WorldWideScience

Sample records for central star wind

  1. DO HYDROGEN-DEFICIENT CARBON STARS HAVE WINDS?

    International Nuclear Information System (INIS)

    Geballe, T. R.; Rao, N. Kameswara; Clayton, Geoffrey C.

    2009-01-01

    We present high resolution spectra of the five known hydrogen-deficient carbon (HdC) stars in the vicinity of the 10830 A line of neutral helium. In R Coronae Borealis (RCB) stars the He I line is known to be strong and broad, often with a P Cygni profile, and must be formed in the powerful winds of those stars. RCB stars have similar chemical abundances as HdC stars and also share greatly enhanced 18 O abundances with them, indicating a common origin for these two classes of stars, which has been suggested to be white dwarf mergers. A narrow He I absorption line may be present in the hotter HdC stars, but no line is seen in the cooler stars, and no evidence for a wind is found in any of them. The presence of wind lines in the RCB stars is strongly correlated with dust formation episodes so the absence of wind lines in the HdC stars, which do not make dust, is as expected.

  2. Theories for the winds from Wolf Rayet stars

    International Nuclear Information System (INIS)

    Cassinelli, J.P.

    1982-01-01

    The massive and fast winds of Wolf Rayet stars present a serious momentum problem for the line-driven wind theories that are commonly used to explain the fast winds of early type stars. It is perhaps possible for the winds to be driven by lines, if multiple scattering occurs and if there are a sufficient number of lines in the spectrum so that large fraction of the continuum is blocked by line opacity in the winds. Several other mechanisms are discussed, in particular two that rely on strong magnetic fields: a) Alfven wave driven wind models like those recently developed by Hartmann and MacGregor for late type supergiants and b) the ''Fast Magnetic Rotator'' model that was developed by Belcher and MacGregor for the winds from pre-main sequence stars. In either model, large magnetic fields (approximately equal to 10 4 gauss) are required to drive the massive and fast winds of Wolf Rayet stars. Smaller fields might be possible if the multiple scattering line radiation force can be relied on to provide a final acceleration to terminal velocity. (Auth.)

  3. Stellar Wind Retention and Expulsion in Massive Star Clusters

    Science.gov (United States)

    Naiman, J. P.; Ramirez-Ruiz, E.; Lin, D. N. C.

    2018-05-01

    Mass and energy injection throughout the lifetime of a star cluster contributes to the gas reservoir available for subsequent episodes of star formation and the feedback energy budget responsible for ejecting material from the cluster. In addition, mass processed in stellar interiors and ejected as winds has the potential to augment the abundance ratios of currently forming stars, or stars which form at a later time from a retained gas reservoir. Here we present hydrodynamical simulations that explore a wide range of cluster masses, compactnesses, metallicities and stellar population age combinations in order to determine the range of parameter space conducive to stellar wind retention or wind powered gas expulsion in star clusters. We discuss the effects of the stellar wind prescription on retention and expulsion effectiveness, using MESA stellar evolutionary models as a test bed for exploring how the amounts of wind retention/expulsion depend upon the amount of mixing between the winds from stars of different masses and ages. We conclude by summarizing some implications for gas retention and expulsion in a variety of compact (σv ≳ 20 kms-1) star clusters including young massive star clusters (105 ≲ M/M⊙ ≲ 107, age ≲ 500 Myrs), intermediate age clusters (105 ≲ M/M⊙ ≲ 107, age ≈ 1 - 4 Gyrs), and globular clusters (105 ≲ M/M⊙ ≲ 107, age ≳ 10 Gyrs).

  4. Interactions between exoplanets and the winds of young stars

    Directory of Open Access Journals (Sweden)

    Vidotto A. A.

    2014-01-01

    Full Text Available The topology of the magnetic field of young stars is important not only for the investigation of magnetospheric accretion, but also responsible in shaping the large-scale structure of stellar winds, which are crucial for regulating the rotation evolution of stars. Because winds of young stars are believed to have enhanced mass-loss rates compared to those of cool, main-sequence stars, the interaction of winds with newborn exoplanets might affect the early evolution of planetary systems. This interaction can also give rise to observational signatures which could be used as a way to detect young planets, while simultaneously probing for the presence of their still elusive magnetic fields. Here, we investigate the interaction between winds of young stars and hypothetical planets. For that, we model the stellar winds by means of 3D numerical magnetohydrodynamic simulations. Although these models adopt simplified topologies of the stellar magnetic field (dipolar fields that are misaligned with the rotation axis of the star, we show that asymmetric field topologies can lead to an enhancement of the stellar wind power, resulting not only in an enhancement of angular momentum losses, but also intensifying and rotationally modulating the wind interactions with exoplanets.

  5. Observations of central stars

    International Nuclear Information System (INIS)

    Lutz, J.H.

    1978-01-01

    Difficulties occurring in the observation of central stars of planetary nebulae are reviewed with emphasis on spectral classifications and population types, and temperature determination. Binary and peculiar central stars are discussed. (U.M.G.)

  6. Wind bubbles within H ii regions around slowly moving stars

    Science.gov (United States)

    Mackey, Jonathan; Gvaramadze, Vasilii V.; Mohamed, Shazrene; Langer, Norbert

    2015-01-01

    Interstellar bubbles around O stars are driven by a combination of the star's wind and ionizing radiation output. The wind contribution is uncertain because the boundary between the wind and interstellar medium is difficult to observe. Mid-infrared observations (e.g., of the H ii region RCW 120) show arcs of dust emission around O stars, contained well within the H ii region bubble. These arcs could indicate the edge of an asymmetric stellar wind bubble, distorted by density gradients and/or stellar motion. We present two-dimensional, radiation-hydrodynamics simulations investigating the evolution of wind bubbles and H ii regions around massive stars moving through a dense (nH = 3000 cm-3), uniform medium with velocities ranging from 4 to 16 km s-1. The H ii region morphology is strongly affected by stellar motion, as expected, but the wind bubble is also very aspherical from birth, even for the lowest space velocity considered. Wind bubbles do not fill their H ii regions (we find filling factors of 10-20 per cent), at least for a main sequence star with mass M⋆ ~ 30 M⊙. Furthermore, even for supersonic velocities the wind bow shock does not significantly trap the ionization front. X-ray emission from the wind bubble is soft, faint, and comes mainly from the turbulent mixing layer between the wind bubble and the H ii region. The wind bubble radiates <1 per cent of its energy in X-rays; it loses most of its energy by turbulent mixing with cooler photoionized gas. Comparison of the simulations with the H ii region RCW 120 shows that its dynamical age is ≲0.4 Myr and that stellar motion ≲4 km s-1 is allowed, implying that the ionizing source is unlikely to be a runaway star but more likely formed in situ. The region's youth, and apparent isolation from other O or B stars, makes it very interesting for studies of massive star formation and of initial mass functions. Movies are available in electronic form at http://www.aanda.org

  7. Galactic Winds and the Role Played by Massive Stars

    Science.gov (United States)

    Heckman, Timothy M.; Thompson, Todd A.

    Galactic winds from star-forming galaxies play at key role in the evolution of galaxies and the intergalactic medium. They transport metals out of galaxies, chemically enriching the intergalactic medium and modifying the chemical evolution of galaxies. They affect the surrounding interstellar and circumgalactic media, thereby influencing the growth of galaxies though gas accretion and star formation. In this contribution we first summarize the physical mechanisms by which the momentum and energy output from a population of massive stars and associated supernovae can drive galactic winds. We use the prototypical example of M 82 to illustrate the multiphase nature of galactic winds. We then describe how the basic properties of galactic winds are derived from the data, and summarize how the properties of galactic winds vary systematically with the properties of the galaxies that launch them. We conclude with a brief discussion of the broad implications of galactic winds.

  8. Polarized bow shocks reveal features of the winds and environments of massive stars

    Science.gov (United States)

    Shrestha, Manisha

    2018-01-01

    Massive stars strongly affect their surroundings through their energetic stellar winds and deaths as supernovae. The bow shock structures created by fast-moving massive stars contain important information about the winds and ultimate fates of these stars as well as their local interstellar medium (ISM). Since bow shocks are aspherical, the light scattered in the dense shock material becomes polarized. Analyzing this polarization reveals details of the bow shock geometry as well as the composition, velocity, density, and albedo of the scattering material. With these quantities, we can constrain the properties of the stellar wind and thus the evolutionary state of the star, as well as the dust composition of the local ISM.In my dissertation research, I use a Monte Carlo radiative transfer code that I optimized to simulate the polarization signatures produced by both resolved and unresolved stellar wind bow shocks (SWBS) illuminated by a central star and by shock emission. I derive bow shock shapes and densities from published analytical calculations and smooth particle hydrodynamic (SPH) models. In the case of the analytical SWBS and electron scattering, I find that higher optical depths produce higher polarization and position angle rotations at specific viewing angles compared to theoretical predictions for low optical depths. This is due to the geometrical properties of the bow shock combined with multiple scattering effects. For dust scattering, the polarization signature is strongly affected by wavelength, dust grain properties, and viewing angle. The behavior of the polarization as a function of wavelength in these cases can distinguish among different dust models for the local ISM. In the case of SPH density structures, I investigate how the polarization changes as a function of the evolutionary phase of the SWBS. My dissertation compares these simulations with polarization data from Betelgeuse and other massive stars with bow shocks. I discuss the

  9. Thermal radio emission from the winds of single stars

    International Nuclear Information System (INIS)

    Abbott, D.C.

    1985-01-01

    Observations of thermal emission at radio wavelengths provides a powerful diagnostic of the rate of mass loss and temperature of the winds of early-type stars. Some winds are also strong sources of nonthermal emission. Case studies of known thermal and nonthermal sources provide empirical criteria for classifying the observed radio radiation. Mass loss rates are derived for 37 OB and Wolf-Rayet stars considered definite or probable thermal wind sources by these criteria. The rate of mass loss is strongly linked to stellar luminosity in OB stars and probably linked to stellar mass in Wolf-Rayet stars, with no measurable correlation with any other stellar property. A few late-type giants and supergiants also have detectable thermal emission, which arises from extended, accelerating, partially-ionized chromospheres. (orig.)

  10. Close-binary central stars of planetary nebulae

    International Nuclear Information System (INIS)

    Bond, H.E.; Grauer, A.D.

    1987-01-01

    Recent observations of PN central stars identified as binary systems are reviewed. The theoretical significance of binary central stars is discussed, and the characteristics of UU Sge, V 477 Lyr, MT Ser, LSS 2018, VW Pyx, and the central star of HFG 1 are briefly summarized. All of these binaries are shown to have periods less than 1 day, and it is estimated that about 10 percent of all binary central stars are close binaries. 27 references

  11. Winds of AGB stars: does size matter?

    International Nuclear Information System (INIS)

    Hoefner, S

    2008-01-01

    Asymptotic giant branch (AGB) stars are showing clear signs of significant mass loss through cool stellar winds. These outflows are attributed to the combined effects of pulsation-induced shocks and radiation pressure on dust grains formed in the outer atmospheric layers. This paper gives an overview of the current status of radiation-hydrodynamical modelling of these processes, and presents a toy model that allows analysis of certain features of detailed models, such as the influence of grain size dependent opacities and basic differences in winds of C- and M-type AGB stars.

  12. On the Weak-Wind Problem in Massive Stars: X-Ray Spectra Reveal a Massive Hot Wind in mu Columbae

    Science.gov (United States)

    Huenemoerder, David P.; Oskinova, Lidia M.; Ignace, Richard; Waldron, Wayne L.; Todt, Helge; Hamaguchi, Kenji; Kitamoto, Shunji

    2012-01-01

    Mu Columbae is a prototypical weak-wind O star for which we have obtained a high-resolution X-ray spectrum with the Chandra LETG/ACIS instrument and a low-resolution spectrum with Suzaku. This allows us, for the first time, to investigate the role of X-rays on the wind structure in a bona fide weak-wind system and to determine whether there actually is a massive hot wind. The X-ray emission measure indicates that the outflow is an order of magnitude greater than that derived from UV lines and is commensurate with the nominal wind-luminosity relationship for O stars. Therefore, the "weak-wind problem"--identified from cool wind UV/optical spectra--is largely resolved by accounting for the hot wind seen in X-rays. From X-ray line profiles, Doppler shifts, and relative strengths, we find that this weak-wind star is typical of other late O dwarfs. The X-ray spectra do not suggest a magnetically confined plasma-the spectrum is soft and lines are broadened; Suzaku spectra confirm the lack of emission above 2 keV. Nor do the relative line shifts and widths suggest any wind decoupling by ions. The He-like triplets indicate that the bulk of the X-ray emission is formed rather close to the star, within five stellar radii. Our results challenge the idea that some OB stars are "weak-wind" stars that deviate from the standard wind-luminosity relationship. The wind is not weak, but it is hot and its bulk is only detectable in X-rays.

  13. Stellar and wind parameters of massive stars from spectral analysis

    Science.gov (United States)

    Araya, Ignacio; Curé, Michel

    2017-11-01

    The only way to deduce information from stars is to decode the radiation it emits in an appropriate way. Spectroscopy can solve this and derive many properties of stars. In this work we seek to derive simultaneously the stellar and wind characteristics of a wide range of massive stars. Our stellar properties encompass the effective temperature, the surface gravity, the stellar radius, the micro-turbulence velocity, the rotational velocity and the Si abundance. For wind properties we consider the mass-loss rate, the terminal velocity and the line-force parameters α, k and δ (from the line-driven wind theory). To model the data we use the radiative transport code Fastwind considering the newest hydrodynamical solutions derived with Hydwind code, which needs stellar and line-force parameters to obtain a wind solution. A grid of spectral models of massive stars is created and together with the observed spectra their physical properties are determined through spectral line fittings. These fittings provide an estimation about the line-force parameters, whose theoretical calculations are extremely complex. Furthermore, we expect to confirm that the hydrodynamical solutions obtained with a value of δ slightly larger than ~ 0.25, called δ-slow solutions, describe quite reliable the radiation line-driven winds of A and late B supergiant stars and at the same time explain disagreements between observational data and theoretical models for the Wind-Momentum Luminosity Relationship (WLR).

  14. Emission-line widths and stellar-wind flows in T Tauri stars

    International Nuclear Information System (INIS)

    Sa, C.; Lago, M.T.V.T.

    1986-01-01

    Spectra are reported of T Tauri stars taken with the IPCS on the Isaac Newton Telescope at the Observatorio del Roque de los Muchachos at a dispersion of l7 A mm -1 . These were taken in order to determine emission-line widths and hence flow velocities in the winds of these stars following the successful modelling of the wind from RU Lupi using such data. Line widths in RW Aur suggest a similar pattern to the wind flow as in RU Lupi with velocities rising in the inner chromosphere of the star and then entering a 'ballistic' zone. The wind from DFTau is also similar but velocities are generally much lower and the lines sharper. (author)

  15. Atmospheres of central stars

    International Nuclear Information System (INIS)

    Hummer, D.G.

    1978-01-01

    The author presents a brief summary of atmospheric models that are of possible relevance to the central stars of planetary nebulae, and then discusses the extent to which these models accord with the observations of both nebulae and central stars. Particular attention is given to the significance of the very high Zanstra temperature implied by the nebulae He II lambda 4686 A line, and to the discrepancy between the Zanstra He II temperature and the considerably lower temperatures suggested by the appearance of the visual spectrum for some of these objects. (Auth.)

  16. Possibility of star (pyramid) dune development in the area of bimodal wind regime

    Science.gov (United States)

    Biejat, K.

    2012-04-01

    Star (pyramid) dunes are the largest aeolian landforms. They can occur in three types - simple, complex and compound. Development of this type of dunes is usually connected with multidirectional or complex wind regimes. The aim of this study was to verify a hypothesis that the star dunes can also develop by a bimodal wind regime and by local modifications of nearsurface wind flow directions. Field study was performed on Erg Chebbi, in southern Morocco. Several star and transverse dunes were selected for the study of their shape. The star dunes were analysed concerning their type and position in the dune field. This erg contains all of three types of star dunes together with transverse dunes. The regional wind data show that there are two dominant wind directions - NE (Chergui) and SW (Saheli). To determine the difference in shape of star dunes, we performed topographic surveying by GPS RTK. The results allowed to create 3D models of star dunes. The models were used to determine metric characteristics of star dunes, including area of dune basis, volume, and slope angles. On the basis of 3D models, primary, secondary and, on the compound dunes, tertiary arms were determined. Primary arms on each type of star dunes, as well as crestlines of transverse dunes, have dominant orientation NW-SE, perpendicular to two dominant wind directions. This clearly confirms that star dunes of Erg Chebbi develop by a bimodal wind regime In contrast to primary arms, subsidiary (secondary and tertiary) arms are not connected to general wind regime. The secondary arms of star dunes occur to be differentially developer. There are more subsidiary arms on SW sides in comparison to the E sides of the dunes where inclination of slopes is constant. It can be therefore inferred that sand has been supplied predominantly from SW direction. This is supported by distribution of the dunes on the erg. Most compound star dunes compose a chain along the E margin of the erg. Comparison of compound star

  17. Suppressing star formation in quiescent galaxies with supermassive black hole winds.

    Science.gov (United States)

    Cheung, Edmond; Bundy, Kevin; Cappellari, Michele; Peirani, Sébastien; Rujopakarn, Wiphu; Westfall, Kyle; Yan, Renbin; Bershady, Matthew; Greene, Jenny E; Heckman, Timothy M; Drory, Niv; Law, David R; Masters, Karen L; Thomas, Daniel; Wake, David A; Weijmans, Anne-Marie; Rubin, Kate; Belfiore, Francesco; Vulcani, Benedetta; Chen, Yan-mei; Zhang, Kai; Gelfand, Joseph D; Bizyaev, Dmitry; Roman-Lopes, A; Schneider, Donald P

    2016-05-26

    Quiescent galaxies with little or no ongoing star formation dominate the population of galaxies with masses above 2 × 10(10) times that of the Sun; the number of quiescent galaxies has increased by a factor of about 25 over the past ten billion years (refs 1-4). Once star formation has been shut down, perhaps during the quasar phase of rapid accretion onto a supermassive black hole, an unknown mechanism must remove or heat the gas that is subsequently accreted from either stellar mass loss or mergers and that would otherwise cool to form stars. Energy output from a black hole accreting at a low rate has been proposed, but observational evidence for this in the form of expanding hot gas shells is indirect and limited to radio galaxies at the centres of clusters, which are too rare to explain the vast majority of the quiescent population. Here we report bisymmetric emission features co-aligned with strong ionized-gas velocity gradients from which we infer the presence of centrally driven winds in typical quiescent galaxies that host low-luminosity active nuclei. These galaxies are surprisingly common, accounting for as much as ten per cent of the quiescent population with masses around 2 × 10(10) times that of the Sun. In a prototypical example, we calculate that the energy input from the galaxy's low-level active supermassive black hole is capable of driving the observed wind, which contains sufficient mechanical energy to heat ambient, cooler gas (also detected) and thereby suppress star formation.

  18. A-type central stars of planetary nebulae. 2. The central stars of NGC 2346, He 2-36 and NGC 3132

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, R H [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina)

    1978-12-01

    Spectrograms, scanner, uvby and ANS ultraviolet measurements of the central stars of NGC 2346, He 2-36 and NGC 3132 are analysed. The observations suggest that the first one is a foreground horizontal-branch star, and the second is above the horizontal branch, presumably in a rapid evolutionary phase. Both objects are probably variable. The central star of NGC 3132 is a slightly evolved main-sequence star with a hot visual companion. The evolutionary status of this system is briefly discussed.

  19. Winds of Massive Magnetic Stars: Interacting Fields and Flow

    Science.gov (United States)

    Daley-Yates, S.; Stevens, I. R.

    2018-01-01

    We present results of 3D numerical simulations of magnetically confined, radiatively driven stellar winds of massive stars, conducted using the astrophysical MHD code Pluto, with a focus on understanding the rotational variability of radio and sub-mm emission. Radiative driving is implemented according to the Castor, Abbott and Klein theory of radiatively driven winds. Many magnetic massive stars posses a magnetic axis which is inclined with respect to the rotational axis. This misalignment leads to a complex wind structure as magnetic confinement, centrifugal acceleration and radiative driving act to channel the circumstellar plasma into a warped disk whose observable properties should be apparent in multiple wavelengths. This structure is analysed to calculate free-free thermal radio emission and determine the characteristic intensity maps and radio light curves.

  20. Massive stars in colliding wind systems: the GLAST perspective

    International Nuclear Information System (INIS)

    Reimer, Anita; Reimer, Olaf

    2007-01-01

    Colliding winds of massive stars in binary systems arc considered as candidate sites of high-energy non-thermal photon emission. They are already among the suggested counterparts for a few individual unidentified EGRET sources, but may constitute a detectable source population for the GLAST observatory.The present work investigates such population study of massive colliding wind systems at high-energy gamma-rays. Based on the recent detailed model (Reimer et al. 2006) for non-thermal photon production in prime candidate systems, we unveil the expected characteristics of this source class in the observables accessible at LAT energies. Combining the broadband emission model with the presently cataloged distribution of such systems and their individual parameters allows us to conclude on the expected maximum number of LAT-detections among massive stars in colliding wind binary systems

  1. EVOLUTION OF SUPER STAR CLUSTER WINDS WITH STRONG COOLING

    International Nuclear Information System (INIS)

    Wuensch, Richard; Palous, Jan; Silich, Sergiy; Tenorio-Tagle, Guillermo; Munoz-Tunon, Casiana

    2011-01-01

    We study the evolution of super star cluster winds driven by stellar winds and supernova explosions. Time-dependent rates at which mass and energy are deposited into the cluster volume, as well as the time-dependent chemical composition of the re-inserted gas, are obtained from the population synthesis code Starburst99. These results are used as input for a semi-analytic code which determines the hydrodynamic properties of the cluster wind as a function of cluster age. Two types of winds are detected in the calculations. For the quasi-adiabatic solution, all of the inserted gas leaves the cluster in the form of a stationary wind. For the bimodal solution, some of the inserted gas becomes thermally unstable and forms dense warm clumps which accumulate inside the cluster. We calculate the evolution of the wind velocity and energy flux and integrate the amount of accumulated mass for clusters of different mass, radius, and initial metallicity. We also consider conditions with low heating efficiency of the re-inserted gas or mass loading of the hot thermalized plasma with the gas left over from star formation. We find that the bimodal regime and the related mass accumulation occur if at least one of the two conditions above is fulfilled.

  2. BINARY CENTRAL STARS OF PLANETARY NEBULAE DISCOVERED THROUGH PHOTOMETRIC VARIABILITY. IV. THE CENTRAL STARS OF HaTr 4 AND Hf 2-2

    Energy Technology Data Exchange (ETDEWEB)

    Hillwig, Todd C.; Schaub, S. C. [Department of Physics and Astronomy, Valparaiso University, Valparaiso, IN 46383 (United States); Bond, Howard E. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Frew, David J. [Department of Physics, The University of Hong Kong, Pokfulam Road (Hong Kong); Bodman, Eva H. L., E-mail: todd.hillwig@valpo.edu [Southeastern Association for Research in Astronomy (SARA) (United States)

    2016-08-01

    We explore the photometrically variable central stars of the planetary nebulae HaTr 4 and Hf 2-2. Both have been classified as close binary star systems previously based on their light curves alone. Here, we present additional arguments and data confirming the identification of both as close binaries with an irradiated cool companion to the hot central star. We include updated light curves, orbital periods, and preliminary binary modeling for both systems. We also identify for the first time the central star of HaTr 4 as an eclipsing binary. Neither system has been well studied in the past, but we utilize the small amount of existing data to limit possible binary parameters, including system inclination. These parameters are then compared to nebular parameters to further our knowledge of the relationship between binary central stars of planetary nebulae and nebular shaping and ejection.

  3. THE FORMATION OF SECONDARY STELLAR GENERATIONS IN MASSIVE YOUNG STAR CLUSTERS FROM RAPIDLY COOLING SHOCKED STELLAR WINDS

    Energy Technology Data Exchange (ETDEWEB)

    Wünsch, R.; Palouš, J.; Ehlerová, S. [Astronomical Institute, Academy of Sciences of the Czech Republic, Boční II 1401, 141 31 Prague (Czech Republic); Tenorio-Tagle, G. [Instituto Nacional de Astrofísica Optica y Electrónica, AP 51, 72000 Puebla, México (Mexico)

    2017-01-20

    We study a model of rapidly cooling shocked stellar winds in young massive clusters and estimate the circumstances under which secondary star formation, out of the reinserted winds from a first stellar generation (1G), is possible. We have used two implementations of the model: a highly idealized, computationally inexpensive, spherically symmetric semi-analytic model, and a complex, three-dimensional radiation-hydrodynamic, simulation; they are in a good mutual agreement. The results confirm our previous findings that, in a cluster with 1G mass 10{sup 7} M {sub ⊙} and half-mass–radius 2.38 pc, the shocked stellar winds become thermally unstable, collapse into dense gaseous structures that partially accumulate inside the cluster, self-shield against ionizing stellar radiation, and form the second generation (2G) of stars. We have used the semi-analytic model to explore a subset of the parameter space covering a wide range of the observationally poorly constrained parameters: the heating efficiency, η {sub he}, and the mass loading, η {sub ml}. The results show that the fraction of the 1G stellar winds accumulating inside the cluster can be larger than 50% if η {sub he} ≲ 10%, which is suggested by the observations. Furthermore, for low η {sub he}, the model provides a self-consistent mechanism predicting 2G stars forming only in the central zones of the cluster. Finally, we have calculated the accumulated warm gas emission in the H30 α recombination line, analyzed its velocity profile, and estimated its intensity for super star clusters in interacting galaxies NGC4038/9 (Antennae) showing that the warm gas should be detectable with ALMA.

  4. Five-Phase Five-Level Open-Winding/Star-Winding Inverter Drive for Low-Voltage/High-Current Applications

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevi Kumar; Blaabjerg, Frede; Wheeler, Patrick

    2016-01-01

    This paper work proposed a five-phase five-level open-/star-winding multilevel AC converter suitable for low-voltage/high-current applications. Modular converter consists of classical two-level five-phase voltage source inverter (VSI) with slight reconfiguration to serve as a multilevel converter...... for open-/star-winding loads. Elaborately, per phase of the VSI is built with one additional bi-directional switch (MOSFET/IGBT) and all five legs links to the neutral through two capacitors. The structure allows multilevel generation to five-level output with greater potential for fault tolerability under...

  5. Probing the extreme wind confinement of the most magnetic O star with COS spectroscopy

    Science.gov (United States)

    Petit, Veronique

    2014-10-01

    We propose to obtain phase-resolved UV spectroscopy of the recently discovered magnetic O star NGC 1624-2, which has the strongest magnetic field ever detected in a O-star, by an order of magnitude. We will use the strength and variability of the UV resonance line profiles to diagnose the density, velocity, and ionization structure of NGC 1624-2's enormous magnetosphere that results from entrapment of its stellar wind by its strong, nearly dipolar magnetic field. With this gigantic magnetosphere, NGC 1624-2 represents a new regime of extreme wind confinement that will constrain models of magnetized winds and their surface mass flux properties. A detailed understanding of such winds is necessary to study the rotational braking history of magnetic O-stars, which can shed new light on the fundamental origin of magnetism in massive, hot stars.

  6. Stellar winds and coronae of low-mass Population II/III stars

    Science.gov (United States)

    Suzuki, Takeru K.

    2018-06-01

    We investigated stellar winds from zero-/low-metallicity low-mass stars by magnetohydrodynamical simulations for stellar winds driven by Alfvén waves from stars with mass M = (0.6-0.8) M⊙ and metallicity Z = (0-1) Z⊙, where M⊙ and Z⊙ are the solar mass and metallicity, respectively. Alfvénic waves, which are excited by the surface convection, travel upward from the photosphere and heat up the corona by their dissipation. For lower Z, denser gas can be heated up to the coronal temperature because of the inefficient radiation cooling. The coronal density of Population II/III stars with Z ≤ 0.01 Z⊙ is one to two orders of magnitude larger than that of a solar-metallicity star with the same mass, and as a result, the mass loss rate, \\dot{M}, is 4.5-20 times larger. This indicates that metal accretion on low-mass Pop. III stars is negligible. The soft X-ray flux of the Pop. II/III stars is also expected to be ˜1-30 times larger than that of a solar-metallicity counterpart owing to the larger coronal density, even though the radiation cooling efficiency is smaller. A larger fraction of the input Alfvénic wave energy is transmitted to the corona in low-Z stars because they avoid severe reflection owing to the smaller density difference between the photosphere and the corona. Therefore, a larger fraction is converted to the thermal energy of the corona and the kinetic energy of the stellar wind. From this energetics argument, we finally derived a scaling of \\dot{M} as \\dot{M}∝ L R_{\\star }^{11/9} M_{\\star }^{-10/9} T_eff^{11/2}[\\max (Z/Z_{⊙},0.01)]^{-1/5}, where L, R⋆, and Teff are the stellar luminosity, radius, and effective temperature, respectively.

  7. Stellar winds and coronae of low-mass Population II/III stars

    Science.gov (United States)

    Suzuki, Takeru K.

    2018-04-01

    We investigated stellar winds from zero-/low-metallicity low-mass stars by magnetohydrodynamical simulations for stellar winds driven by Alfvén waves from stars with mass M = (0.6-0.8) M⊙ and metallicity Z = (0-1) Z⊙, where M⊙ and Z⊙ are the solar mass and metallicity, respectively. Alfvénic waves, which are excited by the surface convection, travel upward from the photosphere and heat up the corona by their dissipation. For lower Z, denser gas can be heated up to the coronal temperature because of the inefficient radiation cooling. The coronal density of Population II/III stars with Z ≤ 0.01 Z⊙ is one to two orders of magnitude larger than that of a solar-metallicity star with the same mass, and as a result, the mass loss rate, \\dot{M}, is 4.5-20 times larger. This indicates that metal accretion on low-mass Pop. III stars is negligible. The soft X-ray flux of the Pop. II/III stars is also expected to be ˜1-30 times larger than that of a solar-metallicity counterpart owing to the larger coronal density, even though the radiation cooling efficiency is smaller. A larger fraction of the input Alfvénic wave energy is transmitted to the corona in low-Z stars because they avoid severe reflection owing to the smaller density difference between the photosphere and the corona. Therefore, a larger fraction is converted to the thermal energy of the corona and the kinetic energy of the stellar wind. From this energetics argument, we finally derived a scaling of \\dot{M} as \\dot{M}∝ L R_{\\star }^{11/9} M_{\\star }^{-10/9} T_eff^{11/2}[\\max (Z/Z_{⊙},0.01)]^{-1/5}, where L, R⋆, and Teff are the stellar luminosity, radius, and effective temperature, respectively.

  8. NLTE wind models of hot subdwarf stars

    Czech Academy of Sciences Publication Activity Database

    Krtička, J.; Kubát, Jiří

    2010-01-01

    Roč. 329, 1-2 (2010), s. 145-150 ISSN 0004-640X R&D Projects: GA ČR GA205/07/0031 Institutional research plan: CEZ:AV0Z10030501 Keywords : stars * winds * outflows Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.437, year: 2010

  9. CARINA OB STARS: X-RAY SIGNATURES OF WIND SHOCKS AND MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    Gagne, Marc; Fehon, Garrett; Savoy, Michael R.; Cohen, David H.; Townsley, Leisa K.; Broos, Patrick S.; Povich, Matthew S.; Corcoran, Michael F.; Walborn, Nolan R.; Remage Evans, Nancy; Moffat, Anthony F. J.; Naze, Yael; Oskinova, Lida M.

    2011-01-01

    The Chandra Carina Complex contains 200 known O- and B-type stars. The Chandra survey detected 68 of the 70 O stars and 61 of 127 known B0-B3 stars. We have assembled a publicly available optical/X-ray database to identify OB stars that depart from the canonical L X /L bol relation or whose average X-ray temperatures exceed 1 keV. Among the single O stars with high kT we identify two candidate magnetically confined wind shock sources: Tr16-22, O8.5 V, and LS 1865, O8.5 V((f)). The O4 III(fc) star HD 93250 exhibits strong, hard, variable X-rays, suggesting that it may be a massive binary with a period of >30 days. The visual O2 If* binary HD 93129A shows soft 0.6 keV and hard 1.9 keV emission components, suggesting embedded wind shocks close to the O2 If* Aa primary and colliding wind shocks between Aa and Ab. Of the 11 known O-type spectroscopic binaries, the long orbital-period systems HD 93343, HD 93403, and QZ Car have higher shock temperatures than short-period systems such as HD 93205 and FO 15. Although the X-rays from most B stars may be produced in the coronae of unseen, low-mass pre-main-sequence companions, a dozen B stars with high L X cannot be explained by a distribution of unseen companions. One of these, SS73 24 in the Treasure Chest cluster, is a new candidate Herbig Be star.

  10. IUE observations of variability in winds from hot stars

    Science.gov (United States)

    Grady, C. A.; Snow, T. P., Jr.

    1981-01-01

    Observations of variability in stellar winds or envelopes provide an important probe of their dynamics. For this purpose a number of O, B, Be, and Wolf-Rayet stars were repeatedly observed with the IUE satellite in high resolution mode. In the course of analysis, instrumental and data handling effects were found to introduce spurious variability in many of the spectra. software was developed to partially compensate for these effects, but limitations remain on the type of variability that can be identified from IUE spectra. With these contraints, preliminary results of multiple observations of two OB stars, one Wolf-Rayet star, and a Be star are discussed.

  11. Nonspherical Radiation Driven Wind Models Applied to Be Stars

    Science.gov (United States)

    Arauxo, F. X.

    1990-11-01

    ABSTRACT. In this work we present a model for the structure of a radiatively driven wind in the meridional plane of a hot star. Rotation effects and simulation of viscous forces were included in the motion equations. The line radiation force is considered with the inclusion of the finite disk correction in self-consistent computations which also contain gravity darkening as well as distortion of the star by rotation. An application to a typical BlV star leads to mass-flux ratios between equator and pole of the order of 10 and mass loss rates in the range 5.l0 to Mo/yr. Our envelope models are flattened towards the equator and the wind terminal velocities in that region are rather high (1000 Km/s). However, in the region near the star the equatorial velocity field is dominated by rotation. RESUMEN. Se presenta un modelo de la estructura de un viento empujado radiativamente en el plano meridional de una estrella caliente. Se incluyeron en las ecuaciones de movimiento los efectos de rotaci6n y la simulaci6n de fuerzas viscosas. Se consider6 la fuerza de las lineas de radiaci6n incluyendo la correcci6n de disco finito en calculos autoconsistentes los cuales incluyen oscurecimiento gravitacional asi como distorsi6n de la estrella por rotaci6n. La aplicaci6n a una estrella tipica BlV lleva a cocientes de flujo de masa entre el ecuador y el polo del orden de 10 de perdida de masa en el intervalo 5.l0 a 10 Mo/ano. Nuestros modelos de envolvente estan achatados hacia el ecuador y las velocidads terminales del viento en esa regi6n son bastante altas (1000 Km/s). Sin embargo, en la regi6n cercana a la estrella el campo de velocidad ecuatorial esta dominado por la rotaci6n. Key words: STARS-BE -- STARS-WINDS

  12. Comoving frame models of hot star winds II. Reduction of O star wind mass-loss rates in global models

    Czech Academy of Sciences Publication Activity Database

    Krtička, J.; Kubát, Jiří

    2017-01-01

    Roč. 606, October (2017), A31/1-A31/12 E-ISSN 1432-0746 R&D Projects: GA ČR GA13-10589S Institutional support: RVO:67985815 Keywords : stars * winds * outflows Subject RIV: BN - Astronomy , Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 5.014, year: 2016

  13. SPIN EVOLUTION OF ACCRETING YOUNG STARS. II. EFFECT OF ACCRETION-POWERED STELLAR WINDS

    International Nuclear Information System (INIS)

    Matt, Sean P.; Pinzón, Giovanni; Greene, Thomas P.; Pudritz, Ralph E.

    2012-01-01

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh and Lamb type models) and identify some remaining theoretical issues for understanding young star spins.

  14. Central stars of planetary nebulae. II. New OB-type and emission-line stars

    Science.gov (United States)

    Weidmann, W. A.; Gamen, R.

    2011-07-01

    Context. There are more than 3000 confirmed and probably known Galactic planetary nebulae (PNe), but central star spectroscopic information is available for only 13% of them. Aims: We have undertaken a spectroscopic survey of the central stars in PNe to identify their spectral types. Methods: We performed spectroscopic observations at low resolution with the 2-m telescope at CASLEO, Argentina. Results: We present the spectra of 46 central stars of PNe, most of them are OB-type and emission-line stars. Based on data collected at the Complejo Astronómico El Leoncito (CASLEO), which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina y Universidades Nacionales de La Plata, Córdoba y San Juan, Argentina.The reduced spectra (FITS files) are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/531/A172

  15. Detailed empirical models for the winds of early-type stars

    International Nuclear Information System (INIS)

    Olson, G.L.; Castor, J.I.

    1981-01-01

    Owing to the recent accumulation of ultraviolet data from the IUE satellite, of X-ray data from the Einstein (HEAO 2) satellite, of visible data from ground based electronic detectors, and of radio data from the Very Large Array (VLA) telescope, it is becoming possible to build much more complete models for the winds of early-type stars. The present work takes the empirical approach of assuming that there exists a coronal region at the base of a cool wind (T/sub e/roughly-equalT/sub eff/). This will be an extension of previous papers by Olson and by Cassinelli and Olson; however, refinements to the model will be presented, and the model will be applied to seven O stars and one BO star. Ionization equilibria are computed to match the line strengths found in UV spectra. The coronal fluxes that are required to produce the observed abundance of O +5 are compared to the X-ray fluxes observed by the Einstein satellite

  16. Identification of faint central stars in extended, low-surface-brightness planetary nebulae

    International Nuclear Information System (INIS)

    Kwitter, K.B.; Lydon, T.J.; Jacoby, G.H.

    1988-01-01

    As part of a larger program to study the properties of planetary nebula central stars, a search for faint central stars in extended, low-surface-brightness planetary nebulae using CCD imaging is performed. Of 25 target nebulae, central star candidates have been identified in 17, with certainties ranging from extremely probable to possible. Observed V values in the central star candidates extend to fainter than 23 mag. The identifications are presented along with the resulting photometric measurements. 24 references

  17. Towards a Unified View of Inhomogeneous Stellar Winds in Isolated Supergiant Stars and Supergiant High Mass X-Ray Binaries

    Science.gov (United States)

    Martínez-Núñez, Silvia; Kretschmar, Peter; Bozzo, Enrico; Oskinova, Lidia M.; Puls, Joachim; Sidoli, Lara; Sundqvist, Jon Olof; Blay, Pere; Falanga, Maurizio; Fürst, Felix; Gímenez-García, Angel; Kreykenbohm, Ingo; Kühnel, Matthias; Sander, Andreas; Torrejón, José Miguel; Wilms, Jörn

    2017-10-01

    Massive stars, at least ˜10 times more massive than the Sun, have two key properties that make them the main drivers of evolution of star clusters, galaxies, and the Universe as a whole. On the one hand, the outer layers of massive stars are so hot that they produce most of the ionizing ultraviolet radiation of galaxies; in fact, the first massive stars helped to re-ionize the Universe after its Dark Ages. Another important property of massive stars are the strong stellar winds and outflows they produce. This mass loss, and finally the explosion of a massive star as a supernova or a gamma-ray burst, provide a significant input of mechanical and radiative energy into the interstellar space. These two properties together make massive stars one of the most important cosmic engines: they trigger the star formation and enrich the interstellar medium with heavy elements, that ultimately leads to formation of Earth-like rocky planets and the development of complex life. The study of massive star winds is thus a truly multidisciplinary field and has a wide impact on different areas of astronomy. In recent years observational and theoretical evidences have been growing that these winds are not smooth and homogeneous as previously assumed, but rather populated by dense "clumps". The presence of these structures dramatically affects the mass loss rates derived from the study of stellar winds. Clump properties in isolated stars are nowadays inferred mostly through indirect methods (i.e., spectroscopic observations of line profiles in various wavelength regimes, and their analysis based on tailored, inhomogeneous wind models). The limited characterization of the clump physical properties (mass, size) obtained so far have led to large uncertainties in the mass loss rates from massive stars. Such uncertainties limit our understanding of the role of massive star winds in galactic and cosmic evolution. Supergiant high mass X-ray binaries (SgXBs) are among the brightest X

  18. Angular Momentum in Disk Wind Revealed in the Young Star MWC 349A

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qizhou; Claus, Brian; Watson, Linda; Moran, James, E-mail: qzhang@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138 (United States)

    2017-03-01

    Disk winds are thought to play a critical role in star birth. As winds extract excess angular momentum from accretion disks, matter in the disk can be transported inward to the star to fuel mass growth. However, observational evidence of wind carrying angular momentum has been very limited. We present Submillimeter Array (SMA) observations of the young star MWC 349A in the H26 α and H30 α recombination lines. The high signal-to-noise ratios made possible by the maser emission process allow us to constrain the relative astrometry of the maser spots to milli-arcsecond precision. Previous observations of the H30 α line with the SMA and the Plateau de Bure interferometer (PdBI) showed that masers are distributed in the disk and wind. Our new high-resolution observations of the H26 α line reveal differences in spatial distribution from that of the H30 α line. H26 α line masers in the disk are excited in a thin annulus with a radius of about 25 au, while the H30 α line masers are formed in a slightly larger annulus with a radius of 30 au. This is consistent with expectations for maser excitation in the presence of an electron density variation of approximately R {sup −4}. In addition, the H30 α and H26 α line masers arise from different parts in the wind. This difference is also expected from maser theory. The wind component of both masers exhibits line-of-sight velocities that closely follow a Keplerian law. This result provides strong evidence that the disk wind extracts significant angular momentum, thereby facilitating mass accretion in the young star.

  19. Star Formation-Driven Winds in the Early Universe

    Science.gov (United States)

    Peek, Matthew; Lundgren, Britt; Brammer, Gabriel

    2018-01-01

    Measuring the extent of star formation-driven winds from galaxies in the early universe is crucial for understanding of how galaxies evolve over cosmic time. Using WFC3/IR grism data from the Hubble Space Telescope (HST), we have measured the star formation rates and star formation rate surface densities of several hundred galaxies at redshift (z) = 1, when the universe was roughly half its present age. The galaxies we examine are also probed by background quasars, whose spectra provide information about the extent of metal-enriched gas in their halos. We use a computational pipeline to measure the density of the star formation in each galaxy and correlate these measurements with detections of Mg II absorption in nearby quasar spectra from the Sloan Digital Sky Survey. Our preliminary results support a model in which galaxies with high SFR surface densities drive metal-enriched gas out of the disk and into these galaxies’ extended halos, where that gas is detected in the spectra of more distant quasars.

  20. Luminous Infrared Galaxies. III. Multiple Merger, Extended Massive Star Formation, Galactic Wind, and Nuclear Inflow in NGC 3256

    Science.gov (United States)

    Lípari, S.; Díaz, R.; Taniguchi, Y.; Terlevich, R.; Dottori, H.; Carranza, G.

    2000-08-01

    We report detailed evidence for multiple merger, extended massive star formation, galactic wind, and circular/noncircular motions in the luminous infrared galaxy NGC 3256, based on observations of high-resolution imaging (Hubble Space Telescope, ESO NTT), and extensive spectroscopic data (more than 1000 spectra, collected at Estación Astrofísica de Bosque Alegre, Complejo Astronómico el Leoncito, Cerro Tololo InterAmerican Observatory, and IUE observatories). We find in a detailed morphological study (resolution ~15 pc) that the extended massive star formation process detected previously in NGC 3256 shows extended triple asymmetrical spiral arms (r~5 kpc), emanating from three different nuclei. The main optical nucleus shows a small spiral disk (r~500 pc), which is a continuation of the external one and reaches the very nucleus. The core shows blue elongated structure (50 pc×25 pc) and harbors a blue stellar cluster candidate (r~8 pc). We discuss this complex morphology in the framework of an extended massive star formation driven by a multiple merger process (models of Hernquist et al. and Taniguchi et al.). We study the kinematics of this system and present a detailed Hα velocity field for the central region (40''×40'' rmax~30''~5 kpc), with a spatial resolution of 1" and errors of +/-15 km s-1. The color and isovelocity maps show mainly (1) a kinematic center of circular motion with ``spider'' shape, located between the main optical nucleus and the close (5") mid-IR nucleus and (2) noncircular motions in the external parts. We obtained three ``sinusoidal rotation curves'' (from the Hα velocity field) around position angle (P.A.) ~55°, ~90°, and ~130°. In the main optical nucleus we found a clear ``outflow component'' associated with galactic winds plus an ``inflow radial motion.'' The outflow component was also detected in the central and external regions (rstandard models of photoionization, shocks, and starbursts). We present four detailed emission

  1. Central stars of planetary nebulae: New spectral classifications and catalogue

    Science.gov (United States)

    Weidmann, W. A.; Gamen, R.

    2011-02-01

    Context. There are more than 3000 confirmed and probable known Galactic planetary nebulae (PNe), but central star spectroscopic information is available for only 13% of them. Aims: We undertook a spectroscopic survey of central stars of PNe at low resolution and compiled a large list of central stars for which information was dispersed in the literature. Methods: We observed 45 PNs using the 2.15 m telescope at Casleo, Argentina. Results: We present a catalogue of 492 confirmed and probable CSPN and provide a preliminary spectral classification for 45 central star of PNe. This revises previous values of the proportion of CSPN with atmospheres poor in hydrogen in at least 30% of cases and provide statistical information that allows us to infer the origin of H-poor stars. Based on data collected at the Complejo Astronómico El Leoncito (CASLEO), which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina y Universidades Nacionales de La Plata, Córdoba y San Juan, Argentina.

  2. Hydrogen-deficient Central Stars of Planetary Nebulae

    Science.gov (United States)

    Todt, H.; Kniazev, A. Y.; Gvaramadze, V. V.; Hamann, W.-R.; Pena, M.; Graefener, G.; Buckley, D.; Crause, L.; Crawford, S. M.; Gulbis, A. A. S.; Hettlage, C.; Hooper, E.; Husser, T.-O.; Kotze, P.; Loaring, N.; Nordsieck, K. H.; O'Donoghue, D.; Pickering, T.; Potter, S.; Romero-Colmenero, E.; Vaisanen, P.; Williams, T.; Wolf, M.

    2015-06-01

    A significant number of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient and are considered as the progenitors of H-deficient white dwarfs. Almost all of these H-deficient CSPNe show a chemical composition of helium, carbon, and oxygen. Most of them exhibit Wolf-Rayet-like emission line spectra and are therefore classified as of spectral type [WC]. In the last years, CSPNe of other Wolf-Rayet spectral subtypes have been identified, namely PB 8 (spectral type [WN/WC]), IC 4663 and Abell 48 (spectral type [WN]). We performed spectral analyses for a number of Wolf-Rayet type central stars of different evolutionary stages with the help of our Potsdam Wolf-Rayet (PoWR) model code for expanding atmospheres to determine relevant stellar parameters. The results of our recent analyses will be presented in the context of stellar evolution and white dwarf formation. Especially the problems of a uniform evolutionary channel for [WC] stars as well as constraints to the formation of [WN] or [WN/WC] subtype stars will be addressed.

  3. HIGH-RESOLUTION X-RAY SPECTROSCOPY REVEALS THE SPECIAL NATURE OF WOLF-RAYET STAR WINDS

    Energy Technology Data Exchange (ETDEWEB)

    Oskinova, L. M.; Hamann, W.-R. [Institute for Physics and Astronomy, University Potsdam, 14476 Potsdam (Germany); Gayley, K. G. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52245 (United States); Huenemoerder, D. P. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research, 70 Vassar St., Cambridge, MA 02139 (United States); Ignace, R. [Department of Physics and Astronomy, East Tennessee State University, Johnson City, TN 37663 (United States); Pollock, A. M. T., E-mail: lida@astro.physik.uni-potsdam.de [European Space Agency XMM-Newton Science Operations Centre, European Space Astronomy Centre, Apartado 78, Villanueva de la Canada, 28691 Madrid (Spain)

    2012-03-10

    We present the first high-resolution X-ray spectrum of a putatively single Wolf-Rayet (WR) star. 400 ks observations of WR 6 by the XMM-Newton telescope resulted in a superb quality high-resolution X-ray spectrum. Spectral analysis reveals that the X-rays originate far out in the stellar wind, more than 30 stellar radii from the photosphere, and thus outside the wind acceleration zone where the line-driving instability (LDI) could create shocks. The X-ray emitting plasma reaches temperatures up to 50 MK and is embedded within the unshocked, 'cool' stellar wind as revealed by characteristic spectral signatures. We detect a fluorescent Fe line at Almost-Equal-To 6.4 keV. The presence of fluorescence is consistent with a two-component medium, where the cool wind is permeated with the hot X-ray emitting plasma. The wind must have a very porous structure to allow the observed amount of X-rays to escape. We find that neither the LDI nor any alternative binary scenario can explain the data. We suggest a scenario where X-rays are produced when the fast wind rams into slow 'sticky clumps' that resist acceleration. Our new data show that the X-rays in single WR star are generated by some special mechanism different from the one operating in the O-star winds.

  4. Probing the clumpy winds of giant stars with high mass X-ray binaries

    Science.gov (United States)

    Grinberg, Victoria; Hell, Natalie; Hirsch, Maria; Garcia, Javier; Huenemoerder, David; Leutenegger, Maurice A.; Nowak, Michael; Pottschmidt, Katja; Schulz, Norbert S.; Sundqvists, Jon O.; Townsend, Richard D.; Wilms, Joern

    2016-04-01

    Line-driven winds from early type stars are structured, with small, overdense clumps embedded in tenuous hot gas. High mass X-ray binaries (HMXBs), systems where a neutron star or a black hole accretes from the line-driven stellar wind of an O/B-type companion, are ideal for studying such winds: the wind drives the accretion onto the compact object and thus the X-ray production. The radiation from close to the compact object is quasi-pointlike and effectively X-rays the wind.We used RXTE and Chandra-HETG observations of two of the brightest HMXBs, Cyg X-1 and Vela X-1, to decipher their wind structure. In Cyg X-1, we show that the orbital variability of absorption can be only explained by a clumpy wind model and constrain the porosity of the wind as well as the onion-like structure of the clumps. In Vela X-1 we show, using the newest reference energies for low ionization Si-lines obtained with LLNL’s EBIT-I, that the ionized phase of the circumstellar medium and the cold clumps have different velocities.

  5. Peculiar early-type galaxies with central star formation

    International Nuclear Information System (INIS)

    Ge Chong; Gu Qiusheng

    2012-01-01

    Early-type galaxies (ETGs) are very important for understanding the formation and evolution of galaxies. Recent observations suggest that ETGs are not simply old stellar spheroids as we previously thought. Widespread recent star formation, cool gas and dust have been detected in a substantial fraction of ETGs. We make use of the radial profiles of g — r color and the concentration index from the Sloan Digital Sky Survey database to pick out 31 peculiar ETGs with central blue cores. By analyzing the photometric and spectroscopic data, we suggest that the blue cores are caused by star formation activities rather than the central weak active galactic nucleus. From the results of stellar population synthesis, we find that the stellar population of the blue cores is relatively young, spreading from several Myr to less than one Gyr. In 14 galaxies with H I observations, we find that the average gas fraction of these galaxies is about 0.55. The bluer galaxies show a higher gas fraction, and the total star formation rate (SFR) correlates very well with the H I gas mass. The star formation history of these ETGs is affected by the environment, e.g. in the denser environment the H I gas is less and the total SFR is lower. We also discuss the origin of the central star formation of these early-type galaxies.

  6. Relativistic MHD modeling of magnetized neutron stars, pulsar winds, and their nebulae

    Science.gov (United States)

    Del Zanna, L.; Pili, A. G.; Olmi, B.; Bucciantini, N.; Amato, E.

    2018-01-01

    Neutron stars are among the most fascinating astrophysical sources, being characterized by strong gravity, densities about the nuclear one or even above, and huge magnetic fields. Their observational signatures can be extremely diverse across the electromagnetic spectrum, ranging from the periodic and low-frequency signals of radio pulsars, up to the abrupt high-energy gamma-ray flares of magnetars, where energies of ∼ {10}46 {erg} are released in a few seconds. Fast-rotating and highly magnetized neutron stars are expected to launch powerful relativistic winds, whose interaction with the supernova remnants gives rise to the non-thermal emission of pulsar wind nebulae, which are known cosmic accelerators of electrons and positrons up to PeV energies. In the extreme cases of proto-magnetars (magnetic fields of ∼ {10}15 G and millisecond periods), a similar mechanism is likely to provide a viable engine for the still mysterious gamma-ray bursts. The key ingredient in all these spectacular manifestations of neutron stars is the presence of strong magnetic fields in their constituent plasma. Here we will present recent updates of a couple of state-of-the-art numerical investigations by the high-energy astrophysics group in Arcetri: a comprehensive modeling of the steady-state axisymmetric structure of rotating magnetized neutron stars in general relativity, and dynamical 3D MHD simulations of relativistic pulsar winds and their associated nebulae.

  7. Curtain-Lifting Winds Allow Rare Glimpse into Massive Star Factory

    Science.gov (United States)

    2003-06-01

    of the Swedish-ESO Submillimeter Telescpe (SEST) at the La Silla Observatory. Large-scale mapping of the distribution of the CS-molecule showed the structure and motions of the dense gas in the giant molecular cloud, from which the young stars in NGC 3603 originate. A total of 13 molecular clumps were detected and their sizes, masses and densities were determined. These observations also showed that the intense radiation and strong stellar winds from the hot stars in the central cluster have "carved a cavity" in the molecular cloud; this comparatively empty and transparent region now measures about 8 light-years across. Mid-infrared imaging (at wavelengths 11.9 and 18 µm) was made of selected regions in NGC 3603 with the TIMMI 2 instrument mounted on the ESO 3.6-m telescope. This constitutes the first sub-arcsec resolution mid-IR survey of NGC 3603 and serves in particular to show the warm dust distribution in the region. The survey gives a clear indication of intense, on-going star formation processes. Many different types of objects were detected, including extremely hot Wolf-Rayet stars and protostars; altogether 36 mid-IR point sources and 42 knots of diffuse emission were identified. In the area surveyed, the protostar IRS 9A is found to be the most luminous point source at both wavelengths; two other sources, designated IRS 9B and IRS 9C in the immediate vicinity are also very bright on the TIMMI 2 images, providing further indication that this is the site of an association of protostars in its own right. The collection of high-quality images of the IRS 9 area shown in PR Photo 16b/03 is well suited to investigate the nature and the evolutionary status of the highly obscured objects located there, IRS 9A-C. They are situated on the side of the massive molecular cloud core NGC 3603 MM 2 that faces the central cluster of young stars (PR Photo 16a/03) and were apparently only recently "liberated" from most of their natal gas and dust environment by strong stellar

  8. Episodic mass loss from the hydrogen-deficient central star of the planetary nebula Longmore 4

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Howard E., E-mail: heb11@psu.edu [Current address: Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802, USA. (United States)

    2014-09-01

    A spectacular transient mass-loss episode from the extremely hot, hydrogen-deficient central star of the planetary nebula (PN) Longmore 4 (Lo 4) was discovered in 1992 by Werner et al. During that event, the star temporarily changed from its normal PG 1159 spectrum to that of an emission-line low-luminosity early-type Wolf-Rayet [WCE] star. After a few days, Lo 4 reverted to its normal, predominantly absorption-line PG 1159 type. To determine whether such events recur, and if so how often, I monitored the optical spectrum of Lo 4 from early 2003 to early 2012. Out of 81 spectra taken at random dates, 4 of them revealed mass-loss outbursts similar to that seen in 1992. This indicates that the episodes recur approximately every 100 days (if the recurrence rate has been approximately constant and the duration of a typical episode is ∼5 days), and that the star is in a high-mass-loss state about 5% of the time. Since the enhanced stellar wind is hydrogen-deficient, it arises from the photosphere and is unlikely to be related to phenomena such as a binary or planetary companion or infalling dust. I speculate on plausible mechanisms for these unique outbursts, including the possibility that they are related to the non-radial GW Vir-type pulsations exhibited by Lo 4. The central star of the PN NGC 246 has stellar parameters similar to those of Lo 4, and it is also a GW Vir-type pulsator with similar pulsation periods. I obtained 167 spectra of NGC 246 between 2003 and 2011, but no mass ejections were found.

  9. The emerging planetary nebula CRL 618 and its unsettled central star(s)

    Energy Technology Data Exchange (ETDEWEB)

    Balick, B. [Department of Astronomy, University of Washington, Seattle, WA 98195-1580 (United States); Riera, A. [Departament de Física I Enginyeria Nuclear, EUETIB, Universitat Politècnica de Catalunya, Comte d' Urgell 187, E-08036 Barcelona (Spain); Raga, A.; Velázquez, P. F. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, 04510 D.F. (Mexico); Kwitter, K. B., E-mail: balick@uw.edu, E-mail: angels.riera@upc.edu, E-mail: raga@nucleares.unam.mx, E-mail: pablo@nucleares.unam.mx, E-mail: kkwitter@williams.edu [Department of Astronomy, Williams College, Williamstown, MA 01267 (United States)

    2014-11-01

    We report deep long-slit emission-line spectra, the line flux ratios, and Doppler profile shapes of various bright optical lines. The low-ionization lines (primarily [N I], [O I], [S II], and [N II]) originate in shocked knots, as reported by many previous observers. Dust-scattered lines of higher ionization are seen throughout the lobes but do not peak in the knots. Our analysis of these line profiles and the readily discernible stellar continuum shows that (1) the central star is an active symbiotic (whose spectrum resembles the central stars of highly bipolar and young planetary nebulae such as M2-9 and Hen2-437) whose compact companion shows a WC8-type spectrum, (2) extended nebular lines of [O III] and He I originate in the heavily obscured nuclear H II region, and (3) the Balmer lines observed throughout the lobes are dominated by reflected Hα emission from the symbiotic star. Comparing our line ratios with those observed historically shows that (1) the [O III]/Hβ and He I/Hβ ratios have been steadily rising by large amounts throughout the nebula, (2) the Hα/Hβ ratio is steadily decreasing while Hγ/Hβ remains nearly constant, and (3) the low-ionization line ratios formed in the shocked knots have been in decline in different ways at various locations. We show that the first two of these results might be expected if the symbiotic central star has been active and if its bright Hα line has faded significantly in the past 20 years.

  10. Model atmospheres and parameters of central stars of planetary nebulae

    International Nuclear Information System (INIS)

    Patriarchi, P.; Cerruti-sola, M.; Perinotto, M.

    1989-01-01

    Non-LTE hydrogen and helium model atmospheres have been obtained for temperatures and gravities relevant to the central stars of planetary nebulae. Low-resolution and high-resolution observations obtained by the IUE satellite have been used along with optical data to determine Zanstra temperatures of the central stars of NGC 1535, NGC 6210, NGC 7009, IC 418, and IC 4593. Comparison of the observed stellar continuum of these stars with theoretical results allowed further information on the stellar temperature to be derived. The final temperatures are used to calculate accurate stellar parameters. 62 refs

  11. DETECTION OF THE CENTRAL STAR OF THE PLANETARY NEBULA NGC 6302

    International Nuclear Information System (INIS)

    Szyszka, C.; Walsh, J. R.; Zijlstra, Albert A.; Tsamis, Y. G.

    2009-01-01

    NGC 6302 is one of the highest ionization planetary nebulae (PNe) known and shows emission from species with ionization potential > 300 eV. The temperature of the central star must be > 200,000 K to photoionize the nebula, and has been suggested to be up to ∼400,000 K. On account of the dense dust and molecular disk, the central star has not convincingly been directly imaged until now. NGC 6302 was imaged in six narrowband filters by Wide Field Camera 3 on the Hubble Space Telescope as part of the Servicing Mission 4 Early Release Observations. The central star is directly detected for the first time, and is situated at the nebula center on the foreground side of the tilted equatorial disk. The magnitudes of the central star have been reliably measured in two filters (F469N and F673N). Assuming a hot blackbody, the reddening has been measured from the (4688-6766 A) color and a value of c = 3.1, A v = 6.6 mag determined. A G-K main-sequence binary companion can be excluded. The position of the star on the H-R diagram suggests a fairly massive PN central star of about 0.64 M sun close to the white dwarf cooling track. A fit to the evolutionary tracks for (T, L, t) = (200,000 K, 2000 L sun , 2200 yr), where t is the nebular age, is obtained; however, the luminosity and temperature remain uncertain. The model tracks predict that the star is rapidly evolving, and fading at a rate of almost 1% per year. Future observations could test this prediction.

  12. Ages of evolved low mass stars: Central stars of planetary nebulae and white dwarfs

    Directory of Open Access Journals (Sweden)

    Costa R.D.D.

    2013-03-01

    Full Text Available We have developed several methods to estimate the ages of central stars of planetary nebulae (CSPN, which are based either on observed nebular properties or on data from the stars themselves. Our goal is to derive the age distribution of these stars and compare the results with empirical distributions for CSPN and white dwarfs. We have initially developed three methods based on nebular abundances, using (i an age-metallicity relation which is also a function of the galactocentric distance; (ii an age-metallicity relation obtained for the galactic disk, and (iii the central star masses derived from the observed nitrogen abundances. In this work we present two new, more accurate methods, which are based on kinematic properties: (I in this method, the expected rotation velocities of the nebulae around the galactic centre at their galactocentric distances are compared with the predicted values for the galactic rotation curve, and the differences are attributed to the different ages of the evolved stars; (II we determine directly the U, V, W, velocity components of the stars, as well as the velocity dispersions, and use the dispersion-age relation by the Geneva-Copenhagen survey. These methods were applied to two large samples of galactic CSPN. We conclude that most CSPN in the galactic disk have ages under 5 Gyr, and that the age distribution is peaked around 1 to 3 Gyr.

  13. The environment of the wind-wind collision region of η Carinae

    Science.gov (United States)

    Panagiotou, C.; Walter, R.

    2018-02-01

    Context. η Carinae is a colliding wind binary hosting two of the most massive stars and featuring the strongest wind collision mechanical luminosity. The wind collision region of this system is detected in X-rays and γ-rays and offers a unique laboratory for the study of particle acceleration and wind magneto-hydrodynamics. Aim. Our main goal is to use X-ray observations of η Carinae around periastron to constrain the wind collision zone geometry and understand the reasons for its variability. Methods: We analysed 10 Nuclear Spectroscopic Telescope Array (NuSTAR) observations, which were obtained around the 2014 periastron. The NuSTAR array monitored the source from 3 to 30 keV, which allowed us to grasp the continuum and absorption parameters with very good accuracy. We were able to identify several physical components and probe their variability. Results: The X-ray flux varied in a similar way as observed during previous periastrons and largely as expected if generated in the wind collision region. The flux detected within 10 days of periastron is lower than expected, suggesting a partial disruption of the central region of the wind collision zone. The Fe Kα line is likely broadened by the electrons heated along the complex shock fronts. The variability of its equivalent width indicates that the fluorescence region has a complex geometry and that the source obscuration varies quickly with the line of sight.

  14. Star Formation in the Central Regions of Galaxies

    Science.gov (United States)

    Tsai, Mengchun

    2015-08-01

    The galactic central region connects the galactic nucleus to the host galaxy. If the central black hole co-evolved with the host galaxies, there should be some evidence left in the central region. We use the environmental properties in the central regions such as star-forming activity, stellar population and molecular abundance to figure out a possible scenario of the evolution of galaxies. In this thesis at first we investigated the properties of the central regions in the host galaxies of active and normal galaxies. We used radio emission around the nuclei of the host galaxies to represent activity of active galactic nuclei (AGNs), and used infrared ray (IR) emission to represent the star-forming activity and stellar population of the host galaxies. We determined that active galaxies have higher stellar masses (SMs) within the central kiloparsec radius than normal galaxies do independent of the Hubble types of the host galaxies; but both active and normal galaxies exhibit similar specific star formation rates (SSFRs). We also discovered that certain AGNs exhibit substantial inner stellar structures in the IR images; most of the AGNs with inner structures are Seyferts, whereas only a few LINERs exhibit inner structures. We note that the AGNs with inner structures show a positive correlation between the radio activity of the AGNs and the SFRs of the host galaxies, but the sources without inner structures show a negative correlation between the radio power and the SFRs. These results might be explained with a scenario of starburst-AGN evolution. In this scenario, AGN activities are triggered following a nuclear starburst; during the evolution, AGN activities are accompanied by SF activity in the inner regions of the host galaxies; at the final stage of the evolution, the AGNs might transform into LINERs, exhibiting weak SF activity in the central regions of the host galaxies. For further investigation about the inner structure, we choose the most nearby and luminous

  15. Central Stars of Mid-Infrared Nebulae Discovered with Spitzer and WISE

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.

    2017-02-01

    Searches for compact mid-IR nebulae with the Spitzer Space Telescope and the Wide-field Infrared Survey Explorer (WISE), accompanied by spectroscopic observations of central stars of these nebulae led to the discovery of many dozens of massive stars at different evolutionary stages, of which the most numerous are candidate luminous blue variables (LBVs). In this paper, we give a census of candidate and confirmed Galactic LBVs revealed with Spitzer and WISE, and present some new results of spectroscopic observations of central stars of mid-IR nebulae.

  16. VLTI-AMBER Velocity-Resolved Aperture-Synthesis Imaging of Eta Carinae with a Spectral Resolution of 12 000: Studies of the Primary Star Wind and Innermost Wind-Wind Collision Zone

    Science.gov (United States)

    Weigelt, G.; Hofmann, K.-H.; Schertl, D.; Clementel, N.; Corcoran, M. F.; Damineli, A.; de Wit, W.-J.; Grellmann, R.; Groh, J.; Guieu, S.; hide

    2016-01-01

    The mass loss from massive stars is not understood well. Eta Carinae is a unique object for studying the massive stellar wind during the luminous blue variable phase. It is also an eccentric binary with a period of 5.54 yr. The nature of both stars is uncertain, although we know from X-ray studies that there is a wind-wind collision whose properties change with orbital phase. Aims. We want to investigate the structure and kinematics of Car's primary star wind and wind-wind collision zone with a high spatial resolution of approx.6 mas (approx.14 au) and high spectral resolution of R = 12 000. Methods. Observations of Car were carried out with the ESO Very Large Telescope Interferometer (VLTI) and the AMBER instrument between approximately five and seven months before the August 2014 periastron passage. Velocity-resolved aperture-synthesis images were reconstructed from the spectrally dispersed interferograms. Interferometric studies can provide information on the binary orbit, the primary wind, and the wind collision. Results. We present velocity-resolved aperture-synthesis images reconstructed in more than 100 di erent spectral channels distributed across the Br(gamma) 2.166 micron emission line. The intensity distribution of the images strongly depends on wavelength. At wavelengths corresponding to radial velocities of approximately -140 to -376 km/s measured relative to line center, the intensity distribution has a fan-shaped structure. At the velocity of -277 km/s, the position angle of the symmetry axis of the fan is 126. The fan-shaped structure extends approximately 8.0 mas (approx.18:8 au) to the southeast and 5.8 mas (approx.13:6 au) to the northwest, measured along the symmetry axis at the 16% intensity contour. The shape of the intensity distributions suggests that the obtained images are the first direct images of the innermost wind-wind collision zone. Therefore, the observations provide velocity-dependent image structures that can be used to test three

  17. Star clusters containing massive, central black holes: evolution calculations

    International Nuclear Information System (INIS)

    Marchant, A.B.

    1980-01-01

    This dissertation presents a detailed, two-dimensional simulations of star cluster evolution. A Monte-Carlo method is adapted to simulate the development with time of isolated star clusters. Clusters which evolve on relaxation timescales with and without central black holes are treated. The method is flexible and rugged, rather than highly accurate. It treats the boundary conditions of stellar evaporation and tidal disruption by a central black hole in a precise, stochastic fashion. Dynamical cloning and renormalization and the use of a time-step adjustment algorithm enhance the feasibility of the method which simulates systems with wide ranges of intrinsic length and time scales. First, the method is applied to follow the development and core collapse of an initial Plummer-model cluster without a central black hole. Agreement of these results for early times with the results of previous authors serves as a verification of this method. Three calculations of cluster re-expansion, each beginning with the insertion of a black hole at the center of a highly collapsed cluster core is presented. Each case is characterized by a different value of initial black hole mass or black hole accretion efficiency for the consumption of debris from disrupted stars. It is found that for the special cases examined here substantial, but not catastrophic, growth of the central black hole may accompany core re-expansion. Also, the observability of the evolutionary phases associated with core collapse and re-expansion, constraints on x-ray sources which could be associated with growing black holes, and the observable signature of the cusp of stars surrounding a central black hole are discussed

  18. Photometric investigation of possible binary occurrence in the central stars of seventeen planetary nebulae

    International Nuclear Information System (INIS)

    Drummond, J.D. III.

    1980-01-01

    A comprehensive literature search was conducted for all possible bihary central stars in planetary nebulae. The results, which include all known and suspected visual, spectroscopic, and spectrum binaries, as well as all reported variable central stars, are presented in a series of tables. A photoelectric study was conducted in order to determine the status of short period (on the order of hours) variability of the central regions of seventeen planetary nebulae. Only the stellar appearing planetary nebula M1-2 (PK 133-8 0 1) was found to be variable. Its short (4.0002 hours) period suggests that it may be only the second eclipsing binary found among central stars to date. A method of concentric apertures was developed to determine the amount of light contributed by the central star vis-a-vis the nebula through a given aperture and filter. The procedure enabled UBV magnitudes and colors (and the errors) of central stars to be measured, including some in the sample of seventeen for which no previous values have been published. Mean nebular UBV magnitudes, surface brightnesses, and color indices were also found with the technique, and represent the first such published measurements. Various UBV two-parameter were constructed, revealing possible nebular/stellar sequences; a star-plus-nebula two-color diagram identifies three spectral classes of central stars, and two suspected binaries in the seventeen studied

  19. On the evolution of central stars of planetary nebulae

    International Nuclear Information System (INIS)

    Yahel, R.Z.

    1977-01-01

    The evolution of nuclei of planetary nebulae has been calculated from the end of the ejection stage that produces the nebulae to the white dwarf stage. The structure of the central star is in agreement with the general picture of Finzi (1973) about the mass ejection from the progenitors of planetary nebulae. It has been found that in order to obtain evolutionary track consistent with the Harman-Seaton track (O'Dell, 1968) one has to assume that the masses of the nuclei stars are less than approximately 0.7 solar masses. The calculated evolutionary time scale of the central stars of planetary nebulae is approximately 2 x 10 4 yr. This time scale is negatively correlated with the stellar mass: the heavier the stellar mass, the shorter the evolutionary time scale. (Auth.)

  20. Accretion from a clumpy massive-star wind in supergiant X-ray binaries

    Science.gov (United States)

    El Mellah, I.; Sundqvist, J. O.; Keppens, R.

    2018-04-01

    Supergiant X-ray binaries (SgXB) host a compact object, often a neutron star (NS), orbiting an evolved O/B star. Mass transfer proceeds through the intense line-driven wind of the stellar donor, a fraction of which is captured by the gravitational field of the NS. The subsequent accretion process on to the NS is responsible for the abundant X-ray emission from SgXB. They also display peak-to-peak variability of the X-ray flux by a factor of a few 10-100, along with changes in the hardness ratios possibly due to varying absorption along the line of sight. We use recent radiation-hydrodynamic simulations of inhomogeneities (a.k.a. clumps) in the non-stationary wind of massive hot stars to evaluate their impact on the time-variable accretion process. For this, we run 3D hydrodynamic simulations of the wind in the vicinity of the accretor to investigate the formation of the bow shock and follow the inhomogeneous flow over several spatial orders of magnitude, down to the NS magnetosphere. In particular, we show that the impact of the wind clumps on the time variability of the intrinsic mass accretion rate is severely tempered by the crossing of the shock, compared to the purely ballistic Bondi-Hoyle-Lyttleton estimation. We also account for the variable absorption due to clumps passing by the line of sight and estimate the final effective variability of the column density and mass accretion rate for different orbital separations. Finally, we compare our results to the most recent analysis of the X-ray flux and the hardness ratio in Vela X-1.

  1. The Local ISM and its Interaction with the Winds of Nearby Late-type Stars

    Science.gov (United States)

    Wood, Brian E.; Linsky, Jeffrey L.

