WorldWideScience

Sample records for central spin coupled

  1. Effect of Noise on the Decoherence of a Central Electron Spin Coupled to an Antiferromagnetic Spin Bath

    Directory of Open Access Journals (Sweden)

    G. C. Fouokeng

    2014-01-01

    Full Text Available We analyze the influence of a two-state autocorrelated noise on the decoherence and on the tunneling Landau-Zener (LZ transitions during a two-level crossing of a central electron spin (CES coupled to a one dimensional anisotropic-antiferomagnetic spin, driven by a time-dependent global external magnetic field. The energy splitting of the coupled spin system is found through an approach that computes the noise-averaged frequency. At low magnetic field intensity, the decoherence (or entangled state of a coupled spin system is dominated by the noise intensity. The effects of the magnetic field pulse and the spin gap antiferromagnetic material used suggest to us that they may be used as tools for the direct observation of the tunneling splitting through the LZ transitions in the sudden limit. We found that the dynamical frequencies display basin-like behavior decay with time, with the birth of entanglement, while the LZ transition probability shows Gaussian shape.

  2. Geometric phase of a central spin coupled to an antiferromagnetic environment

    CERN Document Server

    Yuan, Xiao-Zhong; Zhu, Ka-Di

    2010-01-01

    Using the spin-wave approximation, we study the geometric phase (GP) of a central spin (signal qubit) coupled to an antiferromagnetic (AF) environment under the application of an external global magnetic field. The external magnetic field affects the GP of the qubit directly and also indirectly through its effect on the AF environment. We find that when the applied magnetic field is increased to the critical magnetic field point, the AF environment undergoes a spin-flop transition, a first-order phase transition, and at the same time the GP of the qubit changes abruptly to zero. This sensitive change of the GP of a signal qubit to the parameter change of a many-body environment near its critical point may serve as another efficient tool or witness to study the many-body phase transition. The influences of the AF environment temperature and crystal anisotropy field on the GP are also investigated.

  3. Spin-Spin Coupling in Asteroidal Binaries

    Science.gov (United States)

    Batygin, Konstantin; Morbidelli, Alessandro

    2015-11-01

    Gravitationally bound binaries constitute a substantial fraction of the small body population of the solar system, and characterization of their rotational states is instrumental to understanding their formation and dynamical evolution. Unlike planets, numerous small bodies can maintain a perpetual aspheroidal shape, giving rise to a richer array of non-trivial gravitational dynamics. In this work, we explore the rotational evolution of triaxial satellites that orbit permanently deformed central objects, with specific emphasis on quadrupole-quadrupole interactions. Our analysis shows that in addition to conventional spin-orbit resonances, both prograde and retrograde spin-spin resonances naturally arise for closely orbiting, highly deformed bodies. Application of our results to the illustrative examples of (87) Sylvia and (216) Kleopatra multi-asteroid systems implies capture probabilities slightly below ~10% for leading-order spin-spin resonances. Cumulatively, our results suggest that spin-spin coupling may be consequential for highly elongated, tightly orbiting binary objects.

  4. Centralizers of spin subalgebras

    Science.gov (United States)

    Arizmendi, Gerardo; Herrera, Rafael

    2015-11-01

    We determine the centralizers of certain isomorphic copies of spin subalgebras spin(r) in so(dr m), where dr is the dimension of a real irreducible representation of Clr0, the even Clifford algebra determined by the positive definite inner product on Rr, where r, m ∈ N.

  5. Optimal nuclear magnetic resonance excitation schemes for the central transition of a spin 3/2 in the presence of residual quadrupolar coupling.

    Science.gov (United States)

    Lee, Jae-Seung; Regatte, Ravinder R; Jerschow, Alexej

    2008-12-14

    Optimal control theory is applied for enhancing the intensity of the central peak of a spin 3/2 signal in the presence of a residual quadrupolar coupling. While a maximum enhancement is always possible in the regime omega(rf) control and test these with (23)Na NMR in this regime. In addition to enhancing the intensity of the central transition signal, the satellite peaks can be effectively suppressed, which is a useful feature for the implementation in (23)Na imaging sequences. PMID:19071931

  6. Coupling spin qubits via superconductors

    DEFF Research Database (Denmark)

    Leijnse, Martin; Flensberg, Karsten

    2013-01-01

    We show how superconductors can be used to couple, initialize, and read out spatially separated spin qubits. When two single-electron quantum dots are tunnel coupled to the same superconductor, the singlet component of the two-electron state partially leaks into the superconductor via crossed...

  7. Effect of interfacial coupling on rectification in organic spin rectifiers

    Science.gov (United States)

    Hu, Gui-Chao; Zuo, Meng-Ying; Li, Ying; Zhang, Zhao; Ren, Jun-Feng; Wang, Chuan-Kui

    2015-07-01

    The effect of interfacial coupling on rectification in an organic co-oligomer spin diode is investigated theoretically by considering spin-independent and spin-resolved couplings respectively. In the case of spin-independent coupling, an optimal interfacial coupling strength with a significant enhanced rectification ratio is found, whose value depends on the structural asymmetry of the molecule. In the case of spin-resolved coupling, we found that only the variation of the interfacial coupling with specific spin is effective to modulate the rectification, which is due to the spin-filtering property of the central asymmetric magnetic molecule. A transition of the spin-current rectification between parallel spin-current rectification and antiparallel spin-current rectification may be observed with the variation of the spin-resolved interfacial coupling. The interfacial effect on rectification is further analyzed from the spin-dependent transmission spectrum at different biases. Project supported by the National Natural Science Foundation of China (Grant No. 1374195), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2014AM017), and the Excellent Young Scholars Research Fund of Shandong Normal University, China.

  8. Decoherence of a single spin coupled to an interacting spin bath

    Science.gov (United States)

    Wu, Ning; Fröhling, Nina; Xing, Xi; Hackmann, Johannes; Nanduri, Arun; Anders, Frithjof B.; Rabitz, Herschel

    2016-01-01

    Decoherence of a central spin coupled to an interacting spin bath via inhomogeneous Heisenberg coupling is studied by two different approaches, namely an exact equations of motion (EOMs) method and a Chebyshev expansion technique (CET). By assuming a wheel topology of the bath spins with uniform nearest-neighbor X X -type intrabath coupling, we examine the central spin dynamics with the bath prepared in two different types of bath initial conditions. For fully polarized baths in strong magnetic fields, the polarization dynamics of the central spin exhibits a collapse-revival behavior in the intermediate-time regime. Under an antiferromagnetic bath initial condition, the two methods give excellently consistent central spin decoherence dynamics for finite-size baths of N ≤14 bath spins. The decoherence factor is found to drop off abruptly on a short time scale and approach a finite plateau value which depends on the intrabath coupling strength nonmonotonically. In the ultrastrong intrabath coupling regime, the plateau values show an oscillatory behavior depending on whether N /2 is even or odd. The observed results are interpreted qualitatively within the framework of the EOM and perturbation analysis. The effects of anisotropic spin-bath coupling and inhomogeneous intrabath bath couplings are briefly discussed. Possible experimental realization of the model in a modified quantum corral setup is suggested.

  9. Spin-orbit coupling and spin relaxation in phosphorene

    Science.gov (United States)

    Kurpas, Marcin; Gmitra, Martin; Fabian, Jaroslav

    We employ first principles density functional theory calculations to study intrinsic and extrinsic spin-orbit coupling in monolayer phosphorene. We also extract the spin-mixing amplitudes of the Bloch wave functions to give realistic estimates of the Elliott-Yafet spin relaxation rate. The most remarkable result is the striking anisotropy in both spin-orbit coupling and spin relaxation rates, which could be tested experimentally in spin injection experiments. We also identify spin hot spots in the electronic structure of phosphorene at accidental bands anticrossings. We compare the Elliott-Yafet with Dyakonov-Perel spin relaxation times, obtained from extrinsic couplings in an applied electric field. We also compare the results in phosphorene with those of black phosphorous. This work is supported by the DFG SPP 1538, SFB 689, and by the EU Seventh Framework Programme under Grant Agreement No. 604391 Graphene Flagship.

  10. Spin-Orbit Coupling in Actinide Cations

    Energy Technology Data Exchange (ETDEWEB)

    Bagus, Paul S.; Ilton, Eugene S.; Martin, Richard L.; Jensen, Hans Jorgen A.; Knecht, Stefan

    2012-09-01

    The limiting case of Russell-Saunders coupling, which leads to a maximum spin alignment for the open shell electrons, usually explains the properties of high spin ionic crystals with transition metals. For actinide compounds, the spin-orbit splitting is large enough to cause a significantly reduced spin alignment. Novel concepts are used to explain the dependence of the spin alignment on the 5f shell occupation. We present evidence that the XPS of ionic actinide materials may provide direct information about the angular momentum coupling within the 5f shell.

  11. Spin-orbit coupling in actinide cations

    Science.gov (United States)

    Bagus, Paul S.; Ilton, Eugene S.; Martin, Richard L.; Jensen, Hans Jørgen Aa.; Knecht, Stefan

    2012-09-01

    The limiting case of Russell-Saunders coupling, which leads to a maximum spin alignment for the open shell electrons, usually explains the properties of high spin ionic crystals with transition metals. For actinide compounds, the spin-orbit splitting is large enough to cause a significantly reduced spin alignment. Novel concepts are used to explain the dependence of the spin alignment on the 5f shell occupation. We present evidence that the XPS of ionic actinide materials may provide direct information about the angular momentum coupling within the 5f shell.

  12. Spin-rotation coupling in compound spin objects

    Energy Technology Data Exchange (ETDEWEB)

    Lambiase, Gaetano, E-mail: lambiase@sa.infn.it [Dipartimento di Fisica “E.R. Caianiello”, Università di Salerno, 84084 Fisciano (Italy); INFN, Sezione di Napoli (Italy); International Institute for Advanced Scientific Studies, 89019 Vietri sul Mare (Italy); Papini, Giorgio [International Institute for Advanced Scientific Studies, 89019 Vietri sul Mare (Italy); Department of Physics, University of Regina, Regina, SK, S4S 0A2 (Canada); Prairie Particle Physics Institute, Regina, SK, S4S 0A2 (Canada)

    2013-06-03

    We generalize spin-rotation coupling to compound spin systems. In the case of muons bound to nuclei in a storage ring the decay process acquires a modulation. Typical frequencies for Z/A∼1/2 are ∼3×10{sup 6} Hz, a factor 10 higher than the modulation observed in g−2 experiments.

  13. Magnified Damping under Rashba Spin Orbit Coupling

    OpenAIRE

    Tan, Seng Ghee; Jalil, Mansoor B. A.

    2015-01-01

    The spin orbit coupling spin torque consists of the field-like [REF: S.G. Tan et al., arXiv:0705.3502, (2007).] and the damping-like terms [REF: H. Kurebayashi et al., Nature Nanotechnology 9, 211 (2014).] that have been widely studied for applications in magnetic memory. We focus, in this article, not on the spin orbit effect producing the above spin torques, but on its magnifying the damping constant of all field like spin torques. As first order precession leads to second order damping, th...

  14. Spin-Current and Spin-Splitting in Helicoidal Molecules Due to Spin-Orbit Coupling

    Science.gov (United States)

    Caetano, R. A.

    2016-03-01

    The use of organic materials in spintronic devices has been seriously considered after recent experimental works have shown unexpected spin-dependent electrical properties. The basis for the confection of any spintronic device is ability of selecting the appropriated spin polarization. In this direction, DNA has been pointed out as a potential candidate for spin selection due to the spin-orbit coupling originating from the electric field generated by accumulated electrical charges along the helix. Here, we demonstrate that spin-orbit coupling is the minimum ingredient necessary to promote a spatial spin separation and the generation of spin-current. We show that the up and down spin components have different velocities that give rise to a spin-current. By using a simple situation where spin-orbit coupling is present, we provide qualitative justifications to our results that clearly point to helicoidal molecules as serious candidates to integrate spintronic devices.

  15. Variance squeezing and entanglement of the XX central spin model

    International Nuclear Information System (INIS)

    In this paper, we study the quantum properties for a system that consists of a central atom interacting with surrounding spins through the Heisenberg XX couplings of equal strength. Employing the Heisenberg equations of motion we manage to derive an exact solution for the dynamical operators. We consider that the central atom and its surroundings are initially prepared in the excited state and in the coherent spin state, respectively. For this system, we investigate the evolution of variance squeezing and entanglement. The nonclassical effects have been remarked in the behavior of all components of the system. The atomic variance can exhibit revival-collapse phenomenon based on the value of the detuning parameter.

  16. Integral dependent spin couplings in CI calculations

    Science.gov (United States)

    Iberle, K.; Davidson, E. R.

    1982-01-01

    Although the number of ways to combine Slater determinants to form spin eigenfunctions increases rapidly with the number of open shells, most of these spin couplings will make only a small contribution to a given state, provided the spin coupling is chosen judiciously. The technique of limiting calculations to the interacting subspace pioneered by Bunge (1970) was employed by Munch and Davidson (1975) to the vanadium atom. The use of an interacting space looses its advantage in more complex cases. However, the problem can always be reduced to only one interacting spin coupling by making the coefficients integral dependent. The present investigation is concerned with the performance of integral dependent interacting couplings, taking into account the results of three test calculations.

  17. Visualizing Improved Spin Coupling in Large Magnetic Molecules

    Science.gov (United States)

    Donner, Judith; Broschinski, Jan-Philipp; Feldscher, Bastian; Glaser, Thorsten; Khajetoorians, Alexander Ako; Wegner, Daniel

    In an attempt to combine a high spin ground state and a large magnetic anisotropy in one molecule, triplesalen-based complexes are promising building blocks for a new generation of single molecule magnets (SMMs). The spin coupling in these molecules is based on the spin polarization effect, which requires a delocalized aromatic π-system in the central carbon ring of the complex. Unfortunately, chemical analysis indicates that this ring can change its configuration to [6]radialene, therefore causing a loss of aromaticity and weakening the magnetic coupling. We have employed a combination of scanning tunneling microscopy (STM) and spectroscopy (STS) to investigate single Cu3-triplesalen and Cu3-triplesalalen molecules, the latter being designed to show an enhanced intramolecular spin coupling. The large molecules were deposited in situ using the unconventional techniques pulse injection and rapid heating. A thorough structural and spectroscopic analysis allows us to discuss the electronic properties of the two complexes, with a special focus on the state of the central carbon ring. We find that even small changes in the ligand structure have a drastic influence on the intramolecular spin coupling, which opens the way for an improved rational design of future SMMs.

  18. Spin-Orbit Coupling and Spin Textures in Optical Superlattices

    CERN Document Server

    Li, Junru; Shteynas, Boris; Burchesky, Sean; Top, Furkan Cagri; Su, Edward; Lee, Jeongwon; Jamison, Alan O; Ketterle, Wolfgang

    2016-01-01

    We proposed and demonstrated a new approach for realizing spin orbit coupling with ultracold atoms. We use orbital levels in a double well potential as pseudospin states. Two-photon Raman transitions between left and right wells induce spin-orbit coupling. This scheme does not require near resonant light, features adjustable interactions by shaping the double well potential, and does not depend on special properties of the atoms. A pseudospinor Bose-Einstein condensate spontaneously acquires an antiferromagnetic pseudospin texture which breaks the lattice symmetry similar to a supersolid.

  19. Spin-orbit coupling and operation of multivalley spin qubits

    Science.gov (United States)

    Veldhorst, M.; Ruskov, R.; Yang, C. H.; Hwang, J. C. C.; Hudson, F. E.; Flatté, M. E.; Tahan, C.; Itoh, K. M.; Morello, A.; Dzurak, A. S.

    2015-11-01

    Spin qubits composed of either one or three electrons are realized in a quantum dot formed at a Si/SiO2 interface in isotopically enriched silicon. Using pulsed electron-spin resonance, we perform coherent control of both types of qubits, addressing them via an electric field dependent g factor. We perform randomized benchmarking and find that both qubits can be operated with high fidelity. Surprisingly, we find that the g factors of the one-electron and three-electron qubits have an approximately linear but opposite dependence as a function of the applied dc electric field. We develop a theory to explain this g -factor behavior based on the spin-valley coupling that results from the sharp interface. The outer "shell" electron in the three-electron qubit exists in the higher of the two available conduction-band valley states, in contrast with the one-electron case, where the electron is in the lower valley. We formulate a modified effective mass theory and propose that intervalley spin-flip tunneling dominates over intravalley spin flips in this system, leading to a direct correlation between the spin-orbit coupling parameters and the g factors in the two valleys. In addition to offering all-electrical tuning for single-qubit gates, the g -factor physics revealed here for one-electron and three-electron qubits offers potential opportunities for different qubit control approaches.

  20. Gate-dependent spin-orbit coupling in multielectron carbon nanotubes

    DEFF Research Database (Denmark)

    Jespersen, Thomas Sand; Grove-Rasmussen, Kasper; Paaske, Jens;

    2011-01-01

    Understanding how the orbital motion of electrons is coupled to the spin degree of freedom in nanoscale systems is central for applications in spin-based electronics and quantum computation. Here we demonstrate such spin–orbit coupling in a carbon-nanotube quantum dot in the general multielectron...

  1. Effects of spin-orbit coupling on quantum transport

    OpenAIRE

    Bardarson, Jens Hjorleifur

    2008-01-01

    The effect of spin-orbit coupling on various quantum transport phenomena is considered. The main topics discussed are: * How spin-orbit coupling can induce shot noise through trajectory splitting. * How spin-orbit coupling can degrade electron-hole entanglement (created by a tunnel barrier) by mode mixing. * Mesoscopic Spin Hall effect: longitudinal charge current leads to transverse spin currents in a chaotic electron cavity which has universal fluctuations around a zero mean. * How smooth d...

  2. Effects of spin-orbit coupling on quantum transport

    NARCIS (Netherlands)

    Bardarson, Jens Hjorleifur

    2008-01-01

    The effect of spin-orbit coupling on various quantum transport phenomena is considered. The main topics discussed are: * How spin-orbit coupling can induce shot noise through trajectory splitting. * How spin-orbit coupling can degrade electron-hole entanglement (created by a tunnel barrier) by mo

  3. Spin-Spin Coupling in the Solar System

    CERN Document Server

    Batygin, Konstantin

    2015-01-01

    The richness of dynamical behavior exhibited by the rotational states of various solar system objects has driven significant advances in the theoretical understanding of their evolutionary histories. An important factor that determines whether a given object is prone to exhibiting non-trivial rotational evolution is the extent to which such an object can maintain a permanent aspheroidal shape, meaning that exotic behavior is far more common among the small body populations of the solar system. Gravitationally bound binary objects constitute a substantial fraction of asteroidal and TNO populations, comprising systems of triaxial satellites that orbit permanently deformed central bodies. In this work, we explore the rotational evolution of such systems with specific emphasis on quadrupole-quadrupole interactions, and show that for closely orbiting, highly deformed objects, both prograde and retrograde spin-spin resonances naturally arise. Subsequently, we derive capture probabilities for leading order commensur...

  4. Spin gap in coupled magnetic layers

    Science.gov (United States)

    Nakamura, Gilberto Medeiros; Mulato, Marcelo; Martinez, Alexandre Souto

    2016-06-01

    Quantum spinchains are often used to model complex behavior in condensed matter systems that display long range correlations. When two or more quantum spinchains interact, they also exhibit spin transport and model finite nanomagnetic layers. Here, we investigate properties of two coupled S = 1 / 2 quantum spinchains in the finite limit, where spurious surface artifacts are present. Our results show the introduction of new fermionic modes with one additional degree of freedom eliminates the artifacts, in an effective one-dimensional finite lattice. In this setting, the mean field approximation is robust and enables the evaluation of energy levels and the energy gap. Moreover, quasiparticle polarization due to interchain coupling is verified and explains the emergence of spin polarization in uniform materials.

  5. Classical description of dynamical many-body systems with central forces, spin-orbit forces and spin-spin forces

    International Nuclear Information System (INIS)

    This thesis develops a new model, and related numerical methods, to describe classical time-dependent many-body systems interacting through central forces, spin-orbit forces and spin-spin forces. The model is based on two-particle interactions. The two-body forces consist of attractive and repulsive parts. In this model the investigated multi-particle systems are self-bound. Also the total potential of the whole ensemble is derived from the two-particle potential and is not imposed 'from outside'. Each particle has the three degrees of freedom of its centre-of-mass motion and the spin degree of freedom. The model allows for the particles to be either charged or uncharged. Furthermore, each particle has an angular momentum, an intrinsic spin, and a magnetic dipole moment. Through the electromagnetic forces between these charges and moments there arise dynamical couplings between them. The internal interactions between the charges and moments are well described by electromagnetic coupling mechanisms. In fact, compared to conventional classical molecular dynamics calculations in van der Waals clusters, which have no spin degrees of freedom, or for Heisenberg spin Systems, which have no orbital degrees of freedom, the model presented here contains both types of degrees of freedom with a highly non-trivial coupling. The model allows to study the fundamental effects resulting from the dynamical coupling of the spin and the orbital-motion sub-systems. In particular, the dynamics of the particle mass points show a behaviour basically different from the one of particles in a potential with only central forces. Furthermore, a special type of quenching procedure was invented, which tends to drive the multi-particle Systems into states with highly periodic, non-ergodic behaviour. Application of the model to cluster simulations has provided evidence that the model can also be used to investigate items like solid-to-liquid phase transitions (melting), isomerism and specific heat

  6. An Exact SU(2) Symmetry and Persistent Spin Helix in a Spin-Orbit Coupled System

    Energy Technology Data Exchange (ETDEWEB)

    Bernevig, Andrei

    2010-02-10

    Spin-orbit coupled systems generally break the spin rotation symmetry. However, for a model with equal Rashba and Dresselhauss coupling constant (the ReD model), and for the [110] Dresselhauss model, a new type of SU(2) spin rotation symmetry is discovered. This symmetry is robust against spin-independent disorder and interactions, and is generated by operators whose wavevector depends on the coupling strength. It renders the spin lifetime infinite at this wavevector, giving rise to a Persistent Spin Helix (PSH). We obtain the spin fluctuation dynamics at, and away, from the symmetry point, and suggest experiments to observe the PSH.

  7. Spin-orbit couplings in the string model

    International Nuclear Information System (INIS)

    The spectrum of mesons with high spins is considered in the rotating string model. It is shown that Thomas precession of quarks spins gives rise to spin-orbit coupling. Predictions of the model agree with the experimental data on mass spectrum of mesons with even parity and even spins

  8. Persistent Spin Current in a Quantum Wire with Weak Rashba Spin-Orbit Coupling

    Institute of Scientific and Technical Information of China (English)

    WANG Yi; SHENG Wei; ZHOU Guang-Hui

    2006-01-01

    @@ We theoretically investigate the spin current for a parabolically confined semiconductor heterojunction quantum wire with weak Rashba spin-orbit coupling by means of the perturbation method. By analytical calculation, it is found that only two components off spin current density is non-zero in the equilibrium case. Numerical examples have demonstrated that the spin current of electron transverse motion is 10-3 times that off electron longitudinal motion. However, the former one is much more sensitive to the strength of Rashba spin-orbit coupling. These results may suggest an approach to the spin storage device and to the measurement of spin current through its induced electric field.

  9. Bends in nanotubes allow electric spin control and coupling

    DEFF Research Database (Denmark)

    Flensberg, Karsten; Marcus, Charles Masamed

    2010-01-01

    fields. Device geometries that allow general rotation of single spins are presented and analyzed. In addition, capacitive coupling along bends provides coherent spin-spin interaction, including between otherwise disconnected nanotubes, completing a universal set of one- and two-qubit gates.......We investigate combined effects of spin-orbit coupling and magnetic field in carbon nanotubes containing one or more bends along their length. We show how bends can be used to provide electrical control of confined spins, while spins confined in straight segments remain insensitive to electric...

  10. Proton spin and baryon octet axial couplings

    International Nuclear Information System (INIS)

    Peripheral spin structure of the nucelon generated by the soft mesonic radiative corrections is studied within the light-cone perturbation theory. Starting with the tree-level SU(6) symmetry, we find a good description of the axial-vector couplings in β-decay of hyperons. We study the proton helicity flow from the baryonic core to the angular momentum of the pionic cloud. It is found that in the relativistic light-cone approach the spin-flip pattern is different from that in the coventional non-relativistic models. The axial-vector current matrix elements are shown to receive large corrections from beyond the conventional static limit. The important virtue of using the light-cone vertex functions of the meson-baryon Fock components of the proton is that the local gauge invariance and the energy-momentum sum rule are satisfied automatically. We infer the radius of the light-cone form factor from an analysis of the experimental data on the fragmentation of high-energy protons into nucleons and hyperons-the process dominated by stripping off the mesons of the meson-baryon Fock states. (orig.)

  11. Interfacial spin Hall current in a Josephson junction with Rashba spin-orbit coupling

    Institute of Scientific and Technical Information of China (English)

    Yang Zhi-Hong; Yang Yong-Hong; Wang Jun

    2012-01-01

    We theoretically investigate the spin transport properties of the Cooper pairs in a conventional Josephson junction with Rashba spin orbit coupling considered in one of the superconducting leads.It is found that an angle-resolved spin supercurrent flows through the junction and a nonzero interfacial spin Hall current driven by the superconducting phase difference also appears at the interface.The physical origin of this is that the Rashba spin-orbit coupling can indnce a triplet order parameter in the s-wave superconductor.The interfacial spin Hall current dependences on the system parameters are also discussed.

  12. Persistent spin current in a quantum wire with weak Dresselhaus spin-orbit coupling

    Institute of Scientific and Technical Information of China (English)

    Sheng Wei; Wang Yi; Zhou Guang-Hui

    2007-01-01

    The spin current in a parabolically confined semiconductor heterojunction quantum wire with Dresselhaus spinorbit coupling is theoretically studied by using the perturbation method. The formulae of the elements for linear and angular spin current densities are derived by using the recent definition for spin current based on spin continuity equation. It is found that the spin current in this Dresselhaus spin-orbit coupling quantum wire is antisymmetrical,which is different from that in R ashba model due to the difference in symmetry between these two models. Some numerical examples for the result are also demonstrated and discussed.

  13. Numerical simulation study on spin resonant depolarization due to spin-orbit coupling

    Institute of Scientific and Technical Information of China (English)

    Lan Jie-Qin; Xu Hong-Liang

    2012-01-01

    The spin polarization phenomenon in lepton circular accelerators had been known for many years.It provides a new approach for physicists to study the spin feature of fundamental particles and the dynamics of spin-orbit coupling,such as spin resonances.We use numerical simulation to study the features of spin under the modulation of orbital motion in an electron storage ring.The various cases of depolarization due to spin-orbit coupling through an emitting photon and misalignment of magnets in the ring are discussed.

  14. Spin-Orbit Coupling and the Conservation of Angular Momentum

    Science.gov (United States)

    Hnizdo, V.

    2012-01-01

    In nonrelativistic quantum mechanics, the total (i.e. orbital plus spin) angular momentum of a charged particle with spin that moves in a Coulomb plus spin-orbit-coupling potential is conserved. In a classical nonrelativistic treatment of this problem, in which the Lagrange equations determine the orbital motion and the Thomas equation yields the…

  15. Spin-orbit-coupled transport and spin torque in a ferromagnetic heterostructure

    KAUST Repository

    Wang, Xuhui

    2014-02-07

    Ferromagnetic heterostructures provide an ideal platform to explore the nature of spin-orbit torques arising from the interplay mediated by itinerant electrons between a Rashba-type spin-orbit coupling and a ferromagnetic exchange interaction. For such a prototypic system, we develop a set of coupled diffusion equations to describe the diffusive spin dynamics and spin-orbit torques. We characterize the spin torque and its two prominent—out-of-plane and in-plane—components for a wide range of relative strength between the Rashba coupling and ferromagnetic exchange. The symmetry and angular dependence of the spin torque emerging from our simple Rashba model is in an agreement with experiments. The spin diffusion equation can be generalized to incorporate dynamic effects such as spin pumping and magnetic damping.

  16. Spin waves in ferromagnetic insulators coupled via a normal metal

    Science.gov (United States)

    Skarsvâg, Hans; Kapelrud, André; Brataas, Arne

    2014-09-01

    Herein, we study spin-wave dispersion and dissipation in a ferromagnetic insulator-normal metal-ferromagnetic insulator system. Long-range dynamic coupling because of spin pumping and spin transfer lead to collective magnetic excitations in the two thin-film ferromagnets. In addition, the dynamic dipolar field contributes to the interlayer coupling. By solving the Landau-Lifshitz-Gilbert-Slonczewski equation for macrospin excitations and the exchange-dipole volume as well as surface spin waves, we compute the effect of the dynamic coupling on the resonance frequencies and linewidths of the various modes. The long-wavelength modes may couple acoustically or optically. In the absence of spin-memory loss in the normal metal, the spin-pumping-induced Gilbert damping enhancement of the acoustic mode vanishes, whereas the optical mode acquires a significant Gilbert damping enhancement, comparable to that of a system attached to a perfect spin sink. The dynamic coupling is reduced for short-wavelength spin waves, and there is no synchronization. For intermediate wavelengths, the coupling can be increased by the dipolar field such that the modes in the two ferromagnetic insulators can couple despite possible small frequency asymmetries. The surface waves induced by an easy-axis surface anisotropy exhibit much greater Gilbert damping enhancement. These modes also may acoustically or optically couple, but they are unaffected by thickness asymmetries.

  17. Spin-orbit coupling and the conservation of angular momentum

    OpenAIRE

    Hnizdo, V.

    2011-01-01

    In nonrelativistic quantum mechanics, the total (i.e. orbital plus spin) angular momentum of a charged particle with spin that moves in a Coulomb plus spin-orbit-coupling potential is conserved. In a classical nonrelativistic treatment of this problem, in which the Lagrange equations determine the orbital motion and the Thomas equation yields the rate of change of the spin, the particle's total angular momentum in which the orbital angular momentum is defined in terms of the kinetic momentum ...

  18. Analytic solutions to the central spin problem for Nitrogen Vacancy centres in diamond

    OpenAIRE

    Hall, Liam T.; Jared H. Cole; Hollenberg, Lloyd C. L.

    2013-01-01

    Due to interest in both solid state based quantum computing architectures and the application of quantum mechanical systems to nanomagnetometry, there has been considerable recent attention focused on understanding the microscopic dynamics of solid state spin baths and their effects on the coherence of a controllable, coupled central electronic spin. Many analytic approaches are based on simplified phenomenological models in which it is difficult to capture much of the complex physics associa...

  19. High spin particles with spin-mass coupling

    OpenAIRE

    Daszkiewicz, Marcin; Hasiewicz, Zbigniew; Walczyk, Cezary J.

    2006-01-01

    The classical and quantum model of high spin particles is proposed and analyzed in this paper. The covariant quantization leads to the spectrum of the particles with the masses correlated with their spins. The particles (and anti-particles) appear to be orphaned as their potential anti-particle partners are of different mass.

  20. Spin Filtering in a Nanowire Superlattice by Dresselhause Spin-Orbit Coupling

    Institute of Scientific and Technical Information of China (English)

    Samad Javidan

    2011-01-01

    @@ An InAs/GaSb nanowire Superlattice using GaAs for the impure layers is proposed.Dresselhaus spin-orbit coupling eliminates spin degeneracy, induces one miniband in the superlattices to split into two minibands and leads to complete spin polarization and excellent filtering by optimizing the well and barrier widths and GaAs layer distances.

  1. Polarization and readout of coupled single spins in diamond

    CERN Document Server

    Hanson, R; Epstein, R J; Awschalom, D D

    2006-01-01

    We study the coupling of a single nitrogen-vacancy center in diamond to a nearby single nitrogen defect at room temperature. The magnetic dipolar coupling leads to a splitting in the electron spin resonance frequency of the N-V center, allowing readout of the state of a single nitrogen electron spin. At magnetic fields where the spin splitting of the two centers is the same we observe a strong polarization of the nitrogen electron spin. The amount of polarization can be controlled by the optical excitation power. We combine the polarization and the readout in time-resolved pump-probe measurements to determine the spin relaxation time of a single nitrogen electron spin. Finally, we discuss indications for hyperfine-induced polarization of the nitrogen nuclear spin.

  2. Orbital instabilities and spin-symmetry breaking in coupled-cluster calculations of indirect nuclear spin-spin coupling constants

    International Nuclear Information System (INIS)

    The effect of orbital instabilities is investigated for spin-symmetry breaking perturbations, namely the Fermi-contact (FC) and spin-dipole (SD) contributions to the indirect nuclear spin-spin coupling constants. For the CO and N2 molecules the FC and SD contributions have been calculated and orbital-stability analyses for various interatomic distances have been carried out. This includes calculations at the Hartree-Fock self-consistent field (HF-SCF), coupled-cluster (CC) singles and doubles (CCSD), CC3, CCSD(T), CCSDT-4, CC singles, doubles, and triples (CCSDT) levels, and for the first time also at the CC singles, doubles, triples, and quadruples (CCSDTQ) level of theory. For calculations with relaxation of the reference orbitals in the presence of the perturbation, unphysical results are obtained over a wide range of the potential curve. This is due to a triplet instability of the Hartree-Fock reference determinant which leads to a pronounced pole in the FC and SD contributions. The effect of orbital instabilities in the relaxed methods is most dramatic for perturbative approaches like CCSD(T), while it is less pronounced for methods of the classical CC hierarchy. CC calculations without relaxation of the orbitals, i.e., so-called 'unrelaxed' calculations, do not show any of these effects

  3. Spin susceptibilities in armchair graphene nanoribbons with Rashba spin-orbit coupling.

    Science.gov (United States)

    Tan, Xiao-Dong; Hu, Xiaohui; Liao, Xiao-Ping; Sun, Litao

    2016-08-17

    Based on linear response theory, we studied the spin susceptibilities of armchair graphene nanoribbons (AGNRs) with Rashba spin-orbit coupling (RSOC) in an oscillating magnetic field. It is shown that by tuning the field frequency, RSOC or ribbon width to satisfy the resonance condition, the spins in AGNRs will be effectively magnetized at room temperature due to the electron transitions between RSOC-induced spin-split subbands. Moreover, in this process the magnitude of spin magnetization can also be flexibly manipulated by selecting different resonant frequency or RSOC. Thus, we provide a promisingly well-controlled scheme for the spin magnetization of AGNRs, which is useful for spintronics applications. PMID:27324206

  4. Negative tunnelling magnetoresistance in spin filtering magnetic junctions with spin-orbit coupling

    Institute of Scientific and Technical Information of China (English)

    Li Yun

    2011-01-01

    We present theoretical calculations of spin transport in spin filtering magnetic tunnelling junctions based on the Landauer-Büttiker formalism and taking into account the spin-orbit coupling (SOC). It is shown that spin-flip scattering induced by SOC is stronger in parallel alignment of magnetization of the ferromegnet barrier (FB) and the ferromagnetic electrode than that in antiparallel case. The increase of negative tunnelling magnetoresistance with bias is in agreement with recent experimental observation.

  5. Measurement of the spin-rotation coupling in neutron polarimetry

    Science.gov (United States)

    Demirel, Bülent; Sponar, Stephan; Hasegawa, Yuji

    2015-02-01

    The effect of spin-rotation coupling is measured for the first time with neutrons. The coupling of spin with the angular velocity of a rotating spin turner can be observed as a phase shift in a neutron polarimeter set-up. After the neutron’s spin is rotated by 2π through a rotating magnetic field, different phase shifts are induced for ‘up’ and ‘down’ spin eigenstates. This phase difference results in the rotation of the neutron’s spin-vector, which turns out to depend solely on the frequency of the rotation of the magnetic field. The experimental results agree well with the solutions acquired by the Pauli-Schrödinger equation.

  6. Spin-orbit interaction in coupled quantum wells

    Institute of Scientific and Technical Information of China (English)

    Hao Ya-Fei

    2013-01-01

    We theoretically investigate the spin-orbit interaction in GaAs/AlxGa1-xAs coupled quantum wells.We consider the contribution of the interface-related Rashba term as well as the linear and cubic Dresselhaus terms to the spin splitting.For the coupled quantum wells which bear an inherent structure inversion asymmetry,the same probability density distribution of electrons in the two step quantum wells results in a large spin splitting from the interface term.If the widths of the two step quantum wells are different,the electron probability density in the wider step quantum well is considerably higher than that in the narrower one,resulting in the decrease of the spin splitting from the interface term.The results also show that the spin splitting of the coupled quantum well is not significantly larger than that of a step quantum well.

  7. Generation of Spin and Orbital Current in Carbon Nanotubes by Spin-rotation Coupling

    Science.gov (United States)

    Hamada, Masato; Murakami, Shuichi

    2015-03-01

    Spin-rotation coupling represents a coupling between the electron spins and mechanical rotations, and may be used for generation of spin currents by mechanical rotation. In our presentation we consider carbon nanotubes, and use one of the phonon modes called a twist mode. This mode gives rise to a rotation around the tube axis and eventually an effective Zeeman field parallel to the axis is generated by spin-rotation coupling. We calculate a generated spin current by solving the spin diffusion equation. In addition to the effective Zeeman field along the axis, the rotation also generates an effective orbital magnetic field in the radial direction. We calculate diamagnetic susceptibility for the radial magnetic field, and discuss the generated orbital current.

  8. Interfacial spin-orbit torque without bulk spin-orbit coupling

    Science.gov (United States)

    Emori, Satoru; Nan, Tianxiang; Belkessam, Amine M.; Wang, Xinjun; Matyushov, Alexei D.; Babroski, Christopher J.; Gao, Yuan; Lin, Hwaider; Sun, Nian X.

    2016-05-01

    An electric current in the presence of spin-orbit coupling can generate a spin accumulation that exerts torques on a nearby magnetization. We demonstrate that, even in the absence of materials with strong bulk spin-orbit coupling, a torque can arise solely due to interfacial spin-orbit coupling, namely, Rashba-Eldestein effects at metal/insulator interfaces. In magnetically soft NiFe sandwiched between a weak spin-orbit metal (Ti) and insulator (Al2O3 ), this torque appears as an effective field, which is significantly larger than the Oersted field and qualitatively modified by inserting an additional layer between NiFe and Al2O3 . Our findings point to unconventional routes for tuning spin-orbit torques by engineering interfacial electric dipoles.

  9. New expressions of the spin-spin coupling hamiltonian. Application to the external field dependence

    International Nuclear Information System (INIS)

    Molecular hamiltonians were built according to various assumptions: initially mobile nuclei without relativist corrections, initially mobile nuclei or fixed with relativist corrections. By using the perturbations theory with Born-Oppenheimer approximation, the expressions of spin-spin coupling tensors are calculated for each of the hamiltonians. These expressions are different from those obtain by Ramsey. Only the terms J1b, J2, J3 and J23 are always present. The calculation was developed without any assumption concerning the external magnetic field, and hence some terms which have a contribution to J, are dependent upon the field, the variation being a first order perturbation. It is expected that heavy atoms presenting large relativistic effects, should yield higher variation of the spin-spin coupling constant with the external field. These developments show the difficulty to obtain the analytic form of the spin-spin coupling constant, because the tensor appears to depend on the fourth order at least in 1/c

  10. Nanospintronics with Molecular Magnets - Tunneling and Spin-Electric Coupling

    OpenAIRE

    Nossa Márquez, Javier Francisco

    2013-01-01

    This dissertation investigates theoretically electric control of the magnetic properties of molecular magnets. Two classes of magnetic molecules are considered. The first class consists of molecules that are spin frustrated. As a consequence of the frustration, the ground-state manifold of these molecules is characterized by states of different spin chirality, which can be coupled by an external electric field. Electric control of these spin states can be used to encode and manipulate quantum...

  11. Exchange cotunneling through quantum dots with spin-orbit coupling

    DEFF Research Database (Denmark)

    Paaske, Jens; Andersen, Andreas; Flensberg, Karsten

    2010-01-01

    We investigate the effects of spin-orbit interaction (SOI) on the exchange cotunneling through a spinful Coulomb blockaded quantum dot. In the case of zero magnetic field, Kondo effect is shown to take place via a Kramers doublet and the SOI will merely affect the Kondo temperature. In contrast, we...... angle dependence of finite-field cotunneling spectroscopy thus provides valuable information about orbital and spin degrees of freedom and their mutual coupling....

  12. Magnified Damping Under Rashba Spin-Orbit Coupling

    Science.gov (United States)

    Tan, Seng Ghee; Jalil, Mansoor B. A.

    2016-03-01

    The spin-orbit coupling spin torque consists of the field-like [S. G. Tan et al., arXiv:0705.3502 (2007).] and the damping-like terms [H. Kurebayashi et al., Nat. Nanotechnol. 9, 211 (2014).] that have been widely studied for applications in magnetic memory. We focus, in this paper, not on the spin-orbit effect producing the above spin torques, but on its magnifying the damping constant of all field-like spin torques. As first-order precession leads to second-order damping, the Rashba constant is naturally co-opted, producing a magnified field-like damping effect. The Landau-Liftshitz-Gilbert equations are written separately for the local magnetization and the itinerant spin, allowing the progression of magnetization to be self-consistently locked to the spin.

  13. Room temperature coherent control of coupled single spins in solid

    CERN Document Server

    Gaebel, T; Popa, I; Wittmann, C; Neumann, P; Jelezko, F; Rabeau, J R; Stavrias, N; Greentree, A D; Prawer, S; Meijer, J; Twamley, J; Hemmer, P R; Wrachtrup, J

    2006-01-01

    Coherent coupling between single quantum objects is at the heart of modern quantum physics. When coupling is strong enough to prevail over decoherence, it can be used for the engineering of correlated quantum states. Especially for solid-state systems, control of quantum correlations has attracted widespread attention because of applications in quantum computing. Such coherent coupling has been demonstrated in a variety of systems at low temperature1, 2. Of all quantum systems, spins are potentially the most important, because they offer very long phase memories, sometimes even at room temperature. Although precise control of spins is well established in conventional magnetic resonance3, 4, existing techniques usually do not allow the readout of single spins because of limited sensitivity. In this paper, we explore dipolar magnetic coupling between two single defects in diamond (nitrogen-vacancy and nitrogen) using optical readout of the single nitrogen-vacancy spin states. Long phase memory combined with a d...

  14. Vortex line in spin-orbit coupled atomic Fermi gases

    OpenAIRE

    Işkın, Menderes

    2011-01-01

    PHYSICAL REVIEW A 85, 013622 (2012) Vortex line in spin-orbit coupled atomic Fermi gases M. Iskin Department of Physics, Koc¸ University, Rumelifeneri Yolu, TR-34450 Sariyer, Istanbul, Turkey (Received 1 December 2011; published 17 January 2012) It has recently been shown that the spin-orbit coupling gives rise to topologically nontrivial and thermodynamically stable gapless superfluid phases when the pseudospin populations of an atomic Fermi gas are imbalanced, with the ...

  15. Spin and field squeezing in a spin-orbit coupled Bose-Einstein condensate.

    Science.gov (United States)

    Huang, Yixiao; Hu, Zheng-Da

    2015-01-01

    Recently, strong spin-orbit coupling with equal Rashba and Dresselhaus strength has been realized in neutral atomic Bose-Einstein condensates via a pair of Raman lasers. In this report, we investigate spin and field squeezing of the ground state in spin-orbit coupled Bose-Einstein condensate. By mapping the spin-orbit coupled BEC to the well-known quantum Dicke model, the Dicke type quantum phase transition is presented with the order parameters quantified by the spin polarization and occupation number of harmonic trap mode. This Dicke type quantum phase transition may be captured by the spin and field squeezing arising from the spin-orbit coupling. We further consider the effect of a finite detuning on the ground state and show the spin polarization and the quasi-momentum exhibit a step jump at zero detuning. Meanwhile, we also find that the presence of the detuning enhances the occupation number of harmonic trap mode, while it suppresses the spin and the field squeezing. PMID:25620051

  16. Spin structure of harmonically trapped one-dimensional atoms with spin-orbit coupling

    Science.gov (United States)

    Guan, Q.; Blume, D.

    2015-08-01

    We introduce a theoretical approach to determine the spin structure of harmonically trapped atoms with two-body zero-range interactions subject to an equal mixture of Rashba and Dresselhaus spin-orbit coupling created through Raman coupling of atomic hyperfine states. The spin structure of bosonic and fermionic two-particle systems with finite and infinite two-body interaction strength g is calculated. Taking advantage of the fact that the N -boson and N -fermion systems with infinitely large coupling strength g are analytically solvable for vanishing spin-orbit coupling strength kso and vanishing Raman coupling strength Ω , we develop an effective spin model that is accurate to second order in Ω for any kso and infinite g . The three- and four-particle systems are considered explicitly. It is shown that the effective spin Hamiltonian, which contains a Heisenberg exchange term and an anisotropic Dzyaloshinskii-Moriya exchange term, describes the transitions that these systems undergo with the change of kso as a competition between independent spin dynamics and nearest-neighbor spin interactions.

  17. Correlation Driven Transport Asymmetries Through Coupled Spins

    OpenAIRE

    Muenks, Matthias; Jacobson, Peter; Ternes, Markus; Kern, Klaus

    2016-01-01

    Correlation is a fundamental statistical measure of order in interacting quantum systems. In solids, electron correlations govern a diverse array of material classes and phenomena such as heavy fermion compounds, Hunds metals, high-Tc superconductors, and the Kondo effect. Spin-spin correlations, notably investigated by Kaufman and Onsager in the 1940s 6, are at the foundation of numerous theoretical models but are challenging to measure experimentally. Reciprocal space methods can map correl...

  18. Interaction-driven exotic quantum phases in spin-orbit-coupled spin-1 bosons

    Science.gov (United States)

    Pixley, J. H.; Natu, Stefan S.; Spielman, I. B.; Das Sarma, S.

    2016-02-01

    We study the interplay between large-spin, spin-orbit coupling, and superfluidity for bosons in a two-dimensional optical lattice, focusing on the spin-1 spin-orbit-coupled system recently realized at the Joint Quantum Institute [Campbell et al., arXiv:1501.05984]. We find a rich quantum phase diagram where, in addition to the conventional phases—superfluid and insulator—contained in the spin-1 Bose-Hubbard model, there are new lattice symmetry breaking phases. For weak interactions, the interplay between two length scales, the lattice momentum and the spin-orbit wave vector, induce a phase transition from a uniform superfluid to a phase where bosons simultaneously condense at the center and edge of the Brillouin zone at a nonzero spin-orbit strength. This state is characterized by spin-density-wave order, which arises from the spin-1 nature of the system. Interactions suppress spin-density-wave order, and favor a superfluid only at the Brillouin zone edge. This state has spatially oscillating mean-field order parameters, but a homogeneous density. We show that the spin-density-wave superfluid phase survives in a two-dimensional harmonic trap, and thus establish that our results are directly applicable to experiments on 87Rb,7Li, and 41K.

  19. New perspectives for Rashba spin-orbit coupling

    Science.gov (United States)

    Manchon, A.; Koo, H. C.; Nitta, J.; Frolov, S. M.; Duine, R. A.

    2015-09-01

    In 1984, Bychkov and Rashba introduced a simple form of spin-orbit coupling to explain the peculiarities of electron spin resonance in two-dimensional semiconductors. Over the past 30 years, Rashba spin-orbit coupling has inspired a vast number of predictions, discoveries and innovative concepts far beyond semiconductors. The past decade has been particularly creative, with the realizations of manipulating spin orientation by moving electrons in space, controlling electron trajectories using spin as a steering wheel, and the discovery of new topological classes of materials. This progress has reinvigorated the interest of physicists and materials scientists in the development of inversion asymmetric structures, ranging from layered graphene-like materials to cold atoms. This Review discusses relevant recent and ongoing realizations of Rashba physics in condensed matter.

  20. Spin-Rotation Coupling in Gravitation with Torsion

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the theory of gravitation with torsion developed by Hammond [Rep. Prog. Phys. 65 (2002)599], the interaction between the intrinsic spin of a particle and the mass source is calculated. It is shown that spin can interact with the gravitimagnetic field created by a rotational mass, where the spin-rotation coupling is also discussed.According to the recent torsion pendulum experiment with polarized electrons by Heckel et al. [Phys. Rev. Lett. 97(2006) 021603], we set a new limit on the value of the torsion coupling constant K as K ∈ [0.53, 0.95], which has improved many orders than the constraints from the early spin-spin experiment with K < 2 × 1014.

  1. Current-induced torques and interfacial spin-orbit coupling

    KAUST Repository

    Haney, Paul M.

    2013-12-19

    In bilayer systems consisting of an ultrathin ferromagnetic layer adjacent to a metal with strong spin-orbit coupling, an applied in-plane current induces torques on the magnetization. The torques that arise from spin-orbit coupling are of particular interest. Here we use first-principles methods to calculate the current-induced torque in a Pt-Co bilayer to help determine the underlying mechanism. We focus exclusively on the analog to the Rashba torque, and do not consider the spin Hall effect. The details of the torque depend strongly on the layer thicknesses and the interface structure, providing an explanation for the wide variation in results found by different groups. The torque depends on the magnetization direction in a way similar to that found for a simple Rashba model. Artificially turning off the exchange spin splitting and separately the spin-orbit coupling potential in the Pt shows that the primary source of the “fieldlike” torque is a proximate spin-orbit effect on the Co layer induced by the strong spin-orbit coupling in the Pt.

  2. Persistent Spin and Charge Currents in Open Conducting Ring Subjected to Rashba Spin-Orbit Coupling

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xi-Sua; XIONG Shi-Jie

    2008-01-01

    We investigate persistent charge and spin currents of a one-dimensional ring with Rashba spin-orbit coupling and connected asymmetrically to two external leads spanned with angle (φ)0.Because of the asymmetry of the structure and the spin-reflection,the persistent charge and spin currents can be induced.The magnification of persistent currents can be obtained when tuning the energy of incident electron to the sharp zero and sharp resonance of transmission depending on the Aharonov-Casher (AC) phase due to the spin-orbit coupling and the angle spanned by two leads (φ)0.The general dependence of the charge and spin persistent currents on these parameters is obtained.This suggests a possible method of controlling the magnitude and direction of persistent currents by tuning the AC phase and (φ)0,without the electromagnetic flux though the ring.

  3. Spin transition rates in nanowire superlattices: Rashba spin-orbit coupling effects

    OpenAIRE

    Prabhakar, Sanjay; Melnik, Roderick; Bonilla, Luis L.

    2012-01-01

    We investigate the influence of Rashba spin-orbit coupling in a parabolic nanowire modulated by longitudinal periodic potential. The modulation potential can be obtained from realistically grown supperlattices (SLs). Our study shows that the Rashba spin-orbit interaction induces the level crossing point in the parabolic nanowire SLs. We estimate large anticrossing width (approximately 117 $\\mu eV$) between singlet-triplet states. We study the phonon and electromagnetic field mediated spin tra...

  4. Calculation of nuclear spin-spin coupling constants using frozen density embedding

    International Nuclear Information System (INIS)

    We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects in the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between 199Hg and 13C upon coordination of dimethylsulfoxide solvent molecules

  5. Calculation of nuclear spin-spin coupling constants using frozen density embedding

    Energy Technology Data Exchange (ETDEWEB)

    Götz, Andreas W., E-mail: agoetz@sdsc.edu [San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Dr MC 0505, La Jolla, California 92093-0505 (United States); Autschbach, Jochen [Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000 (United States); Visscher, Lucas, E-mail: visscher@chem.vu.nl [Amsterdam Center for Multiscale Modeling (ACMM), VU University Amsterdam, Theoretical Chemistry, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands)

    2014-03-14

    We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects in the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between {sup 199}Hg and {sup 13}C upon coordination of dimethylsulfoxide solvent molecules.

  6. Calculation of nuclear spin-spin coupling constants using frozen density embedding

    Science.gov (United States)

    Götz, Andreas W.; Autschbach, Jochen; Visscher, Lucas

    2014-03-01

    We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects in the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between 199Hg and 13C upon coordination of dimethylsulfoxide solvent molecules.

  7. Nonreciprocal Transverse Photonic Spin and Magnetization-Induced Electromagnetic Spin-Orbit Coupling

    CERN Document Server

    Levy, Miguel

    2016-01-01

    A study of nonreciprocal transverse-spin angular-momentum-density shifts for evanescent waves in magneto-optic waveguide media is presented. Their functional relation to electromagnetic spin- and orbital-momenta is presented and analyzed. It is shown that the magneto-optic gyrotropy can be re-interpreted as the nonreciprocal electromagnetic spin-density shift per unit energy flux, thus providing an interesting alternative physical picture for the magneto-optic gyrotropy. The transverse spin-density shift is found to be thickness-dependent in slab optical waveguides. This dependence is traceable to the admixture of minority helicity components in the transverse spin angular momentum. It is also shown that the transverse spin is magnetically tunable. A formulation of electromagnetic spin-orbit coupling in magneto-optic media is presented, and an alternative source of spin-orbit coupling to non-paraxial optics vortices is proposed. It is shown that magnetization-induced electromagnetic spin-orbit coupling is pos...

  8. Unconventional Bose-Einstein Condensations from Spin-Orbit Coupling

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xiang-Fa; WU Cong-Jun; Ian Mondragon-Shem

    2011-01-01

    According to the "no-node" theorem, the many-body ground state wavefunctions of conventional Bose-Einstein condensations (BEC) are positive-definite, thus time-reversal symmetry cannot be spontaneously broken. We find that multi-component bosons with spin-orbit coupling provide an unconventional type of BECs beyond this paradigm. We focus on a subtle case ofisotropic Rashba spin-orbit coupling and the spin-independent interaction. In the limit of the weak confining potential, the condensate wavefunctions are frustrated at the Hartree-Fock level due to the degeneracy of the Rashba ring. Quantum zero-point energy selects the spin-spiral type condensate through the "order-from-disorder" mechanism. In a strong harmonic confining trap, the condensate spontaneously generates a half-quantum vortex combined with the skyrmion type of spin texture. In both cases, time-reversal symmetry is spontaneously broken. These phenomena can be realized in both cold atom systems with artificial spin-orbit couplings generated from atom-laser interactions and exciton condensates in semi-conductor systems.%@@ According to the"no-node"theorem,the many-body ground state wavefunctions of conventional Bose-Einstein condensations(BEC)are positive-definite,thus time-reversal symmetry cannot be spontaneously broken.We find that multi-component bosons with spin-orbit coupling provide an unconventional type of BECs beyond this paradigm.We focus on a subtle case of isotropic Rashba spin-orbit coupling and the spin-independent interaction.In the limit of the weak confining potential,the condensate wavefunctions are frustrated at the Hartree-Fork level due to the degeneracy of the Rashba ring.Quantum zero-point energy selects the spin-spiral type condensate through the"order-from-disorder"mechanism.In a strong harmonic confining trap,the condensate spontaneously generates a half-quantum vortex combined with the skyrmion type of spin texture.In both cases,time-reversal symmetry is spontaneously broken

  9. Semiclassical treatment of transport and spin relaxation in spin-orbit coupled systems

    Energy Technology Data Exchange (ETDEWEB)

    Lueffe, Matthias Clemens

    2012-02-10

    The coupling of orbital motion and spin, as derived from the relativistic Dirac equation, plays an important role not only in the atomic spectra but as well in solid state physics. Spin-orbit interactions are fundamental for the young research field of semiconductor spintronics, which is inspired by the idea to use the electron's spin instead of its charge for fast and power saving information processing in the future. However, on the route towards a functional spin transistor there is still some groundwork to be done, e.g., concerning the detailed understanding of spin relaxation in semiconductors. The first part of the present thesis can be placed in this context. We have investigated the processes contributing to the relaxation of a particularly long-lived spin-density wave, which can exist in semiconductor heterostructures with Dresselhaus and Rashba spin-orbit coupling of precisely the same magnitude. We have used a semiclassical spindiffusion equation to study the influence of the Coulomb interaction on the lifetime of this persistent spin helix. We have thus established that, in the presence of perturbations that violate the special symmetry of the problem, electron-electron scattering can have an impact on the relaxation of the spin helix. The resulting temperature-dependent lifetime reproduces the experimentally observed one in a satisfactory manner. It turns out that cubic Dresselhaus spin-orbit coupling is the most important symmetry-breaking element. The Coulomb interaction affects the dynamics of the persistent spin helix also via an Hartree-Fock exchange field. As a consequence, the individual spins precess about the vector of the surrounding local spin density, thus causing a nonlinear dynamics. We have shown that, for an experimentally accessible degree of initial spin polarization, characteristic non-linear effects such as a dramatic increase of lifetime and the appearance of higher harmonics can be expected. Another fascinating solid

  10. Room temperature coherent control of coupled single spins in solid

    OpenAIRE

    Gaebel, T.; Domhan, M.; Popa, I.; Wittmann, C; Neumann, P; Jelezko, F.; Rabeau, J. R.; Stavrias, N.; Greentree, A. D.; Prawer, S.; Meijer, J; Twamley, J.; Hemmer, P. R.; Wrachtrup, J.

    2006-01-01

    Coherent coupling between single quantum objects is at the heart of modern quantum physics. When coupling is strong enough to prevail over decoherence, it can be used for the engineering of correlated quantum states. Especially for solid-state systems, control of quantum correlations has attracted widespread attention because of applications in quantum computing. Such coherent coupling has been demonstrated in a variety of systems at low temperature1, 2. Of all quantum systems, spins are pote...

  11. Search for spin-coupled dark matter by of means of large volume scintillators

    International Nuclear Information System (INIS)

    Spin-coupled WIMPs particles were searches by for using large volume NaI and CaD2 scintillators. Axial-vector (spin-coupled) excitation of 127I by inelastic scattering of dark matter (DM) was studied to search for spin-coupled DM. A new stringent limit on the spin-coupled DM was obtained. A new detector system with CaF2 was developed for studying elastic scattering of spin coupled WIMPs from 19F. (authors)

  12. Spin-phonon coupling in scandium doped gallium ferrite

    International Nuclear Information System (INIS)

    We embarked on a study of Scandium (Sc) doped (onto Ga site) gallium ferrite (GaFeO3) and found remarkable magnetic properties. In both doped as well as parent compounds, there were three types of Fe3+ ions (depending on the symmetry) with the structure conforming to space group Pna21 (Sp. Grp. No. 33) below room temperature down to 5 K. We also found that all Fe3+ ions occupy octahedral sites, and carry high spin moment. For the higher Sc substituted sample (Ga1−xScxFeO3: x = 0.3), a canted magnetic ordered state is found. Spin-phonon coupling below Néel temperature was observed in doped compounds. Our results indicated that Sc doping in octahedral site modifies spin-phonon interactions of the parent compound. The spin-phonon coupling strength was estimated for the first time in these Sc substituted compounds

  13. Spin-Lattice Coupling and Superconductivity in Fe Pnictides

    Directory of Open Access Journals (Sweden)

    T. Egami

    2010-01-01

    Full Text Available We consider strong spin-lattice and spin-phonon coupling in iron pnictides and discuss its implications on superconductivity. Strong magneto-volume effect in iron compounds has long been known as the Invar effect. Fe pnictides also exhibit this effect, reflected in particular on the dependence of the magnetic moment on the atomic volume of Fe defined by the positions of the nearest neighbor atoms. Through the phenomenological Landau theory, developed on the basis of the calculations by the density functional theory (DFT and the experimental results, we quantify the strength of the spin-lattice interaction as it relates to the Stoner criterion for the onset of magnetism. We suggest that the coupling between electrons and phonons through the spin channel may be sufficiently strong to be an important part of the superconductivity mechanism in Fe pnictides.

  14. Spin-Lattice Coupling and Superconductivity in Fe Pnictides

    International Nuclear Information System (INIS)

    We consider strong spin-lattice and spin-phonon coupling in iron pnictides and discuss its implications on superconductivity. Strong magneto-volume effect in iron compounds has long been known as the Invar effect. Fe pnictides also exhibit this effect, reflected in particular on the dependence of the magnetic moment on the atomic volume of Fe defined by the positions of the nearest neighbor atoms. Through the phenomenological Landau theory, developed on the basis of the calculations by the density functional theory (DFT) and the experimental results, we quantify the strength of the spin-lattice interaction as it relates to the Stoner criterion for the onset of magnetism. We suggest that the coupling between electrons and phonons through the spin channel may be sufficiently strong to be an important part of the superconductivity mechanism in Fe pnictides

  15. Spin-Lattice Coupling and Superconductivity in Fe Pnictides

    Energy Technology Data Exchange (ETDEWEB)

    Egami, Takeshi [ORNL; Singh, David J [ORNL; Fine, Boris V [ORNL; Subedi, Alaska P [ORNL; Parshall, Daniel [ORNL

    2010-01-01

    We consider strong spin-lattice and spin-phonon coupling in iron pnictides and discuss its implications on superconductivity. Strong magneto-volume effect in iron compounds has long been known as the Invar effect. Fe pnictides also exhibit this effect, reflected in particular on the dependence of the magnetic moment on the atomic volume of Fe defined by the positions of the nearest neighbor atoms. Through the phenomenological Landau theory, developed on the basis of the calculations by the density functional theory (DFT) and the experimental results, we quantify the strength of the spin-lattice interaction as it relates to the Stoner criterion for the onset of magnetism. We suggest that the coupling between electrons and phonons through the spin channel may be sufficiently strong to be an important part of the superconductivity mechanism in Fe pnictides.

