WorldWideScience

Sample records for central solar heating

  1. The Marstal Central Solar Heating Plant

    DEFF Research Database (Denmark)

    Heller, Alfred; Jochen, Dahm

    1999-01-01

    The central solar heating plant in Marstal is running since 1996 and has been monitored since. The resulting data from the plant is analysed and the plant performance evaluated. A TRNSYS-model (computersimulation) id prepared and validated based on the measured data from the plant. Acceptable good...

  2. Central solar heating plants with seasonal storage

    Energy Technology Data Exchange (ETDEWEB)

    Breger, D.S.; Sunderland, J.E.

    1989-03-01

    The University of Massachusetts has recently started a two year effort to identify and design a significant Central Solar Heating Plant with Seasonal Storage (CSHPSS) in Massachusetts. The work is closely associated with the U.S. participation in the International Energy Agency (IEA) Task on CSHPSS. The University is working closely with the Commonwealth of Massachusetts to assist in identifying State facilities as potential sites and to explore and secure State support which will be essential for product development after the design phase. Currently, the primary site is the University of Massachusetts, Amherst campus with particular interest in several large buildings which are funded for construction over the next 4-5 years. Seasonal thermal energy storage will utilize one of several geological formations.

  3. Heat pipe central solar receiver. Volume I. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Bienert, W. B.; Wolf, D. A.

    1979-04-01

    The objective of this project was the conceptual design of a Central Solar Receiver Gas Turbine Plant which utilizes a high temperature heat pipe receiver. Technical and economic feasibility of such a plant was to be determined and preliminary overall cost estimates obtained. The second objective was the development of the necessary heat pipe technology to meet the requirements of this receiver. A heat pipe receiver is ideally suited for heating gases to high temperatures. The heat pipes are essentially loss free thermal diffusers which accept a high solar flux and transform it to a lower flux which is compatible with heat transferred to gases. The high flux capability reduces receiver heating surface, thereby reducing receiver heat losses. An open recuperative air cycle with a turbine inlet temperature of 816/sup 0/C (1500/sup 0/F) was chosen as the baseline design. This results in peak metal temperatures of about 870/sup 0/C (1600/sup 0/F). The receiver consists of nine modular panels which form the semicircular backwall of a cavity. Gas enters the panels at the bottom and exits from the top. Each panel carries 637 liquid metal heat pipes which are mounted at right angle to the gas flow. The evaporators of the heat pipes protrude from the flux absorbing front surface of the panels, and the finned condensors traverse the gas stream. Capital cost estimates were made for a 10 MW(e) pilot plant. The total projected costs, in mid-1978 dollars, range from $1,947 to $2,002 per electrical kilowatt. On the same basis, the cost of a water/steam solar plant is approximately 50% higher.

  4. 15 Years of R&D in Central Solar Heating in Denmark

    DEFF Research Database (Denmark)

    Heller, Alfred

    2000-01-01

    Danish R&D activities during the last two decades in the field of Central Solar Heating Plants and Thermal Energy Storage Technologies are presented. The most relevant central solar heating plants (CSHPs), with and without seasonal storage, are examined and essential experiences highlighted. The ...

  5. Optimisation of Control Strategy at the Central Solar Heating Plant in Marstal, Denmark

    DEFF Research Database (Denmark)

    Heller, Alfred

    1999-01-01

    The central solar heating plant at Marstal is monitored since 1996. The data is analysed with focus on the applied constrol strategy for the solar collector field. Variable flow is applied which is not the case at the other plants compared. The project analysed the performance, compared the...

  6. Solar augmentation for process heat with central receiver technology

    Science.gov (United States)

    Kotzé, Johannes P.; du Toit, Philip; Bode, Sebastian J.; Larmuth, James N.; Landman, Willem A.; Gauché, Paul

    2016-05-01

    Coal fired boilers are currently one of the most widespread ways to deliver process heat to industry. John Thompson Boilers (JTB) offer industrial steam supply solutions for industry and utility scale applications in Southern Africa. Transport cost add significant cost to the coal price in locations far from the coal fields in Mpumalanga, Gauteng and Limpopo. The Helio100 project developed a low cost, self-learning, wireless heliostat technology that requires no ground preparation. This is attractive as an augmentation alternative, as it can easily be installed on any open land that a client may have available. This paper explores the techno economic feasibility of solar augmentation for JTB coal fired steam boilers by comparing the fuel savings of a generic 2MW heliostat field at various locations throughout South Africa.

  7. System design package for the solar heating and cooling central data processing system

    Science.gov (United States)

    1978-01-01

    The central data processing system provides the resources required to assess the performance of solar heating and cooling systems installed at remote sites. These sites consist of residential, commercial, government, and educational types of buildings, and the solar heating and cooling systems can be hot-water, space heating, cooling, and combinations of these. The instrumentation data associated with these systems will vary according to the application and must be collected, processed, and presented in a form which supports continuity of performance evaluation across all applications. Overall software system requirements were established for use in the central integration facility which transforms raw data collected at remote sites into performance evaluation information for assessing the performance of solar heating and cooling systems.

  8. Dynamic instabilities in radiation-heated boiler tubes for solar central receivers

    Science.gov (United States)

    Wolf, S.; Chan, K. C.; Chen, K.; Yadigaroglu, G.

    1982-11-01

    Density-wave instabilities have been investigated in circumferentially nonuniform radiation-heated boiler tubes, simulating solar heating. Analysis and experimental data are presented. The analysis provides the basis for a computer code, STEAMFREQ-I, for the prediction of density-wave instabilities in boiler tubes with imposed heat flux. The key model features include a drift-flux flow model in the boiling region, spatial variation of heat flux, wall dynamics, and variable steam properties in the superheat region. The experimental data include results from two radiation heated boiler panel tests. The data are applicable to central receivers for solar electric power plants. Data for stable and unstable conditions are compared with predictions from STEAMFREQ-I.

  9. Operation Performance of Central Solar Heating System with Seasonal Storage Water Tank in Harbin

    Institute of Scientific and Technical Information of China (English)

    YE Ling; JIANG Yi-qiang; YAO Yang; ZHANG Shi-cong

    2009-01-01

    This paper presented a preliminary research on the central solar heating system with seasonal stor-age(CSHSSS)used in cold climate in China.A mathematical model of the solar energy seasonal storage water tank used in the central solar heating system was firstly developed based on energy conservation.This was fol-lowed by the simulation of the CSHSSS used in a two-floor villa in Harbin,and analysis of the impacts on storage water temperature of tank volume,solar collector area,tank burial depth,insulation thickness around the tank,etc.The results show there is a relatively economical tank volume to optimize the system efficiency,which de-creases with increasing tank volume at the constant collector area,and increases with increasing collector area at the constant tank volume.Furthermore,the insulation thickness has obvious effect on avoiding heat loss,while the tank burial depth doesn't.In addition-the relationship between the solar collector efficiency and storage wa-ter temperature is also obtained,it decreases quickly with increasing storing water temperature,and then in-creases slowly after starting space heating system.These may be helpful for relevant design and optimization in cold climates in China and all over the world.

  10. Heat pipe central solar receiver. Semiannual progress report, September 1, 1976--May 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Bienert, W. B.; Wolf, D. A.

    1977-09-01

    It is proposed to develop a solar-to-gas heat exchanger for a Central Solar Receiver Power Plant. The concept employs heat pipes to transfer the concentrated solar flux to the gaseous working medium of a Brayton cycle conversion system. During early phases of the program, an open air cycle with recuperator and a turbine inlet temperature of 800/sup 0/C was selected as the optimum design. The predicted cycle efficiency is 33 percent and the overall solar-to-electric efficiency is 20 percent. Three potential receiver configurations were also identified during the initial phases of the program. Optimum heat pipe diameter is approximately 5 cm for all three receiver configurations, and typical lengths are 2 to 3 meters. The required number of heat pipes for a 10 MWe receiver ranges from 2000 to 8000. Heat transport requirements per pipe vary from 4 to 18 Kw. Several wick structures were developed and evaluated in subscale heat pipe tests using sodium as the working fluid. One full scale heat pipe (5 cm diameter by 183 cm long) was developed and tested with sodium as the working fluid.

  11. Application of solar energy in heating and cooling of residential buildings under Central Asian conditions

    Directory of Open Access Journals (Sweden)

    Usmonov Shukhrat Zaurovich

    2014-04-01

    Full Text Available Solar radiation is the main source of thermal energy for almost all the processes developing in the atmosphere, hydrosphere, and biosphere. The total duration of sunshine in Tajikistan ranges from 2100 to 3170 hours per year. Solar collectors can be mounted on the roof of a house after its renovation and modernization. One square meter of surface area in Central Asia accounts for up to 1600 kW/h of solar energy gain, whilst the average gain is 1200 kW/h. Active solar thermal systems are able to collect both low- and high-temperature heat. Active systems require the use of special engineering equipment for the collection, storage, conversion and distribution of heat, while a low-grade system is based on the principle of using a flat solar collector. The collector is connected to the storage tank for storing the heated water, gas, etc. The water temperature is in the range 50-60 °C. For summer air conditioning in hot climates, absorption-based solar installations with open evaporating solution are recommended. The UltraSolar PRO system offers an opportunity to make a home independent of traditional electricity. Combining Schneider Electric power generation and innovative energy storage technology results in an independent power supply. Traditional power supply systems can be short-lived since they store energy in lead-acid batteries which have a negligible lifetime. Lead-acid batteries operate in a constant charge-discharge mode, require specific conditions for best performance and can fail suddenly. Sudden failure of lead acid batteries, especially in winter in the northern part of Tajikistan, completely disables the heating system of a building. Instead, it is recommended to use industrial lithium-ion batteries, which have a significantly longer life and reliability compared to lead-acid type. UltraSolar PRO are ideal and provide a complete package, low noise and compact lithium-ion power supply.

  12. Preliminary design review package for the solar heating and cooling central data processing system

    Science.gov (United States)

    1976-01-01

    The Central Data Processing System (CDPS) is designed to transform the raw data collected at remote sites into performance evaluation information for assessing the performance of solar heating and cooling systems. Software requirements for the CDPS are described. The programming standards to be used in development, documentation, and maintenance of the software are discussed along with the CDPS operations approach in support of daily data collection and processing.

  13. Central Data Processing System (CDPS) users manual: solar heating and cooling program

    Energy Technology Data Exchange (ETDEWEB)

    1976-09-01

    The Central Data Processing System (CDPS) provides the software and data base management system required to assess the performance of solar heating and cooling systems installed at multiple remote sites. The instrumentation data associated with these systems is collected, processed, and presented in a form which supports continuity of performance evaluation across all applications. The CDPS consists of three major elements: communication interface computer, central data processing computer, and performance evaluation data base. The CDPS Users Manual identifies users of the performance data base, procedures for operation, and guidelines for software maintenance. The manual also defines the output capabilities of the CDPS in support of external users of the system.

  14. Central Data Processing System (CDPS) user's manual: Solar heating and cooling program

    Science.gov (United States)

    1976-01-01

    The software and data base management system required to assess the performance of solar heating and cooling systems installed at multiple sites is presented. The instrumentation data associated with these systems is collected, processed, and presented in a form which supported continuity of performance evaluation across all applications. The CDPS consisted of three major elements: communication interface computer, central data processing computer, and performance evaluation data base. Users of the performance data base were identified, and procedures for operation, and guidelines for software maintenance were outlined. The manual also defined the output capabilities of the CDPS in support of external users of the system.

  15. Application of solar energy in heating and cooling of residential buildings under Central Asian conditions

    OpenAIRE

    Usmonov Shukhrat Zaurovich

    2014-01-01

    Solar radiation is the main source of thermal energy for almost all the processes developing in the atmosphere, hydrosphere, and biosphere. The total duration of sunshine in Tajikistan ranges from 2100 to 3170 hours per year. Solar collectors can be mounted on the roof of a house after its renovation and modernization. One square meter of surface area in Central Asia accounts for up to 1600 kW/h of solar energy gain, whilst the average gain is 1200 kW/h. Active solar thermal systems are able ...

  16. Theoretical and experimental investigation of a Moving Bed Heat Exchanger for Solar Central Receiver Power Plants

    International Nuclear Information System (INIS)

    A Moving Bed Heat Exchanger for heat extraction from solar heated granular materials is investigated with respect to flow behaviour. To overcome limitations of existing empirical models, a numerical CFD model is established and parametrised with the help of experiments. Parametric studies are performed to quantify the effect of inlet velocities on the velocity field. A good agreement with an empirical model is found. Also, a comparison with PIV measurements confirms its validity, making it a solid basis for future design work.

  17. Large Scale Solar Heating

    DEFF Research Database (Denmark)

    Heller, Alfred

    2001-01-01

    The main objective of the research was to evaluate large-scale solar heating connected to district heating (CSDHP), to build up a simulation tool and to demonstrate the application of the simulation tool for design studies and on a local energy planning case. The evaluation was mainly carried out...... model is designed and validated on the Marstal case. Applying the Danish Reference Year, a design tool is presented. The simulation tool is used for proposals for application of alternative designs, including high-performance solar collector types (trough solar collectors, vaccum pipe collectors......). Simulation programs are proposed as control supporting tool for daily operation and performance prediction of central solar heating plants. Finaly the CSHP technolgy is put into persepctive with respect to alternatives and a short discussion on the barries and breakthrough of the technology are given....

  18. Direct Heat-Flux Measurement System (MDF) for Solar central Receiver Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ballestrin, J.

    2001-07-01

    A direct flux measurement system, MDF, has been designed, constructed and mounted on top of the SSPS-CRS tower at the Plataforma Solar de Almeria (PSA) in addition to an indirect flux measurement system based on a CCD camera. It's one of the main future objectives to compare systematically both measurements of the concentrated solar power, increasing in this way the confidence in the estimate of this quantity. Today everything is prepared to perform the direct flux measurement on the aperture of solar receivers: calorimeter array, data acquisition system and software. the geometry of the receiver determines the operation and analysis procedures to obtain the indecent power onto the defined area. The study of previous experiences with direct flux measurement systems ha been useful to define a new simpler and more accurate system. A description of each component of the MDF system is included, focusing on the heat-flux sensors or calorimeters, which enables these measurements to be done in a few seconds without water-cooling. The incident solar power and the spatial flux distribution on the aperture of the volumetric receiver Hitrec II are supplied by the above-mentioned MDF system. The first results obtained during the evaluation of this solar receiver are presented including a sunrise-sunset test. All these measurements have been concentrated in one coefficient that describes the global behavior of the Solar Power Plant. (Author) 18 refs.

  19. Direct Heat-Flux Measurement System (MDF) for Solar Central Receiver Evaluation

    International Nuclear Information System (INIS)

    A direct flux measurement system, MDF, has been designed, constructed and mounted on top of the SSPSCRS tower at the Plataforma Solar de Almeria (PSA) in addition to an indirect flux measurement system based on a CCD camera. It's one of the main future objectives to compare systematically both measurements of the concentrated solar power, increasing in this way the confidence in the estimate of this quantity. Today everything is prepared to perform the direct flux measurement on the aperture of solar receivers: calorimeter array, data acquisition system and software. The geometry of the receiver determines the operation and analysis procedures to obtain the incident power onto the defined area. The study of previous experiences with direct flux measurement systems has been useful to define a new, simpler and more accurate system. A description of each component of the MDF system is included, focusing on the heat-flux sensors or calorimeters, which enables these measurements to be done in a few seconds without water-cooling. The incident solar power and the spatial flux distribution on the aperture of the volumetric receiver Hitrec II are supplied by the above-mentioned MDF system. The first results obtained during the evaluation of this solar receiver are presented including a sunrise-sunset test. AU these measurements have been concentrated in one coefficient that describes the global behavior of the Solar Power Plant. (Author) 18 refs

  20. Large-scale solar heating

    Energy Technology Data Exchange (ETDEWEB)

    Tolonen, J.; Konttinen, P.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Advanced Energy Systems

    1998-10-01

    Solar heating market is growing in many European countries and annually installed collector area has exceeded one million square meters. There are dozens of collector manufacturers and hundreds of firms making solar heating installations in Europe. One tendency in solar heating is towards larger systems. These can be roof integrated, consisting of some tens or hundreds of square meters of collectors, or they can be larger centralized solar district heating plants consisting of a few thousand square meters of collectors. The increase of size can reduce the specific investments of solar heating systems, because e.g. the costs of some components (controllers, pumps, and pipes), planning and installation can be smaller in larger systems. The solar heat output can also be higher in large systems, because more advanced technique is economically viable

  1. Solar heat storages in district heating networks

    Energy Technology Data Exchange (ETDEWEB)

    Ellehauge, K. (Ellehauge og Kildemoes, AArhus (DK)); Engberg Pedersen, T. (COWI A/S, Kgs. Lyngby (DK))

    2007-07-15

    This report gives information on the work carried out and the results obtained in Denmark on storages for large solar heating plants in district heating networks. Especially in Denmark the share of district heating has increased to a large percentage. In 1981 around 33% of all dwellings in DK were connected to a district heating network, while the percentage in 2006 was about 60% (in total 1.5 mio. dwellings). In the report storage types for short term storage and long term storages are described. Short term storages are done as steel tanks and is well established technology widely used in district heating networks. Long term storages are experimental and used in connection with solar heating. A number of solar heating plants have been established with either short term or long term storages showing economy competitive with normal energy sources. Since, in the majority of the Danish district heating networks the heat is produced in co-generation plants, i.e. plants producing both electricity and heat for the network, special attention has been put on the use of solar energy in combination with co-generation. Part of this report describes that in the liberalized electricity market central solar heating plants can also be advantageous in combination with co-generation plants. (au)

  2. Problem of heat pumps in central Russia

    International Nuclear Information System (INIS)

    This article describes the problems of heat pumps due to climatic conditions and the characteristics of energy sources. As energy sources for heat pumps, solar power, air, groundwater, soil, and rejected heat are considered. It is shown that in central Russia it is only rational to use waste heat as an energy source for heat pump systems. (author)

  3. Solar-assisted central heating in Hamburg-Bramfeld; Solarunterstuetzte Nahwaermeversorgung Hamburg-Bramfeld

    Energy Technology Data Exchange (ETDEWEB)

    Ebel, M. [HGC Hamburg Gas Consult, Hamburg (Germany)

    1998-12-31

    About 38% of the energy consumed in Germany is used for space heating. Hot water demand of old buildings accounts for approximately 10% while buildings constructed according to modern insulation standards account for 15 - 20 %. Space heating has a considerable conservation potential, which plays an important role in terms of reducing carbon dioxide pollution. More and more new technologies for conventional thermal insulation as well as for the active use of solar energy are being developed and will soon be commercially available. (orig.) [Deutsch] In der Bundesrepublik Deutschland werden ca. 38% des Energieverbrauches fuer die Waermeversorgung von Gebaeuden eingesetzt. Auf den Warmwasserbedarf entfallen davon ca. 10% bei Altbauten und 15-20% bei Wohngebaeuden nach den heute gueltigen Waermeschutzbestimmungen. Damit liegt im Bereich der Waemreversorgung von Gebaeuden ein erhebliches Einsparpotential, welches innerhalb der Diskussion ueber die CO{sub 2}-Problematik eine immer groessere Bedeutung erlangt. Neben einer Verbesserung der konventionellen Waermedaemmung der Gebaeude werden zunehmend Techniken der aktiven Solarenergienutzung zur Einsatzreife entwickelt. (orig.)

  4. Preliminary design study of a central solar heating plant with seasonal storage at the University of Massachusetts, Amherst

    Science.gov (United States)

    Breger, D. S.; Sunderland, J. E.

    1991-04-01

    This report documents the design development and selection of the final preliminary design of a Central Solar Heating Plant with Seasonal Storage (CSHPSS) for the University of Massachusetts in Amherst (UMass). The effort has been performed by the Department of Mechanical Engineering at UMass under contract with the U.S. Department of Energy. Phase 1 of this project was directed at site selection for the CSHPSS project and was reported earlier. This report focuses on the Phase 2 development of the site conditions and analytical study of project design, performance, and cost. The UMass site presents an excellent opportunity of a CSHPSS project in terms of land availability for a large collector array, a 100 foot deep deposit of soft, saturated clay for seasonal thermal energy storage, and appropriate low temperature heating loads. The project under study represents the first implementation of this solar technology in the United States and results from the International Energy Agency collaboration on CSHPSS since 1979. The preliminary design calls for a large 10,000 m(exp 2) parabolic trough collector array, 70,000 m(exp 3) storage volume in clay with heat transfer through 900 boreholes. Design optimization is based on computer simulations using MINSUN and TRNSYS. The design is expected to provide 95 percent of the 3500 MWh heating and hot water load. A project cost of $3.12 million (plus $240,000 for HVAC load retrofit) is estimated, which provides an annualized cost of $66.2/MWh per unit solar energy delivered. The project will proceed into an engineering phase in Spring 1991.

  5. Surface Heat Budget and Solar Radiation Allocation at a Melt Pond During Summer in the Central Arctic Ocean

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shugang; ZHAO Jinping; SHI Jiuxin; JIAO Yutian

    2014-01-01

    The heat budget of a melt pond surface and the solar radiation allocation at the melt pond are studied using the 2010 Chinese National Arctic Research Expedition data collected in the central Arctic. Temperature at a melt pond surface is proportional to the air temperature above it. However, the linear relationship between the two varies, depending on whether the air temperature is higher or lower than 0℃. The melt pond surface temperature is strongly influenced by the air temperature when the latter is lower than 0℃. Both net longwave radiation and turbulent heat flux can cause energy loss in a melt pond, but the loss by the latter is larger than that by the former. The turbulent heat flux is more than twice the net longwave radiation when the air temperature is lower than 0℃. More than 50%of the radiation energy entering the pond surface is absorbed by pond water. Very thin ice sheet on the pond surface (black ice) appears when the air temperature is lower than 0℃; on the other hand, only a small percentage (5.5%) of net longwave in the solar radiation is absorbed by such a thin ice sheet.

  6. Solar space and water heating system at Stanford University Central Food Services Building. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    This active hydronic domestic hot water and space heating system was 840 ft/sup 2/ of single-glazed, liquid, flat plate collectors and 1550 gal heat storage tanks. The following are discussed: energy conservation, design philosophy, operation, acceptance testing, performance data, collector selection, bidding, costs, economics, problems, and recommendations. An operation and maintenance manual and as-built drawings are included in appendices. (MHR)

  7. Solar thermal central receivers

    International Nuclear Information System (INIS)

    Market issues, environmental impact, and technology issues related to the Solar Central Receiver concept are addressed. The rationale for selection of the preferred configuration and working fluid are presented as the result of a joint utility-industry analysis. A $30 million conversion of Solar One to an external molten salt receiver would provide the intermediate step to a commercial demonstration plant. The first plant in this series could produce electricity at 11.2 cents/kWhr and the seventh at 8.2 cents/kWhr, completely competitive with projected costs of new utility plants in 1992

  8. Harnessing solar heat

    CERN Document Server

    Norton, Brian

    2013-01-01

    Systems engineered by man to harness solar heat in a controlled manner now include a diverse range of technologies each serving distinctive needs in particular climate contexts. This text covers the breadth of solar energy technologies for the conversion of solar energy to provide heat, either as the directly-used output or as an intermediary to other uses such as power generation or cooling. It is a wholly updated, extended and revised version of “Solar Energy Thermal Technology” first published in 1992. The text draws on the own author’s research and that of numerous colleagues and

  9. Experience with the operation of a solar central heating system in Friedrichshafen/Wiggenhausen-Sued; Betriebserfahrungen mit der solaren Nahwaermeversorgung in Friedrichshafen/Wiggenhausen-Sued

    Energy Technology Data Exchange (ETDEWEB)

    Stanzel, B.; Gawantka, F. [Technische Werke Friedrichshafen GmbH, Friedrichshafen (Germany)

    1998-12-31

    The ideas, concepts and pilot plants for solar central heating systems developed by the Institute for Thermodynamics and Thermal Engineering of Stuttgart University were implemented by the Steinbeis-Transfer Centre for Energy, Building and Solar Engineering. In order to improve the economic efficiency of solar central heating with long-term storage a pilot plant with a heat storage tank of 12,000 cubic metres was built in Wiggenhausen-Sued. The `Technische Werke Friedrichshafen` (TWF) is in charge of the project `Solar City Wiggenhausen-Sued`. This company built the plant and also operates and maintains it. (orig.) [Deutsch] Die Ideen, Konzepte und erste Pilotanlagen zur solaren Nahwaerme werden seit Mitte der achtziger Jahre vom Institut fuer Thermodynamik und Waermetechnik (ITW) der Universitaet Stuttgart entwickelt und vom Steinbeis-Transferzentrum Energie-, Gebaeude- und Solartechnik umgesetzt. Um die solare Nahwaermeversorgung mit Langzeit-Waermespeicher der Wirtschaftlichkeit etwas naeher zu bringen, wurde eine Pilotanlage mit einem 12.000 m{sup 3} grossen Waermespeicher in Wiggenhausen-Sued gebaut. Mit diesem Pilotprojekt soll neben der technischen Durchfuehrbarkeit die Kostendegression durch steigende Anlagengroesse nachgewiesen werden. Als Energiedienstleistungsunternehmen hat die Technische Werke Friedrichshafen GmbH (TWF) die technische und kaufmaennische Durchfuehrung des Projektes `Solarstadt Wiggenhausen-Sued` uebernommen. Sie errichtete, betreibt und wartet die Anlage. (orig.)

  10. Solar Energy: Heat Transfer.

    Science.gov (United States)

    Knapp, Henry H., III

    This module on heat transfer is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The…

  11. Solar Energy: Home Heating.

    Science.gov (United States)

    Knapp, Henry H., III

    This module on home heating is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The module…

  12. Solar Energy: Heat Storage.

    Science.gov (United States)

    Knapp, Henry H., III

    This module on heat storage is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The module…

  13. Natural heat storage in a brine-filled solar pond in the Tully Valley of central New York

    Science.gov (United States)

    Hayhurst, Brett; Kappel, William M.

    2014-01-01

    The Tully Valley, located in southern Onondaga County, New York, has a long history of unusual natural hydrogeologic phenomena including mudboils (Kappel, 2009), landslides (Tamulonis and others, 2009; Pair and others, 2000), landsurface subsidence (Hackett and others, 2009; Kappel, 2009), and a brine-filled sinkhole or “Solar pond” (fig. 1), which is documented in this report. A solar pond is a pool of salty water (brine) which stores the sun’s energy in the form of heat. The saltwater naturally forms distinct layers with increasing density between transitional zones (haloclines) of rapidly changing specific conductance with depth. In a typical solar pond, the top layer has a low salt content and is often times referred to as the upper convective zone (Lu and others, 2002). The bottom layer is a concentrated brine that is either convective or temperature stratified dependent on the surrounding environment. Solar insolation is absorbed and stored in the lower, denser brine while the overlying halocline acts as an insulating layer and prevents heat from moving upwards from the lower zone (Lu and others, 2002). In the case of the Tully Valley solar pond, water within the pond can be over 90 degrees Fahrenheit (°F) in late summer and early fall. The purpose of this report is to summarize observations at the Tully Valley brine-filled sinkhole and provide supplemental climate data which might affect the pond salinity gradients insolation (solar energy).

  14. Solar district heating

    International Nuclear Information System (INIS)

    The model presented here analyzes solar district heating systems on the basis of the power supplied at the grid feeding point. Consumption patterns are taken into account only in the form of different preset load curves. Processes are selected in consideration of the following aspects: (1) The design of a solar district heating system (collector surface, storage volume) depends on the expected contribution of solar power to electricity supply. For each of the key years 1989, 2005 and 2020, a low, average and high contribution were investigated, from which design concepts for other supply rates can be derived. (2) Yields and economic efficiency of solar systems also depend on collector sites and consumption patterns. 10 variants each with low and very high contributions of solar power were calculated for the key year 2020. (orig.)

  15. A generalized analysis of solar space heating

    Science.gov (United States)

    Clark, J. A.

    A life-cycle model is developed for solar space heating within the United States. The model consists of an analytical relationship among five dimensionless parameters that include all pertinent technical, climatological, solar, operating and economic factors that influence the performance of a solar space heating system. An important optimum condition presented is the break-even metered cost of conventional fuel at which the cost of the solar system is equal to that of a conventional heating system. The effect of Federal (1980) and State (1979) income tax credits on these costs is determined. A parameter that includes both solar availability and solar system utilization is derived and plotted on a map of the U.S. This parameter shows the most favorable present locations for solar space heating application to be in the Central and Mountain States. The data employed are related to the rehabilitated solar data recently made available by the National Climatic Center.

  16. Solar industrial process heat

    Energy Technology Data Exchange (ETDEWEB)

    Lumsdaine, E.

    1981-04-01

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  17. Proposal of a fluid flow layout to improve the heat transfer in the active absorber surface of solar central cavity receivers

    International Nuclear Information System (INIS)

    The main objective of concentrated solar power is to increase the thermal energy of a fluid, for the fluid to be used, for example, in a power cycle to generate electricity. Such applications present the requirement of appropriately designing the receiver active absorber surface, as the incident radiation flux can be very high. Besides that, the solar image in the receiver is not uniform, so conventional boilers designs are not well suited for these purposes. That point is particularly critical in solar central receivers systems (CRS), where concentrated solar flux is usually above 500 kW/m2, causing thermal and mechanical stress in the absorber panels. This paper analyzes a new thermofluidynamic design of a solar central receiver, which optimizes the heat transfer in the absorber surface. This conceptual receiver presents the following characteristics: the fluid flow pattern is designed according to the radiation flux map symmetry, so more uniform fluid temperatures at the receiver outlet are achieved; the heat transfer irreversibilities are reduced by circulating the fluid from the lower temperature region to the higher temperature region of the absorber surface; the width of each pass is adjusted to the solar flux gradient, to get lower temperature differences between the side tubes of the same pass; and the cooling requirement is ensured by means of adjusting the fluid flow velocity per tube, taking into account the pressure drop. This conceptual scheme has been applied to the particular case of a molten salt single cavity receiver, although the configuration proposed is suitable for other receiver designs and working fluids. - Highlights: ► The solar receiver design proposed optimizes heat transfer in the absorber surface. ► The fluid flow pattern is designed according to the solar flux map symmetry at noon. ► The fluid circulates from the lower to the higher temperature regions. ► The width of each pass is adjusted to the solar flux gradient. ► The

  18. Solar chemical heat pipe

    International Nuclear Information System (INIS)

    The performance of a solar chemical heat pipe was studied using CO2 reforming of methane as a vehicle for storage and transport of solar energy. The endothermic reforming reaction was carried out in an Inconel reactor, packed with a Rh catalyst. The reactor was suspended in an insulated box receiver which was placed in the focal plane of the Schaeffer Solar Furnace of the Weizman Institute of Science. The exothermic methanation reaction was run in a 6-stage adiabatic reactor filled with the same Rh catalyst. Conversions of over 80% were achieved for both reactions. In the closed loop mode the products from the reformer and from the metanator were compressed into separate storage tanks. The two reactions were run either separately or 'on-line'. The complete process was repeated for over 60 cycles. The overall performance of the closed loop was quite satisfactory and scale-up work is in progress in the Solar Tower. (authors). 35 refs., 2 figs

  19. Power and Efficiency Analysis of a Solar Central Receiver Combined Cycle Plant with a Small Particle Heat Exchanger Receiver

    Science.gov (United States)

    Virgen, Matthew Miguel

    Two significant goals in solar plant operation are lower cost and higher efficiencies. To achieve those goals, a combined cycle gas turbine (CCGT) system, which uses the hot gas turbine exhaust to produce superheated steam for a bottoming Rankine cycle by way of a heat recovery steam generator (HRSG), is investigated in this work. Building off of a previous gas turbine model created at the Combustion and Solar Energy Laboratory at SDSU, here are added the HRSG and steam turbine model, which had to handle significant change in the mass flow and temperature of air exiting the gas turbine due to varying solar input. A wide range of cases were run to explore options for maximizing both power and efficiency from the proposed CSP CCGT plant. Variable guide vanes (VGVs) were found in the earlier model to be an effective tool in providing operational flexibility to address the variable nature of solar input. Combined cycle efficiencies in the range of 50% were found to result from this plant configuration. However, a combustor inlet temperature (CIT) limit leads to two distinct Modes of operation, with a sharp drop in both plant efficiency and power occurring when the air flow through the receiver exceeded the CIT limit. This drawback can be partially addressed through strategic use of the VGVs. Since system response is fully established for the relevant range of solar input and variable guide vane angles, the System Advisor Model (SAM) from NREL can be used to find what the actual expected solar input would be over the course of the day, and plan accordingly. While the SAM software is not yet equipped to model a Brayton cycle cavity receiver, appropriate approximations were made in order to produce a suitable heliostat field to fit this system. Since the SPHER uses carbon nano-particles as the solar absorbers, questions of particle longevity and how the particles might affect the flame behavior in the combustor were addressed using the chemical kinetics software Chemkin

  20. Large-scale solar heat

    Energy Technology Data Exchange (ETDEWEB)

    Tolonen, J.; Konttinen, P.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics

    1998-12-31

    In this project a large domestic solar heating system was built and a solar district heating system was modelled and simulated. Objectives were to improve the performance and reduce costs of a large-scale solar heating system. As a result of the project the benefit/cost ratio can be increased by 40 % through dimensioning and optimising the system at the designing stage. (orig.)

  1. Solar Heating and Cooling

    Science.gov (United States)

    Duffie, John A.; Beckman, William A.

    1976-01-01

    Describes recent research that has made solar energy economically competitive with other energy sources. Includes solar energy building architecture, storage systems, and economic production data. (MLH)

  2. A partitioned central solar receiver

    International Nuclear Information System (INIS)

    Else of solar energy as substitute for conventional fuels at a competitive cost requires efficient conversion from solar radiation to usable forms of energy. In solar thermal or thermochemical applications, high efficiency usually re- quires high temperature and high concentration of incoming radiation. The main form of energy loss from high temperature solar central receivers is thermal emission ('re radiation'), at an effective temperature close to the maximum receiver temperature. This loss is reduced if the aperture is divided into segments, most of which are maintained at lower temperatures. A two-stage partitioned receiver demonstrating this concept is under construction at the Weizman Solar Tower. The high-temperature stage is the DIAPR (Directly Irradiated Annular Pressurized Receiver). The low-temperature stage is made of tubular cavity receivers of simpler design. Preliminary optical and thermal design of the partitioned receiver is presented. For the design exit temperature of 1500 K, the aperture size of the partitioned receiver is about 60% of the equivalent single-stage receiver, indicating a significant increase of conversion efficiency. The exit temperature of the low-temperature stage is around 1100 K, allowing simpler design and inexpensive construction. (authors)

  3. Solar heating systems. Part 1

    International Nuclear Information System (INIS)

    Results of a survey, undertaken by a Danish specialist firm, concerning solar heating systems. The main aim of the analysis was to build up a basis for the choice of a strategy for a campaign for marketing these systems. The survey was founded on telephone interviews with ca. 500 house-owners located throughout the country. Questions posed related to the individuals' current mode of space heating and future wishes in this respect, the amount of acquired information on the subject and the nature of considerations regarding acquisition, the level of information acquired and the choice of information sources, the amount of realistic information on prices, possible subsidies and oil savings related to the supplementary use of solar energy, the name of the relevant commercial supplier and attitudes to a number of aspects connected with the solar heating systems. The results are presented by means of a short explanatory text and a large volume of data. Generally speaking, it is concluded that most people in Denmark are reasonably well-informed on solar heating systems, and that they take environmental considerations seriously. Differences of opinion were related to the fact that some felt that the system itself, placed on roofs, was ugly and could perhaps appear pretentious. Only 5% of the interviewed persons had actually been in contact with an installator, although the majority had a positive attitude towards solar heating systems. (AB)

  4. CISBAT 2007 - Solar collectors (heat and electricity)

    International Nuclear Information System (INIS)

    This is the third part of the proceedings of the 2007 CISBAT conference on Renewables in a changing climate, held in Lausanne, Switzerland. On the subject of Building and urban integration of renewables the following oral contributions are summarised: 'Facade integration of solar thermal collectors: present and future', 'Long term experiences with a versatile PV in roof system', 'Development of a design and performance prediction tool for the ground source heat pump and underground thermal storage system', 'Hygrothermal performance of earth-to-air heat exchanger: long-term data evaluation and short-term simulation' as well as 'The real cost of heating your home: a comparative assessment of home energy systems with external costs'. Poster-sessions on the subject include 'Central solar heating plants with seasonal heat storage', 'Analysis of forced convection for evaporative air flow and heat transfer in PV cooling channels', 'Renewable energy technology in Mali: constraints and options for a sustainable development', 'Effect of duct width in ducted photovoltaic facades', 'Design and actual measurement of a ground source heat pump system using steel foundation piles as ground heat exchangers', 'Development of an integrated water-water heat pump unit for low energy house and its application', 'PV effect in multilayer cells and blending of fullerene/poly (3-hexylthiophene) and phthalocyanine having NIR charge transfer absorption band', 'CdTe photovoltaic systems - an alternative energetic', 'Integration of renewable energy sources in a town, examples in Grenoble', 'A prospective analysis method for the conception of solar integration solutions in buildings' and 'Energy and aesthetic improvements for building integration of cost effective solar energy systems'. Further groups of presentations at the conference are reported on in separate database records. An index of authors completes the proceedings

  5. Fundamentals of Solar Heating. Correspondence Course.

    Science.gov (United States)

    Sheet Metal and Air Conditioning Contractors National Association, Vienna, VA.

    This course is designed for the use of employees of the air conditioning industry, and offers supervised correspondence instruction about solar technology. The following aspects of applied solar technology are covered: solar heating and cooling, solar radiation, solar collectors, heat storage control devices and specialty items, sizing solar…

  6. Solar Air Heaters with Thermal Heat Storages

    OpenAIRE

    Abhishek Saxena; Varun Goel

    2013-01-01

    Solar energy can be converted into different forms of energy, either to thermal energy or to electrical energy. Solar energy is converted directly into electrical power by photovoltaic modules, while solar collector converts solar energy into thermal energy. Solar collector works by absorbing the direct solar radiation and converting it into thermal energy, which can be stored in the form of sensible heat or latent heat or a combination of sensible and latent heats. A theoretical study has be...

  7. Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating, and due to storage. Heat demand is reduced due to direct solar heating, due to storage and due to lower heat losses through the ground. In theory, by running the system flow backwards through the sand storage, active heating...... can be achieved.The objective of the report is to present results from measured system evaluation andcalculations and to give guidelines for the design of such solar heating systems with building integrated sand storage. The report is aimed to non-technicians. In another report R-006 the main results...

  8. Solar heating and cooling of buildings

    Science.gov (United States)

    Bourke, R. D.; Davis, E. S.

    1975-01-01

    Solar energy has been used for space heating and water heating for many years. A less common application, although technically feasible, is solar cooling. This paper describes the techniques employed in the heating and cooling of buildings, and in water heating. The potential for solar energy to displace conventional energy sources is discussed. Water heating for new apartments appears to have some features which could make it a place to begin the resurgence of solar energy applications in the United States. A project to investigate apartment solar water heating, currently in the pilot plant construction phase, is described.

  9. Hybrid solar central receiver for combined cycle power plant

    Energy Technology Data Exchange (ETDEWEB)

    Bharathan, Desikan (Lakewood, CO); Bohn, Mark S. (Golden, CO); Williams, Thomas A. (Arvada, CO)

    1995-01-01

    A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

  10. Hybrid solar central receiver for combined cycle power plant

    Science.gov (United States)

    Bharathan, D.; Bohn, M.S.; Williams, T.A.

    1995-05-23

    A hybrid combined cycle power plant is described including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production. 1 figure.

  11. Solar dynamic heat receiver technology

    Science.gov (United States)

    Sedgwick, Leigh M.

    1991-01-01

    A full-size, solar dynamic heat receiver was designed to meet the requirements specified for electrical power modules on the U.S. Space Station, Freedom. The heat receiver supplies thermal energy to power a heat engine in a closed Brayton cycle using a mixture of helium-xenon gas as the working fluid. The electrical power output of the engine, 25 kW, requires a 100 kW thermal input throughout a 90 minute orbit, including when the spacecraft is eclipsed for up to 36 minutes from the sun. The heat receiver employs an integral thermal energy storage system utilizing the latent heat available through the phase change of a high-temperature salt mixture. A near eutectic mixture of lithium fluoride and calcium difluoride is used as the phase change material. The salt is contained within a felt metal matrix which enhances heat transfer and controls the salt void distribution during solidification. Fabrication of the receiver is complete and it was delivered to NASA for verification testing in a simulated low-Earth-orbit environment. This document reviews the receiver design and describes its fabrication history. The major elements required to operate the receiver during testing are also described.

  12. 多方式辅助加热太阳能集中供热水远程监测系统%Remote Multi-way Auxiliary Heating Monitoring System for Solar Central Heating

    Institute of Scientific and Technical Information of China (English)

    田志宏; 任立鹏; 董智

    2016-01-01

    在对太阳能供热水系统特点及空气源热泵工作原理进行研究的基础上,设计了以空气源热泵和电加热器为辅助热源的太阳能集中供热水远程监测系统,不仅解决了太阳能供热水系统单一热源的局限性问题,同时也实现了远程实时监测。以天津某高校培训中心采用的太阳能供热系统为例,结合当地气候,计算了工程需要的集热器面积和空气源热泵机组数量,详细介绍了采用模块化设计方法开发远程监测系统的过程,并与原天然气供热水系统的水、电和天然气实测消耗量进行了对比。结果表明,多方式辅助加热太阳能集中供热水系统的综合运行费用明显降低,具有较高的应用价值。%Based on the research of the characteristics of solar water heating systems and the working principle of air-source heating pump,a remote monitoring system for solar heating was designed,using air source heating pump and electric heater as the auxiliary heat source.It can not only solve the problem of the limitation of the solar heating system due to single heat-ing source,but also realize the remote and real-time monitoring of the solar water heating system.Taking the solar energy project of a university training center in Tianjin as an example,the required collector area and air source heating pump units were calculated against the local climate.The process of developing a remote monitoring system with modular designs was described in detail,and the actual consumption of water,electricity and natural gas were measured and compared with the natural gas heating system.The results show that the total operation cost of the multi-way auxiliary heating system is obvi-ously reduced,and the system is of higher value in application.

  13. Energy Savings for Solar Heating Systems

    DEFF Research Database (Denmark)

    Thür, Alexander; Furbo, Simon; Shah, Louise Jivan

    2004-01-01

    , various simulations of solar heating systems were done for different hot water demands and collector sizes. The result shows that the potential of fuel reduction can be much higher than the solar gain of the solar thermal system. For some conditions the fuel reduction can be up to the double of the solar...

  14. Heat-Energy Analysis for Solar Receivers

    Science.gov (United States)

    Lansing, F. L.

    1982-01-01

    Heat-energy analysis program (HEAP) solves general heat-transfer problems, with some specific features that are "custom made" for analyzing solar receivers. Can be utilized not only to predict receiver performance under varying solar flux, ambient temperature and local heat-transfer rates but also to detect locations of hotspots and metallurgical difficulties and to predict performance sensitivity of neighboring component parameters.

  15. Solar Energy for Space Heating & Hot Water.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This pamphlet reviews the direct transfer of solar energy into heat, particularly for the purpose of providing space and hot water heating needs. Owners of buildings and homes are provided with a basic understanding of solar heating and hot water systems: what they are, how they perform, the energy savings possible, and the cost factors involved.…

  16. Solar Heat Surplus and Solar Heat Scarcity: the Inclusion of Solar Heat Gain in a Dynamic and Holistic Daylight Analysis

    OpenAIRE

    Kleindienst, S; Andersen, Marilyne

    2010-01-01

    Solar heat gain is one of the tradeoffs associated with using natural light, and should be considered in any complete daylighting analysis. Because the non-spatial aspect of solar heat gain makes it more difficult to analyze along side illuminance or glare, this paper uses time-variant graphics as a basis of comparison. This paper also introduces a new goal-based solar heat gain metric, Solar Heat Scarcity and Surplus, which was inspired by the balance point analysis method. Although dynami...

  17. Compact seasonal PCM heat storage for solar heating systems

    DEFF Research Database (Denmark)

    Dannemand, Mark

    Space heating of buildings and preparation of domestic hot water accounts for a large part of the society’s energy consumption. Solar radiation is an abundant and renewable energy source which can be harvested by solar collectors and used to cover heating demands in the built environment....... The seasonal availability of solar energy does however not match with the heating demands in buildings which typically are large in winter periods when limited solar energy is available. Heat can be stored over a few days in water stores but continuous heat losses limits the storage periods. The possibility...... of storing heat from summer where solar energy is widely available to winter periods where the heating demands are large, allows for implementing more renewable energy in our energy system. The phase change material (PCM) sodium acetate trihydrate (SAT) melts at 58 °C. The melting process requires...

  18. Central Serous Chorioretinopathy after Solar Eclipse Viewing

    OpenAIRE

    Allie Lee; Timothy Lai

    2010-01-01

    Purpose: To report a case of central serous chorioretinopathy after solar eclipse viewing. Case Report: A middle-age man developed a sudden-onset unilateral scotoma after viewing a partial solar eclipse in Hong Kong. Fundus examination, fluorescein angiography, and optical coherence tomography showed features compatible with central serous chorioretinopathy. The patient was managed conservatively and reevaluated periodically. Serial optical coherence tomographic evaluations demonstrated a...

  19. Solar activity and climate in Central America

    OpenAIRE

    Javier Bonatti; Esteban Araya; Walter Fernández

    2000-01-01

    Possible effects of solar activity on the records of air surface temperature and rainfall in Central America are analysed. The correlation between the series of sunspot numbers, surface air temperature and precipitation, is poor. However an increasing tendency in the series is observed for the time period considered. Using Fourier analysis, frequency peaks were found close to 11 years and 5 years for both solar and climate data. This suggest that solar activity might be a factor which affects...

  20. Advances in Solar Heating and Cooling Systems

    Science.gov (United States)

    Ward, Dan S.

    1976-01-01

    Reports on technological advancements in the fields of solar collectors, thermal storage systems, and solar heating and cooling systems. Diagrams aid in the understanding of the thermodynamics of the systems. (CP)

  1. Concepts for central solar electric power generation

    Science.gov (United States)

    Kintigh, J. K.

    1974-01-01

    The investigation reported was conducted to select the best conceptual design of a power plant for the dynamic conversion of solar heat to electricity. Conversion of thermal energy to electricity was to be an accomplished with conventional turbomachinery. Questions of site selection are discussed along with solar energy collection systems, aspects of candidate system definition, and reference systems.

  2. Prototype solar heating and combined heating cooling systems

    Science.gov (United States)

    1978-01-01

    The design and development of eight prototype solar heating and combined heating and cooling systems is discussed. The program management and systems engineering are reported, and operational test sites are identified.

  3. Implementing slab solar water heating system

    Science.gov (United States)

    Raveendran, S. K.; Shen, C. Q.

    2015-08-01

    Water heating contributes a significant part of energy consumption in typical household. One of the most employed technologies today that helps in reducing the energy consumption of water heating would be conventional solar water heating system. However, this system is expensive and less affordable by most family. The main objective of this project is to design and implement an alternative type of solar water heating system that utilize only passive solar energy which is known as slab solar water heating system. Slab solar water heating system is a system that heat up cold water using the solar radiance from the sun. The unique part of this system is that it does not require any form of electricity in order to operate. Solar radiance is converted into heat energy through convection method and cold water will be heated up by using conduction method [1]. The design of this system is governed by the criteria of low implementation cost and energy saving. Selection of material in the construction of a slab solar water heating system is important as it will directly affect the efficiency and performance of the system. A prototype has been built to realize the idea and it had been proven that this system was able to provide sufficient hot water supply for typical household usage at any given time.

  4. A physical mechanism of solar corona heating

    OpenAIRE

    Mirzoeva, I. K.