    1998-01-01

    We present new Goddard High-Resolution Spectrograph (GHRS) observations of the Ly-alpha and Mg II absorption lines seen toward the nearby stars 61 Cyg A and 40 Eri A. We use these data to measure interstellar properties along these lines of sight and to search for evidence of circumstellar hydrogen walls, which are produced by collisions between the stellar winds and the Local InterStellar Medium (LISM). We were able to model the Ly-alpha lines of both stars without hydrogen-wall absorption components, but for 61 Cyg A the fit required a stellar Ly-alpha, line profile with an improbably deep self-reversal, and for 40 Eri A the fit required a very low deuterium-to-hydrogen ratio that is inconsistent with previous GHRS measurements. Since these problems could be rectified simply by including stellar hydrogen-wall components with reasonable attributes, our preferred fits to the data include these components. We have explored several ways in which the hydrogen-wall properties measured here and in previous work can be used to study stellar winds and the LISM. We argue that the existence of a hydrogen wall around 40 Eri A and a low H I column density along that line of sight imply that either the interstellar density must decrease toward 40 Eri A or the hydrogen ionization fraction (chi) must increase. We find that hydrogen-wall temperatures are larger for stars with faster velocities through the LISM. The observed temperature-velocity relation is consistent with the predictions of hydromagnetic shock jump conditions. More precise comparison of the data and the jump conditions suggests crude upper limits for both chi and the ratio of magnetic to thermal pressure in the LISM (alpha): chi less than 0.6 and alpha less than 2. The latter upper limit corresponds to a limit on the LISM magnetic field of B less than 5 micro G. These results imply that the plasma Mach number of the interstellar wind flowing into the heliosphere is M(sub A) greater than 1.3, which indicates that

  2. THE TWO CENTRAL STARS OF NGC 1514: CAN THEY ACTUALLY BE RELATED?

    Energy Technology Data Exchange (ETDEWEB)

    Méndez, Roberto H.; Kudritzki, Rolf-Peter [Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Urbaneja, Miguel A., E-mail: mendez@ifa.hawaii.edu [Institut für Astro- und Teilchenphysik, Universität Innsbruck, Technikerstr. 25/8, A-6020 Innsbruck (Austria)

    2016-10-01

    The central star of the planetary nebula NGC 1514 is among the visually brightest central stars in the sky ( V = 9.5). It has long been known to show a composite spectrum, consisting of an A-type star and a much hotter star responsible for the ionization of the surrounding nebula. These two stars have always been assumed to form a binary system. High-resolution spectrograms obtained with Espadons at the Canada–France–Hawaii Telescope on Maunakea have allowed us to measure good radial velocities for both stars: they differ by 13 ± 2 km s{sup −1}. The stellar velocities were unchanged after 500 days. We have also estimated the metallicity of the cooler star. Combining these data with other information available in the literature, we conclude that, unless all the published nebular radial velocities are systematically wrong, the cooler star is just a chance alignment, and the two stars are not orbiting each other. The cooler star cannot have played any role in the formation of NGC 1514.

  3. Mass distribution and evolutionary scheme for central stars of planetary nebulae

    International Nuclear Information System (INIS)

    Heap, S.R.; Augensen, H.J.; Widener Univ., Chester, PA)

    1987-01-01

    IUE data and a distance measuring method that considered central stars in optically thick nebulae were used to examine mass distributions of planetary nebulae. Other data such as spectral type, spatial and kinematic characteristics, etc., were studied to derive relationships between population type and mass distribution. A central star mass range of at least 0.55 solar mass was obtained. Stars with masses of at least 0.64 solar mass, concentrated in the galactic disk, originated from 1.5 solar mass stars. Low mass nuclei originated in old disk or halo populations and evolved from 1.0 solar mass objects. A mass-loss parameter value of 1/3 was calculated for red giants, implying that white dwarfs evolve from stars of under 5 solar masses. Mass distributions around planetary nuclei were concluded to follow patterns associated with the individual mass. 75 references

  4. A combined HST and XMM-Newton campaign for the magnetic O9.7 V star HD 54879. Constraining the weak-wind problem of massive stars

    Science.gov (United States)

    Shenar, T.; Oskinova, L. M.; Järvinen, S. P.; Luckas, P.; Hainich, R.; Todt, H.; Hubrig, S.; Sander, A. A. C.; Ilyin, I.; Hamann, W.-R.

    2017-10-01

    Context. HD 54879 (O9.7 V) is one of a dozen O-stars for which an organized atmospheric magnetic field has been detected. Despite their importance, little is known about the winds and evolution of magnetized massive stars. Aims: To gain insights into the interplay between atmospheres, winds, and magnetic fields of massive stars, we acquired UV and X-ray data of HD 54879 using the Hubble Space Telescope and the XMM-Newton satellite. In addition, 35 optical amateur spectra were secured to study the variability of HD 54879. Methods: A multiwavelength (X-ray to optical) spectral analysis is performed using the Potsdam Wolf-Rayet (PoWR) model atmosphere code and the xspec software. Results: The photospheric parameters (T∗ = 30.5 kK, log g = 4.0 [cm s-2], log L = 4.45 [L⊙]) are typical for an O9.7 V star. The microturbulent, macroturbulent, and projected rotational velocities are lower than previously suggested (ξph,vmac,vsini ≤ 4 km s-1). An initial mass of 16 M⊙ and an age of 5 Myr are inferred from evolutionary tracks. We derive a mean X-ray emitting temperature of log TX = 6.7 [K] and an X-ray luminosity of LX = 1 × 1032 erg s-1. Short- and long-scale variability is seen in the Hα line, but only a very long period of P ≈ 5 yr could be estimated. Assessing the circumstellar density of HD 54879 using UV spectra, we can roughly estimate the mass-loss rate HD 54879 would have in the absence of a magnetic field as log ṀB = 0 ≈ -9.0 [M⊙ yr-1]. The magnetic field traps the stellar wind up to the Alfvén radius rA ≳ 12 R∗, implying that its true mass-loss rate is log Ṁ ≲ -10.2 [M⊙ yr-1]. Hence, density enhancements around magnetic stars can be exploited to estimate mass-loss rates of non-magnetic stars of similar spectral types, essential for resolving the weak wind problem. Conclusions: Our study confirms that strongly magnetized stars lose little or no mass, and supplies important constraints on the weak-wind problem of massive main sequence

  5. Wind Shear Characteristics at Central Plains Tall Towers (presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, M.; Elliott, D.

    2006-06-05

    The objectives of this report are: (1) Analyze wind shear characteristics at tall tower sites for diverse areas in the central plains (Texas to North Dakota)--Turbines hub heights are now 70-100 m above ground and Wind measurements at 70-100+ m have been rare. (2) Present conclusions about wind shear characteristics for prime wind energy development regions.

  6. The central star of the Planetary Nebula NGC 6537

    NARCIS (Netherlands)

    Pottasch, [No Value

    2000-01-01

    The fact that Space Telescope WFPC2 images of the planetary nebula NGC 6537 fail to show the central star is used to derive a limit to its magnitude: it is fainter than a magnitude of 22.4 in the visible. This is used to derive a lower limit to the temperature of the star. The Zanstra temperature is

  7. Centralized electricity generation in offshore wind farms using hydraulic networks

    NARCIS (Netherlands)

    Jarquin Laguna, A.

    2017-01-01

    The work presented in this thesis explores a new way of generation, collection and transmission of wind energy inside a wind farm, in which the electrical conversion does not occur during any intermediate conversion step before the energy has reached the offshore central platform. A centralized

  8. Planetary nebulae and their central stars

    International Nuclear Information System (INIS)

    Kaler, J.B.

    1985-01-01

    The present review is devoted primarily to galactic planetaries, while Ford (1983) provides an extensive review of the rapidly expanding study of the extragalactic type. Nebular parameters and observations are discussed, taking into account discovery, distance, motion, structure, spectrophotometry, and nebular properties. It is pointed out that post-AGB, or prewhite dwarf, stars are not as well known as their nebular progeny. Of the fundamental data regarding the central stars, the magnitudes are particularly important. They are used for both temperature and luminosity determinations. Attention is also given to temperatures and luminosities, and the characteristics of the spectra. Questions concerning the evolutionary process are also explored and aspects of observed distribution and evolution are considered. 259 references

  9. Effect of rotational mixing and metallicity on the hot star wind mass-loss rates

    Czech Academy of Sciences Publication Activity Database

    Krtička, J.; Kubát, Jiří

    2014-01-01

    Roč. 567, July (2014), A63/1-A63/7 ISSN 0004-6361 R&D Projects: GA ČR GA13-10589S Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:67985815 Keywords : stars: winds * outflows * stars: mass-loss Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.378, year: 2014

  10. High-entropy ejections from magnetized proto-neutron star winds: implications for heavy element nucleosynthesis

    Science.gov (United States)

    Thompson, Todd A.; ud-Doula, Asif

    2018-06-01

    Although initially thought to be promising for production of the r-process nuclei, standard models of neutrino-heated winds from proto-neutron stars (PNSs) do not reach the requisite neutron-to-seed ratio for production of the lanthanides and actinides. However, the abundance distribution created by the r-, rp-, or νp-processes in PNS winds depends sensitively on the entropy and dynamical expansion time-scale of the flow, which may be strongly affected by high magnetic fields. Here, we present results from magnetohydrodynamic simulations of non-rotating neutrino-heated PNS winds with strong dipole magnetic fields from 1014 to 1016 G, and assess their role in altering the conditions for nucleosynthesis. The strong field forms a closed zone and helmet streamer configuration at the equator, with episodic dynamical mass ejections in toroidal plasmoids. We find dramatically enhanced entropy in these regions and conditions favourable for third-peak r-process nucleosynthesis if the wind is neutron-rich. If instead the wind is proton-rich, the conditions will affect the abundances from the νp-process. We quantify the distribution of ejected matter in entropy and dynamical expansion time-scale, and the critical magnetic field strength required to affect the entropy. For B ≳1015 G, we find that ≳10-6 M⊙ and up to ˜10-5 M⊙ of high-entropy material is ejected per highly magnetized neutron star birth in the wind phase, providing a mechanism for prompt heavy element enrichment of the universe. Former binary companions identified within (magnetar-hosting) supernova remnants, the remnants themselves, and runaway stars may exhibit overabundances. We provide a comparison with a semi-analytic model of plasmoid eruption and discuss implications and extensions.

  11. Spectrophotometry of ring nebulae around Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Kwitter, K.B.

    1979-01-01

    Spectrophotometric observations of four ring nebulae surrounding population I Wolf-Rayet (WN) stars have been obtained, and four additional filamentary nebulae in order to determine the physical conditions and chemical abundances in these objects. It was concluded that the ring nebulae are enriched in nitrogen and helium as a result of contamination of the ambient interstellar medium by the helium- and nitrogen-rich wind from the central Wolf-Rayet star. Of the additional nebulae studied, two were found to be Peimbert Type I planetary nebulae, overabundant in nitrogen and helium due to mixing of CNO processed material into the parent envelope prior to ejection. One of the remaining objects, a shell around an Oef star, is found to have normal abundances; the other, a small H II region around an early Be star, also exhibits normal abundances. It was attempted to interpret the ring nebulae and the Oef shell as interstellar bubbles, according to recent theory; it met with varying degrees of success. For two of the ring nebulae, the fraction of nebular mass contributed by the central star can be estimated from published stellar abundances. It was found that in these two cases, the stellar wind has provided less than 10% of the observed nebular mass

  12. IRAS 18153-1651: an H II region with a possible wind bubble blown by a young main-sequence B star

    Science.gov (United States)

    Gvaramadze, V. V.; Mackey, J.; Kniazev, A. Y.; Langer, N.; Chené, A.-N.; Castro, N.; Haworth, T. J.; Grebel, E. K.

    2017-04-01

    We report the results of spectroscopic observations and numerical modelling of the H II region IRAS 18153-1651. Our study was motivated by the discovery of an optical arc and two main-sequence stars of spectral type B1 and B3 near the centre of IRAS 18153-1651. We interpret the arc as the edge of the wind bubble (blown by the B1 star), whose brightness is enhanced by the interaction with a photoevaporation flow from a nearby molecular cloud. This interpretation implies that we deal with a unique case of a young massive star (the most massive member of a recently formed low-mass star cluster) caught just tens of thousands of years after its stellar wind has begun to blow a bubble into the surrounding dense medium. Our 2D, radiation-hydrodynamics simulations of the wind bubble and the H II region around the B1 star provide a reasonable match to observations, both in terms of morphology and absolute brightness of the optical and mid-infrared emission, and verify the young age of IRAS 18153-1651. Taken together our results strongly suggest that we have revealed the first example of a wind bubble blown by a main-sequence B star.

  13. HM Sagittae - a most remarkable star

    International Nuclear Information System (INIS)

    Kwok, S.

    1982-01-01

    The author summarises recent observations of HM Sagittae, a symbiotic star that displays activity in every spectral band from X-ray to radio. He concludes that it is best described as a binary system consisting of a late M giant and a hot compact object which is similar to central stars of planetary nebulae. The presence of a wind from the M giant implies that Roche-lobe overflow is not a necessary condition for mass transfer. The complex structure of the circumstellar nebula is possibly the result of wind interactions. The ongoing spectral evolution of HM Sge after its recent outburst makes it an ideal candidate to test models of the symbiotic phenomenon. (Auth.)

  14. FIRST INVESTIGATION OF THE COMBINED IMPACT OF IONIZING RADIATION AND MOMENTUM WINDS FROM A MASSIVE STAR ON A SELF-GRAVITATING CORE

    International Nuclear Information System (INIS)

    Ngoumou, Judith; Hubber, David; Dale, James E.; Burkert, Andreas

    2015-01-01

    Massive stars shape the surrounding interstellar matter (ISM) by emitting ionizing photons and ejecting material through stellar winds. To study the impact of the momentum from the wind of a massive star on the surrounding neutral or ionized material, we implemented a new HEALPix-based momentum-conserving wind scheme in the smoothed particle hydrodynamics (SPH) code SEREN. A qualitative study of the impact of the feedback from an O7.5-like star on a self-gravitating sphere shows that on its own, the transfer of momentum from a wind onto cold surrounding gas has both a compressing and dispersing effect. It mostly affects gas at low and intermediate densities. When combined with a stellar source's ionizing ultraviolet (UV) radiation, we find the momentum-driven wind to have little direct effect on the gas. We conclude that during a massive star's main sequence, the UV ionizing radiation is the main feedback mechanism shaping and compressing the cold gas. Overall, the wind's effects on the dense gas dynamics and on the triggering of star formation are very modest. The structures formed in the ionization-only simulation and in the combined feedback simulation are remarkably similar. However, in the combined feedback case, different SPH particles end up being compressed. This indicates that the microphysics of gas mixing differ between the two feedback simulations and that the winds can contribute to the localized redistribution and reshuffling of gas

  15. ON THE LAUNCHING AND STRUCTURE OF RADIATIVELY DRIVEN WINDS IN WOLF–RAYET STARS

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Stephen; Matzner, Christopher D., E-mail: ro@astro.utoronto.ca [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada)

    2016-04-20

    Hydrostatic models of Wolf–Rayet (WR) stars typically contain low-density outer envelopes that inflate the stellar radii by a factor of several and are capped by a denser shell of gas. Inflated envelopes and density inversions are hallmarks of envelopes that become super-Eddington as they cross the iron-group opacity peak, but these features disappear when mass loss is sufficiently rapid. We re-examine the structures of steady, spherically symmetric wind solutions that cross a sonic point at high optical depth, identifying the physical mechanism through which the outflow affects the stellar structure, and provide an improved analytical estimate for the critical mass-loss rate above which extended structures are erased. Weak-flow solutions below this limit resemble hydrostatic stars even in supersonic zones; however, we infer that these fail to successfully launch optically thick winds. WR envelopes will therefore likely correspond to the strong, compact solutions. We also find that wind solutions with negligible gas pressure are stably stratified at and below the sonic point. This implies that convection is not the source of variability in WR stars, as has been suggested; however, acoustic instabilities provide an alternative explanation. Our solutions are limited to high optical depths by our neglect of Doppler enhancements to the opacity, and do not account for acoustic instabilities at high Eddington factors; yet, they do provide useful insights into WR stellar structures.

  16. O stars and Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Conti, P.S.; Underhill, A.B.; Jordan, S.; Thomas, R.

    1988-01-01

    Basic information is given about O and Wolf-Rayet stars indicating how these stars are defined and what their chief observable properties are. Part 2 of the volume discussed four related themes pertaining to the hottest and most luminous stars. Presented are: an observational overview of the spectroscopic classification and extrinsic properties of O and Wolf-Rayet stars; the intrinsic parameters of luminosity, effective temperature, mass, and composition of the stars, and a discussion of their viability; stellar wind properties; and the related issues concerning the efforts of stellar radiation and wind on the immediate interstellar environment are presented

  17. O stars and Wolf-Rayet stars

    Science.gov (United States)

    Conti, Peter S.; Underhill, Anne B.; Jordan, Stuart (Editor); Thomas, Richard (Editor)

    1988-01-01

    Basic information is given about O and Wolf-Rayet stars indicating how these stars are defined and what their chief observable properties are. Part 2 of the volume discussed four related themes pertaining to the hottest and most luminous stars. Presented are: an observational overview of the spectroscopic classification and extrinsic properties of O and Wolf-Rayet stars; the intrinsic parameters of luminosity, effective temperature, mass, and composition of the stars, and a discussion of their viability; stellar wind properties; and the related issues concerning the efforts of stellar radiation and wind on the immediate interstellar environment are presented.

  18. Discovery of a [WO] central star in the planetary nebula Th 2-A

    Science.gov (United States)

    Weidmann, W. A.; Gamen, R.; Díaz, R. J.; Niemela, V. S.

    2008-09-01

    Context: About 2500 planetary nebulae are known in our Galaxy but only 224 have central stars with reported spectral types in the Strasbourg-ESO Catalogue of Galactic Planetary Nebulae (Acker et al. 1992; Acker et al. 1996). Aims: We have started an observational program aiming to increase the number of PN central stars with spectral classification. Methods: By means of spectroscopy and high resolution imaging, we identify the position and true nature of the central star. We carried out low resolution spectroscopic observations at CASLEO telescope, complemented with medium resolution spectroscopy performed at Gemini South and Magellan telescopes. Results: As a first outcome of this survey, we present for the first time the spectra of the central star of the PN Th 2-A. These spectra show emission lines of ionized C and O, typical in Wolf-Rayet stars. Conclusions: We identify the position of that central star, which is not the brightest one of the visual central pair. We classify it as of type [WO 3]pec, which is consistent with the high excitation and dynamical age of the nebula. Based on data collected at (i) the Complejo Astronómico El Leoncito (CASLEO), which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina y Universidades Nacionales de La Plata, Córdoba y San Juan, Argentina; (ii) the 6.5 m Magellan Telescopes at Las Campanas Observatory, Chile; (iii) the 8 m Gemini South Telescope, Chile.

  19. SALT reveals the barium central star of the planetary nebula Hen 2-39

    Science.gov (United States)

    Miszalski, B.; Boffin, H. M. J.; Jones, D.; Karakas, A. I.; Köppen, J.; Tyndall, A. A.; Mohamed, S. S.; Rodríguez-Gil, P.; Santander-García, M.

    2013-12-01

    Classical barium stars are binary systems which consist of a late-type giant enriched in carbon and slow neutron capture (s-process) elements and an evolved white dwarf (WD) that is invisible at optical wavelengths. The youngest observed barium stars are surrounded by planetary nebulae (PNe), ejected soon after the wind accretion of polluted material when the WD was in its preceding asymptotic giant branch (AGB) phase. Such systems are rare but powerful laboratories for studying AGB nucleosynthesis as we can measure the chemical abundances of both the polluted star and the nebula ejected by the polluter. Here, we present evidence for a barium star in the PN Hen 2-39 (PN G283.8-04.2) as one of only a few known systems. The polluted giant is very similar to that found in WeBo 1 (PN G135.6+01.0). It is a cool (Teff = 4250 ± 150 K) giant enhanced in carbon ([C/H] = 0.42 ± 0.02 dex) and barium ([Ba/Fe] = 1.50 ± 0.25 dex). A spectral type of C-R3 C24 nominally places Hen 2-39 amongst the peculiar early R-type carbon stars; however, the barium enhancement and likely binary status mean that it is more likely to be a barium star with similar properties, rather than a true member of this class. An AGB star model of initial mass 1.8 M⊙ and a relatively large carbon pocket size can reproduce the observed abundances well, provided mass is transferred in a highly conservative way from the AGB star to the polluted star (e.g. wind Roche lobe overflow). It also shows signs of chromospheric activity and photometric variability with a possible rotation period of ˜5.5 d likely induced by wind accretion. The nebula exhibits an apparent ring morphology in keeping with the other PNe around barium stars (WeBo 1 and A 70) and shows a high degree of ionization implying the presence of an invisible hot pre-WD companion that will require confirmation with UV observations. In contrast to A 70, the nebular chemical abundance pattern is consistent with non-Type I PNe, in keeping with the

  20. Dusty disks around central stars of planetary nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Geoffrey C. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); De Marco, Orsola [Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia); Nordhaus, Jason [Center for Computational Relativity and Gravitation, and National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, NY 14623 (United States); Green, Joel [Department of Astronomy, The University of Texas, 1 University Station, C1400, Austin, TX 78712-0259 (United States); Rauch, Thomas; Werner, Klaus [Institute for Astronomy and Astrophysics, Kepler Center for Astro and Particle Physics, Eberhard Karls University, Sand 1, D-72076 Tübingen (Germany); Chu, You-Hua, E-mail: gclayton@fenway.phys.lsu.edu, E-mail: orsola@science.mq.edu.au, E-mail: nordhaus@astro.rit.edu, E-mail: joel@astro.as.utexas.edu, E-mail: rauch@astro.uni-tuebingen.de, E-mail: werner@astro.uni-tuebingen.de, E-mail: chu@astro.uiuc.edu [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States)

    2014-06-01

    Only a few percent of cool, old white dwarfs (WDs) have infrared excesses interpreted as originating in small hot disks due to the infall and destruction of single asteroids that come within the star's Roche limit. Infrared excesses at 24 μm were also found to derive from the immediate vicinity of younger, hot WDs, most of which are still central stars of planetary nebulae (CSPNe). The incidence of CSPNe with this excess is 18%. The Helix CSPN, with a 24 μm excess, has been suggested to have a disk formed from collisions of Kuiper belt-like objects (KBOs). In this paper, we have analyzed an additional sample of CSPNe to look for similar infrared excesses. These CSPNe are all members of the PG 1159 class and were chosen because their immediate progenitors are known to often have dusty environments consistent with large dusty disks. We find that, overall, PG 1159 stars do not present such disks more often than other CSPNe, although the statistics (five objects) are poor. We then consider the entire sample of CSPNe with infrared excesses and compare it to the infrared properties of old WDs, as well as cooler post-asymptotic giant branch (AGB) stars. We conclude with the suggestion that the infrared properties of CSPNe more plausibly derive from AGB-formed disks rather than disks formed via the collision of KBOs, although the latter scenario cannot be ruled out. Finally, there seems to be an association between CSPNe with a 24 μm excess and confirmed or possible binarity of the central star.

  1. Influence of X-ray radiation on the hot star wind ionization state and on the radiative force

    Czech Academy of Sciences Publication Activity Database

    Krtička, J.; Kubát, Jiří

    2016-01-01

    Roč. 58, č. 5 (2016), s. 710-718 ISSN 0273-1177 Institutional support: RVO:67985815 Keywords : Stars * winds * early-type stars Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.401, year: 2016

  2. Central Stars of Planetary Nebulae in the SMC

    Science.gov (United States)

    Bianchi, Luciana

    2004-01-01

    In FUSE cycle 3's program C056 we studied four Central Stars of Planetary Nebulae (CSPN) in the Small Magellanic Could. All FUSE observations have been successfully completed and have been reduced and analyzed. The observation of one object (SMP SMC 5) appeared to be off-target and no useful stellar flux was gathered. For another observation (SMP SMC 1) the voltage problems resulted in the loss of data from one of the SiC detectors, but we were still able to analyze the remaining data. The analysis and the results are summarized below. The FUSE data were reduced using the latest available version of the FUSE calibration pipeline (CALFUSE v2.4). The flux of these SMC post-AGB objects is at the threshold of FUSE S sensitivity, and the targets required many orbit-long exposures, each of which typically had low (target) count-rates. The background subtraction required special care during the reduction, and was done in a similar manner to our FUSE cycle 2 BOO1 objects. The resulting calibrated data from the different channels were compared in the overlapping regions for consistency. The final combined, extracted spectra of each target was then modeled to determine the stellar and nebular parameters. The FUSE spectra, combined with archival HST spectra, have been analyzed using stellar atmospheres codes such as TLUSTY and CMFGEN to derive photospheric and wind parameters of the central stars, and with ISM models to determine the amount and temperature of the surrounding atomic and molecular hydrogen. We have combined these results with those of our cycle 4 (D034) program (CSPN of the LMC) in Herald & Bianchi 2004a (paper in preparation, will be submitted to ApJ in June 2004). Two of the three SMC objects analyzed were found to have significantly lower stellar temperatures than had been predicted using nebular photoionization models, indicating either a hotter ionizing companion or the existence of strong shocks in the nebular environment. The analysis also revealed that

  3. The distribution of stars around the Milky Way's central black hole. I. Deep star counts

    Science.gov (United States)

    Gallego-Cano, E.; Schödel, R.; Dong, H.; Nogueras-Lara, F.; Gallego-Calvente, A. T.; Amaro-Seoane, P.; Baumgardt, H.

    2018-01-01

    Context. The existence of dynamically relaxed stellar density cusps in dense clusters around massive black holes is a long-standing prediction of stellar dynamics, but it has so far escaped unambiguous observational confirmation. Aims: In this paper we aim to revisit the problem of inferring the innermost structure of the Milky Way's nuclear star cluster via star counts, to clarify whether it displays a core or a cusp around the central black hole. Methods: We used judiciously selected adaptive optics assisted high angular resolution images obtained with the NACO instrument at the ESO VLT. Through image stacking and improved point spread function fitting we pushed the completeness limit about one magnitude deeper than in previous, comparable work. Crowding and extinction corrections were derived and applied to the surface density estimates. Known young, and therefore dynamically not relaxed stars, are excluded from the analysis. Contrary to previous work, we analyse the stellar density in well-defined magnitude ranges in order to be able to constrain stellar masses and ages. Results: We focus on giant stars, with observed magnitudes K = 12.5-16, and on stars with observed magnitudes K ≈ 18, which may have similar mean ages and masses than the former. The giants display a core-like surface density profile within a projected radius R ≤ 0.3 pc of the central black hole, in agreement with previous studies, but their 3D density distribution is not inconsistent with a shallow cusp if we take into account the extent of the entire cluster, beyond the radius of influence of the central black hole. The surface density of the fainter stars can be described well by a single power-law at R cluster structure. Conclusions: We conclude that the observed density of the faintest stars detectable with reasonable completeness at the Galactic centre, is consistent with the existence of a stellar cusp around the Milky Way's central black hole, Sagittarius A*. This cusp is well

  4. HUBBLE'S PANORAMIC PORTRAIT OF A VAST STAR-FORMING REGION

    Science.gov (United States)

    2002-01-01

    NASA's Hubble Space Telescope has snapped a panoramic portrait of a vast, sculpted landscape of gas and dust where thousands of stars are being born. This fertile star-forming region, called the 30 Doradus Nebula, has a sparkling stellar centerpiece: the most spectacular cluster of massive stars in our cosmic neighborhood of about 25 galaxies. The mosaic picture shows that ultraviolet radiation and high-speed material unleashed by the stars in the cluster, called R136 [the large blue blob left of center], are weaving a tapestry of creation and destruction, triggering the collapse of looming gas and dust clouds and forming pillar-like structures that are incubators for nascent stars. The photo offers an unprecedented, detailed view of the entire inner region of 30 Doradus, measuring 200 light-years wide by 150 light-years high. The nebula resides in the Large Magellanic Cloud (a satellite galaxy of the Milky Way), 170,000 light-years from Earth. Nebulas like 30 Doradus are the 'signposts' of recent star birth. High-energy ultraviolet radiation from the young, hot, massive stars in R136 causes the surrounding gaseous material to glow. Previous Hubble telescope observations showed that R136 contains several dozen of the most massive stars known, each about 100 times the mass of the Sun and about 10 times as hot. These stellar behemoths all formed at the same time about 2 million years ago. The stars in R136 are producing intense 'stellar winds' (streams of material traveling at several million miles an hour), which are wreaking havoc on the gas and dust in the surrounding neighborhood. The winds are pushing the gas away from the cluster and compressing the inner regions of the surrounding gas and dust clouds [the pinkish material]. The intense pressure is triggering the collapse of parts of the clouds, producing a new generation of star formation around the central cluster. The new stellar nursery is about 30 to 50 light-years from R136. Most of the stars in the

  5. Mining the HST "Advanced Spectral Library (ASTRAL)": The Evolution of Winds from non-coronal to hybrid giant stars

    Science.gov (United States)

    Nielsen, Krister E.; Carpenter, Ken G.; Kober, Gladys V.; Rau, Gioia

    2018-01-01

    The HST/STIS treasury program ASTRAL enables investigations of the character and dynamics of the wind and chromosphere of cool stars, using high quality spectral data. This paper shows how the wind features change with spectral class by comparing the non-coronal objects (Alpha Ori, Gamma Cru) with the hybrid stars (Gamma Dra, Beta Gem). In particular we study the intrinsic strength variation of the numerous FeII profiles observed in the near-ultraviolet HST spectrum that are sensitive to the wind opacity, turbulence and flow velocity. The FeII relative emission strength and wavelengths shifts between the absorption and emission components reflects the acceleration of the wind from the base of the chromosphere. We present the analysis of the outflowing wind characteristics when transitioning from the cool non-coronal objects toward the warmer objects with chromospheric emission from significantly hotter environments.

  6. Assessment of Wind Datasets for Estimating Offshore Wind Energy along the Central California Coast

    Science.gov (United States)

    Wang, Y. H.; Walter, R. K.; Ruttenberg, B.; White, C.

    2017-12-01

    Offshore renewable energy along the central California coastline has gained significant interest in recent years. We present a comprehensive analysis of near-surface wind datasets available in this region to facilitate future estimates of wind power generation potential. The analyses are based on local NDBC buoys, satellite-based measurements (QuickSCAT and CCMP V2.0), reanalysis products (NARR and MERRA), and a regional climate model (WRF). There are substantial differences in the diurnal signal during different months among the various products (i.e., satellite-based, reanalysis, and modeled) relative to the local buoys. Moreover, the datasets tended to underestimate wind speed under light wind conditions and overestimate under strong wind conditions. In addition to point-to-point comparisons against local buoys, the spatial variations of bias and error in both the reanalysis products and WRF model data in this region were compared against satellite-based measurements. NARR's bias and root-mean-square-error were generally small in the study domain and decreased with distance from coastlines. Although its smaller spatial resolution is likely to be insufficient to reveal local effects, the small bias and error in near-surface winds, as well as the availability of wind data at the proposed turbine hub heights, suggests that NARR is an ideal candidate for use in offshore wind energy production estimates along the central California coast. The framework utilized here could be applied in other site-specific regions where offshore renewable energy is being considered.

  7. Wind Climate Analyses for SRTC's Central Climatology Site

    International Nuclear Information System (INIS)

    Weber, A.H.

    2003-01-01

    This report was written to present climatological summaries of the wind data at the Central Climatology (CC) tower in a convenient format and to point out some features of the wind speed and direction that have not been widely appreciated in the past. Short-term (two-week) wind roses provide a means to demonstrate the temporal and spatial relationships that wind speed and direction undergo using a ten-year database from the CC tower. These relationships are best demonstrated by examining the figures provided in this report or looking at loops of computer-generated images provided by the authors

  8. Wolf-Rayet stars in the central region of the Milky Way

    Science.gov (United States)

    Hamann, Wolf-Rainer; Graefener, Goetz; Oskinova, Lidia; Zinnecker, Hans

    2004-09-01

    We propose to take mid-IR spectra of two Wolf-Rayet stars in the inner part of our Galaxy, within 30pc projected distance from the central Black Hole. Massive stars dominate the central galactic region by their mass-loss and ionizing radiation. A quantitative analysis of this stellar inventory is essential for understanding the energy, momentum and mass budget, for instance with respect to the feeding of the central black hole. Our group developed a highly advanced model code for the expanding atmospheres of WR stars. Recently we extended the spectrum synthesis to IR wavelengths. These models will be applied for the analysis of the Spitzer IRS data. The proposed mid-IR observations will provide a wide spectral range with many lines which are needed to determine the stellar parameters, such as stellar luminosity, effective temperature, mass-loss rate and chemical composition. Near-IR spectra of the program stars are available and will augment the analysis. The capability of our code to reproduce the observed mid-IR spectrum of a WN star has been demonstrated. The two targets we selected are sufficiently isolated, while the Galactic center cluster is too crowded for the size of Spitzer's spectrograph slit. As estimated from the K-band spectra, one of the stars (WR102ka) is of very late subtype (WN9), while the other star (WR102c) has the early subtype WN6. Hence they represent different stages in the evolutionary sequence of massive stars, the late-WN just having entered the Wolf-Rayet phase and the early WN being further evolved. We expect that the parameters of massive stars in the inner galaxy differ from the usual Galactic population. One reason is that higher metallicity should lead to stronger mass-loss, which affects the stellar evolution. The Spitzer IRS, with its high sensitivity, provides a unique opportunity to study representative members of the stellar population in the vicinity of the Galactic center.

  9. Design of the pancake-winding central solenoid coil

    International Nuclear Information System (INIS)

    Yoshida, Kiyoshi; Nishi, Masataka; Tsuji, Hirosi

    1995-01-01

    There was a debate over whether a pancake-winding or layer-winding technique is more appropriate for the Central Solenoid (CS) coil for ITER superconducting magnet. The layer-winding CS has the advantage of homogeneous winding supporting the TF centering force without weak joints, but has many difficulties during manufacturing and quality control. On other hand, the pancake-winding has the advantage of better quality control during manufacturing and module testing but has difficulties with joints and feeders, and pipes located in the load path of the bucking force from the toroidal field coils. The compact joints, reinforcement by preformed amour, sharp bending, and double seals are applied to the design of pancake-winding CS coil and demonstrated by hardware developments. The pancake-winding CS coil by using modified existing technology is compatible with the bucking concept of the ITER magnet system. (author)

  10. The origin of carbon revisited: winds of carbon-stars

    International Nuclear Information System (INIS)

    Mattsson, L

    2008-01-01

    Chemical evolution models, differing in the nucleosynthesis prescriptions (yields) for carbon, nitrogen and oxygen, have been computed for the Milky Way and Andromeda (NGC 224). All models fit the observed O/H gradients well and reproduce the main characteristics of the gas distributions, but they are also designed to do so. The N/O gradient for NGC 224 cannot be reproduced without ad hoc modifications to the yields and a similar result is obtained for the Milky Way N/O gradient, although in the latter case the slopes of the gradients obtained with unmodified yields are consistent with the observed gradient. For the C/O gradients (obtained from B stars) the results are inconclusive. The C/Fe, N/Fe, O/Fe versus Fe/H, as well as C/O versus O/H trends predicted by the models for the solar neighbourhood were compared with stellar abundances from the literature. For O/Fe versus Fe/H, all models fit the data, but for C/Fe, N/Fe versus Fe/H and C/O versus O/H, only modified sets of yields provide good fits. Since in the best-fit model, the yields were modified such that carbon should be primarily produced in low-mass stars, it is quite possible that in every environment where the peak of star formation happened a few Gyr back in time, the winds of carbon stars are responsible for most of the carbon enrichment, although models with a significant contribution from high-mass stars cannot be ruled out. In the solar neighbourhood, almost two-thirds of the carbon in the interstellar medium may come from carbon stars. Finally, the challenges met by stellar evolution and nucleosynthesis modelling due to this 'carbon star hypothesis' for the origin of carbon are discussed. It is suggested that a mass-loss prescription where the mass-loss rate depends on the carbon excess may act as a self-regulating mechanism for how much carbon a carbon star can deliver to the interstellar medium.

  11. Abell 48 - a rare WN-type central star of a planetary nebula

    Science.gov (United States)

    Todt, H.; Kniazev, A. Y.; Gvaramadze, V. V.; Hamann, W.-R.; Buckley, D.; Crause, L.; Crawford, S. M.; Gulbis, A. A. S.; Hettlage, C.; Hooper, E.; Husser, T.-O.; Kotze, P.; Loaring, N.; Nordsieck, K. H.; O'Donoghue, D.; Pickering, T.; Potter, S.; Romero-Colmenero, E.; Vaisanen, P.; Williams, T.; Wolf, M.

    2013-04-01

    A considerable fraction of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient. Almost all of these H-deficient central stars (CSs) display spectra with strong carbon and helium lines. Most of them exhibit emission-line spectra resembling those of massive WC stars. Therefore these stars are classed as CSPNe of spectral type [WC]. Recently, quantitative spectral analysis of two emission-line CSs, PB 8 and IC 4663, revealed that these stars do not belong to the [WC] class. Instead PB 8 has been classified as [WN/WC] type and IC 4663 as [WN] type. In this work we report the spectroscopic identification of another rare [WN] star, the CS of Abell 48. We performed a spectral analysis of Abell 48 with the Potsdam Wolf-Rayet (PoWR) models for expanding atmospheres. We find that the expanding atmosphere of Abell 48 is mainly composed of helium (85 per cent by mass), hydrogen (10 per cent) and nitrogen (5 per cent). The residual hydrogen and the enhanced nitrogen abundance make this object different from the other [WN] star IC 4663. We discuss the possible origin of this atmospheric composition.

  12. A-type central stars of planetary nebulae. 1. A radial-velocity study of the central stars of NGC2346 and NGC3132

    Energy Technology Data Exchange (ETDEWEB)

    Mendez, R H; Niemela, V S [Instituto de Astronomia y Fisica del Espacio, Succuoa, Buenos Aires (Argentina); Lee, P

    1978-08-01

    Radial-velocity measurements of the A-type central stars of NGC2346 and NGC3132 are presented. The first one is almost certainly a spectroscopic binary; no definite statement can be made about the second.

  13. Atomic Physics of Shocked Plasma in Winds of Massive Stars

    Science.gov (United States)

    Leutenegger, Maurice A.; Cohen, David H.; Owocki, Stanley P.

    2012-01-01

    High resolution diffraction grating spectra of X-ray emission from massive stars obtained with Chandra and XMM-Newton have revolutionized our understanding of their powerful, radiation-driven winds. Emission line shapes and line ratios provide diagnostics on a number of key wind parameters. Modeling of resolved emission line velocity profiles allows us to derive independent constraints on stellar mass-loss rates, leading to downward revisions of a factor of a few from previous measurements. Line ratios in He-like ions strongly constrain the spatial distribution of Xray emitting plasma, confirming the expectations of radiation hydrodynamic simulations that X-ray emission begins moderately close to the stellar surface and extends throughout the wind. Some outstanding questions remain, including the possibility of large optical depths in resonance lines, which is hinted at by differences in line shapes of resonance and intercombination lines from the same ion. Resonance scattering leads to nontrivial radiative transfer effects, and modeling it allows us to place constraints on shock size, density, and velocity structure

  14. The diversity of neutron stars: Nearby thermally emitting neutron stars and the compact central objects in supernova remnants

    Science.gov (United States)

    Kaplan, David L.

    Neutron stars are invaluable tools for exploring stellar death, the physics of ultra-dense matter, and the effects of extremely strong magnetic fields. The observed population of neutron stars is dominated by the > 1000 radio pulsars, but there are distinct sub-populations that, while fewer in number, can have significant impact on our understanding of the issues mentioned above. These populations are the nearby isolated neutron stars discovered by ROSAT, and the central compact objects in supernova remnants. The studies of both of these populations have been greatly accelerated in recent years through observations with the Chandra X-ray Observatory and the XMM-Newton telescope. First, we discuss radio, optical, and X-ray observations of the nearby neutron stars aimed at determining their relation to the Galactic neutron star population and at unraveling their complex physical processes by determining the basic astronomical parameters that define the population -- instances, ages, and magnetic fields -- the uncertainties in which limit any attempt to derive basic physical parameters for these objects. We conclude that these sources are 10^6 year-old cooling neutron stars with magnetic fields above 10^13 G. Second, we describe the hollow supernova remnant problem: why many of the supernova remnants in the Galaxy have no indication central neutron stars. We have undertaken an X-ray census of neutron stars in a volume-limited sample of Galactic supernova remnants, and from it conclude that either many supernovae do not produce neutron stars contrary to expectation, or that neutron stars can have a wide range in cooling behavior that makes many sources disappear from the X-ray sky.

  15. O Star Wind Mass-Loss Rates and Shock Physics from X-ray Line Profiles in Archival XMM RGS Data

    Science.gov (United States)

    Cohen, David

    O stars are characterized by their dense, supersonic stellar winds. These winds are the site of X-ray emission from shock-heated plasma. By analyzing high-resolution X-ray spectra of these O stars, we can learn about the wind-shock heating and X-ray production mechanism. But in addition, the X-rays can also be used to measure the mass-loss rate of the stellar wind, which is a key observational quantity whose value affects stellar evolution and energy, momentum, and mass input to the Galactic interstellar medium. We make this X-ray based mass-loss measurement by analyzing the profile shapes of the X-ray emission lines observed at high resolution with the Chandra and XMM-Newton grating spectrometers. One advantage of our method is that it is insensitive to small-scale clumping that affects density-squared diagnostics. We are applying this analysis technique to O stars in the Chandra archive, and are finding mass-loss rates lower than those traditionally assumed for these O stars, and in line with more recent independent determinations that do account for clumping. By extending this analysis to the XMM RGS data archive, we will make significant contributions to the understanding of both X-ray production in O stars and to addressing the issue of the actual mass-loss rates of O stars. The XMM RGS data archive provides several extensions and advantages over the smaller Chandra HETGS archive: (1) there are roughly twice as many O and early B stars in the XMM archive; (2) the longer wavelength response of the RGS provides access to diagnostically important lines of nitrogen and carbon; (3) the very long, multiple exposures of zeta Pup provide the opportunity to study this canonical O supergiant's X-ray spectrum in unprecedented detail, including looking at the time variability of X-ray line profiles. Our research team has developed a sophisticated empirical line profile model as well as a computational infrastructure for fitting the model to high-resolution X-ray spectra

  16. Evolutionary effects of mass loss in low-mass stars

    International Nuclear Information System (INIS)

    Renzini, A.

    1981-01-01

    The effects of mass loss on the evolution of low-mass stars (actual mass smaller than 1.4 solar masses) are reviewed. The case of globular cluster stars is discussed in some detail, and it is shown that evolutionary theory sets quite precise limits to the mass-loss rate in population II red giants. The effects of mass loss on the final evolutionary stages of stars producing white dwarfs is also discussed. In particular, the interaction of the wind from the hot central star with the surrounding planetary nebula is considered. Finally, the problem of the origin of hydrogen-deficient stars is briefly discussed. (Auth.)

  17. On the nature of the symbiotic star BF Cygni

    International Nuclear Information System (INIS)

    Mikolajewska, J.; Mikolajewski, M.; Kenyon, S.J.

    1989-01-01

    Optical and ultraviolet spectroscopy of the symbiotic binary BF Cyg obtained during 1979-1988 is discussed. This system consists of a low-mass M5 giant filling about 50 percent of its tidal volume and a hot, luminous compact object similar to the central star of a planetary nebula. The binary is embedded in an asymmetric nebula which includes a small, high-density region and an extended region of lower density. The larger nebula is formed by a slow wind ejected by the cool component and ionized by the hot star, while the more compact nebula is material expelled by the hot component in the form of a bipolar wind. The analysis indicates that disk accretion is essential to maintain the nuclear burning shell of the hot star. 84 refs

  18. Wind speed forecasting in the central California wind resource area

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, E.F. [Wind Economics & Technology, Inc., Martinez, CA (United States)

    1997-12-31

    A wind speed forecasting program was implemented in the summer seasons of 1985 - 87 in the Central California Wind Resource Area (WRA). The forecasting program is designed to use either meteorological observations from the WRA and local upper air observations or upper air observations alone to predict the daily average windspeed at two locations. Forecasts are made each morning at 6 AM and are valid for a 24 hour period. Ease of use is a hallmark of the program as the daily forecast can be made using data entered into a programmable HP calculator. The forecasting program was the first step in a process to examine whether the electrical energy output of an entire wind power generation facility or defined subsections of the same facility could be predicted up to 24 hours in advance. Analysis of the results of the summer season program using standard forecast verification techniques show the program has skill over persistence and climatology.

  19. HUBBLE SPACE TELESCOPE CONSTRAINTS ON THE WINDS AND ASTROSPHERES OF RED GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Brian E. [Naval Research Laboratory, Space Science Division, Washington, DC 20375 (United States); Müller, Hans-Reinhard [Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 (United States); Harper, Graham M., E-mail: brian.wood@nrl.navy.mil [CASA, University of Colorado, Boulder, CO 80309-0389 (United States)

    2016-10-01

    We report on an ultraviolet spectroscopic survey of red giants observed by the Hubble Space Telescope , focusing on spectra of the Mg ii h and k lines near 2800 Å in order to study stellar chromospheric emission, winds, and astrospheric absorption. We focus on spectral types between K2 III and M5 III, a spectral type range with stars that are noncoronal, but possessing strong, chromospheric winds. We find a very tight relation between Mg ii surface flux and photospheric temperature, supporting the notion that all K2-M5 III stars are emitting at a basal flux level. Wind velocities ( V {sub w} ) are generally found to decrease with spectral type, with V {sub w} decreasing from ∼40 km s{sup −1} at K2 III to ∼20 km s{sup −1} at M5 III. We find two new detections of astrospheric absorption, for σ Pup (K5 III) and γ Eri (M1 III). This absorption signature had previously only been detected for α Tau (K5 III). For the three astrospheric detections, the temperature of the wind after the termination shock (TS) correlates with V {sub w} , but is lower than predicted by the Rankine–Hugoniot shock jump conditions, consistent with the idea that red giant TSs are radiative shocks rather than simple hydrodynamic shocks. A full hydrodynamic simulation of the γ Eri astrosphere is provided to explore this further.

  20. 2D hydrodynamic simulations of super star cluster winds in a bimodal regime

    Czech Academy of Sciences Publication Activity Database

    Wünsch, Richard; Palouš, Jan; Tenorio-Tagle, G.; Silich, S.

    2009-01-01

    Roč. 324, 2-4 (2009), s. 219-223 ISSN 0004-640X R&D Projects: GA MŠk(CZ) LC06014 Institutional research plan: CEZ:AV0Z10030501 Keywords : stellar winds * star clusters * dynamics of ISM Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.404, year: 2009

  1. Central regions of LIRGs: rings, hidden starbursts, Supernovae and star clusters

    International Nuclear Information System (INIS)

    Väisänen, Petri; Randriamanakoto, Zara; Escala, Andres; Kankare, Erkki; Mattila, Seppo; Reunanen, Juha; Kotilainen, Jari; Rajpaul, Vinesh; Ryder, Stuart; Zijlstra, Albert

    2012-01-01

    We study star formation (SF) in very active environments, in luminous IR galaxies, which are often interacting. A variety of phenomena are detected, such as central starbursts, circumnuclear SF, obscured SNe tracing the history of recent SF, massive super star clusters, and sites of strong off-nuclear SF. All of these can be ultimately used to define the sequence of triggering and propagation of star-formation and interplay with nuclear activity in the lives of gas rich galaxy interactions and mergers. In this paper we present analysis of high-spatial resolution integral field spectroscopy of central regions of two interacting LIRGs. We detect a nuclear 3.3 μm PAH ring around the core of NGC 1614 with thermal-IR IFU observations. The ring's characteristics and relation to the strong star-forming ring detected in recombination lines are presented, as well as a scenario of an outward expanding starburst likely initiated with a (minor) companion detected within a tidal feature. We then present NIR IFU observations of IRAS 19115-2124, aka the Bird, which is an intriguing triple encounter. The third component is a minor one, but, nevertheless, is the source of 3/4 of the SFR of the whole system. Gas inflows and outflows are detected in their nuclei locations. Finally, we briefly report on our on-going NIR adaptive optics imaging survey of several dozen LIRGs. We have detected highly obscured core-collapse SNe in the central kpc, and discuss the statistics of 'missing SNe' due to dust extinction. We are also determining the characteristics of hundreds of super star clusters in and around the core regions of LIRGs, as a function of host-galaxy properties.

  2. Local protoplanetary disk ionisation by T Tauri star energetic particles

    Science.gov (United States)

    Fraschetti, F.; Drake, J.; Cohen, O.; Garraffo, C.

    2017-10-01

    The evolution of protoplanetary disks is believed to be driven largely by viscosity. The ionization of the disk that gives rise to viscosity is caused by X-rays from the central star or by energetic particles released by shock waves travelling into the circumstellar medium. We have performed test-particle numerical simulations of GeV-scale protons traversing a realistic magnetised wind of a young solar mass star with a superposed small-scale turbulence. The large-scale field is generated via an MHD model of a T Tauri wind, whereas the isotropic (Kolmogorov power spectrum) turbulent component is synthesised along the particles' trajectories. We have combined Chandra observations of T Tauri flares with solar flare scaling for describing the energetic particle spectrum. In contrast with previous models, we find that the disk ionization is dominated by X-rays except within narrow regions where the energetic particles are channelled onto the disk by the strongly tangled and turbulent field lines; the radial thickness of such regions broadens with the distance from the central star (5 stellar radii or more). In those regions, the disk ionization due to energetic particles can locally dominate the stellar X-rays, arguably, out to large distances (10, 100 AU) from the star.

  3. REVEALING THE ASYMMETRY OF THE WIND OF THE VARIABLE WOLF-RAYET STAR WR1 (HD 4004) THROUGH SPECTROPOLARIZATION

    Energy Technology Data Exchange (ETDEWEB)

    St-Louis, N., E-mail: stlouis@astro.umontreal.ca [Département de physique and Centre de Recherche en Astrophysique du Québec (CRAQ), Université de Montréal, C.P. 6128, Succ. Centre Ville, Montréal, QC H3C 3J7 (Canada)

    2013-11-01

    In this paper, high quality spectropolarimetric observations of the Wolf-Rayet (WR) star WR1 (HD 4004) obtained with ESPaDOnS at the Canada-France-Hawaii Telescope are presented. All major emission lines present in the spectrum show depolarization in the relative Stokes parameters Q/I and U/I. From the behavior of the amount of line depolarization as a function of line strength, the intrinsic continuum light polarization of WR1 is estimated to be P/I = 0.443% ± 0.028% with an angle of θ = –26.°2. Although such a level of polarization could in principle be caused by a wind flattened by fast rotation, the scenario in which it is a consequence of the presence of corotating interaction regions (CIRs) in the wind is preferred. This is supported by previous photometric and spectroscopic observations showing periodic variations with a period of 16.9 days. This is now the third WR star thought to exhibit CIRs in its wind that is found to have line depolarization. Previous authors have found a strong correlation between line depolarization and the presence of an ejected nebula, which they interpret as a sign that the star has relatively recently reached the WR phase since the nebula are thought to dissipate very fast. In cases where the presence of CIRs in the wind is favored to explain the depolarization across spectral lines, the above-mentioned correlation may indicate that those massive stars have only very recently transited from the previous evolutionary phase to the WR phase.

  4. Wind energy resource atlas. Volume 7. The south central region

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, R.L.; Graves, L.F.; Sprankle, A.C.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1981-03-01

    This atlas of the south central region combines seven collections of wind resource data: one for the region, and one for each of the six states (Arkansas, Kansas, Louisiana, Missouri, Oklahoma, and Texas). At the state level, features of the climate, topography, and wind resource are discussed in greater detail than that provided in the regional discussion, and the data locations on which the assessment is based are mapped. Variations, over several time scales, in the wind resource at selected stations in each state are shown on graphs of monthly average and interannual wind speed and power, and hourly average wind speed for each season. Other graphs present speed, direction, and duration frequencies of the wind at these locations.

  5. Numerical Simulations of Multiphase Winds and Fountains from Star-forming Galactic Disks. I. Solar Neighborhood TIGRESS Model

    Science.gov (United States)

    Kim, Chang-Goo; Ostriker, Eve C.

    2018-02-01

    Gas blown away from galactic disks by supernova (SN) feedback plays a key role in galaxy evolution. We investigate outflows utilizing the solar neighborhood model of our high-resolution, local galactic disk simulation suite, TIGRESS. In our numerical implementation, star formation and SN feedback are self-consistently treated and well resolved in the multiphase, turbulent, magnetized interstellar medium. Bursts of star formation produce spatially and temporally correlated SNe that drive strong outflows, consisting of hot (T> 5× {10}5 {{K}}) winds and warm (5050 {{K}} 1 {kpc} from the midplane has mass and energy fluxes nearly constant with d. The hot flow escapes our local Cartesian box barely affected by gravity, and is expected to accelerate up to terminal velocity of {v}{wind}∼ 350{--}500 {km} {{{s}}}-1. The mean mass and energy loading factors of the hot wind are 0.1 and 0.02, respectively. For warm gas, the mean outward mass flux through d=1 {kpc} is comparable to the mean star formation rate, but only a small fraction of this gas is at velocity > 50 {km} {{{s}}}-1. Thus, the warm outflows eventually fall back as inflows. The warm fountain flows are created by expanding hot superbubbles at d< 1 {kpc}; at larger d neither ram pressure acceleration nor cooling transfers significant momentum or energy flux from the hot wind to the warm outflow. The velocity distribution at launching near d∼ 1 {kpc} is a better representation of warm outflows than a single mass loading factor, potentially enabling development of subgrid models for warm galactic winds in arbitrary large-scale galactic potentials.

  6. Wind estimation around the shipwreck of Oriental Star based on field damage surveys and radar observations.

    Science.gov (United States)

    Meng, Zhiyong; Yao, Dan; Bai, Lanqiang; Zheng, Yongguang; Xue, Ming; Zhang, Xiaoling; Zhao, Kun; Tian, Fuyou; Wang, Mingjun

    Based on observational analyses and on-site ground and aerial damage surveys, this work aims to reveal the weather phenomena-especially the wind situation-when Oriental Star capsized in the Yangtze River on June 1, 2015. Results demonstrate that the cruise ship capsized when it encountered strong winds at speeds of at least 31 m s -1 near the apex of a bow echo embedded in a squall line. As suggested by the fallen trees within a 2-km radius around the wreck location, such strong winds were likely caused by microburst straight-line wind and/or embedded small vortices, rather than tornadoes.

  7. Wind estimation around the shipwreck of Oriental Star based on field damage surveys and radar observations

    OpenAIRE

    Meng, Zhiyong; Yao, Dan; Bai, Lanqiang; Zheng, Yongguang; Xue, Ming; Zhang, Xiaoling; Zhao, Kun; Tian, Fuyou; Wang, Mingjun

    2016-01-01

    Based on observational analyses and on-site ground and aerial damage surveys, this work aims to reveal the weather phenomena?especially the wind situation?when Oriental Star capsized in the Yangtze River on June 1, 2015. Results demonstrate that the cruise ship capsized when it encountered strong winds at speeds of at least 31?m?s?1 near the apex of a bow echo embedded in a squall line. As suggested by the fallen trees within a 2-km radius around the wreck location, such strong winds were lik...

  8. ENERGY STAR Certified Non-AHRI Central Air Conditioner Equipment and Air Source Heat Pump

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 5.0 ENERGY STAR Program Requirements for Air Source Heat Pump and Central Air Conditioner...

  9. Possible evidence for the driving of the winds of hot stars by Alfven waves

    International Nuclear Information System (INIS)

    Underhill, A.B.

    1983-01-01

    Ultraviolet spectra of the supergiants α Cam (09.5 Ia), HD 105056 (ON9.7 Iae), and 15 Sgr (09.7 Lab) are compared, and it is shown that the terminal outflow velocity ν/sub infinity/, of HD 105056 is one-half that of the other two stars even though HD 105056 has the highest effective temperature of the three stars. This anomaly, together with the fact that the observed ν/sub infinity/ values for early-type stars scatter about an empirical correlation between ν/sub infinity/ and log T/sub eff/ by an amount which is larger than the amount which is larger than the amount expected according to the observational errors in determining ν/sub infinity/ and log T/sub eff/, leads to the conclusion that an agent in addition to radiation. Alfven waves, is driving the winds of early-type stars

  10. Effects of Combined Stellar Feedback on Star Formation in Stellar Clusters

    Science.gov (United States)

    Wall, Joshua Edward; McMillan, Stephen; Pellegrino, Andrew; Mac Low, Mordecai; Klessen, Ralf; Portegies Zwart, Simon

    2018-01-01

    We present results of hybrid MHD+N-body simulations of star cluster formation and evolution including self consistent feedback from the stars in the form of radiation, winds, and supernovae from all stars more massive than 7 solar masses. The MHD is modeled with the adaptive mesh refinement code FLASH, while the N-body computations are done with a direct algorithm. Radiation is modeled using ray tracing along long characteristics in directions distributed using the HEALPIX algorithm, and causes ionization and momentum deposition, while winds and supernova conserve momentum and energy during injection. Stellar evolution is followed using power-law fits to evolution models in SeBa. We use a gravity bridge within the AMUSE framework to couple the N-body dynamics of the stars to the gas dynamics in FLASH. Feedback from the massive stars alters the structure of young clusters as gas ejection occurs. We diagnose this behavior by distinguishing between fractal distribution and central clustering using a Q parameter computed from the minimum spanning tree of each model cluster. Global effects of feedback in our simulations will also be discussed.

  11. A new class of galactic discrete gamma ray sources: Chaotic winds of massive stars

    Science.gov (United States)

    Chen, Wan; White, Richard L.

    1992-01-01

    We propose a new class of galactic discrete gamma-ray sources, the chaotic, high mass-loss-rate winds from luminous early-type stars. Early-type stellar winds are highly unstable due to intrinsic line-driven instabilities, and so are permeated by numerous strong shocks. These shocks can accelerate a small fraction of thermal electrons and ions to relativistic energies via the first-order Fermi mechanism. A power-law-like photon spectrum extending from keV to above 10 MeV energies is produced by inverse Compton scattering of the extremely abundant stellar UV photons by the relativistic electrons. In addition, a typical pi(sup 0)-decay gamma-ray spectrum is generated by proton-ion interactions in the densest part of the winds.

  12. Stellar C III Emissions as a New Classification Parameter for (WC) Central Stars

    Science.gov (United States)

    Feibelman, W. A.

    1999-01-01

    We report detection of stellar C III lambda 1909 emission in International Ultraviolet Explorer (IUE) echelle spectra of early-type [WC] planetary nebula central stars (CSPNs). Additionally, stellar C III emission at lambda 2297 is observed in early- and late-type [WC) CSPNS. Inclusion of these C III features for abundance determinations may resolve a conflict of underabundance of C/O for early type [WC2] - [WC4] CSPNS. A linear dependence on stellar C III lambda 2297 equivalent widths can be used to indicate a new classification of type [WCUV] central stars.

  13. IRAS 06562-0337, The Ironclad Nebula: A New Young Star Cluster

    International Nuclear Information System (INIS)

    Alves, D.R.; Hoard, D.W.; Rodgers, B.

    1998-01-01

    IRAS 06562-0337 has been the recent subject of a classic debate: is it a proto endash planetary nebula or a young stellar object? We present the first 2 μm image of IRAS 06562-0337, which reveals an extended diffuse nebula containing approximately 70 stars inside a 30 double-prime radius around a bright, possibly resolved, central object. The derived stellar luminosity function is consistent with that expected from a single coeval population, and the brightness of the nebulosity is consistent with the predicted flux of unresolved low-mass stars. The stars and nebulosity are spatially coincident with strong CO line emission. We therefore identify IRAS 06562-0337 as a new young star cluster embedded in its placental molecular cloud. The central object is likely a Herbig Be star, M ∼ 20 M circle-dot , which may be seen in reflection. We present medium-resolution high signal-to-noise ratio 1997 epoch optical spectra of the central object. Comparison with previously published spectra shows new evidence for time-variable permitted and forbidden line emission, including Si ii, Fe ii, [Fe ii], and [O i]. We suggest that the origin is a dynamic stellar wind in the extended stratified atmosphere of the massive central star in IRAS 06562-0337. copyright copyright 1998. The American Astronomical Society

  14. BINARY CENTRAL STARS OF PLANETARY NEBULAE DISCOVERED THROUGH PHOTOMETRIC VARIABILITY. II. MODELING THE CENTRAL STARS OF NGC 6026 AND NGC 6337

    International Nuclear Information System (INIS)

    Hillwig, Todd C.; Bond, Howard E.; Afsar, Melike; De Marco, Orsola

    2010-01-01

    Close-binary central stars of planetary nebulae (CSPNe) provide an opportunity to explore the evolution of PNe, their shaping, and the evolution of binary systems undergoing a common-envelope phase. Here, we present the results of time-resolved photometry of the binary central stars (CSs) of the PNe NGC 6026 and NGC 6337 as well as time-resolved spectroscopy of the CS of NGC 6026. The results of a period analysis give an orbital period of 0.528086(4) days for NGC 6026 and a photometric period of 0.1734742(5) days for NGC 6337. In the case of NGC 6337, it appears that the photometric period reflects the orbital period and that the variability is the result of the irradiated hemisphere of a cool companion. The inclination of the thin PN ring is nearly face-on. Our modeled inclination range for the close central binary includes nearly face-on alignments and provides evidence for a direct binary-nebular shaping connection. For NGC 6026, however, the radial-velocity curve shows that the orbital period is twice the photometric period. In this case, the photometric variability is due to an ellipsoidal effect in which the CS nearly fills its Roche lobe and the companion is most likely a hot white dwarf. NGC 6026 then is the third PN with a confirmed central binary where the companion is compact. Based on the data and modeling using a Wilson-Devinney code, we discuss the physical parameters of the two systems and how they relate to the known sample of close-binary CSs, which comprise 15%-20% of all PNe.

  15. A GMOS-N IFU study of the central H II region in the blue compact dwarf galaxy NGC 4449: kinematics, nebular metallicity and star formation

    Science.gov (United States)

    Kumari, Nimisha; James, Bethan L.; Irwin, Mike J.

    2017-10-01

    We use integral field spectroscopic (IFS) observations from the Gemini Multi-Object Spectrograph North (GMOS-N) to study the central H II region in a nearby blue compact dwarf (BCD) galaxy NGC 4449. The IFS data enable us to explore the variation of physical and chemical conditions of the star-forming region and the surrounding gas on spatial scales as small as 5.5 pc. Our kinematical analysis shows possible signatures of shock ionization and shell structures in the surroundings of the star-forming region. The metallicity maps of the region, created using direct Te and indirect strong line methods (R23, O3N2 and N2), do not show any chemical variation. From the integrated spectrum of the central H II region, we find a metallicity of 12 + log(O/H) = 7.88 ± 0.14 ({˜ }0.15^{+0.06}_{-0.04} Z⊙) using the direct method. Comparing the central H II region metallicity derived here with those of H II regions throughout this galaxy from previous studies, we find evidence of increasing metallicity with distance from the central nucleus. Such chemical inhomogeneities can be due to several mechanisms, including gas loss via supernova blowout, galactic winds or metal-poor gas accretion. However, we find that the localized area of decreased metallicity aligns spatially with the peak of star-forming activity in the galaxy, suggesting that gas accretion may be at play here. Spatially resolved IFS data for the entire galaxy are required to confirm the metallicity inhomogeneity found in this study and determine its possible cause.

  16. A new mechanical stellar wind feedback model for the Rosette Nebula

    Science.gov (United States)

    Wareing, C. J.; Pittard, J. M.; Wright, N. J.; Falle, S. A. E. G.

    2018-04-01

    The famous Rosette Nebula has an evacuated central cavity formed from the stellar winds ejected from the 2-6 Myr old codistant and comoving central star cluster NGC 2244. However, with upper age estimates of less than 110 000 yr, the central cavity is too young compared to NGC 2244 and existing models do not reproduce its properties. A new proper motion study herein using Gaia data reveals the ejection of the most massive star in the Rosette, HD 46223, from NGC 2244 occurred 1.73 (+0.34, -0.25) Myr (1σ uncertainty) in the past. Assuming this ejection was at the birth of the most massive stars in NGC 2244, including the dominant centrally positioned HD 46150, the age is set for the famous ionized region at more than 10 times that derived for the cavity. Here, we are able to reproduce the structure of the Rosette Nebula, through simulation of mechanical stellar feedback from a 40 M⊙ star in a thin sheet-like molecular cloud. We form the 135 000 M⊙ cloud from thermally unstable diffuse interstellar medium (ISM) under the influence of a realistic background magnetic field with thermal/magnetic pressure equilibrium. Properties derived from a snapshot of the simulation at 1.5 Myr, including cavity size, stellar age, magnetic field, and resulting inclination to the line of sight, match those derived from observations. An elegant explanation is thus provided for the stark contrast in age estimates based on realistic diffuse ISM properties, molecular cloud formation and stellar wind feedback.

  17. Simulation of an offshore wind farm using fluid power for centralized electricity generation

    International Nuclear Information System (INIS)

    Jarquin-Laguna, A

    2016-01-01

    A centralized approach for electricity generation within a wind farm is explored through the use of fluid power technology. This concept considers a new way of generation, collection and transmission of wind energy inside a wind farm, in which electrical conversion does not occur during any intermediate conversion step before the energy has reached the offshore central platform. A numerical model was developed to capture the relevant physics from the dynamic interaction between different turbines coupled to a common hydraulic network and controller. This paper presents two examples of the time-domain simulation results for an hypothetical hydraulic wind farm subject to turbulent wind conditions. The performance and operational parameters of individual turbines are compared with those of a reference wind farm with conventional technology turbines, using the same wind farm layout and environmental conditions. For the presented case study, results indicate that the individual wind turbines are able to operate within operational limits with the current pressure control concept. Despite the stochastic turbulent wind input and wake effects, the hydraulic wind farm is able to produce electricity with reasonable performance in both below and above rated conditions. (paper)

  18. Simulation of an offshore wind farm using fluid power for centralized electricity generation

    Directory of Open Access Journals (Sweden)

    A. Jarquin Laguna

    2017-07-01

    Full Text Available A centralized approach for electricity generation within a wind farm is explored through the use of fluid power technology. This concept considers a new way of generation, collection and transmission of wind energy inside a wind farm, in which electrical conversion does not occur during any intermediate conversion step before the energy has reached the offshore central platform. A numerical model was developed to capture the relevant physics from the dynamic interaction between different turbines coupled to a common hydraulic network and controller. This paper presents a few examples of the time domain simulation results for a hypothetical hydraulic wind farm subject to turbulent wind conditions. The performance and operational parameters of individual turbines are compared with those of a reference wind farm based on conventional wind turbine generator technology using the same wind farm layout and environmental conditions. For the presented case studies, results indicate that the individual wind turbines are able to operate within operational limits. Despite the stochastic turbulent wind conditions and wake effects, the hydraulic wind farm is able to produce electricity with reasonable performance in both below and above rated conditions. With the current pressure control concept, a continuous operation of the hydraulic wind farm is shown including the full stop of one or more turbines.

  19. Fluid power network for centralized electricity generation in offshore wind farms

    NARCIS (Netherlands)

    Jarquin-Laguna, A.

    2014-01-01

    An innovative and completely different wind-energy conversion system is studied where a centralized electricity generation within a wind farm is proposed by means of a hydraulic network. This paper presents the dynamic interaction of two turbines when they are coupled to the same hydraulic network.

  20. Extragalactic gamma-ray background from AGN winds and star-forming galaxies in cosmological galaxy-formation models

    Science.gov (United States)

    Lamastra, A.; Menci, N.; Fiore, F.; Antonelli, L. A.; Colafrancesco, S.; Guetta, D.; Stamerra, A.

    2017-10-01

    We derive the contribution to the extragalactic gamma-ray background (EGB) from active galactic nuclei (AGN) winds and star-forming galaxies by including a physical model for the γ-ray emission produced by relativistic protons accelerated by AGN-driven and supernova-driven shocks into a state-of-the-art semi-analytic model of galaxy formation. This is based on galaxy interactions as triggers of AGN accretion and starburst activity and on expanding blast waves as the mechanism to communicate outwards the energy injected into the interstellar medium by the active nucleus. We compare the model predictions with the latest measurement of the EGB spectrum performed by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) in the range between 100 MeV and 820 GeV. We find that AGN winds can provide 35 ± 15% of the observed EGB in the energy interval Eγ = 0.1-1 GeV, for 73 ± 15% at Eγ = 1-10 GeV, and for 60 ± 20% at Eγ ≳10 GeV. The AGN wind contribution to the EGB is predicted to be larger by a factor of 3-5 than that provided by star-forming galaxies (quiescent plus starburst) in the hierarchical clustering scenario. The cumulative γ-ray emission from AGN winds and blazars can account for the amplitude and spectral shape of the EGB, assuming the standard acceleration theory, and AGN wind parameters that agree with observations. We also compare the model prediction for the cumulative neutrino background from AGN winds with the most recent IceCube data. We find that for AGN winds with accelerated proton spectral index p = 2.2-2.3, and taking into account internal absorption of γ-rays, the Fermi-LAT and IceCube data could be reproduced simultaneously.

  1. 77 FR 43586 - Southern Star Central Gas Pipeline, Inc.; Notice of Intent To Prepare an Environmental Assessment...

    Science.gov (United States)

    2012-07-25

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP12-479-000] Southern Star... abandonment of facilities by Southern Star Central Gas Pipeline, Inc. (Southern Star) in Logan and Oklahoma... concern. Southern Star provided landowners with a fact sheet prepared by the FERC entitled ``An Interstate...

  2. A Survey for hot Central Stars of Planetary Nebulae I. Methods and First Results

    OpenAIRE

    Kanarek, Graham C.; Shara, Michael M.; Faherty, Jacqueline K.; Zurek, David; Moffat, Anthony F. J.

    2015-01-01

    We present the results of initial spectrographic followup with the Very Large Telescope (UT3, Melipal) for $K_s \\ge 14$ Galactic plane CIV emission-line candidates in the near-infrared (NIR). These 7 faint stars all display prominent HeI and CIV emission lines characteristic of a carbon-rich Wolf-Rayet star. They have NIR colours which are much too blue to be those of distant, classical WR stars. The magnitudes and colours are compatible with those expected for central stars of planetary nebu...

  3. Bipolar molecular outflows: T Tauri stars and Herbig-Haro objects

    International Nuclear Information System (INIS)

    Choe, S.U.

    1984-01-01

    The relations of Herbig-Haro objects to the observed bipolar molecular outflows with T Tauri stars are studied. An evaporation disk model is proposed to obtain the shape of the disk where gas evaporates and to explain the collimation of the central T Tauri wind. In this case the collimation angle is about 10 0 . The collimated T Tauri wind making a form of de Laval nozzle viscously interacts with the surrounding medium. This interaction enhances the second collimation (about 40 0 ) of the resulting flow, mixing stellar and disk winds with external molecular gas. These viscous outflows are observed in the bipolar molecular outflow of the T Tauri stars. It is also proposed in the model that a Kelvin-Helmholtz instability in the throat of the de Laval nozzle produces clumps, which can be accelerated by the ram pressure of the collimated wind up to the wind speed. The clumps eventually pass through a shock in the outlfow, which results from its encounter with the ambient cloud. The clumps are then moving faster than the surrounding flow. These clumps are identified with Herbig-Haro objects

  4. Active Power Dispatch Method for a Wind Farm Central Controller Considering Wake Effect

    DEFF Research Database (Denmark)

    Tian, Jie; Su, Chi; N. Soltani, Mohsen

    2014-01-01

    With the increasing integration of the wind power into the power system, wind farm are required to be controlled as a single unit and have all the same control tasks as conventional power plants. The wind farm central controller receives control orders from Transmission System Operator (TSO), the...... Optimization (PSO) is used to obtain the optimal wind power for each wind turbine. A case study is carried out. The available wind power of the wind farm was compared between the traditional dispatch method and the proposed dispatch method with the consideration of the wake effect....

  5. DISCOVERY OF TWIN WOLF-RAYET STARS POWERING DOUBLE RING NEBULAE

    International Nuclear Information System (INIS)

    Mauerhan, Jon C.; Wachter, Stefanie; Van Dyk, Schuyler D.; Hoard, D. W.; Morris, Patrick W.

    2010-01-01

    We have spectroscopically discovered a pair of twin, nitrogen-type, hydrogen-rich, Wolf-Rayet stars (WN8-9h) that are both surrounded by circular, mid-infrared-bright nebulae detected with the Spitzer Space Telescope and MIPS instrument. The emission is probably dominated by a thermal continuum from cool dust, but also may contain contributions from atomic line emission. There is no counterpart at shorter Spitzer/IRAC wavelengths, indicating a lack of emission from warm dust. The two nebulae are probably wind-swept stellar ejecta released by the central stars during a prior evolutionary phase. The nebulae partially overlap on the sky and we speculate on the possibility that they are in the early stage of a collision. Two other evolved massive stars have also been identified within the area subtended by the nebulae, including a carbon-type Wolf-Rayet star (WC8) and an O7-8 III-I star, the latter of which appears to be embedded in one of the larger WN8-9h nebulae. The derived distances to these stars imply that they are coeval members of an association lying 4.9 ± 1.2 kpc from Earth, near the intersection of the Galaxy's Long Bar and the Scutum-Centaurus spiral arm. This new association represents an unprecedented display of complex interactions between multiple stellar winds, outflows, and the radiation fields of evolved massive stars.

  6. A COMPANION AS THE CAUSE OF LATITUDE-DEPENDENT EFFECTS IN THE WIND OF ETA CARINAE

    International Nuclear Information System (INIS)

    Groh, J. H.; Madura, T. I.; Weigelt, G.; Hillier, D. J.; Kruip, C. J. H.

    2012-01-01

    We analyze spatially resolved spectroscopic observations of the Eta Carinae binary system obtained with the Hubble Space Telescope/STIS. Eta Car is enshrouded by the dusty Homunculus nebula, which scatters light emitted by the central binary and provides a unique opportunity to study a massive binary system from different vantage points. We investigate the latitudinal and azimuthal dependence of Hα line profiles caused by the presence of a wind-wind collision (WWC) cavity created by the companion star. Using two-dimensional radiative transfer models, we find that the wind cavity can qualitatively explain the observed line profiles around apastron. Regions of the Homunculus which scatter light that propagated through the WWC cavity show weaker or no Hα absorption. Regions scattering light that propagated through a significant portion of the primary wind show stronger P Cygni absorption. Our models overestimate the Hα absorption formed in the primary wind, which we attribute to photoionization by the companion, not presently included in the models. We can qualitatively explain the latitudinal changes that occur during periastron, shedding light on the nature of Eta Car's spectroscopic events. Our models support the idea that during the brief period of time around periastron when the primary wind flows unimpeded toward the observer, Hα absorption occurs in directions toward the central object and Homunculus SE pole, but not toward equatorial regions close to the Weigelt blobs. We suggest that observed latitudinal and azimuthal variations are dominated by the companion star via the WWC cavity, rather than by rapid rotation of the primary star.