  16. Spin-Lattice Coupling and Superconductivity in Fe Pnictides

    International Nuclear Information System (INIS)

    We consider strong spin-lattice and spin-phonon coupling in iron pnictides and discuss its implications on superconductivity. Strong magneto-volume effect in iron compounds has long been known as the Invar effect. Fe pnictides also exhibit this effect, reflected in particular on the dependence of the magnetic moment on the atomic volume of Fe defined by the positions of the nearest neighbor atoms. Through the phenomenological Landau theory, developed on the basis of the calculations by the density functional theory (DFT) and the experimental results, we quantify the strength of the spin-lattice interaction as it relates to the Stoner criterion for the onset of magnetism. We suggest that the coupling between electrons and phonons through the spin channel may be sufficiently strong to be an important part of the superconductivity mechanism in Fe pnictides.

  17. On matter coupled to the higher spin square

    CERN Document Server

    Raeymaekers, Joris

    2016-01-01

    Gaberdiel and Gopakumar recently proposed that the tensionless limit of string theory on $AdS_3 \\times S^3 \\times T^4$ takes the form of a higher spin theory with a gauge algebra that is referred to as the higher spin square. In this note, we formulate the linearized Vasiliev-type equations which describe a matter field coupled to the higher spin square. We study the particle spectrum of this field and show that it accounts for the entire untwisted sector of the dual symmetric orbifold CFT, thereby confirming a conjecture by Gaberdiel and Gopakumar. In doing so, we pinpoint the group-theoretic data which determine the spectrum of a matter field coupled to a general higher spin algebra, which we illustrate by revisiting the theory based on the $hs[1/2]$ algebra.

  18. Strong coupling of paramagnetic spins to a superconducting microwave resonator

    Energy Technology Data Exchange (ETDEWEB)

    Greifenstein, Moritz; Zollitsch, Christoph; Lotze, Johannes; Hocke, Fredrik; Goennenwein, Sebastian T.B.; Huebl, Hans [Walther-Meissner-Institut (WMI), Garching (Germany); Gross, Rudolf [Walther-Meissner-Institut (WMI), Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany)

    2012-07-01

    Under application of an external magnetic field, non-interacting electron spins behave as an ensemble of identical two-level-systems with tuneable transition frequency. When such an ensemble collectively interacts with a single mode of an electromagnetic resonator, the entire system can be described as two coupled quantum harmonic oscillators. The criterion for the observation of the so-called strong coupling regime is that the collective coupling strength g exceeds both the loss rate of the resonator {kappa} and of the spin ensemble {gamma}. In our experiment we realize a coupled spin-photon-system by introducing the spin marker DPPH (2,2-diphenyl-1-picrylhydrazyl) into the mode volume of a superconducting coplanar microwave resonator and investigate the interaction at 2.5, 5.0 and 7.5 GHz. For tuning the resonance, we apply an in-plane magnetic field and observe interaction at around {+-}90, {+-}180 and {+-}270 mT. While the coupling with the fundamental mode and the first harmonic mode of the resonator is identified as weak, the second harmonic shows g=21 MHz, {kappa} = 6 MHz and {gamma} = 5 MHz, i.e. the strong coupling regime. We further investigate the dependence of g on temperature and on microwave input power.

  19. Engineering hybrid Co-picene structures with variable spin coupling

    Science.gov (United States)

    Zhou, Chunsheng; Shan, Huan; Li, Bin; Zhao, Aidi; Wang, Bing

    2016-04-01

    We report on the in situ engineering of hybrid Co-picene magnetic structures with variable spin coupling using a low-temperature scanning tunneling microscope. Single picene molecules adsorbed on Au(111) are manipulated to accommodate individual Co atoms one by one, forming stable artificial hybrid structures with magnetism introduced by the Co atoms. By monitoring the evolution of the Kondo effect at each site of Co atom, we found that the picene molecule plays an important role in tuning the spin coupling between individual Co atoms, which is confirmed by theoretical calculations based on the density-functional theory. Our findings indicate that the hybrid metal-molecule structures with variable spin coupling on surfaces can be artificially constructed in a controlled manner.

  20. The non-linear coupled spin 2-spin 3 Cotton equation in three dimensions

    Science.gov (United States)

    Linander, Hampus; Nilsson, Bengt E. W.

    2016-07-01

    In the context of three-dimensional conformal higher spin theory we derive, in the frame field formulation, the full non-linear spin 3 Cotton equation coupled to spin 2. This is done by solving the corresponding Chern-Simons gauge theory system of equations, that is, using F = 0 to eliminate all auxiliary fields and thus expressing the Cotton equation in terms of just the spin 3 frame field and spin 2 covariant derivatives and tensors (Schouten). In this derivation we neglect the spin 4 and higher spin sectors and approximate the star product commutator by a Poisson bracket. The resulting spin 3 Cotton equation is complicated but can be related to linearized versions in the metric formulation obtained previously by other authors. The expected symmetry (spin 3 "translation", "Lorentz" and "dilatation") properties are verified for Cotton and other relevant tensors but some perhaps unexpected features emerge in the process, in particular in relation to the non-linear equations. We discuss the structure of this non-linear spin 3 Cotton equation but its explicit form is only presented here, in an exact but not completely refined version, in appended files obtained by computer algebra methods. Both the frame field and metric formulations are provided.

  1. Properties of spin-orbit-coupled Bose-Einstein condensates

    Science.gov (United States)

    Zhang, Yongping; Mossman, Maren Elizabeth; Busch, Thomas; Engels, Peter; Zhang, Chuanwei

    2016-06-01

    The experimental and theoretical research of spin-orbit-coupled ultracold atomic gases has advanced and expanded rapidly in recent years. Here, we review some of the progress that either was pioneered by our own work, has helped to lay the foundation, or has developed new and relevant techniques. After examining the experimental accessibility of all relevant spin-orbit coupling parameters, we discuss the fundamental properties and general applications of spin-orbit-coupled Bose-Einstein condensates (BECs) over a wide range of physical situations. For the harmonically trapped case, we show that the ground state phase transition is a Dicke-type process and that spin-orbit-coupled BECs provide a unique platform to simulate and study the Dicke model and Dicke phase transitions. For a homogeneous BEC, we discuss the collective excitations, which have been observed experimentally using Bragg spectroscopy. They feature a roton-like minimum, the softening of which provides a potential mechanism to understand the ground state phase transition. On the other hand, if the collective dynamics are excited by a sudden quenching of the spin-orbit coupling parameters, we show that the resulting collective dynamics can be related to the famous Zitterbewegung in the relativistic realm. Finally, we discuss the case of a BEC loaded into a periodic optical potential. Here, the spin-orbit coupling generates isolated flat bands within the lowest Bloch bands whereas the nonlinearity of the system leads to dynamical instabilities of these Bloch waves. The experimental verification of this instability illustrates the lack of Galilean invariance in the system.

  2. Cavity-Induced Spin-Orbit Coupling in Cold Atoms

    Science.gov (United States)

    Zhu, Chuanzhou; Dong, Lin; Pu, Han

    2016-05-01

    We consider a single ultracold atom trapped inside a single-mode optical cavity, where a two-photon Raman process induces an effective coupling between atom's pseudo-spin and external center-of-mass (COM) motion. Without the COM motion, this system is described by the Jaynes-Cummings (JC) model. We show how the atomic COM motion dramatically modifies the predictions based on the JC model, and how the cavity photon field affects the properties of spin-orbit coupled system. We take a quantum Master equation approach to investigate the situation when the cavity pumping and decay are taken into account.

  3. Coupling Spins and Diamond Color Centers to Superconducting Cavities

    International Nuclear Information System (INIS)

    Full text: Reversible transfer of quantum information between long-lived memories and quantum processors is a favorable building block of scalable quantum information devices. We present recent experimental results of strong coupling between an ensemble of nitrogen-vacancy center electron spins in diamond and a superconducting microwave coplanar waveguide resonator. Additionally, we measure hyperfine coupling to 13C nuclear spins, which is a first step towards a nuclear ensemble quantum memory. Using the dispersive shift of the cavity resonance frequency, we measure the relaxation time T1 of the NV center at milli kelvin temperatures in a nondestructive way. (author)

  4. Spin Circuit Model for 2D Channels with Spin-Orbit Coupling

    Science.gov (United States)

    Hong, Seokmin; Sayed, Shehrin; Datta, Supriyo

    2016-03-01

    In this paper we present a general theory for an arbitrary 2D channel with “spin momentum locking” due to spin-orbit coupling. It is based on a semiclassical model that classifies all the channel electronic states into four groups based on the sign of the z-component of the spin (up (U), down (D)) and the sign of the x-component of the velocity (+, -). This could be viewed as an extension of the standard spin diffusion model which uses two separate electrochemical potentials for U and D states. Our model uses four: U+, D+, U-, and D-. We use this formulation to develop an equivalent spin circuit that is also benchmarked against a full non-equilibrium Green’s function (NEGF) model. The circuit representation can be used to interpret experiments and estimate important quantities of interest like the charge to spin conversion ratio or the maximum spin current that can be extracted. The model should be applicable to topological insulator surface states with parallel channels as well as to other layered structures with interfacial spin-orbit coupling.

  5. Electromagnetic coupling of spins and pseudospins in bilayer graphene

    Science.gov (United States)

    Winkler, R.; Zülicke, U.

    2015-05-01

    We present a detailed theoretical study of bilayer-graphene's electronic properties in the presence of electric and magnetic fields. Using group-theoretical methods, we derive an invariant expansion of the Hamiltonian for electron states near the K point of the Brillouin zone. In contrast to known materials, including single-layer graphene, any possible coupling of physical quantities to components of the external electric (magnetic) field has a counterpart where the analogous component of the magnetic (electric) field couples to exactly the same combination of quantities. For example, a purely electric spin splitting appears as the magnetoelectric analog of the familiar magnetic Zeeman spin splitting. The measurable thermodynamic response induced by magnetic and electric fields is thus completely symmetric. The Pauli magnetization induced by a magnetic field takes exactly the same functional form as the polarization induced by an electric field. Our findings thus reveal unconventional behavior of spin and pseudospin degrees of freedom in their coupling to external fields. We explain how these counterintuitive couplings are consistent with fundamental principles such as time reversal symmetry. For example, only a magnetic field can give rise to a macroscopic spin polarization, whereas only a perpendicular electric field can induce a macroscopic polarization of the sublattice-related pseudospin degree of freedom characterizing the intravalley orbital motion in bilayer graphene. These rules enforced by symmetry for the matter-field interactions clarify the nature of spins versus pseudospins. We also provide numerical values of prefactors for relevant coupling terms. While our theoretical arguments use bilayer graphene as an example, they are generally valid for any material with similar symmetries. The unusual equivalence of magnetic and electric fields discussed here can provide the basis for designing more versatile device architectures for creating polarizations

  6. The non-linear coupled spin 2 - spin 3 Cotton equation in three dimensions

    CERN Document Server

    Linander, Hampus

    2016-01-01

    In the context of three-dimensional conformal higher spin theory we derive, in the frame field formulation, the full non-linear spin 3 Cotton equation coupled to spin 2. This is done by solving the corresponding Chern-Simons gauge theory system of equations, that is, using $F=0$ to eliminate all auxiliary fields and thus expressing the Cotton equation in terms of just the spin 3 frame field and spin 2 covariant derivatives and tensors (Schouten). In this derivation we neglect the spin 4 and higher spin sectors and approximate the star product commutator by a Poisson bracket. The resulting spin 3 Cotton equation is complicated but can be related to linearized versions in the metric formulation obtained previously by other authors. The expected symmetry (spin 3 "translation", "Lorentz" and "dilatation") properties are verified for Cotton and other relevant tensors but some perhaps unexpected features emerge in the process, in particular in relation to the non-linear equations. We discuss the structure of this n...

  7. Magnetic phases of spin-1 spin-orbit-coupled Bose gases.

    Science.gov (United States)

    Campbell, D L; Price, R M; Putra, A; Valdés-Curiel, A; Trypogeorgos, D; Spielman, I B

    2016-01-01

    Phases of matter are characterized by order parameters describing the type and degree of order in a system. Here we experimentally explore the magnetic phases present in a near-zero temperature spin-1 spin-orbit-coupled atomic Bose gas and the quantum phase transitions between these phases. We observe ferromagnetic and unpolarized phases, which are stabilized by spin-orbit coupling's explicit locking between spin and motion. These phases are separated by a critical curve containing both first- and second-order transitions joined at a tricritical point. The first-order transition, with observed width as small as h × 4 Hz, gives rise to long-lived metastable states. These measurements are all in agreement with theory. PMID:27025562

  8. Search for a coupling of the proton spin to gravity

    Science.gov (United States)

    Jackson Kimball, Derek; Dudley, Jordan; Li, Yan; Patel, Dilan

    2016-05-01

    We present an overview of progress in our search for a long-range coupling between rubidium (Rb) nuclear spins and the mass of the Earth, which can be interpreted as a search for a long-range monopole-dipole interaction or a spin-gravity coupling. The experiment consists of simultaneous measurement of the spin precession frequencies of overlapping ensembles of Rb-85 and Rb-87 atoms contained within an evacuated, antirelaxation-coated vapor cell. Because of the nuclear structure of Rb-85 and Rb-87, the experiment is particularly sensitive to anomalous spin-dependent interactions of the proton. We have studied a number of important systematic effects related to vector and tensor light shifts, optical pumping effects, the ac and nonlinear Zeeman effects, and magnetic field gradients. We anticipate that our experiment can improve sensitivity to anomalous long-range spin-mass couplings of the proton compared to previous experiments by more than an order of magnitude. Supported by the National Science Foundation under Grant PHY-1307507.

  9. Calculations of the indirect nuclear spin-spin coupling constants of PbH4

    DEFF Research Database (Denmark)

    Kirpekar, Sheela; Sauer, Stephan P. A.

    1999-01-01

    approximation and the second-order polarization propagator approximation with coupled-cluster singles and doubles amplitudes. The effects of nuclear motion were investigated by calculating the coupling constants as a function of the totally symmetric stretching coordinate. We find that the Fermi contact term......We report ab initio calculations of the indirect nuclear spin-spin coupling constants of PbH4 using a basis set which was specially optimized for correlated calculations of spin-spin coupling constants. All nonrelativistic contributions and the most important part of the spin-orbit correction were...

  10. On matter coupled to the higher spin square

    Science.gov (United States)

    Raeymaekers, Joris

    2016-09-01

    Gaberdiel and Gopakumar recently proposed that the tensionless limit of string theory on {{AdS}}3× {S}3× {T}4 takes the form of a higher spin theory with a gauge algebra that is referred to as the higher spin square (hss). In this note, we formulate the linearized Vasiliev-type equations which describe a matter field coupled to the hss. We study the particle spectrum of this field and show that it accounts for the entire untwisted sector of the dual symmetric orbifold CFT, thereby confirming a conjecture by Gaberdiel and Gopakumar. In doing so, we pinpoint the group-theoretic data which determine the spectrum of a matter field coupled to a general higher spin algebra, which we illustrate by revisiting the theory based on the {hs}[1/2] algebra.

  11. Spin-spin correlation functions of spin systems coupled to 2-d quantum gravity for 0 < c < 1.

    Science.gov (United States)

    Ambjørn, J.; Anagnostopoulos, K. N.; Magnea, U.; Thorleifsson, G.

    1997-02-01

    We perform Monte Carlo simulations of 2-d dynamically triangulated surfaces coupled to Ising and three-states Potts model matter. By measuring spin-spin correlation functions as a function of the geodesic distance we provide substantial evidence for a diverging correlation length at βc. The corresponding scaling exponents are directly related to the KPZ exponents of the matter fields as conjectured in [4].

  12. Entangled states decoherence in coupled molecular spin clusters

    Science.gov (United States)

    Troiani, Filippo; Szallas, Attila; Bellini, Valerio; Affronte, Marco

    2010-03-01

    Localized electron spins in solid-state systems are widely investigated as potential building blocks of quantum devices and computers. While most efforts in the field have been focused on semiconductor low-dimensional structures, molecular antiferromagnets were recently recognized as alternative implementations of effective few-level spin systems. Heterometallic, Cr-based spin rings behave as effective spin-1/2 systems at low temperature and show long decoherence times [1]; besides, they can be chemically linked and magnetically coupled in a controllable fascion [2]. Here, we theoretically investigate the decoherence of the Bell states in such ring dimers, resulting from hyperfine interactions with nuclear spins. Based on a microscopic description of the molecules [3], we simulate the effect of inhomogeneous broadening, spectral diffusion and electron-nuclear entanglement on the electron-spin coherence, estimating the role of the different nuclei (and of possible chemical substitutions), as well as the effect of simple spin-echo sequences. References: [1] F. Troiani, et al., Phys. Rev. Lett. 94, 207208 (2005). [2] G. A. Timco, S: Carretta, F. Troiani et al., Nature Nanotech. 4, 173 (2009). [3] F. Troiani, V. Bellini, and M. Affronte, Phys. Rev. B 77, 054428 (2008).

  13. Inverse spin Hall effect in ferromagnetic metal with Rashba spin orbit coupling

    Directory of Open Access Journals (Sweden)

    M.-J. Xing

    2012-09-01

    Full Text Available We report an intrinsic form of the inverse spin Hall effect (ISHE in ferromagnetic (FM metal with Rashba spin orbit coupling (RSOC, which is driven by a normal charge current. Unlike the conventional form, the ISHE can be induced without the need for spin current injection from an external source. Our theoretical results show that Hall voltage is generated when the FM moment is perpendicular to the ferromagnetic layer. The polarity of the Hall voltage is reversed upon switching the FM moment to the opposite direction, thus promising a useful reading mechanism for memory or logic applications.

  14. Spin-Flop Transition and a Tilted Canted Spin Structure in a Coupled Antiferromagnet

    Science.gov (United States)

    Shimahara, Hiroshi; Ito, Kazuhiro

    2016-04-01

    We study a uniaxial coupled Heisenberg antiferromagnet that consists of two subsystems of classical spins with small and large lengths and spin-flop transitions in a magnetic field parallel to the magnetic easy axis. It is proved that the anisotropy of inter-subsystem coupling stabilizes an asymmetric canted antiferromagnetic phase with a tilted direction of antiferromagnetism that is not perpendicular to the magnetic field. In contrast to the conventional first-order spin-flop transition, the spin-flop transition from the Néel phase to such a tilted canted antiferromagnetic (TCAF) phase is of the second order in the absence of simple anisotropic energies in the subsystems. The transition from the TCAF phase to the high-field saturated spin phase is of the second order in the strong coupling limit of the exchange interactions J1 between the small spins, whereas when J1 is finite, it becomes first-order. Therefore, in the former case, the TCAF phase converts the Néel phase continuously into the saturated phase. The transitions to the TCAF phase are accompanied by additional spontaneous symmetry breaking, causing the uniform magnetization to have a nonzero component perpendicular to the magnetic field.

  15. A generalized spin diffusion equation with four electrochemical potentials for channels with spin-orbit coupling

    Science.gov (United States)

    Sayed, Shehrin; Hong, Seokmin; Datta, Supriyo

    We will present a general semiclassical theory for an arbitrary channel with spin-orbit coupling (SOC), that uses four electrochemical potential (U + , D + , U - , and D -) depending on the sign of z-component of the spin (up (U) , down (D)) and the sign of the x-component of the group velocity (+ , -) . This can be considered as an extension of the standard spin diffusion equation that uses two electrochemical potentials for up and down spin states, allowing us to take into account the unique coupling between charge and spin degrees of freedom in channels with SOC. We will describe applications of this model to answer a number of interesting questions in this field such as: (1) whether topological insulators can switch magnets, (2) how the charge to spin conversion is influenced by the channel resistivity, and (3) how device structures can be designed to enhance spin injection. This work was supported by FAME, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.

  16. Spin pumping in electrodynamically coupled magnon-photon systems

    Science.gov (United States)

    Bai, Lihui

    The electronics industry is quickly approaching the limitation of Moore's Law due to Joule heating in high density-integrated devices. To achieve new higher-speed devices and reduce energy consumption, researchers are turning to spintronics where the intrinsic spin, rather than the charge of electrons, is used to carry information in devices. Advances in spintronics have led to the discovery of giant magnetoresistance (GMR), spin transfer torque etc. Another subject, cavity electrodynamics, promises a completely new quantum algorithm by studying the properties of a single electron interacting with photons inside of a cavity. By merging both spintronics and cavity electrodynamics, a new cutting edge field called Cavity Spintronics is forming, which draws on the advantages of both subjects to develop new spintronics devices utilizing light-matter interaction. In this work, we use electrical detection, in combination with microwave transmission, to investigate both resonant and nonresonant magnon-photon coupling in a microwave cavity at room temperature. Spin pumping in a dynamically coupled magnon-photon system is found to be distinctly different from previous experiments. Characteristic coupling features such as modes anticrossing, linewidth evolution, peculiar line shape, and resonance broadening are systematically measured and consistently analyzed by a theoretical model set on the foundation of classical electrodynamic coupling. Our experimental and theoretical approach paves the way for pursuing microwave coherent manipulation of pure spin current via the combination of spin pumping and magnon-photon coupling. Co-authored with M. Harder, C.-M. Hu from University of Manitoba, Y. P. Chen, J. Q. Xiao from University of Delaware, and X. Fan from Univeristy of Denver.

  17. Coupled intertwiner dynamics: A toy model for coupling matter to spin foam models

    Science.gov (United States)

    Steinhaus, Sebastian

    2015-09-01

    The universal coupling of matter and gravity is one of the most important features of general relativity. In quantum gravity, in particular spin foams, matter couplings have been defined in the past, yet the mutual dynamics, in particular if matter and gravity are strongly coupled, are hardly explored, which is related to the definition of both matter and gravitational degrees of freedom on the discretization. However, extracting these mutual dynamics is crucial in testing the viability of the spin foam approach and also establishing connections to other discrete approaches such as lattice gauge theories. Therefore, we introduce a simple two-dimensional toy model for Yang-Mills coupled to spin foams, namely an Ising model coupled to so-called intertwiner models defined for SU (2 )k. The two systems are coupled by choosing the Ising coupling constant to depend on spin labels of the background, as these are interpreted as the edge lengths of the discretization. We coarse grain this toy model via tensor network renormalization and uncover an interesting dynamics: the Ising phase transition temperature turns out to be sensitive to the background configurations and conversely, the Ising model can induce phase transitions in the background. Moreover, we observe a strong coupling of both systems if close to both phase transitions.

  18. Dynamical spin-density waves in a spin-orbit-coupled Bose-Einstein condensate

    Science.gov (United States)

    Li, Yan; Qu, Chunlei; Zhang, Yongsheng; Zhang, Chuanwei

    2015-07-01

    Synthetic spin-orbit (SO) coupling, an important ingredient for quantum simulation of many exotic condensed matter physics, has recently attracted considerable attention. The static and dynamic properties of a SO-coupled Bose-Einstein condensate (BEC) have been extensively studied in both theory and experiment. Here we numerically investigate the generation and propagation of a dynamical spin-density wave (SDW) in a SO-coupled BEC using a fast moving Gaussian-shaped barrier. We find that the SDW wavelength is sensitive to the barrier's velocity while varies slightly with the barrier's peak potential or width. We qualitatively explain the generation of SDW by considering a rectangular barrier in a one-dimensional system. Our results may motivate future experimental and theoretical investigations of rich dynamics in the SO-coupled BEC induced by a moving barrier.

  19. Spin lattice coupling in multiferroic hexagonal YMnO3

    Indian Academy of Sciences (India)

    Sylvain Petit; Stéphane Pailhès; Xavier Fabrèges; Martine Hennion; Fernande Moussa; Loreynne Pinsard; Louis-Pierre Regnault; Alexander Ivanov

    2008-10-01

    Aiming to shed light on the possible existence of hybrid phonon—magnon excitations in multiferroic manganites, neutron scattering measurements have been un-dertaken at LLB and ILL on the particular case of hexagonal YMnO3. Our experiments focused on a transverse acoustic phonon mode polarized along the ferroelectric axis. The neutron data show that below the magnetic transition, this particular phonon mode splits in two different branches. The upper branch is found to coincide with a spin wave mode. This manifestation of a strong spin-lattice coupling is discussed in terms of a possible hybridization between the two types of elementary excitations, the phonon and magnons.

  20. Higher-spin Interactions from CFT: The Complete Cubic Couplings

    CERN Document Server

    Sleight, Charlotte

    2016-01-01

    In this letter we provide a complete holographic reconstruction of the cubic couplings in the minimal bosonic higher-spin theory in AdS$_{d+1}$. For this purpose we also determine the OPE coefficients of all single-trace conserved currents in the $d$-dimensional free scalar $O\\left(N\\right)$ vector model, and compute the tree-level three-point Witten diagram amplitudes for a generic cubic interaction of higher-spin gauge fields in the metric-like formulation.

  1. Spin-current-driven thermoelectric generation based on interfacial spin-orbit coupling

    Science.gov (United States)

    Yagmur, A.; Karube, S.; Uchida, K.; Kondou, K.; Iguchi, R.; Kikkawa, T.; Otani, Y.; Saitoh, E.

    2016-06-01

    The longitudinal spin Seebeck effect (SSE) in Bi2O3/Cu/yttrium-iron-garnet (YIG) devices has been investigated. When an out-of-plane temperature gradient is applied to the Bi2O3/Cu/YIG device, a spin current is generated across the Cu/YIG interface via the SSE and then converted into electric voltage due to the spin-orbit coupling at the Bi2O3/Cu interface. The sign of the SSE voltage in the Bi2O3/Cu/YIG devices is opposite to that induced by the conventional inverse spin Hall effect in Pt/YIG devices. The SSE voltage in the Bi2O3/Cu/YIG devices disappears in the absence of the Bi2O3 layer and its thermoelectric conversion efficiency is independent of the Cu thickness, indicating the important role of the Bi2O3/Cu interface. This result demonstrates that not only the bulk inverse spin Hall effect but also the spin-orbit coupling near the interface can be used for SSE-based thermoelectric generation.

  2. Spin-orbit corrections to the indirect nuclear spin-spin coupling constants in XH4 (X=C, Si, Ge, and Sn)

    DEFF Research Database (Denmark)

    Kirpekar, Sheela; Jensen, Hans Jørgen Aagaard; Oddershede, Jens

    Using the quadratic response function at the ab initio SCF level of approximation we have calculated the relativistic corrections from the spin-orbit Hamiltonian, HSO, to the indirect nuclear spin-spin coupling constants of XH4 (X = C, Si, Ge, and Sn). We find that the spin-orbit contributions to...

  3. Coupled intertwiner dynamics - a toy model for coupling matter to spin foam models

    CERN Document Server

    Steinhaus, Sebastian

    2015-01-01

    The universal coupling of matter and gravity is one of the most important features of general relativity. In quantum gravity, in particular spin foams, matter couplings have been defined in the past, yet the mutual dynamics, in particular if matter and gravity are strongly coupled, are hardly explored, which is related to the definition of both matter and gravitational degrees of freedom on the discretisation. However extracting this mutual dynamics is crucial in testing the viability of the spin foam approach and also establishing connections to other discrete approaches such as lattice gauge theories. Therefore, we introduce a simple 2D toy model for Yang--Mills coupled to spin foams, namely an Ising model coupled to so--called intertwiner models defined for $\\text{SU}(2)_k$. The two systems are coupled by choosing the Ising coupling constant to depend on spin labels of the background, as these are interpreted as the edge lengths of the discretisation. We coarse grain this toy model via tensor network renor...

  4. Spin-orbit angular momentum coupling in a spin-1 Bose-Einstein condensate

    Science.gov (United States)

    Chen, Li; Pu, Han; Zhang, Yunbo

    2016-01-01

    We propose a simple model with spin and orbit angular momentum coupling in a spin-1 Bose-Einstein condensate, where three internal atomic states are Raman coupled by a pair of copropagating Laguerre-Gaussian beams. The resulting Raman transition imposes a transfer of orbital angular momentum between photons and the condensate in a spin-dependent way. Focusing on a regime where the single-particle ground state is nearly threefold degenerate, we show that the weak interatomic interaction in the condensate produces a rich phase diagram, and that a many-body Rabi oscillation between two quantum phases can be induced by a sudden quench of the quadratic Zeeman shift. We carried out our calculations using both a variational method and a full numerical method, and found excellent agreement.

  5. Spin reorientation driven by the interplay between spin-orbit coupling and Hund's rule coupling in iron pnictides

    Science.gov (United States)

    Christensen, Morten H.; Kang, Jian; Andersen, Brian M.; Eremin, Ilya; Fernandes, Rafael M.

    2015-12-01

    In most magnetically-ordered iron pnictides, the magnetic moments lie in the FeAs planes, parallel to the modulation direction of the spin stripes. However, recent experiments in hole-doped iron pnictides have observed a reorientation of the magnetic moments from in-plane to out-of-plane. Interestingly, this reorientation is accompanied by a change in the magnetic ground state from a stripe antiferromagnet to a tetragonal nonuniform magnetic configuration. Motivated by these recent observations, here we investigate the origin of the spin anisotropy in iron pnictides using an itinerant microscopic electronic model that respects all the symmetry properties of a single FeAs plane. We find that the interplay between the spin-orbit coupling and the Hund's rule coupling can account for the observed spin anisotropies, including the spin reorientation in hole-doped pnictides, without the need to invoke orbital or nematic order. Our calculations also reveal an asymmetry between the magnetic ground states of electron- and hole-doped compounds, with only the latter displaying tetragonal magnetic states.

  6. Influences of spin accumulation on the intrinsic spin Hall effect in two dimensional electron gases with Rashba spin-orbit coupling

    OpenAIRE

    Shen, SQ; Ma, X.; Hu, L.; Tao, R.

    2004-01-01

    In a two-dimensional electron gas with Rashba spin-orbit coupling, the external electric field may cause a spin Hall current in the direction perpendicular to the electric field. This effect was called the intrinsic spin Hall effect. In this paper, we investigate the influences of spin accumulation on this intrinsic spin Hall effect. We show that due to the existence of boundaries in a real sample, the spin Hall current generated by the intrinsic spin Hall effect will cause spin accumulation ...

  7. Spin-orbit coupled fermions in an optical lattice clock

    CERN Document Server

    Kolkowitz, S; Bothwell, T; Wall, M L; Marti, G E; Koller, A P; Zhang, X; Rey, A M; Ye, J

    2016-01-01

    Engineered spin-orbit coupling (SOC) in cold atom systems can aid in the study of novel synthetic materials and complex condensed matter phenomena. Despite great advances, alkali atom SOC systems are hindered by heating from spontaneous emission, which limits the observation of many-body effects. Here we demonstrate the use of optical lattice clocks (OLCs) to engineer and study SOC with metrological precision and negligible heating. We show that clock spectroscopy of the ultra-narrow transition in fermionic 87Sr represents a momentum- and spin-resolved in situ probe of the SOC band structure and eigenstates, providing direct access to the SOC dynamics and control over lattice band populations, internal electronic states, and quasimomenta. We utilize these capabilities to study Bloch oscillations, spin-momentum locking, and van Hove singularities in the transition density of states. Our results lay the groundwork for the use of OLCs to probe novel SOC phases including magnetic crystals, helical liquids, and to...

  8. The statistical origins of gauge coupling and spin

    CERN Document Server

    Klein, U

    2010-01-01

    A previous one-dimensional derivation of Schr\\"odinger's equation from statistical assumptions is generalized to three spatial dimensions, gauge fields, and spin. It is found that the same statistical assumptions that imply Schr\\"odinger's equation determine also the form of the gauge coupling terms, and the form of the corresponding local (Lorentz) forces. An explanation for the role of the electrodynamic potentials, as statistical representatives of the Lorentz force, is given. Spin one-half is introduced as the property of a statistical ensemble to respond to an external gauge field in two different ways. A generalized calculation, using the twofold number of variables, leads to Pauli's equation. The new spin term is again the statistical representative of the corresponding local force. The classical limit $\\hbar \\to 0$ of Schr\\"odinger's equation and closely related questions of interpretation of the quantum mechanical formalism are discussed.

  9. Spin waves in antiferromagnetically coupled bimetallic oxalates.

    Science.gov (United States)

    Reis, Peter L; Fishman, Randy S

    2009-01-01

    Bimetallic oxalates are molecule-based magnets with transition-metal ions M(II) and M(')(III) arranged on an open honeycomb lattice. Performing a Holstein-Primakoff expansion, we obtain the spin-wave spectrum of antiferromagnetically coupled bimetallic oxalates as a function of the crystal-field angular momentum L(2) and L(3) on the M(II) and M(')(III) sites. Our results are applied to the Fe(II)Mn(III), Ni(II)Mn(III) and V(II)V(III) bimetallic oxalates, where the spin-wave gap varies from 0 meV for quenched angular momentum to as high as 15 meV. The presence or absence of magnetic compensation appears to have no effect on the spin-wave gap. PMID:21817242

  10. Triplet Josephson current modulated by Rashba spin-orbit coupling

    International Nuclear Information System (INIS)

    We study the Rashba spin-orbit coupling (RSOC) effect on the supercurrent in a clean triplet superconductor/two-dimensional electron gas/triplet superconductor (TS/2DEG/TS) junction, where RSOC is considered in the 2DEG region. Based on the Bogoliubov-de Gennes equation and quantum scattering method, we show that RSOC can lead to a 0-π oscillation of supercurrent and the abrupt current reversal effect. The current direction can be reversed by a tiny modulation of RSOC, and this is attributed to the equal spin pairing of the TS order parameter and the spin precession phase of the quasiparticle traveling in the RSOC region. The RSOC strength can be controlled by an electric field in experiments, thus our findings provide a purely electric means to modulate the supercurrent in TS Josephson junctions.

  11. Dynamics of a two-level system coupled to a bath of spins

    Science.gov (United States)

    Wang, Haobin; Shao, Jiushu

    2012-12-01

    The dynamics of a two-level system coupled to a spin bath is investigated via the numerically exact multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) theory. Consistent with the previous work on linear response approximation [N. Makri, J. Phys. Chem. B 103, 2823 (1999)], 10.1021/jp9847540, it is demonstrated numerically that this spin-spin-bath model can be mapped onto the well-known spin-boson model if the system-bath coupling strength obeys an appropriate scaling behavior. This linear response mapping, however, may require many bath spin degrees of freedom to represent the practical continuum limit. To clarify the discrepancies resulted from different approximate treatments of this model, the population dynamics of the central two-level system has been investigated near the transition boundary between the coherent and incoherent motions via the ML-MCTDH method. It is found that increasing temperature favors quantum coherence in the nonadiabatic limit of this model, which corroborates the prediction in the previous work [J. Shao and P. Hanggi, Phys. Rev. Lett. 81, 5710 (1998)], 10.1103/PhysRevLett.81.5710 based on the non-interacting blip approximation (NIBA). However, the coherent-incoherent boundary obtained by the exact ML-MCTDH simulation is slightly different from the approximate NIBA results. Quantum dynamics in other physical regimes are also discussed.

  12. SOPPA and CCSD vibrational corrections to NMR indirect spin-spin coupling constants of small hydrocarbons

    International Nuclear Information System (INIS)

    We present zero-point vibrational corrections to the indirect nuclear spin-spin coupling constants in ethyne, ethene, cyclopropene and allene. The calculations have been carried out both at the level of the second order polarization propagator approximation (SOPPA) employing a new implementation in the DALTON program, at the density functional theory level with the B3LYP functional employing also the Dalton program and at the level of coupled cluster singles and doubles (CCSD) theory employing the implementation in the CFOUR program. Specialized coupling constant basis sets, aug-cc-pVTZ-J, have been employed in the calculations. We find that on average the SOPPA results for both the equilibrium geometry values and the zero-point vibrational corrections are in better agreement with the CCSD results than the corresponding B3LYP results. Furthermore we observed that the vibrational corrections are in the order of 5 Hz for the one-bond carbon-hydrogen couplings and about 1 Hz or smaller for the other couplings apart from the one-bond carbon-carbon coupling (11 Hz) and the two-bond carbon-hydrogen coupling (4 Hz) in ethyne. However, not for all couplings lead the inclusion of zero-point vibrational corrections to better agreement with experiment

  13. Robust conversion of singlet spin order in coupled spin-1/2 pairs by adiabatically switched RF-fields

    CERN Document Server

    Pravdivtsev, Andrey N; Yurkovskaya, Alexandra V; Vieth, Hans-Martin; Ivanov, Konstantin L

    2016-01-01

    We propose a robust and highly efficient NMR technique to create singlet spin order from longitudinal spin magnetization in coupled spin-1/2 pairs and to perform backward conversion (singlet order)$\\to$magnetization. In this method we exploit adiabatic switching of an RF-field in order to drive transitions between the singlet state and the $T_\\pm$ triplet states of a spin pair under study. We demonstrate that the method works perfectly for both strongly and weakly coupled spin pairs, providing a conversion efficiency between the singlet spin order and magnetization, which is equal to the theoretical maximum. We anticipate that the proposed technique is useful for generating long-lived singlet order, for preserving spin hyperpolarization and for assessing singlet spin order in nearly equivalent spin pairs in specially designed molecules and in low-field NMR studies.

  14. Spin-phonon coupling in scandium doped gallium ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Keka R., E-mail: kekarc@barc.gov.in, E-mail: smyusuf@barc.gov.in; Mukadam, M. D.; Basu, S.; Yusuf, S. M., E-mail: kekarc@barc.gov.in, E-mail: smyusuf@barc.gov.in [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Paul, Barnita; Roy, Anushree [Department of Physics, Indian Institute of Technology, Kharagpur 721302 (India); Grover, Vinita; Tyagi, A. K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2015-03-28

    We embarked on a study of Scandium (Sc) doped (onto Ga site) gallium ferrite (GaFeO{sub 3}) and found remarkable magnetic properties. In both doped as well as parent compounds, there were three types of Fe{sup 3+} ions (depending on the symmetry) with the structure conforming to space group Pna2{sub 1} (Sp. Grp. No. 33) below room temperature down to 5 K. We also found that all Fe{sup 3+} ions occupy octahedral sites, and carry high spin moment. For the higher Sc substituted sample (Ga{sub 1−x}Sc{sub x}FeO{sub 3}: x = 0.3), a canted magnetic ordered state is found. Spin-phonon coupling below Néel temperature was observed in doped compounds. Our results indicated that Sc doping in octahedral site modifies spin-phonon interactions of the parent compound. The spin-phonon coupling strength was estimated for the first time in these Sc substituted compounds.

  15. Spin-orbit coupling in methyl functionalized graphene

    Science.gov (United States)

    Zollner, Klaus; Frank, Tobias; Irmer, Susanne; Gmitra, Martin; Kochan, Denis; Fabian, Jaroslav

    2016-01-01

    We present first-principles calculations of the electronic band structure and spin-orbit effects in graphene functionalized with methyl molecules in dense and dilute limits. The dense limit is represented by a 2 ×2 graphene supercell functionalized with one methyl admolecule. The calculated spin-orbit splittings are up to 0.6 meV. The dilute limit is deduced by investigating a large, 7 ×7 , supercell with one methyl admolecule. The electronic band structure of this supercell is fitted to a symmetry-derived effective Hamiltonian, allowing us to extract specific hopping parameters including intrinsic, Rashba, and pseudospin inversion asymmetry spin-orbit terms. These proximity-induced spin-orbit parameters have magnitudes of about 1 meV, giant compared to pristine graphene whose intrinsic spin-orbit coupling is about 10 μ eV . We find that the origin of this giant local enhancement is the s p3 corrugation and the breaking of local pseudospin inversion symmetry, as in the case of hydrogen adatoms. Similarly to hydrogen, also methyl acts as a resonant scatterer, with a narrow resonance peak near the charge neutrality point. We also calculate STM-like images showing the local charge densities at different energies around methyl on graphene.

  16. Coupled-spin filtered MR imaging in a low field

    International Nuclear Information System (INIS)

    This paper investigates the use of an editing method of imaging using spin-echo sequences with differing radio-frequency (RF) pulses for lipid imaging in poor fields and to compare it with solvent-suppression methods. A technique of echo difference imaging (EDI) has been described in which two data sets are acquired: a normal spin-echo sequence (90-180) and a 90-90 spin-echo sequence. The intrinsic signal of uncoupled spins in the EDI method is one-half that of the conventional sequence, so that subtracting twice the EDI signal from the conventional signal should result in signal cancellation. With coupled spins, the application of the second 90 degrees pulse results in coherence transfer, and echo magnitude will not be one-half that of the 90-180 echo. This method of lipid imaging may be less vulnerable to field inhomogeneity than are solvent-suppression methods. Phantom and in vivo studies were performed at 0.15 T (TE = 44 msec and various TRs)

  17. Spin-1 bosons with coupled ground states in optical lattices

    OpenAIRE

    Krutitsky, K. V.; Graham, R

    2004-01-01

    The superfluid--Mott-insulator phase transition of ultracold spin-1 bosons with ferromagnetic and antiferromagnetic interactions in an optical lattice is theoretically investigated. Two counterpropagating linearly polarized laser beams with the angle $\\theta$ between the polarization vectors (lin-$\\theta$-lin configuration), driving an $F_g=1$ to $F_e=1$ internal atomic transition, create the optical lattice and at the same time couple atomic ground states with magnetic quantum numbers $m=\\pm...

  18. Harmonic trap resonance enhanced synthetic atomic spin-orbit coupling

    Science.gov (United States)

    Wu, Ling-Na; Luo, Xinyu; Xu, Zhi-Fang; Ueda, Masahito; Wang, Ruquan; You, Li

    2016-05-01

    The widely adopted scheme for synthetic atomic spin-orbit coupling (SOC) is based on the momentum sensitive Raman coupling, which is easily implemented in one spatial dimension. Recently, schemes based on pulsed or periodically modulating gradient magnetic field (GMF) were proposed and the main characteristic features have subsequently been demonstrated. The present work reports an experimental discovery and the associated theoretical understanding of tuning the SOC strength synthesized with GMF through the motional resonance of atomic center-of-mass in a harmonic trap. In some limits, we observe up to 10 times stronger SOC compared to the momentum impulse from GMF for atoms in free space.

  19. Spin-Orbit and Spin-Spin Coupling in the Triplet State

    OpenAIRE

    Perumal, Sathya Sai Ramakrishna Raj

    2012-01-01

    The underlying theory of “Spin” of an electron and its associated inter-actions causing internal fields and spectral shift to bulk-magnetism iswell established now. Our understanding of spin properties is significant andmore useful than ever before. In recent years there seems to be an enormousinterest towards application oriented materials that harness those spin prop-erties. Theoretical simulations remain in a position to “assist or pilot” theexperimental discovery of new materials.In this ...

  20. Effects of the Rashba spin-orbit coupling on Hofstadter’s butterfly

    International Nuclear Information System (INIS)

    We study the effect of Rashba spin-orbit coupling on the Hofstadter spectrum of a two-dimensional tight-binding electron system in a perpendicular magnetic field. We obtain the generalized coupled Harper spin-dependent equations which include the Rashba spin-orbit interaction and solve for the energy spectrum and spin polarization. We investigate the effect of spin-orbit coupling on the fractal energy spectrum and the spin polarization for some characteristic states as a function of the magnetic flux α and the spin-orbit coupling parameter. We characterize the complexity of the fractal geometry of the spin-dependent Hofstadter butterfly with the correlation dimension and show that it grows quadratically with the amplitude of the spin-orbit coupling. We study some ground state properties and the spin polarization shows a fractal-like behavior as a function of α, which is demonstrated with the exponent close to unity of the decaying power spectrum of the spin polarization. Some degree of spin localization or distribution around + 1 or - 1, for small spin-orbit coupling, is found with the determination of the entropy function as a function of the spin-orbit coupling. The excited states show a more extended (uniform) distribution of spin states. (paper)

  1. Computational quantum chemistry for single Heisenberg spin couplings made simple: Just one spin flip required

    International Nuclear Information System (INIS)

    We highlight a simple strategy for computing the magnetic coupling constants, J, for a complex containing two multiradical centers. On the assumption that the system follows Heisenberg Hamiltonian physics, J is obtained from a spin-flip electronic structure calculation where only a single electron is excited (and spin-flipped), from the single reference with maximum S^z, M, to the M − 1 manifold, regardless of the number of unpaired electrons, 2M, on the radical centers. In an active space picture involving 2M orbitals, only one β electron is required, together with only one α hole. While this observation is extremely simple, the reduction in the number of essential configurations from exponential in M to only linear provides dramatic computational benefits. This (M, M − 1) strategy for evaluating J is an unambiguous, spin-pure, wave function theory counterpart of the various projected broken symmetry density functional theory schemes, and likewise gives explicit energies for each possible spin-state that enable evaluation of properties. The approach is illustrated on five complexes with varying numbers of unpaired electrons, for which one spin-flip calculations are used to compute J. Some implications for further development of spin-flip methods are discussed

  2. Indirect 13C-1H spin-spin coupling constants in 3-carene

    International Nuclear Information System (INIS)

    The potential value of the indirect constants nJCH (n ≥ 2) for the analysis of the compositions and spatial structures of organic compounds is known, but the usual procedures for their measurement from proton-linked 13C NMR spectra are ineffective in the case of terpenoids because of the complex multiplet structures of the signals. In this paper, using (+)-3-carene as an example, the possibility is demonstrated of measuring the complete set of indirect 13C-1H spin-spin coupling constants with the aid of two-dimensional J-resolved 13C NMR with selective excitation of protons. 6 refs

  3. What can we learn about the dynamics of transported spins by measuring shot noise in spin-orbit-coupled nanostructures?

    Science.gov (United States)

    Nikolić, Branislav K.; Dragomirova, Ralitsa L.

    2009-06-01

    We review recent studies of the shot noise of spin-polarized charge currents and pure spin currents in multiterminal semiconductor nanostructures, while focusing on the effects brought by the intrinsic Rashba spin-orbit (SO) coupling and/or extrinsic SO scattering off impurities in two-dimensional electron gas (2DEG) based devices. By generalizing the scattering theory of quantum shot noise to include the full spin-density matrix of electrons injected from a spin-filtering electrode, we show how decoherence and dephasing in the course of spin precession can lead to the substantial enhancement of the Fano factor (noise-to-current ratio) of spin-polarized charge currents. These processes are suppressed by decreasing the width of the diffusive Rashba wire, so that purely electrical measurement of the shot noise in a ferromagnet|SO-coupled-diffusive-wire|paramagnet setup can quantify the degree of quantum coherence of transported spin through a remarkable one-to-one correspondence between the purity of the spin state and the Fano factor. In four-terminal SO-coupled nanostructures, injection of unpolarized charge current through the longitudinal leads is responsible not only for the pure spin Hall current in the transverse leads, but also for nonequilibrium random time-dependent current fluctuations. The analysis of the shot noise of transverse pure spin Hall current and zero charge current, or transverse spin current and non-zero charge Hall current, driven by unpolarized or spin-polarized injected longitudinal charge current, respectively, reveals a unique experimental tool to differentiate between the intrinsic Rashba and extrinsic SO mechanisms underlying the spin Hall effect in 2DEG devices. When the intrinsic mechanisms responsible for spin precession start to dominate the spin Hall effect, they also enhance the shot noise of transverse spin and charge transport in multiterminal geometries. Finally, we discuss the shot noise of transverse spin and zero charge

  4. Stripe phase and double-roton excitations in interacting spin-orbit-coupled spin-1 Bose-Einstein condensates

    Science.gov (United States)

    Sun, Kuei; Qu, Chunlei; Xu, Yong; Zhang, Yongping; Zhang, Chuanwei

    Spin-orbit (SO) coupling plays a major role in many important phenomena in condensed matter physics. However, the SO coupling physics in high-spin systems, especially with superfluids, has not been well explored because of the spin half of electrons in solids. In this context, the recent experimental realization of spin-orbit coupling in spin-1 Bose-Einstein condensates (BECs) has opened a completely new avenue for exploring SO-coupled high-spin superfluids. Nevertheless, the experiment has only revealed the single-particle physics of the system. Here, we study the effects of interactions between atoms on the ground states and collective excitations of SO-coupled spin-1 BECs in the presence of a spin-tensor potential. We find that ferromagnetic interaction between atoms can induce a stripe phase exhibiting two modulating patterns. We characterize the phase transitions between different phases using the spin-tensor density as well as the collective dipole motion of the BEC. We show that there exists a new type of double maxon-roton structure in the Bogoliubov-excitation spectrum, attributing to the three band minima of the SO-coupled spin-1 BEC. Our work could motivate further theoretical and experimental study along this direction.

  5. A spin triplet supercurrent in half metal ferromagnet/superconductor junctions with the interfacial Rashba spin-orbit coupling

    Science.gov (United States)

    Niu, ZhiPing

    2012-08-01

    dc Josephson currents in s-wave superconductor/half metal ferromagnet (HMF)/s-wave superconductor junctions are investigated. We propose the interfacial Rashba spin-orbit coupling as a possible mechanism giving rise to the spin flip Andreev reflection, which results in the singlet-triplet conversion at HMF/superconductor interfaces. When the magnetization direction of the HMF and that of the effective spin-orbit magnetic field are noncolinear, a long-ranged spin triplet supercurrent appears. The supercurrent strongly depends on the magnetization direction of the HMF and can be enhanced by the Rashba spin-orbit coupling strength.

  6. Spin - orbital-angular-momentum coupling in Bose-Einstein condensates

    OpenAIRE

    Sun, Kuei; Qu, Chunlei; Zhang, Chuanwei

    2014-01-01

    Spin-orbit coupling (SOC) plays a crucial role in many branches of physics. In this context, the recent experimental realization of the coupling between spin and linear momentum of ultracold atoms opens a completely new avenue for exploring new spin-related superfluid physics. Here we propose that another important and fundamental SOC, the coupling between spin and orbital angular momentum (SOAM), can be implemented for ultracold atoms using higher-order Laguerre-Gaussian laser beams to induc...

  7. Spin asymmetries for elastic proton scattering and the spin dependent couplings of the Pomeron

    CERN Document Server

    Trueman, T L

    2007-01-01

    This paper serves as a report on the large amount of analysis done in conjunction with the polarized proton program at RHIC. This comprises elastic scattering data of protons on protons in colliding beam or fixed target mode and proton beams on carbon targets. In addition to providing a model for the energy dependence of the analyzing power of elastic scattering needed for proton polarimetry, it also provides some significant information about the spin dependence of dominant Regge poles. Most notably, the data indicates that the Pomeron has a significant spin-flip coupling. This allows the exploration of the double spin flip asymmetry A_{NN} for which some data over a wide energy range is now available, along with a concrete realization of a proposed Odderon search.

  8. Coupling Between Spin and Gravitational Field and Equation of Motion of Spin

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In general relativity, the equation of motion of the spin is given by the equation of parallel transport, which is a result of the space-time geometry. Any result of the space-time geometry cannot be directly applied to gauge theory of gravity. In gauge theory of gravity, based on the viewpoint of the coupling between the spin and gravitational field,an equation of motion of the spin is deduced. In the post Newtonian approximation, it is proved that this equation gives the same result as that of the equation of parallel transport. So, in the post Newtonian approximation, gauge theory of gravity gives out the same prediction on the precession of orbiting gyroscope as that of general relativity.

  9. Supersolid with nontrivial topological spin textures in spin-orbit-coupled Bose gases

    Science.gov (United States)

    Han, Wei; Juzeliūnas, Gediminas; Zhang, Wei; Liu, Wu-Ming

    2015-01-01

    Supersolid is a long-sought exotic phase of matter, which is characterized by the coexistence of a diagonal long-range order of solid and an off-diagonal long-range order of superfluid. Possible candidates to realize such a phase have been previously considered, including hard-core bosons with long-range interaction and soft-core bosons. Here we demonstrate that an ultracold atomic condensate of hard-core bosons with contact interaction can establish a supersolid phase when simultaneously subjected to spin-orbit coupling and a spin-dependent periodic potential. This supersolid phase is accompanied by topologically nontrivial spin textures, and is signaled by the separation of momentum distribution peaks, which can be detected via time-of-flight measurements. We also discuss possibilities to produce and observe the supersolid phase for realistic experimental situations.

  10. Near-Earth asteroid satellite spins under spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, Shantanu P.; Margot, Jean-Luc [Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA 90095 (United States)

    2015-02-01

    We develop a fourth-order numerical integrator to simulate the coupled spin and orbital motions of two rigid bodies having arbitrary mass distributions under the influence of their mutual gravitational potential. We simulate the dynamics of components in well-characterized binary and triple near-Earth asteroid systems and use surface of section plots to map the possible spin configurations of the satellites. For asynchronous satellites, the analysis reveals large regions of phase space where the spin state of the satellite is chaotic. For synchronous satellites, we show that libration amplitudes can reach detectable values even for moderately elongated shapes. The presence of chaotic regions in the phase space has important consequences for the evolution of binary asteroids. It may substantially increase spin synchronization timescales, explain the observed fraction of asychronous binaries, delay BYORP-type evolution, and extend the lifetime of binaries. The variations in spin rate due to large librations also affect the analysis and interpretation of light curve and radar observations.

  11. Theory of Intrinsic Spin Torque Due to Interface Spin-Orbit Coupling

    Science.gov (United States)

    Kalitsov, Alan; Chshiev, Mairbek; Butler, William; Mryasov, Oleg

    2014-03-01

    The effect of intrinsic spin torque due to spin-orbit coupling (SOC) at the interface between thin ferromagnetic film and non-magnetic metal has attracted significant fundamental and applied research interest. We report quantum theory of SOC driven spin torque (SOT) within the Rashba model of SOC and two-band tight binding (TB) Hamiltonian including s-d exchange interactions (J). We employ the non-equilibrium Green Function formalism and find that SOT to the first order in SOC has symmetry consistent with the earlier quasi-classical diffusive theory. An obvious benefit of the proposed approach is the expression for the SOT given in terms of TB parameters which enables a physically transparent analysis of the dependencies of SOT on material specific parameters such as Rashba SOC constant, hopping integral, Fermi level and J. On the basis of analytical and numerical results we discuss trends in strength of SOT and its correlation with the Spin Hall conductivity. This work was supported in part by C-SPIN, STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA.

  12. Inverse spin Hall effect from pulsed spin current in organic semiconductors with tunable spin-orbit coupling.

    Science.gov (United States)

    Sun, Dali; van Schooten, Kipp J; Kavand, Marzieh; Malissa, Hans; Zhang, Chuang; Groesbeck, Matthew; Boehme, Christoph; Valy Vardeny, Z

    2016-08-01

    Exploration of spin currents in organic semiconductors (OSECs) induced by resonant microwave absorption in ferromagnetic substrates is appealing for potential spintronics applications. Owing to the inherently weak spin-orbit coupling (SOC) of OSECs, their inverse spin Hall effect (ISHE) response is very subtle; limited by the microwave power applicable under continuous-wave (cw) excitation. Here we introduce a novel approach for generating significant ISHE signals in OSECs using pulsed ferromagnetic resonance, where the ISHE is two to three orders of magnitude larger compared to cw excitation. This strong ISHE enables us to investigate a variety of OSECs ranging from π-conjugated polymers with strong SOC that contain intrachain platinum atoms, to weak SOC polymers, to C60 films, where the SOC is predominantly caused by the curvature of the molecule's surface. The pulsed-ISHE technique offers a robust route for efficient injection and detection schemes of spin currents at room temperature, and paves the way for spin orbitronics in plastic materials. PMID:27088233

  13. Inverse spin Hall effect from pulsed spin current in organic semiconductors with tunable spin-orbit coupling

    Science.gov (United States)

    Sun, Dali; van Schooten, Kipp J.; Kavand, Marzieh; Malissa, Hans; Zhang, Chuang; Groesbeck, Matthew; Boehme, Christoph; Valy Vardeny, Z.

    2016-08-01

    Exploration of spin currents in organic semiconductors (OSECs) induced by resonant microwave absorption in ferromagnetic substrates is appealing for potential spintronics applications. Owing to the inherently weak spin-orbit coupling (SOC) of OSECs, their inverse spin Hall effect (ISHE) response is very subtle; limited by the microwave power applicable under continuous-wave (cw) excitation. Here we introduce a novel approach for generating significant ISHE signals in OSECs using pulsed ferromagnetic resonance, where the ISHE is two to three orders of magnitude larger compared to cw excitation. This strong ISHE enables us to investigate a variety of OSECs ranging from π-conjugated polymers with strong SOC that contain intrachain platinum atoms, to weak SOC polymers, to C60 films, where the SOC is predominantly caused by the curvature of the molecule’s surface. The pulsed-ISHE technique offers a robust route for efficient injection and detection schemes of spin currents at room temperature, and paves the way for spin orbitronics in plastic materials.

  14. Coupled spin models for magnetic variation of planets and stars

    CERN Document Server

    Nakamichi, A; Schmitt, D; Ferriz-Mas, A; Wicht, J; Morikawa, M

    2011-01-01

    Geomagnetism is characterized by intermittent polarity reversals and rapid fluctuations. We have recently proposed a coupled macro-spin model to describe these dynamics based on the idea that the whole dynamo mechanism is described by the coherent interactions of many small dynamo elements. In this paper, we further develop this idea and construct a minimal model for magnetic variations. This simple model naturally yields many of the observed features of geomagnetism: its time evolution, the power spectrum, the frequency distribution of stable polarity periods, etc. This model has coexistent two phases; i.e. the cluster phase which determines the global dipole magnetic moment and the expanded phase which gives random perpetual perturbations that yield intermittent polarity flip of the dipole moment. This model can also describe the synchronization of the spin oscillation. This corresponds to the case of sun and the model well describes the quasi-regular cycles of the solar magnetism. Furthermore, by analyzing...

  15. Synthetic Spin-Orbit Coupling in an Optical Lattice Clock

    Science.gov (United States)

    Wall, Michael L.; Koller, Andrew P.; Li, Shuming; Zhang, Xibo; Cooper, Nigel R.; Ye, Jun; Rey, Ana Maria

    2016-01-01

    We propose the use of optical lattice clocks operated with fermionic alkaline-earth atoms to study spin-orbit coupling (SOC) in interacting many-body systems. The SOC emerges naturally during the clock interrogation, when atoms are allowed to tunnel and accumulate a phase set by the ratio of the "magic" lattice wavelength to the clock transition wavelength. We demonstrate how standard protocols such as Rabi and Ramsey spectroscopy that take advantage of the sub-Hertz resolution of state-of-the-art clock lasers can perform momentum-resolved band tomography and determine SOC-induced s -wave collisions in nuclear-spin-polarized fermions. With the use of a second counterpropagating clock beam, we propose a method for engineering controlled atomic transport and study how it is modified by p - and s -wave interactions. The proposed spectroscopic probes provide clean and well-resolved signatures at current clock operating temperatures.

  16. Benchmarking SOPPA(CC2) for the calculation of indirect nuclear spin-spin coupling constants: Carbocycles

    International Nuclear Information System (INIS)

    Graphical abstract: The performance of the SOPPA(CC2) method for the calculation of indirect nuclear carbon-carbon spin-spin coupling constants is tested on 197 coupling constants in 41 carbocycles. Research highlights: → Benchmarking of SOPPA(CC2) for carbon-carbon coupling constants in carbocycles. → SOPPA(CC2) scales as SOPPA. → SOPPA(CC2) performs well for indirect carbon-carbon coupling constants. → SOPPA(CC2) gives mean absolute errors of 1.11 Hz relative to experimental values. → SOPPA(CC2) performs better than SOPPA for couplings across more than one bond. - Abstract: We investigate the performance of the newly implemented SOPPA(CC2) method for the calculation of indirect carbon-carbon spin-spin coupling constants. SOPPA(CC2) scales as SOPPA, but has previously been shown to improve the accuracy of spin-spin coupling constants relative to CCSD. We compare the results of SOPPA(CC2) with SOPPA, SOPPA(CCSD), and available experimental values for a wide range of saturated carbocycles (in total 41 carbocycles and 197 coupling constants). It follows that SOPPA(CC2) performs better than SOPPA for couplings across more than one bond, while the two methods performs equally well for the one-bond couplings relatively to SOPPA(CCSD).

  17. Cavity Optomagnonics with Spin-Orbit Coupled Photons

    Science.gov (United States)

    Osada, A.; Hisatomi, R.; Noguchi, A.; Tabuchi, Y.; Yamazaki, R.; Usami, K.; Sadgrove, M.; Yalla, R.; Nomura, M.; Nakamura, Y.

    2016-06-01

    We experimentally implement a system of cavity optomagnonics, where a sphere of ferromagnetic material supports whispering gallery modes (WGMs) for photons and the magnetostatic mode for magnons. We observe pronounced nonreciprocity and asymmetry in the sideband signals generated by the magnon-induced Brillouin scattering of light. The spin-orbit coupled nature of the WGM photons, their geometrical birefringence, and the time-reversal symmetry breaking in the magnon dynamics impose the angular-momentum selection rules in the scattering process and account for the observed phenomena. The unique features of the system may find interesting applications at the crossroad between quantum optics and spintronics.

