 11 climatic optimum to the MIS 11-10 transition. Analysis of small collections of lithic industries, bifacial tools, and small cores technologies from Isoletta, Lademagne, and the neighbour site of Ceprano-Campogrande shows common technical strategies for the period comprised between MIS 11 and MIS 9 (410-325 ka), such as the elaboration of flaked elephant bone industries found over the whole Latium region. However, some features found only in the Frosinone province area, like large-sized bifaces, suggest particular regional behaviours. The presence of one Levallois core in the oldest layer of Lademagne (i.e. > 405 ± 9 ka) suggests a punctual practice of this technology, also proposed as early as MIS 10/11 in the neighbour site of Guado San Nicola (Molise) in central Italy.

  4. Recovery of Carbonate Ecosystems Following the End-Triassic Mass Extinction: Insights from Mercury Anomalies and Their Relationship to the Central Atlantic Magmatic Province

    Science.gov (United States)

    Corsetti, F. A.; Thibodeau, A. M.; Ritterbush, K. A.; West, A. J.; Yager, J. A.; Ibarra, Y.; Bottjer, D. J.; Berelson, W.; Bergquist, B. A.

    2015-12-01

    Recent high-resolution age dating demonstrates that the end-Triassic mass extinction overlapped with the eruption of the Central Atlantic Magmatic Province (CAMP), and the release of CO2 and other volatiles to the atmosphere has been implicated in the extinction. Given the potentially massive release of CO2, ocean acidification is commonly considered a factor in the extinction and the collapse of shallow marine carbonate ecosystems. However, the timing of global marine biotic recovery versus the CAMP eruptions is more uncertain. Here, we use Hg concentrations and Hg/TOC ratios as indicators of CAMP volcanism in continental shelf sediments, the primary archive of faunal data. In Triassic-Jurassic strata, Muller Canyon, Nevada, Hg and Hg/TOC levels are low prior to the extinction, rise sharply in the extinction interval, peak just prior to the appearance of the first Jurassic ammonite, and remain above background in association with a depauperate (low diversity) earliest Jurassic fauna. The return of Hg to pre-extinction levels is associated with a significant pelagic and benthic faunal recovery. We conclude that significant biotic recovery did not begin until CAMP eruptions ceased. Furthermore, the initial benthic recovery in the Muller Canyon section involves the expansion of a siliceous sponge-dominated ecosystem across shallow marine environments, a feature now known from other sections around the world (e.g., Peru, Morocco, Austria, etc.). Carbonate dominated benthic ecosystems (heralded by the return of abundant corals and other skeletal carbonates) did not recover for ~1 million years following the last eruption of CAMP, longer than the typical duration considered for ocean acidification events, implying other factors may have played a role in carbonate ecosystem dynamics after the extinction.

  5. Learning-guided automatic three dimensional synapse quantification for drosophila neurons.

    Science.gov (United States)

    Sanders, Jonathan; Singh, Anil; Sterne, Gabriella; Ye, Bing; Zhou, Jie

    2015-05-28

    The subcellular distribution of synapses is fundamentally important for the assembly, function, and plasticity of the nervous system. Automated and effective quantification tools are a prerequisite to large-scale studies of the molecular mechanisms of subcellular synapse distribution. Common practices for synapse quantification in neuroscience labs remain largely manual or semi-manual. This is mainly due to computational challenges in automatic quantification of synapses, including large volume, high dimensions and staining artifacts. In the case of confocal imaging, optical limit and xy-z resolution disparity also require special considerations to achieve the necessary robustness. A novel algorithm is presented in the paper for learning-guided automatic recognition and quantification of synaptic markers in 3D confocal images. The method developed a discriminative model based on 3D feature descriptors that detected the centers of synaptic markers. It made use of adaptive thresholding and multi-channel co-localization to improve the robustness. The detected markers then guided the splitting of synapse clumps, which further improved the precision and recall of the detected synapses. Algorithms were tested on lobula plate tangential cells (LPTCs) in the brain of Drosophila melanogaster, for GABAergic synaptic markers on axon terminals as well as dendrites. The presented method was able to overcome the staining artifacts and the fuzzy boundaries of synapse clumps in 3D confocal image, and automatically quantify synaptic markers in a complex neuron such as LPTC. Comparison with some existing tools used in automatic 3D synapse quantification also proved the effectiveness of the proposed method.

  6. Poisson-Like Spiking in Circuits with Probabilistic Synapses

    Science.gov (United States)

    Moreno-Bote, Rubén

    2014-01-01

    Neuronal activity in cortex is variable both spontaneously and during stimulation, and it has the remarkable property that it is Poisson-like over broad ranges of firing rates covering from virtually zero to hundreds of spikes per second. The mechanisms underlying cortical-like spiking variability over such a broad continuum of rates are currently unknown. We show that neuronal networks endowed with probabilistic synaptic transmission, a well-documented source of variability in cortex, robustly generate Poisson-like variability over several orders of magnitude in their firing rate without fine-tuning of the network parameters. Other sources of variability, such as random synaptic delays or spike generation jittering, do not lead to Poisson-like variability at high rates because they cannot be sufficiently amplified by recurrent neuronal networks. We also show that probabilistic synapses predict Fano factor constancy of synaptic conductances. Our results suggest that synaptic noise is a robust and sufficient mechanism for the type of variability found in cortex. PMID:25032705

  7. Calcium signaling in synapse-to-nucleus communication.

    Science.gov (United States)

    Hagenston, Anna M; Bading, Hilmar

    2011-11-01

    Changes in the intracellular concentration of calcium ions in neurons are involved in neurite growth, development, and remodeling, regulation of neuronal excitability, increases and decreases in the strength of synaptic connections, and the activation of survival and programmed cell death pathways. An important aspect of the signals that trigger these processes is that they are frequently initiated in the form of glutamatergic neurotransmission within dendritic trees, while their completion involves specific changes in the patterns of genes expressed within neuronal nuclei. Accordingly, two prominent aims of research concerned with calcium signaling in neurons are determination of the mechanisms governing information conveyance between synapse and nucleus, and discovery of the rules dictating translation of specific patterns of inputs into appropriate and specific transcriptional responses. In this article, we present an overview of the avenues by which glutamatergic excitation of dendrites may be communicated to the neuronal nucleus and the primary calcium-dependent signaling pathways by which synaptic activity can invoke changes in neuronal gene expression programs.

  8. Dysfunctional synapse in Alzheimer's disease - A focus on NMDA receptors.

    Science.gov (United States)

    Mota, Sandra I; Ferreira, Ildete L; Rego, A Cristina

    2014-01-01

    Alzheimer's disease (AD) is the most prevalent form of dementia in the elderly. Alterations capable of causing brain circuitry dysfunctions in AD may take several years to develop. Oligomeric amyloid-beta peptide (Aβ) plays a complex role in the molecular events that lead to progressive loss of function and eventually to neurodegeneration in this devastating disease. Moreover, N-methyl-D-aspartate (NMDA) receptors (NMDARs) activation has been recently implicated in AD-related synaptic dysfunction. Thus, in this review we focus on glutamatergic neurotransmission impairment and the changes in NMDAR regulation in AD, following the description on the role and location of NMDARs at pre- and post-synaptic sites under physiological conditions. In addition, considering that there is currently no effective ways to cure AD or stop its progression, we further discuss the relevance of NMDARs antagonists to prevent AD symptomatology. This review posits additional information on the role played by Aβ in AD and the importance of targeting the tripartite glutamatergic synapse in early asymptomatic and possible reversible stages of the disease through preventive and/or disease-modifying therapeutic strategies. This article is part of the Special Issue entitled 'The Synaptic Basis of Neurodegenerative Disorders'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Rescue of inhibitory synapse strength following developmental hearing loss.

    Directory of Open Access Journals (Sweden)

    Vibhakar C Kotak

    Full Text Available Inhibitory synapse dysfunction may contribute to many developmental brain disorders, including the secondary consequences of sensory deprivation. In fact, developmental hearing loss leads to a profound reduction in the strength of inhibitory postsynaptic currents (IPSCs in the auditory cortex, and this deficit persists into adulthood. This finding is consistent with the general theory that the emergence of mature synaptic properties requires activity during development. Therefore, we tested the prediction that inhibitory strength can be restored following developmental hearing loss by boosting GABAergic transmission in vivo. Conductive or sensorineural hearing loss was induced surgically in gerbils prior to hearing onset and GABA agonists were then administered for one week. IPSCs were subsequently recorded from pyramidal neurons in a thalamocortical brain slice preparation. Administration of either a GABA(A receptor a1 subunit specific agonist (zolpidem, or a selective GABA reuptake inhibitor (SGRI, rescued IPSC amplitude in hearing loss animals. Furthermore, this restoration persisted in adults, long after drug treatment ended. In contrast, a GABA(B receptor agonist baclofen did not restore inhibitory strength. IPSCs could also be restored when SGRI administration began 3 weeks after sensory deprivation. Together, these results demonstrate long-lasting restoration of cortical inhibitory strength in the absence of normal experience. This suggests that in vivo GABA(A receptor activation is sufficient to promote maturation, and this principle may extend to other developmental disorders associated with diminished inhibitory function.

  10. Insights into the dolomitization process and porosity modification in sucrosic dolostones, Avon Park Formation (Middle Eocene), East-Central Florida, U.S.A.

    KAUST Repository

    Maliva,, Robert G.

    2011-03-01

    The Avon Park Formation (middle Eocene) in central Florida, U.S.A., contains shallow-water carbonates that have been replaced by dolomite to varying degrees, ranging from partially replaced limestones, to highly porous sucrosic dolostones, to, less commonly, low-porosity dense dolostones. The relationships between dolomitization and porosity and permeability were studied focusing on three 305-m-long cores taken in the City of Daytona Beach. Stable-isotope data from pure dolostones (mean δ 18O = +3.91% V-PDB) indicate dolomite precipitation in Eocene penesaline pore waters, which would be expected to have been at or above saturation with respect to calcite. Nuclear magnetic log-derived porosity and permeability data indicate that dolomitization did not materially change total porosity values at the bed and formation scale, but did result in a general increase in pore size and an associated substantial increase in permeability compared to limestone precursors. Dolomitization differentially affects the porosity and permeability of carbonate strata on the scale of individual crystals, beds, and formations. At the crystal scale, dolomitization occurs in a volume-for-volume manner in which the space occupied by the former porous calcium carbonate is replaced by a solid dolomite crystal with an associated reduction in porosity. Dolomite crystal precipitation was principally responsible for calcite dissolution both at the actual site of dolomite crystal growth and in the adjoining rock mass. Carbonate is passively scavenged from the formation, which results in no significant porosity change at the formation scale. Moldic pores after allochems formed mainly in beds that experienced high degrees of dolomitization, which demonstrates the intimate association of the dolomitization process with carbonate dissolution. The model of force of crystallization-controlled replacement provides a plausible explanation for key observations concerning the dolomitization process in the

  11. Intrusion-Related Gold Deposits: New insights from gravity and hydrothermal integrated 3D modeling applied to the Tighza gold mineralization (Central Morocco)

    Science.gov (United States)

    Eldursi, Khalifa; Branquet, Yannick; Guillou-Frottier, Laurent; Martelet, Guillaume; Calcagno, Philippe

    2018-04-01

    The Tighza (or Jebel Aouam) district is one of the most important polymetallic districts in Morocco. It belongs to the Variscan Belt of Central Meseta, and includes W-Au, Pb-Zn-Ag, and Sb-Ba mineralization types that are spatially related to late-Carboniferous granitic stocks. One of the proposed hypotheses suggests that these granitic stocks are connected to a large intrusive body lying beneath them and that W-Au mineralization is directly related to this magmatism during a 287-285 Ma time span. A more recent model argues for a disconnection between the older barren outcropping magmatic stocks and a younger hidden magmatic complex responsible for the W-Au mineralization. Independently of the magmatic scenario, the W-Au mineralization is consensually recognized as of intrusion-related gold deposit (IRGD) type, W-rich. In addition to discrepancies between magmatic sceneries, the IRGD model does not account for published older age corresponding to a high-temperature hydrothermal event at ca. 291 Ma. Our study is based on gravity data inversion and hydro-thermal modeling, and aims to test this model of IRGD and its related magmatic geometries, with respect to subsurface geometries, favorable physical conditions for deposition and time record of hydrothermal processes. Combined inversion of geology and gravity data suggests that an intrusive body is rooted mainly at the Tighza fault in the north and that it spreads horizontally toward the south during a trans-tensional event (D2). Based on the numerical results, two types of mineralization can be distinguished: 1) the "Pre-Main" type appears during the emplacement of the magmatic body, and 2) the "Main" type appears during magma crystallization and the cooling phase. The time-lag between the two mineralization types depends on the cooling rate of magma. Although our numerical model of thermally-driven fluid flow around the Tighza pluton is simplified, as it does not take into account the chemical and deformation

  12. Uplift Sequence of the Main Morphoestructural Units of the South Central Andes at 30°S: Insights from a Multidisciplinary Approach

    Science.gov (United States)

    Lossada, A. C.; Mardónez, D.; Suriano, J.; Hoke, G. D.; Fitzgerald, P. G.; Mahoney, J. B.; Giambiagi, L.; Aragon, E.

    2015-12-01

    The South Central Andes at 30°S represent a key area to understand the Andes geodynamics as it corresponds to the flat slab segment, characterized by a subhorizontal subduction angle, absence of Neogene magmatism and a highly compressive tectonic regime. Under these settings, crustal shortening is believed to be the principal mechanism responsible for the rise of the Andes. However, the sequence of uplift of the different morphoestructural units composing the orogen is not fully understood; neither do the location and time of activity of intracrustal detachments and their connection with shallower structures. We attempt to develop a multidisciplinary analysis that allow us to characterize the timing, magnitude and activity of the principal structures involved in the construction of the Andes at 30°S trough the Coastal Range, the Frontal Cordillera and the Precordillera. The main phase of deformation in the Coastal Range occurred between 60 and 40Ma, based on published thermochronological and structural data. Our structural analyses constrain the Frontal Cordillera uplift between 18 and 13Ma. In the Precordillera area, in turn, we carried out structural, sedimentological and U-Pb provenience studies. Provenience studies and the 12 and 9Ma ages obtained for the youngest zircons indicated that the main thrusts uplifting the western sector of the Precordillera thrust system were activated since 13Ma at this latitude, and not before that time as it was previously suggested. In order to better constrain the exhumation and thermal history of Frontal Cordillera, a thermochronological study is being conducted. Twenty samples for apatite fission tracks (AFT) and apatite (U-Th)/He (AHe) were collected from two vertical profiles located at western sector (Guanta granitoid) and eastern sector (Colanguil granitoid) of the Frontal Cordillera system. Samples are currently being processed, and they are partially reseted, which will allow us to obtain a cooling age. The aim is to

  13. Thermal impact of a small alas-valley river in a continuous permafrost area - insights and issues raised from a field monitoring Site in Syrdakh (Central Yakutia)

    Science.gov (United States)

    Grenier, Christophe; Nicolas, Roux; Fedorov, Alexander; Konstantinov, Pavel; Séjourné, Antoine; Costard, François; Marlin, Christelle; Khristoforov, Ivan; Saintenoy, Albane

    2017-04-01

    Lakes are probably the most prominent surface water bodies in continuous permafrost areas. As a consequence, they are also the most studied features in these regions (e.g. Fedorov et al. 2014). They are indeed of great interest, not only for local populations that use the water resource they represent both in winter and summer, but also from a climatic point of view as they can be a specific source of green-house gases due to the relatively warmer environment they create, especially associated with their taliks (thawed zone surrounded by permafrost located beneath large enough lakes). From a hydrogeological perspective, such taliks can form complex groundwater networks, thus possibly connecting sub-permafrost groundwater with surface water in the present context of climate change. On the other hand, rivers, another important feature of permafrost landscapes providing similar challenges, have drawn less attention so that only a few studies focus on river interactions with permafrost (e.g. Costard et al. 2014, Grenier et al. 2013). However, the processes of heat transfer at stake between river and permafrost strongly differ from lake systems for several reasons. The geometries differ, the river water flow and thermal regimes and interactions with the lateral slopes (valley) are specific. Of particular importance is the fact that the water, in the case of rivers, is in motion leading to specific heat exchange phenomena between water and soil. (Roux et al., accepted) addressed this issue recently by means of an experimental study in a cold room and associated numerical simulations. The present study focuses on a real river-permafrost system with its full natural complexity. A small alas-valley in the vicinity of Yakutsk (Central Yakutia, Siberia) was chosen. Monitoring was started in October 2012 to study the thermal and hydrological interactions between a river and its underground in this continuous permafrost environment. Thermal sensors were installed inside the

  14. Paleozoic structure of Middle Tien Shan (Kyrgyzstan Central Asian Orogenic Belt): Insights on the polarity and timing of tectonic motions, subductions, and lateral correlations

    Science.gov (United States)

    Jourdon, Anthony; Loury, Chloé; Rolland, Yann; Petit, Carole; Bellahsen, Nicolas

    2015-04-01

    The structure and Palaeozoic tectonic evolution in Kyrgyz and Chinese Tien Shan Central Asian Orogenic Belt (CAOB) are still a matter of debate. There are numerous and conflicting models about the polarity of tectonic motions in the Paleozoic, the number of continental blocks and oceanic basins involved and the timing of tectonic events. In this study we propose new maps and structural cross-sections of Middle and South Kyrgyz Tien Shan (TS). These cross-sections allow us to highlight an overall South-verging structure in the Middle TS, with a thick-skin style involving the crystalline basement. This deformation occurred during the Early Carboniferous, and is sealed by an Upper Carboniferous unconformity. We ascribe this structure to an Upper Plate deformation linked to north-dipping subduction below Middle TS. In contrast, the South TS exhibits a north-verging structure, linked to south-dipping subduction, which is evidenced by an accretionary prism, a volcanic arc, and high-pressure rocks (Loury et al., 2015), and is correlated to similar structures in the Chinese TS (e.g., Charvet et al., 2011). Based on these observations, we propose a new interpretation of the tectonic evolution of the Middle and South TS CAOB. The resulting model comprises a long-lived north-dipping subduction of the Turkestan Ocean below the Middle TS-Karazakh Platform and a short-lived south-dipping subduction of a marginal back-arc basin below the Tarim. Consequently, the South TS is interpreted as a rifted block from the Tarim. Finally, the docking of the large Tarim Craton to the CAOB corresponds to a rapid collision phase (320-300 Ma). This put an end to the long-lived Paleozoic subduction history in the CAOB. Charvet, J., Shu, L., et al., 2011. Palaeozoic tectonic evolution of the Tianshan belt, NW China. Science China Earth Sciences, 54, 166-184. Loury, C. , Rolland, Y., Guillot S., Mikolaichuk, A.V., Lanari, P., Bruguier, O., D.Bosch, 2015. Crustal-scale structure of South Tien Shan

  15. The 2015 M7.2 Sarez, Central Pamir, Earthquake And The Importance Of Strike-Slip Faulting In The Pamir Interior: Insights From Geodesy And Field Observations

    Science.gov (United States)

    Metzger, Sabrina; Schurr, Bernd; Ratschbacher, Lothar; Schöne, Tilo; Kufner, Sofia-Katerina; Zhang, Yong; Sudhaus, Henriette

    2017-04-01

    The Pamir mountain range, located in the Northwest of the India-Asia collision zone, accommodates approximately one third of the northward advance of the Indian continent at this longitude (i. e. ˜34 mm/yr) mostly by shortening at its northern thrust system. Geodetic and seismic data sets reveal here a narrow zone of high deformation and M7+ earthquakes of mostly thrust type with some dextral strike-slip faulting observed, too. The Pamir interior shows sinistral strike-slip and normal faulting indicating north-south compression and east-west extension. In this tectonic setting the two largest instrumentally recorded earthquakes, the M7+ 1911 and 2015 earthquake events in the central Pamir occurred with left-lateral shear along a NE-SW rupture plane. We present the co-seismic deformation field of the 2015 earthquake observed by radar satellite interferometry (InSAR), SAR amplitude pixel offsets and high-rate Global Positioning System (GPS). The InSAR and pixel offset results suggest a 50+ km long rupture with sinistral fault offsets at the surface of more than 2 m on a yet unmapped fault trace of the Sarez Karakul Fault System (SKFS). A distributed slip model with a data-driven slip patch resolution yields a sub-vertical fault plane with a strike of N39.5 degrees and a rupture area of ˜80 x 40 km with a maximum slip of 2 m in the upper 10 km of the crust near the surface rupture. Field observations collected some nine months after the earthquake confirm the rupture mechanism, surface trace location and fault offset measurements as constrained by geodetic data. Diffuse deformation was observed across a 1-2 km wide zone, hosting primary fractures sub-parallel to the rupture strike with offsets of 2 m and secondary, en echelon fractures including Riedel shears and hybrid fractures often related to gravitational mass movements. The 1911 and 2015 earthquakes demonstrate the importance of sinistral strike-slip faulting on the SKFS, contributing both to shear between the

  16. Regulation of dopamine D1 receptor dynamics within the postsynaptic density of hippocampal glutamate synapses.

    Directory of Open Access Journals (Sweden)

    Laurent Ladepeche

    Full Text Available Dopamine receptor potently modulates glutamate signalling, synaptic plasticity and neuronal network adaptations in various pathophysiological processes. Although key intracellular signalling cascades have been identified, the cellular mechanism by which dopamine and glutamate receptor-mediated signalling interplay at glutamate synapse remain poorly understood. Among the cellular mechanisms proposed to aggregate D1R in glutamate synapses, the direct interaction between D1R and the scaffold protein PSD95 or the direct interaction with the glutamate NMDA receptor (NMDAR have been proposed. To tackle this question we here used high-resolution single nanoparticle imaging since it provides a powerful way to investigate at the sub-micron resolution the dynamic interaction between these partners in live synapses. We demonstrate in hippocampal neuronal networks that dopamine D1 receptors (D1R laterally diffuse within glutamate synapses, in which their diffusion is reduced. Disrupting the interaction between D1R and PSD95, through genetical manipulation and competing peptide, did not affect D1R dynamics in glutamatergic synapses. However, preventing the physical interaction between D1R and the GluN1 subunit of NMDAR abolished the synaptic stabilization of diffusing D1R. Together, these data provide direct evidence that the interaction between D1R and NMDAR in synapses participate in the building of the dopamine-receptor-mediated signalling, and most likely to the glutamate-dopamine cross-talk.

  17. Multiple synchronization transitions in scale-free neuronal networks with electrical and chemical hybrid synapses

    International Nuclear Information System (INIS)

    Liu, Chen; Wang, Jiang; Wang, Lin; Yu, Haitao; Deng, Bin; Wei, Xile; Tsang, Kaiming; Chan, Wailok

    2014-01-01

    Highlights: • Synchronization transitions in hybrid scale-free neuronal networks are investigated. • Multiple synchronization transitions can be induced by the time delay. • Effect of synchronization transitions depends on the ratio of the electrical and chemical synapses. • Coupling strength and the density of inter-neuronal links can enhance the synchronization. -- Abstract: The impacts of information transmission delay on the synchronization transitions in scale-free neuronal networks with electrical and chemical hybrid synapses are investigated. Numerical results show that multiple appearances of synchronization regions transitions can be induced by different information transmission delays. With the time delay increasing, the synchronization of neuronal activities can be enhanced or destroyed, irrespective of the probability of chemical synapses in the whole hybrid neuronal network. In particular, for larger probability of electrical synapses, the regions of synchronous activities appear broader with stronger synchronization ability of electrical synapses compared with chemical ones. Moreover, it can be found that increasing the coupling strength can promote synchronization monotonously, playing the similar role of the increasing the probability of the electrical synapses. Interestingly, the structures and parameters of the scale-free neuronal networks, especially the structural evolvement plays a more subtle role in the synchronization transitions. In the network formation process, it is found that every new vertex is attached to the more old vertices already present in the network, the more synchronous activities will be emerge

  18. Reliability of signal transfer at a tonically transmitting, graded potential synapse of the locust ocellar pathway.

    Science.gov (United States)

    Simmons, Peter J; de Ruyter van Steveninck, Rob

    2005-08-17

    We assessed the performance of a synapse that transmits small, sustained, graded potentials between two classes of second-order ocellar "L-neurons" of the locust. We characterized the transmission of both fixed levels of membrane potential and fluctuating signals by recording postsynaptic responses to changes in presynaptic potential. To ensure repeatability between stimuli, we controlled presynaptic signals with a voltage clamp. We found that the synapse introduces noise above the level of background activity in the postsynaptic neuron. By driving the presynaptic neuron with slow-ramp changes in potential, we found that the number of discrete signal levels the synapse transmits is approximately 20. It can also transmit approximately 20 discrete levels when the presynaptic signal is a graded rebound spike. Synaptic noise level is constant over the operating range of the synapse, which would not be expected if presynaptic potential set the probability for the release of individual quanta of neurotransmitter according to Poisson statistics. Responses to individual quanta of neurotransmission could not be resolved, which is consistent with a synapse that operates with large numbers of vesicles evoking small responses. When challenged with white noise stimuli, the synapse can transmit information at rates up to 450 bits/s, a performance that is sufficient to transmit natural signals about changes in illumination.

  19. The Dendritic Cell Synapse: A Life Dedicated to T Cell Activation.

    Science.gov (United States)

    Benvenuti, Federica

    2016-01-01

    T-cell activation within immunological synapses is a complex process whereby different types of signals are transmitted from antigen-presenting cells to T cells. The molecular strategies developed by T cells to interpret and integrate these signals have been systematically dissected in recent years and are now in large part understood. On the other side of the immune synapse, dendritic cells (DCs) participate actively in synapse formation and maintenance by remodeling of membrane receptors and intracellular content. However, the details of such changes have been only partially characterized. The DCs actin cytoskeleton has been one of the first systems to be identified as playing an important role in T-cell priming and some of the underlying mechanisms have been elucidated. Similarly, the DCs microtubule cytoskeleton undergoes major spatial changes during synapse formation that favor polarization of the DCs subcellular space toward the interacting T cell. Recently, we have begun to investigate the trafficking machinery that controls polarized delivery of endosomal vesicles at the DC-T immune synapse with the aim of understanding the functional relevance of polarized secretion of soluble factors during T-cell priming. Here, we will review the current knowledge of events occurring in DCs during synapse formation and discuss the open questions that still remain unanswered.

  20. Cross-correlation analysis of 2012-2014 seismic events in Central-Northern Italy: insights from the geochemical monitoring network of Tuscany

    Science.gov (United States)

    Pierotti, Lisa; Facca, Gianluca; Gherardi, Fabrizio

    2015-04-01

    Since late 2002, a geochemical monitoring network is operating in Tuscany, Central Italy, to collect data and possibly identify geochemical anomalies that characteristically occur before regionally significant (i.e. with magnitude > 3) seismic events. The network currently consists of 6 stations located in areas already investigated in detail for their geological setting, hydrogeological and geochemical background and boundary conditions. All these stations are equipped for remote, continuous monitoring of selected physicochemical parameters (temperature, pH, redox potential, electrical conductivity), and dissolved concentrations of CO2 and CH4. Additional information are obtained through in situ discrete monitoring. Field surveys are periodically performed to guarantee maintenance and performance control of the sensors of the automatic stations, and to collect water samples for the determination of the chemical and stable isotope composition of all the springs investigated for seismic precursors. Geochemical continuous signals are numerically processed to remove outliers, monitoring errors and aseismic effects from seasonal and climatic fluctuations. The elaboration of smoothed, long-term time series (more than 200000 data available today for each station) allows for a relatively accurate definition of geochemical background values. Geochemical values out of the two-sigma relative standard deviation domain are inspected as possible indicators of physicochemical changes related to regional seismic activity. Starting on November 2011, four stations of the Tuscany network located in two separate mountainous areas of Northern Apennines separating Tuscany from Emilia-Romagna region (Equi Terme and Gallicano), and Tuscany from Emilia-Romagna and Umbria regions (Vicchio and Caprese Michelangelo), started to register anomalous values in pH and CO2 partial pressure (PCO2). Cross-correlation analysis indicates an apparent relationship between the most important seismic

  1. Nanotechnologies for the study of the central nervous system.

    Science.gov (United States)

    Ajetunmobi, A; Prina-Mello, A; Volkov, Y; Corvin, A; Tropea, D

    2014-12-01

    The impact of central nervous system (CNS) disorders on the human population is significant, contributing almost €800 billion in annual European healthcare costs. These disorders not only have a disabling social impact but also a crippling economic drain on resources. Developing novel therapeutic strategies for these disorders requires a better understanding of events that underlie mechanisms of neural circuit physiology. Studying the relationship between genetic expression, synapse development and circuit physiology in CNS function is a challenging task, involving simultaneous analysis of multiple parameters and the convergence of several disciplines and technological approaches. However, current gold-standard techniques used to study the CNS have limitations that pose unique challenges to furthering our understanding of functional CNS development. The recent advancement in nanotechnologies for biomedical applications has seen the emergence of nanoscience as a key enabling technology for delivering a translational bridge between basic and clinical research. In particular, the development of neuroimaging and electrophysiology tools to identify the aetiology and progression of CNS disorders have led to new insights in our understanding of CNS physiology and the development of novel diagnostic modalities for therapeutic intervention. This review focuses on the latest applications of these nanotechnologies for investigating CNS function and the improved diagnosis of CNS disorders. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Nanotechnologies for the study of the central nervous system.

    LENUS (Irish Health Repository)

    Ajetunmobi, A

    2014-12-01

    The impact of central nervous system (CNS) disorders on the human population is significant, contributing almost €800 billion in annual European healthcare costs. These disorders not only have a disabling social impact but also a crippling economic drain on resources. Developing novel therapeutic strategies for these disorders requires a better understanding of events that underlie mechanisms of neural circuit physiology. Studying the relationship between genetic expression, synapse development and circuit physiology in CNS function is a challenging task, involving simultaneous analysis of multiple parameters and the convergence of several disciplines and technological approaches. However, current gold-standard techniques used to study the CNS have limitations that pose unique challenges to furthering our understanding of functional CNS development. The recent advancement in nanotechnologies for biomedical applications has seen the emergence of nanoscience as a key enabling technology for delivering a translational bridge between basic and clinical research. In particular, the development of neuroimaging and electrophysiology tools to identify the aetiology and progression of CNS disorders have led to new insights in our understanding of CNS physiology and the development of novel diagnostic modalities for therapeutic intervention. This review focuses on the latest applications of these nanotechnologies for investigating CNS function and the improved diagnosis of CNS disorders.

  3. Spatial distribution of synapses on tyrosine hydroxylase-expressing juxtaglomerular cells in the mouse olfactory glomerulus.

    Science.gov (United States)

    Kiyokage, Emi; Kobayashi, Kazuto; Toida, Kazunori

    2017-04-01

    Olfactory sensory axons converge in specific glomeruli where they form excitatory synapses onto dendrites of mitral/tufted (M/T) and juxtaglomerular (JG) cells, including periglomerular (PG), external tufted (ET), and superficial-short axon cells. JG cells consist of heterogeneous subpopulations with different neurochemical, physiological, and morphological properties. Among JG cells, previous electron microscopic (EM) studies have shown that the majority of synaptic inputs to tyrosine hydroxylase (TH)-immunoreactive neurons were asymmetrical synapses from olfactory nerve (ON) terminals. However, recent physiological results revealed that 70% of dopaminergic/γ-aminobutyric acid (GABA)ergic neurons received polysynaptic inputs via ET cells, whereas the remaining 30% received monosynaptic ON inputs. To understand the discrepancies between EM and physiological data, we used serial EM analysis combined with confocal laser scanning microscope images to examine the spatial distribution of synapses on dendrites using mice expressing enhanced green fluorescent protein under the control of the TH promoter. The majority of synaptic inputs to TH-expressing JG cells were from ON terminals, and they preferentially targeted distal dendrites from the soma. On the other hand, the numbers of non-ON inputs were fewer and targeted proximal dendrites. Furthermore, individual TH-expressing JG cells formed serial synapses, such as M/T→TH→another presumed M/T or ON→TH→presumed M/T, but not reciprocal synapses. Serotonergic fibers also associated with somatic regions of TH neurons, displaying non-ON profiles. Thus, fewer proximal non-ON synapses provide more effective inputs than large numbers of distal ON synapses and may occur on the physiologically characterized population of dopaminergic-GABAergic neurons (70%) that receive their most effective inputs indirectly via an ON→ET→TH circuit. J. Comp. Neurol. 525:1059-1074, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley

  4. Functional hallmarks of GABAergic synapse maturation and the diverse roles of neurotrophins

    Directory of Open Access Journals (Sweden)

    Rosemarie eGrantyn

    2011-07-01

    Full Text Available Functional impairment of the adult brain can result from deficits in the ontogeny of GABAergic synaptic transmission. Gene defects underlying autism spectrum disorders, Rett’s syndrome or some forms of epilepsy, but also a diverse set of syndromes accompanying perinatal trauma, hormonal imbalances, intake of sleep-inducing or mood-improving drugs or, quite common, alcohol intake during pregnancy can alter GABA signaling early in life. The search for therapeutically relevant endogenous molecules or exogenous compounds able to alleviate the consequences of dysfunction of GABAergic transmission in the embryonic or postnatal brain requires a clear understanding of its site- and state-dependent development. At the level of single synapses, it is necessary to discriminate between presynaptic and postsynaptic alterations, and to define parameters that can be regarded as both suitable and accessible for the quantification of developmental changes. Here we focus on the performance of GABAergic synapses in two brain structures, the hippocampus and the superior colliculus, describe some novel aspects of neurotrophin effects during the development of GABAergic synaptic transmission and examine the applicability of the following rules: 1 Synaptic transmission starts with GABA, 2 Nascent/immature GABAergic synapses operate in a ballistic mode (multivesicular release, 3 Immature synaptic terminals release vesicles with higher probability than mature synapses, 4 Immature GABAergic synapses are prone to paired pulse and tetanic depression, 5 Synapse maturation is characterized by an increasing dominance of synchronous over asynchronous release, 6 In immature neurons GABA acts as a depolarizing transmitter, 7 Synapse maturation implies IPSC shortening due to an increase in alpha1 subunit expression, 8 Extrasynaptic (tonic conductances can inhibit the development of synaptic (phasic GABA actions.

  5. Quantal concept of T-cell activation: adhesion domains as immunological synapses

    International Nuclear Information System (INIS)

    Sackmann, Erich

    2011-01-01

    Adhesion micro-domains (ADs) formed during encounters of lymphocytes with antigen-presenting cells (APC) mediate the genetic expression of quanta of cytokines interleukin-2 (IL-2). The IL-2-induced activation of IL-2 receptors promotes the stepwise progression of the T-cells through the cell cycle, hence their name, immunological synapses. The ADs form short-lived reaction centres controlling the recruitment of activators of the biochemical pathway (the kinases Lck and ZAP) while preventing the access of inhibitors (phosphatase CD45) through steric repulsion forces. CD45 acts as the generator of adhesion domains and, through its role as a spacer protein, also as the promoter of the reaction. In a second phase of T-cell-APC encounters, long-lived global reaction spaces (called supramolecular activation complexes (SMAC)) form by talin-mediated binding of the T-cell integrin (LFA-1) to the counter-receptor ICAM-1, resulting in the formation of ring-like tight adhesion zones (peripheral SMAC). The ADs move to the centre of the intercellular adhesion zone forming the central SMAC, which serve in the recycling of the AD. We propose that cell stimulation is triggered by integrating the effect evoked by the short-lived adhesion domains. Similar global reaction platforms are formed by killer cells to destruct APC. We present a testable mechanical model showing that global reaction spaces (SMAC or dome-like contacts between cytotoxic cells and APC) form by self-organization through delayed activation of the integrin-binding affinity and stabilization of the adhesion zones by F-actin recruitment. The mechanical stability and the polarization of the adhering T-cells are mediated by microtubule-actin cross-talk.

  6. Quantal concept of T-cell activation: adhesion domains as immunological synapses

    Energy Technology Data Exchange (ETDEWEB)

    Sackmann, Erich, E-mail: sackmann@ph.tum.de [Physics Department E22, Technical University Munich, D-85748 Garching (Germany)

    2011-06-15

    Adhesion micro-domains (ADs) formed during encounters of lymphocytes with antigen-presenting cells (APC) mediate the genetic expression of quanta of cytokines interleukin-2 (IL-2). The IL-2-induced activation of IL-2 receptors promotes the stepwise progression of the T-cells through the cell cycle, hence their name, immunological synapses. The ADs form short-lived reaction centres controlling the recruitment of activators of the biochemical pathway (the kinases Lck and ZAP) while preventing the access of inhibitors (phosphatase CD45) through steric repulsion forces. CD45 acts as the generator of adhesion domains and, through its role as a spacer protein, also as the promoter of the reaction. In a second phase of T-cell-APC encounters, long-lived global reaction spaces (called supramolecular activation complexes (SMAC)) form by talin-mediated binding of the T-cell integrin (LFA-1) to the counter-receptor ICAM-1, resulting in the formation of ring-like tight adhesion zones (peripheral SMAC). The ADs move to the centre of the intercellular adhesion zone forming the central SMAC, which serve in the recycling of the AD. We propose that cell stimulation is triggered by integrating the effect evoked by the short-lived adhesion domains. Similar global reaction platforms are formed by killer cells to destruct APC. We present a testable mechanical model showing that global reaction spaces (SMAC or dome-like contacts between cytotoxic cells and APC) form by self-organization through delayed activation of the integrin-binding affinity and stabilization of the adhesion zones by F-actin recruitment. The mechanical stability and the polarization of the adhering T-cells are mediated by microtubule-actin cross-talk.

  7. Quantal concept of T-cell activation: adhesion domains as immunological synapses

    Science.gov (United States)

    Sackmann, Erich

    2011-06-01

    Adhesion micro-domains (ADs) formed during encounters of lymphocytes with antigen-presenting cells (APC) mediate the genetic expression of quanta of cytokines interleukin-2 (IL-2). The IL-2-induced activation of IL-2 receptors promotes the stepwise progression of the T-cells through the cell cycle, hence their name, immunological synapses. The ADs form short-lived reaction centres controlling the recruitment of activators of the biochemical pathway (the kinases Lck and ZAP) while preventing the access of inhibitors (phosphatase CD45) through steric repulsion forces. CD45 acts as the generator of adhesion domains and, through its role as a spacer protein, also as the promoter of the reaction. In a second phase of T-cell-APC encounters, long-lived global reaction spaces (called supramolecular activation complexes (SMAC)) form by talin-mediated binding of the T-cell integrin (LFA-1) to the counter-receptor ICAM-1, resulting in the formation of ring-like tight adhesion zones (peripheral SMAC). The ADs move to the centre of the intercellular adhesion zone forming the central SMAC, which serve in the recycling of the AD. We propose that cell stimulation is triggered by integrating the effect evoked by the short-lived adhesion domains. Similar global reaction platforms are formed by killer cells to destruct APC. We present a testable mechanical model showing that global reaction spaces (SMAC or dome-like contacts between cytotoxic cells and APC) form by self-organization through delayed activation of the integrin-binding affinity and stabilization of the adhesion zones by F-actin recruitment. The mechanical stability and the polarization of the adhering T-cells are mediated by microtubule-actin cross-talk.

  8. Deficits in the Proline-Rich Synapse-Associated Shank3 Protein in Multiple Neuropsychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Peter N. Alexandrov

    2017-12-01

    Full Text Available Signaling between neurons in the human central nervous system (CNS is accomplished through a highly interconnected network of presynaptic and postsynaptic elements essential in the conveyance of electrical and neurochemical information. One recently characterized core postsynaptic element essential to the efficient operation of this complex network is a relatively abundant ~184.7 kDa proline-rich synapse-associated cytoskeletal protein known as Shank3 (SH3-ankyrin repeat domain; encoded at human chr 22q13.33. In this “Perspectives” article, we review and comment on current advances in Shank3 research and include some original data that show common Shank3 deficits in a number of seemingly unrelated human neurological disorders that include sporadic Alzheimer’s disease (AD, autism spectrum disorder (ASD, bipolar disorder (BD, Phelan–McDermid syndrome (PMS; 22q13.3 deletion syndrome, and schizophrenia (SZ. Shank3 was also found to be downregulated in the CNS of the transgenic AD (TgAD 5x familial Alzheimer’s disease murine model engineered to overexpress the 42 amino acid amyloid-beta (Aβ42 peptide. Interestingly, the application of known pro-inflammatory stressors, such as the Aβ42 peptide and the metal-neurotoxin aluminum sulfate, to human neuronal–glial cells in primary culture resulted in a significant decrease in the expression of Shank3. These data indicate that deficits in Shank3-expression may be one common denominator linking a wide-range of human neurological disorders that exhibit a progressive or developmental synaptic disorganization that is temporally associated with cognitive decline.

  9. Functional and structural deficits at accumbens synapses in a mouse model of Fragile X

    Directory of Open Access Journals (Sweden)

    Daniela eNeuhofer

    2015-03-01

    Full Text Available Fragile X is the most common cause of inherited intellectual disability and a leading cause of autism. The disease is caused by mutation of a single X-linked gene called fmr1 that codes for the Fragile X mental retardation protein (FMRP, a 71 kDa protein, which acts mainly as a translation inhibitor. Fragile X patients suffer from cognitive and emotional deficits that coincide with abnormalities in dendritic spines. Changes in spine morphology are often associated with altered excitatory transmission and long-term plasticity, the most prominent deficit in fmr1-/y mice. The nucleus accumbens, a central part of the mesocortico-limbic reward pathway, is now considered as a core structure in the control of social behaviors. Although the socio-affective impairments observed in Fragile X suggest dysfunctions in the accumbens, the impact of the lack of FMRP on accumbal synapses has scarcely been studied. Here we report for the first time a new spike timing-dependent plasticity paradigm that reliably triggers NMDAR-dependent long-term potentiation (LTP of excitatory afferent inputs of medium spiny neurons (MSN in the nucleus accumbens core region. Notably, we discovered that this LTP was completely absent in fmr1-/y mice. In the fmr1-/y accumbens intrinsic membrane properties of MSNs and basal excitatory neurotransmission remained intact in the fmr1-/y accumbens but the deficit in LTP was accompanied by an increase in evoked AMPA/NMDA ratio and a concomitant reduction of spontaneous NMDAR-mediated currents. In agreement with these physiological findings, we found significantly more filopodial spines in fmr1-/y mice by using an ultrastructural electron microscopic analysis of accumbens core medium spiny neuron spines. Surprisingly, spine elongation was specifically due to the longer longitudinal axis and larger area of spine necks, whereas spine head morphology and postsynaptic density size on spine heads remained unaffected in the fmr1-/y accumbens

  10. Optimal and Local Connectivity Between Neuron and Synapse Array in the Quantum Dot/Silicon Brain

    Science.gov (United States)

    Duong, Tuan A.; Assad, Christopher; Thakoor, Anikumar P.