  7. 76 FR 41788 - Southern Star Central Gas Pipeline, Inc.; Notice of Intent To Prepare an Environmental Assessment...

    Science.gov (United States)

    2011-07-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [ Docket No. CP11-481-000] Southern Star... Southern Star Central Gas Pipeline, Inc. (Southern Star) in Rice County, Kansas. This EA will be used by... Facility On My Land? What Do I Need To Know?'' was attached to the project notice Southern Star provided to...

  8. MASSIVE INFANT STARS ROCK THEIR CRADLE

    Science.gov (United States)

    2002-01-01

    that are responsible for lighting up this cloud of gas. The apparently innocuous-looking star at the very center of the nebula, just below the brightest region, is actually about 30 times more massive and almost 200,000 times brighter than our Sun. The intense light and powerful stellar 'winds' from this ultra-bright star have cleared away the surrounding gas to form a large cavity. The bubble is approximately 25 light-years in diameter - about the same size as the famous star-forming Orion Nebula. The Orion Nebula is sculpted by intense radiation from newly born stars in the same way as N83B. Astronomers estimate that the spherical void in N83B must have been carved out of the nebula very recently - in astronomical terms - maybe as little as 30,000 years ago. The hottest star in N83B is 45 times more massive than the Sun and is embedded in the brightest region in the nebula. This bright region, situated just above the center, is only about 2 light-years across. The region's small size and its intense glow are telltale signs of a very young, massive star. This star is the youngest newcomer to this part of the Large Magellanic Cloud. The Hubble image shows a bright arc structure just below the luminous star. This impressive ridge may have been created in the glowing gas by the hot star's powerful wind. Measurements of the age of this star and neighboring stars in the nebula show that they are younger than the nebula's central star. Their formation may have been 'triggered' by the violent wind from the central star. This 'chain-reaction' of stellar births seems to be common in the Universe. About 20 young and luminous stars have been identified in the region, but it may well be that many more massive stars remain undetected in other areas of the Large Magellanic Cloud, hidden by dust in small clusters like N83B. To the right of the glowing N83B is a much larger diffuse nebula, known as DEM22d, which is partly obscured by an extended lane of dust and gas. This image is

  9. The two young star disks in the central parsec of the Galaxy: properties, dynamics, and formation

    International Nuclear Information System (INIS)

    Paumard, T; Genzel, R; Martins, F; Nayakshin, S; Beloborodov, A M; Levin, Y; Trippe, S; Eisenhauer, F; Ott, T; Gillessen, S; Abuter, R; Cuadra, J; Alexander, T; Sternberg, A

    2006-01-01

    We report the definite spectroscopic identification of ≅ 40 OB supergiants, giants and main sequence stars in the central parsec of the Galaxy. Detection of their absorption lines have become possible with the high spatial and spectral resolution and sensitivity of the adaptive optics integral Held spectrometer SPIFFI/SINFONI on the ESO VLT. Several of these OB stars appear to be helium and nitrogen rich. Almost all of the ≅80 massive stars now known in the central parsec (central arcsecond excluded) reside in one of two somewhat thick ((|/R) ≅ 0.14) rotating disks. These stellar disks have fairly sharp inner edges (R ≅ 1'') and surface density profiles that scale as R -2 . We do not detect any OB stars outside the central 0.5 pc. The majority of the stars in the clockwise system appear to be on almost circular orbits, whereas most of those in the 'counter-clockwise' disk appear to be on eccentric orbits. Based on its stellar surface density distribution and dynamics we propose that IRS 13E is an extremely dense cluster (ρ core ∼> 3 x 10 8 M o-dot pc -3 ), which has formed in the counter-clockwise disk. The stellar contents of both systems are remarkably similar, indicating a common age of ≅ 6±2 Myr. The K-band luminosity function of the massive stars suggests a top-heavy mass function and limits the total stellar mass contained in both disks to ≅ 1.5 x 10 4 M o-dot . Our data strongly favor in situ star formation from dense gas accretion disks for the two stellar disks. This conclusion is very clear for the clockwise disk and highly plausible for the counter-clockwise system

  10. Evolution of massive stars

    International Nuclear Information System (INIS)

    Loore, C. de

    1984-01-01

    The evolution of stars with masses larger than 15 sun masses is reviewed. These stars have large convective cores and lose a substantial fraction of their matter by stellar wind. The treatment of convection and the parameterisation of the stellar wind mass loss are analysed within the context of existing disagreements between theory and observation. The evolution of massive close binaries and the origin of Wolf-Rayet Stars and X-ray binaries is also sketched. (author)

  11. NEW X-RAY DETECTIONS OF WNL STARS

    International Nuclear Information System (INIS)

    Skinner, Stephen L.; Zhekov, Svetozar A.; Güdel, Manuel; Schmutz, Werner; Sokal, Kimberly R.

    2012-01-01

    Previous studies have demonstrated that putatively single nitrogen-type Wolf-Rayet stars (WN stars) without known companions are X-ray sources. However, almost all WN star X-ray detections so far have been of earlier WN2-WN6 spectral subtypes. Later WN7-WN9 subtypes (also known as WNL stars) have proved more difficult to detect, an important exception being WR 79a (WN9ha). We present here new X-ray detections of the WNL stars WR 16 (WN8h) and WR 78 (WN7h). These new results, when combined with previous detections, demonstrate that X-ray emission is present in WN stars across the full range of spectral types, including later WNL stars. The two WN8 stars observed to date (WR 16 and WR 40) show unusually low X-ray luminosities (L x ) compared to other WN stars, and it is noteworthy that they also have the lowest terminal wind speeds (v ∞ ). Existing X-ray detections of about a dozen WN stars reveal a trend of increasing L x with wind luminosity L wind = (1/2)M-dot v 2 ∞ , suggesting that wind kinetic energy may play a key role in establishing X-ray luminosity levels in WN stars.

  12. NEW X-RAY DETECTIONS OF WNL STARS

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Stephen L. [Center for Astrophysics and Space Astronomy (CASA), University of Colorado, Boulder, CO 80309-0389 (United States); Zhekov, Svetozar A. [Space and Solar-Terrestrial Research Institute, Moskovska str. 6, Sofia-1000 (Bulgaria); Guedel, Manuel [Department of Astronomy, University of Vienna, Tuerkenschanzstr. 17, A-1180 Vienna (Austria); Schmutz, Werner [Physikalisch-Meteorologisches Observatorium Davos (PMOD), Dorfstrasse 33, CH-7260 Davos Dorf (Switzerland); Sokal, Kimberly R., E-mail: Stephen.Skinner@colorado.edu [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States)

    2012-05-15

    Previous studies have demonstrated that putatively single nitrogen-type Wolf-Rayet stars (WN stars) without known companions are X-ray sources. However, almost all WN star X-ray detections so far have been of earlier WN2-WN6 spectral subtypes. Later WN7-WN9 subtypes (also known as WNL stars) have proved more difficult to detect, an important exception being WR 79a (WN9ha). We present here new X-ray detections of the WNL stars WR 16 (WN8h) and WR 78 (WN7h). These new results, when combined with previous detections, demonstrate that X-ray emission is present in WN stars across the full range of spectral types, including later WNL stars. The two WN8 stars observed to date (WR 16 and WR 40) show unusually low X-ray luminosities (L{sub x} ) compared to other WN stars, and it is noteworthy that they also have the lowest terminal wind speeds (v{sub {infinity}}). Existing X-ray detections of about a dozen WN stars reveal a trend of increasing L{sub x} with wind luminosity L{sub wind} = (1/2)M-dot v{sup 2}{sub {infinity}}, suggesting that wind kinetic energy may play a key role in establishing X-ray luminosity levels in WN stars.

  13. Atmospheric NLTE models for the spectroscopic analysis of blue stars with winds. III. X-ray emission from wind-embedded shocks

    Science.gov (United States)

    Carneiro, L. P.; Puls, J.; Sundqvist, J. O.; Hoffmann, T. L.

    2016-05-01

    Context. Extreme ultraviolet (EUV) and X-ray radiation emitted from wind-embedded shocks in hot, massive stars can affect the ionization balance in their outer atmospheres and can be the mechanism responsible for producing highly ionized atomic species detected in stellar wind UV spectra. Aims: To allow for these processes in the context of spectral analysis, we have implemented the emission from wind-embedded shocks and related physics into our unified, NLTE model atmosphere/spectrum synthesis code FASTWIND. Methods: The shock structure and corresponding emission is calculated as a function of user-supplied parameters (volume filling factor, radial stratification of shock strength, and radial onset of emission). We account for a temperature and density stratification inside the postshock cooling zones, calculated for radiative and adiabatic cooling in the inner and outer wind, respectively. The high-energy absorption of the cool wind is considered by adding important K-shell opacities, and corresponding Auger ionization rates have been included in the NLTE network. To test our implementation and to check the resulting effects, we calculated a comprehensive model grid with a variety of X-ray emission parameters. Results: We tested and verified our implementation carefully against corresponding results from various alternative model atmosphere codes, and studied the effects from shock emission for important ions from He, C, N, O, Si, and P. Surprisingly, dielectronic recombination turned out to play an essential role for the ionization balance of O iv/O v (particularly in dwarfs with Teff~ 45 000 K). Finally, we investigated the frequency dependence and radial behavior of the mass absorption coefficient, κν(r), which is important in the context of X-ray line formation in massive star winds. Conclusions: In almost all of the cases considered, direct ionization is of major influence because of the enhanced EUV radiation field, and Auger ionization only affects N vi

  14. Revealing evolved massive stars with Spitzer

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Fabrika, S.

    2010-06-01

    Massive evolved stars lose a large fraction of their mass via copious stellar wind or instant outbursts. During certain evolutionary phases, they can be identified by the presence of their circumstellar nebulae. In this paper, we present the results of a search for compact nebulae (reminiscent of circumstellar nebulae around evolved massive stars) using archival 24-μm data obtained with the Multiband Imaging Photometer for Spitzer. We have discovered 115 nebulae, most of which bear a striking resemblance to the circumstellar nebulae associated with luminous blue variables (LBVs) and late WN-type (WNL) Wolf-Rayet (WR) stars in the Milky Way and the Large Magellanic Cloud (LMC). We interpret this similarity as an indication that the central stars of detected nebulae are either LBVs or related evolved massive stars. Our interpretation is supported by follow-up spectroscopy of two dozen of these central stars, most of which turn out to be either candidate LBVs (cLBVs), blue supergiants or WNL stars. We expect that the forthcoming spectroscopy of the remaining objects from our list, accompanied by the spectrophotometric monitoring of the already discovered cLBVs, will further increase the known population of Galactic LBVs. This, in turn, will have profound consequences for better understanding the LBV phenomenon and its role in the transition between hydrogen-burning O stars and helium-burning WR stars. We also report on the detection of an arc-like structure attached to the cLBV HD 326823 and an arc associated with the LBV R99 (HD 269445) in the LMC. Partially based on observations collected at the German-Spanish Astronomical Centre, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC). E-mail: vgvaram@mx.iki.rssi.ru (VVG); akniazev@saao.ac.za (AYK); fabrika@sao.ru (SF)

  15. NuSTAR View of the Black Hole Wind in the Galaxy Merger IRAS F11119+3257

    Science.gov (United States)

    Tombesi, F.; Veilleux, S.; Meléndez, M.; Lohfink, A.; Reeves, J. N.; Piconcelli, E.; Fiore, F.; Feruglio, C.

    2017-12-01

    Galactic winds driven by active galactic nuclei (AGNs) have been invoked to play a fundamental role in the co-evolution between supermassive black holes and their host galaxies. Finding observational evidence of such feedback mechanisms is of crucial importance and it requires a multi-wavelength approach in order to compare winds at different scales and phases. In Tombesi et al., we reported the detection of a powerful ultra-fast outflow (UFO) in the Suzaku X-ray spectrum of the ultra-luminous infrared galaxy IRAS F11119+3257. The comparison with a galaxy-scale OH molecular outflow observed with Herschel in the same source supported the energy-conserving scenario for AGN feedback. The main objective of this work is to perform an independent check of the Suzaku results using the higher sensitivity and wider X-ray continuum coverage of NuSTAR. We clearly detect a highly ionized Fe K UFO in the 100 ks NuSTAR spectrum with parameters N H = (3.2 ± 1.5) × 1024 cm-2, log ξ = {4.0}-0.3+1.2 erg s-1 cm, and {v}{out}={0.253}-0.118+0.061c. The launching radius is likely at a distance of r ≥ 16r s from the black hole. The mass outflow rate is in the range of {\\dot{M}}{out} ≃ 0.5-2 M ⊙ yr-1. The UFO momentum rate and power are {\\dot{P}}{out} ≃ 0.5-2 L AGN/c and {\\dot{E}}{out} ≃ 7%-27% L AGN, respectively. The UFO parameters are consistent between the 2013 Suzaku and the 2015 NuSTAR observations. Only the column density is found to be variable, possibly suggesting a clumpy wind. The comparison with the energetics of molecular outflows estimated in infrared and millimeter wavelengths support a connection between the nuclear and galaxy-scale winds in luminous AGNs.

  16. The solar wind in time: a change in the behaviour of older winds?

    Science.gov (United States)

    O'Fionnagáin, D.; Vidotto, A. A.

    2018-05-01

    In this paper, we model the wind of solar analogues at different ages to investigate the evolution of the solar wind. Recently, it has been suggested that winds of solar type stars might undergo a change in properties at old ages, whereby stars older than the Sun would be less efficient in carrying away angular momentum than what was traditionally believed. Adding to this, recent observations suggest that old solar-type stars show a break in coronal properties, with a steeper decay in X-ray luminosities and temperatures at older ages. We use these X-ray observations to constrain the thermal acceleration of winds of solar analogues. Our sample is based on the stars from the `Sun in Time' project with ages between 120 and 7000 Myr. The break in X-ray properties leads to a break in wind mass-loss rates (\\dot{M}) at roughly 2 Gyr, with \\dot{M} (t 2 Gyr) ∝ t-3.9. This steep decay in \\dot{M} at older ages could be the reason why older stars are less efficient at carrying away angular momentum, which would explain the anomalously rapid rotation observed in older stars. We also show that none of the stars in our sample would have winds dense enough to produce thermal emission above 1-2 GHz, explaining why their radio emissions have not yet been detected. Combining our models with dynamo evolution models for the magnetic field of the Earth, we find that, at early ages (≈100 Myr), our Earth had a magnetosphere that was three or more times smaller than its current size.

  17. WIND-ACCRETION DISKS IN WIDE BINARIES, SECOND-GENERATION PROTOPLANETARY DISKS, AND ACCRETION ONTO WHITE DWARFS

    International Nuclear Information System (INIS)

    Perets, Hagai B.; Kenyon, Scott J.

    2013-01-01

    Mass transfer from an evolved donor star to its binary companion is a standard feature of stellar evolution in binaries. In wide binaries, the companion star captures some of the mass ejected in a wind by the primary star. The captured material forms an accretion disk. Here, we study the evolution of wind-accretion disks, using a numerical approach which allows us to follow the long-term evolution. For a broad range of initial conditions, we derive the radial density and temperature profiles of the disk. In most cases, wind accretion leads to long-lived stable disks over the lifetime of the asymptotic giant branch donor star. The disks have masses of a few times 10 –5 -10 –3 M ☉ , with surface density and temperature profiles that follow broken power laws. The total mass in the disk scales approximately linearly with the viscosity parameter used. Roughly, 50%-80% of the mass falling into the disk accretes onto the central star; the rest flows out through the outer edge of the disk into the stellar wind of the primary. For systems with large accretion rates, the secondary accretes as much as 0.1 M ☉ . When the secondary is a white dwarf, accretion naturally leads to nova and supernova eruptions. For all types of secondary star, the surface density and temperature profiles of massive disks resemble structures observed in protoplanetary disks, suggesting that coordinated observational programs might improve our understanding of uncertain disk physics.

  18. LINEAR RELATION FOR WIND-BLOWN BUBBLE SIZES OF MAIN-SEQUENCE OB STARS IN A MOLECULAR ENVIRONMENT AND IMPLICATION FOR SUPERNOVA PROGENITORS

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yang; Zhou Ping [Department of Astronomy, Nanjing University, Nanjing 210093 (China); Chu Youhua [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States)

    2013-05-20

    We find a linear relationship between the size of a massive star's main-sequence bubble in a molecular environment and the star's initial mass: R{sub b} Almost-Equal-To 1.22 M/M{sub Sun} - 9.16 pc, assuming a constant interclump pressure. Since stars in the mass range of 8 to 25-30 M{sub Sun} will end their evolution in the red supergiant phase without launching a Wolf-Rayet wind, the main-sequence wind-blown bubbles are mainly responsible for the extent of molecular gas cavities, while the effect of the photoionization is comparatively small. This linear relation can thus be used to infer the masses of the massive star progenitors of supernova remnants (SNRs) that are discovered to evolve in molecular cavities, while few other means are available for inferring the properties of SNR progenitors. We have used this method to estimate the initial masses of the progenitors of eight SNRs: Kes 69, Kes 75, Kes 78, 3C 396, 3C 397, HC 40, Vela, and RX J1713-3946.

  19. Mass loss from Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Willis, A.J.

    1982-01-01

    Recent results relating to the stellar winds and mass loss rates of the WR stars are reviewed, emphasising new data and their interpretation acquired at UV, IR and Radio wavelengths. The subject is discussed under the headings: physical and chemical properties of WR stars (effective temperatures and radiative luminosities; masses; chemical abundances); velocity, ionisation and excitation structure of WR winds; mass loss rates of WR stars; mass loss properties of WR stars in the LMC; comparisons with theoretical models of mass loss; ring nebulae around WR stars; conclusions. (author)

  20. The extraordinary mass-loss bubble G2.4 + 1.4 and its central star

    International Nuclear Information System (INIS)

    Dopita, M.A.; Mcgregor, P.J.; Rawlings, S.J.; Lozinskaia, T.A.

    1990-01-01

    Data are presented on the WR 102 star and the surrounding nebula (G2.4 + 1.4). It is shown that WR 102 and the nebula are associated, the nebula being a mass-loss bubble powered by the central star. From a photoionization analysis of the surrounding nebula, the star was determined to have the following parameters: log T(ion) = 5.20 + or - 0.05; log (R/solar R) = about 0.05; and log (L/solar L) = 5.85 + or - 0.20. 42 refs

  1. Time-dependent mass loss from hot stars with and without radiative driving

    International Nuclear Information System (INIS)

    Castor, J.I.; Owocki, S.P.; Rybicki, G.B.

    1988-01-01

    A numerical hydrodynamics code is used to investigate two aspects of the winds of hot stars. The first is the question of the instability of the massive radiatively-driven wind of an O star that is caused by the line shape mechanism: modulation of the radiation force by velocity fluctuations. The evolution of this instability is studied in a model O star wind, and is found, /ital modulo/ some numerical uncertainty, to lead to wave structures that are compatible with observations of wind instabilities. The other area of investigation is of main-sequence B star winds. Attempts were made to simulate a radiatively-driven and a pulsation-driven wind in a B star, but in each case the wind turned out to be very weak. It is argued that the pulsation-driven wind model is not likely to apply to B stars. 28 refs., 11 figs

  2. Eyes in the sky. Interactions between asymptotic giant branch star winds and the interstellar magnetic field

    Science.gov (United States)

    van Marle, A. J.; Cox, N. L. J.; Decin, L.

    2014-10-01

    Context. The extended circumstellar envelopes (CSEs) of evolved low-mass stars display a large variety of morphologies. Understanding the various mechanisms that give rise to these extended structures is important to trace their mass-loss history. Aims: Here, we aim to examine the role of the interstellar magnetic field in shaping the extended morphologies of slow dusty winds of asymptotic giant branch (AGB) stars in an effort to pin-point the origin of so-called eye shaped CSEs of three carbon-rich AGB stars. In addition, we seek to understand if this pre-planetary nebula (PN) shaping can be responsible for asymmetries observed in PNe. Methods: Hydrodynamical simulations are used to study the effect of typical interstellar magnetic fields on the free-expanding spherical stellar winds as they sweep up the local interstellar medium (ISM). Results: The simulations show that typical Galactic interstellar magnetic fields of 5 to 10 μG are sufficient to alter the spherical expanding shells of AGB stars to appear as the characteristic eye shape revealed by far-infrared observations. The typical sizes of the simulated eyes are in accordance with the observed physical sizes. However, the eye shapes are transient in nature. Depending on the stellar and interstellar conditions, they develop after 20 000 to 200 000 yrs and last for about 50 000 to 500 000 yrs, assuming that the star is at rest relative to the local interstellar medium. Once formed, the eye shape develops lateral outflows parallel to the magnetic field. The explosion of a PN in the centre of the eye-shaped dust shell gives rise to an asymmetrical nebula with prominent inward pointing Rayleigh-Taylor instabilities. Conclusions: Interstellar magnetic fields can clearly affect the shaping of wind-ISM interaction shells. The occurrence of the eyes is most strongly influenced by stellar space motion and ISM density. Observability of this transient phase is favoured for lines-of-sight perpendicular to the

  3. Neutron stars: Observational diversity and evolution

    Science.gov (United States)

    Safi-Harb, S.

    2017-12-01

    Ever since the discovery of the Crab and Vela pulsars in their respective Supernova Remnants, our understanding of how neutron stars manifest themselves observationally has been dramatically shaped by the surge of discoveries and dedicated studies across the electromagnetic spectrum, particularly in the high-energy band. The growing diversity of neutron stars includes the highly magnetized neutron stars (magnetars) and the Central Compact Objects shining in X-rays and mostly lacking pulsar wind nebulae. These two subclasses of high-energy objects, however, seem to be characterized by anomalously high or anomalously low surface magnetic fields (thus dubbed as ‘magnetars’ and ‘anti-magnetars’, respectively), and have pulsar characteristic ages that are often much offset from their associated SNRs’ ages. In addition, some neutron stars act ‘schizophrenic’ in that they occasionally display properties that seem common to more than one of the defined subclasses. I review the growing diversity of neutron stars from an observational perspective, then highlight recent and on-going theoretical and observational work attempting to address this diversity, particularly in light of their magnetic field evolution, energy loss mechanisms, and supernova progenitors’ studies.

  4. Effects of wind on the dynamics of the central jet during drop impact onto a deep-water surface

    Science.gov (United States)

    Liu, Xinan; Wang, An; Wang, Shuang; Dai, Dejun

    2018-05-01

    The cavity and central jet generated by the impact of a single water drop on a deep-water surface in a wind field are experimentally studied. Different experiments are performed by varying the impacting drop diameter and wind speed. The contour profile histories of the cavity (also called crater) and central jet (also called stalk) are measured in detail with a backlit cinematic shadowgraph technique. The results show that shortly after the drop hits the water surface an asymmetrical cavity appears along the wind direction, with a train of capillary waves on the cavity wall. This is followed by the formation of an inclined central jet at the location of the drop impact. It is found that the wind has little effect on the penetration depth of the cavity at the early stage of the cavity expansion, but markedly changes the capillary waves during the retraction of the cavity. The capillary waves in turn shift the position of the central jet formation leeward. The dynamics of the central jet are dominated by two mechanisms: (i) the oblique drop impact produced by the wind and (ii) the wind drag force directly acting on the jet. The maximum height of the central jet, called the stalk height, is drastically affected by the wind, and the nondimensional stalk height H /D decreases with increasing θ Re-1 , where D is the drop diameter, θ is the impingement angle of drop impact, and Re=ρaUwD /μa is the Reynolds number with air density ρa, wind speed Uw, and air viscosity μa.

  5. Investigating the origin of cyclical wind variability in hot, massive stars - I. On the dipolar magnetic field hypothesis

    NARCIS (Netherlands)

    David-Uraz, A.; Wade, G.A.; Petit, V.; ud-Doula, A.; Sundqvist, J.O.; Grunhut, J.; Schultz, M.; Neiner, C.; Alecian, E.; Henrichs, H.F.; Bouret, J.-C.

    2014-01-01

    OB stars exhibit various types of spectral variability associated with wind structures, including the apparently ubiquitous discrete absorption components (DACs). These are proposed to be caused by either magnetic fields or non-radial pulsations. In this paper, we evaluate the possible relation

  6. Winds in cataclysmic variable stars

    International Nuclear Information System (INIS)

    Cordova, F.A.; Ladd, E.F.; Mason, K.O.

    1984-01-01

    Ultraviolet spectrophotometry of two dwarf novae, CN Ori and RX And, at various phases of their outburst cycles confirms that the far uv flux increases dramatically about 1-2 days after the optical outburst begins. At this time the uv spectral line profiles indicate the presence of a high velocity wind. The detectability of the wind depends more on the steepness of the spectrum, and thus on the flux in the extreme ultraviolet, than on the absolute value of the far uv luminosity. The uv continuum during outburst consists of (at least) two components, the most luminous of which is located behind the wind and is completely absorbed by the wind at the line frequencies. Several pieces of evidence suggest that the uv emission lines that are observed in many cataclysmic variables during quiescence have a different location in the binary than the wind, and are affected very little by the outburst

  7. THE TRANSITION MASS-LOSS RATE: CALIBRATING THE ROLE OF LINE-DRIVEN WINDS IN MASSIVE STAR EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Vink, Jorick S.; Graefener, Goetz, E-mail: jsv@arm.ac.uk [Armagh Observatory, College Hill, BT61 9DG Armagh (United Kingdom)

    2012-06-01

    A debate has arisen regarding the importance of stationary versus eruptive mass loss for massive star evolution. The reason is that stellar winds have been found to be clumped, which results in the reduction of unclumped empirical mass-loss rates. Most stellar evolution models employ theoretical mass-loss rates which are already reduced by a moderate factor of {approx_equal}2-3 compared to non-corrected empirical rates. A key question is whether these reduced rates are of the correct order of magnitude, or if they should be reduced even further, which would mean that the alternative of eruptive mass loss becomes necessary. Here we introduce the transition mass-loss rate M-dot{sub trans} between O and Wolf-Rayet stars. Its novelty is that it is model independent. All that is required is postulating the spectroscopic transition point in a given data set, and determining the stellar luminosity, which is far less model dependent than the mass-loss rate. The transition mass-loss rate is subsequently used to calibrate stellar wind strength by its application to the Of/WNh stars in the Arches cluster. Good agreement is found with two alternative modeling/theoretical results, suggesting that the rates provided by current theoretical models are of the right order of magnitude in the {approx}50 M{sub Sun} mass range. Our results do not confirm the specific need for eruptive mass loss as luminous blue variables, and current stellar evolution modeling for Galactic massive stars seems sound. Mass loss through alternative mechanisms might still become necessary at lower masses, and/or metallicities, and the quantification of alternative mass loss is desirable.

  8. THE TRANSITION MASS-LOSS RATE: CALIBRATING THE ROLE OF LINE-DRIVEN WINDS IN MASSIVE STAR EVOLUTION

    International Nuclear Information System (INIS)

    Vink, Jorick S.; Gräfener, Götz

    2012-01-01

    A debate has arisen regarding the importance of stationary versus eruptive mass loss for massive star evolution. The reason is that stellar winds have been found to be clumped, which results in the reduction of unclumped empirical mass-loss rates. Most stellar evolution models employ theoretical mass-loss rates which are already reduced by a moderate factor of ≅2-3 compared to non-corrected empirical rates. A key question is whether these reduced rates are of the correct order of magnitude, or if they should be reduced even further, which would mean that the alternative of eruptive mass loss becomes necessary. Here we introduce the transition mass-loss rate M-dot trans between O and Wolf-Rayet stars. Its novelty is that it is model independent. All that is required is postulating the spectroscopic transition point in a given data set, and determining the stellar luminosity, which is far less model dependent than the mass-loss rate. The transition mass-loss rate is subsequently used to calibrate stellar wind strength by its application to the Of/WNh stars in the Arches cluster. Good agreement is found with two alternative modeling/theoretical results, suggesting that the rates provided by current theoretical models are of the right order of magnitude in the ∼50 M ☉ mass range. Our results do not confirm the specific need for eruptive mass loss as luminous blue variables, and current stellar evolution modeling for Galactic massive stars seems sound. Mass loss through alternative mechanisms might still become necessary at lower masses, and/or metallicities, and the quantification of alternative mass loss is desirable.

  9. Subluminous Wolf-Rayet stars: Observations

    International Nuclear Information System (INIS)

    Heap, S.R.

    1982-01-01

    The author has used the fact that some central stars are WR stars and others are say, O stars, as a focal point for his presentation. In attempting to answer this question he has considered how the properties of WR-type central stars differ from those of O-type stars. The study begins with the classification and calibration of WR spectra, then goes on to the physical properties of WR-type central stars, and at the end returns to the question of what distinguishes a Wolf-Rayet star. The observational data for central stars are neither complete nor precise. Nevertheless, they suggest that what distinguishes a WR central star is not so much its present physical properties (e.g. temperature, gravity), but rather, its fundamental properties (initial and evolutionary history). (Auth.)

  10. New Frontiers for Massive Star Winds: Imaging and Spectroscopy with the James Webb Space Telescope

    Science.gov (United States)

    Sonneborn, George

    2007-01-01

    The James Webb Space Telescope (JWST) is a large, infrared-optimized space telescope scheduled for launch in 2013. JWST will find the first stars and galaxies that formed in the early universe, connecting the Big Bang to our own Milky Way galaxy. JWST will peer through dusty clouds to see stars forming planetary systems, connecting the Milky Way to our own Solar System. JWST's instruments are designed to work primarily in the infrared range of 1 - 28 microns, with some capability in the visible range. JWST will have a large mirror, 6.5 meters in diameter, and will be diffraction-limited at 2 microns (0.1 arcsec resolution). JWST will be placed in an L2 orbit about 1.5 million km from the Earth. The instruments will provide imaging, coronography, and multi-object and integral-field spectroscopy across the full 1 - 28 micron wavelength range. The breakthrough capabilities of JWST will enable new studies of massive star winds from the Milky Way to the early universe.

  11. WIND-ACCRETION DISKS IN WIDE BINARIES, SECOND-GENERATION PROTOPLANETARY DISKS, AND ACCRETION ONTO WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Perets, Hagai B. [Technion-Israel Institute of Technology, Haifa (Israel); Kenyon, Scott J., E-mail: hperets@physics.technion.ac.il [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-02-20

    Mass transfer from an evolved donor star to its binary companion is a standard feature of stellar evolution in binaries. In wide binaries, the companion star captures some of the mass ejected in a wind by the primary star. The captured material forms an accretion disk. Here, we study the evolution of wind-accretion disks, using a numerical approach which allows us to follow the long-term evolution. For a broad range of initial conditions, we derive the radial density and temperature profiles of the disk. In most cases, wind accretion leads to long-lived stable disks over the lifetime of the asymptotic giant branch donor star. The disks have masses of a few times 10{sup -5}-10{sup -3} M {sub Sun }, with surface density and temperature profiles that follow broken power laws. The total mass in the disk scales approximately linearly with the viscosity parameter used. Roughly, 50%-80% of the mass falling into the disk accretes onto the central star; the rest flows out through the outer edge of the disk into the stellar wind of the primary. For systems with large accretion rates, the secondary accretes as much as 0.1 M {sub Sun }. When the secondary is a white dwarf, accretion naturally leads to nova and supernova eruptions. For all types of secondary star, the surface density and temperature profiles of massive disks resemble structures observed in protoplanetary disks, suggesting that coordinated observational programs might improve our understanding of uncertain disk physics.

  12. Barium and Tc-poor S stars: Binary masqueraders among carbon stars

    OpenAIRE

    Jorissen, A.; Van Eck, S.

    1997-01-01

    The current understanding of the origin of barium and S stars is reviewed, based on new orbital elements and binary frequencies. The following questions are addressed: (i) Is binarity a necessary condition to produce a barium star? (ii) What is the mass transfer mode (wind accretion or RLOF?) responsible for their formation? (iii) Do barium stars form as dwarfs or as giants? (iv) Do barium stars evolve into Tc-poor S stars? (v) What is the relative frequency of Tc-rich and Tc-poor S stars?

  13. A SYSTEMATIC SEARCH FOR COROTATING INTERACTION REGIONS IN APPARENTLY SINGLE GALACTIC WOLF-RAYET STARS. II. A GLOBAL VIEW OF THE WIND VARIABILITY

    International Nuclear Information System (INIS)

    Chene, A.-N.; St-Louis, N.

    2011-01-01

    This study is the second part of a survey searching for large-scale spectroscopic variability in apparently single Wolf-Rayet (WR) stars. In a previous paper (Paper I), we described and characterized the spectroscopic variability level of 25 WR stars observable from the northern hemisphere and found 3 new candidates presenting large-scale wind variability, potentially originating from large-scale structures named corotating interaction regions (CIRs). In this second paper, we discuss an additional 39 stars observable from the southern hemisphere. For each star in our sample, we obtained 4-5 high-resolution spectra with a signal-to-noise ratio of ∼100 and determined its variability level using the approach described in Paper I. In total, 10 new stars are found to show large-scale spectral variability of which 7 present CIR-type changes (WR 8, WR 44, WR55, WR 58, WR 61, WR 63, WR 100). Of the remaining stars, 20 were found to show small-amplitude changes and 9 were found to show no spectral variability as far as can be concluded from the data on hand. Also, we discuss the spectroscopic variability level of all single galactic WR stars that are brighter than v ∼ 12.5, and some WR stars with 12.5 < v ≤ 13.5, i.e., all the stars presented in our two papers and four more stars for which spectra have already been published in the literature. We find that 23/68 stars (33.8%) present large-scale variability, but only 12/54 stars (∼22.1%) are potentially of CIR type. Also, we find that 31/68 stars (45.6%) only show small-scale variability, most likely due to clumping in the wind. Finally, no spectral variability is detected based on the data on hand for 14/68 (20.6%) stars. Interestingly, the variability with the highest amplitude also has the widest mean velocity dispersion.

  14. ENERGY STAR Certified Non-AHRI Central Air Conditioner Equipment and Air Source Heat Pump

    Science.gov (United States)

    Certified models meet all ENERGY STAR requirements as listed in the Version 5.0 ENERGY STAR Program Requirements for Air Source Heat Pump and Central Air Conditioner Equipment that are effective as of September 15, 2015. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=airsrc_heat.pr_crit_as_heat_pumps Listed products have been submitted to EPA by ENERGY STAR partners that do not participate in the AHRI certification program. EPA will continue to update this list with products that are certified by EPA-recognized certification bodies other than AHRI. The majority of ENERGY STAR products, certified by AHRI, can be found on the CEE/AHRI Verified Directory at http://www.ceedirectory.org/

  15. The impact of a central Apennine wind-farm

    Directory of Open Access Journals (Sweden)

    Paolo Forconi

    2012-09-01

    Full Text Available We monitored raptors and investigated collision rate of birds with 2 turbines of a central Apennine wind-farm. We detected 1,18/raptors/km2/h. We have not found bird fatalities with turbines. We found 2 carcasses: one Subalpine Warbler, Sylvia cantillans, died by collision with a close communication tower and a Kestrel, Falco tinnunculus, died by electrocution with an MT power-line starting from the communication tower.

  16. Radio emission from symbiotic stars: a binary model

    International Nuclear Information System (INIS)

    Taylor, A.R.; Seaquist, E.R.

    1985-01-01

    The authors examine a binary model for symbiotic stars to account for their radio properties. The system is comprised of a cool, mass-losing star and a hot companion. Radio emission arises in the portion of the stellar wind photo-ionized by the hot star. Computer simulations for the case of uniform mass loss at constant velocity show that when less than half the wind is ionized, optically thick spectral indices greater than +0.6 are produced. Model fits to radio spectra allow the binary separation, wind density and ionizing photon luminosity to be calculated. They apply the model to the symbiotic star H1-36. (orig.)

  17. DISCOVERY OF LOW-METALLICITY STARS IN THE CENTRAL PARSEC OF THE MILKY WAY

    Energy Technology Data Exchange (ETDEWEB)

    Do, Tuan [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Kerzendorf, Wolfgang; Støstad, Morten [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Winsor, Nathan [Grenfell Campus—Memorial University of Newfoundland, St. John’s, NL A1B 3X9 (Canada); Morris, Mark R.; Ghez, Andrea M. [UCLA Galactic Center Group, Physics and Astronomy Department, UCLA, Los Angeles, CA 90095-1547 (United States); Lu, Jessica R., E-mail: tdo@astro.ucla.edu [Institute for Astronomy, University of Hawaii, Honolulu, HI (United States)

    2015-08-20

    We present a metallicity analysis of 83 late-type giants within the central 1 pc of the Milky Way. K-band spectroscopy of these stars was obtained with the medium spectral resolution integral-field spectrograph NIFS on Gemini North using laser-guided star adaptive optics. Using spectral template fitting with the MARCS synthetic spectral grid, we find that there is a large variation in the metallicity, with stars ranging from [M/H] < −1.0 to above solar metallicity. About 6% of the stars have [M/H] < −0.5. This result is in contrast to previous observations with smaller samples that show stars at the Galactic center having approximately solar metallicity with only small variations. Our current measurement uncertainties are dominated by systematics in the model, especially at [M/H] > 0, where there are stellar lines not represented in the model. However, the conclusion that there are low-metallicity stars, as well as large variations in metallicity, is robust. The metallicity may be an indicator of the origin of these stars. The low-metallicity population is consistent with that of globular clusters in the Milky Way, but their small fraction likely means that globular cluster infall is not the dominant mechanism for forming the Milky Way nuclear star cluster. The majority of stars are at or above solar metallicity, which suggests they were formed closer to the Galactic center or from the disk. In addition, our results indicate that it will be important for star formation history analyses using red giants at the Galactic center to consider the effect of varying metallicity.

  18. NuSTAR Observations of the Powerful Radio-Galaxy Cygnus A

    DEFF Research Database (Denmark)

    Reynolds, Christopher S.; Lohfink, Anne M.; Ogle, Patrick M.

    2015-01-01

    We present NuSTAR observations of the powerful radio galaxy Cygnus A,focusing on the central absorbed active galactic nucleus (AGN). Cygnus A is embedded in a cool-core galaxy cluster, and hence we also examine archival XMM-Newton data to facilitate the decomposition of the spectrum into the AGN...... and intracluster medium (ICM) components. NuSTAR gives a source-dominated spectrum of the AGN out to >70keV. In gross terms, the NuSTAR spectrum of the AGN has the form of a power law (Γ~1.6-1.7) absorbed by a neutral column density of NH~1.6x1023 cm-2. However, we also detect curvature in the hard (>10ke......V (90% confidence). Interestingly, the absorbed power-law plus reflection modelleaves residuals suggesting the absorption/emission from a fast(15,000-26,000km/s), high column-density (NW>3x1023 cm-2), highly ionized (ξ~2,500 erg cm/s-1) wind. A second, even faster ionized wind component is also...

  19. On-Shore Central Hydraulic Power Generation for Wind and Tidal Energy

    Science.gov (United States)

    Jones, Jack A.; Bruce, Allan; Lim, Steven; Murray, Luke; Armstrong, Richard; Kimbrall, Richard; Cook-Chenault, Kimberly; DeGennaro, Sean

    2012-01-01

    Tidal energy, offshore wind energy, and onshore wind energy can be converted to electricity at a central ground location by means of converting their respective energies into high-pressure hydraulic flows that are transmitted to a system of generators by high-pressure pipelines. The high-pressure flows are then efficiently converted to electricity by a central power plant, and the low-pressure outlet flow is returned. The Department of Energy (DOE) is presently supporting a project led by Sunlight Photonics to demonstrate a 15 kW tidal hydraulic power generation system in the laboratory and possibly later submerged in the ocean. All gears and submerged electronics are completely eliminated. A second portion of this DOE project involves sizing and costing a 15 MW tidal energy system for a commercial tidal energy plant. For this task, Atlantis Resources Corporation s 18-m diameter demonstrated tidal blades are rated to operate in a nominal 2.6 m/sec tidal flow to produce approximately one MW per set of tidal blades. Fifteen units would be submerged in a deep tidal area, such as in Maine s Western Passage. All would be connected to a high-pressure (20 MPa, 2900 psi) line that is 35 cm ID. The high-pressure HEPG fluid flow is transported 500-m to on-shore hydraulic generators. HEPG is an environmentally-friendly, biodegradable, watermiscible fluid. Hydraulic adaptations to ORPC s cross-flow turbines are also discussed. For 15 MW of wind energy that is onshore or offshore, a gearless, high efficiency, radial piston pump can replace each set of top-mounted gear-generators. The fluid is then pumped to a central, easily serviceable generator location. Total hydraulic/electrical efficiency is 0.81 at full rated wind or tidal velocities and increases to 0.86 at 1/3 rated velocities.

  20. Stellar wind theory

    International Nuclear Information System (INIS)

    Summers, D.

    1980-01-01

    The theory of stellar winds as given by the equations of classical fluid dynamics is considered. The equations of momentum and energy describing a steady, spherically symmetric, heat-conducting, viscous stellar wind are cast in a dimensionless form which involves a thermal conduction parameter E and a viscosity parameter γ. An asymptotic analysis is carried out, for fixed γ, in the cases E→O and E→infinity (corresponding to small and large thermal conductivity, respectively), and it is found that it is possible to construct critical solutions for the wind velocity and temperature over the entire flow. The E→O solution represents a wind which emanates from the star at low, subsonic speeds, accelerates through a sonic point, and then approaches a constant asymptotic speed, with its temperature varying as r/sup -4/3/ at large distances r from the star; the E→infinity solution represents a wind which, after reaching an approximately constant speed, with temperature varying as r/sup -2/7/, decelerates through a diffuse shock and approaches a finite pressure at infinity. A categorization is made of all critical stellar wind solutions for given values of γ and E, and actual numerical examples are given. Numerical solutions are obtained by integrating upstream 'from infinity' from initial values of the flow parameters given by appropriate asymptotic expansions. The role of viscosity in stellar wind theory is discussed, viscous and inviscid stellar wind solutions are compared, and it is suggested that with certain limitations, the theory presented may be useful in analyzing winds from solar-type stars

  1. Dynamics of Line-Driven Winds from Disks in Cataclysmic Variables. I. Solution Topology and Wind Geometry

    OpenAIRE

    Feldmeier, Achim; Shlosman, Isaac

    1999-01-01

    We analyze the dynamics of 2-D stationary, line-driven winds from accretion disks in cataclysmic variable stars. The driving force is that of line radiation pressure, in the formalism developed by Castor, Abbott & Klein for O stars. Our main assumption is that wind helical streamlines lie on straight cones. We find that the Euler equation for the disk wind has two eigenvalues, the mass loss rate and the flow tilt angle with the disk. Both are calculated self-consistently. The wind is characte...

  2. Wind models for zeta Orionis

    International Nuclear Information System (INIS)

    Olson, G.L.

    1979-01-01

    Several models for the winds of O stars have been proposed to explain the unexpected presence of high ionization potential ions such as N +4 and O +5 . Lamers and Snow (1978) proposed that the winds of stars showing N V and O VI lines have elevated temperatures near 4 +- 2 x 10 5 K while cooler stars with anomalous Si IV lines have Tsub(e) approximately 7+-3 x 10 4 K. Alternately, Cassinelli and Olson (1978, CO) and Olson (1978) have explained the presence of these ions by showing that a thin corona at the base of a cool wind (Tsub(e) < approximately Tsub(eff)) can produce these ions by the Auger photoionization process where a single X-ray photon causes the ejection of two electrons. A third possibility is that the winds are at only slightly elevated temperatures (40 000 to 60 000K) and photoionization in an optically thick wind produces the unexpected ions. The present analysis tests the ability of these three wind models to fit the observations of zeta Orionis A 09.7 Ib. (Auth.)

  3. Temporal and spatial patterns in wind stress and wind stress curl over the central Southern California Bight

    Science.gov (United States)

    Noble, Marlene A.; Rosenberger, Kurt J.; Rosenfeld, Leslie K.; Robertson, George L.

    2012-01-01

    In 2001, the U.S. Geological Survey, together with several other federal and municipal agencies, began a series of field programs to determine along and cross-shelf transport patterns over the continental shelves in the central Southern California Bight. As a part of these programs, moorings that monitor winds were deployed off the Palos Verdes peninsula and within San Pedro Bay for six 3–4 month summer and winter periods between 2001 and 2008. In addition, nearly continuous records of winds for this 7-year period were obtained from a terrestrial site at the coast and from a basin site offshore of the long-term coastal site. The mean annual winds are downcoast at all sites. The alongshelf components of wind stress, which are the largest part of the low-frequency wind stress fields, are well correlated between basin, shelf and coastal sites. On average, the amplitude of alongshelf fluctuations in wind stress are 3–4 times larger over the offshore basin, compared to the coastal site, irrespective of whether the fluctuations represent the total, or just the correlated portion of the wind stress field. The curl in the large-scale wind stress tends to be positive, especially in the winter season when the mean wind stress is downcoast and larger at the offshore basin site than at the beach. However, since the fluctuation in wind stress amplitudes are usually larger than the mean, periods of weak negative curl do occur, especially in the summer season when the largest normalized differences in the amplitude of wind stress fluctuations are found in the nearshore region of the coastal ocean. Even though the low-frequency wind stress field is well-correlated over the continental shelf and offshore basins, out to distances of 35 km or more from the coast, winds even 10 km inshore of the beach do not represent the coastal wind field, at least in the summer months. The seasonal changes in the spatial structures in wind stress amplitudes suggest that an assessment of the

  4. The evolution of massive stars

    International Nuclear Information System (INIS)

    Loore, C. de

    1980-01-01

    The evolution of stars with masses between 15 M 0 and 100 M 0 is considered. Stars in this mass range lose a considerable fraction of their matter during their evolution. The treatment of convection, semi-convection and the influence of mass loss by stellar winds at different evolutionary phases are analysed as well as the adopted opacities. Evolutionary sequences computed by various groups are examined and compared with observations, and the advanced evolution of a 15 M 0 and a 25 M 0 star from zero-age main sequence (ZAMS) through iron collapse is discussed. The effect of centrifugal forces on stellar wind mass loss and the influence of rotation on evolutionary models is examined. As a consequence of the outflow of matter deeper layers show up and when the mass loss rates are large enough layers with changed composition, due to interior nuclear reactions, appear on the surface. The evolution of massive close binaries as well during the phase of mass loss by stellar wind as during the mass exchange and mass loss phase due to Roche lobe overflow is treated in detail, and the value of the parameters governing mass and angular momentum losses are discussed. The problem of the Wolf-Rayet stars, their origin and the possibilities of their production either as single stars or as massive binaries is examined. Finally, the origin of X-ray binaries is discussed and the scenario for the formation of these objects (starting from massive ZAMS close binaries, through Wolf-Rayet binaries leading to OB-stars with a compact companion after a supernova explosion) is reviewed and completed, including stellar wind mass loss. (orig.)

  5. Innovative Offshore Wind Plant Design Study

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, William L. [Glosten Associates, Inc., Seattle, WA (United States); Nordstrom, Charles J. [Glosten Associates, Inc., Seattle, WA (United States); Morrison, Brent J. [Glosten Associates, Inc., Seattle, WA (United States)

    2013-12-18

    Technological advancements in the Glosten PelaStar floating wind turbine system have led to projected cost of energy (COE) reductions from today’s best-in-class offshore wind systems. The PelaStar system is projected to deliver a COE that is 35% lower than that delivered by the current offshore wind plants. Several technology developments have been achieved that directly target significant cost of energy reductions. These include: Application of state-of-the-art steel construction materials and methods, including fatigue-resistant welding techniques and technologies, to reduce hull steel weight; Advancements in synthetic fiber tendon design for the mooring system, which are made possible by laboratory analysis of full-scale sub-rope specimens; Investigations into selected anchor technologies to improve anchor installation methods; Refinement of the installation method, specifically through development of the PelaStar Support Barge design. Together, these technology developments drive down the capital cost and operating cost of offshore wind plants and enable access to superb wind resources in deep water locations. These technology developments also reduce the uncertainty of the PelaStar system costs, which increases confidence in the projected COE reductions.

  6. Radio stars

    International Nuclear Information System (INIS)

    Hjellming, R.M.; Gibson, D.M.

    1985-01-01

    Studies of stellar radio emission became an important field of research in the 1970's and have now expanded to become a major area of radio astronomy with the advent of new instruments such as the Very Large Array in New Mexico and transcontinental telescope arrays. This volume contains papers from the workshop on stellar continuum radio astronomy held in Boulder, Colorado, and is the first book on the rapidly expanding field of radio emission from stars and stellar systems. Subjects covered include the observational and theoretical aspects of stellar winds from both hot and cool stars, radio flares from active double star systems and red dwarf stars, bipolar flows from star-forming regions, and the radio emission from X-ray binaries. (orig.)

  7. The Contribution of Stellar Winds to Cosmic Ray Production

    Science.gov (United States)

    Seo, Jeongbhin; Kang, Hyesung; Ryu, Dongsu

    2018-04-01

    Massive stars blow powerful stellar winds throughout their evolutionary stages from the main sequence to Wolf-Rayet phases. The wind mechanical energy of a massive star deposited to the interstellar medium can be comparable to the explosion energy of a core-collapse supernova that detonates at the end of its life In this study, we estimate the kinetic energy deposition by massive stars in our Galaxy by considering the integrated Galactic initial mass function and modeling the stellar wind luminosity. The mass loss rate and terminal velocity of stellar winds during the main sequence, red supergiant, and Wolf-Rayet stages are estimated by adopting theoretical calculations and observational data published in the literature. We find that the total stellar wind luminosity by all massive stars in the Galaxy is about Lw ≈ 1.1×1041 ergs, which is about 1/4 of the power of supernova explosions, LSN ≈ 4.8×1041 ergs. If we assume that ˜1-1% of the wind luminosity could be converted to Galactic cosmic rays (GCRs) through collisonless shocks such as termination shocks in stellar bubbles and superbubbles, colliding-wind shocks in binaries, and bow-shocks of massive runaway stars, stellar winds are expected to make a significant contribution to GCR production, though lower than that of supernova remnants.

  8. Stellar winds

    International Nuclear Information System (INIS)

    Weymann, R.J.

    1978-01-01

    It is known that a steady outflow of material at comparable rates of mass loss but vastly different speeds is now known to be ubiquitous phenomenon among both the luminous hot stars and the luminous but cool red giants. The flows are probably massive enough in both cases to give rise to significant effects on stellar evolution and the mass balance between stars and the interstellar medium. The possible mechanisms for these phenomena as well as the methods of observation used are described. In particular, the mass-loss processes in stars other than the sun that also involve a steady flow of matter are considered. The evidence for their existence is described, and then the question of whether the process thought to produce the solar wind is also responsible for producing these stellar winds is explored

  9. Comoving frame models of hot star winds I. Test of the Sobolev approximation in the case of pure line transitions

    Czech Academy of Sciences Publication Activity Database

    Krtička, J.; Kubát, Jiří

    2010-01-01

    Roč. 519, September (2010), A50/1-A50/9 ISSN 0004-6361 R&D Projects: GA ČR GA205/07/0031 Institutional research plan: CEZ:AV0Z10030501 Keywords : stars * winds * outflows Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.410, year: 2010

  10. Modeling pulsations in hot stars with winds

    Energy Technology Data Exchange (ETDEWEB)

    Noels, Arlette; Godart, Melanie [Institut d' Astrophysique et de Geophysique, Liege (Belgium); Dupret, Marc-Antoine [Observatoire de Paris-Meudon, LESIA (France)], E-mail: Arlette.Noels@ulg.ac.be, E-mail: ma.dupret@obspm.fr, E-mail: Melanie.Godart@ulg.ac.be

    2008-10-15

    The interaction pulsation/mass loss takes different aspects. Pulsations can trigger mass loss as in LBVs and Miras; on the other hand, mass loss can modify the driving conditions within the stars. But the most spectacular aspect is the effect on stellar models which, in turn, opens a royal way to asteroseismology to test physical conditions inside massive stars, such as the extent of convective cores or the appearance of new driving mechanisms. We start with a discussion on MS stars and their strange mode instabilities. We then move on to the excitation of the LBV phenomenon. WR stars and the newly observed MOST period in WR123 are discussed in view of the power of asteroseismology. We then turn to B supergiants, in particular HD163899, and show how asteroseismology can really probe convection, semiconvection and mass loss.

  11. Modeling pulsations in hot stars with winds

    International Nuclear Information System (INIS)

    Noels, Arlette; Godart, Melanie; Dupret, Marc-Antoine

    2008-01-01

    The interaction pulsation/mass loss takes different aspects. Pulsations can trigger mass loss as in LBVs and Miras; on the other hand, mass loss can modify the driving conditions within the stars. But the most spectacular aspect is the effect on stellar models which, in turn, opens a royal way to asteroseismology to test physical conditions inside massive stars, such as the extent of convective cores or the appearance of new driving mechanisms. We start with a discussion on MS stars and their strange mode instabilities. We then move on to the excitation of the LBV phenomenon. WR stars and the newly observed MOST period in WR123 are discussed in view of the power of asteroseismology. We then turn to B supergiants, in particular HD163899, and show how asteroseismology can really probe convection, semiconvection and mass loss.

  12. Properties of hot luminous stars; Proceedings of the First Boulder-Munich Workshop, Boulder, CO, Aug. 6-11, 1988

    International Nuclear Information System (INIS)

    Garmany, C.D.

    1990-01-01

    Various papers on the properties of hot luminous stars are presented. Individual topics addressed include: problems in photometry of early-type stars; digital optical morphology of OB spectra; massive-star content of the Magellanic Clouds; observations of massive OB stars; LSS 3074, a new double-lined early O-type binary; non-LTE line blanketing with elements 1-28; non-LTE analysis of four PG1159 stars; rescaling method for model atmospheres of hot stars; stellar wind albedo effects on hot photospheres; atomic data and models for hot star abundance determinations; ring nebulae analysis as a probe for WR atmospheres; coordinated observations of P Cygni; radiation-driven winds of hot luminous stars; winds of O stars: velocities and ionization; methods of radiative transfer in expanding atmospheres; mass loss from extragalactic O stars; H-alpha observations of O- and B-type stars; applicability of steady models for hot-star winds; mass of the O6Iaf star HD 153919; stellar winds in Beta Lyrae; models of WR stars; observational abundances of WR stars, the all-variable WC7 binary HD193793

  13. WR 110: A SINGLE WOLF-RAYET STAR WITH COROTATING INTERACTION REGIONS IN ITS WIND?

    International Nuclear Information System (INIS)

    Chene, A.-N.; Moffat, A. F. J.; Fahed, R.; St-louis, N.; Muntean, V.; Chevrotiere, A. De La; Cameron, C.; Matthews, J. M.; Gamen, R. C.; Lefevre, L.; Rowe, J. F.; Guenther, D. B.; Kuschnig, R.; Weiss, W. W.; Rucinski, S. M.; Sasselov, D.

    2011-01-01

    A 30 day contiguous photometric run with the Microvariability and Oscillations of STars (MOST) satellite on the WN5-6b star WR 110 (HD 165688) reveals a fundamental periodicity of P = 4.08 ± 0.55 days along with a number of harmonics at periods P/n, with n ∼ 2, 3, 4, 5, and 6, and a few other possible stray periodicities and/or stochastic variability on timescales longer than about a day. Spectroscopic radial velocity studies fail to reveal any plausible companion with a period in this range. Therefore, we conjecture that the observed light-curve cusps of amplitude ∼0.01 mag that recur at a 4.08 day timescale may arise in the inner parts, or at the base, of a corotating interaction region (CIR) seen in emission as it rotates around with the star at constant angular velocity. The hard X-ray component seen in WR 110 could then be a result of a high velocity component of the CIR shock interacting with the ambient wind at several stellar radii. Given that most hot, luminous stars showing CIRs have two CIR arms, it is possible that either the fundamental period is 8.2 days or, more likely in the case of WR 110, there is indeed a second weaker CIR arm for P = 4.08 days, that occurs ∼two-thirds of a rotation period after the main CIR. If this interpretation is correct, WR 110 therefore joins the ranks with three other single WR stars, all WN, with confirmed CIR rotation periods (WR 1, WR 6, and WR 134), albeit with WR 110 having by far the lowest amplitude photometric modulation. This illustrates the power of being able to secure intense, continuous high-precision photometry from space-based platforms such as MOST. It also opens the door to revealing low-amplitude photometric variations in other WN stars, where previous attempts have failed. If all WN stars have CIRs at some level, this could be important for revealing sources of magnetism or pulsation in addition to rotation periods.

  14. Resonance line-profiles in galactic disk UV-bright stars

    International Nuclear Information System (INIS)

    Carrasco, L.; Costero, R.

    1987-01-01

    We have made a comparative analysis of UV resonance line-profiles in O-type stars members of young clusters and OB associations, with those of hot stars located away from sites of recent star formation (including ''runaway'' stars). The resonance line-profiles are found to be generally dominated by stellar winds that appear to depend mainly on the surface gravity and temperature of the star, and not on its mass. We also present the C IV, Si IV and N V resonance line-profiles for eleven stars not published in the previous two papers. The use of only the largest stellar wind velocity detectable in the resonance lines as a stellar population indicator, is disputed. (author)

  15. Enhancing the rate of tidal disruptions of stars by a self-gravitating disc around a massive central black hole

    Directory of Open Access Journals (Sweden)

    Šubr L.

    2012-12-01

    Full Text Available We further study the idea that a self-gravitating accretion disc around a supermassive black hole can increase the rate of gradual orbital decay of stellar trajectories (and hence tidal disruption events by setting some stars on eccentric trajectories. Cooperation between the gravitational field of the disc and the dissipative environment can provide a mechanism explaining the origin of stars that become bound tightly to the central black hole. We examine this process as a function of the black hole mass and conclude that it is most efficient for intermediate central masses of the order of ∼ 104Mʘ. Members of the cluster experience the stage of orbital decay via collisions with an accretion disc and by other dissipative processes, such as tidal effects, dynamical friction and the emission of gravitational waves. Our attention is concentrated on the region of gravitational dominance of the central body. Mutual interaction between stars and the surrounding environment establishes a non-spherical shape and anisotropy of the nuclear cluster. In some cases, the stellar sub-system acquires ring-type geometry. Stars of the nuclear cluster undergo a tidal disruption event as they plunge below the tidal radius of the supermassive black hole.

  16. Ultraviolet spectroscopy of the blue supergiant SBW1: the remarkably weak wind of a SN 1987A analogue

    Science.gov (United States)

    Smith, Nathan; Groh, Jose H.; France, Kevin; McCray, Richard

    2017-06-01

    The Galactic blue supergiant SBW1 with its circumstellar ring nebula represents the best known analogue of the progenitor of SN 1987A. High-resolution imaging has shown Hα and infrared structures arising in an ionized flow that partly fills the ring's interior. To constrain the influence of the stellar wind on this structure, we obtained an ultraviolet (UV) spectrum of the central star of SBW1 with the Hubble Space Telescope Cosmic Origins Spectrograph. The UV spectrum shows none of the typical wind signatures, indicating a very low mass-loss rate. Radiative transfer models suggest an extremely low rate below 10-10 M⊙ yr-1, although we find that cooling time-scales probably become comparable to (or longer than) the flow time below 10-8 M⊙ yr-1. We therefore adopt this latter value as a conservative upper limit. For the central star, the model yields Teff = 21 000 ± 1000 K, log(geff) = 3.0, L ≃ 5 × 104 L⊙, and roughly Solar composition except for enhanced N abundance. SBW1's very low mass-loss rate may hinder the wind's ability to shape its nebula and to shed angular momentum. The spin-down time-scale for magnetic breaking is more than 500 times longer than the age of the ring. This, combined with the star's slow rotation rate, constrains merger scenarios to form ring nebulae. The mass-loss rate is at least 10 times lower than expected from mass-loss recipes, without any account of clumping. The physical explanation for why SBW1's wind is so weak presents an interesting mystery.

  17. News on the X-ray emission from hot subdwarf stars

    Directory of Open Access Journals (Sweden)

    Palombara Nicola La

    2017-12-01

    Full Text Available In latest years, the high sensitivity of the instruments on-board the XMM-Newton and Chandra satellites allowed us to explore the properties of the X-ray emission from hot subdwarf stars. The small but growing sample of X-ray detected hot subdwarfs includes binary systems, in which the X-ray emission is due to wind accretion onto a compact companion (white dwarf or neutron star, as well as isolated sdO stars, in which X-rays are probably due to shock instabilities in the wind. X-ray observations of these low-mass stars provide information which can be useful for our understanding of the weak winds of this type of stars and can lead to the discovery of particularly interesting binary systems. Here we report the most recent results we have recently obtained in this research area.

  18. Massive stars evolution with mass-loss. 20-100 M(sun) models

    Energy Technology Data Exchange (ETDEWEB)

    Chiosi, C; Sreenivasan, S R [Calgary Univ., Alberta (Canada). Dept. of Physics; Nasi, E [Padua Univ. (Italy). Istituto di Astronomia

    1978-02-01

    The evolution of stars with initial masses 20, 30, 40, 60, 80, 100 M(sun) and Population I chemical composition (X = 0.700, Z = 0.02) is calculated, taking into account mass-loss due to stellar winds, from the main sequence up to the early stages of central He-burning. This study incorporates mass-loss rates predicted by the theory of Castor et al. (1975) for the early type phases and a novel way of treating mass-loss rates due to acoustic energy flux driven winds in the later stages analogous to the work of Fusi-Pecci and Renzini (1975a). The results are presented in terms of evolutionary tracks, isochrones, loci of constant mass-loss rates and loci of constant mass in the HR diagram. The effects of mass-loss on the internal structure of the models as well as on the occurrence of semiconvection are also investigated. A detailed comparison of the theoretical predictions and observational results is made and possible implications for O, Of, Wolf-Rayet stars and red supergiants are brought out.

  19. The symbiotics as binary stars

    International Nuclear Information System (INIS)

    Plavec, M.J.

    1982-01-01

    The author envisages at least three models that can give a symbiotic object: He has called them, respectively, the PN symbiotic, the Algol symbiotic, and the novalike symbiotic. Their properties are briefly discussed. The most promising model is one of a binary system in the second stage of mass transfer, actually at the beginning of it: The cool component is a red giant ascending the asymptotic branch, expanding but not yet filling its critical lobe. The hot star is a subdwarf located in the same region of the Hertzsprung-Russell diagram as the central stars of planetary nebulae. It may be closely related to them, or it may be a helium star, actually a remnant of an Algol primary which underwent the first stage of mass transfer. In these cases, accretion on this star may not play a significant role (PN symbiotic). Perhaps more often, the subdwarf is a ''rejuvenated'' degenerate dwarf whose nuclear burning shells were ignited and are maintained by accretion of material coming from the red giant in the form of a stellar wind. Eruptions are often inevitable: this is the novalike symbiotic. A third alternative is a system in the first stage of mass transfer, where the photons needed for ionization of the nebula come from an accretion disk surrounding a main sequence star: an Algol symbiotic. In spite of considerable observational effort, the symbiotics are known so poorly that it is hard to decide between the models, or even decide if all three can actually exist. (Auth.)

  20. Model-Atmosphere Spectra of Central Stars of Planetary Nebulae - Access via the Virtual Observatory Service TheoSSA

    Science.gov (United States)

    Rauch, T.; Reindl, N.

    2014-04-01

    In the framework of the Virtual Observatory (VO), the German Astrophysical Virtual Observatory GAVO project provides easy access to theoretical spectral energy distributions (SEDs) within the registered GAVO service TheoSSA (http://dc.g-vo.org/theossa). TheoSSA is based on the well established Tübingen NLTE Model-Atmosphere Package (TMAP) for hot, compact stars. This includes central stars of planetary nebulae. We show examples of TheoSSA in operation.

  1. X-rays from Wolf-Rayet stars observed by the Einstein observatory

    International Nuclear Information System (INIS)

    Sanders, W.T.; Cassinelli, J.P.; Hucht, K.A. van der

    1982-01-01

    Preliminary results of three X-ray surveys are presented. Out of a sample of 20 stars, X-rays were detected from four Wolf-Rayet stars and two O8f + stars. The detected stars have about the same mean value as O stars for the X-ray to total luminosity ratio, Lsub(x)/L = 10 -7 , but exhibit a much larger variation about the mean. The spectral energy distributions are also found to be like that of O stars in that they do not exhibit large attenuation of X-rays softer than 1 keV. This indicates that for both the O stars and WR stars much of the X-ray emission is coming from hot wisps or shocks in the outer regions of the winds and not from a thin source at the base of the wind. The general spectral shape and flux level place severe restrictions on models that attribute the lack of hydrogen emission lines to extremely high temperatures of the gas in the wind. (Auth.)

  2. The Disk Wind in the Rapidly Spinning Stellar-mass Black Hole 4U 1630-472 Observed with NuSTAR

    Science.gov (United States)

    King, Ashley L.; Walton, Dominic J.; Miller, Jon M.; Barret, Didier; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Fabian, Andy C.; Furst, Felix; Hailey, Charles J.; hide

    2014-01-01

    We present an analysis of a short NuSTAR observation of the stellar-mass black hole and low-mass X-ray binary 4U 1630-472. Reflection from the inner accretion disk is clearly detected for the first time in this source, owing to the sensitivity of NuSTAR. With fits to the reflection spectrum, we find evidence for a rapidly spinning black hole, a* = 0.985(+0.005/-0.014) (1 sigma statistical errors). However, archival data show that the source has relatively low radio luminosity. Recently claimed relationships between jet power and black hole spin would predict either a lower spin or a higher peak radio luminosity. We also report the clear detection of an absorption feature at 7.03 +/- 0.03 keV, likely signaling a disk wind. If this line arises in dense, moderately ionized gas (log xi = 3.6(+0.2/-0.3) and is dominated by He-like Fe xxv, the wind has a velocity of v/c = 0.043(+0.002/-0.007) (12900(+600/-2100) km s(exp -1)). If the line is instead associated with a more highly ionized gas (log xi = 6.1(+0.7/-0.6)), and is dominated by Fe xxvi, evidence of a blueshift is only marginal, after taking systematic errors into account. Our analysis suggests the ionized wind may be launched within 200-1100 Rg, and may be magnetically driven.

  3. Neutrino-heated winds from millisecond protomagnetars as sources of the weak r-process

    Science.gov (United States)

    Vlasov, Andrey D.; Metzger, Brian D.; Lippuner, Jonas; Roberts, Luke F.; Thompson, Todd A.

    2017-06-01

    We explore heavy element nucleosynthesis in neutrino-driven winds from rapidly rotating, strongly magnetized protoneutron stars ('millisecond protomagnetars') for which the magnetic dipole is aligned with the rotation axis, and the field is assumed to be a static force-free configuration. We process the protomagnetar wind trajectories calculated by Vlasov, Metzger & Thompson through the r-process nuclear reaction network SkyNet using contemporary models for the evolution of the wind electron fraction during the protoneutron star cooling phase. Although we do not find a successful second or third-peak r-process for any rotation period P, we show that protomagnetars with P ˜ 1-5 ms produce heavy element abundance distributions that extend to higher nuclear mass number than from otherwise equivalent spherical winds (with the mass fractions of some elements enhanced by factors of ≳100-1000). The heaviest elements are synthesized by outflows emerging along flux tubes that graze the closed zone and pass near the equatorial plane outside the light cylinder. Due to dependence of the nucleosynthesis pattern on the magnetic field strength and rotation rate of the protoneutron star, natural variations in these quantities between core collapse events could contribute to the observed diversity of the abundances of weak r-process nuclei in metal-poor stars. Further diversity, including possibly even a successful third-peak r-process, could be achieved for misaligned rotators with non-zero magnetic inclination with respect to the rotation axis. If protomagnetars are central engines for GRBs, their relativistic jets should contain a high-mass fraction of heavy nuclei of characteristic mass number \\bar{A}≈ 100, providing a possible source for ultrahigh energy cosmic rays comprised of heavy nuclei with an energy spectrum that extends beyond the nominal Grezin-Zatsepin-Kuzmin cut-off for protons or iron nuclei.

  4. The central star candidate of the planetary nebula Sh2-71: photometric and spectroscopic variability

    Science.gov (United States)

    Močnik, T.; Lloyd, M.; Pollacco, D.; Street, R. A.

    2015-07-01

    We present the analysis of several newly obtained and archived photometric and spectroscopic data sets of the intriguing and yet poorly understood 13.5 mag central star candidate of the bipolar planetary nebula Sh2-71. Photometric observations confirmed the previously determined quasi-sinusoidal light curve with a period of 68 d and also indicated periodic sharp brightness dips, possibly eclipses, with a period of 17.2 d. In addition, the comparison between U and V light curves revealed that the 68 d brightness variations are accompanied by a variable reddening effect of ΔE(U - V) = 0.38. Spectroscopic data sets demonstrated pronounced variations in spectral profiles of Balmer, helium and singly ionized metal lines and indicated that these variations occur on a time-scale of a few days. The most accurate verification to date revealed that spectral variability is not correlated with the 68 d brightness variations. The mean radial velocity of the observed star was measured to be ˜26 km s-1 with an amplitude of ±40 km s-1. The spectral type was determined to be B8V through spectral comparison with synthetic and standard spectra. The newly proposed model for the central star candidate is a Be binary with a misaligned precessing disc.

  5. Variable accretion of stellar winds onto Sgr A*

    Science.gov (United States)

    Cuadra, Jorge; Nayakshin, Sergei

    2006-12-01

    We report a 3-dimensional numerical study of the accretion of stellar winds onto Sgr A*, the super-massive black hole at the centre of our Galaxy. Compared with previous investigations, we allow the stars to be on realistic orbits, include the recently discovered slow wind sources, and allow for optically thin radiative cooling. We frst show the strong inflience of the stellar dynamics on the accretion onto the central black hole. We then present more realistic simulations of Sgr A* accretion and frid that the slow winds shock and rapidly cool, forming cold gas clumps and flaments that coexist with the hot X-ray emitting gas. The accretion rate in this case is highly variable on time-scales of tens to hundreds of years. Such variability can in principle lead to a strongly non-linear response through accretion fbw physics not resolved here, making Sgr A* an important energy source for the Galactic centre.

  6. Variable accretion of stellar winds onto Sgr A*

    Energy Technology Data Exchange (ETDEWEB)

    Cuadra, Jorge [Max-Planck-Institut fuer Astrophysik, D-85741 Garching (Germany); Nayakshin, Sergei [Department of Physics and Astronomy, University of Leicester, LEI 7RH (United Kingdom)

    2006-12-15

    We report a 3-dimensional numerical study of the accretion of stellar winds onto Sgr A*, the super-massive black hole at the centre of our Galaxy. Compared with previous investigations, we allow the stars to be on realistic orbits, include the recently discovered slow wind sources, and allow for optically thin radiative cooling. We frst show the strong inflience of the stellar dynamics on the accretion onto the central black hole. We then present more realistic simulations of Sgr A* accretion and frid that the slow winds shock and rapidly cool, forming cold gas clumps and flaments that coexist with the hot X-ray emitting gas. The accretion rate in this case is highly variable on time-scales of tens to hundreds of years. Such variability can in principle lead to a strongly non-linear response through accretion fbw physics not resolved here, making Sgr A* an important energy source for the Galactic centre.

  7. Variable accretion of stellar winds onto Sgr A*

    International Nuclear Information System (INIS)

    Cuadra, Jorge; Nayakshin, Sergei

    2006-01-01

    We report a 3-dimensional numerical study of the accretion of stellar winds onto Sgr A*, the super-massive black hole at the centre of our Galaxy. Compared with previous investigations, we allow the stars to be on realistic orbits, include the recently discovered slow wind sources, and allow for optically thin radiative cooling. We frst show the strong inflience of the stellar dynamics on the accretion onto the central black hole. We then present more realistic simulations of Sgr A* accretion and frid that the slow winds shock and rapidly cool, forming cold gas clumps and flaments that coexist with the hot X-ray emitting gas. The accretion rate in this case is highly variable on time-scales of tens to hundreds of years. Such variability can in principle lead to a strongly non-linear response through accretion fbw physics not resolved here, making Sgr A* an important energy source for the Galactic centre

  8. The first stars: CEMP-no stars and signatures of spinstars

    Science.gov (United States)

    Maeder, André; Meynet, Georges; Chiappini, Cristina

    2015-04-01

    Aims: The CEMP-no stars are "carbon-enhanced-metal-poor" stars that in principle show no evidence of s- and r-elements from neutron captures. We try to understand the origin and nucleosynthetic site of their peculiar CNO, Ne-Na, and Mg-Al abundances. Methods: We compare the observed abundances to the nucleosynthetic predictions of AGB models and of models of rotating massive stars with internal mixing and mass loss. We also analyze the different behaviors of α- and CNO-elements, as well the abundances of elements involved in the Ne-Na and Mg-Al cycles. Results: We show that CEMP-no stars exhibit products of He-burning that have gone through partial mixing and processing by the CNO cycle, producing low 12C/13C and a broad variety of [C/N] and [O/N] ratios. From a 12C/13C vs. [C/N] diagram, we conclude that neither the yields of AGB stars (in binaries or not) nor the yields of classic supernovae can fully account for the observed CNO abundances in CEMP-no stars. Better agreement is obtained once the chemical contribution by stellar winds of fast-rotating massive stars is taken into account, where partial mixing takes place, leading to various amounts of CNO being ejected. The [(C+N+O)/H] ratios of CEMP-no stars vary linearly with [Fe/H] above [Fe/H] = -4.0 indicating primary behavior by (C+N+O). Below [Fe/H] = -4.0, [(C+N+O)/H] is almost constant as a function of [Fe/H], implying very high [(C+N+O)/Fe] ratios up to 4 dex. In view of the timescales, such abundance ratios reflect more individual nucleosynthetic properties, rather than an average chemical evolution. The high [(C+N+O)/Fe] ratios (as well as the high [(C+N+O)/α-elements]) imply that stellar winds from partially mixed stars were the main source of these excesses of heavy elements now observed in CEMP-no stars. The ranges covered by the variations of [Na/Fe], [Mg/Fe], and [Al/Fe] are much broader than for the α-elements (with an atomic mass number above 24) and are comparable to the wide ranges covered

  9. Environments of T Tauri stars

    International Nuclear Information System (INIS)

    Chevalier, R.A.