  18. Cavity Optomagnonics with Spin-Orbit Coupled Photons.

    Science.gov (United States)

    Osada, A; Hisatomi, R; Noguchi, A; Tabuchi, Y; Yamazaki, R; Usami, K; Sadgrove, M; Yalla, R; Nomura, M; Nakamura, Y

    2016-06-01

    We experimentally implement a system of cavity optomagnonics, where a sphere of ferromagnetic material supports whispering gallery modes (WGMs) for photons and the magnetostatic mode for magnons. We observe pronounced nonreciprocity and asymmetry in the sideband signals generated by the magnon-induced Brillouin scattering of light. The spin-orbit coupled nature of the WGM photons, their geometrical birefringence, and the time-reversal symmetry breaking in the magnon dynamics impose the angular-momentum selection rules in the scattering process and account for the observed phenomena. The unique features of the system may find interesting applications at the crossroad between quantum optics and spintronics. PMID:27314717

  19. Cavity optomagnonics with spin-orbit coupled photons

    CERN Document Server

    Osada, A; Noguchi, A; Tabuchi, Y; Yamazaki, R; Usami, K; Sadgrove, M; Yalla, R; Nomura, M; Nakamura, Y

    2015-01-01

    We experimentally implement a system of cavity optomagnonics, where a sphere of ferromagnetic material supports whispering gallery modes (WGMs) for photons and the magnetostatic mode for magnons. We observe pronounced nonreciprocity and asymmetry in the sideband signals generated by the magnon-induced Brillouin scattering of light. The spin-orbit coupled nature of the WGM photons, their geometric birefringence and the time-reversal symmetry breaking in the magnon dynamics impose the angular-momentum selection rules in the scattering process and account for the observed phenomena. The unique features of the system may find interesting applications at the crossroad between quantum optics and spintronics.

  20. Modulation of Spin Distribution and Spin Transport by a Magnetic Field in a Quasi-One-Dimensional System with Spin-Orbit Coupling

    Institute of Scientific and Technical Information of China (English)

    LING Dong-Bo; XIA Ke; LI Ding-Ping; MA Zhong-shui

    2006-01-01

    The distributions of spin and currents modulated by magnetic field in a transverse parabolic confined two-dimensional electronic system with a Rashba spin-orbit coupling have been studied numerically.It is shown that the spin accumulation and the spin related current are generated by magnetic field if the spln-orbit coupnng is presented.The distributions of charge and spin currents are antisymmetrical along the cross-section of confined system.A transversely applied electric field does not influence the characteristic behaviour of charge-and spin-dependent properties.

  1. Quantum transport of Dirac fermions in graphene with a spatially varying Rashba spin-orbit coupling

    Science.gov (United States)

    Razzaghi, Leila; Hosseini, Mir Vahid

    2015-08-01

    We theoretically study electronic transport through a region with inhomogeneous Rashba spin-orbit (RSO) coupling placed between two normal regions in a monolayer graphene. The inhomogeneous RSO region is characterized by linearly varying RSO strength within its borders and constant RSO strength in the central region. We calculate the transmission properties within the transfer matrix approach. It is shown that the amplitude of conductance oscillations reduces and at the same time the magnitude of conductance increases with increasing border thickness. We also investigate how the Fano factor can be modified by the border thickness of RSO region.

  2. Quantum spin dynamics in a spin-orbit-coupled Bose-Einstein condensate

    Science.gov (United States)

    Poon, Ting Fung Jeffrey; Liu, Xiong-Jun

    2016-06-01

    Spin-orbit-coupled bosons can exhibit rich equilibrium phases at low temperature and in the presence of particle-particle interactions. In the case with a 1D synthetic spin-orbit interaction, it has been observed that the ground state of a Bose gas can be a normal phase, stripe phase, or magnetized phase in different parameter regimes. The magnetized states are doubly degenerate and consist of a many-particle two-state system. In this work, we investigate the nonequilibrium quantum dynamics by switching on a simple one-dimensional optical lattice potential as external perturbation to induce resonant couplings between the magnetized phases, and predict a quantum spin dynamics which cannot be obtained in the single-particle systems. In particular, due to particle-particle interactions, the transition of the Bose condensate from one magnetized phase to the other is forbidden when the external perturbation strength is less than a critical value, and a full transition can occur only when the perturbation exceeds such critical strength. This phenomenon manifests itself a dynamical phase transition, with the order parameter defined by the time-averaged magnetization over an oscillation period, and the critical point behavior being exactly solvable. The thermal fluctuations are also considered in detail. From numerical simulations and exact analytic studies we show that the predicted many-body effects can be well observed with the current experiments.

  3. Spin-orbital and spin Kondo effects in parallel coupled quantum dots

    Science.gov (United States)

    Krychowski, D.; Lipiński, S.

    2016-02-01

    Strong electron correlations and interference effects are discussed in parallel-coupled single-level or orbitally doubly degenerate quantum dots. The finite-U mean-field slave boson approach is used to study many-body effects. The analysis is carried out in a wide range of parameter space including both atomic-like and molecular-like Kondo regimes and taking into account various perturbations, like interdot tunneling, interdot interaction, mixing of the electrode channels, and exchange interaction. We also discuss the influence of singularities of electronic structure and the impact of polarization of electrodes. Special attention is paid to potential spintronic applications of these systems showing how current polarization can be controlled by adjusting interference conditions and correlations by gate voltage. Simple proposals of double dot spin valve and bipolar electrically tunable spin filter are presented.

  4. Relativistic Force Field: Parametrization of (13)C-(1)H Nuclear Spin-Spin Coupling Constants.

    Science.gov (United States)

    Kutateladze, Andrei G; Mukhina, Olga A

    2015-11-01

    Previously, we reported a reliable DU8 method for natural bond orbital (NBO)-aided parametric scaling of Fermi contacts to achieve fast and accurate prediction of proton-proton spin-spin coupling constants (SSCC) in (1)H NMR. As sophisticated NMR experiments for precise measurements of carbon-proton SSCCs are becoming more user-friendly and broadly utilized by the organic chemistry community to guide and inform the process of structure determination of complex organic compounds, we have now developed a fast and accurate method for computing (13)C-(1)H SSCCs. Fermi contacts computed with the DU8 basis set are scaled using selected NBO parameters in conjunction with empirical scaling coefficients. The method is optimized for inexpensive B3LYP/6-31G(d) geometries. The parametric scaling is based on a carefully selected training set of 274 ((3)J), 193 ((2)J), and 143 ((1)J) experimental (13)C-(1)H spin-spin coupling constants reported in the literature. The DU8 basis set, optimized for computing Fermi contacts, which by design had evolved from optimization of a collection of inexpensive 3-21G*, 4-21G, and 6-31G(d) bases, offers very short computational (wall) times even for relatively large organic molecules containing 15-20 carbon atoms. The most informative SSCCs for structure determination, i.e., (3)J, were computed with an accuracy of 0.41 Hz (rmsd). The new unified approach for computing (1)H-(1)H and (13)C-(1)H SSCCs is termed "DU8c". PMID:26414291

  5. Antiferromagnetic Spin Coupling between Rare Earth Adatoms and Iron Islands Probed by Spin-Polarized Tunneling.

    Science.gov (United States)

    Coffey, David; Diez-Ferrer, José Luis; Serrate, David; Ciria, Miguel; de la Fuente, César; Arnaudas, José Ignacio

    2015-01-01

    High-density magnetic storage or quantum computing could be achieved using small magnets with large magnetic anisotropy, a requirement that rare-earth iron alloys fulfill in bulk. This compelling property demands a thorough investigation of the magnetism in low dimensional rare-earth iron structures. Here, we report on the magnetic coupling between 4f single atoms and a 3d magnetic nanoisland. Thulium and lutetium adatoms deposited on iron monolayer islands pseudomorphically grown on W(110) have been investigated at low temperature with scanning tunneling microscopy and spectroscopy. The spin-polarized current indicates that both kind of adatoms have in-plane magnetic moments, which couple antiferromagnetically with their underlying iron islands. Our first-principles calculations explain the observed behavior, predicting an antiparallel coupling of the induced 5d electrons magnetic moment of the lanthanides with the 3d magnetic moment of iron, as well as their in-plane orientation, and pointing to a non-contribution of 4f electrons to the spin-polarized tunneling processes in rare earths. PMID:26333417

  6. Band structures of carbon nanotube with spin-orbit coupling interaction

    Energy Technology Data Exchange (ETDEWEB)

    Liu Hong, E-mail: liuhong3@njnu.edu.c [Physics Department, Nanjing Normal University, Nanjing 210046 (China)

    2011-01-01

    We explore the band structures of single-walled carbon nanotubes (SWCNTs) with two types of spin-orbit couplings. The obtained results indicate that weak Rashba spin-orbit coupling interaction can lead to the breaking of four-fold degeneracy in all tubes even though without the intrinsic SO coupling. The asymmetric splitting between conduction bands and valence bands is caused by both SO couplings at the same time. When the ratio of Rashba spin-orbit coupling to the intrinsic spin-orbit coupling is larger than 3, metallic zigzag nanotube is always metallic conductor, on the contrary it becomes semiconducting properties. However, only when this ratio is equal to about 3 or the intrinsic spin-orbit coupling is much weak, the metallic armchair nanotube still holds the metallic behavior in transport.

  7. The Kondo temperature of a two-dimensional electron gas with Rashba spin-orbit coupling.

    Science.gov (United States)

    Chen, Liang; Sun, Jinhua; Tang, Ho-Kin; Lin, Hai-Qing

    2016-10-01

    We use the Hirsch-Fye quantum Monte Carlo method to study the single magnetic impurity problem in a two-dimensional electron gas with Rashba spin-orbit coupling. We calculate the spin susceptibility for various values of spin-orbit coupling, Hubbard interaction, and chemical potential. The Kondo temperatures for different parameters are estimated by fitting the universal curves of spin susceptibility. We find that the Kondo temperature is almost a linear function of Rashba spin-orbit energy when the chemical potential is close to the edge of the conduction band. When the chemical potential is far away from the band edge, the Kondo temperature is independent of the spin-orbit coupling. These results demonstrate that, for single impurity problems in this system, the most important reason to change the Kondo temperature is the divergence of density of states near the band edge, and the divergence is induced by the Rashba spin-orbit coupling. PMID:27494800

  8. Persistent Spin Current in a Hard-Wall Confining Quantum Wire with Weak Dresselhaus Spin-Orbit Coupling

    Institute of Scientific and Technical Information of China (English)

    FU Xi; ZHOU Guang-Hui

    2009-01-01

    We investigate theoretically the spin current in a quantum wire with weak Dresselhaus spin-orbit coupling connected to two normal conductors.Both the quantum wire and conductors are described by a hard-wall confining potential.Using the electron wave-functions in the quantum wire and a new definition of spin current, we have calculated the elements of linear spin current density jTs,xi and jTs,yi(I = x, y, z).We lind that the elements jTs,xx and jTs,yy have a antisymmetrical relation and the element jTs,yz has the same amount level jTs,xx and jTs,yy.We also find a net linear spin current density, which has peaks at the center of quantum wire.The net linear spin current can induce a linear electric field, which may imply a way of spin current detection.

  9. A new effective-one-body Hamiltonian with next-to-leading order spin-spin coupling

    CERN Document Server

    Balmelli, Simone

    2015-01-01

    We present a new effective-one-body (EOB) Hamiltonian with next-to-leading order (NLO) spin-spin coupling for black hole binaries endowed with arbitrarily oriented spins. The Hamiltonian is based on the model for parallel spins and equatorial orbits developed in [Physical Review D 90, 044018 (2014)], but differs from it in several ways. In particular, the NLO spin-spin coupling is not incorporated by a redefinition of the centrifugal radius $r_c$, but by separately modifying certain sectors of the Hamiltonian, which are identified according to their dependence on the momentum vector. The gauge-fixing procedure we follow allows us to reduce the 25 different terms of the NLO spin-spin Hamiltonian in Arnowitt-Deser-Misner coordinates to only 9 EOB terms. This is an improvement with respect to the EOB model recently proposed in [Physical Review D 91, 064011 (2015)], where 12 EOB terms were involved. Another important advantage is the remarkably simple momentum structure of the spin-spin terms in the effective Ham...

  10. Controllable strong coupling between individual spin qubits and a transmission line resonator via nanomechanical resonators

    International Nuclear Information System (INIS)

    We investigate a hybrid quantum system where an individual electronic spin qubit (EQ) and a transmission line resonator (TLR) are connected by a nanomechanical resonator (NAMR). We analyze the possibility of realizing a strong coupling between the EQ and the TLR. Compared with a direct coupling between an EQ and a TLR, the achieved coupling can be stronger and controllable. The proposal might be used to implement a high-fidelity quantum state transfer between the spin qubit and the TLR, and is scalable to involve several individual EQ-NAMR coupled systems with a TLR. -- Highlights: ► Strong coupling of a spin qubit to a transmission line resonator is achieved. ► The coupling is mediated by a nanomechanical resonator. ► The coupling is controllable and stronger than the direct spin-resonator coupling.

  11. Conservation law in noncommutative geometry -- Application to spin-orbit coupled systems

    OpenAIRE

    Sugimoto, Naoyuki; Nagaosa, Naoto

    2012-01-01

    The quantization scheme by noncommutative geometry developed in string theory is applied to establish the conservation law of twisted spin and spin current densities in the spin-orbit coupled systems. Starting from the pedagogical introduction to Hopf algebra and deformation quantization, the detailed derivation of the conservation law is given.

  12. Experimental observation of the spin-Hall effect in a spin orbit coupled two-dimensional hole gas

    Science.gov (United States)

    Kaestner, B.; Wunderlich, J.; Jungwirth, T.; Sinova, J.; Nomura, K.; MacDonald, A. H.

    2006-08-01

    Electrically induced ordering and manipulation of electron spins in semiconductors has a number of practical advantages over the established techniques using circularly polarized light sources, external magnetic fields and spin injection from a ferromagnet. The spin-Hall effect utilizes spin-orbit coupling to induce edge spin accumulation in response to a longitudinal electric field which can be applied locally and lead to low energy consumption devices. We study spin accumulation near the edge of a weakly disordered two-dimensional hole gas (2DHG) in a GaAs/AlGaAs heterostructure where the magnitude of the transverse spin current approaches the intrinsic, disorder independent value, in contrast to the impurity dominated regime observed in 3D electron doped systems. In our experiment, the induced spin polarization is detected by the electroluminescence resulting from two p-n junctions bordering the 2DHG channel. When an electric field is applied across the 2DHG channel, a non-zero out-of-plane component of the spin is optically detected. The sign of the spin depends on the direction of the field and is opposite for the two edges, consistent with theory predictions. We also report and analyze an in-plane spin-polarization effect induced in the device by asymmetric electron-hole recombination.

  13. Perturbative treatment of spin-orbit coupling within spin-free exact two-component theory

    International Nuclear Information System (INIS)

    This work deals with the perturbative treatment of spin-orbit-coupling (SOC) effects within the spin-free exact two-component theory in its one-electron variant (SFX2C-1e). We investigate two schemes for constructing the SFX2C-1e SOC matrix: the SFX2C-1e+SOC [der] scheme defines the SOC matrix elements based on SFX2C-1e analytic-derivative theory, hereby treating the SOC integrals as the perturbation; the SFX2C-1e+SOC [fd] scheme takes the difference between the X2C-1e and SFX2C-1e Hamiltonian matrices as the SOC perturbation. Furthermore, a mean-field approach in the SFX2C-1e framework is formulated and implemented to efficiently include two-electron SOC effects. Systematic approximations to the two-electron SOC integrals are also proposed and carefully assessed. Based on benchmark calculations of the second-order SOC corrections to the energies and electrical properties for a set of diatomic molecules, we show that the SFX2C-1e+SOC [der] scheme performs very well in the computation of perturbative SOC corrections and that the “2eSL” scheme, which neglects the (SS|SS)-type two-electron SOC integrals, is both efficient and accurate. In contrast, the SFX2C-1e+SOC [fd] scheme turns out to be incompatible with a perturbative treatment of SOC effects. Finally, as a first chemical application, we report high-accuracy calculations of the 201Hg quadrupole-coupling parameters of the recently characterized ethylmercury hydride (HHgCH2CH3) molecule based on SFX2C-1e coupled-cluster calculations augmented with second-order SOC corrections obtained at the Hartree-Fock level using the SFX2C-1e+SOC [der]/2eSL scheme

  14. Massive higher spin fields in curved spacetime and necessity of non-minimal couplings

    CERN Document Server

    Fukuma, Masafumi; Sakai, Katsuta; Yamamoto, Junji

    2016-01-01

    Free massive higher spin fields in weak background gravitational fields are discussed. Contrary to the spin one case, higher spin fields should have nontrivial non-minimal couplings to the curvature. A precise analysis is given for the spin 2 case, and it is shown that two conditions should be satisfied among the five non-minimal coupling constants, which we derive both in the Hamiltonian and Lagrangian formalisms. It is checked that the linearized limit of the massive gravity theory indeed has the non-minimal couplings that satisfy the conditions.

  15. Valence Band Splitting on Multilayer MoS2: Mixing of Spin-Orbit Coupling and Interlayer Coupling.

    Science.gov (United States)

    Fan, Xiaofeng; Singh, David J; Zheng, Weitao

    2016-06-16

    Understanding the origin of valence band splitting is important because it governs the unique spin and valley physics in few-layer MoS2. We explore the effects of spin-orbit coupling and interlayer coupling on few-layer MoS2 using first-principles methods. We find spin-orbit coupling has a major contribution to the valence band splitting at K in multilayer MoS2. In double-layer MoS2, the interlayer coupling leads to the widening of the gap between the already spin-orbit split states. This is also the case for the bands of the K-point in bulk MoS2. In triple-layer MoS2, the strength of interlayer coupling of the spin-up channel becomes different from that of spin-down at K. This combined with spin-orbit coupling results in the band splitting in two main valence bands at K. With the increase of pressure, this phenomenon becomes more obvious with a decrease of main energy gap in the splitting valence bands at the K valley. PMID:27225320

  16. A pure spin-current injector of semiconductor quantum dots with Andreev reflection and Rashba spin-orbit coupling

    Institute of Scientific and Technical Information of China (English)

    Ye Cheng-Zhi; Nie Yi-Hang; Liang Jiu-Qing

    2011-01-01

    We propose a four-terminal device consisting of two parallel quantum dots with Rashba spin-orbit interaction (RSOI),coupled to two side superconductor leads and two common ferromagnetic leads,respectively.The two ferromagnetic leads and two quantum dots form a ring threaded by Aharonov-Bohm (AB) flux.This device possesses normal quasiparticle transmission between the two ferromagnetic leads,and normal and crossed Andreev reflections providing conductive holes.For the appropriate spin polarization of the ferromagnetic leads,RSO1 and AB flux,the pure spin-up (or spin-down) current without net charge current in the right lead,which is due to the equal numbers of electrons and holes with the same spin-polarization moving along the same direction,can be obtained by adjusting the gate voltage,which may be used in practice as a pure spin-current injector.

  17. Giant Spin Pumping and Inverse Spin Hall Effect in the Presence of Surface and Bulk Spin-Orbit Coupling of Topological Insulator Bi2Se3.

    Science.gov (United States)

    Jamali, Mahdi; Lee, Joon Sue; Jeong, Jong Seok; Mahfouzi, Farzad; Lv, Yang; Zhao, Zhengyang; Nikolić, Branislav K; Mkhoyan, K Andre; Samarth, Nitin; Wang, Jian-Ping

    2015-10-14

    Three-dimensional (3D) topological insulators are known for their strong spin-orbit coupling (SOC) and the existence of spin-textured surface states that might be potentially exploited for "topological spintronics." Here, we use spin pumping and the inverse spin Hall effect to demonstrate successful spin injection at room temperature from a metallic ferromagnet (CoFeB) into the prototypical 3D topological insulator Bi2Se3. The spin pumping process, driven by the magnetization dynamics of the metallic ferromagnet, introduces a spin current into the topological insulator layer, resulting in a broadening of the ferromagnetic resonance (FMR) line width. Theoretical modeling of spin pumping through the surface of Bi2Se3, as well as of the measured angular dependence of spin-charge conversion signal, suggests that pumped spin current is first greatly enhanced by the surface SOC and then converted into a dc-voltage signal primarily by the inverse spin Hall effect due to SOC of the bulk of Bi2Se3. We find that the FMR line width broadens significantly (more than a factor of 5) and we deduce a spin Hall angle as large as 0.43 in the Bi2Se3 layer. PMID:26367103

  18. Reciprocal spin Hall effects in conductors with strong spin-orbit coupling: a review.

    Science.gov (United States)

    Niimi, Yasuhiro; Otani, YoshiChika

    2015-12-01

    Spin Hall effect and its inverse provide essential means to convert charge to spin currents and vice versa, which serve as a primary function for spintronic phenomena such as the spin-torque ferromagnetic resonance and the spin Seebeck effect. These effects can oscillate magnetization or detect a thermally generated spin splitting in the chemical potential. Importantly this conversion process occurs via the spin-orbit interaction, and requires neither magnetic materials nor external magnetic fields. However, the spin Hall angle, i.e. the conversion yield between the charge and spin currents, depends severely on the experimental methods. Here we discuss the spin Hall angle and the spin diffusion length for a variety of materials including pure metals such as Pt and Ta, alloys and oxides determined by the spin absorption method in a lateral spin valve structure. PMID:26513299

  19. Effects of spin-orbit coupling on magnetic properties of discrete and extended magnetic systems.

    Science.gov (United States)

    Dai, Dadi; Xiang, Hongjun; Whangbo, Myung-Hwan

    2008-10-01

    In accounting for the magnetic properties of discrete and extended compounds with unpaired spins, it is crucial to know the nature of their ground and low-lying excited states. In this review we surveyed quantum mechanical descriptions on how these states are affected by spin-orbit coupling and attempted to provide a conceptual framework with which to think about spin-orbit coupling and its applications. PMID:18484639

  20. Sensitively Temperature-Dependent Spin Orbit Coupling in SrIrO3 Thin Films

    OpenAIRE

    Zhang, Lunyong; Chen, Y. B.; Zhou, Jian; Zhang, Shan-Tao; Gu, Zheng-Bin; Yao, Shu-Hua; Chen, Yan-Feng

    2013-01-01

    Spin orbit coupling plays a non-perturbation effect in many recently developed novel fields including topological insulators and spin-orbit assistant Mott insulators. In this paper, strongly temperature-dependent spin orbit coupling, revealed by weak anti-localization, is observed at low temperature in 5d strongly correlated compound, SrIrO3. As the temperature rising, increase rate of Rashba coefficient is nearly 30%-45%/K. The increase is nearly 100 times over that observed in semiconductor...

  1. Multi-Q hexagonal spin density waves and dynamically generated spin-orbit coupling: Time-reversal invariant analog of the chiral spin density wave

    Science.gov (United States)

    Venderbos, J. W. F.

    2016-03-01

    We study hexagonal spin-channel ("triplet") density waves with commensurate M -point propagation vectors. We first show that the three Q =M components of the singlet charge density and charge-current density waves can be mapped to multicomponent Q =0 nonzero angular momentum order in three dimensions (3D) with cubic crystal symmetry. This one-to-one correspondence is exploited to define a symmetry classification for triplet M -point density waves using the standard classification of spin-orbit coupled electronic liquid crystal phases of a cubic crystal. Through this classification we naturally identify a set of noncoplanar spin density and spin-current density waves: the chiral spin density wave and its time-reversal invariant analog. These can be thought of as 3 DL =2 and 4 spin-orbit coupled isotropic β -phase orders. In contrast, uniaxial spin density waves are shown to correspond to α phases. The noncoplanar triple-M spin-current density wave realizes a novel 2 D semimetal state with three flavors of four-component spin-momentum locked Dirac cones, protected by a crystal symmetry akin to nonsymmorphic symmetry, and sits at the boundary between a trivial and topological insulator. In addition, we point out that a special class of classical spin states, defined as classical spin states respecting all lattice symmetries up to global spin rotation, are naturally obtained from the symmetry classification of electronic triplet density waves. These symmetric classical spin states are the classical long-range ordered limits of chiral spin liquids.

  2. Thermal conductivity of magnetic insulators with strong spin-orbit coupling

    Science.gov (United States)

    Stamokostas, Georgios; Lapas, Panteleimon; Fiete, Gregory A.

    We study the influence of spin-orbit coupling on the thermal conductivity of various types of magnetic insulators. In the absence of spin-orbit coupling and orbital-degeneracy, the strong-coupling limit of Hubbard interactions at half filling can often be adequately described in terms of a pure spin Hamiltonian of the Heisenberg form. However, in the presence of spin-orbit coupling the resulting exchange interaction can become highly anisotropic. The effect of the atomic spin-orbit coupling, taken into account through the effect of magnon-phonon interactions and the magnetic order and excitations, on the lattice thermal conductivity of various insulating magnetic systems is studied. We focus on the regime of low temperatures where the dominant source of scattering is two-magnon scattering to one-phonon processes. The thermal current is calculated within the Boltzmann transport theory. We are grateful for financial support from NSF Grant DMR-0955778.

  3. Conserved Spin and Orbital Angular Momentum Hall Current in a Two-Dimensional Electron System with Rashba and Dresselhaus Spin-orbit Coupling

    OpenAIRE

    Chen, Tsung-Wei; Huang, Chih-Meng; Guo, G. Y.

    2006-01-01

    We study theoretically the spin and orbital angular momentum (OAM) Hall effect in a high mobility two-dimensional electron system with Rashba and Dresselhuas spin-orbit coupling by introducing both the spin and OAM torque corrections, respectively, to the spin and OAM currents. We find that when both bands are occupied, the spin Hall conductivity is still a constant (i.e., independent of the carrier density) which, however, has an opposite sign to the previous value. The spin Hall conductivit...

  4. Spin-star environment assisted entanglement generation in weakly coupled bipartite systems

    International Nuclear Information System (INIS)

    We study the entanglement evolution in a weakly coupled bipartite system with a large energy level difference under the influence of spin-star environments. The subsystems can be coupled to a pure state or a thermal equilibrium state spin-star environment. Our results show that, in the case of the coupling strength being less than the energy level difference of the subsystems (weakly coupled), the spin-star environment can always be used to assist the entanglement generation of the bipartite system. (general)

  5. Suppression of Direct Spin Hall Currents in Two-Dimensional Electronic Systems with both Rashba and Dresselhaus Spin-Orbit Couplings

    Institute of Scientific and Technical Information of China (English)

    XIONG Jian-Wen; HU Liang-Bin; ZHANG Zhen-Xi

    2006-01-01

    @@ Based on the Heisenberg equations of motion for the electron orbital and spin degrees of freedom in two-dimensional electronic systems with both Rashba and Dresselhaus spin-orbit couplings, we show that an ac electric field can cause an ac spin Hall current in such a system. In contrast to some previous theoretical prediction, the spin Hall current will be suppressed completely in the dc limit. We argue that the suppression of dc spin Hall currents in such a system is actually a much natural result of the dynamic spin evolution due to the combined action of a dc external electric field and the intrinsic spin-orbit coupling.

  6. Spin-orbit coupling at surfaces and 2D materials.

    Science.gov (United States)

    Krasovskii, E E

    2015-12-16

    Spin-orbit interaction gives rise to a splitting of surface states via the Rashba effect, and in topological insulators it leads to the existence of topological surface states. The resulting k(//) momentum separation between states with the opposite spin underlies a wide range of new phenomena at surfaces and interfaces, such as spin transfer, spin accumulation, spin-to-charge current conversion, which are interesting for fundamental science and may become the basis for a breakthrough in the spintronic technology. The present review summarizes recent theoretical and experimental efforts to reveal the microscopic structure and mechanisms of spin-orbit driven phenomena with the focus on angle and spin-resolved photoemission and scanning tunneling microscopy. PMID:26580290

  7. Charge, current and spin densities of a two-electron system in Russell-Saunders spin-orbit coupled eigenstates

    Science.gov (United States)

    Ayuel, K.; de Châtel, P. F.; Amani, Salah

    2002-04-01

    Charge, current and spin densities are calculated for a two-electron system, maintaining the explicit form of the wave functions, in terms of Slater determinants. The two-electron Russell-Saunders spin-orbit coupled eigenstates | L, S, J, MJ> are expressed as four-component spinors, and the operators of the above densities as 4×4 matrices. The contributions of various one-electron states to these densities are identified.

  8. Geminal Spin-Spin 2J(29Si-O-29Si) Couplings in Silicones and Silicates

    Czech Academy of Sciences Publication Activity Database

    Schraml, Jan; Kurfürst, Milan; Blechta, Vratislav

    - : -, 2011, s. 171. ISBN N. [International Symposium on Silicon Chemistry /16./. Hamilton, Ontario (CA), 14.08.2011-18.08.2011] R&D Projects: GA ČR GP203/08/P412; GA AV ČR IAA400720706; GA TA ČR TA01010646 Institutional research plan: CEZ:AV0Z40720504 Keywords : spin-spin * silicones * couplings Subject RIV: CF - Physical ; Theoretical Chemistry

  9. Magnetic coupling in superconducting spin valves with strong ferromagnets

    Science.gov (United States)

    Flokstra, M.; van der Knaap, J. M.; Aarts, J.

    2010-11-01

    We investigate the magnetotransport behavior of ferromagnet (F)/superconductor/ferromagnet trilayers made of ferromagnetic Ni80Fe20 (Permalloy, Py) and superconducting Nb for temperatures both above and below the superconducting transition temperature Tc . In such devices, and for weak ferromagnets, Tc depends on the relative magnetization directions of the two F layers in such a way that TcP of the parallel (P) alignment is lower than TcAP of the antiparallel (AP) alignment (the so-called superconducting spin-valve effect). For strong magnets, the suppression of Andreev reflection may alter this picture, but also stray field effects become important, as is known from earlier work. We compare large-area samples with microstructured ones, and find blocklike switching in the latter. We show this not to be due to a switch between the P and AP states, but rather to dipolar coupling between domains which are forming in the two Py layers, making a stray-field scenario likely. We also present measurements of the depairing (critical) current Idp and show that a similar depression of superconductivity exists far below Tc as is found around Tc .

  10. Experimental investigation of spin-orbit coupling in n-type PbTe quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Peres, M. L.; Monteiro, H. S.; Castro, S. de [Institute of Physics and Chemistry, Federal University of Itajubá, PB 50, 37500-903 Itajubá, MG (Brazil); Chitta, V. A.; Oliveira, N. F. [Institute of Physics, University of São Paulo, PB 66318, 05315-970 São Paulo, SP (Brazil); Mengui, U. A.; Rappl, P. H. O.; Abramof, E. [Laboratório Associado de Sensores e Materiais, Instituto Nacional de Pesquisas Espaciais, PB 515, 12201-970 São José dos Campos, SP (Brazil); Maude, D. K. [Grenoble High Magnetic Field Laboratory, CNRS, BP 166, 38042 Grenoble Cedex 9 (France)

    2014-03-07

    The spin-orbit coupling is studied experimentally in two PbTe quantum wells by means of weak antilocalization effect. Using the Hikami-Larkin-Nagaoka model through a computational global optimization procedure, we extracted the spin-orbit and inelastic scattering times and estimated the strength of the zero field spin-splitting energy Δ{sub so}. The values of Δ{sub so} are linearly dependent on the Fermi wave vector (k{sub F}) confirming theoretical predictions of the existence of large spin-orbit coupling in IV-VI quantum wells originated from pure Rashba effect.

  11. Interfacial spin Hall current in a Josephson junction with Rashba spin—orbit coupling

    International Nuclear Information System (INIS)

    We theoretically investigate the spin transport properties of the Cooper pairs in a conventional Josephson junction with Rashba spin—orbit coupling considered in one of the superconducting leads. It is found that an angle-resolved spin supercurrent flows through the junction and a nonzero interfacial spin Hall current driven by the superconducting phase difference also appears at the interface. The physical origin of this is that the Rashba spin—orbit coupling can induce a triplet order parameter in the s-wave superconductor. The interfacial spin Hall current dependences on the system parameters are also discussed. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  12. Controllability of spin 1 systems and realization of ternary SWAP gate in two spin 1 systems coupled with Ising interaction

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper,we investigate the controllability of spin 1 systems and the realization of ternary gates.Using dipole and quadrupole operators as the orthogonal basis of su(3) algebra,we discuss the controllability of one spin 1 systems and offer the concept of a complete set of control operators first.Then we present the controllability of two spin 1 systems coupled with Ising interaction and the transforming relations of the drift process of the system.Finally the specific realization of the ternary SWAP gate in these systems is discussed.It takes 9 drift processes and 25 basic control processes.

  13. Induced spin filtering in electron transmission through chiral molecular layers adsorbed on metals with strong spin-orbit coupling

    Science.gov (United States)

    Gersten, Joel; Kaasbjerg, Kristen; Nitzan, Abraham

    2013-09-01

    Recent observations of considerable spin polarization in photoemission from metal surfaces through monolayers of chiral molecules were followed by several efforts to rationalize the results as the effect of spin-orbit interaction that accompanies electronic motion on helical, or more generally strongly curved, potential surfaces. In this paper we (a) argue, using simple models, that motion in curved force-fields with the typical energies used and the characteristic geometry of DNA cannot account for such observations; (b) introduce the concept of induced spin filtering, whereupon selectivity in the transmission of the electron orbital angular momentum can induce spin selectivity in the transmission process provided there is strong spin-orbit coupling in the substrate; and (c) show that the spin polarization in the tunneling current as well as the photoemission current from gold covered by helical adsorbates can be of the observed order of magnitude. Our results can account for most of the published observations that involved gold and silver substrates; however, recent results obtained with an aluminum substrate can be rationalized within the present model only if strong spin-orbit coupling is caused by the built-in electric field at the molecule-metal interface.

  14. Effective spin Hall properties of a mixture of materials with and without spin-orbit coupling: Tailoring the effective spin diffusion length

    Science.gov (United States)

    Yue, Z.; Prestgard, M. C.; Tiwari, A.; Raikh, M. E.

    2016-01-01

    We study theoretically the effective spin Hall properties of a composite consisting of two materials with and without spin-orbit (SO) coupling. In particular, we assume that SO material represents a system of grains in a matrix with no SO. We calculate the effective spin Hall angle and the effective spin diffusion length of the mixture. Our main qualitative finding is that, when the bare spin diffusion length is much smaller than the radius of the grain, the effective spin diffusion length is strongly enhanced, well beyond the "geometrical" factor. The physical origin of this additional enhancement is that, with small diffusion length, the spin current mostly flows around the grain without suffering much loss. We also demonstrate that the voltage, created by a spin current, is sensitive to a very weak magnetic field directed along the spin current, and even reverses sign in a certain domain of fields. The origin of this sensitivity is that the spin precession, caused by magnetic field, takes place outside the grains where SO is absent.

  15. Plasmon Decay and Thermal Transport from Spin-Charge Coupling in Generic Luttinger Liquids

    Science.gov (United States)

    Levchenko, Alex

    2014-11-01

    We discuss the violation of spin-charge separation in generic nonlinear Luttinger liquids and investigate its effect on the relaxation and thermal transport of genuine spin-1 /2 electron liquids in ballistic quantum wires. We identify basic scattering processes compatible with the symmetry of the problem and conservation laws that lead to the decay of plasmons into the spin modes. We derive a closed set of coupled kinetic equations for the spin-charge excitations and solve the problem of thermal conductance of interacting electrons for an arbitrary relation between the quantum wire length and spin-charge thermalization length.

  16. Spin susceptibilities in armchair graphene nanoribbons with Rashba spin–orbit coupling

    Science.gov (United States)

    Tan, Xiao-Dong; Hu, Xiaohui; Liao, Xiao-Ping; Sun, Litao

    2016-08-01

    Based on linear response theory, we studied the spin susceptibilities of armchair graphene nanoribbons (AGNRs) with Rashba spin–orbit coupling (RSOC) in an oscillating magnetic field. It is shown that by tuning the field frequency, RSOC or ribbon width to satisfy the resonance condition, the spins in AGNRs will be effectively magnetized at room temperature due to the electron transitions between RSOC-induced spin-split subbands. Moreover, in this process the magnitude of spin magnetization can also be flexibly manipulated by selecting different resonant frequency or RSOC. Thus, we provide a promisingly well-controlled scheme for the spin magnetization of AGNRs, which is useful for spintronics applications.

  17. Investigation of organic magnetoresistance dependence on spin-orbit coupling using 8-hydroxyquinolinate rare-earth based complexes

    Science.gov (United States)

    Carvalho, R. S.; Costa, D. G.; Ávila, H. C.; Paolini, T. B.; Brito, H. F.; Capaz, Rodrigo B.; Cremona, M.

    2016-05-01

    The recently discovered organic magnetoresistance effect (OMAR) reveals the spin-dependent behavior of the charge transport in organic semiconductors. So far, it is known that hyperfine interactions play an important role in this phenomenon and also that spin-orbit coupling is negligible for light-atom based compounds. However, in the presence of heavy atoms, spin-orbit interactions should play an important role in OMAR. It is known that these interactions are responsible for singlet and triplet states mixing via intersystem crossing and the change of spin-charge relaxation time in the charge mobility process. In this work, we report a dramatic change in the OMAR effect caused by the presence of strong intramolecular spin-orbit coupling in a series of rare-earth quinolate organic complex-based devices. Our data show a different OMAR lineshape compared with the OMAR lineshape of tris(8-hydroxyquinolinate) aluminum-based devices, which are well described in the literature. In addition, electronic structure calculations based on density functional theory help to establish the connection between this results and the presence of heavy central ions in the different complexes.

  18. Persistent spin current in a quantum-dot ring with Rashba spin-orbit coupling

    International Nuclear Information System (INIS)

    By means of the non-equilibrium Green's function technique, the persistent spin and charge currents in a quantum-dot ring are theoretically investigated. We find that by introducing local spin-orbit interaction on an individual quantum dot, a pure persistent spin current can be induced even in the absence of external magnetic flux and magnetic material. Compared with persistent spin current in the quantum ring, the magnitude and direction of the persistent spin current can be controlled experimentally by means of adjusting the energy levels of quantum dots. In addition, a certain spin component of the persistent current can be suppressed by introducing an external magnetic flux.

  19. Nuclear Magnetic Resonance Studies of Topological Insulators and Materials with a Large Spin-Orbit Coupling

    Science.gov (United States)

    Nisson, David Mark

    Nuclear magnetic resonance (NMR) studies were performed on large single crystals of the topological insulator materials Bi2Se 3 and Bi2Te2Se, as well as the doped topological superconductor candidate CuxBi2Se3. Samples were grown using the facilities of the Department of Physics at the University of California, Davis. Bi2Se3 crystals were grown under different conditions to control the intrinsic concentration of carrier electrons, which arises from an inherent tendency for Se vacancies to form during growth. The electrical properties, including carrier concentration of each sample, were then characterized by electrical transport measurements. Frequency swept 209Bi spectra for these samples reveal a relatively weak electric field gradient producing a splitting of about 160 kHz, and a shift that depends on the carrier concentration. The correlation between shift and intrinsic carrier concentration determines the hyperfine coupling strength between the Bi nuclei and the bulk carrier electrons. The spin-lattice relaxation rate T1--1 was also measured as a function of temperature. It is mostly temperature-independent, indicating that in samples of Bi2Se3 grown by the Bridgman method, relaxation may occur by spin diffusion to impurities rather than by previously reported mechanisms. Nuclear magnetic resonance measurements were also performed on single crystals of Bi2Se3 as a function of the angle between the field and the c-axis of the crystal lattice. These frequency-swept measurements revealed anomalous behavior that deviated significantly from what would be expected of the angular dependence of the resonance spectrum. Powder samples reveal spectra that differ still from the expectations from the single-crystal data. These phenomena are explained in part by the fact that the nutation time tpi/2) depends on the angle as a result of overlap between the central and satellite transitions, but may in addition be the result of screening of the radiofrequency field by the

  20. Spin-orbit coupling, electron transport and pairing instabilities in two-dimensional square structures

    Science.gov (United States)

    Kocharian, Armen N.; Fernando, Gayanath W.; Fang, Kun; Palandage, Kalum; Balatsky, Alexander V.

    2016-05-01

    Rashba spin-orbit effects and electron correlations in the two-dimensional cylindrical lattices of square geometries are assessed using mesoscopic two-, three- and four-leg ladder structures. Here the electron transport properties are systematically calculated by including the spin-orbit coupling in tight binding and Hubbard models threaded by a magnetic flux. These results highlight important aspects of possible symmetry breaking mechanisms in square ladder geometries driven by the combined effect of a magnetic gauge field spin-orbit interaction and temperature. The observed persistent current, spin and charge polarizations in the presence of spin-orbit coupling are driven by separation of electron and hole charges and opposite spins in real-space. The modeled spin-flip processes on the pairing mechanism induced by the spin-orbit coupling in assembled nanostructures (as arrays of clusters) engineered in various two-dimensional multi-leg structures provide an ideal playground for understanding spatial charge and spin density inhomogeneities leading to electron pairing and spontaneous phase separation instabilities in unconventional superconductors. Such studies also fall under the scope of current challenging problems in superconductivity and magnetism, topological insulators and spin dependent transport associated with numerous interfaces and heterostructures.

  1. Thermodynamic functions for a model antiferromagnet with identical coupling between all spins

    International Nuclear Information System (INIS)

    A model antiferromagnet consisting of N spins S=1/2, all interacting among themselves with equal strength, and with the external magnetic field H, was analysed, both for Ising spins and vector spins. Starting from the Hamiltonian, the partition function, specific heat and magnetic susceptibility vs temperature T have been calculated for both systems, for finite N (with the interspin coupling I < 0) and for N →∞ (with the coupling I/N < 0). For finite N one finds several relations between the features of the energy levels and the calculated plots, related especially to the number of spins being odd or even. The 1/(NT) behavior of the susceptibility at T→0 for odd N has been interpreted as due to the occurrence of a single frustrated spin pushing the whole system to behave like the free spin in the external magnetic field. For N→∞ (thermodynamic limit) the Kac procedure has been extended to include the effect of magnetic field, both for Ising spins and the vector spins. As compared with the ferromagnetic case, the evaluation of the partition function and related functions is in the case of antiferromagnetic coupling (I < 0) relatively straightforward. We have found the specific heat (per one spin) vs T at finite magnetic field to be proportional to the squared field, turning to zero at the absence of the field. The magnetic susceptibility (per one spin) shows a regular behavior of the paramagnetic type at all temperatures. (author)

  2. Magnetic and nematic phases in a Weyl type spin–orbit-coupled spin-1 Bose gas

    Science.gov (United States)

    Chen, Guanjun; Chen, Li; Zhang, Yunbo

    2016-06-01

    We present a variational study of the spin-1 Bose gases in a harmonic trap with three-dimensional spin–orbit (SO) coupling of Weyl type. For weak SO coupling, we treat the single-particle ground states as the form of perturbational harmonic oscillator states in the lowest total angular momentum manifold with j = 1, m j = 1, 0, ‑1. When the two-body interaction is considered, we set the trail order parameter as the superposition of three degenerate single-particle ground-states and the weight coefficients are determined by minimizing the energy functional. Two ground state phases, namely the magnetic and the nematic phases, are identified depending on the spin-independent and the spin-dependent interactions. Unlike the non-SO-coupled spin-1 Bose–Einstein condensate for which the phase boundary between the magnetic and the nematic phase lies exactly at zero spin-dependent interaction, the boundary is modified by the SO-coupling. We find the magnetic phase is featured with phase-separated density distributions, 3D skyrmion-like spin textures and competing magnetic and biaxial nematic orders, while the nematic phase is featured with miscible density distributions, zero magnetization and spatially modulated uniaxial nematic order. The emergence of higher spin order creates new opportunities for exploring spin-tensor-related physics in SO coupled superfluid.

  3. Conductance and spin polarization for a quantum wire with the competition of Rashba and Dresselhaus spin-orbit coupling

    International Nuclear Information System (INIS)

    We investigate theoretically the spin transport of a quantum wire (QW) with weak Rashba and Dresselhaus spin-orbit coupling (SOC) nonadiabatically connected to two normal leads. Using scattering matrix method and Landauer-Buettiker formula within effective free-electron approximation, we have calculated spin-dependent conductances G↑ and G↓, total conductance G and spin polarization Pz for a hard-wall potential confined QW. It is demonstrated that, the SOCs induce the splitting of G↑ and G↓ and form spin polarization Pz. Moreover, the conductances present quantized plateaus, the plateaus and Pz show oscillation structures near the subband edges. Furthermore, with the increase of QW width a strong spin polarization (Pz∼1) gradually becomes weak, which can be used to realize a spin filter. When the two SOCs coexist, the total conductance presents an isotropy transport due to the Rashba and Dresselhaus Hamiltonians being fixed, and the alteration of two SOCs strength ratio changes the sign of spin polarization. This may provide a way of realizing the expression of unit information by tuning gate voltage.

  4. Communication: Spin densities within a unitary group based spin-adapted open-shell coupled-cluster theory: Analytic evaluation of isotropic hyperfine-coupling constants for the combinatoric open-shell coupled-cluster scheme

    International Nuclear Information System (INIS)

    We report analytical calculations of isotropic hyperfine-coupling constants in radicals using a spin-adapted open-shell coupled-cluster theory, namely, the unitary group based combinatoric open-shell coupled-cluster (COSCC) approach within the singles and doubles approximation. A scheme for the evaluation of the one-particle spin-density matrix required in these calculations is outlined within the spin-free formulation of the COSCC approach. In this scheme, the one-particle spin-density matrix for an open-shell state with spin S and MS = + S is expressed in terms of the one- and two-particle spin-free (charge) density matrices obtained from the Lagrangian formulation that is used for calculating the analytic first derivatives of the energy. Benchmark calculations are presented for NO, NCO, CH2CN, and two conjugated π-radicals, viz., allyl and 1-pyrrolyl in order to demonstrate the performance of the proposed scheme

  5. Strong spin-orbit coupling and Zeeman spin splitting in angle dependent magnetoresistance of Bi2Te3

    International Nuclear Information System (INIS)

    We have studied angle dependent magnetoresistance of Bi2Te3 thin film with field up to 9 T over 2–20 K temperatures. The perpendicular field magnetoresistance has been explained by the Hikami-Larkin-Nagaoka theory alone in a system with strong spin-orbit coupling, from which we have estimated the mean free path, the phase coherence length, and the spin-orbit relaxation time. We have obtained the out-of-plane spin-orbit relaxation time to be small and the in-plane spin-orbit relaxation time to be comparable to the momentum relaxation time. The estimation of these charge and spin transport parameters are useful for spintronics applications. For parallel field magnetoresistance, we have confirmed the presence of Zeeman effect which is otherwise suppressed in perpendicular field magnetoresistance due to strong spin-orbit coupling. The parallel field data have been explained using both the contributions from the Maekawa-Fukuyama localization theory for non-interacting electrons and Lee-Ramakrishnan theory of electron-electron interactions. The estimated Zeeman g-factor and the strength of Coulomb screening parameter agree well with the theory. Finally, the anisotropy in magnetoresistance with respect to angle has been described by the Hikami-Larkin-Nagaoka theory. This anisotropy can be used in anisotropic magnetic sensor applications.

  6. Dynamical Spin Properties of Confined Fermi and Bose Systems in the Presence of Spin-Orbit Coupling

    Science.gov (United States)

    Ambrosetti, A.; Salasnich, L.; Silvestrelli, P. L.

    2016-04-01

    Due to the recent experimental progress, tunable spin-orbit (SO) interactions represent ideal candidates for the control of polarization and dynamical spin properties in both quantum wells and cold atomic systems. A detailed understanding of spin properties in SO-coupled systems is thus a compelling prerequisite for possible novel applications or improvements in the context of spintronics and quantum computers. Here, we analyze the case of equal Rashba and Dresselhaus couplings in both homogeneous and laterally confined two-dimensional systems. Starting from the single-particle picture and subsequently introducing two-body interactions we observe that periodic spin fluctuations can be induced and maintained in the system. Through an analytical derivation, we show that the two-body interaction does not involve decoherence effects in the bosonic dimer, and, in the repulsive homogeneous Fermi gas, it may be even exploited in combination with the SO coupling to induce and tune standing currents. By further studying the effects of a harmonic lateral confinement—a particularly interesting case for Bose condensates—we evidence the possible appearance of nontrivial spin textures, whereas the further application of a small Zeeman-type interaction can be exploited to fine-tune the system's polarizability.

  7. Correlated calculations of indirect nuclear spin-spin coupling constants using second-order polarization propagator approximations: SOPPA and SOPPA(CCSD)

    DEFF Research Database (Denmark)

    Enevoldsen, Thomas; Oddershede, Jens; Sauer, Stephan P. A.

    1998-01-01

    We present correlated calculations of the indirect nuclear spin-spin coupling constants of HD, HF, H2O, CH4, C2H2, BH, AlH, CO and N2 at the level of the second-order polarization propagator approximation (SOPPA) and the second-order polarization propagator approximation with coupled......-cluster singles and doubles amplitudes - SOPPA(CCSD). Attention is given to the effect of the so-called W 4 term, which has not been included in previous SOPPA spin-spin coupling constant studies of these molecules. Large sets of Gaussian basis functions, optimized for the calculation of indirect nuclear spin...

  8. Dynamics of Spin-Orbit Coupled Bose-Einstein Condensates in a Random Potential.

    Science.gov (United States)

    Mardonov, Sh; Modugno, M; Sherman, E Ya

    2015-10-30

    Disorder plays a crucial role in spin dynamics in solids and condensed matter systems. We demonstrate that for a spin-orbit coupled Bose-Einstein condensate in a random potential two mechanisms of spin evolution that can be characterized as "precessional" and "anomalous" are at work simultaneously. The precessional mechanism, typical for solids, is due to the condensate displacement. The unconventional anomalous mechanism is due to the spin-dependent velocity producing the distribution of the condensate spin polarization. The condensate expansion is accompanied by a random displacement and fragmentation, where it becomes sparse, as clearly revealed in the spin dynamics. Thus, different stages of the evolution can be characterized by looking at the condensate spin. PMID:26565441

  9. Proposed Coupling of an Electron Spin in a Semiconductor Quantum Dot to a Nanosize Optical Cavity

    DEFF Research Database (Denmark)

    Majumdar, Arka; Nielsen, Per Kær; Bajcsy, Michal;

    2013-01-01

    We propose a scheme to efficiently couple a single quantum dot electron spin to an optical nano-cavity, which enables us to simultaneously benefit from a cavity as an efficient photonic interface, as well as to perform high fidelity (nearly 100%) spin initialization and manipulation achievable in...

  10. Towards a global model of spin-orbit coupling in the halocarbenes

    Energy Technology Data Exchange (ETDEWEB)

    Nyambo, Silver; Karshenas, Cyrus; Reid, Scott A., E-mail: scott.reid@marquette.edu, E-mail: dawesr@mst.edu [Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233 (United States); Lolur, Phalgun; Dawes, Richard, E-mail: scott.reid@marquette.edu, E-mail: dawesr@mst.edu [Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409 (United States)

    2015-06-07

    We report a global analysis of spin-orbit coupling in the mono-halocarbenes, CH(D)X, where X = Cl, Br, and I. These are model systems for examining carbene singlet-triplet energy gaps and spin-orbit coupling. Over the past decade, rich data sets collected using single vibronic level emission spectroscopy and stimulated emission pumping spectroscopy have yielded much information on the ground vibrational level structure and clearly demonstrated the presence of perturbations involving the low-lying triplet state. To model these interactions globally, we compare two approaches. First, we employ a diabatic treatment of the spin-orbit coupling, where the coupling matrix elements are written in terms of a purely electronic spin-orbit matrix element which is independent of nuclear coordinates, and an integral representing the overlap of the singlet and triplet vibrational wavefunctions. In this way, the structures, harmonic frequencies, and normal mode displacements from ab initio calculations were used to calculate the vibrational overlaps of the singlet and triplet state levels, including the full effects of Duschinsky mixing. These calculations have allowed many new assignments to be made, particularly for CHI, and provided spin-orbit coupling parameters and values for the singlet-triplet gaps. In a second approach, we have computed and fit full geometry dependent spin-orbit coupling surfaces and used them to compute matrix elements without the product form approximation. Those matrix elements were used in similar fits varying the anharmonic constants and singlet-triplet gap to reproduce the experimental levels. The derived spin-orbit parameters for carbenes CHX (X = Cl, Br, and I) show an excellent linear correlation with the atomic spin-orbit constant of the corresponding halogen, indicating that the spin-orbit coupling in the carbenes is consistently around 14% of the atomic value.

  11. Spin Seebeck effect in an (In,Ga)As quantum well with equal Rashba and Dresselhaus spin-orbit couplings

    Science.gov (United States)

    Capps, Jeremy; Marinescu, D. C.; Manolescu, Andrei

    2016-02-01

    We demonstrate that a spin-dependent Seebeck effect can be detected in quantum wells with zinc-blend structure with equal Rashba-Dresselhaus spin-orbit couplings. This theory is based on the establishment of an itinerant antiferromagnetic state, a low total-energy configuration realized in the presence of the Coulomb interaction enabled by the k =0 degeneracy of the opposite-spin single-particle energy spectra. Transport in this state is modeled by using the solutions of a Boltzmann equation obtained within the relaxation time approximation. Numerical estimates performed for realistic GaAs samples indicate that at low temperatures, the amplitude of the spin Seebeck coefficient can be increased by scattering on magnetic impurities.

  12. Field-assisted spin-polarized electron transport through a single quantum well with spin-orbit coupling

    International Nuclear Information System (INIS)

    We have investigated theoretically the field-driven electron transport through a single-quantum-well semiconductor heterostructure with spin—orbit coupling. The splitting of the asymmetric Fano-type resonance peaks due to the Dresselhaus spin—orbit coupling is found to be highly sensitive to the direction of the incident electron. The splitting of the Fano-type resonance induces the spin-polarization dependent electron current. The location and the line shape of the Fano-type resonance can be controlled by adjusting the energy and the direction of the incident electron, the oscillation frequency, and the amplitude of the external field. These interesting features may be used to devise tunable spin filters and realize pure spin transmission currents. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  13. Analog of Electromagnetically Induced Transparency Effect for Two Nano/Micro-mechanical Resonators Coupled With Spin Ensemble

    OpenAIRE

    Chang, Yue; Sun, C. P.

    2011-01-01

    We study a hybrid nano-mechanical system coupled to a spin ensemble as a quantum simulator to favor a quantum interference effect, the electromagnetically induced transparency (EIT). This system consists of two nano-mechanical resonators (NAMRs), each of which coupled to a nuclear spin ensemble. It could be regarded as a crucial element in the quantum network of NAMR arrays coupled to spin ensembles. Here, the nuclear spin ensembles behave as a long-lived transducer to store and transfer the ...

  14. Optimal Dense Coding and Swap Operation Between Two Coupled Electronic Spins: Effects of Nuclear Field and Spin-Orbit Interaction

    Science.gov (United States)

    Jiang, Li; Zhang, Guo-Feng

    2016-08-01

    The effects of nuclear field and spin-orbit interaction on dense coding and swap operation are studied in detail for both the antiferromagnetic (AFM) and ferromagnetic (FM) coupling cases. The conditions for a valid dense coding and under which swap operation is feasible are given.

  15. Voltage induced switching dynamics of a coupled spin pair in a molecular junction

    OpenAIRE

    Saygun, T.; Bylin, J.; Hammar, H.; J. Fransson

    2016-01-01

    Molecular spintronics is made possible by the coupling between electronic configuration and magnetic po- larization of the molecules. For control and application of the individual molecular states it is necessary to both read and write their spin states. Conventionally, this is achieved by means of external magnetic fields or ferromagnetic contacts, which may change the intentional spin state and may present additional challenges when downsizing devices. Here, we predict that coupling magneti...

  16. Spin-orbit-coupled Bose-Einstein condensates in a one-dimensional optical lattice.

    Science.gov (United States)

    Hamner, C; Zhang, Yongping; Khamehchi, M A; Davis, Matthew J; Engels, P

    2015-02-20

    We investigate a spin-orbit-coupled Bose-Einstein condensate loaded into a translating optical lattice. We experimentally demonstrate the lack of Galilean invariance in the spin-orbit-coupled system, which leads to anisotropic behavior of the condensate depending on the direction of translation of the lattice. The anisotropy is theoretically understood by an effective dispersion relation. We experimentally confirm this theoretical picture by probing the dynamical instability of the system. PMID:25763940

  17. Phase Diagram of Two-dimensional Polarized Fermi Gas With Spin-Orbit Coupling

    OpenAIRE

    Yang, Xiaosen; Wan, Shaolong

    2011-01-01

    We investigate the ground state of the two-dimensional polarized Fermi gas with spin-orbit coupling and construct the phase diagram at zero temperature. We find there exist phase separation when the binding energy is low. As the binding energy increasing, the topological nontrivial superfluid phase coexist with topologically trivial superfluid phase which is topological phase separation. The spin-orbit coupling interaction enhance the triplet pairing and destabilize the phase separation again...

  18. Zero-momentum coupling induced transitions of ground states in Rashba spin-orbit coupled Bose-Einstein condensates

    Science.gov (United States)

    Jin, Jingjing; Zhang, Suying; Han, Wei

    2014-06-01

    We investigate the transitions of ground states induced by zero momentum (ZM) coupling in pseudospin-1/2 Rashba spin-orbit coupled Bose-Einstein condensates confined in a harmonic trap. In a weak harmonic trap, the condensate presents a plane wave (PW) state, a stripe state or a spin polarized ZM state, and the particle distribution of the stripe state is weighted equally at two points in the momentum space without ZM coupling. The presence of ZM coupling induces an imbalanced particle distribution in the momentum space, and leads to the decrease of the amplitude of the stripe state. When its strength exceeds a critical value, the system experiences the transition from stripe phase to PW phase. The boundary of these two phases is shifted and a new phase diagram spanned by the ZM coupling and the interatomic interactions is obtained. The presence of ZM coupling can also achieve the transition from ZM phase to PW phase. In a strong harmonic trap, the condensate exhibits a vortex lattice state without ZM coupling. For the positive effective Rabi frequency of ZM coupling, the condensate is driven from a vortex lattice state to a vortex-free lattice state and finally to a PW state with the increase of coupling strength. In addition, for the negative effective Rabi frequency, the condensate is driven from a vortex lattice state to a stripe state, and finally to a PW state. The stripe state found in the strong harmonic trap is different from that in previous works because of its nonzero superfluid velocity along the stripes. We also discuss the influences of the ZM coupling on the spin textures, and indicate that the spin textures are squeezed transversely by the ZM coupling.

  19. Tensor Coupling Effects on Spin Symmetry in the Anti-Lambda Spectrum of Hypernuclei

    Institute of Scientific and Technical Information of China (English)

    SONG Chun-Yan; YAO Jiang-Ming; MENG Jie

    2011-01-01

    Effects of △w-tensor coupling on the spin symmetry of A spectra in A-nucleus systems are studied using relativis-tic mean-field theory. Taking 12C+A as an example, it is found that the tensor coupling enlarges the spin-orbit splittings of A by a factor of 5 but has a negligible effect on the wave functions of A. Similar conclusions are observed in other A-nuclei, including 16O+A, 40Ca+A and 20SPb+A. It is indicated that the spin symmetry in anti-lambda-nucleus systems is still a good approximation irrespective of the tensor coupling.%@@ Effects of(∧∧)ω-tensor coupling on the spin symmetry of(∧)spectra in(∧)-nucleus systems are studied using relativis-tic mean-field theory.Taking 12C+(∧)as an example,it is found that the tensor coupling enlarges the spin-orbit splittings of(∧)a factor of 5 but has a negligible effect on the wave functions of(∧).Similar conclusions are observed in other(∧)-nuclei,including 16O+(∧),40Ca+(∧)and 20gPb+(∧).It is indicated that the spin symmetry in anti-lambdarnucleus systems is still a good approximation irrespective of the tensor coupling.

  20. Effective one-body Hamiltonian of two spinning black holes with next-to-next-to-leading order spin-orbit coupling

    International Nuclear Information System (INIS)

    Building on the recently computed next-to-next-to-leading order (NNLO) post-Newtonian spin-orbit Hamiltonian for spinning binaries [J. Hartung and J. Steinhoff, arXiv:1104.3079.] we improve the effective-one-body description of the dynamics of two spinning black holes by including NNLO effects in the spin-orbit interaction. The calculation that is presented extends to NNLO the next-to-leading order spin-orbit Hamiltonian computed in [T. Damour, P. Jaranowski, and G. Schaefer, Phys. Rev. D 78, 024009 (2008).]. The present effective-one-body Hamiltonian reproduces the spin-orbit coupling through NNLO in the test-particle limit case. In addition, in the case of spins parallel or antiparallel to the orbital angular momentum, when circular orbits exist, we find that the inclusion of NNLO spin-orbit terms moderates the effect of the next-to-leading order spin-orbit coupling.

  1. Effective one body Hamiltonian of two spinning black-holes with next-to-next-to-leading order spin-orbit coupling

    CERN Document Server

    Nagar, Alessandro

    2011-01-01

    Building on the recently computed next-to-next-to-leading order (NNLO) post-Newtonian (PN) spin-orbit Hamiltonian for spinning binaries \\cite{Hartung:2011te} we extend the effective-one-body (EOB) description of the dynamics of two spinning black-holes to NNLO in the spin-orbit interaction. The calculation that is presented extends to NNLO the next-to-leading order (NLO) spin-orbit Hamiltonian computed in Ref. \\cite{Damour:2008qf}. The present EOB Hamiltonian reproduces the spin-orbit coupling through NNLO in the test-particle limit case. In addition, in the case of spins parallel or antiparallel to the orbital angular momentum, when circular orbits exist, we find that the inclusion of NNLO spin-orbit terms moderates the effect of the NLO spin-orbit coupling.

  2. All Possible Coupling Schemes in XY Spin Chains for Perfect State Transfer

    CERN Document Server

    Wang, Yaoxiong; Rabitz, Herschel

    2011-01-01

    We investigate quantum state transfer in XY spin chains and propose a recursive procedure to construct the nonuniform couplings of these chains with arbitrary length to achieve perfect state transfer(PST). We show that this method is capable of finding all possible coupling schemes for PST. These schemes, without external control fields, only involve preengineered couplings but not dynamical control of them, so they can be simply realized experimentally. The analytical solutions provide all information for coupling design.