    2010-01-01

    This innovation is used to connect between synapse and neuron arrays using nanowire in quantum dot and metal in CMOS (complementary metal oxide semiconductor) technology to enable the density of a brain-like connection in hardware. The hardware implementation combines three technologies: 1. Quantum dot and nanowire-based compact synaptic cell (50x50 sq nm) with inherently low parasitic capacitance (hence, low dynamic power approx.l0(exp -11) watts/synapse), 2. Neuron and learning circuits implemented in 50-nm CMOS technology, to be integrated with quantum dot and nanowire synapse, and 3. 3D stacking approach to achieve the overall numbers of high density O(10(exp 12)) synapses and O(10(exp 8)) neurons in the overall system. In a 1-sq cm of quantum dot layer sitting on a 50-nm CMOS layer, innovators were able to pack a 10(exp 6)-neuron and 10(exp 10)-synapse array; however, the constraint for the connection scheme is that each neuron will receive a non-identical 10(exp 4)-synapse set, including itself, via its efficacy of the connection. This is not a fully connected system where the 100x100 synapse array only has a 100-input data bus and 100-output data bus. Due to the data bus sharing, it poses a great challenge to have a complete connected system, and its constraint within the quantum dot and silicon wafer layer. For an effective connection scheme, there are three conditions to be met: 1. Local connection. 2. The nanowire should be connected locally, not globally from which it helps to maximize the data flow by sharing the same wire space location. 3. Each synapse can have an alternate summation line if needed (this option is doable based on the simple mask creation). The 10(exp 3)x10(exp 3)-neuron array was partitioned into a 10-block, 10(exp 2)x10(exp 3)-neuron array. This building block can be completely mapped within itself (10,000 synapses to a neuron).

  11. Abundance of gap junctions at glutamatergic mixed synapses in adult Mosquitofish spinal cord neurons

    Directory of Open Access Journals (Sweden)

    Jose L Serrano-Velez

    2014-06-01

    Full Text Available Dye-coupling, whole-mount immunohistochemistry for gap junction channel protein connexin 35 (Cx35, and freeze-fracture replica immunogold labeling (FRIL reveal an abundance of electrical synapses/gap junctions at glutamatergic mixed synapses in the 14th spinal segment that innervates the adult male gonopodium of Western Mosquitofish, Gambusia affinis (Mosquitofish.To study gap junctions’ role in fast motor behavior, we used a minimally-invasive neural-tract-tracing technique to introduce gap junction-permeant or -impermeant dyes into deep muscles controlling the gonopodium of the adult male Mosquitofish, a teleost fish that rapidly transfers (complete in 50 of the 62 gap junctions at mixed synapses are in the 14th spinal segment.Our results support and extend studies showing gap junctions at mixed synapses in spinal cord segments involved in control of genital reflexes in rodents, and they suggest a link between mixed synapses and fast motor behavior. The findings provide a basis for studies of specific roles of spinal neurons in the generation/regulation of sex-specific behavior and for studies of gap junctions’ role in regulating fast motor behavior. Finally, the CoPA IN provides a novel candidate neuron for future studies of gap junctions and neural control of fast motor behaviors.

  12. Extracellular proteolysis in structural and functional plasticity of mossy fiber synapses in hippocampus

    Directory of Open Access Journals (Sweden)

    Grzegorz eWiera

    2015-11-01

    Full Text Available Brain is continuously altered in response to experience and environmental changes. One of the underlying mechanisms is synaptic plasticity, which is manifested by modification of synapse structure and function. It is becoming clear that regulated extracellular proteolysis plays a pivotal role in the structural and functional remodeling of synapses during brain development, learning and memory formation. Clearly, plasticity mechanisms may substantially differ between projections. Mossy fiber synapses onto CA3 pyramidal cells display several unique functional features, including pronounced short-term facilitation, a presynaptically expressed LTP that is independent of NMDAR activation, and NMDA-dependent metaplasticity. Moreover, structural plasticity at mossy fiber synapses ranges from the reorganization of projection topology after hippocampus-dependent learning, through intrinsically different dynamic properties of synaptic boutons to pre- and postsynaptic structural changes accompanying LTP induction. Although concomitant functional and structural plasticity in this pathway strongly suggests a role of extracellular proteolysis, its impact only starts to be investigated in this projection. In the present report, we review the role of extracellular proteolysis in various aspects of synaptic plasticity in hippocampal mossy fiber synapses. A growing body of evidence demonstrates that among perisynaptic proteases, tPA/plasmin system, β-site amyloid precursor protein-cleaving enzyme 1 (BACE1 and metalloproteinases play a crucial role in shaping plastic changes in this projection. We discuss recent advances and emerging hypotheses on the roles of proteases in mechanisms underlying mossy fiber target specific synaptic plasticity and memory formation.

  13. Molecular switches at the synapse emerge from receptor and kinase traffic.

    Directory of Open Access Journals (Sweden)

    2005-07-01

    Full Text Available Changes in the synaptic connection strengths between neurons are believed to play a role in memory formation. An important mechanism for changing synaptic strength is through movement of neurotransmitter receptors and regulatory proteins to and from the synapse. Several activity-triggered biochemical events control these movements. Here we use computer models to explore how these putative memory-related changes can be stabilised long after the initial trigger, and beyond the lifetime of synaptic molecules. We base our models on published biochemical data and experiments on the activity-dependent movement of a glutamate receptor, AMPAR, and a calcium-dependent kinase, CaMKII. We find that both of these molecules participate in distinct bistable switches. These simulated switches are effective for long periods despite molecular turnover and biochemical fluctuations arising from the small numbers of molecules in the synapse. The AMPAR switch arises from a novel self-recruitment process where the presence of sufficient receptors biases the receptor movement cycle to insert still more receptors into the synapse. The CaMKII switch arises from autophosphorylation of the kinase. The switches may function in a tightly coupled manner, or relatively independently. The latter case leads to multiple stable states of the synapse. We propose that similar self-recruitment cycles may be important for maintaining levels of many molecules that undergo regulated movement, and that these may lead to combinatorial possible stable states of systems like the synapse.

  14. Neuron-NG2 Cell Synapses: Novel Functions for Regulating NG2 Cell Proliferation and Differentiation

    Directory of Open Access Journals (Sweden)

    Qian-Kun Yang

    2013-01-01

    Full Text Available NG2 cells are a population of CNS cells that are distinct from neurons, mature oligodendrocytes, astrocytes, and microglia. These cells can be identified by their NG2 proteoglycan expression. NG2 cells have a highly branched morphology, with abundant processes radiating from the cell body, and express a complex set of voltage-gated channels, AMPA/kainate, and GABA receptors. Neurons notably form classical and nonclassical synapses with NG2 cells, which have varied characteristics and functions. Neuron-NG2 cell synapses could fine-tune NG2 cell activities, including the NG2 cell cycle, differentiation, migration, and myelination, and may be a novel potential therapeutic target for NG2 cell-related diseases, such as hypoxia-ischemia injury and periventricular leukomalacia. Furthermore, neuron-NG2 cell synapses may be correlated with the plasticity of CNS in adulthood with the synaptic contacts passing onto their progenies during proliferation, and synaptic contacts decrease rapidly upon NG2 cell differentiation. In this review, we highlight the characteristics of classical and nonclassical neuron-NG2 cell synapses, the potential functions, and the fate of synaptic contacts during proliferation and differentiation, with the emphasis on the regulation of the NG2 cell cycle by neuron-NG2 cell synapses and their potential underlying mechanisms.

  15. ASIC-dependent LTP at multiple glutamatergic synapses in amygdala network is required for fear memory.

    Science.gov (United States)

    Chiang, Po-Han; Chien, Ta-Chun; Chen, Chih-Cheng; Yanagawa, Yuchio; Lien, Cheng-Chang

    2015-05-19

    Genetic variants in the human ortholog of acid-sensing ion channel-1a subunit (ASIC1a) gene are associated with panic disorder and amygdala dysfunction. Both fear learning and activity-induced long-term potentiation (LTP) of cortico-basolateral amygdala (BLA) synapses are impaired in ASIC1a-null mice, suggesting a critical role of ASICs in fear memory formation. In this study, we found that ASICs were differentially expressed within the amygdala neuronal population, and the extent of LTP at various glutamatergic synapses correlated with the level of ASIC expression in postsynaptic neurons. Importantly, selective deletion of ASIC1a in GABAergic cells, including amygdala output neurons, eliminated LTP in these cells and reduced fear learning to the same extent as that found when ASIC1a was selectively abolished in BLA glutamatergic neurons. Thus, fear learning requires ASIC-dependent LTP at multiple amygdala synapses, including both cortico-BLA input synapses and intra-amygdala synapses on output neurons.

  16. Effects of Trace Metal Profiles Characteristic for Autism on Synapses in Cultured Neurons

    Directory of Open Access Journals (Sweden)

    Simone Hagmeyer

    2015-01-01

    Full Text Available Various recent studies revealed that biometal dyshomeostasis plays a crucial role in the pathogenesis of neurological disorders such as autism spectrum disorders (ASD. Substantial evidence indicates that disrupted neuronal homeostasis of different metal ions such as Fe, Cu, Pb, Hg, Se, and Zn may mediate synaptic dysfunction and impair synapse formation and maturation. Here, we performed in vitro studies investigating the consequences of an imbalance of transition metals on glutamatergic synapses of hippocampal neurons. We analyzed whether an imbalance of any one metal ion alters cell health and synapse numbers. Moreover, we evaluated whether a biometal profile characteristic for ASD patients influences synapse formation, maturation, and composition regarding NMDA receptor subunits and Shank proteins. Our results show that an ASD like biometal profile leads to a reduction of NMDAR (NR/Grin/GluN subunit 1 and 2a, as well as Shank gene expression along with a reduction of synapse density. Additionally, synaptic protein levels of GluN2a and Shanks are reduced. Although Zn supplementation is able to rescue the aforementioned alterations, Zn deficiency is not solely responsible as causative factor. Thus, we conclude that balancing Zn levels in ASD might be a prime target to normalize synaptic alterations caused by biometal dyshomeostasis.

  17. Whisker Deprivation Drives Two Phases of Inhibitory Synapse Weakening in Layer 4 of Rat Somatosensory Cortex.

    Directory of Open Access Journals (Sweden)

    Melanie A Gainey

    Full Text Available Inhibitory synapse development in sensory neocortex is experience-dependent, with sustained sensory deprivation yielding fewer and weaker inhibitory synapses. Whether this represents arrest of synapse maturation, or a more complex set of processes, is unclear. To test this, we measured the dynamics of inhibitory synapse development in layer 4 of rat somatosensory cortex (S1 during continuous whisker deprivation from postnatal day 7, and in age-matched controls. In deprived columns, spontaneous miniature inhibitory postsynaptic currents (mIPSCs and evoked IPSCs developed normally until P15, when IPSC amplitude transiently decreased, recovering by P16 despite ongoing deprivation. IPSCs remained normal until P22, when a second, sustained phase of weakening began. Delaying deprivation onset by 5 days prevented the P15 weakening. Both early and late phase weakening involved measurable reduction in IPSC amplitude relative to prior time points. Thus, deprivation appears to drive two distinct phases of active IPSC weakening, rather than simple arrest of synapse maturation.

  18. Synchronization of the small-world neuronal network with unreliable synapses

    International Nuclear Information System (INIS)

    Li, Chunguang; Zheng, Qunxian

    2010-01-01

    As is well known, synchronization phenomena are ubiquitous in neuronal systems. Recently a lot of work concerning the synchronization of the neuronal network has been accomplished. In these works, the synapses are usually considered reliable, but experimental results show that, in biological neuronal networks, synapses are usually unreliable. In our previous work, we have studied the synchronization of the neuronal network with unreliable synapses; however, we have not paid attention to the effect of topology on the synchronization of the neuronal network. Several recent studies have found that biological neuronal networks have typical properties of small-world networks, characterized by a short path length and high clustering coefficient. In this work, mainly based on the small-world neuronal network (SWNN) with inhibitory neurons, we study the effect of network topology on the synchronization of the neuronal network with unreliable synapses. Together with the network topology, the effects of the GABAergic reversal potential, time delay and noise are also considered. Interestingly, we found a counter-intuitive phenomenon for the SWNN with specific shortcut adding probability, that is, the less reliable the synapses, the better the synchronization performance of the SWNN. We also consider the effects of both local noise and global noise in this work. It is shown that these two different types of noise have distinct effects on the synchronization: one is negative and the other is positive

  19. 3D reconstruction of synapses with deep learning based on EM Images

    Science.gov (United States)

    Xiao, Chi; Rao, Qiang; Zhang, Dandan; Chen, Xi; Han, Hua; Xie, Qiwei

    2017-03-01

    Recently, due to the rapid development of electron microscope (EM) with its high resolution, stacks delivered by EM can be used to analyze a variety of components that are critical to understand brain function. Since synaptic study is essential in neurobiology and can be analyzed by EM stacks, the automated routines for reconstruction of synapses based on EM Images can become a very useful tool for analyzing large volumes of brain tissue and providing the ability to understand the mechanism of brain. In this article, we propose a novel automated method to realize 3D reconstruction of synapses for Automated Tapecollecting Ultra Microtome Scanning Electron Microscopy (ATUM-SEM) with deep learning. Being different from other reconstruction algorithms, which employ classifier to segment synaptic clefts directly. We utilize deep learning method and segmentation algorithm to obtain synaptic clefts as well as promote the accuracy of reconstruction. The proposed method contains five parts: (1) using modified Moving Least Square (MLS) deformation algorithm and Scale Invariant Feature Transform (SIFT) features to register adjacent sections, (2) adopting Faster Region Convolutional Neural Networks (Faster R-CNN) algorithm to detect synapses, (3) utilizing screening method which takes context cues of synapses into consideration to reduce the false positive rate, (4) combining a practical morphology algorithm with a suitable fitting function to segment synaptic clefts and optimize the shape of them, (5) applying the plugin in FIJI to show the final 3D visualization of synapses. Experimental results on ATUM-SEM images demonstrate the effectiveness of our proposed method.

  20. The need to connect: on the cell biology of synapses, behaviors, and networks in science.

    Science.gov (United States)

    Colón-Ramos, Daniel A

    2016-11-01

    My laboratory is interested in the cell biology of the synapse. Synapses, which are points of cellular communication between neurons, were first described by Santiago Ramón y Cajal as "protoplasmic kisses that appear to constitute the final ecstasy of an epic love story." Who would not want to work on that?! My lab examines the biological mechanisms neurons use to find and connect to each other. How are synapses formed during development, maintained during growth, and modified during learning? In this essay, I reflect about my scientific journey to the synapse, the cell biological one, but also a metaphorical synapse-my role as a point of contact between the production of knowledge and its dissemination. In particular, I discuss how the architecture of scientific networks propels knowledge production but can also exclude certain groups in science. © 2016 Colón-Ramos This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. Nanogranular SiO{sub 2} proton gated silicon layer transistor mimicking biological synapses

    Energy Technology Data Exchange (ETDEWEB)

    Liu, M. J.; Huang, G. S., E-mail: gshuang@fudan.edu.cn, E-mail: pfeng@nju.edu.cn; Guo, Q. L.; Tian, Z. A.; Li, G. J.; Mei, Y. F. [Department of Materials Science, Fudan University, Shanghai 200433 (China); Feng, P., E-mail: gshuang@fudan.edu.cn, E-mail: pfeng@nju.edu.cn; Shao, F.; Wan, Q. [School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2016-06-20

    Silicon on insulator (SOI)-based transistors gated by nanogranular SiO{sub 2} proton conducting electrolytes were fabricated to mimic synapse behaviors. This SOI-based device has both top proton gate and bottom buried oxide gate. Electrical transfer properties of top proton gate show hysteresis curves different from those of bottom gate, and therefore, excitatory post-synaptic current and paired pulse facilitation (PPF) behavior of biological synapses are mimicked. Moreover, we noticed that PPF index can be effectively tuned by the spike interval applied on the top proton gate. Synaptic behaviors and functions, like short-term memory, and its properties are also experimentally demonstrated in our device. Such SOI-based electronic synapses are promising for building neuromorphic systems.

  2. Nanogranular SiO2 proton gated silicon layer transistor mimicking biological synapses

    International Nuclear Information System (INIS)

    Liu, M. J.; Huang, G. S.; Guo, Q. L.; Tian, Z. A.; Li, G. J.; Mei, Y. F.; Feng, P.; Shao, F.; Wan, Q.

    2016-01-01

    Silicon on insulator (SOI)-based transistors gated by nanogranular SiO 2 proton conducting electrolytes were fabricated to mimic synapse behaviors. This SOI-based device has both top proton gate and bottom buried oxide gate. Electrical transfer properties of top proton gate show hysteresis curves different from those of bottom gate, and therefore, excitatory post-synaptic current and paired pulse facilitation (PPF) behavior of biological synapses are mimicked. Moreover, we noticed that PPF index can be effectively tuned by the spike interval applied on the top proton gate. Synaptic behaviors and functions, like short-term memory, and its properties are also experimentally demonstrated in our device. Such SOI-based electronic synapses are promising for building neuromorphic systems.

  3. Long-term potentiation expands information content of hippocampal dentate gyrus synapses.

    Science.gov (United States)

    Bromer, Cailey; Bartol, Thomas M; Bowden, Jared B; Hubbard, Dusten D; Hanka, Dakota C; Gonzalez, Paola V; Kuwajima, Masaaki; Mendenhall, John M; Parker, Patrick H; Abraham, Wickliffe C; Sejnowski, Terrence J; Harris, Kristen M

    2018-03-06

    An approach combining signal detection theory and precise 3D reconstructions from serial section electron microscopy (3DEM) was used to investigate synaptic plasticity and information storage capacity at medial perforant path synapses in adult hippocampal dentate gyrus in vivo. Induction of long-term potentiation (LTP) markedly increased the frequencies of both small and large spines measured 30 minutes later. This bidirectional expansion resulted in heterosynaptic counterbalancing of total synaptic area per unit length of granule cell dendrite. Control hemispheres exhibited 6.5 distinct spine sizes for 2.7 bits of storage capacity while LTP resulted in 12.9 distinct spine sizes (3.7 bits). In contrast, control hippocampal CA1 synapses exhibited 4.7 bits with much greater synaptic precision than either control or potentiated dentate gyrus synapses. Thus, synaptic plasticity altered total capacity, yet hippocampal subregions differed dramatically in their synaptic information storage capacity, reflecting their diverse functions and activation histories.

  4. Eph receptors and ephrins in neuron-astrocyte communication at synapses.

    Science.gov (United States)

    Murai, Keith K; Pasquale, Elena B

    2011-11-01

    Neuron-glia communication is essential for regulating the properties of synaptic connections in the brain. Astrocytes, in particular, play a critical and complex role in synapse development, maintenance, and plasticity. Likewise, neurons reciprocally influence astrocyte physiology. However, the molecular signaling events that enable astrocytes and neurons to effectively communicate with each other are only partially defined. Recent findings have revealed that Eph receptor tyrosine kinases and ephrins play an important role in contact-dependent neuron-glia communication at synapses. Upon binding, these two families of cell surface-associated proteins trigger bidirectional signaling events that regulate the structural and physiological properties of both neurons and astrocytes. This review will focus on the emerging role of Eph receptors and ephrins in neuron-astrocyte interaction at synapses and discuss implications for synaptic plasticity, behavior, and disease. Copyright © 2011 Wiley-Liss, Inc.

  5. Fear extinction causes target-specific remodeling of perisomatic inhibitory synapses

    Science.gov (United States)

    Trouche, Stéphanie; Sasaki, Jennifer M.; Tu, Tiffany; Reijmers, Leon G.

    2013-01-01

    SUMMARY A more complete understanding of how fear extinction alters neuronal activity and connectivity within fear circuits may aid in the development of strategies to treat human fear disorders. Using a c-fos based transgenic mouse, we found that contextual fear extinction silenced basal amygdala (BA) excitatory neurons that had been previously activated during fear conditioning. We hypothesized that the silencing of BA fear neurons was caused by an action of extinction on BA inhibitory synapses. In support of this hypothesis, we found extinction-induced target-specific remodeling of BA perisomatic inhibitory synapses originating from parvalbumin and cholecystokinin-positive interneurons. Interestingly, the predicted changes in the balance of perisomatic inhibition matched the silent and active states of the target BA fear neurons. These observations suggest that target-specific changes in perisomatic inhibitory synapses represent a mechanism through which experience can sculpt the activation patterns within a neural circuit. PMID:24183705

  6. Africa Insight

    African Journals Online (AJOL)

    Africa Insight is a quarterly, peer-reviewed journal of the Africa Institute of South Africa. It is accredited by the South African National Department of Higher Education and Training (DHET) and is indexed in the International Bibliography of Social Science (IBSS). It is a multi-disciplinary journal primarily focusing on African ...

  7. Visualizing the distribution of synapses from individual neurons in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Ling Li

    2010-07-01

    Full Text Available Proper function of the mammalian brain relies on the establishment of highly specific synaptic connections among billions of neurons. To understand how complex neural circuits function, it is crucial to precisely describe neuronal connectivity and the distributions of synapses to and from individual neurons.In this study, we present a new genetic synaptic labeling method that relies on expression of a presynaptic marker, synaptophysin-GFP (Syp-GFP in individual neurons in vivo. We assess the reliability of this method and use it to analyze the spatial patterning of synapses in developing and mature cerebellar granule cells (GCs. In immature GCs, Syp-GFP is distributed in both axonal and dendritic regions. Upon maturation, it becomes strongly enriched in axons. In mature GCs, we analyzed synapses along their ascending segments and parallel fibers. We observe no differences in presynaptic distribution between GCs born at different developmental time points and thus having varied depths of projections in the molecular layer. We found that the mean densities of synapses along the parallel fiber and the ascending segment above the Purkinje cell (PC layer are statistically indistinguishable, and higher than previous estimates. Interestingly, presynaptic terminals were also found in the ascending segments of GCs below and within the PC layer, with the mean densities two-fold lower than that above the PC layer. The difference in the density of synapses in these parts of the ascending segment likely reflects the regional differences in postsynaptic target cells of GCs.The ability to visualize synapses of single neurons in vivo is valuable for studying synaptogenesis and synaptic plasticity within individual neurons as well as information flow in neural circuits.

  8. Spatial distribution of excitatory synapses on the dendrites of ganglion cells in the mouse retina.

    Directory of Open Access Journals (Sweden)

    Yin-Peng Chen

    Full Text Available Excitatory glutamatergic inputs from bipolar cells affect the physiological properties of ganglion cells in the mammalian retina. The spatial distribution of these excitatory synapses on the dendrites of retinal ganglion cells thus may shape their distinct functions. To visualize the spatial pattern of excitatory glutamatergic input into the ganglion cells in the mouse retina, particle-mediated gene transfer of plasmids expressing postsynaptic density 95-green fluorescent fusion protein (PSD95-GFP was used to label the excitatory synapses. Despite wide variation in the size and morphology of the retinal ganglion cells, the expression of PSD95 puncta was found to follow two general rules. Firstly, the PSD95 puncta are regularly spaced, at 1-2 µm intervals, along the dendrites, whereby the presence of an excitatory synapse creates an exclusion zone that rules out the presence of other glutamatergic synaptic inputs. Secondly, the spatial distribution of PSD95 puncta on the dendrites of diverse retinal ganglion cells are similar in that the number of excitatory synapses appears to be less on primary dendrites and to increase to a plateau on higher branch order dendrites. These observations suggest that synaptogenesis is spatially regulated along the dendritic segments and that the number of synaptic contacts is relatively constant beyond the primary dendrites. Interestingly, we also found that the linear puncta density is slightly higher in large cells than in small cells. This may suggest that retinal ganglion cells with a large dendritic field tend to show an increased connectivity of excitatory synapses that makes up for their reduced dendrite density. Mapping the spatial distribution pattern of the excitatory synapses on retinal ganglion cells thus provides explicit structural information that is essential for our understanding of how excitatory glutamatergic inputs shape neuronal responses.

  9. Preferential loss of dorsal-hippocampus synapses underlies memory impairments provoked by short, multimodal stress.

    Science.gov (United States)

    Maras, P M; Molet, J; Chen, Y; Rice, C; Ji, S G; Solodkin, A; Baram, T Z

    2014-07-01

    The cognitive effects of stress are profound, yet it is unknown if the consequences of concurrent multiple stresses on learning and memory differ from those of a single stress of equal intensity and duration. We compared the effects on hippocampus-dependent memory of concurrent, hours-long light, loud noise, jostling and restraint (multimodal stress) with those of restraint or of loud noise alone. We then examined if differences in memory impairment following these two stress types might derive from their differential impact on hippocampal synapses, distinguishing dorsal and ventral hippocampus. Mice exposed to hours-long restraint or loud noise were modestly or minimally impaired in novel object recognition, whereas similar-duration multimodal stress provoked severe deficits. Differences in memory were not explained by differences in plasma corticosterone levels or numbers of Fos-labeled neurons in stress-sensitive hypothalamic neurons. However, although synapses in hippocampal CA3 were impacted by both restraint and multimodal stress, multimodal stress alone reduced synapse numbers severely in dorsal CA1, a region crucial for hippocampus-dependent memory. Ventral CA1 synapses were not significantly affected by either stress modality. Probing the basis of the preferential loss of dorsal synapses after multimodal stress, we found differential patterns of neuronal activation by the two stress types. Cross-correlation matrices, reflecting functional connectivity among activated regions, demonstrated that multimodal stress reduced hippocampal correlations with septum and thalamus and increased correlations with amygdala and BST. Thus, despite similar effects on plasma corticosterone and on hypothalamic stress-sensitive cells, multimodal and restraint stress differ in their activation of brain networks and in their impact on hippocampal synapses. Both of these processes might contribute to amplified memory impairments following short, multimodal stress.

  10. Preferential loss of dorsal-hippocampus synapses underlies memory impairments provoked by short, multimodal stress

    Science.gov (United States)

    Maras, P M; Molet, J; Chen, Y; Rice, C; Ji, S G; Solodkin, A; Baram, T Z

    2014-01-01

    The cognitive effects of stress are profound, yet it is unknown if the consequences of concurrent multiple stresses on learning and memory differ from those of a single stress of equal intensity and duration. We compared the effects on hippocampus-dependent memory of concurrent, hours-long light, loud noise, jostling and restraint (multimodal stress) with those of restraint or of loud noise alone. We then examined if differences in memory impairment following these two stress types might derive from their differential impact on hippocampal synapses, distinguishing dorsal and ventral hippocampus. Mice exposed to hours-long restraint or loud noise were modestly or minimally impaired in novel object recognition, whereas similar-duration multimodal stress provoked severe deficits. Differences in memory were not explained by differences in plasma corticosterone levels or numbers of Fos-labeled neurons in stress-sensitive hypothalamic neurons. However, although synapses in hippocampal CA3 were impacted by both restraint and multimodal stress, multimodal stress alone reduced synapse numbers severely in dorsal CA1, a region crucial for hippocampus-dependent memory. Ventral CA1 synapses were not significantly affected by either stress modality. Probing the basis of the preferential loss of dorsal synapses after multimodal stress, we found differential patterns of neuronal activation by the two stress types. Cross-correlation matrices, reflecting functional connectivity among activated regions, demonstrated that multimodal stress reduced hippocampal correlations with septum and thalamus and increased correlations with amygdala and BST. Thus, despite similar effects on plasma corticosterone and on hypothalamic stress-sensitive cells, multimodal and restraint stress differ in their activation of brain networks and in their impact on hippocampal synapses. Both of these processes might contribute to amplified memory impairments following short, multimodal stress. PMID:24589888

  11. Synapse associated protein 102 (SAP102 binds the C-terminal part of the scaffolding protein neurobeachin.

    Directory of Open Access Journals (Sweden)

    Juliane Lauks

    Full Text Available Neurobeachin (Nbea is a multidomain scaffold protein abundant in the brain, where it is highly expressed during development. Nbea-null mice have severe defects in neuromuscular synaptic transmission resulting in lethal paralysis of the newborns. Recently, it became clear that Nbea is important also for the functioning of central synapses, where it is suggested to play a role in trafficking membrane proteins to both, the pre- and post-synaptic sites. So far, only few binding partners of Nbea have been found and the precise mechanism of their trafficking remains unclear. Here, we used mass spectrometry to identify SAP102, a MAGUK protein implicated in trafficking of the ionotropic glutamate AMPA- and NMDA-type receptors during synaptogenesis, as a novel Nbea interacting protein in mouse brain. Experiments in heterologous cells confirmed this interaction and revealed that SAP102 binds to the C-terminal part of Nbea that contains the DUF, PH, BEACH and WD40 domains. Furthermore, we discovered that introducing a mutation in Nbea's PH domain, which disrupts its interaction with the BEACH domain, abolishes this binding, thereby creating an excellent starting point to further investigate Nbea-SAP102 function in the central nervous system.

  12. D-serine and serine racemase are associated with PSD-95 and glutamatergic synapse stability

    Directory of Open Access Journals (Sweden)

    Hong eLin

    2016-02-01

    Full Text Available D-serine is an endogenous coagonist at the glycine site of synaptic NMDA receptors (NMDARs, synthesized by serine racemase (SR through conversion of L-serine. It is crucial for synaptic plasticity and is implicated in schizophrenia. Our previous studies demonstrated specific loss of SR, D-serine-responsive synaptic NMDARs, and glutamatergic synapses in cortical neurons lacking alpha7 nicotinic acetylcholine receptors, which promotes glutamatergic synapse formation and maturation during development. We thus hypothesize that D-serine and SR (D-serine/SR are associated with glutamatergic synaptic development. Using morphological and molecular studies in cortical neuronal cultures, we demonstrate that D-serine/SR are associated with PSD-95 and NMDARs in postsynaptic neurons and with glutamatergic synapse stability during synaptic development. Endogenous D-serine and SR colocalize with PSD-95, but not presynaptic vesicular glutamate transporter 1 (VGLUT1, in glutamatergic synapses of cultured cortical neurons. Low-density astrocytes in cortical neuronal cultures lack SR expression but contain enriched D-serine in large vesicle-like structures, suggesting possible synthesis of D-serine in postsynaptic neurons and storage in astrocytes. More interestingly, endogenous D-serine and SR colocalize with PSD-95 in the postsynaptic terminals of glutamatergic synapses during early and late synaptic development, implicating involvement of D-serine/SR in glutamatergic synaptic development. Exogenous application of D-serine enhances the interactions of SR with PSD-95 and NR1, and increases the number of VGLUT1- and PSD-95-positive glutamatergic synapses, suggesting that exogenous D-serine enhances postsynaptic SR/PSD-95 signaling and stabilizes glutamatergic synapses during cortical synaptic development. This is blocked by NMDAR antagonist 2-amino-5-phosphonopentanoic acid (AP5 and 7-chlorokynurenic acid (7-CK, a specific antagonist at the glycine site of NMDARs

  13. Modulation, plasticity and pathophysiology of the parallel fiber-Purkinje cell synapse

    Directory of Open Access Journals (Sweden)

    Eriola Hoxha

    2016-11-01

    Full Text Available The parallel fiber-Purkinje cell synapse represents the point of maximal signal divergence in the cerebellar cortex with an estimated number of about 60 billion synaptic contacts in the rat and 100,000 billions in humans. At the same time, the Purkinje cell dendritic tree is a site of remarkable convergence of more than 100,000 parallel fiber synapses. Parallel fibers activity generates fast postsynaptic currents via AMPA receptors, and slower signals, mediated by mGlu1 receptors, resulting in Purkinje cell depolarization accompanied by sharp calcium elevation within dendritic regions. Long-term depression and long-term potentiation have been widely described for the parallel fiber-Purkinje cell synapse and have been proposed as mechanisms for motor learning. The mechanisms of induction for LTP and LTD involve different signaling mechanisms within the presynaptic terminal and/or at the postsynaptic site, promoting enduring modification in the neurotransmitter release and change in responsiveness to the neurotransmitter. The parallel fiber-Purkinje cell synapse is finely modulated by several neurotransmitters, including serotonin, noradrenaline, and acetylcholine. The ability of these neuromodulators to gate LTP and LTD at the parallel fiber-Purkinje cell synapse could, at least in part, explain their effect on cerebellar-dependent learning and memory paradigms. Overall, these findings have important implications for understanding the cerebellar involvement in a series of pathological conditions, ranging from ataxia to autism. For example, parallel fiber-Purkinje cell synapse dysfunctions have been identified in several murine models of spinocerebellar ataxia (SCA types 1, 3, 5 and 27. In some cases, the defect is specific for the AMPA receptor signaling (SCA27, while in others the mGlu1 pathway is affected (SCA1, 3, 5. Interestingly, the parallel fiber-Purkinje cell synapse has been shown to be hyper-functional in a mutant mouse model of autism

  14. Astrocyte Transforming Growth Factor Beta 1 Protects Synapses against Aβ Oligomers in Alzheimer's Disease Model.

    Science.gov (United States)

    Diniz, Luan Pereira; Tortelli, Vanessa; Matias, Isadora; Morgado, Juliana; Bérgamo Araujo, Ana Paula; Melo, Helen M; Seixas da Silva, Gisele S; Alves-Leon, Soniza V; de Souza, Jorge M; Ferreira, Sergio T; De Felice, Fernanda G; Gomes, Flávia Carvalho Alcantara

    2017-07-12

    Alzheimer's disease (AD) is characterized by progressive cognitive decline, increasingly attributed to neuronal dysfunction induced by amyloid-β oligomers (AβOs). Although the impact of AβOs on neurons has been extensively studied, only recently have the possible effects of AβOs on astrocytes begun to be investigated. Given the key roles of astrocytes in synapse formation, plasticity, and function, we sought to investigate the impact of AβOs on astrocytes, and to determine whether this impact is related to the deleterious actions of AβOs on synapses. We found that AβOs interact with astrocytes, cause astrocyte activation and trigger abnormal generation of reactive oxygen species, which is accompanied by impairment of astrocyte neuroprotective potential in vitro We further show that both murine and human astrocyte conditioned media (CM) increase synapse density, reduce AβOs binding, and prevent AβO-induced synapse loss in cultured hippocampal neurons. Both a neutralizing anti-transforming growth factor-β1 (TGF-β1) antibody and siRNA-mediated knockdown of TGF-β1, previously identified as an important synaptogenic factor secreted by astrocytes, abrogated the protective action of astrocyte CM against AβO-induced synapse loss. Notably, TGF-β1 prevented hippocampal dendritic spine loss and memory impairment in mice that received an intracerebroventricular infusion of AβOs. Results suggest that astrocyte-derived TGF-β1 is part of an endogenous mechanism that protects synapses against AβOs. By demonstrating that AβOs decrease astrocyte ability to protect synapses, our results unravel a new mechanism underlying the synaptotoxic action of AβOs in AD. SIGNIFICANCE STATEMENT Alzheimer's disease is characterized by progressive cognitive decline, mainly attributed to synaptotoxicity of the amyloid-β oligomers (AβOs). Here, we investigated the impact of AβOs in astrocytes, a less known subject. We show that astrocytes prevent synapse loss induced by A

  15. Functional expression of the GABAA receptor alpha2 and alpha3 subunits at synapses between intercalated medial paracapsular neurons of mouse amygdala

    Directory of Open Access Journals (Sweden)

    Raffaella eGeracitano

    2012-05-01

    Full Text Available In the amygdala, GABAergic neurons in the intercalated medial paracapsular cluster (Imp have been suggested to play a key role in fear learning and extinction. These neurons project to the central amygdaloid nucleus and to other areas within and outside the amygdala. In addition, they give rise to local collaterals that innervate other neurons in the Imp. Several drugs, including benzodiazepines, are allosteric modulators of GABA-A receptors. Benzodiazepines have both anxiolytic and sedative actions, which are mediated through GABA-A receptors containing alpha2/3 and alpha1 subunits, respectively. To establish whether alpha1 or alpha2/3 subunits are expressed at Imp cell synapses, we used paired recordings of anatomically-identified Imp neurons and high resolution immunocytochemistry in the mouse. We observed that a selective alpha3 subunit agonist, TP003 (100 nM, significantly increased the decay time constant of the unitary IPSCs. A similar effect was also induced by zolpidem (10 microM or by diazepam (1 microM. In contrast, lower doses of zolpidem (0.1-1 microM did not significantly alter the kinetics of the unitary IPSCs. Accordingly, immunocytochemical experiments established that the alpha2 and alpha3, but not the alpha1 subunits of the GABA-A receptors, were present at Imp cell synapses of the mouse amygdala. These results define, for the first time, some of the functional GABA-A receptor subunits expressed at synapses of Imp cells. The data also provide an additional rationale to prompt the search of GABA-A receptor alpha3 selective ligands as improved anxiolytic drugs.

  16. Release properties of individual presynaptic boutons expressed during homosynaptic depression and heterosynaptic facilitation of the Aplysia sensorimotor synapse

    Directory of Open Access Journals (Sweden)

    Guy eMalkinson

    2013-09-01

    Full Text Available Much of what we know about the mechanisms underlying Homosynaptic Depression (HSD and heterosynaptic facilitation is based on intracellular recordings of integrated postsynaptic potentials. This methodological approach views the presynaptic apparatus as a single compartment rather than taking a more realistic representation reflecting the fact that it is made up of tens to hundreds of individual and independent Presynaptic Release Boutons (PRBs. Using cultured Aplysia sensorimotor synapses, we reexamined HSD and its dishabituation by imaging the release properties of individual PRBs. We find that the PRB population is heterogeneous and can be clustered into three groups: approximately 25% of the PRBs consistently release neurotransmitter throughout the entire habituation paradigm (35 stimuli, 0.05Hz and have a relatively high quantal content, 36% of the PRBs display intermittent failures only after the tenth stimulation, and 39% are low quantal-content PRBs that exhibit intermittent release failures from the onset of the habituation paradigm. 5HT-induced synaptic dishabituation by a single 5HT application was generated by the enhanced recovery of the quantal content of the habituated PRBs and did not involve the recruitment of new release boutons. The characterization of the PRB population as heterogeneous in terms of its temporal pattern of release-probability and quantal content provides new insights into the mechanisms underlying HSD and its dishabituation.

  17. Propriétés de la synapse cortico-sous-thalamique : étude optogénétique chez le rongeur

    OpenAIRE

    Froux, Lionel

    2014-01-01

    Basal ganglia (BG) are a group of subcortical nuclei involved in action selection and in cognitive and motivational aspects of motor behavior. Dopamine is essential for proper functioning of BG. The cortico-subthalamic (cortico-STN) synapse is a glutamatergic (excitatory) synapse involved in signal transmission from cortex to subthalamic nucleus (STN). The cortico-STN synapse is the first synapse in the hyperdirect pathway, one of the three pathways of BG. Even if the cortico-STN pathway is i...

  18. Memory and pattern storage in neural networks with activity dependent synapses

    Science.gov (United States)

    Mejias, J. F.; Torres, J. J.

    2009-01-01

    We present recently obtained results on the influence of the interplay between several activity dependent synaptic mechanisms, such as short-term depression and facilitation, on the maximum memory storage capacity in an attractor neural network [1]. In contrast with the case of synaptic depression, which drastically reduces the capacity of the network to store and retrieve activity patterns [2], synaptic facilitation is able to enhance the memory capacity in different situations. In particular, we find that a convenient balance between depression and facilitation can enhance the memory capacity, reaching maximal values similar to those obtained with static synapses, that is, without activity-dependent processes. We also argue, employing simple arguments, that this level of balance is compatible with experimental data recorded from some cortical areas, where depression and facilitation may play an important role for both memory-oriented tasks and information processing. We conclude that depressing synapses with a certain level of facilitation allow to recover the good retrieval properties of networks with static synapses while maintaining the nonlinear properties of dynamic synapses, convenient for information processing and coding.

  19. Astrocyte lipid metabolism is critical for synapse development and function in vivo

    NARCIS (Netherlands)

    van Deijk, Anne-Lieke F; Camargo, Nutabi; Timmerman, Jaap; Heistek, Tim; Brouwers, Jos F|info:eu-repo/dai/nl/173812694; Mogavero, Floriana; Mansvelder, Huibert D; Smit, August B; Verheijen, Mark H G

    The brain is considered to be autonomous in lipid synthesis with astrocytes producing lipids far more efficiently than neurons. Accordingly, it is generally assumed that astrocyte-derived lipids are taken up by neurons to support synapse formation and function. Initial confirmation of this

  20. Layer Specific Development of Neocortical Pyramidal to Fast Spiking Cells Synapses.

    Directory of Open Access Journals (Sweden)

    Olga eVoinova

    2016-01-01

    Full Text Available All cortical neurons are engaged in inhibitory feedback loops which ensure excitation-inhibition balance and are key elements for the development of coherent network activity. The resulting network patterns are strongly dependent on the strength and dynamic properties of these excitatory-inhibitory loops which show pronounced regional and developmental diversity. We therefore compared the properties and postnatal maturation of two different synapses between rat neocortical pyramidal cells (layer 2/3 and layer 5, respectively and fast spiking (FS interneurons in the corresponding layer. At P14, both synapses showed synaptic depression upon repetitive activation. Synaptic release properties between layer 2/3 pyramidal cells and FS cells were stable from P14 to P28. In contrast, layer 5 pyramidal to FS cell connections showed a significant increase in paired pulse ratio by P28. Presynaptic calcium dynamics did also change at these synapses, including the sensitivity to exogenously loaded calcium buffers and expression of presynaptic calcium channels subtypes. These results underline the large variety of properties at different, yet similar, synapses in the neocortex. They also suggest that postnatal maturation of the brain goes along with increasing differences between synaptically driven network activity in layer 5 and layer 2/3.

  1. Human synapses show a wide temporal window for spike-timing-dependent plasticity

    NARCIS (Netherlands)

    Testa-Silva, G.; Verhoog, M.B.; Goriounova, N.A.; Loebel, A.; Hjorth, J.; Baayen, J.C.; de Kock, C.P.J.; Mansvelder, H.D.