    1983-01-01

    The environments of T Tauri stars are probably determined by the interaction of a stellar wind with matter which is falling toward a newly formed star. As shown by Ulrich, the steady infall of cool gas with angular momentum toward the star leads to a density distribution with rhoproportionalr/sup -1/2/ inside a radius r/sub d/ and rhoproportionalr/sup -3/2/ outside r/sub d/. The radius r/sub d/ is determined by the angular momentum of the infalling gas. The expansion of the wind into this medium depends on the parameter α = M/sub w/v/sub w//M/sub in/v/sub in/(r/sub d/), where v/sub in/(r/sub d/) is the free-fall velocity at r/sub d/, M/sub in/ is the mass accretion rate, v/sub w/ is the wind velocity, and M/sub w/ is the mass loss rate. For α 14 cm, v/sub w/ = 150 km s -1 , M/sub in/ = 10 -7 M/sub sun/ yr -1 , and M/sub w/ = 3 x 10 -8 M/sub sun/ yr -1 . The inflow is clumpy. The shocked wind gives the radio emission and nebular emission from T Tauri, and dust within the clumps gives the infrared emission. T Tauri is in a transitory phase in which most of the wind has only recently propagated beyond r/sub d/. The model naturally predicts variable obscuration of T Tauri stars because the infalling clumps move on nonradial trajectories. The infrared emission can vary either because of structural changes in the circumstellar gas or because of variations in the stellar luminosity. Infrared variability should be small at short time scales because of light-travel time effects

  10. Assessment of electricity generation and energy cost of wind energy conversion systems in north-central Nigeria

    International Nuclear Information System (INIS)

    Adaramola, M.S.; Paul, S.S.; Oyedepo, S.O.

    2011-01-01

    Highlights: → The wind energy potential and economic analysis in selected six locations in north central part of Nigeria are investigated. → Economical evaluation of the wind energy in the selected sites was made by using the levelised cost method. → Locations that are suitable electricity generation and small scale applications are identified. - Abstract: In this study, the wind energy potential and economic analysis in selected six locations in north central part of Nigeria were investigated using wind speed data that span between 19 and 37 years measured at 10 m height. The performance of small to medium size commercial wind turbine models were examined and economic evaluation of the wind energy in the selected sites was made by using the levelised cost method. The results showed that the cost of energy production per kWh for the selected sites vary between cents 4.02 and cents 166.79. It was shown that Minna is most viable site while Bida is found to be least among the sites considered. Using three selected wind turbine models (in Minna) as case study, an increase in the escalation rate of operating and maintenance cost from 0% to 10%, lead to an increase in the unit energy cost by about 7%. It was further shown that by increasing the escalation rate of inflation from 0% to 5%, the cost of energy decreases by about 29% while the discount rate (return on investment) decreases from 11.54% to 6.23%.

  11. Investigating the Magnetospheres of Rapidly Rotating B-type Stars

    Science.gov (United States)

    Fletcher, C. L.; Petit, V.; Nazé, Y.; Wade, G. A.; Townsend, R. H.; Owocki, S. P.; Cohen, D. H.; David-Uraz, A.; Shultz, M.

    2017-11-01

    Recent spectropolarimetric surveys of bright, hot stars have found that ~10% of OB-type stars contain strong (mostly dipolar) surface magnetic fields (~kG). The prominent paradigm describing the interaction between the stellar winds and the surface magnetic field is the magnetically confined wind shock (MCWS) model. In this model, the stellar wind plasma is forced to move along the closed field loops of the magnetic field, colliding at the magnetic equator, and creating a shock. As the shocked material cools radiatively it will emit X-rays. Therefore, X-ray spectroscopy is a key tool in detecting and characterizing the hot wind material confined by the magnetic fields of these stars. Some B-type stars are found to have very short rotational periods. The effects of the rapid rotation on the X-ray production within the magnetosphere have yet to be explored in detail. The added centrifugal force due to rapid rotation is predicted to cause faster wind outflows along the field lines, leading to higher shock temperatures and harder X-rays. However, this is not observed in all rapidly rotating magnetic B-type stars. In order to address this from a theoretical point of view, we use the X-ray Analytical Dynamical Magnetosphere (XADM) model, originally developed for slow rotators, with an implementation of new rapid rotational physics. Using X-ray spectroscopy from ESA's XMM-Newton space telescope, we observed 5 rapidly rotating B-types stars to add to the previous list of observations. Comparing the observed X-ray luminosity and hardness ratio to that predicted by the XADM allows us to determine the role the added centrifugal force plays in the magnetospheric X-ray emission of these stars.

  12. Hydrodynamic ejection of bipolar flows from objects undergoing disk accretion: T Tauri stars, massive pre-main-sequence objects, and cataclysmic variables

    International Nuclear Information System (INIS)

    Torbett, M.V.

    1984-01-01

    A general mechanism is presented for generating pressure-driven winds that are intrinsically bipolar from objects undergoing disk accretion. The energy librated in a boundary layer shock as the disk matter impacts the central object is shown to be sufficient to eject a fraction βapprox.10 -2 to 10 -3 of the accreted mass. These winds are driven by a mechanism that accelerates the flow perpendicular to the plane of the disk and can therefore account for the bipolar geometry of the mass loss observed near young stars. The mass loss contained in these winds is comparable to that inferred for young stars. Thus, disk accretion-driven winds may constitute the T Tauri phase of stellar evolution. This mechanism is generally applicable, and thus massive pre-main-sequence objects as well as cataclysmic variables at times of enhanced accretion are predicted to eject bipolar outflows as well. Unmagnetized accreting neutron stas are also expected to eject bipolar flows. Since this mechanism requires stellar surfaces, however, it will not operate in disk accretion onto black holes

  13. Alternative model for the atmospheres of Wolf-Rayet and O stars

    International Nuclear Information System (INIS)

    Underhill, A.B.

    1983-01-01

    It is noted that postulating dense spherically symmetric outflow in order to account for the observed radio fluxes from Wolf-Rayet stars requires that much more momentum must be deposited in the wind of a Wolf-Rayet star than is available from the radiation field of the star, and it is shown that the deduced massive winds become opaque in visible wavelengths at stellar radii where the velocity of outflow is several hundred km s - 1 . To attain such a state of motion in the wind requires the action of a strong, unknown source of outward directed momentum in optically thick layers of the star. This is an unreasonable demand. An alternative model for the mantle of a Wolf-Rayet star (the part of the atmosphere in which nonradiative energy and momentum are deposited) is proposed and shown to be feasible

  14. How supernovae launch galactic winds?

    Science.gov (United States)

    Fielding, Drummond; Quataert, Eliot; Martizzi, Davide; Faucher-Giguère, Claude-André

    2017-09-01

    We use idealized three-dimensional hydrodynamic simulations of global galactic discs to study the launching of galactic winds by supernovae (SNe). The simulations resolve the cooling radii of the majority of supernova remnants (SNRs) and thus self-consistently capture how SNe drive galactic winds. We find that SNe launch highly supersonic winds with properties that agree reasonably well with expectations from analytic models. The energy loading (η _E= \\dot{E}_wind/ \\dot{E}_SN) of the winds in our simulations are well converged with spatial resolution while the wind mass loading (η _M= \\dot{M}_wind/\\dot{M}_\\star) decreases with resolution at the resolutions we achieve. We present a simple analytic model based on the concept that SNRs with cooling radii greater than the local scaleheight break out of the disc and power the wind. This model successfully explains the dependence (or lack thereof) of ηE (and by extension ηM) on the gas surface density, star formation efficiency, disc radius and the clustering of SNe. The winds our simulations are weaker than expected in reality, likely due to the fact that we seed SNe preferentially at density peaks. Clustering SNe in time and space substantially increases the wind power.

  15. The low-metallicity starburst NGC346: massive-star population and feedback

    Science.gov (United States)

    Oskinova, Lida

    2017-08-01

    The Small Magellanic Cloud (SMC) is ideal to study young, massive stars at low metallicity. The compact cluster NGC346 contains about half of all O-type stars in the entire SMC. The massive-star population of this cluster powers N66, the brightest and largest HII region in the SMC. We propose to use HST-STIS to slice NGC346 with 20 long-slit exposures, in order to obtain the UV spectra of most of the massive early-type stars of this cluster. Archival data of 13 exposures that cover already a minor part of this cluster will be included in our analyses. Our aim is to quantitatively analyze virtually the whole massive-star population of NGC346. We have already secured the optical spectra of all massive stars in the field with the integral-field spectrograph MUSE at the ESO-VLT. However, for the determination of the stellar-wind parameters, i.e. the mass-loss rates and the wind velocities, ultraviolet spectra are indispensable. Our advanced Potsdam Wolf-Rayet (PoWR) code will be used for modeling the stellar and wind spectra in the course of the analysis. Finally, we will obtain:(a) the fundamental stellar and wind parameters of all stars brighter than spectral type B2V in the field, which, e,g,, will constrain the initial mass function in this young low-metallicity starburst;(b) mass-loss rates of many more OB-type stars at SMC metallicity than hitherto known, allowing to better constrain their metallicity dependence;(c) the integrated feedback by ionizing radiation and stellar winds of the whole massive-star population of NGC346, which will be used as input to model the ecology of the giant HII region N66.These HST UV data will be of high legacy value.

  16. Stability of boson stars

    International Nuclear Information System (INIS)

    Gleiser, M.

    1988-01-01

    Boson stars are gravitationally bound, spherically symmetric equilibrium configurations of cold, free, or interacting complex scalar fields phi. As these equilibrium configurations naturally present local anisotropy, it is sensible to expect departures from the well-known stability criteria for fluid stars. With this in mind, I investigate the dynamical instability of boson stars against charge-conserving, small radial perturbations. Following the method developed by Chandrasekhar, a variational base for determining the eigenfrequencies of the perturbations is found. This approach allows one to find numerically an upper bound for the central density where dynamical instability occurs. As applications of the formalism, I study the stability of equilibrium configurations obtained both for the free and for the self-interacting [with V(phi) = (λ/4)chemical bondphichemical bond 4 ] massive scalar field phi. Instabilities are found to occur not for the critical central density as in fluid stars but for central densities considerably higher. The departure from the results for fluid stars is sensitive to the coupling λ; the higher the value of λ, the more the stability properties of boson stars approach those of a fluid star. These results are linked to the fractional anisotropy at the radius of the configuration

  17. INFRARED TWO-COLOR DIAGRAMS FOR AGB STARS, POST-AGB STARS, AND PLANETARY NEBULAE

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kyung-Won, E-mail: kwsuh@chungbuk.ac.kr [Department of Astronomy and Space Science, Chungbuk National University, Cheongju-City, 362-763 (Korea, Republic of)

    2015-08-01

    We present various infrared two-color diagrams (2CDs) for asymptotic giant branch (AGB) stars, post-AGB stars, and Planetary Nebulae (PNe) and investigate possible evolutionary tracks. We use catalogs from the available literature for the sample of 4903 AGB stars (3373 O-rich; 1168 C-rich; 362 S-type), 660 post-AGB stars (326 post-AGB; 334 pre-PN), and 1510 PNe in our Galaxy. For each object in the catalog, we cross-identify the IRAS, AKARI, Midcourse Space Experiment, and 2MASS counterparts. The IR 2CDs can provide useful information about the structure and evolution of the dust envelopes as well as the central stars. To find possible evolutionary tracks from AGB stars to PNe on the 2CDs, we investigate spectral evolution of post-AGB stars by making simple but reasonable assumptions on the evolution of the central star and dust shell. We perform radiative transfer model calculations for the detached dust shells around evolving central stars in the post-AGB phase. We find that the theoretical dust shell model tracks using dust opacity functions of amorphous silicate and amorphous carbon roughly coincide with the densely populated observed points of AGB stars, post-AGB stars, and PNe on various IR 2CDs. Even though some discrepancies are inevitable, the end points of the theoretical post-AGB model tracks generally converge in the region of the observed points of PNe on most 2CDs.

  18. Probing the properties of the pulsar wind via studying the dispersive effects in the pulses from the pulsar companion in a double neutron-star binary system

    Science.gov (United States)

    Yi, Shu-Xu; Cheng, K.-S.

    2017-12-01

    The velocity and density distribution of e± in the pulsar wind are crucial distinction among magnetosphere models, and contain key parameters determining the high-energy emission of pulsar binaries. In this work, a direct method is proposed, which might probe the properties of the wind from one pulsar in a double-pulsar binary. When the radio signals from the first-formed pulsar travel through the relativistic e± flow in the pulsar wind from the younger companion, the components of different radio frequencies will be dispersed. It will introduce an additional frequency-dependent time-of-arrival delay of pulses, which is function of the orbital phase. In this paper, we formulate the above-mentioned dispersive delay with the properties of the pulsar wind. As examples, we apply the formula to the double-pulsar system PSR J0737-3039A/B and the pulsar-neutron star binary PSR B1913+16. For PSR J0737-3039A/B, the time delay in 300 MHz is ≲ 10 μ s-1 near the superior conjunction, under the optimal pulsar wind parameters, which is approximately half of the current timing accuracy. For PSR B1913+16, with the assumption that the neutron-star companion has a typical spin-down luminosity of 1033 erg s-1, the time delay is as large as 10 - 20 μ s-1 in 300 MHz. The best timing precision of this pulsar is ∼ 5 μ s-1 in 1400 MHz. Therefore, it is possible that we can find this signal in archival data. Otherwise, we can set an upper limit on the spin-down luminosity. Similar analysis can be applied to other 11 known pulsar-neutron star binaries.

  19. Problems with interpreting the radio emission from hot stars

    International Nuclear Information System (INIS)

    Underhill, A.B.

    1985-01-01

    The hypothesis that the radio emission from a hot star is due solely to bremsstrahlung in a spherically symmetric wind flowing at a constant velocity and the constraint that the wind be transparent enough to allow the stationary photosphere to be seen, place a limit on mass loss/v (M/V). The constraint that the momentum in the wind be provided by the radiation field places a limit on Mv. It is noted that both constraints are satisfied by the usually deduced values of M and v(infinity) for OB supergiants. The case for early O stars is marginal, while for Wolf-Rayet stars M/v and Mv are too large to satisfy the several hypotheses usually made. The trouble is due to M being too large by at least a factor 10. It is noted that postulating that part of the radio flux from Wolf-Rayet stars is caused by processes in a low-density magnetized plasma provides a solution to the dilemma. This solution offers advantages when accounting for the emission lines of Wolf-Rayet stars. (orig.)

  20. Impact of red giant/AGB winds on active galactic nucleus jet propagation

    Science.gov (United States)

    Perucho, M.; Bosch-Ramon, V.; Barkov, M. V.

    2017-10-01

    Context. Dense stellar winds may mass-load the jets of active galactic nuclei, although it is unclear on what time and spatial scales the mixing takes place. Aims: Our aim is to study the first steps of the interaction between jets and stellar winds, and also the scales on which the stellar wind mixes with the jet and mass-loads it. Methods: We present a detailed 2D simulation - including thermal cooling - of a bubble formed by the wind of a star designed to study the initial stages of jet-star interaction. We also study the first interaction of the wind bubble with the jet using a 3D simulation in which the star enters the jet. Stability analysis is carried out for the shocked wind structure to evaluate the distances over which the jet-dragged wind, which forms a tail, can propagate without mixing with the jet flow. Results.The 2D simulations point to quick wind bubble expansion and fragmentation after about one bubble shock crossing time. Three-dimensional simulations and stability analysis point to local mixing in the case of strong perturbations and relatively low density ratios between the jet and the jet dragged-wind, and to a possibly more stable shocked wind structure at the phase of maximum tail mass flux. Analytical estimates also indicate that very early stages of the star jet-penetration time may be also relevant for mass-loading. The combination of these and previous results from the literature suggests highly unstable interaction structures and efficient wind-jet flow mixing on the scale of the jet interaction height. Conclusions: The winds of stars with strong mass loss can efficiently mix with jets from active galactic nuclei. In addition, the initial wind bubble shocked by the jet leads to a transient, large interaction surface. The interaction between jets and stars can produce strong inhomogeneities within the jet. As mixing is expected to be effective on large scales, even individual asymptotic giant branch stars can significantly contribute to

  1. Experimental Study on New Multi-Column Tension-Leg-Type Floating Wind Turbine

    Science.gov (United States)

    Zhao, Yong-sheng; She, Xiao-he; He, Yan-ping; Yang, Jian-min; Peng, Tao; Kou, Yu-feng

    2018-04-01

    Deep-water regions often have winds favorable for offshore wind turbines, and floating turbines currently show the greatest potential to exploit such winds. This work established proper scaling laws for model tests, which were then implemented in the construction of a model wind turbine with optimally designed blades. The aerodynamic, hydrodynamic, and elastic characteristics of the proposed new multi-column tension-leg-type floating wind turbine (WindStar TLP system) were explored in the wave tank testing of a 1:50 scale model at the State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University. Tests were conducted under conditions of still water, white noise waves, irregular waves, and combined wind, wave, and current loads. The results established the natural periods of the motion, damping, motion response amplitude operators, and tendon tensions of the WindStar TLP system under different environmental conditions, and thus could serve as a reference for further research. Key words: floating wind turbine, model test, WindStar TLP, dynamic response

  2. 77 FR 48138 - Topaz Solar Farms LLC; High Plains Ranch II, LLC; Bethel Wind Energy LLC; Rippey Wind Energy LLC...

    Science.gov (United States)

    2012-08-13

    ... Ranch II, LLC; Bethel Wind Energy LLC; Rippey Wind Energy LLC; Pacific Wind, LLC; Colorado Highlands Wind, LLC; Shooting Star Wind Project, LLC; Notice of Effectiveness of Exempt Wholesale Generator or... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. EG12-63-000; EG12-64-000...

  3. Formation of Neutral Disk-Like Zone Around the Active Hot Stars in Symbiotic Binaries

    Directory of Open Access Journals (Sweden)

    Cariková Z.

    2012-06-01

    Full Text Available In this contribution we present the ionization structure in the enhanced wind from the hot star in symbiotic binaries during active phases. Rotation of the hot star leads to the compression of the outflowing material towards its equatorial plane. As a result, a neutral disk-like zone around the active hot star near the orbital plane is created. We modeled the compression of the wind and calculated the neutral disk-like zone in the enhanced wind from the hot star using the equation of the photoionization equilibrium. the presence of such neutral disk-like zones was also suggested on the basis of the modeling the spectral energy distribution of symbiotic binaries. We confront the calculated ionization structures in the enhanced wind from the hot star with the observations. the calculated column density of the neutral hydrogen atoms in the neutral disk-like zone and the emission measure of the ionized part of the wind from the hot star are in a good agreement with the quantities derived from observations during active phases. the presence of such neutral disk-like zones is transient, being connected with the active phases of symbiotic binaries. During quiescent phases, such neutral disk-like zones cannot be created because of insufficient mass-loss rate from the hot star.

  4. Numerical Simulations of Wind Accretion in Symbiotic Binaries

    Science.gov (United States)

    de Val-Borro, M.; Karovska, M.; Sasselov, D.

    2009-08-01

    About half of the binary systems are close enough to each other for mass to be exchanged between them at some point in their evolution, yet the accretion mechanism in wind accreting binaries is not well understood. We study the dynamical effects of gravitational focusing by a binary companion on winds from late-type stars. In particular, we investigate the mass transfer and formation of accretion disks around the secondary in detached systems consisting of an asymptotic giant branch (AGB) mass-losing star and an accreting companion. The presence of mass outflows is studied as a function of mass-loss rate, wind temperature, and binary orbital parameters. A two-dimensional hydrodynamical model is used to study the stability of mass transfer in wind accreting symbiotic binary systems. In our simulations we use an adiabatic equation of state and a modified version of the isothermal approximation, where the temperature depends on the distance from the mass losing star and its companion. The code uses a block-structured adaptive mesh refinement method that allows us to have high resolution at the position of the secondary and resolve the formation of bow shocks and accretion disks. We explore the accretion flow between the components and formation of accretion disks for a range of orbital separations and wind parameters. Our results show the formation of stream flow between the stars and accretion disks of various sizes for certain orbital configurations. For a typical slow and massive wind from an AGB star the flow pattern is similar to a Roche lobe overflow with accretion rates of 10% of the mass loss from the primary. Stable disks with exponentially decreasing density profiles and masses of the order 10-4 solar masses are formed when wind acceleration occurs at several stellar radii. The disks are geometrically thin with eccentric streamlines and close to Keplerian velocity profiles. The formation of tidal streams and accretion disks is found to be weakly dependent on

  5. NUMERICAL SIMULATIONS OF WIND ACCRETION IN SYMBIOTIC BINARIES

    International Nuclear Information System (INIS)

    De Val-Borro, M.; Karovska, M.; Sasselov, D.

    2009-01-01

    About half of the binary systems are close enough to each other for mass to be exchanged between them at some point in their evolution, yet the accretion mechanism in wind accreting binaries is not well understood. We study the dynamical effects of gravitational focusing by a binary companion on winds from late-type stars. In particular, we investigate the mass transfer and formation of accretion disks around the secondary in detached systems consisting of an asymptotic giant branch (AGB) mass-losing star and an accreting companion. The presence of mass outflows is studied as a function of mass-loss rate, wind temperature, and binary orbital parameters. A two-dimensional hydrodynamical model is used to study the stability of mass transfer in wind accreting symbiotic binary systems. In our simulations we use an adiabatic equation of state and a modified version of the isothermal approximation, where the temperature depends on the distance from the mass losing star and its companion. The code uses a block-structured adaptive mesh refinement method that allows us to have high resolution at the position of the secondary and resolve the formation of bow shocks and accretion disks. We explore the accretion flow between the components and formation of accretion disks for a range of orbital separations and wind parameters. Our results show the formation of stream flow between the stars and accretion disks of various sizes for certain orbital configurations. For a typical slow and massive wind from an AGB star the flow pattern is similar to a Roche lobe overflow with accretion rates of 10% of the mass loss from the primary. Stable disks with exponentially decreasing density profiles and masses of the order 10 -4 solar masses are formed when wind acceleration occurs at several stellar radii. The disks are geometrically thin with eccentric streamlines and close to Keplerian velocity profiles. The formation of tidal streams and accretion disks is found to be weakly dependent

  6. Evolution of magnetized, differentially rotating neutron stars: Simulations in full general relativity

    International Nuclear Information System (INIS)

    Duez, Matthew D.; Liu, Yuk Tung; Shapiro, Stuart L.; Stephens, Branson C.; Shibata, Masaru

    2006-01-01

    We study the effects of magnetic fields on the evolution of differentially rotating neutron stars, which can be formed in stellar core collapse or binary neutron star coalescence. Magnetic braking and the magnetorotational instability (MRI) both act on differentially rotating stars to redistribute angular momentum. Simulations of these stars are carried out in axisymmetry using our recently developed codes which integrate the coupled Einstein-Maxwell-MHD equations. We consider stars with two different equations of state (EOS), a gamma-law EOS with Γ=2, and a more realistic hybrid EOS, and we evolve them adiabatically. Our simulations show that the fate of the star depends on its mass and spin. For initial data, we consider three categories of differentially rotating, equilibrium configurations, which we label normal, hypermassive and ultraspinning. Normal configurations have rest masses below the maximum achievable with uniform rotation, and angular momentum below the maximum for uniform rotation at the same rest mass. Hypermassive stars have rest masses exceeding the mass limit for uniform rotation. Ultraspinning stars are not hypermassive, but have angular momentum exceeding the maximum for uniform rotation at the same rest mass. We show that a normal star will evolve to a uniformly rotating equilibrium configuration. An ultraspinning star evolves to an equilibrium state consisting of a nearly uniformly rotating central core, surrounded by a differentially rotating torus with constant angular velocity along magnetic field lines, so that differential rotation ceases to wind the magnetic field. In addition, the final state is stable against the MRI, although it has differential rotation. For a hypermassive neutron star, the MHD-driven angular momentum transport leads to catastrophic collapse of the core. The resulting rotating black hole is surrounded by a hot, massive, magnetized torus undergoing quasistationary accretion, and a magnetic field collimated along

  7. X-RAY EMISSION FROM MAGNETIC MASSIVE STARS

    International Nuclear Information System (INIS)

    Nazé, Yaël; Petit, Véronique; Rinbrand, Melanie; Owocki, Stan; Cohen, David; Ud-Doula, Asif; Wade, Gregg A.

    2014-01-01

    Magnetically confined winds of early-type stars are expected to be sources of bright and hard X-rays. To clarify the systematics of the observed X-ray properties, we have analyzed a large series of Chandra and XMM-Newton observations, corresponding to all available exposures of known massive magnetic stars (over 100 exposures covering ∼60% of stars compiled in the catalog of Petit et al.). We show that the X-ray luminosity is strongly correlated with the stellar wind mass-loss rate, with a power-law form that is slightly steeper than linear for the majority of the less luminous, lower- M-dot B stars and flattens for the more luminous, higher- M-dot O stars. As the winds are radiatively driven, these scalings can be equivalently written as relations with the bolometric luminosity. The observed X-ray luminosities, and their trend with mass-loss rates, are well reproduced by new MHD models, although a few overluminous stars (mostly rapidly rotating objects) exist. No relation is found between other X-ray properties (plasma temperature, absorption) and stellar or magnetic parameters, contrary to expectations (e.g., higher temperature for stronger mass-loss rate). This suggests that the main driver for the plasma properties is different from the main determinant of the X-ray luminosity. Finally, variations of the X-ray hardnesses and luminosities, in phase with the stellar rotation period, are detected for some objects and they suggest that some temperature stratification exists in massive stars' magnetospheres

  8. Symbiotic stars - a binary model with super-critical accretion

    Energy Technology Data Exchange (ETDEWEB)

    Bath, G T [National Radio Astronomy Observatory, Charlottesville, Va. (USA)

    1977-01-01

    The structure of symbiotic variables is discussed in terms of a binary model. Disc accretion by a main sequence star or white dwarf at rates close to the Eddington limit produces an ultraviolet continuum source near the accreting star surface. This generates a variable, radiatively-driven, out-flowing wind. The wind is optically thick and the disc luminosity is absorbed and scattered and thus degraded into the optical region. Variations in the rate of mass loss in the wind lead to optical eruptions through shifts in the position of, and conditions in, the last scattering surface. The behaviour of Z And determined by Boyarchuk is shown to be in agreement with such a model. The conditions in the out-flowing wind are discussed. Limits on the mass loss rate are derived from conditions at the surface of the accreting star. It is suggested that variable out-flow in the wind is generated by fluctuations in disc luminosity produced by changes in the giant companions rate of mass transfer. The relation between symbiotic variables and classical and dwarf novae is discussed.

  9. Dust in the Quasar Wind (Artist Concept)

    Science.gov (United States)

    2007-01-01

    Dusty grains -- including tiny specks of the minerals found in the gemstones peridot, sapphires and rubies -- can be seen blowing in the winds of a quasar, or active black hole, in this artist's concept. The quasar is at the center of a distant galaxy. Astronomers using NASA's Spitzer Space Telescope found evidence that such quasar winds might have forged these dusty particles in the very early universe. The findings are another clue in an ongoing cosmic mystery: where did all the dust in our young universe come from? Dust is crucial for efficient star formation as it allows the giant clouds where stars are born to cool quickly and collapse into new stars. Once a star has formed, dust is also needed to make planets and living creatures. Dust has been seen as far back as when the universe was less than a tenth of its current age, but how did it get there? Most dust in our current epoch forms in the winds of evolved stars that did not exist when the universe was young. Theorists had predicted that winds from quasars growing in the centers of distant galaxies might be a source of this dust. While the environment close to a quasar is too hot for large molecules like dust grains to survive, dust has been found in the cooler, outer regions. Astronomers now have evidence that dust is created in these outer winds. Using Spitzer's infrared spectrograph instrument, scientists found a wealth of dust grains in a quasar called PG2112+059 located at the center of a galaxy 8 billion light-years away. The grains - including corundum (sapphires and rubies); forsterite (peridot); and periclase (naturally occurring in marble) - are not typically found in galaxies without quasars, suggesting they might have been freshly formed in the quasar's winds.

  10. Observations of mass loss from OB and Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Barlow, M.J.

    1982-01-01

    In this review, three observationally accessible parameters of the winds of OB and Wolf-Rayet stars are discussed: (1) Terminal velocities, (2) Velocity laws, (3) Mass loss rates. In addition, some discussion of the ionisation structure of the winds is included. In general, only the most recent results for OB stars are mentioned. (Auth.)

  11. Spectrophotometry of Symbiotic Stars (Abstract)

    Science.gov (United States)

    Boyd, D.

    2017-12-01

    (Abstract only) Symbiotic stars are fascinating objects - complex binary systems comprising a cool red giant star and a small hot object, often a white dwarf, both embedded in a nebula formed by a wind from the giant star. UV radiation from the hot star ionizes the nebula, producing a range of emission lines. These objects have composite spectra with contributions from both stars plus the nebula and these spectra can change on many timescales. Being moderately bright, they lend themselves well to amateur spectroscopy. This paper describes the symbiotic star phenomenon, shows how spectrophotometry can be used to extract astrophysically useful information about the nature of these systems, and gives results for three symbiotic stars based on the author's observations.

  12. Mass-loss rates of cool stars

    Science.gov (United States)

    Katrien Els Decin, Leen

    2015-08-01

    Over much of the initial mass function, stars lose a significant fraction of their mass through a stellar wind during the late stages of their evolution when being a (super)giant star. As of today, we can not yet predict the mass-loss rate during the (super)giant phase for a given star with specific stellar parameters from first principles. This uncertainty directly impacts the accuracy of current stellar evolution and population synthesis models that predict the enrichment of the interstellar medium by these stellar winds. Efforts to establish the link between the initial physical and chemical conditions at stellar birth and the mass-loss rate during the (super)giant phase have proceeded on two separate tracks: (1) more detailed studies of the chemical and morpho-kinematical structure of the stellar winds of (super)giant stars in our own Milky Way by virtue of the proximity, and (2) large scale and statistical studies of a (large) sample of stars in other galaxies (such as the LMC and SMC) and globular clusters eliminating the uncertainty on the distance estimate and providing insight into the dependence of the mass-loss rate on the metallicity. In this review, I will present recent results of both tracks, will show how recent measurements confirm (some) theoretical predictions, but also how results from the first track admonish of common misconceptions inherent in the often more simplified analysis used to analyse the large samples from track 2.

  13. MPC for Wind Power Gradients - Utilizing Forecasts, Rotor Inertia, and Central Energy Storage

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel; Larsen, Lars F. S.; Jørgensen, John Bagterp

    2013-01-01

    decentralized energy storage in the turbines’ inertia combined with a central storage unit or deferrable consumers can be utilized to achieve this goal at a minimum cost. We propose a variation on model predictive control to incorporate predictions of wind speed. Due to the aerodynamics of the turbines...

  14. He II lambda-4686 in Eta Carinae: Collapse of the Wind-Wind Collision Region During Periastron Passage

    Science.gov (United States)

    Teodoro, M.; Damineli, A.; Arias, J. I.; DeAraujo, F. X.; Barba, R. H.; Corcoran, M. F.; Fernandes, M. Borges; Fernandez-Lajus, E.; Fraga, L.; Gamen, R. C.; hide

    2012-01-01

    The periodic spectroscopic events in Eta Carinae are now well established and occur near the periastron passage of two massive stars in a very eccentric orbit. Several mechanisms have been proposed to explain the variations of different spectral features, such as an eclipse by the wind-wind collision boundary, a shell ejection from the primary star or accretion of its wind onto the secondary. All of them have problems explaining all the observed phenomena. To better understand the nature of the cyclic events we performed a dense monitoring of Eta Carinae with 5 Southern telescopes during the 2009 low excitation event, resulting in a set of data of unprecedented quality and sampling. The intrinsic luminosity of the He II lambda-4686 emission line (L approx 310 solar L) just before periastron reveals the presence of a very luminous transient source of extreme UV radiation emitted in the wind-wind collision (WWC) region. Clumps in the primary's wind probably explain the flare-like behavior of both the X-ray and He II lambda-4686 light-curves. After a short-lived minimum, He II lambda-4686 emission rises again to a new maximum, when X-rays are still absent or very weak. We interpret this as a collapse of the WWC onto the "surface" of the secondary star, switching off the hard X-ray source and diminishing the WWC shock cone. The recovery from this state is controlled by the momentum balance between the secondary's wind and the clumps in the primary's wind.

  15. Gamma rays from active regions in the galaxy: the possible contribution of stellar winds

    International Nuclear Information System (INIS)

    Cesarsky, C.J.; Montmerle, Thierry.

    1982-08-01

    Massive stars release a considerable amount of mechanical energy in the form of strong stellar winds. A fraction of this energy may be transferred to relativistic cosmic rays by diffusive shock acceleration at the wind boundary, and/or in the expanding, turbulent wind itself. Massive stars are most frequently found in OB associations, surrounded by H II regions lying at the edge of dense molecular clouds. The interaction of the freshly accelerated particles with matter gives rise to #betta#-ray emission. In this paper, we first briefly review the current knowledge on the energetics of strong stellar winds from O and Wolf-Rayet stars, as well as from T Tauri stars. Taking into account the finite lifetime of these stars, we then proceed to show that stellar winds dominate the energetics of OB associations during the first 4 to 6 million years, after which supernovae take over. In the solar neighborhood, the star formation rate is constant, and a steady-state situation prevails, in which the supernova contribution is found to be dominant. A small, but meaningful fraction of the CO S-B #betta#-ray sources may be fueled by WR and O stellar winds in OB associations, while the power released by T Tauri stars alone is perhaps insufficient to account for the #betta#-ray emission of nearby dark clouds. Finally, we discuss some controversial aspects of the physics of particle acceleration by stellar winds

  16. Models for symbiotic stars in the light of the data

    International Nuclear Information System (INIS)

    Friedjung, M.

    1982-01-01

    Different single and binary models of symbiotic stars are examined. Single star models encounter a number of problems, and binary models are probable. There are however difficulties in the interpretation of radial velocities. Accretion disks play a role in some cases, but winds especially from the cool component must be taken into account in realistic models. There is some evidence of excess heating of the outer layers of the cool component. Outbursts may be related to sudden changes in the characteristics of the cool star wind. (Auth.)

  17. PULSATION-TRIGGERED MASS LOSS FROM AGB STARS: THE 60 DAY CRITICAL PERIOD

    International Nuclear Information System (INIS)

    McDonald, I.; Zijlstra, A. A.

    2016-01-01

    Low- and intermediate-mass stars eject much of their mass during the late, red giant branch (RGB) phase of evolution. The physics of their strong stellar winds is still poorly understood. In the standard model, stellar pulsations extend the atmosphere, allowing a wind to be driven through radiation pressure on condensing dust particles. Here, we investigate the onset of the wind, using nearby RGB stars drawn from the Hipparcos catalog. We find a sharp onset of dust production when the star first reaches a pulsation period of 60 days. This approximately coincides with the point where the star transitions to the first overtone pulsation mode. Models of the spectral energy distributions show stellar mass-loss rate suddenly increasing at this point, by a factor of ∼10 over the existing (chromospherically driven) wind. The dust emission is strongly correlated with both pulsation period and amplitude, indicating stellar pulsation is the main trigger for the strong mass loss, and determines the mass-loss rate. Dust emission does not strongly correlate with stellar luminosity, indicating radiation pressure on dust has little effect on the mass-loss rate. RGB stars do not normally appear to produce dust, whereas dust production by asymptotic giant branch stars appears commonplace, and is probably ubiquitous above the RGB-tip luminosity. We conclude that the strong wind begins with a step change in mass-loss rate and is triggered by stellar pulsations. A second rapid mass-loss-rate enhancement is suggested when the star transitions to the fundamental pulsation mode at a period of ∼300 days.

  18. Isolated/Non-Isolated Quad-Inverter Configuration for Multilevel Symmetrical/Asymmetrical Dual Six-Phase Star-Winding Converter

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevi Kumar; Hontz, Michael R.; Khanna, Raghav

    2016-01-01

    This article presents the developments of a novel isolated/non-isolated quad inverter configuration for multilevel dual six-phase (twelve-phase) star-winding converter. The modular circuit consists of four standard voltage source inverters (VSIs). Each VSI is incorporated with one bi-directional ...... systems, electrical vehicles, AC tractions, and `More-Electric Aircraft' propulsion systems....... converter is numerically modeled using Matlab/PLECS simulation software and the predicted behavior of the system is analyzed and presented. Good agreement is obtained between these results and the theoretical analysis. Suitable applications for the converter include (low-voltage/high-current) medium power...

  19. The Search for New Luminous Blue Variable Stars: Near-Infrared Spectroscopy of Stars With 24 micron Shells

    Science.gov (United States)

    Stringfellow, Guy; Gvaramadze, Vasilii

    2010-02-01

    Luminous Blue Variable (LBV) stars represent an extremely rare class of very luminous and massive stars. Only about a dozen confirmed Galactic LBV stars are known to date, which precludes us from determining a solid evolutionary connection between LBV and other intermediate (e.g. Ofpe/WN9, WNL) phases in the life of very massive stars. The known LBV stars each have their own unique properties, so new discoveries add insight into the properties and evolutionary status of LBVs and massive stars; even one new discovery of objects of this type could provide break-through results in the understanding of the intermediate stages of massive star evolution. We have culled a prime sample of possible LBV candidates from the Spitzer 24 (micron) archival data. All have circumstellar nebulae, rings, and shells (typical of LBVs and related stars) surrounding reddened central stars. Spectroscopic followup of about two dozen optically visible central stars associated with the shells from this sample showed that they are either candidate LBVs, late WN-type Wolf-Rayet stars or blue supergiants. We propose infrared spectroscopic observations of the central stars for a large fraction (23 stars) of our northern sample to determine their nature and discover additional LBV candidates. These stars have no plausible optical counterparts, so infrared spectra are needed. This program requires two nights of Hale time using TripleSpec.

  20. TURBOVELOCITY STARS: KICKS RESULTING FROM THE TIDAL DISRUPTION OF SOLITARY STARS

    International Nuclear Information System (INIS)

    Manukian, Haik; Guillochon, James; Ramirez-Ruiz, Enrico; O'Leary, Ryan M.

    2013-01-01

    The centers of most known galaxies host supermassive black holes (SMBHs). In orbit around these black holes are a centrally concentrated distribution of stars, both in single and in binary systems. Occasionally, these stars are perturbed onto orbits that bring them close to the SMBH. If the star is in a binary system, the three-body interaction with the SMBH can lead to large changes in orbital energy, depositing one of the two stars on a tightly-bound orbit, and its companion into a hyperbolic orbit that may escape the galaxy. In this Letter, we show that the disruption of solitary stars can also lead to large positive increases in orbital energy. The kick velocity depends on the amount of mass the star loses at pericenter, but not on the ratio of black hole to stellar mass, and are at most the star's own escape velocity. We find that these kicks are usually too small to result in the ejection of stars from the Milky Way, but can eject the stars from the black hole's sphere of influence, reducing their probability of being disrupted again. We estimate that ∼ 10 5 stars, ∼ 1% of all stars within 10 pc of the galactic center, are likely to have had mass removed by the central black hole through tidal interaction, and speculate that these 'turbovelocity' stars will at first be redder, but eventually bluer, and always brighter than their unharassed peers.

  1. Ages of Young Star Clusters, Massive Blue Stragglers, and the Upper Mass Limit of Stars: Analyzing Age-dependent Stellar Mass Functions

    NARCIS (Netherlands)

    Schneider, F.R.N.; Izzard, R.G.; de Mink, S.E.; Langer, N.; Stolte, A.; de Koter, A.; Gvaramadze, V.V.; Huβman, B.; Liermann, A.; Sana, H.

    2014-01-01

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass

  2. The UK Infrared Telescope M33 monitoring project - I. Variable red giant stars in the central square kiloparsec

    Science.gov (United States)

    Javadi, Atefeh; van Loon, Jacco Th.; Mirtorabi, Mohammad Taghi

    2011-02-01

    We have conducted a near-infrared monitoring campaign at the UK Infrared Telescope (UKIRT), of the Local Group spiral galaxy M33 (Triangulum). The main aim was to identify stars in the very final stage of their evolution, and for which the luminosity is more directly related to the birth mass than the more numerous less-evolved giant stars that continue to increase in luminosity. The most extensive data set was obtained in the K band with the UIST instrument for the central 4 × 4 arcmin2 (1 kpc2) - this contains the nuclear star cluster and inner disc. These data, taken during the period 2003-2007, were complemented by J- and H-band images. Photometry was obtained for 18 398 stars in this region; of these, 812 stars were found to be variable, most of which are asymptotic giant branch (AGB) stars. Our data were matched to optical catalogues of variable stars and carbon stars and to mid-infrared photometry from the Spitzer Space Telescope. In this first of a series of papers, we present the methodology of the variability survey and the photometric catalogue - which is made publicly available at the Centre de Données astronomiques de Strasbourg - and discuss the properties of the variable stars. The most dusty AGB stars had not been previously identified in optical variability surveys, and our survey is also more complete for these types of stars than the Spitzer survey.

  3. Wintering Sandhill Crane exposure to wind energy development in the central and southern Great Plains, USA

    Science.gov (United States)

    Pearse, Aaron T.; Brandt, David; Krapu, Gary

    2016-01-01

    Numerous wind energy projects have been constructed in the central and southern Great Plains, USA, the main wintering area for midcontinental Sandhill Cranes (Grus canadensis). In an initial assessment of the potential risks of wind towers to cranes, we estimated spatial overlap, investigated potential avoidance behavior, and determined the habitat associations of cranes. We used data from cranes marked with platform transmitting terminals (PTTs) with and without global positioning system (GPS) capabilities. We estimated the wintering distributions of PTT-marked cranes prior to the construction of wind towers, which we compared with current tower locations. Based on this analysis, we found 7% spatial overlap between the distributions of cranes and towers. When we looked at individually marked cranes, we found that 52% would have occurred within 10 km of a tower at some point during winter. Using data from cranes marked after tower construction, we found a potential indication of avoidance behavior, whereby GPS-marked cranes generally used areas slightly more distant from existing wind towers than would be expected by chance. Results from a habitat selection model suggested that distances between crane locations and towers may have been driven more by habitat selection than by avoidance, as most wind towers were constructed in locations not often selected by wintering cranes. Our findings of modest regional overlap and that few towers have been placed in preferred crane habitat suggest that the current distribution of wind towers may be of low risk to the continued persistence of wintering midcontinental Sandhill Cranes in the central and southern Great Plains.

  4. MAGNETIC NESTED-WIND SCENARIOS FOR BIPOLAR OUTFLOWS: PREPLANETARY AND YSO NEBULAR SHAPING

    International Nuclear Information System (INIS)

    Dennis, Timothy J.; Frank, Adam; Blackman, Eric G.; DeMarco, Orsola; Balick, Bruce; Mitran, Sorin

    2009-01-01

    We present results of a series of magnetohydrodynamic (MHD) and hydrodynamic (HD) 2.5 dimensional simulations of the morphology of outflows driven by nested wide-angle winds, i.e., winds that emanate from a central star as well as from an orbiting accretion disk. While our results are broadly relevant to nested-wind systems, we have tuned the parameters of the simulations to touch on issues in both young stellar objects and planetary nebula (PN) studies. In particular, our studies connect to open issues in the early evolution of PNs. We find that nested MHD winds exhibit marked morphological differences from the single MHD wind case along both dimensions of the flow. Nested HD winds, on the other hand, give rise mainly to geometric distortions of an outflow that is topologically similar to the flow arising from a single stellar HD wind. Our MHD results are insensitive to changes in ambient temperature between ionized and un-ionized circumstellar environments. The results are sensitive to the relative mass-loss rates and the relative speeds of the stellar and disk winds. We also present synthetic emission maps of both nested MHD and HD simulations. We find that nested MHD winds show knots of emission appearing on-axis that do not appear in the HD case.

  5. THE DISK WIND IN THE RAPIDLY SPINNING STELLAR-MASS BLACK HOLE 4U 1630–472 OBSERVED WITH NuSTAR

    Energy Technology Data Exchange (ETDEWEB)

    King, Ashley L.; Miller, Jon M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); Walton, Dominic J.; Fürst, Felix; Harrison, Fiona A. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Barret, Didier [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); Boggs, Steven E.; Craig, William W.; Krivonos, Roman; Tomsick, John A. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Christensen, Finn E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Fabian, Andy C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Hailey, Charles J.; Mori, Kaya [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Natalucci, Lorenzo [Istituto Nazionale di Astrofisica, INAF-IAPS, via del Fosso del Cavaliere, I-00133 Roma (Italy); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 169-221, Pasadena, CA 91109 (United States); Zhang, William W., E-mail: ashking@umich.edu [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-03-20

    We present an analysis of a short NuSTAR observation of the stellar-mass black hole and low-mass X-ray binary 4U 1630–472. Reflection from the inner accretion disk is clearly detected for the first time in this source, owing to the sensitivity of NuSTAR. With fits to the reflection spectrum, we find evidence for a rapidly spinning black hole, a{sub ∗}=0.985{sub −0.014}{sup +0.005} (1σ statistical errors). However, archival data show that the source has relatively low radio luminosity. Recently claimed relationships between jet power and black hole spin would predict either a lower spin or a higher peak radio luminosity. We also report the clear detection of an absorption feature at 7.03 ± 0.03 keV, likely signaling a disk wind. If this line arises in dense, moderately ionized gas (log ξ=3.6{sub −0.3}{sup +0.2}) and is dominated by He-like Fe XXV, the wind has a velocity of v/c=0.043{sub −0.007}{sup +0.002} (12900{sub −2100}{sup +600} km s{sup –1}). If the line is instead associated with a more highly ionized gas (log ξ=6.1{sub −0.6}{sup +0.7}), and is dominated by Fe XXVI, evidence of a blueshift is only marginal, after taking systematic errors into account. Our analysis suggests the ionized wind may be launched within 200-1100 Rg, and may be magnetically driven.

  6. Veiling and Accretion Around the Young Binary Stars S and VV Corona Australis

    Science.gov (United States)

    Sullivan, Kendall; Prato, Lisa; Avilez, Ian

    2018-01-01

    S CrA and VV CrA are two young binary star systems with separations of 170 AU and 250 AU, respectively, in the southern star-forming region Corona Australis. The spectral types of the four stars in these two systems are similar, approximately K7 to M1, hence the stellar masses are also similar. The study of young stars just emerging from their natal cloud cores at the very limits of observability allows us to probe the extreme environments in which planet formation begins to occur. Stars in this early evolutionary stage can have circumstellar or circumbinary disks, and sometimes remnants of the envelopes which surrounded them during the protostellar stage. Envelopes accrete onto disks and disks in turn accrete onto the central stars, triggering elevated continuum emission, line emission, outflows, and stellar winds. This violent stage marks the onset of the epoch of planet formation. Using high-resolution near-infrared, H-band spectroscopy from the Keck II telescope using the NIRSPEC instrument over 4-6 epochs, we are probing the chaotic environment surrounding the four stars in these systems. We determine the spectral types for VV CrA A and B for the first time, and examine the variable veiling and emission occurring around each of these stars. This research was supported in part by NSF grants AST-1461200 and AST-1313399.

  7. The binary fraction of planetary nebula central stars - III. the promise of VPHAS+

    Science.gov (United States)

    Barker, Helen; Zijlstra, Albert; De Marco, Orsola; Frew, David J.; Drew, Janet E.; Corradi, Romano L. M.; Eislöffel, Jochen; Parker, Quentin A.

    2018-04-01

    The majority of planetary nebulae (PNe) are not spherical, and current single-star models cannot adequately explain all the morphologies we observe. This has led to the Binary Hypothesis, which states that PNe are preferentially formed by binary systems. This hypothesis can be corroborated or disproved by comparing the estimated binary fraction of all PNe central stars (CS) to that of the supposed progenitor population. One way to quantify the rate of CS binarity is to detect near infrared excess indicative of a low-mass main-sequence companion. In this paper, a sample of known PNe within data release 2 of the ongoing VPHAS+ is investigated. We give details of the method used to calibrate VPHAS+ photometry, and present the expected colours of CS and main-sequence stars within the survey. Objects were scrutinized to remove PN mimics from our sample and identify true CS. Within our final sample of seven CS, six had previously either not been identified or confirmed. We detected an i-band excess indicative of a low-mass companion star in three CS, including one known binary, leading us to conclude that VPHAS+ provides the precise photometry required for the IR excess method presented here, and will likely improve as the survey completes and the calibration process finalized. Given the promising results from this trial sample, the entire VPHAS+ catalogue should be used to study PNe and extend the IR excess-tested CS sample.

  8. Spiraling Out of Control: Three-dimensional Hydrodynamical Modeling of the Colliding Winds in η Carinae

    Science.gov (United States)

    Parkin, E. R.; Pittard, J. M.; Corcoran, M. F.; Hamaguchi, K.

    2011-01-01

    Three-dimensional adaptive mesh refinement hydrodynamical simulations of the wind-wind collision between the enigmatic supermassive star η Car and its mysterious companion star are presented which include radiative driving of the stellar winds, gravity, optically thin radiative cooling, and orbital motion. Simulations with static stars with a periastron passage separation reveal that the preshock companion star's wind speed is sufficiently reduced so that radiative cooling in the postshock gas becomes important, permitting the runaway growth of nonlinear thin-shell instabilities (NTSIs) which massively distort the wind-wind collision region (WCR). However, large-scale simulations, which include the orbital motion of the stars, show that orbital motion reduces the impact of radiative inhibition and thus increases the acquired preshock velocities. As such, the postshock gas temperature and cooling time see a commensurate increase, and sufficient gas pressure is preserved to stabilize the WCR against catastrophic instability growth. We then compute synthetic X-ray spectra and light curves and find that, compared to previous models, the X-ray spectra agree much better with XMM-Newton observations just prior to periastron. The narrow width of the 2009 X-ray minimum can also be reproduced. However, the models fail to reproduce the extended X-ray minimum from previous cycles. We conclude that the key to explaining the extended X-ray minimum is the rate of cooling of the companion star's postshock wind. If cooling is rapid then powerful NTSIs will heavily disrupt the WCR. Radiative inhibition of the companion star's preshock wind, albeit with a stronger radiation-wind coupling than explored in this work, could be an effective trigger.

  9. SPIRALING OUT OF CONTROL: THREE-DIMENSIONAL HYDRODYNAMICAL MODELING OF THE COLLIDING WINDS IN η CARINAE

    International Nuclear Information System (INIS)

    Parkin, E. R.; Pittard, J. M.; Corcoran, M. F.; Hamaguchi, K.

    2011-01-01

    Three-dimensional adaptive mesh refinement hydrodynamical simulations of the wind-wind collision between the enigmatic supermassive star η Car and its mysterious companion star are presented which include radiative driving of the stellar winds, gravity, optically thin radiative cooling, and orbital motion. Simulations with static stars with a periastron passage separation reveal that the preshock companion star's wind speed is sufficiently reduced so that radiative cooling in the postshock gas becomes important, permitting the runaway growth of nonlinear thin-shell instabilities (NTSIs) which massively distort the wind-wind collision region (WCR). However, large-scale simulations, which include the orbital motion of the stars, show that orbital motion reduces the impact of radiative inhibition and thus increases the acquired preshock velocities. As such, the postshock gas temperature and cooling time see a commensurate increase, and sufficient gas pressure is preserved to stabilize the WCR against catastrophic instability growth. We then compute synthetic X-ray spectra and light curves and find that, compared to previous models, the X-ray spectra agree much better with XMM-Newton observations just prior to periastron. The narrow width of the 2009 X-ray minimum can also be reproduced. However, the models fail to reproduce the extended X-ray minimum from previous cycles. We conclude that the key to explaining the extended X-ray minimum is the rate of cooling of the companion star's postshock wind. If cooling is rapid then powerful NTSIs will heavily disrupt the WCR. Radiative inhibition of the companion star's preshock wind, albeit with a stronger radiation-wind coupling than explored in this work, could be an effective trigger.

  10. Discovery of a new Wolf-Rayet star and a candidate star cluster in the Large Magellanic Cloud with Spitzer

    Science.gov (United States)

    Gvaramadze, V. V.; Chené, A.-N.; Kniazev, A. Y.; Schnurr, O.; Shenar, T.; Sander, A.; Hainich, R.; Langer, N.; Hamann, W.-R.; Chu, Y.-H.; Gruendl, R. A.

    2014-08-01

    We report the first-ever discovery of a Wolf-Rayet (WR) star in the Large Magellanic Cloud via detection of a circular shell with the Spitzer Space Telescope. Follow-up observations with Gemini-South resolved the central star of the shell into two components separated from each other by ≈2 arcsec (or ≈0.5 pc in projection). One of these components turns out to be a WN3 star with H and He lines both in emission and absorption (we named it BAT99 3a using the numbering system based on extending the Breysacher et al. catalogue). Spectroscopy of the second component showed that it is a B0 V star. Subsequent spectroscopic observations of BAT99 3a with the du Pont 2.5-m telescope and the Southern African Large Telescope revealed that it is a close, eccentric binary system, and that the absorption lines are associated with an O companion star. We analysed the spectrum of the binary system using the non-LTE Potsdam WR (POWR) code, confirming that the WR component is a very hot (≈90 kK) WN star. For this star, we derived a luminosity of log L/ L⊙ = 5.45 and a mass-loss rate of 10- 5.8 M⊙ yr- 1, and found that the stellar wind composition is dominated by helium with 20 per cent of hydrogen. Spectroscopy of the shell revealed an He III region centred on BAT99 3a and having the same angular radius (≈15 arcsec) as the shell. We thereby add a new example to a rare class of high-excitation nebulae photoionized by WR stars. Analysis of the nebular spectrum showed that the shell is composed of unprocessed material, implying that the shell was swept-up from the local interstellar medium. We discuss the physical relationship between the newly identified massive stars and their possible membership of a previously unrecognized star cluster.

  11. WIND BRAKING OF MAGNETARS

    International Nuclear Information System (INIS)

    Tong, H.; Xu, R. X.; Qiao, G. J.; Song, L. M.

    2013-01-01

    We explore the wind braking of magnetars considering recent observations challenging the traditional magnetar model. There is evidence for strong multipole magnetic fields in active magnetars, but the dipole field inferred from spin-down measurements may be strongly biased by particle wind. Recent observations challenging the traditional model of magnetars may be explained naturally by the wind braking scenario: (1) the supernova energies of magnetars are of normal value; (2) the non-detection in Fermi observations of magnetars; (3) the problem posed by low magnetic field soft gamma-ray repeaters; (4) the relation between magnetars and high magnetic field pulsars; and (5) a decreasing period derivative during magnetar outbursts. Transient magnetars with L x rot may still be magnetic dipole braking. This may explain why low luminosity magnetars are more likely to have radio emissions. A strong reduction of the dipole magnetic field is possible only when the particle wind is very collimated at the star surface. A small reduction of the dipole magnetic field may result from detailed considerations of magnetar wind luminosity. In the wind braking scenario, magnetars are neutron stars with a strong multipole field. For some sources, a strong dipole field may no longer be needed. A magnetism-powered pulsar wind nebula will be one of the consequences of wind braking. For a magnetism-powered pulsar wind nebula, we should see a correlation between the nebula luminosity and the magnetar luminosity. Under the wind braking scenario, a braking index smaller than three is expected. Future braking index measurement of a magnetar may tell us whether magnetars are wind braking or magnetic dipole braking.

  12. Emission Lines in the Near-infrared Spectra of the Infrared Quintuplet Stars in the Galactic Center

    Energy Technology Data Exchange (ETDEWEB)

    Najarro, F. [Departamento de Astrofísica, Centro de Astrobiología (CSIC-INTA), Ctra. Torrejón a Ajalvir km 4, E-28850 Torrejón de Ardoz (Spain); Geballe, T. R. [Gemini Observatory, 670 North A’ohoku Place, Hilo, HI 96720 (United States); Figer, D. F. [Center for Detectors, Rochester Institute of Technology, 74 Lomb Memorial Drive, Rochester, NY 14623 (United States); Fuente, D. de la [Instituto de Astronomía, Unidad Académica en Ensenada, Universidad Nacional Autónoma de México, Ensenada 22860, México (Mexico)

    2017-08-20

    We report the detection of a number of emission lines in the 1.0–2.4 μ m spectra of four of the five bright-infrared dust-embedded stars at the center of the Galactic center’s (GC) Quintuplet Cluster. Spectroscopy of the central stars of these objects is hampered not only by the large interstellar extinction that obscures all of the objects in the GC, but also by the large amounts of warm circumstellar dust surrounding each of the five stars. The pinwheel morphologies of the dust observed previously around two of them are indicative of Wolf–Rayet colliding wind binaries; however, infrared spectra of each of the five have until now revealed only dust continua steeply rising to long wavelengths and absorption lines and bands from interstellar gas and dust. The emission lines detected, from ionized carbon and from helium, are broad and confirm that the objects are dusty late-type carbon Wolf–Rayet stars.

  13. The evolutionary status of symbiotic stars

    International Nuclear Information System (INIS)

    Rudak, B.

    1982-01-01

    The evolutionary relations between symbiotic stars and cataclysmic variables are presented. The symbiotic stars are assumed to be long period detached binaries containing a carbon-oxygen degenerate primary and a red giant losing its mass through a spherically symmetric wind. Such systems can be obtained in Case C evolution, provided a common envelope during a rapid mass transfer phase was not formed. The same way recurrent novae containing a red giant as a secondary component may be produced. The factors influencing the differences between symbiotic stars and nova-type stars are discussed. (Auth.)

  14. Strongly-sheared wind-forced currents in the nearshore regions of the central Southern California Bight

    Science.gov (United States)

    Noble, Marlene A.; Rosenberger, Kurt; Robertson, George L.

    2015-01-01

    Contrary to many previous reports, winds do drive currents along the shelf in the central portion of the Southern California Bight (SCB). Winds off Huntington Beach CA are the dominant forcing for currents over the nearshore region of the shelf (water depths less than 20 m). Winds control about 50–70% of the energy in nearshore alongshelf surface currents. The wind-driven current amplitudes are also anomalously high. For a relatively weak 1 dyne/cm2 wind stress, the alongshelf surface current amplitudes in this region can reach 80 cm/s or more. Mid-depth current amplitudes for the same wind stress are around 30–40 cm/s. These wind-driven surface current amplitudes are much larger than previously measured over other nearshore shelf regions, perhaps because this program is one of the few that measured currents within a meter of the surface. The near-bed cross-shelf currents over the nearshore region of the Huntington Beach shelf have an Ekman response to winds in that they upwell (downwell) for down (up) coast winds. This response disappears further offshore. Hence, there is upwelling in the SCB, but it does not occur across the entire shelf. Subthermocline water in the nearshore region that may contain nutrients and plankton move onshore when winds are southeastward, but subthermocline water over the shelf break is not transported to the beach. The currents over the outer shelf are not predominately controlled by winds, consistent with previous reports. Instead, they are mainly driven by cross-shelf pressure gradients that are independent of local wind stress.

  15. The Evolution of Low-Metallicity Massive Stars

    Science.gov (United States)

    Szécsi, Dorottya

    2016-07-01

    Massive star evolution taking place in astrophysical environments consisting almost entirely of hydrogen and helium - in other words, low-metallicity environments - is responsible for some of the most intriguing and energetic cosmic phenomena, including supernovae, gamma-ray bursts and gravitational waves. This thesis aims to investigate the life and death of metal-poor massive stars, using theoretical simulations of the stellar structure and evolution. Evolutionary models of rotating, massive stars (9-600 Msun) with an initial metal composition appropriate for the low-metallicity dwarf galaxy I Zwicky 18 are presented and analyzed. We find that the fast rotating models (300 km/s) become a particular type of objects predicted only at low-metallicity: the so-called Transparent Wind Ultraviolet INtense (TWUIN) stars. TWUIN stars are fast rotating massive stars that are extremely hot (90 kK), very bright and as compact as Wolf-Rayet stars. However, as opposed to Wolf-Rayet stars, their stellar winds are optically thin. As these hot objects emit intense UV radiation, we show that they can explain the unusually high number of ionizing photons of the dwarf galaxy I Zwicky 18, an observational quantity that cannot be understood solely based on the normal stellar population of this galaxy. On the other hand, we find that the most massive, slowly rotating models become another special type of object predicted only at low-metallicity: core-hydrogen-burning cool supergiant stars. Having a slow but strong stellar wind, these supergiants may be important contributors in the chemical evolution of young galactic globular clusters. In particular, we suggest that the low mass stars observed today could form in a dense, massive and cool shell around these, now dead, supergiants. This scenario is shown to explain the anomalous surface abundances observed in these low mass stars, since the shell itself, having been made of the mass ejected by the supergiant’s wind, contains nuclear

  16. Investigation of conspicuous infrared star cluster and star-forming region RCW 38 IR Cluster

    International Nuclear Information System (INIS)

    Gyulbudaghian, A.L.; May, J.

    2008-01-01

    An infrared star cluster RCW 38 IR Cluster, which is also a massive star-forming region, is investigated. The results of observations with SEST (Cerro is Silla, Chile) telescope on 2.6-mm 12 CO spectral line and with SIMBA on 1.2-mm continuum are given. The 12 CO observations revealed the existence of several molecular clouds, two of which (clouds I and 2) are connected with the object RCW 38 IR Cluster. Cloud 1 is a massive cloud, which has a depression in which the investigated object is embedded. It is not excluded that the depression was formed by the wind and/or emission from the young bright stars belonging to the star cluster. Rotation of cloud 2, around the axis having SE-NW direction, with an angular velocity ω 4.6 · 10 -14 s -1 is also found. A red-shifted outflow with velocity ∼+5.6 km/s, in the SE direction and perpendicular to the elongation of cloud 2 has been also found. The investigated cluster is associated with an IR point source IRAS 08573-4718, which has IR colours typical for a, non-evolved embedded (in the cloud) stellar object. The cluster is also connected with a water maser. The SIMBA image shoves the existence of a central bright condensation, coinciding with the cluster itself, and two extensions. One of these extensions (the one with SW-NE direction) coincides, both in place and shape, with cloud 2, so that it is not excluded the possibility that this extension might be also rotating like cloud 2. In the vicinity of these extensions there are condensations resembling HH objects

  17. Climate Prediction Center (CPC)Area-averaged 850-hPa Central Pacific Trade Wind Anomalies

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is one of the CPC?s Monthly Atmospheric and SST Indices. It is the 850-hPa trade wind anomalies averaged over the area 5oN ? 5oS, 175oW-140oW (central...

  18. The theory of radiation driven stellar winds and the Wolf-Rayet phenomenon

    International Nuclear Information System (INIS)

    Abbott, D.C.

    1982-01-01

    The author considers the question of whether the mass loss observed from Wolf-Rayet stars can be explained by a version of wind theory which is scaled to the conditions found in the envelopes of Wolf-Rayet stars. He discusses the following topics: - The calculated radiation pressure in OB stars, and its dependence on temperature, density, and chemical composition. - A comparison between predicted and observed mass loss rates and terminal velocities for OB stars. - The applicability of the standard radiation driven wind models to Wolf-Rayet stars. - Speculations on how Wolf-Rayet stars achieve their enormous mass loss rates within the context of the radiation pressure mechanism. (Auth.)

  19. ON THE HEATING EFFICIENCY DERIVED FROM OBSERVATIONS OF YOUNG SUPER STAR CLUSTERS IN M82

    International Nuclear Information System (INIS)

    Silich, Sergiy; Tenorio-Tagle, Guillermo; Torres-Campos, Ana; Munoz-Tunon, Casiana; Monreal-Ibero, Ana; Melo, Veronica

    2009-01-01

    Here, we discuss the mechanical feedback that massive stellar clusters provide to the interstellar medium of their host galaxy. We apply an analytic theory developed in a previous study for M82-A1 to a sample of 10 clusters located in the central zone of the starburst galaxy M82, all surrounded by compact and dense H II regions. We claim that the only way that such H II regions can survive around the selected clusters, is if they are embedded into a high-pressure ISM and if the majority of their mechanical energy is lost within the star cluster volume via strong radiative cooling. The latter implies that these clusters have a low heating efficiency, η, and evolve in the bimodal hydrodynamic regime. In this regime, the shock-heated plasma in the central zones of a cluster becomes thermally unstable, loses its pressure and is accumulated there, whereas the matter injected by supernovae and stellar winds outside this volume forms a high-velocity outflow-the star cluster wind. We calculated the heating efficiency for each of the selected clusters and found that in all cases it does not exceed 10%. Such low heating efficiency values imply a low mechanical energy output and the impact that the selected clusters provide to the ISM of M82 is thus much smaller than what one would expect using stellar cluster synthetic models.

  20. The slow ionized wind and rotating disklike system that are associated with the high-mass young stellar object G345.4938+01.4677

    Energy Technology Data Exchange (ETDEWEB)

    Guzmán, Andrés E.; Garay, Guido; Bronfman, Leonardo; Mardones, Diego [Departamento de Astronomía, Universidad de Chile, Camino el Observatorio 1515, Las Condes, Santiago (Chile); Rodríguez, Luis F. [Centro de Radioastronomía y Astrofísica (UNAM), Morelia 58089 (Mexico); Moran, James [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States); Brooks, Kate J. [CSIRO Astronomy and Space Science, P.O. Box 76, Epping, 1710 NSW (Australia); Nyman, Lars-Åke [Joint ALMA Observatory (JAO), Alonso de Córdova 3107, Vitacura, Santiago (Chile); Sanhueza, Patricio [Institute for Astrophysical Research, Boston University, Boston, MA 02215 (United States)

    2014-12-01

    We report the detection, made using ALMA, of the 92 GHz continuum and hydrogen recombination lines (HRLs) H40α, H42α, and H50β emission toward the ionized wind associated with the high-mass young stellar object G345.4938+01.4677. This is the luminous central dominating source located in the massive and dense molecular clump associated with IRAS 16562–3959. The HRLs exhibit Voigt profiles, which is a strong signature of Stark broadening. We successfully reproduce the observed continuum and HRLs simultaneously using a simple model of a slow ionized wind in local thermodynamic equilibrium, with no need for a high-velocity component. The Lorentzian line wings imply electron densities of 5 × 10{sup 7} cm{sup –3} on average. In addition, we detect SO and SO{sub 2} emission arising from a compact (∼3000 AU) molecular core associated with the central young star. The molecular core exhibits a velocity gradient that is perpendicular to the jet-axis, which we interpret as evidence of rotation. The set of observations toward G345.4938+01.4677 are consistent with it being a young high-mass star associated with a slow photo-ionized wind.

  1. Star-disc interaction in galactic nuclei: formation of a central stellar disc

    Science.gov (United States)

    Panamarev, Taras; Shukirgaliyev, Bekdaulet; Meiron, Yohai; Berczik, Peter; Just, Andreas; Spurzem, Rainer; Omarov, Chingis; Vilkoviskij, Emmanuil

    2018-05-01

    We perform high-resolution direct N-body simulations to study the effect of an accretion disc on stellar dynamics in an active galactic nucleus (AGN). We show that the interaction of the nuclear stellar cluster (NSC) with the gaseous accretion disc (AD) leads to formation of a stellar disc in the central part of the NSC. The accretion of stars from the stellar disc on to the super-massive black hole is balanced by the capture of stars from the NSC into the stellar disc, yielding a stationary density profile. We derive the migration time through the AD to be 3 per cent of the half-mass relaxation time of the NSC. The mass and size of the stellar disc are 0.7 per cent of the mass and 5 per cent of the influence radius of the super-massive black hole. An AD lifetime shorter than the migration time would result in a less massive nuclear stellar disc. The detection of such a stellar disc could point to past activity of the hosting galactic nucleus.

  2. Gamma-ray bursts from tidally spun-up Wolf-Rayet stars?

    NARCIS (Netherlands)

    Detmers, R.G.; Langer, N.; Podsiadlowski, Ph.; Izzard, R.G.

    2008-01-01

    Context. The collapsar model requires rapidly rotating Wolf-Rayet stars as progenitors of long gamma-ray bursts. However, Galactic Wolf-Rayet stars rapidly lose angular momentum due to their intense stellar winds. Aims. We investigate whether the tidal interaction of a Wolf-Rayet star with a compact

  3. NECESSARY CONDITIONS FOR SHORT GAMMA-RAY BURST PRODUCTION IN BINARY NEUTRON STAR MERGERS

    International Nuclear Information System (INIS)

    Murguia-Berthier, Ariadna; Montes, Gabriela; Ramirez-Ruiz, Enrico; De Colle, Fabio; Lee, William H.

    2014-01-01

    The central engine of short gamma-ray bursts (sGRBs) is hidden from direct view, operating at a scale much smaller than that probed by the emitted radiation. Thus we must infer its origin not only with respect to the formation of the trigger—the actual astrophysical configuration that is capable of powering an sGRB—but also from the consequences that follow from the various evolutionary pathways that may be involved in producing it. Considering binary neutron star mergers we critically evaluate, analytically and through numerical simulations, whether the neutrino-driven wind produced by the newly formed hyper-massive neutron star can allow the collimated relativistic outflow that follows its collapse to actually produce an sGRB or not. Upon comparison with the observed sGRB duration distribution, we find that collapse cannot be significantly delayed (≤100 ms) before the outflow is choked, thus limiting the possibility that long-lived hyper-massive remnants can account for these events. In the case of successful breakthrough of the jet through the neutrino-driven wind, the energy stored in the cocoon could contribute to the precursor and extended emission observed in sGRBs

  4. Dynamics of H II regions around exiled O stars

    Science.gov (United States)

    Mackey, Jonathan; Langer, Norbert; Gvaramadze, Vasilii V.

    2013-11-01

    At least 25 per cent of massive stars are ejected from their parent cluster, becoming runaways or exiles, travelling with often-supersonic space velocities through the interstellar medium (ISM). Their overpressurized H II regions impart kinetic energy and momentum to the ISM, compress and/or evaporate dense clouds, and can constrain properties of both the star and the ISM. Here, we present one-, two- and (the first) three-dimensional simulations of the H II region around a massive star moving supersonically through a uniform, magnetized ISM, with properties appropriate for the nearby O star ζ Oph. The H II region leaves an expanding overdense shell behind the star and, inside this, an underdense wake that should be filled with hot gas from the shocked stellar wind. The gas column density in the shell is strongly influenced by the ISM magnetic field strength and orientation. Hα emission maps show that H II region remains roughly circular, although the star is displaced somewhat from the centre of emission. For our model parameters, the kinetic energy feedback from the H II region is comparable to the mechanical luminosity of the stellar wind, and the momentum feedback rate is >100 times larger than that from the wind and ≈10 times larger than the total momentum input rate available from radiation pressure. Compared to the star's eventual supernova explosion, the kinetic energy feedback from the H II region over the star's main-sequence lifetime is >100 times less, but the momentum feedback is up to 4 times larger. H II region dynamics are found to have only a small effect on the ISM conditions that a bow shock close to the star would encounter.

  5. A Breath of Fresh Air in Foraging Theory: The Importance of Wind for Food Size Selection in a Central-Place Forager.

    Science.gov (United States)

    Alma, Andrea Marina; Farji-Brener, Alejandro G; Elizalde, Luciana

    2017-09-01

    Empirical data about food size carried by central-place foragers do not often fit with the optimum predicted by classical foraging theory. Traditionally, biotic constraints such as predation risk and competition have been proposed to explain this inconsistency, leaving aside the possible role of abiotic factors. Here we documented how wind affects the load size of a central-place forager (leaf-cutting ants) through a mathematical model including the whole foraging process. The model showed that as wind speed at ground level increased from 0 to 2 km/h, load size decreased from 91 to 30 mm 2 , a prediction that agreed with empirical data from windy zones, highlighting the relevance of considering abiotic factors to predict foraging behavior. Furthermore, wind reduced the range of load sizes that workers should select to maintain a similar rate of food intake and decreased the foraging rate by ∼70% when wind speed increased 1 km/h. These results suggest that wind could reduce the fitness of colonies and limit the geographic distribution of leaf-cutting ants. The developed model offers a complementary explanation for why load size in central-place foragers may not fit theoretical predictions and could serve as a basis to study the effects of other abiotic factors that influence foraging.