  3. Heat Transport in Spin Chains with Weak Spin-Phonon Coupling

    OpenAIRE

    Chernyshev, AL; Rozhkov, AV

    2015-01-01

    © 2016 American Physical Society. The heat transport in a system of S=1/2 large-J Heisenberg spin chains, describing closely Sr2CuO3 and SrCuO2 cuprates, is studied theoretically at TJ by considering interactions of the bosonized spin excitations with optical phonons and defects. Treating rigorously the multiboson processes, we derive a microscopic spin-phonon scattering rate that adheres to an intuitive picture of phonons acting as thermally populated defects for the fast spin excitations. T...

  4. Spin-dependent Fano effect through parallel-coupled double quantum dots

    International Nuclear Information System (INIS)

    Based on the nonequilibrium Green' function method, the spin-dependent Fano effect through parallel-coupled double quantum dots has been investigated by taking account of both Rashba spin-orbit interaction and intradot Coulomb interaction. It is shown that the quantum interference through the bonding, antibonding states and through their Coulomb blockade counterparts may result in two Breit-Wigner resonances and two Fano resonances in the conductance spectra. Moreover, the Fano lineshape of the two spin components can be modulated by Rashba spin-orbit interaction when the magnetic flux is switched on.

  5. Gravitational and gauge couplings in Chern-Simons fractional spin gravity

    CERN Document Server

    Boulanger, Nicolas; Valenzuela, Mauricio

    2015-01-01

    We propose an extension of Vasiliev's supertrace operation for the enveloping algebra of Wigner's deformed oscillator algebra to the fractional spin algebra given in arXiv:1312.5700. The resulting three-dimensional Chern-Simons theory unifies the Blencowe-Vasiliev higher spin gravity with fractional spin fields and internal gauge potentials. For integer or half-integer fractional spins, infinite dimensional ideals arise and decouple, leaving finite dimensional gauge algebras gl(2l+1) or gl(l|l+1) and various real forms thereof. We derive the relation between gravitational and internal gauge couplings.

  6. Intrinsic Spin-Orbit Coupling in Superconducting Delta-Doped SrTiO3 Heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Christopher

    2011-08-19

    We report the violation of the Pauli limit due to intrinsic spin-orbit coupling in SrTiO{sub 3} heterostructures. Via selective doping down to a few nanometers, a two-dimensional superconductor is formed, geometrically suppressing orbital pair-breaking. The spin-orbit scattering is exposed by the robust in-plane superconducting upper critical field, exceeding the Pauli limit by a factor of 4. Transport scattering times several orders of magnitude higher than for conventional thin film superconductors enables a new regime to be entered, where spin-orbit coupling effects arise non-perturbatively.

  7. Nuclear surface properties and spin-orbit potential in modified derivative scalar couplings

    International Nuclear Information System (INIS)

    With the use of modified derivative scalar coupling (MDSC) model, the nuclear surface properties and the spin-orbit potential in semi-infinite nuclear matter have been investigated in the framework of relativistic Thomas-Fermi and Hartree approaches. The results show that the spin-orbit potential has been improved by the tensor coupling. However, the surface tension and the surface thickness are still to small. The effects of σ-meson mass on the surface properties and the spin-orbit potential have also been discussed

  8. Spin-momentum coupled Bose-Einstein condensates with lattice band pseudospins.

    Science.gov (United States)

    Khamehchi, M A; Qu, Chunlei; Mossman, M E; Zhang, Chuanwei; Engels, P

    2016-01-01

    The quantum emulation of spin-momentum coupling, a crucial ingredient for the emergence of topological phases, is currently drawing considerable interest. In previous quantum gas experiments, typically two atomic hyperfine states were chosen as pseudospins. Here, we report the observation of a spin-momentum coupling achieved by loading a Bose-Einstein condensate into periodically driven optical lattices. The s and p bands of a static lattice, which act as pseudospins, are coupled through an additional moving lattice that induces a momentum-dependent coupling between the two pseudospins, resulting in s-p hybrid Floquet-Bloch bands. We investigate the band structures by measuring the quasimomentum of the Bose-Einstein condensate for different velocities and strengths of the moving lattice, and compare our measurements to theoretical predictions. The realization of spin-momentum coupling with lattice bands as pseudospins paves the way for engineering novel quantum matter using hybrid orbital bands. PMID:26924575

  9. Spin-orbit coupled two-electron Fermi gases of ytterbium atoms

    CERN Document Server

    Song, Bo; Zhang, Shanchao; Zou, Yueyang; Haciyev, Elnur; Huang, Wei; Liu, Xiong-Jun; Jo, Gyu-Boong

    2016-01-01

    We demonstrate the spin-orbit coupling (SOC) in a two-electron Fermi gas of $^{173}$Yb atoms by coupling two hyperfine ground states via the two-photon Raman transition. Due to the SU($N$) symmetry of the $^1$S$_0$ ground-state manifold which is insensitive to external magnetic field, an optical AC Stark effect is applied to split the ground spin states and separate an effective spin-1/2 subspace out from other hyperfine levels for the realization of SOC. With a momentum-dependent spin-orbit gap being suddenly opened by switching on the Raman transition, the dephasing of spin dynamics is observed, as a consequence of the momentum-dependent Rabi oscillations. Moreover, the momentum asymmetry of the spin-orbit coupled Fermi gas is also examined after projection onto the bare spin state and the corresponding momentum distribution is measured for different two-photon detuning. The realization of SOC for Yb fermions may open a new avenue to the study of novel spin-orbit physics with alkaline-earth-like atoms.

  10. Mesoscopic Fano effect in a spin splitter with a side-coupled quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Moldoveanu, V.; Ţolea, M. [National Institute of Materials Physics, P.O. Box MG-7, Bucharest-Magurele (Romania); Tanatar, B., E-mail: tanatar@fen.bilkent.edu.tr [Department of Physics, Bilkent University, Bilkent, 06800 Ankara (Turkey)

    2012-02-20

    We investigate the interplay between the spin interference and the Fano effect in a three-lead mesoscopic ring with a side-coupled quantum dot (QD). A uniform Rashba spin–orbit coupling and a perpendicular magnetic field are tuned such that the ring operates as a spin splitter in the absence of the QD: one lead is used to inject unpolarized electrons and the remaining (output) leads collect almost polarized spin currents. By applying a gate potential to the quantum dot a pair of spin-split levels sweeps the bias window and leads to Fano interference. The steady-state spin and charge currents in the leads are calculated for a finite bias applied across the ring via the non-equilibrium Green's function formalism. When the QD levels participate to transport we find that the spin currents exhibit peaks and dips whereas the charge currents present Fano lineshapes. The location of the side-coupled quantum dot and the spin splitting of its levels also affect the interference and the output currents. The opposite response of output currents to the variation of the gate potential allows one to use this system as a single parameter current switch. We also analyze the dependence of the splitter efficiency on the spin splitting on the QD.

  11. Mesoscopic Fano effect in a spin splitter with a side-coupled quantum dot

    International Nuclear Information System (INIS)

    We investigate the interplay between the spin interference and the Fano effect in a three-lead mesoscopic ring with a side-coupled quantum dot (QD). A uniform Rashba spin–orbit coupling and a perpendicular magnetic field are tuned such that the ring operates as a spin splitter in the absence of the QD: one lead is used to inject unpolarized electrons and the remaining (output) leads collect almost polarized spin currents. By applying a gate potential to the quantum dot a pair of spin-split levels sweeps the bias window and leads to Fano interference. The steady-state spin and charge currents in the leads are calculated for a finite bias applied across the ring via the non-equilibrium Green's function formalism. When the QD levels participate to transport we find that the spin currents exhibit peaks and dips whereas the charge currents present Fano lineshapes. The location of the side-coupled quantum dot and the spin splitting of its levels also affect the interference and the output currents. The opposite response of output currents to the variation of the gate potential allows one to use this system as a single parameter current switch. We also analyze the dependence of the splitter efficiency on the spin splitting on the QD.

  12. Coupling and control in coherently driven and asymmetrically synchronized hybrid electron-nuclear spin system

    Science.gov (United States)

    Berec, V.

    2016-02-01

    We study the coupling and control adaptation of a hybrid electron-nuclear spin system using the laser mediated proton beam in MeV energy regime. The asymmetric control mechanism is based on exact optimization of both: the measure of exchange interaction and anisotropy of the hyperfine interaction induced in the resonance with optimal channeled protons (CP) superfocused field, allowing manipulation over arbitrary localized spatial centers while addressing only the electron spin. Using highly precise and coherent proton channeling regime we have obtained efficient pulse shaping separator technique aimed for spatio-temporal engineering of quantum states, introducing a method for control of nuclear spins, which are coupled via anisotropic hyperfine interactions in isolated electron spin manifold, without radio wave (RW) pulses. The presented method can be efficiently implemented in synchronized spin networks with the purpose to facilitate preservation and efficient transfer of experimentally observed quantum particle states, contributing to the overall background noise reduction.

  13. Detecting stripe phase in spin-orbit coupled condensates via optical Bragg scattering

    Science.gov (United States)

    Putra, Andika; Carcoba, Francisco Salces; Yue, Yuchen; Sugawa, Seiji; Spielman, Ian

    2016-05-01

    The stripe phase in spin-orbit coupled condensates has been predicted theoretically but not yet been observed. This peculiar feature, analogue to supersolidity, originates from the interaction effects and spin-momentum locking between different spin states. Motivated by recent observation of antiferromagnetic correlations in cold atoms, we explore the feasibility of Bragg diffraction to observe the stripe phase. Here, we create spin-orbit coupled condensates in f = 1 ground state manifold of Rb87 using a pair of cross-polarized 790.02 nm counter-propagating laser beams. Using similar setup, we make a spin-dependent one dimensional lattice and demonstrate Bragg scattering of light to calibrate the atomic density distribution. This enables us to do a direct measure of the stripe phase.

  14. Rashba-type spin-orbit coupling in bilayer Bose-Einstein condensates

    Science.gov (United States)

    Su, S.-W.; Gou, S.-C.; Sun, Q.; Wen, L.; Liu, W.-M.; Ji, A.-C.; Ruseckas, J.; Juzeliūnas, G.

    2016-05-01

    We explore a way of producing the Rashba spin-orbit coupling (SOC) for ultracold atoms by using a two-component (spinor) atomic Bose-Einstein condensate (BEC) confined in a bilayer geometry. The SOC of the Rashba type is created if the atoms pick up a π phase after completing a cyclic transition between four combined spin-layer states composed of two spin and two layer states. The cyclic coupling of the spin-layer states is carried out by combining an intralayer Raman coupling and an interlayer laser assisted tunneling. We theoretically determine the ground-state phases of the spin-orbit-coupled BEC for various strengths of the atom-atom interaction and the laser-assisted coupling. It is shown that the bilayer scheme provides a diverse ground-state phase diagram. In an intermediate range of the atom-light coupling two interlacing lattices of half-skyrmions and half-antiskyrmions are spontaneously created. In the strong-coupling regime, where the SOC of the Rashba type is formed, the ground state represents plane-wave or standing-wave phases depending on the interaction between the atoms. A variational analysis is shown to be in good agreement with the numerical results.

  15. Rashba-type Spin-orbit Coupling in Bilayer Bose-Einstein Condensates

    CERN Document Server

    Su, S -W; Sun, Q; Wen, L; Liu, W -M; Ji, A -C; Ruseckas, J; Juzeliunas, G

    2016-01-01

    We explore a new way of producing the Rasba spin-orbit coupling (SOC) for ultracold atoms by using a two-component (spinor) atomic Bose-Einstein condensate (BEC) confined in a bilayer geometry. The SOC of the Rashba type is created if the atoms pick up a {\\pi} phase after completing a cyclic transition between four combined spin-layer states composed of two spin and two layer states. The cyclic coupling of the spin-layer states is carried out by combining an intralayer Raman coupling and an interlayer laser assisted tunneling. We theoretically determine the ground-state phases of the spin-orbit-coupled BEC for various strengths of the atom-atom interaction and the laser-assisted coupling. It is shown that the bilayer scheme provides a diverse ground-state phase diagram. In an intermediate range of the atom-light coupling two interlacing lattices of half- skyrmions and half-antiskyrmions are spontaneously created. In the strong-coupling regime, where the SOC of the Rashba-type is formed, the ground state repre...

  16. Quantum Stirling heat engine and refrigerator with single and coupled spin systems

    Science.gov (United States)

    Huang, Xiao-Li; Niu, Xin-Ya; Xiu, Xiao-Ming; Yi, Xue-Xi

    2014-02-01

    We study the reversible quantum Stirling cycle with a single spin or two coupled spins as the working substance. With the single spin as the working substance, we find that under certain conditions the reversed cycle of a heat engine is NOT a refrigerator, this feature holds true for a Stirling heat engine with an ion trapped in a shallow potential as its working substance. The efficiency of quantum Stirling heat engine can be higher than the efficiency of the Carnot engine, but the performance coefficient of the quantum Stirling refrigerator is always lower than its classical counterpart. With two coupled spins as the working substance, we find that a heat engine can turn to a refrigerator due to the increasing of the coupling constant, this can be explained by the properties of the isothermal line in the magnetic field-entropy plane.

  17. Spin-orbit coupling in a graphene bilayer and in graphite

    Energy Technology Data Exchange (ETDEWEB)

    Guinea, F, E-mail: paco.guinea@icmm.csic.e [Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Ines de la Cruz 3, E28049 Madrid (Spain)

    2010-08-15

    The intrinsic spin-orbit interactions in bilayer graphene and in graphite are studied, using a tight binding model and an intra-atomic LS coupling. The spin-orbit interactions in bilayer graphene and graphite are larger, by about one order of magnitude, than the interactions in single-layer graphene, due to the mixing of {pi} and {sigma} bands by interlayer hopping. Their values are in the range 0.1-1 K. The spin-orbit coupling opens a gap in bilayer graphene, and also gives rise to two edge modes. The spin-orbit couplings are largest, {approx}1-4 K, in orthorhombic graphite, which does not have a center of inversion.

  18. A long-lived spin-orbit-coupled degenerate dipolar Fermi gas

    CERN Document Server

    Burdick, Nathaniel Q; Lev, Benjamin L

    2016-01-01

    We describe the creation of a long-lived spin-orbit-coupled gas of quantum degenerate atoms using the most magnetic fermionic element, dysprosium. Spin-orbit-coupling arises from a synthetic gauge field created by the adiabatic following of degenerate dressed states comprised of optically coupled components of an atomic spin. Because of dysprosium's large electronic orbital angular momentum and large magnetic moment, the lifetime of the gas is limited not by spontaneous emission from the light-matter coupling, as for gases of alkali-metal atoms, but by dipolar relaxation of the spin. This relaxation is suppressed at large magnetic fields due to Fermi statistics. We observe lifetimes up to 400 ms, which exceeds that of spin-orbit-coupled fermionic alkali atoms by a factor of 10-100, and is close to the value obtained from a theoretical model. Elastic dipolar interactions are also observed to influence the Rabi evolution of the spin, revealing an interacting fermionic system. The long lifetime of this weakly in...

  19. Spin blocking effect in symmetric double quantum well due to Rashba spin-orbit coupling

    Science.gov (United States)

    Souma, Satofumi; Ogawa, Matsuto; Sekine, Yoshiaki; Sawada, Atsushi; Koga, Takaaki

    2013-03-01

    We report a theoretical study of the spin-dependent electronic current flowing laterally through the In0.53Ga0.47As/In0.52Al0.48As double quantum well (DQW) structure, where the values of the Rashba spin-orbit parameter αR are opposite in sign but equal in magnitude between the constituent quantum wells. By tuning the channel length of DQW and the magnitude of the externally applied in-plane magnetic field, one can block the transmission of one spin (e.g., spin-up) component, enabling us to obtain a spin-polarized current. Our experimental progress toward realizing the proposed device is also reported. This work was supported by JSPS KAKENHI Grant Number 23360001 and 22104007

  20. Effects of the electron-electron interaction in the spin resonance in 2D systems with Dresselhaus spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Krishtopenko, S. S., E-mail: sergey.krishtopenko@mail.ru [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2015-02-15

    The effect of the electron-electron interaction on the spin-resonance frequency in two-dimensional electron systems with Dresselhaus spin-orbit coupling is investigated. The oscillatory dependence of many-body corrections on the magnetic field is demonstrated. It is shown that the consideration of many-body interaction leads to a decrease or an increase in the spin-resonance frequency, depending on the sign of the g factor. It is found that the term cubic in quasimomentum in Dresselhaus spin-orbit coupling partially decreases exchange corrections to the spin resonance energy in a two-dimensional system.

  1. Towards achieving strong coupling in three-dimensional-cavity with solid state spin resonance

    Science.gov (United States)

    Le Floch, J.-M.; Delhote, N.; Aubourg, M.; Madrangeas, V.; Cros, D.; Castelletto, S.; Tobar, M. E.

    2016-04-01

    We investigate the microwave magnetic field confinement in several microwave three-dimensional (3D)-cavities, using a 3D finite-element analysis to determine the best design and achieve a strong coupling between microwave resonant cavity photons and solid state spins. Specifically, we design cavities for achieving strong coupling of electromagnetic modes with an ensemble of nitrogen vacancy (NV) defects in diamond. We report here a novel and practical cavity design with a magnetic filling factor of up to 4 times (2 times higher collective coupling) than previously achieved using one-dimensional superconducting cavities with a small mode volume. In addition, we show that by using a double-split resonator cavity, it is possible to achieve up to 200 times better cooperative factor than the currently demonstrated with NV in diamond. These designs open up further opportunities for studying strong and ultra-strong coupling effects on spins in solids using alternative systems with a wider range of design parameters. The strong coupling of paramagnetic spin defects with a photonic cavity is used in quantum computer architecture, to interface electrons spins with photons, facilitating their read-out and processing of quantum information. To achieve this, the combination of collective coupling of spins and cavity mode is more feasible and offers a promising method. This is a relevant milestone to develop advanced quantum technology and to test fundamental physics principles.

  2. Thermodynamic properties of noninteracting quantum gases with spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    He Li [Jiangsu University of Science and Technology, Zhangjiagang, Jiangsu, 215600 (China); Yu Zengqiang [Institute for Advanced Study, Tsinghua University, Beijing, 100084 (China)

    2011-08-15

    In this brief report we study thermodynamic properties of noninteracting quantum gases with isotropic spin-orbit coupling. At high temperature, coefficients of virial expansion depend on both temperature T and spin-orbit coupling strength {kappa}. For strong coupling, virial expansion is applicable to the temperature region below the conventional degenerate temperature T{sub F}. At low temperature, specific heat is proportional to {radical}(T) in Bose gases and T in Fermi gases. Temperature dependence of the chemical potential of fermions shows a different behavior when the Fermi surface is above and below the Dirac point.

  3. Control of the spin-orbit coupling by gate voltage in semiconductor FET structures

    International Nuclear Information System (INIS)

    We demonstrate that the strength of the spin-orbit (SO) coupling can be controlled systematically by gate voltage (VG) in HgCdTe FET structures. This indicates that the Rashba effect can be controlled by the external bias. The strength of the SO coupling is estimated from the weak antilocalization(WAL) effect. The experimental data are fitted by using the D'yakonov-Perel (DP) mechanism, and the SO coupling strength is much larger than those of other materials. This strong Rashba effect is a unique feature of HgCdTe FET, which originates from both strong intrinsic SO coupling of HgCdTe and high structural inversion asymmetry of our device. It provides a great advantage over other materials for spin manipulation in semiconductor spin devices.

  4. Spin flipping in ring-coupled-cluster-doubles theory

    DEFF Research Database (Denmark)

    Klopper, Wim; M. Teale, Andrew; Coriani, Sonia;

    2011-01-01

    We report a critical analysis and comparison of a variety of random-phase-approximation (RPA) based approaches to determine the electronic ground-state energy. Interrelations between RPA variants are examined by numerical examples with particular attention paid to the role of spin-flipped...

  5. Coupled spin, elastic and charge dynamics in magnetic nanostructures

    NARCIS (Netherlands)

    Kamra, A.

    2015-01-01

    In this Thesis, I address the interaction of magnetic degrees of freedom with charge current and elastic dynamics in hybrid systems composed of magnetic and non-magnetic materials. The objective, invariably, is to control and study spin dynamics using charge and elastic degrees of freedom. In certai

  6. Magnonic charge pumping via spin-orbit coupling

    Czech Academy of Sciences Publication Activity Database

    Ciccarelli, C.; Hals, K.M.D.; Irvine, A.; Novák, Vít; Tserkovnyak, Y.; Kurebayashi, H.; Brataas, A.; Ferguson, A.

    2015-01-01

    Roč. 10, č. 1 (2015), 50-54. ISSN 1748-3387 R&D Projects: GA MŠk(CZ) LM2011026 Institutional support: RVO:68378271 Keywords : spintronics * spin-orbit torque * GaMnAs Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 34.048, year: 2014

  7. Quasiclassical methods for spin-charge coupled dynamics in low-dimensional systems

    Energy Technology Data Exchange (ETDEWEB)

    Corini, Cosimo

    2009-06-12

    Spintronics is a new field of study whose broad aim is the manipulation of the spin degrees of freedom in solid state systems. One of its main goals is the realization of devices capable of exploiting, besides the charge, the carriers' - and possibly the nuclei's - spin. The presence of spin-orbit coupling in a system enables the spin and charge degrees of freedom to ''communicate'', a favorable situation if one is to realize such devices. More importantly, it offers the opportunity of doing so by relying solely on electric fields, whereas magnetic fields are otherwise required. Eminent examples of versatile systems with built-in and variously tunable spin-orbit interaction are two-dimensional electron - or hole - gases. The study of spin-charge coupled dynamics in such a context faces a large number of open questions, both of the fundamental and of the more practical type. To tackle the problem we rely on the quasiclassical formalism. This is an approximate quantum-field theoretical formulation with a solid microscopic foundation, perfectly suited for describing phenomena at the mesoscopic scale, and bearing a resemblance to standard Boltzmann theory which makes for physical transparency. Originally born to deal with transport in electron-phonon systems, we first generalize it to the case in which spin-orbit coupling is present, and then move on to apply it to specific situations and phenomena. Among these, to the description of the spin Hall effect and of voltage induced spin polarizations in two-dimensional electron gases under a variety of conditions - stationary or time-dependent, in the presence of magnetic and non-magnetic disorder, in the bulk or in confined geometries -, and to the problem of spin relaxation in narrow wires. (orig.)

  8. Quasiclassical methods for spin-charge coupled dynamics in low-dimensional systems

    International Nuclear Information System (INIS)

    Spintronics is a new field of study whose broad aim is the manipulation of the spin degrees of freedom in solid state systems. One of its main goals is the realization of devices capable of exploiting, besides the charge, the carriers' - and possibly the nuclei's - spin. The presence of spin-orbit coupling in a system enables the spin and charge degrees of freedom to ''communicate'', a favorable situation if one is to realize such devices. More importantly, it offers the opportunity of doing so by relying solely on electric fields, whereas magnetic fields are otherwise required. Eminent examples of versatile systems with built-in and variously tunable spin-orbit interaction are two-dimensional electron - or hole - gases. The study of spin-charge coupled dynamics in such a context faces a large number of open questions, both of the fundamental and of the more practical type. To tackle the problem we rely on the quasiclassical formalism. This is an approximate quantum-field theoretical formulation with a solid microscopic foundation, perfectly suited for describing phenomena at the mesoscopic scale, and bearing a resemblance to standard Boltzmann theory which makes for physical transparency. Originally born to deal with transport in electron-phonon systems, we first generalize it to the case in which spin-orbit coupling is present, and then move on to apply it to specific situations and phenomena. Among these, to the description of the spin Hall effect and of voltage induced spin polarizations in two-dimensional electron gases under a variety of conditions - stationary or time-dependent, in the presence of magnetic and non-magnetic disorder, in the bulk or in confined geometries -, and to the problem of spin relaxation in narrow wires. (orig.)

  9. Effect of spin-orbit couplings in graphene with and without potential modulation

    Science.gov (United States)

    Shakouri, Kh.; Masir, M. Ramezani; Jellal, A.; Choubabi, E. B.; Peeters, F. M.

    2013-09-01

    We investigate the effect of Rashba and intrinsic spin-orbit couplings on the electronic properties and spin configurations of Dirac fermions confined in: (i) a flat graphene sheet, (ii) a graphene wire with p-n-p structure, and (iii) a superlattice of graphene wires. The interplay between the spin-orbit interaction mechanisms breaks the electron-hole symmetry and the spin configuration induced by Rashba spin-orbit coupling lacks inversion symmetry in k space. We show that the Rashba spin-orbit interaction doubles the Fabry-Pérot resonant modes in the transmission spectrum of a graphene wire and opens new channels for the electron transmission. Moreover, it leads to the appearance of spin split extra Dirac cones in the energy spectrum of a graphene superlattice. It is shown that the spin of the electrons and holes confined in a flat graphene sheet is always perpendicular to their motion while this is not the case for the other nanostructures.

  10. General formalism of local thermodynamics with an example: Quantum Otto engine with a spin-1/2 coupled to an arbitrary spin

    OpenAIRE

    Müstecaplıoğlu, Özgür Esat; Altintas, Ferdi

    2015-01-01

    We investigate a quantum heat engine with a working substance of two particles, one with a spin-1/2 and the other with an arbitrary spin (spin s), coupled by Heisenberg exchange interaction, and subject to an external magnetic field. The engine operates in a quantum Otto cycle. Work harvested in the cycle and its efficiency are calculated using quantum thermodynamical definitions. It is found that the engine has higher efficiencies at higher spins and can harvest work at higher exchange inter...

  11. Exchange bias and coercivity for ferromagnets coupled to the domain state and spin glass state

    Science.gov (United States)

    Zhan, Xiaozhi; Mao, Zhongquan; Chen, Xi

    2016-05-01

    The exchange bias (EB) effect for systems with a ferromagnetic (FM) layer coupled to bond-diluted pinning layers has been investigated by Monte Carlo simulations. Two bond dilution concentrations are chosen to obtain two kinds of pinning layers: the antiferromagnetic domain state (DS) and the spin glass (SG) state. It is found that when coupled to the more disordered SG state, the ferromagnet shows enhanced EB with higher coercivity due to larger amounts of both frozen and reversible spins at the pinning interface. Spin configurations of the FM/DS interface layer reveal that reversible spins are mostly found in domain boundaries and small domains, while most spins in large domains maintain antiferromagnetic coupling and contribute to the EB effect. The coercivity is linear to the amount of interface reversible spins, but with different slopes in the temperature ranges above or below the blocking temperature t B. This bimodal temperature-dependent coercivity indicates a sudden change in macroscopic interface coupling at the temperature t B.

  12. Modeling of diffusion of injected electron spins in spin-orbit coupled microchannels

    Czech Academy of Sciences Publication Activity Database

    Zarbo, Liviu; Sinova, Jairo; Knezevic, I.; Wunderlich, Joerg; Jungwirth, Tomáš

    2010-01-01

    Roč. 82, č. 20 (2010), 205320/1-205320/7. ISSN 1098-0121 R&D Projects: GA MŠk LC510; GA AV ČR KAN400100652 Grant ostatní: EU FP7 SemiSpinNet(XE) 215368 Institutional research plan: CEZ:AV0Z10100521 Keywords : spintronics * spin dynamics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.772, year: 2010

  13. Magnetoelectric Coupling Induced Electric Dipole Glass State in Heisenberg Spin Glass

    Institute of Scientific and Technical Information of China (English)

    LIU Jun-Ming; CHAN-WONG Lai-Wa; CHOY Chung-Loong

    2009-01-01

    Multiferroic behavior in an isotropic Heisenberg spin glass with Gaussian random fields,incorporated bymagnetoelectric coupling derived from the Landau symmetry argument,are investigated.Electric dipole glass transitions at finite ternperature,due to coupling,are demonstrated by Monte Carlo simulation.This electric dipole glass state is solely ascribed to the coupling term with chiral symmetry of the magnetization,while the term associated with the spatial derivative of the squared magnetization has no contribution.

  14. Topologically nontrivial electronic bands and tunable Dirac cones in graphynes with spin-orbit coupling

    Science.gov (United States)

    Juricic, Vladimir; van Miert, Guido; Morais Smith, Cristiane

    2015-03-01

    Graphynes represent an emerging family of carbon allotropes that differ from graphene by the presence of the triple bonds (-C ≡C-) in their band structure. They have recently attracted much interest due to the tunability of the Dirac cones in the band structure. I will show that the spin-orbit coupling in β-graphyne could produce various effects related to the topological properties of its electronic bands. Intrinsic spin-orbit coupling yields high- and tunable Chern-number bands, which may host both topological and Chern insulators, in the presence and absence of time-reversal symmetry, respectively. Furthermore, Rashba spin-orbit coupling can be used to control the position and the number of Dirac cones in the Brillouin zone. Finally, I will also discuss the electronic properties of α - and γ - graphyne in the presence of the spin-orbit coupling within recently developed general theory of spin-orbit couplings in graphynes. Work supported by the Netherlands Organization for Scientific Research (NWO).

  15. Persistent Spin and Charge Currents in Open Conducting Ring Subjected to Rashba Spin—Orbit Coupling

    International Nuclear Information System (INIS)

    We investigate persistent charge and spin currents of a one-dimensional ring with Rashba spin—orbit coupling and connected asymmetrically to two external leads spanned with angle φ0. Because of the asymmetry of the structure and the spin-reflection, the persistent charge and spin currents can be induced. The magnification of persistent currents can be obtained when tuning the energy of incident electron to the sharp zero and sharp resonance of transmission depending on the Aharonov–Casher (AC) phase due to the spin—orbit coupling and the angle spanned by two leads φ0. The general dependence of the charge and spin persistent currents on these parameters is obtained. This suggests a possible method of controlling the magnitude and direction of persistent currents by tuning the AC phase and φ0, without the electromagnetic flux though the ring. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  16. Time-Dependent Evolution of Two Coupled Luttinger Models of Spin-1/2 Fermions

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zong-Li; LOU Ping

    2009-01-01

    Based on the field-theoretical bosonization we consider the spinful system consisting of two disconnected Luttinger liquids, which are coupled at time t=0 through chiral density-density interactions. We show the well-known spin-charge separation in this 1D system by means of bosonization and Bogoliubov transformation. To evaluate analytically the one-particle equal-time correlation functions, Cazalilla's methods are extended to spin-charge sectors. It is found that in long time limit the behavior of correlations does not coincide with that of equilibrium equal-time correlations of two coupled spinful Luttinger liquids. In order to compare with experimental results, the improved exponent that governs the power-law behavior of equal-time correlations of the non-equilibrium system is obtained at the end of this work.

  17. Direct observation of spin-orbit coupling in iron-based superconductors

    Science.gov (United States)

    Borisenko, S. V.; Evtushinsky, D. V.; Liu, Z.-H.; Morozov, I.; Kappenberger, R.; Wurmehl, S.; Büchner, B.; Yaresko, A. N.; Kim, T. K.; Hoesch, M.; Wolf, T.; Zhigadlo, N. D.

    2016-04-01

    Spin-orbit coupling is a fundamental interaction in solids that can induce a broad range of unusual physical properties, from topologically non-trivial insulating states to unconventional pairing in superconductors. In iron-based superconductors its role has, so far, not been considered of primary importance, with models based on spin- or orbital fluctuations pairing being used most widely. Using angle-resolved photoemission spectroscopy, we directly observe a sizeable spin-orbit splitting in all the main members of the iron-based superconductors. We demonstrate that its impact on the low-energy electronic structure and details of the Fermi surface topology is stronger than that of possible nematic ordering. The largest pairing gap is supported exactly by spin-orbit-coupling-induced Fermi surfaces, implying a direct relation between this interaction and the mechanism of high-temperature superconductivity.

  18. Current induced torques and interfacial spin-orbit coupling: Semiclassical modeling

    KAUST Repository

    Haney, Paul M.

    2013-05-07

    In bilayer nanowires consisting of a ferromagnetic layer and a nonmagnetic layer with strong spin-orbit coupling, currents create torques on the magnetization beyond those found in simple ferromagnetic nanowires. The resulting magnetic dynamics appear to require torques that can be separated into two terms, dampinglike and fieldlike. The dampinglike torque is typically derived from models describing the bulk spin Hall effect and the spin transfer torque, and the fieldlike torque is typically derived from a Rashba model describing interfacial spin-orbit coupling. We derive a model based on the Boltzmann equation that unifies these approaches. We also consider an approximation to the Boltzmann equation, the drift-diffusion model, that qualitatively reproduces the behavior, but quantitatively differs in some regimes. We show that the Boltzmann equation with physically reasonable parameters can match the torques for any particular sample, but in some cases, it fails to describe the experimentally observed thickness dependencies.

  19. Gravitational and gauge couplings in Chern-Simons fractional spin gravity

    Science.gov (United States)

    Boulanger, Nicolas; Sundell, Per; Valenzuela, Mauricio

    2016-01-01

    We propose an extension of Vasiliev's supertrace operation for the enveloping algebra of Wigner's deformed oscillator algebra to the fractional spin algebra given in arXiv:1312.5700. We provide a necessary and sufficient condition for the consistency of the supertrace, through the existence of a certain ground state projector. We build this projector and check its properties to the first two orders in the number operator and to all orders in the deformation parameter. We then find the relation between the gravitational and internal gauge couplings in the resulting unified three-dimensional Chern-Simons theory for Blencowe-Vasiliev higher spin gravity coupled to fractional spin fields and internal gauge potentials. We also examine the model for integer or half-integer fractional spins, where infinite dimensional ideals arise and decouple, leaving finite dimensional gauge algebras gl(2 ℓ + 1) or gl( ℓ| ℓ + 1) and various real forms thereof.

  20. Anisotropic Paramagnetic Meissner Effect by Spin-Orbit Coupling

    Science.gov (United States)

    Espedal, Camilla; Yokoyama, Takehito; Linder, Jacob

    2016-03-01

    Conventional s -wave superconductors repel an external magnetic field. However, a recent experiment [A. Di Bernardo et al., Phys. Rev. X 5, 041021 (2015)] has tailored the electromagnetic response of superconducting correlations via adjacent magnetic materials. We consider another route of altering the Meissner effect where spin-orbit interactions induce an anisotropic Meissner response that changes sign depending on the field orientation. The tunable electromagnetic response opens new paths in the utilization of hybrid systems comprising magnets and superconductors.

  1. Prediction of Spin Orientations in Terms of HOMO-LUMO Interactions Using Spin-Orbit Coupling as Perturbation.

    Science.gov (United States)

    Whangbo, Myung-Hwan; Gordon, Elijah E; Xiang, Hongjun; Koo, Hyun-Joo; Lee, Changhoon

    2015-12-15

    For most chemists and physicists, electron spin is merely a means needed to satisfy the Pauli principle in electronic structure description. However, the absolute orientations of spins in coordinate space can be crucial in understanding the magnetic properties of materials with unpaired electrons. At low temperature, the spins of a magnetic solid may undergo long-range magnetic ordering, which allows one to determine the directions and magnitudes of spin moments by neutron diffraction refinements. The preferred spin orientation of a magnetic ion can be predicted on the basis of density functional theory (DFT) calculations including electron correlation and spin-orbit coupling (SOC). However, most chemists and physicists are unaware of how the observed and/or calculated spin orientations are related to the local electronic structures of the magnetic ions. This is true even for most crystallographers who determine the directions and magnitudes of spin moments because, for them, they are merely the parameters needed for the diffraction refinements. The objective of this article is to provide a conceptual framework of thinking about and predicting the preferred spin orientation of a magnetic ion by examining the relationship between the spin orientation and the local electronic structure of the ion. In general, a magnetic ion M (i.e., an ion possessing unpaired spins) in a solid or a molecule is surrounded with main-group ligand atoms L to form an MLn polyhedron, where n is typically 4-6, and the d states of MLn are split because the antibonding interactions of the metal d orbitals with the p orbitals of the surrounding ligands L depend on the symmetries of the orbitals involved.1 The magnetic ion M of MLn has a certain preferred spin direction because its split d states interact among themselves under SOC.2,3 The preferred spin direction can be readily predicted on the basis of perturbation theory in which the SOC is taken as perturbation and the split d states as

  2. Hybrid quantum circuit with a superconducting qubit coupled to an electron spin ensemble

    International Nuclear Information System (INIS)

    We report the experimental realization of a hybrid quantum circuit combining a superconducting qubit and an ensemble of electronic spins. The qubit, of the transmon type, is coherently coupled to the spin ensemble consisting of nitrogen-vacancy (NV) centers in a diamond crystal via a frequency-tunable superconducting resonator acting as a quantum bus. Using this circuit, we prepare arbitrary superpositions of the qubit states that we store into collective excitations of the spin ensemble and retrieve back into the qubit. We also report a new method for detecting the magnetic resonance of electronic spins at low temperature with a qubit using the hybrid quantum circuit, as well as our recent progress on spin echo experiments.

  3. Heisenberg coupling constant predicted for molecular magnets with pairwise spin-contamination correction

    Energy Technology Data Exchange (ETDEWEB)

    Masunov, Artëm E., E-mail: amasunov@ucf.edu [NanoScience Technology Center, Department of Chemistry, and Department of Physics, University of Central Florida, Orlando, FL 32826 (United States); Photochemistry Center RAS, ul. Novatorov 7a, Moscow 119421 (Russian Federation); Gangopadhyay, Shruba [Department of Physics, University of California, Davis, CA 95616 (United States); IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120 (United States)

    2015-12-15

    New method to eliminate the spin-contamination in broken symmetry density functional theory (BS DFT) calculations is introduced. Unlike conventional spin-purification correction, this method is based on canonical Natural Orbitals (NO) for each high/low spin coupled electron pair. We derive an expression to extract the energy of the pure singlet state given in terms of energy of BS DFT solution, the occupation number of the bonding NO, and the energy of the higher spin state built on these bonding and antibonding NOs (not self-consistent Kohn–Sham orbitals of the high spin state). Compared to the other spin-contamination correction schemes, spin-correction is applied to each correlated electron pair individually. We investigate two binuclear Mn(IV) molecular magnets using this pairwise correction. While one of the molecules is described by magnetic orbitals strongly localized on the metal centers, and spin gap is accurately predicted by Noodleman and Yamaguchi schemes, for the other one the gap is predicted poorly by these schemes due to strong delocalization of the magnetic orbitals onto the ligands. We show our new correction to yield more accurate results in both cases. - Highlights: • Magnetic orbitails obtained for high and low spin states are not related. • Spin-purification correction becomes inaccurate for delocalized magnetic orbitals. • We use the natural orbitals of the broken symmetry state to build high spin state. • This new correction is made separately for each electron pair. • Our spin-purification correction is more accurate for delocalised magnetic orbitals.

  4. Heisenberg coupling constant predicted for molecular magnets with pairwise spin-contamination correction

    International Nuclear Information System (INIS)

    New method to eliminate the spin-contamination in broken symmetry density functional theory (BS DFT) calculations is introduced. Unlike conventional spin-purification correction, this method is based on canonical Natural Orbitals (NO) for each high/low spin coupled electron pair. We derive an expression to extract the energy of the pure singlet state given in terms of energy of BS DFT solution, the occupation number of the bonding NO, and the energy of the higher spin state built on these bonding and antibonding NOs (not self-consistent Kohn–Sham orbitals of the high spin state). Compared to the other spin-contamination correction schemes, spin-correction is applied to each correlated electron pair individually. We investigate two binuclear Mn(IV) molecular magnets using this pairwise correction. While one of the molecules is described by magnetic orbitals strongly localized on the metal centers, and spin gap is accurately predicted by Noodleman and Yamaguchi schemes, for the other one the gap is predicted poorly by these schemes due to strong delocalization of the magnetic orbitals onto the ligands. We show our new correction to yield more accurate results in both cases. - Highlights: • Magnetic orbitails obtained for high and low spin states are not related. • Spin-purification correction becomes inaccurate for delocalized magnetic orbitals. • We use the natural orbitals of the broken symmetry state to build high spin state. • This new correction is made separately for each electron pair. • Our spin-purification correction is more accurate for delocalised magnetic orbitals

  5. Coupling of Aharonov-Bohm and Aharonov-Casher effects at different particle spins

    International Nuclear Information System (INIS)

    Coupling of Aharonov-Bohm and Aharonov-Casher topological effects is studied depending on the spin of moving particle and its orientation. Duality of wave functions occurs only at the absence of spin precession, that is, at a certain, maximal by the absolute value of its projection on the normal to the motion plane. Generalization for particles both with charge and anomalous magnetic moment is studied. 12 refs

  6. Spin-Flip Process through Double Quantum Dots Coupled to Ferromagnetic Leads

    Institute of Scientific and Technical Information of China (English)

    YAN Cong-Hua; WU Shao-Quan; HUANG Rui; SUN Wei-Li

    2006-01-01

    @@ We investigate the spin-flip process through double quantum dots coupled to two ferromagnetic leads in series.By means of the slave-boson mean-field approximation, we calculate the density of states in the Kondo regime for two different configurations of the leads. It is found that transport shows some remarkable properties depending on the spin-flip strength. These effects may be useful in exploiting the role of electronic correlation in spintronics.

  7. Indirect quantum sensors: Improving the sensitivity in characterizing very weakly coupled spins

    CERN Document Server

    Greiner, Johannes N; Neumann, Philipp; Wrachtrup, Jörg

    2015-01-01

    We propose a scheme to increase the sensitivity and thus the detection volume of nanoscale single molecule magnetic resonance imaging. The proposal aims to surpass the T1 limited detection of the sensor by taking advantage of a long-lived ancilla nuclear spin to which the sensor is coupled. We show how this nuclear spin takes over the role of the sensor spin, keeping the characteristic time-scales of detection on the same order but with a longer life-time allowing it to detect a larger volume of the sample which is not possible by the sensor alone.

  8. Spin waves in the soft layer of exchange-coupled soft/hard bilayers

    Directory of Open Access Journals (Sweden)

    Zheng-min Xiong

    2016-05-01

    Full Text Available The magnetic dynamical properties of the soft layer in exchange-coupled soft/hard bilayers have been investigated numerically using a one-dimensional atomic chain model. The frequencies and spatial profiles of spin wave eigenmodes are calculated during the magnetization reversal process of the soft layer. The spin wave modes exhibit a spatially modulated amplitude, which is especially evident for high-order modes. A dynamic pinning effect of surface magnetic moment is observed. The spin wave eigenfrequency decreases linearly with the increase of the magnetic field in the uniformly magnetized state and increases nonlinearly with field when spiral magnetization configuration is formed in the soft layer.

  9. Spin-orbit coupling and the production of misaligned hot Jupiters via Lidov-Kozai oscillations

    Science.gov (United States)

    Storch, Natalia I.; Anderson, Kassandra R.; Lai, Dong

    2015-12-01

    Many hot Jupiter systems exhibit misalignment between the orbital axis of the planet and the spin axis of its host star. While this misalignment could be primordial in nature, a large fraction of hot Jupiters are found in systems with distant stellar companions, and thus could have undergone Lidov-Kozai (LK) oscillations and acquired their misalignment dynamically. Here we present a study of the effect of spin-orbit coupling during LK oscillations, and the resulting spin-orbit misalignment angle distributions. We show that spin-orbit coupling induces complex, often chaotic, behavior in the spin axis of the host star, and that this behavior depends significantly on the mass of the planet and the properties of the host star (mass and spin history). We develop a semi-analytical framework that successfully explains most of the possible stellar spin behaviors. We then present a comprehensive population synthesis of hot Jupiters created via the LK mechanism, and discuss their possible observable signatures.

  10. Voltage-Induced Switching Dynamics of a Coupled Spin Pair in a Molecular Junction.

    Science.gov (United States)

    Saygun, T; Bylin, J; Hammar, H; Fransson, J

    2016-04-13

    Molecular spintronics is made possible by the coupling between electronic configuration and magnetic polarization of the molecules. For control and application of the individual molecular states, it is necessary to both read and write their spin states. Conventionally, this is achieved by means of external magnetic fields or ferromagnetic contacts, which may change the intentional spin state and may present additional challenges when downsizing devices. Here, we predict that coupling magnetic molecules together opens up possibilities for all electrical control of both the molecular spin states as well as the current flow through the system. By tuning between the regimes of ferromagnetic and antiferromagnetic exchange interaction, the current can be at least an order of magnitude enhanced or reduced. The effect is susceptible to the tunnel coupling and molecular level alignment that can be used to achieve current rectification. PMID:27010805

  11. Σ-nuclear spin-orbit coupling from two-pion exchange

    International Nuclear Information System (INIS)

    Using SU(3) chiral perturbation theory we calculate the density-dependent complex-valued spin-orbit coupling strength UΣls(kf)+iWΣls(kf) of a Σ hyperon in the nuclear medium. The leading long-range ΣN interaction arises from iterated one-pion exchange with a Λ or a Σ hyperon in the intermediate state. We find from this unique long-range dynamics a sizable ''wrong-sign'' spin-orbit coupling strength of UΣls(kf0)≅-20 MeV fm2 at normal nuclear matter density ρ0=0.16 fm-3. The strong ΣN→ΛN conversion process contributes at the same time an imaginary part of WΣls(kf0)≅-12 MeV fm2. When combined with estimates of the short-range contribution the total Σ-nuclear spin-orbit coupling becomes rather weak

  12. The analysis of spin and spin-orbit coupling in quantum and classical physics by quaternions

    International Nuclear Information System (INIS)

    It is shown that quaternions offer a simple elegant description of spin of a single particle, perhaps superior to that of conventional quantum mechanics. The spin operators are Ssub(x) = (1/2)i, Ssub(y) = (1/2)j and Ssub(z) = (1/2)k (in units where (h/2π) = 1). Quaternion angular functions Z+-sub(j), msub(j) are given, which are explicit expressions for |l,s,j,msub(j)> in terms of the states |l,s,msub(l),msub(s)>. Use of these Z+-functions offers an elegant analysis of: (i) the relativistic hydrogen atom; (ii) problems in classical physics, such as the wave equation. Consideration is given to a speculation that there is simultaneous 'reality' of all three components of spin. (author)

  13. Jahn-Teller and spin-orbit coupling effects in transition-metal trifluorides

    International Nuclear Information System (INIS)

    Graphical abstract: Vibronic spectra for 5E' state of MnF3 using a two-mode Jahn-Teller Hamiltonian including spin-orbit coupling. Display Omitted Highlights: → Jahn-Teller potential-energy surfaces of 5E' states of MnF3 and CoF3 calculated. → The JT coupling parameters have been determined up to sixth order. → Vibronic spectra computed with two-mode JT Hamiltonian including spin-orbit coupling. → First ab initio study of the dynamical JT effect in transition-metal trifluorides. - Abstract: The effects of linear and higher-order Jahn-Teller couplings as well as spin-orbit coupling in orbitally degenerate electronic states of the transition-metal trifluorides MnF3 and CoF3 have been systematically explored with multi-configuration ab initio methods. The adiabatic potential-energy surfaces of low-lying 5E' and 5E'' states have been calculated with the CASSCF method. The spin-orbit coupling is described by matrix elements of the Breit-Pauli operator with nonrelativistic CASSCF wave functions. The Jahn-Teller coupling parameters of the Jahn-Teller active in-plane bending and stretching modes have been determined up to sixth order and fourth order, respectively, in the normal-mode expansion. Vibronic spectra have been computed, employing a Jahn-Teller Hamiltonian up to sixth order in the degenerate bending mode and fourth order in the degenerate stretching mode. These results represent the first ab initio study of the dynamical Jahn-Teller effect in transition-metal trifluorides with inclusion of spin-orbit coupling.

  14. Thermodynamics of interacting cold atomic Fermi gases with spin-orbit coupling

    Science.gov (United States)

    Jensen, Scott; Alhassid, Yoram; Gilbreth, Christopher

    New physics is suggested with the prediction of novel phases in cold atom systems when a synthetic spin-orbit coupling is introduced. In particular, recent studies show that a new type of Bose-Einstein condensate, termed Rashbon-BEC, is formed when a generalized Rashba spin-orbit term is present. The Rashbon-BEC phase can be obtained by tuning the spin-orbit coupling strength even in the case of finite negative scattering length. This stands in contrast to the BCS-BEC crossover in the absence of spin-orbit coupling where a negative scattering length is associated with BCS physics, and its divergence signals the crossover. In our work we apply finite-temperature quantum Monte Carlo methods to a spherical Rashba spin-orbit coupled two-species Fermi gas with contact s-wave interaction in three dimensions. We will discuss the phase diagram for this system, and its crossover behavior from BCS to Rashbon-BEC. This work was supported in part by the Department of Energy Grant No. DE-FG-0291-ER-40608.

  15. Arbitrary optical wavefront shaping via spin-to-orbit coupling

    CERN Document Server

    Larocque, Hugo; Bouchard, Frédéric; Fickler, Robert; Upham, Jeremy; Boyd, Robert W; Karimi, Ebrahim

    2016-01-01

    Converting spin angular momentum to orbital angular momentum has been shown to be a practical and efficient method for generating optical beams carrying orbital angular momentum and possessing a space-varying polarized field. Here, we present novel liquid crystal devices for tailoring the wavefront of optical beams through the Pancharatnam-Berry phase concept. We demonstrate the versatility of these devices by generating an extensive range of optical beams such as beams carrying $\\pm200$ units of orbital angular momentum along with Bessel, Airy and Ince-Gauss beams. We characterize both the phase and the polarization properties of the generated beams, confirming our devices' performance.

  16. Effect of magnetoelastic coupling on spin-glass behavior in Heisenberg pyrochlore antiferromagnets with bond disorder

    Science.gov (United States)

    Shinaoka, Hiroshi; Tomita, Yusuke; Motome, Yukitoshi

    2014-10-01

    Motivated by puzzling aspects of spin-glass behavior reported in frustrated magnetic materials, we theoretically investigate effects of magnetoelastic coupling in geometrically frustrated classical spin models. In particular, we consider bond-disordered Heisenberg antiferromagnets on a pyrochlore lattice coupled to local lattice distortions. By integrating out the lattice degree of freedom, we derive an effective spin-only model, the bilinear-biquadratic model with bond disorder. The effective model is analyzed by classical Monte Carlo simulations using an extended loop algorithm. First, we discuss the phase diagrams in detail by showing the comprehensive Monte Carlo data for thermodynamic and magnetic properties. We show that the spin-glass transition temperature Tf is largely enhanced by the spin-lattice coupling b in the weakly disordered regime. By considering the limit of strong spin-lattice coupling, this enhancement is ascribed to the suppression of thermal fluctuations in semidiscrete degenerate manifold formed in the presence of the spin-lattice coupling. We also find that, by increasing the strength of disorder Δ, the system shows a concomitant transition of the nematic order and spin glass at a temperature determined by b, being almost independent of Δ. This is due to the fact that the spin-glass transition is triggered by the spin collinearity developed by the nematic order. Although further-neighbor exchange interactions originating in the cooperative lattice distortions result in spin-lattice order in the weakly disordered regime, the concomitant transition remains robust with Tf almost independent of Δ. We find that the magnetic susceptibility shows hysteresis between the field-cooled and zero-field-cooled data below Tf, and that the nonlinear susceptibility shows a negative divergence at the transition. These features are common to conventional spin-glass systems. Meanwhile, we find that the specific heat exhibits a broad peak at Tf, and that the

  17. Symmetric angular momentum coupling, the quantum volume operator and the 7-spin network: a computational perspective

    CERN Document Server

    Marinelli, Dimitri; Aquilanti, Vincenzo; Anderson, Roger W; Bitencourt, Ana Carla P; Ragni, Mirco

    2014-01-01

    A unified vision of the symmetric coupling of angular momenta and of the quantum mechanical volume operator is illustrated. The focus is on the quantum mechanical angular momentum theory of Wigner's 6j symbols and on the volume operator of the symmetric coupling in spin network approaches: here, crucial to our presentation are an appreciation of the role of the Racah sum rule and the simplification arising from the use of Regge symmetry. The projective geometry approach permits the introduction of a symmetric representation of a network of seven spins or angular momenta. Results of extensive computational investigations are summarized, presented and briefly discussed.

  18. Superfluid-Mott-insulator transition in the spin-orbit-coupled Bose-Hubbard model

    OpenAIRE

    Işkın, Menderes; Bölükbaşı, Ahmet Tuna

    2014-01-01

    PHYSICAL REVIEW A 89, 043603 (2014) Superfluid–Mott-insulator transition in the spin-orbit-coupled Bose-Hubbard model A. T. Bolukbasi and M. Iskin Department of Physics, Koc¸ University, Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey (Received 3 January 2014; published 4 April 2014) We consider a square optical lattice in two dimensions and study the effects of both the strength and symmetry of spin-orbit coupling and Zeeman field on the ground-state, i.e.,Mott-insulator...

  19. Effects of spin-orbit coupling and spatial symmetries on the Josephson current in SNS junctions

    Science.gov (United States)

    Rasmussen, Asbjørn; Danon, Jeroen; Suominen, Henri; Nichele, Fabrizio; Kjaergaard, Morten; Flensberg, Karsten

    2016-04-01

    We present an analysis of the symmetries of the interference pattern of critical currents through a two-dimensional superconductor-semiconductor-superconductor junction, taking into account Rashba and Dresselhaus spin-orbit interaction, an arbitrarily oriented magnetic field, disorder, and structural asymmetries. We relate the symmetries of the pattern to the absence or presence of symmetries in the Hamiltonian, which provides a qualitative connection between easily measurable quantities and the spin-orbit coupling and other symmetries of the junction. We support our analysis with numerical calculations of the Josephson current based on a perturbative expansion up to eighth order in tunnel coupling between the normal region and the superconductors.

  20. Spin-Orbit Coupling, Antilocalization, and Parallel Magnetic Fields in Quantum Dots

    DEFF Research Database (Denmark)

    Zumbuhl, D.; Miller, Jessica; M. Marcus, C.;

    2002-01-01

    We investigate antilocalization due to spin-orbit coupling in ballistic GaAs quantum dots. Antilocalization that is prominent in large dots is suppressed in small dots, as anticipated theoretically. Parallel magnetic fields suppress both antilocalization and also, at larger fields, weak localizat......We investigate antilocalization due to spin-orbit coupling in ballistic GaAs quantum dots. Antilocalization that is prominent in large dots is suppressed in small dots, as anticipated theoretically. Parallel magnetic fields suppress both antilocalization and also, at larger fields, weak...

  1. Synthetic dimensions and spin-orbit coupling with an optical clock transition

    CERN Document Server

    Livi, L F; Diem, M; Franchi, L; Clivati, C; Frittelli, M; Levi, F; Calonico, D; Catani, J; Inguscio, M; Fallani, L

    2016-01-01

    We demonstrate a novel way of synthesizing spin-orbit interactions in ultracold quantum gases, based on a single-photon optical clock transition coupling two long-lived electronic states of two-electron $^{173}$Yb atoms. By mapping the electronic states onto effective sites along a synthetic "electronic" dimension, we have engineered synthetic fermionic ladders with tunable magnetic fluxes. We have detected the spin-orbit coupling with fiber-link-enhanced clock spectroscopy and directly measured the emergence of chiral edge currents, probing them as a function of the magnetic field flux. These results open new directions for the investigation of topological states of matter with ultracold atomic gases.

  2. Direct coupling between charge current and spin polarization by extrinsic mechanisms in graphene

    Science.gov (United States)

    Huang, Chunli; Chong, Y. D.; Cazalilla, Miguel A.

    2016-08-01

    Spintronics—the all-electrical control of the electron spin for quantum or classical information storage and processing—is one of the most promising applications of the two-dimensional material graphene. Although pristine graphene has negligible spin-orbit coupling (SOC), both theory and experiment suggest that SOC in graphene can be enhanced by extrinsic means, such as functionalization by adatom impurities. We present a theory of transport in graphene that accounts for the spin-coherent dynamics of the carriers, including hitherto-neglected spin precession processes taking place during resonant scattering in the dilute impurity limit. We uncover an "anisotropic spin precession" (ASP) scattering process in graphene, which contributes a large current-induced spin polarization and modifies the standard spin Hall effect. ASP scattering arises from two dimensionality and extrinsic SOC, and apart from graphene, it can be present in other 2D materials or in the surface states of 3D materials with a fluctuating SOC. Our theory also yields a comprehensive description of the spin relaxation mechanisms present in adatom-decorated graphene, including Elliot-Yafet and D'yakonov-Perel relaxation rates, the latter of which can become an amplification process in a certain parameter regime of the SOC disorder potential. Our work provides theoretical foundations for designing future graphene-based integrated spintronic devices.

  3. Long-range carbon-proton spin-spin coupling constants in conformational analysis

    International Nuclear Information System (INIS)

    The author has collected a reliable set of data on long range 13C-1H coupling constants in aliphatic compounds and developed the use of long range 13C-1H coupling constants as a tool in the conformational analysis of aliphatic compounds. An empirical determination of the torsion angle dependence of the vicinal 13C-1H coupling constant for model compounds is described and the dependence of long range 13C-1H coupling constants on the electronegativity of substituents attached to the coupling pathway reported for the monohalogen substituted ethanes and propanes. The electronegativity dependence of the vicinal 13C-1H coupling was studied in monosubstituted propanes whose substituents are elements from the first row of the periodic table and it is shown that the vicinal 13C-1H coupling constant in aliphatic systems is a constitutive property. The geminal 13C-1H coupling constants in ethyl, isopropyl and tert-butyl compounds, which have been substituted by an element of the first row of the periodic table or a haline atom, are reported and the influence of electronegative substituents on the vicinal 13C-1H coupling constants in the individual rotamers of 13CH3-C(X)H-C(Y)H-1H fragments discussed. The application of long range 13C-1H coupling constants to the conformational analysis of CMP-N-Acetylneuraminic acid and 2,6-dichloro-1,4-oxathiane is described. (Auth.)

  4. Photon and spin dependence of the resonance line shape in the strong coupling regime

    International Nuclear Information System (INIS)

    We study the quantum dynamics of a spin ensemble coupled to cavity photons. Recently, related experimental results have been reported, showing the existence of the strong coupling regime in such systems. We study the eigenenergy distribution of the multi-spin system (following the Tavis–Cummings model) which shows a peculiar structure as a function of the number of cavity photons and of spins. We study how this structure causes changes in the spectrum of the admittance in the linear response theory, and also in the frequency dependence of the excited quantities in the stationary state under a probing field. In particular, we investigate how the structure of the higher excited energy levels changes the spectrum from a double-peak structure (the so-called vacuum-field Rabi splitting) to a single-peak structure. We also point out that the spin dynamics in the region of the double-peak structure corresponds to recent experiments using cavity ringing, while in the region of the single-peak structure, it corresponds to the coherent Rabi oscillation in a driving electromagnetic field. Using a standard Lindblad-type mechanism, we study the effect of dissipation on the line width and separation in the computed spectra. In particular, we study the relaxation of the total spin in the general case of a spin ensemble in which the total spin of the system is not specified. The theoretical results are correlated with experimental evidence of the strong coupling regime, achieved with a spin-1/2 ensemble. (paper)

  5. Cavity-Optomechanics with Spin-Orbit Coupled Spinor Bose-Einstein Condensate

    CERN Document Server

    Yasir, Kashif Ammar

    2015-01-01

    Cavity-optomechanics, an exploitation of mechanical-effects of light to couple optical-field with mechanical-objects, has made remarkable progress. Besides, spin-orbit (SO)-coupling, interaction between spin of a quantum-particle and its momentum, has provided foundation to analyze various phenomena like spin-Hall effect and topological-insulators. However, SO-coupling and corresponding topological-features have not been examined in optical-cavity with one vibrational-mirror. Here we report cavity-optomechanics with SO-coupled Bose-Einstein condensate, inducing non-Abelian gauge-field in cavity. We ascertain the influences of SO-coupling and long-range atomic-interactions on low-temperature dynamics which can be experimentally measured by maneuvering area underneath density-noise spectrum. It is detected that not only optomechanical-coupling is modifying topological properties of atomic dressed-states but SO-coupling induced topological-effects are also enabling us to control effective-temperature of mechanic...

  6. Irreversible adiabatic decoherence of dipole-interacting nuclear-spin pairs coupled with a phonon bath

    Science.gov (United States)

    Domínguez, F. D.; González, C. E.; Segnorile, H. H.; Zamar, R. C.

    2016-02-01

    We study the quantum adiabatic decoherence of a multispin array, coupled with an environment of harmonic phonons, in the framework of the theory of open quantum systems. We follow the basic formal guidelines of the well-known spin-boson model, since in this framework it is possible to derive the time dependence of the reduced density matrix in the adiabatic time scale, without resorting to coarse-graining procedures. However, instead of considering a set of uncoupled spins interacting individually with the boson field, the observed system in our model is a network of weakly interacting spin pairs; the bath corresponds to lattice phonons, and the system-environment interaction is generated by the variation of the dipole-dipole energy due to correlated shifts of the spin positions, produced by the phonons. We discuss the conditions that the model must meet in order to fit within the adiabatic regime. By identifying the coupling of the dipole-dipole spin interaction with the low-frequency acoustic modes as the source of decoherence, we calculate the decoherence function of the reduced spin density matrix in closed way, and estimate the decoherence rate of a typical element of the reduced density matrix in one- and three-dimensional models of the spin array. Using realistic values for the various parameters of the model we conclude that the dipole-phonon mechanism can be particularly efficient to degrade multispin coherences, when the number of active spins involved in a given coherence is high. The model provides insight into the microscopic irreversible spin dynamics involved in the buildup of quasiequilibrium states and in the coherence leakage during refocusing experiments in nuclear magnetic resonance of crystalline solids.