    2010-01-01

    Throughout our lifetime, activity-dependent changes in neuronal connection strength enable the brain to refine neural circuits and learn based on experience. Synapses can bi-directionally alter strength and the magnitude and sign depend on the millisecond timing of presynaptic and postsynaptic

  2. Super resolution imaging of genetically labelled synapses in Drosophila brain tissue

    Directory of Open Access Journals (Sweden)

    Isabelle Ayumi Spühler

    2016-05-01

    Full Text Available Understanding synaptic connectivity and plasticity within brain circuits and their relationship to learning and behavior is a fundamental quest in neuroscience. Visualizing the fine details of synapses using optical microscopy remains however a major technical challenge. Super resolution microscopy opens the possibility to reveal molecular features of synapses beyond the diffraction limit. With direct stochastic optical reconstruction microscopy, dSTORM, we image synaptic proteins in the brain tissue of the fruit fly, Drosophila melanogaster. Super resolution imaging of brain tissue harbors difficulties due to light scattering and the density of signals. In order to reduce out of focus signal, we take advantage of the genetic tools available in the Drosophila and have fluorescently tagged synaptic proteins expressed in only a small number of neurons. These neurons form synapses within the calyx of the mushroom body, a distinct brain region involved in associative memory formation. Our results show that super resolution microscopy, in combination with genetically labelled synaptic proteins, is a powerful tool to investigate synapses in a quantitative fashion providing an entry point for studies on synaptic plasticity during learning and memory formation

  3. Super Resolution Imaging of Genetically Labeled Synapses in Drosophila Brain Tissue

    Science.gov (United States)

    Spühler, Isabelle A.; Conley, Gaurasundar M.; Scheffold, Frank; Sprecher, Simon G.

    2016-01-01

    Understanding synaptic connectivity and plasticity within brain circuits and their relationship to learning and behavior is a fundamental quest in neuroscience. Visualizing the fine details of synapses using optical microscopy remains however a major technical challenge. Super resolution microscopy opens the possibility to reveal molecular features of synapses beyond the diffraction limit. With direct stochastic optical reconstruction microscopy, dSTORM, we image synaptic proteins in the brain tissue of the fruit fly, Drosophila melanogaster. Super resolution imaging of brain tissue harbors difficulties due to light scattering and the density of signals. In order to reduce out of focus signal, we take advantage of the genetic tools available in the Drosophila and have fluorescently tagged synaptic proteins expressed in only a small number of neurons. These neurons form synapses within the calyx of the mushroom body, a distinct brain region involved in associative memory formation. Our results show that super resolution microscopy, in combination with genetically labeled synaptic proteins, is a powerful tool to investigate synapses in a quantitative fashion providing an entry point for studies on synaptic plasticity during learning and memory formation. PMID:27303270

  4. The cAMP cascade modulates the neuroinformative impact of quantal release at cholinergic synapse

    Czech Academy of Sciences Publication Activity Database

    Vyskočil, František; Bukcharaeva, E.; Samigullin, D. V.; Nikolsky, E. E.

    2001-01-01

    Roč. 2, č. 2 (2001), s. 317-323 ISSN 1539-2791 R&D Projects: GA AV ČR IAA7011902 Grant - others:EU(XX) Nesting; RFBR(RU) 99-04-48286 Institutional research plan: CEZ:AV0Z5011922 Keywords : frog neuromuscular synapse * noradrenaline Subject RIV: ED - Physiology

  5. Autophagy Attenuates the Adaptive Immune Response by Destabilizing the Immunologic Synapse

    NARCIS (Netherlands)

    Wildenberg, Manon E.; Vos, Anne Christine W.; Wolfkamp, Simone C. S.; Duijvestein, Marjolijn; Verhaar, Auke P.; te Velde, Anje A.; van den Brink, Gijs R.; Hommes, Daniel W.

    2012-01-01

    BACKGROUND & AIMS: Variants in the genes ATG16L1 and IRGM affect autophagy and are associated with the development of Crohn's disease. It is not clear how autophagy is linked to loss of immune tolerance in the intestine. We investigated the involvement of the immunologic synapse-the site of contact

  6. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses

    Science.gov (United States)

    Ohno, Takeo; Hasegawa, Tsuyoshi; Tsuruoka, Tohru; Terabe, Kazuya; Gimzewski, James K.; Aono, Masakazu

    2011-08-01

    Memory is believed to occur in the human brain as a result of two types of synaptic plasticity: short-term plasticity (STP) and long-term potentiation (LTP; refs , , , ). In neuromorphic engineering, emulation of known neural behaviour has proven to be difficult to implement in software because of the highly complex interconnected nature of thought processes. Here we report the discovery of a Ag2S inorganic synapse, which emulates the synaptic functions of both STP and LTP characteristics through the use of input pulse repetition time. The structure known as an atomic switch, operating at critical voltages, stores information as STP with a spontaneous decay of conductance level in response to intermittent input stimuli, whereas frequent stimulation results in a transition to LTP. The Ag2S inorganic synapse has interesting characteristics with analogies to an individual biological synapse, and achieves dynamic memorization in a single device without the need of external preprogramming. A psychological model related to the process of memorizing and forgetting is also demonstrated using the inorganic synapses. Our Ag2S element indicates a breakthrough in mimicking synaptic behaviour essential for the further creation of artificial neural systems that emulate characteristics of human memory.

  7. NMDAR-mediated calcium transients elicited by glutamate co-release at developing inhibitory synapses

    Directory of Open Access Journals (Sweden)

    Abigail Kalmbach

    2010-07-01

    Full Text Available Before hearing onset, the topographic organization of the inhibitory sound localization pathway from the medial nucleus of the trapezoid body (MNTB to the lateral superior olive (LSO is refined by means of synaptic silencing and strengthening. During this refinement period MNTB-LSO synapses not only release GABA and glycine but also release glutamate. This co-released glutamate can elicit postsynaptic currents that are predominantly mediated by NMDA receptors (NMDARs. To gain a better understanding of how glutamate contributes to synaptic signaling at developing MNTB-LSO inhibitory synapse, we investigated to what degree and under what conditions NMDARs contribute to postsynaptic calcium responses. Our results demonstrate that MNTB-LSO synapses can elicit compartmentalized calcium responses along aspiny LSO dendrites. These responses are significantly attenuated by the NMDARs antagonist APV. APV, however, has no effect on somatically recorded electrical postsynaptic responses, indicating little, if any, contribution of NMDARs to spike generation. Small NMDAR-mediated calcium responses were also observed under physiological levels of extracellular magnesium concentrations indicating that MNTB-LSO synapses activate magnesium sensitive NMDAR on immature LSO dendrites. In Fura-2 AM loaded neurons, blocking GABAA and glycine receptors decreased NMDAR contribution to somatic calcium responses suggesting that GABA and glycine, perhaps by shunting backpropagating action potentials, decrease the level of NMDAR activation under strong stimulus conditions.

  8. Experience-Dependent Regulation of Presynaptic NMDARs Enhances Neurotransmitter Release at Neocortical Synapses

    Science.gov (United States)

    Urban-Ciecko, Joanna; Wen, Jing A.; Parekh, Puja K.; Barth, Alison L.

    2015-01-01

    Sensory experience can selectively alter excitatory synaptic strength at neocortical synapses. The rapid increase in synaptic strength induced by selective whisker stimulation (single-row experience/SRE, where all but one row of whiskers has been removed from the mouse face) is due, at least in part, to the trafficking of AMPA receptors (AMPARs)…

  9. Generation of functional inhibitory synapses incorporating defined combinations of GABA(A or glycine receptor subunits

    Directory of Open Access Journals (Sweden)

    Christine Laura Dixon

    2015-12-01

    Full Text Available Fast inhibitory neurotransmission in the brain is mediated by wide range of GABAA receptor (GABAAR and glycine receptor (GlyR isoforms, each with different physiological and pharmacological properties. Because multiple isoforms are expressed simultaneously in most neurons, it is difficult to define the properties of inhibitory postsynaptic currents mediated by individual isoforms in vivo. Although recombinant expression systems permit the expression of individual isoforms in isolation, they require exogenous agonist application which cannot mimic the dynamic neurotransmitter profile characteristic of native synapses. We describe a neuron-HEK293 cell co-culture technique for generating inhibitory synapses incorporating defined combinations of GABAAR or GlyR subunits. Primary neuronal cultures, prepared from embryonic rat cerebral cortex or spinal cord, are used to provide presynaptic GABAergic and glycinergic terminals, respectively. When the cultures are mature, HEK293 cells expressing the subunits of interest plus neuroligin 2A are plated onto the neurons, which rapidly form synapses onto HEK293 cells. Patch clamp electrophysiology is then used to analyze the physiological and pharmacological properties of the inhibitory postsynaptic currents mediated by the recombinant receptors. The method is suitable for investigating the kinetic properties or the effects of drugs on inhibitory postsynaptic currents mediated by defined GABAAR or GlyR isoforms of interest, the effects of hereditary disease mutations on the formation and function of both types of synapses, and synaptogenesis and synaptic clustering mechanisms. The entire cell preparation procedure takes 2 – 5 weeks.

  10. Role of perisynaptic parameters in neurotransmitter homeostasis - computational study of a general synapse

    Science.gov (United States)

    Pendyam, Sandeep; Mohan, Ashwin; Kalivas, Peter W.; Nair, Satish S.

    2015-01-01

    Extracellular neurotransmitter concentrations vary over a wide range depending on the type of neurotransmitter and location in the brain. Neurotransmitter homeostasis near a synapse is achieved by a balance of several mechanisms including vesicular release from the presynapse, diffusion, uptake by transporters, non-synaptic production, and regulation of release by autoreceptors. These mechanisms are also affected by the glia surrounding the synapse. However, the role of these mechanisms in achieving neurotransmitter homeostasis is not well understood. A biophysical modeling framework was proposed to reverse engineer glial configurations and parameters related to homeostasis for synapses that support a range of neurotransmitter gradients. Model experiments reveal that synapses with extracellular neurotransmitter concentrations in the micromolar range require non-synaptic neurotransmitter sources and tight synaptic isolation by extracellular glial formations. The model was used to identify the role of perisynaptic parameters on neurotransmitter homeostasis, and to propose glial configurations that could support different levels of extracellular neurotransmitter concentrations. Ranking the parameters based on their effect on neurotransmitter homeostasis, non-synaptic sources were found to be the most important followed by transporter concentration and diffusion coefficient. PMID:22460547

  11. The role of neurexins and neuroligins in the formation, maturation, and function of vertebrate synapses.

    Science.gov (United States)

    Krueger, Dilja D; Tuffy, Liam P; Papadopoulos, Theofilos; Brose, Nils

    2012-06-01

    Neurexins (NXs) and neuroligins (NLs) are transsynaptically interacting cell adhesion proteins that play a key role in the formation, maturation, activity-dependent validation, and maintenance of synapses. As complex alternative splicing processes in nerve cells generate a large number of NX and NLs variants, it has been proposed that a combinatorial interaction code generated by these variants may determine synapse identity and network connectivity during brain development. The functional importance of NXs and NLs is exemplified by the fact that mutations in NX and NL genes are associated with several neuropsychiatric disorders, most notably with autism. Accordingly, major research efforts have focused on the molecular mechanisms by which NXs and NLs operate at synapses. In this review, we summarize recent progress in this field and discuss emerging topics, such as the role of alternative interaction partners of NXs and NLs in synapse formation and function, and their relevance for synaptic plasticity in the mature brain. The novel findings highlight the fundamental importance of NX-NL interactions in a wide range of synaptic functions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. New players tip the scales in the balance between excitatory and inhibitory synapses

    Directory of Open Access Journals (Sweden)

    El-Husseini Alaa

    2005-03-01

    Full Text Available Abstract Synaptogenesis is a highly controlled process, involving a vast array of players which include cell adhesion molecules, scaffolding and signaling proteins, neurotransmitter receptors and proteins associated with the synaptic vesicle machinery. These molecules cooperate in an intricate manner on both the pre- and postsynaptic sides to orchestrate the precise assembly of neuronal contacts. This is an amazing feat considering that a single neuron receives tens of thousands of synaptic inputs but virtually no mismatch between pre- and postsynaptic components occur in vivo. One crucial aspect of synapse formation is whether a nascent synapse will develop into an excitatory or inhibitory contact. The tight control of a balance between the types of synapses formed regulates the overall neuronal excitability, and is thus critical for normal brain function and plasticity. However, little is known about how this balance is achieved. This review discusses recent findings which provide clues to how neurons may control excitatory and inhibitory synapse formation, with focus on the involvement of the neuroligin family and PSD-95 in this process.

  13. Mixed Analog/Digital Matrix-Vector Multiplier for Neural Network Synapses

    DEFF Research Database (Denmark)

    Lehmann, Torsten; Bruun, Erik; Dietrich, Casper

    1996-01-01

    In this work we present a hardware efficient matrix-vector multiplier architecture for artificial neural networks with digitally stored synapse strengths. We present a novel technique for manipulating bipolar inputs based on an analog two's complements method and an accurate current rectifier...

  14. NeuroD2 regulates the development of hippocampal mossy fiber synapses

    Directory of Open Access Journals (Sweden)

    Wilke Scott A

    2012-02-01

    Full Text Available Abstract Background The assembly of neural circuits requires the concerted action of both genetically determined and activity-dependent mechanisms. Calcium-regulated transcription may link these processes, but the influence of specific transcription factors on the differentiation of synapse-specific properties is poorly understood. Here we characterize the influence of NeuroD2, a calcium-dependent transcription factor, in regulating the structural and functional maturation of the hippocampal mossy fiber (MF synapse. Results Using NeuroD2 null mice and in vivo lentivirus-mediated gene knockdown, we demonstrate a critical role for NeuroD2 in the formation of CA3 dendritic spines receiving MF inputs. We also use electrophysiological recordings from CA3 neurons while stimulating MF axons to show that NeuroD2 regulates the differentiation of functional properties at the MF synapse. Finally, we find that NeuroD2 regulates PSD95 expression in hippocampal neurons and that PSD95 loss of function in vivo reproduces CA3 neuron spine defects observed in NeuroD2 null mice. Conclusion These experiments identify NeuroD2 as a key transcription factor that regulates the structural and functional differentiation of MF synapses in vivo.

  15. Diversity in Long-Term Synaptic Plasticity at Inhibitory Synapses of Striatal Spiny Neurons

    Science.gov (United States)

    Rueda-Orozco, Pavel E.; Mendoza, Ernesto; Hernandez, Ricardo; Aceves, Jose J.; Ibanez-Sandoval, Osvaldo; Galarraga, Elvira; Bargas, Jose

    2009-01-01

    Procedural memories and habits are posited to be stored in the basal ganglia, whose intrinsic circuitries possess important inhibitory connections arising from striatal spiny neurons. However, no information about long-term plasticity at these synapses is available. Therefore, this work describes a novel postsynaptically dependent long-term…

  16. A multi nutrient concept to enhance synapse formation and function: science behind a medical food for Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Sijben John W.C.

    2011-09-01

    Full Text Available Alzheimer’s Disease (AD is the leading cause of dementia. Epidemiological studies suggest that AD is linked with poor status of nutrients including DHA, B-vitamins and the vitamins E and C. Ongoing neurodegeneration, particularly synaptic loss, leads to the classical clinical features of AD namely, memory impairment, language deterioration, and executive and visuospatial dysfunction. The main constituents of neural and synaptic membranes are phospholipids. Supplemenation of animals with three dietary precursors of phospholipids namely, DHA, uridine monophosphate and choline, results in increased levels of brain phospholipids, synaptic proteins, neurite outgrowth, dendritic spines formation (i.e. the anatomical precursors of new synapses and an improvement in learning and memory. Other nutrients act as co-factors in the synthesis pathway of neuronal membranes. For example B-vitamins are involved in methylation processes, thereby enhancing the availability of choline as a synaptic membrane precursor. A multi-nutrient concept that includes these nutrients may improve membrane integrity, thereby influencing membrane-dependent processes such as receptor function and amyloid precursor protein (APP processing, as shown by reduced amyloid production and amyloid β plaque burden, as well as toxicity. Together, these insights provided the basis for the development of a medical food for patients with AD, Souvenaid®, containing a specific combination of nutrients (Fortasyn™ Connect and designed to enhance synapse formation in AD. The effect of Souvenaid on memory and cognitive performance was recently assessed in a proof-of-concept study, SOUVENIR I, with 212 drug-naïve mild AD patients (MMSE 20-26. This proof-of-concept study demonstrated that oral nutritional supplementation with Souvenaid® for 12 weeks improves memory in patients with mild AD. To confirm and extend these findings, we have designed and initiated three additional studies. Two of

  17. Back-propagation operation for analog neural network hardware with synapse components having hysteresis characteristics.

    Science.gov (United States)

    Ueda, Michihito; Nishitani, Yu; Kaneko, Yukihiro; Omote, Atsushi

    2014-01-01

    To realize an analog artificial neural network hardware, the circuit element for synapse function is important because the number of synapse elements is much larger than that of neuron elements. One of the candidates for this synapse element is a ferroelectric memristor. This device functions as a voltage controllable variable resistor, which can be applied to a synapse weight. However, its conductance shows hysteresis characteristics and dispersion to the input voltage. Therefore, the conductance values vary according to the history of the height and the width of the applied pulse voltage. Due to the difficulty of controlling the accurate conductance, it is not easy to apply the back-propagation learning algorithm to the neural network hardware having memristor synapses. To solve this problem, we proposed and simulated a learning operation procedure as follows. Employing a weight perturbation technique, we derived the error change. When the error reduced, the next pulse voltage was updated according to the back-propagation learning algorithm. If the error increased the amplitude of the next voltage pulse was set in such way as to cause similar memristor conductance but in the opposite voltage scanning direction. By this operation, we could eliminate the hysteresis and confirmed that the simulation of the learning operation converged. We also adopted conductance dispersion numerically in the simulation. We examined the probability that the error decreased to a designated value within a predetermined loop number. The ferroelectric has the characteristics that the magnitude of polarization does not become smaller when voltages having the same polarity are applied. These characteristics greatly improved the probability even if the learning rate was small, if the magnitude of the dispersion is adequate. Because the dispersion of analog circuit elements is inevitable, this learning operation procedure is useful for analog neural network hardware.

  18. Back-propagation operation for analog neural network hardware with synapse components having hysteresis characteristics.

    Directory of Open Access Journals (Sweden)

    Michihito Ueda

    Full Text Available To realize an analog artificial neural network hardware, the circuit element for synapse function is important because the number of synapse elements is much larger than that of neuron elements. One of the candidates for this synapse element is a ferroelectric memristor. This device functions as a voltage controllable variable resistor, which can be applied to a synapse weight. However, its conductance shows hysteresis characteristics and dispersion to the input voltage. Therefore, the conductance values vary according to the history of the height and the width of the applied pulse voltage. Due to the difficulty of controlling the accurate conductance, it is not easy to apply the back-propagation learning algorithm to the neural network hardware having memristor synapses. To solve this problem, we proposed and simulated a learning operation procedure as follows. Employing a weight perturbation technique, we derived the error change. When the error reduced, the next pulse voltage was updated according to the back-propagation learning algorithm. If the error increased the amplitude of the next voltage pulse was set in such way as to cause similar memristor conductance but in the opposite voltage scanning direction. By this operation, we could eliminate the hysteresis and confirmed that the simulation of the learning operation converged. We also adopted conductance dispersion numerically in the simulation. We examined the probability that the error decreased to a designated value within a predetermined loop number. The ferroelectric has the characteristics that the magnitude of polarization does not become smaller when voltages having the same polarity are applied. These characteristics greatly improved the probability even if the learning rate was small, if the magnitude of the dispersion is adequate. Because the dispersion of analog circuit elements is inevitable, this learning operation procedure is useful for analog neural network hardware.

  19. A Machine Learning Method for the Prediction of Receptor Activation in the Simulation of Synapses

    Science.gov (United States)

    Montes, Jesus; Gomez, Elena; Merchán-Pérez, Angel; DeFelipe, Javier; Peña, Jose-Maria

    2013-01-01

    Chemical synaptic transmission involves the release of a neurotransmitter that diffuses in the extracellular space and interacts with specific receptors located on the postsynaptic membrane. Computer simulation approaches provide fundamental tools for exploring various aspects of the synaptic transmission under different conditions. In particular, Monte Carlo methods can track the stochastic movements of neurotransmitter molecules and their interactions with other discrete molecules, the receptors. However, these methods are computationally expensive, even when used with simplified models, preventing their use in large-scale and multi-scale simulations of complex neuronal systems that may involve large numbers of synaptic connections. We have developed a machine-learning based method that can accurately predict relevant aspects of the behavior of synapses, such as the percentage of open synaptic receptors as a function of time since the release of the neurotransmitter, with considerably lower computational cost compared with the conventional Monte Carlo alternative. The method is designed to learn patterns and general principles from a corpus of previously generated Monte Carlo simulations of synapses covering a wide range of structural and functional characteristics. These patterns are later used as a predictive model of the behavior of synapses under different conditions without the need for additional computationally expensive Monte Carlo simulations. This is performed in five stages: data sampling, fold creation, machine learning, validation and curve fitting. The resulting procedure is accurate, automatic, and it is general enough to predict synapse behavior under experimental conditions that are different to the ones it has been trained on. Since our method efficiently reproduces the results that can be obtained with Monte Carlo simulations at a considerably lower computational cost, it is suitable for the simulation of high numbers of synapses and it is

  20. Sequences Flanking the Gephyrin-Binding Site of GlyRβ Tune Receptor Stabilization at Synapses.

    Science.gov (United States)

    Grünewald, Nora; Jan, Audric; Salvatico, Charlotte; Kress, Vanessa; Renner, Marianne; Triller, Antoine; Specht, Christian G; Schwarz, Guenter

    2018-01-01

    The efficacy of synaptic transmission is determined by the number of neurotransmitter receptors at synapses. Their recruitment depends upon the availability of postsynaptic scaffolding molecules that interact with specific binding sequences of the receptor. At inhibitory synapses, gephyrin is the major scaffold protein that mediates the accumulation of heteromeric glycine receptors (GlyRs) via the cytoplasmic loop in the β-subunit (β-loop). This binding involves high- and low-affinity interactions, but the molecular mechanism of this bimodal binding and its implication in GlyR stabilization at synapses remain unknown. We have approached this question using a combination of quantitative biochemical tools and high-density single molecule tracking in cultured rat spinal cord neurons. The high-affinity binding site could be identified and was shown to rely on the formation of a 3 10 -helix C-terminal to the β-loop core gephyrin-binding motif. This site plays a structural role in shaping the core motif and represents the major contributor to the synaptic confinement of GlyRs by gephyrin. The N-terminal flanking sequence promotes lower affinity interactions by occupying newly identified binding sites on gephyrin. Despite its low affinity, this binding site plays a modulatory role in tuning the mobility of the receptor. Together, the GlyR β-loop sequences flanking the core-binding site differentially regulate the affinity of the receptor for gephyrin and its trapping at synapses. Our experimental approach thus bridges the gap between thermodynamic aspects of receptor-scaffold interactions and functional receptor stabilization at synapses in living cells.

  1. Three-dimensional relationships between perisynaptic astroglia and human hippocampal synapses.

    Science.gov (United States)

    Witcher, Mark R; Park, Yong D; Lee, Mark R; Sharma, Suash; Harris, Kristen M; Kirov, Sergei A

    2010-04-01

    Perisynaptic astroglia are critical for normal synaptic development and function. Little is known, however, about perisynaptic astroglia in the human hippocampus. When mesial temporal lobe epilepsy (MTLE) is refractory to medication, surgical removal is required for seizure quiescence. To investigate perisynaptic astroglia in human hippocampus, we recovered slices for several hours in vitro from three surgical specimens and then quickly fixed them to achieve high-quality ultrastructure. Histological samples from each case were found to have mesial temporal sclerosis with Blumcke Type 1a (mild, moderate) or 1b (severe) pathology. Quantitative analysis through serial section transmission electron microscopy in CA1 stratum radiatum revealed more synapses in the mild (10/10 microm(3)) than the moderate (5/10 microm(3)) or severe (1/10 microm(3)) cases. Normal spines occurred in mild and moderate cases, but a few multisynaptic spines were all that remained in the severe case. Like adult rat hippocampus, perisynaptic astroglial processes were preferentially associated with larger synapses in the mild and moderate cases, but rarely penetrated the cluster of axonal boutons surrounding multisynaptic spines. Synapse perimeters were only partially surrounded by astroglial processes such that all synapses had some access to substances in the extracellular space, similar to adult rat hippocampus. Junctions between astroglial processes were observed more frequently in moderate than mild case, but were obscured by densely packed intermediate filaments in astroglial processes of the severe case. These findings suggest that perisynaptic astroglial processes associate with synapses in human hippocampus in a manner similar to model systems and are disrupted by severe MTLE pathology.

  2. A machine learning method for the prediction of receptor activation in the simulation of synapses.

    Directory of Open Access Journals (Sweden)

    Jesus Montes

    Full Text Available Chemical synaptic transmission involves the release of a neurotransmitter that diffuses in the extracellular space and interacts with specific receptors located on the postsynaptic membrane. Computer simulation approaches provide fundamental tools for exploring various aspects of the synaptic transmission under different conditions. In particular, Monte Carlo methods can track the stochastic movements of neurotransmitter molecules and their interactions with other discrete molecules, the receptors. However, these methods are computationally expensive, even when used with simplified models, preventing their use in large-scale and multi-scale simulations of complex neuronal systems that may involve large numbers of synaptic connections. We have developed a machine-learning based method that can accurately predict relevant aspects of the behavior of synapses, such as the percentage of open synaptic receptors as a function of time since the release of the neurotransmitter, with considerably lower computational cost compared with the conventional Monte Carlo alternative. The method is designed to learn patterns and general principles from a corpus of previously generated Monte Carlo simulations of synapses covering a wide range of structural and functional characteristics. These patterns are later used as a predictive model of the behavior of synapses under different conditions without the need for additional computationally expensive Monte Carlo simulations. This is performed in five stages: data sampling, fold creation, machine learning, validation and curve fitting. The resulting procedure is accurate, automatic, and it is general enough to predict synapse behavior under experimental conditions that are different to the ones it has been trained on. Since our method efficiently reproduces the results that can be obtained with Monte Carlo simulations at a considerably lower computational cost, it is suitable for the simulation of high numbers of

  3. Espina: A Tool for the Automated Segmentation and Counting of Synapses in Large Stacks of Electron Microscopy Images

    Science.gov (United States)

    Morales, Juan; Alonso-Nanclares, Lidia; Rodríguez, José-Rodrigo; DeFelipe, Javier; Rodríguez, Ángel; Merchán-Pérez, Ángel

    2011-01-01

    The synapses in the cerebral cortex can be classified into two main types, Gray's type I and type II, which correspond to asymmetric (mostly glutamatergic excitatory) and symmetric (inhibitory GABAergic) synapses, respectively. Hence, the quantification and identification of their different types and the proportions in which they are found, is extraordinarily important in terms of brain function. The ideal approach to calculate the number of synapses per unit volume is to analyze 3D samples reconstructed from serial sections. However, obtaining serial sections by transmission electron microscopy is an extremely time consuming and technically demanding task. Using focused ion beam/scanning electron microscope microscopy, we recently showed that virtually all synapses can be accurately identified as asymmetric or symmetric synapses when they are visualized, reconstructed, and quantified from large 3D tissue samples obtained in an automated manner. Nevertheless, the analysis, segmentation, and quantification of synapses is still a labor intensive procedure. Thus, novel solutions are currently necessary to deal with the large volume of data that is being generated by automated 3D electron microscopy. Accordingly, we have developed ESPINA, a software tool that performs the automated segmentation and counting of synapses in a reconstructed 3D volume of the cerebral cortex, and that greatly facilitates and accelerates these processes. PMID:21633491

  4. ESPINA: a tool for the automated segmentation and counting of synapses in large stacks of electron microscopy images

    Directory of Open Access Journals (Sweden)

    Juan eMorales

    2011-03-01

    Full Text Available The synapses in the cerebral cortex can be classified into two main types, Gray’s type I and type II, which correspond to asymmetric (mostly glutamatergic excitatory and symmetric (inhibitory GABAergic synapses, respectively. Hence, the quantification and identification of their different types and the proportions in which they are found, is extraordinarily important in terms of brain function. The ideal approach to calculate the number of synapses per unit volume is to analyze three-dimensional samples reconstructed from serial sections. However, obtaining serial sections by transmission electron microscopy is an extremely time consuming and technically demanding task. Using FIB/SEM microscopy, we recently showed that virtually all synapses can be accurately identified as asymmetric or symmetric synapses when they are visualized, reconstructed and quantified from large three-dimensional tissue samples obtained in an automated manner. Nevertheless, the analysis, segmentation and quantification of synapses is still a labor intensive procedure. Thus, novel solutions are currently necessary to deal with the large volume of data that is being generated by automated 3D electron microscopy. Accordingly, we have developed ESPINA, a software tool that performs the automated segmentation and counting of synapses in a reconstructed 3D volume of the cerebral cortex, and that greatly facilitates and accelerates these processes.

  5. Quantitative 3D Ultrastructure of Thalamocortical Synapses from the "Lemniscal" Ventral Posteromedial Nucleus in Mouse Barrel Cortex.

    Science.gov (United States)

    Rodriguez-Moreno, Javier; Rollenhagen, Astrid; Arlandis, Jaime; Santuy, Andrea; Merchan-Pérez, Angel; DeFelipe, Javier; Lübke, Joachim H R; Clasca, Francisco

    2017-07-28

    Thalamocortical synapses from "lemniscal" neurons of the dorsomedial portion of the rodent ventral posteromedial nucleus (VPMdm) are able to induce with remarkable efficacy, despite their relative low numbers, the firing of primary somatosensory cortex (S1) layer 4 (L4) neurons. To which extent this high efficacy depends on structural synaptic features remains unclear. Using both serial transmission (TEM) and focused ion beam milling scanning electron microscopy (FIB/SEM), we 3D-reconstructed and quantitatively analyzed anterogradely labeled VPMdm axons in L4 of adult mouse S1. All VPMdm synapses are asymmetric. Virtually all are established by axonal boutons, 53% of which contact multiple (2-4) elements (overall synapse/bouton ratio = 1.6). Most boutons are large (mean 0.47 μm3), and contain 1-3 mitochondria. Vesicle pools and postsynaptic density (PSD) surface areas are large compared to others in rodent cortex. Most PSDs are complex. Most synapses (83%) are established on dendritic spine heads. Furthermore, 15% of the postsynaptic spines receive a second, symmetric synapse. In addition, 13% of the spine heads have a large protrusion inserted into a membrane pouch of the VPMdm bouton. The unusual combination of structural features in VPMdm synapses is likely to contribute significantly to the high efficacy, strength, and plasticity of these thalamocortical synapses. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Maternal dietary loads of alpha-tocopherol increase synapse density and glial synaptic coverage in the hippocampus of adult offspring

    Directory of Open Access Journals (Sweden)

    S. Salucci

    2014-05-01

    Full Text Available An increased intake of the antioxidant α-Tocopherol (vitamin E is recommended in complicated pregnancies, to prevent free radical damage to mother and fetus. However, the anti-PKC and antimitotic activity of α-Tocopherol raises concerns about its potential effects on brain development. Recently, we found that maternal dietary loads of α-Tocopherol through pregnancy and lactation cause developmental deficit in hippocampal synaptic plasticity in rat offspring. The defect persisted into adulthood, with behavioral alterations in hippocampus-dependent learning. Here, using the same rat model of maternal supplementation, ultrastructural morphometric studies were carried out to provide mechanistic interpretation to such a functional impairment in adult offspring by the occurrence of long-term changes in density and morphological features of hippocampal synapses. Higher density of axo-spinous synapses was found in CA1 stratum radiatum of α-Tocopherol-exposed rats compared to controls, pointing to a reduced synapse pruning. No morphometric changes were found in synaptic ultrastructural features, i.e., perimeter of axon terminals, length of synaptic specializations, extension of bouton-spine contact. Glia-synapse anatomical relationship was also affected. Heavier astrocytic coverage of synapses was observed in Tocopherol-treated offspring, notably surrounding axon terminals; moreover, the percentage of synapses contacted by astrocytic endfeet at bouton-spine interface (tripartite synapses was increased. These findings indicate that gestational and neonatal exposure to supranutritional tocopherol intake can result in anatomical changes of offspring hippocampus that last through adulthood. These include a surplus of axo-spinous synapses and an aberrant glia-synapse relationship, which may represent the morphological signature of previously described alterations in synaptic plasticity and hippocampus-dependent learning.

  7. Reduced Synapse and Axon Numbers in the Prefrontal Cortex of Rats Subjected to a Chronic Stress Model for Depression.

    Science.gov (United States)

    Csabai, Dávid; Wiborg, Ove; Czéh, Boldizsár

    2018-01-01

    Stressful experiences can induce structural changes in neurons of the limbic system. These cellular changes contribute to the development of stress-induced psychopathologies like depressive disorders. In the prefrontal cortex of chronically stressed animals, reduced dendritic length and spine loss have been reported. This loss of dendritic material should consequently result in synapse loss as well, because of the reduced dendritic surface. But so far, no one studied synapse numbers in the prefrontal cortex of chronically stressed animals. Here, we examined synaptic contacts in rats subjected to an animal model for depression, where animals are exposed to a chronic stress protocol. Our hypothesis was that long term stress should reduce the number of axo-spinous synapses in the medial prefrontal cortex. Adult male rats were exposed to daily stress for 9 weeks and afterward we did a post mortem quantitative electron microscopic analysis to quantify the number and morphology of synapses in the infralimbic cortex. We analyzed asymmetric (Type I) and symmetric (Type II) synapses in all cortical layers in control and stressed rats. We also quantified axon numbers and measured the volume of the infralimbic cortex. In our systematic unbiased analysis, we examined 21,000 axon terminals in total. We found the following numbers in the infralimbic cortex of control rats: 1.15 × 10 9 asymmetric synapses, 1.06 × 10 8 symmetric synapses and 1.00 × 10 8 myelinated axons. The density of asymmetric synapses was 5.5/μm 3 and the density of symmetric synapses was 0.5/μm 3 . Average synapse membrane length was 207 nm and the average axon terminal membrane length was 489 nm. Stress reduced the number of synapses and myelinated axons in the deeper cortical layers, while synapse membrane lengths were increased. These stress-induced ultrastructural changes indicate that neurons of the infralimbic cortex have reduced cortical network connectivity. Such reduced network connectivity is

  8. Molecular mechanisms underlying activity-dependent GABAergic synapse development and plasticity and its implications for neurodevelopmental disorders.

    Science.gov (United States)

    Chattopadhyaya, Bidisha

    2011-01-01

    GABAergic interneurons are critical for the normal function and development of neural circuits, and their dysfunction is implicated in a large number of neurodevelopmental disorders. Experience and activity-dependent mechanisms play an important role in GABAergic circuit development, also recent studies involve a number of molecular players involved in the process. Emphasizing the molecular mechanisms of GABAergic synapse formation, in particular basket cell perisomatic synapses, this paper draws attention to the links between critical period plasticity, GABAergic synapse maturation, and the consequences of its dysfunction on the development of the nervous system.

  9. Molecular Mechanisms Underlying Activity-Dependent GABAergic Synapse Development and Plasticity and Its Implications for Neurodevelopmental Disorders

    Directory of Open Access Journals (Sweden)

    Bidisha Chattopadhyaya

    2011-01-01

    Full Text Available GABAergic interneurons are critical for the normal function and development of neural circuits, and their dysfunction is implicated in a large number of neurodevelopmental disorders. Experience and activity-dependent mechanisms play an important role in GABAergic circuit development, also recent studies involve a number of molecular players involved in the process. Emphasizing the molecular mechanisms of GABAergic synapse formation, in particular basket cell perisomatic synapses, this paper draws attention to the links between critical period plasticity, GABAergic synapse maturation, and the consequences of its dysfunction on the development of the nervous system.

  10. Reduced Synapse and Axon Numbers in the Prefrontal Cortex of Rats Subjected to a Chronic Stress Model for Depression

    Science.gov (United States)

    Csabai, Dávid; Wiborg, Ove; Czéh, Boldizsár

    2018-01-01

    Stressful experiences can induce structural changes in neurons of the limbic system. These cellular changes contribute to the development of stress-induced psychopathologies like depressive disorders. In the prefrontal cortex of chronically stressed animals, reduced dendritic length and spine loss have been reported. This loss of dendritic material should consequently result in synapse loss as well, because of the reduced dendritic surface. But so far, no one studied synapse numbers in the prefrontal cortex of chronically stressed animals. Here, we examined synaptic contacts in rats subjected to an animal model for depression, where animals are exposed to a chronic stress protocol. Our hypothesis was that long term stress should reduce the number of axo-spinous synapses in the medial prefrontal cortex. Adult male rats were exposed to daily stress for 9 weeks and afterward we did a post mortem quantitative electron microscopic analysis to quantify the number and morphology of synapses in the infralimbic cortex. We analyzed asymmetric (Type I) and symmetric (Type II) synapses in all cortical layers in control and stressed rats. We also quantified axon numbers and measured the volume of the infralimbic cortex. In our systematic unbiased analysis, we examined 21,000 axon terminals in total. We found the following numbers in the infralimbic cortex of control rats: 1.15 × 109 asymmetric synapses, 1.06 × 108 symmetric synapses and 1.00 × 108 myelinated axons. The density of asymmetric synapses was 5.5/μm3 and the density of symmetric synapses was 0.5/μm3. Average synapse membrane length was 207 nm and the average axon terminal membrane length was 489 nm. Stress reduced the number of synapses and myelinated axons in the deeper cortical layers, while synapse membrane lengths were increased. These stress-induced ultrastructural changes indicate that neurons of the infralimbic cortex have reduced cortical network connectivity. Such reduced network connectivity is likely

  11. Nitric Oxide-Mediated Posttranslational Modifications: Impacts at the Synapse

    Directory of Open Access Journals (Sweden)

    Sophie A. Bradley

    2016-01-01

    Full Text Available Nitric oxide (NO is an important gasotransmitter molecule that is involved in numerous physiological processes throughout the nervous system. In addition to its involvement in physiological plasticity processes (long-term potentiation, LTP; long-term depression, LTD which can include NMDAR-mediated calcium-dependent activation of neuronal nitric oxide synthase (nNOS, new insights into physiological and pathological consequences of nitrergic signalling have recently emerged. In addition to the canonical cGMP-mediated signalling, NO is also implicated in numerous pathways involving posttranslational modifications. In this review we discuss the multiple effects of S-nitrosylation and 3-nitrotyrosination on proteins with potential modulation of function but limit the analyses to signalling involved in synaptic transmission and vesicular release. Here, crucial proteins which mediate synaptic transmission can undergo posttranslational modifications with either pre- or postsynaptic origin. During normal brain function, both pathways serve as important cellular signalling cascades that modulate a diverse array of physiological processes, including synaptic plasticity, transcriptional activity, and neuronal survival. In contrast, evidence suggests that aging and disease can induce nitrosative stress via excessive NO production. Consequently, uncontrolled S-nitrosylation/3-nitrotyrosination can occur and represent pathological features that contribute to the onset and progression of various neurodegenerative diseases, including Parkinson’s, Alzheimer’s, and Huntington’s.

  12. Dynamic Properties of the Alkaline Vesicle Population at Hippocampal Synapses

    Science.gov (United States)

    Röther, Mareike; Brauner, Jan M.; Ebert, Katrin; Welzel, Oliver; Jung, Jasmin; Bauereiss, Anna; Kornhuber, Johannes; Groemer, Teja W.

    2014-01-01

    In compensatory endocytosis, scission of vesicles from the plasma membrane to the cytoplasm is a prerequisite for intravesicular reacidification and accumulation of neurotransmitter molecules. Here, we provide time-resolved measurements of the dynamics of the alkaline vesicle population which appears upon endocytic retrieval. Using fast perfusion pH-cycling in live-cell microscopy, synapto-pHluorin expressing rat hippocampal neurons were electrically stimulated. We found that the relative size of the alkaline vesicle population depended significantly on the electrical stimulus size: With increasing number of action potentials the relative size of the alkaline vesicle population expanded. In contrast to that, increasing the stimulus frequency reduced the relative size of the population of alkaline vesicles. Measurement of the time constant for reacification and calculation of the time constant for endocytosis revealed that both time constants were variable with regard to the stimulus condition. Furthermore, we show that the dynamics of the alkaline vesicle population can be predicted by a simple mathematical model. In conclusion, here a novel methodical approach to analyze dynamic properties of alkaline vesicles is presented and validated as a convenient method for the detection of intracellular events. Using this method we show that the population of alkaline vesicles is highly dynamic and depends both on stimulus strength and frequency. Our results implicate that determination of the alkaline vesicle population size may provide new insights into the kinetics of endocytic retrieval. PMID:25079223

  13. Role of Acetylcholinesterase on the Structure and Function of Cholinergic Synapses: Insights Gained from Studies on Knockout Mice

    Science.gov (United States)

    2011-01-01

    leading to the opening of the associated ligand-gated ion channel ( Karlin 2002). Channel opening triggers, in turn, the endplate current, endplate potential...116:633–653 Karlin A (2002) Emerging structure of the nicotinic acetylcholine receptors. Nat Rev Neurosci 3:102–114 Katz B, Miledi R (1973) The binding

  14. Single-cell transcriptomics of the developing lateral geniculate nucleus reveals insights into circuit assembly and refinement

    Science.gov (United States)

    Kalish, Brian T.; Cheadle, Lucas; Hrvatin, Sinisa; Nagy, M. Aurel; Rivera, Samuel; Crow, Megan; Gillis, Jesse; Kirchner, Rory

    2018-01-01

    Coordinated changes in gene expression underlie the early patterning and cell-type specification of the central nervous system. However, much less is known about how such changes contribute to later stages of circuit assembly and refinement. In this study, we employ single-cell RNA sequencing to develop a detailed, whole-transcriptome resource of gene expression across four time points in the developing dorsal lateral geniculate nucleus (LGN), a visual structure in the brain that undergoes a well-characterized program of postnatal circuit development. This approach identifies markers defining the major LGN cell types, including excitatory relay neurons, oligodendrocytes, astrocytes, microglia, and endothelial cells. Most cell types exhibit significant transcriptional changes across development, dynamically expressing genes involved in distinct processes including retinotopic mapping, synaptogenesis, myelination, and synaptic refinement. Our data suggest that genes associated with synapse and circuit development are expressed in a larger proportion of nonneuronal cell types than previously appreciated. Furthermore, we used this single-cell expression atlas to identify the Prkcd-Cre mouse line as a tool for selective manipulation of relay neurons during a late stage of sensory-driven synaptic refinement. This transcriptomic resource provides a cellular map of gene expression across several cell types of the LGN, and offers insight into the molecular mechanisms of circuit development in the postnatal brain. PMID:29343640

  15. Synapses of the rat end brain in response to flight effects

    International Nuclear Information System (INIS)

    Antipov, V.V.; Tikhonchuk, V.S.; Ushakov, I.B.; Fedorov, V.P.