    2011-01-01

    Time profiles of solar soft X-ray microflares and structure soft X-ray solar corona thermal background are studied on RHESSI data. The observations of 2003 year are analyzed. Decrease fluxe of solar soft X-ray microflares and thermal background of solar corona in the X-ray range 2-15 kev are revealed. The new model of solar corona heating in based on this new data are suggested.

  5. Technology Roadmaps: Solar Heating and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The solar heating and cooling (SHC) roadmap outlines a pathway for solar energy to supply almost one sixth (18 EJ) of the world’s total energy use for both heating and cooling by 2050. This would save some 800 megatonnes of carbon dioxide (CO2) emissions per year; more than the total CO2 emissions in Germany in 2009. While solar heating and cooling today makes a modest contribution to world energy demand, the roadmap envisages that if concerted action is taken by governments and industry, solar energy could annually produce more than 16% of total final energy use for low temperature heat and nearly 17% for cooling. Given that global energy demand for heat represents almost half of the world’s final energy use – more than the combined global demand for electricity and transport – solar heat can make a significant contribution in both tackling climate change and strengthening energy security.

  6. Technology Roadmaps: Solar Heating and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-06

    The solar heating and cooling (SHC) roadmap outlines a pathway for solar energy to supply almost one sixth (18 EJ) of the world's total energy use for both heating and cooling by 2050. This would save some 800 megatonnes of carbon dioxide (CO2) emissions per year; more than the total CO2 emissions in Germany in 2009. While solar heating and cooling today makes a modest contribution to world energy demand, the roadmap envisages that if concerted action is taken by governments and industry, solar energy could annually produce more than 16% of total final energy use for low temperature heat and nearly 17% for cooling. Given that global energy demand for heat represents almost half of the world's final energy use -- more than the combined global demand for electricity and transport -- solar heat can make a significant contribution in both tackling climate change and strengthening energy security.

  7. Building Space Heating with a Solar-Assisted Heat Pump Using Roof-Integrated Solar Collectors

    OpenAIRE

    Zhiyong Yang; Li Zhu; Yiping Wang

    2011-01-01

    A solar assisted heat pump (SAHP) system was designed by using a roof-integrated solar collector as the evaporator, and then it was demonstrated to provide space heating for a villa in Tianjin, China. A building energy simulation tool was used to predict the space heating load and a three dimensional theoretical model was established to analyze the heat collection performance of the solar roof collector. A floor radiant heating unit was used to decrease the energy demand. The measurement resu...

  8. Solar energy for industrial process heat

    Science.gov (United States)

    Barbieri, R. H.; Pivirotto, D. L.

    1979-01-01

    Findings of study of potential use for solar energy utilization by California dairy industry, prove that applicable solar energy system furnish much of heat needed for milk processing with large savings in expenditures for oil and gas and ensurance of adequate readily available sources of process heat.

  9. Combined heat transfer in a system for solar heating and radiative cooling

    OpenAIRE

    2009-01-01

    The goal of this work is to study a system, which covers both the demands for heating and cooling of a building. The system is designed to be one large central installation for storage and distribution. Such systems obviously reveal a large cost-competitiveness. The design foresees solar collectors for heating and radiative cooling panels, which could be combined with an external electric fan, for cooling the water in the storage. In the present system design, the heat storage tank is divided...

  10. Competitive solar heating systems for residential buildings

    DEFF Research Database (Denmark)

    Furbo, Simon; Thür, Alexander; Fiedler, Frank;

    2005-01-01

    The paper describes the ongoing research project “Competitive solar heating systems for residential buildings”. The aim of the project is to develop competitive solar combisystems which are attractive to buyers. The solar combisystems must be attractive compared to traditional energy systems, both...... onto the market. In Denmark and Norway the focus is on solar heating/natural gas systems, and in Sweden and Latvia the focus is on solar heating/pellet systems. Additionally, Lund Institute of Technology and University of Oslo are studying solar collectors of various types being integrated into the......, are the universities: Technical University of Denmark, Dalarna University, University of Oslo, Riga Technical University and Lund Institute of Technology, as well as the companies: Metro Therm A/S (Denmark), Velux A/S (Denmark), Solentek AB (Sweden) and SolarNor (Norway). The project consists of a...

  11. Air leakage in residential solar heating systems

    Science.gov (United States)

    Shingleton, J. G.; Cassel, D. E.; Overton, R. L.

    1981-02-01

    A series of computer simulations was performed to evaluate the effects of component air leakage on system thermal performance for a typical residential solar heating system, located in Madison, Wisconsin. Auxiliary energy required to supplement solar energy for space heating was determined using the TRNSYS computer program, for a range of air leakage rates at the solar collector and pebble bed storage unit. The effects of heat transfer and mass transfer between the solar equipment room and the heated building were investigated. The effect of reduced air infiltration into the building due to pressurized by the solar air heating system were determined. A simple method of estimating the effect of collector array air leakage on system thermal performance was evaluated, using the f CHART method.

  12. Solar heat utilization for adsorption cooling device

    Directory of Open Access Journals (Sweden)

    Malcho Milan

    2012-04-01

    Full Text Available This article deals with possibility of solar system connection with adsorption cooling system. Waste heat from solar collectors in summer is possible to utilize in adsorption cooling systems, which desorption temperatures have to be lower than temperature of heat transport medium operation temperature. For verification of work of this system was constructed on the Department of power engineering on University of Zilina solar adsorption cooling device.

  13. Solar heat utilization for adsorption cooling device

    OpenAIRE

    Malcho Milan; Patsch Marek; Pilát Peter

    2012-01-01

    This article deals with possibility of solar system connection with adsorption cooling system. Waste heat from solar collectors in summer is possible to utilize in adsorption cooling systems, which desorption temperatures have to be lower than temperature of heat transport medium operation temperature. For verification of work of this system was constructed on the Department of power engineering on University of Zilina solar adsorption cooling device.

  14. Solar Water Heating in Dragash Municipality, Kosovo

    OpenAIRE

    Dahl Håkans, Mia

    2010-01-01

    Water has been heated with the sun has almost as long as there have been humans, but itis not until recently that more advanced and effective solar water heating systems havebecome common, and they are still gaining ground. Through the years new systems andnew solar collectors have been developed. In Kosovo, however, not much attention hasbeen paid to replace fossil fuels with renewable energy sources and solar water heatingsystems is a new concept.The United Nations Development Programme (UN...

  15. Annex to Solar heat storages in district heating networks. Comprehensive list of Danish literature and R and D projects

    Energy Technology Data Exchange (ETDEWEB)

    Ellehauge, K. (Ellehauge og Kildemoes, AArhus (DK)); Engberg Pedersen, T. (COWI A/S, Kgs. Lyngby (DK))

    2007-07-15

    This annex relates to the report 'Solar heat storages in district heating networks', which has been elaborated to inform about the Danish experiences and findings on the use of central solar heating plants in district heating networks, especially with the focus on the development of the storage part of the systems. The report has been funded as part of the IEE PREHEAT cooperation and by Energinet.dk, project no. 2006-2-6750. (au)

  16. Solar-powered Rankine heat pump for heating and cooling

    Science.gov (United States)

    Rousseau, J.

    1978-01-01

    The design, operation and performance of a familyy of solar heating and cooling systems are discussed. The systems feature a reversible heat pump operating with R-11 as the working fluid and using a motor-driven centrifugal compressor. In the cooling mode, solar energy provides the heat source for a Rankine power loop. The system is operational with heat source temperatures ranging from 155 to 220 F; the estimated coefficient of performance is 0.7. In the heating mode, the vapor-cycle heat pump processes solar energy collected at low temperatures (40 to 80 F). The speed of the compressor can be adjusted so that the heat pump capacity matches the load, allowing a seasonal coefficient of performance of about 8 to be attained.

  17. Solar heating and cooling with absorption refrigeration

    OpenAIRE

    Montlló Casabayó, Gerard

    2010-01-01

    This project is focused on solar heating and cooling installations that use solar thermal energy to produce heat for domestic hot water or space heating, and cooling for air conditioning through absorption refrigeration cycle. The first part of the project is a literature review of said technology. The main components of such installations are described and results and conclusions from existing installations are reviewed. The second part is focused on designing, modelling and simula...

  18. Current situation and development of solar heating technology in China

    Institute of Scientific and Technical Information of China (English)

    Zheng Ruicheng

    2009-01-01

    It is introduced the current situation and development for solar heating technology including passive solar heat-ing and solar heating combisystems in China in this paper. Combined with the engineering application projects, the au-thor gave the technical and economic analysis of the passive solar and solar heating combisystems in China and summa-rized the developing obstacle and the spreading tactics for raising marketing of the solar heating in China.

  19. A handbook for solar central receiver design

    Energy Technology Data Exchange (ETDEWEB)

    Falcone, P.K.

    1986-12-01

    This Handbook describes central receiver technology for solar thermal power plants. It contains a description and assessment of the major components in a central receiver system configured for utility scale production of electricity using Rankine-cycle steam turbines. It also describes procedures to size and optimize a plant and discussed examples from recent system analyses. Information concerning site selection criteria, cost estimation, construction, and operation and maintenance is also included, which should enable readers to perform design analyses for specific applications.

  20. Solar dynamic space power system heat rejection

    Science.gov (United States)

    Carlson, A. W.; Gustafson, E.; Mclallin, K. L.

    1986-01-01

    A radiator system concept is described that meets the heat rejection requirements of the NASA Space Station solar dynamic power modules. The heat pipe radiator is a high-reliability, high-performance approach that is capable of erection in space and is maintainable on orbit. Results are present of trade studies that compare the radiator system area and weight estimates for candidate advanced high performance heat pipes. The results indicate the advantages of the dual-slot heat pipe radiator for high temperature applications as well as its weight-reduction potential over the range of temperatures to be encountered in the solar dynamic heat rejection systems.

  1. Solar district heating and seasonal heat storage - state of the art; Solare Nahwaerme und Saisonale Waermespeicherung - Stand der Technik

    Energy Technology Data Exchange (ETDEWEB)

    Pfeil, M.; Hahne, E. [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Stuttgart (Germany). Geschaeftsbereich Solarthermische Energietechnik; Lottner, V. [BEO Biologie, Energie Oekologie, Juelich (Germany); Schulz, M. [Stuttgart Univ. (Germany). Inst. fuer Thermodynamik und Waermetechnik

    1998-02-01

    Solar energy technology becomes more and more important for space and water heating of residential buildings. Compared to small systems for single-family houses, the specific investment cost of big solar plants is lower and a higher contribution of solar energy can be achieved. In central solar heating plants with seasonal storage (CSHPSS), more than 50% of the total heat demand of residential areas can be covered by solar energy. The first pilot plants for CSHPSS are operating in Germany since 1996. The first results of the accompanying monitoring program show good agreement between calculated and actual solar contribution. (orig.) [Deutsch] Die Nutzung solarer Niedertemperaturwaerme zur Brauchwassererwaermung und zur Beheizung von Wohngebaeuden erfaehrt in Deutschland ein immer groesseres Interesse. Solare Grossanlagen haben gegenueber solaren Kleinanlagen den Vorteil, dass mit geringeren Investitions- und Waermekosten groessere Anlagenertraege erzielt werden koennen. In Verbindung mit saisonaler Waermespeicherung erreichen solare Grossanlagen Deckungsanteile von 50% und darueber am Gesamtwaermebedarf von Wohnsiedlungen. Die ersten Pilotanlagen zur solaren Nahwaerme mit saisonalem Waermespeicher gingen 1996 in Betrieb und werden derzeit detailliert vermessen. Erste Ergebnisse zeigen, dass die vorausberechneten Werte fuer den Jahresenergieertrag erreicht werden koennen. (orig.)

  2. Solar Heated Homes: They're Here

    Science.gov (United States)

    Knight, Carlton W., II; Wohlhagen, Linda

    1975-01-01

    Presents a discussion and examples of the two categories into which solar homes have been classified. Classifications are based upon the method by which the sunlight is put to use: energy conversion, utilizing photoelectric cells; and direct heating, where sunlight heats water which then heats the home. Diagrams are presented. (Author/EB)

  3. EIR solar heating plant OASE

    International Nuclear Information System (INIS)

    For a corrosion surveillance program of the EIR solar heating unit, OASE, the coolant of the flat collector circuit is controlled and material samples mounted in a circuit by-pass are tested periodically. The results of the first year of surveillance have been evaluated and interpreted. Furthermore water-ethyleneglycol mixtures without and with corrosion inhibiting additives have been tested. Only the ethyleneglycol and inhibitor contents may be controlled by means of pH and electrical conductivity tests. The metal content in the coolant as a corrosion indicator is not recorded by pH or electrical conductivity readings - they must be determined by chemical analysis. Samples of different materials used in the coolant circuit, mounted in a test by-pass of the circuit and taken out every year for testing give information on the corrosion behaviour of these materials under service conditions. Corrosion can be prevented or reduced by adding inhibitors to the coolant. The optimum inhibitor composition for the concerned material combinations and for the coolant must be determined in laboratory tests. The inhibitor composition used in the flat collector circuit proved not to be the optimum: corrosion on the aluminium of the rollbond absorber plate was not prevented. (Auth.)

  4. Heat storage in solar thermal systems

    OpenAIRE

    Sedmidubský, Petr

    2014-01-01

    This bachelor´s thesis deals with heat storage in solar thermal systems. The first part of the thesis is devoted to the solar energy. The problems with its use are described in this part. The second part is devoted to solar thermal systems. Various types and designs of solar thermal systems are described in this part. The third part of thesis is devoted to the various types of solar thermal systems. The principle of their operation, advantages, disadvantages and the possibility of their pract...

  5. Report on Solar Water Heating Quantitative Survey

    Energy Technology Data Exchange (ETDEWEB)

    Focus Marketing Services

    1999-05-06

    This report details the results of a quantitative research study undertaken to better understand the marketplace for solar water-heating systems from the perspective of home builders, architects, and home buyers.

  6. Solar Heating and Cooling: An Economic Assessment.

    Science.gov (United States)

    McGarity, Arthur E.

    This study serves as an introduction to the important economic considerations that are necessary for an assessment of the potential for solar heating and cooling in the United States. The first chapter introduces the technology that is used to tap solar energy for residential and commercial applications and illustrates the potential significance…

  7. Solar-heating and cooling demonstration project

    Science.gov (United States)

    1980-01-01

    Florida Solar Energy Center has retrofitted office building, approximately 5,000 square feet of area, with solar heating and air-conditioning. Information on operation, installation, controls, and hardware for system is contained in 164 page report. Document includes manufacturer's product literature and detailed drawings.

  8. Solar heating and cooling demonstration project summaries

    Energy Technology Data Exchange (ETDEWEB)

    1978-05-01

    Brief descriptive overviews are presented of the design and operating characteristics of all commercial and Federal residential solar heating and cooling systems and of the structures themselves. Also included are available pictures of the buildings and simplified solar system diagrams. A list of non-Federal residential installations is provided.

  9. Solar heating cooling. Preparation of possible participation in IEA, Solar Heating Cooling Task 25

    International Nuclear Information System (INIS)

    For the Danish solar heating industries it is interesting to discuss the domestic market possibilities and the export possibilities for solar heating cooling systems. The Danish solar heating sector also wants to participate in the international collaboration within IEA Solar Heating and Cooling Task 25 'Solar Assisted Air Conditioning of Buildings'. The Danish Energy Agency therefore has granted means for this project to discuss: The price of cooling for 3 different solar cooling methods (absorption cooling, desiccant cooling and ejector cooling); Market possibilities in Denmark and abroad; The advantages by Danish participation in IEA Task 25. The task has been solved through literature studies to establish status for the 3 technologies. It turned out that ejector cooling by low temperatures (85 deg. C from the solar collector) exists as pilot plants in relation to district heating, but is still not commercial accessible. Desiccant cooling, where the supplied heat has temperatures down to 55 deg. C is a well-developed technology. However only a handful of pilot plants with solar heating exists, and thus optimization relating to operation strategy and economy is on the experimental stage. Absorption cooling plants driven by solar heating are found in a large number in Japan and are also demonstrated in several other countries. The combination of absorption heating pump and solar heating is considered to be commercial accessible. Solar heating is interesting as heat source of to the extent that it can replace other sources of heat without the economy being depreciated. This can be the case in South Europe if: 1) oil or natural gas is used for heating; 2) a solar heating system already exists, e.g. for domestic water supply, and is installed so that the marginal costs by solar heating supply of the ventilation plant is reduced. All in all the above conditions mean that the market for solar heating for cooling is very limited in Europe, where almost everybody are

  10. Solar heating and cooling: Technical data and systems analysis

    Science.gov (United States)

    Christensen, D. L.

    1975-01-01

    The solar energy research is reported including climatic data, architectural data, heating and cooling equipment, thermal loads, and economic data. Lists of data sources presented include: selected data sources for solar energy heating and cooling; bibliography of solar energy, and other energy sources; sources for manufacturing and sales, solar energy collectors; and solar energy heating and cooling projects.

  11. Heat Pumps With Direct Expansion Solar Collectors

    Science.gov (United States)

    Ito, Sadasuke

    In this paper, the studies of heat pump systems using solar collectors as the evaporators, which have been done so far by reserchers, are reviwed. Usually, a solar collector without any cover is preferable to one with ac over because of the necessity of absorbing heat from the ambient air when the intensity of the solar energy on the collector is not enough. The performance of the collector depends on its area and the intensity of the convective heat transfer on the surface. Fins are fixed on the backside of the collector-surface or on the tube in which the refrigerant flows in order to increase the convective heat transfer. For the purpose of using a heat pump efficiently throughout year, a compressor with variable capacity is applied. The solar assisted heat pump can be used for air conditioning at night during the summer. Only a few groups of people have studied cooling by using solar assisted heat pump systems. In Japan, a kind of system for hot water supply has been produced commercially in a company and a kind of system for air conditioning has been installed in buildings commercially by another company.

  12. RADIATIVE HEATING OF THE SOLAR CORONA

    International Nuclear Information System (INIS)

    We investigate the effect of solar visible and infrared radiation on electrons in the Sun's atmosphere using a Monte Carlo simulation of the wave-particle interaction and conclude that sunlight provides at least 40% and possibly all of the power required to heat the corona, with the exception of dense magnetic flux loops. The simulation uses a radiation waveform comprising 100 frequency components spanning the solar blackbody spectrum. Coronal electrons are heated in a stochastic manner by low coherence solar electromagnetic radiation. The wave 'coherence time' and 'coherence volume' for each component is determined from optical theory. The low coherence of solar radiation allows moving electrons to gain energy from the chaotic wave field which imparts multiple random velocity 'kicks' to these particles causing their velocity distribution to broaden or heat. Monte Carlo simulations of broadband solar radiative heating on ensembles of 1000 electrons show heating at per particle levels of 4.0 x 10-21 to 4.0 x 10-20 W, as compared with non-loop radiative loss rates of ∼1 x 10-20 W per electron. Since radiative losses comprise nearly all of the power losses in the corona, sunlight alone can explain the elevated temperatures in this region. The volume electron heating rate is proportional to density, and protons are assumed to be heated either by plasma waves or through collisions with electrons.

  13. Radiative Heating of the Solar Corona

    Science.gov (United States)

    Moran, Thomas G.

    2011-10-01

    We investigate the effect of solar visible and infrared radiation on electrons in the Sun's atmosphere using a Monte Carlo simulation of the wave-particle interaction and conclude that sunlight provides at least 40% and possibly all of the power required to heat the corona, with the exception of dense magnetic flux loops. The simulation uses a radiation waveform comprising 100 frequency components spanning the solar blackbody spectrum. Coronal electrons are heated in a stochastic manner by low coherence solar electromagnetic radiation. The wave "coherence time" and "coherence volume" for each component is determined from optical theory. The low coherence of solar radiation allows moving electrons to gain energy from the chaotic wave field which imparts multiple random velocity "kicks" to these particles causing their velocity distribution to broaden or heat. Monte Carlo simulations of broadband solar radiative heating on ensembles of 1000 electrons show heating at per particle levels of 4.0 × 10-21 to 4.0 × 10-20 W, as compared with non-loop radiative loss rates of ≈1 × 10-20 W per electron. Since radiative losses comprise nearly all of the power losses in the corona, sunlight alone can explain the elevated temperatures in this region. The volume electron heating rate is proportional to density, and protons are assumed to be heated either by plasma waves or through collisions with electrons.

  14. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W. [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1997-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  15. Demand modelling for central heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Heller, A.

    2000-07-01

    Most researchers in the field of heat demand estimation have focussed on explaning the load for a given plant based on rather few measurements. This approach is simply the only one adaptable with the very limited data material and limited computer power. This way of dealing with the subject is here called the top-down approach, due to the fact that one tries to explain the load from the overall data. The results of such efforts are discussed in the report, leading to inspiration for own work. Also the significance of the findings to the causes for given heat loads are discussed and summarised. Contrary to the top-down approach applied in literature, a here-called bottom-up approach is applied in this work, describing the causes of a given partial load in detail and combining them to explain the total load for the system. Three partial load 'components' are discussed: 1) Space heating. 2) Hot-Water Consumption. 3) Heat losses in pipe networks. The report is aimed at giving an introduction to these subjects, but at the same time at collecting the previous work done by the author. Space heating is shortly discussed and loads are generated by an advanced simulation model. A hot water consumption model is presented and heat loads, generated by this model, utilised in the overall work. Heat loads due to heat losses in district heating a given a high priority in the current work. Hence a detailed presentation and overview of the subject is given to solar heating experts normally not dealing with district heating. Based on the 'partial' loads generated by the above-mentioned method, an overall load model is built in the computer simulation environment TRNSYS. The final tool is then employed for the generation of time series for heat demand, representing a district heating area. The results are compared to alternative methods for the generation of heat demand profiles. Results form this comparison will be presented. Computerised modelling of systems

  16. Dynamic conversion of solar generated heat to electricity

    Science.gov (United States)

    Powell, J. C.; Fourakis, E.; Hammer, J. M.; Smith, G. A.; Grosskreutz, J. C.; Mcbride, E.

    1974-01-01

    The effort undertaken during this program led to the selection of the water-superheated steam (850 psig/900 F) crescent central receiver as the preferred concept from among 11 candidate systems across the technological spectrum of the dynamic conversion of solar generated heat to electricity. The solar power plant designs were investigated in the range of plant capacities from 100 to 1000 Mw(e). The investigations considered the impacts of plant size, collector design, feed-water temperature ratio, heat rejection equipment, ground cover, and location on solar power technical and economic feasibility. For the distributed receiver systems, the optimization studies showed that plant capacities less than 100 Mw(e) may be best. Although the size of central receiver concepts was not parametrically investigated, all indications are that the optimal plant capacity for central receiver systems will be in the range from 50 to 200 Mw(e). Solar thermal power plant site selection criteria and methodology were also established and used to evaluate potentially suitable sites. The result of this effort was to identify a site south of Inyokern, California, as typically suitable for a solar thermal power plant. The criteria used in the selection process included insolation and climatological characteristics, topography, and seismic history as well as water availability.

  17. Solar Heating Systems with Evacuated Tubular Solar Collector

    DEFF Research Database (Denmark)

    Qin, Lin; Furbo, Simon

    1998-01-01

    Recently different designed evacuated tubular solar collectors were introduced on the market by different Chinese companies. In the present study, investigations on the performance of four different Chinese evacuated tubular collectors and of solar heating systems using these collectors were...... carried out, employing both laboratory test and theoretical calculations. The collectors were tested in a small solar domestic hot water (SDHW) system in a laboratory test facility under realistic conditions. The yearly thermal performance of solar heating systems with these evacuated tubular collectors......, as well as with normal flat-plate collectors was calculated under Danish weather conditions. It is found that, for small SDHW systems with a combi tank design, an increase of 25% -55% net utilized solar energy can be achieved by using these evacuated tubular collectors instead of normal flat...

  18. Heat Lamps Solder Solar Array Quickly

    Science.gov (United States)

    Coyle, P. J.; Crouthamel, M. S.

    1982-01-01

    Interconnection tabs in a nine-solar-cell array have been soldered simultaneously with radiant heat. Cells and tabs are held in position for soldering by sandwiching them between compliant silicone-rubber vacuum platen and transparent polyimide sealing membrane. Heat lamps warm cells, producing smooth, flat solder joints of high quality.

  19. Solar Heating and Cooling Development Program

    Science.gov (United States)

    Aaen, R.; Gossler, A.

    1984-01-01

    Heating is practical now, but cooling needs more development. Report describes program for design and development of solar heating and cooling systems having high performance, low cost and modular application. Describes main technical features of each of systems. Presents summary of performance and costs.

  20. National solar heating and cooling programs

    Energy Technology Data Exchange (ETDEWEB)

    Blum, S; Allen, J [eds.

    1979-08-01

    This document is a compilation of status reports on the national solar heating and cooling programs of seventeen countries participating in the Committee on the Challenges of Modern Society's Solar Energy Pilot Study. These reports were presented in two special sessions of the 25th Congress of the International Solar Energy Society held in May 1979, in Atlanta, Georgia, USA. This information exchange activity was part of the two-year follow up (1978-1980) of the Solar Energy Pilot Study, which ended in October 1978.

  1. Coronal Heating versus Solar Wind Acceleration

    OpenAIRE

    Cranmer, Steven R.

    2004-01-01

    Parker's initial insights from 1958 provided a key causal link between the heating of the solar corona and the acceleration of the solar wind. However, we still do not know what fraction of the solar wind's mass, momentum, and energy flux is driven by Parker-type gas pressure gradients, and what fraction is driven by, e.g., wave-particle interactions or turbulence. SOHO has been pivotal in bringing these ideas back to the forefront of coronal and solar wind research. This paper reviews our cu...

  2. Solar Pond Fluid Dynamics and Heat Transfer

    Science.gov (United States)

    Jones, G. F.

    1984-01-01

    The primary objective of the solar pond research was to obtain an indepth understanding of solar pond fluid dynamics and heat transfer. The key product was the development of a validated one-dimensional computer model with the capability to accurately predict time-dependent solar pond temperature, salinities, and interface motions. Laboratory scale flow visualization experiments were conducted to better understand layer motion. Two laboratory small-scale ponds and a large-scale outdoor solar pond were designed and built to provide quantitative data. This data provided a basis for validating the model and enhancing the understanding of pond dynamic behavior.

  3. Energy Savings for Solar Heating Systems

    DEFF Research Database (Denmark)

    Thür, Alexander; Furbo, Simon; Shah, Louise Jivan

    2006-01-01

    showed a good degree of similarity. With the boiler model, various simulations of solar domestic hot water heating systems were done for different hot water demands and collector sizes. The result shows that the potential of fuel reduction can be much higher than the solar gain of the solar thermal...... system. For some conditions the fuel reduction can be up to the double of the solar gain due to a strong increase of the system efficiency. As the monitored boilers were not older than 3 years, it can be assumed that the saving potential with older boilers could be even higher than calculated in this...

  4. MULTIFUNCTIONAL SOLAR SYSTEMS FOR HEATING AND COOLING

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2010-12-01

    Full Text Available The basic circuits of multifunctional solar systems of air drainage, heating (hot water supply and heating, cooling and air conditioning are developed on the basis of open absorption cycle with a direct absorbent regeneration. Basic decisions for new generation of gas-liquid solar collectors are developed. Heat-mass-transfer apparatus included in evaporative cooling system, are based on film interaction of flows of gas and liquid and in them, for the creation of nozzle, multi-channel structures from polymeric materials and porous ceramics are used. Preliminary analysis of multifunctional systems possibilities is implemented.

  5. Combination solar photovoltaic heat engine energy converter

    Science.gov (United States)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  6. Liquid for absorption of solar heat

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T.; Iwamoto, Y.; Kadotani, K.; Marui, T.

    1984-11-13

    A liquid for the absorption of solar heat, useful as an heat-absorbing medium in water heaters and heat collectors comprises: a dispersing medium selected from the group consisting of propylene glycol, mixture of propylene glycol with water, mixture of propylene glycol with water and glycerin, and mixture of glycerin with water, a dispersant selected from the group consisting of polyvinylpyrrolidone, caramel, and mixture of polyvinylpyrrolidone with caramel, and a powdered activated carbon as a black coloring material.

  7. A study of the heating and heat storage problems in passive solar heated room with greenhouse

    Institute of Scientific and Technical Information of China (English)

    CHENWei; LIUWei

    2003-01-01

    In this paper, heating and heat storage in passive solar heating room with greenhouse has been studied. The unsteady numerical simulation is employed to analyze the performance of the flow and temperature field for the typical sunny day of Wuhan, China, in winter in the heating system. The floor of passive solar heating room with a convective hole or not has great effects on temperature distribution and gas flow in heat storage layer of this system. Properties of the bed worked as solar absorber and storage layer have also been studied.

  8. Development and investment of solar collectors for conversion of solar radiation into heat and/or electricity

    International Nuclear Information System (INIS)

    This article describes work on two projects of the National Energy Efficiency Program NEEP 709300036 and NEEP 271003 titled The Model of Solar Collector for Middle Temperature Conversion of Solar Radiation on Heat, and Development and Investigation on Hybrid Solar Collector for Heat and Electricity Generation, respectively. This first project deals with solar collector that transfer solar radiation in heat in area of middle temperature conversion (at temperature above 100 deg C). During entire year it can realize significant saving of electric energy used for preparation of warm water and in central and district heating. During work on the second project, two hybrid solar collectors, their installation, mathematical model, software, and experimental set-up were designed and realized. The first collector had the photovoltaic panel located above the absorber and the second collector had the panel located on the absorber. For both collectors, the results show that efficiency of fossil fuel replacement is 85%

  9. Nanoflares and Heating of the Solar Corona

    Indian Academy of Sciences (India)

    U. Narain; K. Pandey

    2006-06-01

    Coronal heating by nanoflares is presented by using observational, analytical, numerical simulation and statistical results. Numerical simulations show the formation of numerous current sheets if the magnetic field is sheared and bipoles have unequal pole strengths. This fact supports the generation of nanoflares and heating by them. The occurrence frequency of transients such as flares, nano/microflares, on the Sun exhibits a power-law distribution with exponent α varying between 1.4 and 3.3. For nanoflares heating must be greater than 2. It is likely that the nanoflare heating can be reproduced by dissipating Alfv´en waves. Only observations from future space missions such as Solar-B, to be launched in 2006, can shed further light on whether Alfvén waves or nanoflares, heat the solar corona.

  10. Coronal Heating versus Solar Wind Acceleration

    CERN Document Server

    Cranmer, S R

    2004-01-01

    Parker's initial insights from 1958 provided a key causal link between the heating of the solar corona and the acceleration of the solar wind. However, we still do not know what fraction of the solar wind's mass, momentum, and energy flux is driven by Parker-type gas pressure gradients, and what fraction is driven by, e.g., wave-particle interactions or turbulence. SOHO has been pivotal in bringing these ideas back to the forefront of coronal and solar wind research. This paper reviews our current understanding of coronal heating in the context of the acceleration of the fast and slow solar wind. For the fast solar wind, a recent model of Alfven wave generation, propagation, and non-WKB reflection is presented and compared with UVCS, SUMER, radio, and in-situ observations at the last solar minimum. The derived fractions of energy and momentum addition from thermal and nonthermal processes are found to be consistent with various sets of observational data. For the more chaotic slow solar wind, the relative rol...

  11. EFFICIENCY AND LIFETIME OF SOLAR COLLECTORS FOR SOLAR HEATING PLANTS

    DEFF Research Database (Denmark)

    The 12.5 m² flat plate solar collector HT, today marketed by Arcon Solvarme A/S, has been used in solar heating plants in Scandinavia since 1983. The collector is designed to operate in a temperature interval between 40°C and 90°C. The efficiency of the collector has been strongly improved since...... it was introduced on the market. The paper will present the increase of the efficiency of the collector due to technical improvements since 1983. Further, measurements from the spring of 2009 of the efficiency of two HT collectors, which have been in operation in the solar heating plant Ottrupgaard, Skørping......, Denmark since 1994 with a constant high flow rate and in the solar heating plant Marstal, Denmark since 1996 with a variable flow rate, will be presented. The efficiencies will be compared to the efficiencies of the collectors when they were first installed in the solar heating plants. The measurements...

  12. EFFICIENCY AND LIFETIME OF SOLAR COLLECTORS FOR SOLAR HEATING PLANTS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Chen, Ziqian; Furbo, Simon;

    2009-01-01

    The 12.5 m² flat plate solar collector HT, today marketed by Arcon Solvarme A/S, has been used in solar heating plants in Scandinavia since 1983. The collector is designed to operate in a temperature interval between 40°C and 90°C. The efficiency of the collector has been strongly improved since...... it was introduced on the market. The paper will present the increase of the efficiency of the collector due to technical improvements since 1983. Further, measurements from the spring of 2009 of the efficiency of two HT collectors, which have been in operation in the solar heating plant Ottrupgaard, Skørping......, Denmark since 1994 with a constant high flow rate and in the solar heating plant Marstal, Denmark since 1996 with a variable flow rate, will be presented. The efficiencies will be compared to the efficiencies of the collectors when they were first installed in the solar heating plants. The measurements...

  13. Three story residence with solar heat--Manchester, New Hampshire

    Science.gov (United States)

    1981-01-01

    When heat lost through ducts is counted for accurate performance assessment, solar energy supplied 56 percent of building's space heating load. Average outdoor temperature was 53 degrees F; average indoor temperature was 69 degrees F. System operating modes included heating from solar collectors, storing heat, heating from storage, auxiliary heating with oil fired furnace, summer venting, and hot water preheating.

  14. Research programme 'Active Solar Energy Use - Solar Heating and Heat Storage'. Activities and projects 2003

    International Nuclear Information System (INIS)

    In this report by the research, development and demonstration (RD+D) programme coordinators the objectives, activities and main results in the area of solar heating and heat storage in Switzerland are presented for 2003. In a stagnating market environment the strategy of the Swiss Federal Office of Energy mainly consists in improving the quality and durability of solar collectors and materials, optimizing combisystems for space heating and domestic hot water preparation, searching for storage systems with a higher energy storage density than in the case of sensible heat storage in water, developing coloured solar collectors for more architectonic freedom, and finalizing a seasonal heat storage project for 100 dwellings to demonstrate the feasibility of solar fractions larger than 50% in apartment houses. Support was granted to the Swiss Testing Facility SPF in Rapperswil as in previous years; SPF was the first European testing institute to perform solar collector labeling according to the new rules of the 'Solar Keymark', introduced in cooperation with the European Committee for Standardization CEN. Several 2003 projects were conducted within the framework of the Solar Heating and Cooling Programme of the International Energy Agency IEA. Computerized simulation tools were improved. With the aim of jointly producing high-temperature heat and electric power a solar installation including a concentrating collector and a thermodynamic machine based on a Rankine cycle is still being developed. Seasonal underground heat storage was studied in detail by means of a validated computer simulation programme. Design guidelines were obtained for such a storage used in the summer time for cooling and in the winter time for space heating via a heat pump: depending on the ratio 'summer cooling / winter heating', cooling requires a cooling machine, or direct cooling without such a machine is possible. The report ends up with the list of all supported RD+D projects

  15. Public policy for solar heating and cooling

    Science.gov (United States)

    Hirshberg, A. S.

    1976-01-01

    Recent analyses indicated that solar heating and cooling systems for residential buildings are nearly economically competitive with conventional fossil fuel or electric systems, the former having higher initial cost but a lower operating cost than the latter. The paper examines obstacles to the widespread acceptance and use of solar space conditioning systems and explores some general policies which could help to overcome them. The discussion covers such institutional barriers limiting the adoption of solar technologies as existing building codes, financing constraints, and organizational structure of the building industry. The potential impact of financial incentives is analyzed. It is noted that a tax incentive of 25% could speed the use of solar energy by 7 to 8 years and produce an 8% reduction in fossil fuel use by 1990. A preliminary incentive package which could be helpful in promoting solar energy both at federal and state levels is proposed, and the necessary incentive level is analysed.

  16. SCADA APPLICATION FOR SOLAR ENERGY CONVERSION EFFICIENCY USED IN WATER HEATING APPLICATION

    OpenAIRE

    Cristian-Dragos Dumitru; Adrian Gligor; Traian Turc

    2012-01-01

    The paper is focused on a study of solar energy utilization efficiency for the water heating in domestic appliances. A special case of study is performed for a region specific to the central part of Romania. In this purpose a SCADA system for domestic water heating was designed and implemented. The experimental water heating system is based on solar panel with vacuum tubes, recirculation pump, temperature controller and hot water storage tank. The proposed system is used for experimental dete...

  17. Information campaign on solar heating for houses heated by electricity

    International Nuclear Information System (INIS)

    A number of NESA's (Danish electric power company) customers were offered the use of a solar water heating system for a short period of time. NESA was responsible for the marketing and consultancy service and worked in cooperation with local plumbers in connection with the delivery of the systems. The company contacted 450 households and its representatives visited 25 of these. 4 customers decided to purchase a solar heating system, fourteen decided to think about it, and four declared that they would not buy one. The company had reckoned with 25 purchases. It is concluded that the price of the solar heating systems was too high for prospective customers and the fact that they were not given a special offer had a negative effect. The economic aspect was absolutely the most important for them, especially the length of the payback period on the higher purchase system. Environmental protection aspects came second in their deliberations. NESA has a positive attitude to their customers' use of solar heating plants and recommends that households are offered very high quality consultancy services in connection with marketing. The project is described in detail. (AB)

  18. Solar heating demonstration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bonicatto, L.; Kozak, C.

    1980-01-01

    The demonstration involved a 4-panel solar collector mounted on the industrial arts building. A 120 gallon storage tank supplements a 66 gallon electric hot water heater which supplies hot water for 5 shop wash basins, girl's and boy's lavatories, and a pressure washer in the auto shop. The installation and educational uses of the system are described. (MHR)

  19. Project of the solar heating system

    OpenAIRE

    Pořízka, Jaromír

    2008-01-01

    The diploma thesis studies the elaboration of project about thermal solar systém for all- season service. System is used for heating of outdoor pool and in the winter season for the heating of nearby garage in the village Lipůvka. The aim of the work was to make a proportioning, choosing the right parts and calculating the economic and ecologic balance.

  20. Federal technology alert. Parabolic-trough solar water heating

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.

  1. On Solar-Wind Electron Heating at Large Solar Distances

    Science.gov (United States)

    Chashei, Igor V.; Fahr, Hans J.

    2014-04-01

    We study the temperature of electrons advected with the solar wind to large solar distances far beyond 1 AU. Almost nothing is known about the thermodynamics of these electrons from in-situ plasma observations at these distances, and usually it is tacitly assumed that electrons, due to adiabatic behaviour and vanishing heat conduction, rapidly cool off to very low temperatures at larger distances. In this article we show, however, that electrons on their way to large distances undergo non-adiabatic interactions with travelling shocks and solar-wind bulk-velocity jumps and thereby are appreciably heated. Examining this heating process on an average statistical basis, we find that solar-wind electrons first cool down to a temperature minimum, which depending on the occurrence frequency of bulk velocity jumps is located between 3 and 6 AU, but beyond this the lowest electron temperature again starts to increase with increasing solar distance, finally achieving temperatures of about 7×104 K to 7×105 K at the location of the termination shock. Hence these electrons are unexpectedly shown to play an important dynamical role in structuring this shock and in determining the downstream plasma properties.

  2. Large scale solar district heating. Evaluation, modelling and designing

    Energy Technology Data Exchange (ETDEWEB)

    Heller, A.

    2000-07-01

    The main objective of the research was to evaluate large-scale solar heating connected to district heating (CSDHP), to build up a simulation tool and to demonstrate the application of the tool for design studies and on a local energy planning case. The evaluation of the central solar heating technology is based on measurements on the case plant in Marstal, Denmark, and on published and unpublished data for other, mainly Danish, CSDHP plants. Evaluations on the thermal, economical and environmental performances are reported, based on the experiences from the last decade. The measurements from the Marstal case are analysed, experiences extracted and minor improvements to the plant design proposed. For the detailed designing and energy planning of CSDHPs, a computer simulation model is developed and validated on the measurements from the Marstal case. The final model is then generalised to a 'generic' model for CSDHPs in general. The meteorological reference data, Danish Reference Year, is applied to find the mean performance for the plant designs. To find the expectable variety of the thermal performance of such plants, a method is proposed where data from a year with poor solar irradiation and a year with strong solar irradiation are applied. Equipped with a simulation tool design studies are carried out spreading from parameter analysis over energy planning for a new settlement to a proposal for the combination of plane solar collectors with high performance solar collectors, exemplified by a trough solar collector. The methodology of utilising computer simulation proved to be a cheap and relevant tool in the design of future solar heating plants. The thesis also exposed the demand for developing computer models for the more advanced solar collector designs and especially for the control operation of CSHPs. In the final chapter the CSHP technology is put into perspective with respect to other possible technologies to find the relevance of the application

  3. Performance of a solar augmented heat pump

    Science.gov (United States)

    Bedinger, A. F. G.; Tomlinson, J. J.; Reid, R. L.; Chaffin, D. J.

    Performance of a residential size solar augmented heat pump is reported for the 1979-1980 heating season. The facility located in Knoxville, Tennessee, has a measured heat load coefficient of 339.5 watt/C (644 BTU/hr- F). The solar augmented heat pump system consists of 7.4 cu m of one inch diameter crushed limestone. The heat pump is a nominal 8.8 KW (2 1/2 ton) high efficiency unit. The system includes electric resistance heaters to give the option of adding thermal energy to the pebble bed storage during utility off-peak periods, thus offering considerable load management capability. A 15 KW electric resistance duct heater is used to add thermal energy to the pebble bin as required during off-peak periods. Hourly thermal performance and on site weather data was taken for the period November 1, 1979, to April 13, 1980. Thermal performance data consists of heat flow summations for all modes of the system, pebble bed temperatures, and space temperature. Weather data consists of dry bulb temperature, dew point temperature, total global insolation (in the plane of the collector), and wind speed and direction. An error analysis was performed and the least accurate of the measurements was determined to be the heat flow at 5%. Solar system thermal performance factor was measured to be 8.77. The heat pump thermal performance factor was 1.64. Total system seasonal performance factor was measured to be 1.66. Using a modified version of TRNSYS, the thermal performance of this system was simulated. When simulation results were compared with data collected onsite, the predicted heat flow and power consumption generally were within experimental accuracy.

  4. A Ceramic Heat Exchanger for Solar Receivers

    Science.gov (United States)

    Robertson Jr., C.; Stacy, L.

    1985-01-01

    Design intended for high-temperature service. Proposed ceramic-tube and header heat exchangers used for solar-concentrating collector operating in 25- to 150-KW power range at temperatures between 2,000 degrees and 3,000 degrees F (1,095 degrees and 1,650 degrees C).

  5. Solar Heating Considerations for Green Schools

    Science.gov (United States)

    Kelley, Brian; Fiedler, Lon

    2012-01-01

    As energy costs continue to rise, many schools and universities are considering energy-saving solutions, including solar heating options, to lower costs and to attract students and staff that support environmentally friendly practices. However, administrators and facility engineers should take several issues into account before pursuing a solar…

  6. Residential solar-heating/cooling system

    Science.gov (United States)

    1980-01-01

    Report documents progress of residential solar-heating and cooling system development program at 5-month mark of anticipated 17-month program. System design has been completed, and development and component testing has been initiated. Report includes diagrams, operation overview, optimization studies of subcomponents, and marketing plans for system.

  7. Solar Hot Water Heating by Natural Convection.

    Science.gov (United States)

    Noble, Richard D.

    1983-01-01

    Presents an undergraduate laboratory experiment in which a solar collector is used to heat water for domestic use. The working fluid is moved by natural convection so no pumps are required. Experimental apparatus is simple in design and operation so that data can be collected quickly and easily. (Author/JN)

  8. Solar Heating in an Elementary School

    Science.gov (United States)

    1982-01-01

    Solar-heating and hot-water system installed in elementary school in Virginia is described in 154 page report. Report contains discussion of design philosophy and acceptance-test report. Provides instructions for installation, maintenance, and operation. Also furnishes mechanical drawings and manufacturers' data on pumps, valves, controllers, and other components.

  9. Prototype solar heating and cooling systems

    Science.gov (United States)

    1978-01-01

    A collection of monthly status reports are given on the development of eight prototype solar heating and cooling systems. This effort calls for the development, manufacturing, test, system installation, maintenance, problem resolution, and performance evaluation. The systems are 3-, 25-, and 75-ton size units.

  10. Solar Water Heating with Low-Cost Plastic Systems (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2012-01-01

    Newly developed solar water heating technology can help Federal agencies cost effectively meet the EISA requirements for solar water heating in new construction and major renovations. This document provides design considerations, application, economics, and maintenance information and resources.

  11. Improved high temperature solar absorbers for use in Concentrating Solar Power central receiver applications.

    Energy Technology Data Exchange (ETDEWEB)

    Stechel, Ellen Beth; Ambrosini, Andrea; Hall, Aaron Christopher; Lambert, Timothy L.; Staiger, Chad Lynn; Bencomo, Marlene

    2010-09-01

    Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.

  12. Building integrated solar thermal collectors for heating & cooling applications

    OpenAIRE

    Buker, Mahmut Sami

    2015-01-01

    International Energy Agency Solar Heating & Cooling (IEA SHC) programme states the fact that space/water heating and cooling demand account for over 75% of the energy consumed in single and multi-family homes. Solar energy technology can meet up to 100% of this demand depending on the size of the system, storage capacity, the heat load and the region’s climate. Solar thermal collectors are particular type of heat extracting devices that convert solar radiation into thermal energy through a...

  13. Ground coupled solar heat pumps: analysis of four options

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J.W.

    1981-01-01

    Heat pump systems which utilize both solar energy and energy withdrawn from the ground are analyzed using a simplified procedure which optimizes the solar storage temperature on a monthly basis. Four ways of introducing collected solar energy to the system are optimized and compared. These include use of actively collected thermal input to the heat pump; use of collected solar energy to heat the load directly (two different ways); and use of a passive option to reduce the effective heating load.

  14. Solar-assisted heat supply in private homes. Solar unterstuetzte Waermeversorgung fuer private Haushalte

    Energy Technology Data Exchange (ETDEWEB)

    Hahne, E.; Fisch, N.

    1992-01-01

    Compared to decentralized systems, central heating in new residential areas proves to be rather more cost-effective and not more expensive. A volar support system will increase the price of heat but will still be cheaper than conventional single-application supply. In terms of a sparing use of raw materials and of CO[sub 2] emission reduction, the use of solar energy for heating and hot water is well worth thinking about although the resulting costs will be higher by a factor of 2 to 2.5 than the current cost of conventional energies. The government and local authorities should take a pioneering role in the propagation of solar-assisted systems today. (orig.)

  15. Solar heating and cooling. Research and development: project summaries

    Energy Technology Data Exchange (ETDEWEB)

    1978-05-01

    The Conservation and Solar Applications Solar Heating and Cooling Research and Development Program is described. The evolution of the R and D program is described and the present program is outlined. A series of project descriptions summarizes the research and development presently supported for further development of collectors, thermal energy storage and heat exchangers, heat pumps, solar cooling, controls, and systems. (MHR)

  16. Solar Thermoelectricity via Advanced Latent Heat Storage

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Michele L.; Rea, J.; Glatzmaier, Greg C.; Hardin, C.; Oshman, C.; Vaughn, J.; Roark, T.; Raade, J. W.; Bradshaw, R. W.; Sharp, J.; Avery, Azure D.; Bobela, David; Bonner, R.; Weigand, R.; Campo, D.; Parilla, Philip A.; Siegel, N. P.; Toberer, Eric S.; Ginley, David S.

    2016-05-31

    We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a 'thermal valve,' which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.

  17. Solar thermoelectricity via advanced latent heat storage

    Science.gov (United States)

    Olsen, M. L.; Rea, J.; Glatzmaier, G. C.; Hardin, C.; Oshman, C.; Vaughn, J.; Roark, T.; Raade, J. W.; Bradshaw, R. W.; Sharp, J.; Avery, A. D.; Bobela, D.; Bonner, R.; Weigand, R.; Campo, D.; Parilla, P. A.; Siegel, N. P.; Toberer, E. S.; Ginley, D. S.