  7. Ferromagnetic resonance investigation of the residual coupling in spin-valve systems

    Science.gov (United States)

    Rodríguez-Suárez, R. L.; Rezende, S. M.; Azevedo, A.

    2005-06-01

    The ferromagnetic resonance (FMR) technique has been used to investigate the properties of spin-valve systems. We derive the FMR dispersion relation taking into account the competition that appears between the direct exchange bias coupling and the indirect interlayer coupling. For uncoupled ferromagnetic (FM) layers, the system exhibits a dispersion relation corresponding to two independent systems: a single FM layer (free layer) and an exchange-coupled bilayer (reference/antiferromagnetic layers). In the interlayer coupled regime a unidirectional anisotropy is induced in the free layer and the FMR field is overall downshifted. Both features are observed experimentally and the results are compared with the model.

  8. Tunable spin-dependent Andreev reflection in a four-terminal Aharonov-Bohm interferometer with coherent indirect coupling and Rashba spin-orbit interaction.

    Science.gov (United States)

    Bai, Long; Zhang, Rong; Duan, Chen-Long

    2012-01-01

    : Using the nonequilibrium Green's function method, we theoretically study the Andreev reflection(AR) in a four-terminal Aharonov-Bohm interferometer containing a coupled double quantum dot with the Rashba spin-orbit interaction (RSOI) and the coherent indirect coupling via two ferromagnetic leads. When two ferromagnetic electrodes are in the parallel configuration, the spin-up conductance is equal to the spin-down conductance due to the absence of the RSOI. However, for the antiparallel alignment, the spin-polarized AR occurs resulting from the crossed AR (CAR) and the RSOI. The effects of the coherent indirect coupling, RSOI, and magnetic flux on the Andreev-reflected tunneling magnetoresistance are analyzed at length. The spin-related current is calculated, and a distinct swap effect emerges. Furthermore, the pure spin current can be generated due to the CAR when two ferromagnets become two half metals. It is found that the strong RSOI and the large indirect coupling are in favor of the CAR and the production of the strong spin current. The properties of the spin-related current are tunable in terms of the external parameters. Our results offer new ways to manipulate the spin-dependent transport. PMID:23228047

  9. Spin-orbit coupling for quasi-circular coorbital bodies

    CERN Document Server

    Correia, Alexandre C M

    2013-01-01

    Coorbital bodies are observed around the Sun sharing their orbits with the planets, but also in some pairs of satellites around Saturn. The existence of coorbital planets around other stars has also been proposed. For close-in planets and satellites, the rotation slowly evolves due to dissipative tidal effects until some kind of equilibrium is reached. When the orbits are nearly circular, the rotation period is believed to always end synchronous with the orbital period. Here we demonstrate that for coorbital bodies in quasi-circular orbits, stable non-synchronous rotation is possible for a wide range of mass ratios and body shapes. We show the existence of an entirely new family of spin-orbit resonances at the frequencies $n\\pm k\

  10. Strong ferromagnetically-coupled spin valve sensor devices for droplet magnetofluidics.

    Science.gov (United States)

    Lin, Gungun; Makarov, Denys; Schmidt, Oliver G

    2015-01-01

    We report a magnetofluidic device with integrated strong ferromagnetically-coupled and hysteresis-free spin valve sensors for dynamic monitoring of ferrofluid droplets in microfluidics. The strong ferromagnetic coupling between the free layer and the pinned layer of spin valve sensors is achieved by reducing the spacer thickness, while the hysteresis of the free layer is eliminated by the interplay between shape anisotropy and the strength of coupling. The increased ferromagnetic coupling field up to the remarkable 70 Oe, which is five-times larger than conventional solutions, brings key advantages for dynamic sensing, e.g., a larger biasing field giving rise to larger detection signals, facilitating the operation of devices without saturation of the sensors. Studies on the fundamental effects of an external magnetic field on the evolution of the shape of droplets, as enabled by the non-visual monitoring capability of the device, provides crucial information for future development of a magnetofluidic device for multiplexed assays. PMID:26024419

  11. Signature of Strong Spin-Orbital Coupling in the Large Nonsaturating Magnetoresistance Material WTe2

    Science.gov (United States)

    Jiang, J.; Tang, F.; Pan, X. C.; Liu, H. M.; Niu, X. H.; Wang, Y. X.; Xu, D. F.; Yang, H. F.; Xie, B. P.; Song, F. Q.; Dudin, P.; Kim, T. K.; Hoesch, M.; Das, P. Kumar; Vobornik, I.; Wan, X. G.; Feng, D. L.

    2015-10-01

    We report the detailed electronic structure of WTe2 by high resolution angle-resolved photoemission spectroscopy. We resolved a rather complicated Fermi surface of WTe2. Specifically, there are in total nine Fermi pockets, including one hole pocket at the Brillouin zone center Γ , and two hole pockets and two electron pockets on each side of Γ along the Γ -X direction. Remarkably, we have observed circular dichroism in our photoemission spectra, which suggests that the orbital angular momentum exhibits a rich texture at various sections of the Fermi surface. This is further confirmed by our density-functional-theory calculations, where the spin texture is qualitatively reproduced as the conjugate consequence of spin-orbital coupling. Since the spin texture would forbid backscatterings that are directly involved in the resistivity, our data suggest that the spin-orbit coupling and the related spin and orbital angular momentum textures may play an important role in the anomalously large magnetoresistance of WTe2. Furthermore, the large differences among spin textures calculated for magnetic fields along the in-plane and out-of-plane directions also provide a natural explanation of the large field-direction dependence on the magnetoresistance.

  12. GIAO-DFT Isotropic magnetic shielding constants and spin-spin coupling of tartaric acid in water solution

    CERN Document Server

    Fideles, Bruna; Colherinhas, Guilherme

    2015-01-01

    We investigate the nuclear isotropic shielding constants and spin-spin coupling for oxygen and carbons atoms of isomers of tartaric acid in gas phase and water solutions by Monte Carlo simulation and quantum mechanics calculations using the GIAO-B3LYP approach. Solute polarization effects are included iteratively and play an important role in the quantitative determination of shielding constants. Our MP2/aug-cc-pVTZ results show substantial increases of the dipole moment in solution as compared with the gas phase results (61-221%). The solvent effects on the {\\sigma}(13C) [J(C-C)] values are in general small. More appreciable solvent effects can be seen on the {\\sigma}(17O) and J(C-O).

  13. Vortex line of spin-orbit coupled Fermi superfluid through BCS to BEC Crossover

    Science.gov (United States)

    Yao, Juan; Zhang, Shizhong

    Superfluid Fermi gases with spin-orbit interaction provides a unique opportunity to investigate possible effects of strong interaction in a topological superfluid. It has been suggested that with addition of Rashba-type spin-orbit coupling, a two-component Fermi gas with strong s-wave interaction can become a topological superfluid with zero-energy bound state at the core of the vortex. In this talk, I discuss the evolution of vortex structure in a spin-orbit coupled Fermi gas through the BCS-BEC crossover within Bogoliubov-de Genne formalism. We find that the largest critical current occurs in the BEC side of the resonance, in contradiction to the usual crossover without spin-orbit coupling where it occurs at unitarity. Furthermore, we discuss the core structure of the vortex by calculating the spin and density distribution around the vortex. Department of Physics and Centre of Theoretical and Computational Physics, The University of Hong Kong, Hong Kong, China.

  14. Circuit-quantum electrodynamics with direct magnetic coupling to single-atom spin qubits in isotopically enriched 28Si

    Directory of Open Access Journals (Sweden)

    Guilherme Tosi

    2014-08-01

    Full Text Available Recent advances in silicon nanofabrication have allowed the manipulation of spin qubits that are extremely isolated from noise sources, being therefore the semiconductor equivalent of single atoms in vacuum. We investigate the possibility of directly coupling an electron spin qubit to a superconducting resonator magnetic vacuum field. By using resonators modified to increase the vacuum magnetic field at the qubit location, and isotopically purified 28Si substrates, it is possible to achieve coupling rates faster than the single spin dephasing. This opens up new avenues for circuit-quantum electrodynamics with spins, and provides a pathway for dispersive read-out of spin qubits via superconducting resonators.

  15. What can we learn about the dynamics of transported spins by measuring shot noise in spin–orbit-coupled nanostructures?

    International Nuclear Information System (INIS)

    We review recent studies of the shot noise of spin-polarized charge currents and pure spin currents in multiterminal semiconductor nanostructures, while focusing on the effects brought by the intrinsic Rashba spin–orbit (SO) coupling and/or extrinsic SO scattering off impurities in two-dimensional electron gas (2DEG) based devices. By generalizing the scattering theory of quantum shot noise to include the full spin-density matrix of electrons injected from a spin-filtering electrode, we show how decoherence and dephasing in the course of spin precession can lead to the substantial enhancement of the Fano factor (noise-to-current ratio) of spin-polarized charge currents. These processes are suppressed by decreasing the width of the diffusive Rashba wire, so that purely electrical measurement of the shot noise in a ferromagnet|SO-coupled-diffusive-wire|paramagnet setup can quantify the degree of quantum coherence of transported spin through a remarkable one-to-one correspondence between the purity of the spin state and the Fano factor. In four-terminal SO-coupled nanostructures, injection of unpolarized charge current through the longitudinal leads is responsible not only for the pure spin Hall current in the transverse leads, but also for nonequilibrium random time-dependent current fluctuations. The analysis of the shot noise of transverse pure spin Hall current and zero charge current, or transverse spin current and non-zero charge Hall current, driven by unpolarized or spin-polarized injected longitudinal charge current, respectively, reveals a unique experimental tool to differentiate between the intrinsic Rashba and extrinsic SO mechanisms underlying the spin Hall effect in 2DEG devices. When the intrinsic mechanisms responsible for spin precession start to dominate the spin Hall effect, they also enhance the shot noise of transverse spin and charge transport in multiterminal geometries. Finally, we discuss the shot noise of transverse spin and zero charge

  16. Exchange Coupling of Spin-Crossover Molecules to Ferromagnetic Co Islands.

    Science.gov (United States)

    Gueddida, Saber; Gruber, Manuel; Miyamachi, Toshio; Beaurepaire, Eric; Wulfhekel, Wulf; Alouani, Mebarek

    2016-03-01

    The properties of Fe(1,10-phenanthroline)2(NCS)2 (Fe-phen) molecules deposited on Co/Cu(111) are studied with scanning tunneling microscopy (STM) operated in ultrahigh vacuum at low temperature (4 K) and ab initio calculations. Both the experimental and theoretical results are used to identify the high-spin (HS) state of Fe-phen. Additionally, the calculations reveal a strong spin-polarization of the density of states (DOS) and is validated experimentally using the spin sensitivity of spin-polarized STM. Finally, it is shown that the magnetic moment of the Fe-ion within HS Fe-phen is strongly magnetically coupled to the underlying magnetic Co through the NCS groups. These findings enable promising spintronic perspectives. PMID:26895075

  17. Spin-Tunneling Time in Ferromagnetic/Semiconductor/Ferromagnetic Three-Terminal Heterojunction in the Presence of Rashba Spin-Orbit Coupling

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying-Tao; XIE Zun; LI You-Cheng

    2006-01-01

    We study theoretically the transmission coefficients and the spin-tunneling time in ferromagnetic/semiconductor/ferromagnetic three-terminal heterojunction in the presence of Rashba spin-orbit interaction, in which onedimensional quantum waveguide theory is developed and applied. Based on the group velocity concept and the particle current conservation principle, we calculate the spin-tunneling time as the function of the intensity of Rashba spin-orbit coupling and the length of the semiconductor. We find that as the length of the semiconductor increases, the spintunneling time does not increase linearly but shows behavior of slight oscillation. Furthermore, with the increasing of the spin-orbit coupling, the spin-tunneling time increases.

  18. SU(2) symmetry in a Hubbard model with spin-orbit coupling

    Institute of Scientific and Technical Information of China (English)

    ZHANG XiZheng; JIN Liang; SONG Zhi

    2014-01-01

    We study the underlying symmetry in a spin-orbit coupled tight-binding model with Hubbard interaction.It is shown that,in the absence of the on-site interaction,the system possesses the SU(2) symmetry arising from the time reversal symmetry.The influence of the on-site interaction on the symmetry depends on the topology of the networks:The SU(2) symmetry is shown to be the spin rotation symmetry of a simply-connected lattice even in the presence of the Hubbard interaction.On the contrary,the on-site interaction breaks the SU(2) symmetry of a multi-connected lattice.This fact indicates that a discrete spin-orbit coupled system has exclusive features from its counterpart in a continuous system.The obtained rigorous result is illustrated by a simple ring system.

  19. Currents induced by magnetic impurities in superconductors with spin-orbit coupling.

    Science.gov (United States)

    Pershoguba, Sergey S; Björnson, Kristofer; Black-Schaffer, Annica M; Balatsky, Alexander V

    2015-09-11

    We show that superconducting currents are generated around magnetic impurities and ferromagnetic islands proximity coupled to superconductors with finite spin-orbit coupling. Using the Ginzburg-Landau theory, T-matrix calculation, as well as self-consistent numerical simulation on a lattice, we find a strong dependence of the current on the direction and magnitude of the magnetic moment. We establish that in the case of point magnetic impurities, the current is carried by the induced Yu-Shiba-Rusinov (YSR) subgap states. In the vicinity of the phase transition, where the YSR states cross at zero energy, the current increases dramatically. Furthermore, we show that the currents are orthogonal to the local spin polarization and, thus, can be probed by measuring the spin-polarized local density of states. PMID:26406845

  20. Efficient Synchronization of Dipolarly Coupled Vortex-Based Spin Transfer Nano-Oscillators

    Science.gov (United States)

    Locatelli, Nicolas; Hamadeh, Abbass; Abreu Araujo, Flavio; Belanovsky, Anatoly D.; Skirdkov, Petr N.; Lebrun, Romain; Naletov, Vladimir V.; Zvezdin, Konstantin A.; Muñoz, Manuel; Grollier, Julie; Klein, Olivier; Cros, Vincent; de Loubens, Grégoire

    2015-11-01

    Due to their nonlinear properties, spin transfer nano-oscillators can easily adapt their frequency to external stimuli. This makes them interesting model systems to study the effects of synchronization and brings some opportunities to improve their microwave characteristics in view of their applications in information and communication technologies and/or to design innovative computing architectures. So far, mutual synchronization of spin transfer nano-oscillators through propagating spinwaves and exchange coupling in a common magnetic layer has been demonstrated. Here we show that the dipolar interaction is also an efficient mechanism to synchronize neighbouring oscillators. We experimentally study a pair of vortex-based spin transfer nano-oscillators, in which mutual synchronization can be achieved despite a significant frequency mismatch between oscillators. Importantly, the coupling efficiency is controlled by the magnetic configuration of the vortices, as confirmed by an analytical model and micromagnetic simulations highlighting the physics at play in the synchronization process.

  1. Spin-orbit coupling in gated AlGaN/GaN 2-dimensional electron gases

    Energy Technology Data Exchange (ETDEWEB)

    Schaepers, Th.; Thillosen, N.; Cabanas, S.; Kaluza, N.; Guzenko, V.A.; Hardtdegen, H. [Institute of Bio- and Nanosystems (IBN-1), Research Centre Juelich, 52425 Juelich (Germany)

    2006-07-01

    Weak antilocalization was studied in an Al{sub x}Ga{sub 1-x}N/GaN two-dimensional electron gas as a function of temperature for various gate voltages. By fitting the weak antilocalization measurements by a theoretical model we found that the spin-orbit scattering length does not vary upon changing the carrier concentration or the temperature. The occurrence of spin-orbit coupling was attributed to the crystal inversion asymmetry. The presence of beating patterns observed in the Shubnikov-de Haas oscillations were not assigned to the presence of spin-orbit coupling but rather to structural inhomogeneities in the Al{sub x}Ga{sub 1-x}N/GaN crystal. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Critical and strong-coupling phases in one- and two-bath spin-boson models.

    Science.gov (United States)

    Guo, Cheng; Weichselbaum, Andreas; von Delft, Jan; Vojta, Matthias

    2012-04-20

    For phase transitions in dissipative quantum impurity models, the existence of a quantum-to-classical correspondence has been discussed extensively. We introduce a variational matrix product state approach involving an optimized boson basis, rendering possible high-accuracy numerical studies across the entire phase diagram. For the sub-Ohmic spin-boson model with a power-law bath spectrum ∝ω(s), we confirm classical mean-field behavior for s<1/2, correcting earlier numerical renormalization-group results. We also provide the first results for an XY-symmetric model of a spin coupled to two competing bosonic baths, where we find a rich phase diagram, including both critical and strong-coupling phases for s<1, different from that of classical spin chains. This illustrates that symmetries are decisive for whether or not a quantum-to-classical correspondence exists. PMID:22680701

  3. Exchange Coupling Inversion in a High-Spin Organic Triradical Molecule.

    Science.gov (United States)

    Gaudenzi, R; Burzurí, E; Reta, D; Moreira, I de P R; Bromley, S T; Rovira, C; Veciana, J; van der Zant, H S J

    2016-03-01

    The magnetic properties of a nanoscale system are inextricably linked to its local environment. In adatoms on surfaces and inorganic layered structures, the exchange interactions result from the relative lattice positions, layer thicknesses, and other environmental parameters. Here, we report on a sample-dependent sign inversion of the magnetic exchange coupling between the three unpaired spins of an organic triradical molecule embedded in a three-terminal device. This ferro-to-antiferromagnetic transition is due to structural distortions and results in a high-to-low spin ground-state change in a molecule traditionally considered to be a robust high-spin quartet. Moreover, the flexibility of the molecule yields an in situ electric tunability of the exchange coupling via the gate electrode. These findings open a route to the controlled reversal of the magnetic states in organic molecule-based nanodevices by mechanical means, electrical gating, or chemical tailoring. PMID:26862681

  4. Analysis of a coupled spin drift-diffusion Maxwell-Landau-Lifshitz system

    Science.gov (United States)

    Zamponi, Nicola; Jüngel, Ansgar

    2016-05-01

    The existence of global weak solutions to a coupled spin drift-diffusion and Maxwell-Landau-Lifshitz system is proved. The equations are considered in a two-dimensional magnetic layer structure and are supplemented with Dirichlet-Neumann boundary conditions. The spin drift-diffusion model for the charge density and spin density vector is the diffusion limit of a spinorial Boltzmann equation for a vanishing spin polarization constant. The Maxwell-Landau-Lifshitz system consists of the time-dependent Maxwell equations for the electric and magnetic fields and of the Landau-Lifshitz-Gilbert equation for the local magnetization, involving the interaction between magnetization and spin density vector. The existence proof is based on a regularization procedure, L2-type estimates, and Moser-type iterations which yield the boundedness of the charge and spin densities. Furthermore, the free energy is shown to be nonincreasing in time if the magnetization-spin interaction constant in the Landau-Lifshitz equation is sufficiently small.

  5. 29Si-13C Spin-Spin Couplings over Si-O-Carom Link

    Czech Academy of Sciences Publication Activity Database

    Sýkora, Jan; Blechta, Vratislav; Sychrovský, Vladimír; Hetflejš, Jiří; Šabata, Stanislav; Soukupová, Ludmila; Schraml, Jan

    2006-01-01

    Roč. 44, č. 7 (2006), s. 669-674. ISSN 0749-1581 R&D Projects: GA ČR(CZ) GA203/03/1566; GA ČR(CZ) GA203/05/0388; GA ČR(CZ) GP203/02/D176 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40550506 Keywords : spinspin coupling * coupling mechanism * sign of coupling constants Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.610, year: 2006

  6. Communication: Spin densities within a unitary group based spin-adapted open-shell coupled-cluster theory: Analytic evaluation of isotropic hyperfine-coupling constants for the combinatoric open-shell coupled-cluster scheme

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Dipayan, E-mail: datta.dipayan@gmail.com; Gauss, Jürgen, E-mail: gauss@uni-mainz.de [Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz (Germany)

    2015-07-07

    We report analytical calculations of isotropic hyperfine-coupling constants in radicals using a spin-adapted open-shell coupled-cluster theory, namely, the unitary group based combinatoric open-shell coupled-cluster (COSCC) approach within the singles and doubles approximation. A scheme for the evaluation of the one-particle spin-density matrix required in these calculations is outlined within the spin-free formulation of the COSCC approach. In this scheme, the one-particle spin-density matrix for an open-shell state with spin S and M{sub S} = + S is expressed in terms of the one- and two-particle spin-free (charge) density matrices obtained from the Lagrangian formulation that is used for calculating the analytic first derivatives of the energy. Benchmark calculations are presented for NO, NCO, CH{sub 2}CN, and two conjugated π-radicals, viz., allyl and 1-pyrrolyl in order to demonstrate the performance of the proposed scheme.

  7. Numerical estimation of the $\\beta$-function in 2D systems with spin-orbit coupling

    OpenAIRE

    Asada, Yoichi; Slevin, Keith; Ohtsuki, Tomi

    2004-01-01

    We report a numerical study of Anderson localization in a 2D system of non-interacting electrons with spin-orbit coupling. We analyze the scaling of the renormalized localization length for the 2D SU(2) model and estimate its $\\beta$-function over the full range from the localized to the metallic limits.

  8. Study of spin sum rules (and the strong coupling constant at large distances)

    Energy Technology Data Exchange (ETDEWEB)

    Alexandre Deur

    2009-12-01

    We present recent results from Jefferson Lab on sum rules related to the spin structure of the nucleon. We then discuss how the Bjorken sum rule with its connection to the Gerasimov-Drell-Hearn sum, allows us to conveniently define an effective coupling for the strong force at all distances.

  9. The manifestation of spin-phonon coupling in CaMnO.sub.3./sub..

    Czech Academy of Sciences Publication Activity Database

    Goian, Veronica; Kamba, Stanislav; Borodavka, Fedir; Nuzhnyy, Dmitry; Savinov, Maxim; Belik, A.A.

    2015-01-01

    Roč. 117, č. 16 (2015), "164103-1"-"164103-6". ISSN 0021-8979 R&D Projects: GA ČR GP14-14122P Institutional support: RVO:68378271 Keywords : phonons * multiferroics * spin-phonon coupling Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.183, year: 2014

  10. Double Barrier Resonant Tunneling in Spin-Orbit Coupled Bose—Einstein Condensates

    International Nuclear Information System (INIS)

    We study the double barrier tunneling properties of Dirac particles in spin-orbit coupled Bose—Einstein Condensates. The analytic expression of the transmission coefficient of Dirac particles penetrating into a double barrier is obtained. An interesting resonance tunneling phenomenon is discovered in the Klein block region which has been ignored before

  11. Measure synchronization in a spin-orbit-coupled bosonic Josephson junction

    Science.gov (United States)

    Wang, Wen-Yuan; Liu, Jie; Fu, Li-Bin

    2015-11-01

    We present measure synchronization (MS) in a bosonic Josephson junction with spin-orbit coupling. The two atomic hyperfine states are coupled by a Raman dressing scheme, and they are regarded as two orientations of a pseudo-spin-1 /2 system. A feature specific to a spin-orbit-coupled (SOC) bosonic Josephson junction is that the transition from non-MS to MS dynamics can be modulated by Raman laser intensity, even in the absence of interspin atomic interaction. A phase diagram of non-MS and MS dynamics as functions of Raman laser intensity and Josephson tunneling amplitude is presented. Taking into account interspin atomic interactions, the system exhibits MS breaking dynamics resulting from the competition between intraspin and interspin atomic interactions. When interspin atomic interactions dominate in the competition, the system always exhibits MS dynamics. For interspin interaction weaker than intraspin interaction, a window for non-MS dynamics is present. Since SOC Bose-Einstein condensates provide a powerful platform for studies on physical problems in various fields, the study of MS dynamics is valuable in researching the collective coherent dynamical behavior in a spin-orbit-coupled bosonic Josephson junction.

  12. Some exact identities connecting one- and two-particle Green's functions in spin-orbit coupling systems

    International Nuclear Information System (INIS)

    Some exact identities connecting one- and two-particle Green's functions in the presence of spin-orbit coupling have been derived. These identities are similar to the Ward identity in usual quantum transport theory of electrons. A satisfying approximate calculation of the spin transport in spin-orbit coupling system should also preserve these identities, just as the Ward identities should be remained in the usual electronic transport theory

  13. Exploring the Structure of a DNA Hairpin with the Help of NMR Spin-Spin Coupling Constants: An Experimental and Quantum Chemical Investigation

    Czech Academy of Sciences Publication Activity Database

    Sychrovský, Vladimír; Vacek, Jaroslav; Hobza, Pavel; Žídek, L.; Sklenář, V.; Cremer, D.

    2002-01-01

    Roč. 106, - (2002), s. 10242-10250. ISSN 1089-5639 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : DNA * help of NMR spin-spin coupling constants * quantum chemical investigation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.765, year: 2002

  14. Spin-orbit coupled Bose-Einstein condensates in a double well

    OpenAIRE

    Citro, Roberta; Naddeo, Adele

    2014-01-01

    We study the quantum dynamics of a spin-orbit (SO) coupled Bose-Einstein condensate (BEC) in a double-well potential inspired by the experimental protocol recently developed by NIST group. We focus on the regime where the number of atoms is very large and perform a two-mode approximation. An analytical solution of the two-site Bose-Hubbard-like Hamiltonian is found for several limiting cases, which range from a strong Raman coupling to a strong Josephson coupling, ending with the complete mod...

  15. Vortex structures of rotating spin-orbit-coupled Bose-Einstein condensates

    International Nuclear Information System (INIS)

    We consider the quasi-two-dimensional two-component Bose-Einstein condensates with Rashba spin-orbit (SO) coupling in a rotating trap. The rotation angular velocity couples to the mechanical angular momentum, which contains a noncanonical part arising from SO coupling. The effects of an external Zeeman term favoring spin polarization along the radial direction is also considered, which has the same form as the noncanonical part of the mechanical angular momentum. The rotating condensate exhibits a variety of rich structures by varying the strengths of the trapping potential and interaction. With a strong trapping potential, the condensate exhibits a half-quantum vortex-lattice configuration. Such a configuration is driven to the normal one by introducing the external radial Zeeman field. In the case of a weak trap potential, the condensate exhibits a multidomain pattern of plane-wave states under the external radial Zeeman field.

  16. Spin-coupled charge dynamics in layered manganite crystals

    CERN Document Server

    Tokura, Y; Ishikawa, T

    1998-01-01

    Anisotropic charge dynamics has been investigated for single crystals of layered manganites, La sub 2 sub - sub 2 sub x Sr sub 1 sub + sub 2 sub x Mn sub 2 O sub 7 (0.3<=X<=0.5). Remarkable variations in the magnetic structure and in the charge-transport properties are observed by changing the doping level x . A crystal with x = 0.3 behaves like a 2-dimensional ferromagnetic metal in the temperature region between approx 90 K and approx 270 K and shows an interplane tunneling magnetoresistance at lower temperatures which is sensitive to the interplane magnetic coupling between the adjacent MnO sub 2 bilayers. Optical probing of these layered manganites has also clarified the highly anisotropic and incoherent charge dynamics.

  17. Melting of phase-stripes in Bose-Einstein condensates with synthetic spin-orbit coupling

    Science.gov (United States)

    Sudbo, Asle; Galteland, Peder; Babaev, Egor

    We study a two-component, density imbalanced Bose-Einstein condensate with density-density interactions and synthetic spin-orbit coupling, focusing on the impact of thermal fluctuations and density-density interactions on spin-orbit induced effects. We find that for intermediate density imbalance and small intercomponent density-density interactions, the ground state is non-uniform, represented by a striped state of modulated phases of the individual complex order parameter components. By using mean-field stability arguments, we calculate a critical value for the intercomponent density-density interaction, above which the non-uniform ground state collapses into a uniform single-component state. This is reproduced in Monte-Carlo simulations for intermediate values of the spin-orbit coupling. We also find that the non-uniform ground state is disordered by thermal fluctuations when heated, through a Berizinskii-Kosterlitz-Thouless unbinding of disclocation pairs. We argue that, to lowest order, the spin-orbit coupling can be seen as an effective Josephson-type locking of the phase difference θ1 -θ2 while simultaneously allowing the system to gain energy by modulating the phase sum θ1 +θ2 . Work supported by the Norwegian Research Council, the Swedish Research Council, and the National Science Foundation.

  18. Spin-orbit coupling in InSb semiconductor nanowires: physical limits for majorana states

    Science.gov (United States)

    Sipahi, Guilherme; de Campos, Tiago; Faria Junior, Paulo E.; Gmitra, Martin; Zutic, Igor; Fabian, Jaroslav

    The search for Majorana fermions is a hot subject nowadays. One of the possibilities for their realization is the use of semiconductor nanowires and p-type superconductors coupled together. Following this path, the first step is the determination of realistic band structures of these wires including spin-orbit effects. To consider the spin-orbit effects, its common to use models that take into account only the first conduction band. Although these reduced models have been successfully used to determine some physical properties, a more realistic description of the spin-orbit coupling between the bands is required to further investigate possible ways to realize the Majorana fermions. In this study we use a state of the art 14 band k.p formalism together with the envelope function approach to determine the band structure of InAs semiconductor nanowires and analyze how the quantum confinement change the coupling between the bands. As a result we have extracted the effective masses and the spin-orbit splitting for a large range of nanowire radial sizes and for several conduction bands that can be used in effective models. FAPESP (No. 2011/19333-4, No. 2012/05618-0 and No. 2013/23393-8), CNPq (No. 246549/2012-2 and No. 149904/2013-4), CAPES(PVE 88881.068174/2014-01) and DFG SFB 689.

  19. Intermolecular (119)Sn,(31)P Through-Space Spin-Spin Coupling in a Solid Bivalent Tin Phosphido Complex.

    Science.gov (United States)

    Arras, Janet; Eichele, Klaus; Maryasin, Boris; Schubert, Hartmut; Ochsenfeld, Christian; Wesemann, Lars

    2016-05-01

    A bivalent tin complex [Sn(NP)2] (NP = [(2-Me2NC6H4)P(C6H5)](-)) was prepared and characterized by X-ray diffraction and solution and solid-state nuclear magnetic resonance (NMR) spectroscopy. In agreement with the X-ray structures of two polymorphs of the molecule, (31)P and (119)Sn CP/MAS NMR spectra revealed one crystallographic phosphorus and tin site with through-bond (1)J((117/119)Sn,(31)P) and through-space (TS)J((117/119)Sn,(31)P) spin-spin couplings. Density functional theory (DFT) calculations of the NMR parameters confirm the experimental data. The observation of through-space (TS)J((117/119)Sn,(31)P) couplings was unexpected, as the distances of the phosphorus atoms of one molecule and the tin atom of the neighboring molecule (>4.6 Å) are outside the sum of the van der Waals radii of the atoms P and Sn (4.32 Å). The intermolecular Sn···P separations are clearly too large for bonding interactions, as supported by a natural bond orbital (NBO) analysis. PMID:27071033

  20. Spin initialization of a p-doped quantum dot coupled to a bowtie nanoantenna

    Science.gov (United States)

    Carreño, F.; Arrieta-Yáñez, Francisco; Antón, M. A.

    2015-05-01

    The spin initialization of a hybrid system consisting of a p-doped semiconductor quantum dot coupled to a gold bowtie nanoantenna is analyzed. The quantum dot is described as a four-level atom-like system using the density matrix formalism. The two lower levels are Zeeman-split hole spin states and the two upper levels correspond to positively charged excitons with spin-up, spin-down hole pair and opposite spin electron. The gold bowtie nanoantenna is placed in close proximity to the quantum dot. A linearly polarized laser field drives two of the optical transitions of the quantum dot and produces localized surface charge oscillations in the nanoantenna which act back upon the quantum dot thus changing the effective field felt by it. The angular frequencies of those charge oscillations are very different along its two principal axes, resulting in an anisotropic modification of the spontaneous emission rates of the allowed optical transitions of the quantum dot. These changes are accounted for by using the Green tensor method, and result in a faster spin state initialization than that of the isolated quantum dot. We also show that the presence of the nanoantenna dramatically modifies the optical properties of the fluorescent photons, either in the spectral or in the time domain.

  1. Spin-flip process through double quantum dots coupled to two half-metallic ferromagnetic leads

    Institute of Scientific and Technical Information of China (English)

    Yan Cong-Hua; Wu Shao-Quan; Huang Rui; Sun Wei-Li

    2008-01-01

    We investigate the spin-flip process through double quantum dots coupled to two half-metallic ferromagnetic leads in series.By means of the slave-boson mean-field approximation,we calculate the density of states in the Kondo regime for two different configurations of the leads.It is found that the transport shows some remarkable properties depending on the spin-flip strength.These effects may be useful in exploiting the role of electronic correlation in spintronics.

  2. Spin-Lattice-Coupled Order in Heisenberg Antiferromagnets on the Pyrochlore Lattice

    Science.gov (United States)

    Aoyama, Kazushi; Kawamura, Hikaru

    2016-06-01

    Effects of local lattice distortions on the spin ordering are investigated for the antiferromagnetic classical Heisenberg model on the pyrochlore lattice. It is found by Monte Carlo simulations that the spin-lattice coupling (SLC) originating from site phonons induces a first-order transition into two different types of collinear magnetic ordered states. The state realized at the stronger SLC is cubic symmetric characterized by the magnetic (1/2 ,1/2 ,1/2 ) Bragg peaks, while that at the weaker SLC is tetragonal symmetric characterized by the (1,1,0) ones, each accompanied by the commensurate local lattice distortions. Experimental implications to chromium spinels are discussed.

  3. Recent progress on correlated electron systems with strong spin-orbit coupling.

    Science.gov (United States)

    Schaffer, Robert; Kin-Ho Lee, Eric; Yang, Bohm-Jung; Kim, Yong Baek

    2016-09-01

    The emergence of novel quantum ground states in correlated electron systems with strong spin-orbit coupling has been a recent subject of intensive studies. While it has been realized that spin-orbit coupling can provide non-trivial band topology in weakly interacting electron systems, as in topological insulators and semi-metals, the role of electron-electron interaction in strongly spin-orbit coupled systems has not been fully understood. The availability of new materials with significant electron correlation and strong spin-orbit coupling now makes such investigations possible. Many of these materials contain 5d or 4d transition metal elements; the prominent examples are iridium oxides or iridates. In this review, we succinctly discuss recent theoretical and experimental progress on this subject. After providing a brief overview, we focus on pyrochlore iridates and three-dimensional honeycomb iridates. In pyrochlore iridates, we discuss the quantum criticality of the bulk and surface states, and the relevance of the surface/boundary states in a number of topological and magnetic ground states, both in the bulk and thin film configurations. Experimental signatures of these boundary and bulk states are discussed. Domain wall formation and strongly-direction-dependent magneto-transport are also discussed. In regard to the three-dimensional honeycomb iridates, we consider possible quantum spin liquid phases and unusual magnetic orders in theoretical models with strongly bond-dependent interactions. These theoretical ideas and results are discussed in light of recent resonant x-ray scattering experiments on three-dimensional honeycomb iridates. We also contrast these results with the situation in two-dimensional honeycomb iridates. We conclude with the outlook on other related systems. PMID:27540689

  4. Eccentric orbital motion of compact binaries with aligned spins and angular momentum under higher order spin coupling

    CERN Document Server

    Tessmer, Manuel; Schaefer, Gerhard

    2010-01-01

    A quasi-Keplerian parameterisation for the solutions of second post-Newtonian (PN) accurate equations of motion for spinning compact binaries is obtained including leading order spin-spin and next-to-leading order spin-orbit interactions. Rotational deformation of the compact objects is incorporated. For arbitrary mass ratios the spin orientations are taken to be parallel or anti-parallel to the orbital angular momentum vector. The emitted gravitational wave forms are given in analytic form up to 2PN point particle, 1.5PN spin orbit and 1PN spin-spin contributions, where the spins are counted of 0PN order.

  5. Effective one-body Hamiltonian of two spinning black holes with next-to-next-to-leading order spin-orbit coupling

    Science.gov (United States)

    Nagar, Alessandro

    2011-10-01

    Building on the recently computed next-to-next-to-leading order (NNLO) post-Newtonian spin-orbit Hamiltonian for spinning binaries [J. Hartung and J. Steinhoff, arXiv:1104.3079.] we improve the effective-one-body description of the dynamics of two spinning black holes by including NNLO effects in the spin-orbit interaction. The calculation that is presented extends to NNLO the next-to-leading order spin-orbit Hamiltonian computed in [T. Damour, P. Jaranowski, and G. Schaefer, Phys. Rev. DPRVDAQ1550-7998 78, 024009 (2008).10.1103/PhysRevD.78.024009]. The present effective-one-body Hamiltonian reproduces the spin-orbit coupling through NNLO in the test-particle limit case. In addition, in the case of spins parallel or antiparallel to the orbital angular momentum, when circular orbits exist, we find that the inclusion of NNLO spin-orbit terms moderates the effect of the next-to-leading order spin-orbit coupling.

  6. Spin- and valley-coupled electronic states in monolayer WSe{sub 2} on bilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, K.; Souma, S. [WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Sato, T.; Tanaka, Y. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Takahashi, T. [WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Department of Physics, Tohoku University, Sendai 980-8578 (Japan)

    2015-08-17

    We have fabricated a high-quality monolayer WSe{sub 2} film on bilayer graphene by epitaxial growth and revealed the electronic states by spin- and angle-resolved photoemission spectroscopy. We observed a direct energy gap at the Brillouin-zone corner in contrast to the indirect nature of gap in bulk WSe{sub 2}, which is attributed to the lack of interlayer interaction and the breaking of space-inversion symmetry in monolayer film. A giant spin splitting of ∼0.5 eV, which is the largest among known monolayer transition-metal dichalcogenides, is observed in the energy band around the zone corner. The present results suggest a high potential applicability of WSe{sub 2} to develop advanced devices based with the coupling of spin- and valley-degrees of freedom.

  7. Spin- and valley-coupled electronic states in monolayer WSe2 on bilayer graphene

    International Nuclear Information System (INIS)

    We have fabricated a high-quality monolayer WSe2 film on bilayer graphene by epitaxial growth and revealed the electronic states by spin- and angle-resolved photoemission spectroscopy. We observed a direct energy gap at the Brillouin-zone corner in contrast to the indirect nature of gap in bulk WSe2, which is attributed to the lack of interlayer interaction and the breaking of space-inversion symmetry in monolayer film. A giant spin splitting of ∼0.5 eV, which is the largest among known monolayer transition-metal dichalcogenides, is observed in the energy band around the zone corner. The present results suggest a high potential applicability of WSe2 to develop advanced devices based with the coupling of spin- and valley-degrees of freedom

  8. Experimental study on the spin-orbit coupling property in low-dimensional semiconductor structures

    International Nuclear Information System (INIS)

    The spin-orbit coupling and optical properties have been studied in several low-dimensional semiconductor structures. First, the spin dynamics in (001) GaAs/AlGaAs two-dimensional electron gas was investigated by time resolved Kerr rotation technique under a transverse magnetic field. The in-plane spin lifetime is found to be anisotropic. The results show that the electron density in two-dimensional electron gas channel strongly affects the Rashba spin-orbit coupling. Then, a large anisotropy of the magnitude of in-plane conduction electron g factor in asymmetric (001) GaAs/AlGaAs QWs was observed and its tendency of temperature dependence was studied. Second, the experimental study of the in-plane-orientation dependent spin splitting in the C(0001) GaN/AlGaN two-dimensional electron gas at room temperature was reported. The measurement of circular photo-galvanic effect current clearly shows the isotropic in-plane spin splitting in this system for the first time. Third, the first measurement of conduction electron g factor in GaAsN at room temperature was done by using time resolved Kerr rotation technique. It demonstrates that the g factor can be modified drastically by introducing a small amount of nitrogen in GaAs bulk. Finally, the optical characteristic of indirect type II transition in a series of size and shape-controlled linear CdTe/CdSe/CdTe heterostructure nano-rods was studied by steady-state and time resolved photoluminescence. Results show the steady transfer from the direct optical transition (type I) within CdSe to the indirect transition (type II) between CdSe/CdTe as the length of the nano-rods increases. (author)

  9. Higher spin gravitational couplings: Ghosts in the Yang-Mills detour complex

    International Nuclear Information System (INIS)

    Gravitational interactions of higher spin fields are generically plagued by inconsistencies. There exists however, a simple framework that couples higher spins to a broad class of gravitational backgrounds (including Ricci flat and Einstein) consistently at the classical level. The model is the simplest example of a Yang-Mills detour complex and has broad mathematical applications, especially to conformal geometry. Even the simplest version of the theory, which couples gravitons, vectors and scalar fields in a flat background is rather rich, providing an explicit setting for detailed analysis of ghost excitations. Its asymptotic scattering states consist of a physical massless graviton, scalar, and massive vector along with a degenerate pair of zero norm photon excitations. Coherent states of the unstable sector do have positive norms, but their evolution is no longer unitary and amplitudes grow with time. The class of models proposed is extremely general and of considerable interest for ghost condensation and invariant theory

  10. Simulating Chiral Magnetic and Separation Effects with Spin-Orbit Coupled Atomic Gases.

    Science.gov (United States)

    Huang, Xu-Guang

    2016-01-01

    The chiral magnetic and chiral separation effects-quantum-anomaly-induced electric current and chiral current along an external magnetic field in parity-odd quark-gluon plasma-have received intense studies in the community of heavy-ion collision physics. We show that analogous effects occur in rotating trapped Fermi gases with Weyl-Zeeman spin-orbit coupling where the rotation plays the role of an external magnetic field. These effects can induce a mass quadrupole in the atomic cloud along the rotation axis which may be tested in future experiments. Our results suggest that the spin-orbit coupled atomic gases are potential simulators of the chiral magnetic and separation effects. PMID:26868084

  11. Magnetic phases of spin-1 spin–orbit-coupled Bose gases

    Science.gov (United States)

    Campbell, D. L.; Price, R. M.; Putra, A.; Valdés-Curiel, A.; Trypogeorgos, D.; Spielman, I. B.

    2016-01-01

    Phases of matter are characterized by order parameters describing the type and degree of order in a system. Here we experimentally explore the magnetic phases present in a near-zero temperature spin-1 spin–orbit-coupled atomic Bose gas and the quantum phase transitions between these phases. We observe ferromagnetic and unpolarized phases, which are stabilized by spin–orbit coupling's explicit locking between spin and motion. These phases are separated by a critical curve containing both first- and second-order transitions joined at a tricritical point. The first-order transition, with observed width as small as h × 4 Hz, gives rise to long-lived metastable states. These measurements are all in agreement with theory. PMID:27025562

  12. Gyromagnetic factor and spin-orbit coupling of ligand in CsVX3 (X=Cl, Br, I)

    International Nuclear Information System (INIS)

    In the present work, the perturbation expression of the gyromagnetic factor of d3 ions including the spin-orbit coupling of the ligand ions and the effect of the other excited states besides 4T1 state is derived. The molecular orbital coefficients are determined with a semiempirical method to estimate the g shift. The results show that the contribution of the spin-orbit coupling of the ligand ions to g shift must be considered for some ligand ions possessing large spin-orbit coupling constant. The differences of the g shift between the theoretical and observed values in CsVX3 are explained quantitatively. (author). 11 refs, 3 tabs

  13. Analysis of phase transitions in spin-crossover compounds by using atom - phonon coupling model

    Energy Technology Data Exchange (ETDEWEB)

    Gindulescu, A; Linares, J [GEMaC, CNRS-UMR 8635, Universite de Versailles St. Quentin en Yvelines, 78035 Versailles (France); Rotaru, A; Dimian, M [Stefan cel Mare University, Electrical Engineering and Computer Science, Suceava (Romania); Nasser, J, E-mail: jlinares@physique.uvsq.fr, E-mail: aurelian.rotaru@gmail.com [Lab. LISV, Universite de Versailles St. Quentin en Yvelines, 78035 Versailles (France)

    2011-01-01

    The spin - crossover compounds (SCO) have become of great interest recently due to their potential applications in memories, sensors, switches, and display devices. These materials are particularly interesting because upon application of heat, light, pressure or other physical stimulus, they feature a phase transition between a low-spin (LS) diamagnetic ground state and a high-spin (HS) paramagnetic state, accompanied in some cases by color change. The phase transition can be discontinuous (with hysteresis), in two steps or gradual. Our analysis is performed by using the atom - phonon coupling (APC) model which considers that neighboring molecules are connected through a spring characterized by an elastic constant depending on molecules electronic state. By associating a fictitious spin to each molecule that has -1 and +1 eigenvalues corresponding to LS and HS levels respectively, an Ising type model can be developed for the analysis of metastable states and phase transitions in spin-crossover compounds. This contribution is aimed at providing a review of our recent results in this area, as well as novel aspects related to SCO compounds behavior at low temperature. In the framework of the APC model, we will discuss about the existence of metastable and unstable states, phase transitions and hysteresis phenomena, as well as their dependence on sample size.

  14. Indirect relativistic bridge and substituent effects from the 'heavy' environment on the one-bond and two-bond (13)C-(1)H spin-spin coupling constants.

    Science.gov (United States)

    Rusakova, Irina L; Rusakov, Yury Yu; Krivdin, Leonid B

    2016-01-01

    Indirect relativistic bridge effect (IRBE) and indirect relativistic substituent effect (IRSE) induced by the 'heavy' environment of the IV-th, V-th and VI-th main group elements on the one-bond and geminal (13)C-(1)H spin-spin coupling constants are observed, and spin-orbit parts of these two effects were interpreted in terms of the third-order Rayleigh-Schrödinger perturbation theory. Both effects, IRBE and IRSE, rapidly increase with the total atomic charge of the substituents at the coupled carbon. The accumulation of IRSE for geminal coupling constants is not linear with respect to the number of substituents in contrast to the one-bond couplings where IRSE is an essentially additive quantity. PMID:26352434

  15. Hawking Radiation of an Arbitrarily Accelerating Kinnersley Black Hole: Spin-Acceleration Coupling Effect

    CERN Document Server

    Shuang-Qing, W; Shuang-Qing, Wu; Mu-Lin, Yan

    2003-01-01

    The Hawking radiation of Weyl neutrinos in an arbitrarily accelerating Kinnersley black hole is investigated by using a method of the generalized tortoise coordinate transformation. Both the location and temperature of the event horizon depend on the time and on the angles. They coincide with previous results, but the thermal radiation spectrum of massless spinor particles displays a kind of spin-acceleration coupling effect.

  16. Hawking Radiation of an Arbitrarily Accelerating Kinnersley Black Hole: Spin-Acceleration Coupling Effect

    Institute of Scientific and Technical Information of China (English)

    吴双清; 闫沐霖

    2003-01-01

    The Hawking radiation of Weyl neutrinos in an arbitrarily accelerating Kinnersley black hole is investigated using a method of the generalized tortoise coordinate transformation.Both the location and temperature of the event horizon depend on the time and on the angles.They are in agreement with the previous results,but thethermal radiation spectrum of massless spinor particles displays a type of spin-acceleration coupling effect.

  17. A multi-purpose simulator of coupled spin systems for MR localized spectroscopy and spectroscopic imaging

    Czech Academy of Sciences Publication Activity Database

    Starčuk jr., Zenon; Starčuková, Jana; Graveron-Demilly, D.

    Vol. 19. Berkeley : International Society for Magnetic Resonance in Medicine, 2011, s. 1403. [International Society for Magnetic Resonance Scientific Meeting /19./ and Exhibition and the Society for Magnetic Resonance Technologists Annual Meeting /20./. Montreal (CA), 07.05.2011-13.05.2011] R&D Projects: GA ČR GA102/09/1861 Institutional support: RVO:68081731 Keywords : coupled spin systems * simulator * spectroscopy * spectroscopic imaging Subject RIV: BH - Optics, Masers, Lasers

  18. Field effects on the vortex states in spin-orbit coupled Bose-Einstein condensates

    Science.gov (United States)

    Xu, Liang-Liang; Liu, Yong-Kai; Feng, Shiping; Yang, Shi-Jie

    2016-06-01

    Multi-quantum vortices can be created in the ground state of rotating Bose-Einstein condensates with spin-orbit couplings. We investigate the effects of external fields, either a longitudinal field or a transverse field, on the vortex states. We reveal that both fields can effectively reduce the number of vortices. In the latter case we further find that the condensate density packets are pushed away in the horizontal direction and the vortices finally disappear to form a plane wave phase.

  19. Multistep shell model description of spin-aligned neutron–proton pair coupling

    International Nuclear Information System (INIS)

    The recently proposed spin-aligned neutron–proton pair coupling scheme is studied within a non-orthogonal basis in term of the multistep shell model. This allows us to identify simultaneously the roles played by other configurations such as the normal pairing term. The model is applied to four-, six- and eight-hole N=Z nuclei below the core 100Sn.

  20. Effect of Spin-Orbit Coupling on Kondo Phenomena in $f^7$-Electron Systems

    OpenAIRE

    Hotta, Takashi

    2015-01-01

    In order to promote our basic understanding on the Kondo behavior recently observed in europium compounds, we analyze an impurity Anderson model with seven $f$ electrons at an impurity site by employing a numerical renormalization group method. The local part of the model consists of Coulomb interactions among $f$ electrons, spin-orbit coupling $\\lambda$, and crystalline electric field (CEF) potentials, while we consider the hybridization $V$ between local $f$ electrons and single-band conduc...

  1. Josephson physics of spin-orbit coupled elongated Bose-Einstein condensates

    OpenAIRE

    Garcia-March, M. A.; Mazzarella, G.; Dell'Anna, L.; Juliá-Díaz, B.; Salasnich, L.; Polls, A.

    2014-01-01

    We consider an ultracold bosonic binary mixture confined in a one-dimensional double-well trap. The two bosonic components are assumed to be two hyperfine internal states of the same atom. We suppose that these two components are spin-orbit coupled between each other. We employ the two-mode approximation starting from two coupled Gross-Pitaevskii equations and derive a system of ordinary differential equations governing the temporal evolution of the inter-well population imbalance of each com...

  2. Magnetodielectric coupling in frustrated spin systems: the spinels MCr₂O₄ (M = Mn, Co and Ni).

    Science.gov (United States)

    Mufti, N; Nugroho, A A; Blake, G R; Palstra, T T M

    2010-02-24

    We have studied the magnetodieletric coupling of polycrystalline samples of the spinels MCr(2)O(4) (M = Mn, Co and Ni). Dielectric anomalies are clearly observed at the onset of the magnetic spiral structure (T(s)) and at the 'lock-in' transition (T(f)) in MnCr(2)O(4) and CoCr(2)O(4), and also at the onset of the canted structure (T(s)) in NiCr(2)O(4). The strength of the magnetodielectric coupling in this system can be explained by spin-orbit coupling. Moreover, the dielectric response in an applied magnetic field scales with the square of the magnetization for all three samples. Thus, the magnetodielectric coupling in this state appears to originate from the P(2)M(2) term in the free energy. PMID:21386397

  3. Interplay of spin-orbit coupling and superconducting correlations in germanium telluride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Vijay; Nguyen, Thuy-Anh; Mansell, Rhodri; Ritchie, David [Cavendish Laboratory, Department of Physics, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE (United Kingdom); Mussler, Gregor [Peter Gruenberg Institute (PGI-9), Forschungszentrum Juelich, 52425, Juelich (Germany)

    2016-03-15

    There is much current interest in combining superconductivity and spin-orbit coupling in order to induce the topological superconductor phase and associated Majorana-like quasiparticles which hold great promise towards fault-tolerant quantum computing. Experimentally these effects have been combined by the proximity-coupling of super-conducting leads and high spin-orbit materials such as InSb and InAs, or by controlled Cu-doping of topological insu-lators such as Bi{sub 2}Se{sub 3}. However, for practical purposes, a single-phase material which intrinsically displays both these effects is highly desirable. Here we demonstrate coexisting superconducting correlations and spin-orbit coupling in molecular-beam-epitaxy-grown thin films of GeTe. The former is evidenced by a precipitous low-temperature drop in the electrical resistivity which is quelled by a magnetic field, and the latter manifests as a weak antilocalisation (WAL) cusp in the magnetotransport. Our studies reveal several other intriguing features such as the presence of two-dimensional rather than bulk transport channels below 2 K, possible signatures of topological superconductivity, and unexpected hysteresis in the magnetotransport. Our work demonstrates GeTe to be a potential host of topological SC and Majorana-like excitations, and to be a versatile platform to develop quantum information device architectures. (copyright 2016 The Authors. Phys. Status Solidi RRL published by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Optimal control of two coupled spinning particles in the Euler–Lagrange picture

    International Nuclear Information System (INIS)

    A family of optimal control problems for a single and two coupled spinning particles in the Euler–Lagrange formalism is discussed. A characteristic of such problems is that the equations controlling the system are implicit and a reduction procedure to deal with them must be carried out. The reduction of the implicit control equations arising in these problems will be discussed in the slightly more general setting of implicit equations defined by invariant one-forms on Lie groups. As an example the first order differential equations describing the extremal solutions of an optimal control problem for a single spinning particle, obtained by using Pontryagin’s Maximum Principle (PMP), will be found and shown to be completely integrable. Then, again using PMP, solutions for the problem of two coupled spinning particles will be characterized as solutions of a system of coupled non-linear matrix differential equations. The reduction of the implicit system will show that the reduced space for them is the product of the space of states for the independent systems, implying the absence of ‘entanglement’ in this instance. Finally, it will be shown that, in the case of identical systems, the degree three matrix polynomial differential equations determined by the optimal feedback law, constitute a completely integrable Hamiltonian system and some of its solutions are described explicitly. (paper)

  5. Quench dynamics of a Bose-Einstein condensate under synthetic spin-orbit coupling

    Science.gov (United States)

    Deng, Tian-Shu; Zhang, Wei; Yi, Wei; Guo, Guang-Can

    2016-05-01

    We study the quench dynamics of a Bose-Einstein condensate under a Raman-assisted synthetic spin-orbit coupling. To model the dynamical process, we adopt a self-consistent Bogoliubov approach, which is equivalent to applying the time-dependent Bogoliubov-de Gennes equations. We investigate the dynamics of the condensate fraction as well as the momentum distribution of the Bose gas following a sudden change of system parameters. Typically, the system evolves into a steady state in the long-time limit, which features an oscillating momentum distribution and a stationary condensate fraction. We investigate how different quench parameters such as the inter- and intraspecies interactions and the spin-orbit-coupling parameters affect the condensate fraction in the steady state. Furthermore, we find that the time average of the oscillatory momentum distribution in the long-time limit can be described by a generalized Gibbs ensemble with two branches of momentum-dependent Gibbs temperatures. Our study is relevant to the experimental investigation of dynamical processes in a spin-orbit-coupled Bose-Einstein condensate.

  6. The effect of molecular distortions on spin-orbit coupling in simple hydrocarbons

    International Nuclear Information System (INIS)

    Graphical abstract: The spin-orbit coupling as a function of nuclear geometry for benzene and cyclobutadiene is investigated, which may play a role in the ultrafast dynamics of these molecules. Distortions along C-H bends are particularly important. - Abstract: Recent work [D.N.S. Parker et al., Chem. Phys. Lett. 469 (2009) 43-49] has found intersystem crossing (ISC) on an ultrafast timescale in electronically excited benzene, a surprise as hydrocarbons generally have small spin-orbit coupling. In this paper, the effect of molecular distortions on spin-orbit coupling (SOC) is calculated for cyclobutadiene and benzene. At equilibrium the SOC in both molecules is negligible, and therefore terms arising from molecular distortions must play a significant role in any fast ISC. We show that out-of-plane C-H bends, which leads to the hybridisation of σ and π orbitals, are responsible for the most significant effect. The S1/S0 conical intersection is an important feature for understanding the photochemistry of these molecules. We examine the SOC along the vector from the Franck-Condon point to the lowest energy point on the crossing seam and discuss the potential importance of the SOC to the ultrafast dynamics.

  7. Two-Dimensional Pnictogen Honeycomb Lattice: Structure, On-Site Spin-Orbit Coupling and Spin Polarization.

    Science.gov (United States)

    Lee, Jason; Tian, Wen-Chuan; Wang, Wei-Liang; Yao, Dao-Xin

    2015-01-01

    Because of its novel physical properties, two-dimensional materials have attracted great attention. From first-principle calculations and vibration frequencies analysis, we predict a new family of two-dimensional materials based on the idea of octet stability: honeycomb lattices of pnictogens (N, P, As, Sb, Bi). The buckled structures of materials come from the sp(3) hybridization. These materials have indirect band gap ranging from 0.43 eV to 3.7 eV. From the analysis of projected density of states, we argue that the s and p orbitals together are sufficient to describe the electronic structure under tight-binding model, and the tight-binding parameters are obtained by fitting the band structures to first-principle results. Surprisingly large on-site spin-orbit coupling is found for all the pnictogen lattices except nitrogen. Investigation on the electronic structures of both zigzag and armchair nanoribbons reveals the possible existence of spin-polarized ferromagnetic edge states in some cases, which are rare in one-dimensional systems. These edge states and magnetism may exist under the condition of high vacuum and low temperature. This new family of materials would have promising applications in electronics, optics, sensors, and solar cells. PMID:26122870

  8. General formalism of local thermodynamics with an example: Quantum Otto engine with a spin-1/2 coupled to an arbitrary spin.

    Science.gov (United States)

    Altintas, Ferdi; Müstecaplıoğlu, Özgür E

    2015-08-01

    We investigate a quantum heat engine with a working substance of two particles, one with a spin-1/2 and the other with an arbitrary spin (spin s), coupled by Heisenberg exchange interaction, and subject to an external magnetic field. The engine operates in a quantum Otto cycle. Work harvested in the cycle and its efficiency are calculated using quantum thermodynamical definitions. It is found that the engine has higher efficiencies at higher spins and can harvest work at higher exchange interaction strengths. The role of exchange coupling and spin s on the work output and the thermal efficiency is studied in detail. In addition, the engine operation is analyzed from the perspective of local work and efficiency. We develop a general formalism to explore local thermodynamics applicable to any coupled bipartite system. Our general framework allows for examination of local thermodynamics even when global parameters of the system are varied in thermodynamic cycles. The generalized definitions of local and cooperative work are introduced by using mean field Hamiltonians. The general conditions for which the global work is not equal to the sum of the local works are given in terms of the covariance of the subsystems. Our coupled spin quantum Otto engine is used as an example of the general formalism. PMID:26382378

  9. Electron spin echo of Cu(2+) in the triglycine sulfate crystal family (TGS, TGSe, TGFB): electron spin-lattice relaxation, Debye temperature and spin-phonon coupling.

    Science.gov (United States)

    Lijewski, S; Goslar, J; Hoffmann, S K

    2006-07-01

    The electron spin-lattice relaxation of Cu(2+) has been studied by the electron spin echo technique in the temperature range 4.2-115 K in triglycine sulfate (TGS) family crystals. Assuming that the relaxation is due to Raman relaxation processes the Debye temperature Θ(D) was determined as 190 K for TGS, 168 K for triglycine selenate (TGSe) and 179 K for triglycine fluoroberyllate (TGFB). We also calculated the Θ(D) values from the sound velocities derived from available elastic constants. The elastic Debye temperatures were found as 348 K for TGS, 288 K for TGSe and 372 K for TGFB. The results shown good agreement with specific heat data for TGS. The elastic Θ(D) are considerably larger than those determined from the Raman spin-lattice relaxation. The possible reasons for this discrepancy are discussed. We propose to use a modified expression describing two-phonon Raman relaxation with a single variable only (Θ(D)) after elimination of the sound velocity. Moreover, we show that the relaxation data can be fitted using the elastic Debye temperature value as a constant with an additional relaxation process contributing at low temperatures. This mechanism can be related to a local mode of the Cu(2+) defect in the host lattice. Electron paramagnetic resonance g-factors and hyperfine splitting were analysed in terms of the molecular orbital theory and the d-orbital energies and covalency factors of the Cu(gly)(2) complexes were found. Using the structural data and calculated orbital energies the spin-phonon coupling matrix element of the second-order Raman process was calculated as 553 cm(-1) for TGS, 742 cm(-1) for TGSe and 569 cm(-1) for TGFB. PMID:21690828

  10. Isovector coupling channel and central properties of the charge density distribution in heavy spherical nuclei

    Indian Academy of Sciences (India)

    S Haddad

    2010-09-01

    The influence of the isovector coupling channel on the central depression parameter and the central value of the charge density distribution in heavy spherical nuclei was studied. The isovector coupling channel leads to about 50% increase of the central depression parameter, and weakens the dependency of both central depression parameter and central density on the asymmetry, impressively contributing to the semibubble form of the charge density distribution in heavy nuclei, and increasing the probability of larger nuclei with higher proton numbers and higher neutron-to-proton ratios stable.