    1988-01-01

    Using electron microscopy, synapses of different structures of the rat end brain related to cognitive and motor acts (sensorimotor cortex, caudate nucleus) as well as memory and behavior (hippocampus) were examined. Rats were exposed to ionizing radiation, superhigh frequency, hypoxia, hyperoxia, vibration and acceleration (applied separately or in combination) which have been traditionally in the focus of space and aviation medicine. Brain internuronal junctions were found to be very sensitive to the above effects, particularly ionizing radiation and hypoxia. Conversely, synapses were shown to be highly resistant to short-term hyperoxia and electromagnetic radiation. When combined effects were used, response of interneuronal junctions depended on the irradiation dose and order of application of radiation and other flight factors

  16. Functional mapping of brain synapses by the enriching activity-marker SynaptoZip.

    Science.gov (United States)

    Ferro, Mattia; Lamanna, Jacopo; Ripamonti, Maddalena; Racchetti, Gabriella; Arena, Alessandro; Spadini, Sara; Montesano, Giovanni; Cortese, Riccardo; Zimarino, Vincenzo; Malgaroli, Antonio

    2017-10-31

    Ideally, elucidating the role of specific brain circuits in animal behavior would require the ability to measure activity at all involved synapses, possibly with unrestricted field of view, thus even at those boutons deeply located into the brain. Here, we introduce and validate an efficient scheme reporting synaptic vesicle cycling in vivo. This is based on SynaptoZip, a genetically encoded molecule deploying in the vesicular lumen a bait moiety designed to capture upon exocytosis a labeled alien peptide, Synbond. The resulting signal is cumulative and stores the number of cycling events occurring at individual synapses. Since this functional signal is enduring and measurable both online and ex post, SynaptoZip provides a unique method for the analysis of the history of synaptic activity in regions several millimeters below the brain surface. We show its broad applicability by reporting stimulus-evoked and spontaneous circuit activity in wide cortical fields, in anesthetized and freely moving animals.

  17. Loss of perforated synapses in the dentate gyrus: morphological substrate of memory deficit in aged rats.

    Science.gov (United States)

    Geinisman, Y; de Toledo-Morrell, L; Morrell, F

    1986-01-01

    Most, but not all, aged rats exhibit a profound deficit in spatial memory when tested in a radial maze--a task known to depend on the integrity of the hippocampal formation. In this study, animals were divided into three groups based on their spatial memory capacity: young adult rats with good memory, aged rats with impaired memory, and aged rats with good memory. Memory-impaired aged animals showed a loss of perforated axospinous synapses in the dentate gyrus of the hippocampal formation in comparison with either young adults or aged rats with good memory. This finding suggests that the loss of perforated axospinous synapses in the hippocampal formation underlies the age-related deficit in spatial memory. Images PMID:3458260

  18. Application of Synapses Dilution Method for Pattern Recognition Optimation Using Hopfield Model Neural Network

    International Nuclear Information System (INIS)

    Wicaksana, D.S.

    1997-01-01

    Human's neural network consist of thousands of neurons, each of which has only one input, and more than one output. these neurons are linked together through junctions called synapses, which have different strength from one to another, to configure specific information pattern. Using their functions and capabilities, we are able to improve the performance of neuman-type computers in the future. This is because of the capabilities to parallely process information, especially for voice and image pattern recognitions, instead of serial process as in Neuman-type computers. This paper explains how to simplify hopfield model neural network by using synapse dilution without reducing the capability of its pattern recognition. the dilution is done by using two ways: sequence, and random. Both ways are followed by either intact or distorted pattern recognitions

  19. Reciprocal synapses between mushroom body and dopamine neurons form a positive feedback loop required for learning.

    Science.gov (United States)

    Cervantes-Sandoval, Isaac; Phan, Anna; Chakraborty, Molee; Davis, Ronald L

    2017-05-10

    Current thought envisions dopamine neurons conveying the reinforcing effect of the unconditioned stimulus during associative learning to the axons of Drosophila mushroom body Kenyon cells for normal olfactory learning. Here, we show using functional GFP reconstitution experiments that Kenyon cells and dopamine neurons from axoaxonic reciprocal synapses. The dopamine neurons receive cholinergic input via nicotinic acetylcholine receptors from the Kenyon cells; knocking down these receptors impairs olfactory learning revealing the importance of these receptors at the synapse. Blocking the synaptic output of Kenyon cells during olfactory conditioning reduces presynaptic calcium transients in dopamine neurons, a finding consistent with reciprocal communication. Moreover, silencing Kenyon cells decreases the normal chronic activity of the dopamine neurons. Our results reveal a new and critical role for positive feedback onto dopamine neurons through reciprocal connections with Kenyon cells for normal olfactory learning.

  20. Navigating barriers: the challenge of directed secretion at the natural killer cell lytic immunological synapse.

    Science.gov (United States)

    Sanborn, Keri B; Orange, Jordan S

    2010-05-01

    Natural killer (NK) cells have an inherent ability to recognize and destroy a wide array of cells rendered abnormal by stress or disease. NK cells can kill a targeted cell by forming a tight interface-the lytic immunological synapse. This represents a dynamic molecular arrangement that over time progresses through a series of steps to ultimately deliver the contents of specialized organelles known as lytic granules. In order to mediate cytotoxicity, the NK cell faces the challenge of mobilizing the lytic granules, polarizing them to the targeted cell, facilitating their approximation to the NK cell membrane, and releasing their contents. This review is focused upon the final steps in accessing function through the lytic immunological synapse.

  1. A cortical attractor network with Martinotti cells driven by facilitating synapses.

    Directory of Open Access Journals (Sweden)

    Pradeep Krishnamurthy

    Full Text Available The population of pyramidal cells significantly outnumbers the inhibitory interneurons in the neocortex, while at the same time the diversity of interneuron types is much more pronounced. One acknowledged key role of inhibition is to control the rate and patterning of pyramidal cell firing via negative feedback, but most likely the diversity of inhibitory pathways is matched by a corresponding diversity of functional roles. An important distinguishing feature of cortical interneurons is the variability of the short-term plasticity properties of synapses received from pyramidal cells. The Martinotti cell type has recently come under scrutiny due to the distinctly facilitating nature of the synapses they receive from pyramidal cells. This distinguishes these neurons from basket cells and other inhibitory interneurons typically targeted by depressing synapses. A key aspect of the work reported here has been to pinpoint the role of this variability. We first set out to reproduce quantitatively based on in vitro data the di-synaptic inhibitory microcircuit connecting two pyramidal cells via one or a few Martinotti cells. In a second step, we embedded this microcircuit in a previously developed attractor memory network model of neocortical layers 2/3. This model network demonstrated that basket cells with their characteristic depressing synapses are the first to discharge when the network enters an attractor state and that Martinotti cells respond with a delay, thereby shifting the excitation-inhibition balance and acting to terminate the attractor state. A parameter sensitivity analysis suggested that Martinotti cells might, in fact, play a dominant role in setting the attractor dwell time and thus cortical speed of processing, with cellular adaptation and synaptic depression having a less prominent role than previously thought.

  2. Effects of Trace Metal Profiles Characteristic for Autism on Synapses in Cultured Neurons

    OpenAIRE

    Hagmeyer, Simone; Mangus, Katharina; Boeckers, Tobias M.; Grabrucker, Andreas M.

    2015-01-01

    Various recent studies revealed that biometal dyshomeostasis plays a crucial role in the pathogenesis of neurological disorders such as autism spectrum disorders (ASD). Substantial evidence indicates that disrupted neuronal homeostasis of different metal ions such as Fe, Cu, Pb, Hg, Se, and Zn may mediate synaptic dysfunction and impair synapse formation and maturation. Here, we performed in vitro studies investigating the consequences of an imbalance of transition metals on glutamatergic syn...

  3. Anatomically detailed and large-scale simulations studying synapse loss and synchrony using NeuroBox

    Directory of Open Access Journals (Sweden)

    Markus eBreit

    2016-02-01

    Full Text Available The morphology of neurons and networks plays an important role in processing electrical and biochemical signals. Based on neuronal reconstructions, which are becoming abundantly available through databases such as NeuroMorpho.org, numerical simulations of Hodgkin-Huxley-type equations, coupled to biochemical models, can be performed in order to systematically investigate the influence of cellular morphology and the connectivity pattern in networks on the underlying function. Development in the area of synthetic neural network generation and morphology reconstruction from microscopy data has brought forth the software tool NeuGen. Coupling this morphology data (either from databases, synthetic or reconstruction to the simulation platform UG 4 (which harbors a neuroscientific portfolio and VRL-Studio, has brought forth the extendible toolbox NeuroBox. NeuroBox allows users to perform numerical simulations on hybrid-dimensional morphology representations. The code basis is designed in a modular way, such that e.g. new channel or synapse types can be added to the library. Workflows can be specified through scripts or through the VRL-Studio graphical workflow representation. Third-party tools, such as ImageJ, can be added to NeuroBox workflows. In this paper, NeuroBox is used to study the electrical and biochemical effects of synapse loss vs. synchrony in neurons, to investigate large morphology data sets within detailed biophysical simulations, and used to demonstrate the capability of utilizing high-performance computing infrastructure for large scale network simulations. Using new synapse distribution methods and Finite Volume based numerical solvers for compartment-type models, our results demonstrate how an increase in synaptic synchronization can compensate synapse loss at the electrical and calcium level, and how detailed neuronal morphology can be integrated in large-scale network simulations.

  4. Anatomically Detailed and Large-Scale Simulations Studying Synapse Loss and Synchrony Using NeuroBox.

    Science.gov (United States)

    Breit, Markus; Stepniewski, Martin; Grein, Stephan; Gottmann, Pascal; Reinhardt, Lukas; Queisser, Gillian

    2016-01-01

    The morphology of neurons and networks plays an important role in processing electrical and biochemical signals. Based on neuronal reconstructions, which are becoming abundantly available through databases such as NeuroMorpho.org, numerical simulations of Hodgkin-Huxley-type equations, coupled to biochemical models, can be performed in order to systematically investigate the influence of cellular morphology and the connectivity pattern in networks on the underlying function. Development in the area of synthetic neural network generation and morphology reconstruction from microscopy data has brought forth the software tool NeuGen. Coupling this morphology data (either from databases, synthetic, or reconstruction) to the simulation platform UG 4 (which harbors a neuroscientific portfolio) and VRL-Studio, has brought forth the extendible toolbox NeuroBox. NeuroBox allows users to perform numerical simulations on hybrid-dimensional morphology representations. The code basis is designed in a modular way, such that e.g., new channel or synapse types can be added to the library. Workflows can be specified through scripts or through the VRL-Studio graphical workflow representation. Third-party tools, such as ImageJ, can be added to NeuroBox workflows. In this paper, NeuroBox is used to study the electrical and biochemical effects of synapse loss vs. synchrony in neurons, to investigate large morphology data sets within detailed biophysical simulations, and used to demonstrate the capability of utilizing high-performance computing infrastructure for large scale network simulations. Using new synapse distribution methods and Finite Volume based numerical solvers for compartment-type models, our results demonstrate how an increase in synaptic synchronization can compensate synapse loss at the electrical and calcium level, and how detailed neuronal morphology can be integrated in large-scale network simulations.

  5. Transglial transmission at the dorsal root ganglion sandwich synapse: glial cell to postsynaptic neuron communication.

    Science.gov (United States)

    Rozanski, Gabriela M; Li, Qi; Stanley, Elise F

    2013-04-01

    The dorsal root ganglion (DRG) contains a subset of closely-apposed neuronal somata (NS) separated solely by a thin satellite glial cell (SGC) membrane septum to form an NS-glial cell-NS trimer. We recently reported that stimulation of one NS with an impulse train triggers a delayed, noisy and long-lasting response in its NS pair via a transglial signaling pathway that we term a 'sandwich synapse' (SS). Transmission could be unidirectional or bidirectional and facilitated in response to a second stimulus train. We have shown that in chick or rat SS the NS-to-SGC leg of the two-synapse pathway is purinergic via P2Y2 receptors but the second SGC-to-NS synapse mechanism remained unknown. A noisy evoked current in the target neuron, a reversal potential close to 0 mV, and insensitivity to calcium scavengers or G protein block favored an ionotropic postsynaptic receptor. Selective block by D-2-amino-5-phosphonopentanoate (AP5) implicated glutamatergic transmission via N-methyl-d-aspartate receptors. This agent also blocked NS responses evoked by puff of UTP, a P2Y2 agonist, directly onto the SGC cell, confirming its action at the second synapse of the SS transmission pathway. The N-methyl-d-aspartate receptor NR2B subunit was implicated by block of transmission with ifenprodil and by its immunocytochemical localization to the NS membrane, abutting the glial septum P2Y2 receptor. Isolated DRG cell clusters exhibited daisy-chain and branching NS-glial cell-NS contacts, suggestive of a network organization within the ganglion. The identification of the glial-to-neuron transmitter and receptor combination provides further support for transglial transmission and completes the DRG SS molecular transmission pathway. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  6. Long-term depression at distinct glutamatergic synapses in the basal ganglia.

    Science.gov (United States)

    Dupuis, Julien P; Bioulac, Bernard H; Baufreton, Jérôme

    2014-01-01

    Long-term adaptations of synaptic transmission are believed to be the cellular basis of information storage in the brain. In particular, long-term depression of excitatory neurotransmission has been under intense investigation since convergent lines of evidence support a crucial role for this process in learning and memory. Within the basal ganglia, a network of subcortical nuclei forming a key part of the extrapyramidal motor system, plasticity at excitatory synapses is essential to the regulation of motor, cognitive, and reward functions. The striatum, the main gateway of the basal ganglia, receives convergent excitatory inputs from cortical areas and transmits information to the network output structures and is a major site of activity-dependent plasticity. Indeed, long-term depression at cortico-striatal synapses modulates the transfer of information to basal ganglia output structures and affects voluntary movement execution. Cortico-striatal plasticity is thus considered as a cellular substrate for adaptive motor control. Downstream in this network, the subthalamic nucleus and substantia nigra nuclei also receive glutamatergic innervation from the cortex and the subthalamic nucleus, respectively. Although these connections have been less investigated, recent studies have started to unravel the molecular mechanisms that contribute to adjustments in the strength of cortico-subthalamic and subthalamo-nigral transmissions, revealing that adaptations at these synapses governing the output of the network could also contribute to motor planning and execution. Here, we review our current understanding of long-term depression mechanisms at basal ganglia glutamatergic synapses and emphasize the common and unique plastic features observed at successive levels of the network in healthy and pathological conditions.

  7. Rate dynamics of leaky integrate-and-fire neurons with strong synapses

    Directory of Open Access Journals (Sweden)

    Eilen Nordlie

    2010-12-01

    Full Text Available Firing-rate models provide a practical tool for studying the dynamics of trial- or population-averaged neuronal signals. A wealth of theoretical and experimental studies has been dedicated to the derivation or extraction of such models by investigating the firing-rate response characteristics of ensembles of neurons. The majority of these studies assumes that neurons receive input spikes at a high rate through weak synapses (diffusion approximation. For many biological neural systems, however, this assumption cannot be justified. So far, it is unclear how time-varying presynaptic firing rates are transmitted by a population of neurons if the diffusion assumption is dropped. Here, we numerically investigate the stationary and non-stationary firing-rate response properties of leaky integrate-and-fire (LIF neurons receiving input spikes through excitatory synapses with alpha-function shaped postsynaptic currents for strong synaptic weights. Input spike trains are modelled by inhomogeneous Poisson point-processes with sinusoidal rate. Average rates, modulation amplitudes and phases of the period-averaged spike responses are measured for a broad range of stimulus, synapse and neuron parameters. Across wide parameter regions, the resulting transfer functions can be approximated by a linear 1st-order low-pass filter. Below a critical synaptic weight, the cutoff frequencies are approximately constant and determined by the synaptic time constants. Only for synapses with unrealistically strong weights are the cutoff frequencies significantly increased. To account for stimuli with larger modulation depths, we combine the measured linear transfer function with the nonlinear response characteristics obtained for stationary inputs. The resulting linear-nonlinear model accurately predicts the population response for a variety of non-sinusoidal stimuli.

  8. Three-terminal ferroelectric synapse device with concurrent learning function for artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Nishitani, Y.; Kaneko, Y.; Ueda, M.; Fujii, E. [Advanced Technology Research Laboratories, Panasonic Corporation, Seika, Kyoto 619-0237 (Japan); Morie, T. [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Wakamatsu-ku, Kitakyushu 808-0196 (Japan)

    2012-06-15

    Spike-timing-dependent synaptic plasticity (STDP) is demonstrated in a synapse device based on a ferroelectric-gate field-effect transistor (FeFET). STDP is a key of the learning functions observed in human brains, where the synaptic weight changes only depending on the spike timing of the pre- and post-neurons. The FeFET is composed of the stacked oxide materials with ZnO/Pr(Zr,Ti)O{sub 3} (PZT)/SrRuO{sub 3}. In the FeFET, the channel conductance can be altered depending on the density of electrons induced by the polarization of PZT film, which can be controlled by applying the gate voltage in a non-volatile manner. Applying a pulse gate voltage enables the multi-valued modulation of the conductance, which is expected to be caused by a change in PZT polarization. This variation depends on the height and the duration of the pulse gate voltage. Utilizing these characteristics, symmetric and asymmetric STDP learning functions are successfully implemented in the FeFET-based synapse device by applying the non-linear pulse gate voltage generated from a set of two pulses in a sampling circuit, in which the two pulses correspond to the spikes from the pre- and post-neurons. The three-terminal structure of the synapse device enables the concurrent learning, in which the weight update can be performed without canceling signal transmission among neurons, while the neural networks using the previously reported two-terminal synapse devices need to stop signal transmission for learning.

  9. Artificial Synapses Based on in-Plane Gate Organic Electrochemical Transistors.

    Science.gov (United States)

    Qian, Chuan; Sun, Jia; Kong, Ling-An; Gou, Guangyang; Yang, Junliang; He, Jun; Gao, Yongli; Wan, Qing

    2016-10-05

    Realization of biological synapses using electronic devices is regarded as the basic building blocks for neuromorphic engineering and artificial neural network. With the advantages of biocompatibility, low cost, flexibility, and compatible with printing and roll-to-roll processes, the artificial synapse based on organic transistor is of great interest. In this paper, the artificial synapse simulation by ion-gel gated organic field-effect transistors (FETs) with poly(3-hexylthiophene) (P3HT) active channel is demonstrated. Key features of the synaptic behaviors, such as paired-pulse facilitation (PPF), short-term plasticity (STP), self-tuning, the spike logic operation, spatiotemporal dentritic integration, and modulation are successfully mimicked. Furthermore, the interface doping processes of electrolyte ions between the active P3HT layer and ion gels is comprehensively studied for confirming the operating processes underlying the conductivity and excitatory postsynaptic current (EPSC) variations in the organic synaptic devices. This study represents an important step toward building future artificial neuromorphic systems with newly emerged ion gel gated organic synaptic devices.

  10. Emerging phenomena in neural networks with dynamic synapses and their computational implications

    Directory of Open Access Journals (Sweden)

    Joaquin J. eTorres

    2013-04-01

    Full Text Available In this paper we review our research on the effect and computational role of dynamical synapses on feed-forward and recurrent neural networks. Among others, we report on the appearance of a new class of dynamical memories which result from the destabilisation of learned memory attractors. This has important consequences for dynamic information processing allowing the system to sequentially access the information stored in the memories under changing stimuli. Although storage capacity of stable memories also decreases, our study demonstrated the positive effect of synaptic facilitation to recover maximum storage capacity and to enlarge the capacity of the system for memory recall in noisy conditions. Possibly, the new dynamical behaviour can be associated with the voltage transitions between up and down states observed in cortical areas in the brain. We investigated the conditions for which the permanence times in the up state are power-law distributed, which is a sign for criticality, and concluded that the experimentally observed large variability of permanence times could be explained as the result of noisy dynamic synapses with large recovery times. Finally, we report how short-term synaptic processes can transmit weak signals throughout more than one frequency range in noisy neural networks, displaying a kind of stochastic multi-resonance. This effect is due to competition between activity-dependent synaptic fluctuations (due to dynamic synapses and the existence of neuron firing threshold which adapts to the incoming mean synaptic input.

  11. A 2-transistor/1-resistor artificial synapse capable of communication and stochastic learning in neuromorphic systems.

    Science.gov (United States)

    Wang, Zhongqiang; Ambrogio, Stefano; Balatti, Simone; Ielmini, Daniele

    2014-01-01

    Resistive (or memristive) switching devices based on metal oxides find applications in memory, logic and neuromorphic computing systems. Their small area, low power operation, and high functionality meet the challenges of brain-inspired computing aiming at achieving a huge density of active connections (synapses) with low operation power. This work presents a new artificial synapse scheme, consisting of a memristive switch connected to 2 transistors responsible for gating the communication and learning operations. Spike timing dependent plasticity (STDP) is achieved through appropriate shaping of the pre-synaptic and the post synaptic spikes. Experiments with integrated artificial synapses demonstrate STDP with stochastic behavior due to (i) the natural variability of set/reset processes in the nanoscale switch, and (ii) the different response of the switch to a given stimulus depending on the initial state. Experimental results are confirmed by model-based simulations of the memristive switching. Finally, system-level simulations of a 2-layer neural network and a simplified STDP model show random learning and recognition of patterns.

  12. A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses

    Science.gov (United States)

    Qiao, Ning; Mostafa, Hesham; Corradi, Federico; Osswald, Marc; Stefanini, Fabio; Sumislawska, Dora; Indiveri, Giacomo

    2015-01-01

    Implementing compact, low-power artificial neural processing systems with real-time on-line learning abilities is still an open challenge. In this paper we present a full-custom mixed-signal VLSI device with neuromorphic learning circuits that emulate the biophysics of real spiking neurons and dynamic synapses for exploring the properties of computational neuroscience models and for building brain-inspired computing systems. The proposed architecture allows the on-chip configuration of a wide range of network connectivities, including recurrent and deep networks, with short-term and long-term plasticity. The device comprises 128 K analog synapse and 256 neuron circuits with biologically plausible dynamics and bi-stable spike-based plasticity mechanisms that endow it with on-line learning abilities. In addition to the analog circuits, the device comprises also asynchronous digital logic circuits for setting different synapse and neuron properties as well as different network configurations. This prototype device, fabricated using a 180 nm 1P6M CMOS process, occupies an area of 51.4 mm2, and consumes approximately 4 mW for typical experiments, for example involving attractor networks. Here we describe the details of the overall architecture and of the individual circuits and present experimental results that showcase its potential. By supporting a wide range of cortical-like computational modules comprising plasticity mechanisms, this device will enable the realization of intelligent autonomous systems with on-line learning capabilities. PMID:25972778

  13. Spontaneous Vesicle Fusion Is Differentially Regulated at Cholinergic and GABAergic Synapses

    Directory of Open Access Journals (Sweden)

    Haowen Liu

    2018-02-01

    Full Text Available The locomotion of C. elegans is balanced by excitatory and inhibitory neurotransmitter release at neuromuscular junctions. However, the molecular mechanisms that maintain the balance of synaptic transmission remain enigmatic. Here, we investigated the function of voltage-gated Ca2+ channels in triggering spontaneous release at cholinergic and GABAergic synapses. Recordings of the miniature excitatory/inhibitory postsynaptic currents (mEPSCs and mIPSCs, respectively showed that UNC-2/CaV2 and EGL-19/CaV1 channels are the two major triggers for spontaneous release. Notably, however, Ca2+-independent spontaneous release was observed at GABAergic but not cholinergic synapses. Functional screening led to the identification of hypomorphic unc-64/Syntaxin-1A and snb-1/VAMP2 mutants in which mEPSCs are severely impaired, whereas mIPSCs remain unaltered, indicating differential regulation of these currents at cholinergic and GABAergic synapses. Moreover, Ca2+-independent spontaneous GABA release was nearly abolished in the hypomorphic unc-64 and snb-1 mutants, suggesting distinct mechanisms for Ca2+-dependent and Ca2+-independent spontaneous release.

  14. Automated detection of synapses in serial section transmission electron microscopy image stacks.

    Directory of Open Access Journals (Sweden)

    Anna Kreshuk

    Full Text Available We describe a method for fully automated detection of chemical synapses in serial electron microscopy images with highly anisotropic axial and lateral resolution, such as images taken on transmission electron microscopes. Our pipeline starts from classification of the pixels based on 3D pixel features, which is followed by segmentation with an Ising model MRF and another classification step, based on object-level features. Classifiers are learned on sparse user labels; a fully annotated data subvolume is not required for training. The algorithm was validated on a set of 238 synapses in 20 serial 7197×7351 pixel images (4.5×4.5×45 nm resolution of mouse visual cortex, manually labeled by three independent human annotators and additionally re-verified by an expert neuroscientist. The error rate of the algorithm (12% false negative, 7% false positive detections is better than state-of-the-art, even though, unlike the state-of-the-art method, our algorithm does not require a prior segmentation of the image volume into cells. The software is based on the ilastik learning and segmentation toolkit and the vigra image processing library and is freely available on our website, along with the test data and gold standard annotations (http://www.ilastik.org/synapse-detection/sstem.

  15. Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit

    Directory of Open Access Journals (Sweden)

    Lisa eMapelli

    2015-05-01

    Full Text Available The way long-term potentiation (LTP and depression (LTD are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar network , in which extensive investigations have revealed LTP and LTD at several excitatory and inhibitory synapses. Cerebellar LTP and LTD occur in all three main cerebellar subcircuits (granular layer, molecular layer, deep cerebellar nuclei and correspondingly regulate the function of their three main neurons: granule cells (GrCs, Purkinje cells (PCs and deep cerebellar nuclear (DCN cells. All these neurons, in addition to be excited, are reached by feed-forward and feed-back inhibitory connections, in which LTP and LTD may either operate synergistically or homeostatically in order to control information flow through the circuit. Although the investigation of individual synaptic plasticities in vitro is essential to prove their existence and mechanisms, it is insufficient to generate a coherent view of their impact on network functioning in vivo. Recent computational models and cell-specific genetic mutations in mice are shedding light on how plasticity at multiple excitatory and inhibitory synapses might regulate neuronal activities in the cerebellar circuit and contribute to learning and memory and behavioral control.

  16. The demise of the synapse as the locus of memory: A looming paradigm shift?

    Directory of Open Access Journals (Sweden)

    Patrick C. Trettenbrein

    2016-11-01

    Full Text Available Synaptic plasticity is widely considered to be the neurobiological basis of learning and memory by neuroscientists and researchers in adjacent fields, though diverging opinions are increasingly being recognised. From the perspective of what we might call classical cognitive science it has always been understood that the mind/brain is to be considered a computational-representational system. Proponents of the information-processing approach to cognitive science have long been critical of connectionist or network approaches to (neuro-cognitive architecture, pointing to the shortcomings of the associative psychology that underlies Hebbian learning as well as to the fact that synapses are practically unfit to implement symbols. Recent work on memory has been adding fuel to the fire and current findings in neuroscience now provide first tentative neurobiological evidence for the cognitive scientists’ doubts about the synapse as the (sole locus of memory in the brain. This paper briefly considers the history and appeal of synaptic plasticity as a memory mechanism, followed by a summary of the cognitive scientists’ objections regarding these assertions. Next, a variety of tentative neuroscientific evidence that appears to substantiate questioning the idea of the synapse as the locus of memory is presented. On this basis, a novel way of thinking about the role of synaptic plasticity in learning and memory is proposed.

  17. High resolution in situ zymography reveals matrix metalloproteinase activity at glutamatergic synapses.

    Science.gov (United States)

    Gawlak, M; Górkiewicz, T; Gorlewicz, A; Konopacki, F A; Kaczmarek, L; Wilczynski, G M

    2009-01-12

    Synaptic plasticity involves remodeling of extracellular matrix. This is mediated, in part, by enzymes of the matrix metalloproteinase (MMP) family, in particular by gelatinase MMP-9. Accordingly, there is a need of developing methods to visualize gelatinolytic activity at the level of individual synapses, especially in the context of neurotransmitters receptors. Here we present a high-resolution fluorescent in situ zymography (ISZ), performed in thin sections of the alcohol-fixed and polyester wax-embedded brain tissue of the rat (Rattus norvegicus), which is superior to the current ISZ protocols. The method allows visualization of structural details up to the resolution-limit of light microscopy, in conjunction with immunofluorescent labeling. We used this technique to visualize and quantify gelatinolytic activity at the synapses in control and seizure-affected rat brain. In particular, we demonstrated, for the first time, frequent colocalization of gelatinase(s) with synaptic N-methyl-D-aspartic acid (NMDA)- and AMPA-type glutamate receptors. We believe that our method represents a valuable tool to study extracellular proteolytic processes at the synapses, it could be used, as well, to investigate proteinase involvement in a range of physiological and pathological phenomena in the nervous system.

  18. Mast cells and dendritic cells form synapses that facilitate antigen transfer for T cell activation.

    Science.gov (United States)

    Carroll-Portillo, Amanda; Cannon, Judy L; te Riet, Joost; Holmes, Anna; Kawakami, Yuko; Kawakami, Toshiaki; Cambi, Alessandra; Lidke, Diane S

    2015-08-31

    Mast cells (MCs) produce soluble mediators such as histamine and prostaglandins that are known to influence dendritic cell (DC) function by stimulating maturation and antigen processing. Whether direct cell-cell interactions are important in modulating MC/DC function is unclear. In this paper, we show that direct contact between MCs and DCs occurs and plays an important role in modulating the immune response. Activation of MCs through FcεRI cross-linking triggers the formation of stable cell-cell interactions with immature DCs that are reminiscent of the immunological synapse. Direct cellular contact differentially regulates the secreted cytokine profile, indicating that MC modulation of DC populations is influenced by the nature of their interaction. Synapse formation requires integrin engagement and facilitates the transfer of internalized MC-specific antigen from MCs to DCs. The transferred material is ultimately processed and presented by DCs and can activate T cells. The physiological outcomes of the MC-DC synapse suggest a new role for intercellular crosstalk in defining the immune response. © 2015 Carroll-Portillo et al.

  19. The role of the tripartite glutamatergic synapse in the pathophysiology of Alzheimer's disease.

    Science.gov (United States)

    Rudy, Carolyn C; Hunsberger, Holly C; Weitzner, Daniel S; Reed, Miranda N

    2015-03-01

    Alzheimer's disease (AD) is the most common form of dementia in individuals over 65 years of age and is characterized by accumulation of beta-amyloid (Aβ) and tau. Both Aβ and tau alter synaptic plasticity, leading to synapse loss, neural network dysfunction, and eventually neuron loss. However, the exact mechanism by which these proteins cause neurodegeneration is still not clear. A growing body of evidence suggests perturbations in the glutamatergic tripartite synapse, comprised of a presynaptic terminal, a postsynaptic spine, and an astrocytic process, may underlie the pathogenic mechanisms of AD. Glutamate is the primary excitatory neurotransmitter in the brain and plays an important role in learning and memory, but alterations in glutamatergic signaling can lead to excitotoxicity. This review discusses the ways in which both beta-amyloid (Aβ) and tau act alone and in concert to perturb synaptic functioning of the tripartite synapse, including alterations in glutamate release, astrocytic uptake, and receptor signaling. Particular emphasis is given to the role of N-methyl-D-aspartate (NMDA) as a possible convergence point for Aβ and tau toxicity.

  20. Acyl Ghrelin Improves Synapse Recovery in an In Vitro Model of Postanoxic Encephalopathy.

    Science.gov (United States)

    Stoyanova, Irina I; Hofmeijer, Jeannette; van Putten, Michel J A M; le Feber, Joost

    2016-11-01

    Comatose patients after cardiac arrest have a poor prognosis. Approximately half never awakes as a result of severe diffuse postanoxic encephalopathy. Several neuroprotective agents have been tested, however without significant effect. In the present study, we used cultured neuronal networks as a model system to study the general synaptic damage caused by temporary severe hypoxia and the possibility to restrict it by ghrelin treatment. Briefly, we applied hypoxia (pO 2 lowered from 150 to 20 mmHg) during 6 h in 55 cultures. Three hours after restoration of normoxia, half of the cultures were treated with ghrelin for 24 h, while the other, non-supplemented, were used as a control. All cultures were processed immunocytochemically for detection of the synaptic marker synaptophysin. We observed that hypoxia led to drastic decline of the number of synapses, followed by some recovery after return to normoxia, but still below the prehypoxic level. Additionally, synaptic vulnerability was selective: large- and small-sized neurons were more susceptible to synaptic damage than the medium-sized ones. Ghrelin treatment significantly increased the synapse density, as compared with the non-treated controls or with the prehypoxic period. The effect was detected in all neuronal subtypes. In conclusion, exogenous ghrelin has a robust impact on the recovery of cortical synapses after hypoxia. It raises the possibility that ghrelin or its analogs may have a therapeutic potential for treatment of postanoxic encephalopathy.

  1. Astrocytic glutamate transport regulates a Drosophila CNS synapse that lacks astrocyte ensheathment.

    Science.gov (United States)

    MacNamee, Sarah E; Liu, Kendra E; Gerhard, Stephan; Tran, Cathy T; Fetter, Richard D; Cardona, Albert; Tolbert, Leslie P; Oland, Lynne A

    2016-07-01

    Anatomical, molecular, and physiological interactions between astrocytes and neuronal synapses regulate information processing in the brain. The fruit fly Drosophila melanogaster has become a valuable experimental system for genetic manipulation of the nervous system and has enormous potential for elucidating mechanisms that mediate neuron-glia interactions. Here, we show the first electrophysiological recordings from Drosophila astrocytes and characterize their spatial and physiological relationship with particular synapses. Astrocyte intrinsic properties were found to be strongly analogous to those of vertebrate astrocytes, including a passive current-voltage relationship, low membrane resistance, high capacitance, and dye-coupling to local astrocytes. Responses to optogenetic stimulation of glutamatergic premotor neurons were correlated directly with anatomy using serial electron microscopy reconstructions of homologous identified neurons and surrounding astrocytic processes. Robust bidirectional communication was present: neuronal activation triggered astrocytic glutamate transport via excitatory amino acid transporter 1 (Eaat1), and blocking Eaat1 extended glutamatergic interneuron-evoked inhibitory postsynaptic currents in motor neurons. The neuronal synapses were always located within 1 μm of an astrocytic process, but none were ensheathed by those processes. Thus, fly astrocytes can modulate fast synaptic transmission via neurotransmitter transport within these anatomical parameters. J. Comp. Neurol. 524:1979-1998, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Recurrent synapses and circuits in the CA3 region of the hippocampus: an associative network.

    Directory of Open Access Journals (Sweden)

    Richard eMiles

    2014-01-01

    Full Text Available In the CA3 region of the hippocampus, pyramidal cells excite other pyramidal cells and interneurons. The axons of CA3 pyramidal cells spread throughout most of the region to form an associative network. These connections were first drawn by Cajal and Lorente de No. Their physiological properties were explored to understand epileptiform discharges generated in the region. Synapses between pairs of pyramidal cells involve one or few release sites and are weaker than connections made by mossy fibres on CA3 pyramidal cells. Synapses with interneurons are rather effective, as needed to control unchecked excitation. We examine contributions of recurrent synapses to epileptiform synchrony, to the genesis of sharp waves in the CA3 region and to population oscillations at theta and gamma frequencies. Recurrent connections in CA3, as other associative cortices, have a lower connectivity spread over a larger area than in primary sensory cortices. This sparse, but wide-ranging connectivity serves the functions of an associative network, including acquisition of neuronal representations as activity in groups of CA3 cells and completion involving the recall from partial cues of these ensemble firing patterns.

  3. Astrocytic Ca2+ signals are required for the functional integrity of tripartite synapses

    Directory of Open Access Journals (Sweden)

    Tanaka Mika

    2013-01-01

    Full Text Available Abstract Background Neuronal activity alters calcium ion (Ca2+ dynamics in astrocytes, but the physiologic relevance of these changes is controversial. To examine this issue further, we generated an inducible transgenic mouse model in which the expression of an inositol 1,4,5-trisphosphate absorbent, “IP3 sponge”, attenuates astrocytic Ca2+ signaling. Results Attenuated Ca2+ activity correlated with reduced astrocytic coverage of asymmetric synapses in the hippocampal CA1 region in these animals. The decreased astrocytic ‘protection’ of the synapses facilitated glutamate ‘spillover’, which was reflected by prolonged glutamate transporter currents in stratum radiatum astrocytes and enhanced N-methyl-D-aspartate receptor currents in CA1 pyramidal neurons in response to burst stimulation. These mice also exhibited behavioral impairments in spatial reference memory and remote contextual fear memory, in which hippocampal circuits are involved. Conclusions Our findings suggest that IP3-mediated astrocytic Ca2+ signaling correlates with the formation of functional tripartite synapses in the hippocampus.

  4. Effects of dynamic synapses on noise-delayed response latency of a single neuron

    Science.gov (United States)

    Uzuntarla, M.; Ozer, M.; Ileri, U.; Calim, A.; Torres, J. J.

    2015-12-01

    The noise-delayed decay (NDD) phenomenon emerges when the first-spike latency of a periodically forced stochastic neuron exhibits a maximum for a particular range of noise intensity. Here, we investigate the latency response dynamics of a single Hodgkin-Huxley neuron that is subject to both a suprathreshold periodic stimulus and a background activity arriving through dynamic synapses. We study the first-spike latency response as a function of the presynaptic firing rate f . This constitutes a more realistic scenario than previous works, since f provides a suitable biophysically realistic parameter to control the level of activity in actual neural systems. We first report on the emergence of classical NDD behavior as a function of f for the limit of static synapses. Second, we show that when short-term depression and facilitation mechanisms are included at the synapses, different NDD features can be found due to their modulatory effect on synaptic current fluctuations. For example, an intriguing double NDD (DNDD) behavior occurs for different sets of relevant synaptic parameters. Moreover, depending on the balance between synaptic depression and synaptic facilitation, single NDD or DNDD can prevail, in such a way that synaptic facilitation favors the emergence of DNDD whereas synaptic depression favors the existence of single NDD. Here we report the existence of the DNDD effect in the response latency dynamics of a neuron.

  5. Differential regulation of polarized synaptic vesicle trafficking and synapse stability in neural circuit rewiring in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Naina Kurup

    2017-06-01

    Full Text Available Neural circuits are dynamic, with activity-dependent changes in synapse density and connectivity peaking during different phases of animal development. In C. elegans, young larvae form mature motor circuits through a dramatic switch in GABAergic neuron connectivity, by concomitant elimination of existing synapses and formation of new synapses that are maintained throughout adulthood. We have previously shown that an increase in microtubule dynamics during motor circuit rewiring facilitates new synapse formation. Here, we further investigate cellular control of circuit rewiring through the analysis of mutants obtained in a forward genetic screen. Using live imaging, we characterize novel mutations that alter cargo binding in the dynein motor complex and enhance anterograde synaptic vesicle movement during remodeling, providing in vivo evidence for the tug-of-war between kinesin and dynein in fast axonal transport. We also find that a casein kinase homolog, TTBK-3, inhibits stabilization of nascent synapses in their new locations, a previously unexplored facet of structural plasticity of synapses. Our study delineates temporally distinct signaling pathways that are required for effective neural circuit refinement.

  6. Monoacylated Cellular Prion Proteins Reduce Amyloid-β-Induced Activation of Cytoplasmic Phospholipase A2 and Synapse Damage

    Directory of Open Access Journals (Sweden)

    Ewan West

    2015-06-01

    Full Text Available Alzheimer’s disease (AD is a progressive neurodegenerative disease characterized by the accumulation of amyloid-β (Aβ and the loss of synapses. Aggregation of the cellular prion protein (PrPC by Aβ oligomers induced synapse damage in cultured neurons. PrPC is attached to membranes via a glycosylphosphatidylinositol (GPI anchor, the composition of which affects protein targeting and cell signaling. Monoacylated PrPC incorporated into neurons bound “natural Aβ”, sequestering Aβ outside lipid rafts and preventing its accumulation at synapses. The presence of monoacylated PrPC reduced the Aβ-induced activation of cytoplasmic phospholipase A2 (cPLA2 and Aβ-induced synapse damage. This protective effect was stimulus specific, as treated neurons remained sensitive to α-synuclein, a protein associated with synapse damage in Parkinson’s disease. In synaptosomes, the aggregation of PrPC by Aβ oligomers triggered the formation of a signaling complex containing the cPLA2.a process, disrupted by monoacylated PrPC. We propose that monoacylated PrPC acts as a molecular sponge, binding Aβ oligomers at the neuronal perikarya without activating cPLA2 or triggering synapse damage.

