WorldWideScience

Sample records for central super massive

  1. A New Concept of Transonic Galactic Outflows in a Cold Dark Matter Halo with a Central Super-Massive Black Hole

    CERN Document Server

    Igarashi, Asuka; Nitta, Shin-ya

    2014-01-01

    We study fundamental properties of isothermal, steady and spherically symmetric galactic outflow in the gravitational potential of a cold dark matter halo and a central super-massive black hole. We find that there are two transonic solutions having different properties: each solution is mainly produced by the dark matter halo and the super-massive black hole, respectively. Furthermore, we apply our model to the Sombrero galaxy. In this galaxy, Chandra X-ray observatory detected the diffuse hot gas as the trace of galactic outflows while the star-formation rate is low and the observed gas density distribution presumably indicates the hydrostatic equilibrium. To solve this discrepancy, we propose a solution that this galaxy has a transonic outflow, however, the transonic point forms in a very distant region from the galactic center (?$\\sim$ 127 kpc). In this slowly accelerated transonic outflow, the outflow velocity is less than the sound velocity for most of the galactic halo. Since the gas density distributio...

  2. Astrophysics of super-massive black hole mergers

    International Nuclear Information System (INIS)

    We present here an overview of recent work in the subject of astrophysical manifestations of super-massive black hole (SMBH) mergers. This is a field that has been traditionally driven by theoretical work, but in recent years has also generated a great deal of interest and excitement in the observational astronomy community. In particular, the electromagnetic (EM) counterparts to SMBH mergers provide the means to detect and characterize these highly energetic events at cosmological distances, even in the absence of a space-based gravitational-wave observatory. In addition to providing a mechanism for observing SMBH mergers, EM counterparts also give important information about the environments in which these remarkable events take place, thus teaching us about the mechanisms through which galaxies form and evolve symbiotically with their central black holes. (paper)

  3. Astrophysics of Super-massive Black Hole Mergers

    CERN Document Server

    Schnittman, Jeremy D

    2013-01-01

    We present here an overview of recent work in the subject of astrophysical manifestations of super-massive black hole (SMBH) mergers. This is a field that has been traditionally driven by theoretical work, but in recent years has also generated a great deal of interest and excitement in the observational astronomy community. In particular, the electromagnetic (EM) counterparts to SMBH mergers provide the means to detect and characterize these highly energetic events at cosmological distances, even in the absence of a space-based gravitational-wave observatory. In addition to providing a mechanism for observing SMBH mergers, EM counterparts also give important information about the environments in which these remarkable events take place, thus teaching us about the mechanisms through which galaxies form and evolve symbiotically with their central black holes.

  4. Astrophysics of Super-Massive Black Hole Mergers

    Science.gov (United States)

    Schnittman, Jeremy D.

    2013-01-01

    We present here an overview of recent work in the subject of astrophysical manifestations of super-massive black hole (SMBH) mergers. This is a field that has been traditionally driven by theoretical work, but in recent years has also generated a great deal of interest and excitement in the observational astronomy community. In particular, the electromagnetic (EM) counterparts to SMBH mergers provide the means to detect and characterize these highly energetic events at cosmological distances, even in the absence of a space-based gravitational-wave observatory. In addition to providing a mechanism for observing SMBH mergers, EM counterparts also give important information about the environments in which these remarkable events take place, thus teaching us about the mechanisms through which galaxies form and evolve symbiotically with their central black holes.

  5. Radio evidence for binary super massive black holes

    Science.gov (United States)

    Ekers, R. D.

    2016-02-01

    I present examples of radio AGN with binary nuclei which provide the direct radio evidence for binary Super Massive Black Holes (SMBH) driving the AGN activity. There is also other evidence for distorted radio morphology and periodic variability which may indicate the presence of a second (inactive) SMBH. Finally I enumerate a number of possible radio tracers for the binary SMBH merger events.

  6. Astrophysics of Super-massive Black Hole Mergers

    OpenAIRE

    Schnittman, Jeremy D.

    2013-01-01

    We present here an overview of recent work in the subject of astrophysical manifestations of super-massive black hole (SMBH) mergers. This is a field that has been traditionally driven by theoretical work, but in recent years has also generated a great deal of interest and excitement in the observational astronomy community. In particular, the electromagnetic (EM) counterparts to SMBH mergers provide the means to detect and characterize these highly energetic events at cosmological distances,...

  7. SuperMassive Black Holes in Bulges

    CERN Document Server

    Sarzi, M; Shields, J C; Rudnick, G; Ho, L C; McIntosh, D H; Filippenko, A V; Sargent, W L W; Sarzi, Marc; Rix, Hans-Walter; Shields, Joseph C.; Rudnick, Greg; Ho, Luis C.; Intosh, Daniel H. Mc; Filippenko, Alexei V.; Sargent, Wallace L. W.

    2001-01-01

    We present spatially extended gas kinematics at parsec-scale resolution for the nuclear regions of four nearby disk galaxies, and model them as rotation of a gas disk in the joint potential of the stellar bulge and a putative central black hole. The targets were selected from a larger set of long-slit spectra obtained with the Hubble Space Telescope as part of the Survey of Nearby Nuclei with STIS (SUNNS). They represents the 4 galaxies (of 24) that display symmetric gas velocity curves consistent with a rotating disk. We derive the stellar mass distribution from the STIS acquisition images adopting the stellar mass-to-light ratio normalized so as to match ground-based velocity dispersion measurements over a large aperture. Subsequently, we constrain the mass of a putative black hole by matching the gas rotation curve, following two distinct approaches. In the most general case we explore all the possible disk orientations, alternatively we constrain the gas disk orientation from the dust-lane morphology at s...

  8. Massive photons from Super and Lorentz symmetry breaking

    CERN Document Server

    Bonetti, Luca; Helayël-Neto, José A; Spallicci, Alessandro D A M

    2016-01-01

    In the context of Standard Model Extensions (SMEs), we analyse four general classes of Super Symmetry (SuSy) and Lorentz Symmetry (LoSy) breaking, leading to {observable} imprints at our energy scales. The photon dispersion relations show a non-Maxwellian behaviour for the CPT (Charge-Parity-Time reversal symmetry) odd and even sectors. The group velocities exhibit also a directional dependence with respect to the breaking background vector (odd CPT) or tensor (even CPT). In the former sector, the group velocity may decay following an inverse squared frequency behaviour. Thus, we extract a massive and gauge invariant Carroll-Field-Jackiw photon term in the Lagrangian and show that the mass is proportional to the breaking vector. The latter is estimated by ground measurements and leads to a photon mass upper limit of $10^{-19}$ eV or $2 \\times 10^{-55}$ kg and thereby to a potentially measurable delay at low radio frequencies.

  9. The M-sigma Relation of Super Massive Black Holes from the Scalar Field Dark Matter

    OpenAIRE

    Lee, Jae-weon; Lee, Jungjai; Kim, Hyeong-Chan

    2015-01-01

    We explain the M-sigma relation between the mass of super massive black holes in galaxies and the velocity dispersions of their bulges in the scalar field or the Bose-Einstein condensate dark matter model. The gravity of the central black holes changes boundary conditions of the scalar field at the galactic centers. Owing to the wave nature of the dark matter this significantly changes the galactic halo profiles even though the black holes are much lighter than the bulges. As a result the hea...

  10. Dusty supernovae running the thermodynamics of the matter reinserted within young and massive super stellar clusters

    CERN Document Server

    Tenorio-Tagle, Guillermo; González, Sergio Martínez; Muñoz-Tuñón, Casiana; Palouš, Jan; Wünsch, Richard

    2013-01-01

    Following the observational and theoretical evidence that points at core collapse supernovae as major producers of dust, here we calculate the hydrodynamics of the matter reinserted within young and massive super stellar clusters under the assumption of gas and dust radiative cooling. The large supernova rate expected in massive clusters allows for a continuous replenishment of dust immersed in the high temperature thermalized reinserted matter and warrants a stationary presence of dust within the cluster volume during the type II supernova era. We first show that such a balance determines the range of dust to gas mass ratio and this the dust cooling law. We then search for the critical line that separates stationary cluster winds from the bimodal cases in the cluster mechanical luminosity (or cluster mass) vs cluster size parameter space. In the latter, strong radiative cooling reduces considerably the cluster wind mechanical energy output and affects particularly the cluster central regions, leading to freq...

  11. SUPERSONIC LINE BROADENING WITHIN YOUNG AND MASSIVE SUPER STAR CLUSTERS

    International Nuclear Information System (INIS)

    The origin of supersonic infrared and radio recombination nebular lines often detected in young and massive superstar clusters is discussed. We suggest that these arise from a collection of repressurizing shocks (RSs), acting effectively to re-establish pressure balance within the cluster volume and from the cluster wind which leads to an even broader although much weaker component. The supersonic lines here are shown to occur in clusters that undergo a bimodal hydrodynamic solution, that is within clusters that are above the threshold line in the mechanical luminosity or cluster mass versus the size of the cluster plane. A plethora of RSs is due to frequent and recurrent thermal instabilities that take place within the matter reinserted by stellar winds and supernovae. We show that the maximum speed of the RSs and of the cluster wind are both functions of the temperature reached at the stagnation radius. This temperature depends only on the cluster heating efficiency (η). Based on our two-dimensional simulations we calculate the line profiles that result from several models and confirm our analytical predictions. From a comparison between the predicted and observed values of the half-width zero intensity of the two line components, we conclude that the thermalization efficiency in young super star clusters above the threshold line must be lower than 20%.

  12. Dusty supernovae running the thermodynamics of the matter reinserted within young and massive super stellar clusters

    International Nuclear Information System (INIS)

    Following the observational and theoretical evidence that points at core-collapse supernovae (SNe) as major producers of dust, here we calculate the hydrodynamics of the matter reinserted within young and massive super stellar clusters under the assumption of gas and dust radiative cooling. The large SN rate expected in massive clusters allows for a continuous replenishment of dust immersed in the high temperature thermalized reinserted matter and warrants a stationary presence of dust within the cluster volume during the type II SN era. We first show that such a balance determines the range of the dust-to-gas-mass ratio, and thus the dust cooling law. We then search for the critical line that separates stationary cluster winds from the bimodal cases in the cluster mechanical luminosity (or cluster mass) versus cluster size parameter space. In the latter, strong radiative cooling reduces considerably the cluster wind mechanical energy output and affects particularly the cluster central regions, leading to frequent thermal instabilities that diminish the pressure and inhibit the exit of the reinserted matter. Instead, matter accumulates there and is expected to eventually lead to gravitational instabilities and to further stellar formation with the matter reinserted by former massive stars. The main outcome of the calculations is that the critical line is almost two orders of magnitude or more, depending on the assumed value of V A∞, lower than when only gas radiative cooling is applied. And thus, many massive clusters are predicted to enter the bimodal regime.

  13. High velocity stars from close interaction of a globular cluster and a super massive black hole

    CERN Document Server

    Capuzzo-Dolcetta, R

    2015-01-01

    Observations show the presence, in the halo of our Galaxy, of stars moving at velocities so high to require an acceleration mechanism involving the presence of a massive central black hole. Thus, in the frame of a galaxy hosting a supermassive black hole ($10^8$ $M_{\\odot}$) we investigated a mechanism for the production of high velocity stars, which was suggested by the results of N-body simulations of the close interaction between a massive, orbitally decayed, globular cluster and the super massive black hole. The high velocity acquired by some stars of the cluster comes from the transfer of gravitational binding energy into kinetic energy of the escaping star originally orbiting around the cluster. After the close interaction with the massive black hole, stars could reach a velocity sufficient to travel in the halo and even overcome the galactic gravitational well, while some of them are just stripped from the globular cluster and start orbiting on precessing loops around the galactic centre.

  14. Super massive black hole in galactic nuclei with tidal disruption of stars

    International Nuclear Information System (INIS)

    Tidal disruption of stars by super massive central black holes from dense star clusters is modeled by high-accuracy direct N-body simulation. The time evolution of the stellar tidal disruption rate, the effect of tidal disruption on the stellar density profile, and, for the first time, the detailed origin of tidally disrupted stars are carefully examined and compared with classic papers in the field. Up to 128k particles are used in simulation to model the star cluster around a super massive black hole, and we use the particle number and the tidal radius of the black hole as free parameters for a scaling analysis. The transition from full to empty loss-cone is analyzed in our data, and the tidal disruption rate scales with the particle number, N, in the expected way for both cases. For the first time in numerical simulations (under certain conditions) we can support the concept of a critical radius of Frank and Rees, which claims that most stars are tidally accreted on highly eccentric orbits originating from regions far outside the tidal radius. Due to the consumption of stars moving on radial orbits, a velocity anisotropy is found inside the cluster. Finally we estimate the real galactic center based on our simulation results and the scaling analysis.

  15. The M-sigma Relation of Super Massive Black Holes from the Scalar Field Dark Matter

    CERN Document Server

    Lee, Jae-Weon; Kim, Hyeong-Chan

    2015-01-01

    We explain the M-sigma relation between the mass of super massive black holes in galaxies and the velocity dispersions of their bulges in the scalar field or the Bose-Einstein condensate dark matter model. The gravity of the central black holes changes boundary conditions of the scalar field at the galactic centers. Owing to the wave nature of the dark matter this significantly changes the galactic halo profiles even though the black holes are much lighter than the bulges. As a result the heavier the black holes are, the more compact the bulges are, and hence the larger the velocity dispersions are. This tendency is verified by a numerical study. The M-sigma relation is well reproduced with the dark matter particle mass $m\\simeq 5\\times 10^{-22} eV$.

  16. Growing massive black holes through super-critical accretion of stellar-mass seeds

    CERN Document Server

    Lupi, A; Dotti, M; Fiacconi, D; Mayer, L; Madau, P

    2015-01-01

    The rapid assembly of the massive black holes that power the luminous quasars observed at $z \\sim 6-7$ remains a puzzle. Various direct collapse models have been proposed to head-start black hole growth from initial seeds with masses $\\sim 10^5\\,\\rm M_\\odot$, which can then reach a billion solar mass while accreting at the Eddington limit. Here we propose an alternative scenario based on radiatively inefficient super-critical accretion of stellar-mass holes embedded in the gaseous circum-nuclear discs (CNDs) expected to exist in the cores of high redshift galaxies. Our sub-pc resolution hydrodynamical simulations show that stellar-mass holes orbiting within the central 100 pc of the CND bind to very high density gas clumps that arise from the fragmentation of the surrounding gas. Owing to the large reservoir of dense cold gas available, a stellar-mass black hole allowed to grow at super-Eddington rates according to the "slim disc" solution can increase its mass by 3 orders of magnitudes within a few million y...

  17. MASSIVE BLACK HOLES IN CENTRAL CLUSTER GALAXIES

    International Nuclear Information System (INIS)

    We explore how the co-evolution of massive black holes (MBHs) and galaxies is affected by environmental effects, addressing in particular MBHs hosted in the central cluster galaxies (we will refer to these galaxies in general as ''CCGs''). Recently, the sample of MBHs in CCGs with dynamically measured masses has increased, and it has been suggested that these MBH masses (MBH) deviate from the expected correlations with velocity dispersion (σ) and mass of the bulge (Mbulge) of the host galaxy: MBHs in CCGs appear to be ''overmassive''. This discrepancy is more pronounced when considering the MBH-σ relation than the MBH-Mbulge one. We show that this behavior stems from a combination of two natural factors: (1) CCGs experience more mergers involving spheroidal galaxies and their MBHs and (2) such mergers are preferentially gas poor. We use a combination of analytical and semi-analytical models to investigate the MBH-galaxy co-evolution in different environments and find that the combination of these two factors is in accordance with the trends observed in current data sets.

  18. On Critical Massive (Super)Gravity in adS3

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Hohm, Olaf; Rosseel, Jan; Sezgin, Ergin; Townsend, Paul K.

    2011-01-01

    We review the status of three-dimensional “general massive gravity” (GMG) in its linearization about an anti-de Sitter (adS) vacuum, focusing on critical points in parameter space that yield generalizations of “chiral gravity”. We then show how these results extend to N = 1 super-GMG, expanded about

  19. On Critical Massive (Super)Gravity in adS(3)

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Hohm, Olaf; Rosseel, Jan; Sezgin, Ergin; Townsend, Paul K.; Aldaya,; Barcelo, C; Jaramillo, JL

    2011-01-01

    We review the status of three-dimensional "general massive gravity" (GMG) in its linearization about an anti-de Sitter (adS) vacuum, focusing on critical points in parameter space that yield generalizations of "chiral gravity". We then show how these results extend to,N = 1 super-GMG, expanded about

  20. Supersonic Line Broadening within Young and Massive Super Star Clusters

    OpenAIRE

    Tenorio-Tagle, G.; Wunsch, R.; Silich, S.; Munoz-Tunon, C.; Palous, J.

    2009-01-01

    The origin of supersonic infrared and radio recombination nebular lines often detected in young and massive superstar clusters are discussed. We suggest that these arise from a collection of repressurizing shocks (RSs), acting effectively to re-establish pressure balance within the cluster volume and from the cluster wind which leads to an even broader although much weaker component. The supersonic lines are here shown to occur in clusters that undergo a bimodal hydrodynamic solution (Tenorio...

  1. From super-charged nuclei to massive nuclear density cores

    CERN Document Server

    Popov, Vladimir

    2010-01-01

    Due to $e^+e^-$-pair production in the field of supercritical $(Z \\gg Z_{cr}\\approx 170 $) nucleus an electron shell, created out of the vacuum, is formed. The distribution of the vacuum charge in this shell has been determined for super-charged nuclei $Ze^3 \\ga 1$ within the framework of the Thomas-Fermi equation generalized to the relativistic case. For $Ze^3 \\gg 1$ the electron shell penetrates inside the nucleus and almost completely screens its charge. Inside such nucleus the potential takes a constant value equal to $V_0=-(3\\pi^2 n_p)^{1/3} \\sim -2m_{\\pi}c^2$, and super-charged nucleus represents an electrically neutral plasma consisting of $e,p$ and $n$. Near the edge of the nucleus a transition layer exists with a width $\\lambda \\approx \\alpha^{-1/2} \\hbar/m_{\\pi} c\\sim 15$ fm, which is independent of $Z~~ (\\hbar/m_{\\pi} c \\ll \\lambda \\ll \\hbar/m_e c)$. The electric field and surface charge are concentrated in this layer. These results, obtained earlier for hypothetical superheavy nuclei with $Z \\sim ...

  2. Strong Gravitational Lensing as a Probe of Gravity, Dark-Matter and Super-Massive Black Holes

    CERN Document Server

    Koopmans, L V E; Barnabe, M; Bolton, A; Bradac, M; Ciotti, L; Congdon, A; Czoske, O; Dye, S; Dutton, A; Elliasdottir, A; Evans, E; Fassnacht, C D; Jackson, N; Keeton, C; Lazio, J; Marshall, P; Meneghetti, M; McKean, J; Moustakas, L; Myers, S; Nipoti, C; Suyu, S; van de Ven, G; Vegetti, S; Wambsganss, J; Webster, R; Wucknitz, O; Zhao, H-S

    2009-01-01

    Whereas considerable effort has been afforded in understanding the properties of galaxies, a full physical picture, connecting their baryonic and dark-matter content, super-massive black holes, and (metric) theories of gravity, is still ill-defined. Strong gravitational lensing furnishes a powerful method to probe gravity in the central regions of galaxies. It can (1) provide a unique detection-channel of dark-matter substructure beyond the local galaxy group, (2) constrain dark-matter physics, complementary to direct-detection experiments, as well as metric theories of gravity, (3) probe central super-massive black holes, and (4) provide crucial insight into galaxy formation processes from the dark matter point of view, independently of the nature and state of dark matter. To seriously address the above questions, a considerable increase in the number of strong gravitational-lens systems is required. In the timeframe 2010-2020, a staged approach with radio (e.g. EVLA, e-MERLIN, LOFAR, SKA phase-I) and optica...

  3. SUPER-CRITICAL GROWTH OF MASSIVE BLACK HOLES FROM STELLAR-MASS SEEDS

    International Nuclear Information System (INIS)

    We consider super-critical accretion with angular momentum onto stellar-mass black holes as a possible mechanism for growing billion-solar-mass black holes from light seeds at early times. We use the radiatively inefficient ''slim disk'' solution—advective, optically thick flows that generalize the standard geometrically thin disk model—to show how mildly super-Eddington intermittent accretion may significantly ease the problem of assembling the first massive black holes when the universe was less than 0.8 Gyr old. Because of the low radiative efficiencies of slim disks around non-rotating as well as rapidly rotating black holes, the mass e-folding timescale in this regime is nearly independent of the spin parameter. The conditions that may lead to super-critical growth in the early universe are briefly discussed

  4. Super-Critical Growth of Massive Black Holes from Stellar-Mass Seeds

    CERN Document Server

    Madau, Piero; Dotti, Massimo

    2014-01-01

    We consider super-critical accretion with angular momentum onto stellar-mass black holes as a possible mechanism for growing billion-solar-mass holes from light seeds at early times. We use the radiatively-inefficient "slim disk" solution -- advective, optically thick flows that generalize the standard geometrically thin disk model -- to show how mildly super-Eddington intermittent accretion may significantly ease the problem of assembling the first massive black holes when the Universe was less than 0.8 Gyr old. Because of the low radiative efficiencies of slim disks around non-rotating as well as rapidly rotating holes, the mass e-folding timescale in this regime is nearly independent of the spin parameter. The conditions that may lead to super-critical growth in the early Universe are briefly discussed.

  5. On Critical Massive (Super)Gravity in adS3

    CERN Document Server

    Bergshoeff, Eric A; Rosseel, Jan; Sezgin, Ergin; Townsend, Paul K

    2010-01-01

    We review the status of three-dimensional "general massive gravity" (GMG) in its linearization about an anti-de Sitter (adS) vacuum, focusing on critical points in parameter space that yield generalizations of "chiral gravity". We then show how these results extend to N=1 super-GMG, expanded about a supersymmetric adS vacuum, and also to the most general `curvature-squared' N=1 supergravity model.

  6. On Critical Massive (Super)Gravity in adS{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Bergshoeff, Eric A; Rosseel, Jan [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Hohm, Olaf [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Sezgin, Ergin [George and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Townsend, Paul K, E-mail: E.A.Bergshoeff@rug.nl, E-mail: ohohm@mit.edu, E-mail: j.rosseel@rug.nl, E-mail: sezgin@tamu.edu, E-mail: P.K.Townsend@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2011-09-22

    We review the status of three-dimensional 'general massive gravity' (GMG) in its linearization about an anti-de Sitter (adS) vacuum, focusing on critical points in parameter space that yield generalizations of {sup c}hiral gravity{sup .} We then show how these results extend to super-GMG, expanded about a supersymmetric adS vacuum, and also to the most general 'curvature-squared' supergravity model.

  7. On Critical Massive (Super)Gravity in adS3

    International Nuclear Information System (INIS)

    We review the status of three-dimensional 'general massive gravity' (GMG) in its linearization about an anti-de Sitter (adS) vacuum, focusing on critical points in parameter space that yield generalizations of chiral gravity. We then show how these results extend to super-GMG, expanded about a supersymmetric adS vacuum, and also to the most general 'curvature-squared' supergravity model.

  8. Can very massive Population III stars produce a super-collapsar?

    CERN Document Server

    Yoon, Sung-Chul; Kozyreva, Alexandra

    2015-01-01

    A fraction of the first generation of stars in the early Universe may be very massive ($\\gtrsim 300~\\mathrm{M_\\odot}$) as they form in metal-free environments. Formation of black holes from these stars can be accompanied by supermassive collapsars to produce long gamma-ray bursts of a unique type having a very high total energy ($\\sim 10^{54}~\\mathrm{erg}$) as recently suggested by several authors. We present new stellar evolution models of very massive Population III stars including the effect of rotation to provide theoretical constraints on super-collapsar progenitors. We find that the angular momentum condition for super-collapsar can be fulfilled if magnetic torques are ignored, in which case Eddington-Sweet circulations play the dominant role for the transport of angular momentum. We further find that the initial mass range for super-collapsar progenitors would be limited to $300~\\mathrm{M_\\odot} \\lesssim M \\lesssim 700~\\mathrm{M_\\odot}$. However, all of our very massive star models of this mass range e...

  9. Central charges in 2d reduced cosmological massive gravity

    International Nuclear Information System (INIS)

    In the dimensionally reduced model of the (2+1)-dimensional cosmological massive gravity, we obtain the central charges of the two types of the black hole based on the entropy function method. One is for the BTZ black hole and the other one is actually for the warped AdS3 black hole.

  10. Super and massive AGB stars - IV. Final fates - Initial to final mass relation

    CERN Document Server

    Doherty, Carolyn L; Siess, Lionel; Lattanzio, John C; Lau, Herbert H B

    2014-01-01

    We explore the final fates of massive intermediate-mass stars by computing detailed stellar models from the zero age main sequence until near the end of the thermally pulsing phase. These super-AGB and massive AGB star models are in the mass range between 5.0 and 10.0 Msun for metallicities spanning the range Z=0.02-0.0001. We probe the mass limits M_up, M_n and M_mass, the minimum masses for the onset of carbon burning, the formation of a neutron star, and the iron core-collapse supernovae respectively, to constrain the white dwarf/electron-capture supernova boundary. We provide a theoretical initial to final mass relation for the massive and ultra-massive white dwarfs and specify the mass range for the occurrence of hybrid CO(Ne) white dwarfs. We predict electron-capture supernova (EC-SN) rates for lower metallicities which are significantly lower than existing values from parametric studies in the literature. We conclude the EC-SN channel (for single stars and with the critical assumption being the choice ...

  11. Detection of a low-eccentricity and super-massive planet to the subgiant HD 38801

    CERN Document Server

    Harakawa, Hiroki; Fischer, Debra A; Ida, Shigeru; Omiya, Masashi; Johnson, John A; Marcy, Geoffrey W; Toyota, Eri; Hori, Yasunori; Howard, Andrew W

    2010-01-01

    We report the detection of a large mass planet orbiting around the K0 metal-rich subgiant HD38801 ($V=8.26$) by precise radial velocity (RV) measurements from the Subaru Telescope and the Keck Telescope. The star has a mass of $1.36M_{\\odot}$ and metallicity of [Fe/H]= +0.26. The RV variations are consistent with a circular orbit with a period of 696.0 days and a velocity semiamplitude of 200.0\\mps, which yield a minimum-mass for the companion of $10.7\\mjup$ and semimajor axis of 1.71 AU. Such super-massive objects with very low-eccentricities and hundreds of days period are uncommon among the ensemble of known exoplanets.

  12. The case for super-critical accretion on massive black holes at high redshift

    CERN Document Server

    Volonteri, Marta

    2014-01-01

    Short-lived intermittent phases of super-critical (super-Eddington) growth, coupled with star formation via feedback, may account for early growth of massive black holes (MBH) and coevolution with their host spheroids. We estimate the possible growth rates and duty cycles of these episodes, assuming slim disk solutions, where the emerging luminosity depends logarithmically on the accretion rate. As long as radiation is trapped in the disk, the effective radiative efficiency is low and several short episodes (~1e4 years) are possible, especially if energy flows through collimated funnels and feedback is limited. When the host galaxy is able to sustain inflow rates at 1-100 msun/yr, replenishing and circulation lead to a sequence of short episodes that may increase the growth rates of MBHs, with respect to an Eddington-limited case, by several orders of magnitude in ~ 1e7 years. Our model for e MBH growth predicts that the ratio of MBH accretion rate to star formation rate is 1e-2 or higher, naturally leading t...

  13. MASSIVE PARALLELISM WITH GPUS FOR CENTRALITY RANKING IN COMPLEX NETWORKS

    Directory of Open Access Journals (Sweden)

    Frederico L. Cabral

    2014-10-01

    Full Text Available Many problems in Computer Science can be modelled using graphs. Evaluating node centrality in complex networks, which can be considered equivalent to undirected graphs, provides an useful metric of the relative importance of each node inside the evaluated network. The knowledge on which the most central nodes are, has various applications, such as improving information spreading in diffusion networks. In this case, most central nodes can be considered to have higher influence rates over other nodes in the network. The main purpose in this work is developing a GPU based and massively parallel application so as to evaluate the node centrality in complex networks using the Nvidia CUDA programming model. The main contribution of this work is the strategies for the development of an algorithm to evaluate the node centrality in complex networks using Nvidia CUDA parallel programming model. We show that the strategies improves algorithm´s speed-up in two orders of magnitude on one NVIDIA Tesla k20 GPU cluster node, when compared to the hybrid OpenMP/MPI algorithm version, running in the same cluster, with 4 nodes 2 Intel(R Xeon(R CPU E5-2660 each, for radius zero.

  14. The Link Between Ejected Stars, Hardening and Eccentricity Growth of Super Massive Black Holes in Galactic Nuclei

    CERN Document Server

    Wang, Long; Spurzem, Rainer; Kouwenhoven, M B N

    2013-01-01

    The hierarchical galaxy formation picture suggests that super massive black holes (MBHs) observed in galactic nuclei today have grown from coalescence of massive black hole binaries (MBHB) after galaxy merging. Once the components of a MBHB become gravitationally bound, strong three-body encounters between the MBHB and stars dominate its evolution in a "dry" gas free environment, and change the MBHB's energy and angular momentum (semi-major axis, eccentricity and orientation). Here we present high accuracy direct N-body simulations of spherical and axisymmetric (rotating) galactic nuclei with order a million stars and two massive black holes that are initially unbound. We analyze the properties of the ejected stars due to slingshot effects from three-body encounters with the MBHB in detail. Previous studies have investigated the eccentricity and energy changes of MBHs using approximate models or Monte-Carlo three body scatterings. We find general agreement with the average results of previous semi-analytic mo...

  15. STRONG GRAVITATIONAL LENSING BY THE SUPER-MASSIVE cD GALAXY IN ABELL 3827

    International Nuclear Information System (INIS)

    We have discovered strong gravitational lensing features in the core of the nearby cluster Abell 3827 by analyzing Gemini South GMOS images. The most prominent strong lensing feature is a highly magnified, ring-shaped configuration of four images around the central cD galaxy. GMOS spectroscopic analysis puts this source at z ∼ 0.2. Located ∼20'' away from the central galaxy is a secondary tangential arc feature which has been identified as a background galaxy with z ∼ 0.4. We have modeled the gravitational potential of the cluster core, taking into account the mass from the cluster, the brightest cluster galaxy (BCG), and other galaxies. We derive a total mass of (2.7 ± 0.4) x 1013 M sun within 37 h -1 kpc. This mass is an order of magnitude larger than that derived from X-ray observations. The total mass derived from lensing data suggests that the BCG in this cluster is perhaps the most massive galaxy in the nearby universe.

  16. Value of the treatment of massive hemoptysis due to pulmonary tuberculosis by super elective bronchial artery embolization

    International Nuclear Information System (INIS)

    Objective: To investigate the value of the treatment of massive hemoptysis due to pulmonary tuberculosis by super elective bronchial artery embolization (SBAE), Methods: 41 cases with massive hemoptysis due to pulmonary tuberculosis underwent the treatment of SBAE. The follow-up time ranged from 4 to 52 months. The cases with recurrent massive hemoptysis underwent SBAE again. Results: SBAE resulted in an immediate cessation of hemoptysis in 35 of the primary 41 patients (85.3%), one time cure without recurrence in 26 cases (63.4%) and recurrent massive bleeding in 15 cases (36.6%). The recurrent rate of cases with hemoptysis more than 500 ml in 24 hours was higher than that of cases with hemoptysis less than 500 ml in 24 hours (P < 0.05). The recurrent rate of cases with cavity and/or extensive fibrosis was higher than that of cases without cavity and/or extensive fibrosis (P < 0.01). Conclusions: SBAE should be the first choice of massive hemoptysis due to pulmonary tuberculosis. Patients with cavity and/or extensive fibrosis or hemoptysis more than 500 ml in 24 hours are easy to recur. After SBAE for recurrent cases, the patients without cavity and/or extensive fibrosis can still be cured, but the patients with cavity and/or extensive fibrosis are easy to recur again, and they are best to be treated with selective lobectomy after immediate cessation of hemoptysis by SBAE

  17. Implications of primordial black holes on the first stars and the origin of the super--massive black holes

    CERN Document Server

    Bambi, Cosimo; Dolgov, Alexander D; Freese, Katherine; Volonteri, Marta

    2008-01-01

    If the cosmological dark matter has a component made of small primordial black holes, they may have a significant impact on the physics of the first stars and on the subsequent formation of massive black holes. Primordial black holes would be adiabatically contracted into these stars and then would sink to the stellar center by dynamical friction, creating a larger black hole which may quickly swallow the whole star. The first stars would thus live only for a very short time and would not contribute much to reionization of the universe. They would instead become $10 - 10^3 M_\\odot$ black holes which (depending on subsequent accretion) could serve as seeds for the super--massive black holes seen at high redshifts as well as those inside galaxies today.

  18. Compact Massive Object in Galaxies

    CERN Document Server

    Melo, I Tosta e

    2016-01-01

    The central regions of galaxies show the presence of super massive black holes and/or very dense stellar clusters. Both objects seem to follow similar host-galaxy correlations, suggesting that they are members of the same family of Compact Massive Objects. We investigate here a huge data collection of Compact Massive Objects properties to correlate them with absolute magnitude, velocity dispersion and mass of their host galaxies.

  19. 3D N=2 massive super Yang-Mills and membranes/D2-branes in a curved background

    CERN Document Server

    Hyun, S; Yi, S H; Hyun, Seungjoon; Park, Jeong-Hyuck; Yi, Sang-Heon

    2003-01-01

    We present a three dimensional novel massive N=2 super Yang-Mills action as a low energy effective worldvolume description of the D2-branes on a pp-wave. The action contains the Myers term, mass terms for three Higgs, and terms mixing the electric fields with other two Higgs. We derive the action in three different ways, from the M-theory matrix model, from the supermembrane action, and from the Dirac-Born-Infeld action. We verify the consistent mutual agreement and comment how each approach is complementary to another. In particular, we give the eleven dimensional geometric interpretation of the vacua in the worldvolume theory as the membranes tilted to the eleventh direction with the giant gravitons around.

  20. Globular cluster winds with central accretion by a massive compact object or subcluster

    International Nuclear Information System (INIS)

    Steady-state isothermal wind flows with accretion by a central mass concentration in spherically symmetric systems of gas-losing stars are computed. Solutions are uniquely determined by two dimensionless parameters lambda and m, where lambda approximately (central escape velocity/sound speed)2 and m approximately (central point mass/cluster core mass). The models are applied to globular clusters for two types of central mass concentration - a single massive black hole and a subcluster of massive stars. A hard (> keV) X-ray source due to a central black hole fed by clusterwide inflow does not provide a consistent model for globular cluster X-ray sources. However, in the case of hot (T approximately > 2 x 105 K) winds, gas trapping by a central subcluster of neutron stars or of binaries containing white dwarfs could explain recent UV and Hα observations. Similar applications to elliptical galaxies are discussed. (author)

  1. Infalling clouds onto super-massive black hole binaries - I. Formation of discs, accretion and gas dynamics

    CERN Document Server

    Goicovic, F G; Sesana, A; Stasyszyn, F; Amaro-Seoane, P; Tanaka, T L

    2015-01-01

    There is compelling evidence that most -if not all- galaxies harbour a super-massive black hole (SMBH) at their nucleus, hence binaries of these massive objects are an inevitable product of the hierarchical evolution of structures in the universe, and represent an important but thus-far elusive phase of galaxy evolution. Gas accretion via a circumbinary disc is thought to be important for the dynamical evolution of SMBH binaries, as well as in producing luminous emission that can be used to infer their properties. One plausible source of the gaseous fuel is clumps of gas formed due to turbulence and gravitational instabilities in the interstellar medium, that later fall toward and interact with the binary. In this context, we model numerically the evolution of turbulent clouds in near-radial infall onto equal-mass SMBH binaries, using a modified version of the SPH code GADGET-3. We present a total of 12 simulations that explore different possible pericentre distances and relative inclinations, and show that t...

  2. Towards a census of super-compact massive galaxies in the Kilo Degree Survey

    CERN Document Server

    Tortora, C; Napolitano, N R; Roy, N; Radovich, M; Cavuoti, S; Brescia, M; Longo, G; Getman, F; Capaccioli, M; Grado, L; Kuijken, K H; de Jong, J T A; McFarland, J P

    2015-01-01

    The abundance of compact and massive early-type galaxies (ETGs) can provide significant constraints on the galaxy merging history. The optical Kilo Degree Survey (KiDS), carried out with the VST, gives a unique opportunity to perform a complete census of the most compact galaxies in the Universe. This paper presents a first census of compact galaxy candidates from the first 156 square degrees of KIDS. Effective radii (Re) in the g-, r-, and i- bands are derived fitting galaxy images with PSF-convolved S\\'ersic models, high-quality photo-z, are derived from machine learning techniques, and stellar masses, are calculated by fitting aperture photometry with predictions from stellar population models. After the morphological star/galaxy separation, massiveness ($M_{\\star} > 8 \\times 10^{10}\\, \\rm M_{\\odot}$) and compactness ($R_{e} 0.2, while, remarkably, no such system is found at z<0.2. (abridged)

  3. Unicentric Castleman's disease of the pancreas with massive central calcification

    Institute of Scientific and Technical Information of China (English)

    Oliver Goetze; Matthias Banasch; Klaus Junker; Wolfgang E. Schmidt; Christian Szymanski

    2005-01-01

    Unicentric Castleman's disease of the pancreas is extremely rare, with only six cases described in the worldwide literature.An asymptomatic case of unicentric, hyaline, vascular-type Castleman's disease (UCD) localized to the tail of the pancreas with central calcification imitating a primary neoplasm of the pancreas is presented. This is the first description of endosonographic and endoscopic retrograde pancreatographic findings of pancreatic UCD. Additionally, computed tomography, histological and serologic findings are reported.

  4. Radiation pressure from massive star clusters as a launching mechanism for super-galactic winds

    CERN Document Server

    Murray, Norman; Thompson, Todd A

    2010-01-01

    Galactic outflows of low ionization, cool gas are ubiquitous in local starburst galaxies, and in the majority of galaxies at high redshift. How these cool outflows arise is still in question. Hot gas from supernovae has long been suspected as the primary driver, but this mechanism suffers from its tendency to destroy the cool gas as the latter is accelerated. We propose a modification of the supernova scenario that overcomes this difficulty. Star formation is observed to take place in clusters; in a given galaxy, the bulk of the star formation is found in the ~20 most massive clusters. We show that, for L* galaxies, the radiation pressure from clusters with M>10^6 M_sun is able to expel the surrounding gas at velocities in excess of the circular velocity of the disk galaxy. This cool gas can travel above the galactic disk in less than 2 Myr, well before any supernovae erupt in the driving cluster. Once above the disk, the cool outflowing gas is exposed to radiation, and supernovae induced hot gas outflows, fr...

  5. A gas cloud on its way towards the super-massive black hole in the Galactic Centre

    CERN Document Server

    Gillessen, S; Fritz, T K; Quataert, E; Alig, C; Burkert, A; Cuadra, J; Eisenhauer, F; Pfuhl, O; Dodds-Eden, K; Gammie, C F; Ott, T

    2011-01-01

    Measurements of stellar orbits provide compelling evidence that the compact radio source Sagittarius A* at the Galactic Centre is a black hole four million times the mass of the Sun. With the exception of modest X-ray and infrared flares, Sgr A* is surprisingly faint, suggesting that the accretion rate and radiation efficiency near the event horizon are currently very low. Here we report the presence of a dense gas cloud approximately three times the mass of Earth that is falling into the accretion zone of Sgr A*. Our observations tightly constrain the cloud's orbit to be highly eccentric, with an innermost radius of approach of only ~3,100 times the event horizon that will be reached in 2013. Over the past three years the cloud has begun to disrupt, probably mainly through tidal shearing arising from the black hole's gravitational force. The cloud's dynamic evolution and radiation in the next few years will probe the properties of the accretion flow and the feeding processes of the super-massive black hole. ...

  6. Stellar and wind properties of massive stars in the central parsec of the Galaxy

    OpenAIRE

    F. Martins; Genzel, R.; Hillier, D. J.; Eisenhauer, F.; Paumard, T.; Gillessen, S.; Ott, T.; Trippe, S.

    2007-01-01

    We study the stellar and wind properties of massive stars in the central cluster of the Galaxy. We use non-LTE atmosphere models including winds and line-blanketing to fit their H and K band spectra obtained with the 3D spectrograph SINFONI on the VLT. We derive the main stellar (Teff, L, abundances, ionizing flux) and wind (mass loss rate, terminal velocity) properties. They are found to be similar to other galactic massive stars. We show that a direct evolutionary link between Ofpe/WN9, WN8...

  7. Globular cluster winds with central accretion by a massive compact object or subcluster

    Science.gov (United States)

    Durisen, R. H.; Burns, J. O.

    1981-01-01

    Steady-state isothermal wind flows are computed with accretion by a central mass concentration in spherically symmetric systems of gas-losing stars. Solutions are uniquely determined by two dimensionless parameters lambda and m, where lambda is approximately equal to the square of the ratio of the central escape velocity to the sound speed and m is approximately equal to the ratio of the central point mass to the cluster core mass. The models are applied to globular clusters for two types of central mass concentration - a single massive black hole and a subcluster of massive stars. A hard (greater than a keV) X-ray source due to a central black hole fed by clusterwide inflow does not provide a consistent model for globular cluster X-ray sources. However, in the case of hot (T being greater than or approximately equal to 2 x 10 to the 5th K) winds, gas trapping by a central subcluster of neutron stars or of binaries containing white dwarfs could explain recent UV and H-alpha observations. Similar applications to elliptical galaxies are discussed.

  8. Generalized status epilepticus associated with massive pulmonary aspiration and transient central diabetes insipidus: case report

    Directory of Open Access Journals (Sweden)

    CARVALHO MAURICIO

    2000-01-01

    Full Text Available Status epilepticus causes significant morbidity and mortality. A case of generalized status epilepticus followed by massive pulmonary aspiration, acute respiratory failure and transient central diabetes insipidus is presented. Seizures were promptly controlled, but the patient required mechanical ventilation and correction of polyuria with desmopressin acetate. During hospitalization mental status improved, diabetes insipidus spontaneously remitted and he was discharged without neurologic sequelae. The clinical and pathophysiological features of this case are discussed.

  9. Reservation for Other Backward Classes in Indian Central Government Institutions like IITs, IIMs and AIIMs- A Study of the Role of Media using Fuzzy Super FRM models

    CERN Document Server

    Kandasamy, W B Vasantha; Kandasamy, K

    2009-01-01

    In this book the authors introduce three new types of fuzzy model called the super column Fuzzy Relational Model using super column matrices, super row fuzzy relational model using super row matrices and super mixed fuzzy relational model using supermatrices. These new models are used to study the role of media on 27 percent reservation for the other backward classes in the educational institutions run by the Indian central Government. This book has four chapters. Chapter one introduces the new notion of super fuzzy relational models using supermatrices. In chapter two these new models are used to study the problem. Conclusions and opinions are given in chapters four and three respectively.

  10. Setting firmer constraints on the evolution of the most massive, central galaxies from their local abundances and ages

    OpenAIRE

    Buchan, Stewart; Shankar, Francesco

    2016-01-01

    There is still much debate surrounding how the most massive, central galaxies in the local universe have assembled their stellar mass, especially the relative roles of in-situ growth versus later accretion via mergers. In this paper, we set firmer constraints on the evolutionary pathways of the most massive central galaxies by making use of empirical estimates on their abundances and stellar ages. The most recent abundance matching and direct measurements strongly favour that a substantial fr...

  11. A Faster Parallel Algorithm and Efficient Multithreaded Implementations for Evaluating Betweenness Centrality on Massive Datasets

    Energy Technology Data Exchange (ETDEWEB)

    Madduri, Kamesh; Ediger, David; Jiang, Karl; Bader, David A.; Chavarria-Miranda, Daniel

    2009-02-15

    We present a new lock-free parallel algorithm for computing betweenness centralityof massive small-world networks. With minor changes to the data structures, ouralgorithm also achieves better spatial cache locality compared to previous approaches. Betweenness centrality is a key algorithm kernel in HPCS SSCA#2, a benchmark extensively used to evaluate the performance of emerging high-performance computing architectures for graph-theoretic computations. We design optimized implementations of betweenness centrality and the SSCA#2 benchmark for two hardware multithreaded systems: a Cray XMT system with the Threadstorm processor, and a single-socket Sun multicore server with the UltraSPARC T2 processor. For a small-world network of 134 million vertices and 1.073 billion edges, the 16-processor XMT system and the 8-core Sun Fire T5120 server achieve TEPS scores (an algorithmic performance count for the SSCA#2 benchmark) of 160 million and 90 million respectively, which corresponds to more than a 2X performance improvement over the previous parallel implementations. To better characterize the performance of these multithreaded systems, we correlate the SSCA#2 performance results with data from the memory-intensive STREAM and RandomAccess benchmarks. Finally, we demonstrate the applicability of our implementation to analyze massive real-world datasets by computing approximate betweenness centrality for a large-scale IMDb movie-actor network.

  12. The superconformal algebra and central extension of meromorphic vector fields with multipoles on the super-Riemann sphere

    International Nuclear Information System (INIS)

    The superconformal algebras of meromorphic vector fields with multipoles, the central extension and the relevant abelian differential of the third kind on the super-Riemann sphere are constructed. The background of our theory concerns with the interaction of closed superstrings. (orig.)

  13. Unveiling Gargantua: A new search strategy for the most massive central cluster black holes

    CERN Document Server

    Brockamp, Michael; Britzen, Silke; Zensus, Anton

    2016-01-01

    We aim to unveil the most massive central cluster black holes in the universe. We present a new search strategy which is based on a black hole mass gain sensitive 'calorimeter' and which links the innermost stellar density profile of a galaxy to the adiabatic growth of its central SMBH. In a first step we convert observationally inferred feedback powers into SMBH growth rates by using reasonable energy conversion efficiency parameters, $\\epsilon$. In the main part of this paper we use these black hole growth rates, sorted in logarithmically increasing steps encompassing our whole parameter space, to conduct $N$-Body computations of brightest cluster galaxies with the newly developed MUESLI software. For the initial setup of galaxies we use core-Sersic models in order to account for SMBH scouring. We find that adiabatically driven core re-growth is significant at the highest accretion rates. As a result, the most massive black holes should be located in BCGs with less pronounced cores when compared to the pred...

  14. Complex stellar populations in massive clusters: trapping stars of a dwarf-disc galaxy in a newborn stellar super-cluster

    CERN Document Server

    Fellhauer, M; Evans, W; Fellhauer, Mike; Kroupa, Pavel; Evans, Wyn

    2006-01-01

    Some of the most massive globular clusters of our Milky Way, such as for example omega-Centauri, show a mixture of stellar populations spanning a few Gyr in age and 1.5 dex in metallicities. In contrast, standard formation scenarios predict that globular and open clusters form in one single star-burst event of duration less than about 10 Myr and therefore should exhibit only one age and one metallicity in its stars. Here, we investigate the possibility that a massive stellar super-cluster may trap older galactic field stars during its formation process that are later detectable in the cluster as an apparent population of stars with a very different age and metallicity. With a set of numerical N-body simulations, we are able to show that, if the mass of the stellar super-cluster is high enough and the stellar velocity dispersion in the cluster is comparable to the dispersion of the surrounding disc stars in the host galaxy, then up to about 40 per cent of its initial mass can be additionally gained from trappe...

  15. Super-massive planets around late-type stars—the case of OGLE-2012-BLG-0406Lb

    International Nuclear Information System (INIS)

    Super-Jupiter-mass planets should form only beyond the snow line of host stars. However, the core accretion theory of planetary formation does not predict super-Jupiters forming around low-mass hosts. We present a discovery of a 3.9 ± 1.2 M Jup mass planet orbiting the 0.59 ± 0.17 M ☉ star using the gravitational microlensing method. During the event, the projected separation of the planet and the star is 3.9 ± 1.0 AU, i.e., the planet is significantly further from the host star than the snow line. This is the fourth such planet discovered using the microlensing technique and challenges the core accretion theory.

  16. Fully Automated Design of Super-High-Rise Building Structures by a Hybrid AI Model on a Massively Parallel Machine

    OpenAIRE

    Adeli, Hojjat; Park, H. S.

    1996-01-01

    This article presents an innovative research project (sponsored by the National Science Foundation, the American Iron and Steel Institute, and the American Institute of Steel Construction) where computationally elegant algorithms based on the integration of a novel connectionist computing model, mathematical optimization, and a massively parallel computer architecture are used to automate the complex process of engineering design.

  17. Super-massive planets around late-type stars - the case of OGLE-2012-BLG-0406Lb

    OpenAIRE

    Poleski, Radosław; Udalski, Andrzej; Dong, Subo; Szymański, Michał K.; Soszyński, Igor; Kubiak, Marcin; Pietrzyński, Grzegorz; Kozłowski, Szymon; Pietrukowicz, Paweł; Ulaczyk, Krzysztof; Skowron, Jan; Wyrzykowski, Łukasz; Gould, Andy

    2013-01-01

    The core accretion theory of planetary formation does not predict that super-Jupiters will form beyond the snow line of a low mass stars. We present a discovery of 3.9 +- 1.2 M_Jup mass planet orbiting the 0.59 +- 0.17 M_Sun star using the gravitational microlensing method. During the event, the projected separation of the planet and the star is 3.9 +- 1.0 AU i.e., the planet is significantly further from the host star than the snow line. This is a fourth such planet discovered using the micr...

  18. Setting firmer constraints on the evolution of the most massive, central galaxies from their local abundances and ages

    CERN Document Server

    Buchan, Stewart

    2016-01-01

    There is still much debate surrounding how the most massive, central galaxies in the local universe have assembled their stellar mass, especially the relative roles of in-situ growth versus later accretion via mergers. In this paper, we set firmer constraints on the evolutionary pathways of the most massive central galaxies by making use of empirical estimates on their abundances and stellar ages. The most recent abundance matching and direct measurements strongly favour that a substantial fraction of massive galaxies with Mstar>3x10^11 Msun reside at the centre of clusters with mass Mhalo>3x10^13 Msun. Spectral analysis supports ages >10 Gyrs, corresponding to a formation redshift z_form >2. We combine these two pieces of observationally-based evidence with the mass accretion history of their host dark matter haloes. We find that in these massive haloes, the stellar mass locked up in the central galaxy is comparable to, if not greater than, the total baryonic mass at z_form. These findings indicate that eith...

  19. Implications of primordial black holes on the first stars and the origin of the super--massive black holes

    OpenAIRE

    Bambi, Cosimo; Spolyar, Douglas; Dolgov, Alexander D.; Freese, Katherine; Volonteri, Marta

    2008-01-01

    If the cosmological dark matter has a component made of small primordial black holes, they may have a significant impact on the physics of the first stars and on the subsequent formation of massive black holes. Primordial black holes would be adiabatically contracted into these stars and then would sink to the stellar center by dynamical friction, creating a larger black hole which may quickly swallow the whole star. If these primordial black holes are heavier than $\\sim 10^{22} {\\rm g}$, the...

  20. The Dynamics of Dense Stellar Systems with a Massive Central Black Hole

    Science.gov (United States)

    Gill, Michael A.

    In this work, we explore the dynamics of two similar types of dense stellar systems with a central black hole of mass much greater than a typical stellar object. In particular, we use numerical N-body simulations to examine the effects that the massive black hole (MBH) has on the surrounding stars and compact objects as they pertain to indirectly observable signals. The first systems we consider are the highly uncertain cusps likely comprised of primarily massive compact objects that surround the MBHs at the center of typical galaxies. The gradual inspiral of a compact object by emission of gravitational radiation, called an extreme mass-ratio inspiral (EMRI), will produce a signal that falls in the peak detection range of the space-bound laser interferometer space antenna (LISA). Despite a veritable gold mine of astrophysical data that could be gleaned from such a detection, previous investigations in the literature have left the predicted rate of these events uncertain by several orders of magnitude. We present direct N-body simulations of the innermost ≤ 100 objects with the inclusion of the first-order Post-Newtonian correction with the aim of reducing one of the key uncertainties in the dynamics of these systems - the efficiency of resonant relaxation. We find that relativistic pericenter precession prevents a significant enhancement of the EMRI rate; the rate we derive during this work is consistent with those derived in the literature from less direct methods. We do find, however, that our EMRI progenitors originate from much closer to the MBH than previous investigations have suggested was likely. Our second investigation delves into the possibility of finding intermediate-mass black holes (IMBHs), with masses ˜ 102-4 Msun , at the center of dense star clusters. Because of the substantial investment of telescope time needed to perform the multiyear proper motion studies that are likely needed to achieve a definitive detection, careful selection of

  1. Petrography, mineral chemistry, fluid inclusion microthermometry and Re–Os geochronology of the Küre volcanogenic massive sulfide deposit (Central Pontides, Northern Turkey).