    2016-05-01

    We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a "thermal valve," which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.

  18. System design package for solar heating and cooling site data acquisition subsystem

    Science.gov (United States)

    1978-01-01

    The Site Data Acquisition Subsystem (SDAS) designed to collect data from sensors located on residential or commercial buildings using a solar heating and/or cooling system is described. It takes the data obtained from sensors located on the solar system, processes the data into suitable format, stores the data for a period of time, and provides the capability for either telephone retrieval by the central data processing system or manual retrieval of the data for transfer to a central site. The SDAS is also designed so that it will not degrade the operation of the solar heating/cooling system which it is monitoring.

  19. Efficiency Analysis of Independent and Centralized Heating Systems for Residential Buildings in Northern Italy

    Directory of Open Access Journals (Sweden)

    Fabio Rinaldi

    2011-11-01

    Full Text Available The primary energy consumption in residential buildings is determined by the envelope thermal characteristics, air change, outside climatic data, users’ behaviour and the adopted heating system and its control. The new Italian regulations strongly suggest the installation of centralized boilers in renovated buildings with more than four apartments. This work aims to investigate the differences in primary energy consumption and efficiency among several independent and centralized heating systems installed in Northern Italy. The analysis is carried out through the following approach: firstly building heating loads are evaluated using the software TRNSYS® and, then, heating system performances are estimated through a simplified model based on the European Standard EN 15316. Several heating systems have been analyzed, evaluating: independent and centralized configurations, condensing and traditional boilers, radiator and radiant floor emitters and solar plant integration. The heating systems are applied to four buildings dating back to 2010, 2006, 1960s and 1930s. All the combinations of heating systems and buildings are analyzed in detail, evaluating efficiency and primary energy consumption. In most of the cases the choice between centralized and independent heating systems has minor effects on primary energy consumption, less than 3%: the introduction of condensing technology and the integration with solar heating plant can reduce energy consumption by 11% and 29%, respectively.

  20. Performance of a solar augmented heat pump

    Science.gov (United States)

    Bedinger, A. F. G.; Tomlinsin, J. J.; Reid, R. L.; Chaffin, D. J.

    Performance results from a test house equipped with a parallel solar augmented heat pump system with off-peak storage and a utility interconnection back-up, are presented. The collector array consisted of 12 air heating flat plates with a 9 l/sec flow. Thermal storage was consigned to a 260 cu ft crushed limestone pebble bed, with an 8.8 kW heat pump used to draw heat from storage during off-peak hours and a 15 kW electrical resistance heater used to charge the pebble bed. Monitoring and data recording were carried out on all energy inputs and outputs of the systems, and a modified TRNSYS program was employed to model the system performance. The data indicate that although the system offered the possibility of reducing the utility capacity, the addition of the solar system did not significantly augment the performance of the heat-pump system, at least in terms of the cost of supplementary electricity.

  1. Introduction to solar heating and cooling design and sizing

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-01

    This manual is designed to introduce the practical aspects of solar heating/cooling systems to HVAC contractors, architects, engineers, and other interested individuals. It is intended to enable readers to assess potential solar heating/cooling applications in specific geographical areas, and includes tools necessary to do a preliminary design of the system and to analyze its economic benefits. The following are included: the case for solar energy; solar radiation and weather; passive solar design; system characteristics and selection; component performance criteria; determining solar system thermal performance and economic feasibility; requirements, availability, and applications of solar heating systems; and sources of additional information. (MHR)

  2. Solar heated two level residence--Akron, Ohio

    Science.gov (United States)

    1981-01-01

    Report describes 1 year evaluation of solar heating and hot water system which satisfied 24 percent of energy requirements. System uses flat plate solar collectors with air as heat transport medium. Rock storage bin stores collected energy; air to liquid heat pump supplies backup heat.

  3. Conversion of solar energy into heat

    International Nuclear Information System (INIS)

    Argument prevails regarding the main parameters involved in the definition of installations designed to convert by means of a thermal machine, solar energy into electrical or mechanical energy. Between the temperature of the cold source and the stagnation temperature, there exists an optimal temperature which makes for the maximum efficiency of the collector/thermal machine unit. The optimal operating conditions for different types of collector are examined. Optimization of the surface of the collector is dealt with in particular. The structure and cost of solar installations are also analyzed with some examples as basis: solar pumps of 1 to 25kW, a 50MWe electrosolar plant. The cost involves three main elements: the collector, the thermal unit and the heat storage device. The latter is necessary for the integration of diurnal and nocturnal fluctuations of isolation. It is shown that thermal storage is economically payable only under certain conditions

  4. Heat yield and characteristics of solar collectors

    International Nuclear Information System (INIS)

    The test results of the summer 1980 test on solar collectors are summarised. Apart from the 16 collectors tested under contract, two were investigated as a reference serving flat collectors, e.g. for the area of International Energy Agency (IEA), two were evacuated cylindrical collectors. The report allows the comparison of heat power outputs of the different products on the basis of the measured optical and thermal data values. (A.N.K.)

  5. Design software for solar water heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Ruicheng; Li Zhong; He Tao; Zhange Xinyu; Feng Airong; Sun Zhifeng [Inst. of Air Conditioning, China Academy of Building Research, BJ (China)

    2008-07-01

    It is introduced that the ''Design Software for Solar Water Heating Systems'' which is the first design software suitable to China's weather condition and product's performance in the paper. The software developed by IAC, CABR independently and has CABR own knowledge property right. There are three databases and four function modules in the software and the capacity of the software is both of system design and system effect analysis. (orig.)

  6. A heat receiver design for solar dynamic space power systems

    Science.gov (United States)

    Baker, Karl W.; Dustin, Miles O.; Crane, Roger

    1990-01-01

    An advanced heat pipe receiver designed for a solar dynamic space power system is described. The power system consists of a solar concentrator, solar heat receiver, Stirling heat engine, linear alternator and waste heat radiator. The solar concentrator focuses the sun's energy into a heat receiver. The engine and alternator convert a portion of this energy to electric power and the remaining heat is rejected by a waste heat radiator. Primary liquid metal heat pipes transport heat energy to the Stirling engine. Thermal energy storage allows this power system to operate during the shade portion of an orbit. Lithium fluoride/calcium fluoride eutectic is the thermal energy storage material. Thermal energy storage canisters are attached to the midsection of each heat pipe. The primary heat pipes pass through a secondary vapor cavity heat pipe near the engine and receiver interface. The secondary vapor cavity heat pipe serves three important functions. First, it smooths out hot spots in the solar cavity and provides even distribution of heat to the engine. Second, the event of a heat pipe failure, the secondary heat pipe cavity can efficiently transfer heat from other operating primary heat pipes to the engine heat exchanger of the defunct heat pipe. Third, the secondary heat pipe vapor cavity reduces temperature drops caused by heat flow into the engine. This unique design provides a high level of reliability and performance.

  7. Experimental study of the solar district heating system

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Nam-Choon; Jin-Kook, Lee; Eung-Sang, Yoon; Mun-Chang, Joo [Korea Inst. of Energy Research, Yusung, Daejeon (Korea, Republic of); Shin, U-Chul [Daejeon Univ., Dong-gu, Daejeon (Korea, Republic of); Yoon, Seok-Man [Korea District Heating Co. (Korea, Republic of)

    2008-07-01

    This study was carried out the performance analysis of district solar heating system which was installed in Bundang district heating area in the end of 2006. The flat plate and vacuum tube solar collector are combined in one system. So district heating water is heated first by flat plate solar collector and than by vacuum tube solar collector. This solar heating system has not a solar buffer tank and is operating with variable flow rate to obtain a setting temperature of 85{proportional_to}95 C. As a result, the daily solar thermal collection efficiency is about 30 to 40% for the plate type and 50 to 57% for the evacuated type solar collector. It varied especially depend on the weather condition like as solar radiation and ambient temperature. This variable flow rate system can be also reduced much pumping power more than 50%. (orig.)

  8. Solar heating and cooling systems design and development

    Science.gov (United States)

    1977-01-01

    The development and delivery of eight prototype solar heating and cooling systems for installation and operational test was reported. Two heating and six heating and cooling units will be delivered for single family residences, multiple family residences and commercial applications.

  9. Heat extraction from salinity-gradient solar ponds using heat pipe heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Tundee, Sura; Terdtoon, Pradit; Sakulchangsatjatai, Phrut [Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200 (Thailand); Singh, Randeep; Akbarzadeh, Aliakbar [Energy Conservation and Renewable Energy Group, School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Bundoora East Campus, Bundoora, Victoria 3083 (Australia)

    2010-09-15

    This paper presents the results of experimental and theoretical analysis on the heat extraction process from solar pond by using the heat pipe heat exchanger. In order to conduct research work, a small scale experimental solar pond with an area of 7.0 m{sup 2} and a depth of 1.5 m was built at Khon Kaen in North-Eastern Thailand (16 27'N102 E). Heat was successfully extracted from the lower convective zone (LCZ) of the solar pond by using a heat pipe heat exchanger made from 60 copper tubes with 21 mm inside diameter and 22 mm outside diameter. The length of the evaporator and condenser section was 800 mm and 200 mm respectively. R134a was used as the heat transfer fluid in the experiment. The theoretical model was formulated for the solar pond heat extraction on the basis of the energy conservation equations and by using the solar radiation data for the above location. Numerical methods were used to solve the modeling equations. In the analysis, the performance of heat exchanger is investigated by varying the velocity of inlet air used to extract heat from the condenser end of the heat pipe heat exchanger (HPHE). Air velocity was found to have a significant influence on the effectiveness of heat pipe heat exchanger. In the present investigation, there was an increase in effectiveness by 43% as the air velocity was decreased from 5 m/s to 1 m/s. The results obtained from the theoretical model showed good agreement with the experimental data. (author)

  10. Large-scale use of solar energy with central receivers

    Science.gov (United States)

    Kreith, F.; Meyer, R. T.

    1983-12-01

    The working principles of solar central receiver power plants are outlined and applications are discussed. Heliostat arrays direct sunlight into a receiver cavity mounted on a tower, heating the working fluid in the tower to temperatures exceeding 500 C. The formulation for the image plane and the geometric concentration ratio for a heliostat field are provided, noting that commercial electric power plants will require concentration ratios of 200-1000. Automated controls consider imperfections in the mirrors, tracking errors, and seasonal insolation intensity and angular variations. Membranes may be used instead of rigid heliostat mirrors to reduce costs, while trade-offs exist between the efficiencies of cavity and exterior receivers on the tower. Sensible heat storage has proved most effective for cloudy or nighttime operations. Details of the DOE Solar One 10 MW plant, which began operation in 1982, are provided, with mention given to the 33.6 continuous hours of power generation that have been achieved. Projected costs of commercial installations are $700/kWt, and possible applications include recovering and refining oil, processing natural gas, uranium ore, and sugar cane, drying gypsum board, and manufacturing ammonia.

  11. Solar heating cooling. Preparation of possible participation in IEA, Solar Heating Cooling Task 25; Solvarmedrevet koeling. Forberedelse af evt. deltagelse i IEA, Solar Heating Cooling Task 25

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the Danish solar heating industries it is interesting to discuss the domestic market possibilities and the export possibilities for solar heating cooling systems. The Danish solar heating sector also wants to participate in the international collaboration within IEA Solar Heating and Cooling Task 25 'Solar Assisted Air Conditioning of Buildings'. The Danish Energy Agency therefore has granted means for this project to discuss: The price of cooling for 3 different solar cooling methods (absorption cooling, desiccant cooling and ejector cooling); Market possibilities in Denmark and abroad; The advantages by Danish participation in IEA Task 25. The task has been solved through literature studies to establish status for the 3 technologies. It turned out that ejector cooling by low temperatures (85 deg. C from the solar collector) exists as pilot plants in relation to district heating, but is still not commercial accessible. Desiccant cooling, where the supplied heat has temperatures down to 55 deg. C is a well-developed technology. However only a handful of pilot plants with solar heating exists, and thus optimization relating to operation strategy and economy is on the experimental stage. Absorption cooling plants driven by solar heating are found in a large number in Japan and are also demonstrated in several other countries. The combination of absorption heating pump and solar heating is considered to be commercial accessible. Solar heating is interesting as heat source of to the exent that it can replace other sources of heat without the economy being depreciated. This can be the case in South Europe if: 1) oil or natural gas is used for heating; 2) a solar heating system already exists, e.g. for domestic water supply, and is installed so that the marginal costs by solar heating supply of the ventilation plant is reduced. All in all the above conditions mean that the market for solar heating for cooling is very limited in Europe, where almost

  12. Wave Heating of the Solar Chromosphere

    Indian Academy of Sciences (India)

    Wolfgang Kalkofen

    2008-03-01

    The nonmagnetic interior of supergranulation cells has been thought since the 1940s to be heated by the dissipation of acoustic waves. But all attempts to measure the acoustic flux have failed to show sufficient energy for chromospheric heating. Recent space observations with TRACE, for example, have found 10% or less of the necessary flux. To explain the missing energy it has been speculated that the nonmagnetic chromosphere is heated mainly by waves related to the magnetic field. If that were correct, the whole chromosphere, magnetic as well as nonmagnetic, would be heated mainly by waves related to the magnetic field. But contrary to expectation, the radiation emerging from the nonmagnetic chromosphere shows none of the signatures of magnetic waves, only those of acoustic waves. Nearly all the heating of the nonmagnetic chromosphere must therefore be due to acoustic waves. In the magnetic network on the boundary of supergranulation cells, on the other hand, the small filling factor of the magnetic field in the photosphere implies that only a small fraction of the wave flux that travels upward to heat the chromosphere can be channeled by the magnetic field. Hence, while some of the energy that is dissipated in the magnetic network is in the form of magnetic waves, most of it must be in the form of acoustic waves. Thus, the quiet solar chromosphere, instead of being heated mainly by magneticwaves throughout, must be heated mainly by acoustic waves throughout. The full wave flux heating the quiet chromosphere must travel through the photosphere. In the nonmagnetic medium, this flux is essentially all in the form of acoustic waves; TRACE registers at most 10% of it, perhaps because of limited spatial resolution.

  13. Solar central receiver hybrid power system, Phase I. Volume 3. Appendices. Final technical report, October 1978-August 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-09-01

    A design study for a central receiver/fossil fuel hybrid power system using molten salts for heat transfer and heat storage is presented. This volume contains the appendices: (A) parametric salt piping data; (B) sample heat exchanger calculations; (C) salt chemistry and salt/materials compatibility evaluation; (D) heliostat field coordinates; (E) data lists; (F) STEAEC program input data; (G) hybrid receiver design drawings; (H) hybrid receiver absorber tube thermal math model; (I) piping stress analysis; (J) 100-MWe 18-hour storage solar central receiver hybrid power system capital cost worksheets; and (K) 500-MWe 18-hour solar central receiver hybrid power system cost breakdown. (WHK)

  14. Thermoeconomic optimization of a Kalina cycle for a central receiver concentrating solar power plant

    DEFF Research Database (Denmark)

    Modi, Anish; Kærn, Martin Ryhl; Andreasen, Jesper Graa;

    2016-01-01

    Concentrating solar power plants use a number of reflecting mirrors to focus and convert the incident solar energy to heat, and a power cycle to convert this heat into electricity. This paper evaluates the use of a high temperature Kalina cycle for a central receiver concentrating solar power plant...... and the economic perspectives, the results suggest that it is not beneficial to use the Kalina cycle for high temperature concentrating solar power plants....... with direct vapour generation and without storage. The use of the ammonia-water mixture as the power cycle working fluid with non-isothermal evaporation and condensation presents the potential to improve the overall performance of the plant. This however comes at a price of requiring larger heat exchangers...

  15. Numerical Modeling and Experimental Validation of Heat Pipe Solar Collector for Water Heating

    OpenAIRE

    Endalew, Abebe

    2012-01-01

    This work studies the performance of heat pipe solar collector for water heating. Experimental results are validated using numerical modeling. Homemade heat pipes with distilled water as a working fluid were used for experimental tests. Both natural and forced convective heat pipe condensing mechanisms are studied and their results are compared with conventional natural circulation solar water heating system. Cross flow and parallel flow heat exchanger were tested in forced type heat pipe con...

  16. Heat-Transfer Fluids for Solar-Energy Systems

    Science.gov (United States)

    Parker, J. C.

    1982-01-01

    43-page report investigates noncorrosive heat-transport fluids compatible with both metallic and nonmetallic solar collectors and plumbing systems. Report includes tables and figures of X-ray inspections for corrosion and schematics of solar-heat transport systems and heat rejection systems.

  17. Solar thermal heating and cooling. A bibliography with abstracts

    Science.gov (United States)

    Arenson, M.

    1979-01-01

    This bibliographic series cites and abstracts the literature and technical papers on the heating and cooling of buildings with solar thermal energy. Over 650 citations are arranged in the following categories: space heating and cooling systems; space heating and cooling models; building energy conservation; architectural considerations, thermal load computations; thermal load measurements, domestic hot water, solar and atmospheric radiation, swimming pools; and economics.

  18. Investigation on Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating and due to storage. The storage affects the heat demand passively due to higher temperatures. Hence heat loss is reduced and passive heating is optioned. In theory, by running the system flow backwards, active heating can...... be self-made to keep the price down. The system is working, but heat exchange from plastic piping to sand is rather poor. The dimensioning of the volume is rather difficult based on common knowledge. Passive heating, hence reduction of heat demand, due to the storage and especially due to the oversized...

  19. Boiler efficiency methodology for solar heat applications

    Science.gov (United States)

    Maples, D.; Conwell, J. C.; Pacheco, J. E.

    1992-08-01

    This report contains a summary of boiler efficiency measurements which can be applied to evaluate the performance of steam-generating boilers via both the direct and indirect methods. This methodology was written to assist industries in calculating the boiler efficiency for determining the applicability and value of thermal industrial heat, as part of the efforts of the Solar Thermal Design Assistance Center (STDAC) funded by Sandia National Laboratories. Tables of combustion efficiencies are enclosed as functions of stack temperatures and the amount of carbon dioxide and carbon monoxide in the gas stream.

  20. Heat Pipe Solar Receiver for Oxygen Production of Lunar Regolith

    Science.gov (United States)

    Hartenstine, John R.; Anderson, William G.; Walker, Kara L.; Ellis, Michael C.

    2009-03-01

    A heat pipe solar receiver operating in the 1050° C range is proposed for use in the hydrogen reduction process for the extraction of oxygen from the lunar soil. The heat pipe solar receiver is designed to accept, isothermalize and transfer solar thermal energy to reactors for oxygen production. This increases the available area for heat transfer, and increases throughput and efficiency. The heat pipe uses sodium as the working fluid, and Haynes 230 as the heat pipe envelope material. Initial design requirements have been established for the heat pipe solar receiver design based on information from the NASA In-Situ Resource Utilization (ISRU) program. Multiple heat pipe solar receiver designs were evaluated based on thermal performance, temperature uniformity, and integration with the solar concentrator and the regolith reactor(s). Two designs were selected based on these criteria: an annular heat pipe contained within the regolith reactor and an annular heat pipe with a remote location for the reactor. Additional design concepts have been developed that would use a single concentrator with a single solar receiver to supply and regulate power to multiple reactors. These designs use variable conductance or pressure controlled heat pipes for passive power distribution management between reactors. Following the design study, a demonstration heat pipe solar receiver was fabricated and tested. Test results demonstrated near uniform temperature on the outer surface of the pipe, which will ultimately be in contact with the regolith reactor.

  1. Mathematical Modeling of a developed Central Receiver Based on Evacuated Solar Tubes

    Directory of Open Access Journals (Sweden)

    Ali Basil. H.

    2016-01-01

    Full Text Available Solar central receiver plays a considerable role in the plant output power; it is one of the most important synthesis in the solar power tower plants. Its performance directly affects the efficiency of the entire solar power generation system. In this study, a new designed receiver model based on evacuated solar tube was proposed, and the dynamic characteristics of the developed receiver were investigated. In order to optimise and evaluate the dynamic characteristics of solar power plant components, the model investigates the solar radiation heat conversion process through the developed receiver, where the energy and mass conservation equations are used to determine the working fluid temperature and state through the receiver parts, beside the calculation and analysis of the thermal losses.

  2. Decentralized Heat Supply – Alternative to Centralized One

    OpenAIRE

    Nazarov, V; L. Tarasevich; А. Burov

    2014-01-01

    The paper presents a concrete example that shows comparative characteristics of decentralized and centralized heat supply. It has been shown in the paper that selection of this or that variant of heat supply significantly depends on losses in heat supply networks.

  3. Decentralized Heat Supply – Alternative to Centralized One

    Directory of Open Access Journals (Sweden)

    V. Nazarov

    2014-09-01

    Full Text Available The paper presents a concrete example that shows comparative characteristics of decentralized and centralized heat supply. It has been shown in the paper that selection of this or that variant of heat supply significantly depends on losses in heat supply networks.

  4. Ventilation and hot water supply solar-heat collector

    OpenAIRE

    Овсянникова, Ирина Михайловна; Немировский, Илья Абрамович; Ганжа, Антон Николаевич

    2014-01-01

    Solar collectors intended for hot water supply needs are widely used today. However, the territorial position of Ukraine prevents their efficient use during the cold period of the year. This reduces their utilization factor and increases the payback period. The use of solar collectors as the recuperators of exhaust air will allow for their efficient operation during the heating season. This becomes possible because the cold air is heated by the indoor waste air heat particularly in the solar ...

  5. Central air conditioning based on adsorption and solar energy

    International Nuclear Information System (INIS)

    This paper presents the characterization and the pre-dimensioning of an adsorption chiller as part of a 20 kW air conditioning central unit for cooling a set of rooms that comprises an area of 110 m2. The system is basically made up of a cold water storage tank supplied by an activated carbon-methanol adsorption chiller, a hot water storage tank, fed by solar energy and natural gas, and a fan-coil. During an acclimatization of 8 h (9-17 h), the following parameters were obtained for dimensioning the cooling system: 504 kg of activated carbon, 180 L of methanol, 7000 L of hot water, 10,300 L of cold water with its temperature varying in the fan-coil from 1 deg. C to 14 C. Considering the mean value of the total daily irradiation in Joao Pessoa (7o8'S, 34o50'WG), and a cover of regenerating heat supplied by solar energy equivalent to 70%, the adsorption chiller's expected coefficient of performance (COP) was found to be around 0.6.

  6. Study on technique for integrated heating of a solar pond

    Energy Technology Data Exchange (ETDEWEB)

    Cao Jinlong [Ke Yuan New Energy Tech. Development Co. Ltd., Weifang, SD (China); Lu Xiaoyan [English Dept. of Weifang Medical Univ., SD (China)

    2008-07-01

    The first example in China of an integrated heating system using a solar pond was constructed on the banks of Laizhou Bay of Weifang city, in Shandong province. Adopting heating systems for seawater solar ponds, shallow-styled solar ponds and conservatory-model solar ponds, the system solves the problem of how to overwinter warm seawater fish. The method of heating in the course of nursing young aquatic products provides a new technique for protected aquaculture using solar energy. This essay introduces the technical parameters and development of the system and analyzes the validity of the technique and its prospects for application. Several shortcomings are also discussed. (orig.)

  7. ERDA's central receiver solar thermal power system studies

    Science.gov (United States)

    Lippy, L. J.; Heaton, T. R.

    1977-01-01

    The utilization of solar energy for electrical power production was studied. Efforts underway on the central receiver solar thermal power system are presented. Preliminary designs are included of pilot plant utilizing large numbers of heliostats in a collector field. Safety hazards are also discussed, as well as the most beneficial location of such a plant within the United States.

  8. Preliminary design activities for solar heating and cooling systems

    Science.gov (United States)

    1978-01-01

    Information on the development of solar heating and cooling systems is presented. The major emphasis is placed on program organization, system size definition, site identification, system approaches, heat pump and equipment design, collector procurement, and other preliminary design activities.

  9. Prototype solar heating and cooling systems, including potable hot water

    Science.gov (United States)

    Bloomquist, D.; Oonk, R. L.

    1977-01-01

    Progress made in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water is reported. The system consists of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition. A comparison of the proposed Solaron Heat Pump and Solar Desiccant Heating and Cooling Systems, installation drawings, data on the Akron House at Akron, Ohio, and other program activities are included.

  10. West Chester Work Center: solar space heating demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    This document reports on the construction stage of a solar space heating demonstration project. It describes an integrated system providing solar energy space heating for a 9982 sq. ft., newly built, one-story building. The building is located at 966 Matlack Street, West Goshen Township, Chester County, Pennsylvania. Functionally, the building consists of two sections: An Office and a Storeroom. The Office section is heated by solar-assisted water-to-air heat pump units. The Storeroom section is heated by an air-handling unit, containing a water-to-air coil. Solar energy is expected to provide 62% of the heating load, with the balance provided by a back-up electric boiler. The system includes 1900 active (2112 gross) square feet of flat-plate solar collectors, and a 6000 gallon above-ground indoor storage tank. Freeze protection is provided by a gravity drain-down scheme combined with nitrogen pressurization in a closed circuit.

  11. Helioseismic constraints to the central solar temperature and neutrino fluxes

    OpenAIRE

    Ricci, B.; Berezinsky, V.; Degl'Innocenti, S.; Dziembowski, W. A.; Fiorentini, G.

    1997-01-01

    The central solar temperature T and its uncertainties are calculated in helioseismologically-constrained solar models. From the best fit to the convective radius, density at the convective radius and seismically determined helium abundance the central temperature is found to be T=1.58x10^7 K, in excellent agreement with Standard Solar Models. Conservatively, we estimate that the accuracy of this determination is Delta T/T=1.4 %, better than that in SSM. Neutrino fluxes are calculated. The low...

  12. Central heating in Norway. A study of the market trends for the period 2008-2011; Vannbaaren varme i Norge. Et studium av markedsutviklingen i perioden 2008-2011

    Energy Technology Data Exchange (ETDEWEB)

    Haarberg, Karl Johan; Hansen, Eivind; Bjoerneng, Heidi; Vasvik, Truls

    2012-11-01

    Under floor heating distribution buildings gives the flexibility to accept multiple forms of renewable energy, whether from district heating, biomass, solar collectors or heat pumps. Central heating is therefore a joker for a flexible energy. This is why Prognosesenteret commissioned by Enova has conducted a survey on central heating systems aimed at plumbers over a 5-year period. (eb)

  13. Investigations of Intelligent Solar Heating Systems for Single Family House

    DEFF Research Database (Denmark)

    Andersen, Elsa; Chen, Ziqian; Fan, Jianhua;

    2014-01-01

    tank in tank heat storage with domestic hot water in the inner tank and space heating water in the outer tank. The total tank volume is 750 liters and the solar collector area is 9 m2. The auxiliary energy supply system is based on electrical heating element(s)/heat pump and is different for all three...... systems.The system will be equipped with an intelligent control system where the control of the electrical heating element(s)/heat pump is based on forecasts of the variable electricity price, the heating demand and the solar energy production.By means of numerical models of the systems made in Trnsys......, the control strategy of intelligent solar heating systems is investigated and the yearly auxiliary energy use of the systems and the electricity price for supplying the consumers with domestic hot water and space heating are calculated....

  14. Hydrophobic Light-to-Heat Conversion Membranes with Self-Healing Ability for Interfacial Solar Heating

    KAUST Repository

    Zhang, Lianbin

    2015-07-01

    Self-healing hydrophobic light-to-heat conversion membranes for interfacial solar heating are fabricated by deposition of light-to-heat conversion material of polypyrrole onto porous stainless steel mesh, followed by hydrophobic fluoroalkylsilane modification. The mesh-based membranes spontaneously stay at the water–air interface, collect and convert solar light into heat, and locally heat only the water surface for an enhanced evaporation.

  15. Hydrophobic Light-to-Heat Conversion Membranes with Self-Healing Ability for Interfacial Solar Heating.

    Science.gov (United States)

    Zhang, Lianbin; Tang, Bo; Wu, Jinbo; Li, Renyuan; Wang, Peng

    2015-09-01

    Self-healing hydrophobic light-to-heat conversion membranes for interfacial solar heating are fabricated by deposition of light-to-heat conversion material of polypyrrole onto a porous stainless-steel mesh, followed by hydrophobic fluoroalkylsilane modification. The mesh-based membranes spontaneously stay at the water-air interface, collect and convert solar light into heat, and locally heat only the water surface for enhanced evaporation. PMID:26184454

  16. A Review of a Successful Unsubsidized Market-Based Rural Solar Development Initiative in Laikipia District, Central Kenya

    OpenAIRE

    O. Wambuguh

    2013-01-01

    The development of renewable energy technologies (RETs) in many areas far from grid-based electricity have primarily involved solar photovoltaics (SPVs) which tap solar radiation to provide heat, light, hot water, electricity, and cooling for homes, businesses, and industry. A study on RETs took place in the Wiyumiririe Location of Laikipia District (north-central Kenya), a rich agricultural region. To explore this solar initiative in such a remote part of the country, a purposive randomized ...

  17. Heat yield and characteristics of solar collectors

    International Nuclear Information System (INIS)

    The results of the EIR collector test series of the summers 1978 and 1979 are presented. In total, there are 37 different collectors available on the Swiss market. The results are compared with those from the IEA (International Energy Agency) of presuggested reference collectors. Test methods are described and also the construction of the test bench. Also, briefly described is a development method for the calculation of gross heat yield from solar collectors. Then the characteristics of the reference collectors in connection with the test periods are considered, and their role in the calculation of results of single collector test series explained. A description of the spectral photometer is given. (A.N.K.)

  18. Bidirectional solar wind electron heat flux events

    Science.gov (United States)

    Gosling, J. T.; Baker, D. N.; Bame, S. J.; Feldman, W. C.; Zwickl, R. D.; Smith, E. J.

    1987-01-01

    ISEE 3 plasma and magnetic field data are used here to document the general characteristics of bidirectional electron heat flux events (BEHFEs). Significant field rotations often occur at the beginning and/or end of such events and, at times, the large-field rotations characteristic of 'magnetic clouds' are present. Approximately half of all BEHFEs are associated with and follow interplanetary shocks, while the other events have no obvious shock associations. When shock-associated, the delay from shock passage typically is about 13 hours, corresponding to a radial separation of about 0.16 AU. When independent of any shock association, BEHFEs typically are about 0.13 AU thick in the radial direction. It is suggested that BEHFEs are one of the more prominent signatures of coronal mass ejection events in the solar wind at 1 AU.

  19. Thermal storage technologies for solar industrial process heat applications

    Science.gov (United States)

    Gordon, L. H.

    1979-01-01

    The state-of-the-art of thermal storage subsystems for the intermediate and high temperature (100 C to 600 C) solar industrial process heat generation is presented. Primary emphasis is focused on buffering and diurnal storage as well as total energy transport. In addition, advanced thermal storage concepts which appear promising for future solar industrial process heat applications are discussed.

  20. Solar Injury and Heat Illness. Treatment and Prevention in Children.

    Science.gov (United States)

    Gutierrez, Greg

    1995-01-01

    Children are especially vulnerable to solar injury and heat illness. Physicians can lower children's risk through education about short-term and long-term sequelae and through various prevention efforts. The paper discusses how to screen for risk factors and how to prevent and treat heat illness and solar injury. (SM)

  1. CORE ELECTRON HEATING IN SOLAR WIND RECONNECTION EXHAUSTS

    International Nuclear Information System (INIS)

    We present observational evidence of core electron heating in solar wind reconnection exhausts. We show two example events, one which shows clear heating of the core electrons within the exhaust, and one which demonstrates no heating. The event with heating occurred during a period of high inflow Alfvén speed (V AL), while the event with no heating had a low V AL. This agrees with the results of a recent study of magnetopause exhausts, and suggests that similar core electron heating can occur in both symmetric (solar wind) and asymmetric (magnetopause) exhausts

  2. Solar/electric heating systems for the future energy system

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Dannemand, M.; Perers, B. [and others

    2013-05-15

    The aim of the project is to elucidate how individual heating units for single family houses are best designed in order to fit into the future energy system. The units are based on solar energy, electrical heating elements/heat pump, advanced heat storage tanks and advanced control systems. Heat is produced by solar collectors in sunny periods and by electrical heating elements/heat pump. The electrical heating elements/heat pump will be in operation in periods where the heat demand cannot be covered by solar energy. The aim is to use the auxiliary heating units when the electricity price is low, e.g. due to large electricity production by wind turbines. The unit is equipped with an advanced control system where the control of the auxiliary heating is based on forecasts of the electricity price, the heat demand and the solar energy production. Consequently, the control is based on weather forecasts. Three differently designed heating units are tested in a laboratory test facility. The systems are compared on the basis of: 1) energy consumption for the auxiliary heating; 2) energy cost for the auxiliary heating; 3) net utilized solar energy. Starting from a normal house a solar combi system (for hot water and house heating) can save 20-30% energy cost, alone, depending on sizing of collector area and storage volume. By replacing the heat storage with a smart tank based on electric heating elements and a smart control based on weather/load forecast and electricity price information 24 hours ahead, another 30-40% can be saved. That is: A solar heating system with a solar collector area of about 10 m{sup 2}, a smart tank based on electric heating element and a smart control system, can reduce the energy costs of the house by at least 50%. No increase of heat storage volume is needed to utilize the smart control. The savings in % are similar for different levels of building insulation. As expected a heat pump in the system can further reduce the auxiliary electricity

  3. Zero Energy Communities with Central Solar Plants using Liquid Desiccants and Local Storage: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Burch, J.; Woods, J.; Kozubal, E.; Boranian, A.

    2012-08-01

    The zero energy community considered here consists of tens to tens-of-thousands of residences coupled to a central solar plant that produces all the community's electrical and thermal needs. A distribution network carries fluids to meet the heating and cooling loads. Large central solar systems can significantly reduce cost of energy vs. single family systems, and they enable economical seasonal heat storage. However, the thermal distribution system is costly. Conventional district heating/cooling systems use a water/glycol solution to deliver sensible energy. Piping is sized to meet the peak instantaneous load. A new district system introduced here differs in two key ways: (i) it continuously distributes a hot liquid desiccant (LD) solution to LD-based heating and cooling equipment in each home; and (ii) it uses central and local storage of both LD and heat to reduce flow rates to meet average loads. Results for piping sizes in conventional and LD thermal communities show that the LD zero energy community reduces distribution piping diameters meeting heating loads by {approx}5X and meeting cooling loads by {approx}8X for cooling, depending on climate.

  4. High heat flux engineering in solar energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, C.P.

    1993-07-01

    Solar thermal energy systems can produce heat fluxes in excess of 10,000 kW/m{sup 2}. This paper provides an introduction to the solar concentrators that produce high heat flux, the receivers that convert the flux into usable thermal energy, and the instrumentation systems used to measure flux in the solar environment. References are incorporated to direct the reader to detailed technical information.

  5. Theoretical Investigation of the Performance of a Novel Loop Heat Pipe Solar Water Heating System for Use in Beijing, China

    OpenAIRE

    ZHAO, Xudong; Wang, Zhangyuan; Tang, Qi

    2010-01-01

    Abstract A novel loop heat pipe (LHP) solar water heating system for typical apartment buildings in Beijing was designed to enable effective collection of solar heat, distance transport, and efficient conversion of solar heat into hot water. Taking consideration of the heat balances occurring in various parts of the loop, such as the solar absorber, heat pipe loop, heat exchanger and storage tank, a computer model was developed to investigate the thermal performance of the system. ...

  6. A solar air collector with integrated latent heat thermal storage

    OpenAIRE

    Klimes Lubomir; Mauder Tomas; Ostry Milan; Charvat Pavel

    2012-01-01

    Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM) was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage...

  7. THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER

    Energy Technology Data Exchange (ETDEWEB)

    PROJECT STAFF

    2011-10-31

    Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature and electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially

  8. FACTORS AFFECTING HEAT TOLERANCE IN CROSSBRED CATTLE IN CENTRAL BRAZIL

    Directory of Open Access Journals (Sweden)

    Concepta Margaret McManus

    2014-06-01

    Full Text Available This study compared the adaptation traits in common crosses of crossbred dairy cattle in central Brazil. Twenty animals of each of three genetic groups were used: zebu (Bos indicus, Simmental x Zebu (SZ and Holstein x Zebu (HZ. The test measured variations in rectal temperature (RT, respiration rate (RR and heart rate (HR of animals in the shade and after exposure to the sun, as well as mean daily milk production throughout the lactation period. The procedure was repeated three times. There were significant interactions between test group and genetic group for the traits investigated and the correlations among traits were low. The RR of the crossbred groups may be controlling body temperature in such a way as not to cause an increase in RT. Milk production influenced RR in crossbred cows exposed to the sun, confirming their poorer adaptation in comparison with zebu cows. We observed that the adaptation can be measured in terms of production within the same genetic group. In conclusion, the crosses with European breeds produced more milk than zebu, although they were influenced by heat/solar radiation.

  9. Coronal Heating, Spicules, and Solar-B

    Science.gov (United States)

    Moore, Ron; Falconer, David; Porter, Jason; Hathaway, David; Yamauchi, Yohei

    2003-01-01

    Falconer et al. investigated the heating of the quiet corona by measuring the increase of coronal luminosity with the amount of the magnetic flux in the underlying network at solar minimum when there were no active regions on the face of the Sun. The coronal luminosity was measured from Fe IX/X - Fe XII pairs of coronal images from SOHO/EIT, under the assumption that practically all of the coronal luminosity in these very quiet regions came from plasma in the temperature range 0.9 x 10(exp 6) K is less than or equal to T is less than or equal to 1.3 x 10(exp 6) K. The network magnetic flux content was measured from SOHO/MDI magnetograms. It was found that luminosity of the corona in these quiet regions increased roughly in proportion to the square root of the magnetic flux content of the network and roughly in proportion to the length of the perimeter of the network flux clumps. From 1) this result; 2) the observed occurrence of many fine-scale explosive events (e.g., spicules) at the edges of network flux clumps; and 3) a demonstration that it is energetically feasible for the heating of the corona in quiet regions to be driven by explosions of granule-sized sheared-core magnetic bipoles embedded in the edges of the network flux clumps, Falconer et al. infer that in quiet regions that are not influenced by active regions the corona is mainly heated by such magnetic activity in the edges of the network flux clumps. From their observational results together with their feasibility analysis, Falconer et al. predict that 1) At the edges of the network flux clumps there are many transient sheared core bipoles of the size and lifetime of granules and having transverse field strengths greater than approx. 100 G; 2) Approx. 30 of these bipoles are present per supergranule; and 3) Most spicules are produced by explosions of these bipoles. The photospheric vector magnetograms, chromospheric filtergrams, and EUV spectra from Solar-B are expected to have sufficient sensitivity

  10. Expedient arrangement of newly constructed systems for centralized heat supply

    Science.gov (United States)

    Zeigarnik, Yu. A.; Rotinov, A. G.

    2008-11-01

    It is shown that for newly constructed combined-cycle cogeneration plants and nuclear cogeneration plants, the optimum arrangement of the centralized heat supply system is the combination of a cogeneration plant and a district heat-supply station (a boiler house).

  11. Solar/gas Brayton/Rankine cycle heat pump assessment

    Science.gov (United States)

    Rousseau, J.; Liu, A. Y.

    1982-05-01

    A 10-ton gas-fired heat pump is currently under development at AiResearch under joint DOE and GRI sponsorship. This heat pump features a highly efficient, recuperated, subatmospheric Brayton-cycle engine which drives the centrifugal compressor of a reversible vapor compression heat pump. The investigations under this program were concerned initially with the integration of this machine with a parabolic dish-type solar collector. Computer models were developed to accurately describe the performance of the heat pump packaged in this fashion. The study determined that (1) only a small portion (20 to 50 percent) of the available solar energy could be used because of a fundamental mismatch between the heating and cooling demand and the availability of solar energy, and (2) the simple pay back period, by comparison to the baseline non-solar gas-fired heat pump, was unacceptable (15 to 36 years).

  12. Solar-heating and cooling system design package

    Science.gov (United States)

    1980-01-01

    Package of information includes design data, performance specifications, drawings, hazard analysis, and spare parts list for commercially produced system installed in single-family dwelling in Akron, Ohio. System uses air flat-plate collectors, 12000 kg rock storage and backup heat pump. Solar portion requires 0.7 kW, and provides 35% of average total heating load including hot water. Information aids persons considering installing solar home-heating systems.

  13. Model Predictive Control of mixed solar and electric heating

    OpenAIRE

    Holth, Erik

    2009-01-01

    In this report we will model a heat system consisting of a heat storage tank and an application. The heat storage tank is supplied by a heating element and heated water from a solar collector. The main objective of the heat system is to mainatian a reference temperature in the application (a house). Weather forecasts will be used as weather data affecting the heat system. We will assume that the weather forecasts and the actual weather will be the same. The heat sytem will consist of simplifi...

  14. Preliminary design package for solar heating and cooling systems

    Science.gov (United States)

    1978-01-01

    Summarized preliminary design information on activities associated with the development, delivery and support of solar heating and cooling systems is given. These systems are for single family dwellings and commercial applications. The heating/cooling system use a reversible vapor compression heat pump that is driven in the cooling mode by a Rankine power loop, and in the heating mode by a variable speed electric motor. The heating/cooling systems differ from the heating-only systems in the arrangement of the heat pump subsystem and the addition of a cooling tower to provide the heat sink for cooling mode operation.

  15. Business Opportunity Prospectus for Utilities in Solar Water Heating

    Energy Technology Data Exchange (ETDEWEB)

    Energy Alliance Group

    1999-06-30

    Faced with deregulation and increasingly aggressive competition, utilities are looking for new products and services to increase revenues, improve customer loyalty and retention, and establish barriers to market erosion. With open access now a reality, and retail wheeling just around the corner, business expansion via new products and services is now the central goal for most utilities in the United States. It may seem surprising that solar thermal energy as applied to heating domestic hot water - an idea that has been around for a long time - offers what utilities and their residential customers want most in a new product/service. This document not only explains how and why, it shows how to get into the business and succeed on a commercial scale.

  16. Solar Heating in Uppsala : A case study of the solar heating system in the neighbourhood Haubitsen in Uppsala

    OpenAIRE

    Blomqvist, Emelie; Häger, Klara; Wiborgh, Malin

    2012-01-01

    The housing corporation Uppsalahem has installed asolar heating system in the neighbourhood Haubitsen,which was renovated in 2011. This report examineshow much energy the solar heating system is expectedto generate and which factors could improve theefficiency. Simulations suggest that the solar heatingsystem can to cover about 22 per cent of the domestichot water demand in Haubitsen, which corresponds to50 MWh for a year. If some factors, such as the tilt ofthe solar collectors would have be...

  17. NUMERICAL ANALYSIS OF HEAT STORAGE OF SOLAR HEAT IN FLOOR CONSTRUCTION

    DEFF Research Database (Denmark)

    Weitzmann, Peter; Holck, Ole; Svendsen, Svend

    2003-01-01

    including pipe spacing, storage materials, and distribution of insulation around the thermal storage layer. The energy consump-tion, reduction due to the heat storage and total performance of the solar heating system was calculated. The largest reduction of 100 kWh/m² solar collector occurred in the house......In this paper, heat storage of solar heating in the floor construction of single-family houses is examined. A floor construction with two concrete decks is investigated. The lower is used as heat storage while the upper deck has a floor heating system. The potential for a reduction of the energy...... system room temperature and energy consumption. A single-family house with and without heat recovery unit on the ventilation system of 130 m² with heating demand of approximately 70 kWh/m² and 40 kWh/m² is investigated. A parametrical analysis was performed for the solar collector area, and floor layouts...

  18. Development and testing of heat transport fluids for use in active solar heating and cooling systems

    Science.gov (United States)

    Parker, J. C.

    1981-01-01

    Work on heat transport fluids for use with active solar heating and cooling systems is described. Program objectives and how they were accomplished including problems encountered during testing are discussed.

  19. Air heating solar collectors and its applicability for room ventilation and heating

    International Nuclear Information System (INIS)

    This paper describes the results of the investigation the aim of which was to find new air heating solar collector constructions and easily to accessible materials which it is possible to use as absorbers. We tested the inflatable air heating solar collector construction. Inflatable solar collector gives good correlation with air heating degree and radiation (r=0.93). This type of collectors very sensitive to radiation changes, response time is only about 1 minute. Given type of air heating solar collectors is a good efficiency, the efficiency coefficient is Ș =0.63. Absorber materials (seed boxes made by polypropylene, black colored energy drink cans situated on steel-tinplate ) are tested for room heating and ventilating. Stationary air heating solar collectors for room heating are using in case, when sun radiation exceed 300 W/m2 , otherwise it is not effective or ambient air temperature is cooling room air. Collectors is recommended for room ventilation to reduce heat lost in cold weather. The collectors should be well insulated, especially if they are to be used in early spring, when ambient temperatures are low. These researches show air heating solar collectors applicability in room heating and ventilating, agricultural production drying at Latvia weather conditions Key words: solar collector, air heating, temperature, absorber

  20. Study and Test of Cold Storage Heat Recovery Heat Pump Coupled Solar Drying Device

    Directory of Open Access Journals (Sweden)

    Min Li

    2013-05-01

    Full Text Available In this study, we design the recovery of a heat pump combined solar drying device. Then, with this device, drying experiments of aquatic product, tilapia, were conducted, indicating that the newly designed device functions are well in temperature adjusting and controlling performance and showing that drying time is closely related to energy consumption and drying conditions. Heat recovery heat pump combined solar energy drier can improve the drying quality of aquatic products, but also can greatly reduce the drying energy consumption, which provides theoretical support to the design and processing of heat recovery heat pump of refrigeration system coupled solar drying device.

  1. Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1981-09-01

    Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

  2. Solar water heating systems : a buyer's guide

    Energy Technology Data Exchange (ETDEWEB)

    Noble, M. [EnerWorks, London, ON (Canada)

    2000-07-01

    The basic operation of domestic solar water heaters was described to inform consumers about the various types currently available on the market and to assist them in choosing a product for residential needs. In addition to reducing energy costs by 50 per cent compared to conventional water heaters, their use minimizes greenhouse gas emissions. A typical unit, which can be easily retrofitted to an existing system for year-round or seasonal use, consists of a solar collector mounted on a roof where sunlight passes through an absorbing material and is converted into heat. It also includes a pump which circulates heat transfer fluid, a heat exchanger, and storage tanks. Dealers recognized by the Canadian Solar Industries Association and the Solar Energy Society of Canada can recommend qualified installers who comply with CSA standards. The primary factors which determine energy conservation are routine maintenance, the size of the collector, appliance efficiency, amount of sunlight and amount of water consumed. Laundering during the day, installing low-flow showerheads, insulating pipes, and using tepid water for laundry can further reduce energy costs. Solar energy can also be used for residential pool heating, passive and active solar space heating and photovoltaic systems which are commonly used in remote off-grid areas. A simple method to calculate annual dollar saving from a solar water heating system was included with this guide along with a glossary, a reader survey and a list of sources for more information on solar energy. 2 tabs., 11 figs.

  3. Optimal Power Consumption in a Central Heating System with Geothermal Heat Pump

    DEFF Research Database (Denmark)

    Tahersima, Fatemeh; Stoustrup, Jakob; Rasmussen, Henrik

    2011-01-01

    Driving a ground source heat pump in a central heating system with the minimum power consumption is studied. The idea of control is based on the fact that, in a heat pump, the temperature of the forward water has a strong positive correlation with the consumed electric power by the compressor. Th...

  4. Solar heating and cooling systems design and development. [prototype development

    Science.gov (United States)

    1977-01-01

    The development of twelve prototype solar heating/cooling systems, six heating and six heating and cooling systems, two each for single family, multi-family, and commercial applications, is reported. Schedules and technical discussions, along with illustrations on the progress made from April 1, 1977 through June 30, 1977 are detailed.