  7. Centriole polarisation to the immunological synapse directs secretion from cytolytic cells of both the innate and adaptive immune systems

    Directory of Open Access Journals (Sweden)

    Arico Maurizo

    2011-06-01

    Full Text Available Abstract Background Cytolytic cells of the immune system destroy pathogen-infected cells by polarised exocytosis of secretory lysosomes containing the pore-forming protein perforin. Precise delivery of this lethal hit is essential to ensuring that only the target cell is destroyed. In cytotoxic T lymphocytes (CTLs, this is accomplished by an unusual movement of the centrosome to contact the plasma membrane at the centre of the immunological synapse formed between killer and target cells. Secretory lysosomes are directed towards the centrosome along microtubules and delivered precisely to the point of target cell recognition within the immunological synapse, identified by the centrosome. We asked whether this mechanism of directing secretory lysosome release is unique to CTL or whether natural killer (NK and invariant NKT (iNKT cytolytic cells of the innate immune system use a similar mechanism to focus perforin-bearing lysosome release. Results NK cells were conjugated with B-cell targets lacking major histocompatibility complex class I 721.221 cells, and iNKT cells were conjugated with glycolipid-pulsed CD1-bearing targets, then prepared for thin-section electron microscopy. High-resolution electron micrographs of the immunological synapse formed between NK and iNKT cytolytic cells with their targets revealed that in both NK and iNKT cells, the centrioles could be found associated (or 'docked' with the plasma membrane within the immunological synapse. Secretory clefts were visible within the synapses formed by both NK and iNKT cells, and secretory lysosomes were polarised along microtubules leading towards the docked centrosome. The Golgi apparatus and recycling endosomes were also polarised towards the centrosome at the plasma membrane within the synapse. Conclusions These results reveal that, like CTLs of the adaptive immune system, the centrosomes of NK and iNKT cells (cytolytic cells of the innate immune system direct secretory lysosomes to

  8. Synapses between parallel fibres and stellate cells express long-term changes in synaptic efficacy in rat cerebellum.

    Science.gov (United States)

    Rancillac, Armelle; Crépel, Francis

    2004-02-01

    Various forms of synaptic plasticity underlying motor learning have already been well characterized at cerebellar parallel fibre (PF)-Purkinje cell (PC) synapses. Inhibitory interneurones play an important role in controlling the excitability and synchronization of PCs. We have therefore tested the possibility that excitatory synapses between PFs and stellate cells (SCs) are also able to exhibit long-term changes in synaptic efficacy. In the present study, we show that long-term potentiation (LTP) and long-term depression (LTD) were induced at these synapses by a low frequency stimulation protocol (2 Hz for 60 s) and that pairing this low frequency stimulation protocol with postsynaptic depolarization induced a marked shift of synaptic plasticity in favour of LTP. This LTP was cAMP independent, but required nitric oxide (NO) production from pre- and/or postsynaptic elements, depending on the stimulation or pairing protocol used, respectively. In contrast, LTD was not dependent on NO production but it required activation of postsynaptic group II and possibly of group I metabotropic glutamate receptors. Finally, stimulation of PFs at 8 Hz for 15 s also induced LTP at PF-SC synapses. But in this case, LTP was cAMP dependent, as was also observed at PF-PC synapses for presynaptic LTP induced in the same conditions. Thus, long-term changes in synaptic efficacy can be accomplished by PF-SCs synapses as well as by PF-PC synapses, suggesting that both types of plasticity might co-operate during cerebellar motor learning.

  9. Mixed electrical-chemical synapses in adult rat hippocampus are primarily glutamatergic and coupled by connexin-36

    Directory of Open Access Journals (Sweden)

    Farid eHamzei-Sichani

    2012-05-01

    Full Text Available Dendrodendritic electrical signaling via gap junctions is now an accepted feature of neuronal communication in the mammalian brain, whereas axodendritic and axosomatic gap junctions have rarely been described. We present ultrastructural, immunocytochemical, and dye-coupling evidence for mixed (electrical/chemical synapses in adult rat hippocampus on both principal cells and interneurons. Thin-section electron microscopic images of small gap junction-like appositions were found at mossy fiber (MF terminals on thorny excrescences of CA3 pyramidal neurons (CA3pyr, apparently forming glutamatergic mixed synapses. Lucifer Yellow injected into four weakly-fixed CA3pyr was detected in MF axons that contacted the injected CA3pyr, supporting gap junction-mediated coupling between those two types of principal cells. Freeze-fracture replica immunogold-labeling revealed diverse sizes and morphologies of connexin36-containing gap junctions throughout hippocampus. Of 20 immunogold-labeled gap junctions, seven were large (328-1140 connexons, three of which were consistent with electrical synapses between interneurons; but nine were at axon terminal synapses, three of which were immediately adjacent to distinctive glutamate receptor-containing postsynaptic densities, forming mixed glutamatergic synapses. Four others were adjacent to small clusters of immunogold-labeled 10-nm E-face intramembrane particles, apparently representing extrasynaptic glutamate receptor particles. Gap junctions also were on spines in stratum lucidum, stratum oriens, dentate gyrus, and hilus, on both interneurons and unidentified neurons. In addition, one putative GABAergic mixed synapse was found in thin section images of a CA3pyr, but none found by immunogold-labeling were at GABAergic mixed synapses, suggesting their rarity. Cx36-containing gap junctions throughout hippocampus suggest the possibility of reciprocal modulation of electrical and chemical signals in diverse hippocampal

  10. Citation Analysis of the Korean Journal of Urology From Web of Science, Scopus, Korean Medical Citation Index, KoreaMed Synapse, and Google Scholar.

    Science.gov (United States)

    Huh, Sun

    2013-04-01

    The Korean Journal of Urology began to be published exclusively in English in 2010 and is indexed in PubMed Central/PubMed. This study analyzed a variety of citation indicators of the Korean Journal of Urology before and after 2010 to clarify the present position of the journal among the urology category journals. The impact factor, SCImago Journal Rank (SJR), impact index, Z-impact factor (ZIF, impact factor excluding self-citation), and Hirsch Index (H-index) were referenced or calculated from Web of Science, Scopus, SCImago Journal & Country Ranking, Korean Medical Citation Index (KoMCI), KoreaMed Synapse, and Google Scholar. Both the impact factor and the total citations rose rapidly beginning in 2011. The 2012 impact factor corresponded to the upper 84.9% in the nephrology-urology category, whereas the 2011 SJR was in the upper 58.5%. The ZIF in KoMCI was one fifth of the impact factor because there are only two other urology journals in KoMCI. Up to 2009, more than half of the citations in the Web of Science were from Korean researchers, but from 2010 to 2012, more than 85% of the citations were from international researchers. The H-indexes from Web of Science, Scopus, KoMCI, KoreaMed Synapse, and Google Scholar were 8, 10, 12, 9, and 18, respectively. The strategy of the language change in 2010 was successful from the perspective of citation indicators. The values of the citation indicators will continue to increase rapidly and consistently as the research achievement of authors of the Korean Journal of Urology increases.

  11. Long-term depression-associated signaling is required for an in vitro model of NMDA receptor-dependent synapse pruning.

    Science.gov (United States)

    Henson, Maile A; Tucker, Charles J; Zhao, Meilan; Dudek, Serena M

    2017-02-01

    Activity-dependent pruning of synaptic contacts plays a critical role in shaping neuronal circuitry in response to the environment during postnatal brain development. Although there is compelling evidence that shrinkage of dendritic spines coincides with synaptic long-term depression (LTD), and that LTD is accompanied by synapse loss, whether NMDA receptor (NMDAR)-dependent LTD is a required step in the progression toward synapse pruning is still unknown. Using repeated applications of NMDA to induce LTD in dissociated rat neuronal cultures, we found that synapse density, as measured by colocalization of fluorescent markers for pre- and postsynaptic structures, was decreased irrespective of the presynaptic marker used, post-treatment recovery time, and the dendritic location of synapses. Consistent with previous studies, we found that synapse loss could occur without apparent net spine loss or cell death. Furthermore, synapse loss was unlikely to require direct contact with microglia, as the number of these cells was minimal in our culture preparations. Supporting a model by which NMDAR-LTD is required for synapse loss, the effect of NMDA on fluorescence colocalization was prevented by phosphatase and caspase inhibitors. In addition, gene transcription and protein translation also appeared to be required for loss of putative synapses. These data support the idea that NMDAR-dependent LTD is a required step in synapse pruning and contribute to our understanding of the basic mechanisms of this developmental process. Published by Elsevier Inc.

  12. Alcohol Impairs Long-Term Depression at the Cerebellar Parallel Fiber–Purkinje Cell Synapse

    Science.gov (United States)

    Belmeguenai, Amor; Botta, Paolo; Weber, John T.; Carta, Mario; De Ruiter, Martijn; De Zeeuw, Chris I.; Valenzuela, C. Fernando; Hansel, Christian

    2008-01-01

    Acute alcohol consumption causes deficits in motor coordination and gait, suggesting an involvement of cerebellar circuits, which play a role in the fine adjustment of movements and in motor learning. It has previously been shown that ethanol modulates inhibitory transmission in the cerebellum and affects synaptic transmission and plasticity at excitatory climbing fiber (CF) to Purkinje cell synapses. However, it has not been examined thus far how acute ethanol application affects long-term depression (LTD) and long-term potentiation (LTP) at excitatory parallel fiber (PF) to Purkinje cell synapses, which are assumed to mediate forms of cerebellar motor learning. To examine ethanol effects on PF synaptic transmission and plasticity, we performed whole cell patch-clamp recordings from Purkinje cells in rat cerebellar slices. We found that ethanol (50 mM) selectively blocked PF–LTD induction, whereas it did not change the amplitude of excitatory postsynaptic currents at PF synapses. In contrast, ethanol application reduced voltage-gated calcium currents and type 1 metabotropic glutamate receptor (mGluR1)–dependent responses in Purkinje cells, both of which are involved in PF–LTD induction. The selectivity of these effects is emphasized by the observation that ethanol did not impair PF–LTP and that PF–LTP could readily be induced in the presence of the group I mGluR antagonist AIDA or the mGluR1a antagonist LY367385. Taken together, these findings identify calcium currents and mGluR1-dependent signaling pathways as potential ethanol targets and suggest that an ethanol-induced blockade of PF–LTD could contribute to the motor coordination deficits resulting from alcohol consumption. PMID:18922952

  13. Presynaptic membrane receptors in acetylcholine release modulation in the neuromuscular synapse.

    Science.gov (United States)

    Tomàs, Josep; Santafé, Manel M; Garcia, Neus; Lanuza, Maria A; Tomàs, Marta; Besalduch, Núria; Obis, Teresa; Priego, Mercedes; Hurtado, Erica

    2014-05-01

    Over the past few years, we have studied, in the mammalian neuromuscular junction (NMJ), the local involvement in transmitter release of the presynaptic muscarinic ACh autoreceptors (mAChRs), purinergic adenosine autoreceptors (P1Rs), and trophic factor receptors (TFRs; for neurotrophins and trophic cytokines) during development and in the adult. At any given moment, the way in which a synapse works is largely the logical outcome of the confluence of these (and other) metabotropic signalling pathways on intracellular kinases, which phosphorylate protein targets and materialize adaptive changes. We propose an integrated interpretation of the complementary function of these receptors in the adult NMJ. The activity of a given receptor group can modulate a given combination of spontaneous, evoked, and activity-dependent release characteristics. For instance, P1Rs can conserve resources by limiting spontaneous quantal leak of ACh (an A1 R action) and protect synapse function, because stimulation with adenosine reduces the magnitude of depression during repetitive activity. The overall outcome of the mAChRs seems to contribute to upkeep of spontaneous quantal output of ACh, save synapse function by decreasing the extent of evoked release (mainly an M2 action), and reduce depression. We have also identified several links among P1Rs, mAChRs, and TFRs. We found a close dependence between mAChR and some TFRs and observed that the muscarinic group has to operate correctly if the tropomyosin-related kinase B receptor (trkB) is also to operate correctly, and vice versa. Likewise, the functional integrity of mAChRs depends on P1Rs operating normally. Copyright © 2014 Wiley Periodicals, Inc.

  14. Ectopic release of glutamate contributes to spillover at parallel fibre synapses in the cerebellum.

    Science.gov (United States)

    Balakrishnan, Saju; Dobson, Katharine L; Jackson, Claire; Bellamy, Tomas C

    2014-04-01

    In the rat cerebellar molecular layer, spillover of glutamate between parallel fibre synapses can lead to activation of perisynaptic receptors that mediate short- and long-term plasticity. This effect is greatest when clusters of fibres are stimulated at high frequencies, suggesting that glutamate clearance mechanisms must be overwhelmed before spillover can occur. However, parallel fibres can also release transmitter directly into the extracellular space, from 'ectopic' release sites. Ectopic transmission activates AMPA receptors on the Bergmann glial cell processes that envelop parallel fibre synapses, but the possible contribution of this extrasynaptic release to intersynaptic communication has not been explored. We exploited long-term depression of ectopic transmission, and selective pharmacology, to investigate the impact of these release sites on the time course of Purkinje neuron excitatory postsynaptic currents (EPSCs). Depletion of ectopic release pools by activity-dependent long-term depression decreased EPSC decay time, revealing a 'late' current that is present when fibres are stimulated at low frequencies. This effect was enhanced when glutamate transporters were inhibited, and reduced when extracellular diffusion was impeded. Blockade of N-type Ca(2+) channels inhibited ectopic transmission to Bergmann glia and decreased EPSC decay time. Similarly, perfusion of the Ca(2+) chelator EGTA-AM into the slice progressively eliminated ectopic transmission to glia and decreased EPSC decay time with closely similar time courses. Collectively, this evidence suggests that ectopically released glutamate contributes to spillover transmission, and that ectopic release therefore degrades the spatial precision of synapses that fire infrequently, and may make them more prone to exhibit plasticity.

  15. ON Cone Bipolar Cell Axonal Synapses in the OFF Inner Plexiform Layer of the Rabbit Retina

    Science.gov (United States)

    Lauritzen, J. Scott; Anderson, James R.; Jones, Bryan W.; Watt, Carl B.; Mohammed, Shoeb; Hoang, John V.; Marc, Robert E.

    2012-01-01

    Analysis of the rabbit retinal connectome RC1 reveals that the division between the ON and OFF inner plexiform layer (IPL) is not structurally absolute. ON cone bipolar cells make non-canonical axonal synapses onto specific targets and receive amacrine cell synapses in the nominal OFF layer, creating novel motifs, including inhibitory crossover networks. Automated transmission electron microscope (ATEM) imaging, molecular tagging, tracing, and rendering of ≈ 400 bipolar cells reveals axonal ribbons in 36% of ON cone bipolar cells, throughout the OFF IPL. The targets include GABA-positive amacrine cells (γACs), glycine-positive amacrine cells (GACs) and ganglion cells. Most ON cone bipolar cell axonal contacts target GACs driven by OFF cone bipolar cells, forming new architectures for generating ON-OFF amacrine cells. Many of these ON-OFF GACs target ON cone bipolar cell axons, ON γACs and/or ON-OFF ganglion cells, representing widespread mechanisms for OFF to ON crossover inhibition. Other targets include OFF γACs presynaptic to OFF bipolar cells, forming γAC-mediated crossover motifs. ON cone bipolar cell axonal ribbons drive bistratified ON-OFF ganglion cells in the OFF layer and provide ON drive to polarity-appropriate targets such as bistratified diving ganglion cells (bsdGCs). The targeting precision of ON cone bipolar cell axonal synapses shows that this drive incidence is necessarily a joint distribution of cone bipolar cell axonal frequency and target cell trajectories through a given volume of the OFF layer. Such joint distribution sampling is likely common when targets are sparser than sources and when sources are coupled, as are ON cone bipolar cells. PMID:23042441

  16. Enhanced Transmission at the Calyx of Held Synapse in a Mouse Model for Angelman Syndrome

    Directory of Open Access Journals (Sweden)

    Tiantian Wang

    2018-01-01

    Full Text Available The neurodevelopmental disorder Angelman syndrome (AS is characterized by intellectual disability, motor dysfunction, distinct behavioral aspects, and epilepsy. AS is caused by a loss of the maternally expressed UBE3A gene, and many of the symptoms are recapitulated in a Ube3a mouse model of this syndrome. At the cellular level, changes in the axon initial segment (AIS have been reported, and changes in vesicle cycling have indicated the presence of presynaptic deficits. Here we studied the role of UBE3A in the auditory system by recording synaptic transmission at the calyx of Held synapse in the medial nucleus of the trapezoid body (MNTB through in vivo whole cell and juxtacellular recordings. We show that MNTB principal neurons in Ube3a mice exhibit a hyperpolarized resting membrane potential, an increased action potential (AP amplitude and a decreased AP half width. Moreover, both the pre- and postsynaptic AP in the calyx of Held synapse of Ube3a mice showed significantly faster recovery from spike depression. An increase in AIS length was observed in the principal MNTB neurons of Ube3a mice, providing a possible substrate for these gain-of-function changes. Apart from the effect on APs, we also observed that EPSPs showed decreased short-term synaptic depression (STD during long sound stimulations in AS mice, and faster recovery from STD following these tones, which is suggestive of a presynaptic gain-of-function. Our findings thus provide in vivo evidence that UBE3A plays a critical role in controlling synaptic transmission and excitability at excitatory synapses.

  17. Short-Term Synaptic Plasticity at Interneuronal Synapses Could Sculpt Rhythmic Motor Patterns.

    Science.gov (United States)

    Jia, Yan; Parker, David

    2016-01-01

    The output of a neuronal network depends on the organization and functional properties of its component cells and synapses. While the characterization of synaptic properties has lagged cellular analyses, a potentially important aspect in rhythmically active networks is how network synapses affect, and are in turn affected by, network activity. This could lead to a potential circular interaction where short-term activity-dependent synaptic plasticity is both influenced by and influences the network output. The analysis of synaptic plasticity in the lamprey locomotor network was extended here to characterize the short-term plasticity of connections between network interneurons and to try and address its potential network role. Paired recordings from identified interneurons in quiescent networks showed synapse-specific synaptic properties and plasticity that supported the presence of two hemisegmental groups that could influence bursting: depression in an excitatory interneuron group, and facilitation in an inhibitory feedback circuit. The influence of activity-dependent synaptic plasticity on network activity was investigated experimentally by changing Ringer Ca(2+) levels, and in a simple computer model. A potential caveat of the experimental analyses was that changes in Ringer Ca(2+) (and compensatory adjustments in Mg(2+) in some cases) could alter several other cellular and synaptic properties. Several of these properties were tested, and while there was some variability, these were not usually significantly affected by the Ringer changes. The experimental analyses suggested that depression of excitatory inputs had the strongest influence on the patterning of network activity. The simulation supported a role for this effect, and also suggested that the inhibitory facilitating group could modulate the influence of the excitatory synaptic depression. Short-term activity-dependent synaptic plasticity has not generally been considered in spinal cord models. These

  18. SynDIG4/Prrt1 Is Required for Excitatory Synapse Development and Plasticity Underlying Cognitive Function

    Directory of Open Access Journals (Sweden)

    Lucas Matt

    2018-02-01

    Full Text Available Altering AMPA receptor (AMPAR content at synapses is a key mechanism underlying the regulation of synaptic strength during learning and memory. Previous work demonstrated that SynDIG1 (synapse differentiation-induced gene 1 encodes a transmembrane AMPAR-associated protein that regulates excitatory synapse strength and number. Here we show that the related protein SynDIG4 (also known as Prrt1 modifies AMPAR gating properties in a subunit-dependent manner. Young SynDIG4 knockout (KO mice have weaker excitatory synapses, as evaluated by immunocytochemistry and electrophysiology. Adult SynDIG4 KO mice show complete loss of tetanus-induced long-term potentiation (LTP, while mEPSC amplitude is reduced by only 25%. Furthermore, SynDIG4 KO mice exhibit deficits in two independent cognitive assays. Given that SynDIG4 colocalizes with the AMPAR subunit GluA1 at non-synaptic sites, we propose that SynDIG4 maintains a pool of extrasynaptic AMPARs necessary for synapse development and function underlying higher-order cognitive plasticity.

  19. Syncrip/hnRNP Q influences synaptic transmission and regulates BMP signaling at the Drosophila neuromuscular synapse

    Directory of Open Access Journals (Sweden)

    James M. Halstead

    2014-08-01

    Full Text Available Synaptic plasticity involves the modulation of synaptic connections in response to neuronal activity via multiple pathways. One mechanism modulates synaptic transmission by retrograde signals from the post-synapse that influence the probability of vesicle release in the pre-synapse. Despite its importance, very few factors required for the expression of retrograde signals, and proper synaptic transmission, have been identified. Here, we identify the conserved RNA binding protein Syncrip as a new factor that modulates the efficiency of vesicle release from the motoneuron and is required for correct synapse structure. We show that syncrip is required genetically and its protein product is detected only in the muscle and not in the motoneuron itself. This unexpected non-autonomy is at least partly explained by the fact that Syncrip modulates retrograde BMP signals from the muscle back to the motoneuron. We show that Syncrip influences the levels of the Bone Morphogenic Protein ligand Glass Bottom Boat from the post-synapse and regulates the pre-synapse. Our results highlight the RNA-binding protein Syncrip as a novel regulator of synaptic output. Given its known role in regulating translation, we propose that Syncrip is important for maintaining a balance between the strength of presynaptic vesicle release and postsynaptic translation.

  20. A cellular model of memory reconsolidation involves reactivation-induced destabilization and restabilization at the sensorimotor synapse in Aplysia

    Science.gov (United States)

    Lee, Sue-Hyun; Kwak, Chuljung; Shim, Jaehoon; Kim, Jung-Eun; Choi, Sun-Lim; Kim, Hyoung F.; Jang, Deok-Jin; Lee, Jin-A; Lee, Kyungmin; Lee, Chi-Hoon; Lee, Young-Don; Miniaci, Maria Concetta; Bailey, Craig H.; Kandel, Eric R.; Kaang, Bong-Kiun

    2012-01-01

    The memory reconsolidation hypothesis suggests that a memory trace becomes labile after retrieval and needs to be reconsolidated before it can be stabilized. However, it is unclear from earlier studies whether the same synapses involved in encoding the memory trace are those that are destabilized and restabilized after the synaptic reactivation that accompanies memory retrieval, or whether new and different synapses are recruited. To address this issue, we studied a simple nonassociative form of memory, long-term sensitization of the gill- and siphon-withdrawal reflex in Aplysia, and its cellular analog, long-term facilitation at the sensory-to-motor neuron synapse. We found that after memory retrieval, behavioral long-term sensitization in Aplysia becomes labile via ubiquitin/proteasome-dependent protein degradation and is reconsolidated by means of de novo protein synthesis. In parallel, we found that on the cellular level, long-term facilitation at the sensory-to-motor neuron synapse that mediates long-term sensitization is also destabilized by protein degradation and is restabilized by protein synthesis after synaptic reactivation, a procedure that parallels memory retrieval or retraining evident on the behavioral level. These results provide direct evidence that the same synapses that store the long-term memory trace encoded by changes in the strength of synaptic connections critical for sensitization are disrupted and reconstructed after signal retrieval. PMID:22893682

  1. Boltzmann energy-based image analysis demonstrates that extracellular domain size differences explain protein segregation at immune synapses.

    Directory of Open Access Journals (Sweden)

    Nigel J Burroughs

    2011-08-01

    Full Text Available Immune synapses formed by T and NK cells both show segregation of the integrin ICAM1 from other proteins such as CD2 (T cell or KIR (NK cell. However, the mechanism by which these proteins segregate remains unclear; one key hypothesis is a redistribution based on protein size. Simulations of this mechanism qualitatively reproduce observed segregation patterns, but only in certain parameter regimes. Verifying that these parameter constraints in fact hold has not been possible to date, this requiring a quantitative coupling of theory to experimental data. Here, we address this challenge, developing a new methodology for analysing and quantifying image data and its integration with biophysical models. Specifically we fit a binding kinetics model to 2 colour fluorescence data for cytoskeleton independent synapses (2 and 3D and test whether the observed inverse correlation between fluorophores conforms to size dependent exclusion, and further, whether patterned states are predicted when model parameters are estimated on individual synapses. All synapses analysed satisfy these conditions demonstrating that the mechanisms of protein redistribution have identifiable signatures in their spatial patterns. We conclude that energy processes implicit in protein size based segregation can drive the patternation observed in individual synapses, at least for the specific examples tested, such that no additional processes need to be invoked. This implies that biophysical processes within the membrane interface have a crucial impact on cell:cell communication and cell signalling, governing protein interactions and protein aggregation.

  2. In Vivo Ribbon Mobility and Turnover of Ribeye at Zebrafish Hair Cell Synapses.

    Science.gov (United States)

    Graydon, Cole W; Manor, Uri; Kindt, Katie S

    2017-08-07

    Ribbons are presynaptic structures that mediate synaptic vesicle release in some sensory cells of the auditory and visual systems. Although composed predominately of the protein Ribeye, very little is known about the structural dynamics of ribbons. Here we describe the in vivo mobility and turnover of Ribeye at hair cell ribbon synapses by monitoring fluorescence recovery after photobleaching (FRAP) in transgenic zebrafish with GFP-tagged Ribeye. We show that Ribeye can exchange between halves of a ribbon within ~1 minute in a manner that is consistent with a simple diffusion mechanism. In contrast, exchange of Ribeye between other ribbons via the cell's cytoplasm takes several hours.

  3. A directionally-selective neuromorphic circuit based on reciprocal synapses in Starburst Amacrine Cells.

    Science.gov (United States)

    Tseng, Ko-Chung; Parker, Alice C; Joshi, Jonathan

    2011-01-01

    Starburst Amacrine Cells (SACs) play a major role in the detection of directional motion in the biological retina. The starburst amacrine cell has intrinsic electrical mechanisms for producing directional selectivity (DS). GABA transmitter-receptor interactions between two overlapping SACs make DS more robust. We present a compartmentalized CMOS neuromorphic circuit that models a portion of two biological starburst amacrine cells in the retina and includes a simplified model of reciprocal interaction between the dendritic branches of SACs. We demonstrate that a neuromorphic circuit incorporating the reciprocal synapses enhances the responses in the neuromorphic dendritic tip and generates robust directional selectivity.

  4. MUC16 provides immune protection by inhibiting synapse formation between NK and ovarian tumor cells

    Directory of Open Access Journals (Sweden)

    Migneault Martine

    2010-01-01

    Full Text Available Abstract Background Cancer cells utilize a variety of mechanisms to evade immune detection and attack. Effective immune detection largely relies on the formation of an immune synapse which requires close contact between immune cells and their targets. Here, we show that MUC16, a heavily glycosylated 3-5 million Da mucin expressed on the surface of ovarian tumor cells, inhibits the formation of immune synapses between NK cells and ovarian tumor targets. Our results indicate that MUC16-mediated inhibition of immune synapse formation is an effective mechanism employed by ovarian tumors to evade immune recognition. Results Expression of low levels of MUC16 strongly correlated with an increased number of conjugates and activating immune synapses between ovarian tumor cells and primary naïve NK cells. MUC16-knockdown ovarian tumor cells were more susceptible to lysis by primary NK cells than MUC16 expressing controls. This increased lysis was not due to differences in the expression levels of the ligands for the activating receptors DNAM-1 and NKG2D. The NK cell leukemia cell line (NKL, which does not express KIRs but are positive for DNAM-1 and NKG2D, also conjugated and lysed MUC16-knockdown cells more efficiently than MUC16 expressing controls. Tumor cells that survived the NKL challenge expressed higher levels of MUC16 indicating selective lysis of MUC16low targets. The higher csMUC16 levels on the NKL resistant tumor cells correlated with more protection from lysis as compared to target cells that were never exposed to the effectors. Conclusion MUC16, a carrier of the tumor marker CA125, has previously been shown to facilitate ovarian tumor metastasis and inhibits NK cell mediated lysis of tumor targets. Our data now demonstrates that MUC16 expressing ovarian cancer cells are protected from recognition by NK cells. The immune protection provided by MUC16 may lead to selective survival of ovarian cancer cells that are more efficient in

  5. Chronic ethanol exposure decreases CB1 receptor function at GABAergic synapses in the rat central amygdala

    DEFF Research Database (Denmark)

    Varodayan, Florence P.; Soni, Neeraj; Bajo, Michal

    2016-01-01

    The endogenous cannabinoids (eCBs) influence the acute response to ethanol and the development of tolerance, dependence and relapse. Chronic alcohol exposure alters eCB levels and Type 1 cannabinoid receptor (CB1) expression and function in brain regions associated with addiction. CB1 inhibits GABA...

  6. Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus.

    Science.gov (United States)

    Horner, Stacy M; Liu, Helene Minyi; Park, Hae Soo; Briley, Jessica; Gale, Michael

    2011-08-30

    RIG-I is a cytosolic pathogen recognition receptor that engages viral RNA in infected cells to trigger innate immune defenses through its adaptor protein MAVS. MAVS resides on mitochondria and peroxisomes, but how its signaling is coordinated among these organelles has not been defined. Here we show that a major site of MAVS signaling is the mitochondrial-associated membrane (MAM), a distinct membrane compartment that links the endoplasmic reticulum to mitochondria. During RNA virus infection, RIG-I is recruited to the MAM to bind MAVS. Dynamic MAM tethering to mitochondria and peroxisomes then coordinates MAVS localization to form a signaling synapse between membranes. Importantly, the hepatitis C virus NS3/4A protease, which cleaves MAVS to support persistent infection, targets this synapse for MAVS proteolysis from the MAM, but not from mitochondria, to ablate RIG-I signaling of immune defenses. Thus, the MAM mediates an intracellular immune synapse that directs antiviral innate immunity.

  7. Reduced synapse and axon numbers in the prefrontal cortex of rats subjected to a chronic stress model for depression

    DEFF Research Database (Denmark)

    Csabai, Dávid; Wiborg, Ove; Czéh, Boldizsár

    2018-01-01

    Stressful experiences can induce structural changes in neurons of the limbic system. These cellular changes contribute to the development of stress-induced psychopathologies like depressive disorders. In the prefrontal cortex of chronically stressed animals, reduced dendritic length and spine loss...... have been reported. This loss of dendritic material should consequently result in synapse loss as well, because of the reduced dendritic surface. But so far, no one studied synapse numbers in the prefrontal cortex of chronically stressed animals. Here, we examined synaptic contacts in rats subjected...... to an animal model for depression, where animals are exposed to a chronic stress protocol. Our hypothesis was that long term stress should reduce the number of axo-spinous synapses in the medial prefrontal cortex. Adult male rats were exposed to daily stress for 9 weeks and afterward we did a post mortem...

  8. A Novel Chaotic Neural Network Using Memristive Synapse with Applications in Associative Memory

    Directory of Open Access Journals (Sweden)

    Xiaofang Hu

    2012-01-01

    Full Text Available Chaotic Neural Network, also denoted by the acronym CNN, has rich dynamical behaviors that can be harnessed in promising engineering applications. However, due to its complex synapse learning rules and network structure, it is difficult to update its synaptic weights quickly and implement its large scale physical circuit. This paper addresses an implementation scheme of a novel CNN with memristive neural synapses that may provide a feasible solution for further development of CNN. Memristor, widely known as the fourth fundamental circuit element, was theoretically predicted by Chua in 1971 and has been developed in 2008 by the researchers in Hewlett-Packard Laboratory. Memristor based hybrid nanoscale CMOS technology is expected to revolutionize the digital and neuromorphic computation. The proposed memristive CNN has four significant features: (1 nanoscale memristors can simplify the synaptic circuit greatly and enable the synaptic weights update easily; (2 it can separate stored patterns from superimposed input; (3 it can deal with one-to-many associative memory; (4 it can deal with many-to-many associative memory. Simulation results are provided to illustrate the effectiveness of the proposed scheme.

  9. Fasudil, a Clinically Used ROCK Inhibitor, Stabilizes Rod Photoreceptor Synapses after Retinal Detachment.

    Science.gov (United States)

    Townes-Anderson, Ellen; Wang, Jianfeng; Halász, Éva; Sugino, Ilene; Pitler, Amy; Whitehead, Ian; Zarbin, Marco

    2017-06-01

    Retinal detachment disrupts the rod-bipolar synapse in the outer plexiform layer by retraction of rod axons. We showed that breakage is due to RhoA activation whereas inhibition of Rho kinase (ROCK), using Y27632, reduces synaptic damage. We test whether the ROCK inhibitor fasudil, used for other clinical applications, can prevent synaptic injury after detachment. Detachments were made in pigs by subretinal injection of balanced salt solution (BSS) or fasudil (1, 10 mM). In some animals, fasudil was injected intravitreally after BSS-induced detachment. After 2 to 4 hours, retinae were fixed for immunocytochemistry and confocal microscopy. Axon retraction was quantified by imaging synaptic vesicle label in the outer nuclear layer. Apoptosis was analyzed using propidium iodide staining. For biochemical analysis by Western blotting, retinal explants, detached from retinal pigmented epithelium, were cultured for 2 hours. Subretinal injection of fasudil (10 mM) reduced retraction of rod spherules by 51.3% compared to control detachments ( n = 3 pigs, P = 0.002). Intravitreal injection of 10 mM fasudil, a more clinically feasible route of administration, also reduced retraction (28.7%, n = 5, P ROCK, was decreased with 30 μM fasudil ( n = 8-10 explants, P ROCK signaling with fasudil reduced photoreceptor degeneration and preserved the rod-bipolar synapse after retinal detachment. These results support the possibility, previously tested with Y27632, that ROCK inhibition may attenuate synaptic damage in iatrogenic detachments.

  10. Multiple forms of metaplasticity at a single hippocampal synapse during late postnatal development

    Directory of Open Access Journals (Sweden)

    Daniel G. McHail

    2015-04-01

    Full Text Available Metaplasticity refers to adjustment in the requirements for induction of synaptic plasticity based on the prior history of activity. Numerous forms of developmental metaplasticity are observed at Schaffer collateral synapses in the rat hippocampus at the end of the third postnatal week. Emergence of spatial learning and memory at this developmental stage suggests possible involvement of metaplasticity in the final maturation of the hippocampus. Three distinct metaplastic phenomena are apparent. (1 As transmitter release probability increases with increasing age, presynaptic potentiation is reduced. (2 Alterations in the composition and channel conductance properties of AMPARs facilitate the induction of postsynaptic potentiation with increasing age. (3 Low frequency stimulation inhibits subsequent induction of potentiation in animals older but not younger than 3 weeks of age. Thus, many forms of plasticity expressed at SC-CA1 synapses are different in rats younger and older than 3 weeks of age, illustrating the complex orchestration of physiological modifications that underlie the maturation of hippocampal excitatory synaptic transmission. This review paper describes three late postnatal modifications to synaptic plasticity induction in the hippocampus and attempts to relate these metaplastic changes to developmental alterations in hippocampal network activity and the maturation of contextual learning.

  11. Artificial neuron synapse transistor based on silicon nanomembrane on plastic substrate

    Science.gov (United States)

    Liu, Minjie; Huang, Gaoshan; Feng, Ping; Guo, Qinglei; Shao, Feng; Tian, Ziao; Li, Gongjin; Wan, Qing; Mei, Yongfeng

    2017-06-01

    Silicon nanomembrane (SiNM) transistors gated by chitosan membrane were fabricated on plastic substrate to mimic synapse behaviors. The device has both a bottom proton gate (BG) and multiple side gates (SG). Electrical transfer properties of BG show hysteresis curves different from those of typical SiO2 gate dielectric. Synaptic behaviors and functions by linear accumulation and release of protons have been mimicked on this device: excitatory post-synaptic current (EPSC) and paired pulse facilitation behavior of biological synapses were mimicked and the paired-pulse facilitation index could be effectively tuned by the spike interval applied on the BG. Synaptic behaviors and functions, including short-term memory and long-term memory, were also experimentally demonstrated in BG mode. Meanwhile, spiking logic operation and logic modulation were realized in SG mode. Project supported by the National Natural Science Foundation of China (No. 51322201), the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20120071110025), and Science and Technology Commission of Shanghai Municipality (No. 14JC1400200).

  12. Activity-dependent transport of the transcriptional coactivator CRTC1 from synapse to nucleus.

    Science.gov (United States)

    Ch'ng, Toh Hean; Uzgil, Besim; Lin, Peter; Avliyakulov, Nuraly K; O'Dell, Thomas J; Martin, Kelsey C

    2012-07-06

    Long-lasting changes in synaptic efficacy, such as those underlying long-term memory, require transcription. Activity-dependent transport of synaptically localized transcriptional regulators provides a direct means of coupling synaptic stimulation with changes in transcription. The CREB-regulated transcriptional coactivator (CRTC1), which is required for long-term hippocampal plasticity, binds CREB to potently promote transcription. We show that CRTC1 localizes to synapses in silenced hippocampal neurons but translocates to the nucleus in response to localized synaptic stimulation. Regulated nuclear translocation occurs only in excitatory neurons and requires calcium influx and calcineurin activation. CRTC1 is controlled in a dual fashion with activity regulating CRTC1 nuclear translocation and cAMP modulating its persistence in the nucleus. Neuronal activity triggers a complex change in CRTC1 phosphorylation, suggesting that CRTC1 may link specific types of stimuli to specific changes in gene expression. Together, our results indicate that synapse-to-nuclear transport of CRTC1 dynamically informs the nucleus about synaptic activity. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Inference of topology and the nature of synapses, and the flow of information in neuronal networks

    Science.gov (United States)

    Borges, F. S.; Lameu, E. L.; Iarosz, K. C.; Protachevicz, P. R.; Caldas, I. L.; Viana, R. L.; Macau, E. E. N.; Batista, A. M.; Baptista, M. S.

    2018-02-01

    The characterization of neuronal connectivity is one of the most important matters in neuroscience. In this work, we show that a recently proposed informational quantity, the causal mutual information, employed with an appropriate methodology, can be used not only to correctly infer the direction of the underlying physical synapses, but also to identify their excitatory or inhibitory nature, considering easy to handle and measure bivariate time series. The success of our approach relies on a surprising property found in neuronal networks by which nonadjacent neurons do "understand" each other (positive mutual information), however, this exchange of information is not capable of causing effect (zero transfer entropy). Remarkably, inhibitory connections, responsible for enhancing synchronization, transfer more information than excitatory connections, known to enhance entropy in the network. We also demonstrate that our methodology can be used to correctly infer directionality of synapses even in the presence of dynamic and observational Gaussian noise, and is also successful in providing the effective directionality of intermodular connectivity, when only mean fields can be measured.

  14. Giant neurons and associated synapses in the peripheral nervous system of whip spiders.

    Science.gov (United States)

    Foelix, R F; Troyer, D

    1980-08-01

    Whip spiders (Amblypygi) are arachnids with a specialized first pair of legs. These legs are unusually long (20-25 cm) and are not used for walking. Instead their lengthy tarsi (7-8 cm) are covered with thousands of sensory hairs (mechano- and chemoreceptors). The legs thus resemble antennae of insects. Each sensory hair is associated with 4-40 neurons whose axons are grouped together to form two large tarsal nerves. The nerves contain about 23 000 sensory axons. Whereas most of the axons measure only 0.1-0.2 microns in diameter, a few are exceptionally large (3-20 microns). These are giant fibres. Their large somata are located in specific segments of the tarsi. The branched dendrites of the giant neurons receive hundreds of chemical synapses, presumably from the sensory axons of the hair sensilla. Since stimulation of the tarsal tip elicits fast withdrawal reaction (greater than or equal to 80 ms), it is likely that the giant fibres provide the pathway for the rapid conduction of nerve impulses to the motor centres of the C.N.S. The system is comparable to the giant fibre system of certain insects. In contrast, however, the giant interneurons and associated synapses of whip spiders are not located in the C.N.S., but lie some 20 cm removed in the periphery. Thus, some primary sensory information already becomes processed in the peripheral nervous system, before it reaches the C.N.S.

  15. Synaptic Conversion of Chloride-Dependent Synapses in Spinal Nociceptive Circuits: Roles in Neuropathic Pain

    Directory of Open Access Journals (Sweden)

    Mark S. Cooper

    2011-01-01

    Full Text Available Electrophysiological conversion of chloride-dependent synapses from inhibitory to excitatory function, as a result of aberrant neuronal chloride homeostasis, is a known mechanism for the genesis of neuropathic pain. This paper examines theoretically how this type of synaptic conversion can disrupt circuit logic in spinal nociceptive circuits. First, a mathematical scaling factor is developed to represent local aberration in chloride electrochemical driving potential. Using this mathematical scaling factor, electrophysiological symbols are developed to represent the magnitude of synaptic conversion within nociceptive circuits. When inserted into a nociceptive circuit diagram, these symbols assist in understanding the generation of neuropathic pain associated with the collapse of transmembrane chloride gradients. A more generalized scaling factor is also derived to represent the interplay of chloride and bicarbonate driving potentials on the function of GABAergic and glycinergic synapses. These mathematical and symbolic representations of synaptic conversion help illustrate the critical role that anion driving potentials play in the transduction of pain. Using these representations, we discuss ramifications of glial-mediated synaptic conversion in the genesis, and treatment, of neuropathic pain.

  16. Correlations induced by depressing synapses in critically self-organized networks with quenched dynamics.

    Science.gov (United States)

    Campos, João Guilherme Ferreira; Costa, Ariadne de Andrade; Copelli, Mauro; Kinouchi, Osame

    2017-04-01

    In a recent work, mean-field analysis and computer simulations were employed to analyze critical self-organization in networks of excitable cellular automata where randomly chosen synapses in the network were depressed after each spike (the so-called annealed dynamics). Calculations agree with simulations of the annealed version, showing that the nominal branching ratio σ converges to unity in the thermodynamic limit, as expected of a self-organized critical system. However, the question remains whether the same results apply to the biological case where only the synapses of firing neurons are depressed (the so-called quenched dynamics). We show that simulations of the quenched model yield significant deviations from σ=1 due to spatial correlations. However, the model is shown to be critical, as the largest eigenvalue of the synaptic matrix approaches unity in the thermodynamic limit, that is, λ_{c}=1. We also study the finite size effects near the critical state as a function of the parameters of the synaptic dynamics.

  17. Astrocyte-secreted thrombospondin-1 modulates synapse and spine defects in the fragile X mouse model.

    Science.gov (United States)

    Cheng, Connie; Lau, Sally K M; Doering, Laurie C

    2016-08-02

    Astrocytes are key participants in various aspects of brain development and function, many of which are executed via secreted proteins. Defects in astrocyte signaling are implicated in neurodevelopmental disorders characterized by abnormal neural circuitry such as Fragile X syndrome (FXS). In animal models of FXS, the loss in expression of the Fragile X mental retardation 1 protein (FMRP) from astrocytes is associated with delayed dendrite maturation and improper synapse formation; however, the effect of astrocyte-derived factors on the development of neurons is not known. Thrombospondin-1 (TSP-1) is an important astrocyte-secreted protein that is involved in the regulation of spine development and synaptogenesis. In this study, we found that cultured astrocytes isolated from an Fmr1 knockout (Fmr1 KO) mouse model of FXS displayed a significant decrease in TSP-1 protein expression compared to the wildtype (WT) astrocytes. Correspondingly, Fmr1 KO hippocampal neurons exhibited morphological deficits in dendritic spines and alterations in excitatory synapse formation following long-term culture. All spine and synaptic abnormalities were prevented in the presence of either astrocyte-conditioned media or a feeder layer derived from FMRP-expressing astrocytes, or following the application of exogenous TSP-1. Importantly, this work demonstrates the integral role of astrocyte-secreted signals in the establishment of neuronal communication and identifies soluble TSP-1 as a potential therapeutic target for Fragile X syndrome.