    OpenAIRE

    Akbulut, M; Oyman, T.; Çiçek, M.; Selby, D.; Özgenç, İ.; Tokçaer, M.

    2016-01-01

    The Re–Os isotopic system is applied for the first time to the sulfide ores and the overlying black-shales at the Küre volcanogenic massive sulfide deposit of the Central Pontides, Northern Turkey. The ore samples collected include predominantly pyrite, accompanied by chalcopyrite, sphalerite and other species. Massive ore is almost free of gangues, whereas the stockwork ore includes quartz and calcite gangue. The composition of sphalerite is similar to ancient and modern massive sulfide mine...

  2. The growth of typical star-forming galaxies and their super massive black holes across cosmic time since z~2

    CERN Document Server

    Calhau, João; Stroe, Andra; Best, Philip; Smail, Ian; Lehmer, Bret; Harrison, Chris; Thomson, Alasdair

    2016-01-01

    Understanding galaxy formation and evolution requires studying the interplay between the growth of galaxies and the growth of their black holes across cosmic time. Here we explore a sample of Ha-selected star-forming galaxies from the HiZELS survey and use the wealth of multi-wavelength data in the COSMOS field (X-rays, far-infrared and radio) to study the relative growth rates between typical galaxies and their central supermassive black holes, from z=2.23 to z=0. Typical star-forming galaxies at z~1-2 have black hole accretion rates (BHARs) of 0.001-0.01 Msun/yr and star formation rates (SFRs) of ~10-40 Msun/yr, and thus grow their stellar mass much quicker than their black hole mass (~3.3 orders of magnitude faster). However, ~3% of the sample (the sources detected directly in the X-rays) show a significantly quicker growth of the black hole mass (up to 1.5 orders of magnitude quicker growth than the typical sources). BHARs fall from z=2.23 to z=0, with the decline resembling that of star formation rate de...

  3. Physics of the Galactic Center Cloud G2, on its Way towards the Super-Massive Black Hole

    CERN Document Server

    Burkert, Andreas; Alig, Christian; Gillessen, Stefan; Genzel, Reinhard; Fritz, Tobias; Eisenhauer, Frank

    2012-01-01

    The origin, structure and evolution of the small gas cloud, G2, is investigated, that is on an orbit almost straight into the Galactic central supermassive black hole (SMBH). G2 is a sensitive probe of the hot accretion zone of Sgr A*, requiring gas temperatures and densities that agree well with models of captured shock-heated stellar winds. Its mass is equal to the critical mass below which cold clumps would be destroyed quickly by evaporation. Its mass is also constrained by the fact that at apocenter its sound crossing timescale was equal to its orbital timescale. Our numerical simulations show that the observed structure and evolution of G2 can be well reproduced if it formed in pressure equilibrium with the surrounding in 1995 at a distance from the SMBH of 7.6e16 cm. If the cloud would have formed at apocenter in the 'clockwise' stellar disk as expected from its orbit, it would be torn into a very elongated spaghetti-like filament by 2011 which is not observed. This problem can be solved if G2 is the h...

  4. Evolution of Massive Stars Up to the End of Central Oxygen Burning

    OpenAIRE

    Eid, Mounib F. El; Meyer, Bradley S.; The, Lih-Sin

    2004-01-01

    We present a detailed study of the evolution of massive stars of masses 15, 20, 25 and 30 $\\msun$ assuming solar-like initial chemical composition. The stellar sequences were evolved through the advanced burning phases up to the end of core oxygen burning. We present a careful analysis of the physical characteristics of the stellar models. In particular, we investigate the effect of the still unsettled reaction $^{12}$C($\\alpha$,$\\gamma$)$^{16}$O on the advanced evolution by using recent comp...

  5. Radiative feedback from massive black holes in elliptical galaxies. AGN flaring and central starburst fueled by recycled gas

    CERN Document Server

    Ciotti, L

    2007-01-01

    The importance of the radiative output from massive black holes at the centers of elliptical galaxies is not in doubt, given the well established relations among electromagnetic output, black hole mass and galaxy optical luminosity. We show how this AGN radiative output affects the hot ISM of an isolated elliptical galaxy with the aid of a high-resolution hydrodynamical code, where the cooling and heating functions include photoionization plus Compton heating. We find that radiative heating is a key factor in the self-regulated coevolution of massive black holes and their host galaxies and that 1) the mass accumulated by the central black hole is limited by feedback to the range observed today, and 2) relaxation instabilities occur so that duty cycles are small enough (~0.03) to account for the very small fraction of massive ellipticals observed to be in the "on" -QSO- phase, when the accretion luminosity approaches the Eddington luminosity. The duty cycle of the hot bubbles inflated at the galaxy center duri...

  6. Electromagnetic imaging of seafloor massive sulfide deposits at the Central Indian Ridge

    Science.gov (United States)

    Müller, Hendrik; Schwalenberg, Katrin

    2016-04-01

    Electromagnetics is considered to become a key method to evaluate the spatial extent, composition, and inner structure of Seafloor Massive Sulfide (SMS) deposits that contain potentially high grades of polymetallic minerals - essential ingredients for the growing high-tech industry. On land, airborne or ground electromagnetic methods are established as standard geophysical tools for locating and mapping massive sulfide deposits. In contrast to terrestrial systems, marine EM instrumentation to locate the heterogeneous and often sediment covered ore deposits are still in their infancy. To accomplish EM imaging of such complex deep sea environments, the GOLDEN EYE deep sea profiler has been developed at the University of Bremen by contract of the BGR, based on experiences with the MARUM NERIDIS benthic EM Profiler. GOLDEN EYE lands on the seafloor or glides with well constrained ground distance and is entirely controlled from the vessel. The rigid, circular fiberglass platform of 3.5 m in diameter hosts a frequency domain EM inloop sensor with horizontal transmitter of 3.34 m diameter and coaxial receiver and bucking coils. Operation frequencies between 10 and 20,000 Hz can be combined and jointly inverted to resolve the resistivity structure of the topmost 10 to 15 meters below seafloor with high lateral and near-surface resolution. We will present the concept and development state of this deep sea electromagnetic profiler, and first results from a recent cruise to the Edmond hydrothermal vent field in 3 km water depth. Preliminary analysis of the new data reveal electric conductivity values of more than 10 S/m associated with active and inactive SMS deposits. Simultaneously collected DC magnetic data indicate a local positive magnetic anomaly associated with the active Edmond hydrothermal vent field while nearby fossil deposits are characterized by negative magnetic anomalies. First 1D inversion results provide insights into the vertical extend and overburden

  7. The central star of the planetary nebula lmc-n66: a Massive accreting white dwarf?

    Directory of Open Access Journals (Sweden)

    M. Peña

    2004-01-01

    Full Text Available La estrella central del sistema PN LMC - N66 present o una impresionante transferencia de masa en 1993 - 1994 y regres o a su condici on inicial alrededor de 8 a~nos m as tarde. Su espectro se parece al de una estrella WN4.5 y es la unica estrella central con rmada de nebulosas planetarias que posee este tipo de espectro. Presentamos el an alisis reciente de los par ametros para la estrella central llevado a cabo por Hamann et al. (2003 que encontraron que durante la transferencia de masa la luminosidad bolom etrica se increment o en un factor mayor que 6. Discutimos los posibles escenarios que fueron propuestos para explicar los excepcionales par ametros estelares y el mecanismo de transferencia de masa. Las caracter sticas estelares, la morfolog a y la cinem atica de la nebulosa planetaria sugieren la presencia de un sistema binario (una estrella masiva con una compa~nera menos masiva o una enana blanca que acreta la materia en un sistema de binarias cercanas, siendo estos los casos que contradicen de manera menos severa las restricciones observacionales.

  8. Banded sulfide-magnetite ores of Mauk copper massive sulfide deposit, Central Urals: Composition and genesis

    Science.gov (United States)

    Safina, N. P.; Maslennikov, V. V.; Maslennikova, S. P.; Kotlyarov, V. A.; Danyushevsky, L. V.; Large, R. R.; Blinov, I. A.

    2015-05-01

    The results of investigation of metamorphosed sulfide-magnetite ores from the Mauk deposit located within the Main Ural Fault at the junction of Tagil and Magnitogorsk massive sulfide zones are discussed. The ore-hosting sequence comprises metamorphic rocks formed from basalt, carbonaceous and carbonaceous-cherty siltstone, and lenticular serpentinized ultramafic bodies. The ores of the deposit are represented by banded varieties and less frequent breccia. The clastic origin of the banded ore is indicated by load casts at the bottom of sulfide beds, alternation of sulfide and barren beds, and the truncation of the growth zones of pyrite crystals. Pyrite, pyrrhotite, chalcopyrite, sphalerite, and magnetite are the major minerals of the banded ores. The internal structure of the listed minerals testifies to the deep metamorphic recrystallization of primary hydrothermal-sedimentary ores accompanied with deformation. Cubanite, pyrrhotite, mackinawite, greigite, and gold are enclosed in metacrysts of pyrite, magnetite, and chalcopyrite. The accessory minerals of the Pb-Bi-Te, Bi-Te, and Ag-Te systems as well as uraninite have been found at the Mauk deposit for the first time. Magnetite predominantly replaces pyrite and less frequently chalcopyrite, pyrrhotite, and gangue minerals. It was established that the major carriers of As and Co are crystals of metamorphic pyrite. Chalcopyrite is the major carrier of Zn, Sn, Te, Pb, Bi, and Ag. Admixture of Fe and Cu is typical of sphalerite, and Se and Ni are characteristic of pyrrhotite. Ti, V, Mn, Sb, As, Ba, and U are concentrated in magnetite. The banded ores of the Mauk deposit are suggested as having been transformed in several stages: diagenesis, anadiagenesis, epidiagenesis ( t 500°C).

  9. Nature and origin of a Pleistocene-age massive ground-ice body exposed in the Chapman Lake moraine complex, central Yukon Territory, Canada

    Science.gov (United States)

    Lacelle, Denis; Lauriol, Bernard; Clark, Ian D.; Cardyn, Raphaelle; Zdanowicz, Christian

    2007-09-01

    A massive ground-ice body was found exposed in the headwall of a thaw flow developed within the Chapman Lake terminal moraine complex on the Blackstone Plateau (Ogilvie Mountains, central Yukon Territory), which is contemporaneous to the Reid glaciation. Based on visible cryostructures in the 4-m-high headwall, two units were identified: massive ground ice, overlain sharply by 2 m of icy diamicton. The nature and origin of the Chapman Lake massive ground ice was determined using cryostratigraphy, petrography, stable O-H isotopes and the molar concentration of occluded gases (CO 2, O 2, N 2 and Ar) entrapped in the ice, a new technique in the field of periglacial geomorphology that allows to distinguish between glacial and non-glacial intrasedimental ice. Collectively, the results indicate that the Chapman Lake massive ground ice formed by firn densification with limited melting-refreezing and underwent deformation near its margin. Given that the massive ground-ice body consists of relict glacier ice, it suggests that permafrost persisted, at least locally, on plateau areas in the central Yukon Territory since the middle Pleistocene. In addition, the d value of Chapman Lake relict glacier ice suggests that the ice covering the area during the Reid glaciation originated from a local alpine glaciation in the Ogilvie Mountains.

  10. Super- and sub-Eddington accreting massive black holes: A comparison of slim and thin accretion discs through study of the spectral energy distribution

    CERN Document Server

    Castello-Mor, Nuria; Kaspi, Shai

    2016-01-01

    We employ optical and UV observations to present SEDs for two reverberation-mapped samples of super-Eddington and sub-Eddington AGN with similar luminosity distributions. The samples are fitted with accretion disc models in order to look for SED differences that depend on the Eddington ratio. The fitting takes into account measured BH mass and accretion rates, BH spin and intrinsic reddening of the sources. All objects in both groups can be fitted by thin AD models over the range 0.2-1$\\,\\mu$m with reddening as a free parameter. The intrinsic reddening required to fit the data are relatively small, $E(B-V)\\leq0.2$~mag, except for one source. Super-Eddington AGN seem to require more reddening. The distribution of $E(B-V)$ is similar to what is observed in larger AGN samples. The best fit disc models for the two groups are very different, with super-Eddington sources require much more luminous far-UV continuum. The exact amount depends on the possible saturation of the UV radiation in slim discs. In particular,...

  11. Super and massive AGB stars - III. Nucleosynthesis in metal-poor and very metal-poor stars - Z=0.001 and 0.0001

    CERN Document Server

    Doherty, Carolyn L; Lau, Herbert H B; Lattanzio, John C; Siess, Lionel; Campbell, Simon W

    2014-01-01

    We present a new grid of stellar models and nucleosynthetic yields for super-AGB stars with metallicities Z=0.001 and 0.0001, applicable for use within galactic chemical evolution models. Contrary to more metal rich stars where hot bottom burning is the main driver of the surface composition, in these lower metallicity models the effect of third dredge-up and corrosive second dredge-up also have a strong impact on the yields. These metal-poor and very metal-poor super-AGB stars create large amounts of He4, C13 and N14, as well as the heavy magnesium isotopes Mg25 and Mg26. There is a transition in yield trends at metallicity Z approximately 0.001, below which we find positive yields of C12, O16, N15, Al27 and Si28, which is not the case for higher metallicities. We explore the large uncertainties derived from wind prescriptions in super-AGB stars, finding approximately 2 orders of magnitude difference in yields of Ne22, Na23, Mg24,25,26, Al27 and our s-process proxy isotope g. We find inclusion of variable co...

  12. Super- and sub-Eddington accreting massive black holes: a comparison of slim and thin accretion discs through study of the spectral energy distribution

    Science.gov (United States)

    Castelló-Mor, N.; Netzer, H.; Kaspi, S.

    2016-05-01

    We employ optical and ultraviolet (UV) observations to present spectral energy distributions (SEDs) for two reverberation-mapped samples of super-Eddington and sub-Eddington active galactic nuclei (AGN) with similar luminosity distributions. The samples are fitted with accretion disc (AD) models in order to look for SED differences that depend on the Eddington ratio. The fitting takes into account measured black hole (BH) mass and accretion rates, BH spin and intrinsic reddening of the sources. All objects in both groups can be fitted by thin AD models over the range 0.2-1 μm with reddening as a free parameter. The intrinsic reddening required to fit the data are relatively small, E(B - V) ≤ 0.2 mag, except for one source. Super-Eddington AGN seems to require more reddening. The distribution of E(B - V) is similar to what is observed in larger AGN samples. The best-fitting disc models recover very well the BH mass and accretion for the two groups. However, the SEDs are very different, with super-Eddington sources requiring much more luminous far-UV continuum. The exact amount depends on the possible saturation of the UV radiation in slim discs. In particular, we derive for the super-Eddington sources a typical bolometric correction at 5100 Å of 60-150 compared with a median of ˜20 for the sub-Eddington AGN. The measured torus luminosity relative to λLλ(5100 Å) are similar in both groups. The αOX distribution is similar too. However, we find extremely small torus covering factors for super-Eddington sources, an order of magnitude smaller than those of sub-Eddington AGN. The small differences between the groups regarding the spectral range 0.2-22 μm, and the significant differences related to the part of the SED that we cannot observe may be consistent with some slim disc models. An alternative explanation is that present day slim-disc models overestimate the far-UV luminosity of such objects by a large amount.

  13. An infinite supermultiplet of massive higher-spin fields

    CERN Document Server

    Bekaert, Xavier; Valenzuela, Mauricio

    2009-01-01

    The representation theory underlying the infinite-component relativistic wave equation written by Majorana is revisited from a modern perspective. On the one hand, the massless solutions of this equation are shown to form a supermultiplet of the superPoincare algebra with tensorial central charges; it can also be obtained as the infinite spin limit of massive solutions. On the other hand, the Majorana equation is generalized for any space-time dimension and for arbitrary Regge trajectories. Inspired from these results, an infinite supermultiplet of massive fields of all spins and of equal mass is constructed in four dimensions and proved to carry an irreducible representation of the orthosymplectic group OSp(1|4) and of the superPoincare group with tensorial charges.

  14. Peralkaline- and calc-alkaline-hosted volcanogenic massive sulfide deposits of the Bonnifield District, East-Central Alaska

    Science.gov (United States)

    Dusel-Bacon, Cynthia; Foley, Nora K.; Slack, John E.; Koenig, Alan E.; Oscarson, Robert L.

    2012-01-01

    Volcanogenic massive sulfide (VMS) Zn-Pb-Cu-Ag-Au deposits of the Bonnifield mining district formed during Late Devonian-Early Mississippian magmatism along the western edge of Laurentia. The largest deposits, Dry Creek and WTF, have a combined resource of 5.7 million tonnes at 10% Zn, 4% Pb, 0.3% Cu, 300 grams per tonne (g/t) Ag, and 1.6 g/t Au. These polymetallic deposits are hosted in high field strength element (HFSE)- and rare-earth element (REE)-rich peralkaline (pantelleritic) metarhyolite, and interlayered pyritic argillite and mudstone of the Mystic Creek Member of the Totatlanika Schist Formation. Mystic Creek metarhyolite and alkali basalt (Chute Creek Member) constitute a bimodal pair that formed in an extensional environment. A synvolcanic peralkaline quartz porphyry containing veins of fluorite, sphalerite, pyrite, and quartz intrudes the central footwall at Dry Creek. The Anderson Mountain deposit, located ~32 km to the southwest, occurs within calc-alkaline felsic to intermediate-composition metavolcanic rocks and associated graphitic argillite of the Wood River assemblage. Felsic metavolcanic rocks there have only slightly elevated HFSEs and REEs. The association of abundant graphitic and siliceous argillite with the felsic volcanic rocks together with low Cu contents in the Bonnifield deposits suggests classification as a siliciclastic-felsic type of VMS deposit. Bonnifield massive sulfides and host rocks were metamorphosed and deformed under greenschist-facies conditions in the Mesozoic. Primary depositional textures, generally uncommon, consist of framboids, framboidal aggregates, and spongy masses of pyrite. Sphalerite, the predominant base metal sulfide, encloses early pyrite framboids. Galena and chalcopyrite accompanied early pyrite formation but primarily formed late in the paragenetic sequence. Silver-rich tetrahedrite is a minor late phase at the Dry Creek deposit. Gold and Ag are present in low to moderate amounts in pyrite from all of

  15. Supertwistors and massive particles

    Energy Technology Data Exchange (ETDEWEB)

    Mezincescu, Luca, E-mail: mezincescu@server.physics.miami.edu [Department of Physics, University of Miami, Coral Gables, FL 33124 (United States); Routh, Alasdair J., E-mail: a.j.routh@damtp.cam.ac.uk [DAMTP, CMS, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Townsend, Paul K., E-mail: p.k.townsend@damtp.cam.ac.uk [DAMTP, CMS, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2014-07-15

    In the (super)twistor formulation of massless (super)particle mechanics, the mass-shell constraint is replaced by a “spin-shell” constraint from which the spin content can be read off. We extend this formalism to massive (super)particles (with N-extended space–time supersymmetry) in three and four space–time dimensions, explaining how the spin-shell constraints are related to spin, and we use it to prove equivalence of the massive N=1 and BPS-saturated N=2 superparticle actions. We also find the supertwistor form of the action for “spinning particles” with N-extended worldline supersymmetry, massless in four dimensions and massive in three dimensions, and we show how this simplifies special features of the N=2 case. -- Highlights: •Spin-shell constraints are related to Poincaré Casimirs. •Twistor form of 4D spinning particle for spin N/2. •Twistor proof of scalar/antisymmetric tensor equivalence for 4D spin 0. •Twistor form of 3D particle with arbitrary spin. •Proof of equivalence of N=1 and N=2 BPS massive 4D superparticles.

  16. ON THE INTERMEDIATE-REDSHIFT CENTRAL STELLAR MASS-HALO MASS RELATION, AND IMPLICATIONS FOR THE EVOLUTION OF THE MOST MASSIVE GALAXIES SINCE z ∼ 1

    Energy Technology Data Exchange (ETDEWEB)

    Shankar, Francesco; Buchan, Stewart [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Guo, Hong; Zheng, Zheng [Department of Physics and Astronomy, University of Utah, UT 84112 (United States); Bouillot, Vincent [Centre for Astrophysics, Cosmology and Gravitation, Department of Mathematics and Applied Mathematics, University of Cape Town, Cape Town 7701 (South Africa); Rettura, Alessandro [Jet Propulsion Laboratory, California Institute of Technology, MS 169-234, Pasadena, CA 91109 (United States); Meert, Alan; Bernardi, Mariangela; Sheth, Ravi; Vikram, Vinu [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Kravtsov, Andrey [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States); Marchesini, Danilo [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Behroozi, Peter [Kavli Institute for Particle Astrophysics and Cosmology, Stanford, CA 94305 (United States); Maraston, Claudia; Capozzi, Diego [Institute of Cosmology and Gravitation, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX (United Kingdom); Ascaso, Begoña; Huertas-Company, Marc [GEPI, Observatoire de Paris, CNRS, Univ. Paris Diderot, 5 Place Jules Janssen, F-92195 Meudon (France); Lemaux, Brian C. [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Gal, Roy R. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Lubin, Lori M., E-mail: F.Shankar@soton.ac.uk [University of California, One Shields Avenue, Davis, CA 95616 (United States); and others

    2014-12-20

    The stellar mass-halo mass relation is a key constraint in all semi-analytic, numerical, and semi-empirical models of galaxy formation and evolution. However, its exact shape and redshift dependence remain under debate. Several recent works support a relation in the local universe steeper than previously thought. Based on comparisons with a variety of data on massive central galaxies, we show that this steepening holds up to z ∼ 1 for stellar masses M {sub star} ≳ 2 × 10{sup 11} M {sub ☉}. Specifically, we find significant evidence for a high-mass end slope of β ≳ 0.35-0.70 instead of the usual β ≲ 0.20-0.30 reported by a number of previous results. When including the independent constraints from the recent Baryon Oscillation Spectroscopic Survey clustering measurements, the data, independent of any systematic errors in stellar masses, tend to favor a model with a very small scatter (≲ 0.15 dex) in stellar mass at fixed halo mass, in the redshift range z < 0.8 and for M {sub star} > 3 × 10{sup 11} M {sub ☉}, suggesting a close connection between massive galaxies and host halos even at relatively recent epochs. We discuss the implications of our results with respect to the evolution of the most massive galaxies since z ∼ 1.

  17. Massive Gravity

    Directory of Open Access Journals (Sweden)

    Claudia de Rham

    2014-08-01

    Full Text Available We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali–Gabadadze–Porrati model (DGP, cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware–Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alternative and related models of massive gravity such as new massive gravity, Lorentz-violating massive gravity and non-local massive gravity.

  18. Super Learner

    OpenAIRE

    Polley, Eric

    2010-01-01

    The super learner is a general loss-based learning method designed to find the optimal combination of a set of learners. The super learner framework is built on the theory of cross-validation and allows for a general class of algorithms to be considered for the ensemble. The oracle results for the cross-validation selector are extended to the super learner. Due to the established oracle results for the cross-validation selector, the super learner is proven to represent an asymptotically op...

  19. Supertwistors and massive particles

    CERN Document Server

    Mezincescu, Luca; Townsend, Paul K

    2013-01-01

    In the (super)twistor formulation of massless particle mechanics, the mass-shell constraint is replaced by a "spin-shell" constraint from which the spin content can be read off. We extend this formalism to {\\it massive} particles in three and four space-time dimensions, explaining how the spin-shell constraints are related to Poincar\\'e Casimirs. We further extend the formalism (in these spacetime dimensions) to a supertwistor form of the generic N-extended superparticle action, which we use to prove equivalence of the massive N=1 and BPS-saturated N=2 superparticle actions. We also find (again in three and four spacetime dimensions) the supertwistor form of the action for massless and massive "spinning particles" with N-extended worldline supersymmetry, and we show how it simplifies special features of the N=2 case.

  20. A Super Roman Pot

    CERN Multimedia

    1975-01-01

    Remotely controlled re-entrant vacuum vessels, with very thin (0.17 mm) central windows, that were installed in each downstream arm of the ISR intersection I-8. Detectors placed inside these Super Roman Pots could be moved very close to the circulating ISR beams. (See Annual Report 1974 p. 110.)

  1. Multiple sulphur and lead sources recorded in hydrothermal exhalites associated with the Lemarchant volcanogenic massive sulphide deposit, central Newfoundland, Canada

    Science.gov (United States)

    Lode, Stefanie; Piercey, Stephen J.; Layne, Graham D.; Piercey, Glenn; Cloutier, Jonathan

    2016-04-01

    Metalliferous sedimentary rocks (mudstones, exhalites) associated with the Cambrian precious metal-bearing Lemarchant Zn-Pb-Cu-Au-Ag-Ba volcanogenic massive sulphide (VMS) deposit, Tally Pond volcanic belt, precipitated both before and after VMS mineralization. Sulphur and Pb isotopic studies of sulphides within the Lemarchant exhalites provide insight into the sources of S and Pb in the exhalites as a function of paragenesis and evolution of the deposit and subsequent post-depositional modification. In situ S isotope microanalyses of polymetallic sulphides (euhedral and framboidal pyrite, anhedral chalcopyrite, pyrrhotite, galena and euhedral arsenopyrite) by secondary ion mass spectrometry (SIMS) yielded δ34S values ranging from -38.8 to +14.4 ‰, with an average of ˜ -12.8 ‰. The δ34S systematics indicate sulphur was predominantly biogenically derived via microbial/biogenic sulphate reduction of seawater sulphate, microbial sulphide oxidation and microbial disproportionation of intermediate S compounds. These biogenic processes are coupled and occur within layers of microbial mats consisting of different bacterial/archaeal species, i.e., sulphate reducers, sulphide oxidizers and those that disproportionate sulphur compounds. Inorganic processes or sources (i.e., thermochemical sulphate reduction of seawater sulphate, leached or direct igneous sulphur) also contributed to the S budget in the hydrothermal exhalites and are more pronounced in exhalites that are immediately associated with massive sulphides. Galena Pb isotopic compositions by SIMS microanalysis suggest derivation of Pb from underlying crustal basement (felsic volcanic rocks of Sandy Brook Group), whereas less radiogenic Pb derived from juvenile sources leached from mafic volcanic rocks of the Sandy Brook Group and/or Tally Pond group. This requires that the hydrothermal fluids interacted with juvenile and evolved crust during hydrothermal circulation, which is consistent with the existing

  2. Enhancing the rate of tidal disruptions of stars by a self-gravitating disc around a massive central black hole

    Directory of Open Access Journals (Sweden)

    Šubr L.

    2012-12-01

    Full Text Available We further study the idea that a self-gravitating accretion disc around a supermassive black hole can increase the rate of gradual orbital decay of stellar trajectories (and hence tidal disruption events by setting some stars on eccentric trajectories. Cooperation between the gravitational field of the disc and the dissipative environment can provide a mechanism explaining the origin of stars that become bound tightly to the central black hole. We examine this process as a function of the black hole mass and conclude that it is most efficient for intermediate central masses of the order of ∼ 104Mʘ. Members of the cluster experience the stage of orbital decay via collisions with an accretion disc and by other dissipative processes, such as tidal effects, dynamical friction and the emission of gravitational waves. Our attention is concentrated on the region of gravitational dominance of the central body. Mutual interaction between stars and the surrounding environment establishes a non-spherical shape and anisotropy of the nuclear cluster. In some cases, the stellar sub-system acquires ring-type geometry. Stars of the nuclear cluster undergo a tidal disruption event as they plunge below the tidal radius of the supermassive black hole.

  3. The central region of M83: Massive star formation, kinematics, and the location and origin of the nucleus

    CERN Document Server

    Knapen, J H; Ryder, S D; Falcon-Barroso, J; Fathi, K; Gutierrez, L

    2010-01-01

    We report new near-IR integral field spectroscopy of the central starburst region of the barred spiral galaxy M83 obtained with CIRPASS on Gemini-S, which we analyse in conjunction with GHaFaS Fabry-Perot data, an AAT IRIS2 Ks-band image, and near- and mid-IR imaging from the Hubble and Spitzer space telescopes. The bulk of the current star formation activity is hidden from optical view by dust extinction, but is seen in the near- and mid-IR to the north of the nucleus. This region is being fed by inflow of gas through the bar of M83, traced by the prominent dust lane entering into the circumnuclear region from the north. An analysis of stellar ages confirms that the youngest stars are indeed in the northwest. A gradual age gradient, with older stars further to the south, characterises the well-known star-forming arc in the central region of M83. Detailed analyses of the Pa beta ionised gas kinematics and near-IR imaging confirm that the kinematic centre coincides with the photometric centre of M83, and that ...

  4. STAR FORMATION IN THE CENTRAL 400 PC OF THE MILKY WAY: EVIDENCE FOR A POPULATION OF MASSIVE YOUNG STELLAR OBJECTS

    International Nuclear Information System (INIS)

    The central kpc of the Milky Way might be expected to differ significantly from the rest of the Galaxy with regard to gasdynamics and the formation of young stellar objects (YSOs). We probe this possibility with mid-infrared observations obtained with Infrared Array Camera and Multiband Imaging Photometer on Spitzer and with Midcourse Space Experiment. We use color-color diagrams and spectral energy distribution (SED) fits to explore the nature of YSO candidates (including objects with 4.5 μm excesses possibly due to molecular emission). There is an asymmetry in the distribution of the candidate YSOs, which tend to be found at negative Galactic longitudes; this behavior contrasts with that of the molecular gas, approximately 2/3 of which is at positive longitudes. The small-scale height of these objects suggests that they are within the Galactic center region and are dynamically young. They lie between two layers of infrared dark clouds and may have originated from these clouds. We identify new sites for this recent star formation by comparing the mid-IR, radio, submillimeter, and methanol maser data. The methanol masers appear to be associated with young, embedded YSOs characterized by 4.5 μm excesses. We use the SEDs of these sources to estimate their physical characteristics; their masses appear to range from ∼10 to ∼20 Msun. Within the central 400 x 50 pc (|l| 03 and |b| sun yr-1. Given that the majority of the sources in the population of YSOs are classified as Stage I objects, we suggest that a recent burst of star formation took place within the last 105 yr. This suggestion is also consistent with estimates of SFRs within the last ∼107 yr showing a peak around 105 yr ago. Lastly, we find that the Schmidt-Kennicutt Law applies well in the central 400 pc of the Galaxy. This implies that star formation does not appear to be dramatically affected by the extreme physical conditions in the Galactic center region.

  5. Star Formation in the Central 400 pc of the Milky Way: Evidence for a Population of Massive YSOs

    CERN Document Server

    Yusef-Zadeh, F; Arendt, R G; Whitney, B; Rieke, G; Wardle, M; Hinz, J L; Stolovy, S; Lang, C C; Burton, M G; Ramírez, S

    2009-01-01

    The central kpc of the Milky Way might be expected to differ significantly from the rest of the Galaxy with regard to gas dynamics and the formation of YSOs. We probe this possibility with mid-infrared observations obtained with IRAC and MIPS on Spitzer and with MSX. We use color-color diagrams and SED fits to explore the nature of YSO candidates (including objects with 4.5 micron excesses possibly due to molecular emission). There is an asymmetry in the distribution of the candidate YSOs, which tend to be found at negative Galactic longitudes; this behavior contrasts with that of the molecular gas, approximately 2/3 of which is at positive longitudes. The small scale height of these objects suggests that they are within the Galactic center region and are dynamically young. They lie between two layers of infrared dark clouds and may have originated from these clouds. We identify new sites for this recent star formation. The methanol masers appear to be associated with young, embedded YSOs characterized by 4.5...

  6. Massive, Topologically Massive, Models

    CERN Document Server

    Deser, Stanley D; Tekin, Bayram

    2002-01-01

    In three dimenions, there are two distinct mass-generating mechanisms for gauge vector and tensr fields: adding the usual Proca/Pauli-Fierz, or the more esoteric Chern-Simons (CS), terms. Here we analyze the three-term models where both types are present, and their various limits. Surprisingly, in the tensor case, these seemingly inncouos systems are physically unacceptable. If the sign of the Eisntein term is ``wrong'' as required in the CS case, then the excitation masses are always complex; with the usual sign, there is (known) region of the two mass parameters where reality is restored, but a ghost problem arises. For the two-term sytem without Eintein term, complex masses are unavoidable. This constrasts with the smooth behavir of the corresponding vector models. Seperately, we show that the ``partial masslessness'' exhibited by (plane) massive spin-2 models in de Sitter backgrounds is formally shared by the three-system: it enjoys a reduced local gauge invariance when this mass parameter is tuned to the...

  7. Massive, topologically massive, models

    International Nuclear Information System (INIS)

    In three dimensions, there are two distinct mass-generating mechanisms for gauge fields: adding the usual Proca/Pauli-Fierz, or the more esoteric Chern-Simons (CS), terms. Here, we analyse the three-term models where both types are present and their various limits. Surprisingly, in the tensor case, these seemingly innocuous systems are physically unacceptable. If the sign of the Einstein term is 'wrong', as is in fact required in the CS theory, then the excitation masses are always complex; with the usual sign, there is a (known) region of the two mass parameters where reality is restored, but instead a ghost problem arises, while for the 'pure mass' two-term system without an Einstein action, complex masses are unavoidable. This contrasts with the smooth behaviour of the corresponding vector models. Separately, we show that the 'partial masslessness' exhibited by (plain) massive spin-2 models in de Sitter backgrounds is shared by the three-term system: it also enjoys a reduced local gauge invariance when this mass parameter is tuned to the cosmological constant. (letter to the editor)

  8. Massive Gravity

    OpenAIRE

    Claudia de Rham

    2014-01-01

    We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali–Gabadadze–Porrati model (DGP), cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware–Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alt...

  9. Logic gates realized by nonvolatile GeTe/Sb2Te3 super lattice phase-change memory with a magnetic field input

    Science.gov (United States)

    Lu, Bin; Cheng, Xiaomin; Feng, Jinlong; Guan, Xiawei; Miao, Xiangshui

    2016-07-01

    Nonvolatile memory devices or circuits that can implement both storage and calculation are a crucial requirement for the efficiency improvement of modern computer. In this work, we realize logic functions by using [GeTe/Sb2Te3]n super lattice phase change memory (PCM) cell in which higher threshold voltage is needed for phase change with a magnetic field applied. First, the [GeTe/Sb2Te3]n super lattice cells were fabricated and the R-V curve was measured. Then we designed the logic circuits with the super lattice PCM cell verified by HSPICE simulation and experiments. Seven basic logic functions are first demonstrated in this letter; then several multi-input logic gates are presented. The proposed logic devices offer the advantages of simple structures and low power consumption, indicating that the super lattice PCM has the potential in the future nonvolatile central processing unit design, facilitating the development of massive parallel computing architecture.

  10. 基于SuperMap Objects的太原师范学院中区植物查询系统%Plant Inquiry System of the Central Campus of Taiyuan Normal University Based on SuperMap Objects

    Institute of Scientific and Technical Information of China (English)

    邱丽氚; 邱文君

    2012-01-01

    基于SuperMap Objects的太原师范学院中区植物查询系统是在软件工程基本原理的指导下,运用SuperMap Objects二次开发组件,在Visual Basic 2008 IDE软件开发环境下,开发的植物查询系统,可以对校园植物进行选择、漫游、全副显示、距离测量等基本空间操作以及图形查属性、属性查图形、SQL查询等功能.

  11. Minimal massive 3D gravity

    International Nuclear Information System (INIS)

    We present an alternative to topologically massive gravity (TMG) with the same ‘minimal’ bulk properties; i.e. a single local degree of freedom that is realized as a massive graviton in linearization about an anti-de Sitter (AdS) vacuum. However, in contrast to TMG, the new ‘minimal massive gravity’ has both a positive energy graviton and positive central charges for the asymptotic AdS-boundary conformal algebra. (paper)

  12. Minimal Massive 3D Gravity

    OpenAIRE

    Bergshoeff, Eric; Hohm, Olaf; Merbis, Wout; Routh, Alasdair J.; Townsend, Paul K

    2014-01-01

    We present an alternative to Topologically Massive Gravity (TMG) with the same "minimal" bulk properties; i.e. a single local degree of freedom that is realized as a massive graviton in linearization about an anti-de Sitter (AdS) vacuum. However, in contrast to TMG, the new "minimal massive gravity" has both a positive energy graviton and positive central charges for the asymptotic AdS-boundary conformal algebra.

  13. Massive Branes

    NARCIS (Netherlands)

    Bergshoeff, E. A.; Lozano, Y.; Ortín, Tomas

    1997-01-01

    Published in: Nucl. Phys. B 518 (1998) 363-423 citations recorded in [Science Citation Index] Abstract: We investigate the effective worldvolume theories of branes in a background given by (the bosonic sector of) 10-dimensional massive IIA supergravity (``massive branes'') and their M-theoretic orig

  14. Super Factories

    Indian Academy of Sciences (India)

    D G Hitlin

    2006-11-01

    Heavy-flavor physics, in particular and physics results from the factories, currently provides strong constraints on models of physics beyond the Standard Model. A new generation of colliders, Super Factories, with 50 to 100 times the luminosity of existing colliders, can, in a dialog with LHC and ILC, provide unique clarification of new physics phenomena seen at those machines.

  15. Super compacting of drums with dry solid radioactive waste in the nuclear power plant of Laguna Verde;Super compactacion de bidones con desecho radiactivo solido seco en la central nucleo electrica Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez G, R.; Lara H, M. A.; Cabrera Ll, M.; Verdalet de la Torre, O., E-mail: marco.lara@cfe.gob.m [Comision Federal de Electricidad, Central Nucleoelectrica de Laguna Verde, Carretera Nautla-Cardel Km. 42.5, Alto Lucero, Veracruz (Mexico)

    2009-10-15

    The nuclear power plant of Laguna Verde located in the Gulf of Mexico, completes in this 2009, nineteen years to produce by nuclear means 4.78% of the electric power that Mexico requires daily. During this time, the Unit 1 has generated more of 88.85 million mega watt-hour and the Unit 2 more of 69.48 million mega watt-hour with an availability average of 83.55%. Derived of their operation cycles, the nuclear power plant has generated (as any other installation of its type) radioactive wastes of low activity that at the moment are temporarily stored in the site. Due to the life cycle of the nuclear power plant, actually has become necessary to begin a project series focused to continue guaranteeing the storage of these wastes, guarantee that is a license requirement for the operation of this nuclear installation before the National Commission of Nuclear Security and Safeguards. The Federal Commission of Electricity beginning a project that allows continue guaranteeing space of sufficient storage for the wastes that the nuclear power plant of Laguna Verde could generate for the rest of its useful life, this project consisted on a process of physical volume reduction of dry solid radioactive wastes denominated super compacting, it has made possible to reduce the volume that these wastes occupy in the temporary storage noted Dry Solid Radioactive Wastes Deposit located inside the site that occupies the nuclear power plant of Laguna Verde. This work presents the super compacting results, as well as a description of the realization of this task until concluding with the super compacting of 5,854 drums with dry solid radioactive waste of low activity. We will enunciate which were the radiological controls that the Department of Radiological Protection of the nuclear power plant of Laguna Verde applied to this work that was realized for first time in Mexico and the nuclear power plant. (Author)

  16. Globular cluster-massive black hole interactions in galactic centers

    CERN Document Server

    Capuzzo-Dolcetta, R

    2016-01-01

    Many, if not all, galaxies host massive compact objects at their centers. They are present as singularities (super massive black holes) or high density star clusters (nuclear tar clusters). In some cases they coexist, and interact more or less strongly. In this short paper I will talk of the 'merger' globular cluster scenario, which has been shown in the past to be an explanation of the substantial mass accumulation in galactic centers. In particular, I will present the many astrophysical implications of such scenario pointing the attention on the mutual feedback of orbitally decaying globular clusters with massive and super massive black holes.

  17. More on massive 3D supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Bergshoeff, Eric A; Rosseel, Jan [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Hohm, Olaf [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Sezgin, Ergin [George and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Townsend, Paul K, E-mail: E.A.Bergshoeff@rug.nl, E-mail: ohohm@mit.edu, E-mail: j.rosseel@rug.nl, E-mail: sezgin@tamu.edu, E-mail: P.K.Townsend@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2011-01-07

    Completing earlier work on three-dimensional (3D) N=1 supergravity with curvature-squared terms, we construct the general supergravity extension of 'cosmological' massive gravity theories. In particular, we show that all adS vacua of 'new massive gravity' (NMG) correspond to supersymmetric adS vacua of a 'super-NMG' theory that is perturbatively unitary whenever the corresponding NMG theory is perturbatively unitary.

  18. Effects of massive wind power integration on short-term water resource management in central Chile - a grid-wide study

    Science.gov (United States)

    Haas, J.; Olivares, M. A.; Palma, R.

    2013-12-01

    In central Chile, water from reservoirs and streams is mainly used for irrigation and power generation. Hydropower reservoirs operation is particularly challenging because: i) decisions at each plant impact the entire power system, and ii) the existence of large storage capacity implies inter-temporal ties. An Independent System Operator (ISO) decides the grid-wide optimal allocation of water for power generation, under irrigation-related constraints. To account for the long-term opportunity cost of water, a future cost function is determined and used in the short term planning. As population growth and green policies demand increasing levels of renewable energy in power systems, deployment of wind farms and solar plants is rising quickly. However, their power output is highly fluctuating on short time scales, affecting the operation of power plants, particularly those fast responding units as hydropower reservoirs. This study addresses these indirect consequences of massive introduction of green energy sources on reservoir operations. Short-term reservoir operation, under different wind penetration scenarios, is simulated using a replica of Chile's ISO's scheduling optimization tools. Furthermore, an ongoing study is exploring the potential to augment the capacity the existing hydro-power plants to better cope with the balancing needs due to a higher wind power share in the system. As reservoir releases determine to a great extent flows at downstream locations, hourly time series of turbined flows for 24-hour periods were computed for selected combinations between new wind farms and increased capacity of existing hydropower plants. These time series are compiled into subdaily hydrologic alteration (SDHA) indexes (Zimmerman et al, 2010). The resulting sample of indexes is then analyzed using duration curves. Results show a clear increase in the SDHA for every reservoir of the system as more fluctuating renewables are integrated into the system. High

  19. A super soliton connection

    International Nuclear Information System (INIS)

    Integrable super non-linear classical partial differential equations are considered. A super s1(2,R) algebra valued connection 1-form is constructed. It is shown that curvature 2-form of this super connection vanishes by virtue of the integrable super equations of motion. A super extension of the AKNS scheme is presented and a class of super extension of the Lax hierarchy and super non-linear Schroedinger equation are found. O(N) extension and the Baecklund transformations of the above super equations are also considered. (author)

  20. Super-Eddington growth of the first black holes

    Science.gov (United States)

    Pezzulli, Edwige; Valiante, Rosa; Schneider, Raffaella

    2016-05-01

    The assembly of the first super massive black holes (SMBHs) at z ≳ 6 is still a subject of intense debate. If black holes (BHs) grow at their Eddington rate, they must start from ≳104 M⊙ seeds formed by the direct collapse of gas. Here, we explore the alternative scenario where ˜100 M⊙ BH remnants of the first stars grow at super-Eddington rate via radiatively inefficient slim accretion discs. We use an improved version of the cosmological, data-constrained semi-analytic model GAMETE/QSODUST, where we follow the evolution of nuclear BHs and gas cooling, disc and bulge formation of their host galaxies. Adopting SDSS J1148+5251 (J1148) at z = 6.4 as a prototype of luminous z ≳ 6 quasars, we find that ˜80 per cent of its SMBH mass is grown by super-Eddington accretion, which can be sustained down to z ˜ 10 in dense, gas-rich environments. The average BH mass at z ˜ 20 is MBH ≳ 104 M⊙, comparable to that of direct collapse BHs. At z = 6.4 the AGN-driven mass outflow rate is consistent with the observations and the BH-to-bulge mass ratio is compatible with the local scaling relation. However, the stellar mass in the central 2.5 kpc is closer to the value inferred from CO observations. Finally, ˜20 per cent of J1148 progenitors at z = 7.1 have BH luminosities and masses comparable to ULAS J1120+0641, suggesting that this quasar may be one of the progenitors of J1148.

  1. Super-KN Hierarchy and Its Super-Hamiltonian Structure

    International Nuclear Information System (INIS)

    Based on the basis of the constructed Lie super algebra, the super-isospectral problem of KN hierarchy is considered. Under the frame of the zero curvature equation, the super-KN hierarchy is obtained. Furthermore, its super-Hamiltonian structure is presented by using super-trace identity and it has super-bi-Hamiltonian structure. (general)

  2. CO-0.30-0.07: A Candidate Site of Collision-induced Massive Star Formation in the Milky Way's Central Molecular Zone

    Science.gov (United States)

    Tanaka, K.

    2016-05-01

    Cloud-cloud collision has long been claimed to be an efficient trigger of massive star formation. We present interferometric maps of a candidate site of collision-triggered star formation newly discovered at 40 pc projected distance from the Galactic center. The cloud CO- 0.3 has an extremely broad molecular line emission of a 140 km s-1 velocity width despite of absence of any known energy sources nearby and inside the cloud. Recent observations with the Atacama Large Millimeter and Submillimeter Array have unveiled that the cloud is comprised by two distinctive velocity components which appear to contact at a thin, well-defined interface layer on the plane-of-the-sky, suggesting that the extremely broad emissions originate from shocked regions created by cloud-cloud collision.

  3. Super-oscillating Electron Wave Functions with Sub-diffraction Spots

    CERN Document Server

    Remez, Roei; Lu, Peng-Han; Tavabi, Amir H; Dunin-Borkowski, Rafal E; Arie, Ady

    2016-01-01

    Almost one and a half centuries ago, Ernst Abbe [1] and shortly after Lord Rayleigh [2] derived the minimum, diffraction-limited spot radius of an optical lens to be 1.22{\\lambda}/(2sin{\\alpha}), where {\\lambda} is the wavelength and {\\alpha} is the semi-angle of the beam's convergence cone. Here, we show how to overcome this limit and realize the first super-oscillating massive-particle wave function, which has an arbitrarily small central spot that is much smaller than the Abbe-Rayleigh limit and theoretically even smaller than the de Broglie wavelength. We experimentally demonstrate an electron central spot of radius 106 pm, which is more than two times smaller than the diffraction limit of the experimental setup used. Such an electronic wave function can serve as a probe in scanning transmission electron microscopy, providing improved imaging of objects at the sub-{\\AA}ngstrom scale.

  4. On Topologically Massive Gravity with Extended Supersymmetry

    CERN Document Server

    Lauf, Frederik

    2016-01-01

    We describe the construction of $2+1$-dimensional toplogically massive adS gravity with ${\\mathcal{N}}$-extended supersymmetry in conformal superspace by means of introducing a compensating hypermultiplet for the super-Weyl invariance. For $\\mathcal{N}\\geq 3$ the scalar multiplet must be on shell and the potential for the scalar compensator is completely determined by the geometry. As a consequence the resulting massive theory has no free parameter for $\\mathcal{N}\\geq 4$. For $\\mathcal{N}= 4$ we obtain the complete off-shell component action.

  5. A study of the clinical profile of atrial fibrillation in a tertiary care super-specialty referral centre in Central Nepal

    Directory of Open Access Journals (Sweden)

    MP Gautam

    2013-09-01

    Full Text Available Background The conventional causes and risk factors for atrial fibrillation (AF are somewhat arbitrary; overlap exists, multiple aetiologies are often present in one individual, and clinical presentation is non- specific. This study was an attempt to study the clinical and echocardiographic profile of patients with AF in a tertiary care super-specialty hospital of a developing country. Materials and Methods This study was conducted in College of Medical Sciences, Chitwan, Nepal throughout the year 2010. Subjects with AF, diagnosed based on clinical history, medical records and surface ECG, were included in the study. The presentation, types and causes of AF and structural as well as functional abnormalities were assessed. Results A total of 136 consecutive subjects were included in the study. The mean age was 42.40 (20.48 years ranging from 17 to 80 years. Majority of the AF subjects were female (54.41%. Among symptomatic cases, palpitation was the most common (23.53% presentation followed by dyspnea (17.65% and stroke or transient ischemic attack (15.44%. Asymptomatic presentation was also not uncommon (25%. Persistent AF was the most common form (31.62%. Rheumatic heart disease was the most common cause (33.09% followed by lone atrial fibrillation (23.52%, coronary artery disease (16.18%, hypertension (8.82% and thyrotoxicosis (7.35%. Other causes included chronic obstructive airway disease (5.88%, diabetes (2.94%, cardiomyopathy (1.47%, constrictive pericarditis (1.47%, myocarditis (0.74% and infective endocarditis (0.74%. Nearly 65 % subjects had either structural or functional abnormalities in echocardiographic study; dilated left atrium was the most prevalent abnormality. Conclusion In contrast to the studies reported from developed nations, our subjects with AF were younger and female, the most common cause was RHD and the majority had either structural or functional abnormalities in echocardiographic study. Journal of College of Medical

  6. Centrality dependence of proton and antiproton spectra in Pb+Pb collisions atand 158A GeV measured at the CERN Super Proton Synchrotron

    OpenAIRE

    Anticic, T.; Baatar, B.; Botje, M.A.J.; Christakoglou, P; van Leeuwen, M.(Institute for Subatomic Physics of Utrecht University, Utrecht, Netherlands); Wojtaszek-Szwarc, A.

    2011-01-01

    The yields of (anti)protons were measured by the NA49 Collaboration in centrality-selected Pb + Pb collisions at 40A and 158A GeV. Particle identification was obtained in the laboratory momentum range from 5 to 63 GeV/c by measuring the energy loss dE/dx in the time projection chamber detector gas. The corresponding rapidity coverage extends 1.6 units from midrapidity into the forward hemisphere. Transverse-mass spectra, the rapidity dependences of the average transverse mass, and rapidity de...

  7. Paleomagnetism of the Gran Sasso range salient (central Apennines, Italy): Pattern of orogenic rotations due to translation of a massive carbonate indenter

    OpenAIRE

    Satolli, S.; Dipartimento di Scienze della Terra, Università di Chieti, Chieti, Italy; Speranza, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia; Calamita, F.; Dipartimento di Scienze della Terra, Università di Chieti, Chieti, Italy

    2005-01-01

    We report on the paleomagnetism (39 new sites) of Gran Sasso, an indenter-controlled salient of the external central Apennines formed by two orthogonal limbs. We find that Gran Sasso is a complex salient, paleomagnetically corresponding to neither a nonrotating nor an oroclinal end-member. Data from the core of the arc show that the indenter itself did not undergo any rotation. Conversely, rotations of variable magnitude and sign are observed along the curveshaped thrust fronts. Rotatio...

  8. The SuperCDMS Soudan high threshold WIMP search and the planned SuperCDMS SNOLAB experiment

    Science.gov (United States)

    Calkins, R.; SuperCDMS collaboration

    2016-05-01

    There is ample evidence that visible matter cannot account for a large component of the mass in the universe. Weakly Interacting Massive Particles (WIMPs) are one popular hypothesis to account for the missing mass. The Super Cryogenic Dark Matter Search (SuperCDMS) experiment is designed to directly detect WIMPs through interactions with a nucleus in a target crystal. The SuperCDMS detectors are instrumented with phonon and charge sensors, enabling excellent rejection of electron-recoil backgrounds. Approximately 3000 kg-days of exposure have been collected with the SuperCDMS Soudan experiment. We will describe the search for WIMPs with masses between 10-100 GeV and work towards the SuperCDMS SNOLAB experiment.