  11. Isovector coupling channel and central properties of the charge density distribution in heavy spherical nuclei

    International Nuclear Information System (INIS)

    The influence of the isovector coupling channel on the central depression parameter and the central value of the charge density distribution in heavy spherical nuclei was studied. The isovector coupling channel leads to about 50% increase of the central depression parameter, and weakens the dependency of both central depression parameter and the central density on the asymmetry, impressively contributing to the semibubble form of the charge density distribution in heavy nuclei, and increasing the probability of larger nuclei with higher proton numbers and higher neutron-to-proton ratios stable. (author)

  12. A comparative study of the tunable spin-orbit coupling in graphene proximity coupled to topological insulators

    Science.gov (United States)

    Lin, Zhuonan; Qin, Wei; Zeng, Jiang; Chen, Wei; Cui, Ping; Cho, Jun-Hyung; Zhang, Zhenyu

    We present a comparative study of the electronic properties of the heterostructures consisting of a graphene sheet proximity coupled to the surfaces of three-dimensional topological insulators (TIs). Using density functional theory method, we first calculate the band structures of a single-layer graphene on the Bi2Te3 thin film. Counterintuitively, the spin-orbit coupling (SOC) can be barely induced in the graphene even though the intrinsic SOC strength of Bi2Te3 is stronger than that of Sb2Te3, which can readily introduce a giant SOC interaction into the graphene through proximity effect. In order to understand this exotic phenomenon, we next investigate the differences of the work functions and the charge transfers between the graphene and the TI substrates. It is found that the proximity-induced SOC in the graphene sheet can be enhanced by reducing the work function difference. These findings provide a simple work-function criterion for searching realistic materials that can be utilized as substrates to induce a large SOC gap in the graphene. Our criterion extends the posibities of experimental realization of quantum spin Hall state in graphene.

  13. Coupled Magnetic Resonator Optical Waveguides - mimicking spin waves in coupled metamaterials

    CERN Document Server

    Liu, Hui

    2013-01-01

    Optical resonators are important devices that control the properties of light and manipulate light-matter interaction. Various optical resonators are designed and fabricated using different techniques. For example, in coupled resonator optical waveguides, light energy is transported to other resonators through near-field coupling. In recent years, magnetic optical resonators based on LC resonance have been realized in several metallic microstructures. Such devices possess stronger local resonance and lower radiation loss compared with electric optical resonators. This study provides an overall introduction on the latest progress in coupled magnetic resonator optical waveguide (CMROW). Various waveguides composed of different magnetic resonators are presented and Lagrangian formalism is used to describe the CMROW. Moreover, several interesting properties of CMROW, such as abnormal dispersions and slow light effects, are discussed and CMROW applications in nonlinear and quantum optics are shown. Future novel na...

  14. Role of strong spin-orbit coupling in the superconductivity of the hexagonal pnictide SrPtAs

    Science.gov (United States)

    Youn, Suk Joo; Fischer, Mark H.; Rhim, S. H.; Sigrist, Manfred; Agterberg, Daniel F.

    2012-06-01

    In clean inversion symmetric materials, spin-orbit coupling is not thought to have a pronounced effect on spin-singlet superconductivity. Here we show that, for the recently discovered pnictide superconductor SrPtAs, this is not the case. In particular, for spin-singlet superconductivity in SrPtAs, strong spin-orbit coupling leads to a significant enhancement of both the spin susceptibility and the paramagnetic limiting field with respect to that usually expected for spin-singlet superconductors. The underlying reason for this is that, while SrPtAs has a center of inversion symmetry, it contains weakly coupled As-Pt layers that do not have inversion symmetry. This local inversion-symmetry breaking allows for a form of spin-orbit coupling that dramatically effects superconductivity. These results indicate that caution should be used when interpreting measurements of the spin susceptibility and the paramagnetic limiting field if superconductivity resides in regions of locally broken inversion symmetry.

  15. Motion and gravitational wave forms of eccentric compact binaries with orbital-angular-momentum-aligned spins under next-to-leading order in spin-orbit and leading order in spin(1)-spin(2) and spin-squared couplings

    Energy Technology Data Exchange (ETDEWEB)

    Tessmer, M; Hartung, J; Schaefer, G, E-mail: m.tessmer@uni-jena.d [Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universitaet Jena, Max-Wien-Platz 1, 07743 Jena (Germany)

    2010-08-21

    A quasi-Keplerian parameterization for the solutions of second post-Newtonian (PN) accurate equations of motion for spinning compact binaries is obtained including leading order spin-spin and next-to-leading order spin-orbit interactions. Rotational deformation of the compact objects is incorporated. For arbitrary mass ratios the spin orientations are taken to be parallel or anti-parallel to the orbital angular momentum vector. The emitted gravitational wave forms are given in analytic form up to 2PN point particle, 1.5PN spin-orbit and 1PN spin-spin contributions, whereby the spins are assumed to be of 0PN order.

  16. Motion and gravitational wave forms of eccentric compact binaries with orbital-angular-momentum-aligned spins under next-to-leading order in spin-orbit and leading order in spin(1)-spin(2) and spin-squared couplings

    International Nuclear Information System (INIS)

    A quasi-Keplerian parameterization for the solutions of second post-Newtonian (PN) accurate equations of motion for spinning compact binaries is obtained including leading order spin-spin and next-to-leading order spin-orbit interactions. Rotational deformation of the compact objects is incorporated. For arbitrary mass ratios the spin orientations are taken to be parallel or anti-parallel to the orbital angular momentum vector. The emitted gravitational wave forms are given in analytic form up to 2PN point particle, 1.5PN spin-orbit and 1PN spin-spin contributions, whereby the spins are assumed to be of 0PN order.

  17. Acoustic phonons mediated non-equilibrium spin current in the presence of Rashba and Dresselhaus spin–orbit couplings

    Energy Technology Data Exchange (ETDEWEB)

    Hasanirokh, K.; Phirouznia, A., E-mail: Phirouznia@azaruniv.ac.ir

    2013-10-30

    Influence of electrons interaction with longitudinal acoustic phonons on magnetoelectric and spin-related transport effects are investigated. The considered system is a two-dimensional electron gas system with both Rashba and Dresselhaus spin–orbit couplings. The works which have previously been performed in this field, have revealed that the Rashba and Dresselhaus couplings cannot be responsible for spin current in the non-equilibrium regime. In the current Letter, a semiclassical method was employed using the Boltzmann approach and it was shown that the spin current of the system, in general, does not go all the way to zero when the electron–phonon coupling is taken into account. It was also shown that spin accumulation of the system could be influenced by electron–phonon coupling.

  18. Role of rare-earth ionic radii on the spin-phonon coupling in multiferroic ordered double perovskites

    Czech Academy of Sciences Publication Activity Database

    Macedo Filho, R.B.; Barbosa, D.A.B.; Reichlová, Helena; Martí, Xavier; de Menezes, A.S.; Ayala, A.P.; Paschoal, C.W.A.

    2015-01-01

    Roč. 7, č. 2 (2015), 075201. ISSN 2053-1591 Institutional support: RVO:68378271 Keywords : double perovskites * spin-phonon coupling * multiferroics Subject RIV: BM - Solid Matter Physics ; Magnetism

  19. Dynamical Jahn-Teller effect in spin-orbital coupled system

    Science.gov (United States)

    Nasu, Joji; Ishihara, Sumio

    2012-02-01

    Orbital degree of freedom is one of the most attractive themes in strongly correlated electron system. A coupling between the orbital and the lattice vibration is known as a Jahn-Teller effect (JTE). The dynamical aspect of the Jahn-Teller interaction is often neglected in solid, because it is strongly suppressed by the cooperative JTE. Recently, Ba3CuSb2O9 has been reported as a candidate of the spin liquid. A Cu^2+ has the eg orbital degree of freedom and is surrounded by the O^2- octahedron. The octahedra on the neighboring sites do not have the common O ions. This fact implies that the cooperative JTE is weak, and the dynamical JTE is expected to play some key roles on orbital and magnetic properties. The purpose of this research is to study the dynamical JTE in a spin-orbital coupled system. In particular, we focus on the competitive or cooperative phenomena between the superexchange interaction and the dynamical JTE. The superexchange interactions are derived from the d-p model on a honeycomb lattice. We have confirmed this interaction stabilizes the antiferro-spin and ferro-orbital configurations for the realistic parameters. The dynamical JTE described as the orbital-lattice coupling is obtained by extracting the low energy states of the vibronic Hamiltonian. We analyze the model including the two kinds of interactions by using the Bethe approximation. We find that the magnetic order is unstable in wide parameter region and the spin-dimer state with the orbital order is realized. Furthermore the orbital order is strongly suppressed by the dynamical JTE.

  20. Strong Ferromagnetically-Coupled Spin Valve Sensor Devices for Droplet Magnetofluidics

    Directory of Open Access Journals (Sweden)

    Gungun Lin

    2015-05-01

    Full Text Available We report a magnetofluidic device with integrated strong ferromagnetically-coupled and hysteresis-free spin valve sensors for dynamic monitoring of ferrofluid droplets in microfluidics. The strong ferromagnetic coupling between the free layer and the pinned layer of spin valve sensors is achieved by reducing the spacer thickness, while the hysteresis of the free layer is eliminated by the interplay between shape anisotropy and the strength of coupling. The increased ferromagnetic coupling field up to the remarkable 70 Oe, which is five-times larger than conventional solutions, brings key advantages for dynamic sensing, e.g., a larger biasing field giving rise to larger detection signals, facilitating the operation of devices without saturation of the sensors. Studies on the fundamental effects of an external magnetic field on the evolution of the shape of droplets, as enabled by the non-visual monitoring capability of the device, provides crucial information for future development of a magnetofluidic device for multiplexed assays.

  1. Entanglement of two qubits coupled to an XY spin chain: Role of energy current

    International Nuclear Information System (INIS)

    We investigate the entanglement dynamics of a two-qubit system which interacts with a Heisenberg XY spin chain constrained to carry an energy current. We show an explicit connection between the decoherence factor and entanglement, and numerically and analytically study the dynamical process of entanglement in both weak- and strong-coupling cases for two initial states, the general pure state and the mixed Werner state. We provide results that the entanglement evolution depends not only on the energy current, the anisotropy parameter and the system-environment couplings but also on the size of degrees of freedom of environment. In particular, our results imply that entanglement will be strongly suppressed by the introduction of energy current on the environmental spin chain in the weak-coupling region while it is not sensitive to the energy current in the strong-coupling region. We also observe the sudden death of entanglement in the system and show how the energy current affects the phenomenon.

  2. Quantum transport phenomena in disordered electron systems with spin-orbit coupling in two dimensions and below

    OpenAIRE

    Asada, Yoichi; Slevin, Keith; Ohtsuki, Tomi

    2005-01-01

    Electron transport phenomena in disordered electron systems with spin-orbit coupling in two dimensions and below are studied numerically. The scaling hypothesis is checked by analyzing the scaling of the quasi-1D localization length. A logarithmic increase of the mean conductance is also confirmed. These support the theoretical prediction that the two dimensional metal in systems with spin-orbit coupling has a perfect conductivity. Transport through a Sierpinski carpet is also reported.

  3. Spin squeezing, entanglement, and coherence in two driven, dissipative, nonlinear cavities coupled with single- and two-photon exchange

    OpenAIRE

    Müstecaplıoğlu, Özgür; Hardal, Ali Ümit

    2014-01-01

    We investigate spin squeezing, quantum entanglement, and second-order coherence in two coupled, driven, dissipative, nonlinear cavities. We compare these quantum statistical properties for the cavities coupled with either single- or two-photon exchange. Solving the quantum optical master equation of the system numerically in the steady state, we calculate the zero-time delay second-order correlation function for the coherent, genuine two-mode entanglement parameters, an optimal spin squeezing...

  4. Theoretical grounds of relativistic methods for calculation of spin–spin coupling constants in nuclear magnetic resonance spectra

    Science.gov (United States)

    Rusakova, I. L.; Rusakov, Yu Yu; Krivdin, L. B.

    2016-04-01

    The theoretical grounds of the modern relativistic methods for quantum chemical calculation of spin–spin coupling constants in nuclear magnetic resonance spectra are considered. Examples and prospects of application of relativistic calculations of these constants in the structural studies of organic and heteroorganic compounds are discussed. Practical recommendations on relativistic calculations of spin–spin coupling constants using the available software are given. The bibliography includes 622 references.

  5. The influence of a presence of a heavy atom on the spin-spin coupling constants between two light nuclei in organometallic compounds and halogen derivatives.

    Science.gov (United States)

    Wodyński, Artur; Pecul, Magdalena

    2014-01-14

    The (1)JCC and (1)JCH spin-spin coupling constants have been calculated by means of density functional theory (DFT) for a set of derivatives of aliphatic hydrocarbons substituted with I, At, Cd, and Hg in order to evaluate the substituent and relativistic effects for these properties. The main goal was to estimate HALA (heavy-atom-on-light-atom) effects on spin-spin coupling constants and to explore the factors which may influence the HALA effect on these properties, including the nature of the heavy atom substituent and carbon hybridization. The methods applied range, in order of reduced complexity, from Dirac-Kohn-Sham method (density functional theory with four-component Dirac-Coulomb Hamiltonian), through DFT with two- and one-component Zeroth Order Regular Approximation (ZORA) Hamiltonians, to scalar non-relativistic effective core potentials with the non-relativistic Hamiltonian. Thus, we are able to compare the performance of ZORA-DFT and Dirac-Kohn-Sham methods for modelling of the HALA effects on the spin-spin coupling constants. PMID:24437889

  6. The influence of a presence of a heavy atom on the spin-spin coupling constants between two light nuclei in organometallic compounds and halogen derivatives

    International Nuclear Information System (INIS)

    The 1JCC and 1JCH spin-spin coupling constants have been calculated by means of density functional theory (DFT) for a set of derivatives of aliphatic hydrocarbons substituted with I, At, Cd, and Hg in order to evaluate the substituent and relativistic effects for these properties. The main goal was to estimate HALA (heavy-atom-on-light-atom) effects on spin-spin coupling constants and to explore the factors which may influence the HALA effect on these properties, including the nature of the heavy atom substituent and carbon hybridization. The methods applied range, in order of reduced complexity, from Dirac-Kohn-Sham method (density functional theory with four-component Dirac-Coulomb Hamiltonian), through DFT with two- and one-component Zeroth Order Regular Approximation (ZORA) Hamiltonians, to scalar non-relativistic effective core potentials with the non-relativistic Hamiltonian. Thus, we are able to compare the performance of ZORA-DFT and Dirac-Kohn-Sham methods for modelling of the HALA effects on the spin-spin coupling constants

  7. Compensation temperatures of mixed spin-2 and spin-((5)/(2)) ferrimagnetic system with interlayer coupling; a study of a molecular-based magnet

    CERN Document Server

    Zhang Qi

    2002-01-01

    Compensation points of layer system consisting of mixed spin-2 and spin-((5)/(2)) ferrimagnetic honeycomb lattice layers which are coupled together with two kinds of positive interlayer coupling are examined by the use of the effective-field theory with correlations (EFT). In particular, the effects of interlayer coupling and a positive crystal-field constant of the spin-2 ions on the compensation temperature are investigated, in order to clarify the characteristic behavior of the temperature dependence of the total magnetization M. This is related to the experimental works of a molecular-based magnetic multilayer film, N(n-C sub 4 H sub 9) sub 4 Fe sup I sup I Fe sup I sup I sup I (C sub 2 O sub 4) sub 3. A comparison is made between the results in this paper and those in a previous work obtained by using Monte-Carlo simulations.

  8. Exchange coupled pairs of dangling bond spins as a new type of paramagnetic defects in nanodiamonds

    International Nuclear Information System (INIS)

    EPR in detonation nanodiamonds (DND) reveals two different signals associated with intrinsic carbon inherited paramagnetic defects. Main carbon inherited EPR signal is narrow intensive Lorentzian-like singlet with g=2.0028 and spin concentration Ns=(6-7)x1019 spin/g that yields on average 13-15 spins per each DND particle. Additional chemical treatment of DND powder allows practically complete removal of trace amounts of transition metal impurities that reveals a new doublet EPR signal consisting of two relatively narrow lines within the half-field region (g∼4) separated by a distance of 10.4 mT. The intensity of the doublet signal is five orders of magnitude lower than that of the main singlet signal. The former signal has been observed in a wide variety of DND samples disregarding of the impurity level reached and thus may be attributed to some intrinsic defects in DND particles. Such half-field EPR signals correspond to 'forbidden' ΔMs=2 transitions within thermally populated triplet (S=1) levels observed in polycrystalline samples containing exchange dimers-antiferromagnetically coupled spin pairs. Estimates suggest that the concentration of such defects is about one dimer per hundreds DND particles.

  9. Dynamics of a coupled spin-vortex pair in dipolar spinor Bose-Einstein condensates

    Science.gov (United States)

    Li, Tiantian; Yi, Su; Zhang, Yunbo

    2016-05-01

    The collisional and magnetic field quench dynamics of a coupled spin-vortex pair in dipolar spinor Bose-Einstein condensates in a double-well potential are numerically investigated in the mean-field theory. Upon a sudden release of the potential barrier the two layers of condensates collide with each other in the trap center with the chirality of the vortex pair exchanged after each collision, showing the typical signature of in-phase collision for the parallel spin-vortex phase, and out-of-phase collision for the antiparallel phase. When quenching the transverse magnetic field, the vortex center in the single-layered condensate starts to make a helical motion with oval-shaped trajectories and the displacement of the center position is found to exhibit a damped simple harmonic oscillation with an intrinsic frequency and damping rate. The oscillation mode of the spin-vortex pair may be tuned by the initial magnetic field and the height of the Gaussian barrier; e.g., the gyrotropic motions for a parallel spin-vortex pair are out of sync with each other in the two layers, while those for the antiparallel pair exhibit a double-helix structure with the vortex centers moving opposite to each other with the same amplitude.

  10. Bogoliubov quasiparticles coupled to the antiferromagnetic spin mode in a vortex core

    Science.gov (United States)

    Berthod, C.

    2015-12-01

    In copper- and iron-based unconventional superconductors, the Bogoliubov quasiparticles interact with a spin resonance at momentum (π ,π ) . This interaction is revealed by specific signatures in the quasiparticle spectroscopies, like kinks in photoemission and dips in tunneling. We study these signatures, as they appear inside and around a vortex core in the local density of states (LDOS), a property accessible experimentally by scanning tunneling spectroscopy. Our model retains the whole nonlocal structure of the self-energy in space and time and is therefore not amenable to a Hamiltonian treatment using Bogoliubov-de Gennes equations. The interaction with the spin resonance does not suppress the zero-bias peak at the vortex center, although it reduces its spectral weight; neither does it smear out the vortex LDOS, but rather it adds structure to it. Some of the signatures we find may have been already measured in FeSe, but remained unnoticed. We compare the LDOS as a function of both energy and position with and without coupling to the spin resonance and observe, in particular, that the quasiparticle interference patterns around the vortex are strongly damped by the coupling. We study in detail the transfer of spectral weight induced both locally and globally by the interaction and also by the formation of the vortex. Finally, we introduce a new way of imaging the quasiparticles in real space, which combines locality and momentum-space sensitivity. This approach allows one to access quasiparticle properties that are not contained in the LDOS.

  11. Beaming photons with spin and orbital angular momentum via a dipole-coupled plasmonic spiral antenna.

    Science.gov (United States)

    Rui, Guanghao; Nelson, Robert L; Zhan, Qiwen

    2012-08-13

    We analytically and numerically study the emission properties of an electric dipole coupled to a plasmonic spiral structure with different pitch. As a transmitting antenna, the spiral structure couples the radiation from the electric dipole into circularly polarized emitted photons in the far field. The spin carried by the emitted photons is determined by the handedness of the spiral antenna. By increasing the spiral pitch in the unit of surface plasmon wavelength, these circularly polarized photons also gain orbital angular momentum with different topological charges. This phenomenon is attributed to the presence of a geometric phase arising from the interaction of light from point source with the anisotropic spiral structure. The circularly polarized vortex emission from such optically coupled spiral antenna also has high directivity, which may find important applications in quantum optical information, single molecule sensing, and integrated photonic circuits. PMID:23038521

  12. Magnetic Exchange Couplings in Heterodinuclear Complexes Based on Differential Local Spin Rotations.

    Science.gov (United States)

    Joshi, Rajendra P; Phillips, Jordan J; Peralta, Juan E

    2016-04-12

    We analyze the performance of a new method for the calculation of magnetic exchange coupling parameters for the particular case of heterodinuclear transition metals complexes of Cu, Ni, and V. This method is based on a generalized perturbative approach which uses differential local spin rotations via formal Lagrange multipiers (Phillips, J. J.; Peralta, J. E. J. Chem. Phys. 2013, 138, 174115). The reliability of the calculated couplings has been assessed by comparing with results from traditional energy differences with different density functional approximations and with experimental values. Our results show that this method to calculate magnetic exchange couplings can be reliably used for heteronuclear transition metal complexes, and at the same time, that it is independent from the different mapping schemes used in energy difference methods. PMID:26953521

  13. Role of spin-orbit coupling on the electronic structure and properties of SrPtAs

    OpenAIRE

    Youn, S. J.; Rhim, S. H.; Agterberg, D. F.; Weinert, M.; Freeman, A. J.

    2012-01-01

    The effect of spin-orbit coupling on the electronic structure of the layered iron-free pnictide superconductor, SrPtAs, has been studied using the full potential linearized augmented plane wave method. The anisotropy in Fermi velocity, conductivity and plasma frequency stemming from the layered structure are found to be enhanced by spin-orbit coupling. The relationship between spin-orbit interaction and the lack of two-dimensional inversion in the PtAs layers is analyzed within a tight-bindin...

  14. Site-resolved multiple-quantum filtered correlations and distance measurements by magic-angle spinning NMR: Theory and applications to spins with weak to vanishing quadrupolar couplings

    International Nuclear Information System (INIS)

    We discuss and analyze four magic-angle spinning solid-state NMR methods that can be used to measure internuclear distances and to obtain correlation spectra between a spin I = 1/2 and a half-integer spin S > 1/2 having a small quadrupolar coupling constant. Three of the methods are based on the heteronuclear multiple-quantum and single-quantum correlation experiments, that is, high rank tensors that involve the half spin and the quadrupolar spin are generated. Here, both zero and single-quantum coherence of the half spins are allowed and various coherence orders of the quadrupolar spin are generated, and filtered, via active recoupling of the dipolar interaction. As a result of generating coherence orders larger than one, the spectral resolution for the quadrupolar nucleus increases linearly with the coherence order. Since the formation of high rank tensors is independent of the existence of a finite quadrupolar interaction, these experiments are also suitable to materials in which there is high symmetry around the quadrupolar spin. A fourth experiment is based on the initial quadrupolar-driven excitation of symmetric high order coherences (up to p = 2S, where S is the spin number) and subsequently generating by the heteronuclear dipolar interaction higher rank (l + 1 or higher) tensors that involve also the half spins. Due to the nature of this technique, it also provides information on the relative orientations of the quadrupolar and dipolar interaction tensors. For the ideal case in which the pulses are sufficiently strong with respect to other interactions, we derive analytical expressions for all experiments as well as for the transferred echo double resonance experiment involving a quadrupolar spin. We show by comparison of the fitting of simulations and the analytical expressions to experimental data that the analytical expressions are sufficiently accurate to provide experimental 7Li–13C distances in a complex of lithium, glycine, and water. Discussion

  15. Equation-of-motion coupled cluster method for the description of the high spin excited states

    Science.gov (United States)

    Musiał, Monika; Lupa, Łukasz; Kucharski, Stanisław A.

    2016-04-01

    The equation-of-motion (EOM) coupled cluster (CC) approach in the version applicable for the excitation energy (EE) calculations has been formulated for high spin components. The EE-EOM-CC scheme based on the restricted Hartree-Fock reference and standard amplitude equations as used in the Davidson diagonalization procedure yields the singlet states. The triplet and higher spin components require separate amplitude equations. In the case of quintets, the relevant equations are much simpler and easier to solve. Out of 26 diagrammatic terms contributing to the R1 and R2 singlet equations in the case of quintets, only R2 operator survives with 5 diagrammatic terms present. In addition all terms engaging three body elements of the similarity transformed Hamiltonian disappear. This indicates a substantial simplification of the theory. The implemented method has been applied to the pilot study of the excited states of the C2 molecule and quintet states of C and Si atoms.

  16. Communication: State mixing by spin-orbit coupling in the anionic chloroiodine dissociations

    International Nuclear Information System (INIS)

    Three spin-orbit states, 12Π1/2, 22Π3/2, and 22Π1/2, of chloroiodine anion (ICl−) formed by low-energy electron attachment in the Franck-Condon region are associated with the dissociative limits of I− (1S0) and Cl (2P3/2) or Cl* (2P1/2) fragments. Within the adiabatic scheme, the presumptive Π-symmetry of the fragment angular distributions is dramatically changed to be the Π-Σ mixing symmetry, due to the significant spin-orbit interaction effect on the electronic state couplings of ICl−. The present experimental approach also enables us to separate the contributions of different electronic states from the mixed states, providing a crucial method for quantitatively evaluating the configuration-interaction wavefunctions

  17. Harmonically trapped quasi-two-dimensional Fermi gases with synthetic spin-orbit coupling

    Science.gov (United States)

    Wang, JingKun; Chen, JinGe; Chen, KeJi; Yi, Wei; Zhang, Wei

    2016-09-01

    We study the properties of spin-orbit coupled and harmonically trapped quasi-two-dimensional Fermi gas with tunable s-wave interaction between the two spin species. We adapt an effective two-channel model which takes the excited states occupation in the strongly confined axial direction into consideration by introducing dressed molecules in the closed channel, and use a Bogoliubovde Gennes (BdG) formalism to go beyond local density approximation. We find that both the in-trap phase structure and density distribution can be significantly modified near a wide Feshbach resonance compared with the single-channel model without the dressed molecules. Our findings will be helpful for the experimental search for the topological superfluid phase in ultracold Fermi gases.

  18. Theoretical study of Coulomb correlations and spin-orbit coupling in SrIrO3

    International Nuclear Information System (INIS)

    Given that energy scales associated with crystal field splitting, spin orbit coupling and coulomb correlations in iridates are comparable, hence leading to exotic properties, we investigate the physical properties of orthorhombic SrIrO3 using density functional theory. Our calculations, however, show that SrIrO3 is a bad metal with no long range magnetic ordering, unlike its sister compounds Sr2IrO4 and Sr3Ir2O7. Moreover, despite having large band width, it appears conclusive that the larger resistivity in SrIrO3 is due to spin orbit interactions. Besides, the effects of electron-electron correlations on its electronic structure and magnetic properties are also discussed

  19. Adsorption-enhanced spin-orbit coupling of buckled honeycomb silicon

    Science.gov (United States)

    Sun, Jia-Tao; Chen, Wei; Sakamoto, Kazuyuki; Feng, Yuan Ping; Wee, Andrew T. S.

    2016-09-01

    We have studied the electronic structures of quasi-two-dimensional buckled honeycomb silicon (BHS) saturated by atomic hydrogen and fluorine by means of first-principles calculations. The graphene-like hexagonal silicon with chair configurations can be stabilized by atomic hydrogen and fluorine adsorption. Together with a magnetic ground state, large spin-orbit coupling (SOC) of BHS saturated by hydrogen on either side (Semi-H-BHS) indicated by the band splitting of σ bond at Γ point in the Brillouin zone is attributed to the intermixing between the density of states of hydrogen atoms and π bonds of unpassivated Si2 around the Fermi level. The Zeeman spin splitting is most likely caused by the internal electric field induced by asymmetric charge transfer.

  20. Reprint of : Nanomagnet coupled to quantum spin Hall edge: An adiabatic quantum motor

    Science.gov (United States)

    Arrachea, Liliana; von Oppen, Felix

    2016-08-01

    The precessing magnetization of a magnetic islands coupled to a quantum spin Hall edge pumps charge along the edge. Conversely, a bias voltage applied to the edge makes the magnetization precess. We point out that this device realizes an adiabatic quantum motor and discuss the efficiency of its operation based on a scattering matrix approach akin to Landauer-Büttiker theory. Scattering theory provides a microscopic derivation of the Landau-Lifshitz-Gilbert equation for the magnetization dynamics of the device, including spin-transfer torque, Gilbert damping, and Langevin torque. We find that the device can be viewed as a Thouless motor, attaining unit efficiency when the chemical potential of the edge states falls into the magnetization-induced gap. For more general parameters, we characterize the device by means of a figure of merit analogous to the ZT value in thermoelectrics.

  1. Coherence features of the spin-aligned neutron-proton pair coupling scheme

    CERN Document Server

    Qi, C; Bäck, T; Cederwall, B; Johnson, A; Liotta, R J; Wyss, R

    2012-01-01

    The seniority scheme has been shown to be extremely useful for the classification of nuclear states in semi-magic nuclei. The neutron-proton ($np$) correlation breaks the seniority symmetry in a major way. As a result, the corresponding wave function is a mixture of many components with different seniority quantum numbers. In this contribution we show that the $np$ interaction may favor a new kind of coupling in $N=Z$ nuclei, i.e., the so-called isoscalar spin-aligned $np$ pair mode. Shell model calculations reveal that the ground and low-lying yrast states of the $N = Z$ nuclei $^{92}$Pd and $^{96}$Cd may mainly be built upon such spin-aligned $np$ pairs each carrying the maximum angular momentum $J = 9$ allowed by the shell $0g_{9/2}$ which is dominant in this nuclear region.

  2. Spin-orbit coupling effects, interactions and superconducting transport in nanostructures

    International Nuclear Information System (INIS)

    In the present thesis we study the electronic properties of several low dimensional nanoscale systems. In the first part, we focus on the combined effect of spin-orbit coupling (SOI) and Coulomb interaction in carbon nanotubes (CNTs) as well as quantum wires. We derive low energy theories for both systems, using the bosonization technique and obtain analytic expressions for the correlation functions that allow us to compute basically all observables of interest. We first focus on CNTs and show that a four channel Luttinger liquid theory can still be applied when SOI effects are taken into account. Compared to previous formulations, the low-energy Hamiltonian is characterized by different Luttinger parameters and plasmon velocities. Notably, the charge and spin modes are coupled. Our theory allows us to compute an asymptotically exact expression for the spectral function of a metallic carbon nanotube. We find modifications to the previously predicted structure of the spectral function that can in principle be tested by photoemission spectroscopy experiments. We develop a very similar low energy description for an interacting quantum wire subject to Rashba spin-orbit coupling (RSOC). We derive a two component Luttinger liquid Hamiltonian in the presence of RSOC, taking into account all e-e interaction processes allowed by the conservation of total momentum. The effective low energy Hamiltonian includes an additional perturbation due to intraband backscattering processes with band flip. Within a one-loop RG scheme, this perturbation is marginally irrelevant. The fixed point model is then still a two channel Luttinger liquid, albeit with a non standard form due to SOI. Again, the charge and spin mode are coupled. Using our low energy theory, we address the problem of the RKKY interaction in an interacting Rashba wire. The coupling of spin and charge modes due to SO effects implies several modifications, e.g. the explicit dependence of the power-law decay exponent of

  3. Spin-orbit coupling effects, interactions and superconducting transport in nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Andreas

    2010-05-15

    In the present thesis we study the electronic properties of several low dimensional nanoscale systems. In the first part, we focus on the combined effect of spin-orbit coupling (SOI) and Coulomb interaction in carbon nanotubes (CNTs) as well as quantum wires. We derive low energy theories for both systems, using the bosonization technique and obtain analytic expressions for the correlation functions that allow us to compute basically all observables of interest. We first focus on CNTs and show that a four channel Luttinger liquid theory can still be applied when SOI effects are taken into account. Compared to previous formulations, the low-energy Hamiltonian is characterized by different Luttinger parameters and plasmon velocities. Notably, the charge and spin modes are coupled. Our theory allows us to compute an asymptotically exact expression for the spectral function of a metallic carbon nanotube. We find modifications to the previously predicted structure of the spectral function that can in principle be tested by photoemission spectroscopy experiments. We develop a very similar low energy description for an interacting quantum wire subject to Rashba spin-orbit coupling (RSOC). We derive a two component Luttinger liquid Hamiltonian in the presence of RSOC, taking into account all e-e interaction processes allowed by the conservation of total momentum. The effective low energy Hamiltonian includes an additional perturbation due to intraband backscattering processes with band flip. Within a one-loop RG scheme, this perturbation is marginally irrelevant. The fixed point model is then still a two channel Luttinger liquid, albeit with a non standard form due to SOI. Again, the charge and spin mode are coupled. Using our low energy theory, we address the problem of the RKKY interaction in an interacting Rashba wire. The coupling of spin and charge modes due to SO effects implies several modifications, e.g. the explicit dependence of the power-law decay exponent of

  4. EFFECTS OF CIRCUMNUCLEAR DISK GAS EVOLUTION ON THE SPIN OF CENTRAL BLACK HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Maio, Umberto [Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, D-85748 Garching b. Muenchen (Germany); Dotti, Massimo [Department of Physics of the University of Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano (Italy); Petkova, Margarita [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Strasse 1, D-85741 Garching b. Muenchen (Germany); Perego, Albino [Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland); Volonteri, Marta [Institut d' Astrophysique de Paris, 98bis Boulevard Arago, F-75014 Paris (France)

    2013-04-10

    Mass and spin are the only two parameters needed to completely characterize black holes (BHs) in general relativity. However, the interaction between BHs and their environment is where complexity lies, as the relevant physical processes occur over a large range of scales. That is particularly relevant in the case of supermassive black holes (SMBHs), hosted in galaxy centers, and surrounded by swirling gas and various generations of stars. These compete with the SMBH for gas consumption and affect both dynamics and thermodynamics of the gas itself. How the behavior of such a fiery environment influences the angular momentum of the gas accreted onto SMBHs, and, hence, BH spins, is uncertain. We explore the interaction between SMBHs and their environment via first three-dimensional sub-parsec resolution simulations (ranging from {approx}0.1 pc to {approx}1 kpc scales) that study the evolution of the SMBH spin by including the effects of star formation, stellar feedback, radiative transfer, and metal pollution according to the proper stellar yields and lifetimes. This approach is crucial in investigating the impact of star formation processes and feedback effects on the angular momentum of the material that could accrete on the central hole. We find that star formation and feedback mechanisms can locally inject significant amounts of entropy in the surrounding medium, and impact the inflow inclination angles and Eddington fractions. As a consequence, the resulting trends show upper-intermediate equilibrium values for the spin parameter of a {approx_equal} 0.6-0.9, corresponding to radiative efficiencies {epsilon} {approx_equal} 9%-15%. These results suggest that star formation feedback taking place in the circumnuclear disk during the infall alone cannot induce very strong chaotic trends in the gas flow, quite independently from the different numerical parameters.

  5. The effect of gravitational spin-orbit coupling on the circular photon orbit in the Schwarzschild geometry

    CERN Document Server

    Wang, Zhi-Yong; Qiu, Qi; Wang, Yun-Xiang; Shi, Shuang-Jin

    2016-01-01

    The (1, 0)+(0, 1) representation of the group SL(2, C) provides a six-component spinor equivalent to the electromagnetic field tensor. By means of the (1, 0)+(0, 1) description, one can treat the photon field in curved spacetime via spin connection and the tetrad formalism, which is of great advantage to study the gravitational spin-orbit coupling of photons. Once the gravitational spin-orbit coupling is taken into account, the traditional radius of the circular photon orbit in the Schwarzschild geometry should be replaced with two different radiuses corresponding to the photons with the helicities of +1 and -1, respectively. Owing to the splitting of energy levels induced by the spin-orbit coupling, photons (from Hawking radiations, say) escaping from a Schwarzschild black hole are partially polarized, provided that their initial velocities possess nonzero tangential components.

  6. Effects of electron correlation, electron-phonon coupling, and spin-orbit coupling on the isovalent Pd-substituted superconductor SrPt3P

    Science.gov (United States)

    Hu, Kangkang; Gao, Bo; Ji, Qiucheng; Ma, Yonghui; Li, Wei; Xu, Xuguang; Zhang, Hui; Mu, Gang; Huang, Fuqiang; Cai, Chuanbing; Xie, Xiaoming; Jiang, Mianheng

    2016-06-01

    We present a systematical study on the roles of interactions among electron correlation, electron-phonon coupling, and spin-orbit coupling in the isovalent Pd-substituted superconductor SrPt3P . By using the solid state reaction method, the Pd element with the 4 d orbital was successfully substituted in the strong spin-orbit coupling superconductors Sr (Pt1-xPdx) 3P . As increasing the isovalent Pd concentrations without introducing any extra electron/hole carriers, the superconducting transition temperature Tc decreases monotonously. In addition, combining the data of resistivity and specific heat, as well as electronic band structure calculations, we found that the electron correlation is enhanced while the electron-phonon coupling and the spin-orbit coupling are suppressed by Pd substitution. Our results may provide significant insights in the natures of the interplay among the electron correlation, electron-phonon coupling, and spin-orbit coupling in superconductivity, and may also pave a route for understanding the mechanism of superconductivity in heavily 5 d -based superconductors.

  7. Spin-coupling in ferric metalloporphyrin radical cation complexes: Mössbauer and susceptibility studies

    Science.gov (United States)

    Lang, George; Boso, Brian; Erler, Brian S.; Reed, Christopher A.

    1986-03-01

    The ferric metalloporphyrin π-radical cation complexes Fe(III) (OClO3)2 (TPP.) and [Fe(III) Cl (TPP.)] [SbCl6] were examined in microcrystalline form by Mössbauer spectroscopy and magnetic susceptometry over a range of temperatures and applied fields. All measurements on the six-coordinate Fe(OClO3)2 (TPP.) were consistent with isolated molecules having an S=5/2 iron site with zero field splitting (12 cm-1) S2z that is ferromagnetically coupled to the S=1/2 porphyrin radical by an energy term (-110 cm-1) Sṡs. Thus the ground state is overall spin-3. In the five-coordinate [FeCl (TPP.)] [SbCl6] the susceptibility is in reasonable agreement with the results of a calculation based on zero field splitting (12 cm-1) S2z for the S=5/2 iron and antiferromagnetic coupling (200 cm-1) Sṡs with the radical to give an overall spin-2 ground state. However, the Mössbauer measurements require a more complicated model having the same large intramolecular iron-radical coupling, a smaller zero field splitting (3 cm-1) S2z, and weak intermolecular antiferromagnetic coupling between heme pairs given by (32 cm-1) s1ṡs2 or, equivalently, (0.65 cm-1) S1ṡS2. A slightly improved correspondence with the measured susceptibility results. The intermolecular antiferromagnetic coupling probably results from crystallization of the [FeCl (TPP.)]+ cations in face-to-face dimers as observed in other closely related five-coordinate iron (III) porphyrins.

  8. Spin-orbit couplings within the equation-of-motion coupled-cluster framework: Theory, implementation, and benchmark calculations.

    Science.gov (United States)

    Epifanovsky, Evgeny; Klein, Kerstin; Stopkowicz, Stella; Gauss, Jürgen; Krylov, Anna I

    2015-08-14

    We present a formalism and an implementation for calculating spin-orbit couplings (SOCs) within the EOM-CCSD (equation-of-motion coupled-cluster with single and double substitutions) approach. The following variants of EOM-CCSD are considered: EOM-CCSD for excitation energies (EOM-EE-CCSD), EOM-CCSD with spin-flip (EOM-SF-CCSD), EOM-CCSD for ionization potentials (EOM-IP-CCSD) and electron attachment (EOM-EA-CCSD). We employ a perturbative approach in which the SOCs are computed as matrix elements of the respective part of the Breit-Pauli Hamiltonian using zeroth-order non-relativistic wave functions. We follow the expectation-value approach rather than the response-theory formulation for property calculations. Both the full two-electron treatment and the mean-field approximation (a partial account of the two-electron contributions) have been implemented and benchmarked using several small molecules containing elements up to the fourth row of the periodic table. The benchmark results show the excellent performance of the perturbative treatment and the mean-field approximation. When used with an appropriate basis set, the errors with respect to experiment are below 5% for the considered examples. The findings regarding basis-set requirements are in agreement with previous studies. The impact of different correlation treatment in zeroth-order wave functions is analyzed. Overall, the EOM-IP-CCSD, EOM-EA-CCSD, EOM-EE-CCSD, and EOM-SF-CCSD wave functions yield SOCs that agree well with each other (and with the experimental values when available). Using an EOM-CCSD approach that provides a more balanced description of the target states yields more accurate results. PMID:26277122

  9. Spin-orbit couplings within the equation-of-motion coupled-cluster framework: Theory, implementation, and benchmark calculations

    Energy Technology Data Exchange (ETDEWEB)

    Epifanovsky, Evgeny [Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482 (United States); Department of Chemistry, University of California, Berkeley, California 94720 (United States); Q-Chem Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588 (United States); Klein, Kerstin; Gauss, Jürgen [Institut für Physikalische Chemie, Universität Mainz, D-55099 Mainz (Germany); Stopkowicz, Stella [Department of Chemistry, Centre for Theoretical and Computational Chemistry, University of Oslo, N-0315 Oslo (Norway); Krylov, Anna I. [Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482 (United States)

    2015-08-14

    We present a formalism and an implementation for calculating spin-orbit couplings (SOCs) within the EOM-CCSD (equation-of-motion coupled-cluster with single and double substitutions) approach. The following variants of EOM-CCSD are considered: EOM-CCSD for excitation energies (EOM-EE-CCSD), EOM-CCSD with spin-flip (EOM-SF-CCSD), EOM-CCSD for ionization potentials (EOM-IP-CCSD) and electron attachment (EOM-EA-CCSD). We employ a perturbative approach in which the SOCs are computed as matrix elements of the respective part of the Breit-Pauli Hamiltonian using zeroth-order non-relativistic wave functions. We follow the expectation-value approach rather than the response-theory formulation for property calculations. Both the full two-electron treatment and the mean-field approximation (a partial account of the two-electron contributions) have been implemented and benchmarked using several small molecules containing elements up to the fourth row of the periodic table. The benchmark results show the excellent performance of the perturbative treatment and the mean-field approximation. When used with an appropriate basis set, the errors with respect to experiment are below 5% for the considered examples. The findings regarding basis-set requirements are in agreement with previous studies. The impact of different correlation treatment in zeroth-order wave functions is analyzed. Overall, the EOM-IP-CCSD, EOM-EA-CCSD, EOM-EE-CCSD, and EOM-SF-CCSD wave functions yield SOCs that agree well with each other (and with the experimental values when available). Using an EOM-CCSD approach that provides a more balanced description of the target states yields more accurate results.

  10. Spin-orbit couplings within the equation-of-motion coupled-cluster framework: Theory, implementation, and benchmark calculations

    Science.gov (United States)

    Epifanovsky, Evgeny; Klein, Kerstin; Stopkowicz, Stella; Gauss, Jürgen; Krylov, Anna I.

    2015-08-01

    We present a formalism and an implementation for calculating spin-orbit couplings (SOCs) within the EOM-CCSD (equation-of-motion coupled-cluster with single and double substitutions) approach. The following variants of EOM-CCSD are considered: EOM-CCSD for excitation energies (EOM-EE-CCSD), EOM-CCSD with spin-flip (EOM-SF-CCSD), EOM-CCSD for ionization potentials (EOM-IP-CCSD) and electron attachment (EOM-EA-CCSD). We employ a perturbative approach in which the SOCs are computed as matrix elements of the respective part of the Breit-Pauli Hamiltonian using zeroth-order non-relativistic wave functions. We follow the expectation-value approach rather than the response-theory formulation for property calculations. Both the full two-electron treatment and the mean-field approximation (a partial account of the two-electron contributions) have been implemented and benchmarked using several small molecules containing elements up to the fourth row of the periodic table. The benchmark results show the excellent performance of the perturbative treatment and the mean-field approximation. When used with an appropriate basis set, the errors with respect to experiment are below 5% for the considered examples. The findings regarding basis-set requirements are in agreement with previous studies. The impact of different correlation treatment in zeroth-order wave functions is analyzed. Overall, the EOM-IP-CCSD, EOM-EA-CCSD, EOM-EE-CCSD, and EOM-SF-CCSD wave functions yield SOCs that agree well with each other (and with the experimental values when available). Using an EOM-CCSD approach that provides a more balanced description of the target states yields more accurate results.

  11. Spin-orbit couplings within the equation-of-motion coupled-cluster framework: Theory, implementation, and benchmark calculations

    International Nuclear Information System (INIS)

    We present a formalism and an implementation for calculating spin-orbit couplings (SOCs) within the EOM-CCSD (equation-of-motion coupled-cluster with single and double substitutions) approach. The following variants of EOM-CCSD are considered: EOM-CCSD for excitation energies (EOM-EE-CCSD), EOM-CCSD with spin-flip (EOM-SF-CCSD), EOM-CCSD for ionization potentials (EOM-IP-CCSD) and electron attachment (EOM-EA-CCSD). We employ a perturbative approach in which the SOCs are computed as matrix elements of the respective part of the Breit-Pauli Hamiltonian using zeroth-order non-relativistic wave functions. We follow the expectation-value approach rather than the response-theory formulation for property calculations. Both the full two-electron treatment and the mean-field approximation (a partial account of the two-electron contributions) have been implemented and benchmarked using several small molecules containing elements up to the fourth row of the periodic table. The benchmark results show the excellent performance of the perturbative treatment and the mean-field approximation. When used with an appropriate basis set, the errors with respect to experiment are below 5% for the considered examples. The findings regarding basis-set requirements are in agreement with previous studies. The impact of different correlation treatment in zeroth-order wave functions is analyzed. Overall, the EOM-IP-CCSD, EOM-EA-CCSD, EOM-EE-CCSD, and EOM-SF-CCSD wave functions yield SOCs that agree well with each other (and with the experimental values when available). Using an EOM-CCSD approach that provides a more balanced description of the target states yields more accurate results

  12. Strong spin-orbit coupling and Zeeman spin splitting in angle dependent magnetoresistance of Bi{sub 2}Te{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Rik, E-mail: rikdey@utexas.edu; Pramanik, Tanmoy; Roy, Anupam; Rai, Amritesh; Guchhait, Samaresh; Sonde, Sushant; Movva, Hema C. P.; Register, Leonard F.; Banerjee, Sanjay K. [Microelectronics Research Center, University of Texas at Austin, Austin, Texas 78758 (United States); Colombo, Luigi [Texas Instruments, Dallas, Texas 75243 (United States)

    2014-06-02

    We have studied angle dependent magnetoresistance of Bi{sub 2}Te{sub 3} thin film with field up to 9 T over 2–20 K temperatures. The perpendicular field magnetoresistance has been explained by the Hikami-Larkin-Nagaoka theory alone in a system with strong spin-orbit coupling, from which we have estimated the mean free path, the phase coherence length, and the spin-orbit relaxation time. We have obtained the out-of-plane spin-orbit relaxation time to be small and the in-plane spin-orbit relaxation time to be comparable to the momentum relaxation time. The estimation of these charge and spin transport parameters are useful for spintronics applications. For parallel field magnetoresistance, we have confirmed the presence of Zeeman effect which is otherwise suppressed in perpendicular field magnetoresistance due to strong spin-orbit coupling. The parallel field data have been explained using both the contributions from the Maekawa-Fukuyama localization theory for non-interacting electrons and Lee-Ramakrishnan theory of electron-electron interactions. The estimated Zeeman g-factor and the strength of Coulomb screening parameter agree well with the theory. Finally, the anisotropy in magnetoresistance with respect to angle has been described by the Hikami-Larkin-Nagaoka theory. This anisotropy can be used in anisotropic magnetic sensor applications.

  13. Quantum entanglement in trimer spin-1/2 Heisenberg chains with antiferromagnetic coupling

    CERN Document Server

    Del Cima, O M; da Silva, S L L

    2015-01-01

    The quantum entanglement measure is determined, for the first time, for antiferromagnetic trimer spin-1/2 Heisenberg chains. The physical quantity proposed to measure the entanglement is the distance between states by adopting the Hilbert-Schmidt norm. The method is applied to the new magnetic Cu(II) trimer system, 2b.3CuCl_2.2H_2O, and to the trinuclear Cu(II) halide salt, (3MAP)_2Cu_2Cl_8. The decoherence temperature, above which the entanglement is suppressed, is determined for the both systems. A correlation among their decoherence temperatures and their respective exchange coupling constants is established.

  14. Topological Insulators on the Ruby Lattice with Rashba Spin-Orbit Coupling

    Institute of Scientific and Technical Information of China (English)

    HOU Jing-Min; WANG Guo-Xiang

    2013-01-01

    We investigate a tight-binding model of the ruby lattice with Rashba spin-orbit coupling.We calculate the band structure of the lattice and evaluate the Z2 topological indices.According to the Z2 topological indices and the band structure,we present the phase diagrams of the lattice with different filling fractions.We find.that topological insulators occur in some range of parameters at 1/6,1/3,1/2,2/3 and 5/6 filling fractions.We analyze and discuss the characteristics of these topological insulators and their edge states.

  15. Spin Sum Rules and the Strong Coupling Constant at large distance.

    Energy Technology Data Exchange (ETDEWEB)

    Alexandre Deur

    2009-07-01

    We present recent results on the Bjorken and the generalized forward spin polarizability sum rules from Jefferson Lab Hall A and CLAS experiments, focusing on the low $Q^2$ part of the measurements. We then discuss the comparison of these results with Chiral Perturbation theory calculations. In the second part of this paper, we show how the Bjorken sum rule with its connection to the Gerasimov-Drell-Hearn sum, allows us to conveniently define an effective coupling for the strong force at all distances.

  16. Counterflow of spontaneous mass currents in trapped spin-orbit coupled Fermi gases

    OpenAIRE

    Doko, Ernada; Işkın, Menderes; Subaşı, Ahmet Levent

    2011-01-01

    PHYSICAL REVIEW A 85, 053634 (2012) Counterflow of spontaneous mass currents in trapped spin-orbit-coupled Fermi gases E. Doko,1 A. L. Subas¸ı,2 and M. Iskin1 1Department of Physics, Koc¸ University, Rumelifeneri Yolu, 34450 Sarıyer, Istanbul, Turkey 2Department of Physics, Faculty of Science and Letters, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey (Received 20 December 2011; published 24 May 2012) We use the Bogoliubov–de Gennes formalism and study the gro...

  17. Simulating Chiral Magnetic and Separation Effects with Spin-Orbit Coupled Atomic Gases

    OpenAIRE

    Xu-Guang Huang

    2016-01-01

    The chiral magnetic and chiral separation effects---quantum-anomaly-induced electric current and chiral current along an external magnetic field in parity-odd quark-gluon plasma---have received intense studies in the community of heavy-ion collision physics. We show that analogous effects occur in rotating trapped Fermi gases with Weyl-Zeeman spin-orbit coupling where the rotation plays the role of an external magnetic field. These effects can induce a mass quadrupole in the atomic cloud alon...

  18. Landau level crossing in a spin-orbit coupled two-dimensional electron gas

    International Nuclear Information System (INIS)

    We have studied experimentally the Landau level (LL) spectrum of a two-dimensional electron gas (2DEG) in an In0.53Ga0.47As/InP quantum well structure by means of low-temperature magneto-transport coincidence measurement in vector magnetic fields. It is well known that LL crossing occurs in tilted magnetic fields due to a competition between cyclotron energy and Zeeman effect. Remarkably, here we observe an additional type of level-crossing resulting from a competition between Rashba and Zeeman splitting in a small magnetic field, consistent with the theoretical prediction for strongly spin-orbit coupled 2DEG

  19. Anomalous Josephson Effect in Junctions with Rashba Spin-Orbit Coupling

    Science.gov (United States)

    Nesterov, Konstantin; Houzet, Manuel; Meyer, Julia

    2015-03-01

    We study two-dimensional double-barrier SINIS Josephson junctions in which the inversion symmetry in the normal part is broken by Rashba spin-orbit coupling. In the presence of a suitably oriented Zeeman field in the normal part, the system displays the anomalous Josephson effect: the current is nonzero even at zero phase difference between two superconductors. We investigate this effect by means of the Ginzburg-Landau formalism and microscopic Green's functions approach in the clean limit. This work was supported in part by the Grants No. ANR-12-BS04-0016-03 and an EU-FP7 Marie Curie IRG.

  20. Quantum mechanics of a spin-orbit coupled electron constrained to a space curve

    Science.gov (United States)

    Ortix, Carmine

    2015-06-01

    We derive the effective one-dimensional Schrödinger-Pauli equation for electrons constrained to move on a space curve. The electrons are confined using a double thin-wall quantization procedure with adiabatic separation of fast and slow quantum degrees of freedom. This procedure is capable of yielding a correct Hermitian one-dimensional Schrödinger-Pauli operator. We find that the torsion of the space curve generates an additional quantum geometric potential, adding to the well-known curvature-induced one. Finally, we derive an analytic form of the one-dimensional Hamiltonian for spin-orbit coupled electrons in a nanoscale helical wire.

  1. Landau quantization, Rashba spin-orbit coupling and Zeeman splitting of two-dimensional heavy holes

    OpenAIRE

    Moskalenko, S. A.; Podlesny, I. V.; Dumanov, E. V.; Liberman, M. A.; Novikov, B. V.

    2014-01-01

    The origin of the g-factor of the two-dimensional (2D) electrons and holes moving in the periodic crystal lattice potential with the perpendicular magnetic and electric fields is discussed. The Pauli equation describing the Landau quantization accompanied by the Rashba spin-orbit coupling (RSOC) and Zeeman splitting (ZS) for 2D heavy holes with nonparabolic dispersion law is solved exactly. The solutions have the form of the pairs of the Landau quantization levels due to the spinor-type wave ...

  2. Spectroscopy and octupole coupling of high-spin states in 213Rn

    International Nuclear Information System (INIS)

    Excited states of 213Rn, up to spins of ∼ 55/2 ℎ and an excitation energy of ∼ 6 MeV, have been studied using γ-ray and electron spectroscopy following the reactions 208Pb(9Be,4n) and 204Hg(13C,4n). Eight isomeric states were identified and g-factors for five of these measured by the TDPAD technique. Several of the isomeric states decay by enhanced E3 transitions. The level scheme and electromagnetic properties of the isomers are compared with the results of semi-empirical shell-model calculations including calculations which explicitly account for the particle-octupole vibration coupling

  3. Zeroth order quantum coherences and preparation of pseudopure state in homonuclear dipolar coupling spin systems

    CERN Document Server

    Furman, G B

    2006-01-01

    Dynamics of zeroth order quantum coherences and preparation of the pseudopure states in homonuclear systems of dipolar coupling spins is closely examined. It has been shown an extreme important role of the non-diagonal part of zeroth order coherence in construction of the pseudopure state. Simulations of the preparation process of pseudopure states with the real molecular structures (a rectangular (-chloro- -nitrobenzene molecule), a chain (hydroxyapatite molecule), a ring (benzene molecule), and a double ring (cyclopentane molecule)) open the way to experimental testing of the obtained results.

  4. Manipulating effective spin orbit coupling based on proximity effect in magnetic bilayers

    International Nuclear Information System (INIS)

    A proximity effect of spin orbit coupling (SOC) is proposed in nonmagnetic metal/ferromagnet (NM/FM) bilayers by extending the Crépieux-Bruno (CB) theory. We demonstrate that over 1000% enhancement of the SOC strength can be realized based on this effect (Pt/FM bilayers) and it brings greatly enhanced anomalous Hall effect and anomalous Nernst effect. This work could help maximize the performance of magnetic transport property for the spintronics device using NM/FM as the key structure

  5. Inelastic dark matter with spin-dependent couplings to protons and large modulation fractions in DAMA

    CERN Document Server

    Scopel, Stefano

    2015-01-01

    We discuss a scenario where the DAMA modulation effect is explained by a Weakly Interacting Massive Particle (WIMP) which upscatters inelastically to a heavier state and predominantly couples to the spin of protons. In this scenario constraints from xenon and germanium targets are evaded dynamically, due to the suppression of the WIMP coupling to neutrons, while those from fluorine targets are evaded kinematically, because the minimal WIMP incoming speed required to trigger upscatters off fluorine exceeds the maximal WIMP velocity in the Galaxy, or is very close to it. In this scenario WIMP scatterings off sodium are usually sensitive to the large-speed tail of the WIMP velocity distribution and modulated fractions of the signal close to unity arise in a natural way. On the other hand, a halo-independent analysis with more conservative assumptions about the WIMP velocity distribution allows to extend the viable parameter space to configurations where large modulated fractions are not strictly necessary. We di...

  6. Intrinsic Spin-Orbit Coupling in Zigzag and Armchair Graphene Nanoribbons

    Directory of Open Access Journals (Sweden)

    Ying Li

    2011-01-01

    Full Text Available Starting from a tight-binding model, we derive the energy gaps induced by intrinsic spin-orbit (ISO coupling in the low-energy band structures of graphene nanoribbons. The armchair graphene nanoribbons may be either semiconducting or metallic, depending on their widths in the absence of ISO interactions. For the metallic ones, the gaps induced by ISO coupling decrease with increasing ribbon widths. For the ISO interactions, we find that zigzag graphene nanoribbons with odd chains still have no band gaps while those with even chains have gaps with a monotonic decreasing dependence on the widths. First-principles calculations have also been carried out, verifying the results of the tight-binding approximation. Our paper reveals that the ISO interaction of graphene nanoribbons is governed by their geometrical parameters.

  7. Phase Transition for Quenched Coupled Replicas in a Plaquette Spin Model of Glasses

    Science.gov (United States)

    Jack, Robert L.; Garrahan, Juan P.

    2016-02-01

    We study a three-dimensional plaquette spin model whose low temperature dynamics is glassy, due to localized defects and effective kinetic constraints. The thermodynamics of this system is smooth at all temperatures. We show that coupling it to a second system with a fixed (quenched) configuration leads to a phase transition, at finite coupling. The order parameter is the overlap between the copies, and the transition is between phases of low and high overlap. We find critical points whose properties are consistent with random-field Ising universality. We analyze the interfacial free energy cost between the high- and low-overlap states that coexist at (and below) the critical point, and we use this cost as the basis for a finite-size scaling analysis. We discuss these results in the context of mean-field and dynamical facilitation theories of the glass transition.

  8. Spin Polarized Photons from Axially Charged Plasma at Weak Coupling: Complete Leading Order

    CERN Document Server

    Mamo, Kiminad A

    2015-01-01

    In the presence of (approximately conserved) axial charge in the QCD plasma at finite temperature, the emitted photons are spin-aligned, which is a unique P- and CP-odd signature of axial charge in the photon emission observables. We compute this "P-odd photon emission rate" in weak coupling regime at high temperature limit to complete leading order in the QCD coupling constant: the leading log as well as the constant under the log. As in the P-even total emission rate in the literature, the computation of P-odd emission rate at leading order consists of three parts: 1) Compton and Pair Annihilation processes with hard momentum exchange, 2) soft t- and u-channel contributions with Hard Thermal Loop re-summation, 3) Landau-Pomeranchuk-Migdal (LPM) re-summation of collinear Bremstrahlung and Pair Annihilation. We present analytical and numerical evaluations of these contributions to our P-odd photon emission rate observable.

  9. Spin polarized photons from an axially charged plasma at weak coupling: Complete leading order

    Science.gov (United States)

    Mamo, Kiminad A.; Yee, Ho-Ung

    2016-03-01

    In the presence of (approximately conserved) axial charge in the QCD plasma at finite temperature, the emitted photons are spin aligned, which is a unique P - and C P -odd signature of axial charge in the photon emission observables. We compute this "P -odd photon emission rate" in a weak coupling regime at a high temperature limit to complete leading order in the QCD coupling constant: the leading log as well as the constant under the log. As in the P -even total emission rate in the literature, the computation of the P -odd emission rate at leading order consists of three parts: (1) Compton and pair annihilation processes with hard momentum exchange, (2) soft t - and u -channel contributions with hard thermal loop resummation, (3) Landau-Pomeranchuk-Migdal resummation of collinear bremsstrahlung and pair annihilation. We present analytical and numerical evaluations of these contributions to our P -odd photon emission rate observable.

  10. Strong coupling critique of spin fluctuation driven charge order in underdoped cuprates

    Science.gov (United States)

    Mishra, Vivek; Norman, M. R.

    2015-08-01

    Charge order has emerged as a generic feature of doped cuprates, leading to important questions about its origin and its relation to superconductivity. Recent experiments on two classes of hole doped cuprates indicate a novel d -wave symmetry for the order. These were motivated by earlier spin fluctuation theoretical studies based on an expansion about hot spots in the Brillouin zone that indicated such an order would be competitive with d -wave superconductivity. Here, we reexamine this problem by solving strong coupling equations in the full Brillouin zone for experimentally relevant parameters. We find that bond-oriented order, as seen experimentally, is strongly suppressed. We also include coupling to B1 g phonons and do not see any qualitative change. Our results argue against an itinerant model for the charge order, implying instead that such order is likely due to Coulombic phase separation of the doped holes.

  11. Analogue of Rashba pseudo-spin-orbit coupling in photonic lattices by gauge field engineering

    Science.gov (United States)

    Plotnik, Y.; Bandres, M. A.; Stützer, S.; Lumer, Y.; Rechtsman, M. C.; Szameit, A.; Segev, M.

    2016-07-01

    We present, theoretically and experimentally, the observation of the Rashba effect in photonic lattices, where the effect is brought about by an artificial gauge field, induced by the geometry of the system. In doing that, we demonstrate a particular form of coupling between pseudospin and momentum, resulting in spin-dependent shifts in the spectrum. Our system consists of two coupled, oppositely tilted waveguide arrays, where the evolution of an optical beam allows for probing the dynamics of the evolving wave packets, and the formation of spectral splitting. We show that the Rashba effect can be amplified or decreased through optical nonlinear effects, which correspond to mean-field interactions in various systems such as cold-atom lattices and exciton-polariton condensates.