  18. Distortion of neuronal geometry and formation of aberrant synapses in neuronal storage disease.

    Science.gov (United States)

    Purpura, D P; Suzuki, K

    1976-10-29

    Golgi and electron microscope studies of cortical neurons in several lysosomal storage diseases were carried out to elucidate structural features of the large neural processes (meganeurites) that develop as storage sites for accumulated undigestible substrates. Meganeurites occur preferentially in pyramidal neurons wherein they develop between the base of the perikaryon and the initial portion of the axon. They frequently give rise to secondary neurites which bear filopodium-like processes. Meganeurites may possess spines some of which are contacted by presynaptic processes containing synaptic vesicles. The extent of meganeurite development is related to the onset, severity and clinical course of neuronal storage disease. Extensive development of bizarre and pleomorphic meganeurites occurs in classical Tay-Sachs disease (infantile GM2-gangliosidosis, B variant), whereas a smaller proportion of neurons exhibits meganeurites in juvenile GM2-hangliosidosis and Hurler's disease. Meganeurites with spines and spine synapses were prominent in GM2-gangliosidosis, AB variant. It is proposed that meganeurites and meganeurite synapses contribute to the onset and progression of neuronal dysfunction in storage diseases by altering electrical properties of the neuron and modifying integrative operations of somadendritic synaptic inputs.

  19. Aging-related impairments of hippocampal mossy fibers synapses on CA3 pyramidal cells.

    Science.gov (United States)

    Villanueva-Castillo, Cindy; Tecuatl, Carolina; Herrera-López, Gabriel; Galván, Emilio J

    2017-01-01

    The network interaction between the dentate gyrus and area CA3 of the hippocampus is responsible for pattern separation, a process that underlies the formation of new memories, and which is naturally diminished in the aged brain. At the cellular level, aging is accompanied by a progression of biochemical modifications that ultimately affects its ability to generate and consolidate long-term potentiation. Although the synapse between dentate gyrus via the mossy fibers (MFs) onto CA3 neurons has been subject of extensive studies, the question of how aging affects the MF-CA3 synapse is still unsolved. Extracellular and whole-cell recordings from acute hippocampal slices of aged Wistar rats (34 ± 2 months old) show that aging is accompanied by a reduction in the interneuron-mediated inhibitory mechanisms of area CA3. Several MF-mediated forms of short-term plasticity, MF long-term potentiation and at least one of the critical signaling cascades necessary for potentiation are also compromised in the aged brain. An analysis of the spontaneous glutamatergic and gamma-aminobutyric acid-mediated currents on CA3 cells reveal a dramatic alteration in amplitude and frequency of the nonevoked events. CA3 cells also exhibited increased intrinsic excitability. Together, these results demonstrate that aging is accompanied by a decrease in the GABAergic inhibition, reduced expression of short- and long-term forms of synaptic plasticity, and increased intrinsic excitability. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Persistent long-term facilitation at an identified synapse becomes labile with activation of short-term heterosynaptic plasticity.

    Science.gov (United States)

    Hu, Jiang-Yuan; Schacher, Samuel

    2014-04-02

    Short-term and long-term synaptic plasticity are cellular correlates of learning and memory of different durations. Little is known, however, how these two forms of plasticity interact at the same synaptic connection. We examined the reciprocal impact of short-term heterosynaptic or homosynaptic plasticity at sensorimotor synapses of Aplysia in cell culture when expressing persistent long-term facilitation (P-LTF) evoked by serotonin [5-hydroxytryptamine (5-HT)]. Short-term heterosynaptic plasticity induced by 5-HT (facilitation) or the neuropeptide FMRFa (depression) and short-term homosynaptic plasticity induced by tetanus [post-tetanic potentiation (PTP)] or low-frequency stimulation [homosynaptic depression (HSD)] of the sensory neuron were expressed in both control synapses and synapses expressing P-LTF in the absence or presence of protein synthesis inhibitors. All forms of short-term plasticity failed to significantly affect ongoing P-LTF in the absence of protein synthesis inhibitors. However, P-LTF reversed to control levels when either 5-HT or FMRFa was applied in the presence of rapamycin. In contrast, P-LTF was unaffected when either PTP or HSD was evoked in the presence of either rapamycin or anisomycin. These results indicate that synapses expressing persistent plasticity acquire a "new" baseline and functionally express short-term changes as naive synapses, but the new baseline becomes labile following selective activations-heterosynaptic stimuli that evoke opposite forms of plasticity-such that when presented in the presence of protein synthesis inhibitors produce a rapid reversal of the persistent plasticity. Activity-selective induction of a labile state at synapses expressing persistent plasticity may facilitate the development of therapies for reversing inappropriate memories.

  1. Spine Calcium Transients Induced by Synaptically-Evoked Action Potentials Can Predict Synapse Location and Establish Synaptic Democracy

    Science.gov (United States)

    Meredith, Rhiannon M.; van Ooyen, Arjen

    2012-01-01

    CA1 pyramidal neurons receive hundreds of synaptic inputs at different distances from the soma. Distance-dependent synaptic scaling enables distal and proximal synapses to influence the somatic membrane equally, a phenomenon called “synaptic democracy”. How this is established is unclear. The backpropagating action potential (BAP) is hypothesised to provide distance-dependent information to synapses, allowing synaptic strengths to scale accordingly. Experimental measurements show that a BAP evoked by current injection at the soma causes calcium currents in the apical shaft whose amplitudes decay with distance from the soma. However, in vivo action potentials are not induced by somatic current injection but by synaptic inputs along the dendrites, which creates a different excitable state of the dendrites. Due to technical limitations, it is not possible to study experimentally whether distance information can also be provided by synaptically-evoked BAPs. Therefore we adapted a realistic morphological and electrophysiological model to measure BAP-induced voltage and calcium signals in spines after Schaffer collateral synapse stimulation. We show that peak calcium concentration is highly correlated with soma-synapse distance under a number of physiologically-realistic suprathreshold stimulation regimes and for a range of dendritic morphologies. Peak calcium levels also predicted the attenuation of the EPSP across the dendritic tree. Furthermore, we show that peak calcium can be used to set up a synaptic democracy in a homeostatic manner, whereby synapses regulate their synaptic strength on the basis of the difference between peak calcium and a uniform target value. We conclude that information derived from synaptically-generated BAPs can indicate synapse location and can subsequently be utilised to implement a synaptic democracy. PMID:22719238

  2. Reduced cortical distribution volume of iodine-123 iomazenil in Alzheimer's disease as a measure of loss of synapses

    DEFF Research Database (Denmark)

    Soricelli, A; Postiglione, A; Grivet-Fojaja, M R

    1996-01-01

    indiscriminately to affect all cortical neurons, albeit more so in some areas than in others. In this pilot study we measured Vd in six patients with probable AD and in five age-matched controls using a brain-dedicated single-photon emission tomography scanner allowing all cortical levels to be sampled......Iodine-123 labelled iomazenil (IMZ) is a specific tracer for the GABAA receptor, the dominant inhibitory synapse of the brain. The cerebral distribution volume (Vd) of IMZ may be taken as a quantitative measure of these synapses in Alzheimer's disease (AD), where synaptic loss tends...

  3. Repetitive activation of the corticospinal pathway by means of rTMS may reduce the efficiency of corticomotoneuronal synapses

    DEFF Research Database (Denmark)

    Taube, Wolfgang; Leukel, Christian; Nielsen, Jens Bo

    2015-01-01

    Low-frequency rTMS applied to the primary motor cortex (M1) may produce depression of motor-evoked potentials (MEPs). This depression is commonly assumed to reflect changes in cortical circuits. However, little is known about rTMS-induced effects on subcortical circuits. Therefore, the present st......-either at M1 and/or the CM synapse. As the early facilitation reflects activation of direct CM projections, the most likely site of action is the synapse of the CM neurons onto spinal motoneurons....

  4. Genetic Aspects of Autism Spectrum Disorders: Insights from Animal Models

    Directory of Open Access Journals (Sweden)

    Swati eBanerjee

    2014-02-01

    Full Text Available Autism spectrum disorders (ASD are a complex neurodevelopmental disorder that display a triad of core behavioral deficits including restricted interests, often accompanied by repetitive behavior, deficits in language and communication, and an inability to engage in reciprocal social interactions. ASD is among the most heritable disorders but is not a simple disorder with a singular pathology and has a rather complex etiology. It is interesting to note that perturbations in synaptic growth, development and stability underlie a variety of neuropsychiatric disorders, including ASD, schizophrenia, epilepsy and intellectual disability. Biological characterization of an increasing repertoire of synaptic mutants in various model organisms indicates synaptic dysfunction as causal in the pathophysiology of ASD. Our understanding of the genes and genetic pathways that contribute towards the formation, stabilization and maintenance of functional synapses coupled with an in-depth phenotypic analysis of the cellular and behavioral characteristics is therefore essential to unraveling the pathogenesis of these disorders. In this review, we discuss the genetic aspects of ASD emphasizing on the well conserved set of genes and genetic pathways implicated in this disorder, many of which contribute to synapse assembly and maintenance across species. We also review how fundamental research using animal models is providing key insights into the various facets of human ASD.

  5. Thyroid hormone is required for pruning, functioning and long-term maintenance of afferent inner hair cell synapses.

    Science.gov (United States)

    Sundaresan, Srividya; Kong, Jee-Hyun; Fang, Qing; Salles, Felipe T; Wangsawihardja, Felix; Ricci, Anthony J; Mustapha, Mirna

    2016-01-01

    Functional maturation of afferent synaptic connections to inner hair cells (IHCs) involves pruning of excess synapses formed during development, as well as the strengthening and survival of the retained synapses. These events take place during the thyroid hormone (TH)-critical period of cochlear development, which is in the perinatal period for mice and in the third trimester for humans. Here, we used the hypothyroid Snell dwarf mouse (Pit1(dw)) as a model to study the role of TH in afferent type I synaptic refinement and functional maturation. We observed defects in afferent synaptic pruning and delays in calcium channel clustering in the IHCs of Pit1(dw) mice. Nevertheless, calcium currents and capacitance reached near normal levels in Pit1(dw) IHCs by the age of onset of hearing, despite the excess number of retained synapses. We restored normal synaptic pruning in Pit1(dw) IHCs by supplementing with TH from postnatal day (P)3 to P8, establishing this window as being critical for TH action on this process. Afferent terminals of older Pit1(dw) IHCs showed evidence of excitotoxic damage accompanied by a concomitant reduction in the levels of the glial glutamate transporter, GLAST. Our results indicate that a lack of TH during a critical period of inner ear development causes defects in pruning and long-term homeostatic maintenance of afferent synapses. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Coding deficits in noise-induced hidden hearing loss may stem from incomplete repair of ribbon synapses in the cochlea

    Directory of Open Access Journals (Sweden)

    Lijuan eShi

    2016-05-01

    Full Text Available Recent evidence has shown that noise-induced damage to the synapse between inner hair cells (IHCs and type I afferent auditory nerve fibers (ANFs may occur in the absence of permanent threshold shift (PTS, and that synapses connecting IHCs with low spontaneous rate (SR ANFs are disproportionately affected. Due to the functional importance of low-SR ANF units for temporal processing and signal coding in noisy backgrounds, deficits in cochlear coding associated with noise-induced damage may result in significant difficulties with temporal processing and hearing in noise (i.e., hidden hearing loss. However, significant noise-induced coding deficits have not been reported at the single unit level following the loss of low-SR units. We have found evidence to suggest that some aspects of neural coding are not significantly changed with the initial loss of low-SR ANFs, and that further coding deficits arise in association with the subsequent reestablishment of the synapses. This suggests that synaptopathy in hidden hearing loss may be the result of insufficient repair of disrupted synapses, and not simply due to the loss of low-SR units. These coding deficits include decreases in driven spike rate for intensity coding as well as several aspects of temporal coding: spike latency, peak-to-sustained spike ratio and the recovery of spike rate as a function of click-interval.

  7. Amyloid Beta Peptides Block New Synapse Assembly by Nogo Receptor-Mediated Inhibition of T-Type Calcium Channels.

    Science.gov (United States)

    Zhao, Yanjun; Sivaji, Sivaprakash; Chiang, Michael C; Ali, Haadi; Zukowski, Monica; Ali, Sareen; Kennedy, Bryan; Sklyar, Alex; Cheng, Alice; Guo, Zihan; Reed, Alexander K; Kodali, Ravindra; Borowski, Jennifer; Frost, Georgia; Beukema, Patrick; Wills, Zachary P

    2017-10-11

    Compelling evidence links amyloid beta (Aβ) peptide accumulation in the brains of Alzheimer's disease (AD) patients with the emergence of learning and memory deficits, yet a clear understanding of the events that drive this synaptic pathology are lacking. We present evidence that neurons exposed to Aβ are unable to form new synapses, resulting in learning deficits in vivo. We demonstrate the Nogo receptor family (NgR1-3) acts as Aβ receptors mediating an inhibition of synapse assembly, plasticity, and learning. Live imaging studies reveal Aβ activates NgRs on the dendritic shaft of neurons, triggering an inhibition of calcium signaling. We define T-type calcium channels as a target of Aβ-NgR signaling, mediating Aβ's inhibitory effects on calcium, synapse assembly, plasticity, and learning. These studies highlight deficits in new synapse assembly as a potential initiator of cognitive pathology in AD, and pinpoint calcium dysregulation mediated by NgRs and T-type channels as key components. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Learning Discloses Abnormal Structural and Functional Plasticity at Hippocampal Synapses in the APP23 Mouse Model of Alzheimer's Disease

    Science.gov (United States)

    Middei, Silvia; Roberto, Anna; Berretta, Nicola; Panico, Maria Beatrice; Lista, Simone; Bernardi, Giorgio; Mercuri, Nicola B.; Ammassari-Teule, Martine; Nistico, Robert

    2010-01-01

    B6-Tg/Thy1APP23Sdz (APP23) mutant mice exhibit neurohistological hallmarks of Alzheimer's disease but show intact basal hippocampal neurotransmission and synaptic plasticity. Here, we examine whether spatial learning differently modifies the structural and electrophysiological properties of hippocampal synapses in APP23 and wild-type mice. While…

  9. Crossing the strategic synapse: aligning hospital strategy with shared system priorities in ontario, Canada.

    Science.gov (United States)

    Brown, Adalsteinn D; Alikhan, L Miin; Seeman, Neil L

    2006-01-01

    The dominant system-level strategic priorities facing Ontario hospitals were elicited and validated. Researchers employed a multi-stage survey and focus group process to solicit the opinions of senior hospital managers and other healthcare stakeholders. Four shared, system-level priorities emerged: (i) improved clinical and staff recruitment; (ii) stronger inter-hospital partnership and vertical integration along the continuum of care; (iii) improved patient safety; and (iv) the implementation of decision support systems. A subsequent CEO validation survey showed strong endorsement of these system priorities. The authors conclude that a survey, focus group, and validation process can reveal shared system priorities and can highlight emergent organizational strategies designed to resolve them. This process, in which a hospital learns of the priorities facing other hospitals in a system, is a potentially useful managerial tool to promote "strategic synapse"-whereby management can adjust internal organizational strategy and local scorecards to align with shared system priorities.

  10. REM sleep selectively prunes and maintains new synapses in development and learning.

    Science.gov (United States)

    Li, Wei; Ma, Lei; Yang, Guang; Gan, Wen-Biao

    2017-03-01

    The functions and underlying mechanisms of rapid eye movement (REM) sleep remain unclear. Here we show that REM sleep prunes newly formed postsynaptic dendritic spines of layer 5 pyramidal neurons in the mouse motor cortex during development and motor learning. This REM sleep-dependent elimination of new spines facilitates subsequent spine formation during development and when a new motor task is learned, indicating a role for REM sleep in pruning to balance the number of new spines formed over time. Moreover, REM sleep also strengthens and maintains newly formed spines, which are critical for neuronal circuit development and behavioral improvement after learning. We further show that dendritic calcium spikes arising during REM sleep are important for pruning and strengthening new spines. Together, these findings indicate that REM sleep has multifaceted functions in brain development, learning and memory consolidation by selectively eliminating and maintaining newly formed synapses via dendritic calcium spike-dependent mechanisms.

  11. Neural Cell Adhesion Molecules of the Immunoglobulin Superfamily Regulate Synapse Formation, Maintenance, and Function.

    Science.gov (United States)

    Sytnyk, Vladimir; Leshchyns'ka, Iryna; Schachner, Melitta

    2017-05-01

    Immunoglobulin superfamily adhesion molecules are among the most abundant proteins in vertebrate and invertebrate nervous systems. Prominent family members are the neural cell adhesion molecules NCAM and L1, which were the first to be shown to be essential not only in development but also in synaptic function and as key regulators of synapse formation, synaptic activity, plasticity, and synaptic vesicle recycling at distinct developmental and activity stages. In addition to interacting with each other, adhesion molecules interact with ion channels and cytokine and neurotransmitter receptors. Mutations in their genes are linked to neurological disorders associated with abnormal development and synaptic functioning. This review presents an overview of recent studies on these molecules and their crucial impact on neurological disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Resolving dynamics of cell signaling via real-time imaging of the immunological synapse.

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Mark A.; Pfeiffer, Janet R. (University of New Mexico, Albuquerque, NM); Wilson, Bridget S. (University of New Mexico, Albuquerque, NM); Timlin, Jerilyn Ann; Thomas, James L. (University of New Mexico, Albuquerque, NM); Lidke, Keith A. (University of New Mexico, Albuquerque, NM); Spendier, Kathrin (University of New Mexico, Albuquerque, NM); Oliver, Janet M. (University of New Mexico, Albuquerque, NM); Carroll-Portillo, Amanda (University of New Mexico, Albuquerque, NM); Aaron, Jesse S.; Mirijanian, Dina T.; Carson, Bryan D.; Burns, Alan Richard; Rebeil, Roberto

    2009-10-01

    This highly interdisciplinary team has developed dual-color, total internal reflection microscopy (TIRF-M) methods that enable us to optically detect and track in real time protein migration and clustering at membrane interfaces. By coupling TIRF-M with advanced analysis techniques (image correlation spectroscopy, single particle tracking) we have captured subtle changes in membrane organization that characterize immune responses. We have used this approach to elucidate the initial stages of cell activation in the IgE signaling network of mast cells and the Toll-like receptor (TLR-4) response in macrophages stimulated by bacteria. To help interpret these measurements, we have undertaken a computational modeling effort to connect the protein motion and lipid interactions. This work provides a deeper understanding of the initial stages of cellular response to external agents, including dynamics of interaction of key components in the signaling network at the 'immunological synapse,' the contact region of the cell and its adversary.

  13. Sensory experience shapes the development of the visual system's first synapse.

    Science.gov (United States)

    Dunn, Felice A; Della Santina, Luca; Parker, Edward D; Wong, Rachel O L

    2013-12-04

    Specific connectivity patterns among neurons create the basic architecture underlying parallel processing in our nervous system. Here we focus on the visual system's first synapse to examine the structural and functional consequences of sensory deprivation on the establishment of parallel circuits. Dark rearing reduces synaptic strength between cones and cone bipolar cells, a previously unappreciated effect of sensory deprivation. In contrast, rod bipolar cells, which utilize the same glutamate receptor to contact rods, are unaffected by dark rearing. Underlying the physiological changes, we find the localization of metabotropic glutamate receptors within cone bipolar, but not rod bipolar, cell dendrites is a light-dependent process. Furthermore, although cone bipolar cells share common cone partners, each bipolar cell type that we examined depends differentially on sensory input to achieve mature connectivity. Thus, visual experience differentially affects maturation of rod versus cone pathways and of cell types within the cone pathway. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Changes in the numbers of ribbon synapses and expression of RIBEYE in salicylate-induced tinnitus.

    Science.gov (United States)

    Zhang, Feng-Ying; Xue, Yi-Xue; Liu, Wen-Jing; Yao, Yi-Long; Ma, Jun; Chen, Lin; Shang, Xiu-Li

    2014-01-01

    This study was performed to explore the mechanism underlying tinnitus by investigating the changes in the synaptic ribbons and RIBEYE expression in cochlear inner hair cells in salicylate-induced tinnitus. C57BL/6J mice were injected with salicylate (350 mg/kg) for 10 days and grouped. Behavioral procedures were performed to assess whether the animals experienced tinnitus. The specific presynaptic RIBEYE protein and non-specific postsynaptic glutamate receptor 2&3 protein in basilar membrane samples were examined by immunofluorescent labeling. RT-PCR and Western blot assays were used to examine RIBEYE expression. Serial sections were used to build three-dimensional models using 3ds MAX software to evaluate the changes in the synaptic ribbons. The administration of salicylate increased false positives in the behavioral procedure from 3 d to 10 d. The membrane profiles of inner hair cells in all mice were intact. The number of synaptic ribbons in the salicylate group increased on the 7(th) d and decreased on the 9(th) and 10(th) d. mRNA and protein expression of RIBEYE were initially up-regulated and later down-regulated by injecting salicylate for 10 consecutive days. This change in the ribbon synapses of cochlear inner hair cells in salicylate-induced mice might serve as a compensatory mechanism in the early stages of ototoxicity and contribute to tinnitus later. The alteration of RIBEYE expression could be responsible for the changes in the morphology of ribbon synapses and for salicylate-induced tinnitus. © 2014 S. Karger AG, Basel.

  15. Retinohypothalamic Tract Synapses in the Rat Suprachiasmatic Nucleus Demonstrate Short-Term Synaptic Plasticity

    Science.gov (United States)

    Moldavan, Mykhaylo G.

    2010-01-01

    The master circadian pacemaker located in the suprachiasmatic nucleus (SCN) is entrained by light intensity–dependent signals transmitted via the retinohypothalamic tract (RHT). Short-term plasticity at glutamatergic RHT–SCN synapses was studied using stimulus frequencies that simulated the firing of light sensitive retinal ganglion cells. The evoked excitatory postsynaptic current (eEPSC) was recorded from SCN neurons located in hypothalamic brain slices. The eEPSC amplitude was stable during 0.08 Hz stimulation and exhibited frequency-dependent short-term synaptic depression (SD) during 0.5 to 100 Hz stimulus trains in 95 of 99 (96%) recorded neurons. During SD the steady-state eEPSC amplitude decreased, whereas the cumulative charge transfer increased in a frequency-dependent manner and saturated at 20 Hz. SD was similar during subjective day and night and decreased with increasing temperature. Paired-pulse stimulation (PPS) and voltage-dependent Ca2+ channel (VDCC) blockers were used to characterize a presynaptic release mechanism. Facilitation was present in 30% and depression in 70% of studied neurons during PPS. Synaptic transmission was reduced by blocking both N- and P/Q-type presynaptic VDCCs, but only the N-type channel blocker significantly relieved SD. Aniracetam inhibited AMPA receptor desensitization but did not alter SD. Thus we concluded that SD is the principal form of short-term plasticity at RHT synapses, which presynaptically and frequency-dependently attenuates light-induced glutamatergic RHT synaptic transmission protecting SCN neurons against excessive excitation. PMID:20220078

  16. GABA and Endocannabinoids Mediate Depotentiation of Schaffer Collateral Synapses Induced by Stimulation of Temperoammonic Inputs.

    Science.gov (United States)

    Izumi, Yukitoshi; Zorumski, Charles F

    2016-01-01

    Long-term potentiation (LTP) of Schaffer collateral (SC) synapses in the hippocampus is thought to play a key role in episodic memory formation. Because the hippocampus is a shorter-term, limited capacity storage system, repeated bouts of learning and synaptic plasticity require that SC synapses reset to baseline at some point following LTP. We previously showed that repeated low frequency activation of temperoammonic (TA) inputs to the CA1 region depotentiates SC LTP without persistently altering basal transmission. This heterosynaptic depotentiation involves adenosine A1 receptors but not N-methyl-D-aspartate receptors, metabotropic glutamate receptors or L-type calcium channels. In the present study, we used rat hippocampal slices to explore other messengers contributing to TA-induced SC depotentiation, and provide evidence for the involvement of cannabinoid-1 and γ-aminobutyric acid (GABA) type-A receptors as more proximal signaling events leading to synaptic resetting, with A1 receptor activation serving as a downstream event. Surprisingly, we found that TA-induced SC depotentiation is independent of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate glutamate receptors. We also examined the involvement of mitogen-activated protein kinases (MAPKs), and found a role for extracellular-signal related kinase 1/2 and p38 MAPK, but not c-Jun-N-terminal kinase. These results indicate that low frequency stimulation of TA inputs to CA1 activates a complex signaling network that instructs SC synaptic resetting. The involvement of GABA and endocannabinoids suggest mechanisms that could contribute to cognitive dysfunction associated with substance abuse and neuropsychiatric disorders.

  17. Low voltage-activated calcium channels gate transmitter release at the dorsal root ganglion sandwich synapse.

    Science.gov (United States)

    Rozanski, Gabriela M; Nath, Arup R; Adams, Michael E; Stanley, Elise F

    2013-11-15

    A subpopulation of dorsal root ganglion (DRG) neurons are intimately attached in pairs and separated solely by thin satellite glial cell membrane septa. Stimulation of one neuron leads to transglial activation of its pair by a bi-, purinergic/glutamatergic synaptic pathway, a transmission mechanism that we term sandwich synapse (SS) transmission. Release of ATP from the stimulated neuron can be attributed to a classical mechanism involving Ca(2+) entry via voltage-gated calcium channels (CaV) but via an unknown channel type. Specific blockers and toxins ruled out CaV1, 2.1 and 2.2. Transmission was, however, blocked by a moderate depolarization (-50 mV) or low-concentration Ni(2+) (0.1 mM). Transmission persisted using a voltage pulse to -40 mV from a holding potential of -80 mV, confirming the involvement of a low voltage-activated channel type and limiting the candidate channel type to either CaV3.2 or a subpopulation of inactivation- and Ni(2+)-sensitive CaV2.3 channels. Resistance of the neuron calcium current and SS transmission to SNX482 argue against the latter. Hence, we conclude that inter-somatic transmission at the DRG SS is gated by CaV3.2 type calcium channels. The use of CaV3 family channels to gate transmission has important implications for the biological function of the DRG SS as information transfer would be predicted to occur not only in response to action potentials but also to sub-threshold membrane voltage oscillations. Thus, the SS synapse may serve as a homeostatic signalling mechanism between select neurons in the DRG and could play a role in abnormal sensation such as neuropathic pain.

  18. Heterogeneous Association of Alzheimer's Disease-Linked Amyloid-β and Amyloid-β Protein Precursor with Synapses.

    Science.gov (United States)

    Willén, Katarina; Sroka, Agnieszka; Takahashi, Reisuke H; Gouras, Gunnar K

    2017-01-01

    Alzheimer's disease (AD) is increasingly viewed as a disease of synapses. Loss of synapses correlates better with cognitive decline than amyloid plaques and neurofibrillary tangles, the hallmark neuropathological lesions of AD. Soluble forms of amyloid-β (Aβ) have emerged as mediators of synapse dysfunction. Aβ binds to, accumulates, and aggregates in synapses. However, the anatomical and neurotransmitter specificity of Aβ and the amyloid-β protein precursor (AβPP) in AD remain poorly understood. In addition, the relative roles of Aβ and AβPP in the development of AD, at pre- versus post-synaptic compartments and axons versus dendrites, respectively, remain unclear. Here we use immunogold electron microscopy and confocal microscopy to provide evidence for heterogeneity in the localization of Aβ/AβPP. We demonstrate that Aβ binds to a subset of synapses in cultured neurons, with preferential binding to glutamatergic compared to GABAergic neurons. We also highlight the challenge of defining pre- versus post-synaptic localization of this binding by confocal microscopy. Further, endogenous Aβ42 accumulates in both glutamatergic and GABAergic AβPP/PS1 transgenic primary neurons, but at varying levels. Moreover, upon knock-out of presenilin 1 or inhibition of γ-secretase AβPP C-terminal fragments accumulate both pre- and post-synaptically; however earlier pre-synaptically, consistent with a higher rate of AβPP processing in axons. A better understanding of the synaptic and anatomical selectivity of Aβ/AβPP in AD can be important for the development of more effective new therapies for this major disease of aging.

  19. Heterogeneous Association of Alzheimer’s Disease-Linked Amyloid-β and Amyloid-β Protein Precursor with Synapses

    Science.gov (United States)

    Willén, Katarina; Sroka, Agnieszka; Takahashi, Reisuke H.; Gouras, Gunnar K.

    2017-01-01

    Alzheimer’s disease (AD) is increasingly viewed as a disease of synapses. Loss of synapses correlates better with cognitive decline than amyloid plaques and neurofibrillary tangles, the hallmark neuropathological lesions of AD. Soluble forms of amyloid-β (Aβ) have emerged as mediators of synapse dysfunction. Aβ binds to, accumulates, and aggregates in synapses. However, the anatomical and neurotransmitter specificity of Aβ and the amyloid-β protein precursor (AβPP) in AD remain poorly understood. In addition, the relative roles of Aβ and AβPP in the development of AD, at pre- versus post-synaptic compartments and axons versus dendrites, respectively, remain unclear. Here we use immunogold electron microscopy and confocal microscopy to provide evidence for heterogeneity in the localization of Aβ/AβPP. We demonstrate that Aβ binds to a subset of synapses in cultured neurons, with preferential binding to glutamatergic compared to GABAergic neurons. We also highlight the challenge of defining pre- versus post-synaptic localization of this binding by confocal microscopy. Further, endogenous Aβ42 accumulates in both glutamatergic and GABAergic AβPP/PS1 transgenic primary neurons, but at varying levels. Moreover, upon knock-out of presenilin 1 or inhibition of γ-secretase AβPP C-terminal fragments accumulate both pre- and post-synaptically; however earlier pre-synaptically, consistent with a higher rate of AβPP processing in axons. A better understanding of the synaptic and anatomical selectivity of Aβ/AβPP in AD can be important for the development of more effective new therapies for this major disease of aging. PMID:28869466

  20. Chronic Fluoxetine Induces the Enlargement of Perforant Path-Granule Cell Synapses in the Mouse Dentate Gyrus.

    Science.gov (United States)

    Kitahara, Yosuke; Ohta, Keisuke; Hasuo, Hiroshi; Shuto, Takahide; Kuroiwa, Mahomi; Sotogaku, Naoki; Togo, Akinobu; Nakamura, Kei-ichiro; Nishi, Akinori

    2016-01-01

    A selective serotonin reuptake inhibitor is the most commonly prescribed antidepressant for the treatment of major depression. However, the mechanisms underlying the actions of selective serotonin reuptake inhibitors are not fully understood. In the dentate gyrus, chronic fluoxetine treatment induces increased excitability of mature granule cells (GCs) as well as neurogenesis. The major input to the dentate gyrus is the perforant path axons (boutons) from the entorhinal cortex (layer II). Through voltage-sensitive dye imaging, we found that the excitatory neurotransmission of the perforant path synapse onto the GCs in the middle molecular layer of the mouse dentate gyrus (perforant path-GC synapse) is enhanced after chronic fluoxetine treatment (15 mg/kg/day, 14 days). Therefore, we further examined whether chronic fluoxetine treatment affects the morphology of the perforant path-GC synapse, using FIB/SEM (focused ion beam/scanning electron microscopy). A three-dimensional reconstruction of dendritic spines revealed the appearance of extremely large-sized spines after chronic fluoxetine treatment. The large-sized spines had a postsynaptic density with a large volume. However, chronic fluoxetine treatment did not affect spine density. The presynaptic boutons that were in contact with the large-sized spines were large in volume, and the volumes of the mitochondria and synaptic vesicles inside the boutons were correlated with the size of the boutons. Thus, the large-sized perforant path-GC synapse induced by chronic fluoxetine treatment contains synaptic components that correlate with the synapse size and that may be involved in enhanced glutamatergic neurotransmission.

  1. Accelerated intoxication of GABAergic synapses by botulinum neurotoxin A disinhibits stem cell-derived neuron networks prior to network silencing

    Directory of Open Access Journals (Sweden)

    Phillip H Beske

    2015-04-01

    Full Text Available Botulinum neurotoxins (BoNTs are extremely potent toxins that specifically cleave SNARE proteins in peripheral synapses, preventing neurotransmitter release. Neuronal responses to BoNT intoxication are traditionally studied by quantifying SNARE protein cleavage in vitro or monitoring physiological paralysis in vivo. Consequently, the dynamic effects of intoxication on synaptic behaviors are not well understood. We have reported that mouse embryonic stem cell-derived neurons (ESNs are highly sensitive to BoNT based on molecular readouts of intoxication. Here we study the time-dependent changes in synapse- and network-level behaviors following addition of BoNT/A to spontaneously active networks of glutamatergic and GABAergic ESNs. Whole-cell patch-clamp recordings indicated that BoNT/A rapidly blocked synaptic neurotransmission, confirming that ESNs replicate the functional pathophysiology responsible for clinical botulism. Quantitation of spontaneous neurotransmission in pharmacologically isolated synapses revealed accelerated silencing of GABAergic synapses compared to glutamatergic synapses, which was consistent with the selective accumulation of cleaved SNAP-25 at GAD1+ presynaptic terminals at early timepoints. Different latencies of intoxication resulted in complex network responses to BoNT/A addition, involving rapid disinhibition of stochastic firing followed by network silencing. Synaptic activity was found to be highly sensitive to SNAP-25 cleavage, reflecting the functional consequences of the localized cleavage of the small subpopulation of SNAP-25 that is engaged in neurotransmitter release in the nerve terminal. Collectively these findings illustrate that use of synaptic function assays in networked neurons cultures offers a novel and highly sensitive approach for mechanistic studies of toxin:neuron interactions and synaptic responses to BoNT.

  2. Insights into brain development and disease from neurogenetic ...

    Indian Academy of Sciences (India)

    2014-07-08

    Jul 8, 2014 ... last decade now provide insight into the molecular mechanisms that operate in neural stem cells during normal brain ... [Reichert H 2014 Insights into brain development and disease from neurogenetic analyses in Drosophila melanogaster. ... neuroanatomical level, the brains and central nervous sys-.

  3. Ultra-low-energy three-dimensional oxide-based electronic synapses for implementation of robust high-accuracy neuromorphic computation systems.

    Science.gov (United States)

    Gao, Bin; Bi, Yingjie; Chen, Hong-Yu; Liu, Rui; Huang, Peng; Chen, Bing; Liu, Lifeng; Liu, Xiaoyan; Yu, Shimeng; Wong, H-S Philip; Kang, Jinfeng

    2014-07-22

    Neuromorphic computing is an attractive computation paradigm that complements the von Neumann architecture. The salient features of neuromorphic computing are massive parallelism, adaptivity to the complex input information, and tolerance to errors. As one of the most crucial components in a neuromorphic system, the electronic synapse requires high device integration density and low-energy consumption. Oxide-based resistive switching devices have been shown to be a promising candidate to realize the functions of the synapse. However, the intrinsic variation increases significantly with the reduced spike energy due to the reduced number of oxygen vacancies in the conductive filament region. The large resistance variation may degrade the accuracy of neuromorphic computation. In this work, we develop an oxide-based electronic synapse to suppress the degradation caused by the intrinsic resistance variation. The synapse utilizes a three-dimensional vertical structure including several parallel oxide-based resistive switching devices on the same nanopillar. The fabricated three-dimensional electronic synapse exhibits the potential for low fabrication cost, high integration density, and excellent performances, such as low training energy per spike, gradual resistance transition under identical pulse training scheme, and good repeatability. A pattern recognition computation is simulated based on a well-known neuromorphic visual system to quantify the feasibility of the three-dimensional vertical structured synapse for the application of neuromorphic computation systems. The simulation results show significantly improved recognition accuracy from 65 to 90% after introducing the three-dimensional synapses.

  4. TPM analyses reveal that FtsK contributes both to the assembly and the activation of the XerCD-dif recombination synapse.

    Science.gov (United States)

    Diagne, Cheikh Tidiane; Salhi, Maya; Crozat, Estelle; Salomé, Laurence; Cornet, Francois; Rousseau, Philippe; Tardin, Catherine

    2014-02-01

    Circular chromosomes can form dimers during replication and failure to resolve those into monomers prevents chromosome segregation, which leads to cell death. Dimer resolution is catalysed by a highly conserved site-specific recombination system, called XerCD-dif in Escherichia coli. Recombination is activated by the DNA translocase FtsK, which is associated with the division septum, and is thought to contribute to the assembly of the XerCD-dif synapse. In our study, direct observation of the assembly of the XerCD-dif synapse, which had previously eluded other methods, was made possible by the use of Tethered Particle Motion, a single molecule approach. We show that XerC, XerD and two dif sites suffice for the assembly of XerCD-dif synapses in absence of FtsK, but lead to inactive XerCD-dif synapses. We also show that the presence of the γ domain of FtsK increases the rate of synapse formation and convert them into active synapses where recombination occurs. Our results represent the first direct observation of the formation of the XerCD-dif recombination synapse and its activation by FtsK.

  5. The morphological characterization of orientation-biased displaced large-field ganglion cells in the central part of goldfish retina.

    Science.gov (United States)

    Hoshi, Hideo; Sato, Fumi

    2018-02-01

    The vertebrate retina has about 30 subtypes of ganglion cells. Each ganglion cell receives synaptic inputs from specific types of bipolar and amacrine cells ramifying at the same depth of the inner plexiform layer (IPL), each of which is thought to process a specific aspect of visual information. Here, we identified one type of displaced ganglion cell in the goldfish retina which had a large and elongated dendritic field. As a population, all of these ganglion cells were oriented in the horizontal axis and perpendicular to the dorsal-ventral axis of the goldfish eye in the central part of retina. This ganglion cell has previously been classified as Type 1.2. However, the circuit elements which synapse with this ganglion cell are not yet characterized. We found that this displaced ganglion cell was directly tracer-coupled only with homologous ganglion cells at sites containing Cx35/36 puncta. We further illustrated that the processes of dopaminergic neurons often terminated next to intersections between processes of ganglion cells, close to where dopamine D1 receptors were localized. Finally, we showed that Mb1 ON bipolar cells had ribbon synapses in the axonal processes passing through the IPL and made ectopic synapses with this displaced ganglion cell that stratified into stratum 1 of the IPL. These results suggest that the displaced ganglion cell may synapse with both Mb1 cells using ectopic ribbon synapses and OFF cone bipolar cells with regular ribbon synapses in the IPL to function in both scotopic and photopic light conditions. © 2017 Wiley Periodicals, Inc.

  6. The central amygdala circuits in fear regulation

    Science.gov (United States)

    Li, Bo

    The amygdala is essential for fear learning and expression. The central amygdala (CeA), once viewed as a passive relay between the amygdala complex and downstream fear effectors, has emerged as an active participant in fear conditioning. However, how the CeA contributes to the learning and expression of fear remains unclear. Our recent studies in mice indicate that fear conditioning induces robust plasticity of excitatory synapses onto inhibitory neurons in the lateral subdivision of CeA (CeL). In particular, this plasticity is cell-type specific and is required for the formation of fear memory. In addition, sensory cues that predict threat can cause activation of the somatostatin-positive CeL neurons, which is sufficient to drive freezing behavior. Here I will report our recent findings regarding the circuit and cellular mechanisms underlying CeL function in fear processing.

  7. A lack of immune system genes causes loss in high frequency hearing but does not disrupt cochlear synapse maturation in mice.

    Science.gov (United States)

    Calton, Melissa A; Lee, Dasom; Sundaresan, Srividya; Mendus, Diana; Leu, Rose; Wangsawihardja, Felix; Johnson, Kenneth R; Mustapha, Mirna

    2014-01-01

    Early cochlear development is marked by an exuberant outgrowth of neurites that innervate multiple targets. The establishment of mature cochlear neural circuits is, however, dependent on the pruning of inappropriate axons and synaptic connections. Such refinement also occurs in the central nervous system (CNS), and recently, genes ordinarily associated with immune and inflammatory processes have been shown to play roles in synaptic pruning in the brain. These molecules include the major histocompatibility complex class I (MHCI) genes, H2-K(b) and H2-D(b), and the complement cascade gene, C1qa. Since the mechanisms involved in synaptic refinement in the cochlea are not well understood, we investigated whether these immune system genes may be involved in this process and whether they are required for normal hearing function. Here we report that these genes are not necessary for normal synapse formation and refinement in the mouse cochlea. We further demonstrate that C1qa expression is not necessary for normal hearing in mice but the lack of expression of H2-K(b) and H2-D(b) causes hearing impairment. These data underscore the importance of the highly polymorphic family of MHCI genes in hearing in mice and also suggest that factors and mechanisms regulating synaptic refinement in the cochlea may be distinct from those in the CNS.

  8. eNOS S-nitrosylates β-actin on Cys374 and regulates PKC-θ at the immune synapse by impairing actin binding to profilin-1.

    Directory of Open Access Journals (Sweden)

    Almudena García-Ortiz

    2017-04-01

    Full Text Available The actin cytoskeleton coordinates the organization of signaling microclusters at the immune synapse (IS; however, the mechanisms involved remain poorly understood. We show here that nitric oxide (NO generated by endothelial nitric oxide synthase (eNOS controls the coalescence of protein kinase C-θ (PKC-θ at the central supramolecular activation cluster (c-SMAC of the IS. eNOS translocated with the Golgi to the IS and partially colocalized with F-actin around the c-SMAC. This resulted in reduced actin polymerization and centripetal retrograde flow of β-actin and PKC-θ from the lamellipodium-like distal (d-SMAC, promoting PKC-θ activation. Furthermore, eNOS-derived NO S-nitrosylated β-actin on Cys374 and impaired actin binding to profilin-1 (PFN1, as confirmed with the transnitrosylating agent S-nitroso-L-cysteine (Cys-NO. The importance of NO and the formation of PFN1-actin complexes on the regulation of PKC-θ was corroborated by overexpression of PFN1- and actin-binding defective mutants of β-actin (C374S and PFN1 (H119E, respectively, which reduced the coalescence of PKC-θ at the c-SMAC. These findings unveil a novel NO-dependent mechanism by which the actin cytoskeleton controls the organization and activation of signaling microclusters at the IS.