  9. New Massive Gravity Domain Walls

    CERN Document Server

    dS, U Camara

    2010-01-01

    The properties of the asymptotic $AdS_3$ space-times representing flat domain walls (DW's) solutions of the New Massive 3D Gravity with scalar matter are studied. Our analysis is based on $I^{st}$ order BPS-like equations involving an appropriate superpotential. The Brown-York boundary stress-tensor is used for the calculation of DW's tensions as well as of the $CFT_2$'s central charges. The holographic renormalization group flows and the phase transitions in specific deformed $CFT_2$ dual to 3D massive gravity model with quadratic superpotential are discussed.

  10. dbSUPER: a database of super-enhancers in mouse and human genome.

    Science.gov (United States)

    Khan, Aziz; Zhang, Xuegong

    2016-01-01

    Super-enhancers are clusters of transcriptional enhancers that drive cell-type-specific gene expression and are crucial to cell identity. Many disease-associated sequence variations are enriched in super-enhancer regions of disease-relevant cell types. Thus, super-enhancers can be used as potential biomarkers for disease diagnosis and therapeutics. Current studies have identified super-enhancers in more than 100 cell types and demonstrated their functional importance. However, a centralized resource to integrate all these findings is not currently available. We developed dbSUPER (http://bioinfo.au.tsinghua.edu.cn/dbsuper/), the first integrated and interactive database of super-enhancers, with the primary goal of providing a resource for assistance in further studies related to transcriptional control of cell identity and disease. dbSUPER provides a responsive and user-friendly web interface to facilitate efficient and comprehensive search and browsing. The data can be easily sent to Galaxy instances, GREAT and Cistrome web-servers for downstream analysis, and can also be visualized in the UCSC genome browser where custom tracks can be added automatically. The data can be downloaded and exported in variety of formats. Furthermore, dbSUPER lists genes associated with super-enhancers and also links to external databases such as GeneCards, UniProt and Entrez. dbSUPER also provides an overlap analysis tool to annotate user-defined regions. We believe dbSUPER is a valuable resource for the biology and genetic research communities. PMID:26438538

  11. A dynamical theory for linearized massive superspin 3/2

    Energy Technology Data Exchange (ETDEWEB)

    Gates, James S. Jr.; Koutrolikos, Konstantinos [Center for String and Particle Theory, Department of Physics, University of MarylandCollege Park, MD 20742-4111 (United States)

    2014-03-05

    We present a new theory of free massive superspin Y=3/2 irreducible representation of the 4D, N=1 Super-Poincaré group, which has linearized non-minimal supergravity (superhelicity Y=3/2) as it’s massless limit. The new results will illuminate the underlying structure of auxiliary superfields required for the description of higher massive superspin systems.

  12. Calculus super review

    CERN Document Server

    2012-01-01

    Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Calculus I Super Review includes a review of functions, limits, basic derivatives, the definite integral, combinations, and permutations. Take the Super Review quizzes to see how much you've learned - and where you need more study. Makes an excellent study aid and textbook companion. Great for self-study!DETAILS- From cover to cover, each in-depth topic review is easy-to-follow and easy-to-grasp - Perfect when preparing for

  13. Algebra & trigonometry super review

    CERN Document Server

    2012-01-01

    Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Algebra and Trigonometry Super Review includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, equations, linear equations and systems of linear equations, inequalities, relations and functions, quadratic equations, equations of higher order, ratios, proportions, and variations. Take the Super Review quizzes to see how much y

  14. Breeding Super-Earths and Birthing Super-puffs in Transitional Disks

    Science.gov (United States)

    Lee, Eve J.; Chiang, Eugene

    2016-02-01

    The riddle posed by super-Earths (1-4R⊕, 2-20M⊕) is that they are not Jupiters: their core masses are large enough to trigger runaway gas accretion, yet somehow super-Earths accreted atmospheres that weigh only a few percent of their total mass. We show that this puzzle is solved if super-Earths formed late, as the last vestiges of their parent gas disks were about to clear. This scenario would seem to present fine-tuning problems, but we show that there are none. Ambient gas densities can span many (in one case up to 9) orders of magnitude, and super-Earths can still robustly emerge after ˜0.1-1 Myr with percent-by-weight atmospheres. Super-Earth cores are naturally bred in gas-poor environments where gas dynamical friction has weakened sufficiently to allow constituent protocores to gravitationally stir one another and merge. So little gas is present at the time of core assembly that cores hardly migrate by disk torques: formation of super-Earths can be in situ. The basic picture—that close-in super-Earths form in a gas-poor (but not gas-empty) inner disk, fed continuously by gas that bleeds inward from a more massive outer disk—recalls the largely evacuated but still accreting inner cavities of transitional protoplanetary disks. We also address the inverse problem presented by super-puffs: an uncommon class of short-period planets seemingly too voluminous for their small masses (4-10R⊕, 2-6M⊕). Super-puffs most easily acquire their thick atmospheres as dust-free, rapidly cooling worlds outside ˜1 AU where nebular gas is colder, less dense, and therefore less opaque. Unlike super-Earths, which can form in situ, super-puffs probably migrated in to their current orbits; they are expected to form the outer links of mean-motion resonant chains, and to exhibit greater water content. We close by confronting observations and itemizing remaining questions.

  15. Feedback-regulated Super Massive Black Hole Seed Formation

    CERN Document Server

    Dijkstra, Mark; Mesinger, Andrei

    2014-01-01

    The nature of the seeds of high-redshift supermassive black holes (SMBHs) is a key question in cosmology. Direct collapse black holes (DCBH) that form in pristine, atomic-line cooling halos, illuminated by a Lyman-Werner (LW) UV flux exceeding a critical threshold J_crit, represent an attractive possibility. We investigate when and where these conditions are met during cosmic evolution. For the LW intensity, J_LW, we account for departures from the background value in close proximity to star forming galaxies. For the pristine halo fraction, we account for both (i) supernova driven outflows, and (ii) the inherent pollution from progenitor halos. We estimate the abundance of DCBH formation sites, n_DCBH(z), and find that it increases with cosmic time from n_DCBH(z=20) ~ 1e-12 -1e-7 cMpc^-3 to n_DCBH(z=10) ~ 1e-10 - 1e-5 cMpc^-3. Our analysis shows the possible importance of galactic winds, which can suppress the predicted n_DCBH by several orders of magnitude, and cause DCBH formation to preferentially occur ar...

  16. Super-massive black hole mass scaling relations

    CERN Document Server

    Graham, Alister W; Schombert, James

    2014-01-01

    Using black hole masses which span 10^5 to 10^(10) solar masses, the distribution of galaxies in the (host spheroid stellar mass)-(black hole mass) diagram is shown to be strongly bent. While the core-Sersic galaxies follow a near-linear relation, having a mean M_(bh)/M_(sph) mass ratio of ~0.5%, the Sersic galaxies follow a near-quadratic relation: M_bh~M_sph^(2.22+\\-0.58). This is not due to offset pseudobulges, but is instead an expected result arising from the long-known bend in the M_(sph)-sigma relation and the log-linear M_(bh)-sigma relation.

  17. SUPER STAR CLUSTERS VERSUS OB ASSOCIATIONS

    International Nuclear Information System (INIS)

    Super star clusters (Mecl > 105 Msun) are the largest stellar nurseries in our local Universe, containing hundreds of thousands to millions of young stars within a few light years. Many of these systems are found in external galaxies, especially in pairs of interacting galaxies, and in some dwarf galaxies, but relatively few in disk galaxies like our own Milky Way. We show that a possible explanation for this difference is the presence of shear in normal spiral galaxies which impedes the formation of the very large and dense super star clusters but prefers the formation of loose OB associations possibly with a less massive cluster at the center. In contrast, in interacting galaxies and in dwarf galaxies, regions can collapse without having a large-scale sense of rotation. This lack of rotational support allows the giant clouds of gas and stars to concentrate into a single, dense, and gravitationally bound system.

  18. New massive gravity

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Hohm, Olaf; Townsend, Paul K.

    2012-01-01

    We present a brief review of New Massive Gravity, which is a unitary theory of massive gravitons in three dimensions obtained by considering a particular combination of the Einstein-Hilbert and curvature squared terms.

  19. A Massive Substellar Companion to the Massive Giant HD 119445

    CERN Document Server

    Omiya, Masashi; Han, Inwoo; Lee, Byeong-Cheol; Sato, Bun'ei; Kambe, Eiji; Kim, Kang-Min; Yoon, Tae Seog; Yoshida, Michitoshi; Masuda, Seiji; Toyota, Eri; Urakawa, Seitaro; Takada-Hidai, Masahide

    2009-01-01

    We detected a brown dwarf-mass companion around the intermediate-mass giant star HD 119445 (G6III) using the Doppler technique. This discovery is the first result from a Korean-Japanese planet search program based on precise radial velocity measurements. The radial velocity of this star exhibits a periodic Keplerian variation with a period, semi-amplitude and eccentricity of 410.2 days, 413.5 m/s and 0.082, respectively. Adopting a stellar mass of 3.9 M_solar, we were able to confirm the presence of a massive substellar companion with a semimajor axis of 1.71 AU and a minimum mass of 37.6 M_Jup, which falls in the middle of the brown dwarf-mass region. This substellar companion is the most massive ever discovered within 3 AU of a central intermediate-mass star. The host star also ranks among the most massive stars with substellar companions ever detected by the Doppler technique. This result supports the current view of substellar systems that more massive substellar companions tend to exist around more massi...

  20. PROBING THE INNER KILOPARSEC OF MASSIVE GALAXIES WITH STRONG GRAVITATIONAL LENSING

    Energy Technology Data Exchange (ETDEWEB)

    Hezaveh, Yashar D.; Marshall, Philip J.; Blandford, Roger D. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA (United States)

    2015-01-30

    We examine the prospects of detecting demagnified images of gravitational lenses in observations of strongly lensed millimeter-wave molecular emission lines with ALMA. We model the lensing galaxies as a superposition of a dark matter component, a stellar component, and a central super-massive black hole (SMBH) and assess the detectability of the central images for a range of relevant parameters (e.g., stellar core, black hole mass, and source size). We find that over a large range of plausible parameters, future deep observations of lensed molecular lines with ALMA should enable the detection of the central images at ≳3σ significance. We use a Fisher analysis to examine the constraints that could be placed on these parameters in various scenarios and find that for large stellar cores, both the core size and the mass of the central SMBHs can be accurately measured. We also study the prospects for detecting binary SMBHs with such observations and find that only under rare conditions and with very long integrations (∼40 hr) the masses of both SMBHs may be measured using the distortions of central images.

  1. Nonlinear Super Integrable Couplings of Super Classical-Boussinesq Hierarchy

    Directory of Open Access Journals (Sweden)

    Xiuzhi Xing

    2014-01-01

    Full Text Available Nonlinear integrable couplings of super classical-Boussinesq hierarchy based upon an enlarged matrix Lie super algebra were constructed. Then, its super Hamiltonian structures were established by using super trace identity. As its reduction, nonlinear integrable couplings of the classical integrable hierarchy were obtained.

  2. Epidemiology of Massive Transfusion

    DEFF Research Database (Denmark)

    Halmin, Märit; Chiesa, Flaminia; Vasan, Senthil K;

    2016-01-01

    OBJECTIVE: There is an increasing focus on massive transfusion, but there is a paucity of comprehensive descriptions of the massively transfused patients and their outcomes. The objective of this study is to describe the incidence rate of massive transfusion, patient characteristics, and the mort...

  3. Massive Stars in Transition

    CERN Document Server

    Crowther, P A

    2003-01-01

    We discuss the various post-main sequence phases of massive stars, focusing on Wolf-Rayet stars, Luminous Blue Variables, plus connections with other early-type and late-type supergiants. End states for massive stars are also investigated, emphasising connections between Supernovae originating from core-collapse massive stars and Gamma Ray Bursts.

  4. NETL Super Computer

    Data.gov (United States)

    Federal Laboratory Consortium — The NETL Super Computer was designed for performing engineering calculations that apply to fossil energy research. It is one of the world’s larger supercomputers,...

  5. The Super Girl Effect

    Institute of Scientific and Technical Information of China (English)

    WANG PEI

    2006-01-01

    @@ In recent years, Changsha,the capital city of Hunan Province, has become famous across China for its innovative TV channel, in particular the cultural phenomenon of the Super Girl talent show. And as far as culture goes, Hunan TV is merely a reflection of a renaissance happening in the city. Animation, music halls, drama festivals and a famous book market are just some of the city's cultural sectors that are benefiting from the fame and notoriety of the Super Girl show.

  6. Super-Kamiokande

    Science.gov (United States)

    Magro, Lluís Martí

    2016-06-01

    The Super-Kamiokande experiment performs a large variety of studies, many of them in the neutrino sector. The archetypes are atmospheric neutrino (recently awarded with the Nobel prize for Mr. T. Kajita) and the solar neutrinos analyses. In these proceedings we report our latest results and present updates to indirect dark matter searches, our solar neutrino analysis and discuss the future upgrade of Super-Kamiokande by loading gadolinium into our ultra-pure water.

  7. Super Greedy Type Algorithms

    OpenAIRE

    Liu, Entao; Temlyakov, Vladimir N.

    2010-01-01

    We study greedy-type algorithms such that at a greedy step we pick several dictionary elements contrary to a single dictionary element in standard greedy-type algorithms. We call such greedy algorithms {\\it super greedy algorithms}. The idea of picking several elements at a greedy step of the algorithm is not new. Recently, we observed the following new phenomenon. For incoherent dictionaries these new type of algorithms (super greedy algorithms) provide the same (in the sense of order) upper...

  8. Nonlinear Super Integrable Couplings of Super Dirac Hierarchy and Its Super Hamiltonian Structures

    International Nuclear Information System (INIS)

    We construct nonlinear super integrable couplings of the super integrable Dirac hierarchy based on an enlarged matrix Lie superalgebra. Then its super Hamiltonian structure is furnished by super trace identity. As its reduction, we gain the nonlinear integrable couplings of the classical integrable Dirac hierarchy. (general)

  9. Massive scalar field evolution in de Sitter

    CERN Document Server

    Markkanen, Tommi

    2016-01-01

    The behaviour of a massive, non-interacting and non-minimally coupled quantised scalar field in an expanding de Sitter background is investigated by solving the field evolution for an arbitrary initial state. In this approach there is no need to choose a vacuum in order to provide a definition for particle states. We conclude that the expanding de Sitter space is a stable equilibrium configuration under small perturbations of the initial conditions. Depending on the initial state, the energy density can approach its asymptotic value from above or below, the latter of which implies a violation of the weak energy condition. The backreaction of the quantum corrections can therefore lead to a phase of super-acceleration also in the non-interacting massive case.

  10. Epidemiology of massive transfusion

    DEFF Research Database (Denmark)

    Halmin, M A; Chiesa, F; Vasan, S K;

    2015-01-01

    -registers. We included all patients receiving 10 or more red blood cell (RBC) transfusions in up to 2 calendar days, in Sweden 1987-2010 and in Denmark 1996-2010. The patients were followed throughout 2012. Descriptive statistics were used to characterize the patients and the indications for massive transfusion......Background: In recent years, massive transfusion protocols have received increasing attention. The potential risks associated with massive transfusion have been discussed and associations with both increased morbidity and mortality have been reported. However there is a paucity of comprehensive...... data on massively transfused patients and their long-term outcomes. A better characterization of the epidemiology of massive transfusion is warranted to improve clinical decision making and to guide future studies. Aims: The aim of this study was to estimate the incidence of massive transfusion...

  11. Super Virasoro Algebras From Chiral Supergravity

    CERN Document Server

    Hyakutake, Yoshifumi

    2015-01-01

    In this note, we construct Noether charges for the chiral supergravity, which contains the Lorentz Chern-Simons term, by applying Wald's prescription to the vielbein formalism. We investigate the AdS3/CFT2 correspondence by using the vielbein formalism. The asymptotic symmetry group is carefully examined by taking into account the local Lorentz transformation, and we construct super Virasoro algebras with central extensions from the chiral supergravity.

  12. Raspberry Pi super cluster

    CERN Document Server

    Dennis, Andrew K

    2013-01-01

    This book follows a step-by-step, tutorial-based approach which will teach you how to develop your own super cluster using Raspberry Pi computers quickly and efficiently.Raspberry Pi Super Cluster is an introductory guide for those interested in experimenting with parallel computing at home. Aimed at Raspberry Pi enthusiasts, this book is a primer for getting your first cluster up and running.Basic knowledge of C or Java would be helpful but no prior knowledge of parallel computing is necessary.

  13. Simplifying Massive Contour Maps

    DEFF Research Database (Denmark)

    Arge, Lars; Deleuran, Lasse Kosetski; Mølhave, Thomas; Revsbæk, Morten; Truelsen, Jakob

    2012-01-01

    We present a simple, efficient and practical algorithm for constructing and subsequently simplifying contour maps from massive high-resolution DEMs, under some practically realistic assumptions on the DEM and contours.......We present a simple, efficient and practical algorithm for constructing and subsequently simplifying contour maps from massive high-resolution DEMs, under some practically realistic assumptions on the DEM and contours....

  14. Higher dimensional massive bigravity

    CERN Document Server

    Do, Tuan Q

    2016-01-01

    In this paper, we study a higher dimensional massive bigravity, which acts as a companion model to a recent proposed higher dimensional nonlinear massive gravity. In particular, we derive the Einstein field equations along with constraint equations for both physical and reference metrics of a five-dimensional massive bigravity. We find that massive graviton terms will serve as effective cosmological constants in both physical and reference sectors if a special scenario, in which reference metrics are chosen to be proportional to physical ones, is considered. Then, we find some simple cosmological solutions such as the Friedmann-Lemaitre-Robertson-Walker, Bianchi type I and Schwarzschild-Tangherlini metrics for the five-dimensional massive bigravity.

  15. BRIGHT Lights, BIG City: Massive Galaxies, Giant Ly-A Nebulae, and Proto-Clusters

    Energy Technology Data Exchange (ETDEWEB)

    van Breugel, W; Reuland, M; de Vries, W; Stanford, A; Dey, A; Kurk, J; Venemans, B; Rottgering, H; Miley, G; De Breuck, C; Dopita, M; Sutherland, R; Bland-Hawthorn, J

    2002-08-01

    High redshift radio galaxies are great cosmological tools for pinpointing the most massive objects in the early Universe: massive forming galaxies, active super-massive black holes and proto-clusters. They report on deep narrow-band imaging and spectroscopic observations of several z > 2 radio galaxy fields to investigate the nature of giant Ly-{alpha} nebulae centered on the galaxies and to search for over-dense regions around them. They discuss the possible implications for our understanding of the formation and evolution of massive galaxies and galaxy clusters.

  16. Handbook of Super 8 Production.

    Science.gov (United States)

    Telzer, Ronnie, Ed.

    This handbook is designed for anyone interested in producing super 8 films at any level of complexity and cost. Separate chapters present detailed discussions of the following topics: super 8 production systems and super 8 shooting and editing systems; budgeting; cinematography and sound recording; preparing to edit; editing; mixing sound tracks;…

  17. Creating a Super Instrument

    DEFF Research Database (Denmark)

    Kallionpää, Maria; Gasselseder, Hans-Peter

    2015-01-01

    interested in different ways of "supersizing" acoustic instruments in order to open up previously-unheard instrumental sounds. This leads us to the question of what constitutes a super instrument and what challenges does it pose aesthetically and technically? Although the classical music performers have...

  18. Super-energy tensors

    CERN Document Server

    Senovilla, J M M

    2000-01-01

    A purely algebraic construction of super-energy tensors for arbitrary fields is presented in any dimensions. These tensors have good mathematical and physical properties, and they can be used in any theory having as basic arena an n-dimensional manifold with a metric of Lorentzian signature. In general, the completely timelike component of these s-e tensors has the mathematical features of an energy density: they are positive definite and satisfy the dominant property. Similarly, the super-momentum vectors have mathematical properties of s-e flux vectors. The classical Bel-Robinson tensor is included in our general definition. The energy-momentum and super-energy tensors of physical fields are also obtained, and the procedure is illustrated by writing down these tensors explicitly for the cases of scalar, electromagnetic, and Proca fields. Moreover, `(super)$^k$-energy' tensors are defined and shown to be meaningful and in agreement for the different physical fields. In flat spacetimes, they provide infinitel...

  19. Superconducting Super Collider project

    International Nuclear Information System (INIS)

    The scientific need for the Superconducting Super Collider (SSC) is outlined, along with the history of the development of the SSC concept. A brief technical description is given of each of the main points of the SSC conceptual design. The construction cost and construction schedule are discussed, followed by issues associated with the realization of the SSC. 8 refs., 3 figs., 3 tabs

  20. Dual Conformal Properties of Six-Dimensional Maximal Super Yang-Mills Amplitudes

    CERN Document Server

    Dennen, Tristan

    2010-01-01

    We demonstrate that the tree-level amplitudes of maximal super-Yang-Mills theory in six dimensions, when stripped of their overall momentum and supermomentum delta functions, are covariant with respect to the six-dimensional dual conformal group. Using the generalized unitarity method, we demonstrate that this property is also present for loop amplitudes. Since the six-dimensional amplitudes can be interpreted as massive four-dimensional ones, this implies that the six-dimensional symmetry is also present in the massively regulated four-dimensional maximal super-Yang-Mills amplitudes.

  1. Remarks about massive and massless particles in supersymmetry

    Science.gov (United States)

    Ketov, S. V.; Kim, Y.-S.

    1993-01-01

    The internal space-time symmetry and simple supersymmetry of relativistic particles are briefly discussed in terms of the little group of the Poincare group. The little group generators in a finite-dimensional matrix representation of the N = 1 super-Poincare algebra are explicitly constructed. The supergeometry of a massive case continuously becomes that of a massless case in the infinite-momentum limit. The origin of the gage transformations associated with the massless supermultiplets becomes transparent in that limit.

  2. Supersymmetrizing massive gravity

    Science.gov (United States)

    Malaeb, O.

    2013-07-01

    When four scalar fields with global Lorentz symmetry are coupled to gravity and take a vacuum expectation value, breaking diffeomorphism invariance spontaneously, the graviton becomes massive. This model is supersymmetrized by considering four N=1 chiral superfields with global Lorentz symmetry. The global supersymmetry is promoted to a local one using the rules of tensor calculus of coupling the N=1 supergravity Lagrangian to the four chiral multiplets. When the scalar components of the chiral multiplets zA acquire a vacuum expectation value, both diffeomorphism invariance and local supersymmetry are broken spontaneously. The global Lorentz index A becomes identified with the space-time Lorentz index, making the scalar fields zA vectors and the chiral spinors ψA spin-3/2 Rarita-Schwinger fields. We show that the spectrum of the model in the broken phase consists of a massive spin-2 field, two massive spin-3/2 fields with different mass and a massive vector.

  3. Young massive star clusters

    CERN Document Server

    Zwart, Simon Portegies; Gieles, Mark

    2010-01-01

    Young massive clusters are dense aggregates of young stars that form the fundamental building blocks of galaxies. Several examples exist in the Milky Way Galaxy and the Local Group, but they are particularly abundant in starburst and interacting galaxies. The few young massive clusters that are close enough to resolve are of prime interest for studying the stellar mass function and the ecological interplay between stellar evolution and stellar dynamics. The distant unresolved clusters may be effectively used to study the star-cluster mass function, and they provide excellent constraints on the formation mechanisms of young cluster populations. Young massive clusters are expected to be the nurseries for many unusual objects, including a wide range of exotic stars and binaries. So far only a few such objects have been found in young massive clusters, although their older cousins, the globular clusters, are unusually rich in stellar exotica. In this review we focus on star clusters younger than $\\sim100$\\,Myr, m...

  4. Quantum massive conformal gravity

    OpenAIRE

    Faria, F. F.

    2016-01-01

    We first find the linear approximation of the second plus fourth order derivative massive conformal gravity action. Then we reduce the linearized action to separated second order derivative terms, which allows us to quantize the theory by using the standard first order canonical quantization method. It is shown that quantum massive conformal gravity is renormalizable but has ghost states. A possible decoupling of these ghost states at high energies is discussed.

  5. Quantum massive conformal gravity

    Science.gov (United States)

    Faria, F. F.

    2016-04-01

    We first find the linear approximation of the second plus fourth order derivative massive conformal gravity action. Then we reduce the linearized action to separated second order derivative terms, which allows us to quantize the theory by using the standard first order canonical quantization method. It is shown that quantum massive conformal gravity is renormalizable but has ghost states. A possible decoupling of these ghost states at high energies is discussed.

  6. Quantum massive conformal gravity

    International Nuclear Information System (INIS)

    We first find the linear approximation of the second plus fourth order derivative massive conformal gravity action. Then we reduce the linearized action to separated second order derivative terms, which allows us to quantize the theory by using the standard first order canonical quantization method. It is shown that quantum massive conformal gravity is renormalizable but has ghost states. A possible decoupling of these ghost states at high energies is discussed. (orig.)

  7. Super Fractal Interpolation Functions

    OpenAIRE

    G. P. Kapoor; Prasad, Srijanani Anurag

    2012-01-01

    In the present work, the notion of Super Fractal Interpolation Function (SFIF) is introduced for finer simulation of the objects of the nature or outcomes of scientific experiments that reveal one or more structures embedded in to another. In the construction of SFIF, an IFS is chosen from a pool of several IFS at each level of iteration leading to implementation of the desired randomness and variability in fractal interpolation of the given data. Further, an expository description of our inv...

  8. Super sensor network

    OpenAIRE

    Fjukstad, Bård

    2008-01-01

    This dissertation studies composing a super sensor network from the combination of three functional sensor networks; A Sensor data producing network, a sensor data computing network and a sensor controlling network. The target devices are today labeled as large sensor nodes. The communication are based on an IP network using HTTP as the main protocol. Bonjour is used for service discovery, with some adjustments for technical reasons. This allows for naming and location of available servi...

  9. ATLASGAL --- towards a complete sample of massive star forming clumps

    CERN Document Server

    Urquhart, J S; Csengeri, T; Wyrowski, F; Schuller, F; Hoare, M G; Lumsden, S L; Mottram, J C; Thompson, M A; Menten, K M; Walmsley, C M; Bronfman, L; Pfalzner, S; König, C; Wienen, M

    2014-01-01

    By matching infrared-selected, massive young stellar objects (MYSOs) and compact HII regions in the RMS survey to massive clumps found in the submillimetre ATLASGAL survey, we have identified ~1000 embedded young massive stars between 280\\degr < $\\ell$ < 350\\degr and 10degr < $\\ell$ < 60\\degr with |b|<1.5degr. Combined with an existing sample of radio-selected methanol masers and compact HII regions, the result is a catalogue of ~1700 massive stars embedded within ~1300 clumps located across the inner Galaxy, containing three observationally distinct subsamples, methanol-maser, MYSO and HII-region associations, covering the most important tracers of massive star formation, thought to represent key stages of evolution. We find that massive star formation is strongly correlated with the regions of highest column density in spherical, centrally condensed clumps. We find no significant differences between the three samples in clump structure or the relative location of the embedded stars, which sug...

  10. Characterising Super-Earths

    Directory of Open Access Journals (Sweden)

    Valencia D.

    2011-02-01

    Full Text Available The era of Super-Earths has formally begun with the detection of transiting low-mass exoplanets CoRoT-7b and GJ 1214b. In the path of characterising super-Earths, the first step is to infer their composition. While the discovery data for CoRoT-7b, in combination with the high atmospheric mass loss rate inferred from the high insolation, suggested that it was a rocky planet, the new proposed mass values have widened the possibilities. The combined mass range 1−10 M⊕ allows for a volatile-rich (and requires it if the mass is less than 4 M⊕ , an Earth-like or a super-Mercury-like composition. In contrast, the radius of GJ 1214b is too large to admit a solid composition, thus it necessarily to have a substantial gas layer. Some evidence suggests that within this gas layer H/He is a small but non-negligible component. These two planets are the first of many transiting low-mass exoplanets expected to be detected and they exemplify the limitations faced when inferring composition, which come from the degenerate character of the problem and the large error bars in the data.

  11. Super Fuzzy Matrices and Super Fuzzy Models for Social Scientists

    CERN Document Server

    Kandasamy, W B Vasantha; Amal, K

    2008-01-01

    This book introduces the concept of fuzzy super matrices and operations on them. This book will be highly useful to social scientists who wish to work with multi-expert models. Super fuzzy models using Fuzzy Cognitive Maps, Fuzzy Relational Maps, Bidirectional Associative Memories and Fuzzy Associative Memories are defined here. The authors introduce 13 multi-expert models using the notion of fuzzy supermatrices. These models are described with illustrative examples. This book has three chapters. In the first chaper, the basic concepts about super matrices and fuzzy super matrices are recalled. Chapter two introduces the notion of fuzzy super matrices adn their properties. The final chapter introduces many super fuzzy multi expert models.

  12. Super-quantum curves from super-eigenvalue models

    CERN Document Server

    Ciosmak, Paweł; Manabe, Masahide; Sułkowski, Piotr

    2016-01-01

    In modern mathematical and theoretical physics various generalizations, in particular supersymmetric or quantum, of Riemann surfaces and complex algebraic curves play a prominent role. We show that such supersymmetric and quantum generalizations can be combined together, and construct supersymmetric quantum curves, or super-quantum curves for short. Our analysis is conducted in the formalism of super-eigenvalue models: we introduce $\\beta$-deformed version of those models, and derive differential equations for associated $\\alpha/\\beta$-deformed super-matrix integrals. We show that for a given model there exists an infinite number of such differential equations, which we identify as super-quantum curves, and which are in one-to-one correspondence with, and have the structure of, super-Virasoro singular vectors. We discuss potential applications of super-quantum curves and prospects of other generalizations.

  13. Super Gravitons Interacting with the Super Virasoro Group

    OpenAIRE

    Gates Jr, S. James; Rodgers, V. G. J.

    2001-01-01

    We describe actions that correspond to the interaction of the Super Virasoro algebra with supergravitons. These new field theories introduce a superfield that corresponds to dual elements of the super Virasoro algebra. We are also able to extend the definition of these field theories to higher dimensions. We explicitly exhibit the 2, 3 and 4 dimensional cases. Remarkably, the fundamental prepotentials describing these dual elements of the super Virasoro algebra, in each model, agrees with the...

  14. Super Luminous Supernova and Gamma Ray Bursts

    CERN Document Server

    Dado, Shlomo

    2012-01-01

    We use a simple analytical model to derive a closed form expression for the bolometric light-curve of super-luminus supernovae (SLSNe) powered by a plastic collision between the fast ejecta from ordinary core collapse supernovae (SNe) of type Ib/c and slower massive circum-stellar shells, ejected in major eruptions of their progenitor stars during the late stage of their life preceding their SN explosion. We demonstrate that this expression reproduces well the bolometric luminosity of SLSNe with and without an observed gamma ray burst (GRB), and requires only a modest amount ($M\\lsim 0.1\\,M_\\odot$) of radioactive $^{56}$Ni synthesized in the SN explosion in order to explain their late-time luminosity. Ordinary stripped-envelope SNe of type Ib/c, rather than 'hypernovae', can produce most of the SLSNe and long duration GRBs.

  15. Construction of super Schwarzian connection in conformal field theories on higher-genus super Riemann surfaces

    International Nuclear Information System (INIS)

    In the global operator formalism of the superstring on higher-genus super Riemann surfaces we calculate the super Schwarzian connection in order to derive the super KN algebra. A new super differential is also proposed. (author)

  16. Massive Black Holes and Galaxies

    CERN Document Server

    CERN. Geneva

    2016-01-01

    Evidence has been accumulating for several decades that many galaxies harbor central mass concentrations that may be in the form of black holes with masses between a few million to a few billion time the mass of the Sun. I will discuss measurements over the last two decades, employing adaptive optics imaging and spectroscopy on large ground-based telescopes that prove the existence of such a massive black hole in the Center of our Milky Way, beyond any reasonable doubt. These data also provide key insights into its properties and environment. Most recently, a tidally disrupting cloud of gas has been discovered on an almost radial orbit that reached its peri-distance of ~2000 Schwarzschild radii in 2014, promising to be a valuable tool for exploring the innermost accretion zone. Future interferometric studies of the Galactic Center Black hole promise to be able to test gravity in its strong field limit.

  17. Cosmic Decoherence: Massive Fields

    CERN Document Server

    Liu, Junyu; Wang, Yi

    2016-01-01

    We study the decoherence of massive fields during inflation based on the Zurek's density matrix approach. With the cubic interaction between inflaton and massive fields, the reduced density matrix for the massive fields can be calculated in the Schr\\"odinger picture which is related to the variance of the non-Gaussian exponent in the wave functional. The decoherence rate is computed in the one-loop form from functional integration. For heavy fields with $m\\gtrsim \\mathcal{O}(H)$, quantum fluctuations will easily stay in the quantum state and decoherence is unlikely. While for light fields with mass smaller than $\\mathcal{O}(H)$, quantum fluctuations are easily decohered within $5\\sim10$ e-folds after Hubble crossing. Thus heavy fields can play a key role in studying problems involving inflationary quantum information.

  18. A Trio of Super-Earths

    Science.gov (United States)

    2008-06-01

    Today, at an international conference, a team of European astronomers announced a remarkable breakthrough in the field of extra-solar planets. Using the HARPS instrument at the ESO La Silla Observatory, they have found a triple system of super-Earths around the star HD 40307. Moreover, looking at their entire sample studied with HARPS, the astronomers count a total of 45 candidate planets with a mass below 30 Earth masses and an orbital period shorter than 50 days. This implies that one solar-like star out of three harbours such planets. A trio of Super-Earths ESO PR Photo 19a/08 A trio of Super-Earths "Does every single star harbour planets and, if yes, how many?" wonders planet hunter Michel Mayor from Geneva Observatory. "We may not yet know the answer but we are making huge progress towards it." Since the discovery in 1995 of a planet around the star 51 Pegasi by Mayor and Didier Queloz, more than 270 exoplanets have been found, mostly around solar-like stars. Most of these planets are giants, such as Jupiter or Saturn, and current statistics show that about 1 out of 14 stars harbours this kind of planet. "With the advent of much more precise instruments such as the HARPS spectrograph on ESO's 3.6-m telescope at La Silla, we can now discover smaller planets, with masses between 2 and 10 times the Earth's mass," says Stéphane Udry, one of Mayor's colleagues. Such planets are called super-Earths, as they are more massive than the Earth but less massive than Uranus and Neptune (about 15 Earth masses). The group of astronomers have now discovered a system of three super-Earths around a rather normal star, which is slightly less massive than our Sun, and is located 42 light-years away towards the southern Doradus and Pictor constellations. "We have made very precise measurements of the velocity of the star HD 40307 over the last five years, which clearly reveal the presence of three planets," says Mayor. The planets, having 4.2, 6.7, and 9.4 times the mass of the

  19. Massive 3D Supergravity

    CERN Document Server

    Andringa, Roel; de Roo, Mees; Hohm, Olaf; Sezgin, Ergin; Townsend, Paul K

    2009-01-01

    We construct the N=1 three-dimensional supergravity theory with cosmological, Einstein-Hilbert, Lorentz Chern-Simons, and general curvature squared terms. We determine the general supersymmetric configuration, and find a family of supersymmetric adS vacua with the supersymmetric Minkowski vacuum as a limiting case. Linearizing about the Minkowski vacuum, we find three classes of unitary theories; one is the supersymmetric extension of the recently discovered `massive 3D gravity'. Another is a `new topologically massive supergravity' (with no Einstein-Hilbert term) that propagates a single (2,3/2) helicity supermultiplet.

  20. Massive 3D supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Andringa, Roel; Bergshoeff, Eric A; De Roo, Mees; Hohm, Olaf [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Sezgin, Ergin [George and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Townsend, Paul K, E-mail: E.A.Bergshoeff@rug.n, E-mail: O.Hohm@rug.n, E-mail: sezgin@tamu.ed, E-mail: P.K.Townsend@damtp.cam.ac.u [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2010-01-21

    We construct the N=1 three-dimensional supergravity theory with cosmological, Einstein-Hilbert, Lorentz Chern-Simons, and general curvature squared terms. We determine the general supersymmetric configuration, and find a family of supersymmetric adS vacua with the supersymmetric Minkowski vacuum as a limiting case. Linearizing about the Minkowski vacuum, we find three classes of unitary theories; one is the supersymmetric extension of the recently discovered 'massive 3D gravity'. Another is a 'new topologically massive supergravity' (with no Einstein-Hilbert term) that propagates a single (2,3/2) helicity supermultiplet.

  1. Problems of Massive Gravities

    CERN Document Server

    Deser, S; Ong, Y C; Waldron, A

    2014-01-01

    The method of characteristics is a key tool for studying consistency of equations of motion; it allows issues such as predictability, maximal propagation speed, superluminality, unitarity and acausality to be addressed without requiring explicit solutions. We review this method and its application to massive gravity theories to show the limitations of these models' physical viability: Among their problems are loss of unique evolution, superluminal signals, matter coupling inconsistencies and micro-acausality (propagation of signals around local closed timelike/causal curves). We extend previous no-go results to the entire three-parameter range of massive gravity theories. It is also argued that bimetric models suffer a similar fate.

  2. New Massive Gravity Holography

    CERN Document Server

    dS, U Camara; Sotkov, G M

    2010-01-01

    We investigate the holographic renormalization group flows and the classical phase transitions in two dimensional QFT model dual to the New Massive 3D Gravity coupled to scalar matter. Specific matter self-interactions generated by quadratic superpotential are considered. Assuming that the off-critical $AdS_3/CFT_2$ correspondence takes place, we reconstruct the exact form of the $ QFT_2$ 's $\\beta$ -function which allows to find the singular part of the reduced free energy. The corresponding scaling laws and critical exponents characterizing all the RG fixed points as well as the values of the mass gaps in the massive phases are obtained.

  3. Moderate deviations for the quenched mean of the super-Brownian motion with random immigration

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Moderate deviations for the quenched mean of the super-Brownian motion with random immigration are proved for 3≤d≤6, which fills in the gap between central limit theorem(CLT)and large deviation principle(LDP).

  4. Lagrangians for Massive Dirac Chiral Superfields

    CERN Document Server

    Jiménez, Enrique

    2015-01-01

    A new off-shell, $ 4D $, $ \\mathcal{N}=1 $ supersymmetric theory, based on massive Dirac superfields and carrying superspin one-half, is offered. In order to obtain the Dirac formalism for fermions, second order derivatives in the propagating component Dirac fields must be absent in the off-shell free Lagrangian. The bosonic sector is encoded in a tensor-spinor field and after studying its form, in the interaction picture, the propagating and auxiliary bosonic fields are identified. Besides the supersymmetric chiral condition, the Dirac superfields are not further constrained. In addition, an interaction super Yukawa potential, formed by Dirac and scalar chiral superfields, is given in terms of their component fields. Finally, in order to treat the case of neutral superparticles, the Majorana condition on the Dirac superfields is imposed.

  5. Super-resolution

    DEFF Research Database (Denmark)

    Nasrollahi, Kamal; Moeslund, Thomas B.

    2014-01-01

    aerial imaging to medical image processing, to facial image analysis, text image analysis, sign and number plates reading, and biometrics recognition, to name a few. This has resulted in many research papers, each developing a new super-resolution algorithm for a specific purpose. The current...... comprehensive survey provides an overview of most of these published works by grouping them in a broad taxonomy. For each of the groups in the taxonomy, the basic concepts of the algorithms are first explained and then the paths through which each of these groups have evolved are given in detail, by mentioning...

  6. The super-LHC

    OpenAIRE

    Mangano, Michelangelo L.

    2009-01-01

    We review here the prospects of a long-term upgrade programme for the Large Hadron Collider (LHC), CERN laboratory's new proton-proton collider. The super-LHC, which is currently under evaluation and design, is expected to deliver of the order of ten times the statistics of the LHC. In addition to a non-technical summary of the principal physics arguments for the upgrade, I present a pedagogical introduction to the technological challenges on the accelerator and experimental fronts, and a rev...

  7. Super insulating aerogel glazing

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Jensen, Karsten Ingerslev; Kristiansen, Finn Harken

    This paper describes the application results of a previous and current EU-project on super insulating glazing based on monolithic silica aerogel. Prototypes measuring approx. 55´55 cm2 have been made with 15 mm evacuated aerogel between two layers of low-iron glass. Anti-reflective treatment of the...... glass and a heat-treatment of the aerogel increases the visible quality and the solar energy transmittance. A low-conductive rim seal solution with the required vacuum barrier properties has been developed along with a reliable assembly and evacuation process. The prototypes have a centre heat loss...

  8. The super-LHC

    CERN Document Server

    Mangano, Michelangelo L

    2010-01-01

    We review here the prospects of a long-term upgrade programme for the Large Hadron Collider (LHC), CERN laboratory's new proton-proton collider. The super-LHC, which is currently under evaluation and design, is expected to deliver of the order of ten times the statistics of the LHC. In addition to a non-technical summary of the principal physics arguments for the upgrade, I present a pedagogical introduction to the technological challenges on the accelerator and experimental fronts, and a review of the current status of the planning.

  9. More on Massive 3D Gravity

    CERN Document Server

    Bergshoeff, Eric A; Townsend, Paul K

    2009-01-01

    We explore the space of static solutions of the recently discovered three-dimensional `New Massive Gravity' (NMG), allowing for either sign of the Einstein-Hilbert term and a cosmological term parametrized by a dimensionless constant $\\lambda$. For $\\lambda=-1$ we find black hole solutions asymptotic (but not isometric) to the unique (anti) de Sitter vacuum, including extremal black holes that interpolate between this vacuum and (a)dS$_2 \\times S^1$. We also investigate unitarity of linearized NMG in (a)dS vacua. We find unitary theories for some dS vacua, but (bulk) unitarity in adS implies negative central charge of the dual CFT, except for $\\lambda=3$ where the central charge vanishes and the bulk gravitons are replaced by `massive photons'. A similar phenomenon is found in the massless limit of NMG, for which the linearized equations become equivalent to Maxwell's equations.

  10. More on massive 3D gravity

    International Nuclear Information System (INIS)

    We explore the space of static solutions of the recently discovered three-dimensional 'new massive gravity' (NMG), allowing for either sign of the Einstein-Hilbert term and a cosmological term parametrized by a dimensionless constant λ. For λ=-1 we find black hole solutions asymptotic (but not isometric) to the unique (anti) de Sitter [(A)dS] vacuum, including extremal black holes that interpolate between this vacuum and (A)dS2xS1. We also investigate unitarity of linearized NMG in (A)dS vacua. We find unitary theories for some dS vacua, but (bulk) unitarity in AdS implies negative central charge of the dual conformal field theories (CFT), except for λ=3 where the central charge vanishes and the bulk gravitons are replaced by 'massive photons'. A similar phenomenon is found in the massless limit of NMG, for which the linearized equations become equivalent to Maxwell's equations.

  11. SO(3) massive gravity

    International Nuclear Information System (INIS)

    In this Letter, we propose a massive gravity theory with 5 degrees of freedom. The mass term is constructed by 3 Stückelberg scalar fields, which respects SO(3) symmetry in the fields' configuration. By the analysis on the linear cosmological perturbations, we found that such 5 d.o.f. are free from ghost instability, gradient instability, and tachyonic instability

  12. New massive supergravity multiplets

    Science.gov (United States)

    Gates, S. James, Jr.; Kuzenko, Sergei M.; Tartaglino-Mazzucchelli, Gabriele

    2007-02-01

    We present new off-shell formulations for the massive superspin-3/2 multiplet. In the massless limit, they reduce respectively to the old minimal (n = -1/3) and non-minimal (n≠-1/3,0) linearized formulations for 4D Script N = 1 supergravity. Duality transformations, which relate the models constructed, are derived.

  13. Massive and Open

    Science.gov (United States)

    Fasimpaur, Karen

    2013-01-01

    MOOCs--massive open online courses--are all the rage these days, with hundreds of thousands of participants signing up and investors plunking down millions to get a piece of the pie. Why is there so much excitement about this new disruptive form of online learning, and how does this model apply to professional learning for teachers? Traditional…

  14. The use of massively parallel computers for the design and analysis of SSC detectors

    International Nuclear Information System (INIS)

    The authors report on work-in-progress of an investigation into the use of massively parallel computers, of the Single Instruction Multiple Data (SIMD) kind, for the design, analysis and triggering of Superconducting Super Collider detectors. They have studied two dissimilar computer intensive tasks commonly encountered by experimental high energy physicists. The two tasks are electromagnetic shower simulations and pattern recognition

  15. Super resolution volume rendering hardware

    OpenAIRE

    Bosma, Marco; Smit, Jaap; Terwisscha van Scheltinga, Jeroen

    1995-01-01

    The resolution obtained in volume rendering is greatly increased over known methods through the introduction of super resolution techniques which make it possible to enlarge the view o f the dataset without the introduction of unnecessary positional, gradient and opacity errors. In this paper our "Super Resolution" technique will be introduced along with a corresponding hardware design.

  16. Note on the super-inflation in loop quantum cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Kui, E-mail: 87xiaokui@mail.bnu.edu.cn [Department of Mathematical and Physical Teaching, Hunan Institute of Technology, Hengyang 421002 (China); He, Xiao-Kai, E-mail: hexiaokai77@163.com [Department of Educational Science, Hunan First Normal University, Changsha 410205 (China); Zhu, Jian-Yang, E-mail: zhujy@bnu.edu.cn [Department of Physics, Beijing Normal University, Beijing 100875 (China)

    2013-12-18

    Phenomenological effect of the super-inflation in loop quantum cosmology (LQC) is discussed. We investigate the case that the Universe is filled with the interacting field between massive scalar field and radiation. Considering the damping coefficient Γ as a constant, the changes of the scale factor during super-inflation with four different initial conditions are discussed, and we find that the changes of the scale factor depends on the initial values of energy density of the scalar field and radiation at the bounce point. But no matter which initial condition is chosen, the radiation always dominated at the late time. Moreover, we investigate whether the super-inflation can provide enough e-folding number. For the super-inflation starts from the quantum bounce point, the initial value of Hubble parameter H(t{sub i})∼0, then it is possible to solve the flatness problem and horizon problem. As an example, following the method of [18] to calculate particle horizon on the condition that the radiation dominated at bounce point, and we find that the Universe has had enough time to be homogeneous and isotopic.

  17. Hypervelocity binary stars: smoking gun of massive binary black holes

    CERN Document Server

    Lu, Youjun; Lin, D N C

    2007-01-01

    The hypervelocity stars recently found in the Galactic halo are expelled from the Galactic center through interactions between binary stars and the central massive black hole or between single stars and a hypothetical massive binary black hole. In this paper, we demonstrate that binary stars can be ejected out of the Galactic center with velocities up to 10^3 km/s, while preserving their integrity, through interactions with a massive binary black hole. Binary stars are unlikely to attain such high velocities via scattering by a single massive black hole or through any other mechanisms. Based on the above theoretical prediction, we propose a search for binary systems among the hypervelocity stars. Discovery of hypervelocity binary stars, even one, is a definitive evidence of the existence of a massive binary black hole in the Galactic center.

  18. Prototyping an Active Neutron Veto for SuperCDMS

    Energy Technology Data Exchange (ETDEWEB)

    Calkins, Robert [Southern Methodist U.; Loer, Ben [Fermilab

    2015-08-17

    Neutrons, originating cosmogenically or from radioactive decays, can produce signals in dark matter detectors that are indistinguishable from Weakly Interacting Massive Particles (WIMPs). To combat this background for the SuperCDMS SNOLAB experiment, we are investigating designs for an active neutron veto within the constrained space of the compact SuperCDMS passive shielding. The current design employs an organic liquid scintillator mixed with an agent to enhance thermal neutron captures, with the scintillation light collected using wavelength-shifting fibers and read out by silicon photo-multipliers. We will describe the proposed veto and its predicted efficiency in detail and give some recent results from our R&D and prototyping efforts.

  19. Prototyping an active neutron veto for SuperCDMS

    Energy Technology Data Exchange (ETDEWEB)

    Calkins, Robert [Department of Physics, Southern Methodist University, Dallas, Texas 75275 (United States); Loer, Ben [Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States)

    2015-08-17

    Neutrons, originating cosmogenically or from radioactive decays, can produce signals in dark matter detectors that are indistinguishable from Weakly Interacting Massive Particles (WIMPs). To combat this background for the SuperCDMS SNOLAB experiment, we are investigating designs for an active neutron veto within the constrained space of the compact SuperCDMS passive shielding. The current design employs an organic liquid scintillator mixed with an agent to enhance thermal neutron captures, with the scintillation light collected using wavelength-shifting fibers and read out by silicon photo-multipliers. We will describe the proposed veto and its predicted efficiency in detail and give some recent results from our R&D and prototyping efforts.

  20. Super insulating aerogel glazing

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Jensen, Karsten Ingerslev; Kristiansen, Finn Harken

    2004-01-01

    Monolithic silica aerogel offers the possibility of combining super insulation and high solar energy transmittance, which has been the background for a previous and a current EU project on research and development of monolithic silica aerogel as transparent insulation in windows. Generally, windows...... form the weakest part of the thermal envelope with respect to heat loss coefficient, but on the other hand also play an important role for passive solar energy utilisation. For window orientations other than south, the net energy balance will be close to or below zero. However, the properties of...... aerogel glazing will allow for a positive net energy gain even for north facing vertical windows in a Danish climate during the heating season. This means that high quality daylight can be obtained even with additional energy gain. On behalf of the partners of the two EU projects, results related to the...

  1. Superconducting super collider

    International Nuclear Information System (INIS)

    The Superconducting Super Collider is to be a 20 TeV per beam proton-proton accelerator and collider. Physically the SCC will be 52 miles in circumference and slightly oval in shape. The use of superconducting magnets instead of conventional cuts the circumference from 180 miles to the 52 miles. The operating cost of the SCC per year is estimated to be about $200-250 million. A detailed cost estimate of the project is roughly $3 billion in 1986 dollars. For the big collider ring, the technical cost are dominated by the magnet system. That is why one must focus on the cost and design of the magnets. Presently, the process of site selection is underway. The major R and D efforts concern superconducting dipoles. The magnets use niobium-titanium as a conductor stabilized in a copper matrix. 10 figures

  2. Massive fetomaternal hemorrhage

    DEFF Research Database (Denmark)

    Larsen, Rune; Berkowicz, Adela; Lousen, Thea;

    2008-01-01

    BACKGROUND: The clearance of D+ red blood cells (RBCs) from the circulation in D- individuals mediated by passively administered anti-D occurs by opsonization with the antibody and subsequent removal in the spleen. Few data exist on the kinetics of clearance of large volumes of D+ RBCs from the...... maternal circulation by anti-D in clinical cases of massive fetomaternal hemorrhage (FMH). CASE REPORT: A 33-year-old D- woman delivered a D+ female infant by emergency cesarean section for suspected fetal anemia. A massive FMH, initially estimated to be approximately 142 mL of RBCs, was found. In addition...... to the standard dose of intramuscular (IM) anti-D (300 microg) given immediately after delivery, 2700 microg of anti-D was administered intravenously (IV). The clearance of D+ fetal cells from the maternal circulation was monitored by flow cytometry in samples obtained on a daily basis using anti-D...

  3. Massive antenatal fetomaternal hemorrhage

    DEFF Research Database (Denmark)

    Dziegiel, Morten Hanefeld; Koldkjaer, Ole; Berkowicz, Adela

    2005-01-01

    Massive fetomaternal hemorrhage (FMH) can lead to life-threatening anemia. Quantification based on flow cytometry with anti-hemoglobin F (HbF) is applicable in all cases but underestimation of large fetal bleeds has been reported. A large FMH from an ABO-compatible fetus allows an estimation of t...... life span of fetal red blood cells (RBCs) in the maternal circulation.......Massive fetomaternal hemorrhage (FMH) can lead to life-threatening anemia. Quantification based on flow cytometry with anti-hemoglobin F (HbF) is applicable in all cases but underestimation of large fetal bleeds has been reported. A large FMH from an ABO-compatible fetus allows an estimation of the...