  6. He II {lambda}4686 IN {eta} CARINAE: COLLAPSE OF THE WIND-WIND COLLISION REGION DURING PERIASTRON PASSAGE

    Energy Technology Data Exchange (ETDEWEB)

    Teodoro, M.; Damineli, A. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, Sao Paulo 05508-900 (Brazil); Arias, J. I. [Departamento de Fisica, Universidad de La Serena, Av. Cisternas 1200 Norte, La Serena (Chile); De Araujo, F. X.; Borges Fernandes, M.; Pereira, C. B. [Observatorio Nacional, Rua General Jose Cristino 77, Sao Cristovao, Rio de Janeiro 20921-400 (Brazil); Barba, R. H.; Gonzalez, J. F. [Instituto de Ciencias Astronomicas, de la Tierra, y del Espacio (ICATE-CONICET), Avenida Espana Sur 1512, J5402DSP San Juan (Argentina); Corcoran, M. F. [CRESST and X-ray Astrophysics Laboratory, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Fernandez-Lajus, E.; Gamen, R. C.; Solivella, G. R. [Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, La Plata, BA, B1900FWA (Argentina); Fraga, L. [Southern Observatory for Astrophysical Research, Colina El Pino s/n, Casilla 603, La Serena (Chile); Groh, J. H. [Max-Planck-Institute fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Marshall, J. L. [Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843-4242 (United States); McGregor, P. J.; Nicholls, D. C.; Parkin, E. R. [Research School of Astronomy and Astrophysics (RSAA), Mount Stromlo Observatory, Cotter Road, Weston, ACT 2611 (Australia); Morrell, N.; Phillips, M. M., E-mail: mairan@astro.iag.usp.br [Las Campanas Observatory, Observatories of the Carnegie Institution of Washington, Casilla 601, La Serena (Chile); and others

    2012-02-10

    The periodic spectroscopic events in {eta} Carinae are now well established and occur near the periastron passage of two massive stars in a very eccentric orbit. Several mechanisms have been proposed to explain the variations of different spectral features, such as an eclipse by the wind-wind collision (WWC) boundary, a shell ejection from the primary star or accretion of its wind onto the secondary. All of them have problems explaining all the observed phenomena. To better understand the nature of the cyclic events, we performed a dense monitoring of {eta} Carinae with five Southern telescopes during the 2009 low-excitation event, resulting in a set of data of unprecedented quality and sampling. The intrinsic luminosity of the He II {lambda}4686 emission line (L {approx} 310 L{sub Sun }) just before periastron reveals the presence of a very luminous transient source of extreme UV radiation emitted in the WWC region. Clumps in the primary's wind probably explain the flare-like behavior of both the X-ray and He II {lambda}4686 light curves. After a short-lived minimum, He II {lambda}4686 emission rises again to a new maximum, when X-rays are still absent or very weak. We interpret this as a collapse of the WWC onto the 'surface' of the secondary star, switching off the hard X-ray source and diminishing the WWC shock cone. The recovery from this state is controlled by the momentum balance between the secondary's wind and the clumps in the primary's wind.

  7. He II λ4686 IN η CARINAE: COLLAPSE OF THE WIND-WIND COLLISION REGION DURING PERIASTRON PASSAGE

    International Nuclear Information System (INIS)

    Teodoro, M.; Damineli, A.; Arias, J. I.; De Araújo, F. X.; Borges Fernandes, M.; Pereira, C. B.; Barbá, R. H.; González, J. F.; Corcoran, M. F.; Fernández-Lajús, E.; Gamen, R. C.; Solivella, G. R.; Fraga, L.; Groh, J. H.; Marshall, J. L.; McGregor, P. J.; Nicholls, D. C.; Parkin, E. R.; Morrell, N.; Phillips, M. M.

    2012-01-01

    The periodic spectroscopic events in η Carinae are now well established and occur near the periastron passage of two massive stars in a very eccentric orbit. Several mechanisms have been proposed to explain the variations of different spectral features, such as an eclipse by the wind-wind collision (WWC) boundary, a shell ejection from the primary star or accretion of its wind onto the secondary. All of them have problems explaining all the observed phenomena. To better understand the nature of the cyclic events, we performed a dense monitoring of η Carinae with five Southern telescopes during the 2009 low-excitation event, resulting in a set of data of unprecedented quality and sampling. The intrinsic luminosity of the He II λ4686 emission line (L ∼ 310 L ☉ ) just before periastron reveals the presence of a very luminous transient source of extreme UV radiation emitted in the WWC region. Clumps in the primary's wind probably explain the flare-like behavior of both the X-ray and He II λ4686 light curves. After a short-lived minimum, He II λ4686 emission rises again to a new maximum, when X-rays are still absent or very weak. We interpret this as a collapse of the WWC onto the 'surface' of the secondary star, switching off the hard X-ray source and diminishing the WWC shock cone. The recovery from this state is controlled by the momentum balance between the secondary's wind and the clumps in the primary's wind.

  8. Observation of solar wind with radio-star scintillation

    International Nuclear Information System (INIS)

    Watanabe, Takashi

    1974-01-01

    Large solar flares occurred in groups in early August 1972, and many interesting phenomena were observed. The solar wind condition during this period, obtained by scintillation observation, is reviewed. The velocity of solar wind has been determined from the observation of interplanetary space scintillation at Toyokawa, Fujigamine and Sugadaira. Four to ten radio wave sources were observed for ten minutes at each southing every day. Strong earth magnetic storm and the Forbush decrease of cosmic ray were observed during the period from August 3rd to 7th. Pioneer 9 observed a solar wind having the maximum velocity as high as 1,100 km/sec, and HEOS-II observed a solar wind having the velocity close to 2,000 km/sec. On the other hand, according to the scintillation of 3C-48 and 3C-144, the velocity of solar wind passing in the interplanetary space on the westside of the earth was only 300 to 400 km/sec. Therefore it is considered that the condition of solar wind on the east side of the earth differs from that on the west side of the earth. Pioneer 9 observed the pass of a shock wave on August 9th. With all radio wave sources, high velocity solar wind was observed and Pioneer 6 positioned on the west side of the earth also observed it. The thickness of this shock wave is at least 0.3 AU. Discussion is made on the cause for the difference between the asymmetric shock wave in the direction of south-west and symmetrical shock wave. The former may be blast wave, and the latter may be piston driven shock wave and the like. (Iwakiri, K.)

  9. THE CHANDRA X-RAY SURVEY OF PLANETARY NEBULAE (CHANPLANS): PROBING BINARITY, MAGNETIC FIELDS, AND WIND COLLISIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kastner, J. H.; Montez, R. Jr.; Rapson, V. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA (United States); Frew, D. J.; De Marco, O.; Parker, Q. A. [Department of Physics and Astronomy and Macquarie Research Centre for Astronomy, Astrophysics and Astrophotonics, Macquarie University, Sydney, NSW 2109 (Australia); Miszalski, B. [South African Astronomical Observatory, P.O. Box 9, Observatory, 7935 (South Africa); Sahai, R. [Jet Propulsion Laboratory, California Institute of Technology, MS 183-900, Pasadena, CA 91109 (United States); Blackman, E.; Frank, A. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Chu, Y.-H. [Department of Astronomy, University of Illinois, Champagne-Urbana, IL (United States); Guerrero, M. A. [Instituto de Astrofisica de Astronomia, Glorieta de la Astronomia s/n, Granada 18008 (Spain); Lopez, J. A. [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Campus Ensenada, Apdo. Postal 22860, Ensenada, B. C. (Mexico); Zijlstra, A. [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Behar, E. [Department of Physics, Technion (Israel); Bujarrabal, V. [Observatorio Astronomico Nacional, Apartado 112, E-28803, Alcala de Henares (Spain); Corradi, R. L. M. [Instituto de Astrofisica de Canarias, E-38200 La Laguna, Tenerife (Spain); Nordhaus, J. [Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623 (United States); Sandin, C., E-mail: jhk@cis.rit.edu, E-mail: soker@physics.technion.ac.il, E-mail: eva.villaver@uam.es [Leibniz Institute for Astrophysics Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); and others

    2012-08-15

    We present an overview of the initial results from the Chandra Planetary Nebula Survey (CHANPLANS), the first systematic (volume-limited) Chandra X-Ray Observatory survey of planetary nebulae (PNe) in the solar neighborhood. The first phase of CHANPLANS targeted 21 mostly high-excitation PNe within {approx}1.5 kpc of Earth, yielding four detections of diffuse X-ray emission and nine detections of X-ray-luminous point sources at the central stars (CSPNe) of these objects. Combining these results with those obtained from Chandra archival data for all (14) other PNe within {approx}1.5 kpc that have been observed to date, we find an overall X-ray detection rate of {approx}70% for the 35 sample objects. Roughly 50% of the PNe observed by Chandra harbor X-ray-luminous CSPNe, while soft, diffuse X-ray emission tracing shocks-in most cases, 'hot bubbles'-formed by energetic wind collisions is detected in {approx}30%; five objects display both diffuse and point-like emission components. The presence (or absence) of X-ray sources appears correlated with PN density structure, in that molecule-poor, elliptical nebulae are more likely to display X-ray emission (either point-like or diffuse) than molecule-rich, bipolar, or Ring-like nebulae. All but one of the point-like CSPNe X-ray sources display X-ray spectra that are harder than expected from hot ({approx}100 kK) central stars emitting as simple blackbodies; the lone apparent exception is the central star of the Dumbbell nebula, NGC 6853. These hard X-ray excesses may suggest a high frequency of binary companions to CSPNe. Other potential explanations include self-shocking winds or PN mass fallback. Most PNe detected as diffuse X-ray sources are elliptical nebulae that display a nested shell/halo structure and bright ansae; the diffuse X-ray emission regions are confined within inner, sharp-rimmed shells. All sample PNe that display diffuse X-ray emission have inner shell dynamical ages {approx}< 5 Multiplication

  10. THE STAR FORMATION HISTORY AND CHEMICAL EVOLUTION OF STAR-FORMING GALAXIES IN THE NEARBY UNIVERSE

    International Nuclear Information System (INIS)

    Torres-Papaqui, J. P.; Coziol, R.; Ortega-Minakata, R. A.; Neri-Larios, D. M.

    2012-01-01

    We have determined the metallicity (O/H) and nitrogen abundance (N/O) of a sample of 122,751 star-forming galaxies (SFGs) from the Data Release 7 of the Sloan Digital Sky Survey. For all these galaxies we have also determined their morphology and obtained a comprehensive picture of their star formation history (SFH) using the spectral synthesis code STARLIGHT. The comparison of the chemical abundance with the SFH allows us to describe the chemical evolution of the SFGs in the nearby universe (z ≤ 0.25) in a manner consistent with the formation of their stellar populations and morphologies. A high fraction (45%) of the SFGs in our sample show an excess abundance of nitrogen relative to their metallicity. We also find this excess to be accompanied by a deficiency of oxygen, which suggests that this could be the result of effective starburst winds. However, we find no difference in the mode of star formation of the nitrogen-rich and nitrogen-poor SFGs. Our analysis suggests that they all form their stars through a succession of bursts of star formation extended over a period of few Gyr. What produces the chemical differences between these galaxies seems therefore to be the intensity of the bursts: the galaxies with an excess of nitrogen are those that are presently experiencing more intense bursts or have experienced more intense bursts in their past. We also find evidence relating the chemical evolution process to the formation of the galaxies: the galaxies with an excess of nitrogen are more massive, and have more massive bulges and earlier morphologies than those showing no excess. Contrary to expectation, we find no evidence that the starburst wind efficiency decreases with the mass of the galaxies. As a possible explanation we propose that the loss of metals consistent with starburst winds took place during the formation of the galaxies, when their potential wells were still building up, and consequently were weaker than today, making starburst winds more

  11. Orbital evolution of colliding star and pulsar winds in 2D and 3D: effects of dimensionality, EoS, resolution, and grid size

    Science.gov (United States)

    Bosch-Ramon, V.; Barkov, M. V.; Perucho, M.

    2015-05-01

    Context. The structure formed by the shocked winds of a massive star and a non-accreting pulsar in a binary system suffers periodic and random variations of orbital and non-linear dynamical origins. The characterization of the evolution of the wind interaction region is necessary for understanding the rich phenomenology of these sources. Aims: For the first time, we simulate in 3 dimensions the interaction of isotropic stellar and relativistic pulsar winds along one full orbit, on scales well beyond the binary size. We also investigate the impact of grid resolution and size, and of different state equations: a γ̂-constant ideal gas, and an ideal gas with γ̂ dependent on temperature. Methods: We used the code PLUTO to carry out relativistic hydrodynamical simulations in 2 and 3 dimensions of the interaction between a slow dense wind and a mildly relativistic wind with Lorentz factor 2, along one full orbit in a region up to ~100 times the binary size. The different 2-dimensional simulations were carried out with equal and larger grid resolution and size, and one was done with a more realistic equation of state than in 3 dimensions. Results: The simulations in 3 dimensions confirm previous results in 2 dimensions, showing: a strong shock induced by Coriolis forces that terminates the pulsar wind also in the opposite direction to the star; strong bending of the shocked-wind structure against the pulsar motion; and the generation of turbulence. The shocked flows are also subject to a faster development of instabilities in 3 dimensions, which enhances shocks, two-wind mixing, and large-scale disruption of the shocked structure. In 2 dimensions, higher resolution simulations confirm lower resolution results, simulations with larger grid sizes strengthen the case for the loss of the general coherence of the shocked structure, and simulations with two different equations of state yield very similar results. In addition to the Kelvin-Helmholtz instability, discussed in

  12. The Rapid Evolution of the Exciting Star of the Stingray Nebula

    Science.gov (United States)

    Reindl, N.; Rauch, T.; Parthasarathy, M.; Werner, K.; Kruk, J.W.; Hamann, W. R.; Sander, A.; Todt, H.

    2014-01-01

    Context: SAO244567, the exciting star of the Stingray nebula, is rapidly evolving. Previous analyses suggested that it has heated up from an effective temperature of about 21 kK in 1971 to over 50 kK in the 1990s. Canonical post-asymptotic giant branch evolution suggests a relatively high mass while previous analyses indicate a low-mass star. Aims: A comprehensive model-atmosphere analysis of UV and optical spectra taken during 1988-2006 should reveal the detailed temporal evolution of its atmospheric parameters and provide explanations for the unusually fast evolution. Methods: Fitting line profiles from static and expanding non-LTE model atmospheres to the observed spectra allowed us to study the temporal change of effective temperature, surface gravity, mass-loss rate, and terminal wind velocity. In addition, we determined the chemical composition of the atmosphere. Results: We find that the central star has steadily increased its effective temperature from 38 kK in 1988 to a peak value of 60 kK in 2002. During the same time, the star was contracting, as concluded from an increase in surface gravity from log g = 4.8 to 6.0 and a drop in luminosity. Simultaneously, the mass-loss rate declined from log(M/M (solar mass) yr (exp -1)) = -9.0 to -11.6 and the terminal wind velocity increased from v (infinity) = 1800 km s (exp -1) to 2800 km s (exp -1). Since around 2002, the star stopped heating and has cooled down again to 55 kK by 2006. It has a largely solar surface composition with the exception of slightly subsolar carbon, phosphorus, and sulfur. The results are discussed by considering different evolutionary scenarios. Conclusions: The position of SAO244567 in the log T (sub eff) -log g plane places the star in the region of sdO stars. By comparison with stellar-evolution calculations, we confirm that SAO244567 must be a low-mass star (M nebula with a kinematical age of only about 1000 years. We speculate that the star could be a late He-shell flash object

  13. Searching for magnetic fields in 11 Wolf-Rayet stars: Analysis of circular polarization measurements from ESPaDOnS

    Energy Technology Data Exchange (ETDEWEB)

    De la Chevrotière, A.; St-Louis, N.; Moffat, A. F. J. [Centre de Recherche en Astrophysique du Québec (CRAQ), Département de physique, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, Québec H3C 3J7 (Canada); Collaboration: MiMeS Collaboration

    2014-02-01

    With recent detections of magnetic fields in some of their progenitor O stars, combined with known strong fields in their possible descendant neutron stars, it is natural to search for magnetic fields in Wolf-Rayet (WR) stars, despite the problems associated with the presence of winds enhanced by an order of magnitude over those of O stars. We continue our search among a sample of 11 bright WR stars following our introductory study in a previous paper of WR6 = EZ CMa using the spectropolarimeter ESPaDOnS at Canada-France-Hawaii Telescope, most of them in all four Stokes parameters. This sample includes six WN stars and five WC stars encompassing a range of spectral subclasses. Six are medium/long-period binaries and three show corotating interaction regions. We report no definite detections of a magnetic field in the winds in which the lines form (which is about the same distance from the center of the star as it is from the surface of the progenitor O star) for any of the eleven stars. Possible reasons and their implications are discussed. Nonetheless, the data show evidence supporting marginal detections for WR134, WR137, and WR138. According to the Bayesian analysis, the most probable field intensities are B {sub wind} ∼ 200, 130, and 80 G, respectively, with a 95.4% probability that the magnetic fields present in the observable parts of their stellar wind, if stronger, does not exceed B{sub wind}{sup max}∼1900 G, ∼1500 G, and ∼1500 G, respectively. In the case of non-detections, we report an average field strength upper limit of B{sub wind}{sup max}∼500 G.

  14. Low-mass stars with mass loss and low-luminosity carbon star formation

    International Nuclear Information System (INIS)

    Boothroyd, A.I.

    1987-01-01

    The effects of large carbon enrichments in static stellar envelopes were investigated, using new Los Alamos opacities (including low-temperature carbon and molecular opacities) and including carbon ionizations. To search for the production of low-mass,low-luminosity carbon stars, detailed stellar evolutionary computations were carried out for a grid of low-mass stars of two different metallicities. The stars were evolved from the main sequence through all intermediate stages and through helium-shell flashes on the asymptotic giant branch. The effects of the latest nuclear reaction rates, the new Los Alamos opacities, Reimers-type wind mass loss, and detailed treatment of convection and semi-convection were investigated. Two low-luminosity carbon stars were achieved, in excellent agreement with observations. Conditions favoring dredge-up (and thus carbon-star production) include a reasonably large convective mixing length, low metallicity, relatively large envelope mass, and high flash strength. Mass loss was of major importance, tending to oppose dredge-up; the total mass-loss amounts inferred from observations suffice to prevent formation of high-mass, high-luminosity carbon stars

  15. The relative impact of photoionizing radiation and stellar winds on different environments

    Science.gov (United States)

    Haid, S.; Walch, S.; Seifried, D.; Wünsch, R.; Dinnbier, F.; Naab, T.

    2018-05-01

    Photoionizing radiation and stellar winds from massive stars deposit energy and momentum into the interstellar medium (ISM). They might disperse the local ISM, change its turbulent multi-phase structure, and even regulate star formation. Ionizing radiation dominates the massive stars' energy output, but the relative effect of winds might change with stellar mass and the properties of the ambient ISM. We present simulations of the interaction of stellar winds and ionizing radiation of 12, 23, and 60 M⊙ stars within a cold neutral (CNM, n0 = 100 cm-3), warm neutral (WNM, n0 = 1, 10 cm-3) or warm ionized (WIM, n0 = 0.1 cm-3) medium. The FLASH simulations adopt the novel tree-based radiation transfer algorithm TREERAY. With the On-the-Spot approximation and a temperature-dependent recombination coefficient, it is coupled to a chemical network with radiative heating and cooling. In the homogeneous CNM, the total momentum injection ranges from 1.6× 104 to 4× 105 M⊙ km s-1 and is always dominated by the expansion of the ionized HII region. In the WIM, stellar winds dominate (2× 102 to 5× 103 M⊙ km s-1), while the input from radiation is small (˜ 102 M⊙ km s-1). The WNM (n0 = 1 cm-3) is a transition regime. Energetically, stellar winds couple more efficiently to the ISM (˜ 0.1 percent of wind luminosity) than radiation (< 0.001 percent of ionizing luminosity). For estimating the impact of massive stars, the strongly mass-dependent ratios of wind to ionizing luminosity and the properties of the ambient medium have to be considered.

  16. Wind-driven angular momentum loss in binary systems. I - Ballistic case

    Science.gov (United States)

    Brookshaw, Leigh; Tavani, Marco

    1993-01-01

    We study numerically the average loss of specific angular momentum from binary systems due to mass outflow from one of the two stars for a variety of initial injection geometries and wind velocities. We present results of ballistic calculations in three dimensions for initial mass ratios q of the mass-losing star to primary star in the range q between 10 exp -5 and 10. We consider injection surfaces close to the Roche lobe equipotential surface of the mass-losing star, and also cases with the mass-losing star underfilling its Roche lobe. We obtain that the orbital period is expected to have a negative time derivative for wind-driven secular evolution of binaries with q greater than about 3 and with the mass-losing star near filling its Roche lobe. We also study the effect of the presence of an absorbing surface approximating an accretion disk on the average final value of the specific angular momentum loss. We find that the effect of an accretion disk is to increase the wind-driven angular momentum loss. Our results are relevant for evolutionary models of high-mass binaries and low-mass X-ray binaries.

  17. A VERSATILE FAMILY OF GALACTIC WIND MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Bustard, Chad; Zweibel, Ellen G. [Physics Department, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI 53706 (United States); D’Onghia, Elena, E-mail: bustard@wisc.edu [Department of Astronomy, University of Wisconsin-Madison, 2535 Sterling Hall, 475 N. Charter Street, Madison, WI 53706 (United States)

    2016-03-01

    We present a versatile family of model galactic outflows including non-uniform mass and energy source distributions, a gravitational potential from an extended mass source, and radiative losses. The model easily produces steady-state wind solutions for a range of mass-loading factors, energy-loading factors, galaxy mass, and galaxy radius. We find that, with radiative losses included, highly mass-loaded winds must be driven at high central temperatures, whereas low mass-loaded winds can be driven at low temperatures just above the peak of the cooling curve, meaning radiative losses can drastically affect the wind solution even for low mass-loading factors. By including radiative losses, we are able to show that subsonic flows can be ignored as a possible mechanism for expelling mass and energy from a galaxy compared to the more efficient transonic solutions. Specifically, the transonic solutions with low mass loading and high energy loading are the most efficient. Our model also produces low-temperature, high-velocity winds that could explain the prevalence of low-temperature material in observed outflows. Finally, we show that our model, unlike the well-known Chevalier and Clegg model, can reproduce the observed linear relationship between wind X-ray luminosity and star formation rate (SFR) over a large range of SFR from 1–1000 M{sub ⊙} yr{sup −1} assuming the wind mass-loading factor is higher for low-mass, and hence, low-SFR galaxies. We also constrain the allowed mass-loading factors that can fit the observed X-ray luminosity versus SFR trend, further suggesting an inverse relationship between mass loading and SFR as explored in advanced numerical simulations.

  18. Interacting supernovae from photoionization-confined shells around red supergiant stars

    Science.gov (United States)

    Mackey, Jonathan; Mohamed, Shazrene; Gvaramadze, Vasilii V.; Kotak, Rubina; Langer, Norbert; Meyer, Dominique M.-A.; Moriya, Takashi J.; Neilson, Hilding R.

    2014-08-01

    Betelgeuse, a nearby red supergiant, is a fast-moving star with a powerful stellar wind that drives a bow shock into its surroundings. This picture has been challenged by the discovery of a dense and almost static shell that is three times closer to the star than the bow shock and has been decelerated by some external force. The two physically distinct structures cannot both be formed by the hydrodynamic interaction of the wind with the interstellar medium. Here we report that a model in which Betelgeuse's wind is photoionized by radiation from external sources can explain the static shell without requiring a new understanding of the bow shock. Pressure from the photoionized wind generates a standing shock in the neutral part of the wind and forms an almost static, photoionization-confined shell. Other red supergiants should have much more massive shells than Betelgeuse, because the photoionization-confined shell traps up to 35 per cent of all mass lost during the red supergiant phase, confining this gas close to the star until it explodes. After the supernova explosion, massive shells dramatically affect the supernova light curve, providing a natural explanation for the many supernovae that have signatures of circumstellar interaction.

  19. Neutron Stars and Pulsars

    CERN Document Server

    Becker, Werner

    2009-01-01

    Neutron stars are the most compact astronomical objects in the universe which are accessible by direct observation. Studying neutron stars means studying physics in regimes unattainable in any terrestrial laboratory. Understanding their observed complex phenomena requires a wide range of scientific disciplines, including the nuclear and condensed matter physics of very dense matter in neutron star interiors, plasma physics and quantum electrodynamics of magnetospheres, and the relativistic magneto-hydrodynamics of electron-positron pulsar winds interacting with some ambient medium. Not to mention the test bed neutron stars provide for general relativity theories, and their importance as potential sources of gravitational waves. It is this variety of disciplines which, among others, makes neutron star research so fascinating, not only for those who have been working in the field for many years but also for students and young scientists. The aim of this book is to serve as a reference work which not only review...

  20. Spectral Confirmation of New Galactic LBV and WN Stars Associated With Mid-IR Nebulae

    Science.gov (United States)

    Stringfellow, Guy; Gvaramadze, Vasilii V.

    2014-08-01

    Luminous Blue Variable (LBV) stars represent an extremely rare class and short-lived phase in the lives of very luminous massive stars with high mass loss rates. Extragalactic LBVs are responsible for producing false supernovae (SN), the SN Impostors, and have been directly linked with the progenitors of actual SN, indicating the LBV phase can be a final endpoint for massive star evolution. Yet only a few confirmed LBVs have been identified in the Galaxy. Their stellar evolution is poorly constrained by observations, and the physical reason for their unstable nature, both in terms of moderate spectral and photometric variability of a few magnitudes and the giant eruptions a la η Car that rival SN explosions, remains a mystery. Newly discovered mid-IR shells act as signposts, pointing to the central massive stars (LBV and Wolf-Rayet [WR] stars) that produced them. We have undertaken a spectroscopic survey of possible progenitor stars within these shells and are discovering that many are LBVs and WN-type WR transitional stars. We propose to extend this IR spectral survey to the south to search for new progenitor stars associated with dozens of newly identified shells. This survey should result in a substantial increase of new WRs and candidate LBVs for continued future study. Spectral analysis will yield new insights into the winds and physical properties of these rare and important objects, and lead to a better understanding of the physics driving giant eruptions.

  1. Fluid power network for centralized electricity generation in offshore wind farms

    International Nuclear Information System (INIS)

    Jarquin-Laguna, A

    2014-01-01

    An innovative and completely different wind-energy conversion system is studied where a centralized electricity generation within a wind farm is proposed by means of a hydraulic network. This paper presents the dynamic interaction of two turbines when they are coupled to the same hydraulic network. Due to the stochastic nature of the wind and wake interaction effects between turbines, the operating parameters (i.e. pitch angle, rotor speed) of each turbine are different. Time domain simulations, including the main turbine dynamics and laminar transient flow in pipelines, are used to evaluate the efficiency and rotor speed stability of the hydraulic system. It is shown that a passive control of the rotor speed, as proposed in previous work for a single hydraulic turbine, has strong limitations in terms of performance for more than one turbine coupled to the same hydraulic network. It is concluded that in order to connect several turbines, a passive control strategy of the rotor speed is not sufficient and a hydraulic network with constant pressure is suggested. However, a constant pressure network requires the addition of active control at the hydraulic motors and spear valves, increasing the complexity of the initial concept. Further work needs to be done to incorporate an active control strategy and evaluate the feasibility of the constant pressure hydraulic network

  2. The iron curtain of WC9 stars

    International Nuclear Information System (INIS)

    Hucht, K.A. van der; Willis, A.J.

    1982-01-01

    High resolution (Δlambda approximately equal to 0.1 A) IUE spectra have been obtained of the two WC9 stars HD 164270 and HD 136488, covering the wavelength range lambdalambda1150-2050. The former star shows P Cygni profiles indicating a stellar wind terminal velocity of Vsub(infinity) approximately equal to 1400 km s -1 , and the latter Vsub(infinity) approximately equal to -1800 km s -1 . A common feature in the spectra of both stars is narrow displaced absorptions due to Fe III (UV34) transitions arising from a metastable lower level. These features are displaced at sub-terminal velocities (-830 km s -1 for HD 164270 and -1030 km s -1 for Hd 136488) and are believed to be formed in the deceleration region of their stellar winds. The properties of these inferred Fe III circumstellar shells derived from these data are discussed. (Auth.)

  3. Near-infrared variability study of the central 2.3 × 2.3 arcmin2 of the Galactic Centre - II. Identification of RR Lyrae stars in the Milky Way nuclear star cluster

    Science.gov (United States)

    Dong, Hui; Schödel, Rainer; Williams, Benjamin F.; Nogueras-Lara, Francisco; Gallego-Cano, Eulalia; Gallego-Calvente, Teresa; Wang, Q. Daniel; Rich, R. Michael; Morris, Mark R.; Do, Tuan; Ghez, Andrea

    2017-11-01

    Because of strong and spatially highly variable interstellar extinction and extreme source crowding, the faint (K ≥ 15) stellar population in the Milky Way's nuclear star cluster is still poorly studied. RR Lyrae stars provide us with a tool to estimate the mass of the oldest, relative dim stellar population. Recently, we analysed HST/WFC3/IR observations of the central 2.3 × 2.3 arcmin2 of the Milky Way and found 21 variable stars with periods between 0.2 and 1 d. Here, we present a further comprehensive analysis of these stars. The period-luminosity relationship of RR Lyrae is used to derive their extinctions and distances. Using multiple approaches, we classify our sample as 4 RRc stars, 4 RRab stars, 3 RRab candidates and 10 binaries. Especially, the four RRab stars show sawtooth light curves and fall exactly on to the Oosterhoff I division in the Bailey diagram. Compared to the RRab stars reported by Minniti et al., our new RRab stars have higher extinction (AK > 1.8) and should be closer to the Galactic Centre. The extinction and distance of one RRab stars match those for the Milky Way's nuclear star cluster given in previous works. We perform simulations and find that after correcting for incompleteness, there could be not more than 40 RRab stars within the Milky Way's nuclear star cluster and in our field of view. Through comparing with the known globular clusters of the Milky Way, we estimate that if there exists an old, metal-poor (-1.5 < [Fe/H] < -1) stellar population in the Milky Way nuclear star cluster on a scale of 5 × 5 pc, then it contributes at most 4.7 × 105 M⊙, I.e. ˜18 per cent of the stellar mass.

  4. Modelling the day to day wind variability offshore central Chile at about 30 deg. south

    International Nuclear Information System (INIS)

    Rutllant, J.

    1994-07-01

    Cycles of strengthening and relaxation of the winds offshore 30 degrees S at central Chile, are related to the propagation of coastal-lows, a year-round phenomenon occurring with periodicities of about one in five days. Simple physical modelling of the day to day variability of the alongshore wind component at a coastal strip extending offshore up to the Rossby deformation radius of these wave perturbations, is presented in terms of the relevant horizontal pressure gradients and the ageostrophic components arising from the coastal-low propagation. The results of 5-day composites of 8 wind-events each, at the winter and summer halves of the annual cycle, respectively; lead to a good agreement between the observed phase-lag of the winds with respect to the pressure forcing field, stressing the importance of the ageostrophic wind components at the extremes of the pressure wave perturbation associated with the passage of coastal-lows over the Point Lengua de Vaca (30 15 S) area. A possible contribution of the upwelling-favorable wind enhancement at the time of the pressure rise and subsequent fall, ahead of the coastal-low, is postulated through an upwelling-front low-level jet, that would be carried onshore and closer to the surface by the combination of the enhanced coastal upwelling, the coastal depression of the subsidence inversion base and the coastal ageostrophic wind components during the passage of the leading edge of the coastal lows. (author). 26 refs, 5 figs, 1 tab

  5. The Physics of Wind-Fed Accretion

    International Nuclear Information System (INIS)

    Mauche, Christopher W.; Liedahl, Duane A.; Akiyama, Shizuka; Plewa, Tomasz

    2008-01-01

    We provide a brief review of the physical processes behind the radiative driving of the winds of OB stars and the Bondi-Hoyle-Lyttleton capture and accretion of a fraction of the stellar wind by a compact object, typically a neutron star, in detached high-mass X-ray binaries (HMXBs). In addition, we describe a program to develop global models of the radiatively-driven photoionized winds and accretion flows of HMXBs, with particular attention to the prototypical system Vela X-l. The models combine XSTAR photoionization calculations, HULLAC emission models appropriate to X-ray photoionized plasmas, improved models of the radiative driving of photoionized winds, FLASH time-dependent adaptive-mesh hydrodynamics calculations, and Monte Carlo radiation transport. We present two- and three-dimensional maps of the density, temperature, velocity, ionization parameter, and emissivity distributions of representative X-ray emission lines, as well as synthetic global Monte Carlo X-ray spectra. Such models help to better constrain the properties of the winds of HMXBs, which bear on such fundamental questions as the long-term evolution of these binaries and the chemical enrichment of the interstellar medium.

  6. Effects of stellar evolution and ionizing radiation on the environments of massive stars

    Science.gov (United States)

    Mackey, J.; Langer, N.; Mohamed, S.; Gvaramadze, V. V.; Neilson, H. R.; Meyer, D. M.-A.

    2014-09-01

    We discuss two important effects for the astrospheres of runaway stars: the propagation of ionizing photons far beyond the astropause, and the rapid evolution of massive stars (and their winds) near the end of their lives. Hot stars emit ionizing photons with associated photoheating that has a significant dynamical effect on their surroundings. 3-D simulations show that H ii regions around runaway O stars drive expanding conical shells and leave underdense wakes in the medium they pass through. For late O stars this feedback to the interstellar medium is more important than that from stellar winds. Late in life, O stars evolve to cool red supergiants more rapidly than their environment can react, producing transient circumstellar structures such as double bow shocks. This provides an explanation for the bow shock and linear bar-shaped structure observed around Betelgeuse.

  7. Dynamos in asymptotic-giant-branch stars as the origin of magnetic fields shaping planetary nebulae.

    Science.gov (United States)

    Blackman, E G; Frank, A; Markiel, J A; Thomas, J H; Van Horn, H M

    2001-01-25

    Planetary nebulae are thought to be formed when a slow wind from the progenitor giant star is overtaken by a subsequent fast wind generated as the star enters its white dwarf stage. A shock forms near the boundary between the winds, creating the relatively dense shell characteristic of a planetary nebula. A spherically symmetric wind will produce a spherically symmetric shell, yet over half of known planetary nebulae are not spherical; rather, they are elliptical or bipolar in shape. A magnetic field could launch and collimate a bipolar outflow, but the origin of such a field has hitherto been unclear, and some previous work has even suggested that a field could not be generated. Here we show that an asymptotic-giant-branch (AGB) star can indeed generate a strong magnetic field, having as its origin a dynamo at the interface between the rapidly rotating core and the more slowly rotating envelope of the star. The fields are strong enough to shape the bipolar outflows that produce the observed bipolar planetary nebulae. Magnetic braking of the stellar core during this process may also explain the puzzlingly slow rotation of most white dwarf stars.

  8. THE MASS-DEPENDENCE OF ANGULAR MOMENTUM EVOLUTION IN SUN-LIKE STARS

    International Nuclear Information System (INIS)

    Matt, Sean P.; Baraffe, Isabelle; Chabrier, Gilles; Brun, A. Sacha; Bouvier, Jérôme

    2015-01-01

    To better understand the observed distributions of the rotation rate and magnetic activity of Sun-like and low-mass stars, we derive a physically motivated scaling for the dependence of the stellar wind torque on the Rossby number. The torque also contains an empirically derived scaling with stellar mass (and radius), which provides new insight into the mass-dependence of stellar magnetic and wind properties. We demonstrate that this new formulation explains why the lowest mass stars are observed to maintain rapid rotation for much longer than solar-mass stars, and simultaneously why older populations exhibit a sequence of slowly rotating stars, in which the low-mass stars rotate more slowly than solar-mass stars. The model also reproduces some previously unexplained features in the period-mass diagram for the Kepler field, notably: the particular shape of the ''upper envelope'' of the distribution, suggesting that ∼95% of Kepler field stars with measured rotation periods are younger than ∼4 Gyr; and the shape of the ''lower envelope'', corresponding to the location where stars transition between magnetically saturated and unsaturated regimes

  9. A new Wolf-Rayet star and its circumstellar nebula in Aquila

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Hamann, W.-R.; Berdnikov, L. N.; Fabrika, S.; Valeev, A. F.

    2010-04-01

    We report the discovery of a new Wolf-Rayet star in Aquila via detection of its circumstellar nebula (reminiscent of ring nebulae associated with late WN stars) using the Spitzer Space Telescope archival data. Our spectroscopic follow-up of the central point source associated with the nebula showed that it is a WN7h star (we named it WR121b). We analysed the spectrum of WR121b by using the Potsdam Wolf-Rayet model atmospheres, obtaining a stellar temperature of ~=50kK. The stellar wind composition is dominated by helium with ~20 per cent of hydrogen. The stellar spectrum is highly reddened [E(B - V) = 2.85mag]. Adopting an absolute magnitude of Mv = -5.7, the star has a luminosity of logL/Lsolar = 5.75 and a mass-loss rate of 10-4.7Msolaryr-1, and resides at a distance of 6.3kpc. We searched for a possible parent cluster of WR121b and found that this star is located at ~=1° from the young star cluster embedded in the giant HII region W43 (containing a WN7+a/OB? star - WR121a). We also discovered a bow shock around the O9.5III star ALS9956, located at from the cluster. We discuss the possibility that WR121b and ALS9956 are runaway stars ejected from the cluster in W43. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC). E-mail: vgvaram@mx.iki.rssi.ru (VVG); akniazev@saao.ac.za (AYK); wrh@astro.physik.uni-potsdam.de (WRH); berdnik@sai.msu.ru (LNB); fabrika@sao.ru (SF); azamat@sao.ru (AFV)

  10. Spectra of Wolf-Rayet stars. I. Optical line strengths and the hydrogen-to-helium ratios in WN type stars

    International Nuclear Information System (INIS)

    Conti, P.S.; Leep, E.M.; Perry, D.N.

    1983-01-01

    We begin a series of systematic studies of spectra of Wolf-Rayet stars by examining the optical line strengths of WN stars in the Galaxy and the Large Magellanic Cloud to see what similarities and differences exist among them. Tables of equivalent widths extracted from spectra are presented and some conclusions are drawn. We have found that there is a wide dispersion, up to a factor of 10 or more, in line strengths for all ions even among stars of the same subtype, with WN 7 stars weaker overall than surrounding types. Type-to-type trends are consistent with changing ionization balance in the stellar wind. Nitrogen line ratios indicate that the WN subtypes represent an ionization sequence, but one with considerable overlap: the classification scheme is not single valued; other physical parameters must play a role. The line strength dispersion does not appear to be primarily due to ionization, or luminosity. The Balmer-Pickering decrement has been used to estimate the H/He ratio for most of the WN stars with available spectra; semiquantitative results are presented. Significant differences in H/He are observed (10 stars may have H/He>2). At a given subclass, the strongest line stars have no detectable H. The abundance of H probably relates to structural differences in the winds that, in part, give rise to a dispersion in observed line strengths. Finally, we have estimated the C/N ratio from the C IV lambda5805/N IV lambda4057 line ratio. In most cases our observations suggest that the C/N ratio is consistent with ''evolved'' models for WN stars. A few stars show strong C IV implying much larger values for C/N, but hydrogen was not detected in them. These stars may be in transition from the WN to WC classes

  11. Forecasting wind power production from a wind farm using the RAMS model

    DEFF Research Database (Denmark)

    Tiriolo, L.; Torcasio, R. C.; Montesanti, S.

    2015-01-01

    of the ECMWF Integrated Forecasting System (IFS), whose horizontal resolution over Central Italy is about 25 km at the time considered in this paper. Because wind observations were not available for the site, the power curve for the whole wind farm was derived from the ECMWF wind operational analyses available......The importance of wind power forecast is commonly recognized because it represents a useful tool for grid integration and facilitates the energy trading. This work considers an example of power forecast for a wind farm in the Apennines in Central Italy. The orography around the site is complex...... and the horizontal resolution of the wind forecast has an important role. To explore this point we compared the performance of two 48 h wind power forecasts using the winds predicted by the Regional Atmospheric Modeling System (RAMS) for the year 2011. The two forecasts differ only for the horizontal resolution...

  12. Monte Carlo simulations of the detailed iron absorption line profiles from thermal winds in X-ray binaries

    Science.gov (United States)

    Tomaru, Ryota; Done, Chris; Odaka, Hirokazu; Watanabe, Shin; Takahashi, Tadayuki

    2018-05-01

    Blueshifted absorption lines from highly ionized iron are seen in some high inclination X-ray binary systems, indicating the presence of an equatorial disc wind. This launch mechanism is under debate, but thermal driving should be ubiquitous. X-ray irradiation from the central source heats disc surface, forming a wind from the outer disc where the local escape velocity is lower than the sound speed. The mass-loss rate from each part of the disc is determined by the luminosity and spectral shape of the central source. We use these together with an assumed density and velocity structure of the wind to predict the column density and ionization state, then combine this with a Monte Carlo radiation transfer to predict the detailed shape of the absorption (and emission) line profiles. We test this on the persistent wind seen in the bright neutron star binary GX 13+1, with luminosity L/LEdd ˜ 0.5. We approximately include the effect of radiation pressure because of high luminosity, and compute line features. We compare these to the highest resolution data, the Chandra third-order grating spectra, which we show here for the first time. This is the first physical model for the wind in this system, and it succeeds in reproducing many of the features seen in the data, showing that the wind in GX13+1 is most likely a thermal-radiation driven wind. This approach, combined with better streamline structures derived from full radiation hydrodynamic simulations, will allow future calorimeter data to explore the detail wind structure.

  13. Monitoring pulsating giant stars in M33: star formation history and chemical enrichment

    Science.gov (United States)

    Javadi, A.; van Loon, J. Th

    2017-06-01

    We have conducted a near-infrared monitoring campaign at the UK InfraRed Telescope (UKIRT), of the Local Group spiral galaxy M33 (Triangulum). A new method has been developed by us to use pulsating giant stars to reconstruct the star formation history of galaxies over cosmological time as well as using them to map the dust production across their host galaxies. In first Instance the central square kiloparsec of M33 was monitored and long period variable stars (LPVs) were identified. We give evidence of two epochs of a star formation rate enhanced by a factor of a few. These stars are also important dust factories, we measure their dust production rates from a combination of our data with Spitzer Space Telescope mid-IR photometry. Then the monitoring survey was expanded to cover a much larger part of M33 including spiral arms. Here we present our methodology and describe results for the central square kiloparsec of M33 [1-4] and disc of M33 [5-8].

  14. Monitoring pulsating giant stars in M33: star formation history and chemical enrichment

    International Nuclear Information System (INIS)

    Javadi, A; Van Loon, J Th

    2017-01-01

    We have conducted a near-infrared monitoring campaign at the UK InfraRed Telescope (UKIRT), of the Local Group spiral galaxy M33 (Triangulum). A new method has been developed by us to use pulsating giant stars to reconstruct the star formation history of galaxies over cosmological time as well as using them to map the dust production across their host galaxies. In first Instance the central square kiloparsec of M33 was monitored and long period variable stars (LPVs) were identified. We give evidence of two epochs of a star formation rate enhanced by a factor of a few. These stars are also important dust factories, we measure their dust production rates from a combination of our data with Spitzer Space Telescope mid-IR photometry. Then the monitoring survey was expanded to cover a much larger part of M33 including spiral arms. Here we present our methodology and describe results for the central square kiloparsec of M33 [1–4] and disc of M33 [5–8]. (paper)

  15. The Impact of Transformer Winding Connections of A Grid-Connected PV on Voltage Quality Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tumbelaka, Hanny H. [Petra Christian University; Gao, Wenzhong [University of Denver

    2018-03-01

    In this paper, the high-power PV plant is connected to the weak grid by means of a three-phase power transformer. The selection of transformer winding connection is critical especially when the PV inverter has a reactive power controller. In general, transformer winding connection can be arranged in star-star (with neutral earthed) or star-delta. The reactive power controller supports voltage regulation of the power system particularly under transient faults. Its control strategy is based on utilizing the grid currents to make a three-phase reactive unbalanced current with a small gain. The gain is determined by the system impedance. Simulation results exhibit that the control strategy works very well particularly under disturbance conditions when the transformer winding connection is star-star with both neutrals grounded. The power quality in terms of the voltage quality is improved.

  16. Detecting stellar-wind bubbles through infrared arcs in H II regions

    Science.gov (United States)

    Mackey, Jonathan; Haworth, Thomas J.; Gvaramadze, Vasilii V.; Mohamed, Shazrene; Langer, Norbert; Harries, Tim J.

    2016-02-01

    Mid-infrared arcs of dust emission are often seen near ionizing stars within H II regions. A possible explanations for these arcs is that they could show the outer edges of asymmetric stellar wind bubbles. We use two-dimensional, radiation-hydrodynamics simulations of wind bubbles within H II regions around individual stars to predict the infrared emission properties of the dust within the H II region. We assume that dust and gas are dynamically well-coupled and that dust properties (composition, size distribution) are the same in the H II region as outside it, and that the wind bubble contains no dust. We post-process the simulations to make synthetic intensity maps at infrared wavebands using the torus code. We find that the outer edge of a wind bubble emits brightly at 24 μm through starlight absorbed by dust grains and re-radiated thermally in the infrared. This produces a bright arc of emission for slowly moving stars that have asymmetric wind bubbles, even for cases where there is no bow shock or any corresponding feature in tracers of gas emission. The 24 μm intensity decreases exponentially from the arc with increasing distance from the star because the dust temperature decreases with distance. The size distribution and composition of the dust grains has quantitative but not qualitative effects on our results. Despite the simplifications of our model, we find good qualitative agreement with observations of the H II region RCW 120, and can provide physical explanations for any quantitative differences. Our model produces an infrared arc with the same shape and size as the arc around CD -38°11636 in RCW 120, and with comparable brightness. This suggests that infrared arcs around O stars in H II regions may be revealing the extent of stellar wind bubbles, although we have not excluded other explanations.

  17. Hydrodynamic Simulations of the Inner Accretion Flow of Sagittarius A* Fueled By Stellar Winds

    Science.gov (United States)

    Ressler, S. M.; Quataert, E.; Stone, J. M.

    2018-05-01

    We present Athena++ grid-based, hydrodynamic simulations of accretion onto Sagittarius A* via the stellar winds of the ˜30 Wolf-Rayet stars within the central parsec of the galactic center. These simulations span ˜ 4 orders of magnitude in radius, reaching all the way down to 300 gravitational radii of the black hole, ˜32 times further in than in previous work. We reproduce reasonably well the diffuse thermal X-ray emission observed by Chandra in the central parsec. The resulting accretion flow at small radii is a superposition of two components: 1) a moderately unbound, sub-Keplerian, thick, pressure-supported disc that is at most (but not all) times aligned with the clockwise stellar disc, and 2) a bound, low-angular momentum inflow that proceeds primarily along the southern pole of the disc. We interpret this structure as a natural consequence of a few of the innermost stellar winds dominating accretion, which produces a flow with a broad distribution of angular momentum. Including the star S2 in the simulation has a negligible effect on the flow structure. Extrapolating our results from simulations with different inner radii, we find an accretion rate of ˜ a few × 10-8M⊙/yr at the horizon scale, consistent with constraints based on modeling the observed emission of Sgr A*. The flow structure found here can be used as more realistic initial conditions for horizon scale simulations of Sgr A*.

  18. Star Polymers.

    Science.gov (United States)

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.

  19. Feedback by AGN Jets and Wide-angle Winds on a Galactic Scale

    Energy Technology Data Exchange (ETDEWEB)

    Dugan, Zachary; Silk, Joseph [The Johns Hopkins University Department of Physics and Astronomy, Bloomberg Center for Physics and Astronomy, Room 366, 3400 N. Charles Street, Baltimore, MD 21218 (United States); Gaibler, Volker [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany)

    2017-07-20

    To investigate the differences in mechanical feedback from radio-loud and radio-quiet active galactic nuclei on the host galaxy, we perform 3D AMR hydrodynamic simulations of wide-angle, radio-quiet winds with different inclinations on a single, massive, gas-rich disk galaxy at a redshift of 2–3. We compare our results to hydrodynamic simulations of the same galaxy but with a jet. The jet has an inclination of 0° (perpendicular to the galactic plane), and the winds have inclinations of 0°, 45°, and 90°. We analyze the impact on the host’s gas, star formation, and circumgalactic medium. We find that jet feedback is energy-driven and wind feedback is momentum-driven. In all the simulations, the jet or wind creates a cavity mostly devoid of dense gas in the nuclear region where star formation is then quenched, but we find strong positive feedback in all the simulations at radii greater than 3 kpc. All four simulations have similar SFRs and stellar velocities with large radial and vertical components. However, the wind at an inclination of 90° creates the highest density regions through ram pressure and generates the highest rates of star formation due to its ongoing strong interaction with the dense gas of the galactic plane. With increased wind inclination, we find greater asymmetry in gas distribution and resulting star formation. Our model generates an expanding ring of triggered star formation with typical velocities of the order of 1/3 of the circular velocity, superimposed on the older stellar population. This should result in a potentially detectable blue asymmetry in stellar absorption features at kiloparsec scales.

  20. RECONSTRUCTING THE SOLAR WIND FROM ITS EARLY HISTORY TO CURRENT EPOCH

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, Vladimir S.; Usmanov, Arcadi V., E-mail: vladimir.airapetian@nasa.gov, E-mail: avusmanov@gmail.com [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2016-02-01

    Stellar winds from active solar-type stars can play a crucial role in removal of stellar angular momentum and erosion of planetary atmospheres. However, major wind properties except for mass-loss rates cannot be directly derived from observations. We employed a three-dimensional magnetohydrodynamic Alfvén wave driven solar wind model, ALF3D, to reconstruct the solar wind parameters including the mass-loss rate, terminal velocity, and wind temperature at 0.7, 2, and 4.65 Gyr. Our model treats the wind thermal electrons, protons, and pickup protons as separate fluids and incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating to properly describe proton and electron temperatures of the solar wind. To study the evolution of the solar wind, we specified three input model parameters, the plasma density, Alfvén wave amplitude, and the strength of the dipole magnetic field at the wind base for each of three solar wind evolution models that are consistent with observational constrains. Our model results show that the velocity of the paleo solar wind was twice as fast, ∼50 times denser and 2 times hotter at 1 AU in the Sun's early history at 0.7 Gyr. The theoretical calculations of mass-loss rate appear to be in agreement with the empirically derived values for stars of various ages. These results can provide realistic constraints for wind dynamic pressures on magnetospheres of (exo)planets around the young Sun and other active stars, which is crucial in realistic assessment of the Joule heating of their ionospheres and corresponding effects of atmospheric erosion.

  1. RECONSTRUCTING THE SOLAR WIND FROM ITS EARLY HISTORY TO CURRENT EPOCH

    International Nuclear Information System (INIS)

    Airapetian, Vladimir S.; Usmanov, Arcadi V.

    2016-01-01

    Stellar winds from active solar-type stars can play a crucial role in removal of stellar angular momentum and erosion of planetary atmospheres. However, major wind properties except for mass-loss rates cannot be directly derived from observations. We employed a three-dimensional magnetohydrodynamic Alfvén wave driven solar wind model, ALF3D, to reconstruct the solar wind parameters including the mass-loss rate, terminal velocity, and wind temperature at 0.7, 2, and 4.65 Gyr. Our model treats the wind thermal electrons, protons, and pickup protons as separate fluids and incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating to properly describe proton and electron temperatures of the solar wind. To study the evolution of the solar wind, we specified three input model parameters, the plasma density, Alfvén wave amplitude, and the strength of the dipole magnetic field at the wind base for each of three solar wind evolution models that are consistent with observational constrains. Our model results show that the velocity of the paleo solar wind was twice as fast, ∼50 times denser and 2 times hotter at 1 AU in the Sun's early history at 0.7 Gyr. The theoretical calculations of mass-loss rate appear to be in agreement with the empirically derived values for stars of various ages. These results can provide realistic constraints for wind dynamic pressures on magnetospheres of (exo)planets around the young Sun and other active stars, which is crucial in realistic assessment of the Joule heating of their ionospheres and corresponding effects of atmospheric erosion

  2. The coupling between pulsation and mass loss in massive stars

    OpenAIRE

    Townsend, Rich

    2007-01-01

    To what extent can pulsational instabilities resolve the mass-loss problem of massive stars? How important is pulsation in structuring and modulating the winds of these stars? What role does pulsation play in redistributing angular momentum in massive stars? Although I cannot offer answers to these questions, I hope at the very least to explain how they come to be asked.

  3. High-energy X-ray imaging of the pulsar wind nebula MSH 15-52: constraints on particle acceleration and transport

    DEFF Research Database (Denmark)

    An, Hongjun; Madsen, Kristin K.; Reynolds, Stephen P.

    2014-01-01

    We present the first images of the pulsar wind nebula (PWN) MSH 15−52 in the hard X-ray band (8 keV), as measured with the Nuclear Spectroscopic Telescope Array (NuSTAR). Overall, the morphology of the PWN as measured by NuSTAR in the 3–7 keV band is similar to that seen in Chandra high-resolutio......We present the first images of the pulsar wind nebula (PWN) MSH 15−52 in the hard X-ray band (8 keV), as measured with the Nuclear Spectroscopic Telescope Array (NuSTAR). Overall, the morphology of the PWN as measured by NuSTAR in the 3–7 keV band is similar to that seen in Chandra high...... of the PWN softens away from the central pulsar B1509−58, and that there exists a roughly sinusoidal variation of spectral hardness in the azimuthal direction. We discuss the results using particle flow models.We find non-monotonic structure in the variation with distance of spectral hardness within 50...... of the pulsar moving in the jet direction, which may imply particle and magnetic-field compression by magnetic hoop stress as previously suggested for this source. We also present two-dimensional maps of spectral parameters and find an interesting shell-like structure in the NH map.We discuss possible origins...

  4. Properties of O dwarf stars in 30 Doradus

    Science.gov (United States)

    Sabín-Sanjulián, Carolina; VFTS Collaboration

    2017-11-01

    We perform a quantitative spectroscopic analysis of 105 presumably single O dwarf stars in 30 Doradus, located within the Large Magellanic Cloud. We use mid-to-high resolution multi-epoch optical spectroscopic data obtained within the VLT-FLAMES Tarantula Survey. Stellar and wind parameters are derived by means of the automatic tool iacob-gbat, which is based on a large grid of fastwind models. We also benefit from the Bayesian tool bonnsai to estimate evolutionary masses. We provide a spectral calibration for the effective temperature of O dwarf stars in the LMC, deal with the mass discrepancy problem and investigate the wind properties of the sample.

  5. The s-Process Nucleosynthesis in Extremely Metal-Poor Stars as the Generating Mechanism of Carbon Enhanced Metal-Poor Stars

    Science.gov (United States)

    Suda, Takuma; Yamada, Shimako; Fujimoto, Masayuki Y.

    The origin of carbon-enhanced metal-poor (CEMP) stars plays a key role in characterising the formation and evolution of the first stars and the Galaxy since the extremely-metal-poor (EMP) stars with [Fe/H] ≤ -2.5 share the common features of carbon enhancement in their surface chemical compositions. The origin of these stars is not yet established due to the controversy of the origin of CEMP stars without the enhancement of s-process element abundances, i.e., so called CEMP-no stars. In this paper, we elaborate the s-process nucleosynthesis in the EMP AGB stars and explore the origin of CEMP stars. We find that the efficiency of the s-process is controlled by O rather than Fe at [Fe/H] ≲ -2. We demonstrate that the relative abundances of Sr, Ba, Pb to C are explained in terms of the wind accretion from AGB stars in binary systems.

  6. A Heavy Flavor Tracker for STAR

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z.; Chen, Y.; Kleinfelder, S.; Koohi, A.; Li, S.; Huang, H.; Tai, A.; Kushpil, V.; Sumbera, M.; Colledani, C.; Dulinski, W.; Himmi,A.; Hu, C.; Shabetai, A.; Szelezniak, M.; Valin, I.; Winter, M.; Miller,M.; Surrow, B.; Van Nieuwenhuizen G.; Bieser, F.; Gareus, R.; Greiner,L.; Lesser, F.; Matis, H.S.; Oldenburg, M.; Ritter, H.G.; Pierpoint, L.; Retiere, F.; Rose, A.; Schweda, K.; Sichtermann, E.; Thomas, J.H.; Wieman, H.; Yamamoto, E.; Kotov, I.

    2005-03-14

    We propose to construct a Heavy Flavor Tracker (HFT) for theSTAR experiment at RHIC. The HFT will bring new physics capabilities toSTAR and it will significantly enhance the physics capabilities of theSTAR detector at central rapidities. The HFT will ensure that STAR willbe able to take heavy flavor data at all luminosities attainablethroughout the proposed RHIC II era.

  7. A Heavy Flavor Tracker for STAR

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z.; Chen, Y.; Kleinfelder, S.; Koohi, A.; Li, S.; Huang, H.; Tai, A.; Kushpil, V.; Sumbera, M.; Colledani, C.; Dulinski, W.; Himmi,A.; Hu, C.; Shabetai, A.; Szelezniak, M.; Valin, I.; Winter, M.; Surrow,B.; Van Nieuwenhuizen, G.; Bieser, F.; Gareus, R.; Greiner, L.; Lesser,F.; Matis, H.S.; Oldenburg, M.; Ritter, H.G.; Pierpoint, L.; Retiere, F.; Rose, A.; Schweda, K.; Sichtermann, E.; Thomas, J.H.; Wieman, H.; Yamamoto, E.; Kotov, I.

    2005-03-14

    We propose to construct a Heavy Flavor Tracker (HFT) for the STAR experiment at RHIC. The HFT will bring new physics capabilities to STAR and it will significantly enhance the physics capabilities of the STAR detector at central rapidities. The HFT will ensure that STAR will be able to take heavy flavor data at all luminosities attainable throughout the proposed RHIC II era.

  8. A Heavy Flavor Tracker for STAR

    International Nuclear Information System (INIS)

    Xu, Z.; Chen, Y.; Kleinfelder, S.; Koohi, A.; Li, S.; Huang, H.; Tai, A.; Kushpil, V.; Sumbera, M.; Colledani, C.; Dulinski, W.; Himmi, A.; Hu, C.; Shabetai, A.; Szelezniak, M.; Valin, I.; Winter, M.; Surrow, B.; Van Nieuwenhuizen, G.; Bieser, F.; Gareus, R.; Greiner, L.; Lesser, F.; Matis, H.S.; Oldenburg, M.; Ritter, H.G.; Pierpoint, L.; Retiere, F.; Rose, A.; Schweda, K.; Sichtermann, E.; Thomas, J.H.; Wieman, H.; Yamamoto, E.; Kotov, I.

    2005-01-01

    We propose to construct a Heavy Flavor Tracker (HFT) for the STAR experiment at RHIC. The HFT will bring new physics capabilities to STAR and it will significantly enhance the physics capabilities of the STAR detector at central rapidities. The HFT will ensure that STAR will be able to take heavy flavor data at all luminosities attainable throughout the proposed RHIC II era

  9. X-ray sources in stars formation areas: T Tauri stars and proto-stars in the rho Ophiuchi dark cloud

    International Nuclear Information System (INIS)

    Grosso, Nicolas

    1999-01-01

    This thesis studies from large to small scales, X-ray sources in the rho Ophiuchi dark cloud. After some background on the formation of the low-mass young stars (Chapter 1), Chapter 2 takes an interest in the T Tauri star population. Chapter 3 tackles the search of the magnetic activity at the younger stage of protostar, presenting a powerful X-ray emission from an IR protostar, called YLW15, during a flare, and a quasi-periodic flare of the same source; as well as a new detection of another IR protostar in the ROSAT archives. It ends with a review of protostar detections. Some IR protostar flares show a very long increasing phase. Chapter 4 links this behaviour with a modulation by the central star rotation. The standard model of jet emission assumes that the central star rotates at the same speed that the inner edge of its accretion disk. This chapter shows that the observation of the YLW15 quasi-periodic flare suggests rather that the forming star rotates faster than its accretion disk, at the break up limit. The synchronism with the accretion disk, observed on T Tauri stars, must be reach progressively by magnetic breaking during the IR protostar stage, and more or less rapidly depending on the forming star mass. Recent studies have shown that T Tauri star X-ray emission could ionize the circumstellar disk, and play a role in the instability development, as well as stimulate the accretion. The protostar X-ray emission might be higher than the T Tauri star one, Chapter 5 presents a millimetric interferometric observation dedicated to measure this effect on YLW15. Finally, Chapter 6 reassembles conclusions and perspectives of this work. (author) [fr

  10. Gamma-Ray Bursts from tidally spun-up Wolf-Rayet stars?

    OpenAIRE

    Detmers, R. G.; Langer, N.; Podsiadlowski, Ph.; Izzard, R. G.

    2008-01-01

    Context. The collapsar model requires rapidly rotating Wolf-Rayet stars as progenitors of long gamma-ray bursts. However, Galactic Wolf-Rayet stars rapidly lose angular momentum due to their intense stellar winds. Aims. We investigate whether the tidal interaction of a Wolf-Rayet star with a compact object in a binary system can spin up the Wolf-Rayet star enough to produce a collapsar. Methods. We compute the evolution of close Wolf-Rayet binaries, including tidal angular momentum exchange, ...

  11. THE NATURE OF STARBURSTS. III. THE SPATIAL DISTRIBUTION OF STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W.; Skillman, Evan D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street, S.E., University of Minnesota, Minneapolis, MN 55455 (United States); Dalcanton, Julianne J.; Weisz, Daniel R.; Williams, Benjamin F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Cannon, John M. [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Holtzman, Jon, E-mail: kmcquinn@astro.umn.edu [Department of Astronomy, New Mexico State University, Box 30001-Department 4500, 1320 Frenger Street, Las Cruces, NM 88003 (United States)

    2012-11-01

    We map the spatial distribution of recent star formation over a few Multiplication-Sign 100 Myr timescales in 15 starburst dwarf galaxies using the location of young blue helium burning stars identified from optically resolved stellar populations in archival Hubble Space Telescope observations. By comparing the star formation histories from both the high surface brightness central regions and the diffuse outer regions, we measure the degree to which the star formation has been centrally concentrated during the galaxies' starbursts, using three different metrics for the spatial concentration. We find that the galaxies span a full range in spatial concentration, from highly centralized to broadly distributed star formation. Since most starbursts have historically been identified by relatively short timescale star formation tracers (e.g., H{alpha} emission), there could be a strong bias toward classifying only those galaxies with recent, centralized star formation as starbursts, while missing starbursts that are spatially distributed.

  12. Wind accretion and formation of disk structures in symbiotic binary systems

    Science.gov (United States)

    de Val-Borro, M.; Karovska, M.; Sasselov, D. D.; Stone, J. M.

    2015-05-01

    We investigate gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion. We study the mass accretion and formation of an accretion disk around the secondary caused by the strong wind from the primary late-type component using global 2D and 3D hydrodynamic numerical simulations. In particular, the dependence of the mass accretion rate on the mass loss rate, wind temperature and orbital parameters of the system is considered. For a typical slow and massive wind from an evolved star the mass transfer through a focused wind results in rapid infall onto the secondary. A stream flow is created between the stars with accretion rates of a 2--10% percent of the mass loss from the primary. This mechanism could be an important method for explaining periodic modulations in the accretion rates for a broad range of interacting binary systems and fueling of a large population of X-ray binary systems. We test the plausibility of these accretion flows indicated by the simulations by comparing with observations of the symbiotic variable system CH Cyg.

  13. ζ Oph and the weak-wind problem

    Science.gov (United States)

    Gvaramadze, V. V.; Langer, N.; Mackey, J.

    2012-11-01

    Mass-loss rate, ?, is one of the key parameters affecting evolution and observational manifestations of massive stars and their impact on the ambient medium. Despite its importance, there is a factor of ˜100 discrepancy between empirical and theoretical ? of late-type O dwarfs, the so-called weak-wind problem. In this Letter, we propose a simple novel method to constrain ? of runaway massive stars through observation of their bow shocks and Strömgren spheres, which might be of decisive importance for resolving the weak-wind problem. Using this method, we found that ? of the well-known runaway O9.5 V star ζ Oph is more than an order of magnitude higher than that derived from ultraviolet (UV) line fitting and is by a factor of 6-7 lower than those based on the theoretical recipe by Vink et al. and the Hα line. The discrepancy between ? derived by our method and that based on UV lines would be even more severe if the stellar wind is clumpy. At the same time, our estimate of ? agrees with that predicted by the moving reversing layer theory by Lucy.

  14. Galactic Winds Driven by Supernovae and Radiation Pressure: Theory and Simulations

    Science.gov (United States)

    Zhang, Dong; Davis, Shane

    2018-01-01

    Galactic winds are ubiquitous in most rapidly star-forming galaxies. They are crucial to the process of galaxy formation and evolution, regulating star formation, shaping the stellar mass function and the mass-metallicity relation, and enriching the intergalactic medium with metals. Although important, the physics of galactic winds is still unclear. Winds may be driven by many mechanisms including overlapping supernovae explosions, radiation pressure of starlight on dust grains, and cosmic rays. However, the growing observations of multiphase structure in galactic winds in a large number of galaxies have not been well explained by any models. In this talk I will focus on the models of supernova- and radiation-pressure-driven winds. Using the state-of-the-art numerical simulations, I will assess the relative merits of these driving mechanisms for accelerating cold and warm clouds to observed velocities, and momentum flux boost during wind propagation.

  15. Low-metallicity massive single stars with rotation. Evolutionary models applicable to I Zwicky 18

    NARCIS (Netherlands)

    Szécsi, D.; Langer, N.; Yoon, S.C.; Sanyal, D.; de Mink, S.; Evans, C.J.; Dermine, T.

    2015-01-01

    Context. Low-metallicity environments such as the early Universe and compact star-forming dwarf galaxies contain many massive stars. These stars influence their surroundings through intense UV radiation, strong winds and explosive deaths. A good understanding of low-metallicity environments requires

  16. "Wonderful" Star Reveals its Hot Nature

    Science.gov (United States)

    2005-04-01

    to become a white dwarf. The internal turmoil in Mira A could create magnetic disturbances in the upper atmosphere of the star and lead to the observed X-ray outbursts, as well as the rapid loss of material from the star in a blustery, strong, stellar wind. Some of the gas and dust escaping from Mira A is captured by its companion Mira B. In stark contrast to Mira A, Mira B is thought to be a white dwarf star about the size of the Earth. Some of the material in the wind from Mira A is captured in an accretion disk around Mira B, where collisions between rapidly moving particles produce X-rays. Animation of Interacting Stars Animation of Interacting Stars One of the more intriguing aspects of the observations of Mira AB at both X-ray and ultraviolet wavelengths is the evidence for a faint bridge of material joining the two stars. The existence of a bridge would indicate that, in addition to capturing material from the stellar wind, Mira B is also pulling material directly off Mira A into the accretion disk. Chandra observed Mira with its Advanced CCD Imaging Spectrometer on December 6, 2003 for about 19 hours. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate, Washington. Northrop Grumman of Redondo Beach, Calif., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  17. Old and new neutron stars

    International Nuclear Information System (INIS)

    Ruderman, M.

    1984-09-01

    The youngest known radiopulsar in the rapidly spinning magnetized neutron star which powers the Crab Nebula, the remnant of the historical supernova explosion of 1054 AD. Similar neutron stars are probably born at least every few hundred years, but are less frequent than Galactic supernova explosions. They are initially sources of extreme relativistic electron and/or positron winds (approx.10 38 s -1 of 10 12 eV leptons) which greatly decrease as the neutron stars spin down to become mature pulsars. After several million years these neutron stars are no longer observed as radiopulsars, perhaps because of large magnetic field decay. However, a substantial fraction of the 10 8 old dead pulsars in the Galaxy are the most probable source for the isotropically distributed γ-ray burst detected several times per week at the earth. Some old neutron stars are spun-up by accretion from companions to be resurrected as rapidly spinning low magnetic field radiopulsars. 52 references, 6 figures, 3 tables

  18. Are luminous and metal-rich Wolf Rayet stars inflated?

    NARCIS (Netherlands)

    Petrovic, J.; Pols, O.; Langer, N.

    2006-01-01

    Aims. We investigate the influence of metallicity and stellar wind mass loss on the radius of Wolf-Rayet stars. Methods. We have calculated chemically homogeneous models of Wolf-Rayet stars of 10 to 200 M for two metallicities (Z = 0.02 and Z = 0.001), without mass loss, using OPAL opacities. We

  19. How Massive Single Stars End Their Life

    Science.gov (United States)

    Heger, A.; Fryer, C. L.; Woosley, S. E.; Langer, N.; Hartmann, D. H.

    2003-01-01

    How massive stars die-what sort of explosion and remnant each produces-depends chiefly on the masses of their helium cores and hydrogen envelopes at death. For single stars, stellar winds are the only means of mass loss, and these are a function of the metallicity of the star. We discuss how metallicity, and a simplified prescription for its effect on mass loss, affects the evolution and final fate of massive stars. We map, as a function of mass and metallicity, where black holes and neutron stars are likely to form and where different types of supernovae are produced. Integrating over an initial mass function, we derive the relative populations as a function of metallicity. Provided that single stars rotate rapidly enough at death, we speculate on stellar populations that might produce gamma-ray bursts and jet-driven supernovae.

  20. Self-similar Hot Accretion Flow onto a Neutron Star

    Science.gov (United States)

    Medvedev, Mikhail V.; Narayan, Ramesh

    2001-06-01

    We consider hot, two-temperature, viscous accretion onto a rotating, unmagnetized neutron star. We assume Coulomb coupling between the protons and electrons, as well as free-free cooling from the electrons. We show that the accretion flow has an extended settling region that can be described by means of two analytical self-similar solutions: a two-temperature solution that is valid in an inner zone, r~102.5. In both zones the density varies as ρ~r-2 and the angular velocity as Ω~r-3/2. We solve the flow equations numerically and confirm that the analytical solutions are accurate. Except for the radial velocity, all gas properties in the self-similar settling zone, such as density, angular velocity, temperature, luminosity, and angular momentum flux, are independent of the mass accretion rate; these quantities do depend sensitively on the spin of the neutron star. The angular momentum flux is outward under most conditions; therefore, the central star is nearly always spun down. The luminosity of the settling zone arises from the rotational energy that is released as the star is braked by viscosity, and the contribution from gravity is small; hence, the radiative efficiency, η=Lacc/Mc2, is arbitrarily large at low M. For reasonable values of the gas adiabatic index γ, the Bernoulli parameter is negative; therefore, in the absence of dynamically important magnetic fields, a strong outflow or wind is not expected. The flow is also convectively stable but may be thermally unstable. The described solution is not advection dominated; however, when the spin of the star is small enough, the flow transforms smoothly to an advection-dominated branch of solution.

  1. Theory of neutron star magnetospheres

    CERN Document Server

    Curtis Michel, F

    1990-01-01

    An incomparable reference for astrophysicists studying pulsars and other kinds of neutron stars, "Theory of Neutron Star Magnetospheres" sums up two decades of astrophysical research. It provides in one volume the most important findings to date on this topic, essential to astrophysicists faced with a huge and widely scattered literature. F. Curtis Michel, who was among the first theorists to propose a neutron star model for radio pulsars, analyzes competing models of pulsars, radio emission models, winds and jets from pulsars, pulsating X-ray sources, gamma-ray burst sources, and other neutron-star driven phenomena. Although the book places primary emphasis on theoretical essentials, it also provides a considerable introduction to the observational data and its organization. Michel emphasizes the problems and uncertainties that have arisen in the research as well as the considerable progress that has been made to date.

  2. The circumstellar environment of evolved stars as traced by molecules and dust. The diagnostic power of Herschel

    Science.gov (United States)

    Lombaert, Robin

    2013-12-01

    Low-to-intermediate mass stars end their life on the asymptotic giant branch (AGB), an evolutionary phase in which the star sheds most of its mantle into the circumstellar environment through a stellar wind. This stellar wind expands at relatively low velocities and enriches the interstellar medium with elements newly made in the stellar interior. The physical processes controlling the gas and dust chemistry in the outflow, as well as the driving mechanism of the wind itself, are poorly understood and constitute the broader context of this thesis work. In a first chapter, we consider the thermodynamics of the high-density wind of the oxygen-rich star oh, using observations obtained with the PACS instrument onboard the Herschel Space Telescope. Being one of the most abundant molecules, water vapor can be dominant in the energy balance of the inner wind of these types of stars, but to date, its cooling contribution is poorly understood. We aim to improve the constraints on water properties by careful combination of both dust and gas radiative-transfer models. This unified treatment is needed due to the high sensitivity of water excitation to dust properties. A combination of three types of diagnostics reveals a positive radial gradient of the dust-to-gas ratio in oh. The second chapter deals with the dust chemistry of carbon-rich winds. The 30-mic dust emission feature is commonly identified as due to magnesium sulfide (MgS). However, the lack of short-wavelength measurements of the optical properties of this dust species prohibits the determination of the temperature profile of MgS, and hence its feature strength and shape, questioning whether this species is responsible for the 30-mic feature. By considering the very optically thick wind of the extreme carbon star LL Peg, this problem can be circumvented because in this case the short-wavelength optical properties are not important for the radial temperature distribution. We attribute the 30-mic feature to MgS, but

  3. Three-dimensional Hydrodynamical Simulations of Mass Transfer in Binary Systems by a Free Wind

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zheng-Wei; Stancliffe, Richard J.; Abate, Carlo; Matrozis, Elvijs, E-mail: zwliu@ynao.ac.cn [Argelander-Institut für Astronomie, Auf dem Hügel 71, D-53121, Bonn (Germany)

    2017-09-10

    A large fraction of stars in binary systems are expected to undergo mass and angular momentum exchange at some point in their evolution, which can drastically alter the chemical and dynamical properties and fates of the systems. Interaction by stellar wind is an important process in wide binaries. However, the details of wind mass transfer are still not well understood. We perform three-dimensional hydrodynamical simulations of wind mass transfer in binary systems to explore mass-accretion efficiencies and geometries of mass outflows, for a range of mass ratios from 0.05 to 1.0. In particular, we focus on the case of a free wind, in which some physical mechanism accelerates the expelled wind material balancing the gravity of the mass-losing star with the wind velocity comparable to the orbital velocity of the system. We find that the mass-accretion efficiency and accreted specific angular momentum increase with the mass ratio of the system. For an adiabatic wind, we obtain that the accretion efficiency onto the secondary star varies from about 0.1% to 8% for mass ratios between 0.05 and 1.0.

  4. Effects of back warming in cocoon stars

    International Nuclear Information System (INIS)

    Donnison, J.R.; Williams, I.P.