  5. Heat recovery versus solar collection in a ventilated double window

    International Nuclear Information System (INIS)

    The ventilated double window, as a passive heating system, acts as a heat reclaiming device. Part of the heat loss from inside through the window is returned back to the room by the air flow, acting as a heat recoverer. Incident solar radiation upon the window warms its components being part of that heat removed by the air flow delivering it into the room, acting as a solar collector. The effect of these two functions were analysed in this study, through numerical simulation based on outdoor tests under real weather conditions. It was found that solar collector function plays a small role in the pre-heating of the air. First of all this is due to the system’s transparency, which allows most of the solar radiation to enter directly to the indoor space. Secondly, in a 24 h period there are only some hours of sunshine. Instead, heat recovery works all the time, the conclusion being that this passive heating device can be used on any facade orientation. - Highlights: ► A ventilated double window provides pre-warmed air for winter ventilation. ► It recovers part of the lost heat delivering it again to the inside. ► A ventilated double window acts as a vertical solar air collector. ► The heat transfer conditions make it suitable on any facade orientation.

  6. Solar central receiver reformer system for ammonia plants

    Science.gov (United States)

    1980-07-01

    An overview of a study to retrofit the Valley Nitrogen Producers, Inc., El Centro, California 600 ST/SD Ammonia Plant with Solar Central Receiver Technology is presented. The retrofit system consists of a solar central receiver reformer (SCRR) operating in parallel with the existing fossil fired reformer. Steam and hydrocarbon react in the catalyst filled tubes of the inner cavity receiver to form a hydrogen rich mixture which is the syngas feed for the ammonia production. The SCRR system will displace natural gas presently used in the fossil reformer combustion chamber.

  7. The research of direct heating solar seawater desalination system

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Juyuan [Tianjin Univ. of Technology (China); Su Runxi [Tianjin Inst. of Seawater Desalination and Multipurpose Utilization, State Oceanic Administration, TJ (China); Xu Zhibin [Himin Solar Energy Group, SD (China); Cui Mingxian [Tianjin Univ. of Technology, TJ (China)

    2008-07-01

    The new seawater desalination technology of direct heating seawater by solar energy is put forward in this article. The solar energy collector is made of newly developed PPR mill micron material, which makes it corrosion-resistant and hardly deform less than 135 C, so as to guarantee its sealing. This new desalination technology combines flashing with MED, which makes it possible for seawater to be directly heated by solar energy. It also fits solar energy as an unsteady heat source. Besides, the operating conditions which avoid exchanger deposition are presented. Compared with traditional technology, it can save an exchanger, avoid temperature drop of heat exchanger, raise heat efficiency, and increase the production ratio by more than 10%. (orig.)

  8. A simplified heat pump model for use in solar plus heat pump system simulation studies

    DEFF Research Database (Denmark)

    Perers, Bengt; Andersen, Elsa; Nordman, Roger; Kovacs, Peter

    2012-01-01

    Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here is...

  9. Financial study of commercialization of solar central receiver power systems

    Science.gov (United States)

    1981-03-01

    Commercialization requires that central receiver (CR) systems meet the economic criteria used by industry to select systems for capital ventures. Quantitative estimates are given of the investment required by government, utilities, and the manufacturing sector to meet the energy displacement goals for central receiver technology. Initial solar repowering and stand-alone electric utility plants will not have economic comparability with competitive energy sources. A major factor for this is that initial (first of a kind) heliostat costs will be high. As heliostat costs are reduced due to automated manufacturing economies, learning, and high volume production, central receiver technology will become more competitive. Under this task, several scenarios (0.1, 0.5, and 1.0 quad/y) were evaluated to determine the effect on commercial attractiveness and to determine the cost to government to bring about commercialization of solar central receivers.

  10. Packaged solar water heating technology: twenty years of progress

    International Nuclear Information System (INIS)

    The world market for packaged solar water heaters is reviewed, and descriptions are given of the different types of solar domestic water heaters (SDWH), design concepts for packaged SDWH, thermosyphon SDWH, evacuated insulation and excavated tube collectors, seasonally biased solar collectors, heat pump water heaters, and photovoltaic water heaters. The consumer market value for SDWHs is explained, and the results of a survey of solar water heating are summarised covering advantages, perceived disadvantages, the relative importance of purchase decision factors, experience with system components, and the most frequent maintenance problems. The durability, reliability, and performance of SDWHs are discussed

  11. Manual for participants in the solar heating/cooling seminars

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    This manual was intended as a text for participants in the Solar Heating/Cooling seminars presented in conjunction with the ERDA Transportable Solar Laboratory in various regions of the US. The seminar was designed to introduce the practical aspects of solar heating/cooling systems to HVAC contractors, architects, engineers, and other interested individuals. The two-day course enabled the attendees to assess potential solar applications in their geographic area, including tools to do a preliminary design of the system and to analyze its economic benefits. (WDM)

  12. Experimental investigations of the performance of a solar air collector with latent heat thermal storage integrated with the solar absorber

    OpenAIRE

    Hejcik J.; Pech O.; Charvat P.

    2013-01-01

    The paper deals with experimental investigations of the performance of a solar air collector with latent heat thermal storage integrated with the solarabsorber. The main purpose of heat storage in solar thermal systems is to store heat when the supply of solar heat exceeds demand and release it when otherwise. A number of heat storage materials can be used for this purpose; the phase change materials among them. Short-term latent heat thermal storage integrated with the solar absorber can sta...

  13. System design package for solar heating and cooling site data acquisition subsystem: Mod 1

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-01

    The Site Data Acquisition Subsystem (SDAS) is designed to collect data from sensors located on residential or commercial buildings using a solar heating and/or cooling system. It takes the data obtained from sensors located on the solar system, processes the data into suitable format, stores the data for a period of time, and provides the capability for either telephone retrieval by the Central Data Processing System (CDPS) or manual retrieval of the data for transfer to a central site. The SDAS is also designed so that it will not degrade the operation of the solar heating/cooling system which it is monitoring. Documentation necessary to evaluate the design of the SDAS is included; i.e., SDAS Description Document, SDAS Performance Specification, and drawing list.

  14. Solar cadastre in south Hessen. Study of experiences with solar heating systems. Solar Kataster Suedhessen. Untersuchung ueber Erfahrungen mit Solaranlagen

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Using a collection of data on solar heating systems in South Hessen, this project set out to offer the consumer a survey of experiences and problems with solar heating systems; also to show what possibilities are open to people for using solar energy actively and to what extent solar energy can cover heat consumption. Figures from 70 plants have been gathered. However, the number of plants at which measurements were taken for the energy bilance, was restricted to a maximum of ten. The following points were included in the programme: Questionaires for gathering information about the solar heating systems used in South Hessen, measurements for the determination of efficiency and of the characteristic quantities of plants, economic studies of the profitability of solar heating systems and conclusions and recommendations.

  15. Investigation of evacuated tube heated by solar trough concentrating system

    International Nuclear Information System (INIS)

    Two types of solar evacuated tube have been used to measure their heating efficiency and temperature with fluids of water and N2 respectively with a parabolic trough concentrator. Experiments demonstrate that both evacuated tubes present a good heat transfer with the fluid of water, the heating efficiency is about 70-80%, and the water is easy to boil when liquid rate is less than 0.0046 kg/s. However, the efficiency of solar concentrating system with evacuated tube for heating N2 gas is less than 40% when the temperature of N2 gas reaches 320-460 deg. C. A model for evacuated tube heated by solar trough concentrating system has been built in order to further analyze the characteristics of fluid which flow evacuated tube. It is found that the model agrees with the experiments to within 5.2% accuracy. The characteristics of fluid via evacuated tube heated by solar concentrated system are analyzed under the varying conditions of solar radiation and trough aperture area. This study supports research work on using a solar trough concentrating system to perform ammonia thermo-chemical energy storage for 24 h power generation. The current research work also has application to solar refrigeration

  16. Experimental Investigation of a Concentrating Solar Fryer with Heat Storage

    OpenAIRE

    Tesfay, Asfafaw Haileselassie

    2015-01-01

    Today many of the solar cookers available in the market are direct cookers, without storage, and they are used for low to medium temperature cooking purposes. In this dissertation, experiments of heat collection, transportation and storage have been carried out using parabolic dish concentrators, steam as heat carrier and phase change material (PCM) as heat storage respectively. The design of the system has been focused to meet the demand for high temperature heat storage, in a...

  17. Experiments on novel solar heating and cooling system

    International Nuclear Information System (INIS)

    Solar heating and nocturnal radiant cooling techniques are united to produce a novel solar heating and cooling system. The radiant panel with both heating and cooling functions can be used as structural materials for the building envelope, which realizes true building integrated utilization of solar energy. Based on the natural circulation principle, the operation status can be changed automatically between the heating cycle and the cooling cycle. System performances under different climate conditions using different covers on the radiant panel are studied. The results show that the novel solar heating and cooling system has good performance of heating and cooling. For the no cover system, the daily average heat collecting efficiency is 52% with the maximum efficiency of 73%, while at night, the cooling capacity is about 47 W/m2 on a sunny day. On a cloudy day, the daily average heat collecting efficiency is 47% with the maximum of 84%, while the cooling capacity is about 33 W/m2. As a polycarbonate (PC) panel or polyethylene film are used as covers, the maximum heat collecting efficiencies are 75% and 72% and the daily average heat collecting efficiencies are 61% and 58%, while the cooling capacities are 50 W/m2 and 36 W/m2, respectively

  18. Modelling radiative heat transfer inside a basin type solar still

    International Nuclear Information System (INIS)

    Radiative heat transfer inside a basin type solar still has been investigated using two models with (model 1) and without (model 2) taking into account optical view factors. The coefficient of radiative heat exchange (hr,w-gc) between the water and cover surfaces of a practical solar still was computed using the two models. Simulation results show that model 1 yields lower values of hr,w-gc and the root mean square error than model 2. It is therefore concluded that the accuracy of modelling the performance of a basin-type solar still can be improved by incorporating view factors. - Highlights: • Radiative heat transfer in a basin type solar still has been investigated. • Two models with and without view factors were used. • The model with view factors exhibits a lower magnitude of root mean square error. • View factors affect the accuracy of modelling the performance of the solar still

  19. Thermal analyses of solar swimming pool heating in Pakistan

    International Nuclear Information System (INIS)

    Hotels and swimming clubs in Pakistan pay huge gas bills for heating Swimming pools in winter. Winter days in most parts of Pakistan remain sunny and unglazed low cost solar collectors may be used to extend the swimming season. Installing the pool in a wind-protected area, which receives unobstructed solar radiation, may further reduce the size of the solar collectors required to heat the swimming pools. The pools should be covered with plastic sheet to eliminate evaporative heat losses and to prevent dust and tree leaves falling in the pool. The results of the thermal analysis show that in some parts of the country, a solar exposed pool can maintain comfortable temperature simply by using a plastic sheet on the pool surface. On the other hand, there are cities where solar collector array equal to twice the surface area of the pool is required to keep desired temperature in winter. (author)

  20. Preliminary design package for prototype solar heating and cooling systems

    Science.gov (United States)

    1978-01-01

    A summary is given of the preliminary analysis and design activity on solar heating and cooling systems. The analysis was made without site specific data other than weather; therefore, the results indicate performance expected under these special conditions. Major items include a market analysis, design approaches, trade studies and other special data required to evaluate the preliminary analysis and design. The program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test. Two heating and six heating and cooling units will be delivered for Single Family Residences, Multiple-family Residences and commercial applications.

  1. Heat Transfer Convection in The Cooking of Apple Using a Solar Cooker Box-Type

    International Nuclear Information System (INIS)

    In this work, experimental results to determine the convection heat transfer coefficient in the cooking process of apple using a solar cooker box-type are presented. Experimental data of temperatures for water, surface and central point of the apple were used. To determine the convection coefficient, the apple was modelled as a sphere. The temperatures evolution was defined using thermocouples located at water, surface and central point in the vegetables. Using heat transfer convection equations in transitory state and the temperatures measured, the Biot number and the convection coefficient were determined

  2. The Source of Alfven Waves That Heat the Solar Corona

    Science.gov (United States)

    Ruzmaikin, A.; Berger, M. A.

    1998-01-01

    We suggest a source for high-frequency Alfven waves invoked in coronal heating and acceleration of the solar wind. The source is associated with small-scale magnetic loops in the chromospheric network.

  3. The Heating of the Solar Atmosphere: from the Bottom Up?

    Science.gov (United States)

    Winebarger, Amy

    2014-01-01

    The heating of the solar atmosphere remains a mystery. Over the past several decades, scientists have examined the observational properties of structures in the solar atmosphere, notably their temperature, density, lifetime, and geometry, to determine the location, frequency, and duration of heating. In this talk, I will review these observational results, focusing on the wealth of information stored in the light curve of structures in different spectral lines or channels available in the Solar Dynamic Observatory's Atmospheric Imaging Assembly, Hinode's X-ray Telescope and Extreme-ultraviolet Imaging Spectrometer, and the Interface Region Imaging Spectrograph. I will discuss some recent results from combined data sets that support the heating of the solar atmosphere may be dominated by low, near-constant heating events.

  4. Solar heating and cooling technical data and systems analysis

    Science.gov (United States)

    Christensen, D. L.

    1977-01-01

    The research activities described herein were concentrated on the areas of economics, heating and cooling systems, architectural design, materials characteristics, climatic conditions, educational information packages, and evaluation of solar energy systems and components.

  5. Building integration of concentrating solar systems for heating applications

    International Nuclear Information System (INIS)

    A new solar collection system integrated on the façade of a building is investigated for Dutch climate conditions. The solar collection system includes a solar façade, a receiver tube and 10 Fresnel lenses. The Fresnel lenses Fresnel lenses considered were linear, non-imaging, line – focused with a system tracking the position of the sun that ensures vertical incidence of the direct solar radiation on the lenses. For the heating system a double-effect absorption heat pump, which requires high temperature of the heating fluid, was used, working with water and lithium-bromide as refrigerant and solution respectively. The Fresnel lens system is connected with the absorption heat pump through a thermal energy storage tank which accumulates the heat from the Fresnel lens system to provide it to the high pressure generator of the absorption heat pump. - Highlights: • The integration of Fresnel lenses in solar thermal building façades is investigated. • Using building integrated Fresnel lenses, 43% heating energy can be saved. • Energy savings in Mediterranean countries are significantly larger. • The absorption heat pump could make great contribution to energy savings for Dutch climate conditions

  6. Negative heat capacities in central Xe+Sn reactions

    International Nuclear Information System (INIS)

    In this study the fluctuation method is applied to the 32-50 A.MeV Xe + Sn central collisions detected with the INDRA multidetector. This method based on kinetic energy fluctuations allows the authors to provide information on the liquid gas phase transition in nuclear multifragmentation. In the case of Xe + Sn central reactions a divergence in the total heat capacity is observed. This divergence corresponds to large fluctuations on the detected fragment partitions. A negative heat capacity branch is measured and so tends to confirm the observation of a first order phase transition in heavy-ion collisions. (A.C.)

  7. Negative heat capacities in central Xe+Sn reactions

    Energy Technology Data Exchange (ETDEWEB)

    Le Neindre, N.; Bougault, R.; Gulminelli, F. [Laboratoire de Physique Corpusculaire, IN2P3-CNRS, ISMRA et Universite, 14 - Caen (France)] [and others

    2000-02-01

    In this study the fluctuation method is applied to the 32-50 A.MeV Xe + Sn central collisions detected with the INDRA multidetector. This method based on kinetic energy fluctuations allows the authors to provide information on the liquid gas phase transition in nuclear multifragmentation. In the case of Xe + Sn central reactions a divergence in the total heat capacity is observed. This divergence corresponds to large fluctuations on the detected fragment partitions. A negative heat capacity branch is measured and so tends to confirm the observation of a first order phase transition in heavy-ion collisions. (A.C.)

  8. Proceedings of the solar industrial process heat symposium

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The purpose of the symposium was to review the progress of various solar energy systems currently under design for supplying industrial process heat. Formal presentations consisted of a review of solar energy applications in industrial process heat as well as several on-going project reviews. An Open Forum was held to solicit the comments of the participants. The recommendations of this Open Forum are included in these proceedings. Eighteen papers were included. Separate abstracts were prepared for each paper.

  9. Combined system for heating and cooling entirely using solar energy

    International Nuclear Information System (INIS)

    The paper presents an original technical solution for heating and cooling of premises using solar energy only. The main equipment is thermo-pump fed by photo-voltaic system. This combination permits the conversion of 45% of the solar energy to heat regardless of winter conditions. It is investigated the possibility for the use of an inverter air conditioning installation to maintain the conditions

  10. Simulation analysis of passive solar structures using heat transfer equations

    OpenAIRE

    M. Faruqi; P. Ghavami

    2010-01-01

    Passive solar design is an economical way of using solar energy in buildings. The thermal behavior of the buildings within its environment over a period of time can easily be predicted using accurate and simple analytical tools. This provides designers the information necessary to satisfy the occupant’s needs, reduce peak cooling/heating power demands, reduce the size of air conditioning/heating equipment, and the period for which it is required. There by, increasing the possibility of a succ...

  11. Design of annual storage solar space heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, F.C.; Cook, J.D.

    1979-11-01

    Design considerations for annual storage solar space heating systems are discussed. A simulation model for the performance of suh systems is described, and a method of classifying system configurations is proposed. It is shown that annual systems sized for unconstrained performance, with no unused collector or storage capacity, and no rejected heat, minimize solar acquisition costs. The optimal performance corresponds to the condition where the marginal storage-to-collector sizing ratio is equal to the corresponding marginal cost ratio.

  12. A Conceptual Design Study on the Application of Liquid Metal Heat Transfer Technology to the Solar Thermal Power Plant

    Science.gov (United States)

    Zimmerman, W. F.; Robertson, C. S.; Ehde, C. L.; Divakaruni, S. M.; Stacy, L. E.

    1979-01-01

    Alkali metal heat transfer technology was used in the development of conceptual designs for the transport and storage of sensible and latent heat thermal energy in distributed concentrator, solar Stirling power conversion systems at a power level of 15 kWe per unit. Both liquid metal pumped loop and heat pipe thermal transport were considered; system configurations included: (1) an integrated, focal mounted sodium heat pipe solar receiver (HPSR) with latent heat thermal energy storage; (2) a liquid sodium pumped loop with the latent heat storage, Stirling engine-generator, pump and valves located on the back side of the concentrator; and (3) similar pumped loops serving several concentrators with more centralized power conversion and storage. The focus mounted HPSR was most efficient, lightest and lowest in estimated cost. Design confirmation testing indicated satisfactory performance at all angles of inclination of the primary heat pipes to be used in the solar receiver.

  13. Study and Test of Cold Storage Heat Recovery Heat Pump Coupled Solar Drying Device

    OpenAIRE

    Min Li; Xiao-Qiang Jiang; Bao-Chuan Wu

    2013-01-01

    In this study, we design the recovery of a heat pump combined solar drying device. Then, with this device, drying experiments of aquatic product, tilapia, were conducted, indicating that the newly designed device functions are well in temperature adjusting and controlling performance and showing that drying time is closely related to energy consumption and drying conditions. Heat recovery heat pump combined solar energy drier can improve the drying quality of aquatic products, but also can gr...

  14. Solar heating of the produced water of petroleum; Aquecimento solar da agua produzida de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Rogerio Pitanga; Chiavone-Filho, Osvaldo; Bezerra, Magna A. Santos; Melo, Josette Lourdes Sousa de; Oliveira, Jackson Araujo de; Ramos, Rafael E. Moura [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Schuhli, Juliana Bregenski; Andrade, Vivian Tavares de [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    In this work, experimental data of solar heating for common water and saline solution were measured. The solar heater is formed by a flat-plane collector and a thermal reservoir ('boiler'). The objective is to quantify the variation of fluids' temperature, and correlate it to environment variables, especially solar irradiation. Thereby, it is possible to estimate the solar heating of produced water of petroleum. The solar heater is part of a system of treatment of produced water, and its function is to pre-heat the fluid that enters into the solar distiller, increasing the productivity of distilled water. A saline solution that represents produced water was used in the experiments, using sodium chloride (1000 ppm). The experimental data demonstrates that the solar heater is capable to heat the fluid to temperatures close to 70 deg C, reaching temperatures close to 50 deg C even during cloudy days with low solar radiation. Furthermore, the solar collector energy system provides a higher rate of heating and trough of the thermal reservoir the temperature can remain longer. These are important aspects to the integration with solar distillation. (author)

  15. Problems encountered in solar heating and cooling systems

    Science.gov (United States)

    Cash, M.

    1979-01-01

    Report discussing various experiences of workers at Marshall Space Flight Center in developing solar heating and cooling systems is presented. Presents compilation of problems and their resolutions which can assist designers of solar-energy systems and prevent repetition of errors.

  16. Solar heating and cooling system design and development

    Science.gov (United States)

    1979-01-01

    The design and development of marketable solar heating and cooling systems for single family and commercial applications is described. The delivery, installation, and monitoring of the prototype systems are discussed. Seven operational test sites are discussed in terms of system performance. Problems encountered with equipment and installation were usually due to lack of skills required for solar system installation.

  17. Inhibitor analysis for a solar heating and cooling system

    Science.gov (United States)

    Tabony, J. H.

    1977-01-01

    A study of potential corrosion inhibitors for the NASA solar heating and cooling system which uses aluminum solar panels is provided. Research consisted of testing using a dynamic corrosion system, along with an economic analysis of proposed corrosion inhibitors. Very good progress was made in finding a suitable inhibitor for the system.

  18. Thermal power generation projects ``Large Scale Solar Heating``; EU-Thermie-Projekte ``Large Scale Solar Heating``

    Energy Technology Data Exchange (ETDEWEB)

    Kuebler, R.; Fisch, M.N. [Steinbeis-Transferzentrum Energie-, Gebaeude- und Solartechnik, Stuttgart (Germany)

    1998-12-31

    The aim of this project is the preparation of the ``Large-Scale Solar Heating`` programme for an Europe-wide development of subject technology. The following demonstration programme was judged well by the experts but was not immediately (1996) accepted for financial subsidies. In November 1997 the EU-commission provided 1,5 million ECU which allowed the realisation of an updated project proposal. By mid 1997 a small project was approved, that had been requested under the lead of Chalmes Industriteteknik (CIT) in Sweden and is mainly carried out for the transfer of technology. (orig.) [Deutsch] Ziel dieses Vorhabens ist die Vorbereitung eines Schwerpunktprogramms `Large Scale Solar Heating`, mit dem die Technologie europaweit weiterentwickelt werden sollte. Das daraus entwickelte Demonstrationsprogramm wurde von den Gutachtern positiv bewertet, konnte jedoch nicht auf Anhieb (1996) in die Foerderung aufgenommen werden. Im November 1997 wurden von der EU-Kommission dann kurzfristig noch 1,5 Mio ECU an Foerderung bewilligt, mit denen ein aktualisierter Projektvorschlag realisiert werden kann. Bereits Mitte 1997 wurde ein kleineres Vorhaben bewilligt, das unter Federfuehrung von Chalmers Industriteknik (CIT) in Schweden beantragt worden war und das vor allem dem Technologietransfer dient. (orig.)

  19. A solar air collector with integrated latent heat thermal storage

    Science.gov (United States)

    Charvat, Pavel; Ostry, Milan; Mauder, Tomas; Klimes, Lubomir

    2012-04-01

    Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM) was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data).

  20. A solar air collector with integrated latent heat thermal storage

    Directory of Open Access Journals (Sweden)

    Klimes Lubomir

    2012-04-01

    Full Text Available Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data.

  1. Performance analysis on solar-water compound source heat pump for radiant floor heating system

    Institute of Scientific and Technical Information of China (English)

    曲世林; 马飞; 仇安兵

    2009-01-01

    A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water tank assisted 3 kW electrical heater,a water source heat pump,the radiant floor heating system with cross-linked polyethylene (PE-X) of diameter 20 mm,temperature controller and solar testing system. The SWHP-RFH system was tested from December to February during the heating season in Beijing,China under different operation situations. The test parameters include the outdoor air temperature,solar radiation intensity,indoor air temperature,radiation floor average surface temperature,average surface temperature of the building envelope,the inlet and outlet temperatures of solar collector,the temperature of water tank,the heat medium temperatures of heat pump condenser side and evaporator side,and the power consumption includes the water source heat pump system,the solar source heat pump system,the auxiliary heater and the radiant floor heating systems etc. The experimental results were used to calculate the collector efficiency,heat pump dynamic coefficient of performance (COP),total energy consumption and seasonal heating performance during the heating season. The results indicate that the performance of the compound source heat pump system is better than that of the air source heat pump system. Furthermore,some methods are suggested to improve the thermal performance of each component and the whole SWHP-RFH system.

  2. Simulation of embedded heat exchangers of solar aided ground source heat pump system

    Institute of Scientific and Technical Information of China (English)

    王芳; 郑茂余; 邵俊鹏; 李忠建

    2008-01-01

    Aimed at unbalance of soil temperature field of ground source heat pump system, solar aided energy storage system was established. In solar assisted ground-source heat pump (SAGSHP) system with soil storage, solar energy collected in three seasons was stored in the soil by vertical U type soil exchangers. The heat abstracted by the ground-source heat pump and collected by the solar collector was employed to heating. Some of the soil heat exchangers were used to store solar energy in the soil so as to be used in next winter after this heating period; and the others were used to extract cooling energy directly in the soil by circulation pump for air conditioning in summer. After that solar energy began to be stored in the soil and ended before heating period. Three dimensional dynamic numerical simulations were built for soil and soil heat exchanger through finite element method. Simulation was done in different strata month by month. Variation and restoration of soil temperature were studied. Economy and reliability of long term SAGSHP system were revealed. It can be seen that soil temperature is about 3 ℃ higher than the original one after one year’s running. It is beneficial for the system to operate for long period.

  3. Heat Storage for oil based solar concentrators

    OpenAIRE

    Herdlevær, Rune

    2012-01-01

    As the world’s energy demand increases, more and more focus is directed towards different solar energy solutions. In many African countries, a great share of the population cook their food with firewood as the energy source. Since the use of firewood leads to deforestation and bad indoor climate, it is of interest to implement solar cookers in countries where the sun radiation is sufficiently strong. Most commercialized solar cookers are direct systems, meaning the cooking has to take place w...

  4. 24 CFR 200.950 - Building product standards and certification program for solar water heating system.

    Science.gov (United States)

    2010-04-01

    ... certification program for solar water heating system. 200.950 Section 200.950 Housing and Urban Development... solar water heating system. (a) Applicable standards. (1) All solar water heating systems shall be... administrator to the manufacturer. Each solar water heating system shall be marked as conforming to UM 100....

  5. Task 49/IV: Solar Process Heat for Production and Advanced Applications

    OpenAIRE

    Hennecke, Klaus

    2013-01-01

    The presentation gives introduction to IEA Task 49/IV, carried out jointly by Solar Heating and Cooling and SolarPACES, as well as summary information on current projects in the field of solar process heat applications in industry.

  6. Development of solar driven absorption air conditioners and heat pumps

    Science.gov (United States)

    Dao, K.; Wahlig, M.; Wali, E.; Rasson, J.; Molishever, E.

    1980-03-01

    The development of absorption refrigeration systems for solar active heating and cooling applications is discussed. The approaches investigated are those using air-cooled condenser-absorber and those leading to coefficient of performances (COP) that increase continuously with heat source temperature. This is primarily an experimental project, with the emphasis on designing, fabricating and testing absorption chillers in operating regimes that are particularly suited for solar energy applications. Its demonstrated that the conventional single-effect ammonia-water absorption cycle can be used (with minor modifications) for solar cooling.

  7. Balloon batteries, charged and heated by solar energy

    Science.gov (United States)

    1969-01-01

    Shielded heat-of-fusion material envelope collects and stores solar heat to maintain temperature during the night cycle at 30,000 feet. Spiral-wound fluoroplastic film structure has low density to avoid damage to aircraft in case of impact.

  8. Review of Recent Developments in Solar Heat for Industrial Processes

    OpenAIRE

    Hennecke, Klaus

    2012-01-01

    Industrial heat applications are a significant potential market for concentrating solar technologies Suitable collector technologies are offered by a number of suppliers First demonstration projects have been realized, or are under development Challenges remain: System Integration / Optimization Plant engineering Collector improvements Competitiveness with other heat sources / Incentive schemes

  9. Study of water heating by solar energy through the ground

    Energy Technology Data Exchange (ETDEWEB)

    Soulas, M.; Hladik, J. (Universite d' Angers, 49 - (France)); Le Palec, G.; Daguenet, M. (Universite de Perpignan, 66 - (France))

    1983-01-01

    The low temperature storage of solar energy in the ground is studied for the heating of water flowing vertically through the ground to feed a heat pump. The temperature profile is calculated analytically as a function of depth and time, and the results are compared with experimental data.

  10. Prototype solar heating and cooling systems including potable hot water

    Science.gov (United States)

    1978-01-01

    Progress is reviewed in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water. The system consisted of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  11. PERFORMANCE INVESTIGATION OF SLINKY HEAT EXCHANGER FOR SOLAR ASSISTED GROUND SOURCE HEAT PUMP

    OpenAIRE

    ÖZSOLAK, Onur; ESEN, Mehmet

    2014-01-01

    In the following study, 12 m2 test chamber was heated by solar and ground source heat pump under the physical conditions of Elazığ. In order to place slinky heat exchanger pipes, a hole was dug with 1 meter width, 2 meters depth and 15 meters length. Slinky pipes were put horizontally in the hole and water-antifreeze mixture was circulated with the circulating pump in the slinky heat exchanger. The heat taken from the ground was transferred into the environment to be heated through the heat p...

  12. Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system

    International Nuclear Information System (INIS)

    Highlights: ► Describing concept and operating principle of the PV/LHP heat pump water heating system. ► Developing a numerical model to evaluate the performance of the system. ► Experimental testing of the prototype system. ► Characterizing the system performance using parallel comparison between the modelling and experimental results. ► Investigating the impact of the operating conditions to the system’s performance. -- Abstract: This paper introduced the concept, potential application and benefits relating to a novel solar photovoltaic/loop-heat-pipe (PV/LHP) heat pump system for hot water generation. On this basis, the paper reported the process and results of characterizing the performance of such a system, which was undertaken through dedicated thermo-fluid and energy balance analyses, computer model development and operation, and experimental verification and modification. The fundamental heat transfer, fluid flow and photovoltaic governing equations were applied to characterize the energy conversion and transfer processes occurring in each part and whole system layout; while the energy balance approach was utilized to enable inter-connection and resolution of the grouped equations. As a result, a dedicated computer model was developed and used to calculate the operational parameters, optimise the geometrical configurations and sizes, and recommend the appropriate operational condition relating to the system. Further, an experimental rig was constructed and utilized to acquire the relevant measurement data that thus enabled the parallel comparison between the simulation and experiment. It is concluded that the testing and modelling results are in good agreement, indicating that the model has the reasonable accuracy in predicting the system’s performance. Under the given experimental conditions, the electrical, thermal and overall efficiency of the PV/LHP module were around 10%, 40% and 50% respectively; whilst the system’s overall performance

  13. A theory of heating of quiet solar corona

    International Nuclear Information System (INIS)

    A theory is proposed to discuss the creation of hot solar corona. We pay special attention to the transition region and the low corona, and consider that the sun is quiet. The proposed scenario suggests that the protons are heated by intrinsic Alfvénic turbulence, while the ambient electrons are heated by the hot protons via collisions. The theory contains two prime components: the generation of the Alfvénic fluctuations by the heavy minor ions in the transition region and second, the explanation of the temperature profile in the low solar atmosphere. The proposed heating process operates continuously in time and globally in space

  14. Maximum-power-point tracking control of solar heating system

    KAUST Repository

    Huang, Bin-Juine

    2012-11-01

    The present study developed a maximum-power point tracking control (MPPT) technology for solar heating system to minimize the pumping power consumption at an optimal heat collection. The net solar energy gain Q net (=Q s-W p/η e) was experimentally found to be the cost function for MPPT with maximum point. The feedback tracking control system was developed to track the optimal Q net (denoted Q max). A tracking filter which was derived from the thermal analytical model of the solar heating system was used to determine the instantaneous tracking target Q max(t). The system transfer-function model of solar heating system was also derived experimentally using a step response test and used in the design of tracking feedback control system. The PI controller was designed for a tracking target Q max(t) with a quadratic time function. The MPPT control system was implemented using a microprocessor-based controller and the test results show good tracking performance with small tracking errors. It is seen that the average mass flow rate for the specific test periods in five different days is between 18.1 and 22.9kg/min with average pumping power between 77 and 140W, which is greatly reduced as compared to the standard flow rate at 31kg/min and pumping power 450W which is based on the flow rate 0.02kg/sm 2 defined in the ANSI/ASHRAE 93-1986 Standard and the total collector area 25.9m 2. The average net solar heat collected Q net is between 8.62 and 14.1kW depending on weather condition. The MPPT control of solar heating system has been verified to be able to minimize the pumping energy consumption with optimal solar heat collection. © 2012 Elsevier Ltd.

  15. Solar hot-water generation and heating - Kombi-Kompakt+

    International Nuclear Information System (INIS)

    This final report for the Swiss Federal Office of Energy (SFOE) describes new testing facilities at the Institute for Solar Technology in Rapperswil, Switzerland, that allow the testing of solar systems the whole year through. The systems tested feature the combined generation of heat for hot water storage vessels and heat for space heating. The test method used, the Concise Cycle Test (CCT) is described. The results of tests made on a large number of systems demonstrate that it is especially important to have a test system that allows the solar market to be protected from unsatisfactory systems. Good co-operation with manufactures is noted. As the test method includes tests with secondary energy sources such as oil or gas, certain problems in this area were discovered and corrected. Further tests are to be made with systems using biomass as a secondary source of heat

  16. Solar Powered Heat Storage for Injera Baking

    OpenAIRE

    Tesfay, Asfafaw H; Kahsay, Mulu Bayray; Nydal, Ole Jørgen

    2014-01-01

    Ethiopia with a population of about 85 million meets 96% of its energy needs with bio-mass, charcoal, wood, animal dung and plant residues. More than 50% of this energy goes entirely on baking Injera. Injera the national food of the country demands 180-220 °C to be well cooked. In this article; Injera baking with solar energy on off-focus system, status of electric powered stove and the potential for solar powered stoves is discussed. The research and development of solar thermal for househol...

  17. Solar Central Receiver Prototype Heliostat. Volume I. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-06-01

    The objective of this project was to support the Solar Central Receiver Power Plant research, development and demonstration effort by: (1) Establishment of a heliostat design, with associated manufacturing, assembly, installation and maintenance approaches, that, in quantity production will yield significant reductions in capital and operating costs over an assumed 30 year plant lifetime as compared with existing designs; and (2) Identification of needs for near term and future research and development in heliostat concept, materials, manufacture, installation, maintenance, and other areas, where successful accomplishment and application would offer significant payoffs in the further reduction of the cost of electrical energy from solar central receiver power plants. The prototype heliostat design is presented in detail; and manufacturing, installation, and maintenance procedures described. (WHK)

  18. MINERGIE modules: heat pump - heat pump/solar - wood - wood/solar; Minergie-Module Waermepumpe - Waermepumpe/Solar - Holz - Holz/Solar

    Energy Technology Data Exchange (ETDEWEB)

    Gallati, J. [Seecon GmbH, Lucerne (Switzerland); Portmann, M. [Buero Markus Portmann, Kriens (Switzerland); Zurfluh, B. [Zurfluh Lottenbach, Lucerne (Switzerland)

    2005-07-01

    This research report for the Swiss Federal Office of Energy (SFOE) presents the results of a project that examined the feasibility of setting up 'MINERGIE' low-energy-consumption module standards for the production of heat in small residential buildings. The aims of the standards and the basic idea behind the MINERGIE-modules are discussed. The concepts of the modules for heat pumps and wood-fired heating systems and their combination with solar installations are examined, as are their areas of application. The requirements placed on the modules are listed. System concepts, including simple schematics for typical installations, are presented for wood-log, wood-chippings and pellets-fired systems as well as for ground-loop and air-water heat pump systems as well as their solar-aided counterparts. The results of cost-benefit analyses are presented and questions regarding system guarantee and liability are examined.

  19. Heat losses and thermal performance of commercial combined solar and pellet heating systems

    OpenAIRE

    Fiedler, Frank; Persson, Tomas; Bales, Chris; Nordlander, Svante

    2004-01-01

    Various pellet heating systems are marketed in Sweden, some of them in combination with a solar heating system. Several types of pellet heating units are available and can be used for a combined system. This article compares four typical combined solar and pellet heating systems: System 1 and 2 two with a pellet stove, system 3 with a store integrated pellet burner and system 4 with a pellet boiler. The lower efficiency of pellet heaters compared to oil or gas heaters increases the primary en...

  20. Solar central receiver prototype heliostat. Interim technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-05

    The objective of Phase I of this project is to support the Solar Central Receiver Power Plant research, development and demonstration effort by: (1) Establishment of a heliostat design, with associated manufacturing, assembly, installation and maintenance approaches, that, in quantity production will yield significant reductions in capital and operating costs over an assumed 30 year plant lifetime as compared with existing designs. (2) Identification of needs for near term and further research and development in heliostat concept, materials, manufacture, installation, maintenance, and other areas, where successful accomplishment and application would offer significant payoffs in the further reduction of the cost of electrical energy from Solar Central Receiver Power Plants. The Phase I study will define a low-cost heliostat preliminary design and the conceptual design of a heliostat manufacturing/installation plan which will result in low life cycle cost when produced and installed at high rate and large quantities for commercial Solar Central Receiver Power Plants. The study will develop the annualized life cycle cost and the performance of heliostats for a 30 year plant life, for each of three rates of continuous production and installation. The three specified rates are 25,000, 250,000, and 1,000,000 heliostats per year. The analysis of these varying production rates, requiring highly automated tooling and installation equipment concepts, will define the economies of large scale not realizable on Pilot Plant or Demonstration Plant installations. Project status is described in detail. (WHK)

  1. Development of 12.5 m² Solar Collector Panel for Solar Heating Plants

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian; Furbo, Simon; Shah, Louise Jivan

    2004-01-01

    and large solar heating systems. Based on the theoretical findings a prototype of an improved HT solar collector was built and tested side-by-side with the original HT solar collector. The improved HT collector makes use of a changed insulation material, an absorber with improved absorptance and......Theoretical and experimental investigations have elucidated how different changes in the design of the 12.5 m(2) HT flat-plate solar collector from the Danish company ARCON Solvarme A/S influence the solar collector efficiency and the yearly thermal performance. The collector is designed for medium...

  2. Heat of Fusion Storage with High Solar Fraction for Solar Low Energy Buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    2006-01-01

    of the storage to cool down below the melting point without solidification preserving the heat of fusion energy. If the supercooled storage reaches the surrounding temperature no heat loss will take place until the supercooled salt is activated. The investigation shows that this concept makes it...... possible to achieve 100% coverage of space heating and domestic hot water in a low energy house in a Danish climate with a solar heating system with 36 m² flat plate solar collector and approximately 10 m³ storage with sodium acetate. A traditional water storage solution aiming at 100% coverage will...

  3. Prototype solar heating and combined heating and cooling systems

    Science.gov (United States)

    1978-01-01

    Designs were completed, hardware was received, and hardware was shipped to two sites. A change was made in the heat pump working fluid. Problem investigation of shroud coatings for the collector received emphasis.

  4. Determination of Thermal State of Charge in Solar Heat Receivers

    Science.gov (United States)

    Glakpe, E. K.; Cannon, J. N.; Hall, C. A., III; Grimmett, I. W.

    1996-01-01

    The research project at Howard University seeks to develop analytical and numerical capabilities to study heat transfer and fluid flow characteristics, and the prediction of the performance of solar heat receivers for space applications. Specifically, the study seeks to elucidate the effects of internal and external thermal radiation, geometrical and applicable dimensionless parameters on the overall heat transfer in space solar heat receivers. Over the last year, a procedure for the characterization of the state-of-charge (SOC) in solar heat receivers for space applications has been developed. By identifying the various factors that affect the SOC, a dimensional analysis is performed resulting in a number of dimensionless groups of parameters. Although not accomplished during the first phase of the research, data generated from a thermal simulation program can be used to determine values of the dimensionless parameters and the state-of-charge and thereby obtain a correlation for the SOC. The simulation program selected for the purpose is HOTTube, a thermal numerical computer code based on a transient time-explicit, axisymmetric model of the total solar heat receiver. Simulation results obtained with the computer program are presented the minimum and maximum insolation orbits. In the absence of any validation of the code with experimental data, results from HOTTube appear reasonable qualitatively in representing the physical situations modeled.

  5. Metal glass vacuum tube solar collectors are approaching lower-medium temperature heat application.

    Science.gov (United States)

    Jiang, Xinian

    2010-04-26

    Solar thermal collectors are widely used worldwide mainly for hot water preparation at a low temperature (less than 80 degrees C). Applications including many industrial processes and central air conditioning with absorption chillers, instead require lower-medium temperature heat (between 90 degrees C and 150 degrees C) to be driven when using solar thermal energy. The metal absorber glass vacuum tube collectors (MGVT) are developed for this type of applications. Current state-of-art and possible future technology development of MGVT are presented. PMID:20607893

  6. Experimental study of a photovoltaic solar-assisted heat-pump/heat-pipe system

    International Nuclear Information System (INIS)

    A practical design for a heat pump with heat-pipe photovoltaic/thermal (PV/T) collectors is presented. The hybrid system is called the photovoltaic solar-assisted heat-pump/heat-pipe (PV-SAHP/HP) system. To focus on both actual demand and energy savings, the PV-SAHP/HP system was designed to be capable of operating in three different modes, namely, the heat-pipe, solar-assisted heat pump, and air-source heat-pump modes. Based on solar radiation, the system operates in an optimal mode. A series of experiments were conducted in Hong Kong to study the performance of the system when operating in the heat-pipe and the solar-assisted heat-pump modes. Moreover, energy and exergy analyses were used to investigate the total PV/T performance of the system. - Highlights: ► A novel PV-SAHP/HP system with three different operating modes was proposed. ► Performance of the PV-SAHP/HP system was studied experimentally. ► A optimal operating mode of the PV-SAHP/HP system was suggested in this paper.

  7. Measuring solar reflectance Part I: Defining a metric that accurately predicts solar heat gain

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, Ronnen; Akbari, Hashem; Berdahl, Paul

    2010-05-14

    Solar reflectance can vary with the spectral and angular distributions of incident sunlight, which in turn depend on surface orientation, solar position and atmospheric conditions. A widely used solar reflectance metric based on the ASTM Standard E891 beam-normal solar spectral irradiance underestimates the solar heat gain of a spectrally selective 'cool colored' surface because this irradiance contains a greater fraction of near-infrared light than typically found in ordinary (unconcentrated) global sunlight. At mainland U.S. latitudes, this metric RE891BN can underestimate the annual peak solar heat gain of a typical roof or pavement (slope {le} 5:12 [23{sup o}]) by as much as 89 W m{sup -2}, and underestimate its peak surface temperature by up to 5 K. Using R{sub E891BN} to characterize roofs in a building energy simulation can exaggerate the economic value N of annual cool-roof net energy savings by as much as 23%. We define clear-sky air mass one global horizontal ('AM1GH') solar reflectance R{sub g,0}, a simple and easily measured property that more accurately predicts solar heat gain. R{sub g,0} predicts the annual peak solar heat gain of a roof or pavement to within 2 W m{sup -2}, and overestimates N by no more than 3%. R{sub g,0} is well suited to rating the solar reflectances of roofs, pavements and walls. We show in Part II that R{sub g,0} can be easily and accurately measured with a pyranometer, a solar spectrophotometer or version 6 of the Solar Spectrum Reflectometer.

  8. Single-family-residence solar heating--Carlsbad, New Mexico

    Science.gov (United States)

    1981-01-01

    Solar-heating and hot-water system includes 408 square feet of flat-plate air collectors, rock storage bin, energy transport system, air-to-water heat exchanger, controls, and hot-water preheat tank. Hot-air oil furnace supplies auxiliary space heating, and electricity powers air-handler blower and hot water preheat pump. For 12 month period, system provided 43 percent of space-heating and 53 percent of hot-water energy; net energy savings were 23.072 million Btu.

  9. The entropy problem of decentralized solar and nuclear heat generation

    International Nuclear Information System (INIS)

    The entropy fluxes of decentralized hot-water systems based on solar collectors coupled with an electrical auxiliary heating installation are deduced. It is shown that this kind of solar energy has to remain very restricted, not only for quantitative-energetic reasons, but also for entropy ones, and that a solar hot-water system will always have to rely on an energy system of low entropy. In contrast to this, the provision of heat for space heating with the help of the 'nuclear short-distance concept', which needs practically no external energy, is not subject to these restrictions. This concept is introduced briefly, and the prices which can be achieved are considered. (Auth.)

  10. Investigation of bubble behaviours in wet central heating systems

    OpenAIRE

    Shefik Ali; Ge Yunting

    2014-01-01

    A series of experimental measurements has been conducted in order to investigate the bubble behaviours through the horizontal pipe line of the domestic wet central heating systems. Obtained results exposed the effect of 90 degree bend, buoyancy forces on bubbly two phase flow patterns and effect of velocity on void fractions and bubble diameters. Distance chosen for the first sight glass (HSG0) was sufficient enough to note the effect of 90 degree bend on void fraction patterns. Due to the ef...

  11. Solar and heat recovery window element. Solar- und Waermerueckgewinnungs-Fensterscheibenelement

    Energy Technology Data Exchange (ETDEWEB)

    Teuber, P.

    1979-10-18

    The solar and heat recovery window element consists of 2 insulating glass windows, which are separated by a square sealing frame, and so form a chamber for the solar liquid to flow through. There is a collecting pipe with return connection in the top part of the sealed frame, and there is a distributor pipe with incoming connection with the appropriate seals in the top part. The incoming or return pipe is laid in the window frame. The inner and outer insulating glass windows are used to insulate the room and to insulate or produce a solar and heat recovery chamber. The inner insulating glass window prevents condensation of humidity from the room at lower temperatures of the solar and heat recovery liquid. This window has liquid flowing through it, pumped by a circulating pump. This liquid is not transparent and clear, and is protected against frost. The solar energy absorbed when flowing through the liquid chamber is taken to a heat pump system, and part of the energy is extracted from the liquid there. This is done continuously. If there is no solar energy available, then the system works as a heat recovery system, where energy from the room is absorbed by the liquid and is transported to the heat pump.

  12. Effects of Solar Photovoltaic Panels on Roof Heat Transfer

    Science.gov (United States)

    Dominguez, A.; Klessl, J.; Samady, M.; Luvall, J. C.