  4. The JASMIN super-data-cluster

    CERN Document Server

    Lawrence, B N; Churchill, J; Juckes, M; Kershaw, P; Oliver, P; Pritchard, M; Stephens, A

    2012-01-01

    The JASMIN super-data-cluster is being deployed to support the data analysis requirements of the UK and European climate and earth system modelling community. Physical colocation of the core JASMIN resource with significant components of the facility for Climate and Environmental Monitoring from Space (CEMS) provides additional support for the earth observation community, as well as facilitating further comparison and evaluation of models with data. JASMIN and CEMS together centrally deploy 9.3 PB of storage - 4.6 PB of Panasas fast disk storage alongside the STFC Atlas Tape Store. Over 370 computing cores provide local computation. Remote JASMIN resources at Bristol, Leeds and Reading provide additional distributed storage and compute configured to support local workflow as a stepping stone to using the central JASMIN system. Fast network links from JASMIN provide reliable communication between the UK supercomputers MONSooN (at the Met Office) and HECToR (at the University of Edinburgh). JASMIN also supports...

  5. Massive stellar X-ray sources in the Galactic center

    Science.gov (United States)

    Mauerhan, Jon Christian

    2008-06-01

    The purpose of this thesis is to discover unidentified members of the massive stellar population in the Galactic center, using a novel selection technique: the identification of infrared counterparts to hard X-ray sources. This method provides a means of distinguishing a subset of hot, massive stars from the more numerous cool giants that dominate the stellar population of the central Galaxy, providing potential beacons toward undiscovered regions of massive star formation, and the remains of tidally-disrupted stellar clusters. Hard-X-ray selection also highlights exotic species of massive star, including Wolf-Rayet (WR) binaries with colliding supersonic winds, and wind-accreting neutron stars and black holes in high-mass X-ray binaries (HMXBs). Massive stars were sought in the central 300 pc of the Galaxy by cross- correlating X-ray and IR point-source catalogs. Approximately 1% of the 6067 Chandra X-ray sources near the Galactic center have near-infrared matches with K s consistent with thermal emission from plasma at temperatures above 2 keV, not a ubiquitous feature of single massive stars. The X-ray data are consistent with models of strong WR/O winds colliding with the surfaces of binary companions, but are also consistent with known, low-luminosity HMXBs. Future experiments are discussed, aimed at unambiguously determining the masses of the stellar components, and surveying the environments of confirmed massive stellar X-ray sources for additional massive stars. The overall rarity of hard X-ray-emitting massive stars among stellar populations suggests the presence of a massive stellar population, comparable in size to that within the known stellar clusters in the Galactic center.

  6. New improved massive gravity

    Science.gov (United States)

    Dereli, T.; Yetişmişoğlu, C.

    2016-06-01

    We derive the field equations for topologically massive gravity coupled with the most general quadratic curvature terms using the language of exterior differential forms and a first-order constrained variational principle. We find variational field equations both in the presence and absence of torsion. We then show that spaces of constant negative curvature (i.e. the anti de-Sitter space AdS 3) and constant torsion provide exact solutions.

  7. Massive Open Online Courses

    OpenAIRE

    Tharindu Rekha Liyanagunawardena

    2013-01-01

    Im englischsprachigen Raum verbreitete sich in den letzten Jahren ein Bildungsformat, die so genannten Massive Open Online Courses (MOOCs). So bezeichnete die New York Times beispielsweise das Jahr 2012 als „Das Jahr der MOOCs“ (Pappano 2012). Inzwischen hält das Format der offenen Online-Kurse mit großen Teilnehmerzahlen auch in Deutschland Einzug, wie verschiedene Presseartikel zum Jahresende 2012 zeigten (vgl. Dworschak 2013; Koller 2012; Mehnert 2012; Noack 2012a,...

  8. Massive Open Online Courses

    Directory of Open Access Journals (Sweden)

    Tharindu Rekha Liyanagunawardena

    2015-01-01

    Full Text Available Massive Open Online Courses (MOOCs are a new addition to the open educational provision. They are offered mainly by prestigious universities on various commercial and non-commercial MOOC platforms allowing anyone who is interested to experience the world class teaching practiced in these universities. MOOCs have attracted wide interest from around the world. However, learner demographics in MOOCs suggest that some demographic groups are underrepresented. At present MOOCs seem to be better serving the continuous professional development sector.

  9. Evolution of massive stars

    International Nuclear Information System (INIS)

    The evolution of stars with masses larger than 15 sun masses is reviewed. These stars have large convective cores and lose a substantial fraction of their matter by stellar wind. The treatment of convection and the parameterisation of the stellar wind mass loss are analysed within the context of existing disagreements between theory and observation. The evolution of massive close binaries and the origin of Wolf-Rayet Stars and X-ray binaries is also sketched. (author)

  10. Minimal massive 3D gravity

    NARCIS (Netherlands)

    Bergshoeff, Eric; Hohm, Olaf; Merbis, Wout; Routh, Alasdair J.; Townsend, Paul K.

    2014-01-01

    We present an alternative to topologically massive gravity (TMG) with the same 'minimal' bulk properties; i.e. a single local degree of freedom that is realized as a massive graviton in linearization about an anti-de Sitter (AdS) vacuum. However, in contrast to TMG, the new 'minimal massive gravity'

  11. HOW MASSIVE ARE MASSIVE COMPACT GALAXIES?

    International Nuclear Information System (INIS)

    Using a sample of nine massive compact galaxies at z∼ 2.3 with rest-frame optical spectroscopy and comprehensive U → 8 μm photometry, we investigate how assumptions in spectral energy distribution (SED) modeling change the stellar mass estimates of these galaxies, and how this affects our interpretation of their size evolution. The SEDs are fitted to τ-models with a range of metallicities, dust laws, and different stellar population synthesis codes. These models indicate masses equal to, or slightly smaller than, our default masses. The maximum difference is 0.16 dex for each parameter considered, and only 0.18 dex for the most extreme combination of parameters. Two-component populations with a maximally old stellar population superposed with a young component provide reasonable fits to these SEDs using the models of Bruzual and Charlot; however, when using models with updated treatment of TP-AGB stars, the fits are poorer. The two-component models predict masses that are 0.08-0.22 dex larger than the τ-models. We also test the effect of a bottom-light initial mass function (IMF) and find that it would reduce the masses of these galaxies by 0.3 dex. Considering the range of allowable masses from the τ-models, two-component fits, and IMF, we conclude that on average these galaxies lie below the mass-size relation of galaxies in the local universe by a factor of 3-9, depending on the SED models used.

  12. On super form factors of half-BPS operators in N=4 super Yang-Mills

    International Nuclear Information System (INIS)

    We compute form factors of half-BPS operators in N=4 super Yang-Mills dual to massive Kaluza-Klein modes in supergravity. These are appropriate supersymmetrisations Tk of the scalar operators Tr (ϕk) for any k, which for k = 2 give the chiral part of the stress-tensor multiplet operator. Using harmonic superspace, we derive simple Ward identities for these form factors, which we then compute perturbatively at tree level and one loop. We propose a novel on-shell recursion relation which links form factors with different numbers of fields. Using this, we conjecture a general formula for the n-point MHV form factors of Tk for arbitrary k and n. Finally, we use supersymmetric generalised unitarity to derive compact expressions for all one-loop MHV form factors of Tk in terms of one-loop triangles and finite two-mass easy box functions

  13. The Super-Kamiokande detector

    International Nuclear Information System (INIS)

    Super-Kamiokande is the world's largest water Cherenkov detector, with net mass 50,000 tons. During the period April, 1996 to July, 2001, Super-Kamiokande I collected 1678 live-days of data, observing neutrinos from the Sun, Earth's atmosphere, and the K2K long-baseline neutrino beam with high efficiency. These data provided crucial information for our current understanding of neutrino oscillations, as well as setting stringent limits on nucleon decay. In this paper, we describe the detector in detail, including its site, configuration, data acquisition equipment, online and offline software, and calibration systems which were used during Super-Kamiokande I

  14. SOWFA + Super Controller User's Manual

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, P.; Gebraad, P.; Churchfield, M.; Lee, S.; Johnson, K.; Michalakes, J.; van Wingerden, J. W.; Moriarty, P.

    2013-08-01

    SOWFA + Super Controller is a modification of the NREL's SOWFA tool which allows for a user to apply multiturbine or centralized wind plant control algorithms within the high-fidelity SOWFA simulation environment. The tool is currently a branch of the main SOWFA program, but will one day will be merged into a single version. This manual introduces the tool and provides examples such that a user can implement their own super controller and set up and run simulations. The manual only discusses enough about SOWFA itself to allow for the customization of controllers and running of simulations, and details of SOWFA itself are reported elsewhere Churchfield and Lee (2013); Churchfield et al. (2012). SOWFA + Super Controller, and this manual, are in alpha mode.

  15. Search for Low-Mass WIMPs with SuperCDMS

    CERN Document Server

    Agnese, R; Asai, M; Balakishiyeva, D; Thakur, R Basu; Bauer, D A; Beaty, J; Billard, J; Borgland, A; Bowles, M A; Brandt, D; Brink, P L; Bunker, R; Cabrera, B; Caldwell, D O; Cerdeno, D G; Chagani, H; Chen, Y; Cherry, M; Cooley, J; Cornell, B; Crewdson, C H; Cushman, P; Daal, M; DeVaney, D; Di Stefano, P C F; Silva, E Do Couto E; Doughty, T; Esteban, L; Fallows, S; Figueroa-Feliciano, E; Godfrey, G L; Golwala, S R; Hall, J; Hansen, S; Harris, H R; Hertel, S A; Hines, B A; Hofer, T; Holmgren, D; Hsu, L; Huber, M E; Jastram, A; Kamaev, O; Kara, B; Kelsey, M H; Kenany, S; Kennedy, A; Kiveni, M; Koch, K; Leder, A; Loer, B; Asamar, E Lopez; Mahapatra, R; Mandic, V; Martinez, C; McCarthy, K A; Mirabolfathi, N; Moffatt, R A; Nelson, R H; Novak, L; Page, K; Partridge, R; Pepin, M; Phipps, A; Platt, M; Prasad, K; Pyle, M; Qiu, H; Rau, W; Redl, P; Reisetter, A; Resch, R W; Ricci, Y; Ruschman, M; Saab, T; Sadoulet, B; Sander, J; Schmitt, R L; Schneck, K; Schnee, R W; Scorza, S; Seitz, D N; Serfass, B; Shank, B; Speller, D; Tomada, A; Upadhyayula, S; Villano, A N; Welliver, B; Wright, D H; Yellin, S; Yen, J J; Young, B A; Zhang, J

    2014-01-01

    We report a first search for weakly interacting massive particles (WIMPs) using the background rejection capabilities of SuperCDMS. An exposure of 577 kg-days was analyzed for WIMPs with mass < 30 GeV/c2, with the signal region blinded. Eleven events were observed after unblinding. We set an upper limit on the spin-independent WIMP-nucleon cross section of 1.2e-42 cm2 at 8 GeV/c2. This result is in tension with WIMP interpretations of recent experiments and probes new parameter space for WIMP-nucleon scattering for WIMP masses < 6 GeV/c2.

  16. SuperB Progress Report: Detector

    Energy Technology Data Exchange (ETDEWEB)

    Grauges, E.; /Barcelona U., ECM; Donvito, G.; Spinoso, V.; /INFN, Bari /Bari U.; Manghisoni, M.; Re, V.; Traversi, G.; /INFN, Pavia /Bergamo U., Ingengneria Dept.; Eigen, G.; Fehlker, D.; Helleve, L.; /Bergen U.; Carbone, A.; Di Sipio, R.; Gabrielli, A.; Galli, D.; Giorgi, F.; Marconi, U.; Perazzini, S.; Sbarra, C.; Vagnoni, V.; Valentinetti, S.; Villa, M.; Zoccoli, A.; /INFN, Bologna /Bologna U. /Caltech /Carleton U. /Cincinnati U. /INFN, CNAF /INFN, Ferrara /Ferrara U. /UC, Irvine /Taras Shevchenko U. /Orsay, LAL /LBL, Berkeley /UC, Berkeley /Frascati /INFN, Legnaro /Orsay, IPN /Maryland U. /McGill U. /INFN, Milan /Milan U. /INFN, Naples /Naples U. /Novosibirsk, IYF /INFN, Padua /Padua U. /INFN, Pavia /Pavia U. /INFN, Perugia /Perugia U. /INFN, Perugia /Caltech /INFN, Pisa /Pisa U. /Pisa, Scuola Normale Superiore /PNL, Richland /Queen Mary, U. of London /Rutherford /INFN, Rome /Rome U. /INFN, Rome2 /Rome U.,Tor Vergata /INFN, Rome3 /Rome III U. /SLAC /Tel Aviv U. /INFN, Turin /Turin U. /INFN, Padua /Trento U. /INFN, Trieste /Trieste U. /TRIUMF /British Columbia U. /Montreal U. /Victoria U.

    2012-02-14

    This report describes the present status of the detector design for SuperB. It is one of four separate progress reports that, taken collectively, describe progress made on the SuperB Project since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008.

  17. Super Ministries,Better Administration

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Chinese lawmakers on March 15th endorsed a State Counci l proposal for institutional overhaul of the tentral government,which involves the establishment of"super ministries"concerning energy,transport,industry and environmental protection.

  18. The reciprocal super Catalan matrix

    OpenAIRE

    Prodinger Helmut

    2015-01-01

    The reciprocal super Catalan matrix has entries . Explicit formulæ for its LU-decomposition, the LU-decomposition of its inverse, and some related matrices are obtained. For all results, q-analogues are also presented.

  19. Microsphere Super-resolution Imaging

    OpenAIRE

    Wang, Zengbo

    2015-01-01

    Recently, it was discovered that microsphere can generate super-resolution focusing beyond diffraction limit. This has led to the development of an exciting super-resolution imaging technique -microsphere nanoscopy- that features a record resolution of 50 nm under white lights. Different samples have been directly imaged in high resolution and real time without labelling, including both non-biological (nano devices, structures and materials) and biological (subcellular details, viruses) sampl...

  20. N=1 supersymmetry and super quantum electrodynamic in Atiyah-Ward space-time

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, M.A. de; Cima, O.M. Del; Magalhaes, M.N.P.

    1994-12-01

    The supersymmetric gauge invariant action for the massive Abelian N=1 super-QED{sub 2+2} in the Atiyah-Ward space-time (D=2+2) is formulated. The questions concerning the scheme of the gauge invariance in D=2+2 by means of gauging the massive N=1 super-QED{sub 2+2} are investigated. It is studied how to ensure the gauge invariance at the expenses of the introduction of a complex vector superfield. It is discussed the Wess-Zumino gauge and thereupon we conclude that in this gauge, only the imaginary part of the complex vector field, B{sub {mu}}, gauges a U(1)-symmetry, whereas its real part gauges a Weyl symmetry. It is build up the gauge invariant massive term by introducing four scalar superfields: a pair of chiral and a pair of anti-chiral superfields; the supermultiplets of each pair have opposite U (1)-changes. It is carried out a dimensional reduction a la Scherk of the massive N=1 super-QED{sub 2+2} action from D=2+2 to D=1+2. Truncations are needed in order to suppress unphysical modes and one ends up with a parity-preserving N=1 super QED{sub 1+2} (rather than N=2) in D=1+2 which spectrum is free from tachyons and ghosts at tree-level. Finally it is show that the N=1 super-QED{sub 1+2} obtained is the supersymmetry version of the {sub {phi}3} QED. (author). 27 refs.

  1. N=1 supersymmetry and super quantum electrodynamic in Atiyah-Ward space-time

    International Nuclear Information System (INIS)

    The supersymmetric gauge invariant action for the massive Abelian N=1 super-QED2+2 in the Atiyah-Ward space-time (D=2+2) is formulated. The questions concerning the scheme of the gauge invariance in D=2+2 by means of gauging the massive N=1 super-QED2+2 are investigated. It is studied how to ensure the gauge invariance at the expenses of the introduction of a complex vector superfield. It is discussed the Wess-Zumino gauge and thereupon we conclude that in this gauge, only the imaginary part of the complex vector field, Bμ, gauges a U(1)-symmetry, whereas its real part gauges a Weyl symmetry. It is build up the gauge invariant massive term by introducing four scalar superfields: a pair of chiral and a pair of anti-chiral superfields; the supermultiplets of each pair have opposite U (1)-changes. It is carried out a dimensional reduction a la Scherk of the massive N=1 super-QED2+2 action from D=2+2 to D=1+2. Truncations are needed in order to suppress unphysical modes and one ends up with a parity-preserving N=1 super QED1+2 (rather than N=2) in D=1+2 which spectrum is free from tachyons and ghosts at tree-level. Finally it is show that the N=1 super-QED1+2 obtained is the supersymmetry version of the φ3 QED. (author). 27 refs

  2. Massive molecular outflows

    OpenAIRE

    Beuther, H.; Schilke, P.; Menten, K. M.; Walmsley, C. M.; Sridharan, T. K.; Wyrowski, F.

    2001-01-01

    We present a mapping study of massive molecular outflows in 26 high-mass star-forming regions at 11'' spatial resolution. Bipolar morpholgy is found in 80% of the sources and the collimation is higher than previously thought. Additionally, we find that well known low-mass correlations continue up to the high-mass regime, and accretion rates are around 10^(-4) Msun/yr rising as high as 10^(-3) Msun/yr. A tight correlation between the outflow and the core mass is established, implying that the ...

  3. Evolution and Nucleosynthesis of Very Massive Stars

    CERN Document Server

    Hirschi, Raphael

    2014-01-01

    In this chapter, after a brief introduction and overview of stellar evolution, we discuss the evolution and nucleosynthesis of very massive stars (VMS: M>100 solar masses) in the context of recent stellar evolution model calculations. This chapter covers the following aspects: general properties, evolution of surface properties, late central evolution, and nucleosynthesis including their dependence on metallicity, mass loss and rotation. Since very massive stars have very large convective cores during the main-sequence phase, their evolution is not so much affected by rotational mixing, but more by mass loss through stellar winds. Their evolution is never far from a homogeneous evolution even without rotational mixing. All VMS at metallicities close to solar end their life as WC(-WO) type Wolf-Rayet stars. Due to very important mass loss through stellar winds, these stars may have luminosities during the advanced phases of their evolution similar to stars with initial masses between 60 and 120 solar masses. A...

  4. The Origin of Basin of Great Lakes in Western Mongolia: Glaciated Super Valley, Not Super Flooding

    Science.gov (United States)

    Khukhuudei, Ulambadrakh; Otgonbayar, Orolzodmaa

    2015-04-01

    Research for morphology, its origin of the Basin of Great Lakes in Western Mongolia, is few and far between, particularly, any in recent years. The origin of the morphology of the basin presents a new study, combining previous study materials, their results and interpreting the digital photos. Also the main bases of theory is Pleistocene Last Glacial Maximum distribution. Many scholars have proven that global glaciation covered many areas of the Northern Hemisphere during the Pleistocene era. This global glaciation occurred in the northwest part of Mongolia to Mongolian Altay, Khangay and Khuvsgul mountain range. At the same time, the present appearance of basin that developed inheriting since the Mesozoic era, forms by global glaciation. The morphology of Basin of Great Lakes is super trough or glaciated super valley. At current day, "knock and lochan" topography (scoured region) and rock drumlins lie in the central part of the basin. Huge meltwater from this glaciation formed Shargasub-basin as a super kettle hole by erosion and overflowed water from it formed pluvial basins or big lakes in the Lake Valley.

  5. Super-Natural MSSM

    CERN Document Server

    Du, Guangle; Nanopoulos, D V; Raza, Shabbar

    2015-01-01

    We point out that the electroweak fine-tuning problem in the supersymmetric Standard Models (SSMs) is mainly due to the high energy definition of the fine-tuning measure. We propose super-natural supersymmetry which has an order one high energy fine-tuning measure automatically. The key point is that all the mass parameters in the SSMs arise from a single supersymmetry breaking parameter. In this paper, we show that there is no supersymmetry electroweak fine-tuning problem explicitly in the Minimal SSM (MSSM) with no-scale supergravity and Giudice-Masiero (GM) mechanism. We demonstrate that the $Z$-boson mass, the supersymmteric Higgs mixing parameter $\\mu$ at the unification scale, and the sparticle spectrum can be given as functions of the universal gaugino mass $M_{1/2}$. Because the light stau is the lightest supersymmetric particle (LSP) in the no-scale MSSM, to preserve $R$ parity, we introduce a non-thermally generated axino as the LSP dark matter candidate. We estimate the lifetime of the light stau b...

  6. Super-Sample Signal

    CERN Document Server

    Li, Yin; Takada, Masahiro

    2014-01-01

    When extracting cosmological information from power spectrum measurements, we must consider the impact of super-sample density fluctuations whose wavelengths are larger than the survey scale. These modes contribute to the mean density fluctuation delta_b in the survey and change the power spectrum in the same way as a change in the cosmological background. They can be simply included in cosmological parameter estimation and forecasts by treating delta_b as an additional cosmological parameter enabling efficient exploration of its impact. We verify that the minimum variance estimator of delta_b is both unbiased and has the predicted variance using sub-volumes of large-volume N-body simulations for power spectra measured with respect to either the global or local mean density e.g., for weak lensing or galaxy clustering. Parameter degeneracies arise since the response of the power spectrum to delta_b and cosmological parameters share similar properties in changing the growth of structure and dilating the scale o...

  7. Super oil cracking update

    International Nuclear Information System (INIS)

    The conversion of residual fuel oil to usable middle distillates was discussed. The residue conversion processing paths are usually based on separation, carbon rejection, or hydrogen addition principles. Super Oil Cracking (SOC) uses a slurry catalyst system in a new, tubular reactor to achieve high levels of hydrothermal conversion. SOC can upgrade a variety of heavy, high metals residue feedstocks with high yields of middle distillates. The SOC products can also be further treated into feedstocks for FCC or hydrocracking. The SOC process can be incorporated easily into a refinery to obtain incremental residue conversion directly. It can also be integrated with other residue processes, acting as a demetallization and decarbonization step which results in enhanced overall conversion. The relative rate of coke formation and its handling are distinguishing characteristics between residue upgrading technologies. The SOC process operates at higher temperatures that other residue hydrocracking processes resulting in higher rates of thermal decomposition, thus preventing coke formation. SOC process can operate as a stand-alone upgrader or can be integrated with other bottoms processing steps to extend the refiner's range of options for increasing bottoms conversion.3 tabs., 14 figs

  8. Super power generators

    International Nuclear Information System (INIS)

    PROTO II, a super power generator, is presently undergoing testing at Sandia Laboratories. It has operated with an 80 ns, 50 ns, 35 ns, and 20 ns positive output pulse high voltage mode and achieved total current rates of rise of 4 x 1014 A/s. The two sided disk accelerator concept using two diodes has achieved voltages of 1.5 MV and currents of 4.5 MA providing a power exceeding 6 TW in the electron beam and 8 TW in the transmission lines. A new test bed named MITE (Magnetically Insulated Transmission Experiment) was designed and is now being tested. The pulse forming lines are back to back short pulse Blumleins which use untriggered water switching. Output data showing a ten ns half width power pulse peaking above one terrawatt were obtained. MITE is a module being investigated for use in the Electron Beam Fusion Accelerator and will be used to test the effects of short pulses propagating down vacuum transmission lines

  9. NGC 5195 in M51: Feedback `Burps' after a Massive Meal?

    CERN Document Server

    Schlegel, Eric M; Machacek, Marie; Vega, Laura D

    2016-01-01

    We describe a double-arc-like X-ray structure lying ~15-30" (~0.8-1.7 kpc) south of the NGC 5195 nucleus visible in the merged exposures of long Chandra pointings of M51. The curvature and orientation of the arcs argues for a nuclear origin. The arcs are radially separated by ~15" (~1$ kpc), but are rotated relative to each other by ~30 deg. From an archival image, we find a slender Halpha-emitting region just outside the outer edge of the outer X-ray arc, suggesting that the X-ray-emitting gas plowed up and displaced the Halpha-emitting material from the galaxy core. Star formation may have commenced in that arc. Halpha emission is present at the inner arc, but appears more complex in structure. In contrast to an explosion expected to be azimuthally symmetric, the X-ray arcs suggest a focused outflow. We interpret the arcs as episodic outbursts from the central super-massive black hole (SMBH). We conclude that NGC 5195 represents the nearest galaxy exhibiting on-going, large-scale outflows of gas, in particu...

  10. Massively Parallel QCD

    Energy Technology Data Exchange (ETDEWEB)

    Soltz, R; Vranas, P; Blumrich, M; Chen, D; Gara, A; Giampap, M; Heidelberger, P; Salapura, V; Sexton, J; Bhanot, G

    2007-04-11

    The theory of the strong nuclear force, Quantum Chromodynamics (QCD), can be numerically simulated from first principles on massively-parallel supercomputers using the method of Lattice Gauge Theory. We describe the special programming requirements of lattice QCD (LQCD) as well as the optimal supercomputer hardware architectures that it suggests. We demonstrate these methods on the BlueGene massively-parallel supercomputer and argue that LQCD and the BlueGene architecture are a natural match. This can be traced to the simple fact that LQCD is a regular lattice discretization of space into lattice sites while the BlueGene supercomputer is a discretization of space into compute nodes, and that both are constrained by requirements of locality. This simple relation is both technologically important and theoretically intriguing. The main result of this paper is the speedup of LQCD using up to 131,072 CPUs on the largest BlueGene/L supercomputer. The speedup is perfect with sustained performance of about 20% of peak. This corresponds to a maximum of 70.5 sustained TFlop/s. At these speeds LQCD and BlueGene are poised to produce the next generation of strong interaction physics theoretical results.

  11. Massive de Sitter

    CERN Document Server

    Kakushadze, Zurab

    2014-01-01

    We discuss non-perturbative dynamics of massive gravity in de Sitter space via gravitational Higgs mechanism. We argue that enhanced local symmetry and null (ghost) state at (below) the perturbative Higuchi bound are mere artifacts of not only linearization but also assuming the Fierz-Pauli mass term. We point out that, besides de Sitter, there are vacuum solutions where the space asymptotically is de Sitter both in the past and in the future, the space first contracts, this contraction slows down, and then reverses into expansion, so there is an epoch where the space is (nearly) flat. We confirm this by constructing a closed-form exact solution to full non-perturbative equations of motion for a "special" massive de Sitter case. We give a formula for the "critical" mass above which such solutions apparently do not exist. For the Fierz-Pauli mass term this "critical" mass coincides with the perturbative Higuchi bound, which serves as the non-perturbative reinterpretation of the latter. We argue that, notwithst...

  12. Massively Parallel QCD

    International Nuclear Information System (INIS)

    The theory of the strong nuclear force, Quantum Chromodynamics (QCD), can be numerically simulated from first principles on massively-parallel supercomputers using the method of Lattice Gauge Theory. We describe the special programming requirements of lattice QCD (LQCD) as well as the optimal supercomputer hardware architectures that it suggests. We demonstrate these methods on the BlueGene massively-parallel supercomputer and argue that LQCD and the BlueGene architecture are a natural match. This can be traced to the simple fact that LQCD is a regular lattice discretization of space into lattice sites while the BlueGene supercomputer is a discretization of space into compute nodes, and that both are constrained by requirements of locality. This simple relation is both technologically important and theoretically intriguing. The main result of this paper is the speedup of LQCD using up to 131,072 CPUs on the largest BlueGene/L supercomputer. The speedup is perfect with sustained performance of about 20% of peak. This corresponds to a maximum of 70.5 sustained TFlop/s. At these speeds LQCD and BlueGene are poised to produce the next generation of strong interaction physics theoretical results

  13. Hot super-Earths and giant planet cores from different migration histories

    OpenAIRE

    Cossou, Christophe; Raymond, Sean N.; Hersant, Franck; Pierens, Arnaud

    2014-01-01

    Planetary embryos embedded in gaseous protoplanetary disks undergo Type I orbital migration. Migration can be inward or outward depending on the local disk properties but, in general, only planets more massive than several $M_\\oplus$ can migrate outward. Here we propose that an embryo's migration history determines whether it becomes a hot super-Earth or the core of a giant planet. Systems of hot super-Earths (or mini-Neptunes) form when embryos migrate inward and pile up at the inner edge of...

  14. Spin Operators for Massive Particles

    CERN Document Server

    Choi, Taeseung

    2014-01-01

    How to define a proper relativistic spin operator, as a long-standing problem, has by now become a central task for providing proper concepts and applications of spin in relativistic and non-relativistic quantum mechanics as well as solving emergent inconsistencies in rapidly developing research areas. We rigorously {\\it derive} a relativistic spin operator for an arbitrary spin massive particle on the two requirements that a proper spin operator should satisfy (i) the $\\mathfrak{su}(2)$ algebra and (ii) the Lorentz-transformation properties as a second-rank spin tensor. These requirements lead to two spin operators, properly giving the second Casimir invariant operator in the Poincar\\'e (inhomogeneous Lorentz) group, that provide the two inequivalent representations of Poincar\\'e group. We find that the two inequivalent representations are the left-handed and the right-handed representations. Each of the two spin operators generates a Wigner little group whose representation space is composed of spin-$s$ spi...

  15. Massive Gravity in Three Dimensions

    OpenAIRE

    Bergshoeff, Eric A.; Hohm, Olaf; Townsend, Paul K

    2009-01-01

    A particular higher-derivative extension of the Einstein-Hilbert action in three spacetime dimensions is shown to be equivalent at the linearized level to the (unitary) Pauli-Fierz action for a massive spin-2 field. A more general model, which also includes `topologically-massive' gravity as a special case, propagates the two spin 2 helicity states with different masses. We discuss the extension to massive ${\\cal N}$-extended supergravity, and we present a `cosmological' extension that admits...

  16. Massive Storage Systems

    Institute of Scientific and Technical Information of China (English)

    Dan Feng; Hai Jin

    2006-01-01

    To accommodate the explosively increasing amount of data in many areas such as scientific computing and e-Business, physical storage devices and control components have been separated from traditional computing systems to become a scalable, intelligent storage subsystem that, when appropriately designed, should provide transparent storage interface, effective data allocation, flexible and efficient storage management, and other impressive features. The design goals and desirable features of such a storage subsystem include high performance, high scalability, high availability, high reliability and high security. Extensive research has been conducted in this field by researchers all over the world, yet many issues still remain open and challenging. This paper studies five different online massive storage systems and one offline storage system that we have developed with the research grant support from China. The storage pool with multiple network-attached RAIDs avoids expensive store-and-forward data copying between the server and storage system, improving data transfer rate by a factor of 2-3 over a traditional disk array. Two types of high performance distributed storage systems for local-area network storage are introduced in the paper. One of them is the Virtual Interface Storage Architecture (VISA) where VI as a communication protocol replaces the TCP/IP protocol in the system. VISA's performance is shown to achieve better than that of IP SAN by designing and implementing the vSCSI (VI-attached SCSI) protocol to support SCSI commands in the VI network. The other is a fault-tolerant parallel virtual file system that is designed and implemented to provide high I/O performance and high reliability. A global distributed storage system for wide-area network storage is discussed in detail in the paper, where a Storage Service Provider is added to provide storage service and plays the role of user agent for the storage system. Object based Storage Systems not only

  17. Higher dimensional nonlinear massive gravity

    Science.gov (United States)

    Do, Tuan Q.

    2016-05-01

    Inspired by a recent ghost-free nonlinear massive gravity in four-dimensional spacetime, we study its higher dimensional scenarios. As a result, we are able to show the constantlike behavior of massive graviton terms for some well-known metrics such as the Friedmann-Lemaitre-Robertson-Walker, Bianchi type I, and Schwarzschild-Tangherlini (anti-) de Sitter metrics in a specific five-dimensional nonlinear massive gravity under an assumption that its fiducial metrics are compatible with physical ones. In addition, some simple cosmological solutions of the five-dimensional massive gravity are figured out consistently.

  18. Some scaled limit theorems for an immigration super-Brownian motion

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper,the small time limit behaviors for an immigration super-Brownian motion are studied,where the immigration is determined by Lebesgue measure.We first prove a functional central limit theorem,and then study the large and moderate deviations associated with this central tendency.

  19. Massive acute arsenic poisonings.

    Science.gov (United States)

    Lech, Teresa; Trela, Franciszek

    2005-07-16

    Arsenic poisonings are still important in the field of toxicology, though they are not as frequent as about 20-30 years ago. In this paper, the arsenic concentrations in ante- and post-mortem materials, and also forensic and anatomo-pathological aspects in three cases of massive acute poisoning with arsenic(III) oxide (two of them with unexplained criminalistic background, in which arsenic was taken for amphetamine and one suicide), are presented. Ante-mortem blood and urine arsenic concentrations ranged from 2.3 to 6.7 microg/ml, respectively. Post-mortem tissue total arsenic concentrations were also detected in large concentrations. In case 3, the contents of the duodenum contained as much as 30.1% arsenic(III) oxide. The high concentrations of arsenic detected in blood and tissues in all presented cases are particularly noteworthy in that they are very rarely detected at these concentrations in fatal arsenic poisonings. PMID:15939162

  20. massive excision of liver

    Directory of Open Access Journals (Sweden)

    Dong-liang LI

    2014-10-01

    Full Text Available Objective To observe the promotion effect of bone mesenchymal stem cells (BMSCs transplantation and mobilized bone marrow stem cells on the recovery of liver function and liver tissue regeneration after massive partial hepatectomy in rats. Methods The rats were randomly divided into four groups after massive partial hepatectomy (about 85%, namely massive hepatectomy group (control group, n=15, received massive hepatectomy only, G-CSF group [n=15, received rhG-CSF 150μg/(kg•d by intraperitoneal injection after the operation for 5 days], MSCs group [n=15, received 5ml suspension of MSCs (about 1.5×106 by tail vein injection after the operation], and G-CSF+MSCs group [n=14, received 1.5ml suspension of MSCs (about 1.5×106 by tail vein injection and rhG-CSF 150μg/(kg•d by intraperitoneal injection for 5 days after the operation]. The CD34+ cells in the peripheral blood of the rats were assessed by flow cytometry after G-CSF mobilization. Liver function tests including ALT, AST and ALB were performed on the 3rd and 9th day after surgery. All the rats were sacrificed and liver tissue was harvested for histopathological study. The expression of Ki-67 and BrdU positive cells in the liver were determined by immunohistochemistry. Results Flow cytometric results identified the isolated cells were MSCs. BMSCs in peripheral blood significantly increased in number after rhG-CSF mobilization, and reaching the maximum number on the 5th day. After mobilization for 3, 5 and 9 days, the positive CD34 cells in G-CSF group were 0.009%, 0.016%, 0.019% respectively, which were higher than those in control group. The level of albumin was significantly elevated in three treatment groups compared with control group on the 9th day after the hepatectomy (P<0.05 or P<0.01. The expression of Ki-67 (110.16±27.64, 103.57±33.90, 98.52±21.87 vs 72.39±27.04 cells and BrdU positive cells (17.96±5.57, 16.45±5.75, 16.66±5.11 vs 11.72±3.83 cells in three

  1. Profiling Young Massive Stars

    CERN Document Server

    Hill, T; Cunningham, M R; Minier, V

    2007-01-01

    We present the results of spectral energy distribution analysis for 162 of the 405 sources reported in the SIMBA survey of Hill et al. (2005). The fits reveal source specific parameters including: the luminosity, mass, temperature, H$_2$ number density, the surface density and the luminosity-to-mass ratio. Each of these parameters are examined with respect to the four classes of source present in the sample. Obvious luminosity and temperature distinctions exist between the mm-only cores and those cores with methanol maser and/or radio continuum emission, with the former cooler and less luminous than the latter. The evidence suggests that the mm-only cores are a precursor to the methanol maser in the formation of massive stars. The mm-only cores comprise two distinct populations distinguished by temperature. Analysis and conclusions about the nature of the cool-mm and warm-mm cores comprising the mm-only population are drawn.

  2. Aspergilloma and massive haemoptysis

    Science.gov (United States)

    Ding, Wern Yew; Chan, Tze; Yadavilli, Rajesh Kumar; McWilliams, Richard

    2014-01-01

    A 40-year-old homeless woman who was a known intravenous drug user and heroin smoker, presented with massive haemoptysis. Initial CT-pulmonary angiogram (CT-PA) did not show active haemorrhage but found an opacity in a right upper lobe cavity likely to represent a mycetoma. She was started on antifungal therapy but haemoptysis persisted and bronchial angiography was performed. Again no active haemorrhage was identified but abnormal vasculature was seen supplying the right upper lobe. This was empirically embolised with particles which did not improve her symptoms. A subsequent CT-PA identified a pulmonary artery pseudoaneurysm in the cavity wall which was successfully embolised. There was no further haemoptysis and a repeat CT-PA 3 weeks later showed continuing occlusion of the pulmonary artery aneurysm. Investigations for tuberculosis were negative and she was discharged clinically well and on long-term antifungal therapy. PMID:24739651

  3. Problems of massive gravities

    Science.gov (United States)

    Deser, S.; Izumi, K.; Ong, Y. C.; Waldron, A.

    2015-01-01

    The method of characteristics is a key tool for studying consistency of equations of motion; it allows issues such as predictability, maximal propagation speed, superluminality, unitarity and acausality to be addressed without requiring explicit solutions. We review this method and its application to massive gravity (mGR) theories to show the limitations of these models' physical viability: Among their problems are loss of unique evolution, superluminal signals, matter coupling inconsistencies and micro-acausality (propagation of signals around local closed time-like curves (CTCs)/closed causal curves (CCCs)). We extend previous no-go results to the entire three-parameter range of mGR theories. It is also argued that bimetric models suffer a similar fate.

  4. Electrically tuned super-capacitors

    CERN Document Server

    Chowdhury, Tazima S

    2015-01-01

    Fast charging and discharging of large amounts of electrical energy make super-capacitors ideal for short-term energy storage [1-5]. In its simplest form, the super-capacitor is an electrolytic capacitor made of an anode and a cathode immersed in an electrolyte. As for an ordinary capacitor, minimizing the charge separation distance and increasing the electrode area increase capacitance. In super-capacitors, charge separation is of nano-meter scale at each of the electrode interface (the Helmholtz double layer). Making the electrodes porous increases their effective surface area [6-8]. A separating layer between the anode and the cathode electrodes is used to minimize unintentional electrical discharge (Figure 1). Here we show how to increase the capacitance of super-capacitors by more than 45 percent when modifying the otherwise passive separator layer into an active diode-like structure. Active control of super-capacitors may increase their efficiency during charge and discharge cycles. Controlling ion flow...

  5. An evaluation of the Islington community education provider network super hub

    OpenAIRE

    Corbett, Kevin; Odelius, Anki; Traynor, Michael; Mehigan, Sinead

    2015-01-01

    Super Hubs’ are novel initiatives which have arisen in order to aid various workforce developments and service improvements for promoting creative thinking and practice. The Islington Super Hub is a workstream of the Islington Community Education Provider Network (CEPN) which aids the learning and development of community nursing and new apprenticeships (Health Education North Central and East London 2015). In this paper we report on the findings from a realist evaluation of the Islington Su...

  6. Super-Eddington growth of the first black holes

    CERN Document Server

    Pezzulli, Edwige; Schneider, Raffaella

    2016-01-01

    The assembly of the first super massive black holes (SMBHs) at $z \\gtrsim 6$ is still a subject of intense debate. If black holes (BHs) grow at their Eddington rate, they must start from $\\gtrsim 10^4 \\, M_\\odot$ seeds formed by the direct collapse of gas. Here we explore the alternative scenario where $\\sim 100 \\, M_\\odot$ BH remnants of the first stars grow at super-Eddington rate via radiatively inefficient slim accretion disks. We use an improved version of the cosmological, data-constrained semi-analytic model GAMETE/QSOdust, where we follow the evolution of nuclear BHs and gas cooling, disk and bulge formation of their host galaxies. Adopting SDSS J1148+5251 (J1148) at $z = 6.4$ as a prototype of luminous $z \\gtrsim 6$ quasars, we find that $\\sim$ 80% of its SMBH mass is grown by super-Eddington accretion, which can be sustained down to $z \\sim 10$ in dense, gas-rich environments. The average BH mass at $z \\sim 20$ is $M_{\\rm BH} \\gtrsim 10^4 \\,M_\\odot$, comparable to that of direct collapse BHs. At $z ...

  7. Induced mass in N=2 super Yang-Mills theories

    CERN Document Server

    Araújo-Diniz, S; Diniz, Sortelano A.; Piguet, Olivier

    2003-01-01

    The masses of the matter fields of N=2 Super-Yang-Mills theories can be defined as parameters of deformed supersymmetry transformations. The formulation used involves central charges for the matter fields. The explicit form of the deformed supersymmetry transformations and of the invariant Lagrangian in presence of the gauge supermultiplet are constructed. This works generalizes a former one, due to the same authors, which presented the free matter case.

  8. Potential Biosignatures in Super-Earth Atmospheres II. Photochemical Responses

    OpenAIRE

    Grenfell, J. L.; Gebauer, S.; Godolt, M.; Palczynski, K.; Rauer, H.; Stock, J.; von Paris, P.; R. Lehmann; Selsis, F.

    2013-01-01

    Spectral characterization of super-Earth atmospheres for planets orbiting in the habitable zone of M dwarf stars is a key focus in exoplanet science. A central challenge is to understand and predict the expected spectral signals of atmospheric biosignatures (species associated with life). Our work applies a global-mean radiative-convective-photochemical column model assuming a planet with an Earth-like biomass and planetary development. We investigated planets with gravities of 1g and 3g and ...

  9. Super-Eddington accretion disc around a Kerr black hole

    OpenAIRE

    Beloborodov, Andrei M.

    1998-01-01

    We calculate the structure of accretion disc around a rapidly rotating black hole with a super-Eddington accretion rate. The luminosity and height of the disc are reduced by the advection effect. In the case of a large viscosity parameter, alpha > 0.03, the accretion flow strongly deviates from thermodynamic equilibrium and overheats in the central region. With increasing accretion rate, the flow temperature steeply increases, reaches a maximum, and then falls off. The maximum is achieved in ...

  10. On the generalized minimal massive gravity

    Science.gov (United States)

    Setare, M. R.

    2015-09-01

    In this paper we study the Generalized Minimal Massive Gravity (GMMG) in asymptotically AdS3 background. The generalized minimal massive gravity theory is realized by adding the CS deformation term, the higher derivative deformation term, and an extra term to pure Einstein gravity with a negative cosmological constant. We study the linearized excitations around the AdS3 background and find that at special point (tricritical) in parameter space the two massive graviton solutions become massless and they are replaced by two solutions with logarithmic and logarithmic-squared boundary behavior. So it is natural to propose that GMMG model could also provide a holographic description for a 3-rank Logarithmic Conformal Field Theory (LCFT). We calculate the energy of the linearized gravitons in AdS3 background, and show that the theory is free of negative-energy bulk modes. Then we obtain the central charges of the CFT dual explicitly and show GMMG also avoids the aforementioned "bulk-boundary unitarity clash". After that we show that General Zwei-Dreibein Gravity (GZDG) model can reduce to GMMG model. Finally by a Hamiltonian analysis we show that the GMMG model has no Boulware-Deser ghosts and this model propagates only two physical modes.

  11. Two-Dimensional Hydrodynamic Models of Super Star Clusters with a Positive Star Formation Feedback

    OpenAIRE

    Wunsch, R.; Tenorio-Tagle, G.; Palous, J.; Silich, S.

    2008-01-01

    Using the hydrodynamic code ZEUS, we perform 2D simulations to determine the fate of the gas ejected by massive stars within super star clusters. It turns out that the outcome depends mainly on the mass and radius of the cluster. In the case of less massive clusters, a hot high velocity ($\\sim 1000$ km s$^{-1}$) stationary wind develops and the metals injected by supernovae are dispersed to large distances from the cluster. On the other hand, the density of the thermalized ejecta within massi...

  12. One of the most massive stars in the Galaxy may have formed in isolation

    OpenAIRE

    Oskinova, L.M.; M. Steinke; Hamann, W. -R.; Sander, A.; Todt, H.; Liermann, A.

    2013-01-01

    Very massive stars, 100 times heavier than the sun, are rare. It is not yet known whether such stars can form in isolation or only in star clusters. The answer to this question is of fundamental importance. The central region of our Galaxy is ideal for investigating very massive stars and clusters located in the same environment. We used archival infrared images to investigate the surroundings of apparently isolated massive stars presently known in the Galactic Center. We find that two such i...

  13. Siting the superconducting super collider

    International Nuclear Information System (INIS)

    At the request of the Department of Energy, the National Academy of Sciences and the National Academy of Engineering established the Super Collider Site Evaluation Committee to evaluate the suitability of proposed sites for the Superconducting Super Collider. Thirty-six proposals were examined by the committee. Using the set of criteria announced by DOE in its Invitation for Site Proposals, the committee identified eight sites that merited inclusion on a ''best qualified list.'' The list represents the best collective judgment of 21 individuals, carefully chosen for their expertise and impartiality, after a detailed assessment of the proposals using 19 technical subcriteria and DOE's life cycle cost estimates. The sites, in alphabetical order, are: Arizona/Maricopa; Colorado; Illinois; Michigan/Stockbridge; New York/Rochester; North Carolina; Tennessee; and Texas/Dallas-Fort Worth. The evaluation of these sites and the Superconducting Super Collider are discussed in this book

  14. Massive Gravity in Three Dimensions

    CERN Document Server

    Bergshoeff, Eric A; Townsend, Paul K

    2009-01-01

    A particular higher-derivative extension of the Einstein-Hilbert action in three spacetime dimensions is shown to be equivalent at the linearized level to the (unitary) Pauli-Fierz action for a massive spin-2 field. We discuss the extension to massive ${\\cal N}$-extended supergravity, and we present a `cosmological' extension admitting a supersymmetric anti-de Sitter vacuum.

  15. Massive Gravity in Three Dimensions

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Hohm, Olaf; Townsend, Paul K.

    2009-01-01

    A particular higher-derivative extension of the Einstein-Hilbert action in three spacetime dimensions is shown to be equivalent at the linearized level to the (unitary) Pauli-Fierz action for a massive spin-2 field. A more general model, which also includes "topologically-massive" gravity as a speci

  16. Analyzing Black Hole Super-Radiance Emission of Particles/Energy from a Black Hole as a Gedankenexperiment to Get Bounds on the Mass of a Graviton

    International Nuclear Information System (INIS)

    Use of super-radiance in BH physics, so dE/dt<0 specifies conditions for a mass of a graviton being less than or equal to 1065 grams, allows for determing what role additional dimensions may play in removing the datum that massive gravitons lead to 3/4th the bending of light past the planet Mercury. The present document makes a given differentiation between super-radiance in the case of conventional BHs and Braneworld BH super-radiance, which may delineate whether Braneworlds contribute to an admissible massive graviton in terms of removing the usual problem of the 3/4th the bending of light past the planet Mercury which is normally associated with massive gravitons. This leads to a fork in the road between two alternatives with the possibility of needing a multiverse containment of BH structure or embracing what Hawkings wrote up recently, namely, a redo of the event horizon hypothesis as we know it

  17. Quantisation of super Teichmueller theory

    CERN Document Server

    Aghaei, Nezhla; Teschner, Joerg

    2015-01-01

    We construct a quantisation of the Teichmueller spaces of super Riemann surfaces using coordinates associated to ideal triangulations of super Riemann surfaces. A new feature is the non-trivial dependence on the choice of a spin structure which can be encoded combinatorially in a certain refinement of the ideal triangulation. By constructing a projective unitary representation of the groupoid of changes of refined ideal triangulations we demonstrate that the dependence of the resulting quantum theory on the choice of a triangulation is inessential.

  18. Microsphere Super-resolution Imaging

    CERN Document Server

    Wang, Zengbo

    2015-01-01

    Recently, it was discovered that microsphere can generate super-resolution focusing beyond diffraction limit. This has led to the development of an exciting super-resolution imaging technique -microsphere nanoscopy- that features a record resolution of 50 nm under white lights. Different samples have been directly imaged in high resolution and real time without labelling, including both non-biological (nano devices, structures and materials) and biological (subcellular details, viruses) samples. This chapter reviews the technique, which covers its background, fundamentals, experiments, mechanisms as well as the future outlook.

  19. NF-kB directs dynamic super enhancer formation in inflammation and atherogenesis

    Science.gov (United States)

    Griffin, Gabriel; Federation, Alexander; Paranal, Ronald M.; Bair, Steven; Newton, Gail; Lichtman, Andrew; Kung, Andrew; Yang, Tianlun; Wang, Hong; Luscinskas, Francis W.; Croce, Kevin; Bradner, James E.; Plutzky, Jorge

    2014-01-01

    SUMMARY Proinflammatory stimuli elicit rapid transcriptional responses via transduced signals to master regulatory transcription factors. To explore the role of chromatin-dependent signal transduction in the atherogenic inflammatory response, we characterized the dynamics, structure and function of regulatory elements in the activated endothelial cell epigenome. Stimulation with tumor necrosis factor alpha prompted a dramatic and rapid global redistribution of chromatin activators to massive de novo clustered enhancer domains. Inflammatory super enhancers formed by NF-κB accumulate at the expense of immediately decommissioned, basal endothelial super enhancers, despite persistent histone hyperacetylation. Mass action of enhancer factor redistribution causes momentous swings in transcriptional initiation and elongation. A chemical genetic approach reveals a requirement for BET bromodomains in communicating enhancer remodeling to RNA polymerase and orchestrating the transition to the inflammatory cell state, demonstrated in activated endothelium and macrophages. BET bromodomain inhibition abrogates super enhancer mediated inflammatory transcription, atherogenic endothelial responses and atherosclerosis in vivo. PMID:25263595

  20. Observation of super-resolution in digital breast tomosynthesis

    International Nuclear Information System (INIS)

    Purpose: Digital breast tomosynthesis (DBT) is a 3D x-ray imaging modality in which tomographic sections of the breast are generated from a limited range of tube angles. Because oblique x-ray incidence shifts the image of an object in subpixel detector element increments with each increasing projection angle, it is demonstrated that DBT is capable of super-resolution (i.e., subpixel resolution). Methods: By convention, DBT reconstructions are performed on planes parallel to the breast support at various depths of the breast volume. In order for resolution in each reconstructed slice to be comparable to the detector, the pixel size should match that of the detector elements; hence, the highest frequency that can be resolved in the plane of reconstruction is the alias frequency of the detector. This study considers reconstruction grids with much smaller pixelation to visualize higher frequencies. For analytical proof of super-resolution, a theoretical framework is developed in which the reconstruction of a high frequency sinusoidal input is calculated using both simple backprojection (SBP) and filtered backprojection. To study the frequency spectrum of the reconstruction, its Fourier transform is also determined. The experimental feasibility of super-resolution was investigated by acquiring images of a bar pattern phantom with frequencies higher than the detector alias frequency. Results: Using analytical modeling, it is shown that the central projection cannot resolve frequencies exceeding the detector alias frequency. The Fourier transform of the central projection is maximized at a lower frequency than the input as evidence of aliasing. By contrast, SBP reconstruction can resolve the input, and its Fourier transform is correctly maximized at the input frequency. Incorporating filters into the reconstruction smoothens pixelation artifacts in the spatial domain and reduces spectral leakage in the Fourier domain. It is also demonstrated that the existence of super

  1. Search for Dark Matter WIMPs using Upward Through-going Muons in Super-Kamiokande

    OpenAIRE

    Collaboration, Super-Kamiokande; :; Desai, S.; Ashie, Y.; Fukuda, S; Y. Fukuda; Ishihara, K; Itow, Y.; Koshio, Y.; Minamino, A.; Miura, M.; Moriyama, S.; Nakahata, M.(University of Tokyo, Institute for Cosmic Ray Research, Kamioka Observatory, Kamioka, Japan); Namba, T.; Nambu, R.

    2004-01-01

    We present the results of indirect searches for Weakly Interacting Massive Particles (WIMPs) with 1679.6 live days of data from the Super-Kamiokande detector using neutrino-induced upward through-going muons. The search is performed by looking for an excess of high energy muon neutrinos from WIMP annihilations in the Sun, the core of the Earth, and the Galactic Center, as compared to the number expected from the atmospheric neutrino background. No statistically significant excess was seen. We...