  9. Melatonin Alleviates the Epilepsy-Associated Impairments in Hippocampal LTP and Spatial Learning Through Rescue of Surface GluR2 Expression at Hippocampal CA1 Synapses.

    Science.gov (United States)

    Ma, Yue; Sun, Xiaolong; Li, Juan; Jia, Ruihua; Yuan, Fang; Wei, Dong; Jiang, Wen

    2017-05-01

    Epilepsy-associated cognitive impairment is common, and negatively impacts patients' quality of life. However, most antiepileptic drugs focus on the suppression of seizures, and fewer emphasize treatment of cognitive dysfunction. Melatonin, an indolamine synthesized primarily in the pineal grand, is reported to be neuroprotective against several central nervous system disorders. In this study, we investigated whether melatonin could reverse cognitive dysfunction in lithium-pilocarpine treated rats. Chronic treatment with melatonin (8 mg/kg daily for 15 days) after induction of status epilepticus significantly alleviated seizure severity, reduced neuronal death in the CA1 region of the hippocampus, improved spatial learning (as measured by the Morris water maze test), and reversed LTP impairments, compared to vehicle treatment. Furthermore, we found that melatonin rescued the decreased surface levels of GluR2 in the CA1 region observed in epilepsy, which might be the underlying mechanism of the neuroprotective and synapse-modulating function of melatonin. Our study provides experimental evidence for the possible clinical utility of melatonin as an adjunctive therapy to prevent epilepsy-associated cognitive impairments.

  10. Paleomagnetic and magnetic fabric studies of Lower Triassic red sandstones from the autochthonous cover of the Central Western Carpathians: new insights into paleogeographic setting and tectonic evolution of the area

    Science.gov (United States)

    Szaniawski, R.; Jankowski, L.; Ludwiniak, M.; Mazzoli, S.; Szczygieł, J.

    2017-12-01

    The Carpathian Mountains were formed through progressive collision and amalgamation of the Alcapa and Tisza-Dacia microplates with the European Platform. The Central Western Carpathians (CWC) tectonic unit analyzed in this study constitutes a fragment of the Alcapa microplate - research in this area is therefore of great importance in the context of the geotectonic evolution of the Carpathian orogen. Our paleomagnetic and magnetic fabric studies were focused on Lower Triassic red sandstones from the autochthonous cover of the crystalline basement. We present new results from three mountain massifs: Low Tatra, Velka Fatra and Strazovske Vrchy, comparing them with our earlier works performed in the Tatra Mts. Rockmagnetic studies reveal similar results in all four studied regions - the dominant ferromagnetic carrier in red sandstones is hematite, while the magnetic fabric is mostly controlled by paramagnetic minerals. AMS results outline a bedding parallel foliation and a tectonic lineation. This lineation lies in the bedding plane but is somewhat oblique to the present horizontal plane. The fact that the lineation is not exactly parallel to the strike of the beds is most likely due to multistage deformation: the lineation is related to bedding parallel shortening associated with the folding and thrusting stage, while present-day bedding attitude results at least partially from rotations associated with subsequent uplift and/or faulting. Paleomagnetic analysis indicate that hematite carrier records characteristic remanent component of high unblocking temperatures (680°C) and both normal (dominant) and reversed polarity. Paleomagnetic inclinations are similar to those expected from reference paleomagnetic data from the European Platform. Declination values are rather similar in all four studied areas and imply moderate counterclockwise rotations of the CWC. These results are incompatible with some of the previous paleomagnetic studies of younger rocks from the CWC

  11. Natural factors and mining activity bearings on the water quality of the Choapa basin, North Central Chile: insights on the role of mafic volcanic rocks in the buffering of the acid drainage process.

    Science.gov (United States)

    Parra, Amparo; Oyarzún, Jorge; Maturana, Hugo; Kretschmer, Nicole; Meza, Francisco; Oyarzún, Ricardo

    2011-10-01

    This contribution analyzes water chemical data for the Choapa basin, North Central Chile, for the period 1980-2004. The parameters considered are As, Cu Fe, pH, EC, SO₄⁻², Cl⁻¹, and HCO[Formula: see text], from samples taken in nine monitoring stations throughout the basin. Results show rather moderate contents of As, Cu, and Fe, with the exception of the Cuncumén River and the Aucó creek, explained by the influence of the huge porphyry copper deposit of Los Pelambres and by the presence of mining operations, respectively. When compared against results obtained in previous researches at the neighboring Elqui river basin, which host the El Indio Au-Cu-As district, a much reduced grade of pollution is recognized for the Choapa basin. Considering the effect of acid rock drainage (ARD)-related Cu contents on the fine fraction of the sediments of both river basins, the differences recorded are even more striking. Although the Los Pelambres porphyry copper deposit, on the headwaters of the Choapa river basin, is between one and two orders of magnitude bigger than El Indio, stream water and sediments of the former exhibit significantly lower copper contents than those of the latter. A main factor which may explain these results is the smaller degree of H( + )-metasomatism on the host rocks of the Los Pelambres deposit, where mafic andesitic volcanic rocks presenting propylitic hydrothermal alteration are dominant. This fact contrast with the highly altered host rocks of El Indio district, where most of them have lost their potential to neutralize ARD.

  12. Origin and paleoenvironment of Pleistocene-Holocene Travertine deposit from the Mbéré sedimentary sub-basin along the Central Cameroon shear zone: Insights from petrology and palynology and evidence for neotectonics

    Science.gov (United States)

    Tchouatcha, Milan Stafford; Njoya, André; Ganno, Sylvestre; Toyama, Réné; Ngouem, Paul Aubin; Njiké Ngaha, Pierre Ricard

    2016-06-01

    The Mbéré sub-basin belongs to the Mbéré-Djerem intra-continental basin of Central North Cameroon. In this sub-basin, a travertine outcrop has been discovered and investigated palynologically and petrologically in this study. The sporopollinic content of the studied travertine is mainly composed of fungal spores (Rhyzophagites sp., Monoporisporites sp …) associated with rare fresh water algae spores such as Chomotriletes minor and angiosperm pollens (compositae, graminae, …). This sporopollinic association is indicative of hot and semi-arid to arid paleoclimate and reveals a Pleistocene-Holocene depositional age. The whole rock major element geochemistry shows relative enrichment of CaO (49.48%) and CO2 (38.49%). The origin of CO2 is probably from magmatic and/or metamorphic fluids. Compared to other travertines, SiO2 and Al2O3 contents are significant with average concentrations of 5.68% and 2.58% respectively. The mineralogical composition revealed by a microscopic study of bulk rocks is dominated by calcite (90-92%) associated to quartz (2-4%) and feldspar (2-3%), meanwhile the heavy mineral concentrate is formed by various mineral types such as zircon (most abundant), garnet, tourmaline, epidote, biotite, peridot and aegirine augite suggesting that the underground water has crossed both volcanic, plutonic and metamorphic rocks. With the mineral composition made of both chemical and detrital derived elements, the Mbéré travertine corresponds to chemico-lithoclastic/detrital limestone. In the Mbéré trough, numerous thermo-mineral springs are located along major fractures and faults. This result suggests that the Mbéré travertine deposit is related to the rising of deep water with the help of a fracturing system, similar to those of Irdi (Morocco), Italy and Turkey where there is much volcanism.

  13. Association and Centrality in Criminal Networks

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenqvist

    Network-based techniques are widely used in criminal investigations because patterns of association are actionable and understandable. Existing network models with nodes as first class entities and their related measures (e.g., social networks and centrality measures) are unable to capture and an...... three of these associations and extend and test two centrality measures using CrimeFighter Investigator, a novel tool for criminal network investigation. Our findings show that the extended centrality measures offer new insights into criminal networks....

  14. Temporal expression and cellular origin of CC chemokine receptors CCR1, CCR2 and CCR5 in the central nervous system: insight into mechanisms of MOG-induced EAE

    Directory of Open Access Journals (Sweden)

    Ericsson-Dahlstrand Anders

    2007-05-01

    Full Text Available Abstract Background The CC chemokine receptors CCR1, CCR2 and CCR5 are critical for the recruitment of mononuclear phagocytes to the central nervous system (CNS in multiple sclerosis (MS and other neuroinflammatory diseases. Mononuclear phagocytes are effector cells capable of phagocytosing myelin and damaging axons. In this study, we characterize the regional, temporal and cellular expression of CCR1, CCR2 and CCR5 mRNA in the spinal cord of rats with myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (MOG-EAE. While resembling human MS, this animal model allows unique access to CNS-tissue from various time-points of relapsing neuroinflammation and from various lesional stages: early active, late active, and inactive completely demyelinated lesions. Methods The expression of CCR1, CCR2 and CCR5 mRNA was studied with in situ hybridization using radio labelled cRNA probes in combination with immunohistochemical staining for phenotypic cell markers. Spinal cord sections from healthy rats and rats with MOG-EAE (acute phase, remission phase, relapse phase were analysed. In defined lesion stages, the number of cells expressing CCR1, CCR2 and CCR5 mRNA was determined. Data were statistically analysed by the nonparametric Mann-Whitney U test. Results In MOG-EAE rats, extensive up-regulation of CCR1 and CCR5 mRNA, and moderate up-regulation of CCR2 mRNA, was found in the spinal cord during episodes of active inflammation and demyelination. Double staining with phenotypic cell markers identified the chemokine receptor mRNA-expressing cells as macrophages/microglia. Expression of all three receptors was substantially reduced during clinical remission, coinciding with diminished inflammation and demyelination in the spinal cord. Healthy control rats did not show any detectable expression of CCR1, CCR2 or CCR5 mRNA in the spinal cord. Conclusion Our results demonstrate that the acute and chronic-relapsing phases of MOG

  15. Cerebellar Shank2 Regulates Excitatory Synapse Density, Motor Coordination, and Specific Repetitive and Anxiety-Like Behaviors.

    Science.gov (United States)

    Ha, Seungmin; Lee, Dongwon; Cho, Yi Sul; Chung, Changuk; Yoo, Ye-Eun; Kim, Jihye; Lee, Jiseok; Kim, Woohyun; Kim, Hyosang; Bae, Yong Chul; Tanaka-Yamamoto, Keiko; Kim, Eunjoon

    2016-11-30

    Shank2 is a multidomain scaffolding protein implicated in the structural and functional coordination of multiprotein complexes at excitatory postsynaptic sites as well as in psychiatric disorders, including autism spectrum disorders. While Shank2 is strongly expressed in the cerebellum, whether Shank2 regulates cerebellar excitatory synapses, or contributes to the behavioral abnormalities observed in Shank2 -/- mice, remains unexplored. Here we show that Shank2 -/- mice show reduced excitatory synapse density in cerebellar Purkinje cells in association with reduced levels of excitatory postsynaptic proteins, including GluD2 and PSD-93, and impaired motor coordination in the Erasmus test. Shank2 deletion restricted to Purkinje cells (Pcp2-Cre;Shank2 fl/fl mice) leads to similar reductions in excitatory synapse density, synaptic protein levels, and motor coordination. Pcp2-Cre;Shank2 fl/fl mice do not recapitulate autistic-like behaviors observed in Shank2 -/- mice, such as social interaction deficits, altered ultrasonic vocalizations, repetitive behaviors, and hyperactivity. However, Pcp2-Cre;Shank2 fl/fl mice display enhanced repetitive behavior in the hole-board test and anxiety-like behavior in the light-dark test, which are not observed in Shank2 -/- mice. These results implicate Shank2 in the regulation of cerebellar excitatory synapse density, motor coordination, and specific repetitive and anxiety-like behaviors. The postsynaptic side of excitatory synapses contains multiprotein complexes, termed the postsynaptic density, which contains receptors, scaffolding/adaptor proteins, and signaling molecules. Shank2 is an excitatory postsynaptic scaffolding protein implicated in the formation and functional coordination of the postsynaptic density and has been linked to autism spectrum disorders. Using Shank2-null mice and Shank2-conditional knock-out mice with a gene deletion restricted to cerebellar Purkinje cells, we explored functions of Shank2 in the cerebellum

  16. Morphological changes associated with the genesis and development of an excitatory glutemergic synapse: An integrated framework model

    Directory of Open Access Journals (Sweden)

    Venkateswaran Nagarajan

    2014-04-01

    Full Text Available The genesis of an excitatory synapse has its inception when a dendritic filopodium makes a tactile contact with a presynaptic specialisation (bouton. The subsequent maturation of the synapse takes place via a series of interrelated biochemical and biophysical signalling pathways which controls the actin polymerisation in the presynaptic and the postsynaptic sites. Although individual models of many of these signalling transductions have been proposed, a holistic model integrating the various signalling pathways to the morphological plasticity associated with the genesis and development of synapses has not. In this poster an attempt has been made towards establishing a framework for an integrated model such as the one aforementioned, encompassing several signalling pathways which control the morphology and the efficacy of the synapse. Predominant pathways include those triggered by NMDA and AMPA receptors, Trkb-BDNF, Integrin and Epherin. Also, steps towards a model that elucidates the change in shape of the synapse carried out by zonal actin polymerisation (ZAP governed by the "wastage" of neurotransmitters during exo cum endocytosis processes and the assimilation of the postsynaptic density (PSD and cell adhesion molecules with emphasis on Neurexin-Neuriligin, have been explored. The cannabinoid receptors in the PAZ have extracellular lipophilic domains. Endocannabinoid receptors are triggered by the retrograde signalling cues which negatively affect the cAMP dependent mechanisms. Apart from this, autoreceptors also pilot a feedback mechanism via secondary messengers with Ca 2+ ion concentration and neurotransmitter concentration in the synaptic cleft as its stakeholders. Feedback signals of autoreceptors which functions in accordance to “Lock and Key Mechanism” plays a vital role in fine-tuning the plasticity of the synapse and in controlling the presynaptic release probability by invoking PKA dependent pathways. In a future continuation

  17. Sleep inspires insight.

    Science.gov (United States)

    Wagner, Ullrich; Gais, Steffen; Haider, Hilde; Verleger, Rolf; Born, Jan

    2004-01-22

    Insight denotes a mental restructuring that leads to a sudden gain of explicit knowledge allowing qualitatively changed behaviour. Anecdotal reports on scientific discovery suggest that pivotal insights can be gained through sleep. Sleep consolidates recent memories and, concomitantly, could allow insight by changing their representational structure. Here we show a facilitating role of sleep in a process of insight. Subjects performed a cognitive task requiring the learning of stimulus-response sequences, in which they improved gradually by increasing response speed across task blocks. However, they could also improve abruptly after gaining insight into a hidden abstract rule underlying all sequences. Initial training establishing a task representation was followed by 8 h of nocturnal sleep, nocturnal wakefulness, or daytime wakefulness. At subsequent retesting, more than twice as many subjects gained insight into the hidden rule after sleep as after wakefulness, regardless of time of day. Sleep did not enhance insight in the absence of initial training. A characteristic antecedent of sleep-related insight was revealed in a slowing of reaction times across sleep. We conclude that sleep, by restructuring new memory representations, facilitates extraction of explicit knowledge and insightful behaviour.

  18. Diurnal inhibition of NMDA-EPSCs at rat hippocampal mossy fibre synapses through orexin-2 receptors

    Science.gov (United States)

    Perin, Martina; Longordo, Fabio; Massonnet, Christine; Welker, Egbert; Lüthi, Anita

    2014-01-01

    Diurnal release of the orexin neuropeptides orexin-A (Ox-A, hypocretin-1) and orexin-B (Ox-B, hypocretin-2) stabilises arousal, regulates energy homeostasis and contributes to cognition and learning. However, whether cellular correlates of brain plasticity are regulated through orexins, and whether they do so in a time-of-day-dependent manner, has never been assessed. Immunohistochemically we found sparse but widespread innervation of hippocampal subfields through Ox-A- and Ox-B-containing fibres in young adult rats. The actions of Ox-A were studied on NMDA receptor (NMDAR)-mediated excitatory synaptic transmission in acute hippocampal slices prepared around the trough (Zeitgeber time (ZT) 4–8, corresponding to 4–8 h into the resting phase) and peak (ZT 23) of intracerebroventricular orexin levels. At ZT 4–8, exogenous Ox-A (100 nm in bath) inhibited NMDA receptor-mediated excitatory postsynaptic currents (NMDA-EPSCs) at mossy fibre (MF)–CA3 (to 55.6 ± 6.8% of control, P = 0.0003) and at Schaffer collateral–CA1 synapses (70.8 ± 6.3%, P = 0.013), whereas it remained ineffective at non-MF excitatory synapses in CA3. Ox-A actions were mediated postsynaptically and blocked by the orexin-2 receptor (OX2R) antagonist JNJ10397049 (1 μm), but not by orexin-1 receptor inhibition (SB334867, 1 μm) or by adrenergic and cholinergic antagonists. At ZT 23, inhibitory effects of exogenous Ox-A were absent (97.6 ± 2.9%, P = 0.42), but reinstated (87.2 ± 3.3%, P = 0.002) when endogenous orexin signalling was attenuated for 5 h through i.p. injections of almorexant (100 mg kg−1), a dual orexin receptor antagonist. In conclusion, endogenous orexins modulate hippocampal NMDAR function in a time-of-day-dependent manner, suggesting that they may influence cellular plasticity and consequent variations in memory performance across the sleep–wake cycle. PMID:25085886

  19. RAE-1, a novel PHR binding protein, is required for axon termination and synapse formation in Caenorhabditis elegans.

    Science.gov (United States)

    Grill, Brock; Chen, Lizhen; Tulgren, Erik D; Baker, Scott T; Bienvenut, Willy; Anderson, Matthew; Quadroni, Manfredo; Jin, Yishi; Garner, Craig C

    2012-02-22

    Previous studies in Caenorhabditis elegans showed that RPM-1 (Regulator of Presynaptic Morphology-1) regulates axon termination and synapse formation. To understand the mechanism of how rpm-1 functions, we have used mass spectrometry to identify RPM-1 binding proteins, and have identified RAE-1 (RNA Export protein-1) as an evolutionarily conserved binding partner. We define a RAE-1 binding region in RPM-1, and show that this binding interaction is conserved and also occurs between Rae1 and the human ortholog of RPM-1 called Pam (protein associated with Myc). rae-1 loss of function causes similar axon and synapse defects, and synergizes genetically with two other RPM-1 binding proteins, GLO-4 and FSN-1. Further, we show that RAE-1 colocalizes with RPM-1 in neurons, and that rae-1 functions downstream of rpm-1. These studies establish a novel postmitotic function for rae-1 in neuronal development.

  20. Facial stimulation induces long-term depression at cerebellar molecular layer interneuron–Purkinje cell synapses in vivo in mice

    Directory of Open Access Journals (Sweden)

    De-Lai eQiu

    2015-06-01

    Full Text Available Cerebellar long-term synaptic plasticity has been proposed to provide a cellular mechanism for motor learning. Numerous studies have demonstrated the induction and mechanisms of synaptic plasticity at parallel fiber–Purkinje cell (PF–PC, parallel fiber–molecular layer interneurons (PF–MLI and mossy fiber–granule cell (MF–GC synapses, but no study has investigated sensory stimulation-evoked synaptic plasticity at MLI–PC synapses in the cerebellar cortex of living animals. We studied the expression and mechanism of MLI–PC GABAergic synaptic plasticity induced by a train of facial stimulation in urethane-anesthetized mice by cell-attached recordings and pharmacological methods. We found that 1 Hz, but not a 2 Hz or 4 Hz, facial stimulation induced a long-term depression (LTD of GABAergic transmission at MLI–PC synapses, which was accompanied with a decrease in the stimulation-evoked pause of spike firing in PCs, but did not induce a significant change in the properties of the sensory-evoked spike events of MLIs. The MLI–PC GABAergic LTD could be prevented by blocking cannabinoid type 1 (CB1 receptors, and could be pharmacologically induced by a CB1 receptor agonist. Additionally, 1 Hz facial stimulation delivered in the presence of a metabotropic glutamate receptor 1 (mGluR1 antagonist, JNJ16259685, still induced the MLI–PC GABAergic LTD, whereas blocking N-methyl-D-aspartate (NMDA receptors during 1 Hz facial stimulation abolished the expression of MLI–PC GABAergic LTD. These results indicate that sensory stimulation can induce an endocannabinoid (eCB-dependent LTD of GABAergic transmission at MLI–PC synapses via activation of NMDA receptors in cerebellar cortical Crus II in vivo in mice. Our results suggest that the sensory stimulation-evoked MLI–PC GABAergic synaptic plasticity may play a critical role in motor learning in animals.

  1. An Exclusion Zone for Ca2+ Channels around Docked Vesicles Explains Release Control by Multiple Channels at a CNS Synapse.

    Science.gov (United States)

    Keller, Daniel; Babai, Norbert; Kochubey, Olexiy; Han, Yunyun; Markram, Henry; Schürmann, Felix; Schneggenburger, Ralf

    2015-05-01

    The spatial arrangement of Ca2+ channels and vesicles remains unknown for most CNS synapses, despite of the crucial importance of this geometrical parameter for the Ca2+ control of transmitter release. At a large model synapse, the calyx of Held, transmitter release is controlled by several Ca2+ channels in a "domain overlap" mode, at least in young animals. To study the geometrical constraints of Ca2+ channel placement in domain overlap control of release, we used stochastic MCell modelling, at active zones for which the position of docked vesicles was derived from electron microscopy (EM). We found that random placement of Ca2+ channels was unable to produce high slope values between release and presynaptic Ca2+ entry, a hallmark of domain overlap, and yielded excessively large release probabilities. The simple assumption that Ca2+ channels can be located anywhere at active zones, except below a critical distance of ~ 30 nm away from docked vesicles ("exclusion zone"), rescued high slope values and low release probabilities. Alternatively, high slope values can also be obtained by placing all Ca2+ channels into a single supercluster, which however results in significantly higher heterogeneity of release probabilities. We also show experimentally that high slope values, and the sensitivity to the slow Ca2+ chelator EGTA-AM, are maintained with developmental maturation of the calyx synapse. Taken together, domain overlap control of release represents a highly organized active zone architecture in which Ca2+ channels must obey a certain distance to docked vesicles. Furthermore, domain overlap can be employed by near-mature, fast-releasing synapses.

  2. An Exclusion Zone for Ca2+ Channels around Docked Vesicles Explains Release Control by Multiple Channels at a CNS Synapse.

    Directory of Open Access Journals (Sweden)

    Daniel Keller

    2015-05-01

    Full Text Available The spatial arrangement of Ca2+ channels and vesicles remains unknown for most CNS synapses, despite of the crucial importance of this geometrical parameter for the Ca2+ control of transmitter release. At a large model synapse, the calyx of Held, transmitter release is controlled by several Ca2+ channels in a "domain overlap" mode, at least in young animals. To study the geometrical constraints of Ca2+ channel placement in domain overlap control of release, we used stochastic MCell modelling, at active zones for which the position of docked vesicles was derived from electron microscopy (EM. We found that random placement of Ca2+ channels was unable to produce high slope values between release and presynaptic Ca2+ entry, a hallmark of domain overlap, and yielded excessively large release probabilities. The simple assumption that Ca2+ channels can be located anywhere at active zones, except below a critical distance of ~ 30 nm away from docked vesicles ("exclusion zone", rescued high slope values and low release probabilities. Alternatively, high slope values can also be obtained by placing all Ca2+ channels into a single supercluster, which however results in significantly higher heterogeneity of release probabilities. We also show experimentally that high slope values, and the sensitivity to the slow Ca2+ chelator EGTA-AM, are maintained with developmental maturation of the calyx synapse. Taken together, domain overlap control of release represents a highly organized active zone architecture in which Ca2+ channels must obey a certain distance to docked vesicles. Furthermore, domain overlap can be employed by near-mature, fast-releasing synapses.

  3. The effect of STDP temporal kernel structure on the learning dynamics of single excitatory and inhibitory synapses.

    Directory of Open Access Journals (Sweden)

    Yotam Luz

    Full Text Available Spike-Timing Dependent Plasticity (STDP is characterized by a wide range of temporal kernels. However, much of the theoretical work has focused on a specific kernel - the "temporally asymmetric Hebbian" learning rules. Previous studies linked excitatory STDP to positive feedback that can account for the emergence of response selectivity. Inhibitory plasticity was associated with negative feedback that can balance the excitatory and inhibitory inputs. Here we study the possible computational role of the temporal structure of the STDP. We represent the STDP as a superposition of two processes: potentiation and depression. This allows us to model a wide range of experimentally observed STDP kernels, from Hebbian to anti-Hebbian, by varying a single parameter. We investigate STDP dynamics of a single excitatory or inhibitory synapse in purely feed-forward architecture. We derive a mean-field-Fokker-Planck dynamics for the synaptic weight and analyze the effect of STDP structure on the fixed points of the mean field dynamics. We find a phase transition along the Hebbian to anti-Hebbian parameter from a phase that is characterized by a unimodal distribution of the synaptic weight, in which the STDP dynamics is governed by negative feedback, to a phase with positive feedback characterized by a bimodal distribution. The critical point of this transition depends on general properties of the STDP dynamics and not on the fine details. Namely, the dynamics is affected by the pre-post correlations only via a single number that quantifies its overlap with the STDP kernel. We find that by manipulating the STDP temporal kernel, negative feedback can be induced in excitatory synapses and positive feedback in inhibitory. Moreover, there is an exact symmetry between inhibitory and excitatory plasticity, i.e., for every STDP rule of inhibitory synapse there exists an STDP rule for excitatory synapse, such that their dynamics is identical.

  4. Estradiol pretreatment ameliorates impaired synaptic plasticity at synapses of insulted CA1 neurons after transient global ischemia

    Science.gov (United States)

    Takeuchi, Koichi; Yang, Yupeng; Takayasu, Yukihiro; Gertner, Michael; Hwang, Jee-Yeon; Aromolaran, Kelly; Bennett, Michael V.L.; Zukin, R. Suzanne

    2015-01-01

    Global ischemia in humans or induced experimentally in animals causes selective and delayed neuronal death in pyramidal neurons of the hippocampal CA1. The ovarian hormone estradiol administered before or immediately after insult affords histological protection in experimental models of focal and global ischemia and ameliorates the cognitive deficits associated with ischemic cell death. However, the impact of estradiol on the functional integrity of Schaffer collateral to CA1 (Sch-CA1) pyramidal cell synapses following global ischemia is not clear. Here we show that long term estradiol treatment initiated 14 days prior to global ischemia in ovariectomized female rats acts via the IGF-1 receptor to protect the functional integrity of CA1 neurons. Global ischemia impairs basal synaptic transmission, assessed by the input/output relation at Sch-CA1 synapses, and NMDA receptor (NMDAR)-dependent long term potentiation (LTP), assessed at 3 days after surgery. Presynaptic function, assessed by fiber volley and paired pulse facilitation, is unchanged. To our knowledge, our results are the first to demonstrate that estradiol at near physiological concentrations enhances basal excitatory synaptic transmission and ameliorates deficits in LTP at synapses onto CA1 neurons in a clinically-relevant model of global ischemia. Estradiol-induced rescue of LTP requires the IGF-1 receptor, but not the classical estrogen receptors (ER)-α or β. These findings support a model whereby estradiol acts via the IGF-1 receptor to maintain the functional integrity of hippocampal CA1 synapses in the face of global ischemia. PMID:25463028

  5. Genetic targeting of NRXN2 in mice unveils role in excitatory cortical synapse function and social behaviors

    Directory of Open Access Journals (Sweden)

    Gesche eBorn

    2015-02-01

    Full Text Available Human genetics has identified rare copy number variations and deleterious mutations for all neurexin genes (NRXN1-3 in patients with neurodevelopmental diseases, and electrophysiological recordings in animal brains have shown that Nrxns are important for synaptic transmission. While several mouse models for Nrxn1α inactivation have previously been studied for behavioral changes, very little information is available for other variants. Here, we validate that mice lacking Nrxn2α exhibit behavioral abnormalities, characterized by social interaction deficits and increased anxiety-like behavior, which partially overlap, partially differ from Nrxn1α mutant behaviors. Using patch-clamp recordings in Nrxn2α knockout brains, we observe reduced spontaneous transmitter release at excitatory synapses in the neocortex. We also analyse at this cellular level a novel NRXN2 mouse model that carries a combined deletion of Nrxn2α and Nrxn2β. Electrophysiological analysis of this Nrxn2-mutant mouse shows surprisingly similar defects of excitatory release to Nrxn2α, indicating that the β-variant of Nrxn2 has no strong function in basic transmission at these synapses. Inhibitory transmission as well as synapse densities and ultrastructure remain unchanged in the neocortex of both models. Furthermore, at Nrxn2α and Nrxn2-mutant excitatory synapses we find an altered facilitation and N-methyl-D-aspartate receptor (NMDAR function because NMDAR-dependent decay time and NMDAR-mediated responses are reduced. As Nrxn can indirectly be linked to NMDAR via neuroligin and PSD-95, the trans-synaptic nature of this complex may help to explain occurrence of presynaptic and postsynaptic effects. Since excitatory/inhibitory imbalances and impairment of NMDAR function are alledged to have a role in autism and schizophrenia, our results support the idea of a related pathomechanism in these disorders.

  6. Local and global synchronization transitions induced by time delays in small-world neuronal networks with chemical synapses.

    Science.gov (United States)

    Yu, Haitao; Wang, Jiang; Du, Jiwei; Deng, Bin; Wei, Xile

    2015-02-01

    Effects of time delay on the local and global synchronization in small-world neuronal networks with chemical synapses are investigated in this paper. Numerical results show that, for both excitatory and inhibitory coupling types, the information transmission delay can always induce synchronization transitions of spiking neurons in small-world networks. In particular, regions of in-phase and out-of-phase synchronization of connected neurons emerge intermittently as the synaptic delay increases. For excitatory coupling, all transitions to spiking synchronization occur approximately at integer multiples of the firing period of individual neurons; while for inhibitory coupling, these transitions appear at the odd multiples of the half of the firing period of neurons. More importantly, the local synchronization transition is more profound than the global synchronization transition, depending on the type of coupling synapse. For excitatory synapses, the local in-phase synchronization observed for some values of the delay also occur at a global scale; while for inhibitory ones, this synchronization, observed at the local scale, disappears at a global scale. Furthermore, the small-world structure can also affect the phase synchronization of neuronal networks. It is demonstrated that increasing the rewiring probability can always improve the global synchronization of neuronal activity, but has little effect on the local synchronization of neighboring neurons.

  7. A Re-configurable On-line Learning Spiking Neuromorphic Processor comprising 256 neurons and 128K synapses

    Directory of Open Access Journals (Sweden)

    Ning eQiao

    2015-04-01

    Full Text Available Implementing compact, low-power artificial neural processing systems with real-time on-line learning abilities is still an open challenge. In this paper we present a full-custom mixed-signal VLSI device with neuromorphic learning circuits that emulate the biophysics of real spiking neurons and dynamic synapses for exploring the properties of computational neuroscience models and for building brain-inspired computing systems. The proposed architecture allows the on-chip configuration of a wide range of network connectivities, including recurrent and deep networks with short-term and long-term plasticity. The device comprises 128 K analog synapse and 256 neuron circuits with biologically plausible dynamics and bi-stable spike-based plasticity mechanisms that endow it with on-line learning abilities. In addition to the analog circuits, the device comprises also asynchronous digital logic circuits for setting different synapse and neuron properties as well as different network configurations. This prototype device, fabricated using a 180 nm 1P6M CMOS process, occupies an area of 51.4 mm 2 , and consumes approximately 4 mW for typical experiments, for example involving attractor networks. Here we describe the details of the overall architecture and of the individual circuits and present experimental results that showcase its potential. By supporting a wide range of cortical-like computational modules comprising plasticity mechanisms, this device will enable the realization of intelligent autonomous systems with on-line learning capabilities.

  8. Hyperconnectivity and slow synapses during early development of medial prefrontal cortex in a mouse model for mental retardation and autism.

    Science.gov (United States)

    Testa-Silva, Guilherme; Loebel, Alex; Giugliano, Michele; de Kock, Christiaan P J; Mansvelder, Huibert D; Meredith, Rhiannon M

    2012-06-01

    Neuronal theories of neurodevelopmental disorders (NDDs) of autism and mental retardation propose that abnormal connectivity underlies deficits in attentional processing. We tested this theory by studying unitary synaptic connections between layer 5 pyramidal neurons within medial prefrontal cortex (mPFC) networks in the Fmr1-KO mouse model for mental retardation and autism. In line with predictions from neurocognitive theory, we found that neighboring pyramidal neurons were hyperconnected during a critical period in early mPFC development. Surprisingly, excitatory synaptic connections between Fmr1-KO pyramidal neurons were significantly slower and failed to recover from short-term depression as quickly as wild type (WT) synapses. By 4-5 weeks of mPFC development, connectivity rates were identical for both KO and WT pyramidal neurons and synapse dynamics changed from depressing to facilitating responses with similar properties in both groups. We propose that the early alteration in connectivity and synaptic recovery are tightly linked: using a network model, we show that slower synapses are essential to counterbalance hyperconnectivity in order to maintain a dynamic range of excitatory activity. However, the slow synaptic time constants induce decreased responsiveness to low-frequency stimulation, which may explain deficits in integration and early information processing in attentional neuronal networks in NDDs.

  9. VLA-4 integrin concentrates at the peripheral supramolecular activation complex of the immune synapse and drives T helper 1 responses

    Science.gov (United States)

    Mittelbrunn, María; Molina, Ana; Escribese, María M.; Yáñez-Mó, María; Escudero, Ester; Ursa, Ángeles; Tejedor, Reyes; Mampaso, Francisco; Sánchez-Madrid, Francisco

    2004-07-01

    The integrin 41 (VLA-4) not only mediates the adhesion and transendothelial migration of leukocytes, but also provides costimulatory signals that contribute to the activation of T lymphocytes. However, the behavior of 41 during the formation of the immune synapse is currently unknown. Here, we show that 41 is recruited to both human and murine antigen-dependent immune synapses, when the antigen-presenting cell is a B lymphocyte or a dendritic cell, colocalizing with LFA-1 at the peripheral supramolecular activation complex. However, when conjugates are formed in the presence of anti-4 antibodies, VLA-4 colocalizes with the CD3- chain at the center of the synapse. In addition, antibody engagement of 4 integrin promotes polarization toward a T helper 1 (Th1) response in human in vitro models of CD4+ T cell differentiation and naïve T cell priming by dendritic cells. The in vivo administration of anti-4 integrin antibodies also induces an immune deviation to Th1 response that dampens a Th2-driven autoimmune nephritis in Brown Norway rats. These data reveal a regulatory role of 4 integrins on T lymphocyte-antigen presenting cell cognate immune interactions.

  10. The short- and long-term proteomic effects of sleep deprivation on the cortical and thalamic synapses.

    Science.gov (United States)

    Simor, Attila; Györffy, Balázs András; Gulyássy, Péter; Völgyi, Katalin; Tóth, Vilmos; Todorov, Mihail Ivilinov; Kis, Viktor; Borhegyi, Zsolt; Szabó, Zoltán; Janáky, Tamás; Drahos, László; Juhász, Gábor; Kékesi, Katalin Adrienna

    2017-03-01

    Acute total sleep deprivation (SD) impairs memory consolidation, attention, working memory and perception. Structural, electrophysiological and molecular experimental approaches provided evidences for the involvement of sleep in synaptic functions. Despite the wide scientific interest on the effects of sleep on the synapse, there is a lack of systematic investigation of sleep-related changes in the synaptic proteome. We isolated parietal cortical and thalamic synaptosomes of rats after 8h of total SD by gentle handling and 16h after the end of deprivation to investigate the short- and longer-term effects of SD on the synaptic proteome, respectively. The SD efficiency was verified by electrophysiology. Protein abundance alterations of the synaptosomes were analyzed by fluorescent two-dimensional differential gel electrophoresis and by tandem mass spectrometry. As several altered proteins were found to be involved in synaptic strength regulation, our data can support the synaptic homeostasis hypothesis function of sleep and highlight the long-term influence of SD after the recovery sleep period, mostly on cortical synapses. Furthermore, the large-scale and brain area-specific protein network change in the synapses may support both ideas of sleep-related synaptogenesis and molecular maintenance and reorganization in normal rat brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Self-Organization of Microcircuits in Networks of Spiking Neurons with Plastic Synapses.

    Directory of Open Access Journals (Sweden)

    Gabriel Koch Ocker

    2015-08-01

    Full Text Available The synaptic connectivity of cortical networks features an overrepresentation of certain wiring motifs compared to simple random-network models. This structure is shaped, in part, by synaptic plasticity that promotes or suppresses connections between neurons depending on their joint spiking activity. Frequently, theoretical studies focus on how feedforward inputs drive plasticity to create this network structure. We study the complementary scenario of self-organized structure in a recurrent network, with spike timing-dependent plasticity driven by spontaneous dynamics. We develop a self-consistent theory for the evolution of network structure by combining fast spiking covariance with a slow evolution of synaptic weights. Through a finite-size expansion of network dynamics we obtain a low-dimensional set of nonlinear differential equations for the evolution of two-synapse connectivity motifs. With this theory in hand, we explore how the form of the plasticity rule drives the evolution of microcircuits in cortical networks. When potentiation and depression are in approximate balance, synaptic dynamics depend on weighted divergent, convergent, and chain motifs. For additive, Hebbian STDP these motif interactions create instabilities in synaptic dynamics that either promote or suppress the initial network structure. Our work provides a consistent theoretical framework for studying how spiking activity in recurrent networks interacts with synaptic plasticity to determine network structure.

  12. Dab2IP GTPase activating protein regulates dendrite development and synapse number in cerebellum.

    Directory of Open Access Journals (Sweden)

    Shuhong Qiao

    Full Text Available DOC-2/DAB-2 interacting protein (Dab2IP is a GTPase activating protein that binds to Disabled-1, a cytosolic adapter protein involved in Reelin signaling and brain development. Dab2IP regulates PI3K-AKT signaling and is associated with metastatic prostate cancer, abdominal aortic aneurysms and coronary heart disease. To date, the physiological function of Dab2IP in the nervous system, where it is highly expressed, is relatively unknown. In this study, we generated a mouse model with a targeted disruption of Dab2IP using a retrovirus gene trap strategy. Unlike reeler mice, Dab2IP knock-down mice did not exhibit severe ataxia or cerebellar hypoplasia. However, Dab2IP deficiency produced a number of cerebellar abnormalities such as a delay in the development of Purkinje cell (PC dendrites, a decrease in the parallel fiber synaptic marker VGluT1, and an increase in the climbing fiber synaptic marker VGluT2. These findings demonstrate for the first time that Dab2IP plays an important role in dendrite development and regulates the number of synapses in the cerebellum.

  13. The adaptor molecule SAP plays essential roles during invariant NKT cell cytotoxicity and lytic synapse formation.

    Science.gov (United States)

    Das, Rupali; Bassiri, Hamid; Guan, Peng; Wiener, Susan; Banerjee, Pinaki P; Zhong, Ming-Chao; Veillette, André; Orange, Jordan S; Nichols, Kim E

    2013-04-25

    The adaptor molecule signaling lymphocytic activation molecule-associated protein (SAP) plays critical roles during invariant natural killer T (iNKT) cell ontogeny. As a result, SAP-deficient humans and mice lack iNKT cells. The strict developmental requirement for SAP has made it difficult to discern its possible involvement in mature iNKT cell functions. By using temporal Cre recombinase-mediated gene deletion to ablate SAP expression after completion of iNKT cell development, we demonstrate that SAP is essential for T-cell receptor (TCR)-induced iNKT cell cytotoxicity against T-cell and B-cell leukemia targets in vitro and iNKT-cell-mediated control of T-cell leukemia growth in vivo. These findings are not restricted to the murine system: silencing RNA-mediated suppression of SAP expression in human iNKT cells also significantly impairs TCR-induced cytolysis. Mechanistic studies reveal that iNKT cell killing requires the tyrosine kinase Fyn, a known SAP-binding protein. Furthermore, SAP expression is required within iNKT cells to facilitate their interaction with T-cell targets and induce reorientation of the microtubule-organizing center to the immunologic synapse (IS). Collectively, these studies highlight a novel and essential role for SAP during iNKT cell cytotoxicity and formation of a functional IS.

  14. Spin-transfer torque magnetic memory as a stochastic memristive synapse for neuromorphic systems.

    Science.gov (United States)

    Vincent, Adrien F; Larroque, Jerome; Locatelli, Nicolas; Ben Romdhane, Nesrine; Bichler, Olivier; Gamrat, Christian; Zhao, Wei Sheng; Klein, Jacques-Olivier; Galdin-Retailleau, Sylvie; Querlioz, Damien

    2015-04-01

    Spin-transfer torque magnetic memory (STT-MRAM) is currently under intense academic and industrial development, since it features non-volatility, high write and read speed and high endurance. In this work, we show that when used in a non-conventional regime, it can additionally act as a stochastic memristive device, appropriate to implement a "synaptic" function. We introduce basic concepts relating to spin-transfer torque magnetic tunnel junction (STT-MTJ, the STT-MRAM cell) behavior and its possible use to implement learning-capable synapses. Three programming regimes (low, intermediate and high current) are identified and compared. System-level simulations on a task of vehicle counting highlight the potential of the technology for learning systems. Monte Carlo simulations show its robustness to device variations. The simulations also allow comparing system operation when the different programming regimes of STT-MTJs are used. In comparison to the high and low current regimes, the intermediate current regime allows minimization of energy consumption, while retaining a high robustness to device variations. These results open the way for unexplored applications of STT-MTJs in robust, low power, cognitive-type systems.

  15. Recent advances in basic neurosciences and brain disease: from synapses to behavior

    Directory of Open Access Journals (Sweden)

    Salter Michael W

    2006-12-01

    Full Text Available Abstract Understanding basic neuronal mechanisms hold the hope for future treatment of brain disease. The 1st international conference on synapse, memory, drug addiction and pain was held in beautiful downtown Toronto, Canada on August 21–23, 2006. Unlike other traditional conferences, this new meeting focused on three major aims: (1 to promote new and cutting edge research in neuroscience; (2 to encourage international information exchange and scientific collaborations; and (3 to provide a platform for active scientists to discuss new findings. Up to 64 investigators presented their recent discoveries, from basic synaptic mechanisms to genes related to human brain disease. This meeting was in part sponsored by Molecular Pain, together with University of Toronto (Faculty of Medicine, Department of Physiology as well as Center for the Study of Pain. Our goal for this meeting is to promote future active scientific collaborations and improve human health through fundamental basic neuroscience researches. The second international meeting on Neurons and Brain Disease will be held in Toronto (August 29–31, 2007.