  12. Phase locking of spin-torque nano-oscillator pairs with magnetic dipolar coupling

    Science.gov (United States)

    Chen, Hao-Hsuan; Lee, Ching-Ming; Zhang, Zongzhi; Liu, Yaowen; Wu, Jong-Ching; Horng, Lance; Chang, Ching-Ray

    2016-06-01

    A spin-torque nanopillar oscillator (STNO) that combines a perpendicular-to-plane polarizer (PERP) with an in-plane magnetized free layer is a good candidate for phase locking, which opens a potential approach to enhancement of the output power of STNOs. In this paper, the magnetic dipolar coupling effect is used as the driving force to synchronize two STNOs. We develop an approximation theory for synchronizing two identical and nonidentical pairs of PERP STNOs, by which the critical current of synchronization, dipolar coupling strength, phase-locking transient time, and frequency can be analytically predicted. These predictions are further confirmed by macrospin and micromagnetic simulations. Finally, we show the phase diagrams of the phase locking as a function of applied current and separation between two STNOs.

  13. Giant Optical Polarization Rotation Induced by Spin-Orbit Coupling in Polarons

    Science.gov (United States)

    Casals, Blai; Cichelero, Rafael; García Fernández, Pablo; Junquera, Javier; Pesquera, David; Campoy-Quiles, Mariano; Infante, Ingrid C.; Sánchez, Florencio; Fontcuberta, Josep; Herranz, Gervasi

    2016-07-01

    We have uncovered a giant gyrotropic magneto-optical response for doped ferromagnetic manganite La2 /3Ca1 /3MnO3 around the near room-temperature paramagnetic-to-ferromagnetic transition. At odds with current wisdom, where this response is usually assumed to be fundamentally fixed by the electronic band structure, we point to the presence of small polarons as the driving force for this unexpected phenomenon. We explain the observed properties by the intricate interplay of mobility, Jahn-Teller effect, and spin-orbit coupling of small polarons. As magnetic polarons are ubiquitously inherent to many strongly correlated systems, our results provide an original, general pathway towards the generation of magnetic-responsive gigantic gyrotropic responses that may open novel avenues for magnetoelectric coupling beyond the conventional modulation of magnetization.

  14. Numerical study of the giant nonlocal resistance in spin-orbit coupled graphene

    Science.gov (United States)

    Wang, Zibo; Liu, Haiwen; Jiang, Hua; Xie, X. C.

    2016-07-01

    Recent experiments find the signal of giant nonlocal resistance RNL in H -shaped graphene samples due to the spin/valley Hall effect. Interestingly, when the Fermi energy deviates from the Dirac point, RNL decreases to zero much more rapidly compared with the local resistance RL, and the well-known relation of RNL∝RL3 is not satisfied. In this work, based on the nonequilibrium Green's function method, we explain such transport phenomena in H -shaped graphene with Rashba spin-orbit coupling. When the Fermi energy is near the Dirac point, the nonlocal resistance is considerably large and is much sharper than the local one. Moreover, the relationship between the Rashba effect and the fast decay of RNL compared with RL is further investigated. We find that the Rashba effect contributes neither to the fast decay nor to the peak of RNL itself. Actually, it is the extremely small density of states near the Dirac point that leads to the large peak of RNL, while the fast decay results from the quasiballistic mechanism. Finally, we revise the classic formula RNL∝RL3 by replacing RNL with RHall, which represents the nonlocal resistance merely caused by the spin Hall effect, and the relation holds well.

  15. SIMPRE1.2: Considering the hyperfine and quadrupolar couplings and the nuclear spin bath decoherence.

    Science.gov (United States)

    Cardona-Serra, Salvador; Escalera-Moreno, Luis; Baldoví, José J; Gaita-Ariño, Alejandro; Clemente-Juan, Juan M; Coronado, Eugenio

    2016-05-15

    SIMPRE is a fortran77 code which uses an effective electrostatic model of point charges to predict the magnetic behavior of rare-earth-based mononuclear complexes. In this article, we present SIMPRE1.2, which now takes into account two further phenomena. First, SIMPRE now considers the hyperfine and quadrupolar interactions within the rare-earth ion, resulting in a more complete and realistic set of energy levels and wave functions. Second, and to widen SIMPRE's predictive capabilities regarding potential molecular spin qubits, it now includes a routine that calculates an upper-bound estimate of the decoherence time considering only the dipolar coupling between the electron spin and the surrounding nuclear spin bath. Additionally, SIMPRE now allows the user to introduce the crystal field parameters manually. Thus, we are able to demonstrate the new features using as examples (i) a Gd-based mononuclear complex known for its properties both as a single ion magnet and as a coherent qubit and (ii) an Er-based mononuclear complex. © 2016 Wiley Periodicals, Inc. PMID:26833799

  16. Perspectives in spintronics: magnetic resonant tunneling, spin-orbit coupling, and GaMnAs

    International Nuclear Information System (INIS)

    Spintronics has attracted wide attention by promising novel functionalities derived from both the electron charge and spin. While branching into new areas and creating new themes over the past years, the principal goals remain the spin and magnetic control of the electrical properties-essentially the I-V characteristics-and vice versa. There are great challenges ahead to meet these goals. One challenge is to find niche applications for ferromagnetic semiconductors, such as GaMnAs. Another is to develop further the science of hybrid ferromagnetic metal/semiconductor heterostructures, as alternatives to all-semiconductor room temperature spintronics. Here we present our representative recent efforts to address such challenges. We show how to make a digital magnetoresistor by combining two magnetic resonant diodes, or how introducing ferromagnetic semiconductors as active regions in resonant tunneling diodes leads to novel effects of digital magnetoresistance and of magnetoelectric current oscillations. We also discuss the phenomenon of tunneling anisotropic magnetoresistance in Fe/GaAs junctions by introducing the concept of the spin-orbit coupling field, as an analog of such fields in all-semiconductor junctions. Finally, we look at fundamental electronic and optical properties of GaMnAs by employing reasonable tight-binding models to study disorder effects.

  17. Coupling a driven magnetic vortex to individual nitrogen-vacancy spins for fast, nanoscale addressability and coherent manipulation

    Science.gov (United States)

    Wolf, Michael; Badea, Robert; Berezovsky, Jesse

    The core of a ferromagnetic (FM) vortex domain creates a strong, localized magnetic field which can be manipulated on nanosecond timescales using small magnetic fields, or electrical currents. These capabilities present opportunities for nanoscale spin-based devices. Here, we demonstrate how these FM vortex properties can be used in a room temperature, integrated device by coupling a FM vortex to nitrogen-vacancy (NV) center spins in diamond. Measurements are carried out using a combined magneto-optical microscopy and optically-detected spin resonance technique. We show that the FM vortex can be driven into proximity with an NV, inducing significant NV spin splitting and sufficiently large magnetic field gradient to address spins separated by nanometer length scales. By applying a microwave-frequency magnetic field, we drive both the vortex and the NV spins, resulting in enhanced coherent rotation of the spin state. Finally we demonstrate that by driving the vortex on fast timescales, sequential addressing and coherent manipulation of spins is possible on 100 ns timescales, while driving on faster timescales results in non-trivial coherent dynamics of the coupled vortex/NV system. We acknowledge the DOE Award #DE-SC008148.

  18. Multi-orbital quantum antiferromagnetism in iron pnictides-effective spin couplings and quantum corrections to sublattice magnetization.

    Science.gov (United States)

    Ghosh, Sayandip; Raghuvanshi, Nimisha; Mohapatra, Shubhajyoti; Kumar, Ashish; Singh, Avinash

    2016-09-14

    Effective spin couplings and spin fluctuation induced quantum corrections to sublattice magnetization are obtained in the [Formula: see text] AF state of a realistic three-orbital interacting electron model involving xz, yz and xy Fe 3d orbitals, providing insight into the multi-orbital quantum antiferromagnetism in iron pnictides. The xy orbital is found to be mainly responsible for the generation of strong ferromagnetic spin coupling in the b direction, which is critically important to fully account for the spin wave dispersion as measured in inelastic neutron scattering experiments. The ferromagnetic spin coupling is strongly suppressed as the xy band approaches half filling, and is ascribed to particle-hole exchange in the partially filled xy band. The strongest AF spin coupling in the a direction is found to be in the orbital off-diagonal sector involving the xz and xy orbitals. First order quantum corrections to sublattice magnetization are evaluated for the three orbitals, and yield a significant [Formula: see text] average reduction from the Hartree-Fock value. PMID:27406889

  19. Strong spin-lattice coupling in CrSiTe3

    International Nuclear Information System (INIS)

    CrSiTe3 has attracted recent interest as a candidate single-layer ferromagnetic semiconductor, but relatively little is known about the bulk properties of this material. Here, we report single-crystal X-ray diffraction, magnetic properties, thermal conductivity, vibrational, and optical spectroscopies and compare our findings with complementary electronic structure and lattice dynamics principles calculations. The high temperature paramagnetic phase is characterized by strong spin-lattice interactions that give rise to glassy behavior, negative thermal expansion, and an optical response that reveals that CrSiTe3 is an indirect gap semiconductor with indirect and direct band gaps at 0.4 and 1.2 eV, respectively. Measurements of the phonons across the 33 K ferromagnetic transition provide additional evidence for strong coupling between the magnetic and lattice degrees of freedom. The Si-Te stretching and Te displacement modes are sensitive to the magnetic ordering transition, a finding that we discuss in terms of the superexchange mechanism. Spin-lattice coupling constants are also extracted

  20. Strong spin-lattice coupling in CrSiTe3

    Directory of Open Access Journals (Sweden)

    L. D. Casto

    2015-04-01

    Full Text Available CrSiTe3 has attracted recent interest as a candidate single-layer ferromagnetic semiconductor, but relatively little is known about the bulk properties of this material. Here, we report single-crystal X-ray diffraction, magnetic properties, thermal conductivity, vibrational, and optical spectroscopies and compare our findings with complementary electronic structure and lattice dynamics principles calculations. The high temperature paramagnetic phase is characterized by strong spin-lattice interactions that give rise to glassy behavior, negative thermal expansion, and an optical response that reveals that CrSiTe3 is an indirect gap semiconductor with indirect and direct band gaps at 0.4 and 1.2 eV, respectively. Measurements of the phonons across the 33 K ferromagnetic transition provide additional evidence for strong coupling between the magnetic and lattice degrees of freedom. The Si-Te stretching and Te displacement modes are sensitive to the magnetic ordering transition, a finding that we discuss in terms of the superexchange mechanism. Spin-lattice coupling constants are also extracted.

  1. Valence-Rydberg electronic states of N{sub 2}: spectroscopy and spin-orbit couplings

    Energy Technology Data Exchange (ETDEWEB)

    Hochlaf, M; Ndome, H [Laboratoire Modelisation et Simulation Multi Echelle, Universite Paris-Est, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallee (France); Hammoutene, D [Laboratoire de Thermodynamique et Modelisation Moleculaire, Faculte de Chimie, USTHB, BP32 El Alia, 16111 Bab Ezzouar, Alger (Algeria); Vervloet, M, E-mail: hochlaf@univ-mlv.f [Synchrotron SOLEIL, L' orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France)

    2010-12-28

    Using ab initio methodology, we compute the potential energy curves and spin-orbit coupling integrals of the N{sub 2} electronic states located in the 0-120 000 cm{sup -1} energy domain. In our analysis, we focus mostly on those located outside the Franck-Condon region accessible from the ground state of N{sub 2}, i.e. the two strongly bound states 1{sup 3{Sigma}}{sub g}{sup -} and 1{sup 1{Gamma}}{sub g}, and the weakly bound state 2{sup 3{Sigma}}{sub g}{sup -}, in addition to several repulsive states. We characterize them spectroscopically and we compute their spin-orbit couplings to the close lying singlets, triplets and quintets. This work completes our knowledge on the electronic states of N{sub 2} that may be important intermediates during N + N collisions and for the dynamics of the N{sub 2} singlet, triplet and quintet VUV photodissociation.

  2. Strong spin-lattice coupling in CrSiTe{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Casto, L. D.; Clune, A. J.; Yokosuk, M. O.; Musfeldt, J. L. [Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996 (United States); Williams, T. J. [Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Zhuang, H. L.; Lin, M.-W.; Xiao, K. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Hennig, R. G. [Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611 (United States); Sales, B. C. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Yan, J.-Q.; Mandrus, D. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2015-04-01

    CrSiTe{sub 3} has attracted recent interest as a candidate single-layer ferromagnetic semiconductor, but relatively little is known about the bulk properties of this material. Here, we report single-crystal X-ray diffraction, magnetic properties, thermal conductivity, vibrational, and optical spectroscopies and compare our findings with complementary electronic structure and lattice dynamics principles calculations. The high temperature paramagnetic phase is characterized by strong spin-lattice interactions that give rise to glassy behavior, negative thermal expansion, and an optical response that reveals that CrSiTe{sub 3} is an indirect gap semiconductor with indirect and direct band gaps at 0.4 and 1.2 eV, respectively. Measurements of the phonons across the 33 K ferromagnetic transition provide additional evidence for strong coupling between the magnetic and lattice degrees of freedom. The Si-Te stretching and Te displacement modes are sensitive to the magnetic ordering transition, a finding that we discuss in terms of the superexchange mechanism. Spin-lattice coupling constants are also extracted.

  3. Spin-orbit coupling in InGaSb-based two-dimensional electron gas

    Energy Technology Data Exchange (ETDEWEB)

    Guzenko, Vitaliy; Schaepers, Thomas; Cabanas, Sergio [Institute of Bio- and Nanosystems (IBN 1), Reserach Centre Juelich, 52425 Juelich (Germany); Akabori, Masashi; Sato, Taku; Suzuki, Toshi-kazu; Yamada, Syoji [Center for Nano-Materials and Technology (CNMT), Japan Advanced Institute of Science and Technology (JAIST), Nomi (Japan)

    2007-07-01

    Two-dimensional electron gases (2DEG) formed in high-mobility InGaSb-based heterostructures with high indium content are promising candidates for spintronic applications because of their strong spin-orbit coupling and large g-factor. To investigate these properties magnetoconductance measurements around zero magnetic field (localization measurements) as well as in strong magnetic fields (coincidence method) were performed. A pronounced enhancement of magnetoconductance at B=0 T due to the weak antilocalization effect was observed, which is an unambiguous indication of the spin-orbit coupling in these samples. Experimental curves measured as a function of temperature could be fitted by a theoretical model, and a quantitative estimation of the characteristic scattering times was done. By the coincidence method g-factor as large as 31 could be determined. By applying an additional constant magnetic field in the plane of 2DEG a strong suppression of the weak antilocalization peak was achieved. This is a qualitative confirmation of the result of the coincidence measurements.

  4. Relationship of magnetic behavior and surface spin coupling in Hematite nanowires bundles

    Science.gov (United States)

    Li, D. P.; Zhang, Y.; Wang, P. F.; Xu, J. C.; Han, Y. B.; Jin, H. X.; Jin, D. F.; Peng, X. L.; Hong, B.; Li, J.; Yang, Y. T.; Gong, J.; Ge, H. L.; Wang, X. Q.

    2016-08-01

    Hematite (α-Fe2O3) nanowires were synthesized using mesoporous SBA-15 silica as the hard templates, and then the well-dispersed α-Fe2O3 nanowires (NWS) were separated from the ordered α-Fe2O3 nanowires bundles (NWBS) by the centrifugation technique. X-ray diffraction (XRD), transmission electron microscopy (TEM) and surperconducting quantum interference device (SQUID) were used to characterize the microstructure and magnetic properties of the as-prepared samples. All results indicated that the α-Fe2O3 NWS and NWBS with the different interwires distance presented the same diameter for nanowires, which was possible to reveal the exchange interaction between α-Fe2O3 NWBs. Both samples showed ferromagnetism and α-Fe2O3 NWS presented superparamagnetism at high temperature. The magnetic results indicated the surface spin between the neighboring nanowires of α-Fe2O3 NWBs coupled each other. The saturation magnetization of α-Fe2O3 NWBS was lower than that of α-Fe2O3 NWS, while the coercivity and Curie temperature were larger. It was concluded that the surface spin coupling could weaken the surface effect on the magnetic properties for nanostructures.

  5. Signature effects of spin clustering and distribution of spin couplings on magnetization behaviour in Ni-Fe-Mo and Ni-Fe-W alloys

    International Nuclear Information System (INIS)

    Spontaneous magnetization as a function of temperature is investigated for a number of disordered Ni-Fe-Mo and Ni-Fe-W alloys using superconducting quantum interference device magnetometry, with a focus on the low-T behaviour as well as the critical exponents associated with the magnetic phase transition. While the low-T magnetization is found to be well described by Bloch's T3/2 law, extraordinary enhancements of the spin-wave parameter B and the reduced coefficient B3/2 = BTC3/2 are observed with increasing Fe dilution as compared to conventional 3d ferromagnets, whereas the critical amplitudes are found to decrease systematically. Recent locally self-consistent calculations of finite-temperature spin dynamics in a generic diluted magnet provide an understanding in terms of two distinct energy scales associated with weakly coupled bulk spins in the ferromagnetic matrix and strongly coupled cluster spins. In view of the similar behaviour observed in diluted magnetic semiconductors and other ferromagnetic alloys, it is proposed that these distinctive features corresponding to the three important temperature regimes provide macroscopic indicators of signature effects of spin clustering on the magnetization behaviour in disordered ferromagnets.

  6. A pure spin-current injector of semiconductor quantum dots with Andreev reflection and Rashba spin—orbit coupling

    International Nuclear Information System (INIS)

    We propose a four-terminal device consisting of two parallel quantum dots with Rashba spin—orbit interaction (RSOI), coupled to two side superconductor leads and two common ferromagnetic leads, respectively. The two ferromagnetic leads and two quantum dots form a ring threaded by Aharonov—Bohm (AB) flux. This device possesses normal quasiparticle transmission between the two ferromagnetic leads, and normal and crossed Andreev reflections providing conductive holes. For the appropriate spin polarization of the ferromagnetic leads, RSOI and AB flux, the pure spin-up (or spin-down) current without net charge current in the right lead, which is due to the equal numbers of electrons and holes with the same spin-polarization moving along the same direction, can be obtained by adjusting the gate voltage, which may be used in practice as a pure spin-current injector. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. Coherent spin dynamics of an interwell excitonic gas in GaAs/AlGaAs coupled quantum wells

    DEFF Research Database (Denmark)

    Larionov, A. V.; Bisti, V. E.; Bayer, M.;

    2006-01-01

    The spin dynamics of an interwell exciton gas has been investigated in n-i-n GaAs/AlGaAs coupled quantum wells. The time evolution kinetics of the interwell exciton photoluminescence has been measured under resonant excitation of the 1s heavy-hole intrawell exciton, using a pulsed tunable laser...... exciton collective phase at temperatures below a critical Tc. A theoretical analysis of the interwell exciton spin-flip dynamics has been developed....

  8. A dual-isotope rubidium comagnetometer to search for anomalous long-range spin-mass (spin-gravity) couplings of the proton

    Energy Technology Data Exchange (ETDEWEB)

    Kimball, Derek F.J.; Lacey, Ian; Valdez, Julian; Swiatlowski, Jerlyn; Rios, Cesar; Peregrina-Ramirez, Rodrigo; Montcrieffe, Caitlin; Kremer, Jackie; Dudley, Jordan; Sanchez, C. [Department of Physics, California State University - East Bay, Hayward, California, 94542-3084 (United States)

    2013-07-15

    The experimental concept of a search for a long-range coupling between rubidium (Rb) nuclear spins and the mass of the Earth is described. The experiment is based on simultaneous measurement of the spin precession frequencies for overlapping ensembles of {sup 85}Rb and {sup 87}Rb atoms contained within an evacuated, antirelaxation-coated vapor cell. Rubidium atoms are spin-polarized in the presence of an applied magnetic field by synchronous optical pumping with circularly polarized laser light. Spin precession is probed by measuring optical rotation of far-off-resonant, linearly polarized laser light. Simultaneous measurement of {sup 85}Rb and {sup 87}Rb spin precession frequencies enables suppression of magnetic-field-related systematic effects. The nuclear structure of the Rb isotopes makes the experiment particularly sensitive to anomalous spin-dependent interactions of the proton. Experimental sensitivity and a variety of systematic effects are discussed, and initial data are presented. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Spin-polarization-dependent transport in a quantum dot array coupled with an Aharonov—Bohm ring

    International Nuclear Information System (INIS)

    In this paper the quantum transport in a dot-array coupled with an Aharonov—Bohm (AB) ring is investigated via single-band tight-binding Hamiltonian. It is shown that the output spin current is a periodic function of the magnetic flux in the quantum unit Φ0. The resonance positions of the total transmission probability do not depend on the size of the AB ring but the electronic spectrum. Moreover, the persistent currents in the AB ring is also spin-polarization dependent and different from the isolated AB ring where the persistent current is independent of spin polarization. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. Exchange coupling and helical spin order in the triangular lattice antiferromagnet CuCrO2 using first principles

    Institute of Scientific and Technical Information of China (English)

    Jiang Xue-Fan; Liu Xian-Feng; Wu Yin-Zhong; Han Jiu-Rong

    2012-01-01

    The magnetic and electronic properties of the geometrically frustrated triangular antiferromagnet CuCrO2 are investigated by first principles through density functional theory calculations within the generalized gradient approximations (GGA)+U scheme.The spin exchange interactions up to the third nearest neighbours in the ab plane as well as the coupling between adjacent layers are calculated to examine the magnetism and spin frustration.It is found that CuCrO2 has a natural two-dimensional characteristic of the magnetic interaction.Using Monte-Carlo simulation,we obtain the Néel temperature to be 29.9 K,which accords well with the experimental value of 24 K.Based on noncollinear magnetic structure calculations,we verify that the incommensurate spiral-spin structure with (110) spiral plane is believable for the magnetic ground state,which is consistent with the experimental observations.Due to intra-layer geometric spin frustration,parallel helical-spin chains arise along the a,b,or a + b directions,each with a screw-rotation angle of about 120°.Our calculations of the density of states show that the spin frustration plays an important role in the change of d-p hybridization,while the spin-orbit coupling has a very limited influence on the electronic structure.

  11. The role of weak interlayer coupling in the spin-reorientation of perpendicular ultrathin Co-Fe-B/MgO-based heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Gareev, R. R. [Institut für Experimentelle und Angewandte Physik, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg (Germany); Zbarsky, V.; Münzenberg, M. [I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Institut für Physik, Universität Greifswald, Felix-Hausdorff-Straße 6, 17489 Greifswald (Germany); Landers, J.; Wende, H. [Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstraße 1, 47048 Duisburg (Germany); Soldatov, I.; Schäfer, R. [Leibniz-Institut für Festkörper- und Werkstoffforschung, IFW Dresden, 01171 Dresden (Germany); Grünberg, P. [Forschungszentrum Jülich, PGI-6, 52425 Jülich (Germany)

    2015-03-30

    Ultrathin magnetic tunneling structures implicate fundamental interlayer exchange coupling between magnetic layers. Here, we describe its important role in the spin-reorientation transition of weakly coupled perpendicular ultrathin Ta/Co-Fe-B/MgO/Co-Fe-B/Ta heterostructures. Near the spin-reorientation, the domain structure is quite sensitive to weak interlayer exchange coupling. Antiferromagnetic coupling stabilizes homogeneous perpendicular magnetization at the remanence, whereas ferromagnetic coupling favors in-/out-of-plane stripe domains. Close to the spin-reorientation transition, even the subtle changes of interlayer exchange coupling can lead to reversible switching between stable in- and out-of-plane states. Our results suggest that this multi-stability caused by the interplay of perpendicular anisotropy and weak interlayer coupling can be utilized in perpendicular spin torque devices operating under reduced spin currents.

  12. Spectral editing of weakly coupled spins using variable flip angles in PRESS constant echo time difference spectroscopy: Application to GABA

    Science.gov (United States)

    Snyder, Jeff; Hanstock, Chris C.; Wilman, Alan H.

    2009-10-01

    A general in vivo magnetic resonance spectroscopy editing technique is presented to detect weakly coupled spin systems through subtraction, while preserving singlets through addition, and is applied to the specific brain metabolite γ-aminobutyric acid (GABA) at 4.7 T. The new method uses double spin echo localization (PRESS) and is based on a constant echo time difference spectroscopy approach employing subtraction of two asymmetric echo timings, which is normally only applicable to strongly coupled spin systems. By utilizing flip angle reduction of one of the two refocusing pulses in the PRESS sequence, we demonstrate that this difference method may be extended to weakly coupled systems, thereby providing a very simple yet effective editing process. The difference method is first illustrated analytically using a simple two spin weakly coupled spin system. The technique was then demonstrated for the 3.01 ppm resonance of GABA, which is obscured by the strong singlet peak of creatine in vivo. Full numerical simulations, as well as phantom and in vivo experiments were performed. The difference method used two asymmetric PRESS timings with a constant total echo time of 131 ms and a reduced 120° final pulse, providing 25% GABA yield upon subtraction compared to two short echo standard PRESS experiments. Phantom and in vivo results from human brain demonstrate efficacy of this method in agreement with numerical simulations.

  13. Strong coupling of an NV- spin ensemble to a superconducting resonator

    International Nuclear Information System (INIS)

    This thesis is motivated by the idea of hybrid quantum systems, one promising approach to exploit quantum mechanics for information processing. The main challenge in this field is to counteract decoherence - an inevitable companion of every quantum system. Indeed some quantum systems are intrinsically better isolated from their environment and are therefore less prone to the loss of coherence. But it's the ambivalent nature of decoherence that these highly isolated systems are usually very difficult to interact with and coherently control. To overcome these obstacles ideas were born to combine or hybridize different quantum systems with mutually opposing properties - fast control and long coherence times - and take advantage of the prospective better behavior of the combined system. In this thesis, defects in single crystal diamond - negatively-charged nitrogen-vacancy centers (NV- centers) - are chosen as the quantum memory medium. Because an NV- center constitutes a defect in a solid, its combination with other solid-state quantum systems, as electrical circuits based on Josephson junctions, appears natural. In our work we aimed at the integration of a large number of NV- centers in a circuit quantum electrodynamics (cQED) set-up. These circuits, operating at microwave frequencies, are extremely fast and versatile quantum processors but suffer from short coherence times. Usually single microwave photons stored in a resonant circuit act as information carrier between different parts of the chip. As a main result we observe the coherent energy exchange between the NV- color centers and the electromagnetic field of a microwave resonator. We study in detail a number of important aspects of collective magnetic spin-field coupling as the characteristic scaling with the square root of the number of emitters. Additionally we measure weak coupling to 13C nuclear spins mediated by the hyperfine coupling to the NV- electron spins. The quantum memory capabilities of

  14. Neural-metabolic coupling in the central visual pathway.

    Science.gov (United States)

    Freeman, Ralph D; Li, Baowang

    2016-10-01

    Studies are described which are intended to improve our understanding of the primary measurements made in non-invasive neural imaging. The blood oxygenation level-dependent signal used in functional magnetic resonance imaging (fMRI) reflects changes in deoxygenated haemoglobin. Tissue oxygen concentration, along with blood flow, changes during neural activation. Therefore, measurements of tissue oxygen together with the use of a neural sensor can provide direct estimates of neural-metabolic interactions. We have used this relationship in a series of studies in which a neural microelectrode is combined with an oxygen micro-sensor to make simultaneous co-localized measurements in the central visual pathway. Oxygen responses are typically biphasic with small initial dips followed by large secondary peaks during neural activation. By the use of established visual response characteristics, we have determined that the oxygen initial dip provides a better estimate of local neural function than the positive peak. This contrasts sharply with fMRI for which the initial dip is unreliable. To extend these studies, we have examined the relationship between the primary metabolic agents, glucose and lactate, and associated neural activity. For this work, we also use a Doppler technique to measure cerebral blood flow (CBF) together with neural activity. Results show consistent synchronously timed changes such that increases in neural activity are accompanied by decreases in glucose and simultaneous increases in lactate. Measurements of CBF show clear delays with respect to neural response. This is consistent with a slight delay in blood flow with respect to oxygen delivery during neural activation.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. PMID:27574310

  15. Spin-phonon coupling in Gd(Co1/2Mn1/2)O3 perovskite

    International Nuclear Information System (INIS)

    We have investigated the temperature-dependent Raman-active phonons and the magnetic properties of Gd(Co1/2Mn1/2)O3 perovskite ceramics in the temperature range from 40 K to 300 K. The samples crystallized in an orthorhombic distorted simple perovskite, whose symmetry belongs to the Pnma space group. The data reveal spin-phonon coupling near the ferromagnetic transition occurring at around 120 K. The correlation of the Raman and magnetization data suggests that the structural order influences the magnitude of the spin-phonon coupling

  16. Spin time-relaxation within strongly coupled paramagnetic systems exhibiting paramagnetic-ferrimagnetic transitions

    CERN Document Server

    Chahid, M

    2000-01-01

    The purpose of the present work is a quantitative study of the spin time relaxation within superweak ferrimagnetic materials exhibiting a paramagnetic-ferrimagnetic transition, when the temperature is changed from an initial value T sub i to a final one T sub f very close to the critical temperature T sub c. From a magnetic point of view, the material under investigation is considered to be made of two strongly coupled paramagnetic sublattices of respective moments phi (cursive,open) Greek and psi. Calculations are made within a Landau mean-field theory, whose free energy involves, in addition to quadratic and quartic terms in both moments phi (cursive,open) Greek and psi, a lowest-order coupling - Cphi (cursive,open) Greek psi, where C<0 stands for the coupling constant measuring the interaction between the two sublattices. We first determine the time dependence of the shifts of the order parameters delta phi (cursive,open) Greek and delta psi from the equilibrium state. We find that this time dependence ...

  17. On the Coupling Problem of Higher Spin Fields in 2+1 Dimension

    CERN Document Server

    Rolando Gaitan, D

    2007-01-01

    The coupling problem of higher spin fields with a non dynamical background is revisited, focussing our attention in 2+1 dimensional space-time. Starting with a suitable Lagrangian field formulation, we study causality and the conservation of local degrees of freedom in a theory with gravitational (no dynamical) interaction, verifying that this type of theories must be consistent only in some space-time (i.e., dS/AdS). On the other hand, we consider the gravitational field as a dynamical object coupled with material fields as sources, from the point of view of a Yang-Mills gauge formulation for gravity. There we found some constraints on the shape of material fields and we show that introduction of auxiliary fields coupled with gauge connection does eliminate those constraints. The model of a Yang-Mills gauge formulation for topological massive gravity with cosmological constant is briefly introduced and we show that its field equations are consistent with the well known cosmologically extended topological mas...

  18. Interplay of Rashba spin orbit coupling and disorder in the conductance properties of a four terminal junction device

    Science.gov (United States)

    Ganguly, Sudin; Basu, Saurabh

    2016-04-01

    We report a thorough theoretical investigation on the quantum transport of a disordered four terminal device in the presence of Rashba spin orbit coupling (RSOC) in two dimensions. Specifically we compute the behaviour of the longitudinal (charge) conductance, spin Hall conductance and spin Hall conductance fluctuation as a function of the strength of disorder and Rashba spin orbit interaction using the Landauer Büttiker formalism via Green's function technique. Our numerical calculations reveal that both the conductances diminish with disorder. At smaller values of the RSOC parameter, the longitudinal and spin Hall conductances increase, while both vanish in the strong RSOC limit. The spin current is more drastically affected by both disorder and RSOC than its charge counterpart. The spin Hall conductance fluctuation does not show any universality in terms of its value and it depends on both disorder as well as on the RSOC strength. Thus the spin Hall conductance fluctuation has a distinct character compared to the fluctuation in the longitudinal conductance. Further one parameter scaling theory is studied to assess the transition to a metallic regime as claimed in literature and we find no confirmation about the emergence of a metallic state induced by RSOC.

  19. Probing Spin and Spin-Orbit Coupling effects in Narrow-gap Semiconductor Nano-structures by THz Magneto-photoresponse Spectroscopy and Magneto-transport Measurements

    Science.gov (United States)

    Pakmehr, Mehdi

    Using the spin degree of freedom in a emergent field Known as Spintronics has motivated scientist in different disciplines including physicist within last 10 years. Due to different interaction mechanisms which affects the physical behavior of spin (eg its state and transport properties) within solid medium (Semiconductors in our case), one needs to distinguish these mechanisms and their importance for making any practical spin based devices. For example the idea of making spin based transistors with electrons being transported within InGaAs and their spin state is being controlled by Rashba type field has been around for around 25 years but injection of spin polarized currents from a source into the channel has not been solved yet. Spin orbit coupling (SOC) is one of the mechanisms which changes the spin state of electrons and avoid the existence of pure spin state as a favorable one from device point of view. SOC could have a different origin depending on material type or structure of device. One method of measuring and quantifying this mechanisms within semiconductor nanostructures is through measuring the parameters known as Lande g-factor. This parameters turns out to be a promising one to probe different effects on electronic band structure including quantum confinement, strain, electric filed, etc. We probe a combination of these effects (SOC, Strain, band mixing, etc) by measuring different g-factor tensor components of narrow gap Zinc blend semiconductor nanostructures which we hope finally serve to the purpose of making reliable spin based devices* (Spintronics). To reach this goal we have developed and implemented THz magneto-Photoresponse spectroscopy in conjunction with magneto-transport measurements at cryogenic temperatures. The samples include InAs and HgTe based Quantum wells as well as InAs based quantum point contact. Our findings clarify the situation where the combination of SOC, Strain, quantum confinements as well as many body electron effect

  20. Site-resolved multiple-quantum filtered correlations and distance measurements by magic-angle spinning NMR: Theory and applications to spins with weak to vanishing quadrupolar couplings

    Energy Technology Data Exchange (ETDEWEB)

    Eliav, U., E-mail: amirgo@tau.ac.il, E-mail: eliav@tau.ac.il; Haimovich, A.; Goldbourt, A., E-mail: amirgo@tau.ac.il, E-mail: eliav@tau.ac.il [School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv (Israel)

    2016-01-14

    We discuss and analyze four magic-angle spinning solid-state NMR methods that can be used to measure internuclear distances and to obtain correlation spectra between a spin I = 1/2 and a half-integer spin S > 1/2 having a small quadrupolar coupling constant. Three of the methods are based on the heteronuclear multiple-quantum and single-quantum correlation experiments, that is, high rank tensors that involve the half spin and the quadrupolar spin are generated. Here, both zero and single-quantum coherence of the half spins are allowed and various coherence orders of the quadrupolar spin are generated, and filtered, via active recoupling of the dipolar interaction. As a result of generating coherence orders larger than one, the spectral resolution for the quadrupolar nucleus increases linearly with the coherence order. Since the formation of high rank tensors is independent of the existence of a finite quadrupolar interaction, these experiments are also suitable to materials in which there is high symmetry around the quadrupolar spin. A fourth experiment is based on the initial quadrupolar-driven excitation of symmetric high order coherences (up to p = 2S, where S is the spin number) and subsequently generating by the heteronuclear dipolar interaction higher rank (l + 1 or higher) tensors that involve also the half spins. Due to the nature of this technique, it also provides information on the relative orientations of the quadrupolar and dipolar interaction tensors. For the ideal case in which the pulses are sufficiently strong with respect to other interactions, we derive analytical expressions for all experiments as well as for the transferred echo double resonance experiment involving a quadrupolar spin. We show by comparison of the fitting of simulations and the analytical expressions to experimental data that the analytical expressions are sufficiently accurate to provide experimental {sup 7}Li–{sup 13}C distances in a complex of lithium, glycine, and water

  1. Field-assisted electron transport through a symmetric double-well structure with spin-orbit coupling and the Fano-resonance induced spin filtering

    Institute of Scientific and Technical Information of China (English)

    Zhang Cun-Xi; Nie Yi-Hang; Liang Jiu-Qing

    2008-01-01

    We have investigated theoretically the field-driven electron-transport through a double-quantum-well semiconductor-heterostructure with spin-orbit coupling. The numerical results demonstrate that the transmission spectra are divided into two sets due to the bound-state level-splitting and each set contains two asymmetric resonance peaks which may be selectively suppressed by changing the difference in phase between two driving fields. When the phase difference changes from O to π, the dip of asymmetric resonance shifts from one side of resonance peak to the other side and the asymmetric Fano resonance degenerates into the symmetric Breit-Wigner resonance at a critical value of phase difference. Within a given range of incident electron energy, the spin polarization of transmission current is completely governed by the phase difference which may be used to realize the tunable spin filtering.

  2. Navigating the vortex pinning landscape for bistable coupling of a ferromagnetic vortex to individual nitrogen vacancy spins

    Science.gov (United States)

    Berezovsky, Jesse; Wolf, Michael; Badea, Robert

    A ferromagnetic (FM) vortex coupled to nitrogen-vacancy (NV) spins in diamond provides an integrated platform for fast, nanoscale addressability of coherent spins. The vortex moves in a complex effective potential landscape set by the geometry of the disk and the defects present in the material. As the vortex moves through this landscape, the coupling to a proximal NV varies. We use differential magneto-optical microscopy to extract the effective potential through which the vortex moves, and optically-detected magnetic resonance to study the coupling of the vortex to an adjacent NV spin. When multiple local minima are present in the vortex potential, the vortex/NV coupling displays bistability. We switch between these bistable states with short magnetic field pulses. This allows an NV spin transition to be switched between on-resonance and off-resonance with a driving field with the same set of external parameters, and also yields information about the mechanisms of vortex/NV coupling We acknowledge support from US Department of Energy, Award #DE-SC008148.

  3. Large trigonal-field effect on spin-orbit coupled states in a pyrochlore iridate

    Science.gov (United States)

    Uematsu, Daisuke; Sagayama, Hajime; Arima, Taka-hisa; Ishikawa, Jun J.; Nakatsuji, Satoru; Takagi, Hidenori; Yoshida, Masahiro; Mizuki, Jun'ichiro; Ishii, Kenji

    2015-09-01

    The half-filled topmost valence band of Ir4 + in several iridates such as Sr2IrO4 ,IrO2, and CaIrO3 has been proposed to originate mainly from the spin-orbit coupled Jeff=1 /2 states. In pyrochlore iridates R2Ir2O7 (R : rare earth), some exotic electronic states are theoretically proposed by assuming Jeff=1 /2 states. However, the octahedral coordination around Ir is trigonally distorted, which may affect the energy level scheme of Ir 5 d states. Here, we report spectra of resonant elastic and inelastic x-ray scattering in Eu2Ir2O7 at the Ir L edges. A large suppression of the magnetic scattering signal at the Ir LII edge supports the Jeff=1 /2 picture rather than the S =1 /2 one. The inelastic scattering spectrum indicates that the magnitude of the trigonal field on the Ir4 + states is evaluated to be comparable to the spin-orbit interaction. The energy diagram of the 5 d state is proposed based on the simple cluster model.

  4. Hybrid magnetoresistance in Pt-based multilayers: Effect originated from strong interfacial spin-orbit coupling

    Science.gov (United States)

    Meng, Kangkang; Xiao, Jiaxing; Wu, Yong; Miao, Jun; Xu, Xiaoguang; Zhao, Jianhua; Jiang, Yong

    2016-01-01

    The hybrid magnetoresistance (MR) behaviors in Pt/Co90Fe10/Pt, Mn1.5Ga/Pt and Mn1.5Ga/Pt/Co90Fe10/Pt multilayers have been investigated. Both planer Hall effect (PHE) and angle-dependent MR in Pt/Co90Fe10/Pt revealed the combination of spin Hall MR (SMR) and normal anisotropic MR (AMR), indicating the large contribution of strong spin-orbit coupling (SOC) at the interfaces. When Pt contacted with perpendicular magnetic anisotropy (PMA) metal Mn1.5Ga, the strong interfacial SOC modified the effective anomalous Hall effect. The MR in Mn1.5Ga/Pt/Co90Fe10/Pt is not a simple combination of SMR and AMR, but ascribed to the complicated domain wall scattering and strong interfacial SOC when Pt is sandwiched by the in-plane magnetized Co90Fe10 and the PMA Mn1.5Ga. PMID:26843035

  5. Multi-reference approach to the calculation of photoelectron spectra including spin-orbit coupling

    CERN Document Server

    Grell, Gilbert; Winter, Bernd; Seidel, Robert; Aziz, Emad F; Aziz, Saadullah G; Kühn, Oliver

    2015-01-01

    X-ray photoelectron spectra provide a wealth of information on the electronic structure. The extraction of molecular details requires adequate theoretical methods, which in case of transition metal complexes has to account for effects due to the multi-configurational and spin-mixed nature of the many-electron wave function. Here, the Restricted Active Space Self-Consistent Field method including spin-orbit coupling is used to cope with this challenge and to calculate valence and core photoelectron spectra. The intensities are estimated within the frameworks of the Dyson orbital formalism and the sudden approximation. Thereby, we utilize an efficient computational algorithm that is based on a biorthonormal basis transformation. The approach is applied to the valence photoionization of the gas phase water molecule and to the core ionization spectrum of the $\\text{[Fe(H}_2\\text{O)}_6\\text{]}^{2+}$ complex. The results show good agreement with the experimental data obtained in this work, whereas the sudden approx...

  6. Multi-reference approach to the calculation of photoelectron spectra including spin-orbit coupling

    International Nuclear Information System (INIS)

    X-ray photoelectron spectra provide a wealth of information on the electronic structure. The extraction of molecular details requires adequate theoretical methods, which in case of transition metal complexes has to account for effects due to the multi-configurational and spin-mixed nature of the many-electron wave function. Here, the restricted active space self-consistent field method including spin-orbit coupling is used to cope with this challenge and to calculate valence- and core-level photoelectron spectra. The intensities are estimated within the frameworks of the Dyson orbital formalism and the sudden approximation. Thereby, we utilize an efficient computational algorithm that is based on a biorthonormal basis transformation. The approach is applied to the valence photoionization of the gas phase water molecule and to the core ionization spectrum of the [Fe(H2O)6]2+ complex. The results show good agreement with the experimental data obtained in this work, whereas the sudden approximation demonstrates distinct deviations from experiments

  7. Spin-orbit coupling induced by band hybridization in Graphene/WS2 heterostructures

    Science.gov (United States)

    Yang, Bowen; Tu, Min-Feng; Kim, Jeongwoo; Wu, Yong; Alicea, Jason; Wu, Ruqian; Bockrath, Marc; Shi, Jing

    Graphene are known to have a negligibly small intrinsic spin-orbit coupling (SOC), however, many novel physical phenomena such as the quantum spin Hall effect and the quantum anomalous Hall effect have been predicted if strong SOC exists in graphene. Despite that many theoretical studies have been carried out on the enhancement of the SOC strength in graphene, few experiments have been conducted to confirm the existence of and investigate the physical origin of the enhanced SOC in graphene. Here we demonstrated the introduction of SOC into graphene through the proximity effect by stacking WS2 onto graphene. We studied the magnetoconductance of graphene and found weak antilocalization emerges when graphene is covered by WS2. This is in a clear contrast with the weak localization behavior observed in bare graphene and thus provides an unambiguous evidence of the induced Rashba SOC. By focusing on a high carrier density region, we showed that it is possible to reliably extract the strength of Rashba SOC. Furthermore, via investigating the electric field dependence of the Rashba SOC with a dual-gate device, we found that the origin of this enhanced SOC is the band hybridization between graphene and WS2, in agreement with our theoretical calculations. The work was supported by the Grant DE-FG02-07ER4635 funded by the U.S. Department of Energy, Office of Science.

  8. Multi-reference approach to the calculation of photoelectron spectra including spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Grell, Gilbert; Bokarev, Sergey I., E-mail: sergey.bokarev@uni-rostock.de; Kühn, Oliver [Institut für Physik, Universität Rostock, D-18051 Rostock (Germany); Winter, Bernd; Seidel, Robert [Helmholtz-Zentrum Berlin für Materialien und Energie, Methods for Material Development, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany); Aziz, Emad F. [Helmholtz-Zentrum Berlin für Materialien und Energie, Methods for Material Development, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany); Department of Physics, Freie Universität Berlin, Arnimalle 14, D-14159 Berlin (Germany); Aziz, Saadullah G. [Chemistry Department, Faculty of Science, King Abdulaziz University, 21589 Jeddah (Saudi Arabia)

    2015-08-21

    X-ray photoelectron spectra provide a wealth of information on the electronic structure. The extraction of molecular details requires adequate theoretical methods, which in case of transition metal complexes has to account for effects due to the multi-configurational and spin-mixed nature of the many-electron wave function. Here, the restricted active space self-consistent field method including spin-orbit coupling is used to cope with this challenge and to calculate valence- and core-level photoelectron spectra. The intensities are estimated within the frameworks of the Dyson orbital formalism and the sudden approximation. Thereby, we utilize an efficient computational algorithm that is based on a biorthonormal basis transformation. The approach is applied to the valence photoionization of the gas phase water molecule and to the core ionization spectrum of the [Fe(H{sub 2}O){sub 6}]{sup 2+} complex. The results show good agreement with the experimental data obtained in this work, whereas the sudden approximation demonstrates distinct deviations from experiments.

  9. Tunable ferroelectric polarization and its interplay with spin-orbit coupling in tin iodide perovskites.

    Science.gov (United States)

    Stroppa, Alessandro; Di Sante, Domenico; Barone, Paolo; Bokdam, Menno; Kresse, Georg; Franchini, Cesare; Whangbo, Myung-Hwan; Picozzi, Silvia

    2014-01-01

    Ferroelectricity is a potentially crucial issue in halide perovskites, breakthrough materials in photovoltaic research. Using density functional theory simulations and symmetry analysis, we show that the lead-free perovskite iodide (FA)SnI3, containing the planar formamidinium cation FA, (NH2CHNH2)(+), is ferroelectric. In fact, the perpendicular arrangement of FA planes, leading to a 'weak' polarization, is energetically more stable than parallel arrangements of FA planes, being either antiferroelectric or 'strong' ferroelectric. Moreover, we show that the 'weak' and 'strong' ferroelectric states with the polar axis along different crystallographic directions are energetically competing. Therefore, at least at low temperatures, an electric field could stabilize different states with the polarization rotated by π/4, resulting in a highly tunable ferroelectricity appealing for multistate logic. Intriguingly, the relatively strong spin-orbit coupling in noncentrosymmetric (FA)SnI3 gives rise to a co-existence of Rashba and Dresselhaus effects and to a spin texture that can be induced, tuned and switched by an electric field controlling the ferroelectric state. PMID:25533044

  10. Trion fine structure and coupled spin-valley dynamics in monolayer tungsten disulfide.

    Science.gov (United States)

    Plechinger, Gerd; Nagler, Philipp; Arora, Ashish; Schmidt, Robert; Chernikov, Alexey; Del Águila, Andrés Granados; Christianen, Peter C M; Bratschitsch, Rudolf; Schüller, Christian; Korn, Tobias

    2016-01-01

    Monolayer transition-metal dichalcogenides have recently emerged as possible candidates for valleytronic applications, as the spin and valley pseudospin are directly coupled and stabilized by a large spin splitting. The optical properties of these two-dimensional crystals are dominated by tightly bound electron-hole pairs (excitons) and more complex quasiparticles such as charged excitons (trions). Here we investigate monolayer WS2 samples via photoluminescence and time-resolved Kerr rotation. In photoluminescence and in energy-dependent Kerr rotation measurements, we are able to resolve two different trion states, which we interpret as intravalley and intervalley trions. Using time-resolved Kerr rotation, we observe a rapid initial valley polarization decay for the A exciton and the trion states. Subsequently, we observe a crossover towards exciton-exciton interaction-related dynamics, consistent with the formation and decay of optically dark A excitons. By contrast, resonant excitation of the B exciton transition leads to a very slow decay of the Kerr signal. PMID:27586517

  11. Controlling Rashba spin orbit coupling in polar two-dimensional transition metal dichalcogenide

    CERN Document Server

    Yao, Qun-Fang; Tong, Wen-Yi; Gong, Shi-Jing; Wang, Ji-Qing; Wan, Xian-gang; Duan, Chun-Gang; Chu, J H

    2016-01-01

    Monolayer transition metal dichalcogenide (TMD) group of materials MXY (M=Mo, W, X(not equal to)Y=S, Se, Te) are two-dimensional polar semiconductors with Rashba spin orbit coupling (SOC). Setting WSeTe as an example and using density functional theory calculations, we investigate the influence of biaxial strain and electric field on Rashba SOC in MXY monolayer. The orbital analysis reveals that Rashba spin splitting around Gamma point occurs mainly through the SOC matrix elements between the W-dz2 and -dxz/yz orbitals, and those between the Se-pz and -px/y orbitals. We find the change of local electric field between Se and W atoms arising from the mirror symmetry breaking plays the critical role in forming the large Rashba SOC, and through a relatively small compressive/tensile strain (from -2% to 2%), a large tunability of Rashba SOC can be obtained due to the modified W-Se bonding interaction. In addition, we also explore the influence of electric field on Rashba SOC in WSeTe, which can impact the charge d...

  12. On the spectrum of the lattice spin-boson Hamiltonian for any coupling: 1D case

    Energy Technology Data Exchange (ETDEWEB)

    Muminov, M., E-mail: mmuminov@mail.ru [Faculty of Sciences, Universiti Teknologi Malaysia, 81310 Skudai (Malaysia); Neidhardt, H., E-mail: neidhard@wias-berlin.de [Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, D-10117 Berlin (Germany); Rasulov, T., E-mail: rth@mail.ru [Faculty of Physics and Mathematics, Bukhara State University, M. Ikbol str. 11, 200100 Bukhara (Uzbekistan)

    2015-05-15

    A lattice model of radiative decay (so-called spin-boson model) of a two level atom and at most two photons is considered. The location of the essential spectrum is described. For any coupling constant, the finiteness of the number of eigenvalues below the bottom of its essential spectrum is proved. The results are obtained by considering a more general model H for which the lower bound of its essential spectrum is estimated. Conditions which guarantee the finiteness of the number of eigenvalues of H below the bottom of its essential spectrum are found. It is shown that the discrete spectrum might be infinite if the parameter functions are chosen in a special form.

  13. Nuclear response theory for spin-isospin excitations in a relativistic quasiparticle-phonon coupling framework

    CERN Document Server

    Robin, Caroline

    2016-01-01

    A new theoretical approach to spin-isospin excitations in open-shell nuclei is presented. The developed method is based on the relativistic meson-exchange nuclear Lagrangian of Quantum Hadrodynamics and extends the response theory for superfluid nuclear systems beyond relativistic quasiparticle random phase approximation in the proton-neutron channel (pn-RQRPA). The coupling between quasiparticle degrees of freedom and collective vibrations (phonons) introduces a time-dependent effective interaction, in addition to the exchange of pion and $\\rho$-meson taken into account without retardation. The time-dependent contributions are treated in the resonant time-blocking approximation, in analogy to previously developed relativistic quasiparticle time blocking approximation (RQTBA) in the neutral (non-isospin-flip) channel. The new method is called proton-neutron RQTBA (pn-RQTBA) and applied to Gamow-Teller resonance in a chain of neutron-rich Nickel isotopes $^{68-78}$Ni. A strong fragmentation of the resonance al...

  14. Filling-enforced quantum band insulators in spin-orbit coupled crystals.

    Science.gov (United States)

    Po, Hoi Chun; Watanabe, Haruki; Zaletel, Michael P; Vishwanath, Ashvin

    2016-04-01

    An early triumph of quantum mechanics was the explanation of metallic and insulating behavior based on the filling of electronic bands. A complementary, classical picture of insulators depicts electrons as occupying localized and symmetric Wannier orbitals that resemble atomic orbitals. We report the theoretical discovery of band insulators for which electron filling forbids such an atomic description. We refer to them as filling-enforced quantum band insulators (feQBIs) because their wave functions are associated with an essential degree of quantum entanglement. Like topological insulators, which also do not admit an atomic description, feQBIs need spin-orbit coupling for their realization. However, they do not necessarily support gapless surface states. Instead, the band topology is reflected in the insulating behavior at an unconventional filling. We present tight binding models of feQBIs and show that they only occur in certain nonsymmorphic, body-centered cubic crystals. PMID:27152352

  15. Response of a coupled two-spin system to on-resonance amplitude modulated RF pulses

    Science.gov (United States)

    Zhou, Jinyuan; Ye, Chaohui; Sanctuary, B. C.

    A weakly scalar-coupled two-spin system subjected to two amplitude modulated RF pulses on exact resonance is treated by means of the rotation operator approach. The theory presented here enables coherence evolution to be evaluated by the routine procedure and to be expressed in analytical form. The evolution behaviour from the equilibrium state is discussed in some detail. It is shown that the application of rotation matrix and quaternion elements clarifies evolution expressions. The numerical calculation is performed by way of quaternions. Examples of BURP (band-selective, uniform response, purephase) and sinc-shaped RF pulses are given and the case of time-symmetrical RF pulses is analysed further.

  16. Quantum transport, anomalous dephasing, and spin-orbit coupling in an open ballistic bismuth nanocavity

    Science.gov (United States)

    Hackens, B.; Minet, J. P.; Faniel, S.; Farhi, G.; Gustin, C.; Issi, J. P.; Heremans, J. P.; Bayot, V.

    2003-03-01

    The phase coherence time τφ and spin-orbit coupling time τso are measured in a bismuth quasiballistic nanocavity and in bismuth thin films using weak antilocalization and universal conductance fluctuations. The cavity is found to be zero dimensional for phase-coherent processes at low temperature. Weak antilocalization seems weakly affected by this drastic reduction of dimensionality. The temperature dependence of τφ is similar in both types of samples, qualitatively consistent with low-energy transfer two-dimensional electron-electron interaction effects as the dominant dephasing mechanism. Strikingly, τφ in the dot is found to be an order-of-magnitude smaller than in the film, and orders-of-magnitude smaller than the theoretical prediction.

  17. Semiclassical magnetotransport in strongly spin-orbit coupled Rashba two-dimensional electron systems.

    Science.gov (United States)

    Xiao, Cong; Li, Dingping

    2016-06-15

    Semiclassical magnetoelectric and magnetothermoelectric transport in strongly spin-orbit coupled Rashba two-dimensional electron systems is investigated. In the presence of a perpendicular classically weak magnetic field and short-range impurity scattering, we solve the linearized Boltzmann equation self-consistently. Using the solution, it is found that when Fermi energy E F locates below the band crossing point (BCP), the Hall coefficient is a nonmonotonic function of electron density n e and not inversely proportional to n e. While the magnetoresistance (MR) and Nernst coefficient vanish when E F locates above the BCP, non-zero MR and enhanced Nernst coefficient emerge when E F decreases below the BCP. Both of them are nonmonotonic functions of E F below the BCP. The different semiclassical magnetotransport behaviors between the two sides of the BCP can be helpful to experimental identifications of the band valley regime and topological change of Fermi surface in considered systems. PMID:27157714

  18. Spin Ensembles Coupled to Superconducting Resonators: A Scalable Architecture for Solid-State Quantum Computing

    International Nuclear Information System (INIS)

    A design is proposed for scalable solid-state quantum computing, which is based on collectively enhanced magnetic coupling between nitrogen-vacancy center ensembles and superconducting transmission line resonators interconnected by current-biased Josephson junction superconducting phase qubit. In this hybrid system, we realize distant multi-qubit controlled phase gate operations and generate distant multi-qubit entangled W-like states, being indispensable resource to quantum computation. Our proposed architecture consists of solid-state spin ensembles and circuit QED, and could achieve quantum computing in a solid-state environment with high-fidelity and scalable way. The experimental feasibility is discussed, and the implementation efficiency is demonstrated numerically. (general)

  19. Finding the true spin-lattice relaxation time for half-integral nuclei with non-zero quadrupole couplings

    Science.gov (United States)

    Yesinowski, James P.

    2015-03-01

    Measuring true spin-lattice relaxation times T1 of half-integral quadrupolar nuclei having non-zero nuclear quadrupole coupling constants (NQCCs) presents challenges due to the presence of satellite-transitions (STs) that may lie outside the excitation bandwidth of the central transition (CT). This leads to complications in establishing well-defined initial conditions for the population differences in these multi-level systems. In addition, experiments involving magic-angle spinning (MAS) can introduce spin exchange due to zero-crossings of the ST and CT (or possibly rotational resonance recoupling in the case of multiple sites) and greatly altered initial conditions as well. An extensive comparison of pulse sequences that have been previously used to measure T1 in such systems is reported, using the 71Ga (I = 3/2) NMR of a Ge-doped h-GaN n-type semiconductor sample as the test case. The T1 values were measured at the peak maximum of the Knight shift distribution. Analytical expressions for magnetization-recovery of the CT appropriate to the pulse sequences tested were used, involving contributions from both a magnetic relaxation mechanism (rate constant W) and a quadrupolar one (rate constants W1 and W2, approximately equal in this case). An asynchronous train of high-power saturating pulses under MAS that is able to completely saturate both CT and STs is found to be the most reliable and accurate method for obtaining the "true T1", defined here as (2W + 2W1,2)-1. All other methods studied yielded poor agreement with this "true T1" value or even resulted in gross errors, for reasons that are analyzed in detail. These methods involved a synchronous train of saturating pulses under MAS, an inversion-recovery sequence under MAS or static conditions, and a saturating comb of pulses on a static sample. Although the present results were obtained on a sample where the magnetic relaxation mechanism dominated the quadrupolar one, the asynchronous saturating pulse train

  20. One and Multiple Bonds Interatomic Spin-Spin Coupling in η6-Cymene Ru(II of 3,5-Dimethyl-, 3,5-Dicarboxylic-, and 5-Phenyl-pyrazole Derivatives

    Directory of Open Access Journals (Sweden)

    Adebayo A. Adeniyi

    2015-01-01

    Full Text Available The changes in the interatomic distances and the corresponding spin-spin coupling as a result of the hydrolysis of the ruthenium complexes and the effects of different derivatives of the pyrazole ligands and the substituents methyl, carboxylic, and phenyl on the pyrazole rings were studied. A good agreement was obtained between the experimental and the theoretical proton NMR. Significant changes are observed in the isotropic and anisotropic shielding tensor of the atoms and related spin-spin coupling of their bonds due to hydrolysis of the complexes. This observation gives more insight into the known mechanism of activation of the ruthenium complexes by hydrolysis. There are no direct effects of interatomic distances on many of the computed spin-spin couplings with the exception of 1J(Ru-N which shows significant changes especially within the pair of 1J(Ru-N in the complexes with two nitrogen atoms of the bis-pyrazole moiety. The magnitude of interatomic spin-spin coupling of the Ru-X follows the order of Ru-Cl > Ru-N > Ru-C > Ru-O. The Ramsey term Fermi contact (FC has the most significant contribution in most of the computed spin-spin interactions except in 1J(Ru-Cl and 1J(N-N⁎ which are predominantly defined by the contribution from the paramagnetic spin orbit (PSO.

  1. Extensive ab initio study of the electronic states of BSe radical including spin-orbit coupling

    Science.gov (United States)

    Liu, Siyuan; Zhai, Hongsheng; Liu, Yufang

    2016-06-01

    The internally contracted multi-reference configuration interaction method (MRCI) with Davidson modification and the Douglas-Kroll scalar relativistic correction has been used to calculate the BSe molecule at the level of aug-cc-pV5Z basis set. The calculated electronic states, including 9 doublet and 6 quartet Λ-S states, are correlated to the dissociation limit of B(2Pu) + Se(3Pg) and B(2Pu) + Se(1Dg). The Spin-orbit coupling (SOC) interaction is taken into account via the state interaction approach with the full Breit-Pauli Hamiltonian operator, which causes the entire 15 Λ-S states to split into 32 Ω states. This is the first time that the spin-orbit coupling calculation has been carried out on BSe. The potential energy curves of the Λ-S and Ω electronic states are depicted with the aid of the avoided crossing rule between electronic states of the same symmetry. The spectroscopic constants of the bound Λ-S and Ω states were determined, which are in good agreement with the experimental data. The transition dipole moments (TDMs) and the Franck-Condon factors (FCs) of the transitions from the low-lying bound Ω states A2Π(I)3/2, B2Π(I)1/2 and C2Δ(I)3/2 to the ground state X2Σ+1/2 have also been presented. Based on the previous calculations, the radiative lifetimes of the A2Π(I)3/2, B2Π(I)1/2 and C2Δ(I)3/2 were evaluated.

  2. Space-time dependent couplings In N = 1 SUSY gauge theories: Anomalies and central functions

    International Nuclear Information System (INIS)

    We consider N = 1 supersymmetric gauge theories in which the couplings are allowed to be space-time dependent functions. Both the gauge and the superpotential couplings become chiral superfields. As has recently been shown, a new topological anomaly appears in models with space-time dependent gauge coupling. Here we show how this anomaly may be used to derive the NSVZ β-function in a particular, well-determined renormalisation scheme, both without and with chiral matter. Moreover we extend the topological anomaly analysis to theories coupled to a classical curved superspace background, and use it to derive an all-order expression for the central charge c, the coefficient of the Weyl tensor squared contribution to the conformal anomaly. We also comment on the implications of our results for the central charge a expected to be of relevance for a four-dimensional C-theorem. (author)

  3. First example of the correlated calculation of the one-bond tellurium-carbon spin-spin coupling constants: Relativistic effects, vibrational corrections, and solvent effects.