  2. Massive soliton stars

    Science.gov (United States)

    Chiu, Hong-Yee

    1990-01-01

    The structure of nontopological solutions of Einstein field equations as proposed by Friedberg, Lee, and Pang (1987) is examined. This analysis incorporates finite temperature effects and pair creation. Quarks are assumed to be the only species that exist in interior of soliton stars. The possibility of primordial creation of soliton stars in the incomplete decay of the degenerate vacuum in early universe is explored. Because of dominance of pair creation inside soliton stars, the luminosity of soliton stars is not determined by its radiative transfer characteristics, and the surface temperature of soliton stars can be the same as its interior temperature. It is possible that soliton stars are intense X-ray radiators at large distances. Soliton stars are nearly 100 percent efficient energy converters, converting the rest energy of baryons entering the interior into radiation. It is possible that a sizable number of baryons may also be trapped inside soliton stars during early epochs of the universe. In addition, if soliton stars exist they could assume the role played by massive black holes in galactic centers.

  3. Super Virasoro algebra and solvable supersymmetric quantum field theories

    International Nuclear Information System (INIS)

    Interesting and deep relationships between super Virasoro algebras and super soliton systems (super KdV, super mKdV and super sine-Gordon equations) are investigated at both classical and quantum levels. An infinite set of conserved quantities responsible for solvability is characterized by super Virasoro algebras only. Several members of the infinite set of conserved quantities are derived explicitly. (author)

  4. A perturbation study of axisymmetric strongly magnetic degenerate stars : the case of super-Chandrasekhar white dwarfs

    CERN Document Server

    Bera, Prasanta

    2016-01-01

    In the presence of a strong magnetic field a stellar equilibrium configuration, aided by the Lorentz force, can support a larger mass than a non-magnetic one. This has been considered a possible explanation of the super-Chandrasekhar mass white dwarfs giving rise to over-luminous Type-Ia supernovae. We present here linear and non-linear perturbation studies of such strongly magetised configurations and show that axisymmetric configurations with poloidal or toroidal fields are unstable. The numerical evolution of the perturbations shows instability after about an Alfv\\'en crossing time. This time scale is very short for the magnetically supported super-Chandrasekhar mass white dwarfs. Uniform rotation about the symmetry axis can reduce the growth rate but can not stabilize the super-massive configurations. It is concluded that long-lived super-Chandrasekhar mass white dwarfs supported by magnetic field are unlikely to occur in Nature.

  5. Super-resolution Phase Tomography

    KAUST Repository

    Depeursinge, Christian D.

    2013-04-21

    Digital Holographic Microscopy (DHM) yields reconstructed complex wavefields. It allows synthesizing the aperture of a virtual microscope up to 2π, offering super-resolution phase images. Live images of micro-organisms and neurons with resolution less than 100 nm are presented.

  6. Gauge Model with Massive Gravitons

    Institute of Scientific and Technical Information of China (English)

    WU Ning

    2003-01-01

    Gauge theory of gravity is formulated based on principle of local gauge invariance. Because the model hasstrict local gravitational gauge symmetry, and gauge theory of gravity is a perturbatively renormalizable quantum model.However, in the original model, all gauge gravitons are massless. We want to ask whether there exist massive gravitonsin Nature. In this paper, we will propose a gauge model with massive gravitons. The mass term of gravitational gaugefield is introduced into the theory without violating the strict local gravitational gauge symmetry. Massive gravitons canbe considered to be possible origin of dark energy and dark matter in the Universe.

  7. A not so massive cluster hosting a very massive star

    CERN Document Server

    Alegría, S Ramírez; Borissova, J; Kurtev, R; Navarro, C; Kuhn, M; Carballo-Bello, J A

    2015-01-01

    We present the first physical characterization of the young open cluster VVV CL041. We spectroscopically observed the cluster main-sequence stellar population and a very-massive star candidate: WR62-2. CMFGEN modeling to our near-infrared spectra indicates that WR62-2 is a very luminous (10$^{6.4\\pm0.2} L_{\\odot}$) and massive ($\\sim80 M_{\\odot}$) star.

  8. On the Picard-Fuchs Equations for Massive N=2 Seiberg-Witten Theories

    OpenAIRE

    Isidro, Jose M.; Mukherjee, Avijit; Nunes, Joao P.; Schnitzer, Howard J.

    1997-01-01

    A new method to obtain the Picard-Fuchs equations of effective, N=2 supersymmetric gauge theories with massive matter hypermultiplets in the fundamental representation is presented. It generalises a previously described method to derive the Picard-Fuchs equations of both pure super Yang-Mills and supersymmetric gauge theories with massless matter hypermultiplets. The techniques developed are well suited to symbolic computer calculations.

  9. Massive BTZ black hole thermodynamics

    CERN Document Server

    Hendi, S H; Panahiyan, S

    2016-01-01

    Motivated by large applications of BTZ black holes and interesting results of massive gravity, we investigate massive BTZ black holes in presence of Maxwell and Born-Infeld (BI) electrodynamics. We study geometric as well as thermodynamic structure of the solutions through canonical ensemble. Despite the existence of massive term, obtained solutions are asymptotically (a)dS and have a curvature singularity at the origin. Next, we regard varying cosmological constant and examine Van der Waals like behavior of the solutions in the extended phase space. In addition, we employ geometrical thermodynamic approaches and show that using Weinhold, Ruppeiner and Quevedo metrics leads to existence of ensemble dependency while HPEM metric yields uniform picture. For neutral case, it will be shown that generalization to massive gravity leads to presence of non-zero temperature and heat capacity for vanishing horizon radius. Such behavior is not observed for linearly charged solutions while generalization to nonlinearly on...

  10. The dynamical fingerprint of core scouring in massive elliptical galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J.; Saglia, R. P.; Bender, R.; Erwin, P.; Fabricius, M., E-mail: jthomas@mpe.mpg.de [Max Planck-Institute for extraterrestrial Physics, P.O. Box 1312, Giessenbachstr. 1, D-85741 Garching (Germany)

    2014-02-10

    The most massive elliptical galaxies have low-density centers or cores that differ dramatically from the high-density centers of less massive ellipticals and bulges of disk galaxies. These cores have been interpreted as the result of mergers of supermassive black hole binaries, which depopulate galaxy centers by gravitationally slingshotting central stars toward large radii. Such binaries naturally form in mergers of luminous galaxies. Here, we analyze the population of central stellar orbits in 11 massive elliptical galaxies that we observed with the integral field spectrograph SINFONI at the European Southern Observatory Very Large Telescope. Our dynamical analysis is orbit-based and includes the effects of a central black hole, the mass distribution of the stars, and a dark matter halo. We show that the use of integral field kinematics and the inclusion of dark matter is important to conclude on the distribution of stellar orbits in galaxy centers. Six of our galaxies are core galaxies. In these six galaxies, but not in the galaxies without cores, we detect a coherent lack of stars on radial orbits in the core region and a uniform excess of radial orbits outside of it: when scaled by the core radius r{sub b} , the radial profiles of the classical anisotropy parameter β(r) are nearly identical in core galaxies. Moreover, they quantitatively match the predictions of black hole binary simulations, providing the first convincing dynamical evidence for core scouring in the most massive elliptical galaxies.

  11. Galactic accretion and the diffuse halos of massive galaxies

    Science.gov (United States)

    Cooper, Andrew

    2015-08-01

    I will review simulations and observations of diffuse stellar haloe around massive galaxies, from Milky Way analogues to the central galaxies of the most massive clusters. I will emphasize an intimate connection between surface brightness profiles, structure formation and galaxy growth, which reflects the evolving balance between in situ star formation and galactic accretion at the heart of the CDM model. I will present new models of intracluster light and discuss statistical constraints on galaxy formation models that can be obtained from stellar halo observations using current and future deep imaging surveys.

  12. Evolution of massive black holes

    OpenAIRE

    Volonteri, Marta

    2007-01-01

    Supermassive black holes are nowadays believed to reside in most local galaxies. Accretion of gas and black hole mergers play a fundamental role in determining the two parameters defining a black hole: mass and spin. I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I'll discuss black hole formation processes that are likely to place at early cosmic epochs, and how massive black hole evolve in a hierarchical Universe...

  13. ADM analysis and massive gravity

    OpenAIRE

    Golovnev, Alexey

    2013-01-01

    This is a contribution to the Proceedings of the 7th Mathematical Physics Meeting: Summer School and Conference on Modern Mathematical Physics, held in Belgrade 09 -- 19 September 2012. We give an easily accessible introduction to the ADM decomposition of the curvature components. After that we review the basic problems associated with attempts of constructing a viable massive gravity theory. And finally, we present the metric formulations of ghost-free massive gravity models, and comment on ...

  14. Super-hydrophobic and super-wetting surfaces: analytical potential?

    OpenAIRE

    McHale, Glen; Shirtcliffe, Neil; Newton, Michael

    2004-01-01

    Roughening or texturing surfaces provides super-liquid repellent or film forming properties without alteration of the surface chemistry. These surfaces are easy to produce, can amplify wetting properties and can be either "sticky" or "slippy" to liquids. Their use as water-repellent coatings is established, but their potential for use in microfluidics and sensor applications remains largely unfulfilled. This article explains several key ideas and suggests why there may be potential for analyt...

  15. Super-resolution microscopy of the synaptic active zone

    Directory of Open Access Journals (Sweden)

    Markus Sauer

    2015-01-01

    Full Text Available Brain function relies on accurate information transfer at chemical synapses. At the presynaptic active zone (AZ a variety of specialised proteins are assembled to complex architectures, which set the basis for speed, precision and plasticity of synaptic transmission. Calcium (Ca2+ channels are pivotal for the initiation of excitation-secretion coupling and, correspondingly, capture a central position at the AZ. Combining quantitative functional studies with modelling approaches has provided predictions of channel properties, numbers and even positions on the nanometre scale. However, elucidating the nanoscopic organisation of the surrounding protein network requires direct ultrastructural access. Without this information, knowledge of molecular synaptic structure-function relationships remains incomplete. Recently, super-resolution microscopy techniques have begun to enter the neurosciences. These approaches combine high spatial resolution with the molecular specificity of fluorescence microscopy. Here, we discuss how super-resolution microscopy can be used to obtain information on the organisation of AZ proteins.

  16. The super star cluster driven feedback in ESO338-IG04 and Haro 11

    CERN Document Server

    Bik, Arjan; Menacho, Veronica; Adamo, Angela; Hayes, Matthew; Melinder, Jens; Amram, Philippe

    2015-01-01

    The stellar content of young massive star clusters emit large amounts of Lyman continuum photons and inject momentum into the inter stellar medium (ISM) by the strong stellar winds of the most massive stars in the cluster. When the most massive stars explode as supernovae, large amounts of mechanical energy are injected in the ISM. A detailed study of the ISM around these massive cluster provides insights on the effect of cluster feedback. We present high quality integral field spectroscopy taken with VLT/MUSE of two starburst galaxies: ESO 338-IG04 and Haro 11. Both galaxies contain a significant number of super star clusters. The MUSE data provide us with an unprecedented view of the state and kinematics of the ionized gas in the galaxy allowing us to study the effect of stellar feedback on small and large spatial scales. We present our recent results on studying the ISM state of these two galaxies. The data of both galaxies show that the mechanical and ionization feedback of the super star clusters in the ...

  17. The Era of Super Capitalism

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The world has entered the "super capitalism" era when one third of its economic activities are controlled by less than 3 percent of global financial capital. This year,a global economic recession,triggered by the U.S. subprime mortgage crisis,seems unavoidable. To tackle international financial problems,Tao Dong,Chief Economist for Asia at Credit Suisse First Boston in Hong Kong,shared his insights with China Business Journal. Excerpts follow.

  18. Super-Comet or Big Asteroid Belt?

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: Spectrograph of HD 69830 This graph of data from NASA's Spitzer Space Telescope demonstrates that the dust around a nearby star called HD 69830 (upper line) has a very similar composition to that of Comet Hale-Bopp. Spitzer spotted large amounts of this dust in the inner portion of the HD 69830 system. The bumps and dips seen in these data, or spectra, represent the 'fingerprints' of various minerals. Spectra are created when an instrument called a spectrograph spreads light out into its basic parts, like a prism turning sunlight into a rainbow. These particular spectra reveal the presence of the silicate mineral called olivine, and more specifically, a type of olivine called forsterite, which is pictured in the inset box. Forsterite is a bright-green gem found on Earth, on the 'Green Sand Beach' of Hawaii among other places; and in space, in comets and asteroids. Because the dust around HD 69830 has a very similar make-up to that of Comet Hale-Bopp, astronomers speculate that it might be coming from a giant comet nearly the size of Pluto. Such a comet may have been knocked into the inner solar system of HD 69830, where it is now leaving in its wake a trail of evaporated dust. Nonetheless, astronomers say the odds that Spitzer has caught a 'super-comet' spiraling in toward its star - an unusual and relatively short-lived event - are slim. Instead, they favor the theory that the observed dust is actually the result of asteroids banging together in a massive asteroid belt. The data of HD 69830's dust were taken by Spitzer's infrared spectrograph. The data of Comet Hale-Bopp were taken by the European Space Agency's Infrared Observatory Satellite. The picture of forsterite comes courtesy of Dr. George Rossman, California Institute of Technology, Pasadena.

  19. Component structure of the N = 2 super-Yang-Mills theory in the harmonic superspace

    International Nuclear Information System (INIS)

    Specific features of massless and massive N = 2 super-Yang-Mills theories are studied. The superstrength and the free Lagrangian of the Abelian vector multiplet are obtained in the component form in the harmonic superspace formalism without a gauge fixing. Beginning from the Abelian superstrength, the authors find the non-Abelian superstrength in the first order in the coupling constant g without gauge fixing. Using the approach analogous to the Stueckelberg method, they obtain the Lagrangian of the massive Yang-Mills theory in the component form in the first order in the coupling constant g. The excitation mechanisms of additional degrees of freedom and open-quotes switching onclose quotes of new interactions in the massive vector multiplet are investigated. 6 refs

  20. BEWARE OF...SUPER GLUES!!

    CERN Multimedia

    2006-01-01

    What happened? A number of accidents have occurred with the use of 'Super Glues'. Some individuals have suffered injuries - severe irritation, or skin bonded together - through getting glue on their face and in their eyes. What are the hazards associated with glues? 'Super Glues' (i.e. cyanoacrylates): Are harmful if swallowed and are chemical irritants to the eyes, respiratory system and skin. Present the risk of polymerization (hardening) leading to skin damage. Be careful ! 'Super Glues' can bond to skin and eyes in seconds. Note: Other glues, resins and hardeners are also chemicals and as such can cause serious damage to the skin, eyes, respiratory or digestive tract. (For example: some components can be toxic, harmful, corrosive, sensitizing agents, etc.). How to prevent accidents in the future? Read the Material Safety Data Sheet (MSDS) for all of the glues you work with. Check the label on the container to find out which of the materials you work with are hazardous. Wear the right Per...

  1. The evolution of massive and very massive stars in clusters

    CERN Document Server

    Vanbeveren, Dany

    2008-01-01

    The present paper reviews massive star (initial mass smaller than 120 M0) and very massive star (initial mass larger than 120 M0) evolution. I will focus on evolutionary facts and questions that may critically affect predictions of population and spectral synthesis of starburst regions. We discuss the ever-lasting factor 2 or more uncertainty in the stellar wind mass loss rates. We may ask ourselves if stellar rotation is one of the keys to understand the universe, why so many massive stars are binary components and why binaries are ignored or are considered as the poor cousins by some people? And finally, do ultra luminous X-ray sources harbor an intermediate mass black hole with a mass of the order of 1000 M0?

  2. Holographically Viable Extensions of Topologically Massive and Minimal Massive Gravity?

    CERN Document Server

    Altas, Emel

    2015-01-01

    Recently, an extension of the topologically massive gravity (TMG) in $2+1$ dimensions, dubbed as minimal massive gravity (MMG), was found which is free of the bulk-boundary unitarity clash that inflicts the former theory and all the other known three dimensional theories. Field equations of MMG differ from those of TMG at quadratic terms in the curvature that do not come from the variation of an action depending on the metric alone. Here we show that MMG is a unique theory and there does not exist a deformation of TMG or MMG at the cubic and quartic order (and beyond) in the curvature that is consistent at the level of the field equations. The only extension of TMG with the desired bulk and boundary properties having a single massive degree of freedom is MMG.

  3. Storm Surge Modelling of Super Typhoon Haiyan Event in Tacloban City, Leyte using MIKE 21 Model

    Science.gov (United States)

    Prelligera, Flor Angel; Caro, Carl Vincent; Ladiero, Christine; Mahar Francisco Lagmay, Alfredo; Lapidez, John Phillip; Malano, Vicente; Agaton, Rojelee; Santiago, Joy; Suarez, John Kenneth

    2014-05-01

    Super Typhoon Haiyan hit the Philippines on 08 November 2013 causing massive destruction to the central part of the country. Arguably the strongest tropical cyclone to make landfall in recorded history, Haiyan caused 6,201 deaths and damages amounting to PhP 36,690,882,497.27 (USD 824,390,091.77). The typhoon also brought about destructive storm surges reaching up to 7 meters in height. A better understanding of storm surge is essential to the development of mechanisms to mitigate the effects of similar events. Thus, a computer simulation of Haiyan with the resulting wave heights and storm surge levels was made using MIKE 21 model -- a software used for many different coastal and marine engineering projects worldwide. Simulations were made using the Hydrodynamic Flexible Mesh (HD FM) model coupled with the Spectral Wave (SW) model of the software. This coupled approach allows accurate calculations of both surge water levels and wave crest heights for overtopping of coastal structures. The maximum mesh flexibility of MIKE 21 allows mesh refinement for the coastal areas of Tacloban City within coarser mesh elements resulting to higher grid accuracy. Input parameters for the simulations of the coastline of Tacloban City, a densely populated coastal community heaviest hit by the storm surges of Haiyan, were obtained from the Philippine Atmospheric, Geophysical, and Astronomical Services Administration (PAGASA) and Japan Meteorological Agency (JMA). Atmospheric conditions such as wind and pressure values were input to a set of regional and local hydrodynamic and spectral wave models. Simulation results were compared with available tidal gauge records and the comparison showed good correlation. Coastal regional inundation maps were then created from the results of the storm surge simulations. These maps or its equivalent should be used to develop and further improve disaster risk management plans for future surge events. These plans include, but are not limited to

  4. Theoretical Developments in Understanding Massive Star Formation

    Science.gov (United States)

    Yorke, H. W.; Bodenheimer, P.

    2008-05-01

    Except under special circumstances massive stars in galactic disks will form through accretion. The gravitational collapse of a molecular cloud core will initially produce one or more low-mass quasi-hydrostatic objects of a few Jupiter masses. Through subsequent accretion the masses of these cores grow as they simultaneously evolve toward hydrogen-burning central densities and temperatures. We review the evolution of accreting (proto-)stars, including new results calculated with a publicly available stellar evolution code written by the authors. The evolution of accreting stars depends strongly on the accretion history. We find that for the high accretion rates considered, ˜10^{-3} M_⊙yr^{-1}, stars of ˜5-10 M_⊙ tend to bloat up to radii which may exceed 100 R_⊙. Because of the high rate of binarity among massive stars, we expect that these large radii during short phases of evolution will result in mass transfer, common envelope evolution, and a higher number of tight binaries with periods of a few days.

  5. Guide to development of a scalar massive parallel programming on Paragon

    International Nuclear Information System (INIS)

    Parallel calculations using more than hundred computers had begun in Japan only several years ago. The Intel Paragon XP/S 15GP256 , 75MP834 were introduced as pioneers in Japan Atomic Energy Research Institute (JAERI) to pursue massive parallel simulations for advanced photon and fusion researches. Recently, large number of parallel programs have been transplanted or newly produced to perform the parallel calculations with those computers. However, these programs are developed based on software technologies for conventional super computer, therefore they sometimes cause troubles in the massive parallel computing. In principle, when programs are developed under different computer and operating system (OS), prudent directions and knowledge are needed. However, integration of knowledge and standardization of environment are quite difficult because number of Paragon system and Paragon's users are very small in Japan. Therefore, we summarized information which was got through the process of development of a massive parallel program in the Paragon XP/S 75MP834. (author)

  6. Emergency interventioal management of postoperative massive hemorrhage after pancreatic surgery

    International Nuclear Information System (INIS)

    Objective: To evaluate the efficacy and safety of emergency interventional management in the treatment of postoperative massive hemorrhage after pancreatic surgery. Methods: Endovascular interventional management was performed in 13 patients with postoperative massive hemorrhage after pancreatic surgery. The treatment included super-selective arterial embolization alone (n = 11), combination of embolization with stent placement (n = 1) and combination of embolization with superior mesenteric arterial perfusion(n = 1). The embolization materials included microcoils (n = 7), standard stainless steel coils (n = 2), additional polyvinyl alcohol particles (n = 6) and additional gelfoam (n = 4). Results: Selective angiography before the procedure revealed pseudoaneurysm in 6 cases, contrast media extravasation in 3 cases, pseudoaneurysm together with contrast media extravasation in 3 cases and negative finding in one case. The successful rate of hemostasis was 92.3%(12 / 13). One patient died of massive hemorrhage due to stress ulcer. Recurrent bleeding rate was 16.7% (2 / 12). Angiography showed that complete obliteration of diseased vessels was obtained after embolization and the hepatic artery kept patency with stable blood flow after stent placement. The symptoms related to blood loss was immediately relieved in 12 patients. Two patients with pancreatic fistula and intraperitoneal abscess had a recurrence of bleeding in two weeks and died of hemorrhagic shock. No re-bleeding occurred in the remaining ten patients during the follow-up period of 2 weeks to 24 months. A transient rising of ALT was found in 4 patients who had received embolization therapy of proper hepatic artery. No complications, such as intestinal necrosis, pancreatic necrosis, splenic abscess, etc. occurred in other patients. Conclusion: Endovascular interventional management is a safe and effective treatment for postoperative massive hemorrhage after pancreatic surgery. (authors)

  7. Signatures of massive collisions in debris discs

    CERN Document Server

    Kral, Quentin; Augereau, Jean-Charles; Boccaletti, Anthony; Charnoz, Sebastien

    2014-01-01

    Violent stochastic collisional events have been invoked as a possible explanation for some debris discs displaying pronounced asymmetries or having a great luminosity excess. So far, no thorough modelling of the consequences of such events has been carried out, mainly because of the extreme numerical challenge of coupling the dynamical and collisional evolution of dust. We perform the first fully self-consistent modelling of the aftermath of massive breakups in debris discs. We follow the collisional and dynamical evolution of dust released after the breakup of a Ceres-sized body at 6 AU from its central star. We investigate the duration, magnitude and spatial structure of the signature left by such a violent event, as well as its observational detectability. We use the recently developed LIDT-DD code (Kral et al., 2013), which handles the coupled collisional and dynamical evolution of debris discs. The main focus is placed on the complex interplay between destructive collisions, Keplerian dynamics and radiat...

  8. Positive Signs in Massive Gravity

    CERN Document Server

    Cheung, Clifford

    2016-01-01

    We derive new constraints on massive gravity from unitarity and analyticity of scattering amplitudes. Our results apply to a general effective theory defined by Einstein gravity plus the leading soft diffeomorphism-breaking corrections. We calculate scattering amplitudes for all combinations of tensor, vector, and scalar polarizations. The high-energy behavior of these amplitudes prescribes a specific choice of couplings that ameliorates the ultraviolet cutoff, in agreement with existing literature. We then derive consistency conditions from analytic dispersion relations, which dictate positivity of certain combinations of parameters appearing in the forward scattering amplitudes. These constraints exclude all but a small island in the parameter space of ghost-free massive gravity. While the theory of the "Galileon" scalar mode alone is known to be inconsistent with positivity constraints, this is remedied in the full massive gravity theory.

  9. Testing and Characterization of SuperCDMS Dark Matter Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Shank, Benjamin [Stanford Univ., CA (United States)

    2014-05-01

    The Cryogenic Dark Matter Search (SuperCDMS) relies on collection of phonons and charge carriers in semiconductors held at tens of milliKelvin as handles for detection of Weakly Interacting Massive Particles (WIMPs). This thesis begins with a brief overview of the direct dark matter search (Chapter 1) and SuperCDMS detectors (Chapter 2). In Chapter 3, a 3He evaporative refrigerator facility is described. Results from experiments performed in-house at Stanford to measure carrier transport in high-purity germanium (HPGe) crystals operated at sub-Kelvin temperatures are presented in Chapter 4. Finally, in Chapter 5 a new numerical model and a time-domain optimal filtering technique are presented, both developed for use with superconducting Transition Edge Sensors (TESs), that provide excellent event reconstruction for single particle interactions in detectors read out with superconducting W-TESs coupled to energy-collecting films of Al. This thesis is not intended to be read straight through. For those new to CDMS or dark matter searches, the first two chapters are meant to be a gentle introduction for experimentalists. They are by no means exhaustive. The remaining chapters each stand alone, with different audiences.

  10. N =1 super Feynman rules for any superspin: Noncanonical SUSY

    Science.gov (United States)

    Jiménez, Enrique

    2015-10-01

    Super Feynman rules for any superspin are given for massive N =1 supersymmetric theories, including momentum superspace on-shell legs. This is done by extending, from space to superspace, Weinberg's perturbative approach to quantum field theory. Superfields work just as a device that allow one to write super Poincaré-covariant superamplitudes for interacting theories, relying neither in path integral nor canonical formulations. Explicit transformation laws for particle states under finite supersymmetric transformations are offered. C , P , T , and R transformations are also worked out. A key feature of this formalism is that it does not require the introduction of auxiliary fields, and when introduced, their purpose is just to render supersymmetric invariant the time-ordered products in the Dyson series. The formalism is tested for the cubic scalar superpotential. It is found that when a superparticle is its own antisuperparticle the lowest-order correction of time-ordered products, together with its covariant part, corresponds to the Wess-Zumino model potential.

  11. Current algebras on super-Riemann surfaces

    International Nuclear Information System (INIS)

    Two-dimensional N=1 supersymmetric Yang-Mills theory is formulated in superspace, to examine the Ward identities for super Kac-Moody algebras on super-Riemann surfaces of genus g (≥ 2) in the path-integral formalism. To derive Green kernels, we use the theory of automorphic functions on super-Riemann surfaces in the Schottky parametrization. The Ward indentities are expressed in terms of the Poincare theta series. (orig.)

  12. Advance Neighbor Embedding for Image Super Resolution

    OpenAIRE

    Dr. Ruikar Sachin D; Mr. Wadhavane Tushar D

    2013-01-01

    This paper presents the Advance Neighbor embedding (ANE) method for image super resolution. The assumption of the neighbor-embedding (NE) algorithm for single-image super-resolution Reconstruction is that the feature spaces are locally isometric of low-resolution and high-resolution Patches. But, this is not true for Super Resolution because of one to many mappings between Low Resolution and High Resolution patches. Advance NE method minimize the problem occurred in NE using combine learning ...

  13. An Integrated Assessment of Super & Smart Grids

    OpenAIRE

    Ricci, Elena Claire

    2013-01-01

    We assess the optimality of investments in power grid innovation, under both technological options of Super and Smart Grids, using the WITCH model in the version that includes Super-Grids. Super Grids allow producing and trading of electricity generated by large scale concentrated solar power (CSP) plants in highly productive areas that are connected to the %demand centres through High Voltage Direct Current (HVDC) cables. We extend the model to include also Smart-Grids that allow: i) to incr...

  14. Single Image Super Resolution via Manifold Approximation

    OpenAIRE

    Dang, Chinh; Radha, Hayder

    2014-01-01

    Image super-resolution remains an important research topic to overcome the limitations of physical acquisition systems, and to support the development of high resolution displays. Previous example-based super-resolution approaches mainly focus on analyzing the co-occurrence properties of low resolution and high-resolution patches. Recently, we proposed a novel single image super-resolution approach based on linear manifold approximation of the high-resolution image-patch space [1]. The image ...

  15. Image Super Resolution Using Marginal Ditribution Prior

    OpenAIRE

    Ravishankar, S.; K.V.V. Murthy

    2010-01-01

    In this paper, we propose a new technique for image super-resolution. Given a single low resolution (LR) observation and a database consisting of low resolution images and their high resolution versions, we obtain super-resolution for the LR observation using regularization framework. First we obtain a close approximation of the super-resolved image using learning based technique. We learn high frequency details of the observation using Discrete Cosine Transform (DCT). The LR observation is r...

  16. Central regions of LIRGs: rings, hidden starbursts, Supernovae and star clusters

    Science.gov (United States)

    Väisänen, Petri; Escala, Andres; Kankare, Erkki; Kotilainen, Jari; Mattila, Seppo; Rajpaul, Vinesh; Randriamanakoto, Zara; Reunanen, Juha; Ryder, Stuart; Zijlstra, Albert

    2012-07-01

    We study star formation (SF) in very active environments, in luminous IR galaxies, which are often interacting. A variety of phenomena are detected, such as central starbursts, circumnuclear SF, obscured SNe tracing the history of recent SF, massive super star clusters, and sites of strong off-nuclear SF. All of these can be ultimately used to define the sequence of triggering and propagation of star-formation and interplay with nuclear activity in the lives of gas rich galaxy interactions and mergers. In this paper we present analysis of high-spatial resolution integral field spectroscopy of central regions of two interacting LIRGs. We detect a nuclear 3.3 μm PAH ring around the core of NGC 1614 with thermal-IR IFU observations. The ring's characteristics and relation to the strong star-forming ring detected in recombination lines are presented, as well as a scenario of an outward expanding starburst likely initiated with a (minor) companion detected within a tidal feature. We then present NIR IFU observations of IRAS 19115-2124, aka the Bird, which is an intriguing triple encounter. The third component is a minor one, but, nevertheless, is the source of 3/4 of the SFR of the whole system. Gas inflows and outflows are detected in their nuclei locations. Finally, we briefly report on our on-going NIR adaptive optics imaging survey of several dozen LIRGs. We have detected highly obscured core-collapse SNe in the central kpc, and discuss the statistics of "missing SNe" due to dust extinction. We are also determining the characteristics of hundreds of super star clusters in and around the core regions of LIRGs, as a function of host-galaxy properties.

  17. Massive Gravitons on Bohmian Congruences

    CERN Document Server

    Fathi, Mohsen

    2016-01-01

    Taking a quantum corrected form of Raychaudhuri equation in a geometric background described by a Lorentz-violating massive theory of gravity, we go through investigating a time-like congruence of massive gravitons affected by a Bohmian quantum potential. We find some definite conditions upon which these gravitons are confined to diverging Bohmian trajectories. The respective behaviour of those quantum potentials are also derived and discussed. Additionally, and through a relativistic quantum treatment of a typical wave function, we demonstrate schematic conditions on the associated frequency to the gravitons, in order to satisfy the necessity of divergence.

  18. Growing massive black holes through supercritical accretion of stellar-mass seeds

    Science.gov (United States)

    Lupi, A.; Haardt, F.; Dotti, M.; Fiacconi, D.; Mayer, L.; Madau, P.

    2016-03-01

    The rapid assembly of the massive black holes that power the luminous quasars observed at z ˜ 6-7 remains a puzzle. Various direct collapse models have been proposed to head-start black hole growth from initial seeds with masses ˜105 M⊙, which can then reach a billion solar mass while accreting at the Eddington limit. Here, we propose an alternative scenario based on radiatively inefficient supercritical accretion of stellar-mass holes embedded in the gaseous circumnuclear discs (CNDs) expected to exist in the cores of high-redshift galaxies. Our sub-pc resolution hydrodynamical simulations show that stellar-mass holes orbiting within the central 100 pc of the CND bind to very high density gas clumps that arise from the fragmentation of the surrounding gas. Owing to the large reservoir of dense cold gas available, a stellar-mass black hole allowed to grow at super-Eddington rates according to the `slim-disc' solution can increase its mass by three orders of magnitudes within a few million years. These findings are supported by simulations run with two different hydro codes, RAMSES based on the Adaptive Mesh Refinement technique and GIZMO based on a new Lagrangian Godunov-type method, and with similar, but not identical, sub-grid recipes for star formation, supernova feedback, black hole accretion and feedback. The low radiative efficiency of supercritical accretion flows are instrumental to the rapid mass growth of our black holes, as they imply modest radiative heating of the surrounding nuclear environment.

  19. Characterization of a NIMONIC TYPE super alloy

    International Nuclear Information System (INIS)

    Mechanical properties of strength and thermofluence of a NIMONIC type super alloy under thermal treatment was determined. The relationship between microstructure, phases and precipitates was also studied. (author)

  20. The super W∞ symmetry of the Manin-Radul super KP hierarchy

    International Nuclear Information System (INIS)

    We show that the Manin-Radul super KP hierarchy is invariant under super W∞ transformations. These transformations are characterized by time dependent flows which commute with the usual flows generated by the conserved quantities of the super KP hierarchy. (author). 16 refs

  1. Self-similar super universes

    Energy Technology Data Exchange (ETDEWEB)

    Sidharth, B.G. [International Institute for Applicable Mathematics and Information Sciences, Hyderabad (India) and International Institute for Applicable Mathematics and Information Sciences, Udine (Italy) and B.M. Birla Science Centre, Centre for Applicable Mathematics and Computer Sciences, Adarsh Nagar, Hyderabad 500 063 (India)]. E-mail: hyd1_birlasc@sancharnet.in

    2006-10-15

    The Hamilton-Jacobi theory of Classical Mechanics can be extended in a novel manner to systems which are fuzzy in the sense that they can be represented by wave functions. A constructive interference of the phases of the wave functions then gives us back Classical systems. In a suitable description this includes both Quantum Theory and General Relativity in the well known superspace formulation. This is generalized to non-smooth spaces a la El Naschie's Cantorian spacetime. However, there are several nuances which provide insight into these latter systems. All this is considered in this paper together with suitable generalization, to cascades of super universes.

  2. Notes on Super Killing Tensors

    CERN Document Server

    Howe, P S

    2015-01-01

    The notion of a Killing tensor is generalised to a superspace setting. Conserved quantities associated with these are defined for superparticles and Poisson brackets are used to define a supersymmetric version of the Schouten-Nijenhuis bracket. Superconformal Killing tensors in flat superspaces are studied for spacetime dimensions 3,4,5,6 and 10. These tensors are also presented in analytic superspaces and super-twistor spaces for 3,4 and 6 dimensions. Algebraic structures associated with superconformal Killing tensors are also briefly discussed

  3. Superconducting super collider magnet cryostat

    International Nuclear Information System (INIS)

    The proposed Superconducting Super Collider high energy physics research facility will entail one of the major cryogenic system undertakings of the next decade. The two 30 Km diameter accelerator rings contain an integrated system of ≅ 10,000 superconducting devices that must have low capital cost and operate reliably and efficiently over the lifetime of the machine. The design for the ≅ 8000 superconducting dipole magnet cryostats has been developed and evaluated by both component and systems tests. The details of the design are presented along with summaries of the experimental evaluations of the suspension system, insulation, transient phenomena, systems' performance, etc

  4. Compressive Point Cloud Super Resolution

    OpenAIRE

    Smith, Cody S.

    2012-01-01

    Automatic target recognition (ATR) is the ability for a computer to discriminate between different objects in a scene. ATR is often performed on point cloud data from a sensor known as a Ladar. Increasing the resolution of this point cloud in order to get a more clear view of the object in a scene would be of significant interest in an ATR application. A technique to increase the resolution of a scene is known as super resolution. This technique requires many low resolution images that can...

  5. Physics at Super B Factory

    CERN Document Server

    Aushev, T; Bondar, A; Brodzicka, J; Browder, T E; Chang, P; Chao, Y; Chen, K F; Dalseno, J; Drutskoy, A; Enari, Y; Gershon, T; Golob, B; Goto, T; Handa, F; Hara, K; Hashimoto, S; Hayashii, H; Hazumi, M; Higuchi, T; Hisano, J; Hou, W S; Iijima, T; Ikado, K; Inami, K; Itoh, H; Itoh, R; Ishino, H; Katayama, N; Keum, Y Y; Kinoshita, K; Kou, E; Križan, P; Krokovny, P; Kurimoto, T; Kwon, Y; Limosani, A; Matsumoto, T; Morozumi, T; Nakahama, Y; Nakao, M; Nishida, S; Ohshima, T; Okada, Y; Okumura, K; Olsen, S L; Onogi, T; Pakhlova, G; Palka, H; Pakhlov, P; Poluektov, A; Recksiegel, S; Sagawa, H; Saigo, M; Sakai, Y; Sanda, A I; Schwanda, C; Schwartz, A; Senyo, K; Shimizu, Y; Shindou, T; Sinha, R; Starič, M; Sumisawa, K; Tanaka, M; Trabelsi, K; Urquijo, P; Ushiroda, Y; Won, E; Yamamoto, H; Yamauchi, M; Yoshikawa, T; Zupan, J

    2010-01-01

    This report presents the results of studies that investigate the physics reach at a Super $B$ factory, an asymmetric-energy $e^+e^-$ collider with a design luminosity of $8 \\times 10^{35}$ cm$^{-2}$s$^{-1}$, which is around 50 times as large as the peak luminosity achieved by the KEKB collider. The studies focus on flavor physics and CP violation measurements that could be carried out in the LHC era. The physics motivation, key observables, measurement methods and expected precisions are presented.

  6. Notes on super Killing tensors

    Science.gov (United States)

    Howe, P. S.; Lindström, U.

    2016-03-01

    The notion of a Killing tensor is generalised to a superspace setting. Conserved quantities associated with these are defined for superparticles and Poisson brackets are used to define a supersymmetric version of the even Schouten-Nijenhuis bracket. Superconformal Killing tensors in flat superspaces are studied for spacetime dimensions 3,4,5,6 and 10. These tensors are also presented in analytic superspaces and super-twistor spaces for 3,4 and 6 dimensions. Algebraic structures associated with superconformal Killing tensors are also briefly discussed.

  7. Results from Super-Kamiokande

    International Nuclear Information System (INIS)

    Super-Kamiokande has updated the results on solar and atmospheric neutrinos with data corresponding to 830-920 live days. We here present the results on the energy spectrum and day-night variation of solar neutrinos. We also present the updated results on the zenith-angle distributions of fully-contained events, partially-contained events, through-going muons and stopping muons produced by atmospheric neutrinos. A new analysis for distinguishing νμ → ντ and νμ → νs oscillations is presented. The results disfavors νμ → νs oscillation at about 2σ level

  8. Exclusive physics at the LHC with SuperChic 2

    Energy Technology Data Exchange (ETDEWEB)

    Harland-Lang, L.A. [University College London, Department of Physics and Astronomy, London (United Kingdom); Khoze, V.A. [University of Durham, Institute for Particle Physics Phenomenology, Durham (United Kingdom); NRC Kurchatov Institute, Gatchina, Petersburg Nuclear Physics Institute, St. Petersburg (Russian Federation); Ryskin, M.G. [NRC Kurchatov Institute, Gatchina, Petersburg Nuclear Physics Institute, St. Petersburg (Russian Federation)

    2016-01-15

    We present a range of physics results for central exclusive production processes at the LHC, using the new SuperChic 2 Monte Carlo event generator. This includes significant theoretical improvements and updates, most importantly a fully differential treatment of the soft survival factor, as well as a greater number of generated processes. We provide an overview of the latest theoretical framework, and consider in detail a selection of final states, namely exclusive 2 and 3 jets, photoproduced vector mesons, two-photon initiated muon and W boson pairs and heavy χ{sub c,b} quarkonia. (orig.)

  9. Exclusive physics at the LHC with SuperChic 2

    Energy Technology Data Exchange (ETDEWEB)

    Harland-Lang, L. A., E-mail: l.harland-lang@ucl.ac.uk [Department of Physics and Astronomy, University College London, WC1E 6BT, London (United Kingdom); Khoze, V. A. [Institute for Particle Physics Phenomenology, University of Durham, DH1 3LE, Durham (United Kingdom); Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, 188300, St. Petersburg (Russian Federation); Ryskin, M. G. [Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, 188300, St. Petersburg (Russian Federation)

    2016-01-06

    We present a range of physics results for central exclusive production processes at the LHC, using the new SuperChic 2 Monte Carlo event generator. This includes significant theoretical improvements and updates, most importantly a fully differential treatment of the soft survival factor, as well as a greater number of generated processes. We provide an overview of the latest theoretical framework, and consider in detail a selection of final states, namely exclusive 2 and 3 jets, photoproduced vector mesons, two-photon initiated muon and W boson pairs and heavy χ{sub c,b} quarkonia.

  10. Black holes in Born-Infeld extended new massive gravity

    International Nuclear Information System (INIS)

    In this paper we find different types of black holes for the Born-Infeld extended new massive gravity. Our solutions include (un)charged warped (anti-)de Sitter black holes for four and six derivative expanded action. We also look at the black holes in unexpanded Born-Infeld action. In each case we calculate the entropy, angular momentum and mass of the black holes. We also find the central charges for the conformal field theory duals.

  11. Hot super-Earths and giant planet cores from different migration histories

    CERN Document Server

    Cossou, Christophe; Hersant, Franck; Pierens, Arnaud

    2014-01-01

    Planetary embryos embedded in gaseous protoplanetary disks undergo Type I orbital migration. Migration can be inward or outward depending on the local disk properties but, in general, only planets more massive than several $M_\\oplus$ can migrate outward. Here we propose that an embryo's migration history determines whether it becomes a hot super-Earth or the core of a giant planet. Systems of hot super-Earths (or mini-Neptunes) form when embryos migrate inward and pile up at the inner edge of the disk. Giant planet cores form when inward-migrating embryos become massive enough to switch direction and migrate outward. We present simulations of this process using a modified N-body code, starting from a swarm of planetary embryos. Systems of hot super-Earths form in resonant chains with the innermost planet at or interior to the disk inner edge. Resonant chains are disrupted by late dynamical instabilities triggered by the dispersal of the gaseous disk. Giant planet cores migrate outward toward zero-torque zones...

  12. The first massive black holes

    OpenAIRE

    Volonteri, Marta

    2012-01-01

    I briefly outline recent theoretical developments on the formation of the first massive black holes (MBHs) that may grow into the population of MBHs powering quasars and inhabiting galactic centers today. I also touch upon possible observational tests that may give insights on what the properties of the first MBHs were.

  13. Chiral Invariance of Massive Fermions

    OpenAIRE

    Das, A.(University of Arizona, Tucson, AZ, 85721, USA); Hott, M

    1994-01-01

    We show that a massive fermion theory, while not invariant under the conventional chiral transformation, is invariant under a $m$-deformed chiral transformation. These transformations and the associated conserved charges are nonlocal but reduce to the usual transformations and charges when $m=0$. The $m$-deformed charges commute with helicity and satisfy the conventional chiral algebra.

  14. Fundamental Parameters of Massive Stars

    OpenAIRE

    Crowther, Paul A.

    2003-01-01

    We discuss the determination of fundamental parameters of `normal' hot, massive OB-type stars, namely temperatures, luminosities, masses, gravities and surface abundances. We also present methods used to derive properties of stellar winds -- mass-loss rates and wind velocities from early-type stars.

  15. Massive Hybrid Stars with Strangeness

    CERN Document Server

    Takatsuka, Tatsuyuki; Masuda, Kota

    2014-01-01

    How massive the hybrid stars could be is discussed by a "3-window model" proposed from a new strategy to construct the equation of state with hadron-quark transition. It is found that hybrid stars have a strong potentiality to generate a large mass compatible with two-solar-mass neutron star observations.

  16. Massively parallel quantum computer simulator

    NARCIS (Netherlands)

    De Raedt, K.; Michielsen, K.; De Raedt, H.; Trieu, B.; Arnold, G.; Richter, M.; Lippert, Th.; Watanabe, H.; Ito, N.

    2007-01-01

    We describe portable software to simulate universal quantum computers on massive parallel Computers. We illustrate the use of the simulation software by running various quantum algorithms on different computer architectures, such as a IBM BlueGene/L, a IBM Regatta p690+, a Hitachi SR11000/J1, a Cray

  17. The dynamical fingerprint of core scouring in massive elliptical galaxies

    CERN Document Server

    Thomas, J; Bender, R; Erwin, P; Fabricius, M

    2013-01-01

    The most massive elliptical galaxies have low density centers or cores that differ dramatically from the high-density centres of less massive ellipticals and bulges of disk galaxies. These cores have been interpreted as the result of mergers of supermassive black hole binaries, which depopulate galaxy centres by gravitationally slingshotting central stars towards large radii. Such binaries naturally form in mergers of luminous galaxies. Here we analyse the population of central stellar orbits in 11 massive elliptical galaxies that we observed with the integral-field spectrograph SINFONI at the ESO-VLT. Our dynamical analysis is orbit-based and includes the effects of a central black hole, the mass distribution of the stars and a dark-matter halo. We show that the use of integral-field kinematics and the inclusion of dark matter is important to conclude upon the distribution of stellar orbits in galaxy centers. Six of our galaxies are core galaxies. In these six galaxies, but not in the galaxies without cores,...

  18. Classification of Low Dimensional Lie Super-Bialgebras

    OpenAIRE

    Juszczak, Cezary; Sobczyk, Jan T.

    1997-01-01

    A thorough analysis of Lie super-bialgebra structures on Lie super-algebras osp(1|2) and super-e(2) is presented. Combined technique of computer algebraic computations and a subsequent identification of equivalent structures is applied. In all the cases Poisson-Lie brackets on supergroups are found. Possibility of quantizing them in order to obtain quantum groups is discussed. It turns out to be straightforward for all but one structures for super-E(2) group.

  19. SEA: a super-enhancer archive.

    Science.gov (United States)

    Wei, Yanjun; Zhang, Shumei; Shang, Shipeng; Zhang, Bin; Li, Song; Wang, Xinyu; Wang, Fang; Su, Jianzhong; Wu, Qiong; Liu, Hongbo; Zhang, Yan

    2016-01-01

    Super-enhancers are large clusters of transcriptional enhancers regarded as having essential roles in driving the expression of genes that control cell identity during development and tumorigenesis. The construction of a genome-wide super-enhancer database is urgently needed to better understand super-enhancer-directed gene expression regulation for a given biology process. Here, we present a specifically designed web-accessible database, Super-Enhancer Archive (SEA, http://sea.edbc.org). SEA focuses on integrating super-enhancers in multiple species and annotating their potential roles in the regulation of cell identity gene expression. The current release of SEA incorporates 83 996 super-enhancers computationally or experimentally identified in 134 cell types/tissues/diseases, including human (75 439, three of which were experimentally identified), mouse (5879, five of which were experimentally identified), Drosophila melanogaster (1774) and Caenorhabditis elegans (904). To facilitate data extraction, SEA supports multiple search options, including species, genome location, gene name, cell type/tissue and super-enhancer name. The response provides detailed (epi)genetic information, incorporating cell type specificity, nearby genes, transcriptional factor binding sites, CRISPR/Cas9 target sites, evolutionary conservation, SNPs, H3K27ac, DNA methylation, gene expression and TF ChIP-seq data. Moreover, analytical tools and a genome browser were developed for users to explore super-enhancers and their roles in defining cell identity and disease processes in depth. PMID:26578594

  20. Tetrahedral Units: For Dodecahedral Super-Structures

    CERN Document Server

    Ortiz, Y; Liebman, J F

    2016-01-01

    Different novel organic-chemical possibilities for tetrahedral building units are considered, with attention to their utility in constructing different super-structures. As a representative construction we consider the use of sets of 20 such identical tetrahedral units to form a super-dodecahedron.

  1. Quaternion Generalization of Super Poincare Group

    CERN Document Server

    Chauhan, Bhupendra C S

    2015-01-01

    Super Poincare algebra in D = 6 space-time dimensions has been analysed in terms of quaternion analyticity of Lorentz group. Starting the connection of quaternion Lorentz group with SO(1; 5) group, the SL(2;H) spinors for Dirac & Weyl representations of Poincare group are described consistently to extend the Poincare algebra to Super Poincare algebra for D = 6 space-time.

  2. Temporal Super Resolution Using Variation Methods

    DEFF Research Database (Denmark)

    Keller, Sune Høgild; Lauze, Francois Bernard; Nielsen, Mads

    2010-01-01

    Temporal super resolution (TSR) is the ability to convert video from one frame rate to another and is as such a key functionality in modern video processing systems. A higher frame rate than what is recorded is desired for high frame rate displays, for super slow-motion, and for video/film format...

  3. Massive black holes interactions during the assembly of heavy sub-structures in the centre of galaxy clusters

    CERN Document Server

    Donnari, M; Merafina, M

    2016-01-01

    We performed a series of direct N-body simulations with the aim to follow the dynamical evolution of a galaxy cluster (GC) ($M_{clus}\\simeq 10^{14} M_{\\odot}$) in different environment. The results show the formation of heavy sub-structures in the cluster centre in consequence of multiple merging among the innermost galaxies. Moreover we investigate the dynamics of super-massive black holes (SMBHs) residing in the centre of galaxies that form the most massive sub-structure.

  4. Super-radiance and flux conservation

    CERN Document Server

    Boonserm, Petarpa; Visser, Matt

    2014-01-01

    The theoretical foundations of the phenomenon known as super-radiance still continues to attract considerable attention. Despite many valiant attempts at pedagogically clear presentations, the effect nevertheless still continues to generate some significant confusion. Part of the confusion arises from the fact that super-radiance in a quantum field theory [QFT] context is not the same as super-radiance (super-fluorescence) in some condensed matter contexts; part of the confusion arises from traditional but sometimes awkward normalization conventions, and part is due to sometimes unnecessary confusion between fluxes and probabilities. We shall argue that the key point underlying the effect is flux conservation, (and, in the presence of dissipation, a controlled amount of flux non-conservation), and that attempting to phrase things in terms of reflection and transmission probabilities only works in the absence of super-radiance. To help clarify the situation we present a simple exactly solvable toy model exhibi...

  5. Ending Aging in Super Glassy Polymer Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Lau, CH; Nguyen, PT; Hill, MR; Thornton, AW; Konstas, K; Doherty, CM; Mulder, RJ; Bourgeois, L; Liu, ACY; Sprouster, DJ; Sullivan, JP; Bastow, TJ; Hill, AJ; Gin, DL; Noble, RD

    2014-04-16

    Aging in super glassy polymers such as poly(trimethylsilylpropyne) (PTMSP), poly(4-methyl-2-pentyne) (PMP), and polymers with intrinsic microporosity (PIM-1) reduces gas permeabilities and limits their application as gas-separation membranes. While super glassy polymers are initially very porous, and ultra-permeable, they quickly pack into a denser phase becoming less porous and permeable. This age-old problem has been solved by adding an ultraporous additive that maintains the low density, porous, initial stage of super glassy polymers through absorbing a portion of the polymer chains within its pores thereby holding the chains in their open position. This result is the first time that aging in super glassy polymers is inhibited whilst maintaining enhanced CO2 permeability for one year and improving CO2/N-2 selectivity. This approach could allow super glassy polymers to be revisited for commercial application in gas separations.

  6. Ending aging in super glassy polymer membranes.

    Science.gov (United States)

    Lau, Cher Hon; Nguyen, Phuc Tien; Hill, Matthew R; Thornton, Aaron W; Konstas, Kristina; Doherty, Cara M; Mulder, Roger J; Bourgeois, Laure; Liu, Amelia C Y; Sprouster, David J; Sullivan, James P; Bastow, Timothy J; Hill, Anita J; Gin, Douglas L; Noble, Richard D

    2014-05-19

    Aging in super glassy polymers such as poly(trimethylsilylpropyne) (PTMSP), poly(4-methyl-2-pentyne) (PMP), and polymers with intrinsic microporosity (PIM-1) reduces gas permeabilities and limits their application as gas-separation membranes. While super glassy polymers are initially very porous, and ultra-permeable, they quickly pack into a denser phase becoming less porous and permeable. This age-old problem has been solved by adding an ultraporous additive that maintains the low density, porous, initial stage of super glassy polymers through absorbing a portion of the polymer chains within its pores thereby holding the chains in their open position. This result is the first time that aging in super glassy polymers is inhibited whilst maintaining enhanced CO2 permeability for one year and improving CO2/N2 selectivity. This approach could allow super glassy polymers to be revisited for commercial application in gas separations. PMID:24740816

  7. Search for neutrinos from annihilation of captured low-mass dark matter particles in the Sun by Super-Kamiokande

    OpenAIRE

    collaboration, The Super-Kamiokande; :; K. Choi; Abe, K.; Haga, Y.; Hayato, Y.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.(University of Tokyo, Institute for Cosmic Ray Research, Kamioka Observatory, Kamioka, Japan); Nakano, Y.; Nakayama, S.; Sekiya, H.