    2010-01-01

    Building Heating, Ventilation and Air Conditioning (HVAC) is a major contributor to urban energy use. In single story buildings with large surface area such as warehouses most of the heat enters through the roof. A rooftop modification that has not been examined experimentally is solar photovoltaic (PV) arrays. In California alone, several GW in residential and commercial rooftop PV are approved or in the planning stages. With the PV solar conversion efficiency ranging from 5-20% and a typical installed PV solar reflectance of 16-27%, 53-79% of the solar energy heats the panel. Most of this heat is then either transferred to the atmosphere or the building underneath. Consequently solar PV has indirect effects on roof heat transfer. The effect of rooftop PV systems on the building roof and indoor energy balance as well as their economic impacts on building HVAC costs have not been investigated. Roof calculator models currently do not account for rooftop modifications such as PV arrays. In this study, we report extensive measurements of a building containing a flush mount and a tilted solar PV array as well as exposed reference roof. Exterior air and surface temperature, wind speed, and solar radiation were measured and thermal infrared (TIR) images of the interior ceiling were taken. We found that in daytime the ceiling surface temperature under the PV arrays was significantly cooler than under the exposed roof. The maximum difference of 2.5 C was observed at around 1800h, close to typical time of peak energy demand. Conversely at night, the ceiling temperature under the PV arrays was warmer, especially for the array mounted flat onto the roof. A one dimensional conductive heat flux model was used to calculate the temperature profile through the roof. The heat flux into the bottom layer was used as an estimate of the heat flux into the building. The mean daytime heat flux (1200-2000 PST) under the exposed roof in the model was 14.0 Watts per square meter larger than

  13. Thermal performance of evacuated tube heat pipe solar collector

    Science.gov (United States)

    Putra, Nandy; Kristian, M. R.; David, R.; Haliansyah, K.; Ariantara, Bambang

    2016-06-01

    The high fossil energy consumption not only causes the scarcity of energy but also raises problems of global warming. Increasing needs of fossil fuel could be reduced through the utilization of solar energy by using solar collectors. Indonesia has the abundant potential for solar energy, but non-renewable energy sources still dominate energy consumption. With heat pipe as passive heat transfer device, evacuated tube solar collector is expected to heat up water for industrial and home usage without external power supply needed to circulate water inside the solar collector. This research was conducted to determine the performance of heat pipe-based evacuated tube solar collector as solar water heater experimentally. The experiments were carried out using stainless steel screen mesh as a wick material, and water and Al2O3-water 0.1% nanofluid as working fluid, and applying inclination angles of 0°, 15°, 30°, and 45°. To analyze the heat absorbed and transferred by the prototype, water at 30°C was circulated through the condenser. A 150 Watt halogen lamp was used as sun simulator, and the prototype was covered by an insulation box to obtain a steady state condition with a minimum affection of ambient changes. Experimental results show that the usage of Al2O3-water 0.1% nanofluid at 30° inclination angle provides the highest thermal performance, which gives efficiency as high as 0.196 and thermal resistance as low as 5.32 °C/W. The use of nanofluid as working fluid enhances thermal performance due to high thermal conductivity of the working fluid. The increase of the inclination angle plays a role in the drainage of the condensate to the evaporator that leads to higher thermal performance until the optimal inclination angle is reached.

  14. Thermo-economic analysis of solar heating and cooling systems

    OpenAIRE

    Tariello, Francesco

    2015-01-01

    During last years, air conditioning demand has spread, both in the commercial and the residential sector. This caused a sensible increase in primary energy consumption. The innovative desiccant-based air handling units are a very interesting solution for air conditioning of buildings as they operate with low temperature thermal energy, such as waste heat recovered from a microcogenerator or especially solar energy. Solar radiation is widely available in summer and simultaneously there ...

  15. Solar residential heating and cooling system development test program

    Science.gov (United States)

    Humphries, W. R.; Melton, D. E.

    1974-01-01

    A solar heating and cooling system is described, which was installed in a simulated home at Marshall Space Flight Center. Performance data are provided for the checkout and initial operational phase for key subsystems and for the total system. Valuable information was obtained with regard to operation of a solar cooling system during the first summer of operation. Areas where improvements and modifications are required to optimize such a system are discussed.

  16. Market Analysis of Solar Water Heating in Hospitality Industry, Thailand

    OpenAIRE

    Pongthong, Sansanee

    2010-01-01

    This study examines the strategic market approach for investing in solar water heating in the hosptality industry in Thailand. The main question in this study is ‘What are the market strategies for potential market segment for SWH in Thailand?’ This study focuses on the marketing strategy planning to the Thai market. The thesis follows the qualitative study design where the data was collected by observing the market and interviewing main stakeholders and possible customers of Solar Wate...

  17. Development and application of engineering-scale solar water heater system assisted by heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Gao Xiufeng; Feng Shiyu; Hu Wei; Zheng Feifei [Xi' an Jiaotong Univ., Xi' an (China); Wang Huiyu; Luo Cong [Yangzhou Sunleada Co, Ltd, Yangzhou (China); Wang Jianguo; Fan Guiyou [TongLing Real Estate Co. Ltd, TongLing (China)

    2008-07-01

    An engineering-scale solar water heater system assisted by heat pump was developed based on a modularized structure. The subunits of modularized system include vacuum solar energy collectors, air source heat pump, heat storage and supplying system and control panel. All devices could be controlled and monitored centrally. Energy source of this system was composed of solar energy (70%), air thermal energy (20%) and electric power (10%). The system has advantages of high average annual comprehensive energy efficiency and elementary energy utilization efficiency. The product can be employed in central heat water supplying project with a capacity of more than 6 ton, in such facilities as residential districts, hotels, restaurants, dormitories, bathing centers and so on. The economical efficiency is better as the scale is bigger. The project has been supported by innovation funds of Science and Technology of Chinese Ministry of Science and Technology (MOST), being applied in a residential district successfully as a demonstration project of renewable and new energy by Chinese Ministry of Construction. (orig.)

  18. Solar heating and cooling commercialization research program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, D.L.; Tragert, W.; Weir, S.

    1979-11-01

    The Solar Heating and Cooling Commercialization Research Program has addressed a recognized need to accelerate the commercialization of solar products. The development of communication techniques and materials for a target group of heating, ventilating and air-conditioning (HVAC) wholesalers and distributors has been the primary effort. A summary of the program, the approach to the development of the techniques and materials, the conclusions derived from seminar feedback, the development of additional research activities and reports and the recommendations for follow-on activities are presented. The appendices offer detailed information on specific elements of the research effort.

  19. Windows for accepting or rejecting solar-heat gain

    Science.gov (United States)

    Peck, J. F.; Thompson, T. L.; Kessler, H. J.

    1982-09-01

    Ordinary fenestration may be modified at low cost using various combinations of windows, duotone venetian blinds, and drapes to control the solar heat gain. In the winter, solar radiation may be absorbed by dark blinds and transferred to the air, minimizing fading of furnishings while collecting useful energy. In the summer, more than 90% of the total potential window heat gain may be rejected by exhausting evaporatively cooled air over the blinds. The performance of several window configurations was analyzed, modeled on a computer, and verified experimentally.

  20. Solar heating and hot water system installed at Listerhill, Alabama

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    The solar system was installed into a new buildng and was designed to provide 79% of the estimated annual space heating load and 59% of the estimated annual potable hot water requirement. The collectors are flat plate, liquid manufactured by Reynolds Metals Company and cover a total area of 2344 square feet. The storage medium is water inhibited with NALCO 2755 and the container is an underground, unpressurized steel tank with a capacity of 5000 gallons. This final report describes in considerable detail the solar heating facility and contains detailed drawings of the completed system.

  1. Efficiency potential of indirectly heated solar reforming with open volumetric solar receiver

    International Nuclear Information System (INIS)

    In solar reforming, the heating value of natural gas is increased by utilization of concentrated solar radiation. Hence, it is a process for storing solar energy in a stable and transportable form that also permits further conversion into liquid fuels like methanol. The feasibility of solar reforming is proved. However, its overall process efficiency potential has not been studied systematically. In this work, an indirectly heated solar reforming process with air as heat transfer fluid is designed and modelled to produce syngas suitable for subsequent methanol synthesis. For provision of solar high temperature heat, an open volumetric receiver is implemented into the process model and the overall performance is investigated. Results show the paramount significance of the air return ratio of the receiver and its ability to achieve high efficiencies at temperatures above 850 °C. For realistic air return ratios, design point process efficiencies of 19% can be achieved, for an increased air return ratio, values up to 23% are feasible. The determined corresponding annual efficiencies are 12% and 14% respectively. Considering its relative technical simplicity this makes indirectly heated solar reforming a promising technology to overcome the current limitations of solar energy in the medium term. - Highlights: • A process for solar reforming of natural gas is proposed. • A process model is developed to determine process efficiency. • Several process parameters are investigated and the process is optimized to reach high efficiencies. • The process achieves promising efficiencies. • The solar receiver is the crucial process unit for further improvement of process performance

  2. Solar heating of GaAs nanowire solar cells.

    Science.gov (United States)

    Wu, Shao-Hua; Povinelli, Michelle L

    2015-11-30

    We use a coupled thermal-optical approach to model the operating temperature rise in GaAs nanowire solar cells. We find that despite more highly concentrated light absorption and lower thermal conductivity, the overall temperature rise in a nanowire structure is no higher than in a planar structure. Moreover, coating the nanowires with a transparent polymer can increase the radiative cooling power by 2.2 times, lowering the operating temperature by nearly 7 K. PMID:26698787

  3. Solar domestic heating water systems in Morocco: An energy analysis

    International Nuclear Information System (INIS)

    Highlights: • A forced-circulation solar water heater system for domestic use was investigated. • Six different climatic zones of Morocco were simulated. • Flat plate and evacuated tube installations were compared. • Solar fractions for the different scenarios were given. - Abstract: The aim of this study is to assess the technical feasibility of solar water heaters (SWH) under Moroccan conditions. Annual simulations in six different regions for two technologies: flat plate and evacuated tube collectors were carried out using TRANSOL program. It is found that high values of solar fraction can be reached in almost the studied regions with the preference of using evacuated tube collectors. Furthermore, the study emphasizes that the location and the climate are determinant parameters on the overall performance of solar water heating systems

  4. Thermal performance of solar district heating plants in Denmark

    DEFF Research Database (Denmark)

    Furbo, Simon; Perers, Bengt; Bava, Federico

    2014-01-01

    collectors mounted on the ground, shows measured yearly thermal performances of the solar heating plants placed in the interval from 313 kWh/m² collector to 493 kWh/m² collector with averages for all plants of 411 kWh/m² collector for 2012 and 450 kWh/m² collector for 2013. Theoretical calculations show that...... for temperature levels higher than about 55°C the thermal performance of a solar collector field based on concentrating tracking solar collectors is higher than the thermal performance of a solar collector field based on flat plate collectors. It is estimated that there are potentials for further...... recommended by parallel theoretical and experimental approach to investigate in detail the thermal performance of differently designed solar collector fields in such a way that their thermal performance can be determined by theoretical calculations in the future. This will be useful in connection with...

  5. Active solar heating and cooling information user study

    Energy Technology Data Exchange (ETDEWEB)

    Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

    1981-01-01

    The results of a series of telephone interviews with groups of users of information on active solar heating and cooling (SHAC). An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from 19 SHAC groups respondents are analyzed in this report: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Manufacturers (4 groups), Distributors, Installers, Architects, Builders, Planners, Engineers (2 groups), Representatives of Utilities, Educators, Cooperative Extension Service County Agents, Building Owners/Managers, and Homeowners (2 groups). The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

  6. Solar hydrogen: harvesting light and heat from sun (Presentation Recording)

    Science.gov (United States)

    Guo, Liejin; Jing, Dengwei

    2015-09-01

    My research group in the State Key Laboratory of Multiphase Flow in Power Engineering (SKLMF), Xi'an Jiaotong University has been focusing on renewable energy, especially solar hydrogen, for about 20 years. In this presentation, I will present the most recent progress in our group on solar hydrogen production using light and heat. Firstly, "cheap" photoelectrochemical and photocatalytic water splitting, including both nanostructured materials and pilot-scale demonstration in our group for light-driven solar hydrogen (artificial photosynthesis) will be introduced. Then I will make a deep introduction to the achievements on the thermal-driven solar hydrogen, i.e., biomass/coal gasification in supercritical water for large-scale and low-cost hydrogen production using concentrated solar light.

  7. Solar chemical heat pipe in a closed loop

    International Nuclear Information System (INIS)

    The work on the solar CO2 reforming of methane was completed. A computer program was developed for simulation of the whole process. The calculations agree reasonably well with the experimental results. The work was written up and submitted for publication in Solar Energy. A methanator was built and tested first with a CO/H2 mixture from cylinders, and then with the products of the solar reformer. The loop was then closed by recirculating the products from the methanator into the solar reformer. Nine closed loop cycles were performed, so far, with the same original gas mixture. This is the first time that a closed loop solar chemical heat pipe was operated anywhere in the world. (author). 13 refs., 12 figs., 3 tabs

  8. Tracking heat flux sensors for concentrating solar applications

    Science.gov (United States)

    Andraka, Charles E; Diver, Jr., Richard B

    2013-06-11

    Innovative tracking heat flux sensors located at or near the solar collector's focus for centering the concentrated image on a receiver assembly. With flux sensors mounted near a receiver's aperture, the flux gradient near the focus of a dish or trough collector can be used to precisely position the focused solar flux on the receiver. The heat flux sensors comprise two closely-coupled thermocouple junctions with opposing electrical polarity that are separated by a thermal resistor. This arrangement creates an electrical signal proportional to heat flux intensity, and largely independent of temperature. The sensors are thermally grounded to allow a temperature difference to develop across the thermal resistor, and are cooled by a heat sink to maintain an acceptable operating temperature.

  9. Low-Cost Solar Water Heating Research and Development Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Hudon, K. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Merrigan, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burch, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maguire, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-08-01

    The market environment for solar water heating technology has changed substantially with the successful introduction of heat pump water heaters (HPWHs). The addition of this energy-efficient technology to the market increases direct competition with solar water heaters (SWHs) for available energy savings. It is therefore essential to understand which segment of the market is best suited for HPWHs and focus the development of innovative, low-cost SWHs in the market segment where the largest opportunities exist. To evaluate cost and performance tradeoffs between high performance hot water heating systems, annual energy simulations were run using the program, TRNSYS, and analysis was performed to compare the energy savings associated with HPWH and SWH technologies to conventional methods of water heating.

  10. Modeling of Solar Heating Systems in Latvia

    OpenAIRE

    Šipkovs, P; Migla, L; Ļebedeva, K; Pankars, M; Snegirjovs, A

    2010-01-01

    Introduction During the last few years significance of environmental problems increased. Activation of environmental problems increases humans’ interest about different environmentally friendly technologies. Exactly the Sun is large, inexhaustible source of energy, from which we use only small part. There are countries which are located in sunny regions and which history of solar energy usage is very longstanding, wherewith also technological achievements are high, but the contemporary ra...

  11. Is magnetic topology important for heating the solar atmosphere?

    Science.gov (United States)

    Parnell, Clare E; Stevenson, Julie E H; Threlfall, James; Edwards, Sarah J

    2015-05-28

    Magnetic fields permeate the entire solar atmosphere weaving an extremely complex pattern on both local and global scales. In order to understand the nature of this tangled web of magnetic fields, its magnetic skeleton, which forms the boundaries between topologically distinct flux domains, may be determined. The magnetic skeleton consists of null points, separatrix surfaces, spines and separators. The skeleton is often used to clearly visualize key elements of the magnetic configuration, but parts of the skeleton are also locations where currents and waves may collect and dissipate. In this review, the nature of the magnetic skeleton on both global and local scales, over solar cycle time scales, is explained. The behaviour of wave pulses in the vicinity of both nulls and separators is discussed and so too is the formation of current layers and reconnection at the same features. Each of these processes leads to heating of the solar atmosphere, but collectively do they provide enough heat, spread over a wide enough area, to explain the energy losses throughout the solar atmosphere? Here, we consider this question for the three different solar regions: active regions, open-field regions and the quiet Sun. We find that the heating of active regions and open-field regions is highly unlikely to be due to reconnection or wave dissipation at topological features, but it is possible that these may play a role in the heating of the quiet Sun. In active regions, the absence of a complex topology may play an important role in allowing large energies to build up and then, subsequently, be explosively released in the form of a solar flare. Additionally, knowledge of the intricate boundaries of open-field regions (which the magnetic skeleton provides) could be very important in determining the main acceleration mechanism(s) of the solar wind. PMID:25897085

  12. The Integration of Heat Resources in a Solar Thermal-Heat Pump Hydronic System

    OpenAIRE

    DeGrove, John

    2015-01-01

    According to the U.S. Department of Energy, roughly 41% of the energy consumed in the U.S. is used the power buildings. Within that number, almost half is used to heat or cool the building. Current technologies allow for consistent thermal management, but most utilize energy harvested from fossil fuels or convert electricity back into thermal energy. Background literature shows that the utilization of alternative heat resources such as heat pumps and solar thermal collectors can greatly reduc...

  13. Investigating the real situation of Greek solar water heating market

    International Nuclear Information System (INIS)

    Solar thermal applications have been acknowledged among the leading alternative solutions endeavouring to face the uncontrollable oil price variations, the gradual depletion of fossil fuel reserves and the chain environmental consequences caused by its excessive usage. Almost 30 years after the initial emergence of the commercial domestic solar water heating system (DSWHS) in the European market, the corresponding technology is qualified as quite mature. On top of this, the European Commission expects that 100,000,000 m2 of solar collectors are to be installed in Europe by the year 2010 to facilitate durable and environment-friendly heat. In this context, the Greek DSWHSs market is highly developed worldwide, having a great experience in this major energy market segment. The present study is devoted to an extensive evaluation of the local DSWHSs market, including a discerning analysis of its time variation, taking seriously into account the corresponding annual replacement rate. Accordingly, the crucial techno-economic reasons, limiting the DSWHSs penetration in the local heat production market, are summarized and elaborated. Subsequently, the national policy measures - aiming to support the DSWHSs in the course of time - are cited, in comparison with those applied in other European countries. Next, the financial attractiveness of a DSWHS for Greek citizens is examined in the local socio-economic environment. The present work is integrated by reciting the prospects and mustering certain proposals that, if applied, could stimulate the local market. As a general comment, the outlook for penetration of new DSWHSs in the local market is rather grim, as the current techno-economic situation of solar heat cannot compete with oil and natural gas heat production, unless the remarkable social and environmental benefits of solar energy are seriously considered. Hence, the Greek State lacks stimulus to further DSWHSs installations, being strongly in support of the imported

  14. Performance of cylindrical plastic solar collectors for air heating

    International Nuclear Information System (INIS)

    Highlights: • The study including the combined convective and radiative heat transfer analysis. • The solar collector is manufactured from LDPE films acting as a black absorber. • Comparisons between the experimental data and the theoretical methods have been made. • The thermal efficiency increases with decreasing the major axes of elliptic shape. • The Nusselt number between the absorber and the heated air is determined. - Abstract: A theoretical and experimental study including the combined convective and radiative heat transfer analysis of a flexible cylindrical type solar air-heater for agriculture crops dehydration as well as heating processes is presented. The solar collector is manufactured from LDPE films acting as a black absorber with a back insulation and double transparent covers sealed together along its edges. The collector is to be blown with a flow of pressurized air. The experiments are carried out with solar collectors of circular shapes having 0.5 m diameter and solar collectors of elliptic shapes having 0.55 m and 0.65 m major axis. Energy balance of the cover, absorber and air yield three simultaneous quadratic algebraic equations in the three unknowns namely, cover, absorber and outlet air temperatures. A computer program is written for calculating the outlet temperature using the Newton–Raphson method and the collector thermal efficiency in terms of its diameter, length, mass flow rate, inlet temperature and solar insolation. Moreover the Nusselt number between the absorber and the heated air is determined experimentally in relation with the Reynolds number. Comparisons between the experimental data and the theoretical methods for the collector efficiency demonstrate a good agreement. In addition of this, the present experimental results of Nusselt number are correlated and compared with a correlation of another authors

  15. Solar dynamic heat rejection technology. Task 1: System concept development

    Science.gov (United States)

    Gustafson, Eric; Carlson, Albert W.

    1987-01-01

    The results are presented of a concept development study of heat rejection systems for Space Station solar dynamic power systems. The heat rejection concepts are based on recent developments in high thermal transport capacity heat pipe radiators. The thermal performance and weights of each of the heat rejection subsystems is addressed in detail, and critical technologies which require development tests and evaluation for successful demonstration are assessed and identified. Baseline and several alternate heat rejection system configurations and optimum designs are developed for both Brayton and Rankine cycles. The thermal performance, mass properties, assembly requirements, reliability, maintenance requirements and life cycle cost are determined for each configuration. A specific design was then selected for each configuration which represents an optimum design for that configuration. The final recommendations of heat rejection system configuration for either the Brayton or Rankine cycles depend on the priorities established for the evaluation criteria.

  16. The Potential of Heat Collection from Solar Radiation in Asphalt Solar Collectors in Malaysia

    Science.gov (United States)

    Beddu, Salmia; Talib, Siti Hidayah Abdul; Itam, Zarina

    2016-03-01

    The implementation of asphalt solar collectors as a means of an energy source is being widely studied in recent years. Asphalt pavements are exposed to daily solar radiation, and are capable of reaching up to 70°C in temperature. The potential of harvesting energy from solar pavements as an alternative energy source in replace of non-renewable energy sources prone to depletion such as fuel is promising. In Malaysia, the sun intensity is quite high and for this reason, absorbing the heat from sun radiation, and then utilizing it in many other applications such as generating electricity could definitely be impressive. Previous researches on the different methods of studying the effect of heat absorption caused by solar radiation prove to be quite old and inaffective. More recent findings, on the otherhand, prove to be more informative. This paper focuses on determining the potential of heat collection from solar radiation in asphalt solar collectors using steel piping. The asphalt solar collector model constructed for this research was prepared in the civil engineering laboratory. The hot mixed asphalt (HMA) contains 10% bitumen mixed with 90% aggregates of the total size of asphalt. Three stainless steel pipes were embedded into the interior region of the model according to the design criteria, and then put to test. Results show that harvesting energy from asphalt solar collectors proves highly potential in Malaysia due its the hot climate.

  17. Solar heating and cooling demonstration project at the Florida solar energy center

    Science.gov (United States)

    1980-01-01

    The retrofitted solar heating and cooling system installed at the Florida Solar Energy Center is described. The system was designed to supply approximately 70 percent of the annual cooling and 100 percent of the heating load. The project provides unique high temperature, nonimaging, nontracking, evacuated tube collectors. The design of the system was kept simple and employs five hydronic loops. They are energy collection, chilled water production, space cooling, space heating and energy rejection. Information is provided on the system's acceptance test results operation, controls, hardware and installation, including detailed drawings.

  18. The market potential for solar heating plants in some European countries

    International Nuclear Information System (INIS)

    This study evaluates the market potential for solar collectors for residential heating in six European countries: Sweden, Denmark, Germany, Netherlands, Italy and Greece. The study is based on statistical information about the population, buildings, energy consumption and climatic conditions in the respective regions. The market potential was determined for systems supplying hot water and space heating in small houses and multi family houses, as well as for central block heating and district heating systems. Only systems with diurnal storage were taken into account. The technical potential was derived by analyzing the available roof areas, making allowance construction obstacles, unfavourable orientation, shadowing etc. Furthermore, commercial considerations, such as cost of competing energy sources, e.g. cogeneration and other low cost sources were considered. In accordance with our expectations, we assumed that the solar costs will decrease by 30 to 50% and that the market will increase by 30%/year during the next ten years, due to growing energy prices and by public financial support in an initial phase. It was found that there exists a commercial solar energy market in Greece for small systems and that the market could be nearly commercial in Italy. In the other countries the market must be stimulated by subsidies in order to take off. The total net potential for solar collectors in the six countries was found to about 100 Mm2 for small systems, and 60 Mm2 for large systems, corresponding to about 70 TWh/year. In a rough estimate we can say that the net solar collector market potential is about 1 m2/inhabitant in north and central Europe, and 0.5m2 in south Europe. Although systems for seasonal storage were not included in our analysis, it is probable that these systems will increase the net market potential by a factor of 2-3. 9 refs

  19. Study on the Effect of Ground Heat Storage by Solar Heat Using Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Jin-Hwan Oh

    2015-12-01

    Full Text Available Recently, energy storage techniques using renewable energy efficiently have attracted considerable attention. However, there are several problems when using renewable energy. In the case of solar energy, the energy production time is different from the consumption time, and the use of geothermal energy has high investment costs. In order to solve these problems, it is essential to develop high-efficiency systems using both solar and geothermal energy simultaneously and efficiently. Thus, in this study, the performance of underground heat storage of solar energy was examined by simulation using models of underground heat transfer and heat exchange for the development of an integrated hybrid system exploiting both geothermal and solar energy. As a result, the heat extraction performance was determined to be up to 72.75 W/m. As a result, in Kagoshima, the most southern area in Korea, a case of six hour heat storage operation achieved the highest heat exchange rate of 72.75 W/m, which is approximately 105% higher than the case of operation without heat storage.

  20. Solar heating and cooling demonstration project at the Florida Solar Energy Center

    Energy Technology Data Exchange (ETDEWEB)

    Hankins, J.D.

    1980-02-01

    The retrofitted solar heating and cooling system installed at the Florida Solar Energy Center is described. Information is provided on the system's test, operation, controls, hardware and installation, including detailed drawings. The Center's office building, approximately 5000 square feet of space, with solar air conditioning and heating as a demonstration of the technical feasibility is located just north of Port Canaveral, Florida. The system was designed to supply approximately 70% of the annual cooling and 100% of the heating load. The project provides unique high-temperature, non-imaging, non-tracking, evacuated-tube collectors. The design of the system was kept simple and employs five hydronic loops. They are energy collection, chilled water production, space cooling, space heating and energy rejection.

  1. Cyprus solar water heating cluster: A missed opportunity?

    International Nuclear Information System (INIS)

    Cyprus is often called the 'sun island' because of the amount of sunshine received all year round. The abundance of solar radiation together with a good technological base has created favourable conditions for the exploitation of solar energy on the island. This led to the development of a pioneering solar collector industry in Cyprus, which in the mid-1980s was flourishing. The result was an outstanding figure of installed solar collector area per inhabitant. Nowadays, Cyprus is cited as the country with the highest solar collector area installed per inhabitant, worldwide. This means that the local market for solar thermal collectors (for domestic applications) is now rather saturated. It was only rational to assume that Cypriot firms equipped with their gained expertise and leading edge would have safeguarded a sustainable growth and have an international orientation, focusing on exports in an emerging European and eastern Mediterranean thermal solar market. Unfortunately, this is not the case today. This paper reviews the economic performance and the competitiveness of Cyprus and the evolution of the solar water heating (SWH) industry using the cluster theory of Michael Porter. Its aim is to give insight and explanations for the success of the sector domestically, its failure with regards to exporting activity, pinpoint the industry in the European map and finally give recommendations for the cross the boarders commercial success of the industry

  2. Solar central electric power generation - A baseline design

    Science.gov (United States)

    Powell, J. C.

    1976-01-01

    The paper presents the conceptual technical baseline design of a solar electric power plant using the central receiver concept, and derives credible cost estimates from the baseline design. The major components of the plant - heliostats, tower, receiver, tower piping, and thermal storage - are discussed in terms of technical and cost information. The assumed peak plant output is 215 MW(e), over 4000 daylight hours. The contribution of total capital investment to energy cost is estimated to be about 55 mills per kwh in mid-1974 dollars.

  3. Corrosion inhibitors for solar-heating and cooling

    Science.gov (United States)

    Humphries, T. S.

    1979-01-01

    Report describes results of tests conducted to evaluate abilities of 12 candidate corrosion inhibitors to protect aluminum, steel, copper, or stainless steel at typical conditions encountered in solar heating and cooling systems. Inhibitors are based on sodium salts including nitrates, borates, silicates, and phosphates.

  4. Organic Rankine Cycle with Solar Heat Storage in Paraffin Way

    Directory of Open Access Journals (Sweden)

    Constantin LUCA

    2015-06-01

    Full Text Available The paper presents an electricity generation system based on an Organic Rankine Cycle and proposed storing the amount of the heat produced by the solar panels using large volume of paraffin wax. The proposed working fluid is R-134a refrigerant. The cycle operates at very low temperatures. A efficiency of 6,55% was obtained.

  5. Cooling with solar heat. Absorption refrigerator; Mit Sonnenwaerme kuehlen. Absorptionskaeltemaschine

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2009-04-15

    Absorption and adsorption techniques make it possible to provide cold water at a typical air conditioning level by means of solar heat. Often, absorption refrigerators using lithium bromide dissolved in water as absorption agent and water as refrigerant are used for this purpose. (orig.)

  6. Organic Rankine Cycle with Solar Heat Storage in Paraffin Way

    OpenAIRE

    Constantin LUCA; Daniel DRAGOMIR-STANCIU

    2015-01-01

    The paper presents an electricity generation system based on an Organic Rankine Cycle and proposed storing the amount of the heat produced by the solar panels using large volume of paraffin wax. The proposed working fluid is R-134a refrigerant. The cycle operates at very low temperatures. A efficiency of 6,55% was obtained.

  7. International Energy Agency Solar Heating and Cooling Program

    Science.gov (United States)

    Brooks, A. J.

    This trip was undertaken to participate in and represent the United States Industry at the International Energy Agency (IEA) Solar Heating and Cooling Program (SHCP) Task 14 Workshop. The meeting took place at the A1 Bani Hotel in Rome Italy.

  8. Solar Heating and Cooling of Residential Buildings: Design of Systems.

    Science.gov (United States)

    Colorado State Univ., Ft. Collins. Solar Energy Applications Lab.

    This is the second of two training courses designed to develop the capability of practitioners in the home building industry to design solar heating and cooling systems. The course is organized in 23 modules to separate selected topics and to facilitate learning. Although a compact schedule of one week is shown, a variety of formats can be…

  9. Heat transparent high intensity high efficiency solar cell

    Science.gov (United States)

    Evans, J. C., Jr. (Inventor)

    1982-01-01

    An improved solar cell design is described. A surface of each solar cell has a plurality of grooves. Each groove has a vertical face and a slanted face that is covered by a reflecting metal. Light rays are reflected from the slanted face through the vertical face where they traverse a photovoltaic junction. As the light rays travel to the slanted face of an adjacent groove, they again traverse the junction. The underside of the reflecting coating directs the light rays toward the opposite surface of solar cell as they traverse the junction again. When the light rays travel through the solar cell and reach the saw toothed grooves on the under side, the process of reflection and repeatedly traversing the junction again takes place. The light rays ultimately emerge from the solar cell. These solar cells are particularly useful at very high levels of insolation because the infrared or heat radiation passes through the cells without being appreciably absorbed to heat the cell.

  10. Nonlinear Processes in Coronal Heating and Slow Solar Wind Acceleration

    CERN Document Server

    Rappazzo, A F

    2010-01-01

    This work consists of two parts: the first devoted to the study of the heating of the magnetically confined Solar Corona, and the second to the acceleration of the Slow Solar Wind. Direct 3D reduced MHD simulations are presented. They model the heating of coronal loops in the solar atmosphere via the tangling of coronal field lines by photospheric footpoints motions within the framework of the "Parker scenario". We have derived scalings of physical quantities with loop length, and the ratio of photospheric to coronal Alfven velocities. The development of a turbulent dynamics makes the dissipation rate independent of the Reynolds number. The dynamics in physical space are desribed by weak turbulence, which develops when an MHD system is embedded in a strong axial magnetic field. The slow wind originates in and around the coronal streamer belt. The LASCO instrument onboard the SOHO spacecraft has observed plasma density enhancements forming beyond the cusp of a helmet streamer. Previous theoretical models for t...

  11. Is Magnetic Topology Important for Heating the Solar Atmosphere?

    CERN Document Server

    Parnell, C E; Threlfall, J; Edwards, S J

    2015-01-01

    Magnetic fields permeate the entire solar atmosphere weaving an extremely complex pattern on both local and global scales. In order to understand the nature of this tangled web of magnetic fields, its magnetic skeleton, which forms the boundaries between topologically distinct flux domains, may be determined. The magnetic skeleton consists of null points, separatrix surfaces, spines and separators. The skeleton is often used to clearly visualize key elements of the magnetic configuration, but parts of the skeleton are also locations where currents and waves may collect and dissipate. In this review, the nature of the magnetic skeleton on both global and local scales, over solar cycle time scales, is explained. The behaviour of wave pulses in the vicinity of both nulls and separators is discussed and so too is the formation of current layers and reconnection at the same features. Each of these processes leads to heating of the solar atmosphere, but collectively do they provide enough heat, spread over a wide e...

  12. Solar heating and cooling system installed at Leavenworth, Kansas

    Science.gov (United States)

    1980-01-01

    A solar heating and cooling is described which is designed to furnish 90 percent of the overall heating load, 70 percent of the cooling load and 100 percent of the domestic hot water load. The building has two floors with a total of 12,000 square feet gross area. The system has 120 flat-plate liquid solar panels with a net area of 2,200 square feet. Five 3 ton Arkla solar assisted absorption units provide the cooling, in conjunction with a 3,000 gallon chilled water storage tank. Two 3,000 gallon storage tanks are provided with one designated for summer use, whereas both tanks are utilized during winter.

  13. STUDY AND NUMERICAL SIMULATION OF SOLAR SYSTEM FOR AIR HEATING

    Directory of Open Access Journals (Sweden)

    M. Ghodbane

    2016-01-01

    Full Text Available The use of solar energy in sunny countries, is an effective outil for compensate the lack in the energy, their benefits are not related only to its economic benefits but especially for the environmental protection, so we must find solutions to the problems of pollution. This work is a theoretical study of a solar flat plate collector ; air is used as the heat transfer fluid. In this study, we established in first step the calculation of solar radiation in various sites in Algeria (Adrar, El Oued, Bechar, Biskra and Tamanrasset. The second step is the parameters influence study of the sites and climate on the performance of our collector. The results obtained are encouraging for the use of this type in the heating in the winter, also it can be used in different kinds of drying.

  14. Central receiver solar thermal power system, Phase 1. CDRL Item 2. Pilot plant preliminary design report. Volume V. Thermal storage subsystem. [Sensible heat storage using Caloria HT43 and mixture of gravel and sand

    Energy Technology Data Exchange (ETDEWEB)

    Hallet, Jr., R. W.; Gervais, R. L.

    1977-10-01

    The proposed 100-MWe Commercial Plant Thermal Storage System (TSS) employs sensible heat storage using dual liquid and solid media for the heat storage in each of four tanks, with the thermocline principle applied to provide high-temperature, extractable energy independent of the total energy stored. The 10-MW Pilot Plant employs a similar system except uses only a single tank. The high-temperature organic fluid Caloria HT43 and a rock mixture of river gravel and No. 6 silica sand were selected for heat storage in both systems. The system design, installation, performance testing, safety characteristics, and specifications are described in detail. (WHK)

  15. Seasonal storage of energy in solar heating

    Science.gov (United States)

    Braun, J. E.; Klein, S. A.; Mitchell, J. W.

    1981-01-01

    This paper focuses on several aspects of seasonal storage for space heating using water as the storage medium. The interrelationships between collector area, storage volume, and system performance are investigated using the transient simulation program TRNSYS. The situations for which seasonal storage is most promising are presented. Particular emphasis is placed upon design of seasonal storage systems. A design method is presented which is applicable for storage capacities ranging from a few days to seasonal storage. This design method, coupled with cost information, should be useful in assessing the economic viability of seasonal storage systems. Also investigated are the importance of the load heat exchanger size, tank insulation, collector slope, and year-to-year weather variations in system design.

  16. Solar power generation by use of Stirling engine and heat loss analysis of its cavity receiver

    Science.gov (United States)

    Hussain, Tassawar

    Since concentrated power generation by Stirling engine has the highest efficiency therefore efficient power generation by concentrated systems using a Stirling engine was a primary motive of this research. A 1 kW Stirling engine was used to generate solar power using a Fresnel lens as a concentrator. Before operating On-Sun test, engine's performance test was conducted by combustion test. Propane gas with air was used to provide input heat to the Stirling Engine and 350W power was generated with 14% efficiency of the engine. Two kinds of receivers were used for On-Sun test, first type was the Inconel tubes with trapped helium gas and the second one was the heat pipe. Heat pipe with sodium as a working fluid is considered the best approach to transfer the uniform heat from the receiver to the helium gas in the heater head of the engine. A Number of On-Sun experiments were performed to generate the power. A minimum 1kW input power was required to generate power from the Stirling engine but it was concluded that the available Fresnel lens was not enough to provide sufficient input to the Stirling engine and hence engine was lagged to generate the solar power. Later on, for a high energy input a Beam Down system was also used to concentrate the solar light on the heater head of the Stirling engine. Beam down solar system in Masdar City UAE, constructed in 2009 is a variation of central receiver plant with cassegrainian optics. Around 1.5kW heat input was achieved from the Beam Down System and it was predicted that the engine receiver at beam down has the significant heat losses of about 900W. These high heat losses were the major hurdles to get the operating temperature (973K) of the heat pipes; hence power could not be generated even during the Beam Down test. Experiments were also performed to find the most suitable Cavity Receiver configuration for maximum solar radiation utilizations by engine receiver. Dimensionless parameter aperture ration (AR=d/D) and aperture

  17. Application of solar radiation for heating and preparation of warm water in an individual house

    International Nuclear Information System (INIS)

    The paper is aimed at analysis of application of the solar collectors array for preparing of warm water and space heating in an individual house. Keywords: application of solar radiation, preparation of warm water, heating

  18. Solar water heating system for a lunar base

    Science.gov (United States)

    Somers, Richard E.; Haynes, R. Daniel

    1992-01-01

    An investigation of the feasibility of using a solar water heater for a lunar base is described. During the investigation, computer codes were developed to model the lunar base configuration, lunar orbit, and heating systems. Numerous collector geometries, orientation variations, and system options were identified and analyzed. The results indicate that the recommended solar water heater could provide 88 percent of the design load and would not require changes in the overall lunar base design. The system would give a 'safe-haven' water heating capability and use only 7 percent to 10 percent as much electricity as an electric heating system. As a result, a fixed position photovoltaic array can be reduced by 21 sq m.

  19. Solar space heating installed at Kansas City, Kansas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    The solar energy system was constructed with the new 48,800 square feet warehouse to heat the warehouse area of about 39,000 square feet while the auxiliary energy system heats the office area of about 9800 square feet. The building is divided into 20 equal units, and each has its own solar system. The modular design permits the flexibility of combining multiple units to form offices or warehouses of various size floor areas as required by a tenant. Each unit has 20 collectors which are mounted in a single row. The collectors, manufactured by Solaron Corporation, are double glazed flat plate collectors with a gross area of 7800 ft/sup 2/. Air is heated either through the collectors or by the electric resistance duct coils. No freeze protection or storage is required for this system. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are included.

  20. Water heating solar system using collector with polycarbonate absorber surface

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luiz Guilherme Meira de; Sodre, Dilton; Cavalcanti, Eduardo Jose Cidade; Souza, Luiz Guilherme Vieira Meira de; Mendes, Jose Ubiragi de Lima [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)], e-mails: lguilherme@dem.ufrn.br, diltonsodre@ifba.edu.br, ubiragi@ct.ufrn.br

    2010-07-01

    It is presented s solar collector to be used in a heating water for bath system, whose main characteristics are low cost and easy fabrication and assembly processes. The collector absorber surface consists of a polycarbonate plate with an area of 1.5 m{sup 2}. The water inlet and outlet are made of PVC 50mm, and were coupled to a 6mm thick polycarbonate plate using fiberglass resin. A 200 liters thermal reservoir will be used. This reservoir is also alternative. The absorber heating system works under thermo-siphon regimen. Thermal parameters will be evaluated to prove the feasibility of the studied solar heating system to obtain bath water for a four people family. (author)

  1. Testing, development and demonstration of large scale solar district heating systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Fan, Jianhua; Perers, Bengt;

    2015-01-01

    In 2013-2014 the project “Testing, development and demonstration of large scale solar district heating systems” was carried out within the Sino-Danish Renewable Energy Development Programme, the so called RED programme jointly developed by the Chinese and Danish governments. In the project Danish...... know how on solar heating plants and solar heating test technology have been transferred from Denmark to China, large solar heating systems have been promoted in China, test capabilities on solar collectors and large scale solar heating systems have been improved in China and Danish-Chinese cooperation...

  2. Performance of active solar space-heating systems, 1980-1981 heating season

    Energy Technology Data Exchange (ETDEWEB)

    Welch, K.; Kendall, P.; Pakkala, P.; Cramer, M.

    1981-01-01

    Data are provided on 32 solar heating sites in the National Solar Data Network (NSDN). Of these, comprehensive data are included for 14 sites which cover a range of system types and solar applications. A brief description of the remaining sites is included along with system problems experienced which prevented comprehensive seasonal analyses. Tables and discussions of individual site parameters such as collector areas, storage tank sizes, manufacturers, building dimensions, etc. are provided. Tables and summaries of 1980-1981 heating season data are also provided. Analysis results are presented in graphic form to highlight key summary information. Performance indices are graphed for two major groups of collectors - liquid and air. Comparative results of multiple NSDN systems' operation for the 1980-1981 heating season are summarized with discussions of specific cases and conclusions which may be drawn from the data. (LEW)

  3. The design of future central receiver power plants based on lessons learned from the Solar One Pilot Plant

    Science.gov (United States)

    Kolb, G. J.

    The 10-MW(sub e) Solar One Pilot Plant was the world's largest solar central receiver power plant. During its power production years it delivered over 37,000 MWhrs (net) to the utility grid. In this type of electric power generating plant, large sun-tracking mirrors called heliostats reflect and concentrate sunlight onto a receiver mounted on top of a tower. The receiver transforms the solar energy into thermal energy that heats water, turning it into superheated steam that drives a turbine to generate electricity. The Solar One Pilot Plant successfully demonstrated the feasibility of generating electricity with a solar central receiver power plant. During the initial 2 years the plant was tested and 4 years the plant was operated as a power plant, a great deal of data was collected relating to the efficiency and reliability of the plant's various systems. This paper summarizes these statistics and compares them to goals developed by the U.S. Department of Energy. Based on this comparison, improvements in the design and operation of future central receiver plants are recommended. Research at Sandia National Laboratories and the U.S. utility industry suggests that the next generation of central receiver power plants will use a molten salt heat transfer fluid rather than water/steam. Sandia has recently completed the development of the hardware needed in a molten salt power plant. Use of this new technology is expected to solve many of the performance problems encountered at Solar One. Projections for the energy costs from these future central receiver plants are also presented. For reference, these projections are compared to the current energy costs from the SEGS parabolic trough plants now operating in Southern California.

  4. The design of future central receiver power plants based on lessons learned from the Solar One Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, G.J.

    1991-01-01

    The 10-MW{sub e} Solar One Pilot Plant was the world's largest solar central receiver power plant. During its power production years it delivered over 37,000 MWhrs (net) to the utility grid. In this type of electric power generating plant, large sun-tracking mirrors called heliostats reflect and concentrate sunlight onto a receiver mounted on top a of a tower. The receiver transforms the solar energy into thermal energy that heats water, turning it into superheated steam that drives a turbine to generate electricity. The Solar One Pilot Plant successfully demonstrated the feasibility of generating electricity with a solar central receiver power plant. During the initial 2 years the plant was tested and 4 years the plant was operated as a power plant, a great deal of data was collected relating to the efficiency and reliability of the plant's various systems. This paper summarizes these statistics and compares them to goals developed by the US Department of Energy. Based on this comparison, improvements in the design and operation of future central receiver plants are recommended. Research at Sandia National Laboratories and the US utility industry suggests that the next generation of central receiver power plants will use a molten salt heat transfer fluid rather than water/steam. Sandia has recently completed the development of the hardware needed in a molten salt power plant. Use of this new technology is expected to solve many of the performance problems encountered at Solar One. Projections for the energy costs from these future central receiver plants are also presented. For reference, these projections are compared to the current energy costs from the SEGS parabolic trough plants now operating in Southern California.

  5. Dynamic performance of a novel solar photovoltaic/loop-heat-pipe heat pump system

    International Nuclear Information System (INIS)

    Highlights: • A transient model was developed to predict dynamic performance of new PV/LHP system. • The model accuracy was validated by experiment giving less than 9% in error. • The new system had basic and advanced performance coefficients of 5.51 and 8.71. • The new system had a COP 1.5–4 times that for conventional heat pump systems. • The new system had higher exergetic efficiency than PV and solar collector systems. - Abstract: Objective of the paper is to present an investigation into the dynamic performance of a novel solar photovoltaic/loop-heat-pipe (PV/LHP) heat pump system for potential use in space heating or hot water generation. The methods used include theoretical computer simulation, experimental verification, analysis and comparison. The fundamental equations governing the transient processes of solar transmission, heat transfer, fluid flow and photovoltaic (PV) power generation were appropriately integrated to address the energy balances occurring in different parts of the system, e.g., glazing cover, PV cells, fin sheet, loop heat pipe, heat pump cycle and water tank. A dedicated computer model was developed to resolve the above grouping equations and consequently predict the system’s dynamic performance. An experimental rig was constructed and operated under the real weather conditions for over one week in Shanghai to evaluate the system living performance, which was undertaken by measurement of various operational parameters, e.g., solar radiation, photovoltaic power generation, temperatures and heat pump compressor consumption. On the basis of the first- (energetic) and second- (exergetic) thermodynamic laws, an overall evaluation approach was proposed and applied to conduct both quantitative and qualitative analysis of the PV/LHP module’s efficiency, which involved use of the basic thermal performance coefficient (COPth) and the advanced performance coefficient (COPPV/T) of such a system. Moreover, a simple comparison

  6. Experimental Study of the Performance of Air Source Heat Pump Systems Assisted by Low-Temperature Solar-Heated Water

    OpenAIRE

    Jinshun Wu; Chao Chen; Song Pan; Jun Wei; Tianquan Pan; Yixuan Wei; Yunmo Wang; Xinru Wang; Jiale Su

    2013-01-01

    Due to the low temperatures, the heating efficiency of air source heat pump systems during the winter is very low. To address this problem, a low-temperature solar hot water system was added to a basic air source heat pump system. Several parameters were tested and analyzed. The heat collection efficiency of the solar collector was analyzed under low-temperature conditions. The factors that affect the performance of the heat pumps, such as the fluid temperature, pressure, and energy savings, ...

  7. Evaluation of a thermally driven heat pump for solar heating and cooling applications

    OpenAIRE

    Blackman, Corey

    2015-01-01

    Exploiting solar energy technology for both heating and cooling purposes has the potential of meeting an appreciable portion of the energy demand in buildings throughout the year. By developing an integrated, multi-purpose solar energy system, that can operate all twelve months of the year, a high utilisation factor can be achieved which translates to more economical systems. However, there are still some techno-economic barriers to the general commercialisation and market penetration of such...

  8. Evaluation of a Modular Thermally Driven Heat Pump for Solar Heating and Cooling Applications

    OpenAIRE

    Blackman, Corey

    2015-01-01

    Exploiting solar energy technology for both heating and cooling purposes has the potential of meeting an appreciable portion of the energy demand in buildings throughout the year. By developing an integrated, multi-purpose solar energy system, that can operate all twelve months of the year, a high utilisation factor can be achieved which translates to more economical systems. However, there are still some techno-economic barriers to the general commercialisation and market penetration of such...

  9. Testing of Solar Heated Domestic Hot Water System for Solarnor A/S

    DEFF Research Database (Denmark)

    Qin, Lin; Furbo, Simon

    1997-01-01

    The solar heating system from the Norwegian company SolarNor AS was tested in the Institutes test facility for SDHWsystems. The results of the test are given in the report.......The solar heating system from the Norwegian company SolarNor AS was tested in the Institutes test facility for SDHWsystems. The results of the test are given in the report....

  10. Solar water heating for aquaculture : optimizing design for sustainability

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, M.; Thwaites, J. [Taylor Munro Energy Systems Inc., Delta, BC (Canada)

    2003-08-01

    This paper presents the results of a solar water heating project at Redfish Ranch, the first Tilapia tropical fish farm in British Columbia. The fish are raised in land-based tanks, eliminating the risk of contamination of local ecosystems. As a tropical species, they requires warm water. Natural gas or propane boilers are typically used to maintain tank temperatures at 26 to 28 degrees C. Redfish Ranch uses solar energy to add heat to the fish tanks, thereby reducing fossil-fuel combustion and greenhouse gas emissions. This unique building-integrated solar system is improving the environmental status of of this progressive industrial operation by offsetting fossil-fuel consumption. The system was relatively low cost, although substantial changes had to be made to the roof of the main building. The building-integrated design of the solar water heating system has reduced operating costs, generated local employment, and shows promise of future activity. As such, it satisfies the main criteria for sustainability. 7 refs.

  11. Thermal State-of-Charge in Solar Heat Receivers

    Science.gov (United States)

    Hall, Carsie, A., III; Glakpe, Emmanuel K.; Cannon, Joseph N.; Kerslake, Thomas W.