    Science.gov (United States)

    Rusakova, Irina L; Rusakov, Yury Yu; Krivdin, Leonid B

    2016-06-01

    This work reports on the comprehensive calculation of the NMR one-bond spin-spin coupling constants (SSCCs) involving carbon and tellurium, (1) J((125) Te,(13) C), in four representative compounds: Te(CH3 )2 , Te(CF3 )2 , Te(CCH)2 , and tellurophene. A high-level computational treatment of (1) J((125) Te,(13) C) included calculations at the SOPPA level taking into account relativistic effects evaluated at the 4-component RPA and DFT levels of theory, vibrational corrections, and solvent effects. The consistency of different computational approaches including the level of theory of the geometry optimization of tellurium-containing compounds, basis sets, and methods used for obtainig spin-spin coupling values have also been discussed in view of reproducing the experimental values of the tellurium-carbon SSCCs. Relativistic corrections were found to play a major role in the calculation of (1) J((125) Te,(13) C) reaching as much as almost 50% of the total value of (1) J((125) Te,(13) C) while relativistic geometrical effects are of minor importance. The vibrational and solvent corrections account for accordingly about 3-6% and 0-4% of the total value. It is shown that taking into account relativistic corrections, vibrational corrections and solvent effects at the DFT level essentially improves the agreement of the non-relativistic theoretical SOPPA results with experiment. © 2016 Wiley Periodicals, Inc. PMID:26931355

  4. Andreev reflection and Aharonov-Bohm oscillations through a parallel-coupled double quantum dot with spin-flip scattering

    International Nuclear Information System (INIS)

    Using nonequilibrium Green's function techniques, we investigate Andreev reflection and Aharonov-Bohm oscillations through a parallel-coupled double quantum dot connected with a ferromagnetic lead and a superconductor lead. The possibility of controlling Andreev reflection and Aharonov-Bohm oscillations of the system is explored by tuning the interdot coupling, the gate voltage, the magnetic flux, and the intradot spin-flip scattering. When the spin-flip scattering increases, Fano resonant peaks resulting from the asymmetrical levels of the two quantum dots begin to split, and Aharonov-Bohm oscillations are suppressed. Due to the interdot coupling, one strongly and one weakly coupled state of the system can be formed. The magnetic flux can exchange the function of the two states, which leads to a swap effect.

  5. Coupling of spin and orbital degrees of freedom in tunable Hong-Ou-Mandel interference involving photons in hybrid spin-orbit modes

    Science.gov (United States)

    Leary, Cody C.; Lankford, Maggie; Sundarraman, Deepika

    2015-05-01

    We investigate the connection between biphoton states involving photons in product modes of their spin and orbital degrees of freedom and those involving photons in hybrid spin-orbit modes, as mediated by Hong-Ou-Mandel interference (HOMI) in an asymmetric Mach-Zehnder interferometer. We predict that two input photons in balanced superposition states of both their spin and orbital degrees of freedom will exhibit HOMI while undergoing a simultaneous mode conversion from product spin-orbit input modes to hybrid output modes bearing orbital angular momentum. These hybrid outputs contain a spatially varying polarization structure which may be controllably rotated about the photonic beam axis by varying the relative phase between the vertical and horizontal components of each input photon's polarization. Additionally, a type of coupling of the spin and orbital degrees of freedom is exhibited in this system: the transverse spatial profile of the output photons may be continuously manipulated by tuning the polarization parameters of the input photons, in such a way that the HOMI between the photons remains stable. An interesting corollary to this work is the possibility of demonstrating in a simple experimental system that HOMI may occur between distinguishable input modes.

  6. Long-range spin coupling: a tetraphosphine-bridged palladium dimer.

    Science.gov (United States)

    Arumugam, Kuppuswamy; Shaw, Mohammed C; Mague, Joel T; Bill, Eckhard; Sproules, Stephen; Donahue, James P

    2011-04-01

    The dipalladium compound [{(adt)Pd}(2)(μ-tpbz)] (1) (adt = bis(p-anisyl)-1,2-ethylenedithiolate, tpbz = 1,2,4,5-tetrakis(diphenylphosphino)benzene) has been synthesized from [{Cl(2)Pd}(2)(μ-tpbz)] by transmetalation employing (adt)SnMe(2). The cyclic voltammogram (CV) of 1 reveals reversible oxidation waves at 0.00 V and +0.50 V (vs [Fc](+)/Fc) with current amplitude twice that for identical processes in the monopalladium compound [(adt)Pd(dppb)] (2) (dppb = 1,2-bis(diphenylphosphino)benzene), an observation indicating each wave involves simultaneous one-electron oxidations at each metallodithiolene fragment. This assignment is affirmed by density functional theory (DFT) calculations that show the redox-active molecular orbital (MO) is principally composed of the dithiolene S(2)C(2) π-system, and by spectroelectrochemical UV-vis of [1](2+), which displays hallmark low energy charge transfer (CT) bands. Dication [1](2+) is a diradical with a near degenerate singlet-triplet ground state; fluid solution electron paramagnetic resonance (EPR) spectra validate the DFT-derived isotropic exchange coupling, J' = -6.3 cm(-1). The frozen solution X-band EPR spectrum of [1](2+) is consistent with a spin-triplet bearing a very faint half-field ("ΔM(S) = 2") signal. It is successfully simulated with an amazingly small zero field splitting, D = -15 × 10(-4) cm(-1) and negligible rhombicity (E/D = 0.008). These zero-field splitting parameters, which stem from the long-range dipolar spin coupling, are very accurately reproduced using a multipoint dipole model with an optimized interspin distance of 12.434 Å. With the framework reported herein for understanding how the weak interaction of two spins is mediated by tpbz, this bridging ligand can now be incorporated into extended systems with tailored chemical and physical properties for use in a variety of molecular-based electronic and magnetic devices. PMID:21381668

  7. Towards control of the size and helicity of skyrmions in helimagnetic alloys by spin-orbit coupling

    Science.gov (United States)

    Shibata, K.; Yu, X. Z.; Hara, T.; Morikawa, D.; Kanazawa, N.; Kimoto, K.; Ishiwata, S.; Matsui, Y.; Tokura, Y.

    2013-10-01

    Chirality--that is, left- or right-handedness--is an important concept in a broad range of scientific areas. In condensed matter, chirality is found not only in molecular or crystal forms, but also in magnetic structures. A magnetic skyrmion is a topologically stable spin vortex structure, as observed in chiral-lattice helimagnets, and is one example of such a structure. The spin swirling direction (skyrmion helicity) should be closely related to the underlying lattice chirality via the relativistic spin-orbit coupling. Here, we report on the correlation between skyrmion helicity and crystal chirality in alloys of helimagnets Mn1-xFexGe with varying compositions by Lorentz transmission electron microscopy and convergent-beam electron diffraction over a broad range of compositions (x = 0.3-1.0). The skyrmion lattice constant shows non-monotonous variation with composition x, with a divergent behaviour around x = 0.8, where the correlation between magnetic helicity and crystal chirality changes sign. This originates from continuous variation of the spin-orbit coupling strength and its sign reversal in the metallic alloys as a function of x. Controllable spin-orbit coupling may offer a promising way to tune skyrmion size and helicity.

  8. Spin orientation in an ultrathin CoO/PtFe double-layer with perpendicular exchange coupling

    International Nuclear Information System (INIS)

    We studied by soft X-ray absorption spectroscopy the magnetization axis in a 4 nm thin CoO (111) layer exchange-coupled to an ultra thin L10 PtFe layer with perpendicular magnetic anisotropy. The angular dependence of the linear magnetic dichroism at 10 K and the relative variations of the spectral features provide a full description of the spin orientation in this antiferromagnetic layer. The spins are found in the film plane, pointing along the 110 direction. This results is discussed in relation to the film strain and the preferential occupation of t2g orbitals. The strong orthogonal coupling between Co and Fe spins should be at the origin of the robustness of the exchange bias effect found in this bilayer system

  9. Strong-coupling corrections to spin susceptibility in the BCS-BEC-crossover regime of a superfluid Fermi gas

    Science.gov (United States)

    Tajima, Hiroyuki; Hanai, Ryo; Ohashi, Yoji

    2016-01-01

    We theoretically investigate the uniform spin susceptibility χ in the superfluid phase of an ultracold Fermi gas in the region of the Bardeen-Cooper-Schrieffer-Bose-Einstein-condensate (BCS-BEC) crossover. In our previous paper [H. Tajima et al., Phys. Rev. A 89, 033617 (2014), 10.1103/PhysRevA.89.033617], including pairing fluctuations within an extended T -matrix approximation (ETMA), we showed that strong pairing fluctuations cause the so-called spin-gap phenomenon, where χ is anomalously suppressed even in the normal state near the superfluid phase transition temperature Tc. In this paper, we extend this work to the superfluid phase below Tc, to clarify how this many-body phenomenon is affected by the superfluid order. From the comparison of the ETMA χ with the Yosida function describing the spin susceptibility in a weak-coupling BCS superfluid, we identify the region where pairing fluctuations crucially affect this magnetic quantity below Tc in the phase diagram with respect to the strength of a pairing interaction and the temperature. This spin-gap regime is found to be consistent with the previous pseudogap regime determined from the pseudogapped density of states. We also compare our results with a recent experiment on a 6Li Fermi gas. Since the spin susceptibility is sensitive to the formation of spin-singlet preformed pairs, our results would be useful for the study of pseudogap physics in an ultracold Fermi gas on the viewpoint of the spin degrees of freedom.

  10. Investigation of spin phonon coupling in BiFeO3 based system by Fourier transform infrared spectroscopy

    International Nuclear Information System (INIS)

    In the present work, the low temperature infrared absorption spectra of BiFeO3 (BFO) are measured to explore the spin-phonon coupling in this compound. At 303 K, 4 weak transverse optic (TO) IR-active phonon modes E(TO6), E(TO7), E(TO8), and E(TO9) are observed. First two modes are corresponded to the Fe3+ cations caused by the internal vibration of FeO6 octahedra, E(TO8) is correlated to Fe-O bending vibration and E(TO9) is assigned to Fe-O stretching vibrations, respectively. At 213 K, two new modes E(TO5) and A1(TO3) are emerging out. Both are assigned to Fe3+ cations caused by the internal vibration of FeO6 octahedra. These modes get stronger and stronger with lowering the temperature due to the lattice contraction. When the temperatures decreases to T ≤ 213 K, an additional phonon mode is start appearing at around 638 cm−1 suggesting local lattice distortion of FeO6 octahedra. The temperature is corresponding with the FC and zero field cooled bifurcation temperature, which is related to the onset of spin glass behaviour. The occurrence of this additional phonon mode at this particular temperature suggests that there is strong spin-phonon coupling in BFO. This argument is further supported by the temperature dependence of this additional phonon peak. It shows anomaly around 124 K, which is related to spin reorientation of Fe3+ ions. This result clearly indicates that spin glass state and spin reorientation of Fe3+ is accompanied with the local structure distortion of FeO6 octahedra, providing evidence for the strong spin-phonon coupling in the BFO

  11. Investigation of the field dependent spin structure of exchange coupled magnetic heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Gurieva, Tatiana

    2016-05-15

    This thesis describes the investigation of the field dependent magnetic spin structure of an antiferromagnetically (AF) coupled Fe/Cr heterostructure sandwiched between a hardmagnetic FePt buffer layer and a softmagnetic Fe top layer. The depth-resolved experimental studies of this system were performed via Magneto-optical Kerr effect (MOKE), Vibrating Sample Magnetometry (VSM) and various measuring methods based on nuclear resonant scattering (NRS) technique. Nucleation and evolution of the magnetic spiral structure in the AF coupled Fe/Cr multilayer structure in an azimuthally rotating external magnetic field were observed using NRS. During the experiment a number of time-dependent magnetic side effects (magnetic after-effect, domain-wall creep effect) caused by the non-ideal structure of a real sample were observed and later explained. Creation of the magnetic spiral structure in rotating external magnetic field was simulated using a one-dimensional micromagnetic model.The cross-sectional magnetic X-ray diffraction technique was conceived and is theoretically described in the present work. This method allows to determine the magnetization state of an individual layer in the magnetic heterostructure. It is also applicable in studies of the magnetic structure of tiny samples where conventional x-ray reflectometry fails.

  12. Spin wave eigenmodes in single and coupled sub-150 nm rectangular permalloy dots

    Energy Technology Data Exchange (ETDEWEB)

    Carlotti, G., E-mail: giovanni.carlotti@fisica.unipg.it; Madami, M. [Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Tacchi, S. [Istituto Officina dei Materiali del CNR (CNR-IOM), Dipartimento di Fisica e Geologia, Perugia (Italy); Gubbiotti, G.; Dey, H.; Csaba, G.; Porod, W. [Center for Nano Science and Technology, Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2015-05-07

    We present the results of a Brillouin light scattering investigation of thermally excited spin wave eigenmodes in square arrays of either isolated rectangular dots of permalloy or twins of dipolarly coupled elements, placed side-by-side or head-to-tail. The nanodots, fabricated by e-beam lithography and lift-off, are 20 nm thick and have the major size D in the range between 90 nm and 150 nm. The experimental spectra show the presence of two main peaks, corresponding to modes localized either at the edges or in the center of the dots. Their frequency dependence on the dot size and on the interaction with adjacent elements has been measured and successfully interpreted on the basis of dynamical micromagnetic simulations. The latter enabled us also to describe the spatial profile of the eigenmodes, putting in evidence the effects induced by the dipolar interaction between coupled dots. In particular, in twinned dots the demagnetizing field is appreciably modified in proximity of the “internal edges” if compared to the “external” ones, leading to a splitting of the edge mode. These results can be relevant for the exploitation of sub-150 nm magnetic dots in new applications, such as magnonic metamaterials, bit-patterned storage media, and nano-magnetic logic devices.

  13. Investigation of the field dependent spin structure of exchange coupled magnetic heterostructures

    International Nuclear Information System (INIS)

    This thesis describes the investigation of the field dependent magnetic spin structure of an antiferromagnetically (AF) coupled Fe/Cr heterostructure sandwiched between a hardmagnetic FePt buffer layer and a softmagnetic Fe top layer. The depth-resolved experimental studies of this system were performed via Magneto-optical Kerr effect (MOKE), Vibrating Sample Magnetometry (VSM) and various measuring methods based on nuclear resonant scattering (NRS) technique. Nucleation and evolution of the magnetic spiral structure in the AF coupled Fe/Cr multilayer structure in an azimuthally rotating external magnetic field were observed using NRS. During the experiment a number of time-dependent magnetic side effects (magnetic after-effect, domain-wall creep effect) caused by the non-ideal structure of a real sample were observed and later explained. Creation of the magnetic spiral structure in rotating external magnetic field was simulated using a one-dimensional micromagnetic model.The cross-sectional magnetic X-ray diffraction technique was conceived and is theoretically described in the present work. This method allows to determine the magnetization state of an individual layer in the magnetic heterostructure. It is also applicable in studies of the magnetic structure of tiny samples where conventional x-ray reflectometry fails.

  14. Synchronization of vortex-based spin torque nano-oscillators by magnetostatic coupling

    Energy Technology Data Exchange (ETDEWEB)

    Zaspel, C.E., E-mail: craig.zaspel@umwestern.edu

    2015-12-15

    Synchronization of two nanopillar oscillators driven by spin torque and coupled through the magnetic dipolar interaction. The dominant mode in each oscillator is gyrotropic motion of the vortex core in an elliptical orbit about the free layer disk center. The dynamic properties of this mode is investigated by solution the coupled Thiele equations with both nanopillar oscillators having identical dimensions, but with a current mismatch. It is noticed that there is a range in the current difference where the oscillators will be synchronized where the vortex gyrotropic motion will be frequency-locked with the radii of gyrotropic motion equal for both disks. There is, however, a phase shift between the gyrotropic motion with the smaller current disk lagging the higher current disk by a few degrees. - Highlights: • Vortex-based nanopillar oscillators re synchronized by the dipolar interaction. • There is a range of frequencies where both oscillators will frequency-locked. • There are upper and lower critical currents defining a locking range.

  15. Probing the holographic principle using dynamical gauge effects from open spin-orbit coupling

    Science.gov (United States)

    Zhao, Jianshi; Price, Craig; Liu, Qi; Gemelke, Nathan

    2016-05-01

    Dynamical gauge fields result from locally defined symmetries and an effective over-labeling of quantum states. Coupling atoms weakly to a reservoir of laser modes can create an effective dynamical gauge field purely due to the disregard of information in the optical states. Here we report measurements revealing effects of open spin-orbit coupling in a system where an effective model can be formed from a non-abelian SU(2) × U(1) field theory following the Yang-Mills construct. Forming a close analogy to dynamical gauge effects in quantum chromodynamics, we extract a measure of atomic motion which reveals the analog of a closing mass gap for the relevant gauge boson, shedding insight on long standing open problems in gauge-fixing scale anomalies. Using arguments following the holographic principle, we measure scaling relations which can be understood by quantifying information present in the local potential. New prospects using these techniques for developing fractionalization of multi-particle and macroscopic systems using dissipative and non-abelian gauge fields will also be discussed. We acknowledge support from NSF Award No. 1068570, and the Charles E. Kaufman Foundation.

  16. Spin orbit coupling for molecular ab initio density matrix renormalization group calculations: Application to g-tensors

    Energy Technology Data Exchange (ETDEWEB)

    Roemelt, Michael, E-mail: michael.roemelt@theochem.rub.de [Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany and Max-Planck Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr (Germany)

    2015-07-28

    Spin Orbit Coupling (SOC) is introduced to molecular ab initio density matrix renormalization group (DMRG) calculations. In the presented scheme, one first approximates the electronic ground state and a number of excited states of the Born-Oppenheimer (BO) Hamiltonian with the aid of the DMRG algorithm. Owing to the spin-adaptation of the algorithm, the total spin S is a good quantum number for these states. After the non-relativistic DMRG calculation is finished, all magnetic sublevels of the calculated states are constructed explicitly, and the SOC operator is expanded in the resulting basis. To this end, spin orbit coupled energies and wavefunctions are obtained as eigenvalues and eigenfunctions of the full Hamiltonian matrix which is composed of the SOC operator matrix and the BO Hamiltonian matrix. This treatment corresponds to a quasi-degenerate perturbation theory approach and can be regarded as the molecular equivalent to atomic Russell-Saunders coupling. For the evaluation of SOC matrix elements, the full Breit-Pauli SOC Hamiltonian is approximated by the widely used spin-orbit mean field operator. This operator allows for an efficient use of the second quantized triplet replacement operators that are readily generated during the non-relativistic DMRG algorithm, together with the Wigner-Eckart theorem. With a set of spin-orbit coupled wavefunctions at hand, the molecular g-tensors are calculated following the scheme proposed by Gerloch and McMeeking. It interprets the effective molecular g-values as the slope of the energy difference between the lowest Kramers pair with respect to the strength of the applied magnetic field. Test calculations on a chemically relevant Mo complex demonstrate the capabilities of the presented method.

  17. Spin orbit coupling for molecular ab initio density matrix renormalization group calculations: Application to g-tensors

    International Nuclear Information System (INIS)

    Spin Orbit Coupling (SOC) is introduced to molecular ab initio density matrix renormalization group (DMRG) calculations. In the presented scheme, one first approximates the electronic ground state and a number of excited states of the Born-Oppenheimer (BO) Hamiltonian with the aid of the DMRG algorithm. Owing to the spin-adaptation of the algorithm, the total spin S is a good quantum number for these states. After the non-relativistic DMRG calculation is finished, all magnetic sublevels of the calculated states are constructed explicitly, and the SOC operator is expanded in the resulting basis. To this end, spin orbit coupled energies and wavefunctions are obtained as eigenvalues and eigenfunctions of the full Hamiltonian matrix which is composed of the SOC operator matrix and the BO Hamiltonian matrix. This treatment corresponds to a quasi-degenerate perturbation theory approach and can be regarded as the molecular equivalent to atomic Russell-Saunders coupling. For the evaluation of SOC matrix elements, the full Breit-Pauli SOC Hamiltonian is approximated by the widely used spin-orbit mean field operator. This operator allows for an efficient use of the second quantized triplet replacement operators that are readily generated during the non-relativistic DMRG algorithm, together with the Wigner-Eckart theorem. With a set of spin-orbit coupled wavefunctions at hand, the molecular g-tensors are calculated following the scheme proposed by Gerloch and McMeeking. It interprets the effective molecular g-values as the slope of the energy difference between the lowest Kramers pair with respect to the strength of the applied magnetic field. Test calculations on a chemically relevant Mo complex demonstrate the capabilities of the presented method

  18. Spin orbit coupling for molecular ab initio density matrix renormalization group calculations: Application to g-tensors

    Science.gov (United States)

    Roemelt, Michael

    2015-07-01

    Spin Orbit Coupling (SOC) is introduced to molecular ab initio density matrix renormalization group (DMRG) calculations. In the presented scheme, one first approximates the electronic ground state and a number of excited states of the Born-Oppenheimer (BO) Hamiltonian with the aid of the DMRG algorithm. Owing to the spin-adaptation of the algorithm, the total spin S is a good quantum number for these states. After the non-relativistic DMRG calculation is finished, all magnetic sublevels of the calculated states are constructed explicitly, and the SOC operator is expanded in the resulting basis. To this end, spin orbit coupled energies and wavefunctions are obtained as eigenvalues and eigenfunctions of the full Hamiltonian matrix which is composed of the SOC operator matrix and the BO Hamiltonian matrix. This treatment corresponds to a quasi-degenerate perturbation theory approach and can be regarded as the molecular equivalent to atomic Russell-Saunders coupling. For the evaluation of SOC matrix elements, the full Breit-Pauli SOC Hamiltonian is approximated by the widely used spin-orbit mean field operator. This operator allows for an efficient use of the second quantized triplet replacement operators that are readily generated during the non-relativistic DMRG algorithm, together with the Wigner-Eckart theorem. With a set of spin-orbit coupled wavefunctions at hand, the molecular g-tensors are calculated following the scheme proposed by Gerloch and McMeeking. It interprets the effective molecular g-values as the slope of the energy difference between the lowest Kramers pair with respect to the strength of the applied magnetic field. Test calculations on a chemically relevant Mo complex demonstrate the capabilities of the presented method.

  19. Collective Character of Spin Excitations in a System of Mn2+ Spins Coupled to a Two-Dimensional Electron Gas

    Science.gov (United States)

    Teran, F. J.; Potemski, M.; Maude, D. K.; Plantier, D.; Hassan, A. K.; Sachrajda, A.; Wilamowski, Z.; Jaroszynski, J.; Wojtowicz, T.; Karczewski, G.

    2003-08-01

    We have studied the low energy spin excitations in n-type CdMnTe based dilute magnetic semiconductor quantum wells. For magnetic fields for which the energies for the excitation of free carriers and Mn spins are almost identical, an anomalously large Knight shift is observed. Our findings suggest the existence of a magnetic-field-induced ferromagnetic order in these structures, which is in agreement with recent theoretical predictions [J. König and A. H. MacDonald, Phys. Rev. Lett.PRLTAO0031-9007 91, 077202 (2003)].

  20. Decoherence dynamics of a single spin versus spin ensemble

    NARCIS (Netherlands)

    Dobrovitski, V.V.; Feiguin, A.E.; Awschalom, D.D.; Hanson, R.

    2008-01-01

    We study decoherence of central spins by a spin bath, focusing on the difference between measurement of a single central spin and measurement of a large number of central spins (as found in typical spin-resonance experiments). For a dilute spin bath, the single spin demonstrates Gaussian free-induct

  1. Spin time-relaxation within strongly coupled paramagnetic systems exhibiting paramagnetic-ferrimagnetic transitions

    International Nuclear Information System (INIS)

    The purpose of the present work is a quantitative study of the spin time relaxation within superweak ferrimagnetic materials exhibiting a paramagnetic-ferrimagnetic transition, when the temperature is changed from an initial value Ti to a final one Tf very close to the critical temperature Tc. From a magnetic point of view, the material under investigation is considered to be made of two strongly coupled paramagnetic sublattices of respective moments phi (cursive,open) Greek and ψ. Calculations are made within a Landau mean-field theory, whose free energy involves, in addition to quadratic and quartic terms in both moments phi (cursive,open) Greek and ψ, a lowest-order coupling - Cphi (cursive,open) Greekψ, where C1 and τ2. The former is a long time and the second a short one, and they are associated, respectively, with long and local wavelength fluctuations. We find that, only the first relaxation time is relevant for physics, since it drives the system to undergo a phase transition. Spatial fluctuations are also taken into account. In this case, we find an explicit expression of the relaxation times, which are functions of temperature T, coupling constant C and wave vector q. We find that the critical mode is that given by the zero scattering-angle limit, i.e. q=0. Finally, we emphasize that the appearance of these two relaxation times is in good agreement with results reported in recent experimental work dealt with the Curie-Weiss paramagnet compound LixNi2-xO2, where the composition x is very close to 1

  2. Indirect spin-spin coupling constants in CH4, SiH4 and GeH4 - Gas-phase NMR experiment and ab initio calculations

    International Nuclear Information System (INIS)

    New values of the indirect spin-spin coupling constants in CH4, SiH4 and GeH4, derived from experiment and ab initio calculations, are reported. The new experimental values of 1J(CH), 1J(SiH) and 1J(GeH) are obtained from gas-phase NMR spectra. The dependence of the measured one-bond coupling constants on the density is analysed and the results are extrapolated to zero-density point to eliminate the effects due to intermolecular forces. In the calculation of the coupling constants, at the nonrelativistic level coupled cluster singles and doubles (CCSD) perturbation theory is used and the basis set convergence of the results is discussed. The relativistic corrections are estimated from Dirac-Hartree-Fock (DHF) calculations. The final theoretical values are obtained adding available estimates of the vibrational and temperature corrections. The agreement of the calculated and experimental 1J(XH), X = C, Si, Ge, constants is very satisfying, the differences are approximately 1-3%

  3. Accelerating the spin-up of the coupled carbon and nitrogen cycle model in CLM4

    Directory of Open Access Journals (Sweden)

    Y. Fang

    2014-12-01

    Full Text Available The commonly adopted biogeochemistry spin-up process in earth system model is to run the model for hundreds to thousands of years subject to periodic atmospheric forcing to reach dynamic steady state of the carbon-nitrogen (CN models. A variety of approaches have been proposed to reduce the computation time of the spin-up process. Significant improvement in computational efficiency has been made recently. However, a long simulation time is still required to reach the common convergence criteria of the coupled carbon/nitrogen model. A gradient projection method was proposed and used to further reduce the computation time after examining the trend of the dominant carbon pools. The Community Land Model version 4 (CLM4 with carbon and nitrogen component was used in this study. From point scale simulations we found that the method can reduce the computation time by 20–69% compared to the fastest approach in the literature. We also found that the cyclic stability of total carbon for some cases differs from that of the periodic atmospheric forcing, and some cases even showed instability. Close examination showed that one case has a carbon periodicity much longer than that of the atmospheric forcing due to the annual fire disturbance that is longer than half a year. The rest was caused by the instability of water table calculation in the hydrology model of CLM4. The instability issue is resolved after we replaced the hydrology scheme in CLM4 with a low model for variably saturated porous media.

  4. Iron Kα Emission Lines in Seyfert(-Like) Active Galactic Nuclei: Revelation of a Rapidly Spinning Central Black Hole

    Institute of Scientific and Technical Information of China (English)

    马振国

    2002-01-01

    Fe Kα lines are superimposed upon the x-ray continuum in most Seyfert(-like) active galactic nuclei (AGNs).By a data-fitting study, previous authors have claimed that the central black hole (BH) is either rotating ornon-rotating according to the thin disc model. We develop the disc model to the torus model to determine thereal spin of the BH. With formulations of the motion of both torus particles and photons near a BH in Kerrmetric, we simulate iron emission linesfrom a thin luminous torus. It is found that only spinning BH galaxiescan radiate observable profiles. The data-fitting to Fe lines of four AGNs observed by ASCA predicts that thecentral BH is spinning rapidly with the dimensionless specific angular momentum approaching the maximalvalueof 1.

  5. COUPLED PHYSICAL-ECOLOGICAL MODELLING IN THE CENTRAL PART OF JIAOZHOU BAY Ⅱ. COUPLED WITH AN ECOLOGICAL MODEL

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Sharples' 1-D physical model employing tide-wind driven turbulence closure and surface heating-cooling physics, was coupled with an ecological model with 9-biochemical components: phytoplankton, zooplankton, shellfish, autotrophic and heterotrophic bacterioplankton, dissolved organic carbon (DOC), suspended detritus and sinking particles to simulate the annual evolution of ecosystem in the central part of Jiaozhou Bay. The coupled modeling results showed that the phytoplankton shading effect could reduce seawater temperature by 2℃, so that photosynthesis efficiency should be less than 8%; that the loss of phytoplankton by zooplankton grazing in winter tended to be compensated by phytoplankton advection and diffusion from the outside of the Bay; that the incident irradiance intensity could be the most important factor for phytoplankton growth rate; and that it was the bacterial secondary production that maintained the maximum zooplankton biomass in winter usually observed in the 1990s, indicating that the microbial food loop was extremely important for ecosystem study of Jiaozhou Bay.

  6. On the Bargmann-Michel-Telegdi equations, and spin-orbit coupling: a tribute to Raymond Stora

    CERN Document Server

    Duval, Christian

    2016-01-01

    The Bargmann-Michel-Telegdi equations describing the motions of a spinning, charged, relativistic particle endowed with an anomalous magnetic moment in an electromagnetic field, are reconsidered. They are shown to duly stem from the linearization of the characteristic distribution of a pre-symplectic structure refining the original one of Souriau. In this model, once specialized to the case of a static electric-like field, the angular momentum and energy given by the associated moment map now correctly restore the spin-orbit coupling term. This is the state-of-the-art of unfinished joint work with Raymond Stora.

  7. Interplay between spin-orbit coupling and strong correlation effects: Comparison of the three osmate double perovskites Ba2A OsO6 (A =Na , Ca, Y)

    Science.gov (United States)

    Gangopadhyay, Shruba; Pickett, Warren E.

    2016-04-01

    High formal valence Os-based double perovskites are a focus of current interest because they display strong interplay of large spin-orbit coupling and strong electronic correlation. Here we present the electronic and magnetic characteristics of a sequence of three cubic Os based double perovskites Ba2A OsO6 (A =Na , Ca, Y), with formal valences of Os +7(d1) ,Os +6(d2) , and Os +5(d3) . For these first principles based calculations we apply an "exact exchange for correlated electrons" functional, with exact exchange applied in a hybrid fashion solely to the Os (5 d ) states. While Ba2NaOsO6 is a reported ferromagnetic Dirac-Mott insulator studied previously, the other two show antiferromagnetic ordering while all retain the undistorted cubic structure. For comparison purposes we have investigated only the ferromagnetic ordered phase. A metal-insulator transition is predicted to occur upon rotating the direction of magnetization in all three materials, reflecting the central role of spin-orbit coupling in these small gap osmates. Surprises arising from comparing formal charge states with the radial charge densities are discussed. Chemical shielding factors and orbital susceptibilities are provided for comparison with future nuclear magnetic resonance data.

  8. Inelastic dark matter with spin-dependent couplings to protons and large modulation fractions in DAMA

    Science.gov (United States)

    Scopel, Stefano; Yoon, Kook-Hyun

    2016-02-01

    We discuss a scenario where the DAMA modulation effect is explained by a Weakly Interacting Massive Particle (WIMP) which upscatters inelastically to a heavier state and predominantly couples to the spin of protons. In this scenario constraints from xenon and germanium targets are evaded dynamically, due to the suppression of the WIMP coupling to neutrons, while those from fluorine targets are evaded kinematically, because the minimal WIMP incoming speed required to trigger upscatters off fluorine exceeds the maximal WIMP velocity in the Galaxy, or is very close to it. In this scenario WIMP scatterings off sodium are usually sensitive to the large-speed tail of the WIMP velocity distribution and modulated fractions of the signal close to unity arise in a natural way. On the other hand, a halo-independent analysis with more conservative assumptions about the WIMP velocity distribution allows to extend the viable parameter space to configurations where large modulated fractions are not strictly necessary. We discuss large modulated fractions in the Maxwellian case showing that they imply a departure from the usual cosine time dependence of the expected signal in DAMA. However we explicitly show that the DAMA data is not sensitive to this distortion, both in time and frequency space, even in the extreme case of a 100 % modulated fraction. Moreover the same scenario provides an explanation of the maximum in the energy spectrum of the modulation amplitude detected by DAMA in terms of WIMPs whose minimal incoming speed matches the kinematic threshold for inelastic upscatters. For the elastic case the detection of such maximum suggests an inversion of the modulation phase below the present DAMA energy threshold, while this is not expected for inelastic scattering. This may allow to discriminate between the two scenarios in a future low-threshold analysis of the DAMA data.

  9. Approximate analytical solutions of the generalized Woods-Saxon potentials including the spin-orbit coupling term and spin symmetry

    OpenAIRE

    Sameer M. Ikhdair; Sever, Ramazan

    2009-01-01

    We study the approximate analytical solutions of the Dirac equation for the generalized Woods-Saxon potential with the pseudo-centrifugal term. In the framework of the spin and pseudospin symmetry concept, the approximately analytical bound state energy eigenvalues and the corresponding upper- and lower-spinor components of the two Dirac particles are obtained, in closed form, by means of the Nikiforov-Uvarov method which is based on solving the second-order linear differential equation by re...

  10. Phase-coherent transport and spin-orbit-coupling in III/V-semiconductor nanowires

    International Nuclear Information System (INIS)

    Semiconductor nanowires fabricated by a bottom-up approach are not only interesting for the realization of future nanoscaled devices but also appear to be very attractive model systems to tackle fundamental questions concerning the transport in strongly confined systems. In order to avoid the problem connected with carrier depletion, narrowband gap semiconductors, i.e., InAs or InN, or core-shell Nanowires, i.e., GaAs/AlGaAs, are preferred. The underlying reason is that in InAs or InN the Fermi-level pinning in the conduction band results in a carrier accumulation at the surface. In fact, the tubular topology of the surface electron gas opens up the possibility to observe unconventional quantum transport phenomena. When the phase-coherence length in the nanowire is comparable to its dimensions the conductance fluctuates if a magnetic field is applied or if the electron concentration is changed by means of a gate electrode. These so-called universal conductance fluctuations being in the order of e2/h originate from the fact that in small disordered samples, electron interference effects are not averaged out. In this work are analyzed universal conductance fluctuations to study the quantum transport properties in InN, InAs and GaAs/AlGaAs nanowires. With the use of a magnetic field and a back-gate electrode the universal conductance fluctuations and localizations effects were analyzed. Since InN and InAs are narrow band gap semiconductors, one naturally expects spin-orbit coupling effects. Because this phenomena is of importance for spin electronic applications. However, owing to the cylindrical symmetry of the InN and InAs nanowires, the latter effect was observable and actually be used to determine the strength of spin-orbit coupling. In order to clearly separate the weak antilocalization effect from the conductance fluctuations, the averaging of the magnetoconductance at different gate voltages was essential. The low-temperature quantum transport properties of

  11. Evidence of spin phonon coupling in magnetoelectric NiFe{sub 2}O{sub 4}/PMN-PT composite

    Energy Technology Data Exchange (ETDEWEB)

    Ahlawat, Anju; Satapathy, S., E-mail: srinu73@rrcat.gov.in, E-mail: srinusatapathy@gmail.com; Gupta, P. K. [Nano Functional Materials Laboratory, Laser Materials Development and Devices Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Sathe, V. G.; Choudhary, R. J. [UGC-DAE Consortium for Scientific Research, Indore 452017 (India)

    2013-12-16

    The coupling of phonon with spin in strain coupled magnetoelectric NiFe{sub 2}O{sub 4} (NFO)/0.65Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}–0.35PbTiO{sub 3} (PMN-PT) composite was investigated by temperature-dependent Raman spectroscopy and magnetic measurements in the range 30–350 °C. Pure NFO shows usual ferromagnetic behaviour in this temperature range while NFO/PMN-PT composite show dramatic change in magnetic moment across ferroelectric transition temperature (T{sub c} ∼ 180 °C) of PMN-PT. The temperature evolution of the Raman spectra for the composite shows significant phonon anomalies in T-site (Fe-O) and O-site (Ni/Fe-O) phonon modes at ferroelectric transition temperature is attributed to spin phonon coupling in NFO/PMN-PT composite. The strain mediated magnetoelectric coupling mechanism in this composite is apparent from the observed spin phonon interaction.

  12. Deuterium Nuclear Spin-Lattice Relaxation Times and Quadrupolar Coupling Constants in Isotopically Labeled Saccharides

    Science.gov (United States)

    Bose-Basu, Bidisha; Zajicek, Jaroslav; Bondo, Gail; Zhao, Shikai; Kubsch, Meredith; Carmichael, Ian; Serianni, Anthony S.

    2000-06-01

    13C and 2H spin-lattice relaxation times have been determined by inversion recovery in a range of site-specific 13C- and 2H-labeled saccharides under identical solution conditions, and the data were used to calculate deuterium nuclear quadrupolar coupling constants (2H NQCC) at specific sites within cyclic and acyclic forms in solution. 13C T1 values ranged from ∼0.6 to 8.2 s, and 2H T1 values ranged from ∼79 to 450 ms, depending on molecular structure (0.4 M sugar in 5 mM EDTA (disodium salt) in 2H2O-depleted H2O, pH 4.8, 30°C). In addition to providing new information on 13C and 2H relaxation behavior of saccharides in solution, the resulting 2H1 NQCC values reveal a dependency on anomeric configuration within aldopyranose rings, whereas 2H NQCC values at other ring sites appear less sensitive to configuration at C1. In contrast, 2H NQCC values at both anomeric and nonanomeric sites within aldofuranose rings appear to be influenced by anomeric configuration. These experimental observations were confirmed by density functional theory (DFT) calculations of 2H NQCC values in model aldopyranosyl and aldofuranosyl rings.

  13. Effect of Spin-Orbit Coupling on Kondo Phenomena in f7-Electron Systems

    Science.gov (United States)

    Hotta, Takashi

    2015-11-01

    In order to promote our basic understanding of the Kondo behavior recently observed in europium compounds, we analyze an impurity Anderson model with seven f electrons at an impurity site by employing a numerical renormalization group method. The local part of the model consists of Coulomb interactions among f electrons, spin-orbit coupling λ, and crystalline electric field (CEF) potentials, while we consider the hybridization V between local f electrons and single-band conduction electrons with au symmetry. For λ = 0, we observe underscreening Kondo behavior for appropriate values of V, characterized by an entropy change from ln 8 to ln 7, in which one of the seven f electrons is screened by conduction electrons. When λ is increased, we obtain two types of behavior depending on the value of V. For large V, we find an entropy release of ln 7 at low temperatures, determined by the level splitting energy due to the hybridization. For small V, we also observe an entropy change from ln 8 to ln 2 by the level splitting due to the hybridization, but at low temperatures, ln 2 entropy is found to be released, leading to the Kondo effect. We emphasize that the Kondo behavior for small V is observed for realistic values of λ on the order of 0.1 eV. We also discuss the effect of CEF potentials and the multipole properties in the Kondo behavior reported in this paper.

  14. Orbital control of Rashba spin orbit coupling in noble metal surfaces

    Science.gov (United States)

    Gong, Shi-Jing; Cai, Jia; Yao, Qun-Fang; Tong, Wen-Yi; Wan, Xiangang; Duan, Chun-Gang; Chu, J. H.

    2016-03-01

    Rashba spin orbit coupling (SOC) in noble metal surfaces is of great importance for the application of metal films in spintronic devices. By combining the density-functional theory calculations with our recently developed orbital selective external potential method, we investigate the Rashba SOC in the Shockley surface states of Au(111) and Ag(111). We find that the large Rashba SOC in the sp-character surface states of Au(111) is mainly contributed by the minor d-orbitals in the surface states. While for the sd-character surface states, although they are dominated by the d-orbitals, Rashba splitting is found to be rather small. Band structure analysis reveals that this is mainly because the sd-character surface states are well below the Fermi level and can be less influenced by the asymmetric surface potential. We demonstrate that the Rashba SOC in noble metal surfaces can be effectively manipulated by shifting the d-orbitals in the surface states, which can be physically implemented through surface decoration. Our investigation provides a deep understanding on Rashba SOC in noble metal surfaces and could be helpful to their applications in spintronic devices.

  15. Complex band structures of transition metal dichalcogenide monolayers with spin-orbit coupling effects.

    Science.gov (United States)

    Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd

    2016-09-01

    Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2, where M  =  Mo, W; X  =  S, Se, Te) while including spin-orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed. PMID:27367475

  16. Spin-Orbit induced semiconductor spin guides

    OpenAIRE

    Valin-Rodriguez, Manuel; Puente, Antonio; Serra, Llorens

    2002-01-01

    The tunability of the Rashba spin-orbit coupling allows to build semiconductor heterostructures with space modulated coupling intensities. We show that a wire-shaped spin-orbit modulation in a quantum well can support propagating electronic states inside the wire only for a certain spin orientation and, therefore, it acts as an effective spin transmission guide for this particular spin orientation.

  17. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    Energy Technology Data Exchange (ETDEWEB)

    Zarycz, M. Natalia C., E-mail: mnzarycz@gmail.com; Provasi, Patricio F., E-mail: patricio@unne.edu.ar [Department of Physics, University of Northeastern - CONICET, Av. Libertad 5500, Corrientes W3404AAS (Argentina); Sauer, Stephan P. A., E-mail: sauer@kiku.dk [Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø (Denmark)

    2015-12-28

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH{sub 4}, NH{sub 3}, H{sub 2}O, SiH{sub 4}, PH{sub 3}, SH{sub 2}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and C{sub 2}H{sub 6}. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

  18. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    International Nuclear Information System (INIS)

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH4, NH3, H2O, SiH4, PH3, SH2, C2H2, C2H4, and C2H6. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states

  19. Resonant X-ray Diffraction Study of the Strongly Spin-Orbit-Coupled Mott Insulator CaIrO3

    Science.gov (United States)

    Ohgushi, Kenya; Yamaura, Jun-ichi; Ohsumi, Hiroyuki; Sugimoto, Kunihisa; Takeshita, Soshi; Tokuda, Akihisa; Takagi, Hidenori; Takata, Masaki; Arima, Taka-hisa

    2013-05-01

    We performed resonant x-ray diffraction experiments at the L absorption edges for the post-perovskite-type compound CaIrO3 with a (t2g)5 electronic configuration. By observing the magnetic signals, we could clearly see that the magnetic structure was a striped ordering with an antiferromagnetic moment along the c axis and that the wave function of a t2g hole is strongly spin-orbit entangled, the Jeff=1/2 state. The observed spin arrangement is consistent with theoretical work predicting a unique superexchange interaction in the Jeff=1/2 state and points to the universal importance of the spin-orbit coupling in Ir oxides, independent of the octahedral connectivity and lattice topology. We also propose that nonmagnetic resonant scattering is a powerful tool for unraveling an orbital state even in a metallic iridate.

  20. Synthesis of some three-qubit gates and their implementation in a three spins system coupled with Ising interaction

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The synthesis of the Toffoli gate, Fredkin gate, three-qubit Inversion-on-equality gate and D(α) gate, as well as their implementation in a three spins system coupled with Ising interaction are investigated. The sequences of the control pulse and the drift process to implement these gates are given. It is revealed that the implementation of some three-qubit gates in a circular spin chain is much better than in a linear spin chain, and every two measurements of the quantum computation complexity are not always consistent. It is significant to directly study the implementation of the multi-qubit gates and even more complicated components of quantum information processing without resorting to their synthesis.

  1. Spin interference and the Fano effect in electron transport through a mesoscopic ring side-coupled with a quantum dot

    International Nuclear Information System (INIS)

    We investigate the electron transport through a mesoscopic ring side-coupled with a quantum dot (QD) in the presence of Rashba spin-orbit (SO) interaction. It is shown that both the Fano resonance and the spin interference effects play important roles in the electron transport properties. As the QD level is around the Fermi energy, the total conductance shows a typical Fano resonance line shape. By applying an electrical gate voltage to the QD, the total transmission through the system can be strongly modulated. By threading the mesoscopic ring with a magnetic flux, the time-reversal symmetry of the system is broken, and a spin polarized current can be obtained even though the incident current is unpolarized.

  2. Magnetoelastic coupling forbidden by time-reversal symmetry: Spin-direction-dependent magnetoelastic coupling on MnO, CoO, and NiO

    Science.gov (United States)

    Lee, Sanghyun; Ishikawa, Yoshihisa; Miao, Ping; Torii, Shuki; Ishigaki, Toru; Kamiyama, Takashi

    2016-02-01

    In the Landau free energy, which is a powerful tool for describing the physical properties and phase transitions in condensed-matter physics, it has been generally believed that time-reversal symmetry allows only even-power polynomials in the magnetic moment when magnetic transition happens. Although no experimental evidence supports it, this symmetry constraint is very strict in theory. On the other hand, MnO, CoO, and NiO have been extensively studied for several decades since these materials are used to test advance experimental and theoretical methods. However, their precise spin directions and phase-transition mechanism have remained as a long-standing problem until now. To resolve these issues, we used the cutting-edge time-of-flight neutron powder diffractometer (SuperHRPD) at the Japan Proton Accelerator Research Complex (J-PARC) to study the spin-direction-dependent magnetoelastic coupling in MnO, CoO, and NiO. We also constructed a group-subgroup structure relation from F m -3 m to C 2 /m with exchange striction and a type of magnetostriction (dipolar and roto magnetostriction). These unified viewpoints and the high-resolution neutron powder diffractometer enable us to construct an order-parameter vector diagram. The order-parameter vector diagram reveals distinguished order-parameter coupling and phase-transition characters by different Γ1+(Ag) and Γ2+(Bg) spin direction. Moreover, the experiment results show clearly that the CoO6 octahedral distortion and the Co magnetic moment couple through a magnetoelastic coupling ɛoct˜M3 , which is forbidden by time-reversal symmetry but allowed by the more general magnetic symmetry—the so-called rotation-time-reversal symmetry in the double antisymmetry space group. Rotation-time-reversal symmetry allows the coupling of odd-power polynomials in the spin vector and odd-power ones in the roto vector when both spin- and roto-axial vectors belong to the same irreducible representation in Landau free energy. Here

  3. Convergence of nuclear shieldings and spin-spin couplings of small hydrocarbons in the Kohn-Sham limit using (aug-)pcS-n and (aug-)pcJ-n basic sets

    Czech Academy of Sciences Publication Activity Database

    Kupka, T.; Nieradka, M.; Kaminský, Jakub

    Warsaw : Institute of organic Chemistry PAS , 2009. P11-P11. [Symposium on Nuclear Magnetic Resonance in Chemistry, Physics and Biological Sciences /5./. 23.09.2009-25.09.2009, Warsaw] Institutional research plan: CEZ:AV0Z40550506 Keywords : NMR * nuclear shielding * spin-spin coupling Subject RIV: CC - Organic Chemistry

  4. Convergence of nuclear shieldings and spin-spin couplings of small molecules in the Kohn-Sham limit using (aug-)pcS-n a (aug-)pcJ-n basic sets

    Czech Academy of Sciences Publication Activity Database

    Kupka, T.; Stachów, M.; Kaminský, Jakub

    Warsaw : Institute of organic Chemistry PAS , 2009. P12-P12. [Symposium on Nuclear Magnetic Resonance in Chemistry, Physics and Biological Sciences /5./. 23.09.2009-25.09.2009, Warsaw] Institutional research plan: CEZ:AV0Z40550506 Keywords : NMR * nuclear shielding * spin-spin coupling Subject RIV: CC - Organic Chemistry

  5. Fast nanoscale addressability of nitrogen-vacancy spins via coupling to a dynamic ferromagnetic vortex

    Science.gov (United States)

    Wolf, M. S.; Badea, R.; Berezovsky, J.

    2016-06-01

    The core of a ferromagnetic vortex domain creates a strong, localized magnetic field, which can be manipulated on nanosecond timescales, providing a platform for addressing and controlling individual nitrogen-vacancy centre spins in diamond at room temperature, with nanometre-scale resolution. Here, we show that the ferromagnetic vortex can be driven into proximity with a nitrogen-vacancy defect using small applied magnetic fields, inducing significant nitrogen-vacancy spin splitting. We also find that the magnetic field gradient produced by the vortex is sufficient to address spins separated by nanometre-length scales. By applying a microwave-frequency magnetic field, we drive both the vortex and the nitrogen-vacancy spins, resulting in enhanced coherent rotation of the spin state. Finally, we demonstrate that by driving the vortex on fast timescales, sequential addressing and coherent manipulation of spins is possible on ~100 ns timescales.

  6. Extra Spin-Rotation Coupling Effect in a Radiating Kerr Space-time

    CERN Document Server

    Wu, S Q

    2001-01-01

    Source-less wave equations are derived for massless scalar, neutrino and electromagnetic perturbations of a radiating Kerr space-time, and the Hawking radiation of massless particles with spin $s =0, 1/2$ and 1 in this geometry is investigated by using a method of the generalized tortoise coordinate transformation. An extra interaction between the spin of particles and the rotation of the hole displays in the thermal spectra of Hawking radiation of massless particles with spin $s = 1/2, 1$ in the evaporating Kerr space-time. The character of such effect is its obvious dependence on different helicity states of particles with higher spin.

  7. Spin-orbit coupling effects in one-dimensional ballistic quantum wires

    OpenAIRE

    Birkholz, J. E.; Meden, V.

    2007-01-01

    We study the spin-dependent electronic transport through a one-dimensional ballistic quantum wire in the presence of Rashba spin-orbit interaction. In particular, we consider the effect of the spin-orbit interaction resulting from the lateral confinement of the two-dimensional electron gas to the one-dimensional wire geometry. We generalize a situation suggested earlier [P. Streda and P. Seba, Phys. Rev. Lett. 90, 256601 (2003)] which allows for spin-polarized electron transport. As a result ...

  8. Spin and Pseudospin Symmetries with Trigonometric Pöschl-Teller Potential including Tensor Coupling

    Directory of Open Access Journals (Sweden)

    M. Hamzavi

    2013-01-01

    Full Text Available We study approximate analytical solutions of the Dirac equation with the trigonometric Pöschl-Teller (tPT potential and a Coulomb-like tensor potential for arbitrary spin-orbit quantum number κ under the presence of exact spin and pseudospin (p-spin symmetries. The bound state energy eigenvalues and the corresponding two-component wave functions of the Dirac particle are obtained using the parametric generalization of the Nikiforov-Uvarov (NU method. We show that tensor interaction removes degeneracies between spin and pseudospin doublets. The case of nonrelativistic limit is studied too.

  9. Magnetization States of All-Oxide Spin Valves Controlled by Charge-orbital Ordering of Coupled Ferromagnets

    OpenAIRE

    SHVETS, IGOR

    2013-01-01

    PUBLISHED Charge-orbital ordering is commonly present in complex transition metal oxides and offers interesting opportunities for novel electronic devices. In this work, we demonstrate for the first time that the magnetization states of the spin valve can be directly manipulated by charge-orbital ordering. We investigate the interlayer exchange coupling (IEC) between two epitaxial magnetite layers separated by a nonmagnetic epitaxial MgO dielectric. We find that the state of the charge-orb...

  10. The influence of interlayer exchange coupling in giant-magnetoresistive devices on spin diode effect in wide frequency range

    Energy Technology Data Exchange (ETDEWEB)

    Ziętek, Sławomir, E-mail: zietek@agh.edu.pl; Skowroński, Witold; Wiśniowski, Piotr; Czapkiewicz, Maciej; Stobiecki, Tomasz [Department of Electronics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków (Poland); Ogrodnik, Piotr [Department of Electronics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków (Poland); Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa (Poland); Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań (Poland); Barnaś, Józef [Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań (Poland); Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań (Poland)

    2015-09-21

    Spin diode effect in a giant magnetoresistive strip is measured in a broad frequency range, including resonance and off-resonance frequencies. The off-resonance dc signal is relatively strong and also significantly dependent on the exchange coupling between magnetic films through the spacer layer. The measured dc signal is described theoretically by taking into account magnetic dynamics induced by Oersted field created by an ac current flowing through the system.

  11. The influence of interlayer exchange coupling in giant-magnetoresistive devices on spin diode effect in wide frequency range

    International Nuclear Information System (INIS)

    Spin diode effect in a giant magnetoresistive strip is measured in a broad frequency range, including resonance and off-resonance frequencies. The off-resonance dc signal is relatively strong and also significantly dependent on the exchange coupling between magnetic films through the spacer layer. The measured dc signal is described theoretically by taking into account magnetic dynamics induced by Oersted field created by an ac current flowing through the system

  12. l-Tryptophan Radical Cation Electron Spin Resonance Studies: Connecting Solution-derived Hyperfine Coupling Constants with Protein Spectral Interpretations

    OpenAIRE

    Connor, Henry D.; Sturgeon, Bradley E.; Mottley, Carolyn; Sipe, Herbert J.; Mason, Ronald P.

    2008-01-01

    Fast-flow electron spin resonance (ESR) spectroscopy has been used to detect a free radical formed from the reaction of l-tryptophan with Ce4+ in an acidic aqueous environment. Computer simulations of the ESR spectra from l-tryptophan and several isotopically modified forms strongly support the conclusion that the l-tryptophan radical cation has been detected by ESR for the first time. The hyperfine coupling constants (HFCs) determined from the well-resolved isotropic ESR spectra support expe...

  13. Magnetodielectric coupling in frustrated spin systems: the spinels MCr2O4 (M = Mn, Co and Ni)

    International Nuclear Information System (INIS)

    We have studied the magnetodieletric coupling of polycrystalline samples of the spinels MCr2O4 (M = Mn, Co and Ni). Dielectric anomalies are clearly observed at the onset of the magnetic spiral structure (Ts) and at the 'lock-in' transition (Tf) in MnCr2O4 and CoCr2O4, and also at the onset of the canted structure (Ts) in NiCr2O4. The strength of the magnetodielectric coupling in this system can be explained by spin-orbit coupling. Moreover, the dielectric response in an applied magnetic field scales with the square of the magnetization for all three samples. Thus, the magnetodielectric coupling in this state appears to originate from the P2M2 term in the free energy.

  14. Perturbational treatment of spin-orbit coupling for generally applicable high-level multi-reference methods

    International Nuclear Information System (INIS)

    An efficient perturbational treatment of spin-orbit coupling within the framework of high-level multi-reference techniques has been implemented in the most recent version of the COLUMBUS quantum chemistry package, extending the existing fully variational two-component (2c) multi-reference configuration interaction singles and doubles (MRCISD) method. The proposed scheme follows related implementations of quasi-degenerate perturbation theory (QDPT) model space techniques. Our model space is built either from uncontracted, large-scale scalar relativistic MRCISD wavefunctions or based on the scalar-relativistic solutions of the linear-response-theory-based multi-configurational averaged quadratic coupled cluster method (LRT-MRAQCC). The latter approach allows for a consistent, approximatively size-consistent and size-extensive treatment of spin-orbit coupling. The approach is described in detail and compared to a number of related techniques. The inherent accuracy of the QDPT approach is validated by comparing cuts of the potential energy surfaces of acrolein and its S, Se, and Te analoga with the corresponding data obtained from matching fully variational spin-orbit MRCISD calculations. The conceptual availability of approximate analytic gradients with respect to geometrical displacements is an attractive feature of the 2c-QDPT-MRCISD and 2c-QDPT-LRT-MRAQCC methods for structure optimization and ab inito molecular dynamics simulations

  15. Perturbational treatment of spin-orbit coupling for generally applicable high-level multi-reference methods

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Sebastian; Marquetand, Philipp; González, Leticia [Institute of Theoretical Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna (Austria); Müller, Thomas, E-mail: th.mueller@fz-juelich.de [Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich (Germany); Plasser, Felix [Interdisciplinary Center for Scientific Computing, University of Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg (Germany); Lischka, Hans [Institute of Theoretical Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna (Austria); Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061 (United States)

    2014-08-21

    An efficient perturbational treatment of spin-orbit coupling within the framework of high-level multi-reference techniques has been implemented in the most recent version of the COLUMBUS quantum chemistry package, extending the existing fully variational two-component (2c) multi-reference configuration interaction singles and doubles (MRCISD) method. The proposed scheme follows related implementations of quasi-degenerate perturbation theory (QDPT) model space techniques. Our model space is built either from uncontracted, large-scale scalar relativistic MRCISD wavefunctions or based on the scalar-relativistic solutions of the linear-response-theory-based multi-configurational averaged quadratic coupled cluster method (LRT-MRAQCC). The latter approach allows for a consistent, approximatively size-consistent and size-extensive treatment of spin-orbit coupling. The approach is described in detail and compared to a number of related techniques. The inherent accuracy of the QDPT approach is validated by comparing cuts of the potential energy surfaces of acrolein and its S, Se, and Te analoga with the corresponding data obtained from matching fully variational spin-orbit MRCISD calculations. The conceptual availability of approximate analytic gradients with respect to geometrical displacements is an attractive feature of the 2c-QDPT-MRCISD and 2c-QDPT-LRT-MRAQCC methods for structure optimization and ab inito molecular dynamics simulations.

  16. Optimization of InP/GaInAs structures with respect to Rashba spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Akabori, Masashi; Hagedorn, Markus; Guzenko, Vitaliy; Schaepers, Thomas; Hardtdegen, Hilde [Institute of Bio- and Nanosystems (IBN-1) and Centre of Nanoelectronic Systems for Information Technology (CNI), Research Centre Juelich (Germany)

    2008-07-01

    In this report we investigated the influence of the channel layer thickness on spin-orbit coupling. To this end a modulation doped heterostructure was deposited by MOVPE which consisted of a 350 nm InP buffer, a 10 nm n-supply layer a 20 nm InP spacer, d nm GaInAs channel layer with 77% In content, and a 150-d nm lattice-matched GaInAs sub-channel, and 10 nm InP cap. The channel thickness d was varied between 2 and 10 nm. We first determined the mobility at room temperature and 77 K with van der Pauw geometry: it decreases monotonically with the channel thickness. The result is reasonable because the thinner the channel becomes, the more the electron wave function extends into the GaInAs lattice matched sub-channel. In magnetoresistance measurements around 0.5 K, we confirmed a clear shift of the first node position toward high magnetic field in a Hall-bar of the 2 nm channel sample, which indicates large Rashba spin-orbit coupling in spite of the thin high indium content channel. The behavior also agreed well with the theoretical estimation from the calculated band profile of the heterostructure, therefore the Rashba spin-orbit coupling in our InP/GaInAs heterostructures can be enhanced by tuning the channel layer thickness.

  17. Coupled chaotic oscillators and their relation to a central pattern generator for artificial quadrupeds

    Indian Academy of Sciences (India)

    Horacio Castellini; Efta Yudiarsah; Lilia Romanelli; Hilda A Cerdeira

    2005-04-01

    Animal locomotion employs different periodic patterns known as animal gaits. In 1993, Collins and Stewart recognized that gaits possessed certain symmetries and characterized the gaits of quadrupeds and bipeds using permutation symmetry groups, which impose constraints on the locomotion center called the central pattern generator (CPG) in the animal brain. They modeled the CPG by coupling four nonlinear oscillators and found that it was possible to reproduce all symmetries of the gaits by changing the coupling strength. Here we propose to extend this idea using coupled chaotic oscillators synchronized using the Pyragas method in order to characterize the CPG symmetries. We also evaluate the time series behavior when the foot is in contact with the ground: this has potential robotic applications.

  18. Two-body physics in quasi-low-dimensional atomic gases under spin-orbit coupling

    Science.gov (United States)

    Wang, Jing-Kun; Yi, Wei; Zhang, Wei

    2016-06-01

    One of the most dynamic directions in ultracold atomic gas research is the study of low-dimensional physics in quasi-low-dimensional geometries, where atoms are confined in strongly anisotropic traps. Recently, interest has significantly intensified with the realization of synthetic spin-orbit coupling (SOC). As a first step toward understanding the SOC effect in quasi-low-dimensional systems, the solution of two-body problems in different trapping geometries and different types of SOC has attracted great attention in the past few years. In this review, we discuss both the scattering-state and the bound-state solutions of two-body problems in quasi-one and quasi-two dimensions. We show that the degrees of freedom in tightly confined dimensions, in particular with the presence of SOC, may significantly affect system properties. Specifically, in a quasi-one-dimensional atomic gas, a one-dimensional SOC can shift the positions of confinement-induced resonances whereas, in quasitwo- dimensional gases, a Rashba-type SOC tends to increase the two-body binding energy, such that more excited states in the tightly confined direction are occupied and the system is driven further away from a purely two-dimensional gas. The effects of the excited states can be incorporated by adopting an effective low-dimensional Hamiltonian having the form of a two-channel model. With the bare parameters fixed by two-body solutions, this effective Hamiltonian leads to qualitatively different many-body properties compared to a purely low-dimensional model.

  19. On the discrepancy between theory and experiment for the F-F spin-spin coupling constant of difluoethyne

    DEFF Research Database (Denmark)

    Faber, Rasmus; Sauer, Stephan P. A.

    2012-01-01

    on the choice of one-electron basis set, the choice of correlated wave function method and the inclusion of zero-point vibrational and temperature corrections. All terms of the SSCC have been evaluated at the second-order polarization propagator, SOPPA and SOPPA(CCSD), and coupled cluster singles and...

  20. Effects of Layer Deposition Sequence on Microstructure and Magnetostatic Coupling of Spin-Valves with Amorphous CoNbZr Layer

    Institute of Scientific and Technical Information of China (English)

    WEN Qi-Ye; ZHANG Huai-Wu; JIANG Xiang-Dong; TANG Xiao-Li; ZHONG Zhi-Yong; John Q. Xiao

    2005-01-01

    @@ We investigate spin-valve sandwiches with thin amorphous CoNbZr as soft layers. The magnetoresistance (MR),microstructure, and magnetostatic coupling are studied in these sandwiches with different layer deposition sequence.