    2015-01-01

    Super-Kamiokande (SK) can search for weakly interacting massive particles (WIMPs) by detecting neutrinos produced from WIMP annihilations occurring inside the Sun. In this analysis, we include neutrino events with interaction vertices in the detector in addition to upward-going muons produced in the surrounding rock. Compared to the previous result, which used the upward-going muons only, the signal acceptances for light (few-GeV/$c^2$ $\\sim$ 200-GeV/$c^2$) WIMPs are significantly increased. ...

  8. RADIATION PRESSURE FROM MASSIVE STAR CLUSTERS AS A LAUNCHING MECHANISM FOR SUPER-GALACTIC WINDS

    International Nuclear Information System (INIS)

    Galactic outflows of cool (∼104 K) gas are ubiquitous in local starburst galaxies and in most high-redshift galaxies. Hot gas from supernovae has long been suspected as the primary driver, but this mechanism suffers from its tendency to destroy the cool gas. We propose a modification of the supernova scenario that overcomes this difficulty. Star formation is observed to take place in clusters. We show that, for L* galaxies, the radiation pressure from clusters with Mcl ∼> 106 Msun is able to expel the surrounding gas at velocities in excess of the circular velocity vc of the disk galaxy. This cool gas travels above the galactic disk before supernovae erupt in the driving cluster. Once above the disk, the cool outflowing gas is exposed to radiation and hot gas outflows from the galactic disk, which in combination drive it to distances of ∼50 kpc. Because the radiatively driven clouds grow in size as they travel, and because the hot gas is more dilute at large distance, the clouds are less subject to destruction. Therefore, unlike wind-driven clouds, radiatively driven clouds can give rise to the metal absorbers seen in quasar spectra. We identify these cluster-driven winds with large-scale galactic outflows. The maximum cluster mass in a galaxy is an increasing function of the galaxy's gas surface density, so only starburst galaxies are able to drive cold outflows. We find the critical star formation rate for launching large-scale cool outflows to be Σ-dot*crit approx. 0.05 Msun yr-1 kpc-2, in good agreement with observations.

  9. Super-massive binary black holes and emission lines in active galactic nuclei

    CERN Document Server

    Popovic, Luka C

    2011-01-01

    The broad emission spectral lines emitted from AGNs are our main probe of the geometry and physics of the broad line region (BLR) close to the SMBH. There is a group of AGNs that emits very broad and complex line profiles, showing two displaced peaks, one blueshifted and one redshifted from the systemic velocity defined by the narrow lines, or a single such peak. It has been proposed that such line shapes could indicate a supermassive binary black hole (SMB) system. We discuss here how the presence of an SMB will affect the BLRs of AGNs and what the observational consequences might be. We review previous claims of SMBs based on broad line profiles and find that they may have non-SMB explanations as a consequence of a complex BLR structure. Because of these effects it is very hard to put limits on the number of SMBs from broad line profiles. It is still possible, however, that unusual broad line profiles in combination with other observational effects (line ratios, quasi-periodical oscillations, spectropolarim...

  10. The EXIST view of Super-Massive Black Holes in the Universe

    CERN Document Server

    Della Ceca, Roberto; Tagliaferri, Gianpiero; Foschini, Luigi; Pareschi, Giovanni; Tavecchio, Fabrizio; Coppi, Paolo; Grindlay, Josh E; Fiocchi, Maria Teresa; Natalucci, Lorenzo; Panessa, Francesca; Ubertini, Pietro

    2009-01-01

    With its large collection area, broad-band energy coverage from optical/NIR (0.3 to 2.2 micron) to soft/hard X-ray (0.1-600 keV), all-sky monitoring capability, and on-board follow-up, the proposed Energetic X-ray Imaging Survey Telescope mission (EXIST, see L. Natalucci contribution at this conference) has been designed to properly tackle the study of the AGN phenomenon and the role that SMBH play in the Universe. In particular EXIST will carry out an unprecedented survey above 10 keV (a factor ~20 increase in hard X-ray sensitivity compared to current and prior X-ray missions) of SMBH activity, not just in space but also in time and over a significant expanded energy range; this strategy will overcome previous selection biases, will break the "multi-wavelength" identification bottleneck and will dramatically increase the number of AGN detected above 10 keV that are amenable to detailed follow-up studies (~50000 AGN are expected). We discuss here on few selected AGN science topics enabled by the unique combi...

  11. Unification of the Fundamental Plane and Super-Massive Black Holes Masses

    OpenAIRE

    Bosch, Remco van den

    2016-01-01

    According to the Virial Theorem, all gravitational systems in equilibrium sit on a plane in the 3D parameter space defined by their mass, size and second moment of the velocity tensor. While these quantities cannot be directly observed, there are suitable proxies: the luminosity Lk, half-light radius Re and dispersion sigma_e. These proxies indeed lie on a very tight Fundamental Plane (FP). How do the black holes in the centers of galaxies relate to the FP? Their masses are known to exhibit n...

  12. Radiation pressure from massive star clusters as a launching mechanism for super-galactic winds

    OpenAIRE

    Murray, Norman; Ménard, Brice; Thompson, Todd A.

    2010-01-01

    Galactic outflows of low ionization, cool gas are ubiquitous in local starburst galaxies, and in the majority of galaxies at high redshift. How these cool outflows arise is still in question. Hot gas from supernovae has long been suspected as the primary driver, but this mechanism suffers from its tendency to destroy the cool gas as the latter is accelerated. We propose a modification of the supernova scenario that overcomes this difficulty. Star formation is observed to take place in cluster...

  13. Star Clusters and Super Massive Black Holes: High Velocity Stars Production

    CERN Document Server

    Fragione, Giacomo

    2016-01-01

    One possible origin of high velocity stars in the Galaxy is that they are the product of the interaction of binary systems and supermassive black holes. We investigate a new production channel of high velocity stars as due to the close interaction between a star cluster and supermassive black holes in galactic centres. The high velocity acquired by some stars of the cluster comes from combined effect of extraction of their gravitational binding energy and from the slingshot due to the interaction with the black holes. Stars could reach a velocity sufficient to travel in the halo and even overcome the galactic potential well, while some of them are just stripped from the cluster and start orbiting around the galactic centre.

  14. Unification of the Fundamental Plane and Super-Massive Black Holes Masses

    CERN Document Server

    Bosch, Remco van den

    2016-01-01

    According to the Virial Theorem, all gravitational systems in equilibrium sit on a plane in the 3D parameter space defined by their mass, size and second moment of the velocity tensor. While these quantities cannot be directly observed, there are suitable proxies: the luminosity Lk, half-light radius Re and dispersion sigma_e. These proxies indeed lie on a very tight Fundamental Plane (FP). How do the black holes in the centers of galaxies relate to the FP? Their masses are known to exhibit no strong correlation with total galaxy mass, but they do correlate weakly with bulge mass (when present), and extremely well with the velocity dispersion through the Mbh = sigma_e^5.3 relation. These facts together imply that a tight plane must also exist defined by black hole mass, total galaxy mass and size. Here I show that this is indeed the case using a heterogeneous set of 225 black holes. The sample includes BHs from zero to 10 billion solar masses and host galaxies ranging from low surface brightness dwarfs, throu...

  15. Dusty Supernovae Running the Thermodynamics of the Matter Reinserted within Young and Massive Super Stellar Clusters

    Czech Academy of Sciences Publication Activity Database

    Tenorio-Tagle, G.; Silich, S.; Martinez-Gonzalez, S.; Munoz-Tunon, C.; Palouš, Jan; Wünsch, Richard

    2013-01-01

    Roč. 778, č. 2 (2013), 159/1-159/6. ISSN 0004-637X R&D Projects: GA ČR GAP209/12/1795 Institutional support: RVO:67985815 Keywords : dust * extinction * galaxie Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 6.280, year: 2013

  16. OGLE16aaa - a Signature of a Hungry Super Massive Black Hole

    CERN Document Server

    Wyrzykowski, Łukasz; Kostrzewa-Rutkowska, Z; Hamanowicz, A; Jonker, P G; Arcavi, I; Guillochon, J; Brown, P J; Kozłowski, S; Udalski, A; Szymański, M K; Soszyński, I; Poleski, R; Pietrukowicz, P; Skowron, J; Mróz, P; Ulaczyk, K; Pawlak, M; Rybicki, K A; Greiner, J; Krühler, T; Bolmer, J

    2016-01-01

    We present the discovery and first three months of follow-up observations of a currently on-going unusual transient detected by the OGLE-IV survey, located in the centre of a galaxy at redshift z=0.1655. The long rise to absolute magnitude of -20.5 mag, slow decline, very broad He and H spectral features make OGLE16aaa similar to other optical/UV Tidal Disruption Events (TDEs). Weak narrow emission lines in the spectrum and archival photometric observations suggest the host galaxy is a weak-line Active Galactic Nucleus (AGN), which has been accreting at higher rate in the past. OGLE16aaa, along with SDSS J0748, seems to form a sub-class of TDEs by weakly or recently active supermassive black holes (SMBHs). This class might bridge the TDEs by quiescent SMBHs and flares observed as "changing-look QSOs", if we interpret the latter as TDEs. If this picture is true, the previously applied requirement for identifying a flare as a TDE that it had to come from an inactive nucleus, could be leading to observational bi...

  17. Massive Gravity: A Lorentz-Symmetric Aether

    OpenAIRE

    Mirbabayi, Mehrdad

    2014-01-01

    This is a heuristic introduction to massive gravity based on an analogy with perfect fluids. I will argue that massive gravity can be thought of as Einstein gravity in the presence of a medium with unusual properties.

  18. BPS Equations in Omega-deformed N=4 Super Yang-Mills Theory

    CERN Document Server

    Ito, Katsushi; Nakajima, Hiroaki; Sasaki, Shin

    2015-01-01

    We study supersymmetry of N=4 super Yang-Mills theory in four dimensions deformed in the Omega-background. We take the Nekrasov-Shatashvili limit of the background so that two-dimensional super Poincare symmetry is recovered. We compute the deformed central charge of the superalgebra and study the 1/2 and 1/4 BPS states. We obtain the Omega-deformed 1/2 and 1/4 BPS dyon equations from the deformed supersymmetry transformation and the Bogomol'nyi completion of the energy.

  19. Massive Kaluza-Klein Gravity

    CERN Document Server

    Cunha, D C N

    2013-01-01

    The non-Abelian Kaluza-Klein unification of gravitation with gauge fields theory is reformulated, with the inclusion of a massive spin-2 field defined by the extrinsic curvature. The internal space is non-compact, characterized by the group of rotations of vectors orthogonal to the space-time. The non-compactness of the internal space warrants the solution of the fermion chirality problem of the original Kaluza-Klein theory and makes it closer to the more recent Brane World paradigm, in special to the so called DGP model. However, the access of gravitation to the extra dimensions is defined by the mentioned massive spin-2 field obeying the Fierz-Pauli equation. The existence of a short range gravitational component makes possible to apply the modified Kaluza-Klein unification to the Tev scale of energies.

  20. Minimal theory of massive gravity

    CERN Document Server

    De Felice, Antonio

    2016-01-01

    We propose a new theory of massive gravity with only two propagating degrees of freedom. After defining the theory in the unitary gauge in the vielbein language, we shall perform a Hamiltonian analysis to count the number of physical degrees of freedom, and then study some phenomenologies. While the homogeneous and isotropic background cosmology and the tensor linear perturbations around it are described by exactly the same equations as those in the de Rham - Gabadadze - Tolley (dRGT) massive gravity, the scalar and vector gravitational degrees of freedom are absent in the new theory at the fully nonlinear level. Hence the new theory provides a stable nonlinear completion of the self-accelerating cosmological solution that was originally found in the dRGT theory.

  1. Cleaning Massive Sonar Point Clouds

    DEFF Research Database (Denmark)

    Arge, Lars Allan; Larsen, Kasper Green; Mølhave, Thomas;

    2010-01-01

    We consider the problem of automatically cleaning massive sonar data point clouds, that is, the problem of automatically removing noisy points that for example appear as a result of scans of (shoals of) fish, multiple reflections, scanner self-reflections, refraction in gas bubbles, and so on. We...... describe a new algorithm that avoids the problems of previous local-neighbourhood based algorithms. Our algorithm is theoretically I/O-efficient, that is, it is capable of efficiently processing massive sonar point clouds that do not fit in internal memory but must reside on disk. The algorithm is also...... relatively simple and thus practically efficient, partly due to the development of a new simple algorithm for computing the connected components of a graph embedded in the plane. A version of our cleaning algorithm has already been incorporated in a commercial product....

  2. Orbital period changes and the higher-order multiplicity fraction amongst SuperWASP eclipsing binaries

    CERN Document Server

    Lohr, M E; Payne, S G; West, R G; Wheatley, P J

    2015-01-01

    Orbital period changes of binary stars may be caused by the presence of a third massive body in the system. Here we have searched the archive of the Wide Angle Search for Planets (SuperWASP) project for evidence of period variations in 13927 eclipsing binary candidates. Sinusoidal period changes, strongly suggestive of third bodies, were detected in 2% of cases; however, linear period changes were observed in a further 22% of systems. We argue on distributional grounds that the majority of these apparently linear changes are likely to reflect longer-term sinusoidal period variations caused by third bodies, and thus estimate a higher-order multiplicity fraction of 24% for SuperWASP binaries, in good agreement with other recent figures for the fraction of triple systems amongst binary stars in general.

  3. Hidden Ghost in Massive gravity

    OpenAIRE

    Chamseddine, Ali H.; Mukhanov, Viatcheslav(Theoretical Physics, Ludwig Maxmillians University, Theresienstr. 37, 80333, Munich, Germany)

    2013-01-01

    The Hessian's determinant for a version of massive gravity given by an infinite expansion of a square root function of the induced metric, vanishes. We show that it allows us to eliminate one of four scalar fields used to generate the graviton mass. This, however, gives rise to the appearance of extra terms in the action with the squared time derivative of the metric, thus signaling that a nonlinear ghost survives.We demonstrate this phenomenon considering a simple system with constraint, whi...

  4. Engaging with Massive Online Courses

    OpenAIRE

    Anderson, Ashton; Huttenlocher, Daniel; Kleinberg, Jon; Leskovec, Jure

    2014-01-01

    The Web has enabled one of the most visible recent developments in education---the deployment of massive open online courses. With their global reach and often staggering enrollments, MOOCs have the potential to become a major new mechanism for learning. Despite this early promise, however, MOOCs are still relatively unexplored and poorly understood. In a MOOC, each student's complete interaction with the course materials takes place on the Web, thus providing a record of learner activity of ...

  5. Efficient, massively parallel eigenvalue computation

    Science.gov (United States)

    Huo, Yan; Schreiber, Robert

    1993-01-01

    In numerical simulations of disordered electronic systems, one of the most common approaches is to diagonalize random Hamiltonian matrices and to study the eigenvalues and eigenfunctions of a single electron in the presence of a random potential. An effort to implement a matrix diagonalization routine for real symmetric dense matrices on massively parallel SIMD computers, the Maspar MP-1 and MP-2 systems, is described. Results of numerical tests and timings are also presented.

  6. The Massive Thermal Basketball Diagram

    CERN Document Server

    Andersen, J O; Strickland, Michael T; Andersen, Jens O.; Braaten, Eric; Strickland, Michael

    2000-01-01

    The "basketball diagram" is a three-loop vacuum diagram for a scalar fieldtheory that cannot be expressed in terms of one-loop diagrams. We calculatethis diagram for a massive scalar field at nonzero temperature, reducing it toexpressions involving three-dimensional integrals that can be easily evaluatednumerically. We use this result to calculate the free energy for a massivescalar field with a phi^4 interaction to three-loop order.

  7. Massive dilaton and topological gravity

    CERN Document Server

    La, H S

    1995-01-01

    A model in which the massive dilaton is introduced by minimally extending the two dimensional topological gravity is studied semi-classically. The theory is no longer topological because of the explicit Weyl scale symmetry breaking. Due to the dilaton the semiclassical stress-energy tensor gets renormalized and it is shown how the gravitational background coupled to the the dilaton depends on the dilaton mass as well as the renormalization mass scale, but not on the Newton's constant.

  8. Massive Electrodynamics and Magnetic Monopoles

    OpenAIRE

    Israelit, Mark

    1996-01-01

    Including torsion in the geometric framework of the Weyl-Dirac theory we build up an action integral, and obtain from it a gauge covariant (in the Weyl sense) general relativistic massive electrodynamics. Photons having an arbitrary mass, electric, and magnetic currents (Dirac's monopole) coexist within this theory. Assuming that the space-time is torsionless, taking the photons mass zero, and turning to the Einstein gauge we obtain Maxwell's electrodynamics.

  9. On maximal massive 3D supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Bergshoeff, Eric A; Rosseel, Jan [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Hohm, Olaf [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Townsend, Paul K, E-mail: E.A.Bergshoeff@rug.n, E-mail: ohohm@mit.ed, E-mail: j.rosseel@rug.n, E-mail: P.K.Townsend@damtp.cam.ac.u [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2010-12-07

    We construct, at the linearized level, the three-dimensional (3D) N=4 supersymmetric 'general massive supergravity' and the maximally supersymmetric N=8 'new massive supergravity'. We also construct the maximally supersymmetric linearized N=7 topologically massive supergravity, although we expect N=6 to be maximal at the nonlinear level.

  10. On Maximal Massive 3D Supergravity

    CERN Document Server

    Bergshoeff, Eric A; Rosseel, Jan; Townsend, Paul K

    2010-01-01

    We construct, at the linearized level, the three-dimensional (3D) N = 4 supersymmetric "general massive supergravity" and the maximally supersymmetric N = 8 "new massive supergravity". We also construct the maximally supersymmetric linearized N = 7 topologically massive supergravity, although we expect N = 6 to be maximal at the non-linear level.

  11. On maximal massive 3D supergravity

    International Nuclear Information System (INIS)

    We construct, at the linearized level, the three-dimensional (3D) N=4 supersymmetric 'general massive supergravity' and the maximally supersymmetric N=8 'new massive supergravity'. We also construct the maximally supersymmetric linearized N=7 topologically massive supergravity, although we expect N=6 to be maximal at the nonlinear level.

  12. Super congruences and Euler numbers

    OpenAIRE

    Sun, Zhi-Wei

    2010-01-01

    Let $p>3$ be a prime. We prove that $$\\sum_{k=0}^{p-1}\\binom{2k}{k}/2^k=(-1)^{(p-1)/2}-p^2E_{p-3} (mod p^3),$$ $$\\sum_{k=1}^{(p-1)/2}\\binom{2k}{k}/k=(-1)^{(p+1)/2}8/3*pE_{p-3} (mod p^2),$$ $$\\sum_{k=0}^{(p-1)/2}\\binom{2k}{k}^2/16^k=(-1)^{(p-1)/2}+p^2E_{p-3} (mod p^3)$$, where E_0,E_1,E_2,... are Euler numbers. Our new approach is of combinatorial nature. We also formulate many conjectures concerning super congruences and relate most of them to Euler numbers or Bernoulli numbers. Motivated by ...

  13. Super-Hubble Supergravity Inflation

    CERN Document Server

    Mazumdar, Anupam; Stephens, Philip

    2011-01-01

    It is well known that large Hubble-induced supergravity corrections to the inflaton field can ruin the flatness of the potential, thus creating a tension between slow-roll inflation and supergravity. In this paper we show that it is possible to obtain a cosmologically flat direction, embedded within the MSSM (Minimal Supersymmetric Standard Model), in spite of very large super-Hubble corrections. As an illustration, we show that a flat direction which is lifted by $n=6$ operator matches the current cosmic microwave background data for a wide range of Hubble parameters, i.e. $10^{5} {\\rm GeV}\\lesssim H_{inf}\\lesssim 10^{8.5}$ GeV. Our results are generic and can be applicable to any $F$-term inflationary models.

  14. Fragmentation of Massive Protostellar Disks

    CERN Document Server

    Kratter, K M; Kratter, Kaitlin M.; Matzner, Christopher D.

    2006-01-01

    We examine whether massive-star accretion disks are likely to fragment due to self-gravity. Rapid accretion and high angular momentum push these disks toward fragmentation, whereas viscous heating and the high protostellar luminosity stabilize them. We find that for a broad range of protostar masses and for reasonable accretion times, massive disks larger than ~150 AU are prone to fragmentation. We develop an analytical estimate for the angular momentum of accreted material, extending the analysis of Matzner and Levin (2005) to account for strongly turbulent initial conditions. In a core-collapse model, we predict that disks are marginally prone to fragmentation around stars of about four to 15 solar masses -- even if we adopt conservative estimates of the disks' radii and tendency to fragment. More massive stars are progressively more likely to fragment, and there is a sharp drop in the stability of disk accretion at the very high accretion rates expected above 110 solar masses. Fragmentation may starve accr...

  15. Extinction in young massive clusters

    Science.gov (United States)

    De Marchi, Guido; Panagia, Nino

    2016-01-01

    Up to ages of ~100 Myr, massive clusters are still swamped in large amounts of gas and dust, causing considerable and uneven levels of extinction. At the same time, large grains (ices?) produced by type II supernovae profoundly alter the interstellar medium (ISM), thus resulting in extinction properties very different from those of the diffuse ISM. To obtain physically meaningful parameters of stars (luminosities, effective temperatures, masses, ages, etc.) we must understand and measure the local extinction law. We have developed a powerful method to unambiguously determine the extinction law everywhere across a cluster field, using multi-band photometry of red giant stars belonging to the red clump (RC) and are applying it to young massive clusters in the Local Group. In the Large Magellanic Cloud, with about 20 RC stars per arcmin2, for each field we can easily derive an accurate extinction curve over the entire wavelength range of the photometry. As an example, we present the extinction law of the Tarantula nebula (30 Dor) based on thousands of stars observed as part of the Hubble Tarantula Treasury Project. We discuss how the incautious adoption of the Milky Way extinction law in the analysis of massive star forming regions may lead to serious underestimates of the fluxes and of the star formation rates by factors of 2 or more.

  16. Massive Photon and Dark Energy

    CERN Document Server

    Kouwn, Seyen; Park, Chan-Gyung

    2015-01-01

    We investigate cosmology of massive electrodynamics and explore the possibility whether massive photon could provide an explanation of the dark energy. The action is given by the scalar-vector-tensor theory of gravity which is obtained by non-minimal coupling of the massive Stueckelberg QED with gravity and its cosmological consequences are studied by paying a particular attention to the role of photon mass. We find that the theory allows cosmological evolution where the radiation- and matter-dominated epochs are followed by a long period of virtually constant dark energy that closely mimics $\\Lambda$CDM model and the main source of the current acceleration is provided by the nonvanishing photon mass governed by the relation $\\Lambda\\sim m^2$. A detailed numerical analysis shows that the nonvanishing photon mass of the order of $\\sim 10^{-34}$ eV is consistent with the current observations. This magnitude is far less than the most stringent limit on the photon mass available so far, which is of the order of $...

  17. Super-Earth Atmospheres: Self-consistent Gas Accretion and Retention

    Science.gov (United States)

    Ginzburg, Sivan; Schlichting, Hilke E.; Sari, Re’em

    2016-07-01

    Some recently discovered short-period Earth- to Neptune-sized exoplanets (super-Earths) have low observed mean densities that can only be explained by voluminous gaseous atmospheres. Here, we study the conditions allowing the accretion and retention of such atmospheres. We self-consistently couple the nebular gas accretion onto rocky cores and the subsequent evolution of gas envelopes following the dispersal of the protoplanetary disk. Specifically, we address mass-loss due to both photo-evaporation and cooling of the planet. We find that planets shed their outer layers (dozens of percent in mass) following the disk's dispersal (even without photo-evaporation), and their atmospheres shrink in a few Myr to a thickness comparable to the radius of the underlying rocky core. At this stage, atmospheres containing less particles than the core (equivalently, lighter than a few percent of the planet's mass) can be blown away by heat coming from the cooling core, while heavier atmospheres cool and contract on a timescale of Gyr at most. By relating the mass-loss timescale to the accretion time, we analytically identify a Goldilocks region in the mass-temperature plane in which low-density super-Earths can be found: planets have to be massive and cold enough to accrete and retain their atmospheres, but not too massive or cold, such that they do not enter runaway accretion and become gas giants (Jupiters). We compare our results to the observed super-Earth population and find that low-density planets are indeed concentrated in the theoretically allowed region. Our analytical and intuitive model can be used to investigate possible super-Earth formation scenarios.

  18. Representations of Super Yang-Mills Algebras

    Science.gov (United States)

    Herscovich, Estanislao

    2013-06-01

    We study in this article the representation theory of a family of super algebras, called the super Yang-Mills algebras, by exploiting the Kirillov orbit method à la Dixmier for nilpotent super Lie algebras. These super algebras are an extension of the so-called Yang-Mills algebras, introduced by A. Connes and M. Dubois-Violette in (Lett Math Phys 61(2):149-158, 2002), and in fact they appear as a "background independent" formulation of supersymmetric gauge theory considered in physics, in a similar way as Yang-Mills algebras do the same for the usual gauge theory. Our main result states that, under certain hypotheses, all Clifford-Weyl super algebras {{Cliff}q(k) ⊗ Ap(k)}, for p ≥ 3, or p = 2 and q ≥ 2, appear as a quotient of all super Yang-Mills algebras, for n ≥ 3 and s ≥ 1. This provides thus a family of representations of the super Yang-Mills algebras.

  19. The origin of the α-enhancement of massive galaxies

    Science.gov (United States)

    Segers, Marijke C.; Schaye, Joop; Bower, Richard G.; Crain, Robert A.; Schaller, Matthieu; Theuns, Tom

    2016-09-01

    We study the origin of the stellar α-element-to-iron abundance ratio, [α/Fe]*, of present-day central galaxies, using cosmological, hydrodynamical simulations from the Evolution and Assembly of GaLaxies and their Environments (EAGLE) project. For galaxies with stellar masses of M* > 1010.5 M⊙, [α/Fe]* increases with increasing galaxy stellar mass and age. These trends are in good agreement with observations of early-type galaxies, and are consistent with a `downsizing' galaxy formation scenario: more massive galaxies have formed the bulk of their stars earlier and more rapidly, hence from an interstellar medium that was mostly α-enriched by massive stars. In the absence of feedback from active galactic nuclei (AGNs), however, [α/Fe]* in M* > 1010.5 M⊙ galaxies is roughly constant with stellar mass and decreases with mean stellar age, extending the trends found for lower mass galaxies in both simulations with and without AGN. We conclude that AGN feedback can account for the α-enhancement of massive galaxies, as it suppresses their star formation, quenching more massive galaxies at earlier times, thereby preventing the iron from longer lived intermediate-mass stars (supernova Type Ia) from being incorporated into younger stars.

  20. Massive Stars in Interactive Binaries

    Science.gov (United States)

    St.-Louis, Nicole; Moffat, Anthony F. J.

    Massive stars start their lives above a mass of ~8 time solar, finally exploding after a few million years as core-collapse or pair-production supernovae. Above ~15 solar masses, they also spend most of their lives driving especially strong, hot winds due to their extreme luminosities. All of these aspects dominate the ecology of the Universe, from element enrichment to stirring up and ionizing the interstellar medium. But when they occur in close pairs or groups separated by less than a parsec, the interaction of massive stars can lead to various exotic phenomena which would not be seen if there were no binaries. These depend on the actual separation, and going from wie to close including colliding winds (with non-thermal radio emission and Wolf-Rayet dust spirals), cluster dynamics, X-ray binaries, Roche-lobe overflow (with inverse mass-ratios and rapid spin up), collisions, merging, rejuventation and massive blue stragglers, black-hole formation, runaways and gamma-ray bursts. Also, one wonders whether the fact that a massive star is in a binary affects its parameters compared to its isolated equivalent. These proceedings deal with all of these phenomena, plus binary statistics and determination of general physical properties of massive stars, that would not be possible with their single cousins. The 77 articles published in these proceedings, all based on oral talks, vary from broad revies to the lates developments in the field. About a third of the time was spent in open discussion of all participants, both for ~5 minutes after each talk and 8 half-hour long general dialogues, all audio-recorded, transcribed and only moderately edited to yield a real flavour of the meeting. The candid information in these discussions is sometimes more revealing than the article(s) that preceded them and also provide entertaining reading. The book is suitable for researchers and graduate students interested in stellar astrophysics and in various physical processes involved when

  1. Causality in 3D Massive Gravity Theories

    CERN Document Server

    Edelstein, Jose D; Kilicarslan, Ercan; Leoni, Matias; Tekin, Bayram

    2016-01-01

    We study the constraints coming from local causality requirement in various 2+1 dimensional dynamical theories of gravity. In Topologically Massive Gravity, with a single parity noninvariant massive degree of freedom, and in New Massive Gravity, with two massive spin-$2$ degrees of freedom, causality and unitarity are compatible with each other and they both require the Newton's constant to be negative. In their extensions, such as the Born-Infeld gravity and the minimal massive gravity the situation is similar and quite different from their higher dimensional counterparts, such as quadratic (e.g., Einstein-Gauss-Bonnet) or cubic theories, where causality and unitarity are in conflict.

  2. SuperB Progress Report for Physics

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, B.; /Aachen, Tech. Hochsch.; Matias, J.; Ramon, M.; /Barcelona, IFAE; Pous, E.; /Barcelona U.; De Fazio, F.; Palano, A.; /INFN, Bari; Eigen, G.; /Bergen U.; Asgeirsson, D.; /British Columbia U.; Cheng, C.H.; Chivukula, A.; Echenard, B.; Hitlin, D.G.; Porter, F.; Rakitin, A.; /Caltech; Heinemeyer, S.; /Cantabria Inst. of Phys.; McElrath, B.; /CERN; Andreassen, R.; Meadows, B.; Sokoloff, M.; /Cincinnati U.; Blanke, M.; /Cornell U., Phys. Dept.; Lesiak, T.; /Cracow, INP /DESY /Zurich, ETH /INFN, Ferrara /Frascati /INFN, Genoa /Glasgow U. /Indiana U. /Mainz U., Inst. Phys. /Karlsruhe, Inst. Technol. /KEK, Tsukuba /LBL, Berkeley /UC, Berkeley /Lisbon, IST /Ljubljana U. /Madrid, Autonoma U. /Maryland U. /MIT /INFN, Milan /McGill U. /Munich, Tech. U. /Notre Dame U. /PNL, Richland /INFN, Padua /Paris U., VI-VII /Orsay, LAL /Orsay, LPT /INFN, Pavia /INFN, Perugia /INFN, Pisa /Queen Mary, U. of London /Regensburg U. /Republica U., Montevideo /Frascati /INFN, Rome /INFN, Rome /INFN, Rome /Rutherford /Sassari U. /Siegen U. /SLAC /Southern Methodist U. /Tel Aviv U. /Tohoku U. /INFN, Turin /INFN, Trieste /Uppsala U. /Valencia U., IFIC /Victoria U. /Wayne State U. /Wisconsin U., Madison

    2012-02-14

    SuperB is a high luminosity e{sup +}e{sup -} collider that will be able to indirectly probe new physics at energy scales far beyond the reach of any man made accelerator planned or in existence. Just as detailed understanding of the Standard Model of particle physics was developed from stringent constraints imposed by flavour changing processes between quarks, the detailed structure of any new physics is severely constrained by flavour processes. In order to elucidate this structure it is necessary to perform a number of complementary studies of a set of golden channels. With these measurements in hand, the pattern of deviations from the Standard Model behavior can be used as a test of the structure of new physics. If new physics is found at the LHC, then the many golden measurements from SuperB will help decode the subtle nature of the new physics. However if no new particles are found at the LHC, SuperB will be able to search for new physics at energy scales up to 10-100 TeV. In either scenario, flavour physics measurements that can be made at SuperB play a pivotal role in understanding the nature of physics beyond the Standard Model. Examples for using the interplay between measurements to discriminate New Physics models are discussed in this document. SuperB is a Super Flavour Factory, in addition to studying large samples of B{sub u,d,s}, D and {tau} decays, SuperB has a broad physics programme that includes spectroscopy both in terms of the Standard Model and exotica, and precision measurements of sin{sup 2} {theta}{sub W}. In addition to performing CP violation measurements at the {Upsilon}(4S) and {phi}(3770), SuperB will test CPT in these systems, and lepton universality in a number of different processes. The multitude of rare decay measurements possible at SuperB can be used to constrain scenarios of physics beyond the Standard Model. In terms of other precision tests of the Standard Model, this experiment will be able to perform precision over

  3. The superB silicon vertex tracker

    International Nuclear Information System (INIS)

    The SuperB asymmetric e+-e- collider has been designed to deliver a luminosity greater than 1036cm-2s-1 with moderate beam currents. Comparing to current B-Factories, the reduced center of mass boost of the SuperB machine requires improved vertex resolution to allow precision measurements sensitive to New Physics. We present the conceptual design of the silicon vertex tracker (SVT) for the SuperB detector with the present status of the R and D on the different options under study for its innermost Layer0.

  4. Experiments with SuperJANET/SMDS

    OpenAIRE

    Simpson, Steven; Hutchison, David

    1995-01-01

    A series of measurements of a computer link using the Switched Multimegabit Data Service (SMDS), as provided in the United Kingdom SuperJANET network, are described in this paper. The computer link is subject to the effects of using several access networks at the peripheries of SuperJANET, making the measurements valid only in the context of the link from one computer to another, rather than describing any attributes of SuperJANET in general. However, the measurement mechanism is refined seve...

  5. 中印度洋海岭Edmond热液区块状硫化物中自然金的发现及其意义%The discovery of native gold in massive sulfides from the Edmond hydrothermal field, Central Indian Ridge and its significance

    Institute of Scientific and Technical Information of China (English)

    吴仲玮; 孙晓明; 戴瑛知; 石贵勇; 王琰; 芦阳; 梁业恒

    2011-01-01

    There are three types of hydrothermal precipitates sampled from the Edmond hydrothermal field, Central Indian Ridge; Fe-rich massive sulfides mainly composed of pyrite and chalcopyrite, silica-rich hydrothermal precipitates, and anhydrite-dominated sulfate ore samples. Irregular-shaped or tabular grains of native gold ( <20μm) mainly associated with anhydrite and sphalerite have been identified in sulfate ore samples and Fe-rich massive sulfides by SEM/EDS observation and XPS analysis. This is the first documented occurrence of native gold grains in seafloor hydrothermal precipitates from the Edmond vent field, CIR. To a lesser extent, gold occurs as submicroscopic particles deposited on the surface of coarse-grained pyrite. EPMA results indicate that high gold contents (with an average of 6700 × 10-6 Au) are associated with late-stage, low-temperature ( Fe-poor) sphalerite, and silver is significantly enriched in sulfosalt minerals (5.0% -6.7% Ag) occurring at the margins of exsolved chalcopyrite grains within sphalerite. In conclusion, the mineralization of precious metals in polymetallic massive sulfides is closely related to late-stage, low to moderate temperature hydrothermal ore-forming processes at the seafloor. Evaluation of possible complexes of gold indicates that AuCl2 - or AuHS° is the dominant complex, which is consistent with the high temperature and chlorinity of acidic end-member hydrothermal fluids in the Edmond vent field. Mixing of hydrothermal fluids and seawater, together with conductive cooling and/or phase separation may be important factors controlling gold precipitation and enrichment.%位于中印度洋中速扩张洋脊的Edmond热液区块状硫化物矿石样品主要分为以黄铁矿-黄铜矿为主的富Fe块状硫化物、热水沉积成因的富含硅质块状矿石和以硬石膏为主的硫酸盐矿石等3种不同类型.通过扫描电镜观察和X射线光电子能谱分析,在硫酸盐矿石和富Fe块状硫化物中首次

  6. Super-Calogero-Moser-Sutherland systems and free super-oscillators a mapping

    CERN Document Server

    Ghosh, P K

    2001-01-01

    We show that the supersymmetric rational Calogero-Moser-Sutherland (CMS) model of A_{N+1}-type is equivalent to a set of free super-oscillators, through a similarity transformation. We prescribe methods to construct the complete eigen-spectrum and the associated eigen-functions, both in supersymmetry preserving as well as supersymmetry breaking phases, from the free super-oscillator basis. Further we show that a wide class of super-Hamiltonians realizing dynamical OSp(2|2) supersymmetry, which also includes all types of rational super-CMS as a small subset, are equivalent to free super-oscillators. We study BC_{N+1}-type super-CMS model in some detail to understand the subtleties involved in this method.

  7. A Super Extension of Kaup-Newell Hierarchy

    International Nuclear Information System (INIS)

    With the help of the zero-curvature equation and the super trace identity, we derive a super extension of the Kaup-Newell hierarchy associated with a 3 x 3 matrix spectral problem and establish its super bi-Hamiltonian structures. Furthermore, infinite conservation laws of the super Kaup-Newell equation are obtained by using spectral parameter expansions. (general)

  8. Classification of two and three dimensional Lie super-bialgebras

    CERN Document Server

    Eghbali, A; Rezaei-Aghdam, A

    2009-01-01

    Using adjoint representation of Lie superalgebras, we write the matrix form of super Jacobi and mixed super Jacobi identities of Lie super-bialgebras. Then through direct calculations of these identities and use of automorphism supergroups of two and three dimensional Lie superalgebras, we obtain and classify all two and three dimensional Lie super-bialgebras.

  9. On the symplectic geometry of the super Teichmueller space

    International Nuclear Information System (INIS)

    The geometry of the Teichmueller space of the super Riemann surfaces is examined. The Weil-Petersson Kaehler form is calculated in terms of the super coordinate functions which provide local coordinates for the super Teichmueller space. It is shown that the Kaehler form on the super Teichmueller space is closed. (author)

  10. First Super-Earth Atmosphere Analysed

    Science.gov (United States)

    2010-12-01

    The atmosphere around a super-Earth exoplanet has been analysed for the first time by an international team of astronomers using ESO's Very Large Telescope. The planet, which is known as GJ 1214b, was studied as it passed in front of its parent star and some of the starlight passed through the planet's atmosphere. We now know that the atmosphere is either mostly water in the form of steam or is dominated by thick clouds or hazes. The results will appear in the 2 December 2010 issue of the journal Nature. The planet GJ 1214b was confirmed in 2009 using the HARPS instrument on ESO's 3.6-metre telescope in Chile (eso0950) [1]. Initial findings suggested that this planet had an atmosphere, which has now been confirmed and studied in detail by an international team of astronomers, led by Jacob Bean (Harvard-Smithsonian Center for Astrophysics), using the FORS instrument on ESO's Very Large Telescope. "This is the first super-Earth to have its atmosphere analysed. We've reached a real milestone on the road toward characterising these worlds," said Bean. GJ 1214b has a radius of about 2.6 times that of the Earth and is about 6.5 times as massive, putting it squarely into the class of exoplanets known as super-Earths. Its host star lies about 40 light-years from Earth in the constellation of Ophiuchus (the Serpent Bearer). It is a faint star [2], but it is also small, which means that the size of the planet is large compared to the stellar disc, making it relatively easy to study [3]. The planet travels across the disc of its parent star once every 38 hours as it orbits at a distance of only two million kilometres: about seventy times closer than the Earth orbits the Sun. To study the atmosphere, the team observed the light coming from the star as the planet passed in front of it [4]. During these transits, some of the starlight passes through the planet's atmosphere and, depending on the chemical composition and weather on the planet, specific wavelengths of light are

  11. Component structure of the N=2 super-Yang-Mills theory in the harmonic superspace

    International Nuclear Information System (INIS)

    The specific features of massless and massive N=2 super-Yang-Mills theories are studied. In the frame of the harmonic superspace formalism, the component from of the superstrength and free Lagrangian of the vector multiplet will be found without fixing a concrete supergauge for the Abelian case. Starting with the Abelian superstrength, find the form of the non-Abelian superstrength in the first order of the coupling constant g, not fixing the supergauge. Abelian superstrength in the first order of the coupling constant g, not fixing the supergauge. In conclusion the approach analogous to the Stueckelberg method, to obtain the component Lagrangian of the massive N=2 Yang-Mills theory in the first order of the couplig constant g. 7 refs

  12. Spacetime structure of massive Majorana particles and massive gravitino

    CERN Document Server

    Ahluwalia, D V

    2003-01-01

    The profound difference between Dirac and Majorana particles is traced back to the possibility of having physically different constructs in the (1/2, 0) 0 (0,1/2) representation space. Contrary to Dirac particles, Majorana-particle propagators are shown to differ from the simple linear gamma mu p submu, structure. Furthermore, neither Majorana particles, nor their antiparticles can be associated with a well defined arrow of time. The inevitable consequence of this peculiarity is the particle-antiparticle metamorphosis giving rise to neutrinoless double beta decay, on the one side, and enabling spin-1/2 fields to act as gauge fields, gauginos, on the other side. The second part of the lecture notes is devoted to massive gravitino. We argue that a spin measurement in the rest frame for an unpolarized ensemble of massive gravitino, associated with the spinor-vector [(1/2, 0) 0 (0,1/2)] 0 (1/2,1/2) representation space, would yield the results 3/2 with probability one half, and 1/2 with probability one half. The ...

  13. Formation of Super-Earth Mass Planets at 125-250 AU from a Solar-type Star

    CERN Document Server

    Kenyon, S J

    2015-01-01

    We investigate pathways for the formation of icy super-Earth mass planets orbiting at 125-250 AU around a 1 solar mass star. An extensive suite of coagulation calculations demonstrates that swarms of 1 cm to 10 m planetesimals can form super-Earth mass planets on time scales of 1-3 Gyr. Collisional damping of 0.01-100 cm particles during oligarchic growth is a highlight of these simulations. In some situations, damping initiates a second runaway growth phase where 100-3000 km protoplanets grow to super-Earth sizes. Our results establish the initial conditions and physical processes required for in situ formation of super-Earth planets at large distances from the host star. For nearby dusty disks in HD 107146, HD 202628, and HD 207129, ongoing super-Earth formation at 80-150 AU could produce gaps and other structures in the debris. In the solar system, forming a putative planet X at a 1000 AU) requires a modest (very massive) protosolar nebula.

  14. Architectural Engineering to Super-Light Structures

    DEFF Research Database (Denmark)

    Castberg, Niels Andreas

    concept still has a considerable unexploited potential. The thesis contributes with new knowledge on architectural engineering in a Danish context, and how it can positively influence the design process. Furthermore, new knowledge are presented via examples of how Super-Light Structures support...... with architectural engineering as a starting point. The thesis is based on a two stringed hypothesis: Architectural engineering gives rise to better architecture and Super-Light Structures support and enables a static, challenging architecture. The aim of the thesis is to clarify architectural...... engineering's impact on the work process between architects and engineers in the design development. Using architectural engineering, Super-Light Structures are examined in an architectural context, and it is explained how digital tools can support architectural engineering and design of Super...

  15. A superparticle on the super Riemann surface

    International Nuclear Information System (INIS)

    Free motion of a nonrelativistic superparticle on the super Riemann surface (SRS) of genus h ≥ 2 is investigated. Geodesics or classical paths are given explicitly on the super Poincare upper half plane SH, a universal covering space of the SRS, and the paths with some suitable initial conditions yield periodic orbits on the SRS. The periodic orbits are unstable and the system is chaotic. Quantum mechanics is solved on the universal covering space SH. And the heat kernel is given on the SRS. This leads a super analog of the Selberg trace formula. The Selberg super zeta function is introduced whose zero-points and poles determine the energy spectrum on the SRS. (author)

  16. Are super-exponential luminescence decays possible?

    International Nuclear Information System (INIS)

    Highlights: • Overview of the mathematical aspects and systematics of luminescence decays. • Super-exponential (faster-than-exponential) decays can be either induced (by acting upon the system in real time) or spontaneous. • Spontaneous (intrinsic) super-exponential decays are identified for the first time in an experimental system. - Abstract: Luminescence decay functions describe the time dependence of radiation emitted by a sample after excitation. An overview of the mathematical aspects and systematics of luminescence decays is presented. In particular, super-exponential (faster-than-exponential) decays are defined and the possibility of their observation in single species physicochemical systems discussed. It is shown that this type of behavior can be both spontaneous and induced (by acting upon the system in real time). Spontaneous super-exponentiality is identified for the first time in experimental decays, these being phosphorescence decays affected by triplet–triplet absorption

  17. Counterterms in massive gravity theory

    Science.gov (United States)

    Cao, Li-Ming; Peng, Yuxuan

    2015-12-01

    We derived local boundary counterterms in massive gravity theory with a negative cosmological constant in four dimensions. With these counterterms at hand, we analyzed the properties of the boundary field theory in the context of AdS/CFT duality by calculating the boundary stress-energy tensor. The calculation shows that the boundary stress-energy tensor is conserved, and momentum dissipation might occur on the level of linear response only. We also calculated the thermodynamic quantities and the boundary stress-energy tensor for a specific type of solutions. The thermodynamic potentials agree with the results of literature up to some constants which can be removed by adding finite counterterms.

  18. Counterterms in Massive Gravity Theory

    CERN Document Server

    Cao, Li-Ming

    2015-01-01

    We derived local boundary counterterms in massive gravity theory with a negative cosmological constant in four dimensions. With these counterterms at hand we analyzed the properties of the boundary field theory in the context of AdS/CFT duality by calculating the boundary stress energy tensor. The calculation shows that the boundary stress energy tensor is conserved, and momentum dissipation might occur on the level of linear response only. We also calculated the thermodynamic quantities and the boundary stress energy tensor for a specific type of solutions. The thermodynamic potentials agree with the results of literature up to some constants which can be removed by adding finite counterterms.

  19. Quantum aspects of massive gravity

    Science.gov (United States)

    Park, Minjoon

    2011-05-01

    We consider the effect of quantum interactions on Pauli-Fierz massive gravity. With generic graviton cubic interactions, we observe that the 1-loop counterterms do not conform to the tree level structure of Pauli-Fierz action, resulting in the reappearance of the sixth mode ghost. Then to explore the quantum effects to the full extent, we calculate the resummed graviton propagator with an arbitrary interaction and analyze its complete structure, from which a minimal condition for the absence of the ghost is obtained.

  20. FUELING-CONTROLLED THE GROWTH OF MASSIVE BLACK HOLES

    Directory of Open Access Journals (Sweden)

    A. Escala

    2009-01-01

    Full Text Available We study the relation between nuclear massive black holes and their host spheroid gravitational potential. Using AMR numerical simulations, we analyze how gas is transported into the nuclear (central kpc regions of galaxies. We study gas fueling onto the inner accretion disk (sub-pc scale and star formation in a massive nuclear disk like those generally found in proto-spheroids (ULIRGs, SCUBA Galaxies. These sub-pc resolution simulations of gas fueling, which is mainly depleted by star formation, naturally satisfy the `MBH -Mvirial' relation, with a scatter considerably less than that observed. We nd that a generalized version of the Kennicutt-Schmidt Law for starbursts is satis ed, in which the total gas depletion rate ( _Mgas = _MBH + _MSF scales as Mgas=torbital. See Escala (2007 for more details about this work.

  1. MONOLITH a massive magnetized tracking calorimeter for the study of atmospheric neutrino oscillations

    CERN Document Server

    Terranova, F

    2001-01-01

    MONOLITH is a proposed massive (34 kton) magnetized tracking calorimeter at the Gran Sasso laboratory in Italy, optimized for the detection of high energy atmospheric muon neutrinos. The main goal is to establish (or reject) the neutrino oscillation hypothesis through an explicit observation of the full first oscillation swing. The Delta m/sup 2/ sensitivity range for this measurement comfortably covers the complete Super-Kamiokande allowed region. Other measurements include studies of matter effects and the up/down ratio of NC events, the study of cosmic ray muons in the multi-TeV range, and auxiliary measurements from the CERN to Gran Sasso neutrino beam. (2 refs).

  2. Reaction mechanisms in massive nuclei collisions and perspectives for synthesis of heavier superheavy elements

    International Nuclear Information System (INIS)

    We discuss a hardship in synthesis of heaviest super heavy elements in massive nuclei reactions due to the hindrance to complete fusion of reacting nuclei caused on the onset of quasifission process which strongly competes with complete fusion and due to the strong increase of fission yields along the de-excitation cascade of the compound nucleus in comparison with the evaporation residue formation. The hindrance to formation of compound nucleus and evaporation residue is determined by the characteristic of the entrance channel. (authors)

  3. On The Super Five Brane Hamiltonian

    CERN Document Server

    De Castro, A

    2003-01-01

    The explicit form of the Wess-Zumino term of the PST super 5-brane Lagrangian in 11 dimensions is obtained. A complete canonical analysis for a gauge fixed PST super 5-brane action reveals the expected mixture of first and second class constraints. The canonical Hamiltonian is quadratic in the antisymmetric gauge field. Finally, We find the light cone gauge Hamiltonian for the theory and its stability properties are commented.

  4. Bonus symmetry for super Wilson loops

    Science.gov (United States)

    Münkler, Hagen

    2016-05-01

    The Yangian level-one hypercharge generator for the super Wilson loop in { N }=4 supersymmetric Yang-Mills theory is constructed. Moreover, evidence for the presence of a corresponding symmetry generator at all higher levels is provided. The derivation is restricted to the strong-coupling description of the super Wilson loop and based on the construction of novel conserved charges for type IIB superstrings on {{AdS}}5× {{{S}}}5.

  5. 'Super Stuff' as bolus in radiotherapy

    International Nuclear Information System (INIS)

    The use of bolus materials for a tissue-equivalent field compensation is discussed and the application of compensation filters for high-energetic radiation is stressed. The properties of 'Super Stuff', which is colloidal, tissue-equivalent bolus, are described and compared with those of other materials such as polystyrene, plexiglas and water. The universal possibilities of applying 'Super Stuff' as field compensating material are demonstrated on a practical example in the field of the kV therapy. (orig.)

  6. Super Quantum Discord with Weak Measurements

    OpenAIRE

    Singh, Uttam; Pati, Arun Kumar

    2012-01-01

    Weak measurements cause small change to quantum states, thereby opening up the possibility of new ways of manipulating and controlling quantum systems. We ask, can weak measurements reveal more quantum correlation in a composite quantum state? We prove that the weak measurement induced quantum discord, called as the "super quantum discord", is always larger than the quantum discord captured by the strong measurement. Moreover, we prove the monotonicity of the super quantum discord as a functi...

  7. Cosmological influence of super-Hubble perturbations

    OpenAIRE

    Kolb, Edward W.; Matarrese, Sabino; Notari, Alessio; Riotto, Antonio

    2004-01-01

    The existence of cosmological perturbations of wavelength larger than the Hubble radius is a generic prediction of the inflationary paradigm. We provide the derivation beyond perturbation theory of a conserved quantity which generalizes the linear comoving curvature perturbation. As a by-product, we show that super-Hubble-radius (super-Hubble) perturbations have no physical influence on local observables e.g., the local expansion rate) if cosmological perturbations are of the adiabatic type.