    1998-01-01

    A theoretical framework is developed to determine the so-called thermal state-of-charge (SOC) in solar heat receivers employing encapsulated phase change materials (PCMS) that undergo cyclic melting and freezing. The present problem is relevant to space solar dynamic power systems that would typically operate in low-Earth-orbit (LEO). The solar heat receiver is integrated into a closed-cycle Brayton engine that produces electric power during sunlight and eclipse periods of the orbit cycle. The concepts of available power and virtual source temperature, both on a finite-time basis, are used as the basis for determining the SOC. Analytic expressions for the available power crossing the aperture plane of the receiver, available power stored in the receiver, and available power delivered to the working fluid are derived, all of which are related to the SOC through measurable parameters. Lower and upper bounds on the SOC are proposed in order to delineate absolute limiting cases for a range of input parameters (orbital, geometric, etc.). SOC characterization is also performed in the subcooled, two-phase, and superheat regimes. Finally, a previously-developed physical and numerical model of the solar heat receiver component of NASA Lewis Research Center's Ground Test Demonstration (GTD) system is used in order to predict the SOC as a function of measurable parameters.

  12. Theoretical energy and exergy analyses of solar assisted heat pump space heating system

    Directory of Open Access Journals (Sweden)

    Atmaca Ibrahim

    2014-01-01

    Full Text Available Due to use of alternative energy sources and energy efficient operation, heat pumps come into prominence in recent years. Especially in solar-assisted heat pumps, sizing the required system is difficult and arduous task in order to provide optimum working conditions. Therefore, in this study solar assisted indirect expanded heat pump space heating system is simulated and the results of the simulation are compared with available experimental data in the literature in order to present reliability of the model. Solar radiation values in the selected region are estimated with the simulation. The case study is applied and simulation results are given for Antalya, Turkey. Collector type and storage tank capacity effects on the consumed power of the compressor, COP of the heat pump and the overall system are estimated with the simulation, depending on the radiation data, collector surface area and the heating capacity of the space. Exergy analysis is also performed with the simulation and irreversibility, improvement potentials and exergy efficiencies of the heat pump and system components are estimated.

  13. Simulations of Alfven wave driving of the solar chromosphere - efficient heating and spicule launching

    CERN Document Server

    Brady, C S

    2016-01-01

    Two of the central problems in our understanding of the solar chromosphere are how the upper chromosphere is heated and what drives spicules. Estmates of the required chromospheric heating, based on radiative and conductive losses suggest a rate of $\\sim 0.1 \\mathrm{\\:erg\\:cm^{-3}\\:s^{-1}}$ in the lower chromosphere dropping to $\\sim 10^{-3} \\mathrm{\\:erg\\:cm^{-3}\\:s^{-1}}$ in the upper chromosphere (\\citet{Avrett1981}). The chromosphere is also permeated by spicules, higher density plasma from the lower atmosphere propelled upwards at speeds of $\\sim 10-20 \\mathrm{\\:km\\:s^{-1}}$, for so called Type-I spicules (\\citet{Pereira2012,Zhang2012}, reaching heights of $\\sim 3000-5000 \\mathrm{\\:km}$ above the photosphere. A clearer understanding of chromospheric dynamics, its heating and the formation of spicules, is thus of central importance to solar atmospheric science. For over thirty years it has been proposed that photospheric driving of MHD waves may be responsible for both heating and spicule formation. This ...

  14. Transient analysis of a molten salt central receiver (MSCR) in a solar power plant

    Science.gov (United States)

    Joshi, A.; Wang, C.; Akinjiola, O.; Lou, X.; Neuschaefer, C.; Quinn, J.

    2016-05-01

    Alstom is developing solar power tower plants utilizing molten salt as the working fluid. In solar power tower, the molten salt central receiver (MSCR) atop of the tower is constructed of banks of tubes arranged in panels creating a heat transfer surface exposed to the solar irradiation from the heliostat field. The molten salt heat transfer fluid (HTF), in this case 60/40%wt NaNO3-KNO3, flows in serpentine flow through the surface collecting sensible heat thus raising the HTF temperature from 290°C to 565°C. The hot molten salt is stored and dispatched to produce superheated steam in a steam generator, which in turn produces electricity in the steam turbine generator. The MSCR based power plant with a thermal energy storage system (TESS) is a fully dispatchable renewable power plant with a number of opportunities for operational and economic optimization. This paper presents operation and controls challenges to the MSCR and the overall power plant, and the use of dynamic model computer simulation based transient analyses applied to molten salt based solar thermal power plant. This study presents the evaluation of the current MSCR design, using a dynamic model, with emphasis on severe events affecting critical process response, such as MS temperature deviations, and recommend MSCR control design improvements based on the results. Cloud events are the scope of the transient analysis presented in this paper. The paper presents results from a comparative study to examine impacts or effects on key process variables related to controls and operation of the MSCR plant.

  15. Joule heating and anomalous resistivity in the solar corona

    Directory of Open Access Journals (Sweden)

    S. R. Spangler

    2009-06-01

    Full Text Available Recent radioastronomical observations of Faraday rotation in the solar corona can be interpreted as evidence for coronal currents, with values as large as 2.5×109 Amperes (Spangler, 2007. These estimates of currents are used to develop a model for Joule heating in the corona. It is assumed that the currents are concentrated in thin current sheets, as suggested by theories of two dimensional magnetohydrodynamic turbulence. The Spitzer result for the resistivity is adopted as a lower limit to the true resistivity. The calculated volumetric heating rate is compared with an independent theoretical estimate by Cranmer et al. (2007. This latter estimate accounts for the dynamic and thermodynamic properties of the corona at a heliocentric distance of several solar radii. Our calculated Joule heating rate is less than the Cranmer et al estimate by at least a factor of 3×105. The currents inferred from the observations of Spangler (2007 are not relevant to coronal heating unless the true resistivity is enormously increased relative to the Spitzer value. However, the same model for turbulent current sheets used to calculate the heating rate also gives an electron drift speed which can be comparable to the electron thermal speed, and larger than the ion acoustic speed. It is therefore possible that the coronal current sheets are unstable to current-driven instabilities which produce high levels of waves, enhance the resistivity and thus the heating rate.

  16. Advanced sensible heat solar receiver for space power

    Science.gov (United States)

    Bennett, Timothy J.; Lacy, Dovie E.

    1988-01-01

    NASA Lewis, through in-house efforts, has begun a study to generate a conceptual design of a sensible heat solar receiver and to determine the feasibility of such a system for space power applications. The sensible heat solar receiver generated in this study uses pure lithium as the thermal storage medium and was designed for a 7 kWe Brayton (PCS) operating at 1100 K. The receiver consists of two stages interconnected via temperature sensing variable conductance sodium heat pipes. The lithium is contained within a niobium vessel and the outer shell of the receiver is constructed of third generation rigid, fibrous ceramic insulation material. Reradiation losses are controlled with niobium and aluminum shields. By nature of design, the sensible heat receiver generated in this study is comparable in both size and mass to a latent heat system of similar thermal capacitance. The heat receiver design and thermal analysis were conducted through the combined use of PATRAN, SINDA, TRASYS, and NASTRAN software packages.

  17. Performance of evacuated tubular solar collectors in a residential heating and cooling system

    Science.gov (United States)

    Duff, W. S.; Loef, G. O. G.

    1981-03-01

    Operation of CSU Solar House I during the heating season of 1978-1979 and during the 1979 cooling season is discussed. The systems comprised an experimental evacuated tubular solar collector, a nonfreezing aqueous collection medium, heat exchange to an insulated conventional vertical cylindrical storage tank and to a built up rectangular insulated storage tank, heating of circulating air by solar heated water and by electric auxiliary in an off peak heat storage unit, space cooling by lithium bromide absorption chiller, and service water heating by solar exchange and electric auxiliary. The system is compared with CSU Solar Houses I, II and III. The experimental collector provides solar heating and cooling with minimum operational problems. Improved performance, particularly for cooling, resulted from the use of a very well insulated heat storage tank. Day time electric auxiliary heating is avoided by use of off peak electric heat storage.

  18. Solar heat mirrors produced by ion plating

    International Nuclear Information System (INIS)

    Transparent conducting oxide films have been produced by the reactive ion plating of indium onto glass and plastic substrates at room temperature. The electrical properties of these films were sufficient, with high values of electrical mobility and carrier density, to give a sharp plasma reflectance edge in the near infra-red. These properties are ideally suited for the production of visibly transmitting, infra-red reflecting surfaces needed for heat mirror applications. Optimum properties are achieved with careful control of the gas mixture and amount of substrate bias acquired by the substrate from the radio frequency used for the discharge. Satisfactory films could be made starting from evaporation or planar magnetron sputtering sources. (author)

  19. Heat transfer simulation of a solar test stand

    International Nuclear Information System (INIS)

    A transient heat transfer model for a solar test stand is presented here to predict temperatures of the absorber plates on a solar test stand, instead of consuming excessive time to conduct numerous experiments. Three zones are defined in this model for the test stand: glass, enclosed-air, plates/insulation layers. A radiation model for the glass layer is developed here to achieve more accurate simulation. This model combines a cold medium without scattering approximation for solar irradiation together with optically thick approximation for infrared thermal radiation, thereby simplifying the spectral dependence on the semitransparent medium of glass. The numerical simulation to obtain three-dimensional transient temperature predictions is made with the finite-volume discretization and alternating directional implicit (ADI) scheme together with the Crank–Nicolson approach. In addition, the coupling effects on the interfacial boundary are handled by the iterative method. The model is validated by comparing the measured temperatures with the predicted ones at selected positions. It is found that the deviations between measured and predicted temperatures on the absorbing plates fall within 3 K (about 1%), which validates the computational model developed in this study. - Highlights: • A 3D transient heat transfer model for a simple solar collector is developed. • Heat transfer processes in the solar collector with absorbing glazing are analyzed. • Radiative heat transfer is handled by using two main spectral bands in the system. • Predictions are in satisfactory agreement with the experimental results. • Experiments are conducted to provide the data for model validation

  20. Thermal Advantages for Solar Heating Systems with a Glass Cover with Antireflection Surfaces

    DEFF Research Database (Denmark)

    Furbo, Simon; Shah, Louise Jivan

    2003-01-01

    surfaces was determined for different solar heating systems. Three systems were investigated: solar domestic hot water systems, solar heating systems for combined space heating demand and domestic hot water supply, and large solar heating plants. The yearly thermal performance of the systems was calculated...... by detailed simulation models with collectors with a normal glass cover and with a glass cover with antireflection surfaces. The calculations were carried out for different solar fractions and temperature levels of the solar heating systems. These parameters influence greatly the thermal performance......Investigations elucidate how a glass cover with antireflection surfaces can improve the efficiency of a solar collector and the thermal performance of solar heating systems. The transmittances for two glass covers for a flat-plate solar collector were measured for different incidence angles. The...

  1. Development of hybrid solar-assisted cooling/heating system

    KAUST Repository

    Huang, B.J.

    2010-08-01

    A solar-assisted ejector cooling/heating system (SACH) was developed in this study. The SACH combines a pump-less ejector cooling system (ECS) with an inverter-type heat pump (R22) and is able to provide a stable capacity for space cooling. The ECS is driven by solar heat and is used to cool the condenser of the R22 heat pump to increase its COP and reduce the energy consumption of the compressor by regulating the rotational speed of the compressor through a control system. In a complete SACH system test run at outdoor temperature 35 °C, indoor temperature 25 °C and compressor speed 20-80 Hz, and the ECS operating at generator temperature 90 °C and condensing temperature 37 °C, the corresponding condensing temperature of the heat pump in the SACH is 24.5-42 °C, cooling capacity 1.02-2.44 kW, input power 0.20-0.98 kW, and cooling COPc 5.11-2.50. This indicates that the use of ECS in SACH can effectively reduce the condensing temperature of the heat pump by 12.6-7.3 °C and reduce the power consumption by 81.2-34.5%. The SACH can also supply heat from the heat pump. At ambient temperature from 5 °C to 35 °C, the heating COPh is in the range 2.0-3.3. © 2010 Elsevier Ltd. All rights reserved.

  2. Solar Panels reduce both global warming and Urban Heat Island

    Directory of Open Access Journals (Sweden)

    Valéry eMasson

    2014-06-01

    Full Text Available The production of solar energy in cities is clearly a way to diminish our dependency to fossil fuels, and is a good way to mitigate global warming by lowering the emission of greenhouse gases. However, what are the impacts of solar panels locally ? To evaluate their influence on urban weather, it is necessary to parameterize their effects within the surface schemes that are coupled to atmospheric models. The present paper presents a way to implement solar panels in the Town Energy Balance scheme, taking account of the energy production (for thermal and photovoltaic panels, the impact on the building below and feedback towards the urban micro-climate through radiative and convective fluxes. A scenario of large but realistic deployment of solar panels on the Paris metropolitan area is then simulated. It is shown that solar panels, by shading the roofs, slightly increases the need for domestic heating (3%. In summer however, the solar panels reduce the energy needed for air-conditioning (by 12% and also the Urban Heat Island (UHI: 0.2K by day and up to 0.3K at night. These impacts are larger than those found in previous works, because of the use of thermal panels (that are more efficient than photovoltaic panels and the geographical position of Paris, which is relatively far from the sea. This means that it is not influenced by sea breezes, and hence that its UHI is stronger than for a coastal city of the same size. But this also means that local adaptation strategies aiming to decrease the UHI will have more potent effects. In summary, the deployment of solar panels is good both globally, to produce renewable energy (and hence to limit the warming of the climate and locally, to decrease the UHI, especially in summer, when it can constitute a health threat.

  3. The use of solar colletor for heating and electricity for a single family house

    OpenAIRE

    Zurawska, Monika

    2016-01-01

    The presented work is related to the use of solar energy for the needs of heating and electricity for a single house located in Poland. Electricity will provided by energy conversion in the turbine by means of Organic Rankine Cycle (ORC), in which the operating medium (water heated in solar collector) is heating refrigerator in the heating exchanger. The solar installation is integrated with heat accumulator and wood boiler, which is used in the situation that collector is not enough to fi...

  4. Theory of heating of hot magnetized plasma by Alfven waves. Application for solar corona

    OpenAIRE

    Mishonov, T. M.; Stoev, M. V.; Maneva, Y. G.

    2007-01-01

    The heating of magnetized plasma by propagation of Alfven waves is calculated as a function of the magnetic field spectral density. The results can be applied to evaluate the heating power of the solar corona at known data from satellites' magnetometers. This heating rate can be incorporated in global models for heating of the solar corona and creation of the solar wind. The final formula for the heating power is illustrated with a model spectral density of the magnetic field obtained by anal...

  5. Solar air heating systems. IEA solar heating and cooling programme - task 19. Final report; Luftsolvarmesystemer. Dansk deltagelse i IEA task 19. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    This project focuses on tools for analysis, development and optimization of systems and buildings with solar air-based heating systems. The results are collected in engineering handbook and in a `case study book` with examples of solar-heated buildings. The latter book is addressed to the architects as the primary target group. A component catalog for solar heating systems has been collected and will be published in the same time as the two handbooks. (EG)

  6. Combined cycle solar central receiver hybrid power system study. Final technical report. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-11-01

    This study develops the conceptual design for a commercial-scale (nominal 100 MWe) central receiver solar/fossil fuel hybrid power system with combined cycle energy conversion. A near-term, metallic heat pipe receiver and an advanced ceramic tube receiver hybrid system are defined through parametric and market potential analyses. Comparative evaluations of the cost of power generation, the fuel displacement potential, and the technological readiness of these two systems indicate that the near-term hybrid system has better potential for commercialization by 1990. Based on the assessment of the conceptual design, major cost and performance improvements are projected for the near-term system. Constraints preventing wide-spread use were not identified. Energy storage is not required for this system and analyses show no economic advantages with energy storage provisions. It is concluded that the solar hybrid system is a cost effective alternative to conventional gas turbines and combined cycle generating plants, and has potential for intermediate-load market penetration at 15% annual fuel escalation rate. Due to their flexibility, simple solar/nonsolar interfacing, and short startup cycles, these hybrid plants have significant operating advantages. Utility company comments suggest that hybrid power systems will precede stand-alone solar plants.

  7. Combined solar heat-pump facility for district heating of private dwelling house

    International Nuclear Information System (INIS)

    Combined solar heat-pump facility for district heat supply of private dwelling houses is described. The application of the above facility provides for economy of traditional fuel-energy resources and completely meets the approved trend aimed at refusal from such generally accepted environmental pollutants as small-sized boiler-rooms, furnaces, etc. The system substantiation, calculations and parameters selection are presently completed. The facility design documentation is developed and the prototype production started. 4 refs.; 2 figs

  8. Design of Solar Heat Sheet for Air Heaters

    Science.gov (United States)

    Priya, S. Shanmuga; Premalatha, M.; Thirunavukkarasu, I.

    2011-12-01

    The technique of harnessing solar energy for drying offers significant potential to dry agricultural products such as food grains, fruits, vegetables and medicinal plants, thereby eliminating many of the problems experienced with open-sun drying and industrial drying, besides saving huge quantities of fossil fuels. A great deal of experimental work over the last few decades has already demonstrated that agricultural products can be satisfactorily dehydrated using solar energy. Various designs of small scale solar dryers have been developed in the recent past, mainly for drying agricultural products. Major problems experienced with solar dryers are their non-reliability as their operation largely depends on local weather conditions. While back-up heaters and hybrid dryers partly solved this issue, difficulties in controlling the drying air temperature and flow rate remains a problem, and affects the quality of the dried product. This study is aimed at eliminating the fluctuations in the quality of hot air supplied by simple solar air heaters used for drying fruits, vegetables and other applications. It is an attempt to analyse the applicability of the combination of an glazed transpired solar collector (tank), thermal storage and a intake fan(suction fan) to achieve a steady supply of air at a different atmospheric temperature and flow rate for drying fruits and vegetables. Development of an efficient, low-cost and reliable air heating system for drying applications is done.

  9. Market development directory for solar industrial process heat systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-02-01

    The purpose of this directory is to provide a basis for market development activities through a location listing of key trade associations, trade periodicals, and key firms for three target groups. Potential industrial users and potential IPH system designers were identified as the prime targets for market development activities. The bulk of the directory is a listing of these two groups. The third group, solar IPH equipment manufacturers, was included to provide an information source for potential industrial users and potential IPH system designers. Trade associates and their publications are listed for selected four-digit Standard Industrial Code (SIC) industries. Since industries requiring relatively lower temperature process heat probably will comprise most of the near-term market for solar IPH systems, the 80 SIC's included in this chapter have process temperature requirements less than 350/sup 0/F. Some key statistics and a location list of the largest plants (according to number of employees) in each state are included for 15 of the 80 SIC's. Architectural/engineering and consulting firms are listed which are known to have solar experience. Professional associated and periodicals to which information on solar IPH sytstems may be directed also are included. Solar equipment manufacturers and their associations are listed. The listing is based on the SERI Solar Energy Information Data Base (SEIDB).

  10. Absorption technology for solar and waste heat utilization

    International Nuclear Information System (INIS)

    Absorption heat pumps, first developed in the 19th century, have received renewed and growing attention in the past two decades. With the increasing cost of oil and electricity, the particular features of this heat-powered cycle have made it attractive for both residential and industrial applications. Solar-powered air conditioning, gas-fired domestic cooling and waste-heat-powered temperature boosters are some of the applications on which intensive research and development has been conducted. This paper describes the operation of absorption systems and discusses several practical applications. It surveys recent advances in absorption technology, including the selection of working fluids, cycle improvements and multi-staging, and fundamentals of the combined heat and mass transfer in absorption processes. (author)

  11. STUDY OF HEAT AND MOISTURE DIFFUSION THROUGH A WALL EXPOSED TO SOLAR HEAT FLUX

    Directory of Open Access Journals (Sweden)

    Y. TAMENE

    2011-08-01

    Full Text Available A numerical study of the heat and mass transfer through a wall is proposed in this work. The studied wall is submitted to mass and heat convective exchange with the ambient. One of its sides is submitted to a variable solar heat flux. The computer program is used to compare the cases of coupling and no coupling heat and mass transfer through the wall under variable heat flux and ambient temperature. The temperature effect on the moisture diffusion and vice versa is presented for two usual materials. An optimal proposal can be clear from this study based on objectives which are mainly the reductions of energy consumption as it is for winter heating or summer cooling.

  12. The influence of spectral solar irradiance data on stratospheric heating rates during the 11 year solar cycle

    OpenAIRE

    S. Oberländer; U. Langematz; Matthes, Katja; Kunze, M.; A. Kubin; Harder, J; N. A. Krivova; Solanki, S. K.; Pagaran, J.; M. Weber

    2012-01-01

    Heating rate calculations with the FUBRad shortwave (SW) radiation parameterization have been performed to examine the effect of prescribed spectral solar fluxes from the NRLSSI, MPS and IUP data sets on SW heating rates over the 11 year solar cycle 22. The corresponding temperature response is derived from perpetual January General Circulation Model (GCM) simulations with prescribed ozone concentrations. The different solar flux input data sets induce clear differences in SW heating rates at...

  13. Two-Axis Solar Heat Collection Tracker System for Solar Thermal Applications

    OpenAIRE

    Tsung-Chieh Cheng; Wei-Cheng Hung; Te-Hua Fang

    2013-01-01

    An experimental study was performed to investigate the effect of using a continuous operation two-axes tracking on the solar heat energy collected. This heat-collection sun tracking which LDR (light dependent resistor) sensors installed on the Fersnel lens was used to control the tracking path of the sun with programming method of control with a closed loop system. The control hardware was connected to a computer through Zigbee wireless module and it also can monitor the whole tracking proces...

  14. Mathematical Modeling of a developed Central Receiver Based on Evacuated Solar Tubes

    OpenAIRE

    Ali Basil. H.; Gilani S. I.; Al-Kayiem Hussain H.

    2016-01-01

    Solar central receiver plays a considerable role in the plant output power; it is one of the most important synthesis in the solar power tower plants. Its performance directly affects the efficiency of the entire solar power generation system. In this study, a new designed receiver model based on evacuated solar tube was proposed, and the dynamic characteristics of the developed receiver were investigated. In order to optimise and evaluate the dynamic characteristics of solar power plant comp...

  15. Solar dynamic heat receiver thermal characteristics in low earth orbit

    Science.gov (United States)

    Wu, Y. C.; Roschke, E. J.; Birur, G. C.

    1988-01-01

    A simplified system model is under development for evaluating the thermal characteristics and thermal performance of a solar dynamic spacecraft energy system's heat receiver. Results based on baseline orbit, power system configuration, and operational conditions, are generated for three basic receiver concepts and three concentrator surface slope errors. Receiver thermal characteristics and thermal behavior in LEO conditions are presented. The configuration in which heat is directly transferred to the working fluid is noted to generate the best system and thermal characteristics. as well as the lowest performance degradation with increasing slope error.

  16. Modelling of a honeycomb solar heater designed for room heating

    Energy Technology Data Exchange (ETDEWEB)

    Jong Ho, L.; Lepalec, G.; Daguenet, M. (Universite de Perpignan (France))

    A description is made of an openwork partition unit (in the form of a metallic honeycomb collector) designed to provide solar heating for premises by pulsed air. Heat balances and equations describing the radiative and convective transfers for the absorber and for the circulating air are presented. Modelling serves to calculate the efficiency of the system and the temperature distribution in the unit. The analysis of their variations as a function of cell dimensions (thickness, wall, cross-sectional area) and its inclination to the horizontal tend to encourage the utilization of this system.

  17. Heat of Fusion Storage with High Solar Fraction for Solar Low Energy Buildings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Furbo, Simon

    point of 58°C and a heat of fusion capacity of 265 kJ/kg. The added xanthane rubber (approx. 2 weight-%) makes the sodium acetate super-cool in a stable way. The starting point for the investigations is an ideal heat storage with perfect heat transfer between charge/discharge fluid and PCM as well......The paper presents the results of a theoretical investigation of use of phase change materials (PCM’s) with active use of super cooling as a measure for obtaining partly heat loss free seasonal storages for solar combi-systems with 100% coverage of the energy demand of both space heating...... and domestic hot water. The work is part of the IEA Solar Heating & Cooling Programme Task 32 “Advanced Storage Concepts for Solar Buildings”. The investigations are based on a newly developed TRNSYS type for simulation of a PCM-storage with controlled super-cooling. The super-cooling makes it possible to let...

  18. Efficiency of insulation passive system of solar heating with transforming flat plate reflector of radiation and accumulator of heat

    International Nuclear Information System (INIS)

    Key words: solar radiation, window, reflector of radiation, short-term accumulator of heat, solar heating, insulation passive system, thermal efficiency, heating building. Subjects of research: insulation passive system of solar heating with short-term accumulators of heat, combining the function of collector of solar radiation and hingedly transformed flat plate reflector for additional illumination of heating building and without them. Purpose of work: determination of real possibility of insulation passive system of solar heating with transformed flat plate reflectors of radiation and short-term accumulators of heat and on this basis development of scientific dates for experimental designing and construction of them for natural condition of Uzbekistan. Methods of research: thermal-technical calculation and experiment under natural conditions. The results obtained and their novelty: offered calculation expressions for determining of optimal inclination angle to horizon and coefficient of reflection of direct solar radiation of flat plate reflector with back reflection layer; developed and offered method of calculation of using efficiency of transformed flat plate reflectors of radiation for additional illumination of heating building in the daytime and decreasing of heat losses through window insulation passive systems of solar heating at night; optimized of specific heat of short-time accumulators of heat in insulation passive systems of solar heating; determined real thermal efficiency and replacement coefficient of thermal load to heating of proposed system by the example of operational testing this systems under conditions of Karshi City. Practical value: the results of performed investigations allow to develop the scientific basic dates on designing and marketing on climate conditions in the south of The Republic of Uzbekistan insulation passive systems of solar heating with flat plate reflectors and short-time accumulators of heat, providing to save the

  19. Active solar heating system performance and data review

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J.; Bertarelli, L.; Schmidt, G.

    1999-07-01

    This report summarises the results of a study investigating the performance and costs of solar heating systems in Europe, and their relevance to systems in the UK. Details are given of the identification and review of the available data, the collection of information on UK and overseas systems, and the assessment and analysis of the data. Appendices give a lists of the monitored parameters, European contacts, data sources, the questionnaire for gathering information, and a printout of the data files. (uk)

  20. Solar heating system for recreation building at Scattergood School

    Energy Technology Data Exchange (ETDEWEB)

    Heins, C.F.

    1978-01-03

    This project was initiated in May 1976 and was completed in June 1977. A six-month acceptance-testing period followed during which time a number of minor modifications and corrections were made to improve system performance and versatility. This Final Report describes in considerable detail the solar heating facility and the project involved in its construction. As such, it has both detailed drawings of the completed system and a section that discusses the bottlenecks that were encountered along the way.

  1. Heat flow and heat production in Zambia: evidence for lithospheric thinning in central Africa

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, D.S.; Pollack, H.N.

    1977-08-03

    Heat-flow results from eleven widely spaced sites in central and western regions of the Republic of Zambia range between 54 and 76 mW m/sup -2/. Ten of the sites are located in late Precambrian (Katangan) metasediments or Kibaran age basement, while one site is located in Karroo age sandstone. Compared to the global mean of 39 +- 7 (sd) mW m/sup -2/ for Precambrian provinces elsewhere, these heat-flow results are anomalously high by some 25 mW m/sup -2/. Heat-production measurements on borehole core samples indicate that enhanced radioactivity of an enriched surface zone can account for only half of the observed anomaly. The remaining anomalous heat flow must have a deeper source, and can be interpreted as a flux from the asthenosphere, providing the overlying lithosphere has been thinned to less than 60 km. Such an interpretation supports the existence of an incipient arm of the East African rift system trending southwest from Lake Tanganyika into the central African plateau.

  2. Learning about coronal heating from solar wind observations

    International Nuclear Information System (INIS)

    Vlasov theory describing the interaction of Alfven-cyclotron fluctuations and ions in the collisionless solar wind predicts that alpha particles should be strongly scattered perpendicular to the background magnetic field when the alpha/proton relative velocity vαp is negative or has a sufficiently small positive value relative to the Alfven speed vA. This theory also predicts that, if vαp/vA is positive and sufficiently large, it is the protons which are scattered in the perpendicular direction, although less strongly. Here proton and alpha particle anisotropies measured in the solar wind near 1 AU (AU, astronomical unit) by the plasma and magnetic field instruments on the Advanced Composition Explorer spacecraft are reported which are consistent with these predicted signatures. This indicates that Alfven-cyclotron heating of ions is active in the solar wind; by using this medium to study this fundamental process, a greater understanding may be obtained of how Alfven-cyclotron scattering contributes to heating of ions in the solar corona

  3. Solar/electric heating systems for the future energy system

    DEFF Research Database (Denmark)

    Furbo, Simon; Dannemand, Mark; Perers, Bengt;

    The project “Solar/electric heating systems in the future energy system” was carried out in the period 2008‐2013. The project partners were DTU Byg, DTU Informatics (now DTU Compute), DMI, ENFOR A/S and COWI A/S. The companies Ajva ApS, Ohmatex ApS and Innogie ApS worked together with the project...... partners in two connected projects in order to develop solar/electric heating systems for laboratory tests. The project was financed by the Danish Agency for Science, Technology and Innovation under the Danish Council for Strategic Research in the program Sustainable Energy and Environment. The DSF number...... of the project is 2104‐07‐0021/09‐063201/DSF. This report is the final report of the project. The aim of the project is to elucidate how individual heating units for single family houses are best designed in order to fit into the future energy system. The units are based on solar energy, electrical...

  4. Heat Loss Characterization from Solar Concentrator Receiver – A Review

    Directory of Open Access Journals (Sweden)

    Milind S Patil

    2010-12-01

    Full Text Available Concentrating solar thermal systems collect sunlight and concentrate it towards a receiver increasing its temperature by up to hundreds of degrees and allowing high value energy conversions such as heat engine cycles or chemical process to be carried out. With the receiver operating at high temperatures there are increased heat losses which are detrimental its performance. There are many different types of receivers; a common geometry is a plane type ofreceivers, cavity arrangement. All the concentrators need a tracking and these are located in an ambient where the effect of wind flow and receiver inclination plays an important role in the heat loss characterization. This paper takes a review of such heat loss prediction models. First section of the paper is a general introduction. Second section explains the mechanism of natural convection heat loss. Section three explains the heat loss in windy conditions and the section four concludes for a further study and methodology to be adapted for prediction of heat loss using receivers as developed and used by Prof. Ajay Chandak for multi-effect distiller.

  5. Analysis of thermosyphon heat exchangers for use in solar domestic hot water heating systems

    Science.gov (United States)

    Dahl, Scott David

    1998-11-01

    A recent innovation in the solar industry is the use of thermosyphon heat exchangers. Determining the performance of these systems requires knowledge of how thermosyphon flow rate and heat exchanger performance vary with operating conditions. This study demonstrates that several thermosyphon heat exchanger designs operate in the laminar mixed convection regime. Empirical heat transfer and pressure drop correlations are obtained for three tube-in-shell heat exchangers (four, seven, and nine tube). Thermosyphon flow is on the shell side. Correlations are obtained with uniform heat flux on the tube walls and with a mixture of glycol and water circulating inside the tubes. Ranges of Reynolds, Prandtl, and Grashof numbers are 50 to 1800, 2.5 and 6.0, and 4×105 to 1×108, respectively. Nusselt number correlations are presented in a form that combines the contributions of forced and natural convection, Nu4Mixed=Nu4Forced+Nu4Natural. The Nusselt number is influenced by natural convection when the term Raq0.25/(Re0.5Pr0.33) is greater than unity. Pressure drop through these three designs is not significantly affected by mixed convection because most pressure drop losses are at the heat exchanger inlet and outlet. A comparison and discussion of the performance of several other heat exchanger designs (tube-in-shell and coil-in- shell designs) are presented. Generally, the coil-in- shell heat exchangers perform better than the tube-in- shell heat exchangers. Data from all heat exchanger designs is used to develop a new one-dimensional model for thermosyphon heat exchangers in solar water heating systems. The model requires two empirically determined relationships, pressure drop as a function of water mass flow rate and the overall heat transfer coefficient-area product (UA) as a function of Reynolds, Prandtl, and Grashof number. A testing protocol is presented that describes the procedure to obtain the data for the correlations. Two new TRNSYS component models are presented

  6. A Simple Heat and Mass Transfer Model for Salt Gradient Solar Ponds

    OpenAIRE

    Safwan Kanan, Jonathan Dewsbury, Gregory Lane-Serff

    2014-01-01

    Abstract—A salinity gradient solar pond is a free energy source system for collecting, converting and storing solar energy as heat. In this paper, the principles of solar pond are explained. A mathematical model is developed to describe and simulate heat and mass transfer behavior of salinity gradient solar pond. MATLAB codes are programmed to solve the one dimensional finite difference method for heat and mass transfer equations. Temperature profiles and concentration distributions are calcu...

  7. Initial operation of a solar heating and cooling system in a full-scale solar building test facility

    Science.gov (United States)

    Knoll, R. H.; Miao, D.; Hamlet, I. L.; Jensen, R. N.

    1976-01-01

    The Solar Building Test Facility (SBTF) located at Hampton, Virginia became operational in early summer of 1976. This facility is a joint effort by NASA-Lewis and NASA-Langley to advance the technology for heating and cooling of office buildings with solar energy. Its purposes are to (1) test system components which include high-performing collectors, (2) test performance of complete solar heating and cooling system, (3) investigate component interactions and (4) investigate durability, maintenance and reliability of components. The SBTF consists of a 50,000 square foot office building modified to accept solar heated water for operation of an absorption air conditioner and for the baseboard heating system. A 12,666 square foot solar collector field with a 30,000 gallon storage tank provides the solar heated water. A description of the system and the collectors selected is given here, along with the objectives, test approach, expected system performance and some preliminary results.

  8. Joule Heating and Anomalous Resistivity in the Solar Corona

    CERN Document Server

    Spangler, Steven R

    2008-01-01

    Recent radioastronomical observations of Faraday rotation in the solar corona can be interpreted as evidence for coronal currents, with values as large as $2.5 \\times 10^9$ Amperes (Spangler 2007). These estimates of currents are used to develop a model for Joule heating in the corona. It is assumed that the currents are concentrated in thin current sheets, as suggested by theories of two dimensional magnetohydrodynamic turbulence. The Spitzer result for the resistivity is adopted as a lower limit to the true resistivity. The calculated volumetric heating rate is compared with an independent theoretical estimate by Cranmer et al (2007). This latter estimate accounts for the dynamic and thermodynamic properties of the corona at a heliocentric distance of several solar radii. Our calculated Joule heating rate is less than the Cranmer et al estimate by at least a factor of $3 \\times 10^5$. The currents inferred from the observations of Spangler (2007) are not relevant to coronal heating unless the true resistivi...

  9. Role of Solar Water Heating in Multifamily Zero Energy Homes

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, Robb [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Williamson, James [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2016-04-08

    Solar domestic hot water (SDHW) systems have been installed on buildings for decades, but because of relatively high costs they have not achieved significant market penetration in most of the country. As more buildings move towards zero net energy consumption, however, many designers and developers are looking more closely at SDHW. In multifamily buildings especially, SDHW may be more practical for several reasons: 1) When designing for zero net energy consumption, solar water heating may be part of the lowest cost approach to meet water heating loads; 2) Because of better scale, SDHW systems in multifamily buildings cost significantly less per dwelling than in single-family homes; 3) Many low-load buildings are moving away from fossil fuels entirely. SDHW savings are substantially greater when displacing electric resistance water heating; and 4) In addition to federal tax incentives, some states have substantial financial incentives that dramatically reduce the costs (or increase the benefits) of SDHW systems in multifamily buildings. With support from the U.S. DOE Building America program, the Consortium for Advanced Residential Buildings (CARB) worked with a developer in western Massachusetts to evaluate a SDHW system on a 12-unit apartment building. Olive Street Development completed construction in spring of 2014, and CARB has been monitoring performance of the water heating systems since May 2014.

  10. Building America Case Study: Solar Water Heating in Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    R. Aldrich and J. Williamson

    2016-05-01

    Solar domestic hot water (SDHW) systems have been installed on buildings for decades, but because of relatively high costs they have not achieved significant market penetration in most of the country. As more buildings move towards zero net energy consumption, however, many designers and developers are looking more closely at SDHW. In multifamily buildings especially, SDHW may be more practical for several reasons: (1) When designing for zero net energy consumption, solar water heating may be part of the lowest cost approach to meet water heating loads. (2.) Because of better scale, SDHW systems in multifamily buildings cost significantly less per dwelling than in single-family homes. (3) Many low-load buildings are moving away from fossil fuels entirely. SDHW savings are substantially greater when displacing electric resistance water heating. (4) In addition to federal tax incentives, some states have substantial financial incentives that dramatically reduce the costs (or increase the benefits) of SDHW systems in multifamily buildings. With support form the U.S. DOE Building America program, the Consortium for Advanced Residential Buildings (CARB) worked with a developer in western Massachusetts to evaluate a SDHW system on a 12-unit apartment building. Olive Street Development completed construction in spring of 2014, and CARB has been monitoring performance of the water heating systems since May 2014.

  11. Methods of heat transformation for solar facilities in buildings; Verfahren der Waermetransformation fuer die solare Gebaeudetechnik

    Energy Technology Data Exchange (ETDEWEB)

    Henning, H.M. [Fraunhofer-Inst. fuer Solare Energiesysteme, Freiburg (Germany). Gruppe Aktive Thermische Systeme; Treffinger, P. [Deutsche Zentrum fuer Luft- und Raumfahrt (DLR), Lampoldshausen (Germany). Inst. fuer Technische Thermodynamik

    1998-02-01

    Processes in which a heat pump cycle is driven by thermal energy may be defined as heat transformation processes. The technical realization of this type of processes in general is based on sorption techniques. Depending on the temperature level of the utilized heat these technologies may be used for either cooling or heating of buildings. The paper presents state-of-the-art technologies and new developments. It comprises solar cooling of buildings, utilization of environmental energy sources (earth, air) by thermal driven heat pumps and seasonal storage of solar thermal energy by means of sorption processes. (orig.) [Deutsch] Unter Waermetransformationsverfahren werden im allgemeinen Verfahren verstanden, in denen ein Waermepumpenprozess mit thermischer Energie angetrieben wird. Die technische Realisierung dieser Verfahren erfolgt ueberwiegend mit Hilfe von Sorptionsvorgaengen. Abhaengig vom Temperaturniveau des Nutzwaermestroms koennen solche Verfahren im Gebaeudebereich fuer die Kuehlung oder Heizung eingesetzt werden. Im Beitrag werden der Stand der Technik sowie neue Entwicklungen vorgestellt. Im einzelnen umfasst der Beitrag die solare Kuehlung von Gebaeuden, die Nutzung von Umweltenergie (Erdreich, Luft) mittels thermisch angetriebener Waermepumpen sowie die saisonale Speicherung von Solarenergie ueber Sorptionsprozesse. (orig.)

  12. Smart solar tanks - Heat storage of the future?

    DEFF Research Database (Denmark)

    Furbo, Simon; Shah, Louise Jivan

    1997-01-01

    Preliminary investigations of a smart solar tank concept for small SDHW-systems have been carried out. In the tank the operation of the auxiliary energy supply system is controlled by the hot water demand and by the consumption pattern. Water at the top of the tank is only heated by the auxiliary...... energy supply system to a required temperature in periods with hot water demand. The tank is heated by the auxiliary energy supply system from the top so that the volume of water heated to the required temperature can be controlled in a flexible way. In periods with a large hot water demand the volume...... can be large and in periods with a small hot water demand the volume can be small. For instance, the energy supply system can be controlled on measurements of the energy content of the tank during all hours of the week and based on a required hot water consumption and consumption pattern which can be...

  13. Modelling the Size of Seasonal Thermal Storage in the Solar District Heating System

    OpenAIRE

    Giedrė Streckienė; Salomėja Bagdonaitė

    2012-01-01

    The integration of a thermal storage system into the solar heating system enables to increase the use of solar thermal energy in buildings and allows avoiding the mismatch between consumers’ demand and heat production in time. The paper presents modelling a seasonal thermal storage tank various sizes of which have been analyzed in the district solar heating system that could cover a part of heat demand for the district of individual houses in Vilnius. A biomass boiler house, as an additional ...

  14. Solar cooking and baking in Central Europe; Kochen mit der Sonne. Solar kochen und backen in Mitteleuropa

    Energy Technology Data Exchange (ETDEWEB)

    Behringer, Rolf; Goetz, Michael

    2008-07-01

    Even in the Western and Central European climate, solar cookers can enable environment-friendly cooking and baking on about 100 to 150 days of the year. Some foods taste better when cooked more carefully, and vitamins and nutrients will be better preserved than in conventionally cooked food. After a short historical outline, the authors present some commercial solar cookers suited for our climate. This is followed by a detailed guide on how to construct a simple wooden solar cooker box from commercially available materials. Examples of solar cooking initiatives illustrate the many applications of solar cookers and parabolic trough cookers. The text is supplemented by practical hints and recipes.

  15. Investigation of a heat storage for a solar heating system for combined space heating and domestic hot water supply for homeowner´s association "Bakken"

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1998-01-01

    A heat storage for a solar heating system for combined space heating and domestic hot water supply was tested in a laboratory test facility.The heat storage consist of a mantle tank with water for the heating system and of a hot water tank, which by means of thermosyphoning is heated by the water...... in the heating system. The heat storage was tested in a heat storage test facility. The most important characteristics of the heat storage were determined by means of the tests and recommendations for the design of the heat storage were given....

  16. Solar Flux Deposition And Heating Rates In Jupiter's Atmosphere

    Science.gov (United States)

    Perez-Hoyos, Santiago; Sánchez-Lavega, A.

    2009-09-01

    We discuss here the solar downward net flux in the 0.25 - 2.5 µm range in the atmosphere of Jupiter and the associated heating rates under a number of vertical cloud structure scenarios focusing in the effect of clouds and hazes. Our numerical model is based in the doubling-adding technique to solve the radiative transfer equation and it includes gas absorption by CH4, NH3 and H2, in addition to Rayleigh scattering by a mixture of H2 plus He. Four paradigmatic Jovian regions have been considered (hot-spots, belts, zones and Polar Regions). The hot-spots are the most transparent regions with downward net fluxes of 2.5±0.5 Wm-2 at the 6 bar level. The maximum solar heating is 0.04±0.01 K/day and occurs above 1 bar. Belts and zones characterization result in a maximum net downward flux of 0.5 Wm-2 at 2 bar and 0.015 Wm-2 at 6 bar. Heating is concentrated in the stratospheric and tropospheric hazes. Finally, Polar Regions are also explored and the results point to a considerable stratospheric heating of 0.04±0.02 K/day. In all, these calculations suggest that the role of the direct solar forcing in the Jovian atmospheric dynamics is limited to the upper 1 - 2 bar of the atmosphere except in the hot-spot areas. Acknowledgments: This work has been funded by Spanish MEC AYA2006-07735 with FEDER support and Grupos Gobierno Vasco IT-464-07.

  17. A solar assisted heat-pump dryer and water heater

    International Nuclear Information System (INIS)

    Growing concern about the depletion of conventional energy resources has provided impetus for considerable research and development in the area of alternative energy sources. A solar assisted heat pump dryer and water heater found to be one of the solutions while exploring for alternative energy sources. The heat pump system is used for drying and water heating applications with the major share of the energy derived from the sun and the ambient. The solar assisted heat pump dryer and water heater has been designed, fabricated and tested. The performance of the system has been investigated under the meteorological conditions of Singapore. The system consists of a variable speed reciprocating compressor, evaporator-collector, storage tank, air cooled condenser, auxiliary heater, blower, dryer, dehumidifier, and air collector. The drying medium used is air and the drying chamber is configured to carry out batch drying of good grains. A water tank connected in series with the air cooled condenser delivers hot water for domestic applications. The water tank also ensures complete condensation of the refrigerant vapour. A simulation program is developed using Fortran language to evaluate the performance of the system and the influence of different variables. The performance indices considered to evaluate the performance of the system are: Solar Fraction (SF), Coefficient of Performance (COP) and Specific Moisture Extraction Rate (SMER). A COP value of 7.5 for a compressor speed of 1800 rpm was observed. Maximum collector efficiencies of 0.86 and 0.81 have been found for evaporator-collector and air collector, respectively. A value of the SMER of 0.79 has been obtained for a load of 20 kg and a compressor speed of 1200 rpm

  18. Line focus solar central power systems. Phase I. Final report, September 30, 1978-October 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    A conceptual design study was performed of a stand-alone Line Focus Solar Central Power System based on the fixed mirror solar concentrator (FMSC) for heat collection and draw salt (a 50% molar mixture of sodium nitrate and potassium nitrate) for heat transport and storage. Parametric analyses were performed at the subsystem level, and models were developed that were employed in a computerized simulation to minimize the cost of electricity (COE) by adjusting system design parameters. A design was prepared and costed for a first commercial plant with a rating of 100 MW(e) and a storage capacity equivalent to 420 MW(e)-hr of generation. The resulting plant achieves an annual capacity of 45.6%. Scaling studies indicate reductions in the COE for increased capacity factor and increased plant rating. Assessments of the plant concept indicate it should be acceptable to utilities on the basis of technical and operational considerations, but that reductions from the first 100-MW(e) plant cost would be required to achieve substantial market penetration.

  19. Analysis of two solar heating systems for combined space heating and domestic hot water preparation in multi-family houses

    International Nuclear Information System (INIS)

    Within the framework of a large research project dealing with the optimization of solar heating systems from the points of view of heat storage management, heat store and hydraulics' design as well as control algorithms, solar heating plants were installed in two identical refurbished multi-family houses located side-by-side at Duebendorf, Switzerland. The refurbishment works included new windows and doors, a new facades' thermal insulation, further thermal insulation applied to cellar and attic and a new oil-fired boiler. The two solar plants had identical solar collector arrays, but differed in the heat store and hydraulics design. In the first one the heat produced by the oil boiler is supplied to the same store as the heat from the collectors. In the second one the heat production of the oil boiler is directly supplied to the heat consumers, and also the solar heat may be directed to the floor heating through a store by-pass. The two systems were monitored for one year. Monitoring results indicate that the second system has, indeed, some advantages from the point of view of increased solar output from the collectors. But in the climate of Zurich and that type of retrofitted houses the larger heat production still has to come from the oil boiler and the major optimization potential for energy savings lies in the boiler's operational efficiency and a good management of the heat it produces. The solar fraction was about 20%. The report also includes cost figures for both systems. This pioneering comparative evaluation of two solar heating system designs contains data still of interest 17 years on

  20. Investigation af a solar heating system for space heating and domestic hot water supply with a high degree of coverage

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1999-01-01

    A solar storage tank for space heating and domestic hot water supply was designed and testet in af laboratory test facility.......A solar storage tank for space heating and domestic hot water supply was designed and testet in af laboratory test facility....

  1. The influence of weather on the thermal performance of solar heating systems

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon; Shah, Louise Jivan

    2003-01-01

    The influence of weather on the thermal performance of solar combi systems, solar domestic hot water systems and solar heating plants is investigated. The investigation is based on weather data from the Danish Design Reference Year, DRY and weather data measured for a period from 1990 until 2002....... The investigation is based on calculations with validated models. Solar heating systems with different solar collector types, heat storage volumes and solar fractions are included in the investigation. The yearly solar radiation varies with approximately 20 % in the period from 1990 until 2002. The...... calculations show that the thermal performance of the investigated systems varies due to the weather variation. The variation of the yearly thermal performance of a solar heating plant is about 40 % while the variation of the yearly thermal performance of a solar domestic hot water system is about 30 % and the...

  2. Solar water heating technical support. Technical report for November 1997--April 1998 and final report

    Energy Technology Data Exchange (ETDEWEB)

    Huggins, J.

    1998-10-01

    This progress report covers the time period November 1, 1997 through April 30, 1998, and also summarizes the project as the final report. The topics of the report include certification of solar collectors for water heating systems, modeling and testing of solar collectors and gas water heater backup systems, ratings of collectors for specific climates, and solar pool heating systems.