    1976-01-01

    It is stated that dust shells frequently surround young stars, and attempts have been made to determine some of the properties of these shells. It is probable that the dust absorbs the outgoing radiation from the star and re-emits it in the infrared. If the dust shell does absorb radiation both its inner and outer surfaces will re-emit a certain proportion and some radiation will return to the central star, causing what amounts to 'warming of its own back'. It is interesting to consider how such a star evolves, compared with evolution of a normal pre-main-sequence star. A model for a contracting star that is receiving radiation from an external source has been developed by the authors in connection with the evolution of Jupiter within the radiation field of the Sun (Astrophys. Space Sci., 29:387 (1974)), and this model is here applied to the situation just described. It is emphasised that the discussion is concerned only with the evolution of the central star, the dust being regarded merely as a means of redirecting radiation back on to the surface of this star. Amongst conclusions reached is that a thin shell will cause no significant change in the structure and evolution of the central star, whilst the presence of a thick shell has a substantial effect on the star, slowing down is evolution. Whilst a dust shell is present the star cannot be seen, but only the dust shell emitting in the infrared, but once the dust shell clears the star is seen in a position and with an age that differs considerably from what it would have had if it had evolved without 'back warming' from the dust shell. (U.K.)

  5. Stellar feedback in galaxies and the origin of galaxy-scale winds

    Science.gov (United States)

    Hopkins, Philip F.; Quataert, Eliot; Murray, Norman

    2012-04-01

    Feedback from massive stars is believed to play a critical role in driving galactic super-winds that enrich the intergalactic medium and shape the galaxy mass function, mass-metallicity relation and other global galaxy properties. In previous papers, we have introduced new numerical methods for implementing stellar feedback on sub-giant molecular cloud (sub-GMC) through galactic scales in numerical simulations of galaxies; the key physical processes include radiation pressure in the ultraviolet through infrared, supernovae (Type I and Type II), stellar winds ('fast' O star through 'slow' asymptotic giant branch winds), and H II photoionization. Here, we show that these feedback mechanisms drive galactic winds with outflow rates as high as ˜10-20 times the galaxy star formation rate. The mass-loading efficiency (wind mass-loss rate divided by the star formation rate) scales roughly as ? (where Vc is the galaxy circular velocity), consistent with simple momentum-conservation expectations. We use our suite of simulations to study the relative contribution of each feedback mechanism to the generation of galactic winds in a range of galaxy models, from Small Magellanic Cloud like dwarfs and Milky Way (MW) analogues to z˜ 2 clumpy discs. In massive, gas-rich systems (local starbursts and high-z galaxies), radiation pressure dominates the wind generation. By contrast, for MW-like spirals and dwarf galaxies the gas densities are much lower and sources of shock-heated gas such as supernovae and stellar winds dominate the production of large-scale outflows. In all of our models, however, the winds have a complex multiphase structure that depends on the interaction between multiple feedback mechanisms operating on different spatial scales and time-scales: any single feedback mechanism fails to reproduce the winds observed. We use our simulations to provide fitting functions to the wind mass loading and velocities as a function of galaxy properties, for use in cosmological

  6. Weaving the history of the solar wind with magnetic field lines

    Science.gov (United States)

    Alvarado Gomez, Julian

    2017-08-01

    Despite its fundamental role for the evolution of the solar system, our observational knowledge of the wind properties of the young Sun comes from a single stellar observation. This unexpected fact for a field such as astrophysics arises from the difficulty of detecting Sun-like stellar winds. Their detection relies on the appearance of an astrospheric signature (from the stellar wind-ISM interaction region), visible only with the aid of high-resolution HST Lyman-alpha spectra. However, observations and modelling of the present day Sun have revealed that magnetic fields constitute the main driver of the solar wind, providing guidance on how such winds would look like back in time. In this context we propose observations of four young Sun-like stars in order to detect their astrospheres and characterise their stellar winds. For all these objects we have recovered surface magnetic field maps using the technique of Zeeman Doppler Imaging, and developed detailed wind models based on these observed field distributions. Even a single detection would represent a major step forward for our understanding of the history of the solar wind, and the outflows in more active stars. Mass loss rate estimates from HST will be confronted with predictions from realistic models of the corona/stellar wind. In one of our objects the comparison would allow us to quantify the wind variability induced by the magnetic cycle of a star, other than the Sun, for the first time. Three of our targets are planet hosts, thus the HST spectra would also provide key information on the high-energy environment of these systems, guaranteeing their legacy value for the growing field of exoplanet characterisation.

  7. Mottled Protoplanetary Disk Ionization by Magnetically Channeled T Tauri Star Energetic Particles

    Science.gov (United States)

    Fraschetti, F.; Drake, J. J.; Cohen, O.; Garraffo, C.

    2018-02-01

    The evolution of protoplanetary disks is believed to be driven largely by angular momentum transport resulting from magnetized disk winds and turbulent viscosity. The ionization of the disk that is essential for these processes has been thought to be due to host star coronal X-rays but could also arise from energetic particles produced by coronal flares, or traveling shock waves, and advected by the stellar wind. We have performed test-particle numerical simulations of energetic protons propagating into a realistic T Tauri stellar wind, including a superposed small-scale magnetostatic turbulence. The isotropic (Kolmogorov power spectrum) turbulent component is synthesized along the individual particle trajectories. We have investigated the energy range [0.1–10] GeV, consistent with expectations from Chandra X-ray observations of large flares on T Tauri stars and recent indications by the Herschel Space Observatory of a significant contribution of energetic particles to the disk ionization of young stars. In contrast with a previous theoretical study finding a dominance of energetic particles over X-rays in the ionization throughout the disk, we find that the disk ionization is likely dominated by X-rays over much of its area, except within narrow regions where particles are channeled onto the disk by the strongly tangled and turbulent magnetic field. The radial thickness of such regions is 5 stellar radii close to the star and broadens with increasing radial distance. This likely continues out to large distances from the star (10 au or greater), where particles can be copiously advected and diffused by the turbulent wind.

  8. Discovery of optical flickering from the symbiotic star EF Aquilae

    Science.gov (United States)

    Zamanov, R. K.; Boeva, S.; Nikolov, Y. M.; Petrov, B.; Bachev, R.; Latev, G. Y.; Popov, V. A.; Stoyanov, K. A.; Bode, M. F.; Martí, J.; Tomov, T.; Antonova, A.

    2017-07-01

    We report optical CCD photometry of the recently identified symbiotic star EF Aql. Our observations in Johnson V and B bands clearly show the presence of stochastic light variations with an amplitude of about 0.2 mag on a time scale of minutes. The observations point toward a white dwarf (WD) as the hot component in the system. It is the 11-th object among more than 200 symbiotic stars known with detected optical flickering. Estimates of the mass accretion rate onto the WD and the mass loss rate in the wind of the Mira secondary star lead to the conclusion that less than 1 per cent of the wind is captured by the WD. Eight further candidates for the detection of flickering in similar systems are suggested.

  9. THE CLUSTERED NATURE OF STAR FORMATION. PRE-MAIN-SEQUENCE CLUSTERS IN THE STAR-FORMING REGION NGC 602/N90 IN THE SMALL MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Gouliermis, Dimitrios A.; Gennaro, Mario; Schmeja, Stefan; Dolphin, Andrew E.; Tognelli, Emanuele; Prada Moroni, Pier Giorgio

    2012-01-01

    Located at the tip of the wing of the Small Magellanic Cloud (SMC), the star-forming region NGC 602/N90 is characterized by the H II nebular ring N90 and the young cluster of pre-main-sequence (PMS) and early-type main-sequence stars NGC 602, located in the central area of the ring. We present a thorough cluster analysis of the stellar sample identified with Hubble Space Telescope/Advanced Camera for Surveys in the region. We show that apart from the central cluster low-mass PMS stars are congregated in 13 additional small, compact sub-clusters at the periphery of NGC 602, identified in terms of their higher stellar density with respect to the average background density derived from star counts. We find that the spatial distribution of the PMS stars is bimodal, with an unusually large fraction (∼60%) of the total population being clustered, while the remaining is diffusely distributed in the intercluster area, covering the whole central part of the region. From the corresponding color-magnitude diagrams we disentangle an age difference of ∼2.5 Myr between NGC 602 and the compact sub-clusters, which appear younger, on the basis of comparison of the brighter PMS stars with evolutionary models, which we accurately calculated for the metal abundance of the SMC. The diffuse PMS population appears to host stars as old as those in NGC 602. Almost all detected PMS sub-clusters appear to be centrally concentrated. When the complete PMS stellar sample, including both clustered and diffused stars, is considered in our cluster analysis, it appears as a single centrally concentrated stellar agglomeration, covering the whole central area of the region. Considering also the hot massive stars of the system, we find evidence that this agglomeration is hierarchically structured. Based on our findings, we propose a scenario according to which the region NGC 602/N90 experiences an active clustered star formation for the last ∼5 Myr. The central cluster NGC 602 was formed first

  10. Are luminous and metal-rich Wolf-Rayet stars inflated?

    NARCIS (Netherlands)

    Petrovic, J.; Pols, O.; Langer, N.

    2006-01-01

    Aims.We investigate the influence of metallicity and stellar wind mass loss on the radius of Wolf-Rayet stars.
    Methods: .We have calculated chemically homogeneous models of Wolf-Rayet stars of 10 to 200 Mo for two metallicities (Z=0.02 and Z=0.001), without mass loss, using OPAL

  11. Self-regulating star formation and disk structure

    International Nuclear Information System (INIS)

    Dopita, M.A.

    1987-01-01

    Star formation processes determine the disk structure of galaxies. Stars heavier than about 1 solar mass determine the chemical evolution of the system and are produced at a rate which maintains (by the momentum input of the stars) the phase structure, pressure, and vertical velocity dispersion of the gas. Low mass stars are produced quiescently within molecular clouds, and their associated T-Tauri winds maintain the support of molecular clouds and regulate the star formation rate. Inefficient cooling suppresses this mode of star formation at low metallicity. Applied to the solar neighborhood, such a model can account for age/metallicity relationships, the increase in the O/Fe ratio at low metallicity, the paucity of metal-poor G and K dwarf stars, the missing mass in the disk and, possibly, the existence of a metal-poor thick disk. For other galaxies, it accounts for constant w-velocity dispersion of the gas, the relationship between gas content and specific rates of star formation, the surface brightness/metallicity relationship and for the shallow radial gradients in both star formation rates and HI content. 71 references

  12. Star-forming galaxy models: Blending star formation into TREESPH

    Science.gov (United States)

    Mihos, J. Christopher; Hernquist, Lars

    1994-01-01

    We have incorporated star-formation algorithms into a hybrid N-body/smoothed particle hydrodynamics code (TREESPH) in order to describe the star forming properties of disk galaxies over timescales of a few billion years. The models employ a Schmidt law of index n approximately 1.5 to calculate star-formation rates, and explicitly include the energy and metallicity feedback into the Interstellar Medium (ISM). Modeling the newly formed stellar population is achieved through the use of hybrid SPH/young star particles which gradually convert from gaseous to collisionless particles, avoiding the computational difficulties involved in creating new particles. The models are shown to reproduce well the star-forming properties of disk galaxies, such as the morphology, rate of star formation, and evolution of the global star-formation rate and disk gas content. As an example of the technique, we model an encounter between a disk galaxy and a small companion which gives rise to a ring galaxy reminiscent of the Cartwheel (AM 0035-35). The primary galaxy in this encounter experiences two phases of star forming activity: an initial period during the expansion of the ring, and a delayed phase as shocked material in the ring falls back into the central regions.

  13. ALMA-resolved salt emission traces the chemical footprint and inner wind morphology of VY Canis Majoris

    Science.gov (United States)

    Decin, L.; Richards, A. M. S.; Millar, T. J.; Baudry, A.; De Beck, E.; Homan, W.; Smith, N.; Van de Sande, M.; Walsh, C.

    2016-07-01

    hints at a chemical process that prevents all NaCl from condensing onto dust grains. We show that in the case of the ratio of the surface binding temperature to the grain temperature being ~50, only some 10% of NaCl remains in gaseous form while, for lower values of this ratio, thermal desorption efficiently evaporates NaCl. Photodesorption by stellar photons does not seem to be a viable explanation for the detection of gaseous NaCl at 220 R⋆ from the central star, so instead, we propose shock-induced sputtering driven by localized mass ejection events as an alternative. Conclusions: The analysis of the NaCl lines demonstrates the capabilities of ALMA to decode the geometric morphologies and chemical pathways prevailing in the winds of evolved stars. These early ALMA results prove that the envelopes surrounding evolved stars are far from homogeneous, and that a variety of dynamical and chemical processes dictate the wind structure. The datacubes (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A76

  14. Fast Winds and Mass Loss from Metal-Poor Field Giants

    Science.gov (United States)

    Dupree, A. K.; Smith, Graeme H.; Strader, Jay

    2009-11-01

    Echelle spectra of the infrared He I λ10830 line were obtained with NIRSPEC on the Keck 2 telescope for 41 metal-deficient field giant stars including those on the red giant branch (RGB), asymptotic giant branch (AGB), and red horizontal branch (RHB). The presence of this He I line is ubiquitous in stars with T effgsim 4500 K and MV fainter than -1.5, and reveals the dynamics of the atmosphere. The line strength increases with effective temperature for T effgsim 5300 K in RHB stars. In AGB and RGB stars, the line strength increases with luminosity. Fast outflows (gsim 60 km s-1) are detected from the majority of the stars and about 40% of the outflows have sufficient speed as to allow escape of material from the star as well as from a globular cluster. Outflow speeds and line strengths do not depend on metallicity for our sample ([Fe/H]= -0.7 to -3.0), suggesting the driving mechanism for these winds derives from magnetic and/or hydrodynamic processes. Gas outflows are present in every luminous giant, but are not detected in all stars of lower luminosity indicating possible variability. Mass loss rates ranging from ~3 × 10-10 to ~6 × 10-8 M sun yr-1 estimated from the Sobolev approximation for line formation represent values with evolutionary significance for red giants and RHB stars. We estimate that 0.2 M sun will be lost on the RGB, and the torque of this wind can account for observations of slowly rotating RHB stars in the field. About 0.1-0.2 M sun will be lost on the RHB itself. This first empirical determination of mass loss on the RHB may contribute to the appearance of extended horizontal branches in globular clusters. The spectra appear to resolve the problem of missing intracluster material in globular clusters. Opportunities exist for "wind smothering" of dwarf stars by winds from the evolved population, possibly leading to surface pollution in regions of high stellar density. Data presented herein were obtained at the W. M. Keck Observatory, which

  15. Is ENSO related to 2015 Easter Star Capsized on the Yangtze River of China?

    Science.gov (United States)

    Xie, P.

    2015-12-01

    Natural disasters have profound effects on community security and economic damage of China's Hubei province. In June 1st, 2015, a cruise ship, Easter Star, capsized on Yangtze River in Hubei province with 442 died. What reason gives rise to such strong convection causing ship sunk? Based on the wind disasters of Hubei province happened in 1963-2015, this study analyzes their features bytime-series regression, and correlates them to global El Niño/Southern Oscillation (ENSO) events. The compared results demonstrated that the wind disasters shown an increasing tendency. There are two peaks corresponding to the strongest ENSO peaks during the past 50 years; each peak lasts two-three years. The facts demonstrated an essential linear relation between the ENSO phenomena and wind disasters in Hubei province. 2015 Easter Star capsized happened at current El Niño event in 2014-2015. We also observed that the historical wind disasters appeared in seasonal variation. Over 90% events concentrated in spring and summer; very few events happened in autumn and winter. Moreover, the disasters depend on the geographic conditions. Most disasters concentrated in four zones, named as Xingshan-Baokang, Xuanen, Wufeng-Yichang, Jingzhou-Gongan, in which Xingshan and Changyang are the two most density of zones. Yangtze River provides an air flowing conduct for strong convective winds. It can be concluded that the strong convection causing 2015 Easter Star capsized is related to current global ENSO phenomenon.Keywords: ENSO, wind disaster, time-series regression analysis, Easter Star, Yangtze River, Hubei Province,

  16. Multi-Wavelength Polarimetry of Isolated Neutron Stars

    Directory of Open Access Journals (Sweden)

    Roberto P. Mignani

    2018-03-01

    Full Text Available Isolated neutron stars are known to be endowed with extreme magnetic fields, whose maximum intensity ranges from 10 12 – 10 15 G, which permeates their magnetospheres. Their surrounding environment is also strongly magnetized, especially in the compact nebulae powered by the relativistic wind from young neutron stars. The radiation from isolated neutron stars and their surrounding nebulae is, thus, supposed to bring a strong polarization signature. Measuring the neutron star polarization brings important information about the properties of their magnetosphere and of their highly magnetized environment. Being the most numerous class of isolated neutron stars, polarization measurements have been traditionally carried out for radio pulsars, hence in the radio band. In this review, I summarize multi-wavelength linear polarization measurements obtained at wavelengths other than radio both for pulsars and other types of isolated neutron stars and outline future perspectives with the upcoming observing facilities.

  17. Pulsar-irradiated stars in dense globular clusters

    Science.gov (United States)

    Tavani, Marco

    1992-01-01

    We discuss the properties of stars irradiated by millisecond pulsars in 'hard' binaries of dense globular clusters. Irradiation by a relativistic pulsar wind as in the case of the eclipsing millisecond pulsar PSR 1957+20 alter both the magnitude and color of the companion star. Some of the blue stragglers (BSs) recently discovered in dense globular clusters can be irradiated stars in binaries containing powerful millisecond pulsars. The discovery of pulsar-driven orbital modulations of BS brightness and color with periods of a few hours together with evidence for radio and/or gamma-ray emission from BS binaries would valuably contribute to the understanding of the evolution of collapsed stars in globular clusters. Pulsar-driven optical modulation of cluster stars might be the only observable effect of a new class of binary pulsars, i.e., hidden millisecond pulsars enshrouded in the evaporated material lifted off from the irradiated companion star.

  18. Clumpy wind accretion in Supergiant X-ray Binaries

    Science.gov (United States)

    El Mellah, I.; Sundqvist, J. O.; Keppens, R.

    2017-12-01

    Supergiant X-ray binaries (\\sgx) contain a neutron star (NS) orbiting a Supergiant O/B star. The fraction of the dense and fast line-driven wind from the stellar companion which is accreted by the NS is responsible for most of the X-ray emission from those system. Classic \\sgx display photometric variability of their hard X-ray emission, typically from a few 10^{35} to a few 10^{37}erg\\cdots^{-1}. Inhomogeneities (\\aka clumps) in the wind from the star are expected to play a role in this time variability. We run 3D hydrodynamical (HD) finite volume simulations to follow the accretion of the inhomogeneous stellar wind by the NS over almost 3 orders of magnitude. To model the unperturbed wind far upstream the NS, we use recent simulations which managed to resolve its micro-structure. We observe the formation of a Bondi-Hoyle-Lyttleton (BHL) like bow shock around the accretor and follow the clumps as they cross it, down to the NS magnetosphere. Compared to previous estimations discarding the HD effects, we measure lower time variability due to both the damping effect of the shock and the necessity to evacuate angular momentum to enable accretion. We also compute the associated time-variable column density and compare it to recent observations in Vela X-1.

  19. MHD Simulations of Magnetized Stars in the Propeller Regime of Accretion

    Directory of Open Access Journals (Sweden)

    Lii Patrick

    2014-01-01

    Full Text Available Accreting magnetized stars may be in the propeller regime of disc accretion in which the angular velocity of the stellar magnetosphere exceeds that of the inner disc. In these systems, the stellar magnetosphere acts as a centrifugal barrier and inhibits matter accretion onto the rapidly rotating star. Instead, the matter accreting through the disc accumulates at the disc-magnetosphere interface where it picks up angular momentum and is ejected from the system as a wide-angled outflow which gradually collimates at larger distances from the star. If the ejection rate is lower than the accretion rate, the matter will accumulate at the boundary faster than it can be ejected; in this case, accretion onto the star proceeds through an episodic accretion instability in which the episodes of matter accumulation are followed by a brief episode of simultaneous ejection and accretion of matter onto the star. In addition to the matter dominated wind component, the propeller outflow also exhibits a well-collimated, magnetically-dominated Poynting jet which transports energy and angular momentum away from the star. The propeller mechanism may explain some of the weakly-collimated jets and winds observed around some T Tauri stars as well as the episodic variability present in their light curves. It may also explain some of the quasi-periodic variability observed in cataclysmic variables, millisecond pulsars and other magnetized stars.

  20. Do some x-ray stars have white dwarf companions

    Science.gov (United States)

    Mccollum, Bruce

    1995-01-01

    Some Be stars which are intermittent X-ray sources may have white dwarf companions rather than neutron stars. It is not possible to prove or rule out the existence of Be + WD systems using X-ray or optical data. However, the presence of a white dwarf could be established by the detection of its EUV continuum shortward of the Be star's continuum turnover at 100 A. Either the detection or the nondetection of Be + WD systems would have implications for models of Be star variability, models of Be binary system formation and evolution, and models of wind-fed accretion.

  1. Chemistry in T Tauri winds

    Energy Technology Data Exchange (ETDEWEB)

    Rawlings, J M.C.; Williams, D A; Canto, J

    1988-02-15

    The chemistry occurring in the winds of T Tauri stars is investigated. On the assumption that the wind is dust-free, then routes to H/sub 2/ are inhibited under the conditions in the wind, and subsequent chemistry does not produce substantial molecular abundances. The major losses to the chemical network lie in the geometrical dilution and collisional dissociation rather than in chemical destruction and photodissociation. Mass loading of the wind with dust and H/sub 2/ may, however, occur. This stimulates the chemistry and may in some circumstances lead to a conversion of approx.1-10 per cent of carbon into CO. This gives a column density of CO which is marginally detectable. A positive detection of CO at high wind velocities would imply that the winds must be cool and that mixing of molecular material from a disc, which may play a role in collimating the wind, or the remnants of a disc, must occur.

  2. Ages of young star clusters, massive blue stragglers, and the upper mass limit of stars: Analyzing age-dependent stellar mass functions

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, F. R. N.; Izzard, R. G.; Langer, N.; Stolte, A.; Hußmann, B. [Argelander-Institut für Astronomie der Universität Bonn, Auf dem Hügel 71, D-53121 Bonn (Germany); De Mink, S. E. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara St, Pasadena, CA 91101 (United States); De Koter, A.; Sana, H. [Astronomical Institute " Anton Pannekoek" , Amsterdam University, Science Park 904, 1098 XH, Amsterdam (Netherlands); Gvaramadze, V. V. [Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetskij Pr. 13, Moscow 119992 (Russian Federation); Liermann, A., E-mail: fschneid@astro.uni-bonn.de [Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2014-01-10

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters that can be used to infer their ages and to identify products of binary evolution. We model the observed present-day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. We find that the shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages as 3.5 ± 0.7 Myr and 4.8 ± 1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e., the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte Carlo simulations to probe stochastic sampling, which support the idea of the most massive stars being rejuvenated binary products. We find that the most massive star is expected to be a binary product after 1.0 ± 0.7 Myr in Arches and after 1.7 ± 1.0 Myr in Quintuplet. Today, the most massive 9 ± 3 stars in Arches and 8 ± 3 in Quintuplet are expected to be such objects. Our findings have strong implications for the stellar upper mass limit and solve the discrepancy between the claimed 150 M {sub ☉} limit and observations of four stars with initial masses of 165-320 M {sub ☉} in R136 and of supernova 2007bi, which is thought to be a pair-instability supernova from an initial 250 M {sub ☉} star. Using the stellar population of R136, we revise the upper mass limit to values in the range

  3. Ages of young star clusters, massive blue stragglers, and the upper mass limit of stars: Analyzing age-dependent stellar mass functions

    International Nuclear Information System (INIS)

    Schneider, F. R. N.; Izzard, R. G.; Langer, N.; Stolte, A.; Hußmann, B.; De Mink, S. E.; Anton Pannekoek, Amsterdam University, Science Park 904, 1098 XH, Amsterdam (Netherlands))" data-affiliation=" (Astronomical Institute Anton Pannekoek, Amsterdam University, Science Park 904, 1098 XH, Amsterdam (Netherlands))" >De Koter, A.; Anton Pannekoek, Amsterdam University, Science Park 904, 1098 XH, Amsterdam (Netherlands))" data-affiliation=" (Astronomical Institute Anton Pannekoek, Amsterdam University, Science Park 904, 1098 XH, Amsterdam (Netherlands))" >Sana, H.; Gvaramadze, V. V.; Liermann, A.

    2014-01-01

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters that can be used to infer their ages and to identify products of binary evolution. We model the observed present-day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. We find that the shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages as 3.5 ± 0.7 Myr and 4.8 ± 1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e., the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte Carlo simulations to probe stochastic sampling, which support the idea of the most massive stars being rejuvenated binary products. We find that the most massive star is expected to be a binary product after 1.0 ± 0.7 Myr in Arches and after 1.7 ± 1.0 Myr in Quintuplet. Today, the most massive 9 ± 3 stars in Arches and 8 ± 3 in Quintuplet are expected to be such objects. Our findings have strong implications for the stellar upper mass limit and solve the discrepancy between the claimed 150 M ☉ limit and observations of four stars with initial masses of 165-320 M ☉ in R136 and of supernova 2007bi, which is thought to be a pair-instability supernova from an initial 250 M ☉ star. Using the stellar population of R136, we revise the upper mass limit to values in the range 200-500 M ☉ .

  4. Ages of Young Star Clusters, Massive Blue Stragglers, and the Upper Mass Limit of Stars: Analyzing Age-dependent Stellar Mass Functions

    Science.gov (United States)

    Schneider, F. R. N.; Izzard, R. G.; de Mink, S. E.; Langer, N.; Stolte, A.; de Koter, A.; Gvaramadze, V. V.; Hußmann, B.; Liermann, A.; Sana, H.

    2014-01-01

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters that can be used to infer their ages and to identify products of binary evolution. We model the observed present-day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. We find that the shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages as 3.5 ± 0.7 Myr and 4.8 ± 1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e., the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte Carlo simulations to probe stochastic sampling, which support the idea of the most massive stars being rejuvenated binary products. We find that the most massive star is expected to be a binary product after 1.0 ± 0.7 Myr in Arches and after 1.7 ± 1.0 Myr in Quintuplet. Today, the most massive 9 ± 3 stars in Arches and 8 ± 3 in Quintuplet are expected to be such objects. Our findings have strong implications for the stellar upper mass limit and solve the discrepancy between the claimed 150 M ⊙ limit and observations of four stars with initial masses of 165-320 M ⊙ in R136 and of supernova 2007bi, which is thought to be a pair-instability supernova from an initial 250 M ⊙ star. Using the stellar population of R136, we revise the upper mass limit to values in the range 200-500 M ⊙.

  5. The Diversity of Neutron Stars

    Science.gov (United States)

    Kaplan, David L.

    2004-12-01

    Neutron stars are invaluable tools for exploring stellar death, the physics of ultra-dense matter, and the effects of extremely strong magnetic fields. The observed population of neutron stars is dominated by the >1000 radio pulsars, but there are distinct sub-populations that, while fewer in number, can have significant impact on our understanding of the issues mentioned above. These populations are the nearby, isolated neutron stars discovered by ROSAT, and the central compact objects in supernova remnants. The studies of both of these populations have been greatly accelerated in recent years through observations with the Chandra X-ray Observatory and the XMM-Newton telescope. First, we discuss radio, optical, and X-ray observations of the nearby neutron stars aimed at determining their relation to the Galactic neutron star population and at unraveling their complex physical processes by determining the basic astronomical parameters that define the population---distances, ages, and magnetic fields---the uncertainties in which limit any attempt to derive basic physical parameters for these objects. We conclude that these sources are 1e6 year-old cooling neutron stars with magnetic fields above 1e13 Gauss. Second, we describe the hollow supernova remnant problem: why many of the supernova remnants in the Galaxy have no indication of central neutron stars. We have undertaken an X-ray census of neutron stars in a volume-limited sample of Galactic supernova remnants, and from it conclude that either many supernovae do not produce neutron stars contrary to expectation, or that neutron stars can have a wide range in cooling behavior that makes many sources disappear from the X-ray sky.

  6. Intensive photometry of southern Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Balona, L.A.; Egan, J.; Marang, F.

    1989-01-01

    Results are presented of an intensive photometric campaign on 17 of the brightest southern Wolf-Rayet stars. We report the detection of multi-periodicity in two stars: HD 50896 and HD 96548. It is likely that these periodicities are not coherent but are manifestations of the quasi-periodic variations seen in a few WR stars. A good example of these variations is given by HD 86161. A new eclipsing binary, HD 92740 has been discovered; other stars show periodic variations which can be explained by phase-dependent scattering of the secondary light as it traverses the Wolf-Rayet wind. An important conclusion of this study is that not a single example was found of short-period variations which can be attributed to pulsation. (author)

  7. Mass loss by stars on the asymptotic giant branch

    International Nuclear Information System (INIS)

    Frantsman, Yu.L.

    1986-01-01

    The theoretical populations of white dwarfs and carbon stars were generated for Salpeter initial mass function and constant stellar birth rate history. The effect of very strong mass loss on the mass distribution of white dwarfs and luminosity distribution of carbon stars is discussed and the results are compared with observations. This comparison suggested that a signioficant mass loss by stars on the asymptotic giant branch occurs besides stellar wind and planetary nebulae ejection. Thus it is possible to explain the absence of carbon stars with Msub(bol) 1.0 Msub(sun). The luminosity of asymptotic giant branch stars in the globular clusters of the Magellanic Clouds appears to be a very good indicator of the age

  8. Stars Just Got Bigger - A 300 Solar Mass Star Uncovered

    Science.gov (United States)

    2010-07-01

    Using a combination of instruments on ESO's Very Large Telescope, astronomers have discovered the most massive stars to date, one weighing at birth more than 300 times the mass of the Sun, or twice as much as the currently accepted limit of 150 solar masses. The existence of these monsters - millions of times more luminous than the Sun, losing weight through very powerful winds - may provide an answer to the question "how massive can stars be?" A team of astronomers led by Paul Crowther, Professor of Astrophysics at the University of Sheffield, has used ESO's Very Large Telescope (VLT), as well as archival data from the NASA/ESA Hubble Space Telescope, to study two young clusters of stars, NGC 3603 and RMC 136a in detail. NGC 3603 is a cosmic factory where stars form frantically from the nebula's extended clouds of gas and dust, located 22 000 light-years away from the Sun (eso1005). RMC 136a (more often known as R136) is another cluster of young, massive and hot stars, which is located inside the Tarantula Nebula, in one of our neighbouring galaxies, the Large Magellanic Cloud, 165 000 light-years away (eso0613). The team found several stars with surface temperatures over 40 000 degrees, more than seven times hotter than our Sun, and a few tens of times larger and several million times brighter. Comparisons with models imply that several of these stars were born with masses in excess of 150 solar masses. The star R136a1, found in the R136 cluster, is the most massive star ever found, with a current mass of about 265 solar masses and with a birthweight of as much as 320 times that of the Sun. In NGC 3603, the astronomers could also directly measure the masses of two stars that belong to a double star system [1], as a validation of the models used. The stars A1, B and C in this cluster have estimated masses at birth above or close to 150 solar masses. Very massive stars produce very powerful outflows. "Unlike humans, these stars are born heavy and lose weight as

  9. Quasar Winds as Dust Factories at High Redshift

    OpenAIRE

    Elvis, Martin; Marengo, Massimo; Karovska, Margarita

    2003-01-01

    Winds from AGN and quasars will form large amounts of dust, as the cool gas in these winds passes through the (pressure, temperature) region where dust is formed in AGB stars. Conditions in the gas are benign to dust at these radii. As a result quasar winds may be a major source of dust at high redshifts, obviating a difficulty with current observations, and requiring far less dust to exist at early epochs.

  10. Ultraviolet colors of subdwarf O stars

    International Nuclear Information System (INIS)

    Wesselius, P.R.

    1978-01-01

    The group of subdwarf O stars consisting of field stars and some central stars of old planetary nebulae does occupy an interesting place in the HR diagram. Greenstein and Sargent (1974) have tried to establish this place, and conclude that especially the hottest ones need ultraviolet data to improve the values of effective temperature and absolute luminosity. The author therefore observed some twenty sdO stars in the far ultraviolet using the spectrophotometer in the Netherlands' satellite ANS. (Auth.)

  11. Spectrum and light curve of a supernova shock breakout through a thick Wolf-Rayet wind

    Energy Technology Data Exchange (ETDEWEB)

    Svirski, Gilad; Nakar, Ehud, E-mail: swirskig@post.tau.ac.il [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel)

    2014-06-20

    Wolf-Rayet stars are known to eject winds. Thus, when a Wolf-Rayet star explodes as a supernova, a fast (≳ 40, 000 km s{sup –1}) shock is expected to be driven through a wind. We study the signal expected from a fast supernova shock propagating through an optically thick wind and find that the electrons behind the shock driven into the wind are efficiently cooled by inverse Compton over soft photons that were deposited by the radiation-mediated shock that crossed the star. Therefore, the bolometric luminosity is comparable to the kinetic energy flux through the shock, and the spectrum is found to be a power law, whose slope and frequency range depend on the number flux of soft photons available for cooling. Wolf-Rayet supernovae that explode through a thick wind have a high flux of soft photons, producing a flat spectrum, νF {sub ν} = Const, in the X-ray range of 0.1 ≲ T ≲ 50 keV. As the shock expands into an optically thin wind, the soft photons are no longer able to cool the shock that plows through the wind, and the bulk of the emission takes the form of a standard core-collapse supernova (without a wind). However, a small fraction of the soft photons is upscattered by the shocked wind and produces a transient unique X-ray signature.

  12. Spectrum and light curve of a supernova shock breakout through a thick Wolf-Rayet wind

    International Nuclear Information System (INIS)

    Svirski, Gilad; Nakar, Ehud

    2014-01-01

    Wolf-Rayet stars are known to eject winds. Thus, when a Wolf-Rayet star explodes as a supernova, a fast (≳ 40, 000 km s –1 ) shock is expected to be driven through a wind. We study the signal expected from a fast supernova shock propagating through an optically thick wind and find that the electrons behind the shock driven into the wind are efficiently cooled by inverse Compton over soft photons that were deposited by the radiation-mediated shock that crossed the star. Therefore, the bolometric luminosity is comparable to the kinetic energy flux through the shock, and the spectrum is found to be a power law, whose slope and frequency range depend on the number flux of soft photons available for cooling. Wolf-Rayet supernovae that explode through a thick wind have a high flux of soft photons, producing a flat spectrum, νF ν = Const, in the X-ray range of 0.1 ≲ T ≲ 50 keV. As the shock expands into an optically thin wind, the soft photons are no longer able to cool the shock that plows through the wind, and the bulk of the emission takes the form of a standard core-collapse supernova (without a wind). However, a small fraction of the soft photons is upscattered by the shocked wind and produces a transient unique X-ray signature.

  13. A SPECTROSCOPIC STUDY OF BLUE SUPERGIANT STARS IN THE SCULPTOR GALAXY NGC 55: CHEMICAL EVOLUTION AND DISTANCE

    Energy Technology Data Exchange (ETDEWEB)

    Kudritzki, R. P.; Ho, I.-T.; Bresolin, F. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Castro, N. [Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Urbaneja, M. A.; Przybilla, N. [Institut für Astro- und Teilchenphysik, Universität Innsbruck, Technikerstr. 25/8, A-6020 Innsbruck (Austria); Gieren, W.; Pietrzyński, G. [Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción (Chile)

    2016-10-01

    Low-resolution (4.5–5 Å) spectra of 58 blue supergiant stars distributed over the disk of the Magellanic spiral galaxy NGC 55 in the Sculptor group are analyzed by means of non-LTE techniques to determine stellar temperatures, gravities, and metallicities (from iron peak and α -elements). A metallicity gradient of −0.22 ± 0.06 dex/ R {sub 25} is detected. The central metallicity on a logarithmic scale relative to the Sun is [ Z ] = −0.37 ± 0.03. A chemical evolution model using the observed distribution of column densities of the stellar and interstellar medium gas mass reproduces the observed metallicity distribution well and reveals a recent history of strong galactic mass accretion and wind outflows with accretion and mass-loss rates of the order of the star formation rate. There is an indication of spatial inhomogeneity in metallicity. In addition, the relatively high central metallicity of the disk confirms that two extraplanar metal-poor H ii regions detected in previous work 1.13 to 2.22 kpc above the galactic plane are ionized by massive stars formed in situ outside the disk. For a subsample of supergiants, for which Hubble Space Telescope photometry is available, the flux-weighted gravity–luminosity relationship is used to determine a distance modulus of 26.85 ± 0.10 mag.

  14. Wind-energy Science, Technology and Research (WindSTAR) Consortium: Curriculum, Workforce Development, and Education Plan Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Manwell, James [Univ. of Massachusetts, Amherst, MA (United States)

    2013-03-19

    The purpose of the project is to modify and expand the current wind energy curriculum at the University of Massachusetts Amherst and to develop plans to expand the graduate program to a national scale. The expansion plans include the foundational steps to establish the American Academy of Wind Energy (AAWE). The AAWE is intended to be a cooperative organization of wind energy research, development, and deployment institutes and universities across North America, whose mission will be to develop and execute joint RD&D projects and to organize high-level science and education in wind energy

  15. DISC ATMOSPHERES AND WINDS IN X-RAY BINARIES

    Directory of Open Access Journals (Sweden)

    Maria Díaz Trigo

    2013-12-01

    Full Text Available We review the current status of studies of disc atmospheres and winds in low mass X-ray binaries. We discuss the possible wind launching mechanisms and compare the predictions of the models with the existent observations. We conclude that a combination of thermal and radiative pressure (the latter being relevant at high luminosities can explain the current observations of atmospheres and winds in both neutron star and black hole binaries. Moreover, these winds and atmospheres could contribute significantly to the broad iron emission line observed in these systems.

  16. Star-planet systems as possible progenitors of cataclysmic binaries

    International Nuclear Information System (INIS)

    Livio, M.; Soker, N.

    1984-01-01

    The evolution of a star-planet system is studied, in the phase in which the star becomes a red giant, thus enabling the planet to accrete mass either from its envelope or from its wind. It is found that for planets which are embedded in the envelope, there exists a certain critical initial mass, under which the planets are totally evaporated while spiralling-in. Planets with an initial mass above this critical value are all transformed into low-mass stellar companions to the giant's core. The final masses of these secondaries are almost independent of their initial mass and their initial separation, as long as the latter is greater than a certain critical value. The final masses are essentially determined by the giant's envelope mass. The star-planet separation is found to increase for planets that accrete from the stellar wind, when tidal effects are neglected. Possible consequences of these results on the problem of formation of low-mass cataclysmic binaries are discussed. (author)

  17. Astrospheres and Solar-like Stellar Winds

    Directory of Open Access Journals (Sweden)

    Wood Brian E.

    2004-07-01

    Full Text Available Stellar analogs for the solar wind have proven to be frustratingly difficult to detect directly. However, these stellar winds can be studied indirectly by observing the interaction regions carved out by the collisions between these winds and the interstellar medium (ISM. These interaction regions are called "astrospheres", analogous to the "heliosphere" surrounding the Sun. The heliosphere and astrospheres contain a population of hydrogen heated by charge exchange processes that can produce enough H I Ly alpha absorption to be detectable in UV spectra of nearby stars from the Hubble Space Telescope (HST. The amount of astrospheric absorption is a diagnostic for the strength of the stellar wind, so these observations have provided the first measurements of solar-like stellar winds. Results from these stellar wind studies and their implications for our understanding of the solar wind are reviewed here. Of particular interest are results concerning the past history of the solar wind and its impact on planetary atmospheres.

  18. Ultra-dense neutron star matter, strange quark stars, and the nuclear equation of state

    International Nuclear Information System (INIS)

    Weber, F.; Meixner, M.; Negreiros, R.P.; Malheiro, M.

    2007-01-01

    With central densities way above the density of atomic nuclei, neutron stars contain matter in one of the densest forms found in the universe. Depending of the density reached in the cores of neutron stars, they may contain stable phases of exotic matter found nowhere else in space. This article gives a brief overview of the phases of ultra-dense matter predicted to exist deep inside neutron stars and discusses the equation of state (EoS) associated with such matter. (author)

  19. The role of remote wind forcing in the subinertial current variability in the central and northern parts of the South Brazil Bight

    Science.gov (United States)

    Dottori, Marcelo; Castro, Belmiro Mendes

    2018-05-01

    Data analysis of continental shelf currents and coastal sea level, together with the application of a semi-analytical model, are used to estimate the importance of remote wind forcing on the subinertial variability of the current in the central and northern areas of the South Brazil Bight. Results from both the data analysis and from the semi-analytical model are robust in showing subinertial variability that propagates along-shelf leaving the coast to the left in accordance with theoretical studies of Continental Shelf Waves (CSW). Both the subinertial variability observed in along-shelf currents and sea level oscillations present different propagation speeds for the narrow northern part of the SBB ( 6-7 m/s) and the wide central SBB region ( 11 m/s), those estimates being in agreement with the modeled CSW propagation speed. On the inner and middle shelf, observed along-shelf subinertial currents show higher correlation coefficients with the winds located southward and earlier in time than with the local wind at the current meter mooring position and at the time of measurement. The inclusion of the remote (located southwestward) wind forcing improves the prediction of the subinertial currents when compared to the currents forced only by the local wind, since the along-shelf-modeled currents present correlation coefficients with observed along-shelf currents up to 20% higher on the inner and middle shelf when the remote wind is included. For most of the outer shelf, on the other hand, this is not observed since usually, the correlation between the currents and the synoptic winds is not statistically significant.

  20. Moving inhomogeneous envelopes of stars

    Czech Academy of Sciences Publication Activity Database

    Oskinova, L.M.; Kubátová, Brankica; Hamann, W.-R.

    2016-01-01

    Roč. 183, Special Issue (2016), s. 100-112 ISSN 0022-4073. [International Conference on Radiation Mechanisms of Astrophysical Objects - Classics Today. St. Petersburg, 21.09.2016-25.09.2016] Institutional support: RVO:67985815 Keywords : stars * mass-loss * winds Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.419, year: 2016

  1. X-ray observation of the shocked red supergiant wind of Cassiopeia A

    International Nuclear Information System (INIS)

    Lee, Jae-Joon; Park, Sangwook; Hughes, John P.; Slane, Patrick O.

    2014-01-01

    Cas A is a Galactic supernova remnant whose supernova explosion is observed to be of Type IIb from spectroscopy of its light echo. Having its SN type known, observational constraints on the mass-loss history of Cas A's progenitor can provide crucial information on the final fate of massive stars. In this paper, we study X-ray characteristics of the shocked ambient gas in Cas A using the 1 Ms observation carried out with the Chandra X-Ray Observatory and try to constrain the mass-loss history of the progenitor star. We identify thermal emission from the shocked ambient gas along the outer boundary of the remnant. Comparison of measured radial variations of spectroscopic parameters of the shocked ambient gas to the self-similar solutions of Chevalier show that Cas A is expanding into a circumstellar wind rather than into a uniform medium. We estimate a wind density n H ∼ 0.9 ± 0.3 cm –3 at the current outer radius of the remnant (∼3 pc), which we interpret as a dense slow wind from a red supergiant (RSG) star. Our results suggest that the progenitor star of Cas A had an initial mass around 16 M ☉ , and its mass before the explosion was about 5 M ☉ , with uncertainties of several tens of percent. Furthermore, the results suggest that, among the mass lost from the progenitor star (∼11 M ☉ ), a significant amount (more than 6 M ☉ ) could have been via its RSG wind.

  2. Spectrophotometry at 10 microns of T Tauri stars

    Science.gov (United States)

    Cohen, M.; Witteborn, F. C.

    1985-01-01

    New 8-13 micron spectra of 32 T Tau, or related young, stars are presented. Silicate emission features are commonly seen. Absorptions occur less frequently but also match the properties of silicate materials. The shape of the emission feature suggests that a more crystalline grain is responsible in the T Tau stars than those of the Trapezium region. The evolution of the silicate component of the circumstellar shell around T Tau stars, and its dependence upon stellar wind activity, visual linear polarization, and extinction are investigated. Several correlations suggest that the shells are likely to be flattened, disklike structures rather than spherical.

  3. The origin of stellar winds: Subatmospheric nonthermal storage modes versus radiation pressure

    International Nuclear Information System (INIS)

    Cannon, C.J.; Thomas, R.N.

    1977-01-01

    Most current models of matter-flux in hot stars place its origin in radiation pressure, and then model the flow explicitly to produce no chromosphere-corona. Our model of the stellar atmosphere as a transition zone between stellar interior and interstellar medium places the origin of matter-flux, chromosphere-corona, and spectral ''emission classes'' in subatmospheric nonthermal kinetic energy storage, equally for all stars, hot or cold. Current observations of both hot and cold stars suggest chromospheres to be a universal phenomenon, correlated with matter-fluxes, and enhanced in ''emission-class'' stars. To clarify the difference between the two kinds of models above, we reformulate the wind-tunnel analogy to stellar winds, suggesting that stars satisfy and ''imperfect,'' such model;i.e., transsonic shocks occur before the throat, corresponding to an imposed outward velocity in the storage section, or subatmosphere. We then investigate the stability of an arbitrary stellar atmosphere, hot or cold, to suggest a cause for such an outward subatmospheric velocity

  4. STAR-FORMATION ACTIVITY IN THE NEIGHBORHOOD OF W–R 1503-160L STAR IN THE MID-INFRARED BUBBLE N46

    International Nuclear Information System (INIS)

    Dewangan, L. K.; Janardhan, P.; Baug, T.; Ojha, D. K.; Ninan, J. P.; Luna, A.; Zinchenko, I.

    2016-01-01

    In order to investigate star-formation (SF) processes in extreme environments, we have carried out a multi-wavelength analysis of the mid-infrared bubble N46, which hosts a WN7 Wolf–Rayet (W–R) star. We have used 13 CO line data to trace an expanding shell surrounding the W–R star containing about five condensations within the molecular cloud associated with the bubble. The W–R star is associated with a powerful stellar wind having a mechanical luminosity of ∼4 × 10 37 erg s 1 . A deviation of the H -band starlight mean polarization angles around the bubble has also been traced, indicating the impact of stellar wind on the surroundings. The Herschel temperature map shows a temperature range of ∼18–24 K toward the five molecular condensations. The photometric analysis reveals that these condensations are associated with the identified clusters of young stellar objects, revealing ongoing SF process. The densest among these five condensations (peak N(H 2 ) ∼9.2 × 10 22 cm 2 and A V ∼ 98 mag) is associated with a 6.7 GHz methanol maser, an infrared dark cloud, and the CO outflow, tracing active massive SF within it. At least five compact radio sources (CRSs) are physically linked with the edges of the bubble, and each of them is consistent with the radio spectral class of a B0V–B0.5V-type star. The ages of the individual infrared counterparts of three CRSs (∼1–2 Myr) and a typical age of WN7 W–R star (∼4 Myr) indicate that the SF activities around the bubble are influenced by the feedback of the W–R star.

  5. STAR-FORMATION ACTIVITY IN THE NEIGHBORHOOD OF W–R 1503-160L STAR IN THE MID-INFRARED BUBBLE N46

    Energy Technology Data Exchange (ETDEWEB)

    Dewangan, L. K.; Janardhan, P. [Physical Research Laboratory, Navrangpura, Ahmedabad—380 009 (India); Baug, T.; Ojha, D. K.; Ninan, J. P. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005 (India); Luna, A. [Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro #1, Tonantzintla, Puebla, C.P. 72840, México (Mexico); Zinchenko, I., E-mail: lokeshd@prl.res.in [Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Street, Nizhny Novgorod 603950 (Russian Federation)

    2016-07-20

    In order to investigate star-formation (SF) processes in extreme environments, we have carried out a multi-wavelength analysis of the mid-infrared bubble N46, which hosts a WN7 Wolf–Rayet (W–R) star. We have used {sup 13}CO line data to trace an expanding shell surrounding the W–R star containing about five condensations within the molecular cloud associated with the bubble. The W–R star is associated with a powerful stellar wind having a mechanical luminosity of ∼4 × 10{sup 37} erg s{sup 1}. A deviation of the H -band starlight mean polarization angles around the bubble has also been traced, indicating the impact of stellar wind on the surroundings. The Herschel temperature map shows a temperature range of ∼18–24 K toward the five molecular condensations. The photometric analysis reveals that these condensations are associated with the identified clusters of young stellar objects, revealing ongoing SF process. The densest among these five condensations (peak N(H{sub 2}) ∼9.2 × 10{sup 22} cm{sup 2} and A{sub V} ∼ 98 mag) is associated with a 6.7 GHz methanol maser, an infrared dark cloud, and the CO outflow, tracing active massive SF within it. At least five compact radio sources (CRSs) are physically linked with the edges of the bubble, and each of them is consistent with the radio spectral class of a B0V–B0.5V-type star. The ages of the individual infrared counterparts of three CRSs (∼1–2 Myr) and a typical age of WN7 W–R star (∼4 Myr) indicate that the SF activities around the bubble are influenced by the feedback of the W–R star.

  6. STAR FORMATION ASSOCIATED WITH THE SUPERNOVA REMNANT IC443

    International Nuclear Information System (INIS)

    Xu Jinlong; Wang Junjie; Miller, Martin

    2011-01-01

    We have performed submillimeter and millimeter observations in CO lines toward supernova remnant (SNR) IC443. The CO molecular shell coincides well with the partial shell of the SNR detected in radio continuum observations. Broad emission lines and three 1720 MHz OH masers were detected in the CO molecular shell. The present observations have provided further evidence in support of the interaction between the SNR and the adjoining molecular clouds (MCs). The total mass of the MCs is 9.26 x 10 3 M sun . The integrated CO line intensity ratio (R I CO(3-2) /I CO(2-1) ) for the whole MC is between 0.79 and 3.40. The average value is 1.58, which is much higher than previous measurements of individual Galactic MCs. Higher line ratios imply that shocks have driven into the MCs. We conclude that high R I CO(3-2) /I CO(2-1) is identified as a good signature of the SNR-MC interacting system. Based on the IRAS Point Source Catalog and the Two Micron All Sky Survey near-infrared database, 12 protostellar object and 1666 young stellar object (YSO) candidates (including 154 classical T Tauri stars and 419 Herbig Ae/Be stars) are selected. In the interacting regions, the significant enhancement of the number of protostellar objects and YSOs indicates the presence of some recently formed stars. After comparing the characteristic timescales of star formation with the age of IC443, we conclude that the protostellar objects and YSO candidates are not triggered by IC443. For the age of the stellar winds shell, we have performed our calculation on the basis of a stellar wind shell expansion model. The results and analysis suggest that the formation of these stars may be triggered by the stellar winds of the IC443 progenitor.

  7. Evolved stars as complex chemical laboratories - the quest for gaseous chemistry

    Science.gov (United States)

    Katrien Els Decin, Leen

    2015-08-01

    At the end of their life, most stars lose a large fraction of their mass through a stellar wind. The stellar winds of evolved (super)giant stars are the dominant suppliers for the pristine building blocks of the interstellar medium (ISM). Crucial to the understanding of the chemical life cycle of the ISM is hence a profound insight in the chemical and physical structure governing these stellar winds.These winds are really unique chemical laboratories in which currently more than 70 different molecules and 15 different dust species are detected. Several chemical processes such as neutral-neutral and ion-molecule gas-phase reactions, dust nucleation and growth, and photo-processes determine the chemical content of these winds. However, gas-phase and dust-nucleation chemistry for astronomical environments still faces many challenges. One should realize that only ˜15% of the rate coefficients for gas-phase reactions considered to occur in (inter/circum)stellar regions at temperatures (T) below 300K have been subject to direct laboratory determinations and that the temperature dependence of the rate constants is often not known; only ˜2% have rate constants at Tgrant, we are now in the position to solve some riddles involved in understanding the gas-phase chemistry in evolved stars. In this presentation, I will demonstrate the need for accurate temperature-dependent gas-phase reaction rate constants and will present our new laboratory equipment built to measure the rate constants for species key in stellar wind chemistry. Specifically, we aim to obtain the rate constants of reactions involving silicon- and sulphur bearing species and HCCO for 30

  8. The Evolution of Massive Stars: a Selection of Facts and Questions

    Science.gov (United States)

    Vanbeveren, D.

    In the present paper we discuss a selection of facts and questions related to observations and evolutionary calculations of massive single stars and massive stars in interacting binaries. We focus on the surface chemical abundances, the role of stellar winds, the early Be-stars, the high mass X-ray binaries and the effects of rotation on stellar evolution. Finally, we present an unconventionally formed object scenario (UFO-scenario) of WR binaries in dense stellar environments.

  9. Hydrodynamics and stellar winds an introduction

    CERN Document Server

    Maciel, Walter J

    2014-01-01

    Stellar winds are a common phenomenon in the life of stars, from the dwarfs like the Sun to the red giants and hot supergiants, constituting one of the basic aspects of modern astrophysics. Stellar winds are a hydrodynamic phenomenon in which circumstellar gases expand towards the interstellar medium. This book presents an elementary introduction to the fundamentals of hydrodynamics with an application to the study of stellar winds. The principles of hydrodynamics have many other applications, so that the book can be used as an introduction to hydrodynamics for students of physics, astrophysics and other related areas.

  10. A model for the origin of bursty star formation in galaxies

    Science.gov (United States)

    Faucher-Giguère, Claude-André

    2018-01-01

    We propose a simple analytic model to understand when star formation is time steady versus bursty in galaxies. Recent models explain the observed Kennicutt-Schmidt relation between star formation rate and gas surface densities in galaxies as resulting from a balance between stellar feedback and gravity. We argue that bursty star formation occurs when such an equilibrium cannot be stably sustained, and identify two regimes in which galaxy-scale star formation should be bursty: (i) at high redshift (z ≳ 1) for galaxies of all masses, and (ii) at low masses (depending on gas fraction) for galaxies at any redshift. At high redshift, characteristic galactic dynamical time-scales become too short for supernova feedback to effectively respond to gravitational collapse in galactic discs (an effect recently identified for galactic nuclei), whereas in dwarf galaxies star formation occurs in too few bright star-forming regions to effectively average out. Burstiness is also enhanced at high redshift owing to elevated gas fractions in the early Universe. Our model can thus explain the bursty star formation rates predicted in these regimes by recent high-resolution galaxy formation simulations, as well as the bursty star formation histories observationally inferred in both local dwarf and high-redshift galaxies. In our model, bursty star formation is associated with particularly strong spatiotemporal clustering of supernovae. Such clustering can promote the formation of galactic winds and our model may thus also explain the much higher wind mass loading factors inferred in high-redshift massive galaxies relative to their z ∼ 0 counterparts.

  11. Gas dynamics in the inner few AU around the Herbig B[e] star MWC297. Indications of a disk wind from kinematic modeling and velocity-resolved interferometric imaging

    Science.gov (United States)

    Hone, Edward; Kraus, Stefan; Kreplin, Alexander; Hofmann, Karl-Heinz; Weigelt, Gerd; Harries, Tim; Kluska, Jacques

    2017-10-01

    Aims: Circumstellar accretion disks and outflows play an important role in star formation. By studying the continuum and Brγ-emitting region of the Herbig B[e] star MWC297 with high-spectral and high-spatial resolution we aim to gain insight into the wind-launching mechanisms in young stars. Methods: We present near-infrared AMBER (R = 12 000) and CRIRES (R = 100 000) observations of the Herbig B[e] star MWC297 in the hydrogen Brγ-line. Using the VLTI unit telescopes, we obtained a uv-coverage suitable for aperture synthesis imaging. We interpret our velocity-resolved images as well as the derived two-dimensional photocenter displacement vectors, and fit kinematic models to our visibility and phase data in order to constrain the gas velocity field on sub-AU scales. Results: The measured continuum visibilities constrain the orientation of the near-infrared-emitting dust disk, where we determine that the disk major axis is oriented along a position angle of 99.6 ± 4.8°. The near-infrared continuum emission is 3.6 × more compact than the expected dust-sublimation radius, possibly indicating the presence of highly refractory dust grains or optically thick gas emission in the inner disk. Our velocity-resolved channel maps and moment maps reveal the motion of the Brγ-emitting gas in six velocity channels, marking the first time that kinematic effects in the sub-AU inner regions of a protoplanetary disk could be directly imaged. We find a rotation-dominated velocity field, where the blue- and red-shifted emissions are displaced along a position angle of 24° ± 3° and the approaching part of the disk is offset west of the star. The visibility drop in the line as well as the strong non-zero phase signals can be modeled reasonably well assuming a Keplerian velocity field, although this model is not able to explain the 3σ difference that we measure between the position angle of the line photocenters and the position angle of the dust disk. We find that the fit can be

  12. The Stars behind the Curtain

    Science.gov (United States)

    2010-02-01

    ESO is releasing a magnificent VLT image of the giant stellar nursery surrounding NGC 3603, in which stars are continuously being born. Embedded in this scenic nebula is one of the most luminous and most compact clusters of young, massive stars in our Milky Way, which therefore serves as an excellent "local" analogue of very active star-forming regions in other galaxies. The cluster also hosts the most massive star to be "weighed" so far. NGC 3603 is a starburst region: a cosmic factory where stars form frantically from the nebula's extended clouds of gas and dust. Located 22 000 light-years away from the Sun, it is the closest region of this kind known in our galaxy, providing astronomers with a local test bed for studying intense star formation processes, very common in other galaxies, but hard to observe in detail because of their great distance from us. The nebula owes its shape to the intense light and winds coming from the young, massive stars which lift the curtains of gas and clouds revealing a multitude of glowing suns. The central cluster of stars inside NGC 3603 harbours thousands of stars of all sorts (eso9946): the majority have masses similar to or less than that of our Sun, but most spectacular are several of the very massive stars that are close to the end of their lives. Several blue supergiant stars crowd into a volume of less than a cubic light-year, along with three so-called Wolf-Rayet stars - extremely bright and massive stars that are ejecting vast amounts of material before finishing off in glorious explosions known as supernovae. Using another recent set of observations performed with the SINFONI instrument on ESO's Very Large Telescope (VLT), astronomers have confirmed that one of these stars is about 120 times more massive than our Sun, standing out as the most massive star known so far in the Milky Way [1]. The clouds of NGC 3603 provide us with a family picture of stars in different stages of their life, with gaseous structures that are

  13. Existence of relativistic stars in f(R) gravity

    International Nuclear Information System (INIS)

    Upadhye, Amol; Hu, Wayne

    2009-01-01

    We refute recent claims in the literature that stars with relativistically deep potentials cannot exist in f(R) gravity. Numerical examples of stable stars, including relativistic (GM * /r * ∼0.1), constant density stars, are studied. As a star is made larger, nonlinear 'chameleon' effects screen much of the star's mass, stabilizing gravity at the stellar center. Furthermore, we show that the onset of this chameleon screening is unrelated to strong gravity. At large central pressures P>ρ/3, f(R) gravity, like general relativity, does have a maximum gravitational potential, but at a slightly smaller value: GM * /r * | max =0.345<4/9 for constant density and one choice of parameters. This difference is associated with negative central curvature R under general relativity not being accessed in the f(R) model, but does not apply to any known astrophysical object.

  14. The Properties of Short Gamma-Ray Burst Jets Triggered by Neutron Star Mergers

    Energy Technology Data Exchange (ETDEWEB)

    Murguia-Berthier, Ariadna; Ramirez-Ruiz, Enrico; Montes, Gabriela [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); De Colle, Fabio [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A. P. 70-543 04510 D. F. (Mexico); Rezzolla, Luciano; Takami, Kentaro [Institute for Theoretical Physics, Goethe University, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Rosswog, Stephan [Astronomy and Oskar Klein Centre, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Perego, Albino [Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt (Germany); Lee, William H. [Instituto de Astronomía, Universidad Nacional Autónoma de México, A. P. 70-264 04510 D. F. (Mexico)

    2017-02-01

    The most popular model for short gamma-ray bursts (sGRBs) involves the coalescence of binary neutron stars. Because the progenitor is actually hidden from view, we must consider under which circumstances such merging systems are capable of producing a successful sGRB. Soon after coalescence, winds are launched from the merger remnant. In this paper, we use realistic wind profiles derived from global merger simulations in order to investigate the interaction of sGRB jets with these winds using numerical simulations. We analyze the conditions for which these axisymmetric winds permit relativistic jets to break out and produce an sGRB. We find that jets with luminosities comparable to those observed in sGRBs are only successful when their half-opening angles are below ≈20°. This jet collimation mechanism leads to a simple physical interpretation of the luminosities and opening angles inferred for sGRBs. If wide, low-luminosity jets are observed, they might be indicative of a different progenitor avenue such as the merger of a neutron star with a black hole. We also use the observed durations of sGRB to place constraints on the lifetime of the wind phase, which is determined by the time it takes the jet to break out. In all cases we find that the derived limits argue against completely stable remnants for binary neutron star mergers that produce sGRBs.

  15. Non-Identical Neutron Star Twins

    OpenAIRE

    Glendenning, Norman K.; Kettner, Christiane

    1998-01-01

    The work of J. A. Wheeler in the mid 1960's showed that for smooth equations of state no stable stellar configurations with central densities above that corresponding to the limiting mass of ``neutron stars'' (in the generic sense) were stable against acoustical vibrational modes. A perturbation would cause any such star to collapse to a black hole or explode. Accordingly, there has been no reason to expect that a stable degenerate family of stars with higher density than the known white dwar...

  16. Massive stars and X-ray pulsars

    International Nuclear Information System (INIS)

    Henrichs, H.

    1982-01-01

    This thesis is a collection of 7 separate articles entitled: long term changes in ultraviolet lines in γ CAS, UV observations of γ CAS: intermittent mass-loss enhancement, episodic mass loss in γ CAS and in other early-type stars, spin-up and spin-down of accreting neutron stars, an excentric close binary model for the X Persei system, has a 97 minute periodicity in 4U 1700-37/HD 153919 really been discovered, and, mass loss and stellar wind in massive X-ray binaries. (Articles 1, 2, 5, 6 and 7 have been previously published). The first three articles are concerned with the irregular mass loss in massive stars. The fourth critically reviews thoughts since 1972 on the origin of the changes in periodicity shown by X-ray pulsars. The last articles indicate the relation between massive stars and X-ray pulsars. (C.F.)

  17. Gamma-ray burst progenitors and the population of rotating Wolf-Rayet stars.

    Science.gov (United States)

    Vink, Jorick S

    2013-06-13

    In our quest for gamma-ray burst (GRB) progenitors, it is relevant to consider the progenitor evolution of normal supernovae (SNe). This is largely dominated by mass loss. We discuss the mass-loss rate for very massive stars up to 300M⊙. These objects are in close proximity to the Eddington Γ limit. We describe the new concept of the transitional mass-loss rate, enabling us to calibrate wind mass loss. This allows us to consider the occurrence of pair-instability SNe in the local Universe. We also discuss luminous blue variables and their link to luminous SNe. Finally, we address the polarization properties of Wolf-Rayet (WR) stars, measuring their wind asphericities. We argue to have found a group of rotating WR stars that fulfil the required criteria to make long-duration GRBs.

  18. PSR1987A: the case for strange-quark stars

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1989-01-01

    The new fast pulsar observed in the remnant of SN1987A, together with other considerations, provide evidence that there are two types of collapsed stars: neutron stars, having moderate central densities and subject to the usual mass constraint, and strange-quark-matter stars. We show that (i) all known pulsar masses and frequencies, with the exception of the new one, can be accounted for by plausible neutron star models; (ii) no known neutron star model can withstand the fast rotation of the new pulsar unless the central energy density is ∼ 15 that of normal nuclei, at which densities hadrons cannot plausibly exist as constituents; and (iii) if strange-quark matter is the true ground state of the strong interactions, strange-quark stars can sustain the high rotation imputed to the new pulsar. In the absence of another plausible structure that can withstand the fast rotation, we provisionally infer that the new pulsar is such a star. (author)

  19. Evidence for large-scale winds from starburst galaxies. I. The nature of the ionized gas in M82 and NGC 253

    International Nuclear Information System (INIS)

    Mccarthy, P.J.; Van breugel, W.; Heckman, T.; Maryland Univ., College Park)

    1987-01-01

    The results of long-slit spectroscopy and narrow-band imaging of M82 and NGC 253, the two nearest examples of FIR luminous galaxies believed to be undergoing intense bursts of star formation, are presented. The profile of the gas pressure in the emission-line filaments in M82 is derived and found to be in good agreement with the model of Chevalier and Clegg (1985) of a supernovae-driven wind from a starburst nucleus. Lower quality data from NGC 253 support the same interpretation. Analysis of the emission-line ratios suggests that the line-emitting gas may be heated by low-velocity shocks, although photoionization from dilute UV radiation from unusually hot stars in the central starburst may also be important. 56 references

  20. Infrared variability and nature of symbiotic stars

    Energy Technology Data Exchange (ETDEWEB)

    Feast, M W; Robertson, B S.C.; Catchpole, R M [Royal Observatory, Cape Town (South Africa)

    1977-05-01

    Most symbiotic stars may be placed in one of two classes according to their infrared colours. In one group the systems contain an M type giant. In the other there is evidence for a star plus infrared emission from dust. JHKL photometry is given for three members of each class. Photometry of the VV Cephei system FR Sct is also given. No evidence for variability was found for systems without dust. The three systems with dust (RX Pup, RR Tel and PK 280-2/sup 0/.1) each show large variations of the stellar component (..delta..J, 1sup(m).6 to 2sup(m).7). It is concluded that these dusty systems contain Mira variables. For the systems without dust the mass transfer in the system is presumably through the inner Lagrangian point. For systems containing Miras it is possible that the companion accretes matter from a general stellar wind. Symbiotic systems containing Mira variables have more dust than average Mira variables. Either an unusually dense stellar wind is needed to produce a symbiotic system or such a system produces dust, perhaps in a high-density region resulting from the interaction of the stellar wind with the companion.

  1. Tornado type wind turbines

    Science.gov (United States)

    Hsu, Cheng-Ting

    1984-01-01

    A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

  2. A line driven Rayleigh-Taylor-type instability in hot stars

    International Nuclear Information System (INIS)

    Nelson, G.D.; Hearn, A.G.

    1978-01-01

    The existence of a Rayleigh-Taylor-type instability in the atmosphere of hot stars, driven by the radiative force associated with impurity ion resonance lines, is demonstrated. In a hot star with an effective temperature of 50 000 K, the instability will grow exponentially with a time scale of approximately 50 s in the layers where the stellar wind velocity is 5% of the thermal velocity of the ion. As a result, radially symmetric stellar winds driven by resonance line radiative forces will break up in small horizontal scale lengths. The energy fed into the instability provides a possible source of mechanical heating in the atmosphere for a chromosphere or corona. (orig.) [de

  3. The magnetic field of the B1/B2V star σ Lup

    NARCIS (Netherlands)

    Henrichs, H.F.; Kolenberg, K.; Plaggenborg, B.; Marsden, S.C.; Waite, I.A.; Wade, G.A.

    2011-01-01

    The ultraviolet stellar wind lines of the photometrically periodic variable early B-type star σ Lupi were found to behave very similarly to what has been observed in known magnetic B stars, although no periodicity could be determined. AAT spectropolarimetric measurements with SEMPOL were obtained.

  4. New Solutions to Line-Driven Winds of Hot Massive Stars

    Science.gov (United States)

    Gormaz-Matamala, Alex C.; Curé, Michel; Cidale, Lydia; Venero, Roberto

    2017-11-01

    In the frame of radiation driven wind theory (Castor et al.1975), we present self-consistent hydrodynamical solutions to the line-force parameters (k, α, δ) under LTE conditions. Hydrodynamic models are provided by HydWind (Curé 2004). We evaluate these results with those ones previously found in literature, focusing in different regions of the optical depth to be used to perform the calculations. The values for mass-loss rate and terminal velocity obtained from our calculations are also presented. We also examine the line-force parameters for the case when large changes in ionization throughout the wind occurs (δ-slow solutions, Curé et al.2011).

  5. Earth Observation Data Quality Monitoring and Control: A Case Study of STAR Central Data Repository

    Science.gov (United States)

    Han, W.; Jochum, M.

    2017-12-01

    Earth observation data quality is very important for researchers and decision makers involved in weather forecasting, severe weather warning, disaster and emergency response, environmental monitoring, etc. Monitoring and control earth observation data quality, especially accuracy, completeness, and timeliness, is very useful in data management and governance to optimize data flow, discover potential transmission issues, and better connect data providers and users. Taking a centralized near real-time satellite data repository, STAR (Center for Satellite Applications and Research of NOAA) Central Data Repository (SCDR), as an example, this paper describes how to develop new mechanism to verify data integrity, check data completeness, and monitor data latency in an operational data management system. Such quality monitoring and control of large volume satellite data help data providers and managers improve data transmission of near real-time satellite data, enhance its acquisition and management, and overcome performance and management issues to better serve research and development activities.

  6. Characterizing Wolf-Rayet stars in the near- and mid-infrared

    Energy Technology Data Exchange (ETDEWEB)

    Faherty, Jacqueline K. [Department of Terrestrial Magnetism, Carnegie Institution of Washington 5241 Broad Branch Road NW, Washington, DC 20015 (United States); Shara, Michael M.; Zurek, David; Kanarek, Graham [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Moffat, Anthony F. J., E-mail: jfaherty@dtm.ciw.edu [Departement de Physique, Universite de Montreal, C.P. 6128, Succursale Centre-Ville, Montreal, QC H3C 3J7 (Canada)

    2014-05-01

    We present refined color-color selection criteria for identifying Wolf-Rayet (WR) stars using available mid-infrared (MIR) photometry from WISE in combination with near-infrared (NIR) photometry from the Two Micron All Sky Survey. Using a sample of spectrally classified objects, we find that WR stars are well distinguished from the field stellar population in the (W1 – W2) versus (J – K{sub s} ) color-color diagram, and further distinguished from other emission line objects such as planetary nebulae, Be, and cataclysmic variable stars using a combination of NIR and MIR color constraints. As proof of concept we applied the color constraints to a photometric sample in the Galactic plane, located WR star candidates, and present five new spectrally confirmed and classified WC (1) and WN (4) stars. Analysis of the 0.8-5.0 μm spectral data for a subset of known, bright WC and WN stars shows that emission lines (primarily He I) extend into the 3.0-5.0 μm spectral region, although their strength is greatly diminished compared to the 0.8-2.5 μm region. The WR population stands out relative to background field stars at NIR and MIR colors due to an excess continuum contribution, likely caused by free-free scattering in dense winds. Mean photometric properties of known WRs are presented and imply that reddened late-type WN and WC sources are easier to detect than earlier-type sources at larger Galactic radii. WISE W3 and W4 images of 10 WR stars show evidence of circumstellar shells linked to mass ejections from strong stellar winds.

  7. Effects of coronal regions on the x-ray flux and ionization conditions in the winds of ob supergiants and of stars

    International Nuclear Information System (INIS)

    Cassinelli, J.P.; Olson, G.L.

    1979-01-01

    The anomalously strong O VI and N V lines in O stars and the C IV lines in B supergiants may be due to Auger ionization by X-rays from a thin coronal zone at the base of the cool stellar winds. We determine the size of a corona that is necessary to produce the overall ionization conditions in zeta Pup as has been deduced by Olson from line profile analysis. In the ionization balance calculations we account for diffuse radiation field in the wind and for the large optical depths in the He II continuum due to radiative and Auger ionization edges of abundant elements. The X-ray flux transmitted through the wind is calculated and compared with upper limits derived for upper limits derived for zeta Pup observations from ANS and Uhuru satellites. It is found that a coronal zone with a temperature of 5x10 6 K and a volume emission measure of 10 58 cm -3 can produce the required ionization in a wind having a temperature of 30,000--35,000 K. The emergent X-ray flux bears little resemblance to the coronal emissivity because of the opacity of the wind. The X-ray flux nearly reaches the upper limits derived from the ANS observations and, at several energy bands, should be detectable by the HEAO B satellite. A simplified analysis of the Auger ionization process is developed and applied to other Of and OB supergiants. We find that the model can explain the presence of C IV and Si IV in supergaints with effective temperatures as low as 12,000 K and can explain the appearance of O VI and N V lines in early type supergiants as late as BO.5 and B2, respectively

  8. Coupling hydrodynamics with comoving frame radiative transfer. I. A unified approach for OB and WR stars

    Science.gov (United States)

    Sander, A. A. C.; Hamann, W.-R.; Todt, H.; Hainich, R.; Shenar, T.

    2017-07-01

    Context. For more than two decades, stellar atmosphere codes have been used to derive the stellar and wind parameters of massive stars. Although they have become a powerful tool and sufficiently reproduce the observed spectral appearance, they can hardly be used for more than measuring parameters. One major obstacle is their inconsistency between the calculated radiation field and the wind stratification due to the usage of prescribed mass-loss rates and wind-velocity fields. Aims: We present the concepts for a new generation of hydrodynamically consistent non-local thermodynamical equilibrium (non-LTE) stellar atmosphere models that allow for detailed studies of radiation-driven stellar winds. As a first demonstration, this new kind of model is applied to a massive O star. Methods: Based on earlier works, the PoWR code has been extended with the option to consistently solve the hydrodynamic equation together with the statistical equations and the radiative transfer in order to obtain a hydrodynamically consistent atmosphere stratification. In these models, the whole velocity field is iteratively updated together with an adjustment of the mass-loss rate. Results: The concepts for obtaining hydrodynamically consistent models using a comoving-frame radiative transfer are outlined. To provide a useful benchmark, we present a demonstration model, which was motivated to describe the well-studied O4 supergiant ζPup. The obtained stellar and wind parameters are within the current range of literature values. Conclusions: For the first time, the PoWR code has been used to obtain a hydrodynamically consistent model for a massive O star. This has been achieved by a profound revision of earlier concepts used for Wolf-Rayet stars. The velocity field is shaped by various elements contributing to the radiative acceleration, especially in the outer wind. The results further indicate that for more dense winds deviations from a standard β-law occur.