  8. Charm Physics at SuperB

    International Nuclear Information System (INIS)

    The study of Charm Decays at SuperB provide unique opportunities to understand the Standard Model and constrain new physics, both at the Y(4S), and at charm threshold. We discuss the physics potential of such measurements from the proposed SuperB experiment with 75 ab-1 of data at the Y(4S) and a subsequent run dedicated to exploiting quantum correlations at the charm threshold. (author)

  9. Super scans associated with bronchial carcinoma

    International Nuclear Information System (INIS)

    Full text: Introduction: It is most unusual for bronchial carcinoma to present as a malignant super scan and is not mentioned in the literature as a specific cause for metabolic super scans. Yet the clinical impression developed that metabolic super scans are not uncommon with bronchial carcinoma possibly associated with paraneoplastic hyperparathyroidism. Purpose: (a) to determine the prevalence of super scans in bronchial carcinoma; (b) to determine a possible association with a specific histological type of carcinoma; (c) to determine the serum Ca++, PO4 and alkaline phosphatase levels pretreatment, thus a possible underlying paraneoplastic hyperparathyroidism. Methods: Hundred patients with bronchial carcinoma were drawn randomly from our files over the last 3 years and studied retrospectively for presence of a possible metabolic super scan. A metabolic super scan was defined as markedly increased diffuse bone uptake without irregularities or possible localized metastases. The kidneys must be absent or scarcely visible. These patients were further evaluated with regards to (a) histopathological type of carcinoma (b) pre therapeutic serum Ca++, PO4 and alkaline phosphatase levels. Results: (i) Metabolic super scans were observed in 11 % of our study group; (ii) The serum Ca++ was only slightly increased in one patient. Serum PO4 was normal in all the patients. Thus we could not prove a serum Ca++/PO4 profile suggestive of hyperparathyroidism in our patients. In two patients parathyroid hormone levels were available and were WNL; (iii) The alkaline phosphatase was moderately increased in 4 patients. (The reason uncertain but probably due to increased bone activity and bone turnover since liver metastases were confirmed in only one of these patients). (iv) Seven patients had non small cell carcinoma, three small cell and one unclassified, thus not limited to epidermoid cancer alone. Conclusion: In this study the underlying pathophysiology for the metabolic super

  10. Relic gravitons from super-inflation

    OpenAIRE

    Mielczarek, Jakub; Szydlowski, Marek

    2007-01-01

    The super-inflationary phase is predicted by the Loop Quantum Cosmology. In this paper we study the creation of gravitational waves during this phase. We consider the inverse volume corrections to the equation for the tensor modes and calculate the spectrum of the produced gravitons. The amplitude of the obtained spectrum as well as maximal energy of gravitons strongly depend on the evolution of the Universe after the super-inflation. We show that a further standard inflationary phase is nece...

  11. Super Resolution Image Reconstruction using LWT

    OpenAIRE

    Padavala, Sivakrishna; Moghul, Arifullah Baig

    2013-01-01

    Since over three decades, computers have been widely used for processing and displaying images. The ability to process visual information from a super resolution image can enhance the information present in the image. The motivation is from a human eye which takes in raw images (noisy, blurred and translated) and constructs a super resolution image. An image with improved resolution is desired in almost all of the applications to enhance qualitative features and is reported to be achieved by ...

  12. Self-Tuned Deep Super Resolution

    OpenAIRE

    Wang, Zhangyang; Yang, Yingzhen; Wang, Zhaowen; Chang, Shiyu; Han, Wei; Yang, Jianchao; Huang, Thomas S.

    2015-01-01

    Deep learning has been successfully applied to image super resolution (SR). In this paper, we propose a deep joint super resolution (DJSR) model to exploit both external and self similarities for SR. A Stacked Denoising Convolutional Auto Encoder (SDCAE) is first pre-trained on external examples with proper data augmentations. It is then fine-tuned with multi-scale self examples from each input, where the reliability of self examples is explicitly taken into account. We also enhance the model...

  13. Central regions of LIRGs: rings, hidden starbursts, Supernovae and star clusters

    CERN Document Server

    Vaisanen, Petri; Kankare, Erkki; Kotilainen, Jari; Mattila, Seppo; Rajpaul, Vinesh; Randriamanakoto, Zara; Reunanen, Juha; Ryder, Stuart; Zijlstra, Albert

    2012-01-01

    We study star formation (SF) in very active environments, in luminous IR galaxies, which are often interacting. A variety of phenomena are detected, such as central starbursts, circumnuclear SF, obscured SNe tracing the history of recent SF, massive super star clusters, and sites of strong off-nuclear SF. All of these can be ultimately used to define the sequence of triggering and propagation of star-formation and interplay with nuclear activity in the lives of gas rich galaxy interactions and mergers. In this paper we present analysis of high-spatial resolution integral field spectroscopy of central regions of two interacting LIRGs. We detect a nuclear 3.3 um PAH ring around the core of NGC 1614 with thermal-IR IFU observations. The ring's characteristics and relation to the strong star-forming ring detected in recombination lines are presented, as well as a scenario of an outward expanding starburst likely initiated with a (minor) companion detected within a tidal feature. We then present NIR IFU observatio...

  14. A novel super-resolution camera model

    Science.gov (United States)

    Shao, Xiaopeng; Wang, Yi; Xu, Jie; Wang, Lin; Liu, Fei; Luo, Qiuhua; Chen, Xiaodong; Bi, Xiangli

    2015-05-01

    Aiming to realize super resolution(SR) to single image and video reconstruction, a super resolution camera model is proposed for the problem that the resolution of the images obtained by traditional cameras behave comparatively low. To achieve this function we put a certain driving device such as piezoelectric ceramics in the camera. By controlling the driving device, a set of continuous low resolution(LR) images can be obtained and stored instantaneity, which reflect the randomness of the displacements and the real-time performance of the storage very well. The low resolution image sequences have different redundant information and some particular priori information, thus it is possible to restore super resolution image factually and effectively. The sample method is used to derive the reconstruction principle of super resolution, which analyzes the possible improvement degree of the resolution in theory. The super resolution algorithm based on learning is used to reconstruct single image and the variational Bayesian algorithm is simulated to reconstruct the low resolution images with random displacements, which models the unknown high resolution image, motion parameters and unknown model parameters in one hierarchical Bayesian framework. Utilizing sub-pixel registration method, a super resolution image of the scene can be reconstructed. The results of 16 images reconstruction show that this camera model can increase the image resolution to 2 times, obtaining images with higher resolution in currently available hardware levels.

  15. SuperKEKB Vacuum System

    CERN Document Server

    Shibata, K

    2013-01-01

    SuperKEKB, which is an upgrade of the KEKB Bfactory (KEKB), is a next-generation high-luminosity electron-positron collider. Its design luminosity is 8.0× 10$^{35}$ cm$^{-2}s^{-1}$, which is about 40 times than the KEKB’s record. To achieve this challenging goal, bunches of both beams are squeezed extremely to the nanometer scale and the beam currents are doubled. To realize this, many upgrades must be performed including the replacement of beam pipes mainly in the positron ring (LER). The beam pipes in the LER arc section are being replaced with new aluminium-alloy pipes with antechambers to cope with the electron cloud issue and heating problem. Additionally, several types of countermeasures will be adopted in the LER to deal with the electron cloud issues. In the wiggler section, electrons will be attracted by the clearing electrode, which is mounted on the inner surface of the beam pipe. On the other hand, in the bending magnet, the effective secondary electron yield (SEY) will be structurally reduced ...

  16. The tristan super light facility

    International Nuclear Information System (INIS)

    The Photon Factory and its user group have achieved excellent scientific results since its commissioning in 1982, ranging from material science to medical application, by using the synchrotron radiation at the 2.5 GeV PF storage ring, and since 1986, further at the 6.5 GeV Tristan accumulation ring which provides brilliant photons in high energy region. Efforts are exerted currently at National Laboratory for High Energy Physics for the extensive research and development works to study the feasibility of the Tristan e+e- collider main ring to be utilized as an extremely intense and highly advanced light source, which is called Tristan super light facility. What kinds of the application are expected for such highly brilliant source and their scientific significance should be clarified. This design report is an outcome by the joint work of in-house staffs and outside users, and it would serve as an excellent guide for the future studies on a next generation synchrotron radiation light source. The conversion plan of Tristan, the basic design of insertion devices, coherent X-ray sources, beam lines, instrumentation and others are reported. (K.I.)

  17. Super-parallel MR microscope.

    Science.gov (United States)

    Matsuda, Yoshimasa; Utsuzawa, Shin; Kurimoto, Takeaki; Haishi, Tomoyuki; Yamazaki, Yukako; Kose, Katsumi; Anno, Izumi; Marutani, Mitsuhiro

    2003-07-01

    A super-parallel MR microscope in which multiple (up to 100) samples can be imaged simultaneously at high spatial resolution is described. The system consists of a multichannel transmitter-receiver system and a gradient probe array housed in a large-bore magnet. An eight-channel MR microscope was constructed for verification of the system concept, and a four-channel MR microscope was constructed for a practical application. Eight chemically fixed mouse fetuses were simultaneously imaged at the 200 micro m(3) voxel resolution in a 1.5 T superconducting magnet of a whole-body MRI, and four chemically fixed human embryos were simultaneously imaged at 120 micro m(3) voxel resolution in a 2.35 T superconducting magnet. Although the spatial resolutions achieved were not strictly those of MR microscopy, the system design proposed here can be used to attain a much higher spatial resolution imaging of multiple samples, because higher magnetic field gradients can be generated at multiple positions in a homogeneous magnetic field. PMID:12815693

  18. Studies of the Super VELO

    CERN Document Server

    AUTHOR|(CDS)2156302

    2016-01-01

    The Super VELO is the Run 5 upgrade of the VeloPix detector of the LHCb experiment. Its most challenging task is to cope with a luminosity increase of the factor 10. This study examines the potential physics performance of a detector based on the VeloPix design at high luminosity conditions. It is found that an unmodified VeloPix detector shows poor performance when exposed to 10x design luminosity, most gravely high ghost rates of 40 %. When applying basic assumptions about material changes such as cutting the silicon thickness by half and removing the RF foil, the ghost rate drops by 20 %. When using thin silicon and re-optimizing the tracking algorithm, the ghost rate can even be reduced by 60 %. Applying the additional modification of a pixel area size four times smaller, the ghost rate drops by 88 % and the IP resolution improves. Finally, in a dream scenario with thin silicon, smaller pixels and no RF foil, big gains in resolution and a ghost rate of less than 4 % can be achieved.

  19. Massive Gravity in Extra Dimensions

    CERN Document Server

    Kakushadze, Zurab

    2014-01-01

    We discuss a Brane World scenario where we live on a 3-brane with massive gravity in infinite-volume bulk. The bulk graviton can be much heavier than the inverse Hubble size, as heavy the bulk Planck scale, whose lower bound is roughly the inverse of 0.1 mm. The 4D Einstein-Hilbert term on the brane shields the brane matter from both strong bulk gravity and large bulk graviton mass. Gravity on the brane does not become higher-dimensional at large distances. Instead, at distance scales above the bulk Planck length, gravity on the brane behaves as 4D gravity with small graviton mass roughly of order or below the inverse Hubble size. Unlike the massless case, with massive gravity in the bulk one can have: i) 4D tensor structure on a codimension-1 brane; and ii) no infrared tachyon for smoothed-out higher codimension branes. The effects of the brane dynamics on the bulk are exponentially suppressed away from the brane. One consequence is that there are no "self-accelerated" solutions. In codimension-2 cases there...

  20. Solid Holography and Massive Gravity

    CERN Document Server

    Alberte, Lasma; Khmelnitsky, Andrei; Pujolas, Oriol

    2015-01-01

    Momentum dissipation is an important ingredient in condensed matter physics that requires a translation breaking sector. In the bottom-up gauge/gravity duality, this implies that the gravity dual is massive. We start here a systematic analysis of holographic massive gravity (HMG) theories, which admit field theory dual interpretations and which, therefore, might store interesting condensed matter applications. We show that there are many phases of HMG that are fully consistent effective field theories and which have been left overlooked in the literature. The most important distinction between the different HMG phases is that they can be clearly separated into solids and fluids. This can be done both at the level of the unbroken spacetime symmetries as well as concerning the elastic properties of the dual materials. We extract the modulus of rigidity of the solid HMG black brane solutions and show how it relates to the graviton mass term. We also consider the implications of the different HMGs on the electric...

  1. Conformally symmetric massive discrete fields

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Manoelito M. de

    2001-04-01

    Conformal symmetry is taken as an attribute of theories of massless fields in manifolds with specific dimensions. This paper shows that this is not an absolute truth; it is a consequence of the mathematical representation used for the physical interactions. It introduces a new kind of representation where the propagation of massive (invariant mass) and mass-less interactions are unifiedly described by a single conformally symmetric Green's function. Sources and fields are treated at a same footing, symmetrically, as discrete fields - the fields in this new representation - fields defined with support on straight lines embedded in a (3+1) - Minkowski manifold. The discrete field turns out to be a point in phase space. It is finite everywhere. With a finite number of degrees of freedom it does not share the well known problems faced by the standard continuous formalism which can be retrieved from the discrete one by an integration over a hypersurface. The passage from discrete to continuous fields illuminates the physical meaning and origins of their properties and problems. The price for having massive discrete field with conformal symmetry is of hiding its mass and timelike velocity behind its non-constant proper-time. (author)

  2. Methyl Cyanide Observations Toward Massive Protostars

    CERN Document Server

    Rosero, V; Kurtz, S; Bieging, J; Araya, E D

    2013-01-01

    We report the results of a survey in the CH3CN J= 12-11 transition toward a sample of massive proto-stellar candidates. The observations were carried out with the 10 m Submillimeter telescope on Mount Graham, AZ. We detected this molecular line in 9 out of 21 observed sources. In six cases this is the first detection of this transition. We also obtained full beam sampled cross-scans for five sources which show that the lower K-components can be extended on the arcminute angular scale. The higher K-components however are always found to be compact with respect to our 36" beam. A Boltzmann population diagram analysis of the central spectra indicates CH3CN column densities of about 10^14 cm^(-2), and rotational temperatures above 50 K, which confirms these sources as hot molecular cores. Independent fits to line velocity and width for the individual K-components resulted in the detection of an increasing blue shift with increasing line excitation for four sources. Comparison with mid-infrared images from the SPI...

  3. India's manganese nodule mine site in the Central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Banakar, V.K.

    This commentary highlights the activities of massive exploration programme for manganese nodule deposits in the Central Indian Basin located 5 km below the ocean surface and India's claim for mine site development and registration with UNCLOS...

  4. Neonatal pericardial effusion associated with central eventration of the diaphragm

    OpenAIRE

    Iliff, P J; Eyre, J A; Westaby, S; de Leval, M; Sousa, C

    1983-01-01

    A normal infant born at term developed tachypnoea. A massive pericardial effusion associated with absent central tendon of the diaphragm and eventration into the pericardium was found. Surgical correction was performed and the baby is now well and developing normally.

  5. Effective Actions for Massive Kaluza-Klein States on AdS_3 x S^3 x S^3

    CERN Document Server

    Hohm, O; Hohm, Olaf; Samtleben, Henning

    2005-01-01

    We construct the effective supergravity actions for the lowest massive Kaluza-Klein states on the supersymmetric background AdS_3 x S^3 x S^3. In particular, we describe the coupling of the supergravity multiplet to the lowest massive spin-3/2 multiplet which contains 256 physical degrees of freedom and includes the moduli of the theory. The effective theory is realized as the broken phase of a particular gauging of the maximal three-dimensional supergravity with gauge group SO(4) x SO(4). Its ground state breaks half of the supersymmetries leading to 8 massive gravitinos acquiring mass in a super Higgs effect. The holographic boundary theory realizes the large N=(4,4) superconformal symmetry.

  6. Super-Eight: The brightest z~8 Galaxies

    Science.gov (United States)

    Holwerda, Benne; Bouwens, R.; Bradley, L.; Calvi, V.; Illingworth, G.; Labbe, I.; Magee, D.; Oesch, P.; Roberts-Borsani, G.; Smit, R.

    2016-08-01

    What are the properties of the most massive z~8 galaxies ('Super-Eights') and how luminous can these galaxies become at that epoch? Answering these questions is challenging due to the rarity of luminous z~8 galaxies and the large field-to-field variations in their volume densities. Indeed, the full wide-area CANDELS program only shows 3 z~8 galaxy candidates brighter than 25.5 mag and all of these candidates conspicuously lie in the same CANDELS field (EGS). One of our strongest new probes for particularly luminous z~8 galaxies are the WFC3 Pure-Parallel (PP) programs. Particularly intriguing are 8 bright z~8 candidates in these observations. These candidates have similar luminosities as the 3 brightest z~8 candidates from CANDELS (all spectroscopically confirmed). However, the uncertain contamination levels at extreme bright end of z~8 selection mean that follow-up observations are critical. We propose highly-efficient pointed HST and Spitzer/IRAC observations to determine if these candidates are indeed at z~8. We estimate that anywhere from 50 to 100% of the targeted sources will be confirmed to be at z~8 based on our results from CANDELS. The estimate is very uncertain due to very large cosmic variance in the CANDELS result and contamination from rare low-redshift sources. When combined with CANDELS, our observations would provide us the strongest current constraints on the volume density of bright, massive galaxies in the early Universe (serving as a guide to models of their build-up) and also provide valuable targets for future spectroscopy (e.g. with JWST), useful for probing the ionization state of the IGM.

  7. The Formation of Very Massive Stars

    OpenAIRE

    Krumholz, Mark R

    2014-01-01

    In this chapter I review theoretical models for the formation of very massive stars. After a brief overview of some relevant observations, I spend the bulk of the chapter describing two possible routes to the formation of very massive stars: formation via gas accretion, and formation via collisions between smaller stars. For direct accretion, I discuss the problems of how interstellar gas may be prevented from fragmenting so that it is available for incorporation into a single very massive st...

  8. On "New Massive" 4D Gravity

    CERN Document Server

    Bergshoeff, Eric A; Rosseel, Jan; Townsend, Paul K

    2012-01-01

    We construct a four-dimensional (4D) gauge theory that propagates, unitarily, the five polarization modes of a massive spin-2 particle. These modes are described by a "dual" graviton gauge potential and the Lagrangian is 4th-order in derivatives. As the construction mimics that of 3D "new massive gravity", we call this 4D model (linearized) "new massive dual gravity". We analyse its massless limit, and discuss similarities to the Eddington-Schroedinger model.

  9. Massive modes in magnetized brane models

    CERN Document Server

    Hamada, Yuta

    2012-01-01

    We study higher dimensional models with magnetic fluxes, which can be derived from superstring theory. We study mass spectrum and wavefunctions of massless and massive modes for spinor, scalar and vector fields. We compute the 3-point couplings and higher order couplings among massless modes and massive modes in 4D low-energy effective field theory. These couplings have non-trivial behaviors, because wavefunctions of massless and massive modes are non-trivial.

  10. On the singularities of massive superstring amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.

    1987-06-04

    Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are not terms in the perturbative expansion of physical S-matrix elements: These can be defined only with massless external states. Consistent massive amplitudes repuire an off-shell formalism.

  11. A method of evaluating massive Feynman integrals

    International Nuclear Information System (INIS)

    A general method of evaluatin of the massive Feynman integrals is presented. It is based on the representation of massive denominators in the form of Mellin-Barnes integrals. Expressions for some classes of one-loop propagator and vertex-type massive Feynman integrals are obtained at arbitrary values of line indices and the space-time dimension. The results are given in the form of hypergeometric functions. This makes it possible to examine various regions of momenta. 32 refs

  12. On the singularities of massive superstring amplitudes

    International Nuclear Information System (INIS)

    Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are not terms in the perturbative expansion of physical S-matrix elements: These can be defined only with massless external states. Consistent massive amplitudes repuire an off-shell formalism. (orig.)

  13. On the singularities of massive superstring amplitudes

    OpenAIRE

    Foda, O.

    1987-01-01

    Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are not terms in the perturbative expansion of physical S-matrix elements: these can be defined only with massless external states. Consistent massive amplitudes require an off-shell formalism.

  14. Massive gravity with N=1 local supersymmetry

    Science.gov (United States)

    Malaeb, O.

    2013-09-01

    A consistent theory of massive gravity, where the graviton acquires mass by spontaneously breaking diffeomorphism invariance, is now well established. We supersymmetrize this construction using N=1 fields. Coupling to N=1 supergravity is done by applying the rules of tensor calculus to construct an action invariant under local N=1 supersymmetry. The supersymmetric action is shown, at the quadratic level, to be free of ghosts and have as its spectrum a massive graviton, two gravitinos (with different masses) and a massive vector.

  15. Benchmarking of super Monte Carlo simulation program SuperMC 2

    International Nuclear Information System (INIS)

    The Super Monte Carlo Simulation Program (SuperMC) for fusion, fission and other nuclear applications has been developed. The techniques of variance reduction and hybrid parallel computing have been implemented in SuperMC to enhance efficiency. SuperMC is written in an object-oriented programing language C++ with modular design concept, and is relatively easy to maintain, modify and expand. Continuous-energy cross section data from hybrid evaluated nuclear data library HENDL, are utilized to support simulation. In SuperMC 2 constructive solid geometry (CSG) method are mainly employed to describe geometry and support geometry processes. As a way to input geometrical data of a complex system efficiently, SuperMC 2 adopts a hierarchical modeling option that makes the best of hierarchical tiers called composition solids. SuperMC 2 can perform fixed source and critical eigenvalue calculations through the Monte Carlo particle simulation algorithms for neutron, photon and coupled neutron-photon transport. SuperMC 2 has been validated on a broad range of international benchmarks. The results of fixed source calculation such as flux, surface current, energy deposition and fission energy deposition was corresponding with MCNP standard within 1% relative error and critical eigenvalue keff matched within 0.5% relative error

  16. Massive pericardial effusion in a hypothyroid child.

    OpenAIRE

    Williams, L H; Jayatunga, R.; Scott, O

    1984-01-01

    A child with Down's syndrome and long standing severe hypothyroidism had a massive pericardial effusion without cardiac tamponade. The effusion completely resolved with medical treatment without pericardiocentesis.

  17. MASSIVE STAR FORMATION IN THE MAGELLANIC CLOUDS

    Directory of Open Access Journals (Sweden)

    M. Rubio

    2009-01-01

    Full Text Available Multiwavelenghts studies of massive star formation regions in the LMC and SMC reveal that a second generation of stars is being formed in dense molecular clouds located in the surroundings of the massive clusters. These dense molecular clouds have survive the action of massive star UV radiation elds and winds and they appear as compact dense H2 knots in regions of weak CO emission. We present results of observations obtained towards massive star forming regions in the low metallicity molecular clouds in the Magellanic Clouds and investigate its implication on star formation in the early universe.

  18. Massive relic galaxies challenge the co-evolution of SMBHs and their host galaxies

    CERN Document Server

    Ferré-Mateu, Anna; Trujillo, Ignacio; Balcells, Marc; Bosch, Remco C E van den

    2015-01-01

    We study a sample of eight massive galaxies that are extreme outliers (3-5$\\sigma$) in the M$_{\\bullet}$-M$_\\mathrm{bulge}$ local scaling relation. Two of these galaxies are confirmed to host extremely large super massive black holes (SMBHs), whereas the virial mass estimates for the other six are also consistent with having abnormally large SMBHs. From the analysis of their star formation histories and their structural properties we find that all these extreme outliers can be considered as relic galaxies from the early (z$\\sim$2) Universe: i.e. they are compact (R$_{\\mathrm{e}}$$<$2 kpc) and have purely old stellar populations (t$\\gtrsim$10 Gyr). In order to explain the nature of such deviations from the local relations, we propose a scenario in which the hosts of these \\"uber-massive SMBHs are galaxies that have followed a different evolutionary path than the two-phase growth channel assumed for massive galaxies. Once the SMBH and the core of the galaxy are formed at z$\\sim$2, the galaxy skips the second...

  19. Massive quiescent cores in Orion. V. The internal structures and physical and chemical properties of two extremely dense cores

    International Nuclear Information System (INIS)

    We present a high-resolution (∼ 1.''5) observational study of two massive dust-gas cores, ORI8nw2 and ORI26, in the Orion molecular cloud using the Combined Array for Research in Millimeter-wave Astronomy. In each region the 3.2 mm continuum emission exhibits a dense and compact dust core at the center with 1-3 solar masses. The cores have number densities exceeding 109 cm–3, which are among the highest volume densities observed in star-forming cores. In both regions the N2H+ shows clumpy structures that are spatially displaced from the densest gas. In OIR8nw2 in particular, the N2H+ shows a noticeable filament structure with a central cavity shell. The calculation for the dynamical state shows that this core can be potentially supported by the magnetic field against its gravitational instability, but the fragmentation might still occur and produce the observed N2H+ clumps if the gas density exceeds 5 × 107 cm–3 and this value is available within the observed density range. Also, the extremely high density at the core center suggests super-Jeans condition and the possibility for further fragmentation. For the chemical properties, the N2H+-to-HCO+ abundance ratios are shown to be different than those observed in infrared dark clouds. A combined analysis with the other Orion cores and the chemical model suggests that the different abundance ratios can be explained by the low CO abundances in our cores. To further reveal the evolution of such dense cores, higher resolution and sensitivity are required.

  20. CAUGHT IN THE ACT: THE ASSEMBLY OF MASSIVE CLUSTER GALAXIES AT z = 1.62

    International Nuclear Information System (INIS)

    We present the recent merger history of massive galaxies in a spectroscopically confirmed proto-cluster at z = 1.62. Using Hubble Space Telescope WFC3 near-infrared imaging from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, we select cluster and z ∼ 1.6 field galaxies with Mstar ≥ 3 × 1010 M☉, to determine the frequency of double nuclei or close companions within projected separations less than 20 kpc co-moving. We find that four out of five spectroscopically confirmed massive proto-cluster galaxies have double nuclei, and 57 +13-14% of all Mstar ≥ 3 × 1010 M☉ cluster candidates are observed in either close pair systems or have double nuclei. In contrast, only 11% ± 3% of the field galaxies are observed in close pair/double nuclei systems. After correcting for the contribution from random projections, the implied merger rate per massive galaxy in the proto-cluster is ∼3-10 times higher than the merger rate of massive field galaxies at z ∼ 1.6. Close pairs in the cluster have minor merger stellar mass ratios (Mprimary: Msatellite ≥ 4), while the field pairs consist of both major and minor mergers. At least half of the cluster mergers are gas-poor, as indicated by their red colors and low 24 μm fluxes. Two of the double-nucleated cluster members have X-ray detected active galactic nuclei with Lx > 1043 erg s–1, and are strong candidates for dual or offset super-massive black holes. We conclude that the massive z = 1.62 proto-cluster galaxies are undergoing accelerated assembly via minor mergers, and discuss the implications for galaxy evolution in proto-cluster environments

  1. Conformally symmetric massive discrete fields

    CERN Document Server

    De Souza, M M

    2000-01-01

    Conformal symmetry is taken as an attribute of theories of massless fields in manifolds with specific dimensionalities. This paper shows that this is not an absolute truth; it is a consequence of the mathematical representation used for the physical interactions. It introduces a new kind of representation where the propagation of massive (invariant mass) and massless interactions are unifiedly described by a single conformally symmetric Green's function. Sources and fields are treated at a same footing, symmetrically, as discrete fields - the fields in this new representation - fields defined with support on straight lines embedded in a (3+1)-Minkowski manifold. The discrete field turns out to be a point in phase space. It is finite everywhere. With a finite number of degrees of freedom it does not share the well known problems faced by the standard continuous formalism which can be retrieved from the discrete one by an integration over a hypersurface. The passage from discrete to continuous fields illuminate...

  2. Massively parallel femtosecond laser processing.

    Science.gov (United States)

    Hasegawa, Satoshi; Ito, Haruyasu; Toyoda, Haruyoshi; Hayasaki, Yoshio

    2016-08-01

    Massively parallel femtosecond laser processing with more than 1000 beams was demonstrated. Parallel beams were generated by a computer-generated hologram (CGH) displayed on a spatial light modulator (SLM). The key to this technique is to optimize the CGH in the laser processing system using a scheme called in-system optimization. It was analytically demonstrated that the number of beams is determined by the horizontal number of pixels in the SLM NSLM that is imaged at the pupil plane of an objective lens and a distance parameter pd obtained by dividing the distance between adjacent beams by the diffraction-limited beam diameter. A performance limitation of parallel laser processing in our system was estimated at NSLM of 250 and pd of 7.0. Based on these parameters, the maximum number of beams in a hexagonal close-packed structure was calculated to be 1189 by using an analytical equation. PMID:27505815

  3. Stable massive particles at colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fairbairn, M.; /Stockholm U.; Kraan, A.C.; /Pennsylvania U.; Milstead, D.A.; /Stockholm U.; Sjostrand, T.; /Lund U.; Skands, P.; /Fermilab; Sloan, T.; /Lancaster U.

    2006-11-01

    We review the theoretical motivations and experimental status of searches for stable massive particles (SMPs) which could be sufficiently long-lived as to be directly detected at collider experiments. The discovery of such particles would address a number of important questions in modern physics including the origin and composition of dark matter in the universe and the unification of the fundamental forces. This review describes the techniques used in SMP-searches at collider experiments and the limits so far obtained on the production of SMPs which possess various colour, electric and magnetic charge quantum numbers. We also describe theoretical scenarios which predict SMPs, the phenomenology needed to model their production at colliders and interactions with matter. In addition, the interplay between collider searches and open questions in cosmology such as dark matter composition are addressed.

  4. Massive allografts sterilised by irradiation

    International Nuclear Information System (INIS)

    From 1984 to 1988 we implanted 127 massive allografts irradiated with a dose of 25 000 grays. These were reviewed at a minimum follow-up of three years to determine the effect of irradiation on infection, the complications and the functional result. No bacteriological infection was seen in the 44 patients who had allografts for revision of joint arthroplasty or for a tumour with no adjuvant therapy. For the 83 patients who also had chemotherapy or radiotherapy or both for a bone tumour, the rate of infection was 13%. The major mechanical complications were nonunion in seven grafts (5.5%) and fracture in eight (6%). These rates do not differ greatly from those reported for non-irradiated grafts. Our results suggest that irradiation, which remains the most convenient and acceptable method of sterilisation, does not jeopardise the clinical results. (author)

  5. The merger history of massive spheroids since z ˜ 1 is size-independent

    Science.gov (United States)

    Díaz-García, L. A.; Mármol-Queraltó, E.; Trujillo, I.; Cenarro, A. J.; López-Sanjuan, C.; Pérez-González, P. G.; Barro, G.

    2013-07-01

    Using a compilation of 379 massive (stellar mass M ≳ 1011 M⊙) spheroid-like galaxies from the near-infrared Palomar/DEEP-2 survey, we investigated, up to z ˜ 1, whether the presence of companions depends on the size of the host galaxy. We explored the presence of companions for mass ratios with respect to the central massive galaxy down to 1 : 10 and 1 : 100, and within projected distances of 30, 50 and 100 kpc of these objects. We found evidence that these companions are equally distributed around both compact and extended massive spheroid-like galaxies. This suggests that, at least since z ˜ 1, the merger activity in these objects is nearly homogeneous across the whole population and that the merger history is not affected by the size of the host galaxy. Our results could indicate that compact and extended massive spheroid-like galaxies are increasing in size at the same rate.

  6. The merger history of massive spheroids since z~1 is size independent

    CERN Document Server

    Díaz-García, L A; Trujillo, I; Cenarro, A J; López-Sanjuan, C; Pérez-González, P G; Barro, G

    2013-01-01

    Using a compilation of 379 massive (stellar mass M > 10^{11} M_Sun) spheroid-like galaxies from the near-infrared Palomar/DEEP-2 survey, we have probed, up to z~1, whether the presence of companions depends on the size of the host galaxies. We have explored the presence of companions with mass ratios down to 1:10 and 1:100, with respect to the central massive galaxy, and within a projected distance of 30, 50 and 100 kpc of these objects. We find evidence for these companions being equally distributed around both compact and extended massive spheroids. This finding suggests that, at least since z~1, the merger activity in these objects is rather homogeneous across the whole population and its merger history is not affected for the size of the host galaxy. Our result could indicate that both compact and extended massive spheroid-like galaxies are growing in size at the same rate.

  7. Pre-suprenova evolution of rotating massive stars

    OpenAIRE

    Hirschi, Raphael; Meynet, Georges; Maeder, Andre; Goriely, Stephane

    2003-01-01

    The Geneva evolutionary code has been modified to study the advanced stages (Ne, O, Si burnings) of rotating massive stars. Here we present the results of four 20 solar mass stars at solar metallicity with initial rotational velocities of 0, 100, 200 and 300 km/s in order to show the crucial role of rotation in stellar evolution. As already known, rotation increases mass loss and core masses (Meynet and Maeder 2000). A fast rotating 20 solar mass star has the same central evolution as a non-r...

  8. Massive intracranial calcifications in a patient with systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Central nervous system involvement is frequently reported in patients with systemic lupus erythematosus. Computed tomography and magnetic resonance imaging studies usually show brain atrophy, cerebral infarction and/or intracranial bleeding. Extensive intracranial calcification in patients with systemic lupus erythematosus is rare. We report a case of a patient with systemic lupus erythematosus who presented with seizures and massive basal ganglia calcification and mild calcifications in the frontal lobes, seen on the brain computed tomography scan. Magnetic resonance imaging showed hyperintensity on FLAIR images and hypointense signals on T2* gradient echo images in the basal ganglia. (author)

  9. New Bi-Gravity from New Massive Garvity

    CERN Document Server

    Akhavan, A; Naseh, A; Nemati, A; Shirzad, A

    2016-01-01

    Using the action of three dimensional New Massive Gravity (NMG) we construct a new bi-gravity in three dimensions. This can be done by promoting the rank two auxiliary field appearing in the expression of NMG's action into a dynamical field. We show that small fluctuations around the AdS vacuum of the model are non-tachyonic and ghost free within certain range of the parameters of the model. We study central charges of the dual field theory and observe that in this range they are positive too. This suggests that the proposed model might be a consistent three dimensional bi-gravity.

  10. SuperAGILE Services at ASDC

    International Nuclear Information System (INIS)

    The Italian Space Agency Science Data Center (ASDC) is a facility with several responsibilities including support to all the ASI scientific missions as for management and archival of the data, acting as the interface between ASI and the scientific community and providing on-line access to the data hosted. In this poster we describe the services that ASDC provides for SuperAGILE, in particular the ASDC public web pages devoted to the dissemination of SuperAGILE scientific results. SuperAGILE is the X-Ray imager onboard the AGILE mission, and provides the scientific community with orbit-by-orbit information on the observed sources. Crucial source information including position and flux in chosen energy bands will be reported in the SuperAGILE public web page at ASDC. Given their particular interest, another web page will be dedicated entirely to GRBs and other transients, where new event alerts will be notified and where users will find all the available informations on the GRBs detected by SuperAGILE

  11. Super-resolution for flash LADAR data

    Science.gov (United States)

    Hu, Shuowen; Young, S. Susan; Hong, Tsai; Reynolds, Joseph P.; Krapels, Keith; Miller, Brian; Thomas, Jim; Nguyen, Oanh

    2009-05-01

    Flash laser detection and ranging (LADAR) systems are increasingly used in robotics applications for autonomous navigation and obstacle avoidance. Their compact size, high frame rate, wide field of view, and low cost are key advantages over traditional scanning LADAR devices. However, these benefits are achieved at the cost of spatial resolution. Super-resolution enhancement can be applied to improve the resolution of flash LADAR devices, making them ideal for small robotics applications. Previous work by Rosenbush et al. applied the super-resolution algorithm of Vandewalle et al. to flash LADAR data, and observed quantitative improvement in image quality in terms of number of edges detected. This study uses the super-resolution algorithm of Young et al. to enhance the resolution of range data acquired with a SwissRanger SR-3000 flash LADAR camera. To improve the accuracy of sub-pixel shift estimation, a wavelet preprocessing stage was developed and applied to flash LADAR imagery. The authors used the triangle orientation discrimination (TOD) methodology for a subjective evaluation of the performance improvement (measured in terms of probability of target discrimination and subject response times) achieved with super-resolution. Super-resolution of flash LADAR imagery resulted in superior probabilities of target discrimination at the all investigated ranges while reducing subject response times.

  12. Super-selective renal artery embolization for the treatment of acute renal hemorrhage

    International Nuclear Information System (INIS)

    Objective: To evaluate super-selective renal artery embolization in treating acute renal hemorrhage. Methods: A total of 17 patients with massive renal bleeding were enrolled in this study. After super-selective renal artery catheterization with 4 F and/or 2.7 F catheter was accomplished, renal artery embolization with microcoils, coils and/or PVA particles was carried out. Preoperative CTA was performed in five patients. Plain CT scanning and contrast-enhanced CTA were employed in nine patients at 4 days to 54 months after treatment. Results: Technical success was achieved in all of the 17 cases. Pre-interventional CT scan showed abnormal signs of hemorrhage, arteriovenous malformation, aneurysm, etc. Post-interventional CT scan showed different degrees of renal infarction, renal atrophy, peripheral contraction and depression of the kidney which were located in the areas originally supplied by embolized artery. Compensatory hypertrophy of the contralateral normal kidney occurred in four cases. Abnormal blood vessels disappeared in post-interventional CTA. No coil displacement was seen. Conclusion: For the treatment of acute renal hemorrhage super-selective renal artery embolization is safe and reliable. CTA is of great significance for identifying the bleeding sites before interventional treatment and for evaluating the therapeutic effect. (author)

  13. PST-type SL(2;R)-covariant Super D3-brane Action in Flat Spacetime

    CERN Document Server

    Suzuki, T

    2004-01-01

    We give the explicit form of the PST-type SL(2;R)-covariant super D3-brane action for the flat Minkowski background. To this end, we follow the prescription developed by Hatsuda and Kamimura. As an application of the action, we obtain the supercharge of the action by using the standard Noether's method and calculate the Poisson bracket algebra of the supercharge. The central charge of the supersymmetry algebra is given in a manifestly SL(2;R)-covariant way.

  14. Super-resolution imaging of plasmodesmata using three-dimensional structured illumination microscopy

    OpenAIRE

    Fitzgibbon, Jessica; Bell, Karen; King, Emma; Oparka, Karl

    2010-01-01

    We used three-dimensional structured illumination microscopy (3D-SIM) to obtain subdiffraction ("super-resolution") images of plasmodesmata (PD) expressing a green fluorescent protein-tagged viral movement protein (MP) in tobacco (Nicotiana tabacum). In leaf parenchyma cells, we were able to resolve individual components of PD (neck and central cavities) at twice the resolution of a confocal microscope. Within the phloem, MP-green fluorescent protein filaments extended outward from the specia...

  15. Super-spinning compact objects generated by thick accretion disks

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zilong; Bambi, Cosimo, E-mail: zilongli@fudan.edu.cn, E-mail: bambi@fudan.edu.cn [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 220 Handan Road, 200433 Shanghai (China)

    2013-03-01

    If astrophysical black hole candidates are the Kerr black holes predicted by General Relativity, the value of their spin parameter must be subject to the theoretical bound |a{sub *}| ≤ 1. In this work, we consider the possibility that these objects are either non-Kerr black holes in an alternative theory of gravity or exotic compact objects in General Relativity. We study the accretion process when their accretion disk is geometrically thick with a simple version of the Polish doughnut model. The picture of the accretion process may be qualitatively different from the one around a Kerr black hole. The inner edge of the disk may not have the typical cusp on the equatorial plane any more, but there may be two cusps, respectively above and below the equatorial plane. We extend previous work on the evolution of the spin parameter and we estimate the maximum value of a{sub *} for the super-massive black hole candidates in galactic nuclei. Since measurements of the mean radiative efficiency of AGNs require η > 0.15, we infer the ''observational'' bound |a{sub *}|∼<1.3, which seems to be quite independent of the exact nature of these objects. Such a bound is only slightly weaker than |a{sub *}|∼<1.2 found in previous work for thin disks.

  16. Radiation shielding for the Super Collider West Utility region

    International Nuclear Information System (INIS)

    Shielding considerations in the 20 x 20-TeV Superconducting Super Collider are strongly correlated with detailed machine specifics in the various accelerator sections. The West Utility, the most complex area of the Collider, concentrates all the major accelerator subsystems in a single area. The beam loss rate and associated radiation levels in this region are anticipated to be quite high, and massive radiation shielding is therefore required to protect personnel, Collider components, and the environment. The challenging task of simultaneously optimizing accelerator design and radiation shielding, both of which are strongly influenced by subsystem design details, requires the integration of several complex simulation codes. To this end we have performed exhaustive hadronic shower simulations with the MARS12 program; detailed accelerator lattice and optics optimization via the SYNCH, MAD, and MAGIC codes; and extensive 3-D configuration modeling of the accelerator tunnel and subsystems geometries. Our technique and the non-trivial results from such a combined approach are presented here. An integrated procedure is found invaluable in developing cost-effective radiation shielding solutions

  17. The dust condensation sequence in red super-giant stars

    CERN Document Server

    Verhoelst, T; Hony, S; Decin, L; Cami, J; Eriksson, K

    2009-01-01

    Context: Red super-giant (RSG) stars exhibit significant mass loss through a slow and dense wind. They are often considered to be the more massive counter parts of Asymptotic Giant Branch (AGB) stars. While the AGB mass loss is linked to their strong pulsations, the RSG are often only weakly variable. Aim: To study the conditions at the base of the wind, by determining the dust composition in a sample of RSG. The dust composition is thought to be sensitive to the density, temperature and acceleration at the base of the wind. Method: We compile a sample of 27 RSG infrared spectra (ISO-SWS) and supplement these with photometric measurements to obtain the full spectral energy distribution (SED). These data are modelled using a dust radiative transfer code. The results are scrutinised for correlations. Results: We find (1) strong correlations between dust composition, mass-loss rate and stellar luminosity, roughly in agreement with the theoretical dust condensation sequence, (2) the need for a continuous (near-)I...

  18. Super-spinning compact objects generated by thick accretion disks

    International Nuclear Information System (INIS)

    If astrophysical black hole candidates are the Kerr black holes predicted by General Relativity, the value of their spin parameter must be subject to the theoretical bound |a*| ≤ 1. In this work, we consider the possibility that these objects are either non-Kerr black holes in an alternative theory of gravity or exotic compact objects in General Relativity. We study the accretion process when their accretion disk is geometrically thick with a simple version of the Polish doughnut model. The picture of the accretion process may be qualitatively different from the one around a Kerr black hole. The inner edge of the disk may not have the typical cusp on the equatorial plane any more, but there may be two cusps, respectively above and below the equatorial plane. We extend previous work on the evolution of the spin parameter and we estimate the maximum value of a* for the super-massive black hole candidates in galactic nuclei. Since measurements of the mean radiative efficiency of AGNs require η > 0.15, we infer the ''observational'' bound |a*|∼*|∼<1.2 found in previous work for thin disks

  19. MASSIVE PROTOPLANETARY DISKS IN ORION BEYOND THE TRAPEZIUM CLUSTER

    International Nuclear Information System (INIS)

    We present Submillimeter Array1The Submillimeter Array is a joint project between the Submillimeter Astrophysical Observatory and the Academica Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academica Sinica. observations of the 880 μm continuum emission from three circumstellar disks around young stars in Orion that lie several arcminutes (∼> 1 pc) north of the Trapezium cluster. Two of the three disks are in the binary system 253-1536. Silhouette disks 216-0939 and 253-1536a are found to be more massive than any previously observed Orion disks, with dust masses derived from their submillimeter emission of 0.045 M sun and 0.066 M sun, respectively. The existence of these massive disks reveals that the disk mass distribution in Orion does extend to high masses, and that the truncation observed in the central Trapezium cluster is a result of photoevaporation due to the proximity of O-stars. 253-1536b has a disk mass of 0.018 M sun, making the 253-1536 system the first optical binary in which each protoplanetary disk is massive enough to potentially form solar systems.

  20. THE INFLUENCE OF PRESSURE-DEPENDENT VISCOSITY ON THE THERMAL EVOLUTION OF SUPER-EARTHS

    International Nuclear Information System (INIS)

    We study the thermal evolution of super-Earths with a one-dimensional (1D) parameterized convection model that has been adopted to account for a strong pressure dependence of the viscosity. A comparison with a 2D spherical convection model shows that the derived parameterization satisfactorily represents the main characteristics of the thermal evolution of massive rocky planets. We find that the pressure dependence of the viscosity strongly influences the thermal evolution of super-Earths—resulting in a highly sluggish convection regime in the lower mantles of those planets. Depending on the effective activation volume and for cooler initial conditions, we observe with growing planetary mass even the formation of a conductive lid above the core-mantle boundary (CMB), a so-called CMB-lid. For initially molten planets our results suggest no CMB-lids but instead a hot lower mantle and core as well as sluggish lower mantle convection. This implies that the initial interior temperatures, especially in the lower mantle, become crucial for the thermal evolution—the thermostat effect suggested to regulate the interior temperatures in terrestrial planets does not work for massive planets if the viscosity is strongly pressure dependent. The sluggish convection and the potential formation of the CMB-lid reduce the convective vigor throughout the mantle, thereby affecting convective stresses, lithospheric thicknesses, and heat fluxes. The pressure dependence of the viscosity may therefore also strongly affect the propensity of plate tectonics, volcanic activity, and the generation of a magnetic field of super-Earths.

  1. On the singularities of massive superstring amplitudes

    NARCIS (Netherlands)

    Foda, O.

    1987-01-01

    Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are n

  2. Universal Resistivity from Holographic Massive Gravity

    OpenAIRE

    Blake, Mike; Tong, David

    2013-01-01

    Massive gravity provides a holographic model for theories exhibiting momentum dissipation. We provide an analytic expression for the DC conductivity. The result is universal, depending only on properties of the infra-red horizon, and holds at finite temperature and charge density. In addition, we provide a derivation of black hole thermodynamics in holographic massive gravity and show that the resulting physics is sensible.

  3. The most massive core collapse supernova progenitors

    OpenAIRE

    Waldman, Roni

    2008-01-01

    The discovery of the extremely luminous supernova SN 2006gy, possibly interpreted as a pair instability supernova, renewed the interest in very massive stars. We explore the evolution of these objects, which end their life as pair instability supernovae or as core collapse supernovae with relatively massive iron cores, up to about $3 M_\\odot$.

  4. A Dynamical Theory for Massive Supergravity

    CERN Document Server

    Gates,, S James

    2013-01-01

    We present a new massive theory of superspin Y=3/2 which has non-minimal supergravity as it's massless limit. The new result will illuminate the underlying structure of auxiliary fields required for the description of arbitrary massive half-integer superspin systems.

  5. An effective theory of massive gauge bosons

    International Nuclear Information System (INIS)

    The coupling of a group-valued massive scalar field to a gauge field through a symmetric rank-2 field strenght is studied. By considering energies very small compared with the mass of the scalar and invoking the decoupling theorem, one is left with a low-energy effective theory describing a dynamics of massive vector fields. (Author)

  6. Creating massive entanglement of Bose condensed atoms

    OpenAIRE

    Helmerson, Kristian; You, Li

    2001-01-01

    We propose a direct, coherent coupling scheme that can create massively entangled states of Bose-Einstein condensed atoms. Our idea is based on an effective interaction between two atoms from coherent Raman processes through a (two atom) molecular intermediate state. We compare our scheme with other recent proposals for generation of massive entanglement of Bose condensed atoms.

  7. Galactic Super-volcano in Action

    Science.gov (United States)

    2010-08-01

    A galactic "super-volcano" in the massive galaxy M87 is erupting and blasting gas outwards, as witnessed by NASA's Chandra X-ray Observatory and NSF's Very Large Array. The cosmic volcano is being driven by a giant black hole in the galaxy's center and preventing hundreds of millions of new stars from forming. Astronomers studying this black hole and its effects have been struck by the remarkable similarities between it and a volcano in Iceland that made headlines earlier this year. At a distance of about 50 million light years, M87 is relatively close to Earth and lies at the center of the Virgo cluster, which contains thousands of galaxies. M87's location, coupled with long observations over Chandra's lifetime, has made it an excellent subject for investigations of how a massive black hole impacts its environment. "Our results show in great detail that supermassive black holes have a surprisingly good control over the evolution of the galaxies in which they live," said Norbert Werner of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University and the SLAC National Accelerator Laboratory, who led one of two papers describing the study. "And it doesn't stop there. The black hole's reach extends ever farther into the entire cluster, similar to how one small volcano can affect practically an entire hemisphere on Earth." The cluster surrounding M87 is filled with hot gas glowing in X-ray light, which is detected by Chandra. As this gas cools, it can fall toward the galaxy's center where it should continue to cool even faster and form new stars. However, radio observations with the Very Large Array suggest that in M87 jets of very energetic particles produced by the black hole interrupt this process. These jets lift up the relatively cool gas near the center of the galaxy and produce shock waves in the galaxy's atmosphere because of their supersonic speed. The scientists involved in this research have found the interaction of this cosmic

  8. On the Stability of Super Earth Atmospheres

    CERN Document Server

    Heng, Kevin

    2012-01-01

    We investigate the stability of super Earth atmospheres around M stars using a 7-parameter, analytical framework. We construct stability diagrams in the parameter space of exoplanetary radius versus semi-major axis and elucidate the regions in which stable atmospheres may exist. We find that super Earth atmospheres with higher mean molecular weights and enhanced metallicities occupy a smaller region of allowed parameter space, because of the dual effects of diminished advection and enhanced radiative cooling. Furthermore, many super Earths which reside within the habitable zones of M stars may not possess stable, Earth-like atmospheres. We apply our stability diagrams to GJ 436b and GJ 1214b, and demonstrate that Earth-like elemental compositions for their atmospheres are disfavoured if these exoplanets possess solid surfaces and shallow atmospheres. Finally, we construct stability diagrams tailored to the Kepler dataset, for G and K stars, and predict that about half of the exoplanetary candidates are expect...

  9. CO-EVOLUTION OF GALAXIES AND CENTRAL BLACK HOLES: OBSERVATIONAL EVIDENCE ON THE TRIGGER OF AGN FEEDBACK

    International Nuclear Information System (INIS)

    A comprehensive analysis of the extended emission-line region (EELR) around quasars is presented. A new Subaru/Suprime-Cam observation is combined with a literature search, resulting in a compilation of 81 EELR measurements for type-1 and type-2 quasars with an associated active galactic nucleus (AGN) and host galaxy properties. It is found that the EELR phenomenon shows clear correlation with the Eddington ratio, which links EELR to the constituents of principal component 1, or eigenvector 1, of the AGN emission correlations. We also find that EELR is preferentially associated with gas-rich, massive blue galaxies. This supports the idea that the primary determinant of EELR creation is gas availability and that the gas may be brought in by galaxy merger, triggering the current star formation as well as AGN activity, and also gives an explanation for the fact that most luminous EELRs are found around radio-loud sources with low Eddington ratio. By combining all the observations, it is suggested that EELR quasars occupy the massive blue corner of the green valley, the AGN realm, on the galaxy color-stellar mass diagram. Once a galaxy is pushed to this corner, an activated AGN would create an EELR by energy injection into the interstellar gas and eventually blow it away, leading to star formation quenching. The results presented here provide a piece of evidence for the presence of such an AGN feedback process, which may play a leading role in the co-evolution of galaxies and central super-massive black holes.

  10. Breeding Super-Earths and Birthing Super-Puffs in Transitional Disks

    CERN Document Server

    Lee, Eve J

    2015-01-01

    The riddle posed by super-Earths (1-4$R_\\oplus$, 2-20$M_\\oplus$) is that they are not Jupiters: their core masses are large enough to trigger runaway gas accretion, yet somehow super-Earths accreted atmospheres that weigh only a few percent of their total mass. We show that this puzzle is solved if super-Earths formed late, as the last vestiges of their parent gas disks were about to clear. This scenario would seem to present fine-tuning problems, but we show that there are none. Ambient gas densities can span many (up to 9) orders of magnitude, and super-Earths can still robustly emerge after $\\sim$0.1-1 Myr with percent-by-weight atmospheres. Super-Earth cores are naturally bred in gas-poor environments where gas dynamical friction has weakened sufficiently to allow constituent protocores to merge. So little gas is present at the time of core assembly that cores hardly migrate by disk torques: formation of super-Earths can be in situ. The picture --- that close-in super-Earths form in a gas-poor (but not ga...