  3. Minimizing natural gas consumption through solar water heating

    International Nuclear Information System (INIS)

    Natural gas has 43.2 % share in Pakistan's energy-mix, while 18.7 % of the total natural gas is being consumed by the domestic sector. Statistical data shows that over the last ten years gas consumption by the domestic sector has increased from 144 to 232 billion cubic feet. Pakistan is facing extreme shortage of natural gas, especially in winters due to increased demand in domestic sector for space- and water-heating. Utilization of solar energy resource can effectively contribute towards shifting natural gas utilization from domestic to industrial sector of the country. This study helped analyze the quantity of natural gas saved and GHG reduction and economic benefits obtained due to shifting to solar water heating. Results of the study showed that by utilizing single unit of evacuated tube solar water heater in Quetta, 7.7 mmBtu of natural gas can be saved with net present value (NPV) of PKR 243,310 and 10 tones of GHG is saved from entering into the atmosphere. (author)

  4. Thermal Efficiency of Power Module “Boiler with Solar Collectors as Additional Heat Source” For Combined Heat Supply System

    OpenAIRE

    Denysova A.E.; Mazurenko A.S.; Denysova A.S.

    2015-01-01

    The purpose of work is to increase the efficiency of the combined heat supply system with solar collectors as additional thermal generators. In order to optimize the parameters of combined heat supply system the mathematical modeling of thermal processes in multi module solar collectors as additional thermal generators for preheating of the water for boiler have been done. The method of calculation of multi-module solar collectors working with forced circulation for various configurations of ...

  5. Assessing incentive policies for integrating centralized solar power generation in the Brazilian electric power system

    International Nuclear Information System (INIS)

    This study assesses the impacts of promoting, through auctions, centralized solar power generation (concentrated solar power – CSP, and photovoltaic solar panels – PV) on the Brazilian power system. Four types of CSP plants with parabolic troughs were simulated at two sites, Bom Jesus da Lapa and Campo Grande, and PV plants were simulated at two other sites, Recife and Rio de Janeiro. The main parameters obtained for each plant were expanded to other suitable sites in the country (totaling 17.2 GW in 2040), as inputs in an optimization model for evaluating the impacts of the introduction of centralized solar power on the expansion of the electricity grid up to 2040. This scenario would be about USD$ 185 billion more expensive than a business as usual scenario, where expansion solely relies on least-cost options. Hence, for the country to incentivize the expansion of centralized solar power, specific auctions for solar energy should be adopted, as well as complementary policies to promote investments in R and D and the use of hybrid systems based on solar and fuels in CSP plants. - Highlights: • We assess the impacts of promoting centralized CSP and PV by auctions in Brazil. • We simulate energy scenarios with and without solar power. • Our solar scenario leads to 17 GW of solar capacity installed between 2020 and 2040. • This solar scenario is some USD$ 185 billion more expensive than the base case

  6. Economics of residential solar hot water heating systems in Malaysia

    International Nuclear Information System (INIS)

    Malaysia has favorable climatic conditions for the development of solar energy due to the abundant sunshine and is considered good for harnessing energy from the sun. This is because solar hot water can represent the large energy consumer in Malaysian households but, because of the high initial cost of Solar Water Heating Systems (SWHSs) and easily to install and relatively inexpensive to purchase electric water heaters, many Malyaysian families are still using Electric Water Heaters to hot their water needs. This paper is presented the comparing of techno-economic feasibility of some models of SWHS from Malaysian's market with the Electric Water Heaters )EWH) by study the annual cost of operation for both systems. The result shows that the annual cost of the electrical water heater becomes greater than than the annual cost of the SWHS for all models in long-team run so it is advantageous for the family to use the solar water heater, at least after 4 years. In addition with installation SWHS the families can get long-term economical benefits, environment friendly and also can doing its part to reduce this country's dependence on foreign oil that is price increase day after day.(Author)

  7. Sustainable Development for Solar Heating Systems in Taiwan

    Directory of Open Access Journals (Sweden)

    Keh-Chin Chang

    2015-02-01

    Full Text Available In response to the impact of the United Nations Framework Convention on Climate Change, developing and using renewable energy sources and technologies have become vital for managing energy supply and demand in Taiwan. The long-term subsidy programs (1986–1991, 2000–present for solar water heaters (SWHs launched by the Taiwanese government constitute the main driving force for market expansion. By the end of 2013, the cumulative area of installed solar collectors was 2.27 million m2. Approximately 0.3 million systems (or 1.545 million m2 are in operation. This corresponds to an annual collector yield of 0.92 TWh, which is equivalent to savings of 98.7 thousand tons of oil and 319 thousand tons of CO2,eq. The market-driven mechanism is associated with cost-to-benefit ratios, construction businesses, types of building architecture, degree of urbanization and household composition. The strong wind load of typhoons is another major concern. For sustaining the solar thermal industry in Taiwan, the dominant factor for disseminating SWHs in metropolitan areas involves developing building-integrated solar thermal systems. Alternative financial incentives are required for industrial heating processes in the commercial sector.

  8. Heat engine requirements for advanced solar thermal power systems

    Science.gov (United States)

    Jaffe, L. D.; Pham, H. Q.

    1981-01-01

    Requirements and constraints are established for power conversion subsystems, including heat engine, alternator and auxiliaries, of dish concentrator solar thermal power systems. In order to be competitive with conventional power systems, it is argued that the heat engine should be of less than 40 kW rated output, in a subsystem with an efficiency of at least 40% at rated output and at least 37% at half power. An interval between major overhauls of 50,000 hours is also desirable, along with minor maintenance and lubrication not more than four times a year requiring no more than one man-hour each time, and optimal reliability. Also found to be important are the capability for hybrid operation using heat from a solar receiver, fuel-fired combustor or both simultaneously, operation at any attitude, stability to transients in input power and output loading, operation at ambient temperatures from -30 to 50 C, and compatibility with environmental and safety requirements. Cost targets include a price of $180/kWe, and operation, maintenance and replacement costs averaging $0.001/kWh for 30 years of operation.

  9. Thermodynamic evaluation of liquid metals as heat transfer fluids in concentrated solar power plants

    International Nuclear Information System (INIS)

    Concentrated solar power, and in particular central receiver systems, can play a major role as a renewable energy source with the inherent possibility of including a thermal energy storage subsystem for improving the plant dispatchability. While current commercial projects are dominated by direct steam generation and molten nitrate salt concepts, next-generation systems will require higher operating temperature and larger heat-flux densities in order to increase the efficiency and reduce costs. In that context, liquid metals are proposed in this work as advanced heat transfer fluids that can face those challenges. The main advantages, regarding higher temperature and improved heat transfer performance, are discussed and quantified using simplified models. Indirect thermal storage solutions are proposed for compensating their relatively small heat capacity. Overall, provided that some practical challenges can be overcome, liquid metals present large potential as efficient heat transfer fluids. -- Highlights: • Liquid metals (sodium and LBE) are studied as advanced HTFs. • Larger heat transfer rates lead to an improved receiver performance. • High operating temperature above 1000 °C is possible. • Advanced high-temperature power conversion cycles are investigated

  10. Heat pipe radiators for solar dynamic space power system heat rejection

    Science.gov (United States)

    Gustafson, Eric; Carlson, Albert

    1987-01-01

    The paper presents the results of a concept development study of heat rejection systems for Space Station solar dynamic power systems. The thermal performance and weights of each of the heat rejection subsystems have been addressed in detail, and critical technologies which require development tests and evaluation for successful demonstration were assessed and identified. Baseline and several alternate heat rejection system configurations and optimum designs were developed for both Brayton and Rankine cycles. The thermal performance, mass properties, assembly requirements, reliability, maintenance requirements, and life cycle costs were determined for each of the system configurations. Trade studies were performed on each configuration with respect to the heat pipe wall thickness and the amount of redundancy to determine the effects on system reliability, maintenance requirements, and life cycle costs. An optimum design was then selected for each configuration.

  11. Heat extraction from a salinity-gradient solar pond using in pond heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Jaefarzadeh, M.R. [Civil Engineering Department, Ferdowsi University of Mashhad, P.O. Box 91775-1111 Mashhad (Iran)

    2006-11-15

    Thermal energy extraction from a small salinity-gradient solar pond is studied in this article. The small pond has an area of 4.0m{sup 2} and a depth of 1.1m. Fresh water circulates through an internal heat exchanger, located in the lower convective zone, and transfers its thermal energy to an external heat exchanger. The study covers two periods of summer loading for a week and winter loading for two months. The hourly as well as daily variations of the temperatures of the storage zone, surface zone, ambient, inlet and outlet of the internal heat exchanger have been measured and analyzed. It is shown that the pond may deliver heat with a relatively high thermal efficiency in a transitional stage for a limited period of time. It can also be utilized continuously with a lower efficiency. The efficiency of the small pond in the latter case will be around 10%. (author)

  12. Solar thermal energy / exhaust air heat pump / wood pellet furnace for a sustainable heat supply of low energy buildings in older buildings; Solarthermie / Abluft-Waermepumpe / Pelletofen. Kombisysteme zur nachhaltigen Waermeversorgung von Niedrigenergiehaeusern im Gebaeudebestand

    Energy Technology Data Exchange (ETDEWEB)

    Diefenbach, Nikolaus; Born, Rolf [Institut Wohnen und Umwelt GmbH, Darmstadt (Germany); Staerz, Norbert [Ingenieurbuero inPlan, Pfungstadt (Germany)

    2009-11-13

    The research project under consideration reports on combination systems for a sustainable heat supply for low-energy buildings in older building. For this, a central and decentralized system configuration consisting of solar thermal energy, exhaust air heat pump and wood pellet furnace are presented. Solutions for an interaction of these three heat suppliers in one plant are designated regarding the control strategy. The fundamentals of the computerized simulations for the central and decentralized system are presented. A cost estimate with both variants of the combination system as well as a comparison with conventional energy-saving heat supply systems follow.

  13. Thermal Performance of a Solar Heat Storage Accumulator Used For Greenhouses Conditioning

    OpenAIRE

    Mejdi Hazami; Sami Kooli; Meriam Lazaar; Abdelhamid Farhat; Ali Belghith

    2005-01-01

    The use of solar energy for greenhouse heating has gained an increasing acceptance during the last years. Active solar systems applied to greenhouses can supply a significant part of the heating requirements. However, there are some problems related to the cost of the heat collection unit and the heat storage methods. In this context several techniques were born. The most famous of these techniques is the seasonal storage of thermal heat in soil. The objective of our work is to study a system...

  14. Solar Process Heat and Co-Generation A review of recent developments

    OpenAIRE

    Hennecke, Klaus

    2014-01-01

    Solar process heat and Co-generation are increasingly seen as interesting potential markets for concentrating solar technologies. The presentation gives an overview on progress made in the international co-operation in the IEA SHC/SolarPACES joint task 49/IV, and introduces some selected examples for solar co-generation concepts.

  15. Parametric simulation and experimental analysis of earth air heat exchanger with solar air heating duct

    Directory of Open Access Journals (Sweden)

    Sanjeev Jakhar

    2016-06-01

    Full Text Available Earth air heat exchanger (EAHE systems are insufficient to meet the thermal comfort requirements in winter conditions. The low heating potential of such systems can be improved by integrating the system with solar air heating duct (SAHD. The aim of this paper is to present a model to estimate the heating potential for EAHE system with and without SAHD. The model is generated using TRNSYS 17 simulation tool and validated against experimental investigation on an experimental set-up in Ajmer, India. The experiment was done during the winter season, where the system was evaluated for different inlet flow velocities, length and depth of buried pipe. From the experimentation, it was observed that the depth of 3.7 m is sufficient for pipe burial and the 34 m length of pipe is sufficient to get optimum EAHE outlet temperature. It is also observed that increase in flow velocity results in drop in EAHE outlet temperature, while room temperature is found to increase for higher velocities (5 m/s. The COP of the system also increased up to 6.304 when assisted with solar air heating duct. The results obtained from the experiment data are in good agreement with simulated results within the variation of up to 7.9%.

  16. Solar Energy School Heating Augmentation Experiment. Sections I, II, and III.

    Science.gov (United States)

    InterTechnology Corp., Warrenton, VA.

    An experimental solar heating system heats five modular classrooms at the Fauquier County High School in Warrenton, Virginia. The present report covers the operation, maintenance, and modifications to the system over the 1974-75 and 1975-76 heating seasons. The solar system has shown the capability of providing essentially 100 percent of the…

  17. Solar Heating and Cooling of Residential Buildings: Sizing, Installation and Operation of Systems.

    Science.gov (United States)

    Colorado State Univ., Ft. Collins. Solar Energy Applications Lab.

    This training course and a companion course titled "Design of Systems for Solar Heating and Cooling of Residential Buildings," are designed to train home designers and builders in the fundamentals of solar hydronic and air systems for space heating and cooling and domestic hot water heating for residential buildings. Each course, organized in 22…

  18. On the problem of environmental safety in heat power engineering on the basis of solar-fuel technologies

    International Nuclear Information System (INIS)

    Full text: The fuel-and-energy complex is the basic source of hotbed gases in Republic Uzbekistan. Present time there are 2 292 boiler-houses in the sector of heat power engineering. Its use as fuel about 86 % gas's volumes of total quantity. The 14,0 billion cubic meters of natural gas is spent for necessities of household sector per year. In Uzbekistan total gas production is 42,0 billion in cubic meters per year.The efficiency of existed boilers is low (75 %), that leads to the considerable over-expenditure of fuel. The operative equipment of boiler-houses of the centralized heat supply and the technological equipment at heat power engineering centrals on its technical characteristics don't respond to the modern economic and ecological requirements. When 1 ton of conditional fuel burns in boilers about 30 kg of polluting substances are thrown out to the atmosphere. Total emissions are over 100 million ton of hotbed gases for this sector. The heat supply of micro districts of Tashkent city is maintained from 147 boiler-houses of various capacities. Existing now in republic centralized heat supply systems are realized on the scheme of open water distribution, i.e. the systems of building's heating are attached directly to thermal networks through the mixing devices. The limitations of natural gas to objects of the heat power engineering system, predicted further increases of cost of natural gas predetermine the creation of the combined fuel-solar boiler-houses. The use of solar energy allows lowing fuel expenses. Earlier such projects have been realized in boiler-houses 'Vodnik', 'Mashinosozlar-2' in Tashkent city. For re-equipment of existing boiler-houses it is enough to execute two inserts in the pipeline of chemically cleaned water for connection geliofield which consists from solar water-heating collectors and intermediate heat exchangers. In Tashkent's existed geliofields solar energy is used for preheating water from 20 † 250 degrees till 40 † 500

  19. Solar-Driven Distributed Heating System : Upgrading a 200 kW Solar-driven Organic Rankine Cycle Unit for Distributed Heating

    OpenAIRE

    Jahn, Tobias

    2015-01-01

    The University of Tianjin, China is working on a 200 kW solar-driven Organic Rankine Cycle (ORC) plant. Due to difficulties with Chinese energy regulations and legislation, the plant will not be connected to the grid for electricity generation. The university intents therefore to use the solar system for distributed heating at times without ongoing experiments. Since no heat consumer was designated initially, the heating purpose resulting in the most cost-effective usage of the already purcha...

  20. Simulation of a vertical ground heat exchanger as low temperature heat source for a closed adsorption seasonal storage of solar heat

    OpenAIRE

    Hennaut, Samuel; Thomas, Sébastien; Davin, Elisabeth; Skrylnyk, Alexandre; Frère, Marc

    2014-01-01

    Get It @ ULg(opens in a new window)|View at Publisher| Export | Download | More... Energy Procedia Volume 48, 2014, Pages 370-379 2nd International Conference on Solar Heating and Cooling for Buildings and Industry, SHC 2013; Freiburg; Germany; 23 September 2013 through 25 September 2013; Code 104547 Simulation of a vertical ground heat exchanger as low temperature heat source for a closed adsorption seasonal storage of solar heat (Conference Paper) Hennaut, S....

  1. Heat transfer and flow in solar energy and bioenergy systems

    Science.gov (United States)

    Xu, Ben

    The demand for clean and environmentally benign energy resources has been a great concern in the last two decades. To alleviate the associated environmental problems, reduction of the use of fossil fuels by developing more cost-effective renewable energy technologies becomes more and more significant. Among various types of renewable energy sources, solar energy and bioenergy take a great proportion. This dissertation focuses on the heat transfer and flow in solar energy and bioenergy systems, specifically for Thermal Energy Storage (TES) systems in Concentrated Solar Power (CSP) plants and open-channel algal culture raceways for biofuel production. The first part of this dissertation is the discussion about mathematical modeling, numerical simulation and experimental investigation of solar TES system. First of all, in order to accurately and efficiently simulate the conjugate heat transfer between Heat Transfer Fluid (HTF) and filler material in four different solid-fluid TES configurations, formulas of an e?ective heat transfer coe?cient were theoretically developed and presented by extending the validity of Lumped Capacitance Method (LCM) to large Biot number, as well as verifications/validations to this simplified model. Secondly, to provide design guidelines for TES system in CSP plant using Phase Change Materials (PCM), a general storage tank volume sizing strategy and an energy storage startup strategy were proposed using the enthalpy-based 1D transient model. Then experimental investigations were conducted to explore a novel thermal storage material. The thermal storage performances were also compared between this novel storage material and concrete at a temperature range from 400 °C to 500 °C. It is recommended to apply this novel thermal storage material to replace concrete at high operating temperatures in sensible heat TES systems. The second part of this dissertation mainly focuses on the numerical and experimental study of an open-channel algae

  2. Liquid flat plate collector and pump for solar heating and cooling systems: A collection of quarterly reports

    Science.gov (United States)

    1978-01-01

    Progress in the development, fabrication, and delivery of solar subsystems consisting of a solar operated pump, and solar collectors which can be used in solar heating and cooling, or hot water, for single family, multifamily, or commercial applications is reported.

  3. Integrated Solar-Assisted Heat Pumps for water heating coupled to gas burners; Control criteria for dynamic operation

    OpenAIRE

    Scarpa, F.; Tagliafico, L.A.; Tagliafico, G

    2010-01-01

    Abstract A direct expansion integrated solar assisted heat pump (ISAHP) is compared to a traditional flat plate solar panel for low temperature (45 ?C) water heating applications. The (simulated) comparison is accomplished assuming both the devices are energy supplemented with an auxiliary standard gas burner, to provide the typical heat duty of a four-member family. Literature dynamical models of the systems involved have been used to calculate the main performance figures in a co...

  4. Solar Water Heating with Low-Cost Plastic Systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-01

    Federal buildings consumed over 392,000 billion Btu of site delivered energy for buildings during FY 2007 at a total cost of $6.5 billion. Earlier data indicate that about 10% of this is used to heat water.[2] Targeting energy consumption in Federal buildings, the Energy Independence and Security Act of 2007 (EISA) requires new Federal buildings and major renovations to meet 30% of their hot water demand with solar energy, provided it is cost-effective over the life of the system. In October 2009, President Obama expanded the energy reduction and performance requirements of EISA and its subsequent regulations with his Executive Order 13514.

  5. Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, Anoop [Terrafore Inc.

    2013-08-14

    A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during

  6. Investigation of bubble behaviours in wet central heating systems

    Directory of Open Access Journals (Sweden)

    Shefik Ali

    2014-03-01

    Full Text Available A series of experimental measurements has been conducted in order to investigate the bubble behaviours through the horizontal pipe line of the domestic wet central heating systems. Obtained results exposed the effect of 90 degree bend, buoyancy forces on bubbly two phase flow patterns and effect of velocity on void fractions and bubble diameters. Distance chosen for the first sight glass (HSG0 was sufficient enough to note the effect of 90 degree bend on void fraction patterns. Due to the effect of 90 degree bend, position of the peak void fractions across the pipe section lowers, with an increase in bulk fluid velocity. Bubbles tend to flow for longer distance at the bottom of the pipe section. Buoyancy force effect is demonstrated with figures for highest bulk fluid velocity at three different positions. Analysis of four different flow rates at two different saturation ratios show reduction for average bubble diameters and void fractions when bulk fluid velocity increases. An attempt to predict bubble dissolution rates across the horizontal pipeline of the system is made, however results show some uncertainties.

  7. Combined use of solar heat and cogeneration - a perspective for district heating?; Kombinierter Einsatz von solarer Waerme und Kraft-Waerme-Kopplung - eine Perspektive fuer die Nahwaerme?

    Energy Technology Data Exchange (ETDEWEB)

    Entress, J. [Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), Stuttgart (Germany). Abt. Systemanalyse und Technikbewertung; Steinborn, F. [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Stuttgart (Germany). Fachgebiet Systemanalyse

    1998-02-01

    With Cogeneration of Heat and Power (CHP), climate-endangering CO{sub 2}-emissions can be reduced singificantly. The heat produced can be delivered at prices comparable to those of conventionally produced heat. With solar district heating, yet higher CO{sub 2}-savings are possible but at higher cost. Promising is a combination of CHP and solar district heating: The heat storage of the solar system can be used to level out heat demand, leading to smooth CHP operation, while heat generated by CHP can be used to substitute for low irradiation during the winter period. However, calculations together with simulation and optimization indicate that combining CHP and solar district heating is not the optimal solution in all cases. (orig.) [Deutsch] Der Einsatz von Blockheizkraftwerken (BHKW) kann zu einer deutlichen Reduzierung der klimagefaehrdenden CO{sub 2}-Emissionen beitragen. Dabei kann die ausgekoppelte Waerme etwa zum gleichen Preis wie konventionell erzeugte Waerme abgegeben werden. Hoehere CO{sub 2}-Einsparungen lassen sich hingegen mit solarer Nahwaerme erzielen, allerdings zu hoeheren Kosten. Eine Kombination dieser beiden Waermetechniken verspricht Vorteile: Einerseits kann der Waermespeicher des Solarsystems auch zum Ausgleich von Lastspitzen beim Betrieb des BHKW`s genutzt werden. Andererseits kann die waehrend der einstrahlungsarmen Wintermonate fehlende solare Waerme durch das BHKW erzeugt werden. Detaillierte Simulations- und Optimierungsrechnungen zeigen jedoch, dass eine Kombination dieser Waermetechniken nicht immer empfehlenswert ist. (orig.)

  8. Solar-collector studies for solar-heating and -cooling applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Liers, H. S.; Yenamandra, N.; Brittle, P. N.; Raymond, M.; Edelman, D. G.

    1979-01-01

    Mirror and lens solar concentrator collectors suitable for space heating, cooling, and hot water applications were surveyed. The scope of the survey includes identification, analysis and comparison for all concentrating collector types for which prototypes and/or market models are or have been built for less than 10X concentration. The survey includes greater than 10X concentration ratios for manufacturers marketing such collectors for space heating and/or cooling applications. Collectors in the conceptual stage are noted and their attributes and disadvantages identified.

  9. Heat Loss Calculation of Compound Honeycomb Solar Collector

    Institute of Scientific and Technical Information of China (English)

    X.S.Ge; Y.Z.Zhang; 等

    1993-01-01

    A simplified technique is described for calculating the heat loss coefficient from the absorber of the solar flat-plate collector with a combined honeycomb.The problem is treated in two ways:the coupled mode and the decoupled mode.In the analysis,the cell wall and glass cover are assumed to be specularly reflecting and diffusely emitting surfaces,while the absorber is a diffusely reflecting and emitting surface.The influences of emissivities of the absorber and the cell wall as wall as well as the aspect ratio on the heat loss coefficient are predicted.The theoretical results are compared with experimental data reported in the literature,and the agreement is good.

  10. Intermittent heating of the solar corona by MHD turbulence

    Directory of Open Access Journals (Sweden)

    É. Buchlin

    2007-10-01

    Full Text Available As the dissipation mechanisms considered for the heating of the solar corona would be sufficiently efficient only in the presence of small scales, turbulence is thought to be a key player in the coronal heating processes: it allows indeed to transfer energy from the large scales to these small scales. While Direct numerical simulations which have been performed to investigate the properties of magnetohydrodynamic turbulence in the corona have provided interesting results, they are limited to small Reynolds numbers. We present here a model of coronal loop turbulence involving shell-models and Alfvén waves propagation, allowing the much faster computation of spectra and turbulence statistics at higher Reynolds numbers. We also present first results of the forward-modelling of spectroscopic observables in the UV.

  11. Theoretical investigation of the performance of a novel loop heat pipe solar water heating system for use in Beijing, China

    International Nuclear Information System (INIS)

    A novel loop heat pipe (LHP) solar water heating system for typical apartment buildings in Beijing was designed to enable effective collection of solar heat, distance transport, and efficient conversion of solar heat into hot water. Taking consideration of the heat balances occurring in various parts of the loop, such as the solar absorber, heat pipe loop, heat exchanger and storage tank, a computer model was developed to investigate the thermal performance of the system. With the specified system structure, the efficiency of the solar system was found to be a function of its operational characteristics - working temperature of the loop heat pipe, water flow rate across the heat exchanger, and external parameters, including ambient temperature, temperature of water across the exchanger and solar radiation. The relationship between the efficiency of the system and these parameters was established, analysed and discussed in detail. The study suggested that the loop heat pipe should be operated at around 72 deg. C and the water across the heat exchanger should be maintained at 5.1 l/min. Any variation in system structure, i.e., glazing cover and height difference between the absorber and heat exchanger, would lead to different system performance. The glazing covers could be made using either borosilicate or polycarbonate, but borosilicate is to be preferred as it performs better and achieves higher efficiency at higher temperature operation. The height difference between the absorber and heat exchanger in the design was 1.9 m which is an adequate distance causing no constraint to heat pipe heat transfer. These simulation results were validated with the primary testing results.

  12. Preliminary design of the Carrisa Plains solar central receiver power plant. Volume III, Book 1. Design description

    Energy Technology Data Exchange (ETDEWEB)

    1983-12-31

    The design of the 30 MWe central receiver solar power plant to be located at Carrisa Plains, San Luis Obispo County, California, is summarized. The plant uses a vertical flat-panel (billboard solar receiver located at the top of a tower to collect solar energy redirected by approximately 1900 heliostats located to the north of the tower. The solar energy is used to heat liquid sodium pumped from ground level from 610 to 1050/sup 0/F. The power conversion system is a non-reheat system, cost-effective at this size level, and designed for high-efficiency performance in an application requiring daily startup. Successful completion of this project will lead to power generation starting in 1986. This report discusses in detail the design of the collector system, heat transport system, thermal storage subsystem, heat transport loop, steam generation subsystem, electrical, instrumentation, and control systems, power conversion system, master control system, and balance of plant. The performance, facility cost estimate and economic analysis, and development plan are also discussed.

  13. Wallboard with Latent Heat Storage for Passive Solar Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kedl, R.J.

    2001-05-31

    Conventional wallboard impregnated with octadecane paraffin [melting point-23 C (73.5 F)] is being developed as a building material with latent heat storage for passive solar and other applications. Impregnation was accomplished simply by soaking the wallboard in molten wax. Concentrations of wax in the combined product as high as 35% by weight can be achieved. Scale-up of the soaking process, from small laboratory samples to full-sized 4- by 8-ft sheets, has been successfully accomplished. The required construction properties of wallboard are maintained after impregnation, that is, it can be painted and spackled. Long-term, high-temperature exposure tests and thermal cycling tests showed no tendency of the paraffin to migrate within the wallboard, and there was no deterioration of thermal energy storage capacity. In support of this concept, a computer model was developed to handle thermal transport and storage by a phase change material (PCM) dispersed in a porous media. The computer model was confirmed by comparison with known analytical solutions and also by comparison with temperatures measured in wallboard during an experimentally generated thermal transient. Agreement between the model and known solution was excellent. Agreement between the model and thermal transient was good, only after the model was modified to allow the PCM to melt over a temperature range, rather than at a specific melting point. When the melting characteristics of the PCM (melting point, melting range, and heat of fusion), as determined from a differential scanning calorimeter plot, were used in the model, agreement between the model and transient data was very good. The confirmed computer model may now be used in conjunction with a building heating and cooling code to evaluate design parameters and operational characteristics of latent heat storage wallboard for passive solar applications.

  14. Performance analysis of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation

    International Nuclear Information System (INIS)

    Solar thermal power plants have attracted increasing interest in the past few years – with respect to both the design of the various plant components, and extending the operation hours by employing different types of storage systems. One approach to improve the overall plant efficiency is to use direct steam generation with water/steam as both the heat transfer fluid in the solar receivers and the cycle working fluid. This enables operating the plant with higher turbine inlet temperatures. Available literature suggests that it is feasible to use ammonia-water mixtures at high temperatures without corroding the equipment by using suitable additives with the mixture. The purpose of the study reported here was to investigate if there is any benefit of using a Kalina cycle for a direct steam generation, central receiver solar thermal power plant with high live steam temperature (450 °C) and pressure (over 100 bar). Thermodynamic performance of the Kalina cycle in terms of the plant exergy efficiency was evaluated and compared with a simple Rankine cycle. The rates of exergy destruction for the different components in the two cycles were also calculated and compared. The results suggest that the simple Rankine cycle exhibits better performance than the Kalina cycle when the heat input is only from the solar receiver. However, when using a two-tank molten-salt storage system as the primary source of heat input, the Kalina cycle showed an advantage over the simple Rankine cycle because of about 33 % reduction in the storage requirement. The solar receiver showed the highest rate of exergy destruction for both the cycles. The rates of exergy destruction in other components of the cycles were found to be highly dependent on the amount of recuperation, and the ammonia mass fraction and pressure at the turbine inlet. - Highlights: •Kalina cycle for a central receiver solar thermal power plant with direct steam generation. •Rankine cycle shows better plant exergy

  15. A new version of a solar water heating system coupled with a solar water pump

    Energy Technology Data Exchange (ETDEWEB)

    Sutthivirode, Kittiwoot; Namprakai, Pichai; Roonprasang, Natthaphon [Division of Energy Technology, School of Energy Environment and Materials, King Mongkut' s University of Technology Thonburi, 126 Pracha-U-thit rd., Bangmod, Thungkhru, Bangkok 10140 (Thailand)

    2009-09-15

    This research target was to improve the thermal efficiency of a solar water heating system (SWHS) coupled with a built-in solar water pump. The designed system consists of 1.58-m{sup 2} flat plate solar collectors, an overhead tank placed at the top level, the larger water storage tank without a heat exchanger at the lower level, and a one-way valve for water circulation control. The discharge heads of 1 and 2 m were tested. The pump could operate at the collector temperature of about 70-90 C and vapor gage pressure of 10-18 kPa. It was found that water circulation within the SWHS ranged between 15 and 65 l/d depending upon solar intensity and discharge head. Moreover, the max water temperature in the storage tank is around 59 C. The max daily pump efficiency is about 0.0017%. The SWHS could have max daily thermal efficiency of about 21%. It is concluded that the thermal efficiency was successfully improved, except for the pump one. The new SWHS with 1 m discharge head or lower is suitable for residential use. It adds less weight to a building roof and saves electrical energy for a circulation pump. It has lower cost compared to a domestic SWHS. (author)

  16. Performance analysis of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation

    DEFF Research Database (Denmark)

    Modi, Anish; Haglind, Fredrik

    2014-01-01

    Solar thermal power plants have attracted increasing interest in the past few years - with respect to both the design of the various plant components, and extending the operation hours by employing different types of storage systems. One approach to improve the overall plant efficiency is to use...... without corroding the equipment by using suitable additives with the mixture. The purpose of the study reported here was to investigate if there is any benefit of using a Kalina cycle for a direct steam generation, central receiver solar thermal power plant with high live steam temperature (450 C...... direct steam generation with water/steam as both the heat transfer fluid in the solar receivers and the cycle working fluid. This enables operating the plant with higher turbine inlet temperatures. Available literature suggests that it is feasible to use ammonia-water mixtures at high temperatures...

  17. A Review of a Successful Unsubsidized Market-Based Rural Solar Development Initiative in Laikipia District, Central Kenya

    Directory of Open Access Journals (Sweden)

    O. Wambuguh

    2013-10-01

    Full Text Available The development of renewable energy technologies (RETs in many areas far from grid-based electricity have primarily involved solar photovoltaics (SPVs which tap solar radiation to provide heat, light, hot water, electricity, and cooling for homes, businesses, and industry. A study on RETs took place in the Wiyumiririe Location of Laikipia District (north-central Kenya, a rich agricultural region. To explore this solar initiative in such a remote part of the country, a purposive randomized convenience sample of 246 households was selected and landowner interviews conducted, followed by field visits and observations. Although more than half of the households visited had SPV installations, solar energy was found to contribute only 18% of household estimated total energy needs; most residents still primarily relying on traditional energy sources. Several types of solar panels of different capacities and costs were utilized. Many landowners had at least one or two rooms using solar energy for household lighting, for appliance charging and to power radio and television. Almost all respondents appreciated that solar energy was clean renewable energy that greatly improved household living conditions; gave them some prestige; was easy to use and maintain; and was available year around. Although such significant benefits were associated with SPVs, only about 40% of residents interviewed were somehow satisfied with its development. Respondents expressed specific developmental initiatives that were closely associated with the availability of solar energy. Nevertheless, a number of challenges were raised associated with SPVs primarily investment capital and equipment costs and maintenance. As solutions to capital building will not solely rely on subsidies or individual farmer inputs, strategies must be found to mobilize the essential and tested tools for success including sustainable capital generation, building local institutions and capacities that

  18. Energy savings based on solar heating and improved cooling of the district heating water; Energibesparelser baseret paa solvarme og bedre afkoeling af fjernvarmevandet. Projektrapport

    Energy Technology Data Exchange (ETDEWEB)

    Fafner, K.; Kristjansson, H.; Hansen, Karl Erik

    2009-08-15

    The report analyses and compares the potential for savings in the heat supply, namely use of solar heating and better cooling of the circulating water in the district heating system. The analyses shows that better cooling in the users' heating systems, i.e. lower district heating temperature, should have higher priority than installation of a solar heating system. The report also demonstrates that solar heating continues to have a large un-utilized potential in the Danish heat supply in general, but for the individual building owner installation of a solar heating system will be far more expensive than buying a part of a large-scale solar heating system. However, lowering the return temperature in the district heating transmission pipes is economically more attractive for the building owners than solar heating.

  19. Performance Analysis and Optimization of a Solar Powered Stirling Engine with Heat Transfer Considerations

    OpenAIRE

    Chia-En Ho; Chieh-Li Chen; Her-Terng Yau

    2012-01-01

    This paper investigates the optimization of the performance of a solar powered Stirling engine based on finite-time thermodynamics. Heat transference in the heat exchangers between a concentrating solar collector and the Stirling engine is studied. The irreversibility of a Stirling engine is considered with the heat transfer following Newton's law. The power generated by a Stirling engine is used as an objective function for maximum power output design with the concentrating solar collec...

  20. Optimum systems design with random input and output applied to solar water heating

    Science.gov (United States)

    Abdel-Malek, L. L.

    1980-03-01

    Solar water heating systems are evaluated. Models were developed to estimate the percentage of energy supplied from the Sun to a household. Since solar water heating systems have random input and output queueing theory, birth and death processes were the major tools in developing the models of evaluation. Microeconomics methods help in determining the optimum size of the solar water heating system design parameters, i.e., the water tank volume and the collector area.

  1. Solar heating of the oceans-diurnal, seasonal and meridional variation

    OpenAIRE

    Woods, John D; Barkmann, Wolfgang; Horch, Alexander

    1984-01-01

    Solar heating is an important factor in modelling the upper boundary layer of the ocean. It influences not only the temperature, but also the depth of the mixed layer and must be taken into account in circulation dynamics. The study reported in this paper was designed to reveal the principal features of the global climatology of solar heating in the ocean, with such applications in mind. The meridional, seasonal and diurnal variations of the vertical distribution of solar heating inside the o...

  2. Possibilities of utilizing solar systems for heating the hot service water in Košice build-up areas KVP and Ťahanovce

    OpenAIRE

    Peter Horbaj

    2005-01-01

    A production of „HSW“ in block of flats areas by solar collectors means a real alternative to the traditional way of heating by fossil fuels (coal, gas). With this method, it’s possible to save ca. 50 % of energy from the net of the central service of the heat, what can reduce the production of pollutants in the locality, or it can enable to increase the quantity of customers without claims for the restructuralization of the central source. Because Slovakia is the producer of quality solar co...

  3. Evaluation of a sulfur oxide chemical heat storage process for a steam solar electric plant

    Energy Technology Data Exchange (ETDEWEB)

    Dayan, J.; Lynn, S.; Foss, A.

    1979-07-01

    The purpose of this study was to develop and evaluate technically feasible process configurations for the use of the sulfur oxide system, 2 SO/sub 3/ reversible 2 SO/sub 2/ + O/sub 2/, in energy storage. The storage system is coupled with a conventional steam-cycle power plant. Heat for both the power plant and the storage system is supplied during sunlit hours by a field of heliostats focussed on a central solar receiver. When sunlight is not available, the storage system supplies the heat to operate the power plant. A technically feasible, relatively efficient configuration is proposed for incorporating this type of energy storage system into a solar power plant. Complete material and energy balances are presented for a base case that represents a middle range of expected operating conditions. Equipment sizes and costs were estimated for the base case to obtain an approximate value for the cost of the electricity that would be produced from such an installation. In addition, the sensitivity of the efficiency of the system to variations in design and operating conditions was determined for the most important parameters and design details. In the base case the solar tower receives heat at a net rate of 230 MW(t) for a period of eight hours. Daytime electricity is about 30 MW(e). Nighttime generation is at a rate of about 15 MW(e) for a period of sixteen hours. The overall efficiency of converting heat into electricity is about 26%. The total capital cost for the base case is estimated at about $68 million, of which about 67% is for the tower and heliostats, 11% is for the daytime power plant, and 22% is for the storage system. The average cost of the electricity produced for the base case is estimated to be about 11 cents/kW(e)-hr.

  4. 77 FR 8178 - Test Procedures for Central Air Conditioners and Heat Pumps: Public Meeting

    Science.gov (United States)

    2012-02-14

    ... distribution of those central air conditioning systems and heat pump systems manufactured after January 1, 2010, that are designed to use R-22 refrigerant. 74 FR 66450 (Dec. 15, 2009). EPA's rulemaking included an... issued two guidance documents surrounding testing central air conditioner and heat pump systems...

  5. Concrete Hydration Heat Analysis for RCB Basemat Considering Solar Radiation

    International Nuclear Information System (INIS)

    The NPP especially puts an emphasis on concrete durability for structural integrity. It has led to higher cementitious material contents, lower water-cementitious-material ratios, and deeper cover depth over reinforcing steel. These requirements have resulted in more concrete placements that are subject to high internal temperatures. The problem with high internal temperatures is the increase in the potential for thermal cracking that can decrease concrete's long-term durability and ultimate strength. Thermal cracking negates the benefits of less permeable concrete and deeper cover by providing a direct path for corrosion-causing agents to reach the reinforcing steel. The purpose of this study is to develop how to analyze and estimate accurately concrete hydration heat of the real-scale massive concrete with wide large plane. An analysis method considering concrete placement sequence was studied and solar radiation effects on the real-scale massive concrete with wide large plane were reviewed through the analytical method. In this study, the measured temperatures at the real scale structure and the analysis results of concrete hydration heat were compared. And thermal stress analysis was conducted. Through the analysis, it was found that concrete placement duration, sequence and solar radiation effects should be considered to get the accurate concrete peak temperature, maximum temperature differences and crack index

  6. Why convective heat transport in the solar nebula was inefficient

    Science.gov (United States)

    Cassen, P.

    1993-01-01

    The radial distributions of the effective temperatures of circumstellar disks associated with pre-main sequence (T Tauri) stars are relatively well-constrained by ground-based and spacecraft infrared photometry and radio continuum observations. If the mechanisms by which energy is transported vertically in the disks are understood, these data can be used to constrain models of the thermal structure and evolution of solar nebula. Several studies of the evolution of the solar nebula have included the calculation of the vertical transport of heat by convection. Such calculations rely on a mixing length theory of transport and some assumption regarding the vertical distribution of internal dissipation. In all cases, the results of these calculations indicate that transport by radiation dominates that by convection, even when the nebula is convectively unstable. A simple argument that demonstrates the generality (and limits) of this result, regardless of the details of mixing length theory or the precise distribution of internal heating is presented. It is based on the idea that the radiative gradient in an optically thick nebula generally does not greatly exceed the adiabatic gradient.

  7. Concrete Hydration Heat Analysis for RCB Basemat Considering Solar Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seong-Cheol; Son, Yong-Ki [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of); Choi, Seong-Cheol [Chung-Ang University, Seoul (Korea, Republic of)

    2015-05-15

    The NPP especially puts an emphasis on concrete durability for structural integrity. It has led to higher cementitious material contents, lower water-cementitious-material ratios, and deeper cover depth over reinforcing steel. These requirements have resulted in more concrete placements that are subject to high internal temperatures. The problem with high internal temperatures is the increase in the potential for thermal cracking that can decrease concrete's long-term durability and ultimate strength. Thermal cracking negates the benefits of less permeable concrete and deeper cover by providing a direct path for corrosion-causing agents to reach the reinforcing steel. The purpose of this study is to develop how to analyze and estimate accurately concrete hydration heat of the real-scale massive concrete with wide large plane. An analysis method considering concrete placement sequence was studied and solar radiation effects on the real-scale massive concrete with wide large plane were reviewed through the analytical method. In this study, the measured temperatures at the real scale structure and the analysis results of concrete hydration heat were compared. And thermal stress analysis was conducted. Through the analysis, it was found that concrete placement duration, sequence and solar radiation effects should be considered to get the accurate concrete peak temperature, maximum temperature differences and crack index.

  8. Test bench HEATREC for heat loss measurement on solar receiver tubes

    Science.gov (United States)

    Márquez, José M.; López-Martín, Rafael; Valenzuela, Loreto; Zarza, Eduardo

    2016-05-01

    In Solar Thermal Electricity (STE) plants the thermal energy of solar radiation is absorbed by solar receiver tubes (HCEs) and it is transferred to a heat transfer fluid. Therefore, heat losses of receiver tubes have a direct influence on STE plants efficiency. A new test bench called HEATREC has been developed by Plataforma Solar de Almería (PSA) in order to determinate the heat losses of receiver tubes under laboratory conditions. The innovation of this test bench consists in the possibility to determine heat losses under controlled vacuum.

  9. Nocturnal cooling : Study of heat transfer from a flat-plate solar collector

    OpenAIRE

    Johansson, Helena

    2008-01-01

    This thesis investigates the possibility of using an unglazed flat-plate solar collector as a cooling radiator. The solar collector will be connected to the condenser of a heat pump and used as cooler during nighttime. Daytime the solar collector will be connected to the evaporator of the heat pump and used as heat source. The two widely differing fields of application make special demands on the solar collector. The task is given by the heat pump manufacturer Thermia and the main objective i...

  10. Electromagnetic heating of minor planets in the early solar system

    Science.gov (United States)

    Herbert, F.; Sonett, C. P.

    1979-01-01

    Electromagnetic processes occurring in the primordial solar system are likely to have significantly affected planetary evolution. In particular, electrical coupling of the kinetic energy of a dense T-Tauri-like solar wind into the interior of the smaller planets could have been a major driver of thermal metamorphism. Accordingly a grid of asteroid models of various sizes and solar distances was constructed using dc transverse magnetic induction theory. Plausible parameterizations with no requirement for a high environmental temperature led to complete melting for Vesta with no melting for Pallas and Ceres. High temperatures were reached in the Pallas model, perhaps implying nonmelting thermal metamorphosis as a cause of its anomalous spectrum. A reversal of this temperature sequence seems implausible, suggesting that the Ceres-Pallas-Vesta dichotomy is a natural outcome of the induction mechanism. Highly localized heating is expected to arise due to an instability in the temperature-controlled current distribution. Localized metamorphosis resulting from this effect may be relevant to the production and evolution of pallasites, the large presumed metal component of S object spectra, and the formation of the lunar magma ocean.

  11. Integrated solar pump design incorporating a brushless DC motor for use in a solar heating system

    Energy Technology Data Exchange (ETDEWEB)

    Swan, Lukas G.; Allen, Peter L. [Department of Mechanical Engineering, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3J 1Z1 (Canada)

    2010-09-15

    Most solar thermal hot water heating systems utilize a pump for circulation of the working fluid. An elegant approach to powering the pump is via solar energy. A ''solar pump'' employs a photovoltaic module, electric motor, and pump to collect and convert solar energy to circulate the working fluid. This article presents an experimental investigation of a new integrated solar pump design that employs the stator of a brushless DC motor and a magnetically coupled pump that has no dynamic seal. This design significantly reduces total volume and mass, and eliminates redundant components. The integrated design meets a hydraulic load of 1.7 bar and 1.4 litres per minute, equal to 4.0 watts, at a rotational speed of 500 revolutions per minute. The brushless DC motor and positive displacement pump achieve efficiencies of 62% and 52%, respectively, resulting in an electric to hydraulic efficiency of 32%. Thus, a readily available photovoltaic module rated 15 watts output is suitable to power the system. A variety of design variations were tested to determine the impact of the armature winding, pump size, pulse width modulation frequency, seal can material, etcetera. The physical and magnetic design was found to dominate efficiency. The efficiency characteristics of a photovoltaic module are such that over-sizing is wasteful. The integrated design presents a robust, efficient package for use as a solar pump. Although focus has been placed on application to a solar thermal collector system, variations of the design are suitable for a wide variety of applications such as remote location water pumping. (author)

  12. Monograph Series No. 3: 10 MWe Solar Thermal Central Receiver Pilot Plant receiver solar absorptance measurements and results

    Energy Technology Data Exchange (ETDEWEB)

    Baker, A.F.

    1986-06-01

    Solar absorptance data on Pyromark painted receiver panels at the 10 MWe Solar Thermal Central Receiver Pilot Plant located near Barstow, California are reported. Measurements were made in 1982, 1983, and 1984. Selected measurements were made in 1985 after one receiver panel was repainted with Pyromark. The results show a linear decrease in the solar absorptance with time from an original average value of 0.92 to 0.88 after 663 days. The decrease in solar absorptance correlated with the higher incident solar flux levels on the receiver panels and not with the operating temperature of the panels. Repainting of one receiver panel successfully increased the solar absorptance to a value above 0.96.

  13. Candidate thermal energy storage technologies for solar industrial process heat applications

    Science.gov (United States)

    Furman, E. R.

    1979-01-01

    A number of candidate thermal energy storage system elements were identified as having the potential for the successful application of solar industrial process heat. These elements which include storage media, containment and heat exchange are shown.

  14. Thermal Performance of a Large Low Flow Solar Heating System with a Highly Thermally Stratified Tank

    DEFF Research Database (Denmark)

    Furbo, Simon; Vejen, Niels Kristian; Shah, Louise Jivan

    2005-01-01

    In year 2000 a 336 m² solar domestic hot water system was built in Sundparken, Elsinore, Denmark. The solar heating system is a low flow system with a 10000 l hot-water tank. Due to the orientation of the buildings half of the solar collectors are facing east, half of the solar collectors are...... facing west. The collector tilt is 15° from horizontal for all collectors. Both the east-facing and the west-facing collectors have their own solar collector loop, circulation pump, external heat exchanger and control system. The external heat exchangers are used to transfer the heat from the solar...... collector fluid to the domestic water. The domestic water is pumped from the bottom of the hot-water tank to the heat exchanger and back to the hot-water tank through stratification inlet pipes. The return flow from the DHW circulation pipe also enters the tank through stratification inlet pipes. The tank...

  15. The solar cycle - A central-source wave theory

    Science.gov (United States)

    Bracewell, R. N.

    1989-01-01

    Studies stimulated by the interpretation of the Elatina formation in South Australia as a fossil record of solar activity have led to discoveries of previously unnoticed features of the sunspot cycle record and to a theory of origin of the sunspot cycle that postulates a solar core in torsional motion and a magnetomechanical wave that couples to the photosphere. The considerations supporting the solar interpretation of the Elatina formation are gathered together.