  9. MONTE CARLO NEUTRINO TRANSPORT THROUGH REMNANT DISKS FROM NEUTRON STAR MERGERS

    Energy Technology Data Exchange (ETDEWEB)

    Richers, Sherwood; Ott, Christian D. [TAPIR, Mailcode 350-17, Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125 (United States); Kasen, Daniel; Fernández, Rodrigo [Department of Astronomy and Theoretical Astrophysics Center, University of California, Berkeley, CA 94720 (United States); O’Connor, Evan [Department of Physics, Campus Code 8202, North Carolina State University, Raleigh, NC 27695 (United States)

    2015-11-01

    We present Sedonu, a new open source, steady-state, special relativistic Monte Carlo (MC) neutrino transport code, available at bitbucket.org/srichers/sedonu. The code calculates the energy- and angle-dependent neutrino distribution function on fluid backgrounds of any number of spatial dimensions, calculates the rates of change of fluid internal energy and electron fraction, and solves for the equilibrium fluid temperature and electron fraction. We apply this method to snapshots from two-dimensional simulations of accretion disks left behind by binary neutron star mergers, varying the input physics and comparing to the results obtained with a leakage scheme for the cases of a central black hole and a central hypermassive neutron star. Neutrinos are guided away from the densest regions of the disk and escape preferentially around 45° from the equatorial plane. Neutrino heating is strengthened by MC transport a few scale heights above the disk midplane near the innermost stable circular orbit, potentially leading to a stronger neutrino-driven wind. Neutrino cooling in the dense midplane of the disk is stronger when using MC transport, leading to a globally higher cooling rate by a factor of a few and a larger leptonization rate by an order of magnitude. We calculate neutrino pair annihilation rates and estimate that an energy of 2.8 × 10{sup 46} erg is deposited within 45° of the symmetry axis over 300 ms when a central BH is present. Similarly, 1.9 × 10{sup 48} erg is deposited over 3 s when an HMNS sits at the center, but neither estimate is likely to be sufficient to drive a gamma-ray burst jet.

  10. MONTE CARLO NEUTRINO TRANSPORT THROUGH REMNANT DISKS FROM NEUTRON STAR MERGERS

    International Nuclear Information System (INIS)

    Richers, Sherwood; Ott, Christian D.; Kasen, Daniel; Fernández, Rodrigo; O’Connor, Evan

    2015-01-01

    We present Sedonu, a new open source, steady-state, special relativistic Monte Carlo (MC) neutrino transport code, available at bitbucket.org/srichers/sedonu. The code calculates the energy- and angle-dependent neutrino distribution function on fluid backgrounds of any number of spatial dimensions, calculates the rates of change of fluid internal energy and electron fraction, and solves for the equilibrium fluid temperature and electron fraction. We apply this method to snapshots from two-dimensional simulations of accretion disks left behind by binary neutron star mergers, varying the input physics and comparing to the results obtained with a leakage scheme for the cases of a central black hole and a central hypermassive neutron star. Neutrinos are guided away from the densest regions of the disk and escape preferentially around 45° from the equatorial plane. Neutrino heating is strengthened by MC transport a few scale heights above the disk midplane near the innermost stable circular orbit, potentially leading to a stronger neutrino-driven wind. Neutrino cooling in the dense midplane of the disk is stronger when using MC transport, leading to a globally higher cooling rate by a factor of a few and a larger leptonization rate by an order of magnitude. We calculate neutrino pair annihilation rates and estimate that an energy of 2.8 × 10 46 erg is deposited within 45° of the symmetry axis over 300 ms when a central BH is present. Similarly, 1.9 × 10 48 erg is deposited over 3 s when an HMNS sits at the center, but neither estimate is likely to be sufficient to drive a gamma-ray burst jet

  11. Mass-loss Rates from Coronal Mass Ejections: A Predictive Theoretical Model for Solar-type Stars

    Energy Technology Data Exchange (ETDEWEB)

    Cranmer, Steven R. [Department of Astrophysical and Planetary Sciences, Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80309 (United States)

    2017-05-10

    Coronal mass ejections (CMEs) are eruptive events that cause a solar-type star to shed mass and magnetic flux. CMEs tend to occur together with flares, radio storms, and bursts of energetic particles. On the Sun, CME-related mass loss is roughly an order of magnitude less intense than that of the background solar wind. However, on other types of stars, CMEs have been proposed to carry away much more mass and energy than the time-steady wind. Earlier papers have used observed correlations between solar CMEs and flare energies, in combination with stellar flare observations, to estimate stellar CME rates. This paper sidesteps flares and attempts to calibrate a more fundamental correlation between surface-averaged magnetic fluxes and CME properties. For the Sun, there exists a power-law relationship between the magnetic filling factor and the CME kinetic energy flux, and it is generalized for use on other stars. An example prediction of the time evolution of wind/CME mass-loss rates for a solar-mass star is given. A key result is that for ages younger than about 1 Gyr (i.e., activity levels only slightly higher than the present-day Sun), the CME mass loss exceeds that of the time-steady wind. At younger ages, CMEs carry 10–100 times more mass than the wind, and such high rates may be powerful enough to dispel circumstellar disks and affect the habitability of nearby planets. The cumulative CME mass lost by the young Sun may have been as much as 1% of a solar mass.

  12. Star Formation in Dwarf Galaxies: Life in a Rough Neighborhood

    Energy Technology Data Exchange (ETDEWEB)

    Murray, S

    2003-10-16

    Star formation within dwarf galaxies is governed by several factors. Many of these factors are external, including ram-pressure stripping, tidal stripping, and heating by external UV radiation. The latter, in particular, may prevent star formation in the smallest systems. Internal factors include negative feedback in the form of UV radiation, winds and supernovae from massive stars. These act to reduce the star formation efficiency within dwarf systems, which may, in turn, solve several theoretical and observational problems associated with galaxy formation. In this contribution, we discuss our recent work being done to examine the importance of the many factors in the evolution of dwarf galaxies.

  13. Colliding Stellar Winds Structure and X-ray Emission

    Science.gov (United States)

    Pittard, J. M.; Dawson, B.

    2018-04-01

    We investigate the structure and X-ray emission from the colliding stellar winds in massive star binaries. We find that the opening angle of the contact discontinuity (CD) is overestimated by several formulae in the literature at very small values of the wind momentum ratio, η. We find also that the shocks in the primary (dominant) and secondary winds flare by ≈20° compared to the CD, and that the entire secondary wind is shocked when η ≲ 0.02. Analytical expressions for the opening angles of the shocks, and the fraction of each wind that is shocked, are provided. We find that the X-ray luminosity Lx∝η, and that the spectrum softens slightly as η decreases.

  14. A Collapsar Model with Disk Wind: Implications for Supernovae Associated with Gamma-Ray Bursts

    Science.gov (United States)

    Hayakawa, Tomoyasu; Maeda, Keiichi

    2018-02-01

    We construct a simple but self-consistent collapsar model for gamma-ray bursts (GRBs) and SNe associated with GRBs (GRB-SNe). Our model includes a black hole, an accretion disk, and the envelope surrounding the central system. The evolutions of the different components are connected by the transfer of the mass and angular momentum. To address properties of the jet and the wind-driven SNe, we consider competition of the ram pressure from the infalling envelope and those from the jet and wind. The expected properties of the GRB jet and the wind-driven SN are investigated as a function of the progenitor mass and angular momentum. We find two conditions that should be satisfied if the wind-driven explosion is to explain the properties of the observed GRB-SNe: (1) the wind should be collimated at its base, and (2) it should not prevent further accretion even after the launch of the SN explosion. Under these conditions, some relations seen in the properties of the GRB-SNe could be reproduced by a sequence of different angular momentum in the progenitors. Only the model with the largest angular momentum could explain the observed (energetic) GRB-SNe, and we expect that the collapsar model can result in a wide variety of observational counterparts, mainly depending on the angular momentum of the progenitor star.

  15. A BUTTERFLY-SHAPED 'PAPILLON' NEBULA YIELDS SECRETS OF MASSIVE STAR BIRTH

    Science.gov (United States)

    2002-01-01

    A NASA Hubble Space Telescope view of a turbulent cauldron of starbirth, called N159, taking place 170,000 light-years away in our satellite galaxy, the Large Magellanic Cloud (LMC). Torrential stellar winds from hot newborn massive stars within the nebula sculpt ridges, arcs, and filaments in the vast cloud, which is over 150 light-years across. A rare type of compact ionized 'blob' is resolved for the first time to be a butterfly-shaped or 'Papillon' (French for 'butterfly') nebula, buried in the center of the maelstrom of glowing gases and dark dust. The unprecedented details of the structure of the Papillon, itself less than 2 light-years in size (about 2 arcseconds in the sky), are seen in the inset. A possible explanation of this bipolar shape is the outflow of gas from massive stars (over 10 times the mass of our sun) hidden in the central absorption zone. Such stars are so hot that their radiation pressure halts the infall of gas and directs it away from the stars in two opposite directions. Presumably, a dense equatorial disk formed by matter still trying to fall in onto the stars focuses the outstreaming matter into the bipolar directions. This observation is part of a search for young massive stars in the LMC. Rare are the cases where we can see massive stars so early after their birth. The red in this true-color image is from the emission of hydrogen and the yellow from high excitation ionized oxygen. The picture was taken on September 5, 1998 with the Wide Field Planetary Camera 2. The Hubble observations of the Papillon nebula were conducted by the European astronomers Mohammad Heydari-Malayeri (Paris Observatory, France) and co-investigators Michael Rosa (Space Telescope-European Coordinating Facility, European Southern Observatory, Germany), Vassilis Charmandaris (Paris Observatory), Lise Deharveng (Marseille Observatory, France), and Hans Zinnecker (Astrophysical Institute, Potsdam, Germany). Their work is submitted for publication in the European

  16. SYMBIOTIC STAR BLOWS BUBBLES INTO SPACE

    Science.gov (United States)

    2002-01-01

    A tempestuous relationship between an unlikely pair of stars may have created an oddly shaped, gaseous nebula that resembles an hourglass nestled within an hourglass. Images taken with Earth-based telescopes have shown the larger, hourglass-shaped nebula. But this picture, taken with NASA's Hubble Space Telescope, reveals a small, bright nebula embedded in the center of the larger one (close-up of nebula in inset). Astronomers have dubbed the entire nebula the 'Southern Crab Nebula' (He2-104), because, from ground-based telescopes, it looks like the body and legs of a crab. The nebula is several light-years long. The possible creators of these shapes cannot be seen at all in this Wide Field and Planetary Camera 2 image. It's a pair of aging stars buried in the glow of the tiny, central nebula. One of them is a red giant, a bloated star that is exhausting its nuclear fuel and is shedding its outer layers in a powerful stellar wind. Its companion is a hot, white dwarf, a stellar zombie of a burned-out star. This odd duo of a red giant and a white dwarf is called a symbiotic system. The red giant is also a Mira Variable, a pulsating red giant, that is far away from its partner. It could take as much as 100 years for the two to orbit around each other. Astronomers speculate that the interaction between these two stars may have sparked episodic outbursts of material, creating the gaseous bubbles that form the nebula. They interact by playing a celestial game of 'catch': as the red giant throws off its bulk in a powerful stellar wind, the white dwarf catches some of it. As a result, an accretion disk of material forms around the white dwarf and spirals onto its hot surface. Gas continues to build up on the surface until it sparks an eruption, blowing material into space. This explosive event may have happened twice in the 'Southern Crab.' Astronomers speculate that the hourglass-shaped nebulae represent two separate outbursts that occurred several thousand years apart

  17. Representativeness of wind measurements in moderately complex terrain

    Science.gov (United States)

    van den Bossche, Michael; De Wekker, Stephan F. J.

    2018-02-01

    We investigated the representativeness of 10-m wind measurements in a 4 km × 2 km area of modest relief by comparing observations at a central site with those at four satellite sites located in the same area. Using a combination of established and new methods to quantify and visualize representativeness, we found significant differences in wind speed and direction between the four satellite sites and the central site. The representativeness of the central site wind measurements depended strongly on surface wind speed and direction, and atmospheric stability. Through closer inspection of the observations at one of the satellite sites, we concluded that terrain-forced flows combined with thermally driven downslope winds caused large biases in wind direction and speed. We used these biases to generate a basic model, showing that terrain-related differences in wind observations can to a large extent be predicted. Such a model is a cost-effective way to enhance an area's wind field determination and to improve the outcome of pollutant dispersion and weather forecasting models.

  18. Wind Farm Decentralized Dynamic Modeling With Parameters

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Shakeri, Sayyed Mojtaba; Grunnet, Jacob Deleuran

    2010-01-01

    Development of dynamic wind flow models for wind farms is part of the research in European research FP7 project AEOLUS. The objective of this report is to provide decentralized dynamic wind flow models with parameters. The report presents a structure for decentralized flow models with inputs from...... local models. The results of this report are especially useful, but not limited, to design a decentralized wind farm controller, since in centralized controller design one can also use the model and update it in a central computing node.......Development of dynamic wind flow models for wind farms is part of the research in European research FP7 project AEOLUS. The objective of this report is to provide decentralized dynamic wind flow models with parameters. The report presents a structure for decentralized flow models with inputs from...

  19. Massive stars, x-ray ridge, and galactic 26Al gamma-ray line emission

    International Nuclear Information System (INIS)

    Montmerle, T.

    1986-07-01

    Massive stars interact with their parent molecular cloud by means of their ionizing flux and strong winds, thereby creating giant, hollow HII regions. To account for the observed structure of these HII regions, it appears necessary that all the wind energy be dissipated. Dorland and Montmerle have recently proposed a new dissipation mechanism, in the process, diffuse hard X-rays are emitted. If the observed galactic X-ray ''ridge'' results from this process on a galactic scale, it can be accounted for by the interaction of ∼3000 Wolf-Rayet stars (mostly within a ∼6.5 kpc ring) with their surrounding interstellar gas. This result is essentially consistent with the suggestion by Prantzos and Casse that the galactic 26 Al γ-ray line emission originates in Wolf-Rayet stars

  20. Chandra Observations of Neutron Stars: An Overview

    Science.gov (United States)

    Weisskopf, Martin C.; Karovska, M.; Pavlov, G. G.; Zavlin, V. E.; Clarke, Tracy

    2006-01-01

    We present a brief review of Chandra X-ray Observatory observations of neutron stars. The outstanding spatial and spectral resolution of this great observatory have allowed for observations of unprecedented clarity and accuracy. Many of these observations have provided new insights into neutron star physics. We present an admittedly biased and overly brief overview of these observations, highlighting some new discoveries made possible by the Observatory's unique capabilities. We also include our analysis of recent multiwavelength observations of the putative pulsar and its pulsar-wind nebula in the IC 443 SNR.

  1. A Rigidly Rotating Magnetosphere Model for the Circumstellar Environments of Magnetic OB Stars

    Science.gov (United States)

    Townsend, R.; Owocki, S.; Groote, D.

    2005-11-01

    We report on a new model for the circumstellar environments of rotating, magnetic hot stars. This model predicts the channeling of wind plasma into a corotating magnetosphere, where -- supported against gravity by centrifugal forces -- it can steadily accumulate over time. We apply the model to the B2p star σ Ori E, demonstrating that it can simultaneously reproduce the spectroscopic, photometric and magnetic variations exhibited by the star.

  2. Evolution of rotating stars. III. Predicted surface rotation velocities for stars which conserve total angular momentum

    International Nuclear Information System (INIS)

    Endal, A.S.; Sofia, S.

    1979-01-01

    Predicted surface rotation velocities are presented for Population I stars at 10, 7, 5, 3, and 1.5M/sub sun/. The surface velocities have been computed for three different cases of angular momentum redistribution: no radial redistribution (rotation on decoupled shells), complete redistribution (rigid-body rotation), and partial redistribution as predicted by detailed consideration of circulation currents in rotation stars. The velocities for these cases are compared to each other and to observed stellar rotation rates (upsilon sin i).Near the main sequence, rotational effects can substantially reduce the moment of inertia of a star, so nonrotating models consistently underestimate the expected velocities for evolving stars. The magnitude of these effects is sufficient to explain the large numbers of Be stars and, perhaps, to explain the bimodal distribution of velocities observed for the O stars.On the red giant branch, angular momentum redistribution reduces the surface velocity by a factor of 2 or more, relative to the velocity expected for no radial redistribution. This removes the discrepancy between predicted and observed rotation rates for the K giants and makes it unlikely that these stars lose significant amounts of angular momentum by stellar winds. Our calculations indicate that improved observations (by the Fourier-transform technique) of the red giants in the Hyades cluster can be used to determine how angular momentum is redistributed by convection

  3. THE COMPLEX NORTH TRANSITION REGION OF CENTAURUS A: A GALACTIC WIND

    Energy Technology Data Exchange (ETDEWEB)

    Neff, Susan G. [NASA’s Goddard Space Flight Center, Laboratory for Observational Cosmology, Mail Code 665, Greenbelt, MD 20771 (United States); Eilek, Jean A. [Physics Department, New Mexico Tech, Socorro NM 87801 (United States); Owen, Frazer N., E-mail: susan.g.neff@nasa.gov [National Radio Astronomy Observatory, Socorro NM 87801 (United States)

    2015-04-01

    We present deep GALEX images of NGC 5128, the parent galaxy of Centaurus A. We detect a striking “weather ribbon” of far-UV (FUV) and Hα emission which extends more than 35 kpc northeast of the galaxy. This ribbon is associated with a knotty ridge of radio/X-ray emission and is an extension of the previously known string of optical emission-line filaments. Many phenomena in the region are too short-lived to have survived transit out from the inner galaxy; something must be driving them locally. We also detect FUV emission from the galaxy’s central dust lane. Combining this with previous radio and far-IR measurements, we infer an active starburst in the central galaxy which is currently forming stars at ∼2 M{sub ☉} yr{sup −1}, and has been doing so for 50–100 Myr. If the wind from this starburst is enhanced by energy and mass driven out from the active galactic nucleus, the powerful augmented wind can be the driver needed for the northern weather system. We argue that both the diverse weather system, and the enhanced radio emission in the same region, result from the wind’s encounter with cool gas left by one of the recent merger/encounter events in the history of NGC 5128.

  4. Symbiotic Stars in X-rays

    Science.gov (United States)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2014-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with

  5. Massive runaway stars in the Small Magellanic Cloud

    Science.gov (United States)

    Gvaramadze, V. V.; Pflamm-Altenburg, J.; Kroupa, P.

    2011-01-01

    Using archival Spitzer Space Telescope data, we identified for the first time a dozen runaway OB stars in the Small Magellanic Cloud (SMC) through the detection of their bow shocks. The geometry of detected bow shocks allows us to infer the direction of motion of the associated stars and to determine their possible parent clusters and associations. One of the identified runaway stars, AzV 471, was already known as a high-velocity star on the basis of its high peculiar radial velocity, which is offset by ≃ 40 km s-1 from the local systemic velocity. We discuss implications of our findings for the problem of the origin of field OB stars. Several of the bow shock-producing stars are found in the confines of associations, suggesting that these may be “alien” stars contributing to the age spread observed for some young stellar systems. We also report the discovery of a kidney-shaped nebula attached to the early WN-type star SMC-WR3 (AzV 60a). We interpreted this nebula as an interstellar structure created owing to the interaction between the stellar wind and the ambient interstellar medium.

  6. Star Formation at the Galactic Center

    Science.gov (United States)

    Kohler, Susanna

    2015-08-01

    Could stars be forming in the inhospitable environment near Sagittarius A* in the heart of the Milky Way? A possible signature of low-mass star formation has recently been found just two light-years from the black hole at the center of our galaxy — a region that was previously thought to be too hostile for such activity. Searching for Signatures: Previous observations of the central few light-years of the Milky Way had focused on a population of about 200 massive, young and very bright stars in tight orbits around Sgr A*. These stars are only a few million years old and prompted scientists to wonder: have they somehow managed to form in situ, in spite of their close proximity to the black hole, or did they form further out and then migrate in? Motivated by this mystery, Farhad Yusef-Zadeh of Northwestern University and collaborators looked for evidence of even younger stars close to Sagittarius A*, which would demonstrate that star formation in the area is an ongoing process. Using the Very Large Array (VLA), the collaboration discovered several small sources in one arm of activity near Sgr A*. This 34-GHz image provides a close-up view of two protoplanetary disk candidates (labeled P26 and P8) located near Sgr A*. These objects are outlined on the right side by a bow shock caused by impacting stellar wind that streams from the young, hot stars closer to the Galactic center. The disks are thought to contain recently-formed, low-mass stars. (Credit: Yusef-Zadeh et al., 2015) Heated Disks: The team identified these sources as candidate photoevaporative protoplanetary disks, or “proplyds” — areas of dense, ionized gas and dust surrounding young, newly formed stars. The proplyd candidates are between 10,000 and 100,000 years old, and they lie along the edge of a large molecular cloud. It is likely that this cloud produced the disks by providing a reservoir of gas to feed the star-formation activity. The region surrounding these proplyds is blasted with harsh

  7. An IRAS/ISSA Survey of Bow Shocks Around Runaway Stars

    Science.gov (United States)

    Buren, David Van

    1995-01-01

    We searched for bow shock-like objects like those known around Oph and a Cam near the positions of 183 runaway stars. Based primarily on the presence and morphology of excess 60 micron emission we identify 56 new candidate bow shocks, for which we determine photometric and morphological parameters. Previously only a dozen or so were known. Well resolved structures are present around 25 stars. A comparison of the distribution of symmetry axes of the infrared nebulae with that of their proper motion vectors indicates that these two directions are very significantly aligned. The observed alignment strongly suggests that the structures we see arise from the interaction of stellar winds with the interstellar medium, justifying the identification of these far-infrared objects as stellar wind bow shocks.

  8. Power control of a wind farm with active stall wind turbines and AC grid connection

    DEFF Research Database (Denmark)

    Hansen, Anca Daniela; Sørensen, Poul; Iov, Florin

    both the control on wind turbine level as well as the central control on the wind farm level. The ability of active stall wind farms with AC grid connection to regulate the power production to the reference power ordered by the operators is assessed and discussed by means of simulations.......This paper describes the design of a centralised wind farm controller for a wind farm made-up exclusively of active stall wind turbines with AC grid connection. The overall aim of such controller is to enable the wind farms to provide the best grid support. The designed wind farm control involves...

  9. Neutron Star/supernova Remnant Associations

    Science.gov (United States)

    Gvaramadze, V. V.

    We propose a new approach for studying the neutron star/supernova remnant associations, based on the idea that the (diffuse) supernova remnants (SNRs) can be products of an off-centred supernova (SN) explosion in a preexisting bubble created by the wind of a moving massive star. A cavity SN explosion of a moving star results in a considerable offset of the neutron star (NS) birth-place from the geometrical centre of the SNR. Therefore: a) the high transverse velocities inferred for a number of NSs (e.g. PSR B 1610-50, PSR B 1757-24, SGR 0525-66) through their association with SNRs can be reduced; b) the proper motion vector of a NS should not necessarily point away from the geometrical centre of the associated SNR. Taking into account of these two facts allow us to enlarge the circle of possible NS/SNR associations, and could significantly affect the results of previous studies of NS/SNR associations. The possibilities of our approach are illustrated with the example of the association between PSR B 1706-44 and SNR G 343.1-2.3. We show that this association could be real if both objects are the remnants of a SN exploded within a mushroom-like cavity (created by the SN progenitor wind breaking out of the parent molecular cloud and expanding into an intercloud medium of a much less density). We also show that the SN explosion sites in some middle-aged (shell-like) SNRs could be marked by (compact) nebulae of thermal X-ray emission. The possible detection of such nebulae within middle-aged SNRs could be used for the re-estimation of implied transverse velocities of known NSs or for the search of new stellar remnants possibly associated with these SNRs.

  10. Wind turbine having a direct-drive drivetrain

    Science.gov (United States)

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2008-10-07

    A wind turbine (100) comprising an electrical generator (108) that includes a rotor assembly (112). A wind rotor (104) that includes a wind rotor hub (124) is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle (160) via a bearing assembly (180). The wind rotor hub includes an opening (244) having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity (380) inside the wind rotor hub. The spindle is attached to a turret (140) supported by a tower (136). Each of the spindle, turret and tower has an interior cavity (172, 176, 368) that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system (276) for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  11. A dust shell around the early-type Wolf-Ryate star WR 19

    International Nuclear Information System (INIS)

    Williams, P.M.; Hucht, K.A. van der; Bouchet, P.

    1990-01-01

    Infrared photometry of the WC4-type Wolf-Rayet star WR 19 (LS 3) in 1988-90 shows evidence for an expanding dust shell in its wind, similar to those observed from late-type WR stars like WR 48a (WC8), WR 140 (WC7+04) and WR 137 (WC7+). This demonstrates that dust formation by Wolf-Rayet stars is not restricted to later WC subtypes and is more common than hitherto supposed. (author)

  12. Strange-quark-matter stars

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1989-11-01

    We investigate the implications of rapid rotation corresponding to the frequency of the new pulsar reported in the supernovae remnant SN1987A. It places very stringent conditions on the equation of state if the star is assumed to be bound by gravity alone. We find that the central energy density of the star must be greater than 13 times that of nuclear density to be stable against the most optimistic estimate of general relativistic instabilities. This is too high for the matter to consist of individual hadrons. We conclude that it is implausible that the newly discovered pulsar, if its half-millisecond signals are attributable to rotation, is a neutron star. We show that it can be a strange quark star, and that the entire family of strange stars can sustain high rotation if strange matter is stable at an energy density exceeding about 5.4 times that of nuclear matter. We discuss the conversion of a neutron star to strange star, the possible existence of a crust of heavy ions held in suspension by centrifugal and electric forces, the cooling and other features. 34 refs., 10 figs., 1 tab

  13. Terminal velocities for a large sample of O stars, B supergiants, and Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Prinja, R.K.; Barlow, M.J.; Howarth, I.D.

    1990-01-01

    It is argued that easily measured, reliable estimates of terminal velocities for early-type stars are provided by the central velocity asymptotically approached by narrow absorption features and by the violet limit of zero residual intensity in saturated P Cygni profiles. These estimators are used to determine terminal velocities, v(infinity), for 181 O stars, 70 early B supergiants, and 35 Wolf-Rayet stars. For OB stars, the values are typically 15-20 percent smaller than the extreme violet edge velocities, v(edge), while for WR stars v(infinity) = 0.76 v(edge) on average. New mass-loss rates for WR stars which are thermal radio emitters are given, taking into account the new terminal velocities and recent revisions to estimates of distances and to the mean nuclear mass per electron. The relationships between v(infinity), the surface escape velocities, and effective temperatures are examined. 67 refs

  14. La Venta wind power plant, seven months operating experience and growth perspectives; Central eolica La Venta, siete meses de operacion y perspectivas de crecimiento

    Energy Technology Data Exchange (ETDEWEB)

    Cadena Tovar, Roberto; Lopez Rios, Serafin [Gerencia de Proyectos Geotermoelectricos de la Comision Federal de Electricidad, Morelia (Mexico)

    1995-01-01

    The capacity factor achieved for La Venta Wind Power Plant in Oaxaca State, Mexico was 63.8% during its first seven operating months. There is not similar experience around the world for a wind plant. This paper presents performance plant details and its capacity growth perspectives. [Espanol] En la central eolica La Venta, Oaxaca, Mexico se ha obtenido un factor de planta de 63.8% durante sus primeros siete meses de operacion, no existiendo precedente similar en las centrales eolicas actualmente en operacion en el mundo. En este documento se describen detalles de su comportamiento y se efectua un bosquejo general de las posibilidades de crecimiento del proyecto.

  15. Continuous-time quantum walks on star graphs

    International Nuclear Information System (INIS)

    Salimi, S.

    2009-01-01

    In this paper, we investigate continuous-time quantum walk on star graphs. It is shown that quantum central limit theorem for a continuous-time quantum walk on star graphs for N-fold star power graph, which are invariant under the quantum component of adjacency matrix, converges to continuous-time quantum walk on K 2 graphs (complete graph with two vertices) and the probability of observing walk tends to the uniform distribution.

  16. DUSTY WINDS: EXTRAPLANAR POLYCYCLIC AROMATIC HYDROCARBON FEATURES OF NEARBY GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Alexander; Veilleux, Sylvain [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Rupke, David S. N., E-mail: alexm@astro.umd.edu, E-mail: veilleux@astro.umd.edu, E-mail: rupked@rhodes.edu [Rhodes College, 2000 North Parkway, Memphis, TN 38112 (United States)

    2013-09-10

    Recent observations have shown the presence of dust and molecular material in galactic winds, but relatively little is known about the distribution of these outflow components. To shed some light on this issue, we have used IRAC images from the Spitzer Space Telescope archive to investigate polycyclic aromatic hydrocarbon (PAH) emission from a sample of 16 local galaxies with known winds. Our focus on nearby sources (median distance 8.6 Mpc) has revealed detailed PAH structure in the winds and allowed us to measure extraplanar PAH emission. We have identified extraplanar PAH features on scales of {approx}0.8-6.0 kpc. We find a nearly linear correlation between the amount of extraplanar PAH emission and the total infrared flux, a proxy for star formation activity in the disk. Our results also indicate a correlation between the height of extraplanar PAH emission and star formation rate surface density, which supports the idea of a surface density threshold on the energy or momentum injection rate for producing detectable extraplanar wind material.

  17. An explanation of the radio flux mystery of HD 192163 and empirical models for WN stars

    International Nuclear Information System (INIS)

    Nugis, T.

    1982-01-01

    The radio flux value of the star HD 192163 (WN6) measured by Dickel et al. (1980) imposes strong restrictions on the possible mass outflow region models of this star. Dickel et al. (1980) and also Barlow et al. (1980) suggested that the wind terminal velocity has not been reached in the IR emission region. But when taking into account the line spectrum data, it appears that the wind velocity must be comparatively close to the star already nearly constant. So it is necessary to search for some other explanation. The author has found that at reasonable values of density, electron and core (star) temperatures it is possible that helium becomes neutral at a comparatively large distance from the star and then the radio flux is mainly due to the f-f radiation of H + and N + . In the case of such an ionization structure there are no restrictions on the outflow velocity being already constant close to the star. Therefore it is now possible to explain the radio and IR fluxes as well as the line spectrum data of HD 192163. (Auth.)

  18. The IACOB project. V. Spectroscopic parameters of the O-type stars in the modern grid of standards for spectral classification

    Science.gov (United States)

    Holgado, G.; Simón-Díaz, S.; Barbá, R. H.; Puls, J.; Herrero, A.; Castro, N.; Garcia, M.; Maíz Apellániz, J.; Negueruela, I.; Sabín-Sanjulián, C.

    2018-06-01

    Context. The IACOB and OWN surveys are two ambitious, complementary observational projects which have made available a large multi-epoch spectroscopic database of optical high resolution spectra of Galactic massive O-type stars. Aims: Our aim is to study the full sample of (more than 350) O stars surveyed by the IACOB and OWN projects. As a first step towards this aim, we have performed the quantitative spectroscopic analysis of a subsample of 128 stars included in the modern grid of O-type standards for spectral classification. The sample comprises stars with spectral types in the range O3-O9.7 and covers all luminosity classes. Methods: We used the semi-automatized IACOB-BROAD and IACOB-GBAT/FASTWIND tools to determine the complete set of spectroscopic parameters that can be obtained from the optical spectrum of O-type stars. A quality flag was assigned to the outcome of the IACOB-GBAT/FASTWIND analysis for each star, based on a visual evaluation of how the synthetic spectrum of the best fitting FASTWIND model reproduces the observed spectrum. We also benefitted from the multi-epoch character of the IACOB and OWN surveys to perform a spectroscopic variability study of the complete sample, providing two different flags for each star accounting for spectroscopic binarity as well as variability of the main wind diagnostic lines. Results: We obtain - for the first time in a homogeneous and complete manner - the full set of spectroscopic parameters of the "anchors" of the spectral classification system in the O star domain. We provide a general overview of the stellar and wind parameters of this reference sample, as well as updated recipes for the SpT-Teff and SpT-log g calibrations for Galactic O-type stars. We also propose a distance-independent test for the wind-momentum luminosity relationship. We evaluate the reliability of our semi-automatized analysis strategy using a subsample of 40 stars extensively studied in the literature, and find a fairly good agreement

  19. Magnetic braking in young late-type stars. The effect of polar spots

    Science.gov (United States)

    Aibéo, A.; Ferreira, J. M.; Lima, J. J. G.

    2007-10-01

    Context: The existence of rapidly rotating cool stars in young clusters implies a reduction of angular momentum loss rate for a certain period of the star's early life. Recently, the concentration of magnetic flux near the poles of these stars has been proposed as an alternative mechanism to dynamo saturation in order to explain the saturation of angular momentum loss. Aims: In this work we study the effect of magnetic surface flux distribution on the coronal field topology and angular momentum loss rate. We investigate if magnetic flux concentration towards the pole is a reasonable alternative to dynamo saturation. Methods: We construct a 1D wind model and also apply a 2-D self-similar analytical model, to evaluate how the surface field distribution affects the angular momentum loss of the rotating star. Results: From the 1D model we find that, in a magnetically dominated low corona, the concentrated polar surface field rapidly expands to regions of low magnetic pressure resulting in a coronal field with small latitudinal variation. We also find that the angular momentum loss rate due to a uniform field or a concentrated field with equal total magnetic flux is very similar. From the 2D wind model we show that there are several relevant factors to take into account when studying the angular momentum loss from a star. In particular, we show that the inclusion of force balance across the field in a wind model is fundamental if realistic conclusions are to be drawn from the effect of non-uniform surface field distribution on magnetic braking. This model predicts that a magnetic field concentrated at high latitudes leads to larger Alfvén radii and larger braking rates than a smoother field distribution. Conclusions: From the results obtained, we argue that the magnetic surface field distribution towards the pole does not directly limit the braking efficiency of the wind.

  20. Dust discs around low-mass main-sequence stars

    International Nuclear Information System (INIS)

    Wolstencroft, R.D.; Walker, H.J.

    1988-01-01

    Current understanding of the formation of circumstellar discs as a natural accompaniment to the process of low-mass star formation is briefly reviewed. Models of the thermal emission from the dust discs around the prototype stars α Lyr, α PsA, β Pic and ε Eri are discussed, which indicate that the central regions of three of these discs are almost devoid of dust within radii ranging between 17 and 26 AU, with the temperature of the hottest dust lying between about 115 and 210 K. One possible explanation of the dust-free zones is the presence of a planet at the inner boundary of each cloud that sweeps up grains crossing its orbit. The colour, diameter and thickness of the optical image of β Pic, obtained by coronagraphic techniques, have provided further information on the size, radial distribution of number density and orbital inclination of the grains. The difference in surface brightness on the two sides of the disc is puzzling, but might be explained if the grains are elongated and aligned by the combined effects of a stellar wind and a magnetic field of spiral configuration. Finally, we discuss the orbital evolution and lifetimes of particles in these discs, which are governed primarily by radiation pressure, Poynting-Robertson drag and grain-grain collisions. (author)

  1. 3D printing meets computational astrophysics: deciphering the structure of η Carinae's inner colliding winds

    Science.gov (United States)

    Madura, T. I.; Clementel, N.; Gull, T. R.; Kruip, C. J. H.; Paardekooper, J.-P.

    2015-06-01

    We present the first 3D prints of output from a supercomputer simulation of a complex astrophysical system, the colliding stellar winds in the massive (≳120 M⊙), highly eccentric (e ˜ 0.9) binary star system η Carinae. We demonstrate the methodology used to incorporate 3D interactive figures into a PDF (Portable Document Format) journal publication and the benefits of using 3D visualization and 3D printing as tools to analyse data from multidimensional numerical simulations. Using a consumer-grade 3D printer (MakerBot Replicator 2X), we successfully printed 3D smoothed particle hydrodynamics simulations of η Carinae's inner (r ˜ 110 au) wind-wind collision interface at multiple orbital phases. The 3D prints and visualizations reveal important, previously unknown `finger-like' structures at orbital phases shortly after periastron (φ ˜ 1.045) that protrude radially outwards from the spiral wind-wind collision region. We speculate that these fingers are related to instabilities (e.g. thin-shell, Rayleigh-Taylor) that arise at the interface between the radiatively cooled layer of dense post-shock primary-star wind and the fast (3000 km s-1), adiabatic post-shock companion-star wind. The success of our work and easy identification of previously unrecognized physical features highlight the important role 3D printing and interactive graphics can play in the visualization and understanding of complex 3D time-dependent numerical simulations of astrophysical phenomena.

  2. ELEVEN NEW HEAVILY REDDENED FIELD WOLF–RAYET STARS

    International Nuclear Information System (INIS)

    Smith, J. D. T.; Cushing, Michael; Barletta, Anthony; McCarthy, Don; Kulesa, Craig; Van Dyk, Schuyler D.

    2012-01-01

    We report the results of a medium-narrowband 2 μm line survey covering 5.8 deg 2 near the Galactic plane. We confirm 11 new field Wolf-Rayet stars along three lines of sight probing the inner Galaxy, demonstrating the capability to uncover distant and highly reddened populations of Galactic wind-borne emission-line stars suffering extinction as high as A V ∼ 40 and as distant as 9 kpc down to modest magnitude limits of K s ∼ 12.5. All stars are of subtype WC7-8, with median distance d = 6 kpc and median extinction A K s = 2.5. Over the fields surveyed, the density of Wolf-Rayet stars to limiting magnitude K s ∼ 12.5 was found to be 1.9 deg –2 . We compare this to models which predict their distribution within the Galaxy and find that, even neglecting survey and subtype incompleteness, they consistently underpredict the number of newly discovered stars along the surveyed lines of sight.

  3. Physical understanding of the tropical cyclone wind-pressure relationship.

    Science.gov (United States)

    Chavas, Daniel R; Reed, Kevin A; Knaff, John A

    2017-11-08

    The relationship between the two common measures of tropical cyclone intensity, the central pressure deficit and the peak near-surface wind speed, is a long-standing problem in tropical meteorology that has been approximated empirically yet lacks physical understanding. Here we provide theoretical grounding for this relationship. We first demonstrate that the central pressure deficit is highly predictable from the low-level wind field via gradient wind balance. We then show that this relationship reduces to a dependence on two velocity scales: the maximum azimuthal-mean azimuthal wind speed and half the product of the Coriolis parameter and outer storm size. This simple theory is found to hold across a hierarchy of models spanning reduced-complexity and Earth-like global simulations and observations. Thus, the central pressure deficit is an intensity measure that combines maximum wind speed, storm size, and background rotation rate. This work has significant implications for both fundamental understanding and risk analysis, including why the central pressure better explains historical economic damages than does maximum wind speed.

  4. (F)UV Spectral Analysis of 15 Hot, Hydrogen-Rich Central Stars of PNe

    Science.gov (United States)

    Ziegler, Marc

    2013-07-01

    the sample are still too small to start gravitational settling. For the elements C, N, O, Si, P, and S we find increasing abundances with increasing log(Teff^4/g), while the abundances for Ar and Fe decrease. The latter is unexpected as the higher the Teff^4/g ratio, the more the radiative force dominates the gravitational force and, thus, the elements should be kept in the atmosphere. The determined abundances were compared with previous literature values, with abundances predicted from diusion calculations, with abundances from Asymptotic Giant Branch (AGB) nucleosynthesis calculations, and, if available, with abundances found for the corresponding nebulae. The agreement was of mixed quality. The derived Teff and log g values confirmed some literature values while others had to be revised (e.g. for LSS 1362 and NGC1360). However, most of them agree with the previous literature values within the error limits. No difference in Teff can be found for DAO and O(H)-type stars, but O(H)-type stars have a lower log g (5.4 - 6.0) compared to the DAOs (6.5 - 7.4). The exception is the O(H)-type central star of the planetary nebula (CSPN) of Lo 1 with log g = 7.0. A comparison of the positions of each object with stellar evolutionary tracks for post-AGB stars in the log Teff - log g diagram lead to the respective stellar masses. The derived mean mass of the analyzed sample (M = 0.536 ± 0.023 Msol) agrees within the error limits with the expected mean mass for these objects. In the literature M = 0.638 - 0.145 Msol can be found for DA-type white dwarfs, the immediate successors of DAO-type white dwarfs. For two objects (A 35, Sh 2-174) extremely low masses were found. For A35 the derived mass (M_A35 = 0.523 ± 0.05Msol) lies at the lower end of possible masses predicted for post-AGB stars. The very low mass of Sh 2-174 (M_Sh 2-174 = 0.395 ± 0.05Msol) points at Sh 2-174 being a post-extended horizontal branch (EHB) star and not a CSPN. If a stellar mass is too low, it is

  5. GAMMA-RAY SIGNAL FROM THE PULSAR WIND IN THE BINARY PULSAR SYSTEM PSR B1259-63/LS 2883

    Energy Technology Data Exchange (ETDEWEB)

    Khangulyan, Dmitry [Institute of Space and Astronautical Science/JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Aharonian, Felix A. [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Bogovalov, Sergey V. [National Research Nuclear University-MEPHI, Kashirskoe Shosse 31, Moscow 115409 (Russian Federation); Ribo, Marc, E-mail: khangul@astro.isas.jaxa.jp, E-mail: felix.aharonian@dias.ie, E-mail: svbogovalov@mephi.ru, E-mail: mribo@am.ub.es [Departament d' Astronomia i Meteorologia, Institut de Ciences del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E-08028 Barcelona (Spain)

    2011-12-01

    Binary pulsar systems emit potentially detectable components of gamma-ray emission due to Comptonization of the optical radiation of the companion star by relativistic electrons of the pulsar wind, both before and after termination of the wind. The recent optical observations of binary pulsar system PSR B1259-63/LS 2883 revealed radiation properties of the companion star which differ significantly from previous measurements. In this paper, we study the implications of these observations for the interaction rate of the unshocked pulsar wind with the stellar photons and the related consequences for fluxes of high energy and very high energy (VHE) gamma rays. We show that the signal should be strong enough to be detected with Fermi close to the periastron passage, unless the pulsar wind is strongly anisotropic or the Lorentz factor of the wind is smaller than 10{sup 3} or larger than 10{sup 5}. The higher luminosity of the optical star also has two important implications: (1) attenuation of gamma rays due to photon-photon pair production and (2) Compton drag of the unshocked wind. While the first effect has an impact on the light curve of VHE gamma rays, the second effect may significantly decrease the energy available for particle acceleration after termination of the wind.

  6. Mapping Wind Energy Controversies

    DEFF Research Database (Denmark)

    Munk, Anders Kristian

    As part the Wind2050 project funded by the Danish Council for Strategic Research we have mapped controversies on wind energy as they unfold online. Specifically we have collected two purpose built datasets, a web corpus containing information from 758 wind energy websites in 6 different countries......, and a smaller social media corpus containing information from 14 Danish wind energy pages on Facebook. These datasets have been analyzed to answer questions like: How do wind proponents and opponents organize online? Who are the central actors? And what are their matters of concern? The purpose of this report...

  7. Numerical evidence for 'multiscalar stars'

    International Nuclear Information System (INIS)

    Hawley, Scott H.; Choptuik, Matthew W.

    2003-01-01

    We present a class of general relativistic solitonlike solutions composed of multiple minimally coupled, massive, real scalar fields which interact only through the gravitational field. We describe a two-parameter family of solutions we call ''phase-shifted boson stars'' (parametrized by central density ρ 0 and phase δ), which are obtained by solving the ordinary differential equations associated with boson stars and then altering the phase between the real and imaginary parts of the field. These solutions are similar to boson stars as well as the oscillating soliton stars found by Seidel and Suen [E. Seidel and W. M. Suen, Phys. Rev. Lett. 66, 1659 (1991)]; in particular, long-time numerical evolutions suggest that phase-shifted boson stars are stable. Our results indicate that scalar solitonlike solutions are perhaps more generic than has been previously thought

  8. High-resolution numerical simulation of summer wind field comparing WRF boundary-layer parametrizations over complex Arctic topography: case study from central Spitsbergen

    Czech Academy of Sciences Publication Activity Database

    Láska, K.; Chládová, Zuzana; Hošek, Jiří

    2017-01-01

    Roč. 26, č. 4 (2017), s. 391-408 ISSN 0941-2948 Institutional support: RVO:68378289 Keywords : surface wind field * model evaluation * topographic effect * circulation pattern * Svalbard Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 1.989, year: 2016 http://www.schweizerbart.de/papers/metz/detail/prepub/87659/High_resolution_numerical_simulation_of_summer_wind_field_comparing_WRF_boundary_layer_parametrizations_over_complex_Arctic_topography_case_study_from_central_Spitsbergen

  9. Wind farm economics

    International Nuclear Information System (INIS)

    Milborrow, D.J.

    1995-01-01

    The economics of wind energy are changing rapidly, with improvements in machine performance and increases in size both contributing to reduce costs. These trends are examined and future costs assessed. Although the United Kingdom has regions of high wind speed, these are often in difficult terrain and construction costs are often higher than elsewhere in Europe. Nevertheless, wind energy costs are converging with those of the conventional thermal sources. At present, bank loan periods for wind projects are shorter than for thermal plant, which means that energy prices are higher. Ways of overcoming this problem are explored. It is important, also, to examine the value of wind energy. It is argued that wind energy has a higher value than energy from centralized plant, since it is fed into the low-voltage distribution network. (Author)

  10. Massive-Star Magnetospheres: Now in 3-D!

    Science.gov (United States)

    Townsend, Richard

    Magnetic fields are unexpected in massive stars, due to the absence of a dynamo convection zone beneath their surface layers. Nevertheless, kilogauss-strength, ordered fields were detected in a small subset of these stars over three decades ago, and the intervening years have witnessed the steady expansion of this subset. A distinctive feature of magnetic massive stars is that they harbor magnetospheres --- circumstellar environments where the magnetic field interacts strongly with the star's radiation-driven wind, confining it and channelling it into energetic shocks. A wide range of observational signatures are associated with these magnetospheres, in diagnostics ranging from X-rays all the way through to radio emission. Moreover, these magnetospheres can play an important role in massive-star evolution, by amplifying angular momentum loss in the wind. Recent progress in understanding massive-star magnetospheres has largely been driven by magnetohydrodynamical (MHD) simulations. However, these have been restricted to two- dimensional axisymmetric configurations, with three-dimensional configurations possible only in certain special cases. These restrictions are limiting further progress; we therefore propose to develop completely general three-dimensional models for the magnetospheres of massive stars, on the one hand to understand their observational properties and exploit them as plasma-physics laboratories, and on the other to gain a comprehensive understanding of how they influence the evolution of their host star. For weak- and intermediate-field stars, the models will be based on 3-D MHD simulations using a modified version of the ZEUS-MP code. For strong-field stars, we will extend our existing Rigid Field Hydrodynamics (RFHD) code to handle completely arbitrary field topologies. To explore a putative 'photoionization-moderated mass loss' mechanism for massive-star magnetospheres, we will also further develop a photoionization code we have recently

  11. Three-dimensional hydrodynamical models of wind and outburst-related accretion in symbiotic systems

    Science.gov (United States)

    de Val-Borro, M.; Karovska, M.; Sasselov, D. D.; Stone, J. M.

    2017-07-01

    Gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion is a possible mechanism to explain mass transfer in symbiotic binaries. We study the mass accretion around the secondary caused by the strong wind from the primary late-type component using global three-dimensional hydrodynamic numerical simulations during quiescence and outburst stages. In particular, the dependence of the mass accretion rate on the mass-loss rate, wind parameters and phases of wind outburst development is considered. For a typical wind from an asymptotic giant branch star with a mass-loss rate of 10-6 M⊙ yr-1 and wind speeds of 20-50 km s-1, the mass transfer through a focused wind results in efficient infall on to the secondary. Accretion rates on to the secondary of 5-20 per cent of the mass-loss from the primary are obtained during quiescence and outburst periods where the wind velocity and mass-loss rates are varied, about 20-50 per cent larger than in the standard Bondi-Hoyle-Lyttleton approximation. This mechanism could be an important method for explaining observed accretion luminosities and periodic modulations in the accretion rates for a broad range of interacting binary systems.

  12. Star formation is boosted (and quenched) from the inside-out: radial star formation profiles from MaNGA

    Science.gov (United States)

    Ellison, Sara L.; Sánchez, Sebastian F.; Ibarra-Medel, Hector; Antonio, Braulio; Mendel, J. Trevor; Barrera-Ballesteros, Jorge

    2018-02-01

    The tight correlation between total galaxy stellar mass and star formation rate (SFR) has become known as the star-forming main sequence. Using ˜487 000 spaxels from galaxies observed as part of the Sloan Digital Sky Survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, we confirm previous results that a correlation also exists between the surface densities of star formation (ΣSFR) and stellar mass (Σ⋆) on kpc scales, representing a `resolved' main sequence. Using a new metric (ΔΣSFR), which measures the relative enhancement or deficit of star formation on a spaxel-by-spaxel basis relative to the resolved main sequence, we investigate the SFR profiles of 864 galaxies as a function of their position relative to the global star-forming main sequence (ΔSFR). For galaxies above the global main sequence (positive ΔSFR) ΔΣSFR is elevated throughout the galaxy, but the greatest enhancement in star formation occurs at small radii (<3 kpc, or 0.5Re). Moreover, galaxies that are at least a factor of 3 above the main sequence show diluted gas phase metallicities out to 2Re, indicative of metal-poor gas inflows accompanying the starbursts. For quiescent/passive galaxies that lie at least a factor of 10 below the star-forming main sequence, there is an analogous deficit of star formation throughout the galaxy with the lowest values of ΔΣSFR in the central 3 kpc. Our results are in qualitative agreement with the `compaction' scenario in which a central starburst leads to mass growth in the bulge and may ultimately precede galactic quenching from the inside-out.

  13. Black-hole-regulated star formation in massive galaxies

    Science.gov (United States)

    Martín-Navarro, Ignacio; Brodie, Jean P.; Romanowsky, Aaron J.; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-01

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  14. Black-hole-regulated star formation in massive galaxies.

    Science.gov (United States)

    Martín-Navarro, Ignacio; Brodie, Jean P; Romanowsky, Aaron J; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-18

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  15. Wind energy potential of coastal Eritrea: an analysis of sparse wind data

    International Nuclear Information System (INIS)

    Rosen, K.; Buskirk, R. van; Garbesi, K.

    1999-01-01

    This paper describes an analysis of historical surface wind data for the small country of Eritrea, in northeastern Africa. Winds in this region are directed by summer and winter monsoons in addition to diurnal land-sea effects. An analysis of national Eritrean and historical Italian wind records indicated marginal wind resources in the central highlands near the Eritrean capital of Asmera. An analysis of wind speed records recorded at two sites in the southern port city of Aseb indicate mean annual 10-m wind speeds of 9.5 m s -1 at the windier site. Surface wind speed records for the Red Sea suggest that similar potential may be found along the lower 200 km of the Eritrean coastline. Based on these findings, wind-generated electricity in this region should be substantially cheaper than the current supply generated from imported diesel. (author)

  16. STAR FORMATION IN 30 DORADUS

    International Nuclear Information System (INIS)

    De Marchi, Guido; Spezzi, Loredana; Sirianni, Marco; Andersen, Morten; Paresce, Francesco; Panagia, Nino; Mutchler, Max; Whitmore, Bradley C.; Bond, Howard; Beccari, Giacomo; Balick, Bruce; Dopita, Michael A.; Frogel, Jay A.; Calzetti, Daniela; Marcella Carollo, C.; Disney, Michael J.; Hall, Donald N. B.; Holtzman, Jon A.; Kimble, Randy A.; McCarthy, Patrick J.

    2011-01-01

    Using observations obtained with the Wide-Field Camera 3 on board the Hubble Space Telescope, we have studied the properties of the stellar populations in the central regions of 30 Dor in the Large Magellanic Cloud. The observations clearly reveal the presence of considerable differential extinction across the field. We characterize and quantify this effect using young massive main-sequence stars to derive a statistical reddening correction for most objects in the field. We then search for pre-main-sequence (PMS) stars by looking for objects with a strong (>4σ) Hα excess emission and find about 1150 of them over the entire field. Comparison of their location in the Hertzsprung-Russell diagram with theoretical PMS evolutionary tracks for the appropriate metallicity reveals that about one-third of these objects are younger than ∼4 Myr, compatible with the age of the massive stars in the central ionizing cluster R 136, whereas the rest have ages up to ∼30 Myr, with a median age of ∼12 Myr. This indicates that star formation has proceeded over an extended period of time, although we cannot discriminate between an extended episode and a series of short and frequent bursts that are not resolved in time. While the younger PMS population preferentially occupies the central regions of the cluster, older PMS objects are more uniformly distributed across the field and are remarkably few at the very center of the cluster. We attribute this latter effect to photo-evaporation of the older circumstellar disks caused by the massive ionizing members of R 136.

  17. A search for hot pulsators similar to PG1159-035 and the central star of K 1-16

    International Nuclear Information System (INIS)

    Bond, H.E.; Grauer, A.D.; Liebert, J.; Fleming, T.; Green, R.F.

    1987-01-01

    The variations of PG1159-035 (GWVir)were discovered by McGraw et al. This object is the prototype of a anew class of pulsating stars located in an instability strip at the left-hand edge of the HR diagram. PG1159-035 and the spectroscopically similar objects PG1707+427 and PG2131+066 display complex non-radial modes with periodicities of order 10 minutes. Grauer and Bond recently discovered that the central star of the planetary nebula Kohoutek 1-16 also exhibits pulsation properties, with dominant periodicities of 25-28 minutes. These four objects display the following characteristics: High effective temperatures (--10 5 Κ) and moderately high surface gravities (log g ≅ 6-8); He II, C IV, and O VI absorption lines in the optical spectra, often reversed with emission cores; No hydrogen lines clearly detected; The pulsational instability has been attributed to partial ionization of carbon and/or oxygen

  18. Equatorial thermospheric winds: New results using data from a network of three Fabry-Perot interferometers located in central Peru

    Science.gov (United States)

    Meriwether, J. W.; Dominquez, L. N.; Milla, M. A.; Chau, J. L.; Makela, J. J.; Fisher, D.

    2013-12-01

    A new observing strategy aimed at improving our understanding of the properties of the equatorial thermosphere wind field, such as the vorticity and divergence, has been developed to generate maps of the thermospheric wind field. Estimates of the neutral wind are obtained from measurements of the Doppler shift of the thermospheric 630.0-nm emission obtained from a sequence of eight evenly spaced azimuthal directions for each of the three Fabry-Perot interferometer (FPI) observatories located in central Peru (Jicamarca, Nazca, and Arequipa). Measurements towards the zenith and a frequency-stabilized laser reference are also included in each sequence, which takes ~25 minutes to complete. Six of the off-zenith observing directions from the Nazca FPI observatory are used to make common volume (CV) measurements, where two of the FPIs observe the same thermospheric volume with a centroid height of ~250 km at orthogonal angles. These CV positions are located ~225 km north and south of the Nazca FPI observatory. The data obtained during a coordinated observation of the two FPIs observing the same CV location are used to compute estimates of the zonal (u) and meridional (v) wind components. The set of Doppler shifts measured by the three FPIs during a single sequence is used to produce a map of the neutral wind field for that period of time. The construction of this map is based upon the use of a first-order polynomial expansion of the neutral wind field relative to the site coordinates of each FPI location. This expansion includes the first-order gradients of u and v with respect to the zonal (x) and meridional (y) directions. Computation of the best fit in a linear least squares sense of the model expansion parameters to the Doppler shift data for all three sites determines the values of these gradient parameters. Results obtained for mid-winter 2013 show the anti-cyclonic circulation expected near the terminator generated by the day-to-night pressure gradient. Sequences

  19. Preliminary Design of a Multi-Column TLP Foundation for a 5-MW Offshore Wind Turbine

    OpenAIRE

    Yongsheng Zhao; Jianmin Yang; Yanping He

    2012-01-01

    Currently, floating wind turbines (FWTs) may be the more economical and suitable systems with which to exploit offshore wind energy in deep waters. Among the various types of floating foundations for offshore wind farms, a tension leg platform (TLP) foundation can provide a relatively stable platform for currently available offshore wind turbines without requiring major modifications. In this study, a new multi-column TLP foundation (WindStar TLP) was developed for the NREL 5-MW offshore wind...

  20. Metal-enhanced galactic winds. I

    International Nuclear Information System (INIS)

    Vader, J.P.

    1986-01-01

    Supernova-driven gas loss during the early evolution of elliptical galaxies is considered as a possible explanation for the correlations among the observed chemical and structural properties of these systems. Mass loss from systems with a chemically homogeneous interstellar medium does not work. It is pointed out that supernova-driven winds are in fact metal-enhanced with respect to the star-forming gas because the metal production of any supernova that drives the wind is directly flushed out of the galaxy. The fraction of the total metal production lost in the wind is thus at least as large as the fraction epsilon(z) of supernovae that power the wind, independent of the total mass loss. As a corollary, the yield of heavy elements that are recycled in the galaxy is reduced by a factor 1 - epsilon(z). Metal-enhanced galactic winds, which can carry away a large fraction of the metal production in spite of a moderate total mass loss, offer a promising explanation for the low metallicities of dwarf elliptical galaxies. 62 references

  1. The galactic unclassified B[e] star HD 50138: I. A possible new shell-phase

    Czech Academy of Sciences Publication Activity Database

    Borges Fernandes, M.; Kraus, Michaela; Chesneau, O.; Domiciano de Souza, A.; de Araújo, F. X.; Stee, P.; Meilland, A.

    2009-01-01

    Roč. 508, č. 1 (2009), s. 309-320 ISSN 0004-6361 R&D Projects: GA AV ČR KJB300030701 Institutional research plan: CEZ:AV0Z10030501 Keywords : star s * fundamental parameters * star s winds Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.179, year: 2009

  2. Effect of mass loss on the chemical yields from massive stars

    Energy Technology Data Exchange (ETDEWEB)

    Chiosi, C; Caimmi, R [Padua Univ. (Italy). Istituto di Astronomia

    1979-01-01

    Recent results on the calculation of the chemical yields from massive stars, are rediscussed by taking into account the occurrence of mass loss by stellar wind during the core H- and He-burning phases. The new yields are found to be compatible with the observed distribution of chemical abundances in the solar system, except for He. The net enrichment of several elements over the galaxy's lifetime is found to be consistent with the current estimate of the star formation rate, if we adopt a two phase process of galaxy formation (halodisk). The relative He to heavy element enrichment rate ..delta..Y/..delta..Z turns out to agree with the observational value when mass loss by stellar wind is taken into account.

  3. Star bursts and giant HII regions

    International Nuclear Information System (INIS)

    Pagel, B.E.J.

    1990-01-01

    Massive star formation bursts occur in a variety of galactic environments and can temporarily dominate the light output of a galaxy even when a relatively small proportion of its mass is involved. Inferences about their ages, the IMF and its dependence on chemical composition are still somewhat wobbly owing to an excess of unknowns, but certain things can be deduced from emission spectra of associated H II regions when due regard is paid to the effects of chemical composition and ionization parameter: In particular, largest ionization parameters and effective temperatures of exciting stars, at any given oxygen abundance, are anti-correlated with the abundance, and the second effect suggests an increasing proportion of more massive stars at lower abundances, although this is not yet satisfactorily quantified. A new blue compact galaxies could be very young, but it is equally possible that there is an older population of low surface brightness. Some giant H II regions may be self-polluted with nitrogen and helium due to winds from massive stars in the associated burst. (orig.)

  4. A 3D dynamical model of the colliding winds in binary systems

    Science.gov (United States)

    Parkin, E. R.; Pittard, J. M.

    2008-08-01

    We present a three-dimensional (3D) dynamical model of the orbital-induced curvature of the wind-wind collision region in binary star systems. Momentum balance equations are used to determine the position and shape of the contact discontinuity between the stars, while further downstream the gas is assumed to behave ballistically. An Archimedean spiral structure is formed by the motion of the stars, with clear resemblance to high-resolution images of the so-called `pinwheel nebulae'. A key advantage of this approach over grid or smoothed particle hydrodynamic models is its significantly reduced computational cost, while it also allows the study of the structure obtained in an eccentric orbit. The model is relevant to symbiotic systems and γ-ray binaries, as well as systems with O-type and Wolf-Rayet stars. As an example application, we simulate the X-ray emission from hypothetical O+O and WR+O star binaries, and describe a method of ray tracing through the 3D spiral structure to account for absorption by the circumstellar material in the system. Such calculations may be easily adapted to study observations at wavelengths ranging from the radio to γ-ray.

  5. MMT HYPERVELOCITY STAR SURVEY. II. FIVE NEW UNBOUND STARS

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J., E-mail: wbrown@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: skenyon@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-05-20

    We present the discovery of five new unbound hypervelocity stars (HVSs) in the outer Milky Way halo. Using a conservative estimate of Galactic escape velocity, our targeted spectroscopic survey has now identified 16 unbound HVSs as well as a comparable number of HVSs ejected on bound trajectories. A Galactic center origin for the HVSs is supported by their unbound velocities, the observed number of unbound stars, their stellar nature, their ejection time distribution, and their Galactic latitude and longitude distribution. Other proposed origins for the unbound HVSs, such as runaway ejections from the disk or dwarf galaxy tidal debris, cannot be reconciled with the observations. An intriguing result is the spatial anisotropy of HVSs on the sky, which possibly reflects an anisotropic potential in the central 10-100 pc region of the Galaxy. Further progress requires measurement of the spatial distribution of HVSs over the southern sky. Our survey also identifies seven B supergiants associated with known star-forming galaxies; the absence of B supergiants elsewhere in the survey implies there are no new star-forming galaxies in our survey footprint to a depth of 1-2 Mpc.

  6. Processes and problems in secondary star formation

    International Nuclear Information System (INIS)

    Klein, R.I.; Whitaker, R.W.; Sandford, M.T. II.

    1984-03-01

    Recent developments relating the conditions in molecular clouds to star formation triggered by a prior stellar generation are reviewed. Primary processes are those that lead to the formation of a first stellar generation. The secondary processes that produce stars in response to effects caused by existing stars are compared and evaluated in terms of the observational data presently available. We discuss the role of turbulence to produce clumpy cloud structures and introduce new work on colliding inter-cloud gas flows leading to non-linear inhomogeneous cloud structures in an intially smooth cloud. This clumpy morphology has important consequences for secondary formation. The triggering processes of supernovae, stellar winds, and H II regions are discussed with emphasis on the consequences for radiation driven implosion as a promising secondary star formation mechanism. Detailed two-dimensional, radiation-hydrodynamic calculations of radiation driven implosion are discussed. This mechanism is shown to be highly efficient in synchronizing the formation of new stars in congruent to 1-3 x 10 4 years and could account for the recent evidence for new massive star formation in several UCHII regions. It is concluded that, while no single theory adequately explains the variety of star formation observed, a uniform description of star formation is likely to involve several secondary processes. Advances in the theory of star formation will require multiple dimensional calculations of coupled processes. The important non-linear interactions include hydrodynamics, radiation transport, and magnetic fields

  7. Processes and problems in secondary star formation

    International Nuclear Information System (INIS)

    Klein, R.I.; Whitaker, R.W.; Sandford, M.T. II

    1985-01-01

    Recent developments relating the conditions in molecular clouds to star formation triggered by a prior stellar generation are reviewed. Primary processes are those that lead to the formation of a first stellar generation. The secondary processes that produce stars in response to effects caused by existing stars are compared and evaluated in terms of observational data presently available. We discuss the role of turbulence to produce clumpy cloud structures and introduce new work on colliding intercloud gas flows leading to nonlinear inhomogeneous cloud structures in an initially smooth cloud. This clumpy morphology has important consequences for secondary formation. The triggering processes of supernovae, stellar winds, and H II regions are discussed with emphasis on the consequences for radiation-driven implosion as a promising secondary star formation mechanism. Detailed two-dimensional, radiation-hydrodynamic calculations of radiation-driven implosion are discussed. This mechanism is shown to be highly efficient in synchronizing the formation of new stars in -- 1-3 x 10/sup 4/ yr and could account for the recent evidence for new massive star formation in several ultracompact H II regions. It is concluded that, while no single theory adequately explains the variety of star formation observed, a uniform description of star formation is likely to involve several secondary processes. Advances in the theory of star formation will require multi-dimensional calculations of coupled processes. Important nonlinear interactions include hydrodynamics, radiation transport, and magnetic fields

  8. ISOLATED WOLF-RAYET STARS AND O SUPERGIANTS IN THE GALACTIC CENTER REGION IDENTIFIED VIA PASCHEN-α EXCESS

    International Nuclear Information System (INIS)

    Mauerhan, J. C.; Stolovy, S. R.; Cotera, A.; Dong, H.; Wang, Q. D.; Morris, M. R.; Lang, C.

    2010-01-01

    We report the discovery of 19 hot, evolved, massive stars near the Galactic center region (GCR). These objects were selected for spectroscopy owing to their detection as strong sources of Paschen-α (Pα) emission-line excess, following a narrowband imaging survey of the central 0. 0 65 x 0. 0 25 (l, b) around Sgr A* with the Hubble Space Telescope. Discoveries include six carbon-type (WC) and five nitrogen-type (WN) Wolf-Rayet stars, six O supergiants, and two B supergiants. Two of the O supergiants have X-ray counterparts having properties consistent with solitary O stars and colliding-wind binaries. The infrared photometry of 17 stars is consistent with the Galactic center distance, but 2 of them are located in the foreground. Several WC stars exhibit a relatively large infrared excess, which is possibly thermal emission from hot dust. Most of the stars appear scattered throughout the GCR, with no relation to the three known massive young clusters; several others lie near the Arches and Quintuplet clusters and may have originated within one of these systems. The results of this work bring the total sample of Wolf-Rayet (WR) stars in the GCR to 88. All sources of strong Pα excess have been identified in the area surveyed with HST, which implies that the sample of WN stars in this region is near completion, and is dominated by late (WNL) types. The current WC sample, although probably not complete, is almost exclusively dominated by late (WCL) types. The observed WR subtype distribution in the GCR is a reflection of the intrinsic rarity of early subtypes (WNE and WCE) in the inner Galaxy, an effect that is driven by metallicity.

  9. Assessing magnetic torques and energy fluxes in close-in star-planet systems

    OpenAIRE

    Strugarek, A

    2016-01-01

    Planets in close-in orbit interact with the magnetized wind of their hosting star. This magnetic interaction was proposed to be a source for enhanced emissions in the chromosphere of the star, and to participate in setting the migration time-scale of the close-in planet. The efficiency of the magnetic interaction is know to depend on the magnetic properties of the host star, of the planet, and on the magnetic topology of the interaction. We use a global, three-dimensional numerical model of c...

  10. Simulating three-dimensional nonthermal high-energy photon emission in colliding-wind binaries

    Energy Technology Data Exchange (ETDEWEB)

    Reitberger, K.; Kissmann, R.; Reimer, A.; Reimer, O., E-mail: klaus.reitberger@uibk.ac.at [Institut für Astro- und Teilchenphysik and Institut für Theoretische Physik, Leopold-Franzens-Universität Innsbruck, A-6020 Innsbruck (Austria)

    2014-07-01

    Massive stars in binary systems have long been regarded as potential sources of high-energy γ rays. The emission is principally thought to arise in the region where the stellar winds collide and accelerate relativistic particles which subsequently emit γ rays. On the basis of a three-dimensional distribution function of high-energy particles in the wind collision region—as obtained by a numerical hydrodynamics and particle transport model—we present the computation of the three-dimensional nonthermal photon emission for a given line of sight. Anisotropic inverse Compton emission is modeled using the target radiation field of both stars. Photons from relativistic bremsstrahlung and neutral pion decay are computed on the basis of local wind plasma densities. We also consider photon-photon opacity effects due to the dense radiation fields of the stars. Results are shown for different stellar separations of a given binary system comprising of a B star and a Wolf-Rayet star. The influence of orbital orientation with respect to the line of sight is also studied by using different orbital viewing angles. For the chosen electron-proton injection ratio of 10{sup –2}, we present the ensuing photon emission in terms of two-dimensional projections maps, spectral energy distributions, and integrated photon flux values in various energy bands. Here, we find a transition from hadron-dominated to lepton-dominated high-energy emission with increasing stellar separations. In addition, we confirm findings from previous analytic modeling that the spectral energy distribution varies significantly with orbital orientation.

  11. Near-Infrared Keck Interferometer and IOTA Closure Phase Observations of Wolf-Rayet stars

    Science.gov (United States)

    Rajagopal, J.; Wallace, D.; Barry, R.; Richardson, L. J.; Traub, W.; Danchi, W. C.

    We present first results from observations of a small sample of IR-bright Wolf-Rayet stars with the Keck Interferometer in the near-infrared, and with the IONIC beam three-telescope beam combiner at the Infrared and Optical Telescope Array (IOTA) observatory. The former results were obtained as part of shared-risk observations in commissioning the Keck Interferometer and form a subset of a high-resolution study of dust around Wolf-Rayet stars using multiple interferometers in progress in our group. The latter results are the first closure phase observations of these stars in the near-infrared in a separated telescope interferometer. Earlier aperture-masking observations with the Keck-I telescope provide strong evidence that dust-formation in late-type WC stars are a result of wind-wind collision in short-period binaries.Our program with the Keck interferometer seeks to further examine this paradigm at much higher resolution. We have spatially resolved the binary in the prototypical dusty WC type star WR 140. WR 137, another episodic dust-producing star, has been partially resolved for the first time, providing the first direct clue to its possible binary nature.We also include WN stars in our sample to investigate circumstellar dust in this other main sub-type of WRs. We have been unable to resolve any of these, indicating a lack of extended dust.Complementary observations using the MIDI instrument on the VLTI in the mid-infrared are presented in another contribution to this workshop.

  12. Strangeon and Strangeon Star

    Science.gov (United States)

    Xiaoyu, Lai; Renxin, Xu

    2017-06-01

    The nature of pulsar-like compact stars is essentially a central question of the fundamental strong interaction (explained in quantum chromo-dynamics) at low energy scale, the solution of which still remains a challenge though tremendous efforts have been tried. This kind of compact objects could actually be strange quark stars if strange quark matter in bulk may constitute the true ground state of the strong-interaction matter rather than 56Fe (the so-called Witten’s conjecture). From astrophysical points of view, however, it is proposed that strange cluster matter could be absolutely stable and thus those compact stars could be strange cluster stars in fact. This proposal could be regarded as a general Witten’s conjecture: strange matter in bulk could be absolutely stable, in which quarks are either free (for strange quark matter) or localized (for strange cluster matter). Strange cluster with three-light-flavor symmetry is renamed strangeon, being coined by combining “strange nucleon” for the sake of simplicity. A strangeon star can then be thought as a 3-flavored gigantic nucleus, and strangeons are its constituent as an analogy of nucleons which are the constituent of a normal (micro) nucleus. The observational consequences of strangeon stars show that different manifestations of pulsarlike compact stars could be understood in the regime of strangeon stars, and we are expecting more evidence for strangeon star by advanced facilities (e.g., FAST, SKA, and eXTP).

  13. CLUSTERED STAR FORMATION AND OUTFLOWS IN AFGL 2591

    International Nuclear Information System (INIS)

    Sanna, A.; Carrasco-González, C.; Menten, K. M.; Brunthaler, A.; Reid, M. J.; Moscadelli, L.; Rygl, K. L. J.

    2012-01-01

    We report on a detailed study of the water maser kinematics and radio continuum emission toward the most massive and young object in the star-forming region AFGL 2591. Our analysis shows at least two spatial scales of multiple star formation, one projected across 0.1 pc on the sky and another one at about 2000 AU from a ZAMS star of about 38 M ☉ . This young stellar object drives a powerful jet- and wind-driven outflow system with the water masers associated to the outflow walls, previously detected as a limb-brightened cavity in the NIR band. At about 1300 AU to the north of this object a younger protostar drives two bow shocks, outlined by arc-like water maser emission, at 200 AU either side of the source. We have traced the velocity profile of the gas that expands along these arc-like maser structures and compared it with the jet-driven outflow model. This analysis suggests that the ambient medium around the northern protostar is swept up by a jet-driven shock (>66 km s –1 ) and perhaps a lower-velocity (∼10 km s –1 ) wind with an opening angle of about 20° from the jet axis.

  14. CLUSTERED STAR FORMATION AND OUTFLOWS IN AFGL 2591

    Energy Technology Data Exchange (ETDEWEB)

    Sanna, A.; Carrasco-Gonzalez, C.; Menten, K. M.; Brunthaler, A. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, 53121 Bonn (Germany); Reid, M. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Moscadelli, L. [INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze (Italy); Rygl, K. L. J., E-mail: asanna@mpifr-bonn.mpg.de [IFSI-INAF, Istituto di Fisica dello Spazio Interplanetario, Via del Fosso del Cavaliere 100, 00133 Roma (Italy)

    2012-02-01

    We report on a detailed study of the water maser kinematics and radio continuum emission toward the most massive and young object in the star-forming region AFGL 2591. Our analysis shows at least two spatial scales of multiple star formation, one projected across 0.1 pc on the sky and another one at about 2000 AU from a ZAMS star of about 38 M{sub Sun }. This young stellar object drives a powerful jet- and wind-driven outflow system with the water masers associated to the outflow walls, previously detected as a limb-brightened cavity in the NIR band. At about 1300 AU to the north of this object a younger protostar drives two bow shocks, outlined by arc-like water maser emission, at 200 AU either side of the source. We have traced the velocity profile of the gas that expands along these arc-like maser structures and compared it with the jet-driven outflow model. This analysis suggests that the ambient medium around the northern protostar is swept up by a jet-driven shock (>66 km s{sup -1}) and perhaps a lower-velocity ({approx}10 km s{sup -1}) wind with an opening angle of about 20 Degree-Sign from the jet axis.