  11. The massive stellar population of W49: A spectroscopic survey

    Science.gov (United States)

    Wu, Shi-Wei; Bik, Arjan; Bestenlehner, Joachim M.; Henning, Thomas; Pasquali, Anna; Brandner, Wolfgang; Stolte, Andrea

    2016-04-01

    Context. Massive stars form on different scales that range from large, dispersed OB associations to compact, dense starburst clusters. The complex structure of regions of massive star formation and the involved short timescales provide a challenge for our understanding of their birth and early evolution. As one of the most massive and luminous star-forming region in our Galaxy, W49 is the ideal place to study the formation of the most massive stars. Aims: By classifying the massive young stars that are deeply embedded in the molecular cloud of W49, we aim to investigate and trace the star formation history of this region. Methods: We analyse near-infrared K-band spectroscopic observations of W49 from LBT/LUCI combined with JHK images obtained with NTT/SOFI and LBT/LUCI. Based on JHK-band photometry and K-band spectroscopy, the massive stars are placed in a Hertzsprung Russell diagram. By comparison with evolutionary models, their age and hence the star formation history of W49 can be investigated. Results: Fourteen O-type stars, as well as two young stellar objects (YSOs), are identified by our spectroscopic survey. Eleven O stars are main sequence stars with subtypes ranging from O3 to O9.5 and masses ranging from ~20 M⊙ to ~120 M⊙. Three of the O stars show strong wind features and are considered to be Of-type supergiants with masses beyond 100 M⊙. The two YSOs show CO emission, which is indicative of the presence of circumstellar disks in the central region of the massive cluster. The age of the cluster is estimated as ~1.5 Myr, with star formation continuing in different parts of the region. The ionising photons from the central massive stars have not yet cleared the molecular cocoon surrounding the cluster. W49 is comparable to extragalactic star-forming regions, and it provides us with a unique chance to study a starburst in detail. Based on data acquired using the Large Binocular Telescope (LBT). The LBT is an international collaboration among

  12. XFEM for Thermal Crack of Massive Concrete

    Directory of Open Access Journals (Sweden)

    Guowei Liu

    2013-01-01

    Full Text Available Thermal cracking of massive concrete structures occurs as a result of stresses caused by hydration in real environment conditions. The extended finite element method that combines thermal fields and creep is used in this study to analyze the thermal cracking of massive concrete structures. The temperature field is accurately simulated through an equivalent equation of heat conduction that considers the effect of a cooling pipe system. The time-dependent creep behavior of massive concrete is determined by the viscoelastic constitutive model with Prony series. Based on the degree of hydration, we consider the main properties related to cracking evolving with time. Numerical simulations of a real massive concrete structure are conducted. Results show that the developed method is efficient for numerical calculations of thermal cracks on massive concrete. Further analyses indicate that a cooling system and appropriate heat preservation measures can efficiently prevent the occurrence of thermal cracks.

  13. Measuring the total and baryonic mass profiles of the very massive CASSOWARY 31 strong lens

    DEFF Research Database (Denmark)

    Grillo, Claudio; Christensen, L.; Gallazzi, A.;

    2013-01-01

    find that the CSWA 31 deflector has properties suggesting it to be among the most distant and massive fossil systems studied so far. The unusually strong central dark matter dominance and the possible fossil nature of this system render it an interesting target for detailed tests of cosmological models...

  14. The Disruptive Potential of the Massive Open Online Course: A Literature Review

    Science.gov (United States)

    Jacoby, Jean

    2014-01-01

    The Massive Open Online Course (MOOC) is a rapidly evolving phenomenon which has stimulated discussion in universities around the world. A central theme of these discussions, and much of the published literature on the phenomenon, is the potential of the MOOC to disrupt the way universities do business. The aim of this narrative literature review…

  15. Structural optimization of super-repellent surfaces

    DEFF Research Database (Denmark)

    Cavalli, Andrea; Bøggild, Peter; Okkels, Fridolin

    2013-01-01

    Micro-patterning is an effective way to achieve surfaces with extreme liquid repellency. This technique does not rely on chemical coatings and is therefore a promising concept for application in food processing and bio-compatibile coatings. This super-repellent behaviour is obtained by suspending...... the geometry of the posts that generate the super-repellent effect. We here present two different approaches to obtain optimal liquid repellent surfaces, addressing some fundamental aspects of the problem. First, we focus on the wetting aspect, and we apply topology optimization to search for an optimal...

  16. Super-resolution near field imaging device

    DEFF Research Database (Denmark)

    2014-01-01

    Super-resolution imaging device comprising at least a first and a second elongated coupling element, each having a first transverse dimension at a first end and a second transverse dimension at a second end and being adapted for guiding light between their respective first and second ends, each...... matrix and the second ends of the coupling elements are located at or in a vicinity of the second side of the matrix. The second transverse dimension is larger than the first transverse dimension. A microscope objective system and a microscope comprising the super-resolution imaging device are also...

  17. The Physics Programme at SuperB

    OpenAIRE

    Bevan, Adrian

    2011-01-01

    SuperB is a next generation high luminosity $e^+e^-$ collider that will be built at the Cabibbo Laboratory, Tor Vergata, in Italy. The physics goals of this experiment are to search for signs of physics beyond the Standard Model through precision studies of rare or forbidden processes. While the name suggests that $B$ physics is the main goal, this experiment is a Super Flavour Factory, and precision measurements of $B_{u,d,s}$, $D$, $\\tau$, $\\Upsilon$, and $\\psi(3770)$ decays as well as spec...

  18. Super resolution of images and video

    CERN Document Server

    Katsaggelos, Aggelos K

    2007-01-01

    This book focuses on the super resolution of images and video. The authors' use of the term super resolution (SR) is used to describe the process of obtaining a high resolution (HR) image, or a sequence of HR images, from a set of low resolution (LR) observations. This process has also been referred to in the literature as resolution enhancement (RE). SR has been applied primarily to spatial and temporal RE, but also to hyperspectral image enhancement. This book concentrates on motion based spatial RE, although the authors also describe motion free and hyperspectral image SR problems. Also exa

  19. The SuperCDMS SNOLAB Detector Tower

    Science.gov (United States)

    Aramaki, Tsuguo

    2016-08-01

    The SuperCDMS collaboration is moving forward with the design and construction of SuperCDMS SNOLAB, where the initial deployment will include ˜ 30 kg of Ge and ˜ 5 kg of Si detectors. Here, we will discuss the associated cryogenic cold hardware required for the detector readout. The phonon signals will be read out with superconducting quantum interference device arrays and the ionization signals will use high electron mobility transistor amplifiers operating at 4 K. A number of design challenges exist regarding the required wiring complex impedance, noise pickup, vibration, and thermal isolation. Our progress to date will be presented.

  20. Acoustic Design of Super-light Structures

    DEFF Research Database (Denmark)

    Christensen, Jacob Ellehauge; Hertz, Kristian Dahl; Brunskog, Jonas;

    Super-light structures is a newly developed and patented construction principle for concrete structures. It combines some of the desirable properties of normal strong concrete and lightweight aggregate concrete in order to improve the utilization of the materials and to design improved concrete...... structures and elements. The super-light slab element in the present research is developed as a holistic design including all relevant disciplines. The element is based on wellknown technologies and materials, which have been used for millenniums, namely compression arches and lightweight expanded clay...

  1. Super-Gaussian conical refraction beam

    CERN Document Server

    Turpin, A; Kalkandkiev, T K; Tomizawa, H; Mompart, J

    2014-01-01

    We demonstrate the transformation of Gaussian input beams into super-Gaussian beams with a quasi flat-top transverse profile by means of the conical refraction phenomenon by adjusting the ratio between the ring radius and the waist radius of the input beam to 0.445. We discuss the beam propagation of the super-Gaussian beam and show that it has a confocal parameter three times larger than the one that would be obtained from a Gaussian beam. The experiments performed with a KGd(WO4)2 biaxial crystal are in good agreement with the theoretical predictions.

  2. Architectural Engineering to Super-Light Structures

    OpenAIRE

    Castberg, Niels Andreas; HERTZ, Kristian Dahl

    2013-01-01

    Tilflytning til byerne er en global trend og skaber stor efterspørgsel efter nye bygninger. I forsøget på at efterkomme dette, vil et nye fleksibelt konstruktionssystemer med mulighed for variation uden ekstra omkostninger fremstår fordelagtigt. Super-lette konstruktioner udgør sådan et system.I denne afhandling beskrives Super-lette konstruktioner med udgangspunkt i architectural engineering. Afhandlingen tager afsæt i en tostrenget hypotese; at architectural engineering medfører bedre arkit...

  3. SuperCDMS Cold Hardware Design

    International Nuclear Information System (INIS)

    We discuss the current design of the cold hardware and cold electronics to be used in the upcoming SuperCDMS Soudan deployment. Engineering challenges associated with such concerns as thermal isolation, microphonics, radiopurity, and power dissipation are discussed, along with identifying the design changes necessary for SuperCDMS SNOLAB. The Cryogenic Dark Matter Search (CDMS) employs ultrapure 1-inch thick, 3-inch diameter germanium crystals operating below 50 mK in a dilution cryostat. These detectors give an ionization and phonon signal, which gives us rejection capabilities regarding background events versus dark matter signals.

  4. Covariant super reggeon calculus for superstrings

    International Nuclear Information System (INIS)

    A previously developed formalism for the bosonic string is extended to the Neveu-Schwarz-Ramond string using 2-d superspace techniques throughout. 3-string vertices for NS- and R-strings are constructed, sewing rules developed, and the technique of quasi-superconformal modes is set up for constructing the measure on super moduli space. Symmetries, such as superconformal invariance and BRST-invariance, are guaranteed ab initio. Picture changing and bosonization are avoided. Examples are given. The formalism should allow a superstring loop calculus based on supermoduli. Results concerning the ensuing super-Schottky description are given. (orig.)

  5. The current status of super computers

    Science.gov (United States)

    Knight, J. C.

    1978-01-01

    In this paper, commercially available super computers are surveyed. Computer performance in general is limited by circuit speeds and physical size. Assuming the use of the fastest technology, super computers typically use parallelism in the form of either vector processing or array processing to obtain performance. The Burroughs Scientific Processor is an array computer with 16 separate processors, the Cray-1 and CDC STAR-100 are vector processors, the Goodyear Aerospace STARAN is an array processor with up to 8192 single bit processors, and the Systems Development Corporation PEPE is a collection of up to 288 separate processors.

  6. Super-simulator for nuclear power plant

    International Nuclear Information System (INIS)

    The super-simulator is a conceptual name for future innovative simulators of nuclear power plants which surpass, to a large extent, the capabilities and performances of existing nuclear power plant simulators for operator training, plant analyzers for engineering studies or computer codes for dynamics analysis. Such super-simulators will be realized by employing highly advanced methods of mathematical modeling of the physical chemical and other related processes in the nuclear power plants and innovative methods of numerical computation using rapidly evolving high performance computing systems. (author)

  7. Upward Showering Muons in Super-Kamiokande

    International Nuclear Information System (INIS)

    A small subset of neutrino-induced upward going muons in the Super-Kamiokande detector consists of high energy muons that undergo radiative energy losses through bremsstrahlung, e+e- pair production and photo-nuclear interactions. The mean energy of the parent neutrinos of these showering upward muons is approximately 1 TeV, allowing the selection of a high energy sample of neutrinos. We present physics(mainly oscillation analysis) as well as astrophysical results with the upward showering muon dataset using about 1680 days of Super-K-I data

  8. New method for making super-plastic glasses

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ It was a long-cherished dream for materials scientists to find a nearly ideal metallic alloy with high strength and super-plasticity concurrently as a super-material both extremely strong and exceptionally hard for human use.

  9. Super Landau-Ginzburg mirrors and algebraic cycles

    CERN Document Server

    Garavuso, Richard S; Kreuzer, Maximilian; Noll, Alexander

    2011-01-01

    We investigate the super Landau-Ginzburg mirrors of gauged linear sigma models which, in an appropriate low energy limit, reduce to nonlinear sigma models with Kahler supermanifold target spaces of nonnegative super-first Chern class.

  10. On the monodromy group for the super Schwarzian differential equation

    International Nuclear Information System (INIS)

    We calculate the first variation of the monodromy group associated with a super Schwarzian differential equation. The relation between the monodromy period and the Fenchel-Nielsen deformation of a super Riemann surface is presented. (author)

  11. Second invariant for two-dimensional classical super systems

    Indian Academy of Sciences (India)

    S C Mishra; Roshan Lal; Veena Mishra

    2003-10-01

    Construction of superpotentials for two-dimensional classical super systems (for ≥ 2) is carried out. Some interesting potentials have been studied in their super form and also their integrability.

  12. Super-Chandrasekhar dynamical friction in a constant-density spherical star system

    Science.gov (United States)

    Zelnikov, M. I.; Kuskov, D. S.

    2016-02-01

    N-body modelling of massive body motion in constant density-cores shows deviations in the dynamical friction force from Chandrasekhar's formula. When the body orbit falls within the core, the body experiences a stage of enhanced friction after which the friction force becomes very low or zero. This effect takes place for circular as well as radial and elliptic orbits of the massive perturber. Previously developed perturbative treatment of dynamical friction in spherical systems cannot be directly applied to constant density cores because of the importance of non-linear resonant effects in this case. This feature is caused by the full resonance of the moving body with all the stars in the harmonic potential. There has been a successful attempt at semi-analytical treatment of the problem, but there remains a lack of any analytical description of this phenomenon. We study the motion of a massive point-like object in a strictly constant density sphere analytically and obtain a formula for the energy decay rate of the object at the stage of super-Chandrasekhar friction. We show that the dynamical friction force at this stage is half an order in Mobject/Mcore stronger than in Chandrasekhar's case. Our numerical simulations for both circular and radial orbits of the perturber reveal the stage of enhanced friction and the stalling stage afterwards. Dependence of the decay time at the super-Chandrasekhar stage on the perturber mass confirms our analytical relationship. We compare our analytical formula with N-body results of other authors for the enhanced friction stage and find good agreement.

  13. Massive and prolonged deep carbon emissions associated with continental rifting

    Science.gov (United States)

    Lee, Hyunwoo; Muirhead, James D.; Fischer, Tobias P.; Ebinger, Cynthia J.; Kattenhorn, Simon A.; Sharp, Zachary D.; Kianji, Gladys

    2016-02-01

    Carbon from Earth’s interior is thought to be released to the atmosphere mostly via degassing of CO2 from active volcanoes. CO2 can also escape along faults away from active volcanic centres, but such tectonic degassing is poorly constrained. Here we use measurements of diffuse soil CO2, combined with carbon isotopic analyses to quantify the flux of CO2 through fault systems away from active volcanoes in the East African Rift system. We find that about 4 Mt yr-1 of mantle-derived CO2 is released in the Magadi-Natron Basin, at the border between Kenya and Tanzania. Seismicity at depths of 15-30 km implies that extensional faults in this region may penetrate the lower crust. We therefore suggest that CO2 is transferred from upper-mantle or lower-crustal magma bodies along these deep faults. Extrapolation of our measurements to the entire Eastern rift of the rift system implies a CO2 flux on the order of tens of megatonnes per year, comparable to emissions from the entire mid-ocean ridge system of 53-97 Mt yr-1. We conclude that widespread continental rifting and super-continent breakup could produce massive, long-term CO2 emissions and contribute to prolonged greenhouse conditions like those of the Cretaceous.

  14. Clouds in Super-Earth Atmospheres: Chemical Equilibrium Calculations

    OpenAIRE

    Mbarek, Rostom; Kempton, Eliza M. -R.

    2016-01-01

    Recent studies have unequivocally proven the existence of clouds in super-Earth atmospheres (Kreidberg et al. 2014). Here we provide a theoretical context for the formation of super-Earth clouds by determining which condensates are likely to form under the assumption of chemical equilibrium. We study super-Earth atmospheres of diverse bulk composition, which are assumed to form by outgassing from a solid core of chondritic material, following Schaefer & Fegley (2010). The super-Earth atmosphe...

  15. Double Sparse Multi-Frame Image Super Resolution

    OpenAIRE

    Kato, Toshiyuki; Hino, Hideitsu; Murata, Noboru

    2015-01-01

    A large number of image super resolution algorithms based on the sparse coding are proposed, and some algorithms realize the multi-frame super resolution. In multi-frame super resolution based on the sparse coding, both accurate image registration and sparse coding are required. Previous study on multi-frame super resolution based on sparse coding firstly apply block matching for image registration, followed by sparse coding to enhance the image resolution. In this paper, these two problems a...

  16. Hyper-Eddington accretion flows onto massive black holes

    CERN Document Server

    Inayoshi, Kohei; Ostriker, Jeremiah P

    2015-01-01

    We study very-high rate spherically symmetric accretion flows onto a massive black hole (BH; 10^2 (M_BH/10^4Msun)^{-1}(T/10^4 K)^{3/2}, where n and T are the density and temperature of ambient gas outside of the Bondi radius. The resulting accretion rate in this regime is steady, and larger than 3000 times the Eddington rate. At lower Bondi rates, the accretion is episodic due to radiative feedback and the average rate is limited below the Eddington rate. For the hyper-Eddington case, the steady solution consists of two parts: a radiation-dominated central core, where photon trapping due to electron scattering is important, and an accreting envelope which follows a Bondi profile with T~8000 K. When the emergent luminosity is limited below the Eddington luminosity because of photon trapping, radiation from the central region does not affect the gas dynamics at larger scales. We apply our result to the rapid formation of massive BHs in protogalaxies with a virial temperature of T_vir> 10^4 K. Once a seed BH fo...

  17. Numerical Investigation of High Tide Level Due to A Super Typhoon in A Coastal Region

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A numerical model of the coupling between astronomical tide and storm surge based on Mike 21 is applied to the coastal regions of Zhejiang Province. The model is used to simulate high tide levels combined with storm surge during 5 typhoons, including two super typhoons, that landed in the Province. In the model, the atmospheric forcing fields are calculated with parametric wind and pressure models. The computational results, with average computed errors of 13 cm for the high astronomical tide levels and 20 cm for the high storm-tide levels, show that the model yields good simulations. Typhoon No. 5612, the most intense to land in China since 1949, is taken as the typical super typhoon for the design of 5 typhoon routes, each landing at a different location along the coast. The possible extreme storm-tide levels along the coast are calculated by the model under the conditions of the 5 designed typhoon routes when they coincide with the spring tide. Results are compared with the high storm-tide levels due to the increase of the central atmospheric pressure at the base of a typical super typhoon, the change of tidal type, and the behavior of a Saomai-type typhoon. The results have practical significance for forecasting and minimization of damage during super typhoons.

  18. Is Quantum Gravity a Super-Quantum Theory?

    OpenAIRE

    Chang, Lay Nam; Lewis, Zachary; Minic, Djordje; Takeuchi, Tatsu

    2013-01-01

    We argue that quantum gravity should be a super-quantum theory, that is, a theory whose non-local correlations are stronger than those of canonical quantum theory. As a super-quantum theory, quantum gravity should display distinct experimentally observable super-correlations of entangled stringy states.

  19. Oblique reconstructions in tomosynthesis. II. Super-resolution

    OpenAIRE

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2013-01-01

    Purpose: In tomosynthesis, super-resolution has been demonstrated using reconstruction planes parallel to the detector. Super-resolution allows for subpixel resolution relative to the detector. The purpose of this work is to develop an analytical model that generalizes super-resolution to oblique reconstruction planes.

  20. Energy Conversion over Super-hydrophobic Surfaces

    Science.gov (United States)

    Zhao, Hui; Zhai, Shengjie

    2015-11-01

    The streaming potential generated by a pressure-driven flow over a charged slip-stick surface with an arbitrary double layer thickness is both theoretically and experimentally studied. To understand the impact of the slip, the streaming potential is compared against that over a homogenously charged smooth surface. Our results indicate that the streaming potential over a super-hydrophobic surface only can be enhanced under certain conditions. In addition, the Onsager relation which directly relates the magnitude of electro-osmotic effect to that of the streaming current effect has been explicitly proved to be valid for thin and thick double layers and homogeneously charged super-hydrophobic surfaces. Comparisons between the streaming current and electro-osmotic mobility for an arbitrary electric double layer thickness under various conditions indicate that the Onsager relation seems applicable for arbitrary weakly charged super-hydrophobic surfaces though there is no general proof. Knowledge of the streaming potential over a slip-stick surface can provide guidance for designing novel and efficient microfluidic energy-conversion devices using super-hydrophobic surfaces. The work was supported by the NSF Grant No. ECCS-1509866.

  1. Radiation decontaminating device using super critical fluid

    International Nuclear Information System (INIS)

    A supercritical fluid with addition of an extracting agent capable of capturing radioactivity is used, and the extracting agent is transferred to the inside of a material surface utilizing the dispersibility (permeability) of the super critical fluid and combined with an aimed radioactivity. The super critical fluid is transferred again to the outside of the surface and further transferred to the outside of constitutional equipment systems. Namely, the device of the present invention comprises a means for dissolving an extracting agent capable of extracting elements to be removed into a solvent which forms the super critical fluid, a means for heating/pressurizing the solvent to form a super critical fluid, a means for supplying the solvent to the surface of the equipment in which elements to be removed are present, a means for lowering temperature/pressure of the solvent containing the extracting agent after extraction, and separating the extracting agent and the solvent, a means for recovering and reutilizing the solvent, a means for separating the extracting agent, a means for solidifying it as wastes and a means for decomposing the extracting agent as wastes. (N.H.)

  2. SuperNoova zazhigajet! / Irina Andrejeva

    Index Scriptorium Estoniae

    Andrejeva, Irina

    2004-01-01

    Noorte moekonkursist SuperNoova 2004 Tallinnas. Žürii koosseis. Vanema ja noorema vanuseklassi kolm paremat. Lisatud värvilised illustratsioonid parematest kollektsioonidest. Ivo Nikkolo ja Anu Samarüütli kommentaarid, intervjuu žürii liikme Aleksandr Vassiljeviga

  3. Super Voice Girl—Shang wenjie

    Institute of Scientific and Technical Information of China (English)

    刘志存

    2006-01-01

    On September 29,Shanghai’s Shang Wenjie,a 24-year-old girl took the top prize in the Super Voice Girl Contest. Shang,a graduate of Fudan University who majored in French, polled* nearly 5.2 million votes after

  4. General super Virasoro construction on affine G

    International Nuclear Information System (INIS)

    We consider a bosonic current algebra and a theory of free fermions and construct a general N = 1 super Virasoro current algebra. We obtain a master-set of equations which comprises the bosonic master equation for general Virasoro construction on affine G. As an illustration we study the case of the group SU(2). (author). 13 refs

  5. Towards an Educational SuperInterface.

    Science.gov (United States)

    De Diana, Italo P. F.; White, T. N.

    1994-01-01

    Describes an educational computer network, SuperInterface, that could be used for telestudy for university education. Topics discussed include computer-supported collaborative work; computer-based learning; multimedia databases, or electronic books; human-machine interfaces; hardware, software, and groupware; learners; teachers; organizations and…

  6. Vertex operator (super)algebras and LCFT

    International Nuclear Information System (INIS)

    We review some of the developments in logarithmic conformal field theory from the vertex algebra point of view. Several important examples of vertex operator (super)algebras of the triplet type are discussed, including their representation theory. Particular emphasis is put on C2-cofiniteness of these vertex algebras, a description of Zhu’s algebras and the construction of logarithmic modules. (review)

  7. Neutral nuclear core vs super charged one

    OpenAIRE

    Rotondo, M; Ruffini, R.; Xue, S. -S.

    2008-01-01

    Based on the Thomas-Fermi approach, we describe and distinguish the electron distributions around extended nuclear cores: (i) in the case that cores are neutral for electrons bound by protons inside cores and proton and electron numbers are the same; (ii) in the case that super charged cores are bare, electrons (positrons) produced by vacuum polarization are bound by (fly into) cores (infinity).

  8. Super-Kamiokande worth full restoration

    CERN Multimedia

    Mishima, I

    2002-01-01

    While prospects are good that the SuperKamiokande facility will be partially repaired after an accident last November, the government has yet to confirm whether it will spend the estimated 2.5 billion yen needed for a full-scale restoration (1 page).

  9. Diffusion of Super-Gaussian Profiles

    Science.gov (United States)

    Rosenberg, C.-J.; Anderson, D.; Desaix, M.; Johannisson, P.; Lisak, M.

    2007-01-01

    The present analysis describes an analytically simple and systematic approximation procedure for modelling the free diffusive spreading of initially super-Gaussian profiles. The approach is based on a self-similar ansatz for the evolution of the diffusion profile, and the parameter functions involved in the modelling are determined by suitable…

  10. Biomimetic Models for An Ecological Approach to Massively-Deployed Sensor Networks

    Science.gov (United States)

    Jones, Kennie H.; Lodding, Kenneth N.; Olariu, Stephan; Wilson, Larry; Xin, Chunsheng

    2005-01-01

    Promises of ubiquitous control of the physical environment by massively-deployed wireless sensor networks open avenues for new applications that will redefine the way we live and work. Due to small size and low cost of sensor devices, visionaries promise systems enabled by deployment of massive numbers of sensors ubiquitous throughout our environment working in concert. Recent research has concentrated on developing techniques for performing relatively simple tasks with minimal energy expense, assuming some form of centralized control. Unfortunately, centralized control is not conducive to parallel activities and does not scale to massive size networks. Execution of simple tasks in sparse networks will not lead to the sophisticated applications predicted. We propose a new way of looking at massively-deployed sensor networks, motivated by lessons learned from the way biological ecosystems are organized. We demonstrate that in such a model, fully distributed data aggregation can be performed in a scalable fashion in massively deployed sensor networks, where motes operate on local information, making local decisions that are aggregated across the network to achieve globally-meaningful effects. We show that such architectures may be used to facilitate communication and synchronization in a fault-tolerant manner, while balancing workload and required energy expenditure throughout the network.

  11. Analyzing Black Hole Super-Radiance Emission of Particles/Energy from a Black Hole as a Gedankenexperiment to Get Bounds on the Mass of a Graviton

    Directory of Open Access Journals (Sweden)

    A. Beckwith

    2014-01-01

    Full Text Available Use of super-radiance in BH physics, so dE/dt<0 specifies conditions for a mass of a graviton being less than or equal to 1065 grams, allows for determing what role additional dimensions may play in removing the datum that massive gravitons lead to 3/4th the bending of light past the planet Mercury. The present document makes a given differentiation between super-radiance in the case of conventional BHs and Braneworld BH super-radiance, which may delineate whether Braneworlds contribute to an admissible massive graviton in terms of removing the usual problem of the 3/4th the bending of light past the planet Mercury which is normally associated with massive gravitons. This leads to a fork in the road between two alternatives with the possibility of needing a multiverse containment of BH structure or embracing what Hawkings wrote up recently, namely, a redo of the event horizon hypothesis as we know it.

  12. Analyzing Black Hole super-radiance Emission of Particles/Energy from a Black Hole as a Gedankenexperiment to get bounds on the mass of a Graviton

    CERN Document Server

    Beckwith, Andrew

    2014-01-01

    Use of super-radiance in BH physics, so dE/dt < 0 specifies conditions for a mass of a graviton being less than or equal to 10^ - 65 grams, and also allows for determing what role additional dimensions may play in removing the datum that massive gravitons lead to 3/4th the bending of light past the planet Mercury.The present document makes a given differentiation between super-radiance in the case of conventional BHs and Braneworld BH super-radiance, which may delineate if Braneworlds contribute to an admissible massive graviton in terms of removing the usual problem of the 3/4th the bending of light past the planet Mercury which is normally associated with massive gravitons. This leads to a fork in the road, between two alternatives with the possibility of needing a multiverse containment of BH structure, or embracing what Hawkings wrote up recently, namely a re do of the Event Horizon hypothesis as we know it.

  13. Massive Star Formation: Accreting from Companion

    Indian Academy of Sciences (India)

    X. Chen; J. S. Zhang

    2014-09-01

    We report the possible accretion from companion in the massive star forming region (G350.69–0.49). This region seems to be a binary system composed of a diffuse object (possible nebulae or UC HII region) and a Massive Young Stellar Object (MYSO) seen in Spitzer IRAC image. The diffuse object and MYSO are connected by the shock-excited 4.5 m emission, suggesting that the massive star may form through accreting material from the companion in this system.

  14. Massive gravity with N=1 local supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Malaeb, O. [American University of Beirut, Physics Department, Beirut (Lebanon)

    2013-09-15

    A consistent theory of massive gravity, where the graviton acquires mass by spontaneously breaking diffeomorphism invariance, is now well established. We supersymmetrize this construction using N=1 fields. Coupling to N=1 supergravity is done by applying the rules of tensor calculus to construct an action invariant under local N=1 supersymmetry. The supersymmetric action is shown, at the quadratic level, to be free of ghosts and have as its spectrum a massive graviton, two gravitinos (with different masses) and a massive vector. (orig.)

  15. Using massive digital libraries a LITA guide

    CERN Document Server

    Weiss, Andrew

    2014-01-01

    Some have viewed the ascendance of the digital library as some kind of existential apocalypse, nothing less than the beginning of the end for the traditional library. But Weiss, recognizing the concept of the library as a ""big idea"" that has been implemented in many ways over thousands of years, is not so gloomy. In this thought-provoking and unabashedly optimistic book, he explores how massive digital libraries are already adapting to society's needs, and looks ahead to the massive digital libraries of tomorrow, coveringThe author's criteria for defining massive digital librariesA history o

  16. SuperB A High-Luminosity Asymmetric $e^+ e^-$ Super Flavour Factory : Conceptual Design Report

    CERN Document Server

    Bóna, M; Graugès-Pous, E; Colangelo, P; De Fazio, F; Palano, A; Manghisoni, M; Re, V; Traversi, G; Eigen, G; Venturini, M; Soni, N; Bruschi, M; De Castro, S; Faccioli, P; Gabrielli, A; Giacobbe, B; Semprini-Cesari, N; Spighi, R; Villa, M; Zoccoli, A; Hearty, C; McKenna, J; Soni, A; Khan, A; Barniakov, A Y; Barniakov, M Y; Blinov, V E; Druzhinin, V P; Golubev, V B; Kononov, S A; Koop, I A; Kravchenko, E A; Levichev, E B; Nikitin, S A; Onuchin, A P; Piminov, P A; Serednyakov, S I; Shatilov, D N; Shatunov, Yu M; Skovpen, Y I; Solodov, E P; Cheng, C H; Echenard, B; Fang, F; Hitlin, D G; Porter, F C; Asner, D M; Pham, T N; Fleischer, Robert; Giudice, Gian Francesco; Hurth, Tobias; Mangano, Michelangelo L; Mancinelli, G; Meadows, B T; Schwartz, A J; Sokoloff, M D; Soffer, A; Beard, C D; Haas, T; Mankel, R; Hiller, G; Ball, P; Pappagallo, M; Pennington, M R; Gradl, W; Playfer, S; Abada, A; Becirevic, D; Descotes-Genon, S; Penee, O; Andreotti, D; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Franchini, P; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Santoro, V; Stancari, G; Anulli, F; Baldini-Ferroli, R; Biagini, M E; Boscolo, M; Calcaterra, A; Drago, A; Finocchiaro, G; Guiducci, S; Isidori, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Preger, M A; Raimondi, P; Rama, M; Vaccarezza, C; Zallo, A; Zobov, M; De Sangro, R; Buzzo, A; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Tosi, S; Matias, J; Panduro-Vazquez, W; Borzumati, F; Eyges, V; Prell, S A; Pedlar, T K; Korpar, S; Pestotnik, R; Staric, M; Neubert, M; Denig, A G; Nierste, U; Agoh, T; Ohmi, K; Ohnishi, Y; Fry, J R; Touramanis, C; Wolski, A; Golob, B; Krizan, P; Flaecher, H; Bevan, A J; Di Lodovico, F; George, K A; Barlow, R; Lafferty, G; Jawahery, A; Roberts, D A; Simi, G; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Kaidalov, A; Buras, A J; Tarantino, C; Buchalla, G; Sanda, A I; D'Ambrosio, G; Ricciardi, G; Bigi, Ikaros I; Jessop, C P; Losecco, J M; Honscheid, K; Arnaud, N; Chehab, R; Fedala, Y; Polci, F; Roudeau, P; Sordini, V; Soskov, V; Stocchi, A; Variola, A; Vivoli, A; Wormser, G; Zomer, F; Bertolin, A; Brugnera, R; Gagliardi, N; Gaz, A; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Bonneaud, G R; Lombardo, V; Calderini, G; Ratti, L; Speziali, V; Biasini, M; Covarelli, R; Manoni, E; Servoli, L; Angelini, C; Batignani, G; Bettarini, S; Bosi, F; Carpinelli, M; Cenci, R; Cervelli, A; Dell'Orso, Mauro; Forti, F; Giannetti, P; Giorgi, M; Lusiani, A; Marchiori, G; Massa, M; Mazur, M A; Morsani, F; Neri, N; Paoloni, E; Raffaelli, F; Rizzo, G; Walsh, J; Braun, V; Lenz, A; Adams, G S; Danko, I Z; Baracchini, E; Bellini, F; Cavoto, G; D'Orazio, A; Del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Gaspero, M; Jackson, P; Martinelli, G; Mazzoni, M A; Morganti, S; Piredda, G; Renga, F; Silvestrini, L; Voena, C; Catani, L; Di Ciaccio, A; Messi, R; Santovetti, E; Satta, A; Ciuchini, M; Lubicz, V; Wilson, F F; Godang, R; Chen, X; Liu, H; Park, W; Purohit, M; Trivedi, A; White, R M; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Brodsky, S J; Cai, Y; Coleman, J; Convery, M R; De Barger, S; Dingfelder, J C; Dubois-Felsmann, G P; Ecklund, S; Fisher, A S; Haller, G; Heifets, S A; Kaminski, J; Kelsey, M H; Kocian, M L; Leith, D W G S; Li, N; Luitz, S; Lüth, V; MacFarlane, D; Messner, R; Müller, D R; Nosochkov, Y; Novokhatski, A; Pivi, M; Ratcliff, B N; Roodman, A; Schwiening, J; Seeman, J; Snyder, A; Sullivan, M; Vavra, J; Wienands, U; Wisniewski, W; Stöck, H; Cheng, H Y; Li, H N; Keum, Yu Y; Gronau, M; Grossman, Y; Bianchi, F; Gamba, D; Gambino, P; Marchetto, F; Menichetti, E; Mussa, R; Pelliccioni, M; Dalla Betta, G F; Bomben, M; Bosisio, L; Cartaro, C; Lanceri, L; Vitale, L; Azzolini, V; Bernabeum, J; Lopez-March, N; Martínez-Vidal, F; Milanes, D A; Oyanguren, A; Paradisi, P; Pich, A; Sanchis-Lozano, M A; Kowalewski, R; Roney, M; Back, J; Gershon, T J; Harrison, P F; Latham, T E; Mohanty, G B; Petrov, A A; Pierini, M; INFN

    2007-01-01

    The physics objectives of SuperB, an asymmetric electron-positron collider with a luminosity above 10^36/cm^2/s are described, together with the conceptual design of a novel low emittance design that achieves this performance with wallplug power comparable to that of the current B Factories, and an upgraded detector capable of doing the physics in the SuperB environment.

  17. Massive Black Hole Binary Evolution

    Directory of Open Access Journals (Sweden)

    Merritt David

    2005-11-01

    Full Text Available Coalescence of binary supermassive black holes (SBHs would constitute the strongest sources of gravitational waves to be observed by LISA. While the formation of binary SBHs during galaxy mergers is almost inevitable, coalescence requires that the separation between binary components first drop by a few orders of magnitude, due presumably to interaction of the binary with stars and gas in a galactic nucleus. This article reviews the observational evidence for binary SBHs and discusses how they would evolve. No completely convincing case of a bound, binary SBH has yet been found, although a handful of systems (e.g. interacting galaxies; remnants of galaxy mergers are now believed to contain two SBHs at projected separations of <~ 1kpc. N-body studies of binary evolution in gas-free galaxies have reached large enough particle numbers to reproduce the slow, “diffusive” refilling of the binary’s loss cone that is believed to characterize binary evolution in real galactic nuclei. While some of the results of these simulations - e.g. the binary hardening rate and eccentricity evolution - are strongly N-dependent, others - e.g. the “damage” inflicted by the binary on the nucleus - are not. Luminous early-type galaxies often exhibit depleted cores with masses of ~ 1-2 times the mass of their nuclear SBHs, consistent with the predictions of the binary model. Studies of the interaction of massive binaries with gas are still in their infancy, although much progress is expected in the near future. Binary coalescence has a large influence on the spins of SBHs, even for mass ratios as extreme as 10:1, and evidence of spin-flips may have been observed.

  18. The 2015 super-resolution microscopy roadmap

    Science.gov (United States)

    Hell, Stefan W.; Sahl, Steffen J.; Bates, Mark; Zhuang, Xiaowei; Heintzmann, Rainer; Booth, Martin J.; Bewersdorf, Joerg; Shtengel, Gleb; Hess, Harald; Tinnefeld, Philip; Honigmann, Alf; Jakobs, Stefan; Testa, Ilaria; Cognet, Laurent; Lounis, Brahim; Ewers, Helge; Davis, Simon J.; Eggeling, Christian; Klenerman, David; Willig, Katrin I.; Vicidomini, Giuseppe; Castello, Marco; Diaspro, Alberto; Cordes, Thorben

    2015-11-01

    Far-field optical microscopy using focused light is an important tool in a number of scientific disciplines including chemical, (bio)physical and biomedical research, particularly with respect to the study of living cells and organisms. Unfortunately, the applicability of the optical microscope is limited, since the diffraction of light imposes limitations on the spatial resolution of the image. Consequently the details of, for example, cellular protein distributions, can be visualized only to a certain extent. Fortunately, recent years have witnessed the development of ‘super-resolution’ far-field optical microscopy (nanoscopy) techniques such as stimulated emission depletion (STED), ground state depletion (GSD), reversible saturated optical (fluorescence) transitions (RESOLFT), photoactivation localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), structured illumination microscopy (SIM) or saturated structured illumination microscopy (SSIM), all in one way or another addressing the problem of the limited spatial resolution of far-field optical microscopy. While SIM achieves a two-fold improvement in spatial resolution compared to conventional optical microscopy, STED, RESOLFT, PALM/STORM, or SSIM have all gone beyond, pushing the limits of optical image resolution to the nanometer scale. Consequently, all super-resolution techniques open new avenues of biomedical research. Because the field is so young, the potential capabilities of different super-resolution microscopy approaches have yet to be fully explored, and uncertainties remain when considering the best choice of methodology. Thus, even for experts, the road to the future is sometimes shrouded in mist. The super-resolution optical microscopy roadmap of Journal of Physics D: Applied Physics addresses this need for clarity. It provides guidance to the outstanding questions through a collection of short review articles from experts in the field, giving a thorough

  19. A cosmological study in massive gravity theory

    International Nuclear Information System (INIS)

    A detailed study of the various cosmological aspects in massive gravity theory has been presented in the present work. For the homogeneous and isotropic FLRW model, the deceleration parameter has been evaluated, and, it has been examined whether there is any transition from deceleration to acceleration in recent past, or not. With the proper choice of the free parameters, it has been shown that the massive gravity theory is equivalent to Einstein gravity with a modified Newtonian gravitational constant together with a negative cosmological constant. Also, in this context, it has been examined whether the emergent scenario is possible, or not, in massive gravity theory. Finally, we have done a cosmographic analysis in massive gravity theory

  20. Current management of massive hemorrhage in trauma

    DEFF Research Database (Denmark)

    Johansson, Pär I; Stensballe, Jakob; Ostrowski, Sisse R

    2012-01-01

    ABSTRACT: Hemorrhage remains a major cause of potentially preventable deaths. Trauma and massive transfusion are associated with coagulopathy secondary to tissue injury, hypoperfusion, dilution, and consumption of clotting factors and platelets. Concepts of damage control surgery have evolved...

  1. A Cosmological Study in Massive Gravity theory

    CERN Document Server

    Pan, Supriya

    2015-01-01

    A detailed study of the various cosmological aspects in massive gravity theory has been presented in the present work. For the homogeneous and isotropic FLRW model, the deceleration parameter has been evaluated, and, it has been examined whether there is any transition from deceleration to acceleration in recent past, or not. With the proper choice of the free parameters, it has been shown that the massive gravity theory is equivalent to Einstein gravity with a modified Newtonian gravitational constant together with a negative cosmological constant. Also, in this context, it has been examined whether the emergent scenario is possible, or not, in massive gravity theory. Finally, we have done a cosmographic analysis in massive gravity theory.

  2. Massive Open Online Courses: Droom of nachtmerrie?

    OpenAIRE

    Rubens, Wilfred

    2014-01-01

    Rubens, W. (2014, 9 april). Massive Open Online Courses: Droom of nachtmerrie? Presentatie tijdens een studiemiddag van iPROFS over innovatieve Liferay-toepassingen voor het onderwijs, Utrecht, Nederland

  3. A cosmological study in massive gravity theory

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Supriya, E-mail: span@research.jdvu.ac.in; Chakraborty, Subenoy, E-mail: schakraborty@math.jdvu.ac.in

    2015-09-15

    A detailed study of the various cosmological aspects in massive gravity theory has been presented in the present work. For the homogeneous and isotropic FLRW model, the deceleration parameter has been evaluated, and, it has been examined whether there is any transition from deceleration to acceleration in recent past, or not. With the proper choice of the free parameters, it has been shown that the massive gravity theory is equivalent to Einstein gravity with a modified Newtonian gravitational constant together with a negative cosmological constant. Also, in this context, it has been examined whether the emergent scenario is possible, or not, in massive gravity theory. Finally, we have done a cosmographic analysis in massive gravity theory.

  4. Magnetic monopole solutions with a massive dilaton

    CERN Document Server

    Forgács, Péter; Forgacs, Peter; Gyurusi, Jozsef

    1998-01-01

    Static, spherically symmetric monopole solutions of a spontaneously broken SU(2) gauge theory coupled to a massive dilaton field are studied in detail in function of the dilaton coupling strength and of the dilaton mass.

  5. The Nature and Origin of the Central Constant Emission Component of Eta Carinae

    Science.gov (United States)

    Hamaguchi, K.; Corcoran, M. F.

    2015-12-01

    The campaign observations of the evolved super massive binary system, η Car, revealed an apparently non-variable X-ray emission component, which was observable only around periastron when the wind-wind colliding (WWC) X-ray emission from the binary system dropped. This central constant emission (CCE) component originates from hot thermal plasma at >50 million degrees Kelvin confined within ˜0.2'' (˜460 AU at 2.3 kpc) of the binary system. The emission suffers weak X-ray absorption at NH˜3 - 5 × 1022 cm-2, so that the plasma should be in front of the binary system. These results suggest that the CCE plasma is thermalized by collision of the secondary wind with the primary wind shell ejected a few orbital cycles before and that it fills the foreground cavity carved by the wind of the secondary star. An apparent change of the line of sight absorption between 2003 and 2009 may suggest a change of the mass loss rate of the primary star around that time.

  6. A Distant Echo of Milky Way Central Activity closes the Galaxy's Baryon Census

    CERN Document Server

    Nicastro, F; Krongold, Y; Mathur, S; Elvis, M

    2016-01-01

    We report on the presence of large amounts of million-degree gas in the Milky Way's interstellar and circum-galactic medium. This gas (1) permeates both the Galactic plane and the halo, (2) extends to distances larger than 60-200 kpc from the center, and (3) its mass is sufficient to close the Galaxy's baryon census. Moreover, we show that a vast, $\\sim 6$ kpc radius, spherically-symmetric central region of the Milky Way above and below the 0.16 kpc thick plane, has either been emptied of hot gas or the density of this gas within the cavity has a peculiar profile, increasing from the center up to a radius of $\\sim 6$ kpc, and then decreasing with a typical halo density profile. This, and several other converging pieces of evidence, suggest that the current surface of the cavity, at 6 kpc from the Galaxy's center, traces the distant echo of a period of strong nuclear activity of our super-massive black-hole, occurred about 6 Myrs ago.

  7. Massive Stars: Their Environment and Formation

    OpenAIRE

    Garay, Guido; Lizano, Susana

    1999-01-01

    Cloud environment is thought to play a critical role in determining the mechanism of formation of massive stars. In this contribution we review the physical characteristics of the environment around recently formed massive stars. Particular emphasis is given to recent high angular resolution observations which have improved our knowledge of the physical conditions and kinematics of compact regions of ionized gas and of dense and hot molecular cores associated with luminous O and B stars. We w...

  8. Dipolar Dark Matter with Massive Bigravity

    OpenAIRE

    Blanchet, Luc; Heisenberg, Lavinia

    2015-01-01

    Massive gravity theories have been developed as viable IR modifications of gravity motivated by dark energy and the problem of the cosmological constant. On the other hand, modified gravity and modified dark matter theories were developed with the aim of solving the problems of standard cold dark matter at galactic scales. Here we propose to adapt the framework of ghost-free massive bigravity theories to reformulate the problem of dark matter at galactic scales. We investigate a promising alt...

  9. New Massive Supergravity and Auxiliary Fields

    CERN Document Server

    Bergshoeff, Eric A; Parra, Lorena; Rosseel, Jan; Yin, Yihao; Zojer, Thomas

    2013-01-01

    We construct a supersymmetric formulation of linearized New Massive Gravity without introducing higher derivatives. Instead, we introduce supersymmetrically a set of bosonic and fermionic auxiliary fields which, upon elimination by their equations of motion, introduce fourth-order derivative terms for the metric and third-order derivative terms for the gravitino. Our construction requires an off-shell formulation of the three-dimensional supersymmetric massive Fierz--Pauli theory. We discuss the non-linear extension of our results.

  10. On Massive Conflict: Macro-Micro Link

    OpenAIRE

    Hokky Situngkir

    2003-01-01

    Micro and macro properties of social system should be taken as relative poles of a two dimensional continuum since every debate on social system will however shift to the discussion on the two levels of description. This is consistently used as perspective to see massive social conflict. We propose analysis of the emerging conflict on its micro-causations by using computer simulations. We construct a dynamical model based on some propositions on massive conflict based upon the individual’s de...

  11. Massive Gravity in Ads and Minkowski Backgrounds

    OpenAIRE

    Porrati, M.

    2004-01-01

    I review some interesting features of massive gravity in two maximally symmetric backgrounds: Anti de Sitter space and Minkowski space. While massive gravity in AdS can be seen as a spontaneously broken, UV safe theory, no such interpretation exists yet in the flat-space case. Here, I point out the problems encountered in trying to find such completion, and possible mechanisms to overcome them.

  12. Scalable Transcriptome Preparation for Massive Parallel Sequencing

    OpenAIRE

    Henrik Stranneheim; Beata Werne; Ellen Sherwood; Joakim Lundeberg

    2011-01-01

    BACKGROUND: The tremendous output of massive parallel sequencing technologies requires automated robust and scalable sample preparation methods to fully exploit the new sequence capacity. METHODOLOGY: In this study, a method for automated library preparation of RNA prior to massively parallel sequencing is presented. The automated protocol uses precipitation onto carboxylic acid paramagnetic beads for purification and size selection of both RNA and DNA. The automated sample preparation was co...

  13. Massive suprachoroidal hemorrhage: Surgical management and outcome

    OpenAIRE

    Laube, Thomas; Brockmann, Claudia; Bornfeld, Norbert

    2015-01-01

    Objective: To describe options for vitreoretinal surgery in the management of massive suprachoroidal hemorrhage (SCH).Methods: Visual acuity (VA), ocular findings, timing of surgical intervention, surgical procedures, and outcomes of four patients diagnosed with massive SCH and admitted to the University Eye Clinic Essen were reviewed retrospectively.Results: Four eyes of four patients (mean age, 82 years; range, 74–8) were studied. In three cases the occurrence of SCH was related to cataract...

  14. Scalable Transcriptome Preparation for Massive Parallel Sequencing

    OpenAIRE

    Stranneheim, Henrik; Werne, Beata; Sherwood, Ellen; Lundeberg, Joakim

    2011-01-01

    Background The tremendous output of massive parallel sequencing technologies requires automated robust and scalable sample preparation methods to fully exploit the new sequence capacity. Methodology In this study, a method for automated library preparation of RNA prior to massively parallel sequencing is presented. The automated protocol uses precipitation onto carboxylic acid paramagnetic beads for purification and size selection of both RNA and DNA. The automated sample preparation was comp...

  15. Evolution of Massive Protostars via Disk Accretion

    OpenAIRE

    Hosokawa, Takashi; Yorke, Harold W.; Omukai, Kazuyuki

    2010-01-01

    Mass accretion onto (proto-)stars at high accretion rates > 10^-4 M_sun/yr is expected in massive star formation. We study the evolution of massive protostars at such high rates by numerically solving the stellar structure equations. In this paper we examine the evolution via disk accretion. We consider a limiting case of "cold" disk accretion, whereby most of the stellar photosphere can radiate freely with negligible backwarming from the accretion flow, and the accreting material settles ont...

  16. Massively parallel computation on anisotropic meshes

    OpenAIRE

    Digonnet, Hugues; Silva, Luisa; Coupez, Thierry

    2013-01-01

    In this paper, we present developments done to obtain efficient parallel computations on supercomputers up to 8192 cores. While most massively parallel computation are shown using regular grid it is less common to see massively parallel computation using anisotropic adapted unstructured meshes. We will present here two mains components done to reach very large scale calculation up to 10 billions unknowns using a muligrid method over unstructured mesh running on 8192 cores. We firstly focus on...

  17. On the physics of massive neutrinos

    OpenAIRE

    Zuber, K.

    1998-01-01

    Massive neutrinos open up the possibility for a variety of new physical phenomena. Among them are oscillations and double beta decay. Furthermore they influence several fields from particle physics to cosmology. In this article the concept of massive neutrinos is given and the current status of experimental research is extensively reviewed. This includes astrophysical studies of solar, supernova and very high energy neutrinos. Future perspectives are also outlined.

  18. Massive Star Formation: The Power of Interferometry

    OpenAIRE

    beuther, Henrik

    2007-01-01

    This article presents recent work to constrain the physical and chemical properties in high-mass star formation based largely on interferometric high-spatial-resolution continuum and spectral line studies at (sub)mm wavelengths. After outlining the concepts, potential observational tests, a proposed evolutionary sequence and different possible definitions for massive protostars, four particular topics are highlighted: (a) What are the physical conditions at the onset of massive star formation...

  19. N = 1 super-Chern-Simons coupled to parity-preserving matter from Atiyah-Ward space-time

    International Nuclear Information System (INIS)

    In this letter, we present the Parkes-Siegel formulation for the massive Abelian N=1 super-QED2+2 coupled to a self-dual supermultiplet, by introducing a chiral multiplier superfield. We show that after carrying out a suitable dimensional reduction from (2+2) to (1+2) dimensions, and performing some necessary truncations, the simple supersymmetric extension of the π3 QED1+2 coupled to a Chern-Simons term naturally comes out. (author). 15 refs

  20. Topologically massive gravity and its conformal limit

    International Nuclear Information System (INIS)

    Three dimensional gravity has been known for some time to be a playground for testing ideas and problems of higher dimensional gravitational theories. Nevertheless its status as a toy model for quantum gravity is still uncertain. Already in 1986 Brown and Henneaux discovered that three dimensional quantum gravity with negative cosmological constant is dual to a two dimensional conformal field theory (CFT) in the sense that the Hilbert space must fall into unitary representation of two copies of the Virasoro algebra. They obtained, in quantizing this theory, an asymptotic Virasoro algebra with central charges cL=cR=(3 l)/(2 GN), where GN is Newton's constant and ℓ parameterizes the cosmological constant. Almost ten years later black hole solutions for this three dimensional theory were discovered by Banados, Teitelboim and Zanelli. In the same period of time further milestones of relevance for this work have been established: the AdS/CFT correspondence by Maldacena in 1997 and the proposal by Witten in 2007 to define three dimensional quantum gravity in terms of its dual CFT. Over the last few years many attempts have been made to construct gravitational theories in three dimensions that could serve as toy models for quantum gravity. Since a pure Einstein-Hilbert action with a negative cosmological constant lacks additional degrees of freedom one can remedy this by adding a gravitational Chern-Simons term. This results in a theory that exhibits black holes and gravitons and is called topologically massive gravity (TMG). The first part of this thesis deals with finding exact solutions of TMG. This is an interesting problem already at the classical level since non-trivial solutions to the equations of motion are hard to find and only few are known. An efficient way to find solutions is to dimensionally reduce the theory by using two commuting Killing vectors. This results in a (0+1)-dimensional model in which it is then possible to classify all stationary axi