  16. M4 mAChR-mediated modulation of glutamatergic transmission at corticostriatal synapses.

    Science.gov (United States)

    Pancani, Tristano; Bolarinwa, Caroline; Smith, Yoland; Lindsley, Craig W; Conn, P Jeffrey; Xiang, Zixiu

    2014-04-16

    The striatum is the main input station of the basal ganglia and is extensively involved in the modulation of motivated behavior. The information conveyed to this subcortical structure through glutamatergic projections from the cerebral cortex and thalamus is processed by the activity of several striatal neuromodulatory systems including the cholinergic system. Acetylcholine potently modulates glutamate signaling in the striatum via activation of muscarinic receptors (mAChRs). It is, however, unclear which mAChR subtype is responsible for this modulatory effect. Here, by using electrophysiological, optogenetic, and immunoelectron microscopic approaches in conjunction with a novel, highly selective M4 positive allosteric modulator VU0152100 (ML108) and M4 knockout mice, we show that M4 is a major mAChR subtype mediating the cholinergic inhibition of corticostriatal glutamatergic input on both striatonigral and striatopallidal medium spiny neurons (MSNs). This effect is due to activation of presynaptic M4 receptors, which, in turn, leads to a decrease in glutamate release from corticostriatal terminals. The findings of the present study raise the interesting possibility that M4 mAChR could be a novel therapeutic target for the treatment of neurological and neuropsychiatric disorders involving hyper-glutamatergic transmission at corticostriatal synapses.

  17. Taurine Induces Proliferation of Neural Stem Cells and Synapse Development in the Developing Mouse Brain

    Science.gov (United States)

    Shivaraj, Mattu Chetana; Marcy, Guillaume; Low, Guoliang; Ryu, Jae Ryun; Zhao, Xianfeng; Rosales, Francisco J.; Goh, Eyleen L. K.

    2012-01-01

    Taurine is a sulfur-containing amino acid present in high concentrations in mammalian tissues. It has been implicated in several processes involving brain development and neurotransmission. However, the role of taurine in hippocampal neurogenesis during brain development is still unknown. Here we show that taurine regulates neural progenitor cell (NPC) proliferation in the dentate gyrus of the developing brain as well as in cultured early postnatal (P5) hippocampal progenitor cells and hippocampal slices derived from P5 mice brains. Taurine increased cell proliferation without having a significant effect on neural differentiation both in cultured P5 NPCs as well as cultured hippocampal slices and in vivo. Expression level analysis of synaptic proteins revealed that taurine increases the expression of Synapsin 1 and PSD 95. We also found that taurine stimulates the phosphorylation of ERK1/2 indicating a possible role of the ERK pathway in mediating the changes that we observed, especially in proliferation. Taken together, our results demonstrate a role for taurine in neural stem/progenitor cell proliferation in developing brain and suggest the involvement of the ERK1/2 pathways in mediating these actions. Our study also shows that taurine influences the levels of proteins associated with synapse development. This is the first evidence showing the effect of taurine on early postnatal neuronal development using a combination of in vitro, ex-vivo and in vivo systems. PMID:22916184

  18. Taurine induces proliferation of neural stem cells and synapse development in the developing mouse brain.

    Directory of Open Access Journals (Sweden)

    Mattu Chetana Shivaraj

    Full Text Available Taurine is a sulfur-containing amino acid present in high concentrations in mammalian tissues. It has been implicated in several processes involving brain development and neurotransmission. However, the role of taurine in hippocampal neurogenesis during brain development is still unknown. Here we show that taurine regulates neural progenitor cell (NPC proliferation in the dentate gyrus of the developing brain as well as in cultured early postnatal (P5 hippocampal progenitor cells and hippocampal slices derived from P5 mice brains. Taurine increased cell proliferation without having a significant effect on neural differentiation both in cultured P5 NPCs as well as cultured hippocampal slices and in vivo. Expression level analysis of synaptic proteins revealed that taurine increases the expression of Synapsin 1 and PSD 95. We also found that taurine stimulates the phosphorylation of ERK1/2 indicating a possible role of the ERK pathway in mediating the changes that we observed, especially in proliferation. Taken together, our results demonstrate a role for taurine in neural stem/progenitor cell proliferation in developing brain and suggest the involvement of the ERK1/2 pathways in mediating these actions. Our study also shows that taurine influences the levels of proteins associated with synapse development. This is the first evidence showing the effect of taurine on early postnatal neuronal development using a combination of in vitro, ex-vivo and in vivo systems.

  19. Supervised Learning Using Spike-Timing-Dependent Plasticity of Memristive Synapses.

    Science.gov (United States)

    Nishitani, Yu; Kaneko, Yukihiro; Ueda, Michihito

    2015-12-01

    We propose a supervised learning model that enables error backpropagation for spiking neural network hardware. The method is modeled by modifying an existing model to suit the hardware implementation. An example of a network circuit for the model is also presented. In this circuit, a three-terminal ferroelectric memristor (3T-FeMEM), which is a field-effect transistor with a gate insulator composed of ferroelectric materials, is used as an electric synapse device to store the analog synaptic weight. Our model can be implemented by reflecting the network error to the write voltage of the 3T-FeMEMs and introducing a spike-timing-dependent learning function to the device. An XOR problem was successfully demonstrated as a benchmark learning by numerical simulations using the circuit properties to estimate the learning performance. In principle, the learning time per step of this supervised learning model and the circuit is independent of the number of neurons in each layer, promising a high-speed and low-power calculation in large-scale neural networks.

  20. Microtubule-organizing center polarity and the immunological synapse: protein kinase C and beyond

    Directory of Open Access Journals (Sweden)

    Morgan eHuse

    2012-07-01

    Full Text Available Cytoskeletal polarization is crucial for many aspects of immune function, ranging from neutrophil migration to the sampling of gut flora by intestinal dendritic cells. It also plays a key role during lymphocyte cell-cell interactions, the most conspicuous of which is perhaps the immunological synapse (IS formed between a T cell and an antigen-presenting cell (APC. IS formation is associated with the reorientation of the T cell’s microtubule-organizing center (MTOC to a position just beneath the cell-cell interface. This cytoskeletal remodeling event aligns secretory organelles inside the T cell with the IS, enabling the directional release of cytokines and cytolytic factors toward the APC. MTOC polarization is therefore crucial for maintaining the specificity of a T cell’s secretory and cytotoxic responses. It has been known for some time that T cell receptor (TCR stimulation activates the MTOC polarization response. It has been difficult, however, to identify the machinery that couples early TCR signaling to cytoskeletal remodeling. Over the past few years, considerable progress has been made in this area. This review will present an overview of recent advances, touching on both the mechanisms that drive MTOC polarization and the effector responses that require it. Particular attention will be paid to both novel and atypical members of the protein kinase C family, which are now known to play important roles in both the establishment and the maintenance of the polarized state.

  1. Microtubule-organizing center polarity and the immunological synapse: protein kinase C and beyond.

    Science.gov (United States)

    Huse, Morgan

    2012-01-01

    Cytoskeletal polarization is crucial for many aspects of immune function, ranging from neutrophil migration to the sampling of gut flora by intestinal dendritic cells. It also plays a key role during lymphocyte cell-cell interactions, the most conspicuous of which is perhaps the immunological synapse (IS) formed between a T cell and an antigen-presenting cell (APC). IS formation is associated with the reorientation of the T cell's microtubule-organizing center (MTOC) to a position just beneath the cell-cell interface. This cytoskeletal remodeling event aligns secretory organelles inside the T cell with the IS, enabling the directional release of cytokines and cytolytic factors toward the APC. MTOC polarization is therefore crucial for maintaining the specificity of a T cell's secretory and cytotoxic responses. It has been known for some time that T cell receptor (TCR) stimulation activates the MTOC polarization response. It has been difficult, however, to identify the machinery that couples early TCR signaling to cytoskeletal remodeling. Over the past few years, considerable progress has been made in this area. This review will present an overview of recent advances, touching on both the mechanisms that drive MTOC polarization and the effector responses that require it. Particular attention will be paid to both novel and atypical members of the protein kinase C family, which are now known to play important roles in both the establishment and the maintenance of the polarized state.

  2. A differential memristive synapse circuit for on-line learning in neuromorphic computing systems

    Science.gov (United States)

    Nair, Manu V.; Muller, Lorenz K.; Indiveri, Giacomo

    2017-12-01

    Spike-based learning with memristive devices in neuromorphic computing architectures typically uses learning circuits that require overlapping pulses from pre- and post-synaptic nodes. This imposes severe constraints on the length of the pulses transmitted in the network, and on the network’s throughput. Furthermore, most of these circuits do not decouple the currents flowing through memristive devices from the one stimulating the target neuron. This can be a problem when using devices with high conductance values, because of the resulting large currents. In this paper, we propose a novel circuit that decouples the current produced by the memristive device from the one used to stimulate the post-synaptic neuron, by using a novel differential scheme based on the Gilbert normalizer circuit. We show how this circuit is useful for reducing the effect of variability in the memristive devices, and how it is ideally suited for spike-based learning mechanisms that do not require overlapping pre- and post-synaptic pulses. We demonstrate the features of the proposed synapse circuit with SPICE simulations, and validate its learning properties with high-level behavioral network simulations which use a stochastic gradient descent learning rule in two benchmark classification tasks.

  3. Bifurcation Analysis on Phase-Amplitude Cross-Frequency Coupling in Neural Networks with Dynamic Synapses

    Science.gov (United States)

    Sase, Takumi; Katori, Yuichi; Komuro, Motomasa; Aihara, Kazuyuki

    2017-01-01

    We investigate a discrete-time network model composed of excitatory and inhibitory neurons and dynamic synapses with the aim at revealing dynamical properties behind oscillatory phenomena possibly related to brain functions. We use a stochastic neural network model to derive the corresponding macroscopic mean field dynamics, and subsequently analyze the dynamical properties of the network. In addition to slow and fast oscillations arising from excitatory and inhibitory networks, respectively, we show that the interaction between these two networks generates phase-amplitude cross-frequency coupling (CFC), in which multiple different frequency components coexist and the amplitude of the fast oscillation is modulated by the phase of the slow oscillation. Furthermore, we clarify the detailed properties of the oscillatory phenomena by applying the bifurcation analysis to the mean field model, and accordingly show that the intermittent and the continuous CFCs can be characterized by an aperiodic orbit on a closed curve and one on a torus, respectively. These two CFC modes switch depending on the coupling strength from the excitatory to inhibitory networks, via the saddle-node cycle bifurcation of a one-dimensional torus in map (MT1SNC), and may be associated with the function of multi-item representation. We believe that the present model might have potential for studying possible functional roles of phase-amplitude CFC in the cerebral cortex. PMID:28424606

  4. Function and Dynamics of Tetraspanins during Antigen Recognition and Immunological Synapse Formation

    Directory of Open Access Journals (Sweden)

    Vera eRocha-Perugini

    2016-01-01

    Full Text Available Tetraspanin-enriched microdomains (TEMs are specialized membrane platforms driven by protein-protein interactions that integrate membrane receptors and adhesion molecules. Tetraspanins participate in antigen recognition and presentation by antigen presenting cells (APCs through the organization of pattern recognition receptors (PRRs and their downstream induced-signaling, as well as the regulation of MHC-II-peptide trafficking. T lymphocyte activation is triggered upon specific recognition of antigens present on the APC surface during immunological synapse (IS formation. This dynamic process is characterized by a defined spatial organization involving the compartmentalization of receptors and adhesion molecules in specialized membrane domains that are connected to the underlying cytoskeleton and signaling molecules. Tetraspanins contribute to the spatial organization and maturation of the IS by controlling receptor clustering and local accumulation of adhesion receptors and integrins, their downstream signaling and linkage to the actin cytoskeleton. This review offers a perspective on the important role of TEMs in the regulation of antigen recognition and presentation, and in the dynamics of IS architectural organization.

  5. Cell Biological Mechanisms of Activity-Dependent Synapse to Nucleus Translocation of CRTC1 in Neurons

    Directory of Open Access Journals (Sweden)

    Toh Hean eCh'ng

    2015-09-01

    Full Text Available Previous studies have revealed a critical role for CREB-regulated transcriptional coactivator (CRTC1 in regulating neuronal gene expression during learning and memory. CRTC1 localizes to synapses but undergoes activity-dependent nuclear translocation to regulate the transcription of CREB target genes. Here we investigate the long-distance retrograde transport of CRTC1 in hippocampal neurons. We show that local elevations in calcium, triggered by activation of synaptic glutamate receptors and L-type voltage-gated calcium channels, initiate active, dynein-mediated retrograde transport of CRTC1 along microtubules. We identify a nuclear localization signal within CRTC1, and characterize three conserved serine residues whose dephosphorylation is required for nuclear import. Domain analysis reveals that the amino-terminal third of CRTC1 contains all of the signals required for regulated nucleocytoplasmic trafficking. We fuse this region to Dendra2 to generate a reporter construct and perform live-cell imaging coupled with local uncaging of glutamate and photoconversion to characterize the dynamics of stimulus-induced retrograde transport and nuclear accumulation.

  6. Rapid strengthening of thalamo-amygdala synapses mediates cue-reward learning.

    Science.gov (United States)

    Tye, Kay M; Stuber, Garret D; de Ridder, Bram; Bonci, Antonello; Janak, Patricia H

    2008-06-26

    What neural changes underlie individual differences in goal-directed learning? The lateral amygdala (LA) is important for assigning emotional and motivational significance to discrete environmental cues, including those that signal rewarding events. Recognizing that a cue predicts a reward enhances an animal's ability to acquire that reward; however, the cellular and synaptic mechanisms that underlie cue-reward learning are unclear. Here we show that marked changes in both cue-induced neuronal firing and input-specific synaptic strength occur with the successful acquisition of a cue-reward association within a single training session. We performed both in vivo and ex vivo electrophysiological recordings in the LA of rats trained to self-administer sucrose. We observed that reward-learning success increased in proportion to the number of amygdala neurons that responded phasically to a reward-predictive cue. Furthermore, cue-reward learning induced an AMPA (alpha-amino-3-hydroxy-5-methyl-isoxazole propionic acid)-receptor-mediated increase in the strength of thalamic, but not cortical, synapses in the LA that was apparent immediately after the first training session. The level of learning attained by individual subjects was highly correlated with the degree of synaptic strength enhancement. Importantly, intra-LA NMDA (N-methyl-d-aspartate)-receptor blockade impaired reward-learning performance and attenuated the associated increase in synaptic strength. These findings provide evidence of a connection between LA synaptic plasticity and cue-reward learning, potentially representing a key mechanism underlying goal-directed behaviour.

  7. Quantifying Repetitive Transmission at Chemical Synapses: A Generative-Model Approach123

    Science.gov (United States)

    Barri, Alessandro; Wang, Yun; Hansel, David

    2016-01-01

    Abstract The dependence of the synaptic responses on the history of activation and their large variability are both distinctive features of repetitive transmission at chemical synapses. Quantitative investigations have mostly focused on trial-averaged responses to characterize dynamic aspects of the transmission—thus disregarding variability—or on the fluctuations of the responses in steady conditions to characterize variability—thus disregarding dynamics. We present a statistically principled framework to quantify the dynamics of the probability distribution of synaptic responses under arbitrary patterns of activation. This is achieved by constructing a generative model of repetitive transmission, which includes an explicit description of the sources of stochasticity present in the process. The underlying parameters are then selected via an expectation-maximization algorithm that is exact for a large class of models of synaptic transmission, so as to maximize the likelihood of the observed responses. The method exploits the information contained in the correlation between responses to produce highly accurate estimates of both quantal and dynamic parameters from the same recordings. The method also provides important conceptual and technical advances over existing state-of-the-art techniques. In particular, the repetition of the same stimulation in identical conditions becomes unnecessary. This paves the way to the design of optimal protocols to estimate synaptic parameters, to the quantitative comparison of synaptic models over benchmark datasets, and, most importantly, to the study of repetitive transmission under physiologically relevant patterns of synaptic activation. PMID:27200414

  8. Quantifying Repetitive Transmission at Chemical Synapses: A Generative-Model Approach.

    Science.gov (United States)

    Barri, Alessandro; Wang, Yun; Hansel, David; Mongillo, Gianluigi

    2016-01-01

    The dependence of the synaptic responses on the history of activation and their large variability are both distinctive features of repetitive transmission at chemical synapses. Quantitative investigations have mostly focused on trial-averaged responses to characterize dynamic aspects of the transmission--thus disregarding variability--or on the fluctuations of the responses in steady conditions to characterize variability--thus disregarding dynamics. We present a statistically principled framework to quantify the dynamics of the probability distribution of synaptic responses under arbitrary patterns of activation. This is achieved by constructing a generative model of repetitive transmission, which includes an explicit description of the sources of stochasticity present in the process. The underlying parameters are then selected via an expectation-maximization algorithm that is exact for a large class of models of synaptic transmission, so as to maximize the likelihood of the observed responses. The method exploits the information contained in the correlation between responses to produce highly accurate estimates of both quantal and dynamic parameters from the same recordings. The method also provides important conceptual and technical advances over existing state-of-the-art techniques. In particular, the repetition of the same stimulation in identical conditions becomes unnecessary. This paves the way to the design of optimal protocols to estimate synaptic parameters, to the quantitative comparison of synaptic models over benchmark datasets, and, most importantly, to the study of repetitive transmission under physiologically relevant patterns of synaptic activation.

  9. Central Solenoid

    CERN Multimedia

    2002-01-01

    The Central Solenoid (CS) is a single layer coil wound internally in a supporting cylinder housed in the cryostat of the Liquid Argon Calorimeter. It was successfully tested at Toshiba in December 2000 and was delivered to CERN in September 2001 ready for integration in the LAr Calorimeter in 2003. An intermediate test of the chimney and proximity cryogenics was successfully performed in June 2002.

  10. Understanding Teaching beyond Content and Method: Insights from Central Asia

    Science.gov (United States)

    Niyozov, Sarfaroz

    2009-01-01

    This study suggests the need for complex research approaches that provide richer, contested, and nondichotomous portrayals of classrooms, schooling life, and teachers. Drawing from a qualitative study of Tajik teachers' practices and perspectives (Niyozov, 2001) and studies on teaching conducted in Kyrgyzstan (De Young, Reeves, & Valyaeva ,…

  11. Sympathetic Responses to Central Hypovolemia: New Insights from Microneurographic Recordings

    Science.gov (United States)

    2012-04-26

    reviewed and approved by the US Army Medical Research and Materiel Command Institutional Review Board and in accor- dance with the approved protocols...C. (2007b). Sympathetic nerve activity and heart rate vari- ability during severe hemorrhagic shock in sheep.Auton. Neurosci . 136, 43–51. Billman, G...A. (2002). Syncopal attack alters the burst properties of muscle sympathetic nerve activity in humans. Auton. Neurosci . 95, 141–145. Iwase, S

  12. Excitatory synapse in the rat hippocampus in tissue culture and effects of aniracetam.

    Science.gov (United States)

    Ozawa, S; Iino, M; Abe, M

    1991-10-01

    Excitatory synaptic connections between rat hippocampal neurons were established in tissue culture. The electrophysiological and pharmacological properties of these synapses were studied with the use of the tight-seal whole-cell recording technique. The excitatory postsynaptic current (EPSC) in a dissociated CA1 neuron evoked by stimulation of an explant from the CA3/CA4 region of the hippocampus had two distinct components in Mg(2+)-free medium. The fast component was abolished by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (2 microM), whereas the slow component was abolished by the N-methyl-D-aspartate (NMDA) receptor antagonist D-2-amino-5-phosphonovalerate (D-APV) (50 microM). In solution containing 1 mM Mg2+, the peak amplitude of the fast component was almost linearly related to the membrane potential. In contrast, the conductance change underlying the slow component of the EPSC was voltage-dependent with a region of negative-slope conductance in the range of -80 to -20 mV. A nootropic drug, aniracetam, increased both the amplitude and duration of the fast component of the EPSC in a concentration-dependent manner in the range of 0.1-5 mM, whereas it had no potentiating effect on the slow component. Aniracetam (0.1-5 mM) similarly increased current responses of the postsynaptic neuron to alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA). Current responses to quisqualate and glutamate in the presence of D-APV were also potentiated by aniracetam. However, neither NMDA- nor kainate-induced current was potentiated by 1 mM aniracetam.

  13. GABAergic synapse properties may explain genetic variation in hippocampal network oscillations in mice

    Directory of Open Access Journals (Sweden)

    Tim S Heistek

    2010-06-01

    Full Text Available Cognitive ability and the properties of brain oscillation are highly heritable in humans. Genetic variation underlying oscillatory activity might give rise to differences in cognition and behavior. How genetic diversity translates into altered properties of oscillations and synchronization of neuronal activity is unknown. To address this issue, we investigated cellular and synaptic mechanisms of hippocampal fast network oscillations in eight genetically distinct inbred mouse strains. The frequency of carbachol-induced oscillations differed substantially between mouse strains. Since GABAergic inhibition sets oscillation frequency, we studied the properties of inhibitory synaptic inputs (IPSCs received by CA3 and CA1 pyramidal cells of three mouse strains that showed the highest, lowest and intermediate frequencies of oscillations. In CA3 pyramidal cells, the frequency of rhythmic IPSC input showed the same strain differences as the frequency of field oscillations. Furthermore, IPSC decay times in both CA1 and CA3 pyramidal cells were faster in mouse strains with higher oscillation frequencies than in mouse strains with lower oscillation frequency, suggesting that differences in GABAA-receptor subunit composition exist between these strains. Indeed, gene expression of GABAA-receptor β2 (Gabrb2 and β3 (Gabrb2 subunits was higher in mouse strains with faster decay kinetics compared with mouse strains with slower decay kinetics. Hippocampal pyramidal neurons in mouse strains with higher oscillation frequencies and faster decay kinetics fired action potential at higher frequencies. These data indicate that differences in genetic background may result in different GABAA-receptor subunit expression, which affects the rhythm of pyramidal neuron firing and fast network activity through GABA synapse kinetics.

  14. Neurochemical properties of the synapses in the pathways of orofacial nociceptive reflexes.

    Directory of Open Access Journals (Sweden)

    Yu-lin Dong

    Full Text Available The brainstem premotor neurons of the facial nucleus (VII and hypoglossal (XII nucleus can integrate orofacial nociceptive input from the caudal spinal trigeminal nucleus (Vc and coordinate orofacial nociceptive reflex (ONR responses. However, the synaptoarchitectures of the ONR pathways are still unknown. In the current study, we examined the distribution of GABAergic premotor neurons in the brainstem local ONR pathways, their connections with the Vc projections joining the brainstem ONR pathways and the neurochemical properties of these connections. Retrograde tracer fluoro-gold (FG was injected into the VII or XII, and anterograde tracer biotinylated dextran amine (BDA was injected into the Vc. Immunofluorescence histochemical labeling for inhibitory/excitatory neurotransmitters combined with BDA/FG tracing showed that GABAergic premotor neurons were mainly distributed bilaterally in the ponto-medullary reticular formation with an ipsilateral dominance. Some GABAergic premotor neurons made close appositions to the BDA-labeled fibers coming from the Vc, and these appostions were mainly distributed in the parvicellular reticular formation (PCRt, dorsal medullary reticular formation (MdD, and supratrigeminal nucleus (Vsup. We further examined the synaptic relationships between the Vc projecting fibers and premotor neurons in the VII or XII under the confocal laser-scanning microscope and electron microscope, and found that the BDA-labeled axonal terminals that made asymmetric synapses on premotor neurons showed vesicular glutamate transporter 2 (VGluT2 like immunoreactivity. These results indicate that the GABAergic premotor neurons receive excitatory neurotransmission from the Vc and may contribute to modulating the generation of the tonic ONR.

  15. Functional and structural remodeling of glutamate synapses in prefrontal and frontal cortex induced by behavioral stress

    Directory of Open Access Journals (Sweden)

    Laura eMusazzi

    2015-04-01

    Full Text Available Increasing evidence has shown that the pathophysiology of neuropsychiatric disorders, including mood disorders, is associated with abnormal function and regulation of the glutamatergic system. Consistently, preclinical studies on stress-based animal models of pathology showed that glucocorticoids and stress exert crucial effects on neuronal excitability and function, especially in cortical and limbic areas. In prefrontal and frontal cortex, acute stress was shown to induce enhancement of glutamate release/transmission dependent on activation of corticosterone receptors. Although the mechanisms whereby stress affects glutamate transmission have not yet been fully understood, it was shown that synaptic, non-genomic action of corticosterone is required to increase the readily releasable pool of glutamate vesicles but is not sufficient to enhance transmission in prefrontal and frontal cortex. Slower, partly genomic mechanisms are probably necessary for the enhancement of glutamate transmission induced by stress.Combined evidence has suggested that the changes in glutamate release and transmission are responsible for the dendritic remodeling and morphological changes induced by stress and it has been argued that sustained alterations of glutamate transmission may play a key role in the long-term structural/functional changes associated with mood disorders in patients. Intriguingly, modifications of the glutamatergic system induced by stress in the prefrontal cortex seem to be biphasic. Indeed, while the fast response to stress suggests an enhancement in the number of excitatory synapses, synaptic transmission and working memory, long-term adaptive changes -including those consequent to chronic stress- induce opposite effects. Better knowledge of the cellular effectors involved in this biphasic effect of stress may be useful to understand the pathophysiology of stress-related disorders, and open new paths for the development of therapeutic approaches.

  16. Central sleep apnea

    Science.gov (United States)

    Sleep apnea - central; Obesity - central sleep apnea; Cheyne-Stokes - central sleep apnea; Heart failure - central sleep apnea ... Central sleep apnea results when the brain temporarily stops sending signals to the muscles that control breathing. The condition ...

  17. Effects of long-term exercise and low-level inhibition of GABAergic synapses on motor control and the expression of BDNF in the motor related cortex.

    Science.gov (United States)

    Inoue, Takahiro; Ninuma, Shuta; Hayashi, Masataka; Okuda, Akane; Asaka, Tadayoshi; Maejima, Hiroshi

    2018-01-01

    Objectives Brain-derived neurotrophic factor (BDNF) plays important roles in neuroplasticity in the brain. The objective of this study was to examine the effects of long-term exercise combined with low-level inhibition of GABAergic synapses on motor control and the expression of BDNF in the motor-related cortex. Methods ICR mice were divided into four groups based on the factors exercise and GABA A receptor inhibition. We administered the GABA A receptor antagonist bicuculline intraperitoneally (0.25 mg/kg). Mice exercised on a treadmill 5 days/week for 4 weeks. Following behavioral tests, BDNF expression in the motor cortex and cerebellar cortex was assayed using RT-PCR and ELISA. Results Exercise increased BDNF protein in the motor cortex and improved motor coordination in the rotarod test either in the presence or absence of bicuculline. BDNF mRNA expression in the motor cortex and muscle coordination in the wire hang test decreased after administration of bicuculline, whereas bicuculline administration increased mRNA and protein expression of BDNF in the cerebellum. Discussion The present study revealed that long-term exercise increased BDNF expression in the motor cortex and facilitated a transfer of motor learning from aerobic exercise to postural coordination. Thus, aerobic exercise is meaningful for conditioning motor learning to rehabilitate patients with central nervous system (CNS) disorders. However, long-term inhibition of GABA A receptors decreased the expression of cortical BDNF mRNA and decreased muscle coordination, despite the increase of BDNF in the cerebellum, suggesting that we have to consider the term of the inhibition of the GABAergic receptor for future clinical application to CNS patients.

  18. In vitro formation and activity-dependent plasticity of synapses between Helix neurons involved in the neural control of feeding and withdrawal behaviors.

    Science.gov (United States)

    Fiumara, F; Leitinger, G; Milanese, C; Montarolo, P G; Ghirardi, M

    2005-01-01

    Short-term activity-dependent synaptic plasticity has a fundamental role in short-term memory and information processing in the nervous system. Although the neuronal circuitry controlling different behaviors of land snails of the genus Helix has been characterized in some detail, little is known about the activity-dependent plasticity of synapses between identified neurons regulating specific behavioral acts. In order to study homosynaptic activity-dependent plasticity of behaviorally relevant Helix synapses independently of heterosynaptic influences, we sought to reconstruct them in cell culture. To this aim, we first investigated in culture the factors regulating synapse formation between Helix neurons, and then we studied the short-term plasticity of in vitro-reconstructed monosynaptic connections involved in the neural control of salivary secretion and whole-body withdrawal. We found that independently of extrinsic factors, cell-cell interactions are seemingly sufficient to trigger the formation of electrical and chemical synapses, although mostly inappropriate--in their type or association--with respect to the in vivo synaptic connectivity. The presence of ganglia-derived factors in the culture medium was required for the in vitro reestablishment of the appropriate in vivo-like connectivity, by reducing the occurrence of electrical connections and promoting the formation of chemical excitatory synapses, while apparently not influencing the formation of inhibitory connections. These heat-labile factors modulated electrical and chemical synaptogenesis through distinct protein tyrosine kinase signal transduction pathways. Taking advantage of in vitro-reconstructed synapses, we have found that feeding interneuron-efferent neuron synapses and mechanosensory neuron-withdrawal interneuron synapses display multiple forms of short-term enhancement-like facilitation, augmentation and posttetanic potentiation as well as homosynaptic depression. These forms of plasticity

  19. Human Brain-Derived Aβ Oligomers Bind to Synapses and Disrupt Synaptic Activity in a Manner That Requires APP.

    Science.gov (United States)

    Wang, Zemin; Jackson, Rosemary J; Hong, Wei; Taylor, Walter M; Corbett, Grant T; Moreno, Arturo; Liu, Wen; Li, Shaomin; Frosch, Matthew P; Slutsky, Inna; Young-Pearse, Tracy L; Spires-Jones, Tara L; Walsh, Dominic M

    2017-12-06

    Compelling genetic evidence links the amyloid precursor protein (APP) to Alzheimer's disease (AD) and several theories have been advanced to explain the relationship. A leading hypothesis proposes that a small amphipathic fragment of APP, the amyloid β-protein (Aβ), self-associates to form soluble aggregates that impair synaptic and network activity. Here, we used the most disease-relevant form of Aβ, protein isolated from AD brain. Using this material, we show that the synaptotoxic effects of Aβ depend on expression of APP and that the Aβ-mediated impairment of synaptic plasticity is accompanied by presynaptic effects that disrupt the excitatory/inhibitory (E/I) balance. The net increase in the E/I ratio and inhibition of plasticity are associated with Aβ localizing to synapses and binding of soluble Aβ aggregates to synapses requires the expression of APP. Our findings indicate a role for APP in AD pathogenesis beyond the generation of Aβ and suggest modulation of APP expression as a therapy for AD. SIGNIFICANCE STATEMENT Here, we report on the plasticity-disrupting effects of amyloid β-protein (Aβ) isolated from Alzheimer's disease (AD) brain and the requirement of amyloid precursor protein (APP) for these effects. We show that Aβ-containing AD brain extracts block hippocampal LTP, augment glutamate release probability, and disrupt the excitatory/inhibitory balance. These effects are associated with Aβ localizing to synapses and genetic ablation of APP prevents both Aβ binding and Aβ-mediated synaptic dysfunctions. Our results emphasize the importance of APP in AD and should stimulate new studies to elucidate APP-related targets suitable for pharmacological manipulation. Copyright © 2017 the authors 0270-6474/17/3711947-20$15.00/0.

  20. The role of Ca2+-dependent K+- channels at the rat corticostriatal synapses revealed by paired pulse stimulation.

    Science.gov (United States)

    Robles Gómez, Angel A; Vega, Ana V; Gónzalez-Sandoval, Carolina; Barral, Jaime

    2018-02-01

    Potassium channels play an important role in modulating synaptic activity both at presynaptic and postsynaptic levels. We have shown before that presynaptically located K V and K IR channels modulate the strength of corticostriatal synapses in rat brain, but the role of other types of potassium channels at these synapses remains largely unknown. Here, we show that calcium-dependent potassium channels BK-type but not SK-type channels are located presynaptically in corticostriatal synapses. We stimulated cortical neurons in rat brain slices and recorded postsynaptic excitatory potentials (EPSP) in medium spiny neurons (MSN) in dorsal neostriatum. By using a paired pulse protocol, we induced synaptic facilitation before applying either BK- or SK-specific toxins. Thus, we found that blockage of BK Ca with iberiotoxin (10 nM) reduces synaptic facilitation and increases the amplitude of the EPSP, while exposure to SK-blocker apamin (100 nM) has no effect. Additionally, we induced train action potentials on striatal MSN by current injection before and after the exposure to K Ca toxins. We found that the action potential becomes broader when the MSN is exposed to iberiotoxin, although it has no impact on frequency. In contrast, exposure to apamin results in loss of afterhyperpolarization phase and an increase of spike frequency. Therefore, we concluded that postsynaptic SK channels are involved in afterhyperpolarization and modulation of spike frequency while the BK channels are involved on the late repolarization phase of the action potential. Altogether, our results show that calcium-dependent potassium channels modulate both input towards and output from the striatum. © 2017 Wiley Periodicals, Inc.

  1. Endocannabinoid release modulates electrical coupling between CCK cells connected via chemical and electrical synapses in CA1

    Directory of Open Access Journals (Sweden)

    Jonathan eIball

    2011-11-01

    Full Text Available Electrical coupling between some subclasses of interneurons is thought to promote coordinated firing that generates rhythmic synchronous activity in cortical regions. Synaptic activity of cholesystokinin (CCK interneurons which co-express cannbinoid type-1 (CB1 receptors are powerful modulators of network activity via the actions of endocannabinoids. We investigated the modulatory actions of endocannabinoids between chemically and electrically connected synapses of CCK cells using paired whole-cell recordings combined with biocytin and double immunofluorescence labelling in acute slices of rat hippocampus at P18-20 days. CA1 stratum radiatum CCK Schaffer collateral associated (SCA cells were coupled electrically with each other as well as CCK basket cells and CCK cells with axonal projections expanding to dentate gyrus. Approximately 50% of electrically coupled cells received facilitating, asynchronously released IPSPs that curtailed the steady-state coupling coefficient by 57%. Tonic CB1 receptor activity which reduces inhibition enhanced electrical coupling between cells that were connected via chemical and electrical synapses. Blocking CB1 receptors with antagonist, AM-251 (5M resulted in the synchronized release of larger IPSPs and this enhanced inhibition further reduced the steady-state coupling coefficient by 85%. Depolarization induced suppression of inhibition (DSI, maintained the asynchronicity of IPSP latency, but reduced IPSP amplitudes by 95% and enhanced the steady-state coupling coefficient by 104% and IPSP duration by 200%. However, DSI did not did not enhance electrical coupling at purely electrical synapses. These data suggest that different morphological subclasses of CCK interneurons are interconnected via gap junctions. The synergy between the chemical and electrical coupling between CCK cells probably plays a role in activity-dependent endocannabinoid modulation of rhythmic synchronization.

  2. Associations of unilateral whisker and olfactory signals induce synapse formation and memory cell recruitment in bilateral barrel cortices: cellular mechanism for unilateral training toward bilateral memory

    Directory of Open Access Journals (Sweden)

    Zilong Gao

    2016-12-01

    Full Text Available Somatosensory signals and operative skills learned by unilateral limbs can be retrieved bilaterally. In terms of cellular mechanism underlying this unilateral learning toward bilateral memory, we hypothesized that associative memory cells in bilateral cortices and synapse innervations between them were produced. In the examination of this hypothesis, we have observed that paired unilateral whisker and odor stimulations led to odorant-induced whisker motions in bilateral sides, which were attenuated by inhibiting the activity of barrel cortices. In the mice that showed bilateral cross-modal responses, the neurons in both sides of barrel cortices became to encode this new odor signal alongside the innate whisker signal. Axon projections and synapse formations from the barrel cortex, which was co-activated with the piriform cortex, toward its contralateral barrel cortex were upregulated. Glutamatergic synaptic transmission in bilateral barrel cortices was upregulated and GABAergic synaptic transmission was downregulated. The associative activations of the sensory cortices facilitate new axon projection, glutamatergic synapse formation and GABAergic synapse downregulation, which drive the neurons to be recruited as associative memory cells in the bilateral cortices. Our data reveals the productions of associative memory cells and synapse innervations in bilateral sensory cortices for unilateral training toward bilateral memory.

  3. A role for dendritic mGluR5-mediated local translation of Arc/Arg3.1 in MEF2-dependent synapse elimination.

    Science.gov (United States)

    Wilkerson, Julia R; Tsai, Nien-Pei; Maksimova, Marina A; Wu, Hao; Cabalo, Nicole P; Loerwald, Kristofer W; Dictenberg, Jason B; Gibson, Jay R; Huber, Kimberly M

    2014-06-12

    Experience refines synaptic connectivity through neural activity-dependent regulation of transcription factors. Although activity-dependent regulation of transcription factors has been well described, it is unknown whether synaptic activity and local, dendritic regulation of the induced transcripts are necessary for mammalian synaptic plasticity in response to transcription factor activation. Neuronal depolarization activates the myocyte enhancer factor 2 (MEF2) family of transcription factors that suppresses excitatory synapse number. We report that activation of metabotropic glutamate receptor 5 (mGluR5) on the dendrites, but not cell soma, of hippocampal CA1 neurons is required for MEF2-induced functional and structural synapse elimination. We present evidence that mGluR5 is necessary for synapse elimination to stimulate dendritic translation of the MEF2 target gene Arc/Arg3.1. Activity-regulated cytoskeletal-associated protein (Arc) is required for MEF2-induced synapse elimination, where it plays an acute, cell-autonomous, and postsynaptic role. This work reveals a role for dendritic activity in local translation of specific transcripts in synapse refinement. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  4. A Role for Dendritic mGluR5-Mediated Local Translation of Arc/Arg3.1 in MEF2-Dependent Synapse Elimination

    Directory of Open Access Journals (Sweden)

    Julia R. Wilkerson

    2014-06-01

    Full Text Available Experience refines synaptic connectivity through neural activity-dependent regulation of transcription factors. Although activity-dependent regulation of transcription factors has been well described, it is unknown whether synaptic activity and local, dendritic regulation of the induced transcripts are necessary for mammalian synaptic plasticity in response to transcription factor activation. Neuronal depolarization activates the myocyte enhancer factor 2 (MEF2 family of transcription factors that suppresses excitatory synapse number. We report that activation of metabotropic glutamate receptor 5 (mGluR5 on the dendrites, but not cell soma, of hippocampal CA1 neurons is required for MEF2-induced functional and structural synapse elimination. We present evidence that mGluR5 is necessary for synapse elimination to stimulate dendritic translation of the MEF2 target gene Arc/Arg3.1. Activity-regulated cytoskeletal-associated protein (Arc is required for MEF2-induced synapse elimination, where it plays an acute, cell-autonomous, and postsynaptic role. This work reveals a role for dendritic activity in local translation of specific transcripts in synapse refinement.

  5. The therapeutic effect of memantine through the stimulation of synapse formation and dendritic spine maturation in autism and fragile X syndrome.

    Directory of Open Access Journals (Sweden)

    Hongen Wei

    Full Text Available Although the pathogenic mechanisms that underlie autism are not well understood, there is evidence showing that metabotropic and ionotropic glutamate receptors are hyper-stimulated and the GABAergic system is hypo-stimulated in autism. Memantine is an uncompetitive antagonist of NMDA receptors and is widely prescribed for treatment of Alzheimer's disease treatment. Recently, it has been shown to improve language function, social behavior, and self-stimulatory behaviors of some autistic subjects. However the mechanism by which memantine exerts its effect remains to be elucidated. In this study, we used cultured cerebellar granule cells (CGCs from Fmr1 knockout (KO mice, a mouse model for fragile X syndrome (FXS and syndromic autism, to examine the effects of memantine on dendritic spine development and synapse formation. Our results show that the maturation of dendritic spines is delayed in Fmr1-KO CGCs. We also detected reduced excitatory synapse formation in Fmr1-KO CGCs. Memantine treatment of Fmr1-KO CGCs promoted cell adhesion properties. Memantine also stimulated the development of mushroom-shaped mature dendritic spines and restored dendritic spine to normal levels in Fmr1-KO CGCs. Furthermore, we demonstrated that memantine treatment promoted synapse formation and restored the excitatory synapses to a normal range in Fmr1-KO CGCs. These findings suggest that memantine may exert its therapeutic capacity through a stimulatory effect on dendritic spine maturation and excitatory synapse formation, as well as promoting adhesion of CGCs.

  6. The therapeutic effect of memantine through the stimulation of synapse formation and dendritic spine maturation in autism and fragile X syndrome.

    Science.gov (United States)

    Wei, Hongen; Dobkin, Carl; Sheikh, Ashfaq M; Malik, Mazhar; Brown, W Ted; Li, Xiaohong

    2012-01-01

    Although the pathogenic mechanisms that underlie autism are not well understood, there is evidence showing that metabotropic and ionotropic glutamate receptors are hyper-stimulated and the GABAergic system is hypo-stimulated in autism. Memantine is an uncompetitive antagonist of NMDA receptors and is widely prescribed for treatment of Alzheimer's disease treatment. Recently, it has been shown to improve language function, social behavior, and self-stimulatory behaviors of some autistic subjects. However the mechanism by which memantine exerts its effect remains to be elucidated. In this study, we used cultured cerebellar granule cells (CGCs) from Fmr1 knockout (KO) mice, a mouse model for fragile X syndrome (FXS) and syndromic autism, to examine the effects of memantine on dendritic spine development and synapse formation. Our results show that the maturation of dendritic spines is delayed in Fmr1-KO CGCs. We also detected reduced excitatory synapse formation in Fmr1-KO CGCs. Memantine treatment of Fmr1-KO CGCs promoted cell adhesion properties. Memantine also stimulated the development of mushroom-shaped mature dendritic spines and restored dendritic spine to normal levels in Fmr1-KO CGCs. Furthermore, we demonstrated that memantine treatment promoted synapse formation and restored the excitatory synapses to a normal range in Fmr1-KO CGCs. These findings suggest that memantine may exert its therapeutic capacity through a stimulatory effect on dendritic spine maturation and excitatory synapse formation, as well as promoting adhesion of CGCs.