  16. The development of a solar-powered residential heating and cooling system

    Science.gov (United States)

    1974-01-01

    Efforts to demonstrate the engineering feasibility of utilizing solar power for residential heating and cooling are described. These efforts were concentrated on the analysis, design, and test of a full-scale demonstration system which is currently under construction at the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville, Alabama. The basic solar heating and cooling system under development utilizes a flat plate solar energy collector, a large water tank for thermal energy storage, heat exchangers for space heating and water heating, and an absorption cycle air conditioner for space cooling.

  17. Thermal design heat sinks, thermoelectrics, heat pipes, compact heat exchangers, and solar cells

    CERN Document Server

    Lee, H S

    2010-01-01

    The proposed is written as a senior undergraduate or the first-year graduate textbook,covering modern thermal devices such as heat sinks, thermoelectric generators and coolers, heat pipes, and heat exchangers as design components in larger systems. These devices are becoming increasingly important and fundamental in thermal design across such diverse areas as microelectronic cooling, green or thermal energy conversion, and thermal control and management in space, etc. However, there is no textbook available covering this range of topics. The proposed book may be used as a capstone design cours

  18. Thermochemical solar energy storage via redox oxides: materials and reactor/heat exchanger concepts

    OpenAIRE

    Tescari, Stefania; Agrafiotis, Christos; Breuer, Stefan; de Oliveira, Lamark; Neises-von Puttkamer, Martina; Roeb, Martin; Sattler, Christian

    2014-01-01

    Thermochemical Storage of solar heat exploits the heat effects of reversible chemical reactions for the storage of solar energy. Among the possible reversible gas-solid chemical reactions, the utilization of a pair of redox reactions of multivalent solid oxides can be directly coupled to CSP plants employing air as the heat transfer fluid bypassing the need for a separate heat exchanger. The present work concerns the development of thermochemical storage systems based on such oxide-based r...

  19. Study on the Performance of a Ground Source Heat Pump System Assisted by Solar Thermal Storage

    OpenAIRE

    Yu Jin Nam; Xin Yang Gao; Sung Hoon Yoon; Kwang Ho Lee

    2015-01-01

    A ground source heat pump system (GSHPS) utilizes a relatively stable underground temperature to achieve energy-saving for heating and cooling in buildings. However, continuous long-term operation will reduce the soil temperature in winter, resulting in a decline in system performance. In this research, in order to improve the system performance of a GSHPS, a ground heat pump system integrated with solar thermal storage was developed. This solar-assisted ground heat pump system (SAGHPS) can b...

  20. Solar Assisted Ground Source Heat Pump Performance in Nearly Zero Energy Building in Baltic Countries

    OpenAIRE

    Januševičius, K; Streckienė, G

    2013-01-01

    In near zero energy buildings (NZEB) built in Baltic countries, heat production systems meet the challenge of large share domestic hot water demand and high required heating capacity. Due to passive solar design, cooling demand in residential buildings also needs an assessment and solution. Heat pump systems are a widespread solution to reduce energy use. A combination of heat pump and solar thermal collectors helps to meet standard requirements and increases the share of...

  1. Concentrating Solar Power Central Receiver Panel Component Fabrication and Testing FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    McDowell, Michael W [Pratt & Whitney Rocketdyne; Miner, Kris [Pratt & Whitney Rocketdyne

    2013-03-30

    The objective of this project is to complete a design of an advanced concentrated solar panel and demonstrate the manufacturability of key components. Then confirm the operation of the key components under prototypic solar flux conditions. This work is an important step in reducing the levelized cost of energy (LCOE) from a central receiver solar power plant. The key technical risk to building larger power towers is building the larger receiver systems. Therefore, this proposed technology project includes the design of an advanced molten salt prototypic sub-scale receiver panel that can be utilized into a large receiver system. Then complete the fabrication and testing of key components of the receive design that will be used to validate the design. This project shall have a significant impact on solar thermal power plant design. Receiver panels of suitable size for utility scale plants are a key element to a solar power tower plant. Many subtle and complex manufacturing processes are involved in producing a reliable, robust receiver panel. Given the substantial size difference between receiver panels manufactured in the past and those needed for large plant designs, the manufacture and demonstration on prototype receiver panel components with representative features of a full-sized panel will be important to improving the build process for commercial success. Given the thermal flux limitations of the test facility, the panel components cannot be rendered full size. Significance changes occurred in the projects technical strategies from project initiation to the accomplishments described herein. The initial strategy was to define cost improvements for the receiver, design and build a scale prototype receiver and test, on sun, with a molten salt heat transport system. DOE had committed to constructing a molten salt heat transport loop to support receiver testing at the top of the NSTTF tower. Because of funding constraints this did not happen. A subsequent plan to

  2. Climate change, workplace heat exposure, and occupational health and productivity in Central America.

    Science.gov (United States)

    Kjellstrom, Tord; Crowe, Jennifer

    2011-01-01

    Climate change is increasing heat exposure in places such as Central America, a tropical region with generally hot/humid conditions. Working people are at particular risk of heat stress because of the intrabody heat production caused by physical labor. This article aims to describe the risks of occupational heat exposure on health and productivity in Central America, and to make tentative estimates of the impact of ongoing climate change on these risks. A review of relevant literature and estimation of the heat exposure variable wet bulb globe temperature (WBGT) in different locations within the region were used to estimate the effects. We found that heat stress at work is a real threat. Literature from Central America and heat exposure estimates show that some workers are already at risk under current conditions. These conditions will likely worsen with climate change, demonstrating the need to create solutions that will protect worker health and productivity. PMID:21905396

  3. Central universal force field to explain solar orbital radial acceleration and other universal phenomena

    OpenAIRE

    Barghout, Kamal

    2007-01-01

    I investigate a repulsive central universal force field on the behavior of celestial objects. I show its negative tidal effect on the solar orbits as experienced by Pioneer spacecrafts. I explain several cosmological effects in light of this force.

  4. ALGORITHM FOR OPTIMIZATION OF STRUCTURE AND COMPOSITION OF CENTRALIZED HEAT-SUPPLY SYSTEM

    OpenAIRE

    V. Sednin; Korznikov, A.; A. Sednin; I. Shkliar

    2014-01-01

     The paper presents algorithms for structure optimization of centralized heat-supply systems in large cities due to higher heat loads and necessity for equipment change. The algorithms can be applied for elaboration of plans for development of heat supply in cities and human settlements.

  5. ALGORITHM FOR OPTIMIZATION OF STRUCTURE AND COMPOSITION OF CENTRALIZED HEAT-SUPPLY SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Sednin

    2014-09-01

    Full Text Available  The paper presents algorithms for structure optimization of centralized heat-supply systems in large cities due to higher heat loads and necessity for equipment change. The algorithms can be applied for elaboration of plans for development of heat supply in cities and human settlements.

  6. Installation guidelines for solar heating system, single-family residence at New Castle, Pennsylvania

    Science.gov (United States)

    1980-01-01

    The solar heating system installer guidelines are presented for each subsystem. This single family residential heating system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: (1) liquid cooled flat plate collectors; (2) water storage tank; (3) passive solar-fired domestic water preheater; (4) electric hot water heater; (5) heat pump with electric backup; (6) solar hot water coil unit; (7) tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; (8) control system; and (9) air-cooled heat purge unit. Information is provided on the operating procedures, controls, caution requirements, and routine and schedule maintenance in the form of written descriptions, schematics, detail drawings, pictures, and manufacturer's component data.

  7. Installation guidelines for Solar Heating System, single-family residence at New Castle, Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The Solar Heating System installer guidelines are provided for each subsystem and includes testing and filling the system. This single-family residential heating system is a solar-assisted, hydronic-to-warm-air system with solar-assisted domestic water heating. It is composed of the following major components: liquid cooled flat plate collectors; water storage tank; passive solar-fired domestic water preheater; electric hot water heater; heat pump with electric backup; solar hot water coil unit; tube-and-shell heat exchanger, three pumps, and associated pipes and valving in an energy transport module; control system; and air-cooled heat purge unit. Information is also provided on the operating procedures, controls, caution requirements, and routine and schedule maintenance. Information consists of written procedures, schematics, detail drawings, pictures and manufacturer's component data.

  8. Buildings as solar heat stores. Heating system control and room activation; Das Gebaeude als Solarspeicher. Heizungsregelung mit Raumaktivierung

    Energy Technology Data Exchange (ETDEWEB)

    Heckmeier, J. [Orange Energy, Schweitenkirchen (Germany); SHK-Betrieb Josef Heckmeier Haustechnik (Germany)

    2007-08-15

    When solar heating systems are used as auxiliary heating systems, there is often a gap between heat production and heat demand, especially with large collector surfaces. An intelligent control concept (innovative room bus system) is presented which narrows this gap and makes a significant contribution to energy conservation and CO2 reduction. The newly developed system also offers high comfort and user-friendliness. (orig.)

  9. ENERGY EFFICIENCY OF DIFFERENT WAYS OF CENTRAL HEATING

    Directory of Open Access Journals (Sweden)

    A. E. Piir

    2015-03-01

    Full Text Available  The article shows the calculation comparison of fuel for producing of heat-line water with a help of different technological installations, transforming (converting high-grade heat from burning process of fuel or in the process of non-reversible heat exchange with coolant (heating agent, or with a help of heat engines, which allow to decrease losses of working efficiency and thus to reduce the use of fuel. There were considered five types of plants beginning from the  simplest  one  up  to  the  most  complex  in  two  variants,  when  the  heat  exchangers and machines are perfect (ideal and when equipment has the known degree of efficiency (perfection:1 water-heat boiler station, working on organic fuel;2 electrical boiler station, obtaining energy on power transmission lines from condensing power station;3 line heater of TPP, obtaining steam from heating turbine;4 line heater CPP, powered by steam from pressure reducing unit;5 heat pump, producing energy on power supply lines from TPP.In this article were investigated three ideal reversible ways of transformation of   high- grade heat into low-grade heat with a help of decreasing and increasing and combined (suggested by the authors heat transformers and their thermodynamic equivalence was shown in this article. And there were suggested universal installation for electric energy generation, cold and heat of two grades for heat-water supply and the heating process on the base of gascompressors   gas turbines. These results are so important (actual for power engineers of the countries with  increasing consumption  of organic  fuel and  its enhancement in  value and realizing programs of energy saving .The analysis shows, that the quality of produced low-grade heat per unit of used high-grade heat for ideal plants (installations is: electrical boiler unit – 0.7;  water boiler unit – 1.0; for heat pump, heating turbine, combined heat transformers   – 4

  10. Solar Pilot Plant, Phase I. Preliminary design report. Volume II, Book 2. Central receiver optical model users manual. CDRL item 2. [HELIAKI code

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-05-01

    HELIAKI is a FORTRAN computer program which simulates the optical/thermal performance of a central receiver solar thermal power plant for the dynamic conversion of solar-generated heat to electricity. The solar power plant which this program simulates consists of a field of individual sun tracking mirror units, or heliostats, redirecting sunlight into a cavity, called the receiver, mounted atop a tower. The program calculates the power retained by that cavity receiver at any point in time or the energy into the receiver over a year's time using a Monte Carlo ray trace technique to solve the multiple integral equations. An artist's concept of this plant is shown.

  11. A solar combisystem based on a heat storage with three internal heat exchangers. IEA task 26

    International Nuclear Information System (INIS)

    A Danish solar combisystem is theoretically investigated in this report. The principle of the system is that it is a standard solar domestic hot water system, in which the collector area has been oversized, in order to be able to deliver energy to an existing space heating system. This is made through an extra hat exchanger included in the domestic hot water tank. A TRNSYS model of the system is developed and a sensitivity analysis is performed by means of TRNSYS simulation. This analysis showed that the system could be improved by: 1. Reducing the auxiliary volume, 2. Using an electrical heating element in the storage tank during summertime, 3. Insulating the bottom of the storage better, 4. Eliminating all thermal bridges in the storage tank insulation, 5. Moving up the storage temperature sensor for the collector control to the level of the collector heat exchanger inlet, 6. Reducing the auxiliary set temperature to 45 deg. C. By improving the system, the thermal fractional saving can be increased about 5%pts. (au)

  12. Prediction and experimental verification of performance of box type solar cooker - Part I. Cooking vessel with central cylindrical cavity

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Avala Raji [Department of Mechanical Engineering, Kakatiya Institute of Technology and Science, Warangal 506 015, AP (India); Rao, A.V. Narasimha [Department of Mechanical Engineering, National Institute of Technology, Warangal 506 004, AP (India)

    2007-07-15

    The performance of conventional box type solar cookers can be improved by better designs of cooking vessels with proper understanding of the heat flow to the material to be cooked. An attempt has been made in this article to arrive at a mathematical model to understand the heat flow process to the cooking vessel and thereby to the food material. The mathematical model considers a double glazed hot box type solar cooker loaded with two different types of vessels, kept either on the floor of the cooker or on lugs. The performance of the cooking vessel with a central cylindrical cavity is compared with that of a conventional cylindrical cooking vessel. It is found from the experiments and modeling that the cooking vessel with a central cylindrical cavity on lugs results in a higher temperature of the thermic fluid than that of a conventional vessel on the floor or on lugs. The average improvement of performance of the vessel with a central cylindrical cavity kept on lugs is found to be 5.9% and 2.4% more than that of a conventional cylindrical vessel on the floor and on lugs, respectively. (author)

  13. The cavity heat pipe Stirling receiver for space solar dynamics

    Science.gov (United States)

    Kesseli, James B.; Lacy, Dovie E.

    1989-01-01

    The receiver/storage unit for the low-earth-orbiting Stirling system is discussed. The design, referred to as the cavity heat pipe (CHP), has been optimized for minimum specific mass and volume width. A specific version of this design at the 7-kWe level has been compared to the space station Brayton solar dynamic design. The space station design utilizes a eutectic mixture of LiF and CaF2. Using the same phase change material, the CHP has been shown to have a specific mass of 40 percent and a volume of 5 percent of that of the space station Brayton at the same power level. Additionally, it complements the free-piston Stirling engine in that it also maintains a relatively flat specific mass down to at least 1 kWe. The technical requirements, tradeoff studies, critical issues, and critical technology experiments are discussed.

  14. Automotive absorption air conditioner utilizing solar and motor waste heat

    Science.gov (United States)

    Popinski, Z. (Inventor)

    1981-01-01

    In combination with the ground vehicles powered by a waste heat generating electric motor, a cooling system including a generator for driving off refrigerant vapor from a strong refrigerant absorbant solution is described. A solar collector, an air-cooled condenser connected with the generator for converting the refrigerant vapor to its liquid state, an air cooled evaporator connected with the condenser for returning the liquid refrigerant to its vapor state, and an absorber is connected to the generator and to the evaporator for dissolving the refrigerant vapor in the weak refrigerant absorbant solution, for providing a strong refrigerant solution. A pump is used to establish a pressurized flow of strong refrigerant absorbant solution from the absorber through the electric motor, and to the collector.

  15. Method of forming oxide coatings. [for solar collector heating panels

    Science.gov (United States)

    Mcdonald, G. E. (Inventor)

    1983-01-01

    This invention is concerned with an improved plating process for covering a substrate with a black metal oxide film. The invention is particularly directed to making a heating panel for a solar collector. A compound is electrodeposited from an aqueous solution containing cobalt metal salts onto a metal substrate. This compound is converted during plating into a black, highly absorbing oxide coating which contains hydrated oxides. This is achieved by the inclusion of an oxidizing agent in the plating bath. The inclusion of an oxidizing agent in the plating bath is contrary to standard electroplating practice. The hydrated oxides are converted to oxides by treatment in a hot bath, such as boiling water. An oxidizing agent may be added to the hot liquid treating bath.

  16. Development of an integrated heat pipe-thermal storage system for a solar receiver

    Science.gov (United States)

    Keddy, E.; Sena, J. Tom; Merrigan, M.; Heidenreich, Gary; Johnson, Steve

    1988-01-01

    An integrated heat pipe-thermal storage system was developed as part of the Organic Rankine Cycle Solar Dynamic Power System solar receiver for space station application. The solar receiver incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain thermal energy storage (TES) canisters within the vapor space with a toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the earth orbit, solar energy is delivered to the heat pipe. Part of this thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of earth orbit, the stored energy in the TES units is transferred by the potassium vapor to the toluene heater tube. A developmental heat pipe element was constructed that contains axial arteries and a distribution wick connecting the toluene heater and the TES units to the solar insolation surface of the heat pipe. Tests were conducted to demonstrate the heat pipe, TES units, and the heater tube operation. The heat pipe element was operated at design input power of 4.8 kW. Thermal cycle tests were conducted to demonstrate the successful charge and discharge of the TES units. Axial power flux levels up to 15 watts/sq cm were demonstrated and transient tests were conducted on the heat pipe element. Details of the heat pipe development and test procedures are presented.

  17. Solar space heating systems using annual heat storage. Progress report, July 1--December 30, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, F. C.; Attwater, C. R.; Brunger, A. P.; Cook, R. J.D.; McClenahan, J. D.

    1978-02-01

    The development of practical design methods and the evaluation of observed performance data from instrumented annual storage systems is reported. The application of new analysis and survey work to engineering design is presented. The previously developed computed simulation is extended to derive new methods of determining cost optimal annual storage systems operating under specified conditions. The development of new methods of analysis of the behaviour of soil heat flow and solar collector models is reported. The preparation of reports and scientific papers on the task, and work on related academic projects is outlined.

  18. Testing of Solar Heated Domestic Hot Water System for Solahart Scandinavia ApS

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1997-01-01

    The solar heating system marketed by Solahart Scandinavia ApS was tested in the Institutes test facility for SDHWsystems. The test results are described in the report.......The solar heating system marketed by Solahart Scandinavia ApS was tested in the Institutes test facility for SDHWsystems. The test results are described in the report....

  19. Window Design Criteria to Avoid Overheating by Excessive Solar Heat Gains.

    Science.gov (United States)

    Loudon, A. G.

    Building Research studies show that overheating because of excessive solar heat gains can be troublesome in buildings of lightweight construction with large areas of glazing. The work being done at the Building Research Station provides the data for calculation of peak temperatures resulting from solar heat gain. Attention is given to window size…

  20. Technical and economic calculation of combined heating and cooling systems vegetable store- solar greenhouse

    International Nuclear Information System (INIS)

    We present a technical and economic assessment of the usage expediency of a combined system solar greenhouse-vegetable storage with a heat pump installation. We show the results obtained from a comparison of heat supply options for a solar greenhouse. (author)

  1. Solar Heating and Cooling of Buildings: Phase 0. Executive Summary. Final Report.

    Science.gov (United States)

    Westinghouse Electric Corp., Baltimore, MD.

    After the Westinghouse Electric Corporation made a comprehensive analysis of the technical, economic, social, environmental, and institutional factors affecting the feasibility of utilizing solar energy for heating and cooling buildings, it determined that solar heating and cooling systems can become competitive in most regions of the country in…

  2. Timonium Elementary School Solar Energy Heating and Cooling Augmentation Experiment. Final Engineering Report. Executive Summary.

    Science.gov (United States)

    AAI Corp., Baltimore, MD.

    This report covers a two-year and seven-month solar space heating and cooling experiment conducted at the Timonium Elementary School, Timonium, Maryland. The system was designed to provide a minimum of 50 percent of the energy required during the heating season and to determine the feasibility of using solar energy to power absorption-type…

  3. National Program Plan for Research and Development in Solar Heating and Cooling. Interim Report.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This report presents the Energy Research and Development Administration (ERDA) program plan for solar heating and cooling of buildings and for agricultural and industrial process applications. An overview of the program plan is followed by a description of the ten paths to the solar heating and cooling of buildings and a brief discussion of the…

  4. System design package for a solar heating and cooling system installed at Akron, Ohio

    Science.gov (United States)

    1979-01-01

    Information used to evaluate the design of a solar heating, cooling, and domestic hot water system is given. A conventional heat pump provides summer cooling items as the design data brochure, system performance specification, system hazard analysis, spare parts list, and detailed design drawings. A solar system is installed in a single-family dwelling at Akron, Ohio, and at Duffield, Virginia.

  5. Solar heating systems: Strategy, status and perspectives in the European Union and Bulgaria

    International Nuclear Information System (INIS)

    This report describes and shows data concerning the strategy and the action plan for the development of renewable energy sources (including solar energy) of the European Union. The development of the solar heating systems market in the EU countries is indicated, while the main prerequisites for that development are underlined. Regarding the utilization of solar heating systems in Bulgaria, the current condition of their application are presented. The various barriers are mainly stressed upon: institutional, financial, law and market barriers. The factors supporting the development of renewable energy sources, including solar heating systems, are indicated as well

  6. Modeling of solar heating and air conditioning. Progress report, October 31, 1974--December 31, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Duffie, J.A.; Beckman, W.A.

    1975-12-31

    The principal objective of the research is to develop the means to identify and optimize practical systems for heating and cooling of buildings with solar energy in the United States. This will be done through simulation methods. Secondary objectives are to: extend and refine TRNSYS (a modular solar energy system simulation program); develop the means of supporting TRNSYS users in other laboratories; use TRNSYS (and other simulation programs) to develop design procedures for solar heating and cooling processes; design and evaluate an experimental solar heating system on a Wisconsin farm residence.

  7. Combined solar heat and power system with a latent heat storage - system simulations for an economic assessment

    Science.gov (United States)

    Zipf, Verena; Neuhäuser, Anton

    2016-05-01

    Decentralized solar combined heat and power (CHP) systems can be economically feasible, especially when they have a thermal storage. In such systems, heat provided by solar thermal collectors is used to generate electricity and useful heat for e.g. industrial processes. For the supply of energy in times without solar irradiation, a thermal storage can be integrated. In this work, the performance of a solar CHP system using an active latent heat storage with a screw heat exchanger is investigated. Annual yield calculations are conducted in order to calculate annual energy gains and, based on them; economic assumptions are used to calculated economic numbers in order to assess the system performance. The energy savings of a solar system, compared to a system with a fossil fuel supply, are calculated. Then the net present value and the dynamic payback are calculated with these savings, the initial investment costs and the operational costs. By interpretation and comparison of these economic numbers, an optimum system design in terms of solar field size and storage size was determined. It has been shown that the utilization of such systems can be economical in remote areas without gas and grid connection. Optimal storage design parameters in terms of the temperature differences in the heat exchanger and the storage capacity have been determined which can further increase the net present value of such system.

  8. Thermal Efficiency of Power Module “Boiler with Solar Collectors as Additional Heat Source” For Combined Heat Supply System

    Directory of Open Access Journals (Sweden)

    Denysova A.E.

    2015-04-01

    Full Text Available The purpose of work is to increase the efficiency of the combined heat supply system with solar collectors as additional thermal generators. In order to optimize the parameters of combined heat supply system the mathematical modeling of thermal processes in multi module solar collectors as additional thermal generators for preheating of the water for boiler have been done. The method of calculation of multi-module solar collectors working with forced circulation for various configurations of hydraulic connection of solar collector modules as the new result of our work have been proposed. The results of numerical simulation of thermal efficiency of solar heat source for boiler of combined heat supply system with the account of design features of the circuit; regime parameters of thermal generators that allow establishing rational conditions of its functioning have been worked out. The conditions of functioning that provide required temperature of heat carrier incoming to boiler and value of flow rate at which the slippage of heat carrier is not possible for different hydraulic circuits of solar modules have been established.

  9. Solar heating and cooling demonstration project at Radian Corporation, Austin, Texas

    Science.gov (United States)

    1980-01-01

    The solar heating and cooling system located at the Radian Corporation, Austin, Texas, is discussed. A technical description of the solar system is presented. The costs of the major components and the cost of installing the system are described. Flow diagrams and photographs of the solar system are provided.

  10. Installation package for integrated programmable electronic controller and hydronic subsystem - solar heating and cooling

    Science.gov (United States)

    1978-01-01

    A description is given of the Installation, Operation, and Maintenance Manual and information on the power panel and programmable microprocessor, a hydronic solar pump system and a hydronic heating hot water pumping system. These systems are integrated into various configurations for usages in solar energy management, control and monitoring, lighting control, data logging and other solar related applications.

  11. Dimensionally similar discharges with central rf heating on the DIII-D tokamak

    International Nuclear Information System (INIS)

    The scaling of L-mode heat transport with normalized gyroradius is investigated on the DIII-D tokamak using central rf heating. A toroidal field scan of dimensionally similar discharges with central ECH and/or fast wave heating show gyro-Bohm-like scaling both globally and locally. The main difference between these restats and those using NBI heating on DIII-D is that with rf heating the deposition profile is not very sensitive to the plasma density. Therefore central heating can be utilized for both the low-B and high-B discharges, whereas for NBI the power deposition is decidedly off-axis for the high-B discharge (i.e., high density)

  12. Can carbon finance contribute to the promotion of solar water heating in Bolivia?

    OpenAIRE

    Hayek, Niklas

    2011-01-01

    Residential applications of renewable energy can contribute to reducing greenhouse gas emissions while improving the quality of life for households. Thermosiphon solar water heaters are passive systems using solar energy to supply hot water for residential or industrial use. Replacing fuels or electricity for heating, solar water heating systems can substantially reduce a household’s energy demand. Despite the economic and environmental benefits, several barriers hinder the broader adoption o...

  13. Integrated thermochemical reactors/heat exchangers for solar energy storage based on porous ceramic structures

    OpenAIRE

    Agrafiotis, Christos; Roeb, Martin; Sattler, Christian

    2014-01-01

    Thermochemical Storage (TCS) of solar energy exploits the heat effects of reversible chemical reactions. Solar heat produced during on-sun operation of Concentrated Solar Power (CSP) plants is used to power an endothermic chemical reaction; if this reaction is completely reversible the thermal energy can be entirely recovered by the reverse reaction during off-sun operation. Among such possible reversible gas-solid chemical reactions, the utilization of a pair of reduction-oxidation (redox) r...

  14. Investigation of solar assisted heat pump system integrated with high-rise residential buildings

    OpenAIRE

    Yu FU

    2014-01-01

    The wide uses of solar energy technology (solar thermal collector, photovoltaic and heat pump systems) have been known for centuries. These technologies are intended to supply domestic hot water and electricity. However, these technologies still face some barriers along with fast development. In this regards, the hybrid energy system combines two or more alternative technologies to help to increase the total efficiency of the system. Solar assisted heat pump systems (SAHP) and photovoltaic/th...

  15. Installation package for a domestic solar heating and hot water system

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-01

    Fern Engineering Company, Inc. has developed two prototype solar heating and hot water systems. The systems have been installed at Tunkhannock, Pennsylvania, and Lansing, Michigan. The system consists of the following subsystems: solar collector, storage, control, transport, and auxiliary energy. General guidelines which may be utilized in development of detailed installation plans and specifications are presented. In addition, instruction on operation, maintenance, and repair of a solar heating and hot water system is provided.

  16. MHD discontinuities in solar flares: Continuous transitions and plasma heating

    Science.gov (United States)

    Ledentsov, L. S.; Somov, B. V.

    2015-12-01

    The boundary conditions for the ideal MHD equations on a plane discontinuity surface are investigated. It is shown that, for a given mass flux through a discontinuity, its type depends only on the relation between inclination angles of a magnetic field. Moreover, the conservation laws on a surface of discontinuity allow changing a discontinuity type with gradual (continuous) changes in the conditions of plasma flow. Then there are the so-called transition solutions that satisfy simultaneously two types of discontinuities. We obtain all transition solutions on the basis of the complete system of boundary conditions for the MHD equations. We also found the expression describing a jump of internal energy of the plasma flowing through the discontinuity. Firstly, this allows constructing a generalized scheme of possible continuous transitions between MHD discontinuities. Secondly, it enables the examination of the dependence of plasma heating by plasma density and configuration of the magnetic field near the discontinuity surface, i.e., by the type of the MHD discontinuity. It is shown that the best conditions for heating are carried out in the vicinity of a reconnecting current layer near the areas of reverse currents. The result can be helpful in explaining the temperature distributions inside the active regions in the solar corona during flares observed by modern space observatories in soft and hard X-rays.

  17. Investigation of a solar heating system for space heating and domestic hot water supply for Sol&Træ A.m.b.a

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1999-01-01

    A solar heating system for space heating and domestic hot water supply from "Sol&Træ A.m.b.a." was tested in a laboratory test facility.......A solar heating system for space heating and domestic hot water supply from "Sol&Træ A.m.b.a." was tested in a laboratory test facility....

  18. Investigation of a low flow solar heating system for space heating and domestic hot water supply for Aidt Miljø A/S

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1997-01-01

    A low flow solar heating system for space heating and domestic hot water supply from Aidt Miljø A/Swas tested in a laboratory test facility.......A low flow solar heating system for space heating and domestic hot water supply from Aidt Miljø A/Swas tested in a laboratory test facility....

  19. Central solar fotovoltaica de 5 MW con sistema de posicionamiento autónomo

    OpenAIRE

    Martínez Porras, Abel

    2010-01-01

    El objeto del proyecto realizado es el diseño de una central solar fotovoltaica (huerta solar) con sistema de posicionamiento autónomo de 5 MW de potencia nominal (5.796 MWp potencia de pico) con todos los elementos necesarios para la puesta en funcionamiento del parque fotovoltaico, desde la configuración fotovoltaica, la instalación eléctrica, etc. En un solar de uso rustico en el término municipal de L’Ametlla de Mar, al sur de Tarragona. La finalidad de la huerta solar e...

  20. Investigation of simple daily solar radiation models suitable for use in the design of solar heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Sillman, S.

    1980-08-01

    Solar heating system simulations typically require hourly weather data and the use of a main-line computer. A simpler alternative is to use daily steps with a model for daily solar collection. This report investigates the accuracy of sinusoidal radiation models for use in solar heating simulation. Accuracy of daily radiation models is assessed in two ways: by a theoretical comparison with hourly weather data, and by analysis of results of daily simulation. Results indicate that a daily radiation model can be designed with errors of less than 2%.

  1. On the Evaluation of Solar Greenhouse Efficiency in Building Simulation during the Heating Period

    OpenAIRE

    Francesco Asdrubali; Franco Cotana; Antonio Messineo

    2012-01-01

    Among solar passive systems integrated in buildings, sunspaces or solar greenhouses represent a very interesting solution. A sunspace is a closed, southbound volume, constituted by transparent surfaces, adjacent to a building, which reduces winter energy demand thanks to the use of solar gains. The effect of a typical solar greenhouse on the energy balance of a building was evaluated during the heating period with two stationary procedures (Method 5000 and EN ISO 13790) and with a dynamic too...

  2. Finite time thermodynamic analysis and optimization of solar-dish Stirling heat engine with regenerative losses

    OpenAIRE

    Sharma Arjun; Shukla S.K.; Rai Kumar Ajeet

    2011-01-01

    The present study investigates the performance of the solar-driven Stirling engine system to maximize the power output and thermal efficiency using the non-linearized heat loss model of the solar dish collector and the irreversible cycle model of the Stirling engine. Finite time thermodynamic analysis has been done for combined system to calculate the finite-rate heat transfer, internal heat losses in the regenerator, conductive thermal bridging losses and finite regeneration process ti...

  3. Do-it-yourself solar installations. Theory and practice of solar collector technology. Water heating, swimming-pool heating and space heating. 8. ed. Solaranlagen im Selbstbau. Theorie und Praxis der Sonnenkollektortechnik. Warmwasserbereitung, Schwimmbad- und Raumheizung

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz-Ladener, C.; Ladener, H.

    1989-01-01

    Elements of solar technology such as collectors, storage facilities and heat transport facilities are used to show how solar installations are planned, measured and built nowadays. Proven do-it-yourself systems for water-heating, swimming-pools and space heating are described and examples of completed DIY systems are presented. Not only the DIY enthusiast but also the purchaser of ready-made solar installations can see the state of the technology and get concrete help in reaching decisions from reading about experiences with the performance of solar installations and details of costs and economic viability. (orig.).

  4. A possible correlation between maxima of the far ultraviolet solar irradiance and central meridian passages of solar magnetic sector boundaries

    Science.gov (United States)

    Heath, D. F.; Wilcox, J. M.

    1974-01-01

    A description is given of the relationship observed between enhancements in the far ultraviolet solar irradiance and the position of the solar magnetic sector boundaries. The ultraviolet observations were made with the monitor of ultraviolet solar energy (MUSE) experiments which were launched aboard Nimbus 3 in April 1969 and Nimbus 4 April 1970. A comparison between the positions of solar magnetic sector boundaries and ultraviolet enchancements of the sun seems to show, at least during the year of 1969, that the ultraviolet maxima tend to occur near the times when a solar sector boundary is near the central meridian. An estimate of the magnitude of the variable ultraviolet solar energy input into the atmosphere resulting from the rotation of active solar longitudes is that for wavelengths less that 175 nm and down to H Lyman alpha it exceeds the annual variation whereas at longer wavelengths it is less. The total observed peak to peak variation in the ultraviolet irradiance from 120 to 300 nm over a solar rotation is typically at least 230 ergs/sq cm sec.

  5. CONCRETE STORAGE FOR SOLAR THERMAL POWER PLANTS AND INDUSTRIAL PROCESS HEAT

    OpenAIRE

    Laing, Doerte; Lehmann, Dorothea; Bahl, Carsten

    2008-01-01

    Economic storage of thermal energy is a technological key issue for solar thermal power plants and industrial waste heat recovery. Systems using single phase heat transfer fluids like thermal oil, pressurized water, air or superheated steam, demand storage systems for sensible heat. A sensible heat storage system using concrete as storage material has been developed by Ed. Züblin AG and DLR. A major focus was the cost reduction of the heat exchanger and the high temperature concrete storage m...

  6. Residential Solar Combined Heat and Power Generation using Solar Thermoelectric Generation

    Science.gov (United States)

    Ohara, B.; Wagner, M.; Kunkle, C.; Watson, P.; Williams, R.; Donohoe, R.; Ugarte, K.; Wilmoth, R.; Chong, M. Zachary; Lee, H.

    2015-06-01

    Recent reports on improved efficiencies of solar thermoelectric generation (STEG) systems have generated interest in STEGs as a competitive power generation system. In this paper, the design of a combined cooling and power utilizing concentrated solar power is discussed. Solar radiation is concentrated into a receiver connected to thermoelectric modules, which are used as a topping cycle to generate power and high grade heat necessary to run an absorption chiller. Modeling of the overall system is discussed with experimental data to validate modeling results. A numerical modeling approach is presented which considers temperature variation of the source and sink temperatures and is used to maximize combined efficiency. A system is built with a demonstrated combined efficiency of 32% in actual working conditions with power generation of 3.1 W. Modeling results fell within 3% of the experimental results verifying the approach. An optimization study is performed on the mirror concentration ration and number of modules for thermal load matching and is shown to improve power generation to 26.8 W.

  7. Solar district heating system `Schillerstrasse` in Schwaebisch-Gmuend; Solare Nahwaerme ``Schillerstrasse`` in Schwaebisch Gmuend

    Energy Technology Data Exchange (ETDEWEB)

    Kuebler, R. [Steinbeis-Transferzentrum Energie-, Gebaeude- und Solartechnik, Stuttgart (Germany); Mangold, D. [Stuttgart Univ. (Germany). Inst. fuer Thermodynamik und Waermetechnik

    1998-12-31

    The construction project Schillerstrasse in Schwaebisch-Gmuend was planned and realised by the Siedlungswerk Stuttgart from 1993 until 1996. Like in earlier projects in Ravensburg and Koengen the Siedlungswerk wanted to use new technologies in the field of thermal insulation and heat supply at the construction of this new residential area in order to stay considerably below the former construction standards (WSVO 1982). One part of this energy concept is a large solar plant to support warm water supply. Good experience had been made with flat solar collectors at the three plants in Ravensburg and Koengen. In Schwaebisch-Gmuend vacuum pipe collectors were utilised for the first time. They were the only type of collectors which could be installed on the flat roofs without being visible from the ground. The solar-assisted district heating system was put in operation in May 1996. A new method that controls the system by measuring data acquisition enabled to measure and optimise the thermal performance of the plant. At the beginning of 1998 the plant was modified in order to improve the use of the solar plant. (orig.) [Deutsch] Das Bauvorhaben Schillerstrasse in Schwaebisch Gmuend wurde in den Jahren 1993-1996 vom Siedlungswerk Stuttgart geplant und gebaut. Aehnlich wie bei frueheren Projekten in Ravensburg und Koengen war es das Ziel des Siedlungswerks, in diesem Neubauvorhaben neue Wege beim Waermeschutz und bei der Waermeversorgung der Wohnanlage zu gehen, um den damaligen Baustandard (WSVO 1982) deutlich zu unterschreiten. Ein Element dieses Energiekonzepts ist eine grosse Solaranlage zur Unterstuetzung der Warmwasserbereitung. Nach guten Erfahrungen mit Flachkollektoren in den drei Anlagen in Ravensburg und Koengen wurden in Schwaebisch Gmuend zum ersten Mal Vakuum-Roehrenkollektoren eingesetzt. Fuer die Wahl der Vakuumroehren waren nicht zuletzt die stadtpolitischen Randbedingungen ausschlaggebend, die nur eine von unten nicht sichtbare Aufstellung auf dem

  8. [Physiological evaluation of clothing made of new material for protection against the solar heat load].

    Science.gov (United States)

    Watanuki, S; Hiraoka, M; Doi, T; Kiyokawa, H

    1992-11-01

    The purpose of this study was to evaluate the effects of clothing made of a new material that is, the polyester staple containing the ceramics and to reflect the solar heat load on physiological responses during rest, exercise (50% VO2max) and recovery on a cycle ergometer. Six young female subjects exposed their back to an artificial solar heat load of an intensity of 680 kcal/m2/h with an air temperature of 30 degrees C. The data were compared to those obtained by wearing clothing made of cotton material. The results were as follows. The cardiac output and oxygen consumption obtained at the end of recovery were increased by solar heat load when the subjects wore cotton material. However, these values showed no significant increase when the subjects wore solar heat reflecting clothing. Furthermore, the cardiac output at the end of submaximal work and recovery were higher for the cotton material compared to the heat reflecting clothing in the solar heat load. The increase of cardiac output for the cotton material may show the increase of skin blood flow for the body heat dissipation. Those results suggest that the solar heat reflecting clothing may decrease the physiological strain like a blood redistribution for the body heat dissipation during exercise in summer sunlight. PMID:1476560

  9. Optimal study of a solar air heating system with pebble bed energy storage

    International Nuclear Information System (INIS)

    Highlights: → Use two kinds of circulation media in the solar collector. → Air heating and pebble bed heat storage are applied with different operating modes. → Design parameters of the system are optimized by simulation program. → It is found that the system can meet 32.8% of the thermal energy demand in heating season. → Annual solar fraction aims to be 53.04%. -- Abstract: The application of solar air collectors for space heating has attracted extensive attention due to its unique advantages. In this study, a solar air heating system was modeled through TRNSYS for a 3319 m2 building area. This air heating system, which has the potential to be applied for space heating in the heating season (from November to March) and hot water supply all year around in North China, uses pebble bed and water storage tank as heat storage. Five different working modes were designed based on different working conditions: (1) heat storage mode, (2) heating by solar collector, (3) heating by storage bed, (4) heating at night and (5) heating by an auxiliary source. These modes can be operated through the on/off control of fan and auxiliary heater, and through the operation of air dampers manually. The design, optimization and modification of this system are described in this paper. The solar fraction of the system was used as the optimization parameter. Design parameters of the system were optimized by using the TRNSYS program, which include the solar collector area, installation angle of solar collector, mass flow rate through the system, volume of pebble bed, heat transfer coefficient of the insulation layer of the pebble bed and water storage tank, height and volume of the water storage tank. The TRNSYS model has been verified by data from the literature. Results showed that the designed solar system can meet 32.8% of the thermal energy demand in the heating season and 84.6% of the energy consumption in non-heating season, with a yearly average solar fraction of 53.04%.

  10. False Dawn of a Solar Age: A History of Solar Heating and Power During the Energy Crisis, 1973-1986

    Science.gov (United States)

    Scavo, Jordan Michael

    corporations and utilities. Several of these companies embarked on a concerted public misinformation campaign designed to downplay the potential of solar energy, and these actions undermined the development of the nascent solar industries. Solar heating equipment relied on federal stimulus to compete in the market. Yet, federal support for research and development, commercialization, and market facilitation withered under the Reagan administration. Solar occupied a point of convergence for several of Reagan's targets: solar represented Carter, represented big government intervention in the market, and represented environmentalism. Reagan's administration reduced solar funding, redirected and reorganized solar agencies, and repressed solar information. By the early 1980s, Carter's 20% solar goal was dead, and, as a result, the nation's efforts toward developing solar energy were set back decades.

  11. Modelling the Size of Seasonal Thermal Storage in the Solar District Heating System

    Directory of Open Access Journals (Sweden)

    Giedrė Streckienė

    2012-12-01

    Full Text Available The integration of a thermal storage system into the solar heating system enables to increase the use of solar thermal energy in buildings and allows avoiding the mismatch between consumers’ demand and heat production in time. The paper presents modelling a seasonal thermal storage tank various sizes of which have been analyzed in the district solar heating system that could cover a part of heat demand for the district of individual houses in Vilnius. A biomass boiler house, as an additional heat source, should allow covering the remaining heat demand. energyPRO software is used for system modelling. The paper evaluates heat demand, climate conditions and technical characteristics.Article in Lithuanian

  12. Solar Colletors Combined with Ground-Source Heat Pumps in Dwellings - Analyses of System Performance

    OpenAIRE

    Kjellsson, Elisabeth

    2009-01-01

    The use of ground-source heat pumps for heating buildings and domestic hot water in dwellings is increasing rapidly in Sweden. The heat pump extracts heat from the ground by a U-pipe in a vertical borehole. In order to reduce the electricity demand in the system, the combination with solar collectors is introduced. This system may be designed in many ways and the advantages differ a lot. Solar heat can also be used for recharging of boreholes when neighbouring boreholes are thermally influenc...

  13. Using Solar Hot Water to Address Piping Heat Losses in Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Springer, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Seitzler, Matt [National Renewable Energy Lab. (NREL), Golden, CO (United States); Backman, Christine [National Renewable Energy Lab. (NREL), Golden, CO (United States); Weitzel, Elizabeth [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    Solar thermal water heating is most cost effective when applied to multifamily buildings and some states offer incentives or other inducements to install them. However, typical solar water heating designs do not allow the solar generated heat to be applied to recirculation losses, only to reduce the amount of gas or electric energy needed for hot water that is delivered to the fixtures. For good reasons, hot water that is recirculated through the building is returned to the water heater, not to the solar storage tank. The project described in this report investigated the effectiveness of using automatic valves to divert water that is normally returned through the recirculation piping to the gas or electric water heater instead to the solar storage tank. The valves can be controlled so that the flow is only diverted when the returning water is cooler than the water in the solar storage tank.

  14. Comparison of Direct Solar Energy to Resistance Heating for Carbothermal Reduction of Regolith

    Science.gov (United States)

    Muscatello, Anthony C.; Gustafson, Robert J.

    2011-01-01

    A comparison of two methods of delivering thermal energy to regolith for the carbo thermal reduction process has been performed. The comparison concludes that electrical resistance heating is superior to direct solar energy via solar concentrators for the following reasons: (1) the resistance heating method can process approximately 12 times as much regolith using the same amount of thermal energy as the direct solar energy method because of superior thermal insulation; (2) the resistance heating method is more adaptable to nearer-term robotic exploration precursor missions because it does not require a solar concentrator system; (3) crucible-based methods are more easily adapted to separation of iron metal and glass by-products than direct solar energy because the melt can be poured directly after processing instead of being remelted; and (4) even with projected improvements in the mass of solar concentrators, projected photovoltaic system masses are expected to be even lower.

  15. Theoretical comparison of solar water/space-heating combi systems and stratification design options

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon

    2007-01-01

    A theoretical analysis of differently designed solar combi systems is performed with weather data from the Danish Design Reference Year (55ºN). Three solar combi system designs found on the market are investigated. The investigation focuses on the influence of stratification on the thermal...... performance under different operation conditions with different domestic hot water and space heating demands. The solar combi systems are initially equipped with heat exchanger spirals and direct inlets to the tank. A step-by-step investigation is performed demonstrating the influence on the thermal...... performance of using inlet stratification pipes at the different inlets. Also, it is investigated how the design of the space heating system, the control system of the solar collectors, and the system size influence the thermal performance of solar combi systems. The work is carried out within the Solar...

  16. Design, Fabrication, and Efficiency Study of a Novel Solar Thermal Water Heating System: Towards Sustainable Development

    Directory of Open Access Journals (Sweden)

    M. Z. H. Khan

    2016-01-01

    Full Text Available This paper investigated a novel loop-heat-pipe based solar thermal heat-pump system for small scale hot water production for household purposes. The effective use of solar energy is hindered by the intermittent nature of its availability, limiting its use and effectiveness in domestic and industrial applications especially in water heating. The easiest and the most used method is the conversion of solar energy into thermal energy. We developed a prototype solar water heating system for experimental test. We reported the investigation of solar thermal conversion efficiency in different seasons which is 29.24% in summer, 14.75% in winter, and 15.53% in rainy season. This paper also discusses the DC heater for backup system and the current by using thermoelectric generator which are 3.20 V in summer, 2.120 V in winter, and 1.843 V in rainy season. This solar water heating system is mostly suited for its ease of operation and simple maintenance. It is expected that such novel solar thermal technology would further contribute to the development of the renewable energy (solar driven heating/hot water service and therefore lead to significant environmental benefits.

  17. Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Guiyin; Hu, Hainan; Liu, Xu [Department of Physics, Nanjing University, Nanjing 210093 (China)

    2010-09-15

    An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

  18. Solar Heating and Cooling of Buildings (Phase O). Volume 1: Executive Summary.

    Science.gov (United States)

    TRW Systems Group, Redondo Beach, CA.

    The purpose of this study was to establish the technical and economic feasibility of using solar energy for the heating and cooling of buildings. Five selected building types in 14 selected cities were used to determine loads for space heating, space cooling and dehumidification, and domestic service hot water heating. Relying on existing and…

  19. A new way to convert Alfven waves into heat in solar coronal holes - Intermittent magnetic levitation

    Science.gov (United States)

    Moore, R. L.; Hammer, R.; Musielak, Z. E.; Suess, S. T.; An, C.-H.

    1992-01-01

    In our recent analysis of Alfven wave reflection in solar coronal holes, we found evidence that coronal holes are heated by reflected Alfven waves. This result suggests that the reflection is inherent to the process that dissipates these Alfven waves into heat. We propose a novel dissipation process that is driven by the reflection, and that plausibly dominates the heating in coronal holes.

  20. Solar wall heating and daylight use with transparent thermal insulation - the solar environmental wall; Solare Wandheizung und Tageslichtnutzung mit Transparenter Waermedaemmung - die Solare Umweltwand

    Energy Technology Data Exchange (ETDEWEB)

    Platzer, W. [Fachverband Transparente Waermedaemmung e.V., Gundelfingen (Germany)

    2005-07-01

    Construction with the sun means to open building walls for the sun. The building is supposed to benefit directly from daylight and solar heat. Special materials were developed for this purpose, which combine solar transmission and light transmission. They enable the transparent thermal insulation of buildings, abbreviated TWD. Their integration into the facade and the roof offer an intelligent and uncomplicated technology for the use of solar energy, the ''solar environmental wall''. TWD-materials can be used as filling material in various building components and they already constitute a weather-resistant wall. They are thermally-insulating structures or materials, which keep out the heat but allow the transmission of solar radiation and light. TWD-materials maintain their excellent insulating properties almost unchanged even in case of very cold outer temperatures or inclined construction in the roof area. In these cases the convection of components that are only filled with air or gas, can lead to considerable decreases of the U-value (according to DIN EN 673 up to 45%). Good TWD-materials are resistant against humidity, which enables to use them in non-hermetic systems, such as e.g. U-profile glas, too. (orig.)