  15. Lupus Loop: a possible case of star formation induced by a supernova event

    Energy Technology Data Exchange (ETDEWEB)

    Arnal, M; Dubner, G

    1986-02-01

    Expanding shock waves like those arising from supernova remnants and strong stellar winds are usually proposed as a triggering mechanism for star formation, through the interaction between the expanding shock wave and dense surrounding clouds. Neutral hydrogen observations at 21cm carried out towards the Lupus Loop SNR (Colomb and Dubner 1982) have clearly shown the existence of two concentration cold shells around the radio-remnant, the outer one probably formed by the stellar wind of an early-type star (probable SN progenitor.), whilst the inner one is likely to be associated with the supernova event itself. Because a statistically significant excess of early-type stars is noticed in the outskirts of the expanding shells, a UBV-photometric study of nearly 150 stars earlier than A5 has been carried out using the Lowell 0.6m telescope of CTIO. The ultimate goal of this investigation is to establish whether or not a genetic link between the expanding shells and the early-type stars can exist. The following preliminary results were obtained: (1) a real grouping of early-type stars does exist projected against the south-eastern border of the outer cold shell, where the HI column density contours show the steepest gradient; (2) assuming that all the member stars are main sequence ones, and using the mean evolution deviation curve method, a distance of (870 +/- 80) pc is derived for the group. The obtained results favor the existence of a physical relationship between the outer expanding shell and the early-type stars grouping. 1 reference.

  16. Diagnostic of the Symbiotic Stars Environment by Thomson, Raman and Rayleigh Scattering Processes

    Directory of Open Access Journals (Sweden)

    M. Sekeráš

    2015-02-01

    Full Text Available Symbiotic stars are long-period interacting binaries consisting of a cool giant as the donor star and a white dwarf as the acretor. Due to acretion of the material from the giant’s stellar wind, the white dwarf becomes very hot and luminous. The circumstellar material partially ionized by the hot star, represents an ideal medium for processes of scattering. To investigate the symbiotic nebula we modeled the wide wings of the resonance lines OVI λ1032 Å, λ1038 Å and HeII λ1640 Å emission line in the spectrum of AG Dra, broadened by Thomson scattering. On the other hand, Raman and Rayleigh scattering arise in the neutral part of the circumstellar matter around the giant and provide a powerful tool to probe e.g. the ionization structure of the symbiotic systems and distribution of the neutral hydrogen atoms in the giant’s wind.

  17. Potential profiles in the central core of the cathode in the star mode operation in an inertial-electrostatic fusion neutron source

    International Nuclear Information System (INIS)

    Yoshikawa, K.; Masuda, K.; Toku, H.

    2003-01-01

    After the successful measurements of the localized electric fields in the center-spot mode operation with relatively large space-charge effects by the laser-induced fluorescence (LIF) method, measurements of potential profiles in the star mode operation with small space-charge effects on helium gas are made in the central cathode core region of an Inertial-Electrostatic Confinement Fusion (IECF) neutron source, which is most suitable to neutron calibration in the fusion devices. Since the high-voltage is required to the star mode operation on deuterium gas, it is predicted to bring about very small beam space charge-related potential. To increase accuracy, we adopted n=4 (2 1 S to 4 1 D:HeI) transition, instead of previous n=3, which is most sensitive to the local electric fields in the Stark transition, and verified using the well-known U-shaped hollow cathode potential. The localized electric fields thus measured by LIF method using n=4 transition show negligible electric fields in the star mode compared with the center-spot mode. (author)

  18. Classification of ISO SWS 01 spectra of proto-planetary nebulae: a search for precursors of planetary nebulae with [WR] central stars

    OpenAIRE

    Szczerba, R.; Stasi{ń}ska, G.; Siódmiak, N.; Górny, S. K.

    2002-01-01

    We have analyzed ISO SWS 01 observations for 61 proto-planetary nebulae candidates and classified their spectra according to their dominant chemistry. On the basis of our classification and the more general classification of SWS 01 spectra by Kraemer et al. (2002) we discuss the connection between proto-planetary nebulae candidates and planetary nebulae, with emphasis on possible precursors of planetary nebulae with [WR] central stars.

  19. Wind resource assessment: A three year experience

    Energy Technology Data Exchange (ETDEWEB)

    Al-Abbadi, N.M.; Alawaji, S.H.; Eugenio, N.N. [Energy Research Institute (ERI), Riyadh (Saudi Arabia)

    1997-12-31

    This paper presents the results of data collected from three different sites located in the central, northern and eastern region of Saudi Arabia. Each site is geographically and climatologically different from the others. Statistical moments and frequency distributions were generated for the wind speed and direction parameters to analyse the wind energy characteristics and its availability. The results of these statistical operations present the wind power and energy density estimates of the three sites. The data analysis presented a prospect of wind energy conversion and utilization. The annual extractable energy density is 488, 890, 599 kWh/m{sup 2} for the central, northern and eastern sites respectively. Also, the paper demonstrates the lessons learned from operating wind assessment stations installed in remote areas having different environmental characteristics.

  20. Gemini/GNIRS infrared spectroscopy of the Wolf-Rayet stellar wind in Cygnus X-3

    Science.gov (United States)

    Koljonen, K. I. I.; Maccarone, T. J.

    2017-12-01

    The microquasar Cygnus X-3 was observed several times with the Gemini North Infrared Spectrograph while the source was in the hard X-ray state. We describe the observed 1.0-2.4 μm spectra as arising from the stellar wind of the companion star and suggest its classification as a WN 4-6 Wolf-Rayet star. We attribute the orbital variations of the emission line profiles to the variations in the ionization structure of the stellar wind caused by the intense X-ray emission from the compact object. The strong variability observed in the line profiles will affect the mass function determination. We are unable to reproduce earlier results, from which the mass function for the Wolf-Rayet star was derived. Instead, we suggest that the system parameters are difficult to obtain from the infrared spectra. We find that the near-infrared continuum and the line spectra can be represented with non-LTE Wolf-Rayet atmosphere models if taking into account the effects arising from the peculiar ionization structure of the stellar wind in an approximative manner. From the representative models we infer the properties of the Wolf-Rayet star and discuss possible mass ranges for the binary components.

  1. Economics of wind energy

    International Nuclear Information System (INIS)

    Ranganathan, V.; Kumar, H.P.S.

    1991-01-01

    Conventional economic analysis of wind energy often ignores the fact that it is not an energy source available on tap, but is intermittent. The analysis at times is discriminatory in the sense that the costs of transmission and distribution are added to the central grid alternative but the costs of the locational constraints of wind energy siting are not quantified. This paper evaluates wind energy after correcting for these two factors. The results are not encouraging

  2. 75 FR 11530 - Crystal Lake Wind III, LLC, et al.; Notice of Effectiveness of Exempt Wholesale Generator Status

    Science.gov (United States)

    2010-03-11

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Crystal Lake Wind III, LLC, et al.; Notice of Effectiveness of Exempt Wholesale Generator Status March 4, 2010. Docket Nos. Crystal Lake Wind III, LLC EG10-6-000 GardenGarden Wind, LLC EG10-7-000 Star Point Wind Project LLC EG10-8-000...

  3. High-resolution TNG spectra of T Tauri stars. Near-IR GIANO observations of the young variables XZ Tauri and DR Tauri

    Science.gov (United States)

    Antoniucci, S.; Nisini, B.; Biazzo, K.; Giannini, T.; Lorenzetti, D.; Sanna, N.; Harutyunyan, A.; Origlia, L.; Oliva, E.

    2017-10-01

    Aims: We aim to characterise the star-disk interaction region in T Tauri stars that show photometric and spectroscopic variability. Methods: We used the GIANO instrument at the Telescopio Nazionale Galileo to obtain near-infrared high-resolution spectra (R 50 000) of XZ Tau and DR Tau, which are two actively accreting T Tauri stars classified as EXors. Equivalent widths and profiles of the observed features are used to derive information on the properties of the inner disk, the accretion columns, and the winds. Results: Both sources display composite H I line profiles, where contributions from both accreting gas and high-velocity winds can be recognised. These lines are progressively more symmetric and narrower with increasing upper energy which may be interpreted in terms of two components with different decrements or imputed to self-absorption effects. XZ Tau is observed in a relatively high state of activity with respect to literature observations. The variation of the He I 1.08 μm line blue-shifted absorption, in particular, suggests that the inner wind has undergone a dramatic change in its velocity structure, connected with a recent accretion event. DR Tau has a more stable wind as its He I 1.08 μm absorption does not show variations with time in spite of strong variability of the emission component. The IR veiling in the two sources can be interpreted as due to blackbody emission at temperatures of 1600 K and 2300 K for XZ Tau and DR Tau, respectively, with emitting areas 30 times larger than the central star. While for XZ Tau these conditions are consistent with emission from the inner rim of the dusty disk, the fairly high temperature inferred for DR Tau might suggest that its veiling originates from a thick gaseous disk located within the dust sublimation radius. Strong and broad metallic lines, mainly from C I and Fe I, are detected in XZ Tau, similar to those observed in other EXor sources during burst phases. At variance, DR Tau shows weaker and

  4. Propagating star formation and irregular structure in spiral galaxies

    International Nuclear Information System (INIS)

    Mueller, M.W.; Arnett, W.D.

    1976-01-01

    A simple model is proposed which describes the irregular optical appearance often seen in late-type spiral galaxies. If high-mass stars produce spherical shock waves which induce star formation, new high-mass stars will be born which, in turn, produce new shock waves. When this process operates in a differentially rotating disk, our numerical model shows that large-scale spiral-shaped regions of star formation are built up. The structure is seen to be most sensitive to a parameter which governs how often a region of the interstellar medium can undergo star formation. For a proper choice of this parameter, large-scale features disappear before differential rotation winds them up. New spiral features continuously form, so some spiral structure is seen indefinitely. The structure is not the classical two-armed symmetric spiral pattern which the density-wave theory attempts to explain, but it is asymmetric and disorderly.The mechanism of propagating star formation used in our model is consistent with observations which connect young OB associations with expanding shells of gas. We discuss the possible interaction of this mechanism with density waves

  5. Spectrophotometry of emission-line stars in the magellanic clouds

    Science.gov (United States)

    Bohannan, Bruce

    1990-01-01

    The strong emission lines in the most luminous stars in the Magellanic Clouds indicate that these stars have such strong stellar winds that their photospheres are so masked that optical absorption lines do not provide an accurate measure of photospheric conditions. In the research funded by this grant, temperatures and gravities of emission-line stars both in the Large (LMC) and Small Magellanic Clouds (SMC) have been measured by fitting of continuum ultraviolet-optical fluxes observed with IUE with theoretical model atmospheres. Preliminary results from this work formed a major part of an invited review 'The Distribution of Types of Luminous Blue Variables'. Interpretation of the IUE observations obtained in this grant and archive data were also included in a talk at the First Boulder-Munich Hot Stars Workshop. Final results of these studies are now being completed for publication in refereed journals.

  6. LONG-ORBITAL-PERIOD PREPOLARS CONTAINING EARLY K-TYPE DONOR STARS. BOTTLENECK ACCRETION MECHANISM IN ACTION

    International Nuclear Information System (INIS)

    Tovmassian, G.; González–Buitrago, D.; Zharikov, S.; Reichart, D. E.; Haislip, J. B.; Ivarsen, K. M.; LaCluyze, A. P.; Moore, J. P.; Miroshnichenko, A. S.

    2016-01-01

    We studied two objects identified as cataclysmic variables (CVs) with periods exceeding the natural boundary for Roche-lobe-filling zero-age main sequence (ZAMS) secondary stars. We present observational results for V1082 Sgr with a 20.82 hr orbital period, an object that shows a low luminosity state when its flux is totally dominated by a chromospherically active K star with no signs of ongoing accretion. Frequent accretion shutoffs, together with characteristics of emission lines in a high state, indicate that this binary system is probably detached, and the accretion of matter on the magnetic white dwarf takes place through stellar wind from the active donor star via coupled magnetic fields. Its observational characteristics are surprisingly similar to V479 And, a 14.5 hr binary system. They both have early K-type stars as donor stars. We argue that, similar to the shorter-period prepolars containing M dwarfs, these are detached binaries with strong magnetic components. Their magnetic fields are coupled, allowing enhanced stellar wind from the K star to be captured and channeled through the bottleneck connecting the two stars onto the white dwarf’s magnetic pole, mimicking a magnetic CV. Hence, they become interactive binaries before they reach contact. This will help to explain an unexpected lack of systems possessing white dwarfs with strong magnetic fields among detached white+red dwarf systems

  7. LONG-ORBITAL-PERIOD PREPOLARS CONTAINING EARLY K-TYPE DONOR STARS. BOTTLENECK ACCRETION MECHANISM IN ACTION

    Energy Technology Data Exchange (ETDEWEB)

    Tovmassian, G.; González–Buitrago, D.; Zharikov, S. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 877, Ensenada, Baja California, 22800 México (Mexico); Reichart, D. E.; Haislip, J. B.; Ivarsen, K. M.; LaCluyze, A. P.; Moore, J. P. [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Campus Box 3255, Chapel Hill, NC 27599 (United States); Miroshnichenko, A. S., E-mail: gag@astro.unam.mx, E-mail: dgonzalez@astro.unam.mx, E-mail: zhar@astro.unam.mx [Department of Physics and Astronomy, University of North Carolina at Greensboro, Greensboro, NC 27402-6170 (United States)

    2016-03-01

    We studied two objects identified as cataclysmic variables (CVs) with periods exceeding the natural boundary for Roche-lobe-filling zero-age main sequence (ZAMS) secondary stars. We present observational results for V1082 Sgr with a 20.82 hr orbital period, an object that shows a low luminosity state when its flux is totally dominated by a chromospherically active K star with no signs of ongoing accretion. Frequent accretion shutoffs, together with characteristics of emission lines in a high state, indicate that this binary system is probably detached, and the accretion of matter on the magnetic white dwarf takes place through stellar wind from the active donor star via coupled magnetic fields. Its observational characteristics are surprisingly similar to V479 And, a 14.5 hr binary system. They both have early K-type stars as donor stars. We argue that, similar to the shorter-period prepolars containing M dwarfs, these are detached binaries with strong magnetic components. Their magnetic fields are coupled, allowing enhanced stellar wind from the K star to be captured and channeled through the bottleneck connecting the two stars onto the white dwarf’s magnetic pole, mimicking a magnetic CV. Hence, they become interactive binaries before they reach contact. This will help to explain an unexpected lack of systems possessing white dwarfs with strong magnetic fields among detached white+red dwarf systems.

  8. Large scale hydrogen production from wind energy in the Magallanes area for consumption in the central zone of Chile

    International Nuclear Information System (INIS)

    Zolezzi, J.M.; Garay, A.; Reveco, M.

    2010-01-01

    The energy proposal of this research suggests the use of places with abundant wind resources for the production of H 2 on a large scale to be transported and used in the central zone of Chile with the purpose of diversifying the country's energy matrix in order to decrease its dependence on fossil fuels, increase its autonomy, and cover the future increases in energy demand. This research showed that the load factor of the proposed wind park reaches a value of 54.5%, putting in evidence the excellent wind conditions of the zone. This implies that the cost of the electricity produced by the wind park located in the Chilean Patagonia would have a cost of 0.0213 US$ kWh -1 in the year 2030. The low prices of the electricity obtained from the park, thanks to the economy of scale and the huge wind potential, represent a very attractive scenario for the production of H 2 in the future. The study concludes that by the year 2030 the cost of the H 2 generated in Magallanes and transported to the port of Quinteros would be 18.36 US$ MBTU -1 , while by that time the cost of oil would be about 17.241 US$ MBTU -1 , a situation that places H 2 in a very competitive position as a fuel. (author)

  9. Wind turbine/generator set and method of making same

    Science.gov (United States)

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2013-06-04

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  10. Random forest classification of stars in the Galactic Centre

    Science.gov (United States)

    Plewa, P. M.

    2018-05-01

    Near-infrared high-angular resolution imaging observations of the Milky Way's nuclear star cluster have revealed all luminous members of the existing stellar population within the central parsec. Generally, these stars are either evolved late-type giants or massive young, early-type stars. We revisit the problem of stellar classification based on intermediate-band photometry in the K band, with the primary aim of identifying faint early-type candidate stars in the extended vicinity of the central massive black hole. A random forest classifier, trained on a subsample of spectroscopically identified stars, performs similarly well as competitive methods (F1 = 0.85), without involving any model of stellar spectral energy distributions. Advantages of using such a machine-trained classifier are a minimum of required calibration effort, a predictive accuracy expected to improve as more training data become available, and the ease of application to future, larger data sets. By applying this classifier to archive data, we are also able to reproduce the results of previous studies of the spatial distribution and the K-band luminosity function of both the early- and late-type stars.

  11. Einstein X-ray observations of Herbig Ae/Be stars

    Science.gov (United States)

    Damiani, F.; Micela, G.; Sciortino, S.; Harnden, F. R., Jr.

    1994-01-01

    We have investigated the X-ray emission from Herbig Ae/Be stars, using the full set of Einstein Imaging Proportional Counter (IPC) observations. Of a total of 31 observed Herbig stars, 11 are confidently identified with X-ray sources, with four additonal dubious identifications. We have used maximum likelihood luminosity functions to study the distribution of X-ray luminosity, and we find that Be stars are significantly brighter in X-rays than Ae stars and that their X-ray luminosity is independent of projected rotational velocity v sin i. The X-ray emission is instead correlated with stellar bolometric luminosity and with effective temperature, and also with the kinetic luminosity of the stellar wind. These results seem to exclude a solar-like origin for the X-ray emission, a possibility suggested by the most recent models of Herbig stars' structure, and suggest an analogy with the X-ray emission of O (and early B) stars. We also observe correlations between X-ray luminosity and the emission at 2.2 microns (K band) and 25 microns, which strengthen the case for X-ray emission of Herbig stars originating in their circumstellar envelopes.

  12. Subionization and decelerated-flow in the vicinity of a B-shell star

    International Nuclear Information System (INIS)

    Zorec, J.

    1981-01-01

    The author presents a simple calculation in which the wind is decelerated, and cooled, by interaction with the ISM and with the preceeding wind. He balances the momentum originally lying in the wind, having maximum velocity V 0 at a place where its particle concentration is N 0 , against that of wind+ISM at some shell-front, moving at Vsub(r) and with particle-concentration Nsub(r). He assumes the undisturbed ISM had concentration Nsub(m), and that the space between star and wind has been swept clean of ISM material, so that deceleration occurs only at the shell; but he ignores the details of shocks, compression, heating and eventual cooling, etc. (Auth.)

  13. Mass loss rates of OB stars derived from infrared observations

    International Nuclear Information System (INIS)

    Tanzi, E.G.; Tarenghi, M.; Panagia, N.

    1981-01-01

    In this paper the authors report briefly on a study of the mass loss of early type stars in the infrared. Up to now near infrared (1.25 - 4.8 μ) broad band photometry of 70 southern OB stars of various luminosity class has been secured. Program stars have been selected, among those bright enough in the infrared to give a suitable photometric accuracy, in order to cover a wide range of spectral types. 37 stars are found to exhibit emission in excess over a blackbody photospheric continuum, which is interpreted in terms of gas ejected in the form of an accelerated wind. By means of model calculations the corresponding mass loss rates are derived. The obtained values compare well with those determined independently by various authors for stars in common. Their data show that mass loss rates increase with luminosity and are a decreasing function of surface gravity. (Auth.)

  14. Star-forming Filament Models

    International Nuclear Information System (INIS)

    Myers, Philip C.

    2017-01-01

    New models of star-forming filamentary clouds are presented in order to quantify their properties and to predict their evolution. These 2D axisymmetric models describe filaments that have no core, one low-mass core, and one cluster-forming core. They are based on Plummer-like cylinders and spheroids that are bounded by a constant-density surface of finite extent. In contrast to 1D Plummer-like models, they have specific values of length and mass, they approximate observed column density maps, and their distributions of column density ( N -pdfs) are pole-free. Each model can estimate the star-forming potential of a core-filament system by identifying the zone of gas dense enough to form low-mass stars and by counting the number of enclosed thermal Jeans masses. This analysis suggests that the Musca central filament may be near the start of its star-forming life, with enough dense gas to make its first ∼3 protostars, while the Coronet filament is near the midpoint of its star formation, with enough dense gas to add ∼8 protostars to its ∼20 known stars. In contrast, L43 appears to be near the end of its star-forming life, since it lacks enough dense gas to add any new protostars to the two young stellar objectsalready known.

  15. Star-forming Filament Models

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Philip C., E-mail: pmyers@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-03-20

    New models of star-forming filamentary clouds are presented in order to quantify their properties and to predict their evolution. These 2D axisymmetric models describe filaments that have no core, one low-mass core, and one cluster-forming core. They are based on Plummer-like cylinders and spheroids that are bounded by a constant-density surface of finite extent. In contrast to 1D Plummer-like models, they have specific values of length and mass, they approximate observed column density maps, and their distributions of column density ( N -pdfs) are pole-free. Each model can estimate the star-forming potential of a core-filament system by identifying the zone of gas dense enough to form low-mass stars and by counting the number of enclosed thermal Jeans masses. This analysis suggests that the Musca central filament may be near the start of its star-forming life, with enough dense gas to make its first ∼3 protostars, while the Coronet filament is near the midpoint of its star formation, with enough dense gas to add ∼8 protostars to its ∼20 known stars. In contrast, L43 appears to be near the end of its star-forming life, since it lacks enough dense gas to add any new protostars to the two young stellar objectsalready known.

  16. Nucleosynthesis in neutrino-driven winds: Influence of the nuclear physics input

    International Nuclear Information System (INIS)

    Arcones, Almudena; Martinez-Pinedo, Gabriel

    2010-01-01

    We have performed hydrodynamical simulations of the long-time evolution of proto-neutron stars to study the nucleosynthesis using the resulting wind trajectories. Although the conditions found in the present wind models are not favourable for the production of heavy elements, a small enhancement of the entropy results in the production of r-process elements with A ∼ 195. This allows us to explore the sensitivity of their production to the hydrodynamical evolution (wind termination shock) and nuclear physics input used.

  17. Hydrogen deficient stars and related objects

    International Nuclear Information System (INIS)

    Hunger, K.; Schoenberner, D.; Kameswara Rao, N.

    1986-01-01

    The central and most startling problem in the field of helium stars is how extreme helium stars are formed and how a star of one solar mass may get rid of all its original hydrogen. A few opposed hypotheses are known, but until now none of them have been very convincing. One of the aims of this book is to explore the various paths which may lead to a solution of the above problems, both theoretically and by means of new methods of observation. One of the points discussed, therefore, is whether the Hubble Space Telescope can be used to this end. (Auth.)

  18. SALT Spectroscopy of Evolved Massive Stars

    Science.gov (United States)

    Kniazev, A. Y.; Gvaramadze, V. V.; Berdnikov, L. N.

    2017-06-01

    Long-slit spectroscopy with the Southern African Large Telescope (SALT) of central stars of mid-infrared nebulae detected with the Spitzer Space Telescope and Wide-Field Infrared Survey Explorer (WISE) led to the discovery of numerous candidate luminous blue variables (cLBVs) and other rare evolved massive stars. With the recent advent of the SALT fiber-fed high-resolution echelle spectrograph (HRS), a new perspective for the study of these interesting objects is appeared. Using the HRS we obtained spectra of a dozen newly identified massive stars. Some results on the recently identified cLBV Hen 3-729 are presented.

  19. THE ERUPTION OF THE CANDIDATE YOUNG STAR ASASSN-15QI

    Energy Technology Data Exchange (ETDEWEB)

    Herczeg, Gregory J.; Dong, Subo; Chen, Ping; Jose, Jessy; Gully-Santiago, Michael [Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Lu 5, Haidian Qu, 100871 Beijing (China); Shappee, Benjamin J. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Hillenbrand, Lynne A. [Caltech, MC 105-24, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Kochanek, Christopher S.; Stanek, K. Z.; Holoien, Thomas W.-S. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Prieto, Jose L. [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441, Santiago (Chile); Kaplan, Kyle [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Mairs, Steve; Johnstone, Doug [Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 1A1 (Canada); Zhu, Zhaohuan [Department of Astrophysical Sciences, 4 Ivy Lane, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Smith, Martin C. [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Bersier, David [Astrophysics Research Institute, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Mulders, Gijs D. [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Ayani, Kazuya, E-mail: gherczeg1@gmail.com [Bisei Astronomical Observatory, 1723-70 Okura, Bisei, Ibara, Okayama 714-1411 (Japan); and others

    2016-11-10

    Outbursts on young stars are usually interpreted as accretion bursts caused by instabilities in the disk or the star–disk connection. However, some protostellar outbursts may not fit into this framework. In this paper, we analyze optical and near-infrared spectra and photometry to characterize the 2015 outburst of the probable young star ASASSN-15qi. The ∼3.5 mag brightening in the V band was sudden, with an unresolved rise time of less than one day. The outburst decayed exponentially by 1 mag for 6 days and then gradually back to the pre-outburst level after 200 days. The outburst is dominated by emission from ∼10,000 K gas. An explosive release of energy accelerated matter from the star in all directions, seen in a spectacular cool, spherical wind with a maximum velocity of 1000 km s{sup −1}. The wind and hot gas both disappeared as the outburst faded and the source returned to its quiescent F-star spectrum. Nebulosity near the star brightened with a delay of 10–20 days. Fluorescent excitation of H{sub 2} is detected in emission from vibrational levels as high as v = 11, also with a possible time delay in flux increase. The mid-infrared spectral energy distribution does not indicate the presence of warm dust emission, though the optical photospheric absorption and CO overtone emission could be related to a gaseous disk. Archival photometry reveals a prior outburst in 1976. Although we speculate about possible causes for this outburst, none of the explanations are compelling.

  20. Supernovae, compact stars and nuclear physics

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1989-01-01

    We briefly review the current understanding of supernova. We investigate the implications of rapid rotation corresponding to the frequency of the new pulsar reported in the supernovae remnant SN1987A. It places very stringent conditions on the equation of state if the star is assumed to be bound by gravity alone. We find that the central energy density of the star must be greater than 12 times that of nuclear density to be stable against the most optimistic estimate of general relativistic instabilities. This is too high for the matter to plausibly consist of individual hadrons. We conclude that the newly discovered pulsar, if its half-millisecond signals are attributable to rotation, cannot be a neutron star. We show that it can be a strange quark star, and that the entire family of strange stars can sustain high rotation under appropriate conditions. We discuss the conversion of a neutron star to strange star, the possible existence of a crust of heavy ions held in suspension by centrifugal and electric forces, the cooling and other features. 39 refs., 8 figs., 2 tabs

  1. Models of the circumstellar medium of evolving, massive runaway stars moving through the Galactic plane

    Science.gov (United States)

    Meyer, D. M.-A.; Mackey, J.; Langer, N.; Gvaramadze, V. V.; Mignone, A.; Izzard, R. G.; Kaper, L.

    2014-11-01

    At least 5 per cent of the massive stars are moving supersonically through the interstellar medium (ISM) and are expected to produce a stellar wind bow shock. We explore how the mass-loss and space velocity of massive runaway stars affect the morphology of their bow shocks. We run two-dimensional axisymmetric hydrodynamical simulations following the evolution of the circumstellar medium of these stars in the Galactic plane from the main sequence to the red supergiant phase. We find that thermal conduction is an important process governing the shape, size and structure of the bow shocks around hot stars, and that they have an optical luminosity mainly produced by forbidden lines, e.g. [O III]. The Hα emission of the bow shocks around hot stars originates from near their contact discontinuity. The Hα emission of bow shocks around cool stars originates from their forward shock, and is too faint to be observed for the bow shocks that we simulate. The emission of optically thin radiation mainly comes from the shocked ISM material. All bow shock models are brighter in the infrared, i.e. the infrared is the most appropriate waveband to search for bow shocks. Our study suggests that the infrared emission comes from near the contact discontinuity for bow shocks of hot stars and from the inner region of shocked wind for bow shocks around cool stars. We predict that, in the Galactic plane, the brightest, i.e. the most easily detectable bow shocks are produced by high-mass stars moving with small space velocities.

  2. Models of the circumstellar medium of evolving, massive runaway stars moving through the Galactic plane

    NARCIS (Netherlands)

    Meyer, D.M.-A.; Mackey, J.; Langer, N.; Gvaramadze, V.V.; Mignone, A.; Izzard, R.G.; Kaper, L.

    2014-01-01

    At least 5 per cent of the massive stars are moving supersonically through the interstellar medium (ISM) and are expected to produce a stellar wind bow shock. We explore how the mass-loss and space velocity of massive runaway stars affect the morphology of their bow shocks. We run two-dimensional

  3. Is life most likely around Sun-like stars?

    Science.gov (United States)

    Lingam, Manasvi; Loeb, Abraham

    2018-05-01

    We consider the habitability of Earth-analogs around stars of different masses, which is regulated by the stellar lifetime, stellar wind-induced atmospheric erosion, and biologically active ultraviolet (UV) irradiance. By estimating the timescales associated with each of these processes, we show that they collectively impose limits on the habitability of Earth-analogs. We conclude that planets orbiting most M-dwarfs are not likely to host life, and that the highest probability of complex biospheres is for planets around K- and G-type stars. Our analysis suggests that the current existence of life near the Sun is slightly unusual, but not significantly anomalous.

  4. Spheroidal Populated Star Systems

    Science.gov (United States)

    Angeletti, Lucio; Giannone, Pietro

    2008-10-01

    Globular clusters and low-ellipticity early-type galaxies can be treated as systems populated by a large number of stars and whose structures can be schematized as spherically symmetric. Their studies profit from the synthesis of stellar populations. The computation of synthetic models makes use of various contributions from star evolution and stellar dynamics. In the first sections of the paper we present a short review of our results on the occurrence of galactic winds in star systems ranging from globular clusters to elliptical galaxies, and the dynamical evolution of a typical massive globular cluster. In the subsequent sections we describe our approach to the problem of the stellar populations in elliptical galaxies. The projected radial behaviours of spectro-photometric indices for a sample of eleven galaxies are compared with preliminary model results. The best agreement between observation and theory shows that our galaxies share a certain degree of heterogeneity. The gas energy dissipation varies from moderate to large, the metal yield ranges from solar to significantly oversolar, the dispersion of velocities is isotropic in most of the cases and anisotropic in the remaining instances.

  5. Preliminary Design of a Multi-Column TLP Foundation for a 5-MW Offshore Wind Turbine

    Directory of Open Access Journals (Sweden)

    Yanping He

    2012-10-01

    Full Text Available Currently, floating wind turbines (FWTs may be the more economical and suitable systems with which to exploit offshore wind energy in deep waters. Among the various types of floating foundations for offshore wind farms, a tension leg platform (TLP foundation can provide a relatively stable platform for currently available offshore wind turbines without requiring major modifications. In this study, a new multi-column TLP foundation (WindStar TLP was developed for the NREL 5-MW offshore wind turbine according to site-specific environmental conditions, which are the same as the OC3-Hywind (NREL conditions. The general arrangement, main structure and mooring system were also designed and investigated through hydrodynamic and natural frequency analyses. The complete system avoids resonance through the rotor excitations. An aero-hydro-servo-elastic coupled analysis was carried out in the time domain with the numerical tool FAST. Statistics of the key parameters were obtained and analysed and comparisons to MIT/NREL TLP are made. As a result, the design requirements were shown to be satisfied, and the proposed WindStar TLP was shown to have favourable motion characteristics under extreme wind and wave conditions with a lighter and smaller structure. The new concept holds great potential for further development.

  6. Wind power in modern power systems

    DEFF Research Database (Denmark)

    Chen, Zhe

    2013-01-01

    In recent years, wind power is experiencing a rapid growth, and large-scale wind turbines/wind farms have been developed and connected to power systems. However, the traditional power system generation units are centralized located synchronous generators with different characteristics compared...... with wind turbines. This paper presents an overview of the issues about integrating large-scale wind power plants into modern power systems. Firstly, grid codes are introduced. Then, the main technical problems and challenges are presented. Finally, some possible technical solutions are discussed....

  7. Changes in Surface Wind Speed over North America from CMIP5 Model Projections and Implications for Wind Energy

    Directory of Open Access Journals (Sweden)

    Sujay Kulkarni

    2014-01-01

    Full Text Available The centennial trends in the surface wind speed over North America are deduced from global climate model simulations in the Climate Model Intercomparison Project—Phase 5 (CMIP5 archive. Using the 21st century simulations under the RCP 8.5 scenario of greenhouse gas emissions, 5–10 percent increases per century in the 10 m wind speed are found over Central and East-Central United States, the Californian Coast, and the South and East Coasts of the USA in winter. In summer, climate models projected decreases in the wind speed ranging from 5 to 10 percent per century over the same coastal regions. These projected changes in the surface wind speed are moderate and imply that the current estimate of wind power potential for North America based on present-day climatology will not be significantly changed by the greenhouse gas forcing in the coming decades.

  8. Conversion of gas into stars in the Galactic center

    Science.gov (United States)

    Longmore, S. N.

    2014-05-01

    The star formation rate in the central 500 pc of the Milky Way is lower by a factor of > 10 than expected for the substantial amount of dense gas it contains, which challenges current star formation theories. I discuss which physical mechanisms could be causing this observation and put forward a self-consistent cycle of star formation in the Galactic center, in which the plausible star formation inhibitors are combined. Their ubiquity suggests that the perception of a lowered central SFR should be a common phenomenon in other galaxies with direct implications for galactic star formation and also potentially supermassive black hole growth. I then describe a scenario to explain the presence of super star clusters in the Galactic center environment, in which their formation is triggered by gas streams passing close to the minimum of the global Galactic gravitational potential at the location of the central supermassive black hole, Sgr A*. If this triggering mechanism can be verified, we can use the known time interval since closest approach to Sgr A* to study the physics of stellar mass assembly in an extreme environment as a function of absolute time. I outline the first results from detailed numerical simulations testing this scenario. Finally, I describe a study showing that in terms of the baryonic composition, kinematics, and densities, the gas in the Galactic center is indistinguishable from high-redshift clouds and galaxies. As such, the Galactic center clouds may be used as a template to understand the evolution (and possibly the life cycle) of high-redshift clouds and galaxies.

  9. Formation of stars and star clusters in colliding galaxies

    International Nuclear Information System (INIS)

    Belles, Pierre-Emmanuel

    2012-01-01

    Mergers are known to be essential in the formation of large-scale structures and to have a significant role in the history of galaxy formation and evolution. Besides a morphological transformation, mergers induce important bursts of star formation. These starburst are characterised by high Star Formation Efficiencies (SFEs) and Specific Star Formation Rates, i.e., high Star Formation Rates (SFR) per unit of gas mass and high SFR per unit of stellar mass, respectively, compared to spiral galaxies. At all redshifts, starburst galaxies are outliers of the sequence of star-forming galaxies defined by spiral galaxies. We have investigated the origin of the starburst-mode of star formation, in three local interacting systems: Arp 245, Arp 105 and NGC 7252. We combined high-resolution JVLA observations of the 21-cm line, tracing the HI diffuse gas, with UV GALEX observations, tracing the young star-forming regions. We probe the local physical conditions of the Inter-Stellar Medium (ISM) for independent star-forming regions and explore the atomic-to-dense gas transformation in different environments. The SFR/HI ratio is found to be much higher in central regions, compared to outer regions, showing a higher dense gas fraction (or lower HI gas fraction) in these regions. In the outer regions of the systems, i.e., the tidal tails, where the gas phase is mostly atomic, we find SFR/HI ratios higher than in standard HI-dominated environments, i.e., outer discs of spiral galaxies and dwarf galaxies. Thus, our analysis reveals that the outer regions of mergers are characterised by high SFEs, compared to the standard mode of star formation. The observation of high dense gas fractions in interacting systems is consistent with the predictions of numerical simulations; it results from the increase of the gas turbulence during a merger. The merger is likely to affect the star-forming properties of the system at all spatial scales, from large scales, with a globally enhanced turbulence

  10. Limiting Accretion onto Massive Stars by Fragmentation-Induced Starvation

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Thomas; /ZAH, Heidelberg; Klessen, Ralf S.; /ZAH, Heidelberg /KIPAC, Menlo Park; Mac Low, Mordecai-Mark; /Amer. Museum Natural Hist.; Banerjee, Robi; /ZAH, Heidelberg

    2010-08-25

    Massive stars influence their surroundings through radiation, winds, and supernova explosions far out of proportion to their small numbers. However, the physical processes that initiate and govern the birth of massive stars remain poorly understood. Two widely discussed models are monolithic collapse of molecular cloud cores and competitive accretion. To learn more about massive star formation, we perform simulations of the collapse of rotating, massive, cloud cores including radiative heating by both non-ionizing and ionizing radiation using the FLASH adaptive mesh refinement code. These simulations show fragmentation from gravitational instability in the enormously dense accretion flows required to build up massive stars. Secondary stars form rapidly in these flows and accrete mass that would have otherwise been consumed by the massive star in the center, in a process that we term fragmentation-induced starvation. This explains why massive stars are usually found as members of high-order stellar systems that themselves belong to large clusters containing stars of all masses. The radiative heating does not prevent fragmentation, but does lead to a higher Jeans mass, resulting in fewer and more massive stars than would form without the heating. This mechanism reproduces the observed relation between the total stellar mass in the cluster and the mass of the largest star. It predicts strong clumping and filamentary structure in the center of collapsing cores, as has recently been observed. We speculate that a similar mechanism will act during primordial star formation.

  11. Supernova remnant S 147 and its associated neutron star(s)

    Science.gov (United States)

    Gvaramadze, V. V.

    2006-07-01

    The supernova remnant S 147 harbors the pulsar PSR J 0538+2817 whose characteristic age is more than an order of magnitude greater than the kinematic age of the system (inferred from the angular offset of the pulsar from the geometric center of the supernova remnant and the pulsar proper motion). To reconcile this discrepancy we propose that PSR J 0538+2817 could be the stellar remnant of the first supernova explosion in a massive binary system and therefore could be as old as its characteristic age. Our proposal implies that S 147 is the diffuse remnant of the second supernova explosion (that disrupted the binary system) and that a much younger second neutron star (not necessarily manifesting itself as a radio pulsar) should be associated with S 147. We use the existing observational data on the system to suggest that the progenitor of the supernova that formed S 147 was a Wolf-Rayet star (so that the supernova explosion occurred within a wind bubble surrounded by a massive shell) and to constrain the parameters of the binary system. We also restrict the magnitude and direction of the kick velocity received by the young neutron star at birth and find that the kick vector should not strongly deviate from the orbital plane of the binary system.

  12. STAR FORMATION HISTORY AND CHEMICAL EVOLUTION OF THE SEXTANS DWARF SPHEROIDAL GALAXY

    International Nuclear Information System (INIS)

    Lee, Myung Gyoon; Yuk, In-Soo; Park, Hong Soo; Harris, Jason; Zaritsky, Dennis

    2009-01-01

    We present the star formation history (SFH) and chemical evolution of the Sextans dSph galaxy as a function of a galactocentric distance. We derive these from the VI photometry of stars in the 42' x 28' field using the SMART model developed by Yuk and Lee and adopting a closed-box model for chemical evolution. For the adopted age of Sextans 15 Gyr, we find that >84% of the stars formed prior to 11 Gyr ago, significant star formation extends from 15 to 11 Gyr ago (∼ 65% of the stars formed 13-15 Gyr ago, while ∼ 25% formed 11-13 Gyr ago), detectable star formation continued to at least 8 Gyr ago, the SFH is more extended in the central regions than the outskirts, and the difference in star formation rates between the central and outer regions is most marked 11-13 Gyr ago. Whether blue straggler stars are interpreted as intermediate-age main-sequence stars affects conclusions regarding the SFH for times 4-8 Gyr ago, but this is at most only a trace population. We find that the metallicity of the stars increased rapidly up to [Fe/H] = -1.6 in the central region and to [Fe/H] = -1.8 in the outer region within the first Gyr, and has varied slowly since then. The abundance ratios of several elements derived in this study are in good agreement with the observational data based on the high-resolution spectroscopy in the literature. We conclude that the primary driver for the radial gradient of the stellar population in this galaxy is the SFH, which self-consistently drives the chemical enrichment history.

  13. Instabilities of line-driven stellar winds. V. Effect of an optically thick continuum

    International Nuclear Information System (INIS)

    Owocki, S.P.; Rybicki, G.B.

    1991-01-01

    Earlier analyses of the linear instability of line-driven stellar winds are extended to the case, relevant to Wolf-Rayet stars, in which the continuum remains optically thick well above the sonic point. It is found that an optically thick flow driven by pure scattering lines is stabilized by the drag effect of the diffuse, scattered radiation. However, even a relatively small photon destruction probability can cause a flow with continuum optical thickness much greater than 1 to remain unstable, with a given growth rate. The implications of these results for the variability characteristics of winds from Wolf-Rayet stars are briefly discussed. 16 refs

  14. Discovery of a new Wolf-Rayet star using SAGE-LMC

    OpenAIRE

    Gvaramadze, V. V.; Chené, A. -N.; Kniazev, A. Y.; Schnurr, O.

    2011-01-01

    We report the first-ever discovery of an extragalactic Wolf-Rayet (WR)star with Spitzer. A new WR star in the Large Magellanic Cloud (LMC) was revealed via detection of its circumstellar shell using 24 {\\mu}m images obtained in the framework of the Spitzer Survey of the Large Magellanic Cloud (SAGE-LMC). Subsequent spectroscopic bservations with the Gemini South resolved the central star in two components, one of which is a WN3b+abs star, while the second one is a B0V star. We consider the lo...

  15. NuSTAR Search for Hard X-ray Emission from the Star Formation Regions in Sh2-104

    Science.gov (United States)

    Gotthelf, Eric V.

    2016-04-01

    We present NuSTAR hard X-ray observations of Sh2-104, a compact Hii region containing several young massive stellar clusters (YMSCs). We have detected distinct hard X-ray sources coincident with localized VERITAS TeV emission recently resolved from the giant gamma-ray complex MGRO J2019+37 in the Cygnus region. Faint, diffuse X-ray emission coincident with the eastern YMSC in Sh2-104 is likely the result of colliding winds of component stars. Just outside the radio shell of Sh2-104 lies 3XMM J201744.7+365045 and nearby nebula NuSTAR J201744.3+364812, whose properties are most consistent with extragalactic objects. The combined XMM-Newton and NuSTAR spectrum of 3XMM J201744.7+365045 is well-fit to an absorbed power-law model with NH = (3.1+/-1.0)E22 1/cm^2 and photon index Gamma = 2.1+/-0.1. Based on possible long-term flux variation and lack of detected pulsations (Sh2-104 will help identify the nature of the X-ray sources and their relation to MGRO J2019+37.

  16. Physical conditions within the poly-polar nebula NGC 6302. 3

    Energy Technology Data Exchange (ETDEWEB)

    Barral, J F; Canto, J [Universidad Nacional Autonoma de Mexico, Mexico City; Meaburn, J; Walsh, J R [Manchester Univ. (UK). Dept of Astronomy

    1982-06-01

    IUE observations of the ultraviolet emission lines and continuum from the wind-driven poly-polar nebula NGC 6302 have been combined with those obtained of the visible emission lines to investigate the physical parameters of the ionized gas. Several relationships consolidate the view that this nebula is predominantly ionized radiatively by a very hot central star. However, the 'poly-polar' appearance and complex, high velocity flows of ionized material from the nebular core strongly suggest the presence of an energetic stellar wind from the central, but obscured star.

  17. What can NuSTAR do for X-ray bursts?

    DEFF Research Database (Denmark)

    Chenevez, Jérôme; Tomsick, John; Chakrabarty, Deepto

    2012-01-01

    burning are ejected in the burst expansion wind. We have investigated the possibility of observing with NuSTAR some X-ray bursters selected for their high burst rate and trend to exhibit so-called superexpansion bursts. Our main ambition is to detect the photoionization edges associated with the ejected...

  18. Pulsar magnetosphere-wind or wave

    International Nuclear Information System (INIS)

    Kennel, C.F.

    1979-01-01

    The structure of both the interior and exterior pulsar magnetosphere depends upon the strength of its plasma source near the surface of the star. We review wave models of exterior pulsar magnetospheres in the light of a vacuum pair-production source model proposed by Sturrock, and Ruderman and Sutherland. This model predicts the existence of a cutoff, determined by the neutron star's spin rate and magnetic field strenght, beyond which coherent radio emission is no longer possible. Since the observed distribution of pulsar spin periods and period derivatives, and the distribution of pulsars with missing radio pulses, is consistent with the pair production threshold, those neutron stars observed as radio pulsars can have relativistic magnetohydrodynamic wind exterior magnetospheres, and cannot have relativistic plasma wave exterior magnetospheres. On the other hand, most erstwhile pulsars in the galaxy are probably halo objects that emit weak fluxes of energetic photons that can have relativistic wave exterior magnetospheres. Extinct pulsars have not been yet observed

  19. Storage and Assay of Tritium in STAR

    International Nuclear Information System (INIS)

    Longhurst, Glen R.; Anderl, Robert A.; Pawelko, Robert J.; Stoots, Carl J.

    2005-01-01

    The Safety and Tritium Applied Research (STAR) facility at the Idaho National Engineering and Environmental Laboratory (INEEL) is currently being commissioned to investigate tritium-related safety questions for fusion and other technologies. The tritium inventory for the STAR facility will be maintained below 1.5 g to avoid the need for STAR to be classified as a Category 3 nuclear facility. A key capability in successful operation of the STAR facility is the ability to receive, inventory, and dispense tritium to the various experiments underway there. The system central to that function is the Tritium Storage and Assay System (SAS).The SAS has four major functions: (1) receiving and holding tritium, (2) assaying, (3) dispensing, and (4) purifying hydrogen isotopes from non-hydrogen species.This paper describes the design and operation of the STAR SAS and the procedures used for tritium accountancy in the STAR facility

  20. Modelling of anisotropic compact stars of embedding class one

    Energy Technology Data Exchange (ETDEWEB)

    Bhar, Piyali [Government General Degree College, Department of Mathematics, Singur, Hooghly, West Bengal (India); Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Raj Kumar Goel Institute of Technology, Department of Mathematics, Ghaziabad, U.P. (India); Manna, Tuhina [St. Xavier' s College, Department of Commerce (Evening), Kolkata, West Bengal (India)

    2016-10-15

    In the present article, we have constructed static anisotropic compact star models of Einstein field equations for the spherical symmetric metric of embedding class one. By assuming the particular form of the metric function ν, we have solved the Einstein field equations for anisotropic matter distribution. The anisotropic models represent the realistic compact objects such as SAX J 1808.4-3658 (SS1), Her X-1, Vela X-12, PSR J1614-2230 and Cen X-3. We have reported our results in details for the compact star Her X-1 on the ground of physical properties such as pressure, density, velocity of sound, energy conditions, TOV equation and red-shift etc. Along with these, we have also discussed about the stability of the compact star models. Finally we made a comparison between our anisotropic stars with the realistic objects on the key aspects as central density, central pressure, compactness and surface red-shift. (orig.)

  1. Radial stability of anisotropic strange quark stars

    Energy Technology Data Exchange (ETDEWEB)

    Arbañil, José D.V.; Malheiro, M., E-mail: jose.arbanil@upn.pe, E-mail: malheiro@ita.br [ITA—Instituto Tecnológico de Aeronáutica—Departamento de Física, 12228-900, São José dos Campos, São Paulo (Brazil)

    2016-11-01

    The influence of the anisotropy in the equilibrium and stability of strange stars is investigated through the numerical solution of the hydrostatic equilibrium equation and the radial oscillation equation, both modified from their original version to include this effect. The strange matter inside the quark stars is described by the MIT bag model equation of state. For the anisotropy two different kinds of local anisotropic σ = p {sub t} − p {sub r} are considered, where p {sub t} and p {sub r} are respectively the tangential and the radial pressure: one that is null at the star's surface defined by p {sub r} ( R ) = 0, and one that is nonnull at the surface, namely, σ {sub s} = 0 and σ {sub s} {sub ≠} {sub 0}. In the case σ {sub s} = 0, the maximum mass value and the zero frequency of oscillation are found at the same central energy density, indicating that the maximum mass marks the onset of the instability. For the case σ {sub s} {sub ≠} {sub 0}, we show that the maximum mass point and the zero frequency of oscillation coincide in the same central energy density value only in a sequence of equilibrium configurations with the same value of σ {sub s} . Thus, the stability star regions are determined always by the condition dM / d ρ {sub c} {sub >} {sub 0} only when the tangential pressure is maintained fixed at the star surface's p {sub t} ( R ). These results are also quite important to analyze the stability of other anisotropic compact objects such as neutron stars, boson stars and gravastars.

  2. Statistical analysis of the wind around a nuclear power plant; Analisis estadistico del viento alrededor de una central nucleoelectrica

    Energy Technology Data Exchange (ETDEWEB)

    Tejeda, A; Alvarez, Oscar; Contreras, A D; Jauregui, E [Universidad Veracruzana, (Mexico)

    1997-12-31

    In order to show an appropriate methodology for the climatic analysis of the wind, some of the recent results in the investigation of the field flow around the Laguna Verde Nuclear Power Station, at Veracruz State (Mexico,) through the angular correlation coefficients and contingency tables among the registered wind directions by a meteorological tower at the levels of 10 and 60 meters high are presented. Finally, by applying an objective analysis of the data some conclusions are obtained in connection with the local winds with the mesoscale systems. [Espanol] Con el objeto de mostrar una metodologia apropiada en el analisis climatico del viento, se presentan algunos resultados recientes en la investigacion del campo de flujo en los alrededores de la central nucleoelectrica de Laguna Verde, Veracruz (Mexico), a traves de los coeficientes de correlacion angulares y de tablas de contingencia entre las direcciones del viento registradas por una torre meteorologica en los niveles de 10 y 60 metros de altura. Finalmente, aplicando analisis objetivo de los datos, se obtienen algunas conclusiones sobre la conexion de los vientos locales con los sistemas de mesoescala.

  3. Statistical analysis of the wind around a nuclear power plant; Analisis estadistico del viento alrededor de una central nucleoelectrica

    Energy Technology Data Exchange (ETDEWEB)

    Tejeda, A; Alvarez, Oscar; Contreras, A. D.; Jauregui, E. [Universidad Veracruzana, (Mexico)

    1996-12-31

    In order to show an appropriate methodology for the climatic analysis of the wind, some of the recent results in the investigation of the field flow around the Laguna Verde Nuclear Power Station, at Veracruz State (Mexico,) through the angular correlation coefficients and contingency tables among the registered wind directions by a meteorological tower at the levels of 10 and 60 meters high are presented. Finally, by applying an objective analysis of the data some conclusions are obtained in connection with the local winds with the mesoscale systems. [Espanol] Con el objeto de mostrar una metodologia apropiada en el analisis climatico del viento, se presentan algunos resultados recientes en la investigacion del campo de flujo en los alrededores de la central nucleoelectrica de Laguna Verde, Veracruz (Mexico), a traves de los coeficientes de correlacion angulares y de tablas de contingencia entre las direcciones del viento registradas por una torre meteorologica en los niveles de 10 y 60 metros de altura. Finalmente, aplicando analisis objetivo de los datos, se obtienen algunas conclusiones sobre la conexion de los vientos locales con los sistemas de mesoescala.

  4. SDSS-IV MaNGA: the spatial distribution of star formation and its dependence on mass, structure, and environment

    Science.gov (United States)

    Spindler, Ashley; Wake, David; Belfiore, Francesco; Bershady, Matthew; Bundy, Kevin; Drory, Niv; Masters, Karen; Thomas, Daniel; Westfall, Kyle; Wild, Vivienne

    2018-05-01

    We study the spatially resolved star formation of 1494 galaxies in the SDSS-IV MaNGA Survey. Star formation rates (SFRs) are calculated using a two-step process, using H α in star-forming regions and Dn4000 in regions identified as active galactic nucleus/low-ionization (nuclear) emission region [AGN/LI(N)ER] or lineless. The roles of secular and environmental quenching processes are investigated by studying the dependence of the radial profiles of specific star formation rate on stellar mass, galaxy structure, and environment. We report on the existence of `centrally suppressed' galaxies, which have suppressed Specific Star Formation Rate (SSFR) in their cores compared to their discs. The profiles of centrally suppressed and unsuppressed galaxies are distributed in a bimodal way. Galaxies with high stellar mass and core velocity dispersion are found to be much more likely to be centrally suppressed than low-mass galaxies, and we show that this is related to morphology and the presence of AGN/LI(N)ER like emission. Centrally suppressed galaxies also display lower star formation at all radii compared to unsuppressed galaxies. The profiles of central and satellite galaxies are also compared, and we find that satellite galaxies experience lower specific star formation rates at all radii than central galaxies. This uniform suppression could be a signal of the stripping of hot halo gas in the process known as strangulation. We find that satellites are not more likely to be suppressed in their cores than centrals, indicating that the core suppression is an entirely internal process. We find no correlation between the local environment density and the profiles of star formation rate surface density.

  5. The critical binary star separation for a planetary system origin of white dwarf pollution

    Science.gov (United States)

    Veras, Dimitri; Xu, Siyi; Rebassa-Mansergas, Alberto

    2018-01-01

    The atmospheres of between one quarter and one half of observed single white dwarfs in the Milky Way contain heavy element pollution from planetary debris. The pollution observed in white dwarfs in binary star systems is, however, less clear, because companion star winds can generate a stream of matter which is accreted by the white dwarf. Here, we (i) discuss the necessity or lack thereof of a major planet in order to pollute a white dwarf with orbiting minor planets in both single and binary systems, and (ii) determine the critical binary separation beyond which the accretion source is from a planetary system. We hence obtain user-friendly functions relating this distance to the masses and radii of both stars, the companion wind, and the accretion rate on to the white dwarf, for a wide variety of published accretion prescriptions. We find that for the majority of white dwarfs in known binaries, if pollution is detected, then that pollution should originate from planetary material.

  6. IRC -10414: a bow-shock-producing red supergiant star

    Science.gov (United States)

    Gvaramadze, V. V.; Menten, K. M.; Kniazev, A. Y.; Langer, N.; Mackey, J.; Kraus, A.; Meyer, D. M.-A.; Kamiński, T.

    2014-01-01

    Most runaway OB stars, like the majority of massive stars residing in their parent clusters, go through the red supergiant (RSG) phase during their lifetimes. Nonetheless, although many dozens of massive runaways were found to be associated with bow shocks, only two RSG bow-shock-producing stars, Betelgeuse and μ Cep, are known to date. In this paper, we report the discovery of an arc-like nebula around the late M-type star IRC -10414 using the SuperCOSMOS H-alpha Survey. Our spectroscopic follow-up of IRC -10414 with the Southern African Large Telescope (SALT) showed that it is a M7 supergiant, which supports previous claims on the RSG nature of this star based on observations of its maser emission. This was reinforced by our new radio- and (sub)millimetre-wavelength molecular line observations made with the Atacama Pathfinder Experiment 12-m telescope and the Effelsberg 100-m radio telescope, respectively. The SALT spectrum of the nebula indicates that its emission is the result of shock excitation. This finding along with the arc-like shape of the nebula and an estimate of the space velocity of IRC -10414 (≈70 ± 20 km s-1) imply the bow shock interpretation for the nebula. Thus, IRC -10414 represents the third case of a bow-shock-producing RSG and the first one with a bow shock visible at optical wavelengths. We discuss the smooth appearance of the bow shocks around IRC -10414 and Betelgeuse and propose that one of the necessary conditions for stability of bow shocks generated by RSGs is the ionization of the stellar wind. Possible ionization sources of the wind of IRC -10414 are proposed and discussed.

  7. A dearth of OH/IR stars in the Small Magellanic Cloud

    Science.gov (United States)

    Goldman, Steven R.; van Loon, Jacco Th.; Gómez, José F.; Green, James A.; Zijlstra, Albert A.; Nanni, Ambra; Imai, Hiroshi; Whitelock, Patricia A.; Groenewegen, Martin A. T.; Oliveira, Joana M.

    2018-01-01

    We present the results of targeted observations and a survey of 1612-, 1665- and 1667-MHz circumstellar OH maser emission from asymptotic giant branch (AGB) stars and red supergiants (RSGs) in the Small Magellanic Cloud (SMC), using the Parkes and Australia Telescope Compact Array (ATCA) radio telescopes. No clear OH maser emission has been detected in any of our observations targeting luminous, long-period, large-amplitude variable stars, which have been confirmed spectroscopically and photometrically to be mid- to late-M spectral type. These observations have probed 3-4 times deeper than any OH maser survey in the SMC. Using a bootstrapping method with Large Magellanic Cloud (LMC) and Galactic OH/IR star samples and our SMC observation upper limits, we have calculated the likelihood of not detecting maser emission in any of the two sources considered to be the top maser candidates to be less than 0.05 per cent, assuming a similar pumping mechanism as the LMC and Galactic OH/IR sources. We have performed a population comparison of the Magellanic Clouds and used Spitzer IRAC and MIPS photometry to confirm that we have observed all high luminosity SMC sources that are expected to exhibit maser emission. We suspect that, compared to the OH/IR stars in the Galaxy and LMC, the reduction in metallicity may curtail the dusty wind phase at the end of the evolution of the most massive cool stars. We also suspect that the conditions in the circumstellar envelope change beyond a simple scaling of abundances and wind speed with metallicity.

  8. Astronomy in Denver: Spectropolarimetric Observations of 5 Wolf-Rayet Binary Stars with SALT/RSS

    Science.gov (United States)

    Fullard, Andrew; Ansary, Zyed; Azancot Luchtan, Daniel; Gallegos, Hunter; Luepker, Martin; Hoffman, Jennifer L.; Nordsieck, Kenneth H.; SALT observation team

    2018-06-01

    Mass loss from massive stars is an important yet poorly understood factor in shaping their evolution. Wolf-Rayet (WR) stars are of particular interest due to their stellar winds, which create large regions of circumstellar material (CSM). They are also supernova and possible gamma-ray burst (GRB) progenitors. Like other massive stars, WR stars often occur in binaries, where interaction can affect their mass loss rates and provide the rapid rotation thought to be required for GRB production. The diagnostic tool of spectropolarimetry, along with the potentially eclipsing nature of a binary system, helps us to better characterize the CSM created by the stars’ colliding winds. Thus, we can determine mass loss rates and infer rapid rotation. We present spectropolarimetric results for five WR+O eclipsing binary systems, obtained with the Robert Stobie Spectrograph at the South African Large Telescope, between April 2017 and April 2018. The data allow us to map both continuum and emission line polarization variations with phase, which constrains where different CSM components scatter light in the systems. We discuss our initial findings and interpretations of the polarimetric variability in each binary system, and compare the systems.

  9. Escape of charged particles from a neutron star

    International Nuclear Information System (INIS)

    Pelizzari, M.A.

    1976-01-01

    The theory of particle trajectories in an axisymmetric magnetic field, formulated by C. Stormer, can be extended to cover conservative force fields as well. As such, it is an ideal tool to study the escape of charged particles from a rapidly rotating neutron star, enabling one to determine the maximum range of their trajectories in space. With the aid of this theory, it is shown that a neutron star, rotating in a vacuum with rotation and magnetic axes aligned, will not evolve a perfectly conducting magnetosphere if the neutron star is the only source of charge. The sign of charge accelerated from the equatorial regions will be magnetically trapped to a toroidal region very near the star, and the opposite sign of charge, emerging from the polar regions, will escape from the magnetosphere until a critical stellar charge is reached, after which polar charges will be electrostatically bound to the magnetosphere. This selective magnetic trapping of one sign of charge, which prevents the formation of a stellar wind, is a consequence of the magnetic field's orientation relative to the internal charge density of the neutron star

  10. STAR-JET INTERACTIONS AND GAMMA-RAY OUTBURSTS FROM 3C454.3

    Energy Technology Data Exchange (ETDEWEB)

    Khangulyan, D. V. [Institute of Space and Astronautical Science/JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Barkov, M. V. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Bosch-Ramon, V. [Departament d' Astronomia i Meteorologia, Institut de Ciencies del Cosmos (ICC), Universitat de Barcelona (IEEC-UB), Marti i Franques 1, E-08028 Barcelona (Spain); Aharonian, F. A. [Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland); Dorodnitsyn, A. V. [Laboratory for High Energy Astrophysics, NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States)

    2013-09-10

    We propose a model to explain the ultra-bright GeV gamma-ray flares observed from the blazar 3C454.3. The model is based on the concept of a relativistic jet interacting with compact gas condensations produced when a star (a red giant) crosses the jet close to the central black hole. The study includes an analytical treatment of the evolution of the envelope lost by the star within the jet, and calculations of the related high-energy radiation. The model readily explains the day-long that varies on timescales of hours, GeV gamma-ray flare from 3C454.3, observed during 2010 November on top of a plateau lasting weeks. In the proposed scenario, the plateau state is caused by a strong wind generated by the heating of the stellar atmosphere due to nonthermal particles accelerated at the jet-star interaction region. The flare itself could be produced by a few clouds of matter lost by the red giant after the initial impact of the jet. In the framework of the proposed scenario, the observations constrain the key model parameters of the source, including the mass of the central black hole: M{sub BH} {approx_equal} 10{sup 9} M{sub Sun }, the total jet power: L{sub j} {approx_equal} 10{sup 48} erg s{sup -1}, and the Doppler factor of the gamma-ray emitting clouds: {delta} {approx_equal} 20. Whereas we do not specify the particle acceleration mechanisms, the potential gamma-ray production processes are discussed and compared in the context of the proposed model. We argue that synchrotron radiation of protons has certain advantages compared to other radiation channels of directlyaccelerated electrons. An injected proton distribution {proportional_to}E {sup -1} or harder below the relevant energies would be favored to alleviate the tight energetic constraints and to avoid the violation of the observational low-energy constraints.

  11. Demonstrating the Likely Neutron Star Nature of Five M31 Globular Cluster Sources with Swift-NuSTAR Spectroscopy

    Science.gov (United States)

    Maccarone, Thomas J.; Yukita, Mihoko; Hornschemeier, Ann; Lehmer, Bret D.; Antoniou, Vallia; Ptak, Andrew; Wik, Daniel R.; Zezas, Andreas; Boyd, Padi; Kennea, Jamie; hide

    2016-01-01

    We present the results of a joint Swift-NuSTAR spectroscopy campaign on M31. We focus on the five brightest globular cluster X-ray sources in our fields. Two of these had previously been argued to be black hole candidates on the basis of apparent hard-state spectra at luminosities above those for which neutron stars are in hard states. We show that these two sources are likely to be Z-sources (i.e. low magnetic field neutron stars accreting near their Eddington limits), or perhaps bright atoll sources (low magnetic field neutron stars which are just a bit fainter than this level) on the basis of simultaneous Swift and NuSTAR spectra which cover a broader range of energies. These new observations reveal spectral curvature above 6-8 keV that would be hard to detect without the broader energy coverage the NuSTAR data provide relative to Chandra and XMM-Newton. We show that the other three sources are also likely to be bright neutron star X-ray binaries, rather than black hole X-ray binaries. We discuss why it should already have been realized that it was unlikely that these objects were black holes on the basis of their being persistent sources, and we re-examine past work which suggested that tidal capture products would be persistently bright X-ray emitters. We discuss how this problem is likely due to neglecting disc winds in older work that predict which systems will be persistent and which will be transient.

  12. Theories of central engine for long gamma-ray bursts

    Science.gov (United States)

    Nagataki, Shigehiro

    2018-02-01

    Long GRBs are the most powerful explosions in the universe since the Big Bang. At least, some fraction of long GRBs are born from the death of massive stars. Likewise, only some fraction of massive stars that satisfy additional special conditions explode as long GRBs associated with supernovae/hypernovae. In this paper, we discuss the explosion mechanism of long GRBs associated with hypernovae: ‘the central engine of long GRBs’. The central engine of long GRBs is very different from that of core-collapse supernovae, although the mechanism of the engine is still not firmly established. In this paper, we review theoretical studies of the central engine of long GRBs. First, we discuss possible progenitor stars. Then several promising mechanisms of the central engine—such as black hole and magnetar formation—will be reviewed. We will also mention some more exotic models. Finally, we describe prospects for future studies of the central engine of long GRBs.

  13. THE Be STAR SPECTRA (BeSS) DATABASE

    International Nuclear Information System (INIS)

    Neiner, C.; De Batz, B.; Cochard, F.; Floquet, M.; Mekkas, A.; Desnoux, V.

    2011-01-01

    Be stars vary on many timescales, from hours to decades. A long time base of observations to analyze certain phenomena in these stars is therefore necessary. Collecting all existing and future Be star spectra into one database has thus emerged as an important tool for the Be star community. Moreover, for statistical studies, it is useful to have centralized information on all known Be stars via an up-to-date catalog. These two goals are what the Be Star Spectra (BeSS, http://basebe.obspm.fr) database proposes to achieve. The database contains an as-complete-as-possible catalog of known Be stars with stellar parameters, as well as spectra of Be stars from all origins (any wavelength, any epoch, any resolution, etc.). It currently contains over 54,000 spectra of more than 600 different Be stars among the ∼2000 Be stars in the catalog. A user can access and query this database to retrieve information on Be stars or spectra. Registered members can also upload spectra to enrich the database. Spectra obtained by professional as well as amateur astronomers are individually validated in terms of format and science before being included in BeSS. In this paper, we present the database itself as well as examples of the use of BeSS data in terms of statistics and the study of individual stars.

  14. Marketing research with respect to centralized electric power generation with wind turbines. Verkenning van de markt voor centrale elektriciteitsopwekking met windenergie

    Energy Technology Data Exchange (ETDEWEB)

    Lenstra, W.J.; Van den Doel, J.C.

    1985-01-01

    The electric utilities so far are not eager to invest in wind power as long as the price per kWh wind power is higher than saved fuel costs. The price the electric utilities are willing to pay for surplus wind power still remains low. Combined with price expectations in the near future for fossil fuels the market does not show great prospects. Wind turbine manufacturers were asked about price-quantity curves of wind turbine types: 3 MW, 1 MW, and 300 kW respectively. Combining the demand and supply side of the market it seems possible in areas having a good wind regime to exploit wind power in a cost-effective way. For a market incentive a wind power capacity of 400 MW: 75-3 MW wind turbines, 120-1 MW wind turbines, 15-300 kW wind turbines and 50 MW for demonstration projects for proving the viability of the technology. 3 figs., 2 tabs.

  15. The distribution of satellites around massive galaxies at 1 < z < 3 in ZFOURGE/CANDELS: Dependence on star formation activity

    Energy Technology Data Exchange (ETDEWEB)

    Kawinwanichakij, Lalitwadee; Papovich, Casey; Quadri, Ryan F.; Tran, Kim-Vy H.; Mehrtens, Nicola [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Spitler, Lee R.; Cowley, Michael [Department of Physics and Astronomy, Faculty of Sciences, Macquarie University, Sydney, NSW 2109 (Australia); Kacprzak, Glenn G.; Glazebrook, Karl; Nanayakkara, Themiya [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, VIC 3122 (Australia); Labbé, Ivo; Straatman, Caroline M. S. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Allen, Rebecca [Australian Astronomical Observatories, P.O. Box 915, North Ryde, NSW 1670 (Australia); Davé, Romeel [University of the Western Cape, Bellville, Cape Town 7535 (South Africa); Dekel, Avishai [Center for Astrophysics and Planetary Science, Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Ferguson, Henry C.; Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Hartley, W. G. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Koo, David C. [University of California Observatories/Lick Observatory, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Lu, Yu, E-mail: kawinwanichakij@physics.tamu.edu [Kavli Institute for Particle Astrophysics and Cosmology, 452 Lomita Mall, Stanford, CA 94305 (United States); and others

    2014-09-10

    We study the statistical distribution of satellites around star-forming and quiescent central galaxies at 1 < z < 3 using imaging from the FourStar Galaxy Evolution Survey and the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey. The deep near-IR data select satellites down to log (M/M {sub ☉}) > 9 at z < 3. The radial satellite distribution around centrals is consistent with a projected Navarro-Frenk-White profile. Massive quiescent centrals, log (M/M {sub ☉}) > 10.78, have ∼2 times the number of satellites compared to star-forming centrals with a significance of 2.7σ even after accounting for differences in the centrals' stellar-mass distributions. We find no statistical difference in the satellite distributions of intermediate-mass quiescent and star-forming centrals, 10.48 < log (M/M {sub ☉}) < 10.78. Compared to the Guo et al. semi-analytic model, the excess number of satellites indicates that quiescent centrals have halo masses 0.3 dex larger than star-forming centrals, even when the stellar-mass distributions are fixed. We use a simple toy model that relates halo mass and quenching, which roughly reproduces the observed quenched fractions and the differences in halo mass between star-forming and quenched galaxies only if galaxies have a quenching probability that increases with halo mass from ∼0 for log (M{sub h} /M {sub ☉}) ∼ 11 to ∼1 for log (M{sub h} /M {sub ☉}) ∼ 13.5. A single halo-mass quenching threshold is unable to reproduce the quiescent fraction and satellite distribution of centrals. Therefore, while halo quenching may be an important mechanism, it is unlikely to be the only factor driving quenching. It remains unclear why a high fraction of centrals remain star-forming even in relatively massive halos.

  16. Bubbles, Bow Shocks and B Fields: The Interplay Between Neutron Stars and Their Environments

    Science.gov (United States)

    Gaensler, Bryan M.

    2006-12-01

    Young neutron stars embody Nature's extremes: they spin incredibly rapidly, move through space at enormous velocities, and are imbued with unimaginably strong magnetic fields. Since their progenitor stars do not have any of these characteristics, these properties are presumably all imparted to a neutron star during or shortly after the supernova explosion in which it is formed. This raises two fundamental questions: how do neutron stars attain these extreme parameters, and how are their vast reservoirs of energy then dissipated? I will explain how multi-wavelength observations of the environments of neutron stars not only provide vital forensic evidence on the physics of supernova core collapse, but also spectacularly reveal the winds, jets, shocks and outflows through which these remarkable objects couple to their surroundings.

  17. DUST DYNAMICS IN PROTOPLANETARY DISK WINDS DRIVEN BY MAGNETOROTATIONAL TURBULENCE: A MECHANISM FOR FLOATING DUST GRAINS WITH CHARACTERISTIC SIZES

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Tomoya; Suzuki, Takeru K.; Inutsuka, Shu-ichiro, E-mail: miyake.tomoya@e.mbox.nagoya-u.ac.jp, E-mail: stakeru@nagoya-u.jp [Department of Physics, Nagoya University, Nagoya, Aichi 464-8602 (Japan)

    2016-04-10

    We investigate the dynamics of dust grains of various sizes in protoplanetary disk winds driven by magnetorotational turbulence, by simulating the time evolution of the dust grain distribution in the vertical direction. Small dust grains, which are well-coupled to the gas, are dragged upward with the upflowing gas, while large grains remain near the midplane of a disk. Intermediate-size grains float near the sonic point of the disk wind located at several scale heights from the midplane, where the grains are loosely coupled to the background gas. For the minimum mass solar nebula at 1 au, dust grains with size of 25–45 μm float around 4 scale heights from the midplane. Considering the dependence on the distance from the central star, smaller-size grains remain only in an outer region of the disk, while larger-size grains are distributed in a broader region. We also discuss the implications of our result for observations of dusty material around young stellar objects.

  18. The photometric and radial velocity variations of the central star of the planetary nebula 1C 418

    International Nuclear Information System (INIS)

    Mendez, R.H.; Verga, A.D.; Kriner, A.

    1983-01-01

    This paper brings spectrographic (1979-82) and photometric (January 1983) observations of the central star of the planetary nebula IC 418. We include an improved description of the stellar spectrum. We have found a variable photospheric velocity field, which would imply a fluctuating mass outflow, probably mixed with orbital motion in a close binary system with a period of about 0.2 days. We have also found light variations, on a time scale of one or two hours, with an amplitude of 0.1 mag, which do not appear to be periodic. Our observations are not yet sufficient to rule out definetely the existence of non-radial pulsations; further observations are suggested. (author)

  19. A climatology of low level wind regimes over Central America using a weather type classification approach.

    Directory of Open Access Journals (Sweden)

    Fernán eSáenz

    2015-04-01

    Full Text Available Based on the potential of the weather types classification method to study synoptic features, this study proposes the application of such methodology for the identification of the main large scale patterns related with weather in Central America. Using ERA Interim low-level winds in a domain that encompasses the intra-Americas sea, the eastern tropical Pacific, southern North America, Central America and northern South America; the K-means clustering algorithm was applied to find recurrent regimes of low-level winds. Eleven regimes were identified and good coherency between the results and known features of regional circulation was found. It was determined that the main large scale patterns can be either locally forced or a response to tropical-extratropical interactions. Moreover, the local forcing dominates the summer regimes whereas mid latitude interactions lead winter regimes. The study of the relationship between the large scale patterns and regional precipitation shows that winter regimes are related with the Caribbean-Pacific precipitation seesaw. Summer regimes, on the other hand, enhance the Caribbean-Pacific precipitation contrasting distribution as a function of the dominant regimes. A strong influence of ENSO on the frequency and duration of the regimes was found. It was determined that the specific effect of ENSO on the regimes depends on whether the circulation is locally forced or lead by the interaction between the tropics and the mid-latitudes. The study of the cold surges using the information of the identified regimes revealed that three regimes are linkable with the occurrence of cold surges that affect Central America and its precipitation. As the winter regimes are largely dependent of mid-latitude interaction with the tropics, the effect that ENSO has on the Jet Stream is reflected in the winter regimes. An automated analysis of large scale conditions based on reanalysis and/or model data seems useful for both dynamical

  20. Evolution of Mass Functions of Coeval Stars through Wind Mass Loss and Binary Interactions

    NARCIS (Netherlands)

    Schneider, F.R.N.; Izzard, R.G.; Langer, N.; de Mink, S.E.

    2015-01-01

    Accurate determinations of stellar mass functions and ages of stellar populations are crucial to much of astrophysics. We analyze the evolution of stellar mass functions of coeval main-sequence stars, including all relevant aspects of single and binary star evolution. We show that the